
www.allitebooks.com

http://www.allitebooks.org

Mastering KnockoutJS

Use and extend Knockout to deliver feature-rich,
modern web applications

Timothy Moran

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering KnockoutJS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1191114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-100-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Timothy Moran

Reviewers
Michael Best

Peter Himschoot

Anders Malmgren

Viktor Nemes

Julia Rechkunova

Patrick Walters

Acquisition Editor
Reshma Raman

Content Development Editor
Manasi Pandire

Technical Editor
Humera Shaikh

Copy Editors
Shambhavi Pai

Stuti Srivastava

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Timothy Moran has been working in the field of software for the last 4 years. He
started with desktop development for .NET and moved on to web development for
a variety of technologies. Timothy began using Knockout shortly after the release of
Version 1.3 and has since used it in several projects personally and professionally.
He also provides community support by answering questions on StackOverflow.

This is Timothy's first title.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Peter Himschoot works as a lead trainer and architect at U2U (www.u2u.net), which
is a Microsoft-certified partner for learning solutions based in Brussels, Belgium.

He has a wide interest in software development, including web, Windows, TFS, and
mobile applications. Over the last 10 years, he has trained thousands of developers
and was involved in many web development projects as a software architect.

Anders Malmgren is a committed and driven solutions architect and senior
consultant who enjoys working on customer-oriented projects. He has good
experience in designing and developing customer-specific IT solutions in .NET and
other technologies such as Knockout. He's passionate about continuous learning,
reading blogs, and testing new technologies regularly. Anders is currently working
at a prominent Agile IT software development company called Agero Ltd.

He's an active member of the community and tries to contribute as much as possible,
either through his blog, GitHub, or StackOverflow. You can find him on his blog at
andersmalmgren.com or on GitHub at github.com/AndersMalmgren.

www.allitebooks.com

www.u2u.net
andersmalmgren.com
http://www.allitebooks.org

Viktor Nemes has been working as a professional software developer since 2008.
He lives in Hungary and currently works at TechTalk. He is a full stack developer
who is constantly going back and forth from the depth of databases through the
world of services to client-side tinkering with the UI. He mainly deals with .NET and
C# and builds various applications ranging from rich clients using WPF/Silverlight
to web applications using different versions of the ASP.NET MVC.

He likes to play with other development stacks such as Ruby and Node.js and with
JavaScript in general. His love for the MVVM pattern started in WPF and found its
new home in browsers with the help of KnockoutJS.

When he is not spending his spare time with his family, he loves to chase virtual
points on sites such as StackOverflow, CodeEval, Kongregate, or anywhere he can
find interesting puzzles to solve.

Julia Rechkunova is a software engineer who is inspired by web development
and design. She has over 4 years of experience and focuses on the quality and
usability of web applications. She enjoys working as a frontend and backend
developer. Modern web technologies and tools are the best instruments that help her
build great applications and make the world better. She graduated with a Master's
degree in Computer Science, started working as an HTML5 game developer, and
then participated in startups. She has a passion for frontend programming and
contributes to open source projects. Currently, she works with technologies such
as HTML5, CSS3, JavaScript, Node.js, and other popular frameworks. Julia also
likes to create new tools that bring something different to the industry.

Patrick Walters is a software enthusiast who has been actively developing
various software since a very young age, and he enjoys doing so professionally. He
has worn many hats in his career and loves the creative aspect of developing and
teaching others.

He has been actively developing KnockoutJS applications for several years and
enjoys writing about them and other open source technologies on his blog at
patrickwalters.net; he can also be found on Twitter at @pwkad.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Knockout Essentials 7

The environment setup 8
Looking at the samples 9
JavaScript's compatibility 9

An overview of Knockout 9
Observables 10

Observable arrays 11
Computed observables 12

Writable computed observables 13
Pure computed observables 14

Manual subscriptions 14
Defining viewmodels 16

The this and self keywords 16
Problems with prototypes 17
Serializing viewmodels 18

The data-bind syntax 18
Binding with nested properties 19
Binding against functions 20
Binding with expressions 20
Binding with function expressions 21
Using parentheses in bindings 21
Debugging with ko.toJSON 22

Control flow bindings 22
The if binding 23
The with binding 24
The foreach binding 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Template binding 26
Reusable templates 27
Recursive templates 27
Dynamic templates 28

Containerless control flow 28
Extenders 29

Simple extenders 29
Extenders with options 30
Extenders that replace the target 31

The Contacts List application 32
Overview 32
The contact model 33
The Contacts page viewmodel 35

A philosophical note on a model versus a viewmodel 39
Mock data service 40
The view 41

The edit form 41
Contacts list 42

Summary 44
Chapter 2: Extending Knockout with Custom Binding Handlers 45

The data binding pattern 45
Components of a binding handler 47

Using custom binding handlers 48
Simple binding handlers 48

Animated binding handlers 49
Working with third-party controls 50
Modifying the DOM with bindings 52
Applying new bindings to new children elements 54

Applying accessors 56
Controlling the order of binding handlers 56

Advanced binding handlers 57
Binding complex data with charts 57

Dynamically adjusting the chart type 60
Exposing APIs through bindings 61
Binding contexts and descendant bindings 64

Controlling descendant bindings 65
Child binding contexts 65
Extending binding contexts 67
Setting a new $root context 68

Containerless syntax with custom bindings 70
Using the virtual elements API 71

Summary 73

Table of Contents

[iii]

Chapter 3: Extending Knockout with Preprocessors
and Providers 75

Binding the handler preprocessing 75
Creating preprocessors 76
The uppercase preprocessor 76
Wrapping existing bindings 77

Node preprocessors 78
Closing virtual template nodes 79
Supporting alternate syntaxes 80

Multiple syntaxes 83
Binding providers 84

Custom binding providers 84
Knockout punches 91

Embedded text bindings 91
Namespaced bindings 92

Dynamic namespaced bindings 92
Binding filters 93

Writing custom filters 94
Filters on other bindings 94

Adding additional preprocessors 95
Summary 95

Chapter 4: Application Development with Components
and Modules 97

RequireJS – AMD viewmodels 98
An overview of RequireJS 98
Asynchronous Module Definitions 98
Starting RequireJS 99
Configuration 100
Starting the app 101
The text plugin 102

Components 103
The basic component registration 103

Custom elements in IE 8 and higher 105
Template registration 105

The element ID 106
The element instance 106
An array of DOM nodes 106
Document fragments 107
HTML strings 107
Registering templates using the AMD module 107

Table of Contents

[iv]

The viewmodel registration 108
The constructor function 108
A singleton object 108
The factory function 109
Registering viewmodels using an AMD module 109

Registering AMD 109
Observing changes in component parameters 110
The component's life cycle 111
The component's disposal 112
Combining components with data bindings 112
Implementing a component loader 114
The default loader 114
Registering a custom loader 115
Registering custom elements 115
Loading components with custom configurations 116

Single Page Application (SPA) routing 117
An overview of SammyJS 118
Controlling the navigation 118
Creating page components 119

The edit page 120
The list page 121

Coordinating pages 122
Summary 126

Chapter 5: Durandal – the Knockout Framework 127
An overview of the Durandal framework 128

Promises 128
Getting started 129

The composition system 131
The compose binding 132
Composition options 134

Module instance 134
Constructor 134
Module ID strings 135
Viewpath strings 135
Explicit models and views 136
Containerless composition 136

View locations 137
Using the router 138

Configuring the router 138
Route properties 139
Binding the router 140
Activating routes 141

Table of Contents

[v]

Navigation – hash change versus push state 141
Controlling the navigation from JavaScript 142

Modal dialogs 143
Message boxes 143

Message box settings 145
Custom dialogs 145

An alternative method 148
The application's life cycle 149

The activation life cycle 149
Preparing viewmodels with activate 150
A note on the router's isNavigating property 152
Checking navigation with canDeactivate 152

Composition 154
Widgets 155

Creating a new widget 155
Using a widget 156
Modifying widgets with data-part attributes 157

Summary 159
Chapter 6: Advanced Durandal 161

Publishing and subscribing 161
The events module 162

Subscribing to events 162
Raising events 163
Proxying events 163

Application events 164
Module-scoped events 166

Handling logins 166
Gated login 167
Anytime login 168

Guarded routes 172
Advanced composition 173

View caching 173
Transitions 174
The templated mode 176

Child routers 178
Dynamic child routes 179

Custom modal dialogs 180
Replacing the default context 183

Using activators 184
Binding to plain JavaScript objects 186

Observable plugin setup 187
Subscribing and extending 187

Table of Contents

[vi]

Computed observables 188
Promises 189
Sample 189

Summary 190
Chapter 7: Best Practices 191

Sticking to MVVM 191
The view and the viewmodel 191

Cluttering the viewmodel 192
Cluttering the view 193

Using service modules 194
Creating small modules 194
Writing unit tests 195
Singleton versus instance 195
Calling ko.applyBindings once (per root) 196
Performance concerns 196

Observable loops 196
Limit active bindings 197
Delegated events 197

Summary 198
Chapter 8: Plugins and Other Knockout Libraries 199

Knockout Validation 199
Default validation rules 200
Configuring validation options 201
Validation binding handlers 201
Creating custom rules 202

Knockout Mapping 203
Updating the viewmodel 204
Unmapping 204
Mapping options 204

Using keys for array updates 205
Using create for the object construction 205
Controlling updates 205
Choosing which properties get mapped 206
Challenges 206

Knockout Kendo 207
KoGrid 207
Knockout Bootstrap 210
Knockout Switch-Case 211
Knockout Projections 212

Table of Contents

[vii]

Knockout-ES5 214
Browser support 216

Summary 216
Chapter 9: Under the Hood 217

Dependency tracking 217
ko.dependencyDetection 218
Registering dependencies 220
Subscribing to dependencies 221
Subscribing to observable arrays 223

Standard array functions 223
The utility methods 224

The prototype chain 225
The ko.isObservable function 227

The binding expression parser 228
Knockout property writers 230

Applying bindings 231
Sorting binding handlers 232
Running the binding handlers 233

Templates 235
The template binding handler 235
The template engine 236

The ko.utils reference 237
Summary 240

Index 241

Preface
Knockout is built around a pattern that started in Microsoft. This model is Model-
View-ViewModel (MVVM), and I think introducing this pattern to newcomers is
one of the biggest obstacles to wider adoption. Nearly every other JavaScript library
or framework, along with most server-side frameworks, has been built around the
Model-View-Controller (MVC) pattern, and the differences between the two are
sometimes confusing, even for experienced developers. This problem is compounded
by the fact that some larger frameworks, such as AngularJS, end up with a pattern
that is nearly identical to MVVM.

Knockout's documentation is excellent, and its live examples and interactive tutorials
are some of the best. When it comes to organizing full applications, though, more
explanation is required. When I started writing this book, there was only one book
on Knockout on Amazon, and it didn't have very favorable reviews. It seemed like a
complete guide to using Knockout as the central piece of a frontend stack was missing.

I have been using Knockout for 3 years now, and I've been an active member of the
community on StackOverflow and GitHub for 2 years. I've used Knockout in several
professional applications as well as a dozen or so personal projects. It is, by far, my
favorite JavaScript library, and I strongly prefer MVVM over MVC for developing
client applications. Hopefully, you feel that this book gives you everything you need
in order to be successful with Knockout.

A note on Knockout 3.2
Knockout 3.2 was released while this book was being written. Chapter 4, Application
Development with Components and Modules, was rewritten to include the components
feature, and some minor changes were made to other chapters in order to make them
accurate. However, most of the code samples were written against Knockout 3.1, and
so they do not take advantage of pure computed observables or other features that
were released in Knockout 3.2.

Preface

[2]

What this book covers
Chapter 1, Knockout Essentials, covers the environment setup and basic use of the
Knockout library. It also covers data binding, observables, binding handlers, and
extenders, and demonstrates a simple Knockout Contacts List application.

Chapter 2, Extending Knockout with Custom Binding Handlers, gives you in-depth
knowledge of how to create and use custom binding handlers. It includes simple
single-property binding handlers as well as complex multiproperty binding
handlers with templates.

Chapter 3, Extending Knockout with Preprocessors and Providers, teaches you how to use
node and binding preprocessors and binding providers to customize Knockout's
syntax. It also explores the Knockout Punches library.

Chapter 4, Application Development with Components and Modules, explains how to
use RequireJS Asynchronous Module Definitions (AMDs) with Knockout to create
organized, modular viewmodels. It also teaches you how to use the new Knockout
components feature and how to continue working with the Contacts List
demo application.

Chapter 5, Durandal – the Knockout Framework, explores the basics of the
Knockout-based Durandal framework. This chapter covers composition,
routing, modal dialogs, and custom widgets.

Chapter 6, Advanced Durandal, continues looking at the use of the Durandal
framework. This chapter covers events, advanced composition, nested routers,
custom dialogs, and the observable plugin.

Chapter 7, Best Practices, takes a deep dive into the inner workings of Knockout.
It includes dependency detection and the publish/subscribe implementation,
observable inheritance, the template engine, and a complete Knockout utility
(ko.utils) reference.

Chapter 8, Plugins and Other Knockout Libraries, gives you an overview of the
recommended patterns and practices for Knockout developers.

Chapter 9, Under the Hood, covers several popular Knockout plugins, including
Knockout validation, Knockout mapping, and the new Knockout-ES5 plugin.

Preface

[3]

What you need for this book
You need an ES5-compatible browser, Git, and Node.js. The code in this book will
run on any operating system.

Who this book is for
If you are an experienced JavaScript developer who is looking for new tools to build
web applications and gain an understanding of core elements and applications, this
is the book for you. It is assumed that you have basic knowledge of DOM, JavaScript,
and KnockoutJS.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"All the code needed to start each chapter can be found in a branch named
cp[chapter#]-[sample]."

A block of code is set as follows:

var subtotal = ko.observable(0);
var tax = ko.observable(0.05);
var total = ko.computed(function() {
 var subtotal = parseFloat(self.subtotal()),
 tax = parseFloat(self.tax());
 return subtotal * (1 + tax);
});

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You
might have noticed in the previous section that when the Contacts page view
model communicated with the data service, it wasn't dealing with JSON, but real
JavaScript objects."

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Additionally, the code for this book is part of a Git repository, which is available on
GitHub at https://github.com/tyrsius/MasteringKnockout. The code samples
are organized as branches in the repository.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/tyrsius/MasteringKnockout

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Knockout Essentials
Though it is expected that you have experience with both JavaScript and
KnockoutJS, we will still be covering the basics to establish a common foundation.
This book wouldn't be complete if we didn't cover at least the basics. After that, we
will look at building a simple application to create and manage contact information.
This application will be used throughout the book to explore new techniques in
Knockout and see how they fit into the larger process of application development.
In this chapter, you will learn how to:

• Define viewmodels
• Write standard bindings
• Use extenders
• Use templates
• Put all these pieces together into a functional application

This covers most of the standard functionalities in Knockout. In the next chapter,
we will look at creating our own bindings to extend Knockout.

Even if you have used Knockout before and don't think you need a refresher,
I encourage you to at least read the section that covers the Contacts List
application example. It's something we will be using throughout the book
as we explore more advanced concepts.

Before we get started, let's get our development environment set up.

Knockout Essentials

[8]

The environment setup
We will be using a simple Node.js server to host our application because it will run
on any operating system. If you haven't done so, install Node.js by following the
instructions at http://nodejs.org/download.

We will be using Git to manage the code for each chapter. If you haven't done so,
install Git by following the instructions at http://git-scm.com/book/en/Getting-
Started-Installing-Git. The code for this book can be downloaded from http://
www.packtpub.com. All the code needed to start each chapter can be found in a
branch named cp[chapter#]-[sample]. For example, the first sample we will look
at is going to be in the cp1-computeds branch.

To begin, clone the repository from https://github.com/tyrsius/
MasteringKnockout. You can either use the provided download links or run the
following command:

git clone git@github.com:tyrsius/MasteringKnockout

Then, check out the first sample using:

git checkout cp1

All the examples follow the same pattern. At the root is a server.js file that
contains a boilerplate Node.js server. Inside the client directory is all the code
for the application. To run the application, run this from the command line:

node server.js

Keep the command-line window open else the server will stop running. Then,
open your web browser and navigate to http://localhost:3000. If you've set up
your environment correctly, you should be looking at the empty Contacts List
application, as shown in the following screenshot:

The cp1 branch contains a skeleton with some blank pages. Until we get to the
Contacts application, most of the samples will not have the Contacts or Settings
pages; they will just present the code on the home page.

http://nodejs.org/download
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://www.packtpub.com
http://www.packtpub.com
https://github.com/tyrsius/MasteringKnockout
https://github.com/tyrsius/MasteringKnockout

Chapter 1

[9]

Looking at the samples
Samples of running code are provided throughout the book. They are in branches
in the Git repository. You can look at them by checking out the branch, using the
following command:

git checkout [BranchName]

Since the repository is a functional app, most of the code is not relevant to the
samples. The client directory contains the index.html and shell.html pages,
as well as the app, content, and lib directories. The app directory is where our
JavaScript is located. The content directory contains the included CSS and lib
contains third-party code (Knockout, jQuery, and Twitter Bootstrap).

The included Node server has a very simple view composition that places the
contents of a page in the {{ body }} section of the shell. If you have worked with
any server-side MVC frameworks, such as Ruby on Rails or ASP.NET MVC, you
will be familiar with this. The mechanism is not related to Knockout, but it will
help us keep our code separated as we add files. The shell is in the shell.html
file. You can take a look at it, but it's not directly related to the samples. The HTML
for samples is in the client/index.html file. The JavaScript for samples is in the
client/app/sample.js file.

JavaScript's compatibility
Throughout this book, we will be using code that relies on ECMAScript 5 features,
which are supported on all modern browsers. I encourage you to run these examples
using a compatible browser. If you cannot, or if you are interested in running them
in an older environment, you can use a polyfill for them. A polyfill is a JavaScript
library that adds standard features to old environments to allow them to run modern
code. For the ECMAScript 5 functions, I recommend Sugar.js. For the CSS3 media
query support, I recommend Respond.js.

An overview of Knockout
Knockout is a library designed for Model-View-ViewModel (MVVM) development.
This pattern, a descendant of Martin Fowler's Presentation model, encourages the
separation of User Interface (UI) from the business logic of the domain model. To
facilitate this separation, Knockout provides the three necessary components for
implementing this pattern, namely, a declarative syntax for the view (the data-bind
HTML attribute), a mechanism to notify changes from the viewmodel (the observable
object), and a data binder to mediate between the two (Knockout's binding handler).

Knockout Essentials

[10]

We will be covering the data-bind and observable object syntax here; the binding
handler syntax and its use will be covered in the next chapter.

Using the MVVM pattern means your viewmodel operates on data with JavaScript,
and your HTML view is described using the declarative data-binding syntax. Your
JavaScript code should not be directly accessing or modifying the view—data-binding
should handle that by translating your observable objects into HTML using
binding handlers.

The best way to think about the separation between view and viewmodel is to
consider whether two different views could use your viewmodel. While this is
often not done, it is still helpful to keep it in mind because it forces you to maintain
the separation between them. MVVM allows you to redesign the view without
affecting the viewmodel.

Observables
Knockout follows a publish/subscribe pattern to keep data in sync between different
parts of the application, such as the UI and the viewmodel. The publisher in Knockout
is the observable object. If you've used MVVM before in Windows Presentation
Foundation (WPF) development, then observable objects can be thought of as
Knockout's INotifyPropertyChanged implementation.

To construct an observable, the observable function is called on the global ko object:

this.property = ko.observable('default value');

The observable function returns a new observable. If ko.observable is called with
a value, it returns an observable with that value.

The reason why Knockout observables are JavaScript functions
instead of normal properties is to allow support for older browsers
such as Internet Explorer 6, which did not support getters and
setters on properties. Without that ability, setting properties
would have no mechanism to notify subscribers about changes.

Observables are JavaScript functions that record subscribers reading their value,
then call these subscribers when the value has been changed. This is done using
Knockout's dependency tracking mechanism.

Chapter 1

[11]

Observables are read by calling them without any parameters. To write to an
observable, call it with the value as the first and only parameter (further parameters
are ignored):

var total = vm.total();// read value
vm.total(50);// write new value

Downloading the sample code
You can download the sample code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Observables can contain any legal JavaScript value: primitives, arrays, objects,
functions, and even other observables (though this wouldn't be that useful).
It doesn't matter what the value is; observables merely provide a mechanism
to report when that value has been changed.

Observable arrays
Though standard observables can contain arrays, they aren't well suited to track
changes in them. This is because the observable is looking for changes in the value of
the array, a reference to the array itself, which is not affected by adding or removing
elements. As this is what most people expect change notification to look like on an
array, Knockout provides the observableArray:

this.users = ko.observableArray(myUsers);

Like observables, arrays can be constructed with an initial value. Normally, you
access an observable by calling it or setting its value by passing it a parameter. With
observable arrays it's a little different. As the value of the array is its reference, setting
that value would change the entire array. Instead, you usually want to operate on the
array by adding or removing elements. Consider the following action:

this.users().push(new User("Tim"));

By calling this.users(), the underlying array is retrieved before a new user is
pushed to it. In this case, Knockout is not aware that the array was changed, as the
change was made to the array itself and not the observable. To allow Knockout to
properly track changes, these changes need to be made to the observable, not the
underlying value.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Knockout Essentials

[12]

To do this, Knockout provides the standard array methods on the observable,
namely, push, pop, shift, unshift, sort, reverse, and splice. The call should
look like this:

this.users.push(new User("Tim"));

Notice that instead of retrieving the array from the observable, we are calling
push directly on the observable. This will ensure that subscribers are notified
of the change with an updated array.

Computed observables
Observables are properties that are set manually, either through your code or by
bindings from the UI. Computed observables are properties that automatically
update their value by responding to changes in their dependencies, as shown
in the following code:

var subtotal = ko.observable(0);
var tax = ko.observable(0.05);
var total = ko.computed(function() {
 return parseFloat(subtotal()) * (1 + parseFloat(tax()));
});

In this example, subtotal and tax are the dependencies of the total computed
observable. For the first time, the computed observable calculates records of any other
observables that were accessed and creates a subscription for them. The result is that
whenever subtotal or tax are changed, the total is recalculated and notified to its
subscribers. It helps to think of computed observables as declarative values; you define
their value as a formula and they will keep themselves up to date.

The parseFloat calls are to ensure that they are treated as numbers instead of
strings, which would cause concatenation instead of arithmetic. As Knockout binds
data against HTML attributes, which are always strings, updates from data binding
produce strings. When we discuss extenders, you will see another way to manage
this issue.

Chapter 1

[13]

You can see a sample of this on the cp1-computeds branch:

Try changing some of the numbers and watch the total computed value update
automatically. You can see that the viewmodel code contains just this sample by
looking in the client/app/sample.js file.

Writable computed observables
The preceding total example is a read-only computed. While they are less common,
it is also possible to make a computed observable writable. To do so, pass an object
with a read and write function to ko.computed:

var subtotal = ko.observable(0);
var tax = ko.observable(0.05);
var total = ko.computed({
 write: function(newValue) {
 subtotal(newValue / (1 + parseFloat(self.tax())));
 },
 read: function() {
 parseFloat(subtotal()) * (1 + parseFloat(tax()));
 }
});

When something attempts to write to the total computed now, it will cause the
subtotal observable to be updated by the write function. This is a very powerful
technique, but it is not always necessary. In some cases being unable to write directly
to total might be a good thing, such as when total might involve conditionally
applying tax to a list of items. You should use writeable computeds only when it
makes sense to do so.

You can see an example of this in the cp1-writecomputed branch. The total
computed is now bound to an input element such as the subtotal and tax
properties, and changes to the value will reflect back into the subtotal observable.

www.allitebooks.com

http://www.allitebooks.org

Knockout Essentials

[14]

Pure computed observables
Nonpure computed observables re-evaluate themselves whenever any of their
dependencies change, even if there are no subscribers to receive the updated value.
This re-evaluation can be useful if the computed also has intentional side effects, but
it wastes memory and the processor's cycles if it has no side effects. Pure computed
observables, on the other hand, do not re-evaluate when there are no subscribers.

Pure computed observables have two states: listening and sleeping. When a pure
computed has subscribers, it will be listening and behaving exactly like a normal
computed. When a pure computed has no subscribers, it will enter its sleeping
state and dispose off all of its dependency subscriptions. When it wakes up,
the pure computed will re-evaluate itself to ensure its value is correct.

Pure computed observables are useful when a value may go unused for an extended
period of time, as they do not re-evaluate. However, since a pure computed always
re-evaluates when accessed from a sleeping state, it can sometimes perform worse
than a normal computed observable. Since normal computeds only re-evaluate when
their dependencies change, a computed observable that is frequently woken from a
sleeping state could potentially evaluate its dependencies more often.

There are two ways to create a pure computed: by using ko.pureComputed or by
passing { pure: true } as the third parameter to ko.computed:

var total = ko.pureComputed(function() {
 return parseFloat(subtotal()) * (1 + parseFloat(tax()));
});
//OR
var total = ko.computed(function() {
 return parseFloat(subtotal()) * (1 + parseFloat(tax()));
}, this, { pure: true });

Pure computed observables were introduced in Knockout 3.2, which
was not released at the time this book was written. None of the code
samples take advantage of pure computed observables, even though
many of the samples would have benefited from them.

Manual subscriptions
Sometimes you need to do more than update a dependent value when an observable
changes, such as make a web request for additional data based on the new value of
your observable. Observables provide a subscribe function that lets you register a
function to be called when the observable is updated.

Chapter 1

[15]

Subscriptions use the same internal mechanism in Knockout that binding handlers
and computed observables use to receive changes.

This is an example of setting up a subscription on an observable:

var locationId = ko.observable();
locationId.subscribe(function (newLocationId) {
 webService.getLocationDetails(newLocationId);
});

This subscription will be called any time when the locationId is updated, whether
it happens from a UI binding or from somewhere else in JavaScript.

The subscribe function also allows you to provide a target for the subscription and
the name of the event you want to subscribe to. The target is the value of this for the
subscription handler you provide. The event defaults to change, which receives the
value after it has been updated, but can also be beforeChange, which is called with
the old value before a change happens:

locationId.subscribe(function (oldValue) {
 console.log("the location " + oldValue + " is about to change");
}, self, 'beforeChange');});

Finally, you can stop a subscription from continuing to fire by capturing it and
calling dispose. This can be useful if you want to stop the handler or to make
subscriptions that only fire a single time:

var subscription = locationId.subscribe(function (newValue) {
 console.log("the location " + oldValue + " is about to change");
 subscription.dispose();
});

Once a subscription has been disposed, it cannot be restarted. If you need it, you will
have to recreate the subscription.

The cp1-subscribe branch has a subscription example that logs any changes to the
subtotal observable on the JavaScript console, as well as a button that stops the
subscription. Try changing the subtotal or total value and watch out for the console
messages. Changing the total causes an update of the subtotal, which is why it still
fires the subscription. Remember, changes from any source will cause an observable
to report changes to all of its subscribers. This is the same reason updating the total
computed causes the subtotal observable's input element to update; the input
element is a subscriber to the viewmodel's property.

Knockout Essentials

[16]

Defining viewmodels
Viewmodels are the objects whose properties your view binds with; they form the
binding context. It is the representation of your data and operations for your view
(we will cover them in detail in the Control flow bindings section later in this chapter).
Like regular objects in JavaScript, there are many ways to actually create them, but
Knockout introduces some specific challenges.

The this and self keywords
In JavaScript, this has a special meaning; it refers to the object calling the function.
Functions called from an object get that object set to this. However, for functions
that are anonymously called by code, that is merely the inside of an object, the
behavior is different. Consider the following viewmodel:

function Invoice() {
 this.subtotal = ko.observable();
 this.total = ko.computed(function() {
 return this.subtotal() * 1.08; //Tax Rate
 });
}

The function inside the computed observable is not a property of the Invoice object.
As it runs in a different context, its value for this will be the window object, not the
Invoice object. It will not be able to find the subtotal property. There are two ways
to handle this.

The first is by using the second parameter of the ko.computed function to bind the
function to this:

function Invoice() {
 this.subtotal = ko.observable();
 this.total = ko.computed(function() {
 return this.subtotal() * 1.08; //Tax Rate
 }, this);
}

This gives the computed observable a reference to the Invoice that originally
defined it, which allows the computed observable to call the supplied function
in the correct context.

The second way to ensure the computed observable can reference the subtotal, is
to capture the value of this in a closure. You can then use the closure to safely refer
to the properties of the parent viewmodel. There are several conventional names for
such a closure: that, _this, or self.

Chapter 1

[17]

I prefer to use self as it is visually distinct from this while still carrying a similar
meaning, but it's up to you:

function Invoice() {
 var self = this;
 self.subtotal = ko.observable();
 self.total = ko.computed(function() {
return self.subtotal() * 1.08; //Tax Rate
 });
}

I find the second method easier to remember. If you always use self to refer to
the model, it will always work. If you have another anonymous function inside the
computed, you will have to remember to bind that function as well; self continues
to work as a closure no matter how many levels deep you nest. The self variable
works as a closure inside any function defined in your viewmodel, including
subscriptions. It's also easier to spot when self isn't being used, which is very
helpful while debugging your code.

Problems with prototypes
If you are working with viewmodels that will be inherited by other viewmodels,
you might think that putting all the base observable properties on the prototype is
the way to go. In vanilla JavaScript, if you are inheriting an object, try to change the
value of a property stored on the prototype; the property would be added to the
inheriting object leaving the prototype intact. When using observables in Knockout
though, this isn't the case. The observables are functions, and their values are set
by calling them with a single parameter, not by assigning new values to them.
Because prototypical inheritance would result in multiple objects referring to a
single observable; observables cannot be safely placed on viewmodel prototypes.
Nonobservable functions can still be safely included in prototypes. For example,
consider the following objects:

var protoVm = {
 name: ko.observable('New User')
};

var base1 = Object.create(protoVm);
var base2 = Object.create(protoVm);

base2.name("Base2");

Knockout Essentials

[18]

The last line will cause the name of both objects to be updated, as it is referring to
the same function. This example can be seen in the cp1-prototype branch, which
includes two input elements bound to the name of each viewmodel. As they are
really the same observable, changing one will affect the other.

Serializing viewmodels
When you are ready to send your viewmodels to the server, or really do anything
that requires you to work with their values instead of observables, Knockout
provides two very handy utility methods:

• ko.toJS: This function takes an object and does a deep copy, unwrapping
all observables, into a new JavaScript object whose properties are normal
(nonobservable) JavaScript values. This function is perfect to get copies of
viewmodels.

• ko.toJSON: This function uses the output from ko.toJS with JSON.stringify
to produce a JSON string of the supplied object. This function accepts the same
parameters as JSON.stringify.

The data-bind syntax
Knockout takes advantage of the HTML5 data-* attribute specification to define its
data-bind attribute. Though all HTML attributes are necessarily strings, Knockout
parses them as name:value pairs. The name refers to the binding handler to be used
and the value refers to the value the binding will use:

<button data-bind="enable: canSave">Save</button>

The data-bind attribute can also contain multiple bindings separated by commas.
This allows multiple properties to be bound on an element:

<input data-bind="value: firstName, enable: canEdit" />

In the preceding example, the enable binding uses canEdit as a value. The binding
will set the disabled attribute on the button element when canEdit is false, and
remove the disabled attribute when canEdit is true. If canEdit is an observable,
the enable binding will update whenever canEdit is updated. If canEdit is a literal
value, such as true, it will only use the value to set the initial state.

Chapter 1

[19]

Enable is a one-way binding; it will update the element with changes from the value
but it will not update the value with changes from the element. This is because when
enable is being used to control the element, Knockout assumes that nothing will be
programmatically updating the element. Updates should happen in the viewmodel,
and binding handlers should be responsible for ensuring the view is kept in sync.

When users update the UI of data-bound input elements, those changes need to
be synced to the viewmodel. This is done with two-way bindings, such as the
value binding:

<input data-bind="value: firstName" />

This binding will set the initial value of the input element to the current value of
the firstName property, and after that, it will ensure that any changes to either the
element's value or the property cause the other to update. If the user types something
into the input, the firstName property will receive the value. If the firstName
property is updated programmatically, the input's value will be updated.

These are both examples of binding against a simple property on the viewmodel.
This is the most common case, but Knockout supports more complex scenarios
as well.

For a complete list of the standard Knockout binding handlers,
see the Knockout documentation (http://knockoutjs.com/
documentation/introduction.html).

Binding with nested properties
In the previous example, Knockout parsed the binding value for the name of a
property and looked for that property on the current viewmodel. You can also
provide deep property references. Consider the following object:

var viewmodel = {
 user: {
 firstName: ko.observable('Tim'),
 age: ko.observable(27)
 }
};

We can bind directly against the firstName property of the viewmodel's user by
using standard dot notation:

<input data-bind="value: user.firstName" />

http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html

Knockout Essentials

[20]

Binding against functions
If you are using the click or event bindings to bind some UI event, the binding
expects the property to be a function. Functions will receive the current model
(the binding context) as their first parameter, and the JavaScript event as the
second parameter (though you shouldn't need to do this very often).

In this example, the parent viewmodel receives the contact to be removed from the
click binding because the foreach loop creates a nested binding context for each
contact. The parent reference in the binding moves the context up to the parent
viewmodel to get access to the remove function:

<ul data-bind="foreach: contacts">

 <button data-bind="click: $parent.remove">Remove</button>

var ViewModel = function() {
 var self = this;
 self.contacts = ko.observableArray([{ name: 'Tim' }, { name:
 'Bob' }]);
 self.remove = function (contact) {
 self.contacts.remove(contact);
 };
};

Binding with expressions
In addition to property references, Knockout also supports the use of JavaScript
expressions as binding values. For bindings that expect true or false values,
such as enable, we can use Boolean expressions to set them:

<button data-bind="enable: age > 18">Approve</button>

We can also use ternary expressions to control the result of the expression.
This is useful in cases where Booleans are not expected, such as text bindings:

Old enough to Drink in the U.S.
 18 ? 'Yes' : 'No'">

Now the span will have Yes as content.

Chapter 1

[21]

Both forms of expressions will use dependency tracking to rerun if they read from
an observable the first time they are run. If age was an observable value, we could
update it and the element's binding would re-evaluate the expression, changing the
text or enabled state if the result changed.

Binding with function expressions
The last method to set binding values is by using functions. You can call a function
by referencing it in the binding:

<button data-bind="enable: canApprove(age)">Approve</button>

You can also write an anonymous function as a string directly in the binding. When
creating a function for the click binding, the parameters are the binding context
(viewmodel) and the JavaScript click event. If you bind against a viewmodel
function using its property name, it would receive the same parameters:

<button data-bind="text:
function(data) { console.log(data.age) }">Log Age</button>

Though this is possible, I wouldn't encourage it. It places logic directly in the view
instead of in the viewmodel where it belongs. You should only use this last method
in very special cases. It's much better to place the method on the viewmodel and just
use a property reference.

Using parentheses in bindings
It can be confusing trying to figure out when to use parentheses in bindings to
use an observable as a value. Knockout tries to be helpful by not requiring the
parentheses in simple binding expressions like this one:

<input data-bind="value: firstName" />

In this example, the firstName property could be either an observable or a
literal value, and it would work just fine. However, there are two cases when
the parentheses are needed in bindings: when binding against a nested property
and when binding with an expression. Consider the following viewmodel:

var viewmodel = {
 user: ko.observable({
 firstName: ko.observable('Tim'),
 age: ko.observable(27)
 })
};

Knockout Essentials

[22]

The user object here is an observable property, as are each of its properties. If we
wanted to write the same binding now, it would need to include parentheses on
the user function but still not on the firstName property:

<input data-bind="value: user().firstName" />

In cases where we are binding directly against a property, the parentheses of that
property are never needed. This is because Knockout is smart enough to understand
how to access the value of the observable that it is given in bindings.

However, if we are binding against an expression, they are always needed:

<button data-bind="enable: user().age > 18">Approve</button>
<button data-bind="enable: user().age() > 18">Approve</button>

Neither of these bindings will cause errors, but the first one will not work as
expected. This is because the first expression will try to evaluate on the age
observable itself (which is a function, not a number) instead of the observable's
value. The second one correctly compares the value of the observable to 18,
producing the expected result.

Debugging with ko.toJSON
Because ko.toJSON accepts the spaces argument for JSON.stringify, you can use it
in a text binding to get a live copy of your viewmodel with nice, readable formatting:

<pre data-bind="text: ko.toJSON($root, null, 2)"></pre>

The cp1-databind branch has an interactive example of each of these bindings.

Control flow bindings
So far, we have looked at one-way and two-way bindings that set or sync data with
an attribute on an HTML element. There is a different kind of binding that Knockout
uses for modifying the DOM by adding or removing nodes. These are the control
flow bindings, and they include foreach, if, with, and template.

All of the control flow bindings work by actually removing their content from the
DOM and creating an in-memory template from it. This template is used to add
and remove the content as necessary.

Chapter 1

[23]

Control flow bindings (except if) also introduce a binding context hierarchy.
Your root binding context is the viewmodel passed to ko.applyBindings. The
data-bind attributes have access to properties in the current context. Control flow
bindings (other than if) create a child-binding context, meaning that data-bind
attributes inside the control flow binding's template have access to the properties
of their context and not the root context. Bindings inside a child context have access
to special properties to allow them to navigate the context hierarchy. The most
commonly used are:

• $parent: This accesses the binding context of the immediate parent. In this
example, group and $parent.group refer to the same property because
$parent accesses the context outside of the person:

<div data-bind="with: person">

 </div>

• $parents[n]: This is an array of parent contexts. The $parents[0] array
is same as $parent.

• $root: This is the root viewmodel, the highest context in the hierarchy.
• $data: This is the current viewmodel, useful inside foreach loops.

For a complete list of context properties, see the Knockout
documentation for them at http://knockoutjs.com/
documentation/binding-context.html.

The if binding
The if binding takes a value or expression to evaluate and only renders the
contained template when the value or expression is truthy (in the JavaScript
sense). If the expression is falsy, the template is removed from the DOM. When the
expression becomes true, the template is recreated and any contained data-bind
attributes are reapplied. The if binding does not create a new binding context:

<div data-bind="if: isAdmin">

 <button data-bind="click: deleteUser">Delete</button>
</div>

www.allitebooks.com

http://knockoutjs.com/documentation/binding-context.html
http://knockoutjs.com/documentation/binding-context.html
http://www.allitebooks.org

Knockout Essentials

[24]

This div would be empty when isAdmin is false or null. If the value of isAdmin is
updated, the binding will re-evaluate and add or remove the template as necessary.

There is also an ifnot binding that just inverts the expression. It's useful if you want
to still use a property reference without needing to add a bang and parentheses.
The following two lines are equivalent:

<div data-bind="if: !isAdmin()" >
<div data-bind="ifnot: isAdmin">

The parentheses are needed in the first example because it is an expression, not a
property name. They are not needed in the second example because it is a simple
property reference.

The with binding
The with binding creates a new binding context using the supplied value,
which causes bindings inside the bound element to be scoped to the new context.
These two snippets are functionally similar:

<div>
 First Name:

 Last Name:

</div>

<div data-bind="with: selectedPerson">
 First Name:

 Last Name:

</div>

While saving a few keystrokes and keeping your bindings easier to read is nice, the
real benefit of the with binding is that it is an implicit if binding. If the value is null
or undefined, the content of the HTML element will be removed from the DOM. In
the cases where this is possible, it saves you from the need to make null checks for
each descendant binding.

Chapter 1

[25]

The foreach binding
The foreach binding creates an implicit template using the contents of the HTML
element and repeats that template for every element in the array.

This viewmodel contains a list of people we need to render:

var viewmodel = {
 people: [{name: 'Tim'}, {name: 'Justin}, {name: 'Mark'}]
}

With this binding, we create an implicit template for the li element:

<ul data-bind="foreach: people">
 <li data-bind="text: name">

This binding produces the following HTML:

 Tim
 Justin
 Mark

The thing to note here is that the li element is binding against name, which is the
property of a person. Inside the foreach binding, the binding context is the child
element. If you need to refer to the child itself, you can either use $data or supply
an alias to the foreach binding.

The $data option is useful when the array only contains primitives that you want
to bind against:

var viewmodel = {
 people: ['Tim', 'Justin, 'Mark']
}
...
<ul data-bind="foreach: people">
 <li data-bind="text: $data">

Knockout Essentials

[26]

The alias option can clean up your code, but it is particularly useful when you have
a nested context and want to refer to the parent. Refer to the following code:

<ul data-bind="foreach: { data: categories, as: 'category' }">

 <ul data-bind="foreach: { data: items, as: 'item' }">

 :

This can be achieved with $parent, of course, but it is more legible when using
an alias.

Template binding
The template binding is a special control flow binding. It has a parameter for each
of the other control flow bindings. It might be more accurate to say that the other
control flow bindings are all aliases for the template binding:

 <ul data-bind="foreach: { data: categories, as: 'category' }">
 <ul data-bind="template: { foreach: categories, as: 'category' }">

Both of these are functionally equivalent. The template binding as has a parameter
for if and data (which together make a with binding).

However, unlike the other control flow bindings, it can also generate its template
from a named source using the name parameter. By default, the only source Knockout
looks for is a <script> tag with an id parameter matching the name parameter:

<div data-bind="template: { name: 'person-template', data: seller
}"></div>
<script type="text/html" id="person-template">
 <h3 data-bind="text: name"></h3>
 <p>Credits: </p>
</script>

To stop the script block from being executed as JavaScript, you need a dummy
script type, such as text/html or text/ko. Knockout will not apply bindings to
script elements, but it will use them as a source for templates.

Though it is much more common to use the inline templates seen in foreach or
with, named templates have three very important uses.

Chapter 1

[27]

Reusable templates
As templates can reference an external source for the HTML, it is possible to have
multiple template bindings pointing to a single source:

<div>
 <div data-bind="template: { name: 'person', data: father} "></div>
 <div data-bind="template: { name: 'person', data: mother} "></div>
</div>
...
<script type="text/html" id="person">
 <h3 data-bind="text: name"></h3>
 Age:

 Location:

 Favorite Color:

</script>

The branch cp1-reuse has an example of this technique.

Recursive templates
Because templates participate in data-binding themselves, it is possible for a template
to bind against itself. If a template references itself, the result is recursive:

<div data-bind="template: { name: 'personTemplate', data: forefather}
"></div>

<script type="text/html" id="personTemplate">
 <h4 data-bind="text: name"></h4>
 <ul data-bind="foreach: children">
 <li data-bind="template: 'personTemplate'">

</script>

The template reference in the preceding template is using the shorthand binding,
which just takes the name of the template directly. When using this shorthand,
the current binding context is used for the template's data parameter, which is
perfect inside a foreach loop like this one. This is a common technique when
using recursive templates, as trees of information are the most common place
to find visual recursion.

An example of this recursive template is in the cp1-recurse branch.

Knockout Essentials

[28]

Dynamic templates
The name of the template in the previous example is a string, but it could be a property
reference too. Binding the template name to an observable allows you to control which
template is rendered. This could be useful to swap a viewmodel's template between a
display and edit mode. Consider this template binding:

<div data-bind="template: { name: template, data: father} "></div>

This template binding backed by a viewmodel property such as this one:
self.template = ko.computed(function() {
 return self.editing() ? 'editTemplate' : 'viewTemplate';
});

If we update the editing property from true to false, the template will re-render
from viewTemplate to editTemplate. This allows us to programmatically switch
between them.

An example of a dynamic edit/view template is in the cp1-dynamic branch.

In an advanced scenario, you could use a technique such as this for creating a generic
container on a page to display entirely different views. Switching the template name
and the data at the same time would mimic navigation, creating a Single Page
Application (SPA). We will take a look at a similar technique when we get to
Chapter 4, Application Development with Components and Modules.

Containerless control flow
So far, we have looked at using the control flow bindings (if, with, foreach, and
template) and the standard data-bind attribute on an HTML element. It is also
possible to use control flow bindings without an element by using special comment
tags that are parsed by Knockout. This is called containerless control flow.

Adding a <!— ko --> comment starts a virtual element that ends with a <!-- /ko
--> comment. This virtual element causes a control flow binding to treat all contained
elements as children. The following block of code demonstrates how sibling elements
can be grouped by a virtual comment container:

 People
 Locations
 <!-- ko if: isAdmin -->
 Users
 Admin
 <!-- /ko -->

Chapter 1

[29]

List elements only allow specific elements as children. The preceding containerless
syntax applies the if binding to the last two elements in the list, which causes them
to add or remove from the DOM based in the isAdmin property:

 Nav Header
 <!-- ko foreach: navigationItems -->

 <!-- /ko -->

The preceding containerless syntax allows us to have a foreach binding to create a
list of items while maintaining a header item at the top of the list.

All of the control flow bindings can be used in this way. The preceding two examples
can be seen in the cp1-containerless branch.

Extenders
The last "basic" feature to cover is extenders (don't worry, there is still plenty of
advanced stuff to cover). Extenders offer a way to modify individual observables.
Two common uses of extenders are as follows:

• Adding properties or functions to the observable
• Adding a wrapper around the observable to modify writes or reads

Simple extenders
Adding an extender is as simple as adding a new function to the ko.extenders
object with the name you want to use. This function receives the observable being
extended (called the target) as the first argument, and any configuration passed to
the extender is received as the second argument, as shown in the following code:

ko.extenders.recordChanges = function(target, options) {
 target.previousValues = ko.observableArray();
 target.subscribe(function(oldValue) {
 target.previousValues.push(oldValue);
 }, null, 'beforeChange');
 return target;
};

This extender will create a new previousValues property on the observable. This
new property is as an observable array and old values are pushed to it as the original
observable is changed (the current value is already in the observable of course).

Knockout Essentials

[30]

The reason the extender has to return the target is because the result of the extender is
the new observable. The need for this is apparent when looking at how the extender
is called:

var amount = ko.observable(0).extend({ recordChanges: true});

The true value sent to recordChanges is received by the extender as the options
parameter. This value can be any JavaScript value, including objects and functions.

You can also add multiple extenders to an observable in the same call. The object
sent to the extend method will call an observable for every property it contains:

var amount = ko.observable(0).extend({ recordChanges: true,
 anotherExtender: { intOption: 1});

As the extend method is called on the observable, usually during its initial creation,
the result of the extend call is what is actually stored. If the target is not returned,
the amount variable would not be the intended observable.

To access the extended value, you would use amount.previousValues() from
JavaScript, or amount.previousValues if accessing it from a binding. Note the lack
of parentheses after amount; because previousValues is a property of the observable,
not a property of the observable's value, it is accessed directly. This might not be
immediately obvious, but it should make sense as long as you remember that the
observable and the value the observable contains are two different JavaScript objects.

An example of this extender is in the cp1-extend branch.

Extenders with options
The previous example does not pass any options to the recordChanges extender,
it just uses true because the property requires a value to be a valid JavaScript. If you
want a configuration for your extender, you can pass it as this value, and a complex
configuration can be achieved by using another object as the value.

If we wanted to supply a list of values that are not to be recorded, we could modify
the extender to use the options as an array:

ko.extenders.recordChanges = function(target, options) {
 target.previousValues = ko.observableArray();
 target.subscribe(function(oldValue) {
 if (!(options.ignore && options.ignore.indexOf(oldValue) !== -
 1))
 target.previousValues.push(oldValue)

Chapter 1

[31]

 }, null, 'beforeChange');
 return target;
};

Then we could call the extender with an array:

var history = ko.observable(0).extend({
 recordChanges: { ignore: [0, null] }
});

Now our history observable won't record values for 0 or null.

Extenders that replace the target
Another common use for extenders is to wrap the observable with a computed
observable that modifies reads or writes, in which case, it would return the new
observable instead of the original target.

Let's take our recordChanges extender a step further and actually block writes that
are in our ignore array (never mind that an extender named recordChanges should
never do something like this in the real world!):

ko.extenders.recordChanges = function(target, options) {
 var ignore = options.ignore instanceof Array ? options.ignore : [];
 //Make sure this value is available
 var result = ko.computed({
 read: target,
 write: function(newValue) {
 if (ignore.indexOf(newValue) === -1) {
 result.previousValues.push(target());
 target(newValue);
 } else {
 target.notifySubscribers(target());
 }
 }
 }).extend({ notify: 'always'});

 result.previousValues = ko.observableArray();

 //Return the computed observable
 return result;
};

That's a lot of changes, so let's unpack them.

Knockout Essentials

[32]

First, to make ignore easier to reference, I've set a new variable that will either be
the options.ignore property or an empty array. Defaulting to an empty array lets
us skip the null check later, which makes the code a little easier to read. Second, I
created a writable computed observable. The read function just routes to the target
observable, but the write function will only write to the target if the ignore option
doesn't contain the new value. Otherwise, it will notify the target subscribers of the
old value. This is necessary because if a UI binding on the observable initiated the
change, it needs the illegal change to be reverted. The UI element would already
have updated and the easiest way to change it back is through the standard binding
notification mechanism that is already listening for changes.

The last change is the notify: always extender that's on the result. This is one
of Knockout's default extenders. Normally, an observable will only report changes
to subscribers when the value has been modified. To get the observable to reject
changes, it needs to be able to notify subscribers of its current unchanged value.
The notify extender forces the observable to always report changes, even when
they are the same.

Finally, the extender returns the new computed observable instead of the target,
so that anyone trying to write a value does so against the computed.

The cp1-extendreplace branch has an example of this binding. Notice that trying
to enter values into the input box that are included in the ignored options (0 or an
empty string) are immediately reverted.

The Contacts List application
It's time to start putting these concepts together into a usable application. Isolated
samples can only take you so far. We are going to cover the application in the cp1-
contacts branch in detail. The application's functionality is all on the Contacts page,
which you can get to from the navigation bar in your browser. Before we start digging
into the code, I encourage you to play around with the application a bit (it does persist
data). It will help in understanding the relationships in the code.

Overview
The application has three main JavaScript objects:

• The contact model
• The Contacts page viewmodel
• The mock data service

Chapter 1

[33]

The application only uses the HTML in the index.html file, but the two sections are
mostly independent.

• The entry form (create and edit)
• The contacts list

The JavaScript code in the example follows the Immediately-Invoked Function
Expression (IIFE) pattern (sometimes pronounced "iffy") to isolate code from
the global scope, and a namespace called app to share code between files:

(function(app, $, ko) {
 /* CODE IN HERE */
})(window.app = window.app || {}, jQuery, ko);

This is definitely not the only way to organize JavaScript code, and you may have
a pattern you prefer. If you want to understand this pattern better, here are a few
online resources:

• http://benalman.com/news/2010/11/immediately-invoked-function-
expression/

• http://addyosmani.com/blog/essential-js-namespacing/

The contact model
The client/app/contacts.js file defines our basic contact object. Let's go over it
piece by piece.

It starts with a standard declaration of observable properties with some default
values. There are a lot of reasons to organize code in a variety of ways, but for the
smaller models, I prefer to keep all of their persistable properties together at the top:

app.Contact = function(init) {
 var self = this;
 self.id = ko.observable(0);
 self.firstName = ko.observable('');
 self.lastName = ko.observable('');
 self.nickname = ko.observable('');
 self.phoneNumber = ko.observable('');
 /* More below */

www.allitebooks.com

http://benalman.com/news/2010/11/immediately-invoked-function-expression/
http://benalman.com/news/2010/11/immediately-invoked-function-expression/
http://addyosmani.com/blog/essential-js-namespacing/
http://www.allitebooks.org

Knockout Essentials

[34]

Next is the displayName property, some simple logic to generate a nice "title" for UI
display. The JavaScript or operator (||) is used here to ensure we don't try to read
the length property on a null or undefined value by returning a default value in
case all the names are empty. This essentially makes it a null-coalescing operator
when used during an assignment:

self.displayName = ko.computed(function() {
 var nickname = self.nickname() || '';
 if (nickname.length > 0)
 return nickname;
 else if ((self.firstName() || '').length > 0)
 return self.firstName() + ' ' + self.lastName();
 else
 return 'New Contact';
 });

Next is a utility method to update the model that accepts an object and merges in its
properties. I generally put a similar method onto all of my models so that I have a
standard way of updating them. Once again, we are using || as a safety net, in case the
method is called without a parameter (in the real world, you would want a stronger
check, one that ensured update was an object and not a primitive value or an array):

//Generic update method, merge all properties into the viewmodel
self.update = function(update) {
 data = update || {};
 Object.keys(data).forEach(function(prop) {
 if (ko.isObservable(self[prop]))
 self[prop](data[prop]);
 });
};

//Set the initial values using our handy-dandy update method.
self.update(init);

Also note that after defining the update function, the model calls it with the
constructor argument. This lets the constructor provide the ability to create a
new model from existing data and partial data as well. This is very useful when
deserializing data, for example, JSON from an Ajax request.

Lastly, we have the toJSON method. The standard JSON.stringify method in
JavaScript will look for this method to allow an object to control how it is serialized.
As Knockout's ko.toJSON calls JSON.stringify underneath after it unwraps all the
observables so that the serialization gets values and not functions.

Chapter 1

[35]

As the serialized form of our model is the one we will try to persist, usually by
sending it to the server with Ajax, we don't want to include things such as our
computed display name. Our toJSON method override takes care of this by just
deleting the property:

//Remove unwanted properties from serialized data
 self.toJSON = function() {
 var copy = ko.toJS(self);
 delete copy.displayName;
 return copy;
 };

The copy with ko.toJS is important. We don't want to delete displayName from
the actual model; we only want it removed from the serialized model. If we made
the variable with copy = self, we would just have a reference to the same object.
The ko.toJS method is a simple way to get a plain JavaScript copy that we can
safely delete properties from without affecting the original object.

The Contacts page viewmodel
The client/app/contactspage.js file defines the viewmodel for the Contacts
page. Unlike our contacts model, the page does a lot more than expose some
observable properties, and it isn't designed to be constructed from existing data
either. Instead of taking an object to control its starting values, which doesn't make
much sense for a page, the constructor's argument is designed for dependency
injection; its constructor arguments take in its external dependencies.

In this example, dataService is a dependency used by the page viewmodel:

app.ContactsPageViewmodel = function(dataService)

Very briefly, if you aren't familiar with dependency injection, it lets us define
our page against an API (sometimes called a contract or interface) of methods
to get and save data. This is especially useful for us, as in this sample application,
we aren't using real Ajax but mocking it with an object that just writes to the
DOM's local storage:

ko.applyBindings
 (new app.ContactsPageViewmodel(app.mockDataService));

For more information on the DOM local storage, see the page on the
Mozilla Developer Network at https://developer.mozilla.
org/en-US/docs/Web/Guide/API/DOM/Storage.

https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Storage
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Storage

Knockout Essentials

[36]

However, when we write the real Ajax service later, our ContactsPageViewmodel
doesn't need to change at all. We will just construct it with a different dataService
parameter. As long as they expose the same methods (the same API) it will just work.

The first section inside the constructor is for the contacts list. We expose an observable
array and get the contacts from our data service:

self.contacts = ko.observableArray();

dataService.getContacts(function(contacts) {
 self.contacts(contacts);
});

We are passing callback to the getContacts call because our data service provides
an asynchronous API. When the data service has finished getting our contacts, it
will call the callback with them. All our callback needs to do is put them into the
contacts array.

The next block of code is to control the CRUD (Create, Read, Update, Delete)
operations for individual contacts. First, we expose an observable object that
we will use for all edits:

self.entryContact = ko.observable(null);

 self.newEntry = function() {
 self.entryContact(new app.Contact());
 };
 self.cancelEntry = function() {
 self.entryContact(null);
 };

Our UI is going to bind an edit form against the entryContact property. The entry
contact property is pulling a double duty here; it contains the contact that is being
created or edited, and it indicates that editing is occurring. If the entry contact is null,
then we aren't editing; if it has an object, then we are editing. The UI will use with
and if bindings to control which content to show based on this logic.

The newEntry and cancelEntry functions provide the UI with a means to switch
between these two states.

For editing existing contacts, we just expose another function that takes a contact
and sets the entry contact to it:

self.editContact = function(contact) {
 self.entryContact(contact);
 };

Chapter 1

[37]

The last thing we need for real editing is the ability to persist our changes. As in the
real world, we have three scenarios, namely creating new objects, saving existing
objects, and deleting existing objects.

Creating and updating are both going to be done using the entryContact property,
and we want to be able to bind the same form for both, which means we need to
target a single function:

self.saveEntry = function() {
 if (self.entryContact().id() === 0) {
 dataService.createContact(self.entryContact(), function() {
 self.contacts.push(self.entryContact());
 self.entryContact(null);
 });
 } else {
 dataService.updateContact(self.entryContact(), function() {
 self.entryContact(null);
 });
 }
};

Internally, our saveEntry method checks for a non-default id value to determine
whether or not it's making a new object or updating an existing one. Both are calls
to the data service using the entry contact with a callback to clear the entryContact
property out (as we are done with editing). In the creation case, we also want
to add the newly created contact to our local list of contacts before emptying the
entry contact:

self.contacts.push(self.entryContact());
self.entryContact(null);

You might think that the contact is going to be null out by the second line, but that
is not the case. The entryContact property is an observable and its value is a contact.
The first line reads this value and pushes it into the contacts array. The second line
sets the value of the entryContact property to null; it does not affect the contact
that was just pushed. It's the same as if we had set a variable to null after adding it
to an array. The variable was a reference to the object, and making the variable null
removes the reference, not the object itself.

The delete function is simple by comparison:

self.deleteContact = function(contact) {
 dataService.removeContact(contact.id(), function() {
 self.contacts.remove(contact);
 });
 };

Knockout Essentials

[38]

It's going to take an existing contact, like editContact did, and call the data service.
As we are deleting the contact, the only thing we need is the id property. The callback
will remove the contact from the list of contacts when the service is done, using the
remove function provided on all observable arrays by Knockout.

The last piece of functionality on the page is the search mechanism. It starts with an
observable to track the search and a function to clear it out:

self.query = ko.observable('');
self.clearQuery = function() { self.query(''); };

The query property is going to be used to filter out any contacts that don't have a
matching or partially-matching property. If we wanted to be as flexible as possible,
we could search against every property. However, since our list of contacts is only
going to show our computed displayName and phone number, it would look odd
to return results matching on properties we didn't show. This is the computed
observable from the code sample that filters the contacts list:

self.displayContacts = ko.computed(function() {
 //No query, just return everything
 if (self.query() === '')
 return self.contacts();
 var query = self.query().toLowerCase();
 //Otherwise, filter all contacts using the query
 return ko.utils.arrayFilter(self.contacts(), function(c) {
 return c.displayName().toLowerCase().indexOf(query) !== -1
 || c.phoneNumber().toLowerCase().indexOf(query) !== -1;
 });
});

If you want to filter all of the contact's properties, they are listed
in the repository code as comments. They can easily be re-enabled
by uncommenting each line.

First, we check to see whether the query is empty, because if it is, we aren't going to
filter anything so we don't want to waste cycles iterating the contacts anyway.

Before starting, we call the toLowerCase() function on the query to avoid any case
sensitivity issues. Then, we iterate on the contacts. Knockout provides several utilities
methods for arrays (among other things) on the ko.utils object. The arrayFilter
function takes an array and an iterator function, which is called on each element of the
array. If the function returns true, arrayFilter will include that element in its return
value; otherwise it will filter the element out. All our iterator needs to do is compare the
properties we want to keep the filter on (remembering to put them in lowercase first).

Chapter 1

[39]

Now if the UI binds against displayContacts, the search functionality will filter
the UI.

However, we might experience poor performance with a large list of contacts if
we are looping through them all every time the query is updated, especially if the
query updates every time a key is pressed. To address this, we can use the standard
Knockout rateLimit extender on our filtered computed to stop it from updating
too frequently:

self.displayContacts = ko.computed(function() {
 /* computed body */
}).extend({
 rateLimit: {
 timeout: 100,
 method: 'notifyWhenChangesStop'
 }
});

This extender has two modes: notifyAtFixedRate and notifyWhenChangesStop.
These two options will throttle or debounce the computed.

If you aren't familiar with the throttling and debouncing
functions, there is an excellent explanation with visuals at
http://drupalmotion.com/article/debounce-
and-throttle-visual-explanation.

This lets us control how often the computed re-evaluates itself. The preceding
example will only re-evaluate the computed once all dependencies have stopped
changing for 100 ms. This will let the UI update when the query typing settles
down while still appearing to filter as the user types.

A philosophical note on a model versus a viewmodel
The line between model and viewmodel in client-server application can get blurry,
and even after reading Knockout's documentation (http://knockoutjs.com/
documentation/observables.html) it can be unclear whether or not our contact
object is really a model or viewmodel. Most would probably argue that it is a
viewmodel as it has observables. I like to think of these smaller objects, which are
barely more than their persisted data, as models and to think of viewmodels as the
objects containing operations and view representations, such as our Contacts page
viewmodel removeContact operation or the entryContact property.

http://drupalmotion.com/article/debounce-and-throttle-visual-explanation
http://drupalmotion.com/article/debounce-and-throttle-visual-explanation
http://knockoutjs.com/documentation/observables.html
http://knockoutjs.com/documentation/observables.html

Knockout Essentials

[40]

Mock data service
Normally, you would use an Ajax call, probably with jQuery, to retrieve data
and submit data to and from the server. Because this is a book on Knockout and
not Node.js, I wanted to keep the server as thin as possible. From the "Mastering
Knockout" perspective, whether we call a JavaScript object making Ajax requests or
store it in the DOM is immaterial. As long as we are working with something that
looks and functions like an asynchronous service, we can explore how Knockout
viewmodels might interact with it. That being said, there is some functionality
in the data service that would be used in an Ajax data service object, and it is
interesting from a Knockout application development perspective.

You might have noticed in the previous section that when the Contacts page view
model communicated with the data service, it wasn't dealing with JSON but real
JavaScript objects. In fact, not even plain JavaScript objects but our contact model.
This is because part of the data service's responsibility, whether it's a mock or a real
Ajax service, is to abstract away the knowledge of the service mechanisms. In our
case, this means translating between JSON and our Knockout models:

createContact: function(contact, callback) {
 $.ajax({
 type: "POST",
 url: "/contacts",
 data: ko.toJS(contact)
 })
 .done(function(response) {
 contact.id(response.id);
 callback()
 });
}

This is the createContact method from our mock data service if it was rewritten
to use real Ajax (this code is in the mockDataService.js file as a comment). The
data service is part of our application, so it knows that it's working with observable
properties and that it needs to translate them into plain JavaScript for jQuery to
properly serialize it, so it unwraps the contact that it's given with ko.toJS. Then,
in the done handler, it takes the id that it gets back from the server's response and
updates the contact's observable id property with it. Finally, it calls the callback
to signify that it's done.

Chapter 1

[41]

You might wonder why it doesn't pass contact as an argument to the callback.
It certainly could, but it isn't necessary. The original caller already had the contact,
and the only thing that the caller is going to need is the new id value. We've already
updated the id, and as it's observable, any subscriber will pick that new value up.
If we needed some special handling before setting the id value, that would be a
different case and we could raise the callback with id as an argument.

The view
Hopefully, you have already played with the application a bit. If you haven't, now is
the time. I'll wait.

You would have noticed that when adding or editing contacts, the contacts list
is removed. What you might not have noticed is that the URL doesn't change;
the browser isn't actually navigating when we switch between these two views.
Though they are in the same HTML file, these two different views are mostly
independent and they are controlled through a with and an ifnot binding.

The edit form
This is what is shown when adding or editing contacts:

<form class="form" role="form" data-bind="with: entryContact,
 submit: saveEntry">
 <h2 data-bind="text: displayName"></h2>
 <div class="form-group">
 <label for="firstName" class="control-label">First Name
 </label>
 <input type="text" class="form-control" id="firstName"
 placeholder="First Name" data-bind="value: firstName">
 </div>
 <div class="form-group">
 <label for="lastName" class="control-label">Last Name
 </label>
 <input type="text" class="form-control" id="lastName"
 placeholder="First Name" data-bind="value: lastName">
 </div>
 <div class="form-group">
 <label for="nickname" class="control-label">Nickname
 </label>
 <input type="text" class="form-control" id="nickname"
 placeholder="First Name" data-bind="value: nickname">
 </div>
 <div class="form-group">

Knockout Essentials

[42]

 <label for="phoneNumber" class="control-label">
 Phone Number</label>
 <input type="tel" class="form-control" id="phoneNumber"
 placeholder="First Name" data-bind="value: phoneNumber">
 </div>
 <div class="form-group">
 <button type="submit" class="btn btn-primary">Save
 </button>
 <button data-bind="click: $parent.cancelEntry"
 class="btn btn-danger">Cancel</button>
 </div>
 </form>

Because the with binding is also implicitly an if binding, the entire form is hidden
when the entryContact property is null or undefined.

The rest of the form is pretty straightforward. A submit binding is used so that
clicking the save button or hitting the enter key on any field calls the submit handler,
a header showing the display name, value bindings for each field, a save button with
type="submit" (so that it uses the submit handler), and a cancel button that binds
to $parent.cancelEntry. Remember, the $parent scope is necessary because the
with binding creates a binding context on the entry contact and cancelEntry is a
function on ContactPageViewmodel.

Contacts list
The list starts with an ifnot binding on the entryContact property, ensuring that
it only shows in the case that the previous form is hidden. We only want one or the
other to be seen at a time:

<div data-bind="ifnot: entryContact">
 <h2>Contacts</h2>
 <div class="row">
 <div class="col-xs-8">
 <input type="search" class="form-control"
 data-bind="value: query, valueUpdate: 'afterkeydown'"
 placeholder="Search Contacts">
 </div>
 <div class="col-xs-4">
 <button class="btn btn-primary" data-bind="click: newEntry">
 Add Contact</button>
 </div>
 </div>
 <ul class="list-unstyled" data-bind="foreach: displayContacts">

Chapter 1

[43]

 <h3>

 <small data-bind="text: phoneNumber"></small>
 <button class="btn btn-sm btn-default"
 data-bind="click: $parent.editContact">Edit</button>
 <button class="btn btn-sm btn-danger"
 data-bind="click: $parent.deleteContact">Delete</button>
 </h3>

</div>

The search input has a value binding as well as the valueUpdate option. The value
update option controls when the value binding reports changes. By default, changes
are reported on blur, but the afterkeydown setting causes changes to be reported
immediately after the input gets a new letter. This would cause the search to update
in real time, but remember that the display contacts have a rateLimit extender that
debounces the updates to 100 ms.

Next to the search box is a button to add a new contact. Then, of course, the list
of contacts is bound with a foreach binding on the displayContacts property.
If it was bound against contacts directly, the list would not show the filtering.
Depending on your application, you might even want to keep the unfiltered contacts
list private and only expose the filtered lists. The best option really does depend on
what else you're doing, and in most cases, it's okay to use your personal preference.

Inside the contacts list, each item shows the display name for the phone number,
with a button to edit or delete the contact. As foreach creates a binding context on
the individual contact and the edit and delete functions are on the parent, the click
binding uses the $parent context property. The click binding also sends the current
model to each of the edit and delete functions, so that these functions don't have to
try to find the right JavaScript object by looking through the full list.

That's really all there is to the application. We've got a list view with searching that
switches to a view that's reused easily for both editing and creating.

www.allitebooks.com

http://www.allitebooks.org

Knockout Essentials

[44]

Summary
In most of this chapter, we reviewed the use of standard Knockout. Hopefully,
I didn't lose you in the weeds back there. The important thing is that before we
move on to extending Knockout with custom functionality or building larger
applications, you must feel comfortable with the basic use of observables and
data binding. This includes:

• Defining viewmodels: This includes creating observables,
binding functions, and handling serialization

• Writing bindings: This includes using properties, expressions,
inline functions, and when to use parentheses

• Extenders: This includes creating extenders and extending observables
• Templates: This tells us how the flow of control works, what a binding

context is, inline versus named templates, and containerless control flow

In the next chapter, we will be adding new functionalities to Knockout by creating
our own binding handlers.

Extending Knockout with
Custom Binding Handlers

Knockout's standard bindings are great. They solve most of the general problems
you are likely to encounter when developing web apps. But there is always the need
to provide something special, whether you are working on your own library or just
trying to add a bit of style to your app. When that happens, you will want to provide
that functionality through the same binding system you are using everywhere
else. Luckily, Knockout makes extending this system easy. In this chapter, we will
be looking at how to make our own binding handlers. We will be covering the
following topics:

• What a binding handler contains
• Creating new binding handlers
• Using custom binding handlers to integrate with third-party libraries
• Managing binding contexts
• Using the containerless control flow syntax with custom bindings

Creating custom binding handlers for new and more complex HTML interactions
is a key to developing feature-rich applications. While the basics are easy to learn,
there are enough extension points to support just about any use case. We are going
to be looking at plenty of examples to get a solid idea of what binding handlers are
capable of and how we can make the best use of them.

The data binding pattern
This section is primarily philosophical. If you feel like you already have a solid
understanding of the what and why behind the Model-View-ViewModel (MVVM)
pattern and binding handlers, then you might want to skip to the next section,
Components of a binding handler.

Extending Knockout with Custom Binding Handlers

[46]

Okay, let's talk about patterns and practices. If you haven't worked with WPF before,
then the MVVM pattern is probably the most confusing thing about Knockout.
MVVM is a pattern that came out of Microsoft. It doesn't get a lot of attention outside
the .NET community, and it's similar enough to the far more popular MVC pattern
because of which confusion is nearly guaranteed.

In MVVM, the viewmodel is supposed to represent an abstraction of the view.
Consider these two lists of message threads in iOS:

They both show a list of threads, and each thread contains a title showing the person
it is with, an excerpt from the most recent message, and a timestamp. A thread can
be selected or deleted. To select a message, you can touch it. To delete a message,
you can slide left to bring up the Delete button, and then press the Delete button to
delete the thread. You might be able to spot a difference in behavior already though.
The list on the left slides the entire thread left to reveal the Delete button, pushing
the thread partially off the screen. The list on the right superimposes the button on
top of the thread, hiding the timestamp.

These differences are entirely part of the presentation of the data. Both of these views
could, and should, be supported by the same viewmodel. They are both showing the
same data and allow the same actions.

Chapter 2

[47]

To be able to consume this data using the intended behavior (slide-reveal or slide-
superimpose), the view needs support from something besides the viewmodel. In
the MVVM pattern, this is the domain of the binding handler, and even though the
binding handler doesn't get a letter in the acronym, it's still a critical piece of the
puzzle. As the viewmodel is not supposed to know about view-related concepts such
as buttons, clicks, or finger-taps, and the view is supposed to be entirely declarative;
a binding handler is required to glue the two together.

The underlying principle here is the separation of concerns. The view is concerned
with UI elements and interactions. The viewmodel is concerned with code objects
and actions, and binding handlers are concerned with generically translating
between specific UI elements or actions to and from the viewmodel.

As that's out of the way, time to get started with creating some custom
binding handlers!

Components of a binding handler
Binding handlers are defined by adding objects to the ko.bindingHandlers object,
just like extenders. They are composed of an init and an update function.

The init function runs when the binding is first applied to the element either
when ko.applyBindings is called or when the element is created by a control flow
binding, such as template or foreach. It should be used for all one-time work such
as attaching event handlers or disposal callbacks to the element.

The update function runs just after init does, when the binding is first applied. It runs
again anytime when any observable dependencies are changed. The update function
determines its dependencies just like a computed observable does. If an observable is
accessed when an update runs, it subscribes to that observable. The update function
should be used to keep the UI in sync with changes from the viewmodel:

ko.bindingHandlers.yourBindingName = {
 init: function(element, valueAccessor, allBindings, viewModel,
 bindingContext) {
 // This will be called when the binding is first applied
 // Set up any initial state, event handlers, etc. here
 },
 update: function(element, valueAccessor, allBindings,
 viewModel, bindingContext) {
 // This will be called once when the binding is first applied
 // and again whenever dependant observables change.
 // Update the DOM element based on the supplied values here.
 }
};

Extending Knockout with Custom Binding Handlers

[48]

Both functions receive the following parameters:

• Element: This is the DOM element the binding was applied to.
• valueAccessor: This is a function that will return the result of the

binding expression. For example, if the binding was value: name, then
valueAccessor would return the name property. If name was an observable,
you would still need to either call it or pass it to ko.unwrap (this function will
be covered in the next section) to get the value. If the binding was value:
name() + '!', then valueAccessor would return the resulting string.

• allBindings: This is an object with a get and has function for accessing
other bindings on the element.

• Viewmodel: In previous versions of Knockout, this gave access to the
viewmodel, but it has been deprecated in favor of bindingContext.$data or
bindingContext.$rawData as of Knockout 3.0.

• bindingContext: This is an object with the current binding context for the
binding. This has the special binding context properties such as $parent
and $root. This parameter was introduced in Knockout 3.0.

Using custom binding handlers
Once added to the ko.bindingHandler object, custom bindings are no different
from normal bindings. If you add a binding handler named flash, you could
use it on an HTML element with a standard data-bind attribute:

<p data-bind="flash: vmProperty">Flashy! (bum dum tish)</p>

Simple binding handlers
Binding handlers can range from very simple to whole applications by themselves.
As the purpose of binding handlers is to translate between the presentation layer
(HTML) and the viewmodel (JavaScript), the binding handler's complexity is directly
related to the complexity of the UI interaction and the bound data. Simple tasks such
as hiding or showing an element with animation will have very thin handlers, while
data binding on an interactive map element will require much more logic.

Chapter 2

[49]

Animated binding handlers
As DOM interaction in the primary use case for jQuery, and given its popularity, it
is not uncommon to use jQuery inside Knockout binding handlers. The canonical
custom binding handler example from the Knockout documentation is a binding
to hide and show elements, with the jQuery's slideUp and slideDown methods,
instead of using the standard visible binding to switch them on and off:

ko.bindingHandlers.slideVisible = {
 init: function(element, valueAccessor) {
 var value = ko.unwrap(valueAccessor());
 $(element).toggle(value);
 },
 update: function(element, valueAccessor, allBindings) {
 var value = ko.unwrap(valueAccessor());
 var duration = allBindings.get('slideDuration') || 400;

 if (value === true)
 $(element).slideDown(duration); //show
 else
 $(element).slideUp(duration); //hide
 }
};

This example uses both an init and update function. The init function here is
necessary to ensure that a value starting out as false doesn't cause the element
to slide up when bindings are first applied, or vice versa. Without it, the update
function would run right away and try to hide the element by sliding it up. The init
function ensures that the element is already in the correct visible state, so that an
animation doesn't occur when the binding first runs.

ko.unwrap is a utility method that will return the value of an observable if called
with one; otherwise it will just return the first argument directly. It's perfect if you
don't know whether you have an observable or not as it's safe to call it with anything.
Most custom bindings should be able to support observable and nonobservable
values, so you should always unwrap the valueAccessor parameter, unless you
have a good reason not to.

The check for allBindings.get('slideDuration') allows a configurable value to
be used for the slide timing. The allBinding object gives us access to other bindings
that were used on the same element and is commonly used to collect optional
configuration values:

<p data-bind="slideVisible: isShowing, slideDuration:
 200">Quick</p>

Extending Knockout with Custom Binding Handlers

[50]

This lets the view determine how fast or slow to hide and show the element. As the
animation speed is a part of the presentation, it makes sense for it to be configured
from the view. If you want to use a viewmodel observable for slideDuration, you
can modify that line to unwrap the value:

var duration = ko.unwrap(allBindings.get('slideDuration')) || 400;

An example of this binding is in the cp2-slide branch.

Working with third-party controls
The slideVisible binding is a perfectly simple binding; it has a basic init function
to start the binding and has an update function that modifies the DOM when the
viewmodel changes. It is a one way binding though, only watching the viewmodel
for changes. Two way bindings also need to watch the DOM element for changes
and send it back to the viewmodel. Generally, this is accomplished by attaching an
event handler in the init function; remember that the update function runs every
time dependencies change, so attaching an event handler there would result in the
event handler being attached multiple times.

Binding handlers can also be used to integrate with third-party controls. Though
HTML5 has a native datepicker control, you might need one that is more
backwards-compatible. The datepicker control of jQuery is a nice out-of-the-box
control, but it requires a call to $(element). datepicker() to convert a standard
input element. A binding handler is the perfect place to run this initialization logic
for the view:

ko.bindingHandlers.datepicker = {
 init: function(element, valueAccessor, allBindingsAccessor) {
 var options = allBindingsAccessor().datepickerOptions || {},
 $el = $(element);

 //initialize datepicker with some optional options
 $el.datepicker(options);

 //handle the field changing
 ko.utils.registerEventHandler(element, "change",
 function() {
 var observable = valueAccessor();
 observable($el.datepicker("getDate"));
 });

 //handle disposal (if KO removes by the template binding)
 ko.utils.domNodeDisposal.addDisposeCallback
 (element, function() {

Chapter 2

[51]

 $el.datepicker("destroy");
 });

 },
 update: function(element, valueAccessor) {
 var value = ko.unwrap(valueAccessor()),
 $el = $(element),
 current = $el.datepicker("getDate");

 if (value - current !== 0) {
 $el.datepicker("setDate", value);
 }
 }
};

To use this binding in HTML, apply it to an input element:

<input data-bind="datepicker: myDate, datepickerOptions: {
 mandate: new Date() }" />

This example comes from a Stack Overflow answer by R. P. Niemeyer that
can be found at http://stackoverflow.com/a/6400701/788260.

This binding's init function starts out by storing the jQuery wrapped element,
followed by a check for options. The UI datepicker for jQuery (http://jqueryui.
com/datepicker) has a lot of them, and letting the binding control the configuration
is standard.

Next is the jQuery-ficiation of the element with $el.datepicker(options).
This attaches the event handlers that allow jQuery to hide and show the pop-up
datepicker control and route its selection to the input element's value. Then, using
Knockout's ko.utils.registerEventHandler, it attaches an event handler that
takes the new value and writes it to the supplied observable.

In some cases, we might want to see whether the valueAccessor parameter is an
observable, so that binding against a static value can still be used to set the element's
initial value. You will want to use your best judgment here; in this case, the whole
purpose of the binding is to collect user input, so it doesn't make sense in this case
to work with nonobservable values. If you do want to make the check, you could
change the event handler portion in the following manner:

if (ko.isObservable(valueAccessor())) {
 ko.utils.registerEventHandler(element, "change", function () {
 var observable = valueAccessor();

http://stackoverflow.com/a/6400701/788260
http://jqueryui.com/datepicker
http://jqueryui.com/datepicker

Extending Knockout with Custom Binding Handlers

[52]

 observable($el.datepicker("getDate"));
 });
}

The ko.isObservable function is a utility method that returns true if the first
argument is an observable, observableArray, or computed observable. When the
valueAccessor parameter isn't an observable, there is no need to attach the change
handler at all, because there is nothing we would do with the new value.

The last piece in the init function is a disposal handler. Disposal of bindings occurs
when the element is removed from the DOM, which happens when control flow
bindings such as template or foreach update themselves. The datepicker control
of jQuery expects $el.datepicker("destroy") to be called to clean up the event
handlers if attached, and remove the pop-up element from the DOM. Remember,
the pop-up element was added by jQuery from inside this binding handler, so
Knockout's template system is not aware of them. The ko.utils.domNodeDisposal.
addDisposeCallback registers handlers that will be called by the template system
when it removes a node from the DOM. This is an important step anytime your
binding handler has modified the DOM.

The update function handles observable changes, but as it is translating between
strings for the element's value and JavaScript Dates for the code, it has to
perform its own equality check. Instead of looking at the element's value, it
uses $el.datepicker("getDate"), which returns a real JavaScript date.

To see this binding in action, you can check out the cp2-datepicker branch. I've
added a span bound by the same viewmodel property as the datepicker so that
you can easily see the value update.

Modifying the DOM with bindings
The previous two bindings were mostly translators between the data and
presentation logic, but binding handlers can do much more. Bindings can also be
used to add new elements to the page. If you want to provide a UI for a 1-5 rating
system, you should think about using a select element with an options and value
binding. While this would work, a much more common way would be to provide
a series of stars for the user to click on, with a click activating the clicked star and
every previous star. The Knockout tutorial site (http://learn.knockoutjs.
com/#/?tutorial=custombindings) provides a neat solution to this, which
replaces a node's content with a list of styled span elements:

ko.bindingHandlers.starRating = {
 init: function(element, valueAccessor) {
 $(element).addClass("starRating");
 for (var i = 0; i < 5; i++) {

http://learn.knockoutjs.com/#/?tutorial=custombindings
http://learn.knockoutjs.com/#/?tutorial=custombindings

Chapter 2

[53]

 $("").appendTo(element);
}

 // Handle mouse events on the stars
 $("span", element).each(function(index) {
 $(this).hover(
 function() {
 $(this).prevAll().add(this)
 .addClass("hoverChosen");
 },
 function() {
 $(this).prevAll().add(this)
 .removeClass("hoverChosen");
 }
).click(function() {
 var observable = valueAccessor();
 observable(index + 1);
 });
 });
 },
 update: function(element, valueAccessor) {
 // Give the first x stars the "chosen" class
 // where x <= rating
 var observable = valueAccessor();
 $("span", element).each(function(index) {
 $(this).toggleClass("chosen", index < observable());
 });
 }
};

You could use this binding on an element in the following manner:

The result is a nice looking control that will be familiar to anyone who has filled out
an online survey before:

www.allitebooks.com

http://www.allitebooks.org

Extending Knockout with Custom Binding Handlers

[54]

The init function for this binding sets up three things. First, it adds five span
elements as children of the bound node, which will serve as the stars for the rating.
Second, it adds hover handlers to apply and remove the hoverChosen class to the
star under the cursor, as well as all the previous stars. The stars are cumulative, so if
we hover over the third star, we should see the first three stars fill in. Finally, it adds
a click handler to each star that updates the bound property with the number the star
represents. As its using the index of the loop, which starts at 0, it adds 1 to the value.
Again, we see that the binding assumes that the property being used is observable.
If we wanted to support a read-only display, we would modify the binding to check
that the property is observable before trying to update it.

The update function for this binding is different from the ones we've looked at
so far. Instead of using the new value from the valueAccesor property to set an
attribute of the original bound element, it loops through the stars and uses jQuery's
toggleClass to set or remove the chosen class, applying it to only the stars whose
index is at or below the new value. The viewmodel is still only aware of an integer
value, and the view is only aware that the bound element is using starRating to
present that number. The binding handler abstracts away star elements and also
handles the translation between the numeric value and selected stars.

This binding assumes the existence of the CSS classes that it applies to the star
spans. You can see an interactive sample of this binding and the CSS in the
cp2-stars branch.

Applying new bindings to new children
elements
In the previous example, we looked at creating children elements to present our data
with some style. It was using jQuery to manage the classes of the children elements
that it had added during the binding's initialization. However, when using Knockout
bindings, sometimes it makes more sense to use the built-in binding handlers for this
sort of thing. Luckily it's possible to add Knockout bindings to elements after they've
been created.

Knockout provides a utility function, ko.applyBindingsToNode, to manually apply
bindings to elements. The function takes an element to bind an object. Each property
on the object will be used to look up a binding handler, and the property's value will
be passed to the binding. It also takes an optional viewmodel or binding context as
the third parameter; if left out, it will use the current binding context:

init: function(element, valueAccessor) {
 var childElementToBind = document.createElement('input');

Chapter 2

[55]

 element.appendChild(childElementToBind);

 ko.applyBindingsToNode(childElementToBind, {
 value: valueAccessor()
 });
}

This will add a new input element after the original element and apply a value
binding to the original observable. The applyBindingsToNode call takes the new
input element and an object that will apply the value binding. The valueAccessor
property returns the original property and passes it to the binding, essentially
binding the new input to the same property as the original binding.

If we want to create a binding that adds an input with a new label, it might look
like this:

ko.bindingHandlers.labelInput = {
 init: function(element, valueAccessor) {
 var input = document.createElement('input'),
 label = document.createElement('label'),
 labelText = valueAccessor().label,
 inputValue = valueAccessor().value;

 label.innerHTML = labelText;
 label.appendChild(input);

 element.appendChild(label);

 ko.applyBindingsToNode(input, {
 value: inputValue,
 valueUpdate: 'afterkeydown'
 });
 }

Its binding could be used as follows:

<div data-bind="labelInput: { label: 'Custom',
 value: name }"></div>

This binding creates a new label and input that it appends as children to the original
binding. The label's text is set to the binding's label property, and the binding's
value is bound to the input node. Hopefully, you can start to see how a binding
handler could be used to create not only your own behavior, but your own custom
elements as well.

An example of this binding can be seen in the cp2-applynode branch.

Extending Knockout with Custom Binding Handlers

[56]

Applying accessors
The applyBindingsToNode method is available in all versions of Knockout,
but another method is available if you are using Knockout 3.0 or higher.
The applyBindingAccessorsToNode method works in a way similar to
applyBindingsToNode, taking an object to bind as the first parameter and an
optional binding context as the third parameter. However, instead of taking the
values of the second parameter's properties directly, it takes a function that supplies
the valueAccessor property. The previous apply call would look like this after
being converted:

ko. applyBindingAccessorsToNode (input, {
 value: function() { return inputValue },
 valueUpdate: function() { return 'afterkeydown' }
});

This method is actually what applyBindingsToNode calls internally after the values
given to it are converted into value accessor functions such as the previous ones. The
one fewer step of indirection gained by using applyBindingAccessorsToNode gives
marginally improved performance. However, the larger benefit comes when the
value being bound against it is an expression instead of just a simple property. An
expression can only establish a dependency if it is evaluated from inside the binding
that uses it. The value accessor functions will be evaluated later, allowing them
to work correctly with expressions.

Controlling the order of binding handlers
In rare cases, you may need to ensure that the binding handlers occur in a certain
order. As of Knockout 3.0, this is possible by setting the after property on a binding
handler to an array of bindings that must be processed first. For example, you can
define a binding that require values and options to be processed first:

ko.bindingHandlers.valuePlus = {
 'after': ['options', 'value'],
 'init': function (element, valueAccessor, allBindings) {
 /* some code /*
 }
}

Several of the default bindings take advantage of this. The value binding depends
on options and foreach; the checked binding depends on value and attr.

It should be noted that if you create two bindings with an after reference to each
other, Knockout will throw a cyclic dependency exception if it ever tries to apply
both bindings to the same element.

Chapter 2

[57]

Advanced binding handlers
So far, we've been looking at binding handlers that handle one or two properties and
result in a fairly simple single-purpose control. In the previous example, we started
looking at binding handlers that created new child elements, and this technique
allows us to create much more complex binding behaviors. Bindings can also interact
with complex elements such as charts or map controls (for example, a Google Maps
widget), providing a clean API that the viewmodel can interact with.

Binding complex data with charts
The first time we looked at integrating with a third-party control was with a
single-property two-way binding to a datepicker. Any time we are working with
third-party UI tools, the goal is to abstract them away from the view and the
viewmodel through bindings; even when those tools are for complex structures
such as charts.

Charts.js (http://www.chartjs.org) is a popular JavaScript library built to display
data in, you guessed it right, graphical charts. Without going too deep into the
details of how charts work, one challenge presented by a binding handler is that the
chart doesn't have an API for making incremental updates. The whole chart needs to
be re-rendered for updates. This requires access to the canvas element as well as the
2D context for the canvas. If we create the canvas in the init function, getting that
element in the update function can be tricky. Let's take a look at an example of this
(this is dummy code):

ko.bindingHandlers.doughnutChart = {
 init: function(element, valueAccessor) {
 var canvas = document.createElement('canvas'),
 options = ko.utils.extend(defaultChartOptions,
valueAccessor());

 element.appendChild(canvas);
 },
 update: function(element, valueAccessor) {
 var chartContext = canvas.getContext('2d')

 /* Drawing code */

 new Chart(chartContext).Doughnut(data, options);
 }
};
//HTML
<div data-bind="doughnutChart: {data: chartSeries}"></div>

http://www.chartjs.org

Extending Knockout with Custom Binding Handlers

[58]

You can see in the init function that a new canvas element has been made and
appended to the bound element. However, the variable (canvas) needs to be
used in the update function to draw, and it isn't actually available there.

Knockout provides two utility methods, ko.utils.domData.set(element, key,
value) and ko.utils.domData.get(element, key), which can be used to set
values on the bound element. They can store any JavaScript value, including DOM
node references, and so we could certainly use them here:

ko.bindingHandlers.doughnutChart = {
 init: function(element, valueAccessor) {
 var canvas = document.createElement('canvas'),
 options = ko.utils.extend(defaultChartOptions,
valueAccessor());

 ko.utils.domData.set(element, 'canvas', canvas);

 element.appendChild(canvas);
 },
 update: function(element, valueAccessor) {
 var canvas = ko.utils.domData.get(element, 'canvas'),
 chartContext = canvas.getContext('2d');

 /* Drawing code */

 new Chart(chartContext).Doughnut(data, options);
 }
};

This will work. However, it does mean that the element not only contains the canvas
as a child, but also as a property; it also means the retrieval of the element every time
an update runs.

Another method would be to create a computed observable in the init function that
had a closure for the canvas, or even the context. This might sound like it's creating
an extra object, but remember, the update function in bindings is actually wrapped
in a computed to take advantage of the dependency detection. Using this method,
our binding would look like this:

ko.bindingHandlers.doughnutChart = {
 init: function(element, valueAccessor) {
 var canvas = document.createElement('canvas'),
 options = ko.utils.extend(defaultChartOptions,
 valueAccessor()),

Chapter 2

[59]

 chartContext = canvas.getContext('2d');

 element.appendChild(canvas);

 ko.computed(function() {
 canvas.height = ko.unwrap(options.height);
 canvas.width = ko.unwrap(options.width);

 var data = ko.toJS(options.data).map(function(x) {
 return {
 value: parseFloat(x.value),
 color: x.color.indexOf('#') === 0 ? "#" + x.color :
 x.color
 }
 });

 new Chart(chartContext).Doughnut(data, options);
 }, null, {disposeWhenNodeIsRemoved: element});
 }
};

One thing to consider when using this method is the disposal of the computed. The
third argument to the computed constructor is an options object, and with it, we can
specify that the computed should be disposed off with a DOM node's removal by
specifying the element. This option can be seen in the previous example.

Another thing to note in the example is the options variable in the init function.
You should be familiar with the concept of extending objects, but just in case,
remember that extending (also called merging) is the process of choosing a target
and updating it with a source object by copying all of its properties. The result is an
object with the combination of both values, with the values of the source being used
in any cases where the target also had a value. Knockout provides an extend method
on ko.utils.extend. I am using it here to make all of the chart options optional, by
supplying these default values before the binding:

var defaultChartOptions = {
 height: 300,
 width: 300,
 animation: false
 };

Extending Knockout with Custom Binding Handlers

[60]

The only thing that must be supplied is the data for the chart to display. Chart.js
requires Doughnut charts to supply an array of objects with a value and color. To
provide a humane binding, we can let the binding be responsible for ensuring the
data is sanitized, which includes parsing the value as a number and ensuring our
color value starts with the hash (#) for hex codes. Along with some options for
height and width, our final computed would look something like this:

ko.computed(function() {

 canvas.height = ko.unwrap(options.height);
 canvas.width = ko.unwrap(options.width);

 var data = ko.toJS(options.data).map(function(x) {
 return {
 value: parseFloat(x.value),
 color: x.color.indexOf('#') === 0 ? x.color : "#" + x.color
 };
 });

 new Chart(chartContext).Doughnut(data, options);
}, null, {disposeWhenNodeIsRemoved: element});

An example of this binding, including some bindings to change the data, is in the
cp2-charts branch.

Dynamically adjusting the chart type
Three of the charts in Chart.js—Doughnut, Pie, and Polar Area—use the same data
structure of value/color pairs. If you want to support switching between compatible
charts, you can add the type as a binding option. The bottom of our computed would
look like this instead:

var chart = new Chart(chartContext),
 chartType = ko.unwrap(options.type);

if (circularChartTypes.indexOf(chartType) === -1) {
 throw new Error('Chart Type ' + chartType + 'is not a Circular Chart
Type');
}

chart[chartType](data, options);

Chapter 2

[61]

To indicate that this new binding supports multiple types, we could update the name
and then use it like this:

<div data-bind="circularChart: {
 data: chartSeries,
 width: chartWidth,
 height: chartHeight,
 type: selectedChartType
}"></div>

This modified example can be seen in the cp2-charts2 branch.

Exposing APIs through bindings
The Chart.js example demonstrated binding against multiple properties. While we
were able to control the chart by modifying bound observables for height, width, and
type, it didn't allow us to interact with the chart. We could not click or drag the chart
to update the observable for its data. The last custom binding technique we are going
to look at is working with complex interactive controls; controls that bind multiple or
complex data and allow user input. By doing this, we can consume APIs for a control
either through the UI or programmatically. The example we will use is a binding for
the Google Maps API.

One of our abstraction goals is to keep how the UI gets things done out of the
declaration of the UI. It doesn't matter to us that the visible binding accomplishes
its hiding by adding style="display: none;" to an element; all we care about is
that the element will be visible only when the property we bind to is truthy.

Another goal of abstraction is to keep third-party data structures out of our
viewmodel code, especially if that third-party code is only used by a binding
handler. Our viewmodel doesn't care that its latitude and longitude are being
used by a map, let alone a map from Google. That's the UI's business. However, it
is still a fact of life that our data needs to be massaged into the correct format if we
want it to play nicely with our third-party API. Here, again binding handlers come
to the rescue!

The Google Maps JavaScript API is powerful and full of features. We are going to
look at a simple binding that lets us control the center point of a map (latitude and
longitude), as well as the zoom level of the map. We are going to hide all of the
details of the Google Maps API inside our binding. Our viewmodel will be simple,
just these three properties:

var BindingSample = function() {
 var self = this;

Extending Knockout with Custom Binding Handlers

[62]

 self.zoom = ko.observable(8);
 self.latitude = ko.observable(45.51312335271636);
 self.longitude = ko.observable(-122.67063820362091);
};

Hopefully, any reasonable mapping API would let us work with these properties,
which allows our viewmodel to be reused for any of them. We want our HTML
to be reusable as well, so it should use a map-provider agnostic syntax as well:

<div data-bind="map: { lat: latitude, long: longitude,
 zoom:zoom }" ></div>

So far so good; nothing new here. Let's take a look at that map binding handler:

ko.bindingHandlers.map = {
 init: function(element, valueAccessor) {
 var data = valueAccessor(),
 options = ko.utils.extend(ko.maps.defaults, data),
 //just get the relevant options
 mapOptions = {
 zoom: ko.unwrap(options.zoom),
 center: new google.maps.LatLng(ko.unwrap(options.lat),
 ko.unwrap(options.long)),
 mapTypeId: options.mapType
 },
 map = new google.maps.Map(element, mapOptions);

 ko.computed(function() {
 map.setZoom(parseFloat(ko.unwrap(options.zoom)));
 }, null, { disposeWhenNodeIsRemoved: element });

 ko.computed(function() {
 map.panTo(new google.maps.LatLng(ko.unwrap(options.lat),
 ko.unwrap(options.long)));
 }, null, { disposeWhenNodeIsRemoved: element });

 google.maps.event.addListener(map, 'center_changed',
 function() {
 var center = map.getCenter();
 if (ko.isObservable(data.lat)) {
 data.lat(center.lat());
 }
 if (ko.isObservable(data.long)) {
 data.long(center.lng());
 }
 });

Chapter 2

[63]

 if (ko.isObservable(data.zoom)) {
 google.maps.event.addListener(map, 'zoom_changed',
 function() {
 data.zoom(map.getZoom());
 });
 }
 }
};

The beginning should be familiar by now; we are getting our valueAccessor
parameter out, using some default values (see the previous sample) and extending
them with the bound data. The next line creates a new map using the Google Maps
API and supplies the element and our options.

Next, we set up two computed values to update the map when the zoom or latitude/
longitude values change. Another advantage of using the computed method instead
of the binding handlers update method is that the update method will fire when
any part of the valueAccessor property changes. If only one value changes, such as
zoom, we wouldn't want to update the map position. We would have to figure out
which value changed, which would mean tracking it in the binding. Here, the two
computed values will rerun only when their dependencies change, ensuring that
we don't make unnecessary calls to update the map.

Finally, we have a pair of event listeners on the map to update our observable
values when the user interacts with the map. These use the Google Maps API's
addListener to get updates whenever the map is moved, which can happen by
mouse dragging or with the keyboard arrows, and whenever the zoom is changed.
The panTo function is just an animated move command; if the new position is close
enough, panTo will ease into it.

That's it! If our code updates these values, the map will be moved. If the user moves
the map, the bound observables will be updated. We have a two-way binding with
multiple properties on a third-party UI control!

Obviously, this binding could get a lot bigger if we wanted to support more of the
Google Maps APIs, but this should give you an idea of how that would be done.
Don't be afraid to making larger bindings. The examples in this book are all small out
of necessity—they tell me this will be printed on dead trees—but you should feel free
to make bindings as large as you need to in order to accomplish the task at hand. I
would take a larger, more flexible binding over a smaller inflexible binding any day.

Extending Knockout with Custom Binding Handlers

[64]

If you want to see an example of this binding, check out the cp2-maps branch. It has
several inputs bound to the map so that you can see things update in both directions.
It's pretty fun to play with.

Binding contexts and descendant bindings
All of the binding handlers we have created so far have respected the standard
binding context. In this section, we are going to look at techniques to modify the
binding context. This allows fine-grained control over how elements are bound
and data they are bound with.

As per the Knockout documentation notes (http://knockoutjs.com/
documentation/custom-bindings-controlling-descendant-
bindings.html), these methods are not normally used in application
development. They are probably only useful to library or framework
developers building on top of Knockout.

http://knockoutjs.com/documentation/custom-bindings-controlling-descendant-bindings.html
http://knockoutjs.com/documentation/custom-bindings-controlling-descendant-bindings.html
http://knockoutjs.com/documentation/custom-bindings-controlling-descendant-bindings.html

Chapter 2

[65]

Controlling descendant bindings
You can indicate to Knockout that your binding handler is responsible for all of
the bindings on descendant nodes by returning controlsDescendantBindings
from the init function of a binding. The canonical example of this is the
stopBinding handler:

ko.bindingHandlers.stopBinding = {
 init: function(element, valueAccessor) {
 return { controlsDescendantBindings:
ko.unwrap(valueAccessor()) };
 }
};

This will stop the current binding context from continuing to traverse these element
descendants, leaving them in their initial unbound state unless another binding
context is started:

<div data-bind="stopBinding: true">
 <h4 data-bind="text: 'Bound'">Unbound</h4>
</div>

The heading in this div element will still say Unbound after bindings are applied
because stopBinding has stopped all descendant bindings. You can see an example
of this binding in the cp2-stopbinding branch. Notice that if you change the
stopBinding to false, the heading will say Bound.

So that's the basic idea, but what can we do with this? Well, after interrupting the
current binding context, we can replace it with a different one!

Child binding contexts
Probably the most common binding context operation is creating a child context,
a context whose $parent is the current context. The template, with, and foreach
bindings do this for the data they bind. A child context can access its parent using
the special $parent property, and it can access the top-level viewmodel (the one
passed to ko.applyBindings) by using $root. You can create your own child
contexts by calling createChildContext on the bindingContext parameter
passed to a binding handler.

Here is a binding that creates a child context by merging together two objects:

ko.bindingHandlers.merge = {
 init: function(element, valueAccessor, allBindings, viewmodel,
 bindingContext) {

Extending Knockout with Custom Binding Handlers

[66]

 var value = valueAccessor(),
 merge = ko.utils.extend(value.target, value.source);
 child = bindingContext.createChildContext(merge);

 ko.applyBindingsToDescendants(child, element);

 // Don't bind the descendants
 return { controlsDescendantBindings: true };
 }
};

This binding takes two properties, target and source, and uses the Knockout
utility method extend to merge them together. Notice that because we are applying
bindings to descendants, we have to return the controlsDescendantBindings flag.
Consider the following viewmodel:

var BindingSample = function() {
 var self = this;
 self.name = 'Scout Retreat';
 self.springCourse = { knots: true, woodworking: true,
 metalworking: true };
 self.summerCourse = { rafting: true, diving: true, tracking:
 false };
};

We could use the merge binding to bind a template against the combined properties
of the spring and summer courses:

<div data-bind="merge: { source: springCourse, target:
 summerCourse }">
 <h3 data-bind="text: $parent.name"></h3>
 <div>
 <label for="knots">Knots</label>
 <input type="checkbox" id="knots" disabled data-bind="checked:
 knots">
 </div>
 <div>
 <label for="woodworking">Woodworking</label>
 <input type="checkbox" id="woodworking"
 disabled data-bind="checked: woodworking">
<div>
 <label for="tracking">Tracking</label>
 <input type="checkbox" id="tracking"
 disabled data-bind="checked: tracking">
 </div>

Chapter 2

[67]

 </div>
 <!-- More inputs -->
</div>

Notice that inside the merge binding, we can use $parent.name to get the
viewmodel's name. Because the child binding was created from the binding context
inside the merge binding handler, the original hierarchy is still accessible. You can
see a working sample of this in the cp2-mergecontext branch.

Extending binding contexts
It's possible to modify the current binding context without creating a new child
in the hierarchy. Well, sort of. Extending the binding context clones the current
context while adding properties at the same time. Other binding handlers,
siblings or parents, won't be affected by this sort of change.

If we modify the previous example slightly, you can easily see the difference
between extending and creating a child:

ko.bindingHandlers.merge = {
 init: function(element, valueAccessor, allBindings, viewmodel,
 bindingContext) {

 var value = valueAccessor(),
 merge = ko.utils.extend(value.target, value.source);
 context = bindingContext.extend(merge);

 ko.applyBindingsToDescendants(context, element);

 // Also tell KO *not* to bind the descendants itself,
 otherwise they will be bound twice
 return { controlsDescendantBindings: true };
 }
};

The only impact this has on the HTML binding is that the name no longer needs to
call $parent first:

<div data-bind="merge: { source: springCourse, target:
 summerCourse }">
 <h3 data-bind="text: name"></h3>

You can see this example in the cp2-mergecontext2 branch.

Extending Knockout with Custom Binding Handlers

[68]

Extending and creating child contexts are very similar as far as potential use cases
go. It's all going to depend on what you are doing, and whether or not adding layers
is going to help. However, there is one more way of modifying the binding context,
and it's a whole different beast.

Setting a new $root context
In some situations, it may be desirable to create a new binding context hierarchy
instead of adding a layer to the existing one. This would allow a binding handler
to provide itself, or a context that it managed, as the $root binding context to any
descendant bindings.

One use case for this would be a binding handler that used a recursive template:

var treeTemplate = '<div>Name:

'
 +'Root: <span data-bind="text: isRoot ? \'Self\' :
 $root.name">
'
 +'<ul data-bind="foreach: { data: children, as: \'child\' }">'
 +'<li data-bind="tree: { data: child, children:
 $root.__children, name: $root.__name, isRoot: false
 }">'
 +'</div>';

ko.bindingHandlers.tree = {
 init: function(element, valueAccessor, allBindings, viewmodel,
 bindingContext) {

 var value = valueAccessor();
 var context = {
 __name: value.name,
 __children: value.children,
 //Default to true since template specifies
 isRoot: value.isRoot === undefined || value.isRoot,
 name: value.data[value.name],
 children: value.data[value.children],
 };

 element.innerHTML = treeTemplate;

 if (context.isRoot) {
 ko.applyBindings(context, element.firstChild);
 }
 else {

Chapter 2

[69]

 ko.applyBindingsToDescendants(bindingContext.extend(context),
 element);
 }

 // Also tell KO *not* to bind the descendants itself,
 otherwise they will be bound twice
 return { controlsDescendantBindings: true };
 }
};

This binding uses a recursive template to show an object and all of its children, while
allowing the original binding to define the properties that will be used to populate
this data. The root node's name is used on every descendant node using the $root
binding context property, instead of having to walk back up the tree by counting
the current depth. This is done with the call to ko.applyBindings, which unlike the
other apply calls, creates an entirely new binding context using the first argument.
Normally, this call is used to start applications, and when no second parameter is
given, it applies to the entire window. The second parameter scopes this new context
to the supplied element. The tree binding uses firstChild of the current element.
Even though the controlsDescendantBindings flag stops Knockout from binding
descendants, the current element is still bound, and applying bindings to it would
cause the double-binding error to occur.

To use this binding, a viewmodel could start out with any self-same object, such as a
person with children:

var BindingSample = function() {
 var self = this;

 self.person = {
 fullName: 'Alexander Hamilton',
 descendants: [/* self-same children */]
 };
};

Then, use the tree binding to show this information without having to use a special
viewmodel to match the properties:

<div data-bind="tree: {
 data: person,
 children: 'descendants',
 name: 'fullName'
}"></div>

This allows our tree binding to handle any recursive structure. You can see an
example of this binding in the cp2-rootcontext branch.

Extending Knockout with Custom Binding Handlers

[70]

Containerless syntax with custom
bindings
In the first chapter, we spoke about containerless bindings; bindings applied through
comments that created a virtual container around their "child" nodes. Now that we
have a good understanding of how to create our own binding handlers, it's time to
learn how to make them containerless bindings.

First, we are going to make a normal binding and then look at what we need to do
to allow it to support the virtual elements. Let's say you want a binding that sorts its
children elements. It would need to loop through them, check some property, and
then rearrange the DOM so they were in order. Normally, sorting would be achieved
by using a foreach binding against a sorted observableArray property, but we're
going to make a sort binding that sorts on the width of the DOM node, which
takes into account any CSS that may have affected it. The viewmodel would have
a hard time getting this information to determine the proper sort order, and HTML
elements and widths don't belong in the viewmodel logic:

ko.bindingHandlers.widthSort = {
 init: function(element, valueAccessor) {
 // Pull out each of the child elements into an array
 var children = [];
 for (var i = element.children.length - 1; i >= 0; i--) {
 var child = element.children[i];
 //Don't take empty text nodes, they are not real nodes
 if (!isWhitespaceNode(child))
 children.push(child);
 };

 //Width calc must be done while the node is still in the DOM
 children.sort(function(a, b) {
 return $(a).width() <= $(b).width() ? -1 : 1;
 });

 while(children.length) {
 //Append will remove the node if it's already in the DOM
 element.appendChild(children.shift());
 }
 }
};

Chapter 2

[71]

This binding would get used with a dummy property, as we aren't actually
checking it:

<ul data-bind="widthSort: true">

The binding starts out by grabbing all the real child nodes from the bound element.
The isWhitespaceNode check is just looking for the whitespace in the HTML from
line breaks in between tags. We want to ignore these nodes because they will break
the with check:

function isWhitespaceNode(node) {
 return !(/[^\t\n\r]/.test(node.textContent))
 && node.nodeType == 3;
}

After grabbing the usable children from the element, it sorts them based on their
width in the ascending order. Then, it loops through the sorted children and appends
them to the bound element. Removal of nodes is automatic, as the DOM only allows
a node to exist once. This produces our width-sorted list. You can see an example of
this in the cp2-sort branch. It is used to sort the following list:

<ul data-bind="widthSort: true">
 Jimmy Dean
 Sara Lee
 Famous Amos
 Orville Redenbacher
 Dr. Pepper

Because the width sort uses the actual width in pixels, Orville
Redenbacher ended up after The Kellogg brothers despite them being
the same number of characters. Unless, of course, you are using a
monospaced font.

Using the virtual elements API
If you tried to use this binding as a virtual element binding right now, you would
get an error telling you that it won't work. Knockout requires a flag to be set before
bindings can be used in this way:

ko.virtualElements.allowedBindings.widthSort = true;

Extending Knockout with Custom Binding Handlers

[72]

This flag tells Knockout that widthSort will work with virtual elements, so
Knockout won't stop you from trying. It still won't work though, because our
binding is making calls to the elements children. Comment nodes don't work with
the normal JavaScript API, but Knockout provides a virtual element API that will
work. These functions exist on the ko.virtualElements object:

• childNodes(containerElement): This returns the children of
containerElement as an array.

• emptyNode(containerElement): This removes all children from
containerElement. This also cleans any data attached to the node
to prevent memory leaks.

• firstChild(containerElement): This returns the first child element, or
null if the containerElement has no children.

• insertAfter(containerElement, nodeToInsert, insertAfter): This adds
nodeToInsert to containerElement after the insertAfter node.

• nextSibling(node): This returns the next sibling of the node, or null
if none exist.

• prepend(containerElement, nodeToPrepend): This inserts nodeToPrepend
as the first child of containerElement.

• setDomNodeChildren(containerElement, arrayOfNodes): This removes
any children from containerElement (cleaning attached data) before
inserting arrayOfNodes as children.

All of these functions will treat a virtual element as if it were a real DOM node with
children. They are also compatible with regular DOM nodes, so the same functions
will work for regular and containerless bindings.

Updating the widthSort binding handlers to use this API would look like this:

ko.bindingHandlers.widthSort = {
 init: function(element, valueAccessor) {
 // Pull out each of the child elements into an array
 var children = [],
 childNodes = ko.virtualElements.childNodes(element);
 for (var i = childNodes.length - 1; i >= 0; i--) {
 var child = childNodes[i];
 //Don't take empty text nodes, they are not real nodes
 if (!isWhitespaceNode(child)) {
 children.push(child);
 }
 };

Chapter 2

[73]

 //Width calc must be done while the node is still in the DOM
 children.sort(function(a, b) {
 return $(a).width() <= $(b).width() ? -1 : 1;
 });

 ko.virtualElements.setDomNodeChildren(element, children);
 }
};

The only two changes are using childNodes to get the children for sorting, and
setDomNodeChildren to set the contents instead of looping through the sorted
children. Our binding should now support the containerless syntax.

An example of the virtual elements version is in the cp2-sort2 branch. For
demonstration, the HTML has been updated so that the first element is not inside
the sorting, something we couldn't have done without virtual element support:

<ul class="oddball clearfix">
 Jimmy Dean
 <!-- ko widthSort: true -->
 Sara Lee
 Famous Amos
 Orville Redenbacher
 Johnny Appleseed
 The Kellog Brothers
 <!-- /ko -->

Summary
If you take away one thing from all these examples, it should be that binding
handlers are solely responsible for interaction with the DOM. In our first example,
we made the slideVisible binding as an animated replacement for the standard
visible binding. This change from the normal "instant" hide and show to the
"animated" hide and show was completely decoupled by our viewmodel. This is
beneficial because it keeps these two pieces completely separated, allowing them
to develop and evolve independently.

In this chapter, we covered simple and complex binding handlers, binding context
management, and using the virtual elements API to support containerless bindings.
In the next chapter, we will be looking at preprocessors for bindings and nodes.

Extending Knockout with
Preprocessors and Providers

In the previous chapter, we looked at adding custom binding handlers to Knockout
in order to add features and integrate them with third-party tools. This capability was
part of Knockout when it was first released, and it allows for powerful extensions to
Knockout's functionality. In this chapter, we are going to look at some more advanced
techniques for extending, or even changing, Knockout binding behaviors. You will
learn how to create:

• Binding handler preprocessors
• Node preprocessors
• Binding providers

After we cover this, we will take a look at the Knockout Punches library, which is
a collection of preprocessors and extensions by Knockout developer Michael Best.

Binding the handler preprocessing
So far, we have looked at two properties of binding handlers: the init and update
functions. Binding handlers have another optional function, which is preprocess,
that is run before the init function. A preprocessor's purpose is to modify the
data-binding attribute before Knockout determines what bindings are to be applied.

Preprocessors don't deal with elements or binding contexts; they just deal with
the strings that the binding will evaluate. For example, if we had a preprocessor
that converts all text bindings to uppercase, then the following span element
will be processed:

Extending Knockout with Preprocessors and Providers

[76]

This span element would be processed as if it was written like this:

If you were to inspect the HTML after this, you will still see the original data-bind
attribute. This is because preprocessors don't actually deal with elements; they just
modify the binding strings before the normal binding handler is applied.

Creating preprocessors
Adding a preprocessor is as simple as adding a preprocess property to the binding
handler, just like we added the init and update functions:

ko.bindingHandlers.thing.preprocess = function(value, name,
 addBinding) {
 //Do stuff
}

The three parameters of the preprocess function are as follows:

• value: This is the expression given to the binding handler. For example,
in text: name, the value is name; for text: title() + '. ' + name(),
the value is "title() + '. ' + name()". This value is always a string.

• name: This is the name of the binding handler, for example, text or click.
This can be useful in cases where a single preprocess function is used by
multiple binding handlers.

• addBinding: This is a callback function that takes the name and value string
parameters, just like the previous ones. It will add the pair as a binding on
the element.

The return value from the preprocessor will be the new value used for the
entire binding.

Let's look at a few examples.

The uppercase preprocessor
The Knockout documentation provides an example for this preprocessor that, at the
time of writing this, returns value + ".toUpperCase()". The full preprocessor will
look like this:

ko.bindingHandlers.text.preprocess = function(value) {
 return value + '.toUpperCase()';
};

Chapter 3

[77]

The preceding code would work, for example, at the beginning of this section when
it took a string directly:

The result of our preprocessor will be text: 'That Guy'.toUpperCase() and the
text binding will handle this without any error. Unfortunately, this will break in the
normal case of binding against observable properties:

Knockout's normal binding process unwraps the expression it gets so that
observables don't need parentheses. Preprocessors, on the other hand, just output
strings that are directly consumed by the binding handler. Our uppercase binding
will produce an illegal result here:

This will fail, as firstName is an observable and not a string, and observables don't
have a toUpperCase method.

Luckily, the solution to this is simple. Our preprocessor can safely handle all value
expressions by applying an unwrap function to the output:

ko.bindingHandlers.text.preprocess = function(value) {
 return 'ko.unwrap(' + value + ').toUpperCase()';
};

This will ensure that any value—whether a primitive type, observable, or inline
expression—is correctly evaluated by the binding handler.

You can see an example of this preprocessor in the cp3-uppercase branch.

Wrapping existing bindings
Because Knockout provides default bindings for most standard scenarios, it's
common to want for a custom binding to build on top of them. Preprocessors
make wrapping other bindings very easy.

Let's say that we wanted a binding that caused an element to flash when a property
was updated in addition to providing a value binding on it. Normally, you might
want to divide these into two separate bindings, but if you are doing this a lot, a
single binding will save time and keystrokes.

Extending Knockout with Preprocessors and Providers

[78]

As the value binding already exists, we can just use a preprocessor to add the
binding with the addBinding callback:

ko.bindingHandlers.valueFlash = {
 preprocess: function(value, name, addBinding) {
 addBinding('value', value);
 return value;
 },
 update: function(element, valueAccessor) {
 ko.unwrap(valueAccessor()); //unwrap to get dependency
 $(element).css({opacity: 0}).animate({opacity: 1}, 500);
 }
};

The addBinding callback takes care of generating the value binding as if it had been
applied normally, which includes running the preprocessor for the new binding
(if it has one).

It's important that we still return the original value after adding the value binding.
If nothing is returned from the preprocess function, then the original binding is
removed. After this, the rest of the binding handler is business as usual: add an
init and update function (as required) and write your custom behavior. There
is an example of this binding in the cp3-wrap branch.

That's really all there is to creating binding handler preprocessors. For the extensibility
they allow, they are simple and straightforward to use. We will look at some more
real-world possibilities for binding preprocessors when we look at Knockout.Punches
in the last section of this chapter.

Node preprocessors
Binding handler preprocessors are attached to individual binding handlers
and work by modifying the binding string. They only apply to nodes of their
respective handler.

Node preprocessors, on the other hand, are called on every DOM node. They run
when the UI is first bound and when it is modified by bindings such as foreach
or template.

Chapter 3

[79]

The purpose of a node preprocessor is to modify the DOM before data-binding
occurs, as opposed to a binding preprocessor that only modifies the data-bind
attribute. A node preprocessor is defined by adding a preprocessNode function
to the binding provider:

ko.bindingProvider.instance.preprocessNode = function(node) {
 /* DOM code */
}

A preprocessor is called once for each node. If no changes need to be made, it should
return nothing. Otherwise, it can use the standard DOM API to insert new nodes or
remove the current node:

• New nodes should be inserted before the current node by using:
node.parentNode.insertBefore(newNode, node);

• Replacement can be done with:
node.parentnode.replaceChild(newNode, node);

• Removal can be done with:
node.parentNode.removeChild(node);

Any nodes that are added need to be returned from preprocessNode; otherwise,
Knockout will not apply bindings to them. As you do not have the binding context
inside preprocessNode (you only have the current node), it is not possible to apply
bindings yourself, unless they are applied to constant or global values. This is not
recommended, though, as it creates a new binding context outside of the current
context's hierarchy.

Closing virtual template nodes
The Knockout documentation provides a handy node preprocessor that self-closes
virtual template bindings. Normally, when writing a containerless template binding,
you would need two comment nodes:

<!-- template: 'some-template' --><!-- /ko -->

As a template binding never contains content when referencing an external template,
the closing comment node feels unnecessary. A preprocess function will allow you
to use a template without the closing tag so that you can write the binding like this:

<!-- template: 'some-template' -->

Extending Knockout with Preprocessors and Providers

[80]

Knockout requires a closing comment tag, which is <!-- /ko -->, for virtual
bindings. We can provide this comment node automatically with a preprocessor:

ko.bindingProvider.instance.preprocessNode = function(node) {
 if (node.nodeType == node.COMMENT_NODE) {
 var match = node.nodeValue.match(/^\s*(template\s*:[\s\S]+)/);
 if (match) {
 // Create a pair of comments to replace the single comment
 var c1 = document.createComment("ko " + match[1]),
 c2 = document.createComment("/ko");
 node.parentNode.insertBefore(c1, node);
 node.parentNode.replaceChild(c2, node);

 // Tell Knockout about the new nodes so that it can apply
bindings to them
 return [c1, c2];
 }
 }
};

This sample uses regex to identify template comments and extract the expression
from the binding. Then, it replaces the original comment with the standard open/
close pair of comments for a virtual template binding. Finally, it returns the new
comment nodes, allowing Knockout to bind them; this will apply the template to
the virtual container created by the comment nodes.

Supporting alternate syntaxes
The previous example should have given you an idea of how node preprocessors
work. However, the real power of node preprocessors comes from letting us
extend the data binding syntax itself.

It's not uncommon to see a series of text bindings like this one:

First Name: <!-- text: firstName --><!-- /ko -->
Last Name: <!-- text: lastName --><!-- /ko -->
Birth Date: <!-- text: birthDate --><!-- /ko -->

We want to list out several properties, but these virtual elements are pretty verbose.
On top of the property name, they add 29 characters, including spaces. We can also
use span elements, of course, but they are about the same size, considering that they
need the data-bind attributes in addition to the binding name.

Chapter 3

[81]

If you've ever used AngularJS or Handlebars, you'll probably appreciate the minimal
requirement of using curly braces to access values as strings. The preceding example
will look like this:

First Name: {{ firstName }}
Last Name: {{ lastName }}
Birth Date: {{ birthDate }}

Look how much shorter and easier to read this is! These Handlebars guys have the
right idea. I'm sure you know where we are going with this. A node preprocessor
will allow us to take this same HTML and replace it with the HTML from the
first example.

This example is long, so we are going to break it up a bit:

var expressionRegex = /{{([\s\S]+?)}}/g;
ko.bindingProvider.instance.preprocessNode = function(node) {
 if (node.nodeType === 3 && node.nodeValue) {
 var newNodes = //Collect new nodes by scanning "node"

 // Insert the resulting nodes into the DOM
 // remove the original unprocessed node
 if (newNodes) {
 for (var i = 0; i < newNodes.length; i++) {
 node.parentNode.insertBefore(newNodes[i], node);
 }
 node.parentNode.removeChild(node);
 return newNodes;
 }
 }
};

First, we have a regex pattern that finds these double curly brace chunks. As text nodes
will contain any content up to the first real element they encounter, its possible that
multiple curly brace chunks might be in a single node, so it needs to match globally.
Then, the preprocess function starts out by checking for the text node type.

I've omitted the section that actually scans the node to create new ones for now;
we will come back to that in just a bit.

If we have any nodes that need to be added, they get inserted, and then the original
node is removed. Finally, the nodes we inserted are returned so that Knockout can
bind them.

Extending Knockout with Preprocessors and Providers

[82]

This is almost boilerplate code for node preprocessors, and it's a very good pattern to
follow. Check for a type, create any new nodes, replace the original nodes if there are
any, and return the new nodes. If you are creating a node preprocessor, this is a good
template to start with.

Okay, let's get to the meat. To assign newNodes, we need to check the node for our
regex pattern and build a pair of virtual text bindings for each match:

var newNodes = replaceExpressionsInText(node.nodeValue,
 expressionRegex, function(expressionText) {
 return [
 document.createComment("ko text:" + expressionText),
 document.createComment("/ko")
];
});

Here, we are calling replaceExpressionsInText and passing the node's contents,
our regex pattern, and a callback that builds the correct replacements with the
expression found by our regex. Then, we just need the actual search:

function replaceExpressionsInText(text, expressionRegex, callback) {
 var prevIndex = expressionRegex.lastIndex = 0,
 resultNodes = null,
 match;

 while (match = expressionRegex.exec(text)) {
 var leadingText = text.substring(prevIndex, match.index);
 prevIndex = expressionRegex.lastIndex;
 resultNodes = resultNodes || [];

 // Preserve leading text
 if (leadingText) {
 resultNodes.push(document.createTextNode(leadingText));
 }

 resultNodes.push.apply(resultNodes, callback(match[1]));
 }

 // Preserve trailing text
 var trailingText = text.substring(prevIndex);
 if (resultNodes && trailingText) {
 resultNodes.push(document.createTextNode(trailingText));
 }

 return resultNodes;
}

Chapter 3

[83]

The search function loops on the regex pattern and pulls out the first match.
It sends the match to the callback function and keeps the result, along with any
leading or trailing spaces. When it's finished matching, it returns them.

That's it. Now, our Handlebars code will be converted to virtual text bindings.
You can see this example in the cp3-interpolate branch.

This code is adapted from the
StringInterpolatingBindingProvider demo at
http://blog.stevensanderson.com/2013/07/09/.

Multiple syntaxes
If we wanted to push this example a bit farther, we could support additional
interpolation syntaxes. replaceExpressionsInText is already set up to take
regex input, and as it uses a callback, we can even construct nodes differently
for different regex patterns.

Let's add the embedded Ruby syntax interpolation, which uses <%= expression %>:

// Replace <%= expr %> with data bound span's
var erbNodes = replaceExpressionsInText(node.nodeValue,
/\<\%=([\s\S]+?)\%\>/g, function(expressionText) {
 var span = document.createElement('span');
 span.setAttribute('data-bind', 'text: ' + expressionText);
 return [span];
});

This time, we are replacing a span element instead of a virtual text element so
that we can tell the resulting HTML apart. As this preprocessor can support both
syntaxes, you can bind against a mixed syntax template:

First Name: {{ firstName }}
Last Name: <%= lastName %>
Birth Date: {{ birthDate }}

The resulting HTML will look like this:

First Name: <!--ko text: firstName --><!--/ko-->
Last Name:
Birth Date: <!--ko text: birthDate --><!--/ko-->

You can see this example in the cp3-interpolate2 branch.

http://blog.stevensanderson.com/2013/07/09/

Extending Knockout with Preprocessors and Providers

[84]

Binding providers
With a binding preprocessor, we have access to the binding expression and can
modify it before the evaluation of bindings. With a node preprocessor, we have
access to the node and can modify the DOM before bindings are applied. Both of
these just transform things into the normal Knockout syntax. They are also limited
to operating on the DOM, and they do not have access to the binding context.

Knockout binding providers are objects that receive both the DOM node and the
binding context and determine which bindings handlers will be applied and what
valueAccessor properties those bindings receive.

A binding provider is expected to provide the following functions:

• nodeHasBindings(node): This function should return a Boolean that
indicates whether or not the node has any bindings defined on it.

• getBindingAccessors(node, bindingContext): This function should
return an object with a property for each binding to be applied whose value
is a function that evaluates the binding expression. This function is used as
the valueAccessor property in binding handlers.

If you are targeting 2.x, you will need to support getBindings,
which returns an object whose property values are the final
binding values. This function was deprecated with Knockout 3.0.

The default binding provider operates by looking for data-bind attributes on an
element or a comment node that starts with ko. If it does, nodeHasBindings will
return true. When getBindingAccessors is called, it returns the bindings by
evaluating the data-bind attribute and getting the valueAccessors property
from the binding context.

Custom binding providers
We've already seen how we can use preprocessors to allow for different syntaxes
to be used for data binding. So, to get a better understanding of the capability
of binding providers, we are going to look at something preprocessors can't do:
choosing bindings based on the data type.

Chapter 3

[85]

The Knockout plugin Knockout.BindingConventions (https://github.com/
AndersMalmgren/Knockout.BindingConventions) creates a binding provider that
provides bindings on the data-name attribute by looking at the binding context
for clues on the bindings that are to be used, which makes it a great example for a
custom provider. As this is a big change from how Knockout works, let's compare
this to a standard viewmodel and binding setup:

var BindingSample = function() {
 var self = this;

 self.name = ko.observable('Timothy');
 self.locations = ['Portland', 'Seattle', 'New York City'];
 self.selectedLocation = ko.observable();
 self.isAdmin = ko.observable(true););
};

Binding to this with standard Knockout bindings might look something like this:

<label>Name
 <input data-bind="value: name" />
</label>
<label>LocationLocationName
 <select data-bind="options: locations, value: selectedLocation"></
select>
</label>
<label>Admin
 <input data-bind="checked: isAdmin" type="checkbox" />
</label>

We've got three bound elements and four bindings. The first input is a value that is
binding to name, the select element is binding to options on locations and value
on selectedLocation, and the last input is binding checked to isAdmin. A simple
case, such as having to specify that the binding on an input is a value, might seem
verbose; in most cases, an input will be binding against the value, or in the case of
a checkbox, binding against checked.

The convention-over-configuration philosophy aims to remove the need to specify
what is happening in a conventional scenario. In other words, perform the standard
action unless otherwise specified. Here is how the previous DOM would look using
the BindingConventions plugin:

<label>Name
 <input data-name="name" />
</label>
<label>LocationNameLocation

https://github.com/AndersMalmgren/Knockout.BindingConventions
https://github.com/AndersMalmgren/Knockout.BindingConventions

Extending Knockout with Preprocessors and Providers

[86]

 <select data-name="locations"></select>
</label>
<label>Admin
 <input data-name="isAdmin" />
</label>

Here, BindingConventions is doing all the work of figuring out the bindings.
The name input is a string observable on our viewmodel, and it's on an input node,
so it gets the value binding. The isAdmin input is a Boolean observable on our
viewmodel, so the input node is converted into a checkbox, and it receives the
checked binding. The locations property is an array on our viewmodel, so the
select element gets an options binding. However, this is not all! Our viewmodel
has a selectedLocations observable, which BindingConventions determines
should get a value binding for the select element, as singularizing an array name
and prepending selected is a binding convention.

That last one might seem like magic, and personally, I think it's a bit too
non-obvious, but it has a certain appeal to it. If you are following conventions,
you can really simplify your bindings. You can see this example in action in
the cp3-provider branch.

Now that you can see what this binding provider is doing, let's look at how it works.

We will be looking at a simplified version of the binding provider
in the BindingConventions plugin. The real provider supports
more conventions and allows for custom conventions to be added.
This sample is only meant to illustrate the type detection concept
and the basics of creating a custom provider.

The first thing that needs to be decided when creating a custom binding provider
is whether you need to extend the default binding provider or replace it. The
BindingConventions provider will support the data-name attribute. In this case,
it makes sense to extend the default provider, as they do not conflict with each
other and we will need the standard data-bind support for scenarios that are
nonconventional (such as binding our select value to a favoriteLocation property).

The easiest way to do this is to store a reference to the original binding provider and
call it in our custom provider:

ko.bindingConventions = {};
ko.bindingConventions.ConventionBindingProvider = function () {
 this.orgBindingProvider = ko.bindingProvider.instance || new
 ko.bindingProvider();
 };

Chapter 3

[87]

var nodeHasBindings = function(node) { /* check node */ };
var conventionBindings = function(node, bindingContext) { /* check
node
 */ };

 ko.bindingConventions.ConventionBindingProvider.prototype = {
 nodeHasBindings: function (node) {
 return this.orgBindingProvider.nodeHasBindings(node) ||
 nodeHasBindings(node);
 },
 getBindingAccessors: function (node, bindingContext) {
 return this.orgBindingProvider.getBindingAccessors
 (node, bindingContext)
 || conventionBindings(node, bindingContext);
 }
 };
 ko.bindingProvider.instance =
 new ko.bindingConventions.ConventionBindingProvider();

This is basically boilerplate for a binding provider that extends the default
one. It stores the original provider and implements the nodeHasBindings and
getBindingAccessors functions by calling the default provider first, calling its own
implementation if the default provider returns nothing. If you want your provider
to check for bindings before the default one, you can switch the order of the calls.
Finally, you can combine the two by appending binding handlers to the result of
the default provider.

After setting up the required functions, ko.bindingProvider.instance is replaced
with the new custom provider. It's important to note that this must all be done prior
to ko.applyBindings being called, as the binding provider is only constructed once
for the root binding context.

From here, all we have to do is provide the methods that check for bindings
and create them. Checking for bindings just requires you to check for the
data-name attribute:

var getNameAttribute = function (node) {
 var name = null;
 if (node.nodeType === 1) {
 name = node.getAttribute("data-name");
 }
 return name;
};

var nodeHasBindings = function(node) {
 return getNameAttribute(node) !== null;
};

Extending Knockout with Preprocessors and Providers

[88]

Getting the value from the binding context is a bit more work. Knockout has
utility methods that can parse expressions under the ko.expressionRewriting
object, which can read any of the supported Knockout binding syntaxes. The
BindingConventions plugin does not support anything other than property
references, but it does support deep references such as person.firstName. For
simplicity's sake, I am not going to cover this, but if you are interested in this,
you can look at getDataFromComplexObjectQuery in the plugin's source code.
For now, we will assume that all data-name attributes refer directly to a property:

var conventionBindings = function(node, bindingContext) {
 var bindings = {};
 var name = getNameAttribute(node);
 if (name === null) {
 return null;
}

 var data = bindingContext[name] ? bindingContext[name] :
 bindingContext.$data[name];

 if (data === undefined) {
 throw "Can't resolve member: " + name;
 }

 var unwrapped = ko.utils.peekObservable(data);
 var type = typeof unwrapped;

 //Loop through convention handlers to construct bindings

 return bindings;
};

First, we get the name of the viewmodel property from the data-name attribute,
and then we perform a sanity check to make sure that it's there to bind against.
Then, we get the data with ko.utils.peekObservable and check its type. All
observables have a peek function that returns the underlying value without
triggering dependency detection. The peekObservable function will call peek if
the first parameter is observable; otherwise, it will just return the first parameter.
It's a safety utility that is similar to ko.uwrap.

After we have these two bits of information, we can build the binding object we
need to return. Remember, this binding object should have a property named after
the binding to be applied, whose value is the valueAccessor object for the binding.
The bindings are returned to the binding provider's getBindingAccessors function.
To construct the bindings, we will loop over a set of conventions:

for (var index in ko.bindingConventions.conventionBinders) {
 if (ko.bindingConventions.conventionBinders
 [index].rules !== undefined) {

Chapter 3

[89]

 var convention =
 ko.bindingConventions.conventionBinders[index];
 var shouldApply = true;

 convention.rules.forEach(function (rule) {
 shouldApply = shouldApply && rule(name, node, bindings,
 unwrapped, type, data, bindingContext);
 });

 if (shouldApply) {
 convention.apply(name, node, bindings, unwrapped, type,
 function() { return data }, bindingContext);
 break;
 }
 }
}

This will look through the conventionBinders array and check the rules for each
one in order to find a match for the current node, data, and data type. If all of the
rules for a convention handler pass, then we call apply for that convention and stop
checking—only one convention should apply per node. The apply function gets all
of the information we've collected so far as well as a valueAccessor property that
can be used for the binding.

Our example is only using two conventions, which are options and input:

ko.bindingConventions.conventionBinders.options = {
 rules: [function (name, element, bindings, unwrapped) { return
 element.tagName === 'SELECT' && unwrapped.push; }],
 apply: function (name, element, bindings, unwrapped, type,
 valueAccessor, bindingContext) {
 bindings.options = valueAccessor;
 singularize(name, function (singularized) {
 var selectedName = 'selected' +
 getPascalCased(singularized);
 if (bindingContext.$data[selectedName] !== undefined) {
 bindings['value'] = function() {
 return bindingContext.$data[selectedName];
 };
 }
 });
 }
};

Extending Knockout with Preprocessors and Providers

[90]

The options have just one rule: the element must be a select element, and the data
needs to be an array (which is being checked by looking for a push function).

The apply function sets the options binding directly to the valueAccessor
property. Then, it tries to find a property that matches the 'selected' +
getPascalCased(singularized) convention on the context. The singularize
and getPascalCased functions are not included here, but you can see them in the
example branch in the following code. Predictably, they find a singular conjugation
of a word and capitalize the first letter. If a match is found, a value binding is added
to the bindings object that was passed in.

The input handler is much simpler:

ko.bindingConventions.conventionBinders.input = {
 rules: [function (name, element) { return element.tagName ===
 'INPUT' || element.tagName === 'TEXTAREA'; }],
 apply: function (name, element, bindings, unwrapped, type,
 valueAccessor, bindingContext) {
 var bindingName = null;
 if (type === 'boolean') {
 element.setAttribute('type', 'checkbox');
 bindingName = 'checked';
 } else {
 bindingName = 'value';
 }
 bindings[bindingName] = valueAccessor;
 }
};

The input handler's rules don't check the data type; it's just that the node is either
input or textarea. The apply function will use a value binding if the type is
not Boolean; otherwise, it sets the checkbox property on the node and uses the
checked binding.

That's it. This binding provider will allow binding to occur with the data-name
attribute, requiring only a view model property as the value, and it intelligently
sets up bindings for the conventional scenario. If we need more control, the regular
data-bind attributes can still be used to apply bindings.

This simplified implementation of the BindingConventions binding provider can be
seen in the cp3-provider2 branch. The client/app directory in the branch contains
both the simplified implementation discussed here as well as the full implementation
from the plugin.

Chapter 3

[91]

None of this would be possible with a binding or node preprocessor, as it relies on
the type of data from the binding context. Hopefully, this will give you a good idea
of what is possible with custom binding providers and the flexibility of the overall
binding system.

Knockout punches
Now that you are familiar with the techniques that are used to modify the binding
syntax and the general use of preprocessors, we are going to look at the popular
Knockout plugin Knockout.Punches (get it?). Punches is written by Michael
Best, who is a Knockout developer and the creator of the Knockout preprocessor
functionality and some of the best real-world use cases for preprocessors. We are
going to look at some of them and dig in to see how they work. This section is not
going to cover everything in Knockout Punches; if you want to learn more about it,
you can check out the documentation online.

The documentation for Knockout.Punches can be found at
http://mbest.github.io/knockout.punches, which
includes an API reference and the source code.

Embedded text bindings
Embedded text bindings offer the same syntax that we created with the preprocessor
in the Supporting alternate syntaxes section—converting curly braces into virtual
text nodes:

<div>Hello {{ name }}.</div>

The previous command becomes the following:

<div>Hello <!--ko text:name--><!--/ko-->.</div>

The method Knockout Punches uses is more performant than the one we looked at,
but it still offers the same customizability we used. If you want to use something
besides virtual text nodes as the interpolation replacement, you can provide your
own node-array returning function as a replacement for the following:

ko.punches.utils.interpolationMarkup.wrapExpression(expressionText)

http://mbest.github.io/knockout.punches

Extending Knockout with Preprocessors and Providers

[92]

Namespaced bindings
Knockout Punches offers a shorthand binding syntax that expands x.y: value to
x : { y: value }. By default, this namespace syntax is available for the event,
attr, style, and css bindings. Using it on the style binding will cause the
following to expand:

<div data-bind="style.color: textColor"></div>

This will expand to the following:

<div data-bind="style: { color: textColor }"></div>

This works by overriding the standard ko.getBindingHandler function, which just
returns the binding handler normally. It is replaced by one that looks for a dot in the
name of the binding with a matching getNamespacedHandler property and returns
that one instead.

Dynamic namespaced bindings
Because ko.getBindingHandler is overridden like this, it is possible to create
your own binding namespaces by adding a getNamespacedHandler property
to a binding handler:

ko.bindingHandlers.customNamespace = {
 getNamespacedHandler: function(binding) {
 return {
 init: function(element, valueAccessor) { },
 update: function(element, valueAccessor) { }
 };
 }
};

The binding argument is the name of the binding; for style.color, it will be color.
The function returns the binding handler to be used. This allows you to provide a
single dynamic handler for all bindings in a namespace.

Let's say that we want to create a binding namespace for the Twitter Bootstrap
tooltip plugin. We need to supply the text contents and the direction of the tooltip.
Normally, we might write a binding that took each of these as options:

ko.bindingHandlers.tooltip = {
 update: function(element, valueAccessor) {
 //Cleanup previous tooltips
 if (element.attributes['data-original-title']) {
 $(element).tooltip('destroy');
 }

Chapter 3

[93]

 var options = valueAccessor();
 $(element).tooltip({
 placement: options.placement || 'left',
 title: ko.unwrap(options.title || 'sample')
 });
 }
};

Then, we could bind on it with an object:

data-bind="tooltip: { placement: 'top', title: title}"

This works fine, but we can rewrite this using a namespaced binding handler in
order to get the dot syntax for the placement:

ko.bindingHandlers.tooltip = {
 getNamespacedHandler: function(binding) {
 return {
 update: function(element, valueAccessor) {
 //Cleanup previous tooltips
 if (element.attributes['data-original-title']) {
 $(element).tooltip('destroy');
 }
 $(element).tooltip({
 placement: binding,
 title: ko.unwrap(valueAccessor())
 });
 }
 };
 }
};

This produces a much shorter binding attribute, which I think is easier to read:

data-bind="tooltip.top: title"

An example of this can be seen in the cp3-namespace branch.

Binding filters
It's pretty common to perform filtering on viewmodel properties. The usual practice
is to have a computed property on the viewmodel perform the filtering, but this can
become verbose, especially if you have several different filtered properties. Knockout
Punches provides syntax that applies filter expressions inside of bindings:

Extending Knockout with Preprocessors and Providers

[94]

Filters are pipe-delimited, and multiple arguments are separated by colons. For
example, fit takes up to three arguments, which can be specified with fit:20:'…
':'middle'.

It should be noted that name does not include the observable parentheses in the
preceding example. While the entire binding with the filters is a single expression,
which would normally require the parentheses, Knockout Punches intelligently
handles each section by calling ko.unwrap on it. This means that the binding value
and each filter are treated as their own expression.

Filtering is accomplished with a binding preprocessor that parses the expression
and recursively unwraps the piped sections into a call to the filter. The preceding
example will end up returning the following from the preprocess function:

ko.filters['uppercase'](ko.filters['fit'](name,20))

Writing custom filters
Adding your own filters is very similar to adding binding handlers. Just add a
function to the ko.filters object that takes a value and any number of arguments
and returns a modified value:

ko.filters.translate = function(value, language) {
 return SomeLanguageLibrary.translate(value, language);
}

The first argument is the current value that is to be processed. All other arguments
are those that are given to the filter in the binding expression.

Filters can have zero arguments—as in the uppercase example—or optional
arguments—as in the fit example. The filter preprocessor does not check the filter
to see whether the number of arguments it's sending make sense; it just calls the
filter with everything in the binding expression.

The filter preprocessor is simple to extend, and it offers considerable power. I think
it is one of the best examples anywhere of the potential of binding preprocessors.

Filters on other bindings
By default, filters are enabled for the text, attr, and html bindings, but
additional bindings can use filters by calling ko.punches.textFilter.
enableForBinding(<binding>). This can be useful if you wanted to take
advantage of filters on a custom binding.

Chapter 3

[95]

Filters cannot be used in two-way bindings, such as the binding value, as they
always produce inline expressions.

Adding additional preprocessors
Knockout Punches provides two utility methods in order to add additional binding
and node preprocessors that can be accessed from ko.punches.utils:

• addBindingPreprocessor(bindingKeyOrHandler, preprocessFn)

• addNodePreprocessor(preprocessFn)

If you call either of these multiple times, the respective preprocessors will be chained
together, with each new preprocessor being called at the end of the chain.

The binding preprocessors will run until one of them removes the binding or until
the end of the chain is reached. This stops the chain from trying to process a binding
that no longer exists.

The node preprocessors will run until one of them returns new nodes to add or
until the end of the chain is reached. This stops the chain from trying to process
a node that has already been modified. The new nodes will not be walked by the
node preprocessors, so they should be added to the DOM and be made ready for
data binding.

Summary
This chapter was all about how to extend Knockout's binding process and modify
its syntax. We covered three ways of doing this:

• Binding Preprocessors: This is used to modify binding strings before
binding handlers run

• Node Preprocessors: This is used to modify the DOM before the
binding starts

• Binding Providers: This is used to control what bindings are applied
to each DOM node

Finally, we looked at the Knockout.Punches plugin to see some real-world
Knockout extensions.

In the next chapter, we will cover Knockout's web component features, which let you
tie view and viewmodel together into reusable controls.

Application Development with
Components and Modules

Okay, time to get back to application development. We touched briefly on this back
in Chapter 1, Knockout Essentials; we will be returning to it here. This chapter is all
about how to work with Knockout inside modern web applications. In this chapter,
we will look at the following topics:

• Using modules with RequireJS
• Creating reusable components
• Extending Knockout with custom component loaders
• Single Page Application (SPA) routing

Because Knockout is a library—a fact it proclaims proudly on the home page—it
doesn't cover everything you need in complete web applications. This allows
Knockout to specialize by focusing on a limited feature set, but it leaves the task of
deciding how to build the rest of the application to you, the developer. The methods
we cover in this chapter are not the only available options—we don't have that kind of
time or space—but they should provide enough general guidance to help you make
your own decisions while keeping in mind Knockout's strengths.

We are also going to transform the Contacts List application to an SPA—an
application that uses JavaScript to change the template of the current view,
mimicking a page change instead of using browser navigation. This pattern has
become so popular that most developers consider it a given when working on new
JavaScript web clients, so it's important to understand how Knockout fits into this
model of development.

Application Development with Components and Modules

[98]

RequireJS – AMD viewmodels
RequireJS (http://requirejs.org/) is a library that you should have at least heard
of already, if not used. This is still a book about Knockout, and if you are planning
to use RequireJS in an application, you should read up on it first, but I will still give
you a brief overview here.

An overview of RequireJS
RequireJS's purpose is to allow your code to be broken into modules that declare
their dependencies so that they can be injected at runtime. This has several
important benefits. As RequireJS loads your JavaScript, you don't have to include
each script with a script tag in your HTML. As RequireJS loads the scripts based
on their dependencies, you don't have to worry about the order they are loaded in.
As each module's dependencies are injected, the module can be tested easily with
mocks. RequireJS also keeps all the objects it loads out of the global scope, which
decreases the likelihood of namespace collisions in addition to being considered a
good general practice.

By default, RequireJS will asynchronously load all of your scripts on demand at
runtime. In some cases, this lazy loading is beneficial, but in production, you will
want your code bundled into a single file most of the time. RequireJS provides r.js,
its optimizer, for this. RequireJS can even combine these techniques by bundling
multiple groups of files together and then loading these groups on demand at
runtime. The best part is that your code won't have to change, regardless of which
mode you work in!

We won't be covering r.js, but if you are developing web applications,
it might be worth investigating this (see http://requirejs.org/
docs/optimization.html).

Asynchronous Module Definitions
Asynchronous Module Definitions (AMD) is an important concept in RequireJS:
it declares a function whose return value represents the module. In form, it isn't
too different from the Immediately Evaluating Function Expressions (IEFE) we
saw in Chapter 1, Knockout Essentials. This is a typical module definition:

define('moduleName', ['pathto/dependency'], dependency'],
 function(injectedModule) {
 return //Some module code;
});

http://requirejs.org/
http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html

Chapter 4

[99]

The define method forms the first and only top-level statement in the file.
RequireJS actually enforces a one-module-per-file limit by ignoring multiple calls
to define. The define call takes the following three parameters, and the first two
are optional:

• Module name: This parameter is often ignored, as the standard way to
reference modules is by their path. Hence, we will not use this parameter.

• Dependencies: This is an array of module names or paths that the module
depends on. Paths do not require the .js suffix; RequireJS already knows
it's loading JavaScript.

• Module function: This function receives each dependency from the previous
array as a parameter and should return the module.

When RequireJS tries to load a module, it locates the module by path or name
and runs the define method it finds in that file. First, it checks whether all of the
dependencies have been loaded; if they have not been loaded, it recursively loads
them, asynchronously and in parallel. When all dependent modules are loaded, it
runs the module function, passing in each dependency as a parameter in the same
order in which they were declared as dependencies. The return value of the
module-loading function is the value that is passed as a parameter to any modules
that require it as a dependency.

Starting RequireJS
There are actually multiple ways to start an app using RequireJS, but by far, the most
common way is with a script tag that points to the initial script of your application:

<script type="text/javascript" src="/lib/require-2.1.js" data-
 main="/app/main"></script>

The data-main attribute indicates which script will configure RequireJS and start the
application. Note that the .js suffix is not necessary, as with normal module paths.

This script tag typically goes in your shell (or layout) file, and it replaces all of the
script tags that RequireJS is responsible for loading. In many cases, this means that
the only JavaScript script tag is the one that loads RequireJS. This is one of the killer
features of RequireJS: as we develop, we no longer need to add script tags to our
HTML code.

Note that the path starts with a forward slash, which makes it an absolute path.
It's required because the shell is used on multiple pages, and a relative path will
not work on a URL such as /contacts/1, as it will look in /contacts/app/main.js
for our script.

Application Development with Components and Modules

[100]

Configuration
The main.js file (the conventional name for the entry point of an AMD application)
typically contains a configuration section before the start. Here is the configuration
that we will be using:

require.config({
 paths: {
 'knockout': '/lib/knockout-3.2.0',
 'bootstrap': '/lib/bootstrap-3.1.1',
 'jquery': '/lib/jquery-2.1.1.min'
 },
 shim: {
 'bootstrap': {
 deps: ['jquery'],
 exports: '$.fn.popover'
 }
 }
});

The paths section allows us to map paths to module names for use in the dependency
arrays. This is a good practice for all library code so that our application code can use a
simple, consistent name. Again, the use of absolute paths is important.

The shim section is necessary for loading scripts that depend on globally available
objects. In the preceding example, the shim for bootstrap declares jQuery as a
dependency and indicates that it exports $.fn.popover. Normally, you would look
for a new namespace such as $.bootstrap, but as bootstrap doesn't create a single
endpoint; we are looking for one of the plugins it adds. Any exported value can be
used here; popover was just the chosen one.

Many libraries are starting to support being loaded as AMD: they look for RequireJS
or other module loaders and use them if they are available. Not all libraries do this,
though, and the standard model of JavaScript libraries has always been to just look
for dependencies in the global scope. As bootstrap needs jQuery but does not
indicate this dependency to RequireJS, it will fail if we tried to load it normally.
The shim tells RequireJS that this library is an old global-scope style script and
manually indicates its dependencies. The exports section provides an object that
RequireJS can look for to check whether the script has finished loading. RequireJS
will wait until the specified object exists before allowing any AMDs that depend on
bootstrap to start. Essentially, the shim section is how RequireJS uses non-AMD
code as an asynchronous dependency. If you need to use jQuery plugins or other
non-AMD compatible libraries, just make a shim for them.

Chapter 4

[101]

There are many other options for the RequireJS configuration—too many to cover
here. If you want to learn more, check out their documentation, which is available
at http://requirejs.org/docs/api.html#config.

Starting the app
Now that RequireJS is configured, it's time to start the application. The main script,
which contains our configuration, is also where RequireJS looks for the initial module,
which looks like this:

require.config({
 //config
});

define(['jquery', 'knockout', 'contactsPage', 'bootstrap'],
 function($, ko, ContactsPageViewmodel) {
 $(document).ready(function() {
 ko.applyBindings(new ContactsPageViewmodel());
 });
});

The main module is just like other modules, except that RequireJS will run it as soon
as its dependencies are available. This code is the same startup code that used to be
in the Contacts page's script. You might notice that the dependencies for this module
don't match the names of the parameters being passed in. jQuery is being injected as
$, Knockout as ko, and the Contacts page constructor as ContactsPageViewModel.
All of these are conventional JavaScript names for their matching objects. The modules
are injected in the order of the dependency array; RequireJS doesn't actually look at
the name of the parameter. This is no different from standard functions; callers don't
care about the names of parameters, they only care about the order. This isn't always
obvious to new users, though.

You probably also noticed that bootstrap doesn't even have a parameter. This is
because bootstrap doesn't get its own object; all it does is add functions to jQuery.
However, RequireJS won't load it (or shim it, in this case) until a dependency requires
it to. It's common to see plugin-style dependencies initialized in this manner, as we
want them to be available as soon as the app starts.

http://requirejs.org/docs/api.html#config

Application Development with Components and Modules

[102]

To see the Contacts List application after it is converted into AMD modules,
open the cp4-contacts branch. The code was already in IEFE blocks, so not
much has changed. The app object is no longer required, as namespacing has
been replaced with the dependency injection. All of the script tags, except
for RequireJS, have been removed from the HTML code. The application still
functions in the same manner, but by using RequireJS, we no longer have to
worry about loading the script. This might seem like a minor gain now, but it
will make a big difference when your app starts to grow.

The text plugin
Managing HTML templates can be tricky, because there is no native way to
reference or embed external HTML files like there is with scripts. If you are
familiar with the Knockout community, you might have encountered some of
the plugins designed to solve the problem, such as Knockout-External-Templates
(which has been discontinued). RequireJS solves this problem cleanly with the
text plugin. The text plugin works much like standard modules: you declare a
dependency on external text, and RequireJS injects it into the module just like
a normal JavaScript module.

To get started, you should add the text library to your RequireJS config. Using a
name such as text is standard:

require.config({
 paths: {
 'text': '/lib/require-text-2.0.12',
 'knockout': '/lib/knockout-3.2.0',
 'bootstrap': '/lib/bootstrap-3.1.1',
 'jquery': '/lib/jquery-2.1.1.min'
 }
});

Once the text plugin is available, you can use it in external files like this:

define(['text!some.html'], function (htmlString) {

});

This configuration part is optional if the text plugin is at the root of your app and
you use the text! prefix for dependencies. As we have been putting our third-party
libraries in a different folder, the configuration is necessary.

In the next section, we will look at how to combine this ability with components in
order to create reusable templates with external, isolated HTML views.

Chapter 4

[103]

Components
In Version 3.2, Knockout added components using the combination of a template
(view) with a viewmodel to create reusable, behavior-driven DOM objects. Knockout
components are inspired by web components, a new (and experimental, at the time of
writing this) set of standards that allow developers to define custom HTML elements
paired with JavaScript that create packed controls. Like web components, Knockout
allows the developer to use custom HTML tags to represent these components in the
DOM. Knockout also allows components to be instantiated with a binding handler
on standard HTML elements. Knockout binds components by injecting an HTML
template, which is bound to its own viewmodel.

This is probably the single largest feature Knockout has ever added to the core library.
The reason we started with RequireJS is that components can optionally be loaded and
defined with module loaders, including their HTML templates! This means that our
entire application (even the HTML) can be defined in independent modules, instead
of as a single hierarchy, and loaded asynchronously.

The basic component registration
Unlike extenders and binding handlers, which are created by just adding an object to
Knockout, components are created by calling the ko.components.register function:

ko.components.register('contact-list, {
 viewModel: function(params) { },
 template: //template string or object
});

This will create a new component named contact-list, which uses the object
returned by the viewModel function as a binding context, and the template as
its view. It is recommended that you use lowercase, dash-separated names for
components so that they can easily be used as custom elements in your HTML.

To use this newly created component, you can use a custom element or the
component binding. All the following three tags produce equivalent results:

<contact-list params="data: contacts"><contact-list>
<div data-bind="component: { name: 'contact-list', params: { data:
 contacts }"></div>
<!-- ko component: { name: 'contact-list', params: { data:
 contacts } --><!-- /ko -->

Obviously, the custom element syntax is much cleaner and easier to read. It is
important to note that custom elements cannot be self-closing tags. This is a
restriction of the HTML parser and cannot be controlled by Knockout.

Application Development with Components and Modules

[104]

There is one advantage of using the component binding: the name of the component
can be an observable. If the name of the component changes, the previous component
will be disposed (just like it would if a control flow binding removed it) and the new
component will be initialized.

The params attribute of custom elements work in a manner that is similar to the
data-bind attribute. Comma-separated key/value pairs are parsed to create a
property bag, which is given to the component. The values can contain JavaScript
literals, observable properties, or expressions. It is also possible to register a
component without a viewmodel, in which case, the object created by params
is directly used as the binding context.

To see this, we'll convert the list of contacts into a component:

<contact-list params="contacts: displayContacts,
 edit: editContact,
 delete: deleteContact">
</contact-list>

The HTML code for the list is replaced with a custom element with parameters for
the list as well as callbacks for the two buttons, which are edit and delete:

ko.components.register('contact-list', {
 template:
 '<ul class="list-unstyled" data-bind="foreach: contacts">'
 +''
 +'<h3>'
 +' <small data-
 bind="text: phoneNumber"></small> '
 +'<button class="btn btn-sm btn-default" data-bind="click:
 $parent.edit">Edit</button> '
 +'<button class="btn btn-sm btn-danger" data-bind="click:
 $parent.delete">Delete</button>'
 +'</h3>'
 +''
 +''
});

This component registration uses an inline template. You can see this component in
the cp4-inline-component branch. Everything still looks and works the same, but
the resulting HTML now includes our custom element.

Chapter 4

[105]

Custom elements in IE 8 and higher
IE 9 and later versions as well as all other major browsers have no issue with seeing
custom elements in the DOM before they have been registered. However, older
versions of IE will remove the element if it hasn't been registered. The registration
can be done either with Knockout, with ko.components.register('component-
name'), or with the standard document.createElement('component-name')
expression statement. One of these must come before the custom element, either by
the script containing them being first in the DOM, or by the custom element being
added at runtime.

When using RequireJS, being in the DOM first won't help as the loading is
asynchronous. If you need to support older IE versions, it is recommended that
you include a separate script to register the custom element names at the top of
the body tag or in the head tag:

<!DOCTYPE html>
<html>
 <body>
 <script>
 document.createElement('my-custom-element');
 </script>
 <script src='require.js' data-main='app/startup'></script>

 <my-custom-element></my-custom-element>
 </body>
</html>

Once this has been done, components will work in IE 6 and higher even with
custom elements.

Template registration
The template property of the configuration sent to register can take any of the
following formats:

ko.components.register('component-name', {
 template: [OPTION]
});

Application Development with Components and Modules

[106]

The element ID
Consider the following code statement:

template: { element: 'component-template' }

If you specify the ID of an element in the DOM, the contents of that element will
be used as the template for the component. Although it isn't supported in IE yet,
the template element is a good candidate, as browsers do not visually render the
contents of template elements.

This method can be seen in the cp4-component-id branch.

The element instance
Consider the following code statement:

template: { element: instance }

You can pass a real DOM element to the template to be used. This might be useful in
a scenario where the template was constructed programmatically. Like the element
ID method, only the contents of the elements will be used as the template:

var template = document.getElementById('contact-list-template');
ko.components.register('contact-list', {
 template: { element: template }
});

This method can be seen in the cp4-component-instance branch.

An array of DOM nodes
Consider the following code statement:

template: [nodes]

If you pass an array of DOM nodes to the template configuration, then the entire
array will be used as a template and not just the descendants:

var template = document.getElementById('contact-list-template')
nodes = Array.prototype.slice.call(template.content.childNodes);
ko.components.register('contact-list', {
 template: nodes
});

This can be seen in the cp4-component-arrray branch.

Chapter 4

[107]

Document fragments
Consider the following code statement:

template: documentFragmentInstance

If you pass a document fragment, the entire fragment will be used as a template
instead of just the descendants:

var template = document.getElementById('contact-list-template');
ko.components.register('contact-list', {
 template: template.content
});

This example works because template elements wrap their contents in a document
fragment in order to stop the normal rendering. Using the content is the same method
that Knockout uses internally when a template element is supplied. This example can
be seen in the cp4-component-fragment branch.

HTML strings
We already saw an example for HTML strings in the previous section. While using
the value inline is probably uncommon, supplying a string would be an easy thing
to do if your build system provided it for you.

Registering templates using the AMD module
Consider the following code statement:

template: { require: 'module/path' }

If a require property is passed to the configuration object of a template, the default
module loader will load the module and use it as the template. The module can return
any of the preceding formats. This is especially useful for the RequireJS text plugin:

ko.components.register('contact-list', {
 template: { require: 'text!contact-list.html'}
});

Using this method, we can extract the HTML template into its own file, drastically
improving its organization. By itself, this is a huge benefit to development. An example
of this can be seen in the cp4-component-text branch.

Application Development with Components and Modules

[108]

The viewmodel registration
Like template registration, viewmodels can be registered using several
different formats. To demonstrate this, we'll use a simple viewmodel of our
contacts list components:

function ListViewmodel(params) {
 this.contacts = params.contacts;
 this.edit = params.edit;
 this.delete = function(contact) {
 console.log('Mock Deleting Contact', ko.toJS(contact));
 };
};

To verify that things are getting wired up properly, you'll want something
interactive; hence, we use the fake delete function.

The constructor function
Consider the following code statement:

viewModel: Constructor

If you supply a function to the viewModel property, it will be treated as a constructor.
When the component is instantiated, new will be called on the function, with the
params object as its first parameter:

ko.components.register('contact-list', {
 template: { require: 'text!contact-list.html'},
 viewModel: ListViewmodel //Defined above
});

This method can be seen in the cp4-components-constructor branch.

A singleton object
Consider the following code statement:

viewModel: { instance: singleton }

If you want all your component instances to be backed by a shared object—though
this is not recommended—you can pass it as the instance property of a configuration
object. Because the object is shared, parameters cannot be passed to the viewmodel
using this method.

Chapter 4

[109]

The factory function
Consider the following code statement:

viewModel: { createViewModel: function(params, componentInfo) {} }

This method is useful because it supplies the container element of the component
to the second parameter on componentInfo.element. It also provides you with
the opportunity to perform any other setup, such as modifying or extending the
constructor parameters. The createViewModel function should return an instance
of a viewmodel component:

ko.components.register('contact-list', {
 template: { require: 'text!contact-list.html'},
 viewModel: { createViewModel: function(params, componentInfo) {
 console.log('Initializing component for',
 componentInfo.element);
 return new ListViewmodel(params);
 }}
});

This example can be seen in the cp4-component-factory branch.

Registering viewmodels using an AMD module
Consider the following code statement:

viewModel: { require: 'module-path' }

Just like templates, viewmodels can be registered with an AMD module that returns
any of the preceding formats.

In the cp4-component-module branch, you can see an example of this. The
component registration has been moved to the main.js file.

Registering AMD
In addition to registering the template and the viewmodel as AMD modules
individually, you can register the entire component with a require call:

ko.components.register('contact-list', { require: 'contact-list'
 });

The AMD module will return the entire component configuration:

define(['knockout', 'text!contact-list.html'], function(ko,
 templateString) {

Application Development with Components and Modules

[110]

 function ListViewmodel(params) {
 this.contacts = params.contacts;
 this.edit = params.edit;
 this.delete = function(contact) {
 console.log('Mock Deleting Contact', ko.toJS(contact));
 };
 }

 return { template: templateString, viewModel: ListViewmodel };
});

As the Knockout documentation points out, this method has several benefits:

• The registration call is just a require path, which is easy to manage.
• The component is composed of two parts: a JavaScript module and an HTML

module. This provides both simple organization and clean separation.
• The RequireJS optimizer, which is r.js, can use the text dependency on

the HTML module to bundle the HTML code with the bundled output.
This means your entire application, including the HTML templates, can
be a single file in production (or a collection of bundles if you want to take
advantage of lazy loading).

You can see an example of this in the cp4-component-amd branch. This is the
recommended pattern for components and is the one that will be used for the
rest of the examples in this chapter.

Observing changes in component parameters
Component parameters will be passed via the params object to the component's
viewmodel in one of the following three ways:

• No observable expression evaluation needs to occur, and the value is
passed literally:
<component params="name: 'Timothy Moran'"></component>
<component params="name: nonObservableProperty">
 </component>
<component params="name: observableProperty"></component>
<component params="name: viewModel.observableSubProperty
 "></component>

In all of these cases, the value is passed directly to the component on
the params object. This means that changes to these values will change
the property on the instantiating viewmodel, except for the first case
(literal values). Observable values can be subscribed to normally.

Chapter 4

[111]

• An observable expression needs to be evaluated, so it is wrapped in a
computed observable:
<component params="name: name() + '!'"></component>

In this case, params.name is not the original property. Calling params.
name() will evaluate the computed wrapper. Trying to modify the value
will fail, as the computed value is not writable. The value can be subscribed
to normally.

• An observable expression evaluates an observable instance, so it is wrapped
in an observable that unwraps the result of the expression:
<component params="name: isFormal() ? firstName :
 lastName"></component>

In this example, firstName and lastName are both observable properties.
If calling params.name() returned the observable, you will need to call
params.name()() to get the actual value, which is rather ugly. Instead,
Knockout automatically unwraps the expression so that calling params.
name() returns the actual value of either firstName or lastName.

If you need to access the actual observable instances to, for example, write a value
to them, trying to write to params.name will fail, as it is a computed observable. To
get the unwrapped value, you can use the params.$raw object, which provides the
unwrapped values. In this case, you can update the name by calling params.$raw.
name('New').

In general, this case should be avoided by removing the logic from the binding
expression and placing it in a computed observable in the viewmodel.

The component's life cycle
When a component binding is applied, Knockout takes the following steps.

1. The component loader asynchronously creates the viewmodel factory and
template. This result is cached so that it is only performed once per component.

2. The template is cloned and injected into the container (either the custom
element or the element with the component binding).

3. If the component has a viewmodel, it is instantiated. This is done
synchronously.

4. The component is bound to either the viewmodel or the params object.
5. The component is left active until it is disposed.
6. The component is disposed. If the viewmodel has a dispose method,

it is called, and then the template is removed from the DOM.

Application Development with Components and Modules

[112]

The component's disposal
If the component is removed from the DOM by Knockout, either because of the name
of the component binding or a control flow binding being changed (for example, if
and foreach), the component will be disposed. If the component's viewmodel has a
dispose function, it will be called. Normal Knockout bindings in the components view
will be automatically disposed, just as they would in a normal control flow situation.
However, anything set up by the viewmodel needs to be manually cleaned up. Some
examples of viewmodel cleanup include the following:

• The setInterval callbacks can be removed with clearInterval.
• Computed observables can be removed by calling their dispose method.

Pure computed observables don't need to be disposed. Computed observables
that are only used by bindings or other viewmodel properties also do not need
to be disposed, as garbage collection will catch them.

• Observable subscriptions can be disposed by calling their dispose method.
• Event handlers can be created by components that are not part of a normal

Knockout binding.

You can see a simple dispose handler in the cp4-dispose branch. It just logs to the
console to demonstrate when it will fire; try editing a contact to make the control
flow remove the list from the page.

Combining components with data bindings
There is only one restriction of data-bind attributes that are used on custom
elements with the component binding: the binding handlers cannot use
controlsDescendantBindings. This isn't a new restriction; two bindings that
control descendants cannot be on a single element, and since components control
descendant bindings that cannot be combined with a binding handler that also
controls descendants. It is worth remembering, though, as you might be inclined
to place an if or foreach binding on a component; doing this will cause an error.
Instead, wrap the component with an element or a containerless binding:

<ul data-bind='foreach: allProducts'>
 <product-details params='product: $data'></product-details>

Chapter 4

[113]

It's also worth noting that bindings such as text and html will replace the contents
of the element they are on. When used with components, this will potentially result
in the component being lost, so it's not a good idea.

Custom component loaders
So far, we have covered the behavior of the default component loader. It is quite
flexible, and for many developers, it will be quite sufficient for most use cases.
However, it is possible to implement the custom component-loading functionality.
In fact, you can have multiple component loaders active simultaneously, each
providing different capabilities.

This section will deal with creating custom component loaders. If you are satisfied
with the functionality of the default loader, you might want to skip this section and
continue to single page application routing.

First, let's cover how the component-loading system works. Component loading is
only done once per component. Knockout caches the loaded components. This cache
provides the following two public functions:

• ko.components.get(name, callback): This function loops through all the
loaders until one of them returns a component. This component is cached,
and then the callback is invoked with it.

• ko.components.clearCachedDefinition(name): This function removes
the component from the registry.

Knockout maintains an array of loaders on ko.components.loaders. By default,
this array only contains a single loader, which also lives on ko.components.
defaultLoader. When a component binding requests a component, or you call
ko.components.get, Knockout loops through the loaders, calling getConfig on
each component until it gets a non-null object. This configuration is then passed
to each loader until a valid component object is returned. The loaded component
is then cached. A valid component object has the following properties:

• template: This is an array of DOM nodes
• createViewModel(params, componentInfo): This is an optional factory

method to build components

Application Development with Components and Modules

[114]

Implementing a component loader
All of the methods are optional on a component loader, as Knockout will run through
each method on each loader until it gets a valid response before repeating it on the next
method. All component loader functions are asynchronous by supplying a callback.
Remember, the result will be cached unless manually cleared with ko.components.
clearCachedDefinition(componentName). The following are the methods used to
implement a component loader:

• getConfig(name, callback): This returns a component configuration
object. A configuration object is anything that any loader's loadComponent
function can understand.

• loadComponent(name, componentConfig, callback): This
supplies a component object of the { template: domNodeArray,
createViewModel(params, componentInfo) } type.

• loadTemplate(name, templateConfig, callback): This supplies
an array of DOM nodes to be used as the template.

• loadViewModel(name, viewModelConfig, callback): This supplies a
function to be used as the createViewModel(params, componentInfo)
factory.

To implement a method, just include it in your loader. To have your loader skip a
method that it has implemented, call callback(null).

The last two methods are not directly called by the Knockout component system but
by the default loader's loadComponent method.

The default loader
To understand how the methods on a custom loader can be made optional, you must
understand how the default loader works. The default loader has an internal registry
for component configurations—not to be confused with the cache for components.
The default loader adds the following methods to the ko.components object in order
to work with the component configuration registry:

• ko.components.register(name, configuration): This is covered in the
previous section in detail

• ko.components.isRegistered(name): This returns true if the component
configuration is in the registry; otherwise, it returns false

• ko.unregister(name): This removes the named configuration if it exists

Chapter 4

[115]

When Knockout tries to load a component for the first time, it calls getConfig on each
loader in ko.components.loaders until one returns a non-null object. Then, it passes
that configuration object to loadComponent on each loader until one returns a non-null
component object. If a loader other than the default loader returns a component from
loadComponent, the chain ends there.

However, the default loader's loadComponent method calls loadTemplate and
loadViewModel on each loader (including itself) until it gets both a template and a
viewmodel. These calls are independent; the default loader will take the first template
it gets and the first viewmodel it gets even if they are from different loaders. If your
custom loader has a higher priority than the default loader, or if the default loader can't
understand your configuration, your custom loader will have a chance to supply its
own template and/or viewmodel by implementing loadTemplate or loadViewModel.

Registering a custom loader
Unlike ko.bindingHandlers and ko.extenders, which are both objects,
ko.components.loaders is an array. Once you have created your custom loader,
you can add it to the loaders array. The order of the loaders array determines
the priority; Knockout always loops through the loaders from the first to the last:

• For a lower priority custom loader, use ko.components.loaders.
push(loader)

• For a higher priority custom loader, use ko.components.loaders.
unshift(loader)

• For a fine-grained control custom loader, use ko.components.loaders.
splice(priority, 0, loader), where priority is the 0-index rank of
the new loader

If you remove the default loader from ko.component.loaders, then loadTemplate
and loadViewModel will no longer be called (unless they are called by another custom
loader). As it is possible to simply add a custom loader with a higher priority, there is
little value in removing the default loader.

Registering custom elements
Custom elements work in Knockout by wrapping the component binding. There
are two options that can be used to get Knockout to treat a custom element as
a component:

• Call ko.components.register('component-name', { /* config */ }.

Application Development with Components and Modules

[116]

• Override ko.components.getComponentNameForNode(node) so
that it returns the name of a component. Components do not need to
be registered as long as a loader that can load the name returned by
this method exists. The default loader will only load components
registered with ko.components.register.

Loading components with custom
configurations
Alright, it's time to look at an example. This one is taken from the Knockout
component's documentation. Let's say you are using our own asynchronous loading
library for the HTML, and you want your custom loader to use it. This could be true
for a JavaScript loader, which the documentation provides as an example, but it would
be similar enough to be redundant here. It will use its own configuration property
name in order to avoid confusion with the default loader:

ko.components.register('contact-list', {
 template: { fromUrl: 'contact-list.html', maxCacheAge: 100 },
 viewModel: { require: 'contact-list' }
});

As the default loader will pass this configuration to the loadTemplate method of
each loader, we can just implement that one method:

var templateFromUrlLoader = {
 loadTemplate: function(name, templateConfig, callback) {
 if (templateConfig.fromUrl) {
 // Uses jQuery's ajax facility to load the markup from a
 file
 var fullUrl = '/app/' + templateConfig.fromUrl +
 '?cacheAge=' + templateConfig.maxCacheAge;
 $.get(fullUrl, function(markupString) {
 callback($.parseHTML(markupString));
 });
 } else {
 // Unrecognized config format. Let another loader handle it.
 callback(null);
 }
 }
};

Chapter 4

[117]

This loader will use jQuery to retrieve and parse the template if it has the fromUrl
property; otherwise, it will do nothing. The only thing that's left is to add the loader
to Knockout:

ko.components.loaders.unshift(templateFromUrlLoader);

You can see this custom loader in the cp4-loader branch; it is in the main.js file.

Knockout's default component loader is already flexible, but the ability to provide
your own custom loader for both configuration and instantiation gives the Knockout
component system the ability to work with whichever format you want to create.

Single Page Application (SPA) routing
A big part of the appeal of Knockout (or any MV* framework) is that its template
engine allows us to rerender parts of the page without the need to talk to the server.
Being able to make incremental page updates on the client side means less latency,
giving the application a much snappier feel. SPAs take this concept to the next level
by letting the JavaScript client control navigation between pages. When the browser
navigates, it has to rerender the whole page, which means reloading the JavaScript,
HTML, CSS, and everything. When JavaScript navigates, it just has to change part of
the HTML, which ends up being much faster in most cases.

Knockout can provide this virtual page-changing functionality relatively easily,
but an important component of SPAs is that page changes still update the URL.
This helps the user check whether a change has occurred, but more importantly, it
means that if the user refreshes the page or shares the link, the application will go
to the right page. Without the URL update, the user will always end up on the home
screen. This feature is commonly known as routing. Knockout does not provide
this mechanism.

To explore how Knockout fits into an SPA scenario, we are going to use SammyJS
(http://sammyjs.org/). SammyJS is a popular library used for routing; Knockout
even uses it on its tutorial site. There are many other options, of course, but the
concept should be very similar regardless of which library you use.

http://sammyjs.org/

Application Development with Components and Modules

[118]

An overview of SammyJS
SammyJS's default routing uses hash-change navigation, which uses the URL hash to
store the current state. As the hash is not sent to the server by the browser, the server
always sees the URL as a request for the home page. Once the page loads, Sammy
will inspect the hash and locate the matching route, if one exists. If it finds a route, it
runs the callback for that route. The callback is responsible for performing whatever
application logic is necessary for navigation. The following code demonstrates this:

var app = Sammy('#appHost', function() {
 //Home route
 this.get('#/', function() {
 //Load home page
 });
 this.get('#/contacts/:id', function() {
 var contactId = this.params.id;
 //Load contact
 });
}).run('#/');

This is a typical Sammy application configuration. The Sammy object is a function that
takes an element's ID, which it will scope the handler to, and an initialization handler
and returns the application object. Inside the initialization handler, this has methods
for each HTTP verb that registers routes. The preceding sample registers a route
for #/ (a standard home route) and a route for #/contacts/:id. The :id part of the
route indicates a parameter that will match any contents and provide the value on
the params object inside the route's callback.

The application object that is returned from Sammy() will not start until run()
is called, which should wait for the DOM to be ready. The run() method takes a
default route, which will be loaded if no hash is present (such as when navigating
to the bare domain URL).

Controlling the navigation
SammyJS monitors the window.location.hash property for any changes and runs
the matching route handler. This can happen when a user clicks on an a tag with
an href attribute containing a hash or by setting window.location.hash from
JavaScript. Using the window object inside viewmodels is generally discouraged,
as it is difficult to mock in unit tests. It would also be nice to keep the navigation logic
centralized, just in case it needs to be changed later. To do this, we will encapsulate
the navigation into a router module. For now, it only needs a single method:

define(function() {
 return {

Chapter 4

[119]

 navigate: function(path) {
 window.location.hash = '#' + path;
 }
 };
});

Once injected with RequireJS, viewmodels can be navigated by calling
router.navigate.

Creating page components
There are a lot of different ways to organize Knockout viewmodels in SPAs and
web apps in general. As we just learned how to create components, we are going
to look at a method used to structure each page as a component. This gives us
a few solid advantages:

• The pages will be decoupled from each other
• Each page will have its own HTML and JavaScript file, which feels natural
• A single component binding on the shell can hold the body of the page while

maintaining a static layout for the navigation bar

At some point, we will need to introduce a folder structure that will keep these files
organized, so we might as well start now.

Application Development with Components and Modules

[120]

The home page (which was just a greeting) has been removed, but the placeholder
settings page is still there so that we have at least two links to test navigation with.
The router and mock data service have been moved into the core folder (a name
I prefer because it's shorter than common). The rest of the code, which consists of
the contact model and the two pages, has been moved into the contacts folder.
The main.js starting file hasn't moved.

You can, of course, group files whichever way you want; nothing we have covered
so far will require any specific file structure.

The edit page
Previously, both pages were managed by a single viewmodel that switched between
them using a null editing contact. However, it was clear that this combined viewmodel
was serving multiple roles. Splitting the editing code should reduce some confusion:

define(['knockout', 'text!contacts/edit.html', 'core/dataService',
 'core/router', 'contacts/contact'],
function(ko, templateString, dataService, router, Contact) {

 function ContactEditViewmodel(params) {
 self.entryContact = ko.observable(new Contact());
 if (params && params.id) {
 dataService.getContact(params.id, function(contact) {
 if (contact)
 self.entryContact(contact);
 });
 }

 self.cancelEntry = function() {
 router.navigate('/');
 };
 self.saveEntry = function() {

 var action = self.entryContact().id() === 0
 ? dataService.createContact
 : dataService.updateContact;

 action(self.entryContact(), function() {
 router.navigate('/');
 });
 };
 self.dispose = function() {
 self.entryContact(null);

Chapter 4

[121]

 };
 }

 return {
 template: templateString,
 viewModel: ContactEditViewmodel
 };
});

There are only three real changes here:

• First, instead of clearing the entryContact object to indicate that editing is
finished, the viewmodel calls router.navigate('/'). As we don't have a
home page anymore, the list page will be used as the default page, which
will be tied to the / route.

• Secondly, as editing will occur based on navigation instead of the
entryContact object being set directly, the viewmodel uses the params
component to look for an ID. If an ID isn't present, it is assumed that we
are creating a new contact; if an ID is present, the contact is loaded from
the data service.

• Finally, a dispose method has been added, which will clear the entryContact
object. This isn't actually necessary, but it demonstrates how the clean up will
be done.

The HTML code hasn't really changed, except that it will be in its own file now.

The list page
The list page will be the new home page. Like the edit page, it will need to use
the router to navigate to the edit page instead of using the entryContact object.
The list page doesn't need any parameters:

define(['knockout', 'text!contacts/list.html', 'core/dataService',
 'core/router'],
function(ko, templateString, dataService, router) {

 function ContactsListViewmodel() {
 var self = this;

 self.contacts = ko.observableArray();

 dataService.getContacts(function(contacts) {
 self.contacts(contacts);
 });

Application Development with Components and Modules

[122]

 self.newEntry = function() { router.navigate('/contacts/new');
 };
 self.editContact = function(contact) {
 router.navigate('/contacts/' + contact.id()); };

 self.deleteContact = function(contact) {
 dataService.removeContact(contact.id(), function() {
 self.contacts.remove(contact);
 });
 };

 self.query = ko.observable('');
 self.clearQuery = function() { self.query(''); };

 self.displayContacts = ko.computed(function() {
 //Same as before
 });

 self.dispose = function() {
 self.contacts.removeAll();
 };
 }

 return {
 template: templateString,
 viewModel: ContactsListViewmodel
 };
});

Here too, the HTML code hasn't changed much, except that the contact-list
component has been removed, so its view has been re-added to the list page.

Coordinating pages
So far, the example server has been responsible for putting each page into our shell/
layout HTML by performing a string replace. To get the experience of a real SPA, we
are going to change the server to return an index file without performing any parsing
or rendering on it:

<!DOCTYPE html>
<html>
 <head>
 //Same as before
 </head>

Chapter 4

[123]

 <body>
 <!-- Navbar -->
 <nav class="navbar navbar-default" role="navigation">
 //Same as before
 </nav>

 <!-- Main Application Body -->
 <div id="appHost" class="container" data-bind="if: name">
 <!-- ko component: { name: name, params: data } --><!-- /ko
 -->
 </div>
 <script type="text/javascript" src="/lib/require-2.1.js" data-
 main="/app/main"></script>
 </body>
</html>

The appHost element in the preceding code contains a containerless component
binding that uses an observable name and params value. It's wrapped in an if binding
that ensures that the component binding isn't active until a page has been selected. All
the root viewmodel has to do is supply the name and params properties.

For this, our main.js will contain a simple viewmodel that contains each property.
The SammyJS route handlers will set this viewmodel when the routes are activated.
The main.js file will also be responsible for registering the page components with
Knockout. It's long, so we are going to break it up into chunks:

define(['jquery', 'knockout', 'sammy', 'bootstrap'], function($,
 ko, Sammy) {
 var pageVm = {
 name: ko.observable(),
 data: ko.observable(),
 setRoute: function(name, data) {
 //Set data first, otherwise component will get old data
 this.data(data);
 this.name(name);
 }
 };

 //Sammy Setup
 Var sammyConfig = /* see below */

 $(document).ready(function() {
 sammyConfig.run('#/');
 ko.applyBindings(pageVm);
 });
});

Application Development with Components and Modules

[124]

SammyJS has been added as a dependency and injected in. The RequireJS
configuration isn't shown, but it doesn't require a shim. SammyJS plays nicely as
an AMD. The pageVm object is created with two observable properties and a helper
method for setting them. The order is important because component viewmodels
are instantiated synchronously, and the data bound to the params object needs to
already be in place when the component name changes; otherwise, the component
will initialize before the params objects are set.

After SammyJS has been set up, the document-ready handler starts it using a default
route and then applies bindings with the pageVm object.

One way to perform the SammyJS configuration would be to write out each
component register and route handler, as follows:

ko.components.register('contact-edit', { require: 'contacts/edit'
 });
self.get('#/contacts/:id', function() {
 pageVm.setRoute('contact-edit', { id: this.params.id });
});

Personally, I think this ends up being a bit messy. It also duplicates the component
name in register and setRoute. SammyJS also doesn't allow you to bind multiple
routes to the same handler in a single call; you have to write both of them out. This is
especially annoying for the home page, because SammyJS treats an empty route and
the #/ route as different routes, even though they both conventionally mean home.
To solve these, we can combine the component and route definitions into a page
object, and then loop over them:

var sammyConfig = Sammy('#appHost', function() {
 var self = this;
 var pages = [
 { route: ['/', '#/'], component: 'contact-list', module:
 'contacts/list'}, { route: ['#/contacts/new',
 '#/contacts/:id'], component: 'contact-edit', module:
 'contacts/edit' }, { route: '#/settings', component:
 'settings-page', module: 'settings/page' }
];

 pages.forEach(function(page) {
 //Register the component, only needs to happen
 ko.components.register(page.component, { require: page.module
 });

 //Force routes to be an array
 if (!(page.route instanceof Array))

Chapter 4

[125]

 page.route = [page.route];

 //Register routes with Sammy
 page.route.forEach(function(route) {
 self.get(route, function() {

 //Collect the parameters, if present
 var params = {};
 ko.utils.objectForEach(this.params, function(name, value)
 {
 params[name] = value;
 });

 //Set the page
 pageVm.setRoute(page.component, params);
 });
 });
 });
});

Much better. Now, it's easy to see how the routes and components are related,
and defining multiple routes for a single component is simple. It also removes
the duplicated component name.

The instanceof check lets us use an array or a string for the page.route property by
always making it an array. The params section will include any parameters captured
by the route handler and will pass them as the data used by the component binding
for the params object.

All the code we just covered can be seen in the cp4-spa branch. Be sure to use each
page on the app, and notice the URL change. If you go to a page, such as a specific
contact, and refresh the browser, SammyJS will make sure that the correct page is
loaded instead of always going to the home page. This gives the application a very
natural feel. You should also notice that moving between pages happens with little or
no delay (depending on your CPU). For comparison, try to view changes between the
/contacts and /settings pages in the cp4-contacts branch. The SPA navigation is
much faster.

Application Development with Components and Modules

[126]

Summary
By now, you should have a good idea or two about how to structure a Knockout web
application, specifically, a single page application. The Knockout components feature
gives you a powerful tool that will help you create reusable, behavior-driven DOM
elements, and writing custom loaders allows you to fully control how components are
used. The RequireJS AMD patterns make application organization easy by splitting
up JavaScript and HTML into independent modules. Because these modules use
dependency injection, creating mocks for unit testing is also possible. Finally, you saw
how SammyJS can create fast client-side JavaScript navigation with pages controlled
by components.

In the next chapter, we will look at the Durandal framework, which will make the
single page application development even easier.

Durandal – the Knockout
Framework

In the previous chapter, we looked at how to use RequireJS and SammyJS with
Knockout, to add more standard functionality to our frontend stack with module
definitions and client-side routing. Both of these concepts have become very common
in the JavaScript world; you might even consider them as a standard for modern
web applications. Knockout is a library and not a framework, in that it fills a specific
role—data-binding—instead of trying to be the entire development framework for
the frontend. This leaves a lot of decisions to be made if you want to create a modern
JavaScript client, which can be burdensome, time-consuming, and, if your team is
divided, contentious. Durandal is a framework that attempts to make many of these
decisions while still keeping Knockout's MVVM philosophy in mind.

Durandal was created by Blue Spire, whose principal developer, Rob Eisenberg, also
created the popular WPF framework Caliburn.Micro, another MVVM framework.
Over the next two chapters, we will be looking at how Durandal can help us build
web applications easily while leveraging all of our experience and custom code from
Knockout. This chapter is going to cover the following:

• Overview of the Durandal framework
• The composition system
• The router
• Modal dialogs
• The application's life cycle
• Widgets

Once again, we will be using the Contacts application with the chapter's examples.

Durandal – the Knockout Framework

[128]

An overview of the Durandal framework
Durandal is built on top of Knockout, jQuery, and RequireJS. Durandal's core is
a collection of AMD modules, which provide composition, events, and activation
features, as well as some utility functions. In addition to the core modules, Durandal
also provides several plugins that can optionally be activated, or added to with
community or personal plugins. The plugins include the router (a basic requirement
for every SPA framework), dialogs, and widgets.

The documentation for Durandal can be found at
http://durandaljs.com/docs.html.

Promises
To bring all of this together, Durandal's internal and external communication is
handled through promises. If you aren't familiar with JavaScript promises—sometimes
called thenables because they provide a then method—you're missing out. To explain
briefly, promises change the way asynchronous actions are handled by replacing
a callback with a return object that represents the asynchronous work. It allows
asynchronous tasks to be chained, and does error handling in a simple, easy-to-debug
manner. I won't be covering how promises work here, but it is going to be relevant.
You should read up on them if you haven't already done so.

If you are familiar with promises, you may already know that jQuery's promise
implementation does not match the A+ specification (https://promisesaplus.com),
which most other promise libraries conform to. To minimize third-party dependencies,
Durandal uses jQuery's promises by default, but their documentation provides a
simple patch to allow the use of another promise implementation. This example, which
uses Q (a very popular promise library), is taken from the Durandal documentation.
Use it before the call to app.start() (we will learn more about this later):

system.defer = function (action) {
 var deferred = Q.defer();
 action.call(deferred, deferred);
 var promise = deferred.promise;
 deferred.promise = function() {
 return promise;
 };
 return deferred;
};

If you prefer another library, simply replace Q in the preceding code. I will be using
Durandal's default promises in this chapter for simplicity, but I encourage you
to use an A+ compliant implementation in real-world applications.

http://durandaljs.com/docs.html
https://promisesaplus.com

Chapter 5

[129]

Getting started
While Durandal's only real requirement on your filesystem is that all its core
modules should be in the same folder and all its plugins should be in their own
folder, there are some conventions for the way things are organized, as shown
in the following screenshot:

This should be familiar, as it isn't too different from what we have been using. The
app directory contains our code, the lib directory contains third-party code, and
the content directory contains our CSS and other visual assets. Durandal's entire
source, which contains some of its own CSS, its core modules, as well as the standard
plugins directory, is dropped into lib. Our main.js configuration looks like this:

require.config({
 paths: {
 'text': '../lib/require/text',
 'durandal':'../lib/durandal/js',
 'plugins' : '../lib/durandal/js/plugins',
 'transitions' : '../lib/durandal/js/transitions',
 'knockout': '../lib/knockout-3.1.0',
 'bootstrap': '../lib/bootstrap-3.1.1',
 'jquery': '../lib/jquery-2.1.1.min'
 },
 shim: {
 'bootstrap': {
 deps: ['jquery'],
 exports: 'jQuery'
 }
 },
 waitSeconds: 30
});

Durandal – the Knockout Framework

[130]

There shouldn't be anything surprising here, as we covered the configuration of
RequireJS in the previous chapter. All of the paths, except bootstrap, are required
by Durandal. After configuration, Durandal needs to be initialized; this is generally
placed in main.js, just below require.config:

define(['durandal/system', 'durandal/app'],
function(system, app, extensions) {

 system.debug(true);

 //specify which plugins to install and their configuration
 app.configurePlugins({
 //Durandal plugins
 router:true,
 dialog: true
 });

 app.title = 'Mastering Knockout';
 app.start().then(function () {
 app.setRoot('shell/shell');
 });
});

The app and system modules are Durandal objects. The system.debug call
instructs Durandal to log all of the steps it takes to the console, which is useful for
development. The app.configurePlugins call registers the plugins to be installed,
though they are not run until app.start is called. The app.start call initializes
all the Durandal modules and installs the registered plugins. As app.start is a
promise-returning function, a then method is attached, which calls app.setRoot
when it is finished. The setRoot method composes the specified module into the
DOM as the root viewmodel of the application.

The root of the application is placed inside a div element with the applicationHost
ID, which is expected to be in the DOM already. As Durandal will take care of all
the HTML rendering, the original DOM is pretty thin. It only requires the CSS that
will be used, the applicationHost ID, and the script tag for RequireJS. This is the
standard index.html file:

<!DOCTYPE html>
<html>
 <head>
 <title>Mastering Knockout</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1.0">

Chapter 5

[131]

 <link rel="stylesheet" href="content/css/bootstrap-3.1.1-
 darkly.css" type="text/css" media="all" title="darkly" />
 <link rel="alternate stylesheet" href="content/css/bootstrap-
 3.1.1-cosmo.css" type="text/css" media="all" title="cosmo"
 />
 <link rel="stylesheet" href="content/css/font-awesome-
 4.0.3.css" type="text/css" media="all" />

 <link rel="stylesheet" href="lib/durandal/css/durandal.css" />
 <link rel="stylesheet" href="content/css/app.css"
 </head>
 <body>
 <!-- Main Application Body -->
 <div id="applicationHost"></div>
 <script type="text/javascript" src="lib/require/require.js"
 data-main="app/main"></script>
 </body>
</html>

That's it! Durandal has been started and everything after this point is going to be
your application's code.

The composition system
In the previous chapter, we looked at Knockout's new components feature, which
lets us construct view/viewmodel pairs by instantiating them from the DOM with
custom elements (or bindings). Knockout released this feature after Durandal, so
there is some overlap between the two. Durandal's composition is like a blend of
the components and the template binding.

Composition is primarily invoked in two ways, with setRoot to compose the
applicationHost ID, and with the compose binding for data-bound values.
Composition works by pairing a viewmodel with a view.

Durandal's documentation refers to viewmodels as
modules, which I think is a bit confusing. I will be
referring to composable modules as viewmodels
throughout this chapter.

When composition is given a viewmodel, it looks up the view, loads it with the
RequireJS's text loader, binds it to the view, and finally, attaches it to the DOM.

Durandal – the Knockout Framework

[132]

Composing the application's root
Let's look at the root composition of our shell viewmodel. Our preceding sample was
setting the root to shell/shell. If our app directory has a shell folder, the shell.
js module will be loaded by setRoot and composed. Composition uses Durandal's
viewLocator module to find an HTML file, by replacing the file extension of the
module; so for shell.js, it will look for shell.html and use it as the view.

You can see a very simple example of this in cp5-shell. The shell module is very
simple, containing just a title property that we will bind to:

define(function (ko, app) {
 return {
 title: 'Welcome!'
 };
});

The shell.html view is a bare HTML snippet. It does not contain the standard
<html> root element:

<div class="jumbotron">
 <h1 data-bind="text: title"></h1>
 <p>This HTML was rendered into the DOM with Durandal's
 composition system. Notice the data-binding on the
 <code>h1</code> tag with the viewmodel property
 <code>title</code>.</p>
</div>

Durandal expects views to be partial HTML documents. They should not contain an
HTML, HEAD, or BODY element; they should contain only the HTML that will be used
as the template for the DOM contents.

If you run the code, you will see that this HTML is rendered into the DOM, and
the title is bound to the shell module's title property. The object returned by
the shell module is used as the binding context for the shell's view.

The compose binding
Generally, the root of the application does not change, and instead, serves as the
layout or shell for the HTML. It displays content that is present on every page (such
as a navigation bar), and hence it doesn't need to change. Composition can also be
invoked with the compose binding, which takes a viewmodel as a binding value.

Chapter 5

[133]

Open the cp5-composition branch. Notice that the shell view is back to containing
our familiar navigation bar, as well as a compose binding, in its main content area:

<div>
 <nav class="…" role="banner">
 //Standard Nav Bar HTML you've seen in every other sample
 </nav>

 <div class="page-host container">
 <div data-bind="compose: currentModel"></div>
 </div>
</div>

The shell viewmodel has a currentModel property, as well as two functions, to
switch the currentModel property between the edit and list page objects:

define(['knockout', 'durandal/app', 'contacts/edit',
 'contacts/list'],
function (ko, app, EditVm, ListVm) {
 var listVm = new ListVm(),
 editVm = new EditVm();
 return {
 title: app.title,
 currentModel: ko.observable(listVm),
 setEdit: function() { this.currentModel(editVm); },
 setList: function() { this.currentModel(listVm); }
 };
});

Try pressing the buttons in the navigation bar to see the body content switch
between the two pages. The compose binding is taking a module instance, locating
its view, and binding the view as the content of the DOM. As currentModel is
observable, the composition reruns anytime it changes.

As the list and edit objects are constructed once and just swapped, you should
notice that values entered on the edit page are persistent. This is because, while the
HTML is discarded and recreated when switching, the new HTML is still being
bound against the same object.

Hopefully, the brevity of this example doesn't undercut the power of the composition
system. The fact that they are so small should highlight just how easy composition is
to work with; just by swapping a bound value, we can toggle between two completely
different pages!

Durandal – the Knockout Framework

[134]

You may have noticed that composition is like a mirror of Knockout components.
Instead of a custom element or binding in the DOM choosing what will be rendered,
composition renders the value specified by JavaScript. This ends up having a large
impact on flexibility. A component is the element that the DOM says it is, but a single
compose binding can hold any module and it can change at any time. They may
seem like competing features, but I think they are serving different goals.

Components are like advanced binding handlers, allowing the HTML to instantiate
behavior-driven templates.

Composition uses the relationships created and managed by our viewmodel code
and reflects them in the presentation layer.

Composition options
We looked at two examples of composition—setRoot and the compose binding—that
each took an instance of an object to compose. Of course, Durandal is a thoughtful
framework, so the composition has several other modes of operation. The value
taken by the compose binding can be any of the following.

Module instance
We've already covered this, but for the sake of completion, the compose binding can
take an instance of a module and use it to locate the view. See the cp5-composition
branch for an example. This is the most common use case for composition with the
compose binding.

Constructor
In the cp5-composition2 branch, you can see a modified shell that sets the
currentModel property to the constructor functions directly:

define(['knockout', 'durandal/app', 'contacts/edit',
 'contacts/list'],
function (ko, app, EditVm, ListVm) {
 return {
 title: app.title,
 currentModel: ko.observable(ListVm),
 setEdit: function() { this.currentModel(EditVm); },
 setList: function() { this.currentModel(ListVm); }
 };
});

Chapter 5

[135]

While this isn't a great use case, it is supported. Constructors are most commonly
used for modules tied to the router, as a fresh viewmodel is generally desirable when
navigating between pages. Unlike the previous example, which stored a reference
to a constructed viewmodel for each page, this method will recreate the viewmodel
each time it navigates.

Module ID strings
There are two ways to use strings for the compose binding value. The first is by
supplying a module ID. You can see this in the cp5-composition3 branch:

currentModel: ko.observable(''contacts/list''),
setEdit: function() { this.currentModel(''contacts/edit''); },
setList: function() { this.currentModel('contacts/list'); }

This results in the module being composed. If the module returns an object, it is
composed directly; if the module returns a function, it is treated as a constructor
to create the object. Of course, because it's a string, this could be used in the
binding directly:

<div data-bind="compose: 'contacts/list'"></div>

While supported, I personally feel like this violates the separation of concerns. It ties
the HTML view directly to a viewmodel.

Viewpath strings
The second way to use strings in the compose binding is with a viewpath. If the
string contains an extension that the viewEngine module recognizes, it will be used
to load that view and bind it to the current binding context. The common use case
here is partial views:

<div class="page-host container">
 <div data-bind="compose: 'shell/sub.html'"></div>
</div>

Again, the string could be in the HTML or come from the viewmodel. In this case,
as a view is referring to another view, I think the string belongs to the HTML.
Otherwise, the reverse violation of the separation of concerns occurs, where a
viewmodel has a direct reference to a view.

This sample can be seen in cp5-composition4.

Durandal – the Knockout Framework

[136]

Explicit models and views
The compose binding can also take a settings object that specifies a model, a view, or
both. There isn't much to say about these examples, so this section is taken directly
from the Durandal documentation:

• data-bind="compose: { model: model }": This uses the value of model
with viewLocator to obtain a view. They are then bound and the view is
injected into the DOM node.

• data-bind="compose: { view: view }": This evaluates the value of view.
If it is a string, then viewLocator is used to locate the view; otherwise, it is
assumed to be a view. The resultant view is injected into the DOM node.

• data-bind="compose: { model: model, view: view }": This resolves
the value of model. The value of view is resolved and a view is constructed
as indicated in the previous point. Both model and view are then bound and
injected into the DOM node.

• data-bind="compose: { model: model, view:'myView.html' }": The
value of model is resolved. The viewLocator module is then used to obtain
the view indicated by the view property. They are then bound, and the view
is injected into the DOM node.

• data-bind="compose: { model:'shell', view: view }": RequireJS is
used to resolve the shell module. The value of view is resolved and a view
is returned, as described in the previous point. The view is then bound to the
resolved module and injected into the DOM node.

• data-bind="compose: { model:'shell', view:'myView.html' }":
RequireJS is used to resolve the shell module. The viewLocator module
is then used to obtain the view indicated by view. The view is then bound
to the resolved module and injected into the DOM node.

Containerless composition
All of the preceding examples work with Knockout's containerless comment syntax
as well, so the following is valid:

<!-- ko compose: model--><!--/ko-->

The composition system has more features than there are in the scope
of this chapter, including view caching, transitions, template mode,
and custom view location strategies. They will be discussed in the
next chapter, which covers more advanced use cases.

Chapter 5

[137]

View locations
As mentioned earlier, the default behavior of the viewLocator module used by
composition is to look for a view with the same path as the module, but with the
.html extension. This results in modules grouped by folder:

In the preceding example, the shell directory contains the view and the viewmodel
for the shell, and the contacts directory contains a base model for a contact, as well
as a view and viewmodel for both list and edit. I think this organization is very
easy to understand, and it scales well with large applications, as each feature or
group of features is kept together.

Durandal offers another strategy though, which it calls the conventional strategy.
You can activate it by modifying your main.js file to call useConvention on
the viewlocator module:

define(['durandal/system', 'durandal/app',
 'durandal/viewLocator'],
function(system, app, viewLocator) {

 //plugin configuration omitted

 viewLocator.useConvention('viewmodels', 'views');

 app.title = 'Mastering Knockout';
 app.start().then(function () {
 app.setRoot('shell/shell');
 });
});

Durandal – the Knockout Framework

[138]

This causes Durandal to look for a module with the viewmodels/contactList ID at
views/contactList.html. While you can enter any strings for the viewmodels and
views, paths, this is actually the default. Calling viewLocator.useConvention()
(with no parameters) will produce the same effect.

I don't think this method scales as well, and I personally find it harder to work with.
I prefer to have the viewmodel and view in the same location in the filesystem, so
that I don't have to hunt for it. It's all up to you (or your team's) preference though.

All of the code samples shown here will use the default behavior, not the
conventional behavior.

Using the router
While technically an optional plugin, I don't imagine any real-world SPAs will do
without the use of the router. While SammyJS ties a URL fragment to a function,
Durandal's router ties the URL directly to a module ID. The module can return either
a singleton or a constructor, and will be used to bind the view using the standard
composition system.

Configuring the router
Let's start configuring the router:

1. Route configuration is pretty straightforward. Here is the shell module with
router configuration for the Contact application:
define(['plugins/router', 'knockout', 'durandal/app'],
function (router, ko, app) {
 return {
 title: app.title,
 router: router,
 activate: function() {

 router.map([
 { route: '', moduleId: 'contacts/list', title:
 'Contacts', nav: true },
 { route: 'contacts/new', moduleId: 'contacts/edit',
 title: 'New Contact', nav: true },
 { route: 'contacts/:id', moduleId: 'contacts/edit',
 title: 'Contact Details', nav: false }
])
 .buildNavigationModel()
 .mapUnknownRoutes('shell/error', 'not-found');

Chapter 5

[139]

 return router.activate();
 }
 };
});

2. The router plugin is required in the shell module and is set up during its
activate method.

3. The map method takes an array of routes and buildNavigationModel sets up
those routes. The mapUnknownRoutes function takes a module ID and a route
to use as a catch-all for attempts to navigate to routes that have not been
registered. Without this, navigation will be canceled instead, with no error
displayed to the user!

4. We will cover activate and the other life cycle hooks in detail in a bit. For
now, just know that activate is called during composition. If the return
value from activate is a promise, then composition will wait until the
promise resolves.

5. Finally, router.activate, which also returns a promise, is returned to the
shell's activate method, which chains the wait from composition until the
router has finished.

Route properties
The route's configuration objects that are passed to the map function take the
following properties:

• route: This is the URL to map to. It can be a string or an array of strings.
Each string can take one of the following forms:

 ° Default route: This is route: ''.
 ° Static route: This is route: 'contacts'.
 ° Parameterized route: This is route: 'contacts/:id'.
 ° Optional parameter route: This is route: 'contacts(/:id)'.
 ° Splat route: This is route: 'contacts*details'. It is a wild card,

and will match any URL starting with contacts.

• moduleId: This is the module to bind the route to.
• hash: This is used primarily for data binding <a> tags. In most cases,

the router will generate this automatically, but it can be overridden. It is
necessary to override this property on routes with optional parameters
or splats.

Durandal – the Knockout Framework

[140]

• title: The document.title property is set to this value. If present, then the
route is active; if absent, the document.title is not changed.

• nav: If true, the route will be included in the router's navigationModel, an
observable array of routes created when buildNavigationModel is called,
which can be used to easily generate navigation bars. The default value
is false.

If a module with an activate or canActivate function is activated by the router,
the route's parameters are passed as arguments to it. Again, activation and other
life cycle hooks will be covered in more detail later in this chapter.

Query strings are also passed in as the last parameters to activate/canActivate as
objects with a key/value pair query string key.

Binding the router
The router introduces a special binding, also called router, which wraps the
compose binding with special handling logic. It shares the same properties
as the compose binding:

<!-- ko router: { model: router.activeItem }--> <!-- /ko -->

The activeItem object on the router holds the currently active routes' module.
If the model property on the router binding is omitted, the binding will look for
a router property on the current binding context and take its activeItem object.
The preceding example is equivalent to this one:

<!-- ko router: { }--> <!-- /ko -->

The router also has a navigationModel observable array, which is very useful in
generating navigation bars:

<ul class="nav navbar-nav" data-bind="foreach:
 router.navigationModel">
 <li data-bind="css: { active: isActive }">

Each route has an isActive property, which indicates when the route is active, and
a hash property, which can be used for a tag's href property.

Chapter 5

[141]

Loading or navigating, are also exposed as observables on the router. This makes it
easy to bind loading indicators on the page:

<i class="fa fa-spinner fa-3x fa-spin" data-bind="visible:
 router.isNavigating"></i>

Okay, time to look at a live example. Open the cp5-router branch. Try moving
around the application by editing contacts or using the navigation bar links. Notice
that the URL's hash is updated to match the current route. You can even use the
browsers back and forward buttons to control navigation, as the router is hooked
into the window.location object. Like all true SPAs, the navigation occurs inside
the app, not by performing browser navigation.

Activating routes
When a route is activated, the associated viewmodel module is loaded with
RequireJS and composed into the DOM. The module loaded by RequireJS must
either be an object, which will be treated as a singleton and bound to the view, or
a function, which will be treated as a constructor and used to new up an object to
bind to the view.

Navigation – hash change versus push state
We just saw how the router handled navigation by changing the URL's hash. This
is the default behavior, but the router also supports push state navigation. Push
state navigation is the use of the HTML5 history API to modify the current URL and
the history stack, without causing browser navigation. This results in prettier and
normal looking URLs during router navigation. We see http://localhost:3000/
contacts/new instead of http://localhost:3000/#contacts/new.

This mode of navigation can be activated by passing the router.activate({
pushState: true }) calling. Though older browsers don't support push state,
Durandal will gracefully degrade to hash change navigation when push state is
not supported.

The reason this isn't the default behavior is because it requires support from the
server to work properly. Currently, our server is only serving our application
when we navigate to the root URL. If we try to navigate to /contacts/new, the
server will display a 404 error. As Durandal is supposed to be in control of routes
and navigation, adding this support route-by-route to the server would be a lot of
duplication. The recommended way to support push state on the server is to use a
wild card route to send all page requests to the index page. Once Durandal loads,
it will detect the URL and activate the proper route.

Durandal – the Knockout Framework

[142]

The implementation of wild card routes will depend entirely on your server
backend. Our examples are using a Node.js server, which makes it pretty easy:

//Index Route
app.get('/*', function(req, res){
 res.sendfile(clientDir + '/index.html');
});

That will take care of the page routing, but there is a much bigger supportability
issue with push state routing; relative paths in HTML and the RequireJS config.
Right now, all the links to CSS or the scripts in our code look like this:

<link rel="stylesheet" href="content/css/app.css" />

This is a problem if the page tries to load /contacts/new, because content/css
is a relative path; it will be treated by the browser as /contacts/content/css.
Obviously this will fail; either the server will display a 404 error, or worse, the
wild card route will cause the index page to be returned!

To fix this, all the paths need to be absolute paths; they have to start with
a forward slash (/):

<link rel="stylesheet" href="/content/css/app.css" />

This one can be nasty as is it requires manually updating any code with links in it,
including the RequireJS config. As long as you are aware of the road you want to take
when you start a project, this isn't much of a headache. If you can, I recommend going
to the push state route. Having those nice looking URLs makes a big difference. It also
frees the hash up to do its normal job of indicating a location or state on the page.

You can see an example of the push state scenario in cp5-pushstate. Note that as a
special treat, this branch supports IE 8 so that you can see the graceful degradation
to hash change navigation. The rest of the examples in this chapter will use push
state navigation, but will return only to supporting ES5-compatible browsers.

Controlling the navigation from JavaScript
Navigation can easily be done with the router's navigate function, which takes a
URL string. The router is a singleton, and can be required into any module, using
plugins/router:

define(['durandal/app', 'knockout', 'services/mock',
 'plugins/router'],
function(app, ko, dataService, router) {
 return function ContactListVM() {

Chapter 5

[143]

 //…
 self.newEntry = function() {
 router.navigate('contacts/new');
 };
 self.editContact = function(contact) {
 router.navigate('contacts/' + contact.id());
 };
 };
});

Modal dialogs
After the overuse of modal dialogs in Windows, and alert boxes in early browser
applications, modal dialogs have left a bad taste with some developers. However,
when used appropriately, they are simple and powerful tools. Durandal's modal
dialog implementation makes collecting user input from modals very easy, by
making dialogs return promises that resolve when they close. Modal dialogs in
Durandal come in two types, namely, message boxes and custom dialogs.

Message boxes
For simple cases such as displaying a notification or collecting a single piece of user
input, Durandal provides a modal dialog on app.showMessage, which takes the
following parameters:

• Message (string): This contains the main contents of the message box.
• Title (string, optional): This contains the title of the message box;

the default title is app.title.
• Buttons (array, optional): This is an array of buttons to show; the

default is ['Ok']. The first button in the array will be the default action of
the dialog. If the array is an array of strings, then the text will be both the
button text and the return value of clicking that button. To specify the value
of a button, use an array of objects, that is, [{ text: "One", value: 1 },
{ text: "Two", value: 2 }].

• Autoclose (boolean, optional): If true, the dialog will be closed if the
user clicks outside of the dialog window; the default is false.

• Settings (object, optional): See the upcoming Message box settings
section.

Durandal – the Knockout Framework

[144]

While a simple call to app.showMessage('This is a message!') is a good way to
put something right in front of the user, I think the best use case for message boxes is
the Are you sure? confirmation dialog:

self.deleteContact = function(contact) {
 app.showMessage('Are you sure you want to delete ' +
 contact.displayName() + '?', 'Delete Contact?', ['No', 'Yes'])
 .then(function(response) {
 if (response === 'Yes') {
 dataService.removeContact(contact.id(), function() {
 self.contacts.remove(contact);
 });
 }
 });
};

Here we are showing a message box when someone tries to delete a contact. The
message includes the contact's name (to provide context) and a title. The order of
the two buttons, No then Yes, ensures that if the user hits enter immediately, No will
be selected. I think it's good to default to the safer case. Whatever the user selects
will be given to the promise returned from showMessage, which we can access in
the then handler.

Depending on how you count those lines, we just double-checked a user action with
a modal dialog in 2-3 lines of very-readable code. You can see an example of this in
the cp5-message branch.

Chapter 5

[145]

Message box settings
The last parameter to showMessage is an object that controls display options. It takes
the following parameters:

• buttonClass: This specifies a class for all buttons. The default is btn.
• primaryButtonClass: This specifies an additional class for the first button.

The default is btn-primary.
• secondaryButtonClass: It specifies an additional class for buttons other

than the first. The default is no class.
• class: This specifies the class of the outermost div element of the message

box. The default is "messageBox". Note that you must specify this property
with quotes or it will crash in IE8; for example, "class" and "myClass".

• style: This specifies additional styles for the outermost div element of the
message box. The default is nothing.

You can also control the default settings by passing the same settings object to
dialog.MessageBox.setDefaults. This function will merge the settings passed
to it with the defaults; if you leave settings out, they will be left alone, not removed.

Custom dialogs
Message boxes are great for single input such as yes, no, or choosing an option
from a list. However, when things need to get more complex than a single answer,
Durandal allows us to create custom dialogs. To show a custom dialog, you can
require the dialog object with plugins/dialog and call dialog.show, or use the
alias app.showDialog. Dialogs use composition, so any viewmodel passed to show
will look up and bind against its view using the standard methods.

To close itself and pass a result back to the caller, the dialog-hosted viewmodel will
need to require plugins/dialog and call dialog.close(self, result).

To see how this works, open the cp5-dialog branch. The Add Contact button on
the main list page will open the edit viewmodel in a dialog, which will either close
with null for a canceled entry or a new contact for the saved entry. Just to show how
flexible it is, the Add Contact link in the nav bar will still navigate to a new page to
create a new contact. Both, the dialog and the page are run by the same viewmodel!

define(['durandal/system', 'knockout', 'plugins/router',
 'services/mock', 'contacts/contact', 'plugins/dialog'],
function(system, ko, router, dataService, Contact, dialog) {
 return function EditContactVm(init) {
 var self = this;

Durandal – the Knockout Framework

[146]

 self.contact = ko.observable(new Contact());

 self.activate = function(id) {
 //Id is only present when editing
 if (id)
 dataService.getContact(id, self.contact);
 };

 self.saveEntry = function() {
 var action = self.contact().id() === 0
 ? dataService.createContact
 : dataService.updateContact;

 action(self.contact(), function() {
 self.close(self.contact());
 });
 };

 self.cancel = function() {
 self.close(null);
 };

 self.close = function(result) {
 if (dialog.getDialog(self))
 dialog.close(self, result);
 else
 router.navigate('');
 };
 };
});

As you can see, almost nothing has changed. Instead of always using the
router to navigate home when finished, the new close method checks dialog.
getDialog(self)) to see whether it is a dialog, and closes itself with the result
(null or the newly created contact). The dialog.getDialog(self)) method
returns the dialog context, or is undefined if none is found.

The list viewmodel has to only make the following change to open the dialog and
keep the result:

self.newEntry = function() {
 app.showDialog(new ContactVM())
 .then(function(newContact) {
 if (newContact) {

Chapter 5

[147]

 self.contacts.push(newContact);
 }
 });
};

The ContactVM object is the edit viewmodel, which is being required in with
contact/edit. A new one is constructed and passed to app.showDialog.
Composition renders the viewmodel and returns the promise for the dialog's result.
This promise will be completed by the dialog.close call in the edit viewmodel.
The then handler just checks to make sure it exists and adds it to its list of contacts.

There are some HTML/CSS considerations with custom dialogs. Unlike message
boxes, which are styled with Bootstrap's modal classes by Durandal, custom dialogs
are rendered into an empty div element that is centered with absolute positioning
and a transparent background. Without some styling, the output looks pretty terrible:

Thankfully, it doesn't take much to clean this up. This is the CSS I used:

.edit-container {
 padding: 20px;
 min-width: 600px;
 background-color: #222222;
}

Durandal – the Knockout Framework

[148]

The preceding CSS produces this much nicer looking result:

While the need for this might be surprising, I think it's better than the alternative
where Durandal does apply some default styling to all modals, which has to
forcefully be overridden when it doesn't match what you want. In the next chapter,
we will cover adding custom dialog hosts, which provides a much nicer way to
control default modal appearance for both message boxes and custom dialogs.

An alternative method
To keep the calling viewmodel a little cleaner and less aware of how the dialog
viewmodel works, I prefer to encapsulate the actual dialog code. This is easy to
do by adding a show method to the edit viewmodel:

self.show = function() {
 return dialog.show(self);
};

And calling it instead of app.showDialog, as seen here:

self.newEntry = function() {
 new ContactVM().show()
 .then(function(newContact) {
 if (newContact) {

Chapter 5

[149]

 self.contacts.push(newContact);
 }
 });
};

This hides the specific method from the caller, allowing the edit viewmodel to
control how it shows itself. The show method could even take the parameters that
allowed configuration before showing the dialog. This is especially useful when
multiple dialog hosts are available, which we will cover in the next chapter. You
can see this example in the cp5-dailog2 branch.

The application's life cycle
Durandal's composition and activator services allow optional callbacks to control or
hook into their life cycles. They can be useful when performing setup and teardown,
or implementing logic to block or redirect page changes.

The activation life cycle
An activator is a special computed observable, whose write function enforces the
activation life cycle. Unless you are managing composition or routing yourself, the
only activators you will work with are the ones used by the router and the dialog
system. Though, if you are interested, you can create your own activator by requiring
in the durandal/activator module and using the create function.

The following optional properties are called by the activator when the active value
tries to change:

• canActivate: This is called on the new value; it should return either a
Boolean or a promise that resolves to a Boolean. If the result is false,
activation is cancelled.

• activate: This is called on the new value after canActivate; it is used
to perform any desired setup logic. If activate returns a promise, the new
value will not become the active value until the promise resolves.

• canDeactivate: This is called on the old value; just like activate, it should
return either a Boolean or a promise that resolves to a Boolean. If the result
is false, activation is cancelled.

• Deactivate: This is called on the old value after activation succeeds, but
before the switch is made. It is used to perform any teardown logic.

Durandal – the Knockout Framework

[150]

Preparing viewmodels with activate
You have already seen the use of activate in the list and edit viewmodels, where it
is used to load data:

self.activate = function() {
 dataService.getContacts(function(contacts) {
 self.contacts(contacts);
 });
};

What probably hasn't been obvious, because the mock data service is using local
storage, is that if this service call actually took time, the page would render before
the data got back. This could result in a jarring change when all of the contacts
suddenly load. The activate call isn't waiting for this callback to finish, so
Durandal is activating the viewmodel before it's really ready.

To see what this looks like, open the cp5-timeout branch. All the mock service calls
have had a 1 second timeout added before their callbacks are used, which will result
in a more real-world response time scenario. Loading the home page, you can see the
list load after the rest of the page. This is especially problematic when trying to edit a
contact, as the form will show the default values until the contact is loaded.

To stop the page loading until the list is retrieved, we can return a promise from
activate. The durandal/system module provides a way to create promises if you
aren't using your own library (such as Q) to do so:

self.activate = function() {
 return system.defer(function(defer) {
 dataService.getContacts(function(contacts) {
 self.contacts(contacts);
 defer.resolve();
 });
 }).promise();
};

Here, we are returning a promise that will be resolved by the callback to our
mock data service. The system.defer function takes a handler that performs
asynchronous working, calling it with a deferred object. The deferred object has
the resolve and reject functions, which can take values for success or failure. You
can see this in the cp5-activate branch, where the same change was made for the
edit page. As activate is waiting on this promise, activation will not continue until
it resolves. These pages will not activate until their data is loaded, so the user never
sees the page before it is ready.

Chapter 5

[151]

While this method works, there is a cleaner way to do it. Instead of using callbacks
in our data service and promises in our viewmodels, which really mixes strategies,
we can use promises in our data service. If our data service returns a promise, the
activate method looks much nicer:

self.activate = function() {
 return dataService.getContacts()
 .then(function(contacts) {
 self.contacts(contacts);
 });
};

What an improvement! In fact, we can take it even further. As self.contacts is an
observable array, which is just a function, we can cut out the anonymous function in
the then handler with this shorthand:

self.activate = function() {
 return dataService.getContacts()
 .then(self.contacts);
};

This works because self.contacts becomes the then handler, so when the service
returns the list of contacts, the promise resolves directly into it. This doesn't appeal to
everyone, and it might even look confusing. However, if it doesn't impair readability
for you, the shorter code might be nice.

This method can be seen in the cp5-activate2 branch, which fully converts all the
data access code into promises, such as this one:

getContacts: function() {
 return system.defer(function(defer) {
 //Return our POJO contacts as real contact objects
 var typedContacts = [];
 for (var c in contacts) {
 if (contacts.hasOwnProperty(c)) {
 typedContacts.push(new Contact(contacts[c]))
 }
 }
 setTimeout(function() {
 defer.resolve(typedContacts);
 }, 1000);
 }).promise();
}

Durandal – the Knockout Framework

[152]

Because Durandal has this understanding of promises integrated into its life cycle
hooks, it makes using promises for all asynchronous code that much more appealing.
If you aren't doing this already, I strongly encourage you to consider it. All code
samples from here on will be using promises.

This asynchronous activation is another advantage of the composition of components.
Components can only construct and bind synchronously, which can make some
components very tricky to initialize. Composition allows asynchronous work to be
done, making it that much more flexible.

A note on the router's isNavigating property
In the previous section, Binding the router, we looked at the isNavigating property
of the router, which is true during navigation. The activation life cycle is part of
navigation, so isNavigating will be true during any asynchronous activity in the
activation life cycle. This allows you to bind visual indicators on the page while
your pages are loading, making your application feel more responsive.

Checking navigation with canDeactivate
The canActivate and canDeactivate methods also support promises. Going off
to the server with an Ajax request to see whether a view can be deactivated might
seem weird, but Ajax isn't the only source of promises. Perhaps the best possible use
case for canDeactivate is with the promise from a simple message box—You have
unsaved changes, are you sure you want to leave?

Open the cp5-deactivate branch and open up a contact to edit. If you hit Cancel,
you will still be taken back to the list, but if you make changes and hit Cancel, you
will be prompted. If you hit No, navigation will be cancelled.

You might think that this is being done from the Cancel button, but it will also
happen if the user clicks on the browser's back button or the navigation link
(basically, anything but a hard browser navigation). This is because canDeactivate
is run no matter what source the attempted deactivation comes from:

self.canDeactivate = function() {
 if (!self.contact().state.isDirty())
 return true;
 return app.showMessage('You have unsaved changes. Are you sure
 you want to leave?', 'Cancel Edit?', ['No', 'Yes'])
 .then(function(response) {
 return response === 'Yes';
 });
};

Chapter 5

[153]

The dirty flag in this sample is taken from Ryan Niemeyer's blog Knock
Me Out at http://www.knockmeout.net/2011/05/creating-
smart-dirty-flag-in-knockoutjs.html. It can be seen in the
common/extensions.js file in the branch source code.

Here, we are just showing a standard message box and transforming the result
into a Boolean for canDeactivate. The promise for this result is returned, and
canDeactivate will wait until it resolves, to determine whether or not activation
can continue.

We can actually shorten this, because the activator module will interpret the strings'
responses by checking them against a list of affirmations and responses that it
considers to be true. This is the code Durandal uses to check activation results,
taken from the activator module:

affirmations: ['yes', 'ok', 'true'],
interpretResponse: function(value) {
 if(system.isObject(value)) {
 value = value.can || false;
 }

 if(system.isString(value)) {
 return ko.utils.arrayIndexOf(this.affirmations, value.
toLowerCase()) !== -1;
 }

 return value;
}

This array of truthy strings can be changed by accessing activator.defaults.
affirmations.

With this knowledge, we can just return the promise from the message box directly.
The activator module will consider Yes to be a truthy result, and any other string
to be false:

self.canDeactivate = function() {
 if (!self.contact().state.isDirty())
 return true;
 return app.showMessage('You have unsaved changes. Are you sure
 you want to leave?', 'Cancel Edit?', ['No', 'Yes']);
};

http://www.knockmeout.net/2011/05/creating-smart-dirty-flag-in-knockoutjs.html
http://www.knockmeout.net/2011/05/creating-smart-dirty-flag-in-knockoutjs.html

Durandal – the Knockout Framework

[154]

Doesn't that look nice? You can see this in the cp5-deactivate2 branch.

While these examples are short, hopefully, they give you an idea of what the
activation life cycle is capable of, especially when combined with promises. Because
promises can be chained, you could block deactivation when you go to the server
to get some information, then display it to the user in a message box, and pass the
result to the activator module.

Composition
The composition life cycle has another set of events that can be hooked into, which
allow you to control how the DOM is rendered, or respond to various stages of
composition. Again, all of these are optional:

• getView(): This is a function that can return a view ID (path to a view file), or
a DOM element. This overrides any other view location done by composition.

• viewUrl: This is a string property of a view ID, to override view location. It
will only be used if getView is not present.

• activate(): Just like activation's activate method, this function will
be called when composition begins. If the compose binding has an
activationData method specified, it will be given to activate as a parameter.
If a promise is returned, the composition will not continue until it resolves.

• binding(view): This is called before binding occurs. The view is passed to this
function as a parameter. If binding returns false or { applyBindings:false
}, binding will not be done on the view.

• bindingComplete(view): This is called when binding finishes. The view is
passed as a parameter.

• attached(view, parent): This is called with the view and its parent DOM
element after it is added to the DOM.

• compositionComplete(view, parent): This is called with the view and
its parent DOM element after all composition, including the composition
of child elements, has been completed.

• detached(view, parent): This is called after the view has been removed
from the DOM.

In the case of the combined activation and composition life cycles, such as the
router's navigation, the activation module's activate method is the only one called.

Chapter 5

[155]

With the exception of binding, which can stop binding from occurring, the
composition life cycle hooks do not offer the opportunity to control or cancel the
process like the activation hooks do. Though it is generally discouraged in MVVM
for the viewmodel to interact directly with the view, the composition life cycle is
designed to make it easy to do so. Patterns should only be followed as long as they
are helpful or possible, and if binding just can't get your work done, you may need
to work with the DOM in your viewmodel.

Widgets
Widgets in Durandal are similar to Knockout components, in that they are
viewmodel/view pairs that are instantiated from the DOM. Components use a
custom element while widgets use a custom binding. There is definitely some overlap
between them, but Durandal's widget system came before Knockout's component
system. Widgets also have a killer feature over components; their views can have
replaceable sections that can be overridden. This feature is commonly known as
transclusion—the inclusion of one document inside another.

It's difficult to talk about the widget API without using an example. When we looked
at components, we made a contact list component; so let's see what it would look like
doing the same thing with a widget. It may not be very reusable, making it an odd
choice for a widget; but it will cover the whole process.

Creating a new widget
Durandal expects widgets to be located in a directory named widgets, at the root of
your app, which, in our case, would be under client/app/widgets. Each widget will
store its code in a folder, which will be used as the name of the widget. The code for a
widget must be a JavaScript file named viewmodel.js and an HTML file named view.
html. So to make our contacts list item widget, we will use the following structure:

Durandal – the Knockout Framework

[156]

For the view, we are just going to pull the whole list section out of the
list.html view:

<ul class="list-unstyled" data-bind="foreach: contacts">

 <h3>
 <small data-
 bind="text: phoneNumber"></small>
 <button class="btn btn-sm btn-default" data-bind="click:
 $parent.edit">Edit</button>
 <button class="btn btn-sm btn-danger" data-bind="click:
 $parent.delete">Delete</button>
 </h3>

As we are going to be binding against a new viewmodel, I've changed the foreach
binding from displayContacts to contacts. Our viewmodel is going to look very
similar to our normal page viewmodels. Like pages instantiated by the router, our
widget's viewmodel won't be able to receive construction parameters; data passed
to the widget through the binding will be given to the activate function:

define(['durandal/app', 'knockout'], function(app, ko) {
 return function ContactListWidget() {
 var self = this;

 self.activate = function(options) {
 self.contacts = options.data;
 self.edit = options.edit;
 self.delete = options.delete;
 };
 };
});

We are passing in the data the view needs here, that is, the contacts array, and a
callback for edit and delete.

Using a widget
Durandal provides several ways to use the widget. First, we have to activate the
widget plugin in our main.js file:

app.configurePlugins({
 //Durandal plugins
 router:true,

Chapter 5

[157]

 dialog: true,
 widget: true
});

Now we can use the widget binding to create the widget:

<div data-bind="widget: { kind: 'contactList',
 data: displayContacts,
 edit: editContact,
 delete: deleteContact }">
</div>

I don't really like this though; it's a little verbose. There are two ways to register the
widget, which allow it to be used as if it was a binding itself:

<div data-bind="contactList: { data: displayContacts,
 edit: editContact,
 delete: deleteContact }">
</div>

I think this looks much nicer. To register a widget, you can either call
widget.registerKind('contactList'), or modify the plugin configuration:

app.configurePlugins({
 //Durandal plugins
 router:true,
 dialog: true,
 widget: {
 kinds: ['contactList']
 }
});

I personally prefer this last method; though if you have a lot of widgets, you
might prefer one of the other methods. You can see this widget being used in the
cp5-widget branch. The result looks identical to the previous version, but the list
is now in a separate view.

Modifying widgets with data-part attributes
So far, there isn't much to our widget. It doesn't add anything that a Knockout
component couldn't have given us, and the components have the nicer looking
custom element syntax going for them.

Durandal – the Knockout Framework

[158]

If you have an element in your widget's view with a data-part attribute, then that
element can be overridden by the caller. Let's say, for example, that we wanted to be
able to change the way the phone number was displayed. The first step is to add a
data-part attribute to the widget:

<small data-bind="text: phoneNumber" data-part="phone"></small>

The next step is to use the same data-part attribute in the caller:

 <div data-bind="contactList: { data: displayContacts,
 edit: editContact,
 delete: deleteContact }">

 </div>

The result is the new span element that replaces the original small element inside the
widget. You can see this in the cp5-datapart branch.

An important thing to notice here is that the new span element has a data binding
that refers to a contact's phoneNumber property. The data-part attribute is
overriding an element whose binding context is in the scope of the foreach loop of
the widget, and this scope is maintained by the new element. The binding context
of a data-part attribute, declared inside of a widget-bound element, is the binding
context of the element it replaces.

The special $root property of a widget's binding context is set to the declaring scope,
which is especially handy for overriding data-part attributes. If we want to refer to
properties on the list viewmodel, we can do so:

<div data-bind="contactList: { data: displayContacts, delete:
 deleteContact }">

 <small data-part="phone"><em data-bind="text:
 phoneNumber"></small>
 <button data-part="edit-btn" data-bind="click: $root.editContact
 " class="btn btn-sm btn-default">Edit</button>
</div>

This assumes that the matching button in the widget view has the data-part=
"edit-btn" attribute added to it. This button now directly references the
editContact function on the list viewmodel, instead of the one on the widget.
You can see this in action in the cp5-datapart2 branch.

A widget can have any number of data-part attributes, and each data-part
attribute can contain other data-part attributes. This allows maximum flexibility
in controlling the appearance and functionality of templated widgets.

Chapter 5

[159]

Summary
These are just the basics of using Durandal, but hopefully you can already appreciate
the power and simplicity the framework provides. It frequently happens online that
Knockout is compared to more complete frameworks such as Angular, and where
it lacks components, such as a router, they are taken as points against it. Durandal
stacks up much more evenly with these frameworks while it still takes advantage
of all of the things that make Knockout great.

In this chapter, you should have learned the composition system, as well as how
the router brings organization and modularity to your application. We saw how
promises combine with modal dialogs and the application life cycle to allow us to
respond to asynchronous events easily and naturally. Finally, we saw how widgets
can take the concepts behind Knockout components (reusable behavior-driven
controls that are instantiated from the view markup) and add templated data-part
attributes to achieve transclusion.

The next chapter will continue to explore how the Durandal framework simplifies
Knockout application development.

Advanced Durandal
In the previous chapter, we covered most of the basic uses of the Durandal
framework. By now, you should feel comfortable starting an application with it. In
this chapter, we will continue to look at Durandal by covering some more advanced
framework features as well as looking at some useful patterns that will help us solve
common challenges encountered in the SPA development.

• Publishing and subscribing with events
• Application login scenarios
• Advanced composition
• Nested routers
• Custom modal dialogs
• Binding to plain JavaScript objects

Publishing and subscribing
A very common problem new developers face when they start using Knockout is
how to communicate between viewmodels without establishing a single hierarchy
with a master viewmodel or any other form of direct reference between viewmodel
objects. These kind of hard dependencies are generally considered bad practice, but
the need to send messages between different viewmodels is unavoidable.

The publish-subscribe (pub/sub) pattern is a popular solution to this problem.
Durandal offers you a simple pub/sub implementation via the Events module. There
are two ways in which you can use the events system: with the events included on the
durandal/app object by default or by adding events to your own objects.

Advanced Durandal

[162]

The events module
The events system includes the events module and the subscription class. The
events module, required by durandal/events, provides you with the includeIn
method to add events to an object. When Events.includeIn(obj) is called, the
following functions are added to obj:

• on: This is used to subscribe to events on the object
• off: This is used to unsubscribe to events
• trigger: This is used to raise events
• proxy: This returns a function that can be called to raise events

Subscribing to events
The on method can be used in two different ways. To provide a callback and
an optional context (a this value for the callback), pass them in as parameters.
From on, obj will be returned so that chained subscriptions can be added:

obj.on('contact:added', self.contacts.push, self.contacts)
.on('contact:deleted', self.contacts.remove, self.contacts);

To get a subscription object, provide only the event name to on. What is returned
from on will be a subscription object, which provides a then and an off method.
The then method can be used to attach a callback:

obj.on('contact:added').then(function(newContact) {
 self.contacts.push(newContact);
});

The then method also returns the subscription that allows you to store the
subscription reference.

You can subscribe to multiple events simultaneously using a space-delimited list
of names for the event name parameter. You can also subscribe to all events on
the object using the all event name.

Unsubscribing from events
Removing a callback is done in a manner that is similar to adding callbacks,
and it depends on whether you added the callback with on or by using then
on a subscription.

Chapter 6

[163]

If you subscribed with on, you can unsubscribe by calling off with the same event
name and callback. To remove all callbacks for that event name (or names), do not
provide a callback to the second parameter. To remove all callbacks with a specific
context, provide a context to the third parameter:

//Remove a specific callback on an event
obj.off('contact:added', self.contacts.push);

//Remove all callbacks for a context (will remove both added and
 deleted from above example)
obj.off(undefined, undefined, self.contacts);

//Remove all callbacks
obj.off();

If you used a subscription object, just call off on the subscription:

var subscription = obj.on('contact:added')
 .then(self.contacts.push);
//unsubscribe
sSubscription.off();

Raising events
Triggering events on an object is similar to subscribing to them. You can use a single
event name, multiple space-delimited event names, or trigger all events using the
special all event name.

When events are triggered, they can pass along parameters to the callbacks of
subscribing events. Though triggered events can use any number of parameters,
it is much easier to work with callbacks when they always use a single parameter:

obj.trigger('contact:added', newContact);
obj.trigger('contact:added contact:approved', newApprovedContact);
obj.trigger('all', superImportantEventData);

Proxying events
An event proxy is a method that will raise a preselected event (or a list of events),
passing along its arguments as the event parameters. The following two methods
are equivalent:

obj.trigger('contact:added', newContact);
//
var contactAdded = obj.proxy('contact:added');
contactAdded(newContact);

Advanced Durandal

[164]

The benefit of proxies is that they are reusable, and they can be stored or passed
around. This is useful in order to share the proxy with other systems or just have a
single event-raising function in several places. This practice of creating a function
to represent another function with a fixed parameter is known as currying.

The event name of a proxy can be any string that trigger can use, including all.

Application events
As the app object is a singleton that has events included out of the box, its events
are useful for application-wide messaging. Communication between independent
top-level components, such as page viewmodels, is a good candidate for app-wide
messaging.

Let's say we wanted to reduce load on the server by raising an event when a new
contact was added so that the list page could get the new contact without going
to the server to refresh the whole list. To stop loading the list during it's activate
method, it will be converted into a singleton that reuses the same loading promise:

function ContactListVM() {
 // ...
 var singleActivate = dataService.getContacts()
 .then(function(contacts) {
 self.contacts(contacts);
 });

 self.activate = function() {
 return singleActivate;
 };
 //...
};

return new ContactListVM();

As the promise that is returned to activate is only run once, the list will not be
reloaded when the page is navigated multiple times.

The list page's viewmodel now needs to create an event subscription in order to
receive new contacts. Durandal's convention for event names is to specify the
source(s) and event type, separated by colons. This convention is recommended
but not required; Durandal does not treat colons as delimiters for event names.
For example, these are two events raised by the router during the navigation:

router:navigation:complete
router:navigation:cancelled

Chapter 6

[165]

To subscribe to an event for a new contact, the list page can use the following
subscription:

app.on('contact:added').then(function(newContact) {
 self.contacts.push(newContact);
});

However, because the only action being taken is to send the newContact parameter
to contacts.push, it would be shorter to write it as a callback with a context:

app.on('contact:added', self.contacts.push, self.contacts);

These two methods are equivalent. It should be noted that the third parameter that
defines the context is necessary; otherwise, the push function will be called and will
fail without being in the context of the contacts array.

The new/edit page can now publish this event using the contact:added event after
it creates a contact:

self.saveEntry = function() {
 if (self.contact().id() === 0) {
 dataService.createContact(self.contact())
 .then(function(contact) {
 app.trigger('contact:added', contact);
 });
 } else {
 //Edit
 }
};

This will send you the contact returned from the createContact promise as the data
for the triggered event. However, as this is another case of sending a parameter to
another single function, it can be written using a proxy:

var contactAdded = app.proxy('contact:added');
self.saveEntry = function() {
 if (self.contact().id() === 0) {
 dataService.createContact(self.contact())
 .then(contactAdded)
 } else {
 //edit
 }
};

You can see an example of this in the cp6-pubsub branch.

Advanced Durandal

[166]

Module-scoped events
In addition to application-wide pub/sub, Durandal provides a simple method
to add the events methods to any object, allowing events to be scoped. Calling
Events.includeIn(obj) will create the same event handling methods that the app
object has by default: on, off, trigger, and proxy.

The data service is a good candidate for events related to contacts being added
(or modified), as only the modules that already have a reference to it will be
interested in these events. Moving the contact:added event out of the new/edit
page into the data service also ensures that the event will still go off if another
module tries to add a contact:

var dataService = {};
Events.includeIn(dataService);
//other methods omitted
dataService.createContact = function(contact) {
 contact.id(UUID.generate());
 contacts[contact.id()] = ko.toJS(contact);
 saveAllContacts();
 return getTimeoutPromise(contact).then(function() {
 dataService.trigger('contact:added', contact);
 return contact;
 });
};

This will add the event methods to the dataService object and raise the
contact:added event in the return promise for the createContact method.

The change to the list page viewmodel is just referencing the dataService object
instead of app for the event subscription:

dataService.on('contact:added', self.contacts.push,
 self.contacts);

That's all that needs to be done. The dataService object is now acting as an event
scope for contacts. You can see this example in the cp6-event branch.

Handling logins
Handling logins can be tricky for a variety of reasons, and there are hundreds of
different techniques out there. Web application login generally falls in one of two
categories: either your site is free to browse without being logged in (anytime login),
or it uses and requires the user to log in first (gated login). The challenges presented
by each category are different, and so are the best solutions.

Chapter 6

[167]

Gated login
Until fairly recently, almost all gated login sites used some redirection pattern to
present a login page to users, which was usually an unpleasant experience. Beyond
the issue of page load time, getting back to the originally requested URL generally
meant query string parameters that contained the original URL. If the original URL
had query strings itself, they were either lost or appended to the URL query value.

SPAs can sidestep the redirection problem by just showing a login page at the
current URL; no redirection means the whole process is faster, there is no hassle
with the query string, and the user isn't jarred by the URL changing. They have a
different challenge, though: what do you do with the shell? You can place the login
form alongside the shell and switch between them with bindings, but this clutters the
shell with login markup. You can use a modal dialog to show the login form so that
the shell is untouched, but then the shell is either blank or shows information that
should be login-gated.

Durandal's setRoot method really simplifies this problem. If the user needs to log
in, setting the login form as the root means the shell is never even loaded. After
the login finishes, the shell can then be set as the root; the shell's markup is left
untouched, and the user never sees anything they shouldn't:

1. First, our application startup in main.js will use setRoot to go to either
the login or the shell, depending on whether the user is already logged in
(say, from a cookie):
define(['durandal/system', 'durandal/app',
 'common/extensions', 'services/mock'],
function(system, app, extensions, dataService) {

 ///Same as before

 app.title = 'Mastering Knockout';
 app.start().then(function () {
 app.setRoot(dataService.isLoggedIn() ? 'shell/shell' :
 'login/page');
 });
});

2. This relies on the dataService object, performing a synchronous check to
see if isLoggedIn is true, but it can easily support an asynchronous one
that's just hooking into the app.start promise:
app.start()
.then(dataService.isLoggedIn)
.then(function (isLoggedIn) {
 app.setRoot(isLoggedIn ? 'shell/shell' : 'login/page');
});

Advanced Durandal

[168]

Once the login process is complete, the login viewmodel can just call setRoot for the
shell. That's it! In fact, the only other properties in the login viewmodel are the ones
for username, password, and a failed sign-in flag. After the login completes, the shell
will start up just like it did previously, activate the router, and compose the correct
page. There is no need to worry about managing an empty state while the login
happens, as the shell is never loaded until setRoot is called on it.

You can see an example of this in the cp6-login branch. The login module contains
a standard viewmodel and view. To log in, use any login details where the username
and password are the same. Obviously, in a real application, you would want to
create a server request.

One thing that is important to note is the logout function. It's in the shell in the sample,
but in a real application, it should be refactored into an external service—probably
the same one that holds the methods used to get and set the login cookie in order to
centralize the login behaviors. In SPAs, because navigation isn't occurring, it can be
a challenge to clean up all of the data a logged-in user has in the application state,
especially when you have singletons. Trying to create a cleanup method that removes
all of this data is prone to errors; it's easy to miss out on important bits of data, and it
requires constant maintenance as the application grows. Instead, it's much safer to just
reload the browser. Navigation, even if it's a refresh, completely resets the JavaScript
state, guaranteeing that nothing from the previously logged-in user is left in the
memory. The location.reload method is a simple way to do this, but it might not
be the best approach if the user is on a page with a sensitive URL. A safer approach
would be to set the location to the domain root:

location.href = '/';

Anytime login
Sites that allow users to browse and optionally log in have different challenges
compared to gated login sites. Some sites that allow optional login still have a
separate login page and still use redirection parameters to get the user back to their
original location, but this experience is even more unpleasant for the user, as it seems
unnecessary. Of course, it might be required if you allow browsing over HTTP and
require a redirect for HTTPS to perform the login, but this is all the more reason to
always require HTTPS! If you take the redirection route to get to an HTTPS page,
then even the preceding method will not work for you, as the preceding method
doesn't use browser navigation to change the page.

If you always require HTTPS for normal browsing, then you can allow the user to
log in without interfering with the current page. You can use the same technique that
gated login uses, but without the need to hide post-login information, there are less
intrusive methods.

Chapter 6

[169]

A common method, and one of the least intrusive, is to include an inline login form
in the navigation bar.

Once logged in, the navigation bar would appear the same as the previous
navigation bar with the login name and the logout button. This small section of the
navigation bar can be backed by a login viewmodel that is composed into the shell,
which keeps the login implementation details separate:

<nav role="navigation" class="collapse navbar-collapse"
 id="navbar-collapse-group">
 <ul class="nav navbar-nav" data-bind="foreach:
 router.navigationModel">
 <li data-bind="css: { active: isActive }">
 <a class="" data-bind="attr: { href: hash }, text:
 title">

 <div class="nav navbar-nav navbar-right">
 <!-- ko compose: login --><!-- /ko -->
 </div>
</nav>

The login viewmodel doesn't need to change much for this, but the logout
functionality can be moved into it as it no longer is controlled by the shell. You can
see an example of this in the cp6-login-nav branch. Try logging in and notice how
the navigation bar changes.

Responding to the user's login changes
The inline login form works, but it is likely that your application will need to
respond to the newly logged-in user in some way, for example, letting only logged
in users create, edit, or delete contacts. There are two ways to handle this: either use
some combination of events and Knockout observables to update the page, or reload
the page when the user logs in.

Advanced Durandal

[170]

It might be simpler to take the page reload route, but it really depends on your
application. If you use anytime login and allow users to see most pages without
being logged in, you might not be maintaining two separate versions of each page.
Instead, you might have if/visible bindings hiding the logged-in-only content.
If that is the case, then updating these observables won't be too much effort.

However, if you are maintaining two separate versions of each page because they
are different enough for logged-in users, the page reload method is a better bet. As
the reload route doesn't take much explaining, let's look at the first case.

For the simple case of hiding the edit controls, Knockout observables are perfectly
sufficient. The login-checking function in the data service is a good place to put
observables that multiple viewmodels will depend on, as it is already a shared
component. In a larger application, you might want to separate the data service into
multiple services in order to serve specific roles such as login and contact CRUD:

dataService.loginName = ko.observable(storage.get('loginToken'));
dataService.isLoggedIn = ko.computed(function() {
 return dataService.loginName() != null;
});
dataService.tryLogin = function(username, password) {
 var success = username === password;
 if (success) {
 storage.set('loginToken', username);
 dataService.loginName(username);
 }

 return getTimeoutPromise(success);
};
dataService.logout = function() {
 dataService.loginName(null);
 storage.remove('loginToken');
};

Here, loginName determines whether or not isLoggedIn is true. The loginName
parameter is set initially if storage has a saved token, and it is updated when the user
logs in or out. There are three places that need to use one of these fields: the list page,
the list items, and the shell. The list page will use it to expose whether or not a user
can edit contacts:

self.canEdit = ko.computed(function() {
 return dataService.isLoggedIn();
});

Chapter 6

[171]

This property is used by the list of items in order to hide or show the buttons:

<!-- ko if: $parent.canEdit -->
 <button class="btn btn-sm btn-default" data-part="edit-btn"
 data-bind="click: $parent.editContact">Edit</button>
 <button class="btn btn-sm btn-danger" data-bind="click:
 $parent.deleteContact">Delete</button>
<!-- /ko -->

For additional safety, the methods backing these buttons should also check the
canEdit property. The delete button is not shown, but it uses the same check
as what is shown in the following code:

self.editContact = function(contact) {
 if (!self.canEdit()) {
 return;
 }
 router.navigate('contacts/' + contact.id());
};

Likewise, to ensure that the user cannot get to the edit page by manually entering the
URL, it should use a canActivate check to block navigation for anonymous users:

self.canActivate = function() {
 return dataService.isLoggedIn();
};

Finally, the shell will want to remove the route from the navigation bar when the
user is not logged in. One way to do this is to create a computed observable array
on the shell that filters out routes when the user isn't logged in:

router.map([
 { route: '', moduleId: 'contacts/list', title: 'Contacts', nav:
 true },
 { route: 'contacts/new', moduleId: 'contacts/edit', title: 'New
 Contact', nav: true, auth: true },
 { route: 'contacts/:id', moduleId: 'contacts/edit', title:
 'Contact Details', nav: false }
])
.buildNavigationModel()
.mapUnknownRoutes('shell/error', 'not-found');

this.navigationModel = ko.computed(function() {
 var navigationModel = router.navigationModel();
 if (dataService.isLoggedIn()) {
 return navigationModel;
 } else

Advanced Durandal

[172]

 return navigationModel.filter(function(route) {
 return !route.auth;
 });
});

This model will remove any route with an auth: true property when the user is not
logged in, which makes it easy to add pages that require login in the future.

This example can be seen in the cp6-login-event branch. To make it easy to see
the logout transition, this branch does not reload the page when the user logs out;
instead, it just clears storage and updates the observables on the data service.

Guarded routes
In the previous section, we used a canActivate check on a page viewmodel to
ensure that users could only get to the page when they were logged in. This works,
but if multiple pages need to be gated, or we need to use logic that the page might
not have, it is possible to add this logic to the router.

The guardRoute method is an optional method that the router will use to screen
every attempted navigation. It receives the module being activated and the
route instruction as parameters. If true, or a promise for true, is returned from
guardRoute, then navigation continues normally. If a string or a promise for a string
is returned, it will be used as a redirection route. If false or a promise for false is
returned, then navigation is cancelled:

router.guardRoute = function(model, instruction) {
 return !(instruction.config.auth && !dataService.isLoggedIn());
};

This router guard can replace the canActivate method on the edit page, as it will
cancel navigation when the route has auth:true and the user is not logged in.
However, canceling navigation can sometimes appear to users as the application
not responding, such as when the back button is pressed. It can be improved by
redirecting the current page to the error page instead:

router.guardRoute = function(model, instruction) {
 return !(instruction.config.auth && !dataService.isLoggedIn())
 || 'shell/error';
};

This example can be seen in the cp6-guard-route branch.

Chapter 6

[173]

Advanced composition
In Chapter 5, Durandal – the Knockout Framework, we covered the basic and common
uses of Durandal's composition system. This section will cover further composition
techniques such as caching, transitions, and composition mode.

View caching
By default, the view rendered by the composition binding is discarded when the
composed module is changed. This results in the DOM contents of the composition
binding always being only the current module's view. The cacheView option on the
composed binding will change this behavior so that Durandal can keep any view
composed. If a module is reactivated using the same object that is already bound
to a view, it will not be recreated. Both the compose and router bindings have
this option:

<div class="page-host">
 <!-- ko router: { cacheViews: false }--> <!-- /ko -->
</div>

You can see an example of this in the cp6-cache branch. If you open the console,
you can see that the attaching and binding events are no longer being raised when
revisiting the list or edit pages. You can also see, with a debugger breakpoint, that
the viewmodels are only being constructed the first time.

When working with cached views, extra caution is required. As the module is a
singleton and is only constructed once, the activate method is responsible for
setting up data or clearing old data out. For example, previously, the edit page only
set its contact property to a new instance during the construction. The activate
method needs to reset the contact if the page is being loaded in a new entry mode
(without an ID):

self.activate = function(id) {
 //Id is only present when editing
 if (id) {
 return dataService.getContact(id).then(self.contact);
 }
 else
 self.contact(new Contact());
};

If this isn't done, users will not see an empty form if they tried to create a contact
after creating or editing a previous one.

Advanced Durandal

[174]

Even if the cacheViews property is set to true, Durandal will not cache a DOM
view if the model instance has changed. In the cp6-cache2 branch, the constructor
is returned from the list page, and you can see that a new instance is constructed
and attached to the DOM despite cacheViews being set.

Transitions
Durandal's router and compose bindings have a hook that allows the composed
view to transition with an animation. To use it, provide a value to the transition
property on the binding:

<!-- ko router: {
 cacheViews: false,
 transition: 'entrance'
}--> <!-- /ko -->

The entrance transition is provided by default; it fades the current view out and
fades in the next view with a small slide effect. You can see it in the cp6-entrance
branch. Note that for this animation to work, the composition needs to occur in
an element with the CSS position: relative property, as the animation uses
absolute positioning.

The durandal/composition module also has a defaultTransitionName property
that will use the supplied transition for all compositions that do not specify their
own transitions.

To create your own transition, you need a module that returns a function that
Durandal can call in order to run the transition. The transition function will receive
the composition settings and needs to return a promise for its completion. There are
a lot of values on the settings object but the two that are most useful are activeView,
which is the view being transition out, and child, which is the view being
transitioned to.

Here is an example of a custom transition that uses the jQuery UI's slide effects.
It assumes that jQueryUI has already been set up in RequireJS:

define(['durandal/system', 'jquery', 'jquery-ui'], function(system, $)
{

 var outDuration = 400,
 outDirection = 'down'
 inDuration = 400,
 inDirection = 'up',
 easing = 'swing';

Chapter 6

[175]

 return function slideAnimation(settings) {

 var currentView = settings.activeView,
 newView = settings.child;

 return system.defer(function(defer) {
 function endTransition() {
 defer.resolve();
 }

 function slideIn() {
 $(newView).show('slide', { direction: inDirection, easing:
 easing }, inDuration, endTransition);
 }

 if (currentView) {
 $(currentView).hide('slide', { direction: outDirection,
 easing: easing }, outDuration, newView ? slideIn :
 endTransition);
 } else {
 $(newView).show();
 endTransition();
 }

 }).promise();
 };
});

The module returns the animation function, which itself returns a promise for the
animation. The animation function pulls out the current and next view and then sets
up callbacks in order to end the view and slide in the new view with jQuery. The if
block at the end ensures that the current view is only acted upon when it exists. If it
doesn't, then no animation is created (as there is nothing to slide out), and the view
is just shown.

By default, Durandal looks for transitions by appending 'transitions/' to
their name in order to get a RequireJS path. This is why the standard Durandal
RequireJS configuration has a transitions path defined. You can map the path
in RequireJS to another folder if you want to keep transitions somewhere
else—such as your app folder—or you can override the composition module's
convertTransitionToModuleId function to provide your own lookup logic.

This example can be seen in the cp6-transition branch. This branch uses a
RequireJS path for a transitions folder in the app directory, which contains
the preceding slide animation.

Advanced Durandal

[176]

The templated mode
In the previous chapter, we covered widgets, which offer us the ability to override
sections of the composed element with data-part attributes. This feature is also
available in viewmodel composition using the binding mode: 'templated' option.

The example widget that was used was a bit contrived, as the list of contacts
isn't really a reusable widget. A more common technique with lists, especially
with complex items, is to create a module for the list item and compose it with
a foreach binding.

Separating complex list items from the page they are shown in keeps properties
and methods specific to the list item that is not on the page. This is the same
modularization logic that drives the separation of viewmodels and modules. It lets
the page viewmodel focus more on the actions the page takes as a whole and lets the
item focus on itself. The contact list items aren't complex enough to warrant this, but
I'm sure you can imagine such a case.

Replacing the contact list widget with a compose/foreach binding is simple:

<ul class="list-unstyled" data-bind="foreach: displayContacts">
 <li data-bind="compose: $data">

This allows the item itself to be moved into its own file, which is listItem.html:

<h3 data-bind="with: contact">

 <small data-bind="text: phoneNumber" data-part="phone"></small>
 <div class="inline" data-part="btn-container">"
 <button class="btn btn-sm btn-default" data-part="edit-btn"
 data-bind="click: edit">Edit</button>
 </div>
</h3>

This is the same template that was used previously, minus the delete button. The
viewmodel for the list item is simple, containing just a contact object and an
edit function:

define(['knockout', 'plugins/router'], function(ko, router) {
 return function ListItem(contact) {
 var self = this;

 self.contact = contact;

Chapter 6

[177]

 self.edit = function() {
 router.navigate('contacts/' + self.contact.id());
 };
 };
});

The last thing to do is construct the list item on the list page instead of just using the
bare contact model:

self.activate = function() {
 return dataService.getContacts()
 .then(function(contacts) {
 var listItems = contacts.map(function(contact) {
 return new ListItem(contact);
 })
 self.contacts(listItems);
 });;
};

You can see this example in the cp6-list-item branch. This is just the setup,
though; what we are really after is overriding the list item view with data-part
attributes. Data-part overriding works the same way with compositions as it works
with widgets:

<ul class="list-unstyled" data-bind="foreach: displayContacts">
 <li data-bind="compose: { model: $data, mode: 'templated' }">
 <div data-part="btn-container" class="inline">
 <button class="btn btn-sm btn-default" data-bind="click:
 edit">Edit</button>
 <button data-bind="click: $root.deleteContact" class="btn
 btn-sm btn-danger">Delete</button>
 </div>

Here, the entire btn-container element is being overridden so that a delete button
can be added. Remember, the scope of data-part attributes is the view they will
be placed into, which is listItem in this case. The edit function is already in this
scope, but the deleteContact function is in the parent of listItem, which can be
accessed using the $root property of the templated elements.

This example can be seen in the cp6-template-compose branch.

Advanced Durandal

[178]

Child routers
Another common scenario is the need to support routes within routes; this is
sometimes called nested or child routes. For example, you might have multiple
pages under the parent /about route that are represented by the /about/author
and /about/publisher URLs, which are displayed as different subsections of the
main /about page.

To do this, the parent route has to capture child routes. It can do this with a splat
route or with the hasChildRoutes property:

router.map([
 { route: 'about', moduleId: 'about/index', title: 'About', nav:
 true, hasChildRoutes: true }
 //OR
 { route: 'about*children', moduleId: 'about/index', title:
 'About', nav: true }
]);

Either way is fine, but note that the about*children splat route requires at least
one character after the asterisk (*); the about* route will not capture the children
properly. Personally, I think the hasChildRoutes property has a clearer intention.

Next, the viewmodel that exposes child routes creates a child router:

define(['plugins/router'], function(router) {
 var childRouter = router.createChildRouter()
 .makeRelative({
 moduleId: 'about',
 fromParent: true
 }).map([
 { route: ['author', ''], moduleId: 'author', title: 'Author',
 nav: true },
 { route: 'publisher', moduleId: 'publisher', title: 'Publisher',
 nav: true }
]).buildNavigationModel();

 return {
 router:childRouter
 };
});

The createChildRouter function returns the child router of the root router. You
can only have one root router, but it can have any number of children, and children
routers can have children routers as well.

Chapter 6

[179]

The makeRelative function takes an optional object. The moduleId option instructs
all the modules of children routes to be prefixed with the supplied module,
essentially making the routes relative to a folder. This is not required, but it keeps
the routes shorter. The fromParent option causes children routes to inherit their
parent's URL from the route property.

Finally, the module exposes childRouter as the router so that its view can bind to
it using the same syntax that was used by the shell. This is the view for the about
parent page:

<h1>About</h1>
//Text removed for clarity
<ul class="nav nav-tabs" role="tablist" data-bind="foreach:
 router.navigationModel">
 <li data-bind="css: { active: isActive }">

<div class="page-sub-host">
 <!-- ko router: { cacheViews: false }--> <!-- /ko -->
</div>

This example can be seen in the cp6-child-router branch. The about page and
its child routes are in the app/about folder, and the route has been added to the
navigation bar.

Dynamic child routes
When creating child routes for a parent route with a parameter, such as
/contacts/23/bio, additional configuration is required in order to allow the child
routes to be relative to the /contacts/:id dynamic parent. To see an example of
this, we are going to add a biography and location section to our contact pages.

The contact edit route needs to indicate that it has child routes. The same options are
available, but there is a caveat for splat routes—you must specify a hash manually:

{ route: 'contacts/:id', moduleId: 'contacts/edit', title:
 'Contact Details', nav: false, hasChildRoutes: true },
//OR
{ route: 'contacts/:id*children', moduleId: 'contacts/edit',
 title: 'Contact Details', nav: false, hash: 'contacts/:id' },

The children routers will not be able to create a proper URL from a splat route if
the hash is not specified manually. This does not need to be done if you're using
the hasChildRoutes flag.

Advanced Durandal

[180]

The child router definition is almost identical, except for the dynamicHash property:

var childRouter = router.createChildRouter()
.makeRelative({
 moduleId: 'contacts/edit',
 fromParent: true,
 dynamicHash: ':id'
}).map([
 { route: ['details', ''], moduleId: 'details', title: 'Details',
 nav: true },
 { route: 'bio', moduleId: 'bio', title: 'Biography', nav: true
 },
 { route: 'location', moduleId: 'location', title: 'Location',
 nav: true }
]).buildNavigationModel();

The dynamicHash property controls how the URLs for child routes are created,
as they need to include the route parameter. That's all it takes, though! After this,
the routes can be used on the parameterized URL.

You can see an example of this in the cp6-dynamic-child-routes branch. The edit
page's child routes have been placed for organization in the contacts/edit folder.
Also, the biography and location pages just contain dummy text.

Custom modal dialogs
In Durandal, a dialog context is the viewmodel that controls a modal dialog. It has a
method used to add the modal dialog host, which is the DOM node inside which the
modal content will be placed.

Durandal offers two modal dialogs out of the box: message boxes and the default
context. The message box that Durandal offers adds some simple DOM elements to
the default context and is very useful in order to show short messages to the user.
The default dialog context can host any composable module, including message
boxes. If you want to use your own dialog box, such as the one included in Twitter
Bootstrap, it is possible to add it as a dialog context.

A dialog context is an object that can create a dialog in the DOM to which the
composition can add content. A custom context uses the following APIs:

• addHost(dialog): This function is responsible for creating the dialog itself,
by adding it to the DOM. It must assign the dialog.host property on the
parameter to this DOM node, which will be used by composition as the
parent for the composing module.

Chapter 6

[181]

• removeHost(dialog): This function removes the DOM for the dialog and
performs any cleanup.

• compositionComplete(child, parent, context): This is a
composition hook that the context can use to perform any setup. To get
the dialog object (the parameter from the other two functions), call
dialog.getDialog(context.model).

Custom dialog contexts are useful when you have different needs for modal
windows. The Twitter Bootstrap dialog, for example, uses the same responsive CSS
system that the rest of the Bootstrap framework uses, making it perfect for dialogs
that need to be usable on desktops and phones. You might also want some of your
dialogs to be displayed in a circular pop up in order to differentiate them from other
modals your application is using.

Working with custom dialogs is done using the dialog module, which is injected
using 'plugins/dialog'. You can add a custom dialog context with the dialog.
addContext function, which takes a context that matches the preceding API. The
first parameter is the name of the new context, and the second is the context object:

dialog.addContext('bootstrap', {
 addHost: function (dialogInstance) {
 //Create dialog, add to DOM
 },
 removeHost: function (dialogInstance) {
 //Remove dialog from DOM
 },
 compositionComplete: function (child, parent, context) {
 //Perform setup
 }
});

This setup needs to be done before the dialog can be used, so it is good to do it with
any app setup. In the upcoming example, this will be in the common/extensions
module.

The actual setup logic for each of the context methods depends on the dialog you are
adding. This is what the Bootstrap modal setup will look like:

addHost: function (dialogInstance) {
 var body = $('body'),
 host = $('<div class="modal fade"><div class="modal-dialog"><div
class="modal-content"></div></div></div>');
 host.appendTo(body);
 dialogInstance.host = host.find('.modal-content').get(0);
 dialogInstance.modalHost = host;
}

Advanced Durandal

[182]

Unlike the Durandal modal, where the content container and the dialog element
are the same, the Bootstrap modal expects the content container to be inside the
dialog element. The content's DOM element is placed in the dialogInstance.host
property, which Durandal will use to compose the module. The outer modal element
is stored in the modalHost property, which will only be used by functions on our
custom Bootstrap context:

compositionComplete: function (child, parent, context) {
 var dialogInstance = dialog.getDialog(context.model),
 $child = $(child);
 $(dialogInstance.modalHost).modal({ backdrop: 'static',
 keyboard: false, show: true });

 //Setting a short timeout is need in IE8, otherwise we could do
 this straight away
 setTimeout(function () {
 $child.find('.autofocus').first().focus();
 }, 1);

 if ($child.hasClass('autoclose') || context.model.autoclose) {
 $(dialogInstance.blockout).click(function () {
 dialogInstance.close();
 });
 }
}

This is where the actual Bootstrap $.modal() code is run from, as the sizing and
placement of the modal will need to have a fully composed module that already
exists. It uses the modalHost property and not the host property, as Bootstrap is
expecting the modal container. Additionally, the handler is set up to support the
standard Durandal autofocus and autoclose classes:

removeHost: function (dialogInstance) {
 $(dialogInstance.modalHost).modal('hide');''''''
}

The removeHost function takes the steps that are required to hide the modal and
the backdrop.

Finally, we use this new modal by specifying the context parameter on dialog.show
in the edit contact viewmodel:

self.show = function() {
 return dialog.show(self, null, ''bootstrap'');
};

Chapter 6

[183]

If you look in the cp6-bootstrap-dialog branch, this context will be added. The
modal dialog from Chapter 5, Durandal – the Knockout Framework, that opens when the
Add Contact button on the list page is pressed has been restored. You can see that
this new dialog has the Bootstrap sliding entrance animation, and the content
is responsive.

There is another method that can be used to show custom dialogs. The addContext
method automatically creates a helper method using the context name. For the
Bootstrap context, the method is dialog.showBootrap:

self.show = function() {
 return dialog.showBootstrap(self);
};

You can see this example in the cp6-bootstrap-dialog2 branch.

Replacing the default context
Having multiple dialog contexts is certainly useful, but if you are adding a custom
dialog context, chances are you want it to be the default dialog context. Having a
Bootstrap modal dialog is great, but the standard message boxes are still using the
nonresponse Durandal context. To change this, just replace the dialog.show method
with one that specifies your context when one isn't explicitly provided:

var oldShow = dialog.show;
dialog.show = function(obj, data, context) {
 return oldShow.call(dialog, obj, data, context || 'bootstrap');
};

This will cause all regular calls to the dialog module to use this context without
affecting the ability of the code to manually control which dialog context is used
for special scenarios:

//Shows using the Bootstrap dialog
app.showMessage('Are you sure you want to delete ' + contact.
displayName() + '?', 'Delete Contact?', ['No', 'Yes']);
//Shows using the Bootstrap dialog
self.show = function() {
 return dialog.show(self);
};
//Uses the bubble context, equivalent to calling dialog.showBubble();
self.show = function() {
 return dialog.show(self, null, 'bubble');
};

Advanced Durandal

[184]

In the cp6-bootstrap-dailog3 branch, you can see that the delete confirmation
message box as well as the add contact modal uses the Bootstrap dialog context.

If you still need access to the default context, consider adding a conventional helper
to the dialog object, such as dialog.showDefault or dialog.showOld:

var oldShow = dialog.show;
dialog.show = function(obj, data, context) {
 return oldShow.call(dialog, obj, data, context || 'bootstrap');
};
dialog.showDefault = oldShow;

Using activators
The activation life cycle is automatically used by the router, but sometimes, you
want to use it without tying the work to the URL, which turns out to be quite easy.
An activator is just a computed observable whose write function enforces the
life cycle. An activator can be created by calling activator.create() using the
durandal/activator module.

For this example, we are going to add an inline quick edit to the list page that will allow
contacts to be edited without navigating to another page. It will leverage the existing
edit page viewmodel with some minor changes, as it already has a canDeactivate
method that prompts the user with a confirmation modal when unsaved changes are
present. The list page activator will hook into the same logic automatically.

This example is in the cp6-activator branch. You might want to play with it a bit
before we go into how it works. Just use the quick edit button on the list page, and
the contact will be loaded into an edit form just below the search box.

The list page needs an activator and a function to set the activator:

self.editContact = activator.create();
self.quickEdit = function(listItem) {
 self.editContact(new ContactVM(listItem.contact, function() {
 self.editContact(null);
 }));
};

The quickEdit function, which will be bound to a button on the list item, sets the
editContact activator to a new instance of the edit page viewmodel. It provides the
contact-to-edit to the new viewmodel and a callback to clear the editContact object.
The HTML just needs a button to call it:

<ul class="list-unstyled" data-bind="foreach: displayContacts">
 <li data-bind="compose: { model: $data, mode: 'templated' }">

Chapter 6

[185]

 <div data-part="btn-container" class="inline">
 <button class="btn btn-sm btn-default" data-bind="click:
 edit">Edit</button>
 <button class="btn btn-sm btn-default" data-bind="click:
 $root.quickEdit">Quick Edit</button>
 <button data-bind="click: $root.deleteContact" class="btn
 btn-sm btn-danger">Delete</button>
 </div>

To use this, the edit page viewmodel will need to call the close callback—the second
constructor parameter—when saving or canceling in a manner that is similar to how
it handled closing the dialog:

function EditContactVm(initContact, closeCallback) {

 ///...

 self.close = function(result) {
 if (closeCallback) {
 closeCallback();
 } else if (dialog.getDialog(self)) {
 dialog.close(self, result);
 } else {
 router.navigate('''');
 }
 };

Actually, this is all we need in order to take advantage of the deactivation guard,
which is already on the edit viewmodel. There is some additional logic that handles
saving changes, but it isn't strictly related to the activator use. If you try to use quick
edit, make some changes, hit Cancel, and you will be prompted. If you hit No, the
item will not be deactivated. You will also be prompted if you try to use a different
quick edit while unsaved changes are present. All of this guard logic is handled for
you by virtue of editContact being an activator observable.

In addition to being writeable with the normal observable pattern by calling
editContact(newValue), activators have an activateItem method. The first
parameter to activateItem is newValue, and the second option is activationData,
which allows you to send a property bag to the activate method of the new value
being set. This will be used as editContact.activateItem(newValue, data).

Advanced Durandal

[186]

This example, more than most examples in this book, is extremely contrived for the
sake of brevity. Overloading the edit page viewmodel so that it is internally aware of
being used in three different contexts is not a good design, and is not recommended
for real-world use.

Binding to plain JavaScript objects
The last part of Durandal that we are going to cover is the observable plugin, which
allows data binding to use normal viewmodel properties as observable objects by
converting them under the hood.

The observable plugin uses JavaScript getters and setters created with
defineProperty, which is part of the ECMAScript 5 specification. Only modern
browsers support this feature, so if your application needs to work in Internet
Explorer 8, the observable plugin will not work.

Using the observable plugin removes one of the most common complaints from
Knockout's syntax: the parentheses. All of the property access is executed using
plain syntax, whether reading or assigning values:

function Contact() {
 var self = this;
 self.firstName = '';
 self.lastName = '';
 self.reset = function() {
 self.firstName = '';
 self.lastName = ''
 };
};

var viewmodel = new Contact();

//HTML
<input data-bind="value: firstName" />
<input data-bind="value: lastName" />
<button data-bind="click: reset">Reset</button>

Everything is converted into observables by the observable plugin during data
binding. Knockout observables can still be created with ko.observable, but it
should not be necessary.

This does have an impact on all of your code, though, as using the parentheses to
access properties will no longer work; they are not functions anymore! Using the
observable plugin means a total conversion of your application code.

Chapter 6

[187]

Observable plugin setup
Using the observable plugin, like any plugin, requires it to be installed before the
app.start call:

app.configurePlugins({
 router:true,
 dialog: true,
 observable: true
});
app.start().then(function () {
 app.setRoot('shell/shell');
});

If you need to use the plugin manually, it is required into a module with
plugins/observable.

Subscribing and extending
When you are no longer creating observables manually, you will have to use the
observable plugin to get access to the underlying observable to set up subscriptions
or add extenders. This can be done by calling the observable module as a function
with observable(object, 'property'). The observable module is injected with
'plugins/observable':

function Contact() {
 //Same as before

 observable(self, 'firstName').subscribe(function(value){
 console.log('First name changed.');
 });

 observable(self, 'firstName').extend({
 rateLimit: {
 timeout: 100,
 method: 'notifyWhenChangesStop'
 }
 });
};

This can be done at any time, even if the property hasn't yet been converted into an
observable, as calling the observable module will convert the property immediately.

Advanced Durandal

[188]

Computed observables
Computed observables are created using observable.defineProperty:

observable.defineProperty(self, 'displayName', function() {
 var nickname = self.nickname || '';
 if (nickname.length > 0) {
 return nickname;
 } else if ((self.firstName || '').length > 0) {
 return self.firstName + ' ' + self.lastName;
 } else {
 return 'New Contact';
 }
});

The defineProperty method also returns the underlying computed observables so
that it can be extended or subscribed to.

There is a caveat with computed observables, though. If anything tries to access the
computed value before its dependencies have been converted into observables, then
the computed value will not be able to register these dependencies; its value will
never update:

return function Contact(init) {
 var self = this;

 self.id = 0;
 self.firstName = '';
 self.lastName = '';
 self.nickname = '';
 self.phoneNumber = '';

 observable.defineProperty(self, 'displayName', function() {
 var nickname = self.nickname || '';
 if (nickname.length > 0)
 return nickname;
 else if ((self.firstName || '').length > 0)
 return self.firstName + ' ' + self.lastName;
 else
 return 'New Contact';
 });

 //This will break the display name property
 var name = self.displayName;
}

Chapter 6

[189]

To stop this from happening, the dependencies firstName, lastName, and nickname
need to be made observables manually. This can be done by calling convertObject
on the observable module:

observable.convertObject(self);
observable.defineProperty(self, 'displayName', function() {
 //
});

This ensures that the first time displayName is accessed, it reads observable
properties and not normal properties.

Because this bug can be difficult to track down when it happens, it can be a good
practice to always call convertObject in viewmodel constructors. It does not incur
any performance penalty, as it's the same method the observable plugin uses when
it gets to data binding. If you need finer-grained control over conversion, properties
can be converted one at a time using observable.convertProperty(object,
'propertyName').

Promises
In addition to treating normal JavaScript properties as observables, the observables
plugin also allows promises to be bound against by converting the property into an
observable and setting a callback to update it when the promise is resolved:

self.contacts = dataService.getContacts()
.then(function(contacts) {
 return contacts.map(function(contact) {
 return new ListItem(contact);
 });
});

After being converted into an observable, the contacts array can still be bound
against normally. In fact, making this change requires no HTML changes in the
sample code.

Sample
You can see an example of all of these binding methods in the cp6-observable
branch. All of the code has been converted to using plain JavaScript properties
with the observable plugin.

The parentheses have been removed from all of the application code, including the
mock data service. It should be a bit easier to read now.

Advanced Durandal

[190]

On the list viewmodel, the preceding contacts' promise example is used, which
replaces the activate method. The displayContacts computed value is created
with the observable plugin and still has the rateLimit extender applied.

The Contact model uses the convertObject method to manually convert
to observables, as the dirty flag on state will try to read the displayName
computed value.

The only changes on the edit page are the removal of parentheses.

Summary
Durandal aims to compliment Knockout's MVVM philosophy by providing a view-
viewmodel-centric framework that focuses on composition. If you love Knockout
(and you should; you're reading this book, after all!), you should hopefully see
Durandal as a natural extension. The tools Durandal provides go a long way in
simplifying the development of SPAs.

In the next chapter, we will be leaving Durandal and deep diving into Knockout's
inner workings.

Best Practices
Up until now, all the coding recommendations have been interspersed with Knockout
techniques as they were introduced. In order to go into more detail about these
patterns and why they are useful as well as to provide a consolidated reference, we
are going to review them in this chapter. As JavaScript is a very flexible language,
enjoys one of the largest online developer communities, and is in use at all levels of
development on the hobbyist-enterprise spectrum, it is difficult to talk about good
or useful patterns without becoming opinionated. These practices should be taken
as advice and shouldn't be considered dogma. Many of these recommendations are
applicable to programming in general and not just Knockout development.

Sticking to MVVM
Knockout was designed with the Model-View-ViewModel (MVVM) pattern in
mind. While it is possible to develop applications using Knockout and other design
patterns, sticking to MVVM will produce a natural alignment between Knockout
and your own code.

The view and the viewmodel
The separation of concerns is the key here. Don't introduce view concepts such as
DOM elements or CSS classes into your viewmodel; these belong in the HTML. Limit
or avoid business logic and inline binding functions in your view; these belong as
properties or functions in your viewmodel. Keeping these two separated makes it
possible for the work to be divided and parallelized, allows the viewmodel to be
reusable, and makes it possible to unit test the viewmodel.

Best Practices

[192]

Cluttering the viewmodel
Animation handlers are a good example of view logic that often ends up in the
viewmodel. The foreach binding handler has several postprocessing hooks (such as
afteradd, afterrender, and beforeremove) that are intended to allow animations
to be used. It might seem natural to use viewmodel functions, as they are specified
in a binding, which normally takes viewmodel properties:

<div data-bind='template: { foreach: planetsToShow,
 beforeRemove: hidePlanetElement,
 afterAdd: showPlanetElement }'>
 <div data-bind='attr: { "class": "planet " + type }, text:
name'></div>
</div>

var PlanetsModel = function() {
 //Viewmodel properties
 this.planets = ko.observableArray();

 // Animation callbacks for the planets list
 this.showPlanetElement = function(elem) {
 if (elem.nodeType === 1) {
$(elem).hide().slideDown() ;
}
 }
 this.hidePlanetElement = function(elem) {
 if (elem.nodeType === 1) {
$(elem).slideUp(function() { $(elem).remove(); });
}
 }
};

Unfortunately, this tightly couples the viewmodel to the view and makes both the
viewmodel and the animation less reusable. A better solution would be to store the
animations somewhere globally accessible, such as ko.animations, and reference
them in the binding:

<div data-bind='template: { foreach: planetsToShow,
 beforeRemove: ko.animations.slideHide,
 afterAdd: ko.animations.slideShow }'>
 <div data-bind='attr: { "class": "planet " + type }, text:
name'></div>
</div>

ko.animations = {};

Chapter 7

[193]

ko.animations.slideShow = function(elem) {
 if (elem.nodeType === 1) {
$(elem).hide().slideDown();
}
};
ko.animations.slideHide = function(elem) {
 if (elem.nodeType === 1) {
$(elem).slideUp(function() { $(elem).remove(); });
 }
};

var PlanetsModel = function() {
 //Viewmodel properties
 this.planets = ko.observableArray();
};

Now, the same animations can be reused in other lists, and the viewmodel doesn't
contain logic that controls the DOM.

Cluttering the view
While keeping the viewmodel agnostic of the view tends to be very clear cut (don't
reference HTML types), keeping inline code out of the view tends to merit more
consideration. This is partially because logic related to the presentation might belong
in the view, or at least a binding handler, and partially because there is a balancing
act when many small, one-off properties are required.

An example of inline logic that does not belong in the view is a button-disabling
expression:

<button data-bind="disable: items().length > 3, click:
submitOrder">Submit</button>

Consider the case where this value needs to change: do you really want to hunt
through the HTML for the rule that controls this? What about when this value is
variable and is determined by other factors? This should absolutely be canSubmit
(or similarly named) that is computed in the viewmodel, because the maximum
number of items is business logic, which is not the view's domain.

A less clear-cut example is a warning display based on similar logic. Let's say
disabling the button isn't enough of a visual cue, and you also want the button
to turn red:

<form data-bind="submit: submitOrder, css: { 'invalid-form': items().
length > maxItems }">
 //Irrelevant form code…
</form>

Best Practices

[194]

This isn't a perfect example, and you might want to add an overMaxItemLimit
computed to your viewmodel anyway; and it does not directly express the business
logic either. If the form has too many items, highlight the form is presentation logic, and if
you have enough of these one-off computed properties, which just contain a simple
expression against a single observable, your viewmodel will get cluttered quickly.
In cases like these, forcing the viewmodel to represent this logic might not offer any
value, and you should use discretion when deciding where to put it.

Using service modules
Viewmodels should not contain all of your application code even in small
applications. When possible, code should be broken out into non-viewmodel
modules that encapsulate the work and can be reused. These modules are often
called services.

For example, a viewmodel that gets data from the server doesn't need to know how
that operation is handled, whether it uses jQuery's AJAX method, a websocket, or
some other retrieval method. Putting this logic into a data service module not only
makes it reusable by other viewmodels, it makes unit testing easier by limiting
the scope of each object to its own work. The driving philosophy here is the single
responsibility principle.

Creating small modules
Creating smaller modules makes unit testing simpler and reduces the effort required
to understand the code for others who have to read it. When deciding whether or
not to add functionalities to a module or split it off into a new one, keep the single
responsibility principle in mind.

This is a bit of a balancing act. If you have a RESTful API for your JavaScript
application, then creating modules to abstract away the individual URLs by
providing methods for them is a good idea. Having a single dataService module that
contains all of the URLs for the whole application, though, will result in a very large
module in even medium-sized applications. On the other hand, having a service
module for each individual route will produce an even larger number of files. This
will make unit testing and maintenance harder, it won't make it easier. The best
course is to group the routes into modules by functionality. In the case of REST
URLs, grouping them by resource produces a very natural organization.

Chapter 7

[195]

Writing unit tests
If you follow all the previous recommendations, then your code will be in a good
position to be unit tested. The primary consideration while writing unit testable
code is mockability: code whose external dependencies are loosely coupled. Loosely
coupled dependencies can be replaced in a unit test with a fake, stub, mock, spy,
or other form of replacement whose behavior can be controlled by the test. This
challenge is solved by keeping DOM and binding the code out of your viewmodel,
keeping the modules small and avoiding tight coupling to other viewmodels through
practices such as dependency injection.

There are several frameworks that are available for unit testing in JavaScript, and
they all offer similar benefits and workflows. The important thing is not what
tools you use to unit test, only that you write unit tests. The value of unit testing
really can't be overstated. It is even more important in dynamic languages such
as JavaScript that do not offer compile-time checking.

Singleton versus instance
When you have a viewmodel that is actually used multiple times, such as the one
backing a foreach loop, using an instance is the only option. When there is only
one instance of the viewmodel, such as the one backing an entry form or a page
in an SPA, the choice might not be as simple.

A good rule of thumb is to think about the lifetime of the object. If the object's
lifetime doesn't end, such as the viewmodel for an ever-present navigation bar, using
a singleton is appropriate. If the object's lifetime is short, such as a page viewmodel
in an SPA, then using a singleton means that the object cannot be garbage collected
even after it is no longer being actively used. In this situation, a disposable instance
is recommended.

Another rule of thumb is to consider whether or not it has an internal state. Without
an internal state that needs to be managed, there is little danger that multiple uses of
the object or its methods will result in errors. If an object has no internal state, such
as a service that abstracts AJAX requests or cookie access, a singleton is appropriate
even if the object has a limited lifetime. This is not true for a viewmodel whose state
is important, such as one backing an entry form; this is because with each use, it
should have a fresh state. The need for a fresh state is there even if the object has
a long lifetime, such as the login viewmodel in a navigation bar. Reconstructing
the viewmodel after a logout will ensure that no information from a previous
use remains.

Best Practices

[196]

Calling ko.applyBindings once (per root)
I can't tell you how many times I've come across questions on Stack Overflow
regarding problems that come from developers calling ko.applyBindings multiple
times, thinking that it is responsible for syncing the DOM and the observable data.
This is more of a warning than a best practice, but I would feel remiss if I left it out
entirely. For any given root element in your HTML, you should have one call to
ko.applyBindings at most.

Performance concerns
Knockout's performance has improved several times since its initial release, but it is
still possible to encounter issues in apps with a large number of operations or objects.
While some decrease in performance should be expected as the work being done
increases, there are ways to ease the burden on the CPU.

Observable loops
Changing observable arrays inside loops causes them to publish change notifications
multiple times. The cost of these changes is proportional to the size of the array. You
might need to add several items to an array and use a loop to do this:

var contacts = ko.observableArray();
for (var i = 0, j = newContacts.length; i < j; i++) {
 contacts.push(new Contact(newContacts[i]);
}

The problem here is that push gets called multiple times, which causes the array to
send out multiple change notifications. It's much easier for the subscribers of the array
if all of the changes are sent at once. This can be done by collecting all of the changes in
the loop and then applying them to the observable array at the end with push.apply:

var contacts = ko.observableArray();
for (var i = 0, j = newContacts.length, newItems = []; i < j; i++) {
 newItems.push(new Contact(newContacts[i]);
}
contacts.push.apply(contacts, newItems);

The preceding method ensures that only a single call to valueHasMutated happens
for the observable array. A popular solution to this common problem is to add this
into a function on the observableArray.fn object, making it available to all
observable arrays:

ko.observableArray.fn.pushAll = function (items) {
 this.push.apply(this, items);
};

Chapter 7

[197]

The following method can be used to add an array of items:

var contacts = ko.observableArray();
for (var i = 0, j = newContacts.length, newItems = []; i < j; i++) {
 newItems.push(new Contact(newContacts[i]);
}

contacts.pushAll(newitems);

Limit active bindings
A large number of bindings, especially those that register event handlers such as
value and click can quickly lead to poor browser performance. Managing this takes
careful consideration about how to best reduce the number of changes that need to
happen simultaneously.

One method is to use control flow bindings to remove bound sections that are not
required. Limiting the amount of content on the screen helps performance and also
has the incidental benefit of reducing the clutter that users need to parse. Techniques
such as pagination can be used for more than just long lists, such as breaking up
a long form or activity into several screens. Of course, this method is limited to
activities that can be broken up.

A more broadly applicable method is to use delegated events, which are otherwise
known as unobtrusive event handlers.

Delegated events
Unobtrusive event handlers, such as jQuery's on, can use a single event handler to
respond to events on any number of DOM elements that are inside the registered
element. This is especially useful in large or recursive lists where registering a single
event handler per element would be too expensive. Knockout provides two utility
methods to connect these handlers with the appropriate data from the binding
context in a manner that's similar to the how Knockout's click binding provides
the context as the first parameter:

• ko.dataFor (element): This returns the data that is available to the element
• ko.contextFor (element): This returns the binding context for the element

(includes binding context properties such as $parent and $root)

Best Practices

[198]

This can be combined with a binding handler that provides the event delegation:

ko.bindingHandlers.on = {
 init: function(element, valueAccessor, allBindings, viewModel,
bindingContext) {
 var options = valueAccessor();
 var handler = function() {
 options.method.call(bindingContext.$rawData,
ko.dataFor(this));
 };

 $(element).on(options.event, options.selector, handler);

 ko.utils.domNodeDisposal.addDisposeCallback(element, function()
{
 $(element).off(options.event, options.selector, handler);
 });
 }
};

<ul class="list-unstyled" data-bind="foreach: displayContacts, on: {
event: 'click', selector: '.remove-btn', method: deleteContact }">
 <li data-bind="compose: { model: $data, mode: 'templated' }">
 <div data-part="btn-container" class="inline">
 <button class="btn btn-sm btn-default" data-bind="click:
edit">Edit</button>
 <button class="btn btn-sm btn-danger remove-btn">Delete</button>
 </div>

The preceding example can be seen in the cp7-unobtrusive branch.

The preceding technique is not required everywhere, but when dealing with large
numbers of handlers, it can lead to a noticeable impact on performance.

Summary
Again, these are guidelines and not rules, and some of them are opinions that will lead
to disagreement among coworkers. Sometimes, breaking the pattern produces cleaner
and clearer code and is the only way to get something working while sometimes,
breaking the pattern is the only way to compromise with colleagues. If it's getting in
your way without giving you any benefits, don't do it. There is no one right way to
develop software.

The next chapter will cover some popular Knockout plugins maintained by
the community.

Plugins and Other
Knockout Libraries

A big part of effectively working in any area of software is to be familiar with the
tools used by the community. It is often better to rely on existing libraries and
plugins that have been used and tested in the real world than try to reinvent the
wheel on each new project. In this chapter, we will be looking at some of the most
popular Knockout plugins:

• Knockout Validation
• Knockout Mapping
• Knockout Kendo
• KoGrid
• Knockout Bootstrap
• Knockout Switch-Case
• Knockout Projections
• Knockout-ES5

Knockout Validation
The validation of user input is a common enough task that nearly every web
application will have at least some need for. By far the most popular Knockout
plugin, with 50 percent more stars on GitHub than the next Knockout related
project, Knockout Validation creates several extenders and binding handlers
that are designed to simplify HTML form validation.

Plugins and Other Knockout Libraries

[200]

The use of the plugin starts with extenders that apply validation logic to observables
without replacing them:

var requiredValue = ko.observable().extend({ required: true });
var multipleValidationValue = ko.observable().extend({
 required: true,
 minLength: 3,
 pattern: {
 message: 'Hey this doesnt match my pattern',
 params: '^[A-Z0-9].$'
 }
 });

Binding against validation-extended values is done with the normal value binding:

<input data-bind="value: requiredValue" />

Knockout Validation modifies the standard value and checked bindings so that
they display invalid value warnings. The default display behavior will place a span
element that contains any errors after the value-bound input element. The error
message span will be hidden when the value is valid and contain the error message
text when invalid.

This automatic error insertion can be disabled if you want to manually place the
validation message in the view. To do this, use the validationMessage binding,
which has the same behavior as the inserted span.

Default validation rules
Knockout Validation provides several validation extenders by default, which it calls
rules. Like normal extenders, multiple validation rules can be passed in order to
extend in a single call, or they can be chained:

var myObj = ko.observable().extend({ required: true });
var myObj = ko.observable().extend({ number: true, min: 10, max: 30
});
var myObj = ko.observable().extend({ number: true})
 .extend({ min: 10, max: 30 });

The default rules cover most of the standard cases for checking values,
including—but not limited to—numerical min and max, string length
min and max, regex patterns, dates, and value equality.

Chapter 8

[201]

Configuring validation options
Knockout Validation's behavior is very configurable. Some of the more useful
options include:

• insertMessages (default: true): If true, a span will be inserted after an
input that is bound to a validated observable.

• errorElementClass (default: validationElement): This is a class that is
applied to elements when validated observables are invalid.

• messagesOnModified (default: true): If true, validation messages will not
get displayed until the validated value has been modified so that they are
hidden until a user interacts with the form.

• messageTemplate (default: null): This is an ID of a script element that will
be used as the validation message template instead of inserting the message
into a span.

Configuration options can be set globally by passing an object to
ko.validation.init:

ko.validation.init({
 insertMessages: false,
 errorElementClass: 'text-danger'
});

Options can also be set contextually using the validationOption binding (see the next
section) or by passing a configuration object to ko.applyBindingsWithValidation:

ko.applyBindingsWithValidation(viewModel, rootNode, {
 insertMessages: false,
 errorElementClass: 'text-danger'
});

Validation binding handlers
Knockout Validation adds a few binding handlers to assist in displaying
validation errors.

The validationMessage binding displays the error message for validated
observables when they are invalid. When the value is valid, the element is hidden:

<div>
 <input type="text" data-bind="value: someValue"/>
 <p data-bind="validationMessage: someValue"></p>
</div>

Plugins and Other Knockout Libraries

[202]

The validationElement binding is useful for applying attributes and classes to
elements. It sets the title attribute to the validation message, which is useful for
showing tooltips, and it sets errorElementClass (validationElement by default)
as the element's class attribute when the decorateElement configuration option
is true:

<div>
 <label data-bind="validationElement: someValue">
 <input type="text" data-bind="value: someValue"/>
 </label>
</div>

The validationOptions binding is similar to a control flow binding in that it
applies the specified configuration options to all descendant DOM nodes. It can
take the same object format that the configuration options can take:

<div data-bind="validationOptions: { insertMessages: false } ">
 <input type="text" data-bind="value: someValue"/>
 <p data-bind="validationMessage: someValue"></p>
</div>

Creating custom rules
Custom rules can be created both globally so that they can be reused by multiple
extenders or inline for use in a single extender. Adding global validation rules is
done by adding a rule object to the ko.validation.rules object. A rule has two
components, which are the validator function and the default message:

ko.validation.rules['contains'] = {
 validator: function (val, substring) {
 return val.indexof(substring) !== -1;
 },
 message: 'The field must contain {0}'
};

The validator function receives two arguments: the value of the observable and the
value passed to the validation extender. The validation extender can take any valid
JavaScript value, including objects and functions.

Once a validation rule has been added, its extender is created with the following call:

ko.validation.registerExtenders();

It can then be used to extend observables:

var title = ko.observable().extend({ contains: 'Sr.' });

Chapter 8

[203]

Inline validation rules work by passing the same validation rule object to the
validation extender:

var title = ko.observable().extend({
 validation: {
 validator: function (val, substring) {
 return val.indexof(substring) !== -1;
 },
 message: 'The field must contain {0}',
 params: 'Sr.'
 }
});

When using inline validation rules, the second parameter to the validator function
is defined with the params property of the validation rule.

Knockout Validation is a large library with many features and
options that have not been discussed in this section. The complete
documentation for the Knockout Validation library can be found
on its GitHub repository at https://github.com/Knockout-
Contrib/Knockout-Validation.

Knockout Mapping
The Knockout Mapping plugin is the answer to projects that want to bind against
their server's AJAX responses without manually writing the JavaScript classes in
order to convert them into observables. The mapping plugin will convert JavaScript
objects or JSON strings into objects with observable properties:

var mappedViewmodel = ko.mapping.fromJS({
 name: 'Timothy Moran',
 age: 24
});
ko.applyBindings(mappedViewmodel);

For JSON, take a look at the following code:

var serverResponse = "{"name":"Timothy Moran","age":24}";
var mappedViewmodel = ko.mapping.fromJSON(serverResponse);
ko.applyBindings(mappedViewmodel);

https://github.com/Knockout-Contrib/Knockout-Validation
https://github.com/Knockout-Contrib/Knockout-Validation

Plugins and Other Knockout Libraries

[204]

The mapping plugin handles arrays by converting them into observableArrays.
It also creates a copy of objects, allowing a complete object graph from the server
to be converted into an observable object.

Updates against viewmodels created with the mapping plugin can be performed
by passing the viewmodel as the second parameter to fromJS or fromJSON:

ko.mapping.fromJS(data, viewModel);

You can see a simple example of the mapping plugin in action in the cp8-mapping
branch.

Updating the viewmodel
The fromJS and fromJSON methods can also be used to update an entire viewmodel
in order to handle future server update responses by passing the viewmodel as the
third parameter:

ko.mapping.fromJS(data, {}, viewModel);

Unmapping
Normally, when sending data back to the server, you would use ko.toJS or
ko.toJSON to unwrap the viewmodel into an object with normal JavaScript
properties instead of observables ones. Because the mapping plugin adds several
properties to your viewmodel that are intended for internal use, ko.toJS will
produce a cluttered copy. Instead, you can use ko.mapping.toJS and ko.mapping.
toJSON to get an unwrapped viewmodel without the added mapping properties.

Mapping options
To control how objects are created or updated by the mapping plugin, options can
be passed in when a viewmodel is first created. The mapping plugin will use the
options to build the viewmodel, and then store the options so that they can be
used for all future updates:

var mapping = {
 // options
};

var vm = ko.mapping.fromJS(data, mapping);

Chapter 8

[205]

Using keys for array updates
The default behavior for updating arrays is to replace any elements that are not
a perfect match with the new values. When working with arrays of objects, it is
usually expected that the elements will have their values updated in place. To tell the
mapping plugin how to determine that elements in the values to be updated are the
same as the old values, a key can be defined:

var mapping = {
 people: {
 key: function(person) {
 return ko.unwrap(person.id);
 }
 }
};
var vm = ko.mapping.fromJS(data, mapping);

Using create for the object construction
You can provide a callback for individual properties to control their creation.
A common use case is to provide a constructor for the object:

var mapping = {
 people: {
 key: function(person) { /* same as before */ },
 create: function(options) {
 return new Person(options.data);
 }
 }
};
var vm = ko.mapping.fromJS(data, mapping);

Controlling updates
Similar to creation, an update callback can be provided. The return value will be
used as the property's value:

var mapping = {
 price: {
 update: function (options) {
 return parseMoney(options.data);
 }
 }
};
var vm = ko.mapping.fromJS(data, mapping);

Plugins and Other Knockout Libraries

[206]

Choosing which properties get mapped
Mapping options can specify an array of property names that control various aspects
of mapping:

• ignore: Mapping will not include these in the generated viewmodel.
• copy: Mapping will copy the values of these properties directly instead

of converting them into observable properties.
• observe: If present, only the properties in this array will be converted

into observable properties on the viewmodel. This is the inverse of the
previous option.

• include: Normally when using ko.mapping.toJS, only properties that
were originally in the mapping will be in the output. Any properties in the
include array will also be copied into the output even if they weren't in
the original viewmodel.

All of these arrays will be combined with the default values in the ko.mapping.
defaultOptions object. The defaults are all empty by default, but they can be
modified:

ko.mapping.defaultOptions().ignore = ["alwaysIgnoreThis"];
ko.mapping.defaultOptions().copy = ["alwaysCopyThis"];

Challenges
The Knockout Mapping plugin is very useful in cases where server responses drive
the work being done by the application. When the application needs to work with
models, the mapping plugin will not be able to create the viewmodel before the
models have been sent by the server. This happens commonly when filling out forms
to create new models for the first time. The properties of a viewmodel are also only
half the story; business logic will still need to be written for most viewmodels. It can
be challenging to write functions or computed properties against properties that are
populated by the mapping plugin, as they are not in the class that will be served as
a reference. In very complex cases, the mapping logic for some objects might exceed
the same logic for an object defined with normal JavaScript. While this can save time
in medium-to-large applications with many server responses, it might not always be
the best fit for a project.

Despite its popularity, it is no longer being maintained on GitHub. However, as of
version 3.2, it still works with Knockout.

Chapter 8

[207]

The documentation for the mapping plugin is on the official
Knockout site at http://knockoutjs.com/documentation/
plugins-mapping.html.

Knockout Kendo
Kendo UI (http://www.telerik.com/kendo-ui) is a popular HTML5 widgets
library of Telerik that offers a large selection of professional-looking controls.
Knockout Kendo is a library of bindings, which allows Knockout viewmodels to
use Kendo controls. Knockout Kendo has over 30 bindings, each with a variety of
options, which is far too many to cover here. While Knockout Kendo is free, Kendo
UI itself is not free and requires you to purchase a license in order to use it.

Most of the bindings are simple wrappers around the Kendo widgets, offering an
API with a few surprises. For example, here is the autocomplete binding, which
takes an array of options and an observable that binds the selection:

<input data-bind="kendoAutoComplete: { data: autocompleteOptions,
value: autocompleteValue }" />

DateTimePicker, which creates two independent selection controls for the date and
time, binds against a single observable Date object:

<input data-bind="kendoDateTimePicker: startDate" />

If you have used Kendo previously, you will be familiar with the available controls,
and Knockout Kendo even has bindings for the non-free Professional UI widgets.
You can see a few examples of Kendo controls in the cp8-kendo branch.

You can find the complete documentation for Knockout Kendo on its
GitHub site at http://rniemeyer.github.io/knockout-kendo/.

KoGrid
KoGrid is a plugin that creates a binding that renders tabular data. As its GitHub
page notes, it is "a direct knockout port of ng-grid which was originally inspired by
KoGrid, which was inspired by SlickGrid." Its history might have been affected by
the grandfather paradox.

http://knockoutjs.com/documentation/plugins-mapping.html
http://knockoutjs.com/documentation/plugins-mapping.html
http://www.telerik.com/kendo-ui
http://rniemeyer.github.io/knockout-kendo/

Plugins and Other Knockout Libraries

[208]

In its most basic operation mode, KoGrid can bind against an array of objects,
turning their properties into columns and their values into cells:

var vm = {
 people: ko.observableArray([{name: "Moroni", age: 50},
 {name: "Tiancum", age: 43},
 {name: "Jacob", age: 27},
 {name: "Nephi", age: 29},
 {name: "Enos", age: 34}])
 }
<div class="gridStyle" data-bind="koGrid: { data: people }"></div>

You can see this example in the cp8-kogrid branch. Except for needing to manually
specify, through style of CSS, the dimensions of the grid itself, everything else is
automatic. You get row sorting by clicking on the columns, the ability to toggle
columns visibility, a scrollbar for overflow, item counts, and the columns can be
reordered by dragging them. The biggest downside is that the data isn't rendered
using a real table element, it's rendered using just a bunch of div elements.

Of course, this is just the basic mode of operation. KoGrid comes with most of the
features you would expect from a fully baked grid widget:

• Column definitions: This specifies which row properties are displayed
as columns.

• Grouping: This allows the user to select a column to pivot the table on,
grouping all of the rows by matching values of the selected column.

• Selected rows: With this, an observable array can be bound against the
selected rows for the table. When the multiSelect option is false, this
can be used to create a master/detail view with the selected row.

• Templates: This provides row and cell templates for the grid.
• Themes: This specifies themes on a per-grid basis through binding options.
• Server-side paging: This provides callbacks that allow the grid to get data

asynchronously from an external source.

If you want a binding that outputs real table elements, and
you don't need all of the bells and whistles offered by KoGrid,
check out the knockout-table plugin at https://github.
com/mbest/knockout-table.

https://github.com/mbest/knockout-table
https://github.com/mbest/knockout-table

Chapter 8

[209]

Out of any of these features, templates are probably the most important. While
their example page puts the templates in line in the viewmodel code, this is not a
recommended practice unless you are loading the string from an external source
(such as AJAX or the RequireJS text loader). KoGrid also supports using a script
element as a template by referencing its ID, such as Knockout's template system.
However, the simplest approach is to use a URL string to refer to an HTML partial
file as the template:

<div data-bind="koGrid: { data: people,
 canSelectRows: false,
 displaySelectionCheckbox: false,
 columnDefs: [
 { field: 'name', displayName: 'Name', width: '*' },
 { field: 'age', displayName: 'Age', width: '*' },
 { field: '', displayName: ' ',
 cellTemplate: 'app/deleteButtonCell.html',
 width: '**'
 }]}" class="gridStyle"></div>

The preceding example shows you several grid options as well as the column
definition that specifies which columns to show. Note that the last column does not
have a property but has a template that will show you a delete button instead.

It is possible to define these options in the viewmodel and pass only a single object
to the KoGrid binding; however, this causes the viewmodel to be tightly coupled
to its use by a KoGrid, which is a violation of the MVVM pattern. Defining the
grid options in the view keeps the viewmodel agnostic with regards to how it
is displayed.

The delete button template will be rendered by KoGrid inside the binding context
of the cell:

<div data-bind="attr: { 'class': 'kgCellText colt' + $index()}">
 <button class="btn btn-xs btn-danger" data-bind="click: function()
{ $parent.$userViewModel.remove($parent.entity) }">Delete</button>
</div>

The complete documentation for cell and row templates will not be covered here, but
the preceding template demonstrates several important components.

To control its width and position properly, cells need to include the kgCellText
class as well as a 0-indexed class for the column it represents. As the cell will be used
inside a column loop, it has access to the special binding context property $index()
in order to get this value.

Plugins and Other Knockout Libraries

[210]

The default value for a click binding in Knockout is the current binding context.
Inside the cell template, this will be the cell object and not the item from the data
array. The bound item can be accessed using $parent.entity. To get access to the
viewmodel, the grid is bound against $parent.$userViewModel. The $parent in
both these cases is the binding context for the row; when creating row templates,
$data.entity and $userViewModel can be used to access the same properties.

You can see an example of this custom template in the cp8-kogrid-template branch.

The complete documentation for KoGrid can be found on its GitHub Wiki
page at https://github.com/Knockout-Contrib/KoGrid/wiki.

Knockout Bootstrap
Twitter Bootstrap has several beautiful jQuery-dependent widgets that can be used
from JavaScript or in some cases, with their data-* attributes. If you are using
Knockout, though, some work needs to be done in order to get it to work with
observables and to initialize it from binding handlers. Knockout Bootstrap is a
popular plugin that addresses this. Unfortunately, at the time of writing this, it
hasn't been updated to work with Bootstrap 3 and therefore, some of its features do
not work. When working with Knockout 3 and Bootstrap 3, the ToolTip, Popover,
and Alerts bindings work correctly, but the Progress Bar and Typeahead bindings
do not work.

Like Knockout Kendo, if you have used the Bootstrap widgets, the bindings in
Knockout Bootstrap should be immediately familiar. The bindings are named
after their widgets and take an object with the same properties the jQuery plugin
initializers take. When sensible, the properties can be bound against:

//Tooltip
<p>This is a paragraph with a <span data-bind="tooltip: { title:
tooltipText, placement: 'bottom' }"> tooltip span inside.
</p>

//Popover
<button class="btn btn-primary" data-bind="popover: {template:
'popoverTemplate', title: 'Oh Yea'}">
 Launch Simple Popover
</button>

https://github.com/Knockout-Contrib/KoGrid/wiki

Chapter 8

[211]

//Alerts
<div data-bind="foreach: alerts">
 <div data-bind="alert: $data"></div>
</div>

These can all be seen in the cp8-knockout-bootstrap branch. One thing to note is
that the alert binding does not remove alerts from the bound array when they are
closed on the UI, though it will show or hide array elements as they are added
or removed.

The complete documentation for Knockout Bootstrap is available at
http://billpull.com/knockout-bootstrap.

Knockout Switch-Case
Despite being a plugin that targets a single, specific use case, Knockout Switch-Case's
popularity on GitHub is evidence that a switch/case control flow binding is a very
useful tool. Instead of writing out a series of if/ifnot bindings, a single case-switch
binding can be used:

<div data-bind="switch: orderStatus">
 <div data-bind="case: 'shipped'">
 Your order has been shipped. Your tracking number is <span
data-bind="text: trackingNumber">.
 </div>
 <div data-bind="case: 'pending'">
 Your order is being processed. Please be patient.
 </div>
 <div data-bind="case: 'incomplete'">
 Your order could not be processed. Please go back and complete
the missing data.
 </div>
 <div data-bind="case: $default">
 Please call customer service to determine the status of your
order.
 </div>
</div>

The preceding example can be seen in the cp8-case-switch branch.

http://billpull.com/knockout-bootstrap

Plugins and Other Knockout Libraries

[212]

The switch binding can also act on truthy values. This can be done by looking for the
first matching value in a series:

<div data-bind="switch: true">
 <div data-bind="case: trackingNumber">
 Your order has been shipped.
 </div>
 <div data-bind="case: isReady">
 Your order is being processed.
 </div>
 <div data-bind="casenot: isComplete">
 Your order has been processed.
 </div>
 <div data-bind="case: $else">
 Your order could not be processed.
 </div>
</div>

Or, it can be done by serving as a shorthand for a pair of if/ifnot bindings:

<div data-bind="switch: isReady">
 <div data-bind="case: true">You are ready!</div>
 <div data-bind="case: false">You are not ready!</div>
</div>

The switch-case binding can also be used as a container-less binding in any
combination of the preceding cases.

As you might have noticed, there are also special $default and $else options that
can be used if no matching value is found.

The source code for Knockout Switch-Case is available on GitHub at
https://github.com/mbest/knockout-switch-case.

Knockout Projections
Using a computed observable to filter or project an observable array is an incredibly
common operation; I don't think I've ever seen a Knockout project that didn't do this
at least once. Knockout Projections is a plugin that adds a map and filter function to
observable arrays, which creates a computed observable that only recomputes it's
callback on dependent elements that have changed instead of re-evaluating every
single dependent element.

https://github.com/mbest/knockout-switch-case

Chapter 8

[213]

Steven Sanderson introduced this plugin via his blog at
http://blog.stevensanderson.com/2013/12/03.

To better understand the problem this plugin solves, we are going to look at the
example Sanderson uses on his blog to illustrate the differences between a normal
computed observable array and an array made with Knockout Projections.

Consider the following model:

function Product(data) {
 this.name = ko.observable(data.name);
 this.isSelected = ko.observable(false);
}
function PageViewModel() {
 // Some data, perhaps loaded via an Ajax call
 this.products = ko.observableArray([/* several Products /*]);
 this.selectedProducts = ko.computed(function() {
 return this.products().filter(function(product) {
 return product.isSelected();
 });
 }, this);
}

This selectedProducts computed is defined using the standard ES5 Array's filter
function, calling products() returns the underlying JavaScript array. Every time it
runs, it will loop over all of the products and return an array of every element with
isSelected() === true. The problem here is that computed observables always
rerun when any of their dependencies change; the computed can only perform
re-evaluation by running its callback, and has to recheck every single product
every time it runs. This does not scale very well; it runs in O(N) time.

When using Knockout Projections, you will create this same computed using the
filter function on the observable array itself:

this.selectedProducts = this.products.filter(function(product) {
 return product.isSelected();
});

This creates a read-only observable array that creates individual dependencies on
each product's isSelected observable. When a product is changed, the callback is
run against only that product, and the selectedProducts array is updated with the
change. Performance now has a fixed cost: no matter how large the array gets, the
callback will only be run once per dependency change. The declaring code is also
shorter and easier to read!

http://blog.stevensanderson.com/2013/12/03

Plugins and Other Knockout Libraries

[214]

Knockout Projections also creates a map function on observables, which runs a
callback that produces an array transformation instead of a filter. For example, you
can create an observable array of product names that only received updates when
individual names were changed:

this.productNames = this.products.map(function(product) {
 return product.name();
});

As the read-only arrays created by filter and map are also observable arrays, these
methods can be chained together:

this.selectedNames = this.selectedProducts.map(function(product) {
 return product.name();
});

The performance gain from using Knockout Projections is minor in small arrays but
significant in larger ones. If you are working with even medium-sized data sets,
using Knockout Projections is a no-brainer.

Knockout-ES5
Knockout-ES5 is a plugin for Knockout that uses JavaScript getters and setters to hide
observables behind object properties, allowing your application code to use standard
syntax to work with them. Basically, it gets rid of the observable parentheses:

Take a look at the following code:

var latestOrder = this.orders()[this.orders().length - 1];
latestOrder.isShipped(true);

The preceding code becomes this:

var latestOrder = this.orders[this.orders.length - 1];
latestOrder.isShipped = true;

If you remember the Durandal observable plugin, it's very similar; they even came
out around the same time. The biggest difference between the two is that Durandal's
observable plugin performs deep object conversion, and Knockout ES5 performs
shallow conversion.

Chapter 8

[215]

To convert a viewmodel's properties to observables, call ko.track:

function Person(init) {
 var self = this,
 data = init || {};

 self.name = data.name || '';
 self.age = data.age || '';
self.alive = data.alive !== undefined ? data.alive : true;
 self.job = data.job || '';

 ko.track(self);
}

To optionally specify which properties are to be converted in order to pass an array
of names, take a look at the following code:

ko.track(self, ['name', 'age']);

Observables that already exist on the model, such as those created with
ko.observable or ko.computed, are also converted into ES5 properties by ko.track.
Optionally, you can define computed observables using ko.defineProperty:

ko.defineProperty(self, 'canRemove', function() {
 return !self.alive;
});

The third parameter follows the same rules as the first parameter sent to ko.computed;
a function will be used to create a read-only computed, or an object can be used to
supply a read/write function.

Once observables have been created, you can access them with ko.getObservable:

ko.getObservable(self, 'age').subscribe(function(newValue) {
 console.log(self.name + ' age was changed to ' + newValue);
});

This is useful while applying extenders or adding subscriptions. Extenders can also
be applied by creating observables with ko.observable before calling ko.track.

An example of all of these techniques can be seen in the cp8-es5 branch.

Plugins and Other Knockout Libraries

[216]

Browser support
As Knockout-ES5 uses JavaScript getters and setters, it will not work in browsers that
do not support this feature. This is not a feature that can be shimmed or polyfilled
with scripts.

Knockout gets a lot of flak for the syntax that results from the decision to make
observable object functions. Going by the popularity of questions on Stack Overflow,
it is certainly one of the most confusing aspects to newcomers. The decision to do
this was made so that support for older browsers such as Internet Explorer 6, which
doesn't support JavaScript getters and setters, was possible. Now that Internet
Explorer 6 is finally starting to lose its death grip on the browser market share,
this supportability issue is becoming less and less important to web developers.
Unfortunately, Internet Explorer didn't add support for ES5 getters and setters
until IE 9, which is still a high bar for most projects.

Realistically, as using Knockout ES5 has such a drastic impact on application
syntax, switching to it on a that is project already underway is rarely feasible.
Knockout ES5 should only be considered for new projects that do not have an
old browser support requirement.

Summary
Narrowing down the plugins and libraries to include in this chapter was difficult.
Knockout's Wiki page on GitHub contains a long list of plugins (https://github.
com/knockout/knockout/wiki/Plugins)—far too many to discuss here. If you are
working with Knockout, you are encouraged to check out the community offerings,
as it could end up saving you a lot of work. Not all of these plugins will be useful
to everyone or every project, but hopefully, they give you an idea of what can be
done with Knockout and motivate you to share some of your own work with
the community.

In the next chapter, we will be taking a deep dive into Knockout's internals to see
how it works.

https://github.com/knockout/knockout/wiki/Plugins
https://github.com/knockout/knockout/wiki/Plugins

Under the Hood
We have covered the Knockout basics, learned how to extend Knockout's binding
system, and seen how to organize applications. Now, it's time to indulge our inner
tinkerers. In this chapter, we will look at the internals of Knockout to see what makes
it tick. By the end of this chapter, you should be familiar with how Knockout handles
the following:

• Dependency tracking
• The prototype chain
• Parsing binding attribute expressions
• Applying bindings
• Templating

In addition to this, we will also look at the ko.utils namespace, which provides
lots of useful tools for common actions.

Note that all of the code discussed in this chapter is based on the
Knockout 3.2 release. It is possible, and likely, that parts of this
will change in the future.

Dependency tracking
Binding handlers and computed observables need to re-evaluate when their
observable dependencies update. This means keeping track of dependencies and
subscribing to them. Three objects make up the dependency-tracking feature:
observables, computed observables, and the dependency-detection module.

Under the Hood

[218]

Here's the basic overview. When a computed is evaluated, it asks
ko.dependencyDetection to start tracking things. When observables are
accessed, they register themselves with ko.dependencyDetection. When the
computed is done evaluating, it records all of the registered dependencies and
subscribes to each of them.

Okay, now let's look at some code.

ko.dependencyDetection
The dependency detection module is very small—small enough to reproduce here in
its entirety, actually:

ko.computedContext = ko.dependencyDetection = (function () {
 var outerFrames = [],
 currentFrame,
 lastId = 0;

 function getId() {
 return ++lastId;
 }

 function begin(options) {
 outerFrames.push(currentFrame);
 currentFrame = options;
 }

 function end() {
 currentFrame = outerFrames.pop();
 }

 return {
 begin: begin,
 end: end,
 registerDependency: function (subscribable) {
 if (currentFrame) {
 if (!ko.isSubscribable(subscribable))
 throw new Error("Only subscribable things can act as
 dependencies");
 currentFrame.callback(subscribable, subscribable._id ||
 (subscribable._id = getId()));
 }
 },

Chapter 9

[219]

 ignore: function (callback, callbackTarget, callbackArgs) {
 try {
 begin();
 return callback.apply(callbackTarget, callbackArgs || []);
 } finally {
 end();
 }
 },
 getDependenciesCount: function () {
 if (currentFrame)
 return currentFrame.computed.getDependenciesCount();
 },
 isInitial: function() {
 if (currentFrame)
 return currentFrame.isInitial;
 }
 };
})();

The preceding code is using the revealing module pattern to hide the internal
variables for outerFrames, currentFrame, lastId, and the getId function.

For more information on the revealing module pattern, check out
Todd Motto's blog at http://toddmotto.com/mastering-
the-module-pattern.

The idea here is that begin is called with either a frame that can be used for tracking,
or it is called with nothing to disable tracking. When end is called, the previous
frame is popped off and set to the current frame. A frame is a layer that tracks
dependencies; a frame exists inside of another frame, but only the current frame will
register dependencies when they are accessed. This allows dependency tracking to
occur recursively, while each layer receives only its immediate dependencies.

The options object that is passed to begin should expose the following properties:

• callback: This is a function that receives a dependency and its ID when a
dependency registers itself

• computed: This is the computed observable that performs the dependency
tracking on the frame

• isInitial: This is a Boolean that indicates whether this is the first time
dependency tracking has been requested for the current frame

http://toddmotto.com/mastering-the-module-pattern
http://toddmotto.com/mastering-the-module-pattern

Under the Hood

[220]

When registerDependency is called, the current frame's callback is passed to the
dependency and its ID. The ID is a sequentially generated number, which is assigned
to the dependency if it is missing.

The ignore function provides an easy wrapper around begin and end inside
a try/finally block. The call to begin has no options, so it will not trigger
dependency detection. This makes it easy to evaluate data in situations where you
know dependency detection will not, or should not, be used. Knockout does this
inside several binding handlers as well as inside the notifySubscribers function
of subscribables.

The last two properties, which are getDependenciesCount and isInitial, expose
the properties of the same name on the current frame.

Registering dependencies
When an observable is read, it has to notify ko.dependencyDetection in order to
indicate that a dependency has been accessed. Because computeds and observables
are both descendants of subscribables, which do not register dependencies, each of
them has their own similar dependency registration logic.

The observable implementation happens when the observable is called with
no arguments:

function observable() {
 if (arguments.length > 0) {
 /* write new value */
 }
 else {
 // Read
 ko.dependencyDetection.registerDependency(observable);
 return _latestValue;
 }
}

After registering itself as a dependency, it returns its current value. The computed
version is almost identical:

function dependentObservable() {
 if (arguments.length > 0) {
 /* write new value */
 } else {
 ko.dependencyDetection.registerDependency
 (dependentObservable);

Chapter 9

[221]

 if (_needsEvaluation) //suppressChangeNotification
 evaluateImmediate(true);
 return _latestValue;
 }
}

The only difference here is that because computeds can be evaluated asynchronously,
the read function checks whether a re-evaluation is needed before returning its value.

There isn't much else to say regarding this. The observable array type makes
no changes to the registration process. In fact, it couldn't make any changes.
Dependency registration is an internal logic for observables; it can't be overridden.

Subscribing to dependencies
The prototype for all observables is the subscribable. The subscribable prototype
provides two functions for dependency work: subscribe and notifySubscribers.

The subscribe function creates a subscription on the subscribable. The subscription
doesn't do anything on its own, it's just an object with a callback and dispose
property (it has other properties; these are just the relevant ones). The subscription is
stored in the _subscriptions object and the internal-use property. As subscriptions
can be attached to named events, the subscriptions object has an array for each event:

_subscriptions: {
 change: [sub1, sub2],
 beforeChange: [sub3, sub4]
};

When a subscription is created without a name, it is attached to the change event
by default. The other standard event is the beforeChange event, which is fired by
observables just before they update. This is the write logic from the observable:

function observable() {
 if (arguments.length > 0) {
 // Ignore writes if the value hasn't changed
 if (observable.isDifferent(_latestValue, arguments[0])) {
 observable.valueWillMutate();
 _latestValue = arguments[0];
 observable.valueHasMutated();
 }
 return this; // Permits chained assignments
 }
 else {
 // Read code

Under the Hood

[222]

 }
}
//...
observable.valueHasMutated = function () {
 observable["notifySubscribers"](_latestValue);
}
observable.valueWillMutate = function () {
 observable["notifySubscribers"](_latestValue, "beforeChange");
}

Before an observable is updated, it calls valueWillMutate, and afterwards, it calls
valueHasMutated. Both of these are wrappers around the notifySubscribers
function, with the first providing the beforeChange event name:

notifySubscribers: function (valueToNotify, event) {
 event = event || defaultEvent;
 if (this.hasSubscriptionsForEvent(event)) {
 try {
 // Begin suppressing dependency detection
 ko.dependencyDetection.begin();
 for (var a = this._subscriptions[event].slice(0),
 i = 0, subscription;
 subscription = a[i]; ++i) {
 if (!subscription.isDisposed)
 subscription.callback(valueToNotify);
 }
 } finally {
 // End suppressing dependency detection
 ko.dependencyDetection.end();
 }
 }
}

Once again, the event name is optional and defaults to change when omitted. It
also checks to make sure subscriptions for the event exist before it starts. Then, it
disables dependency detection. If it didn't disable dependency detection, then a false
dependency would be established between the original writer of the new value and
subscribers of the current observable.

This basic publish/subscribe implementation can easily be
used to create a messaging system. In fact, Ryan Niemeyer has
created a plugin to do just that (see https://github.com/
rniemeyer/knockout-postbox).

https://github.com/rniemeyer/knockout-postbox
https://github.com/rniemeyer/knockout-postbox

Chapter 9

[223]

The primary work is to loop through the subscriptions and pass the current value to
the subscriptions callback. A check is performed to ensure that the subscription didn't
get disposed, as it is possible that one subscription is disposed because of another.
Finally, the previous block of code ends the current frame of dependency detection.

With these three pieces, Knockout provides a simple and performant dependency
tracking system.

Subscribing to observable arrays
Prototypically speaking, observable arrays are still observables, but because
their changes are primarily their contents and not their values, they have a
lot of additional logic that ensures performant notifications.

Standard array functions
JavaScript has had a standard set of array functions since ECMAScript's first edition,
so you should already be familiar with them. The headache they cause for Knockout
is that they modify the contents of the array directly. Since array subscribers
expect to be notified to changes in the array's content, Knockout provides their
own implementation for observableArray. This implementation makes calls to
the standard notification functions on observables before calling the original array
function. The slice function is skipped, since it is a read-only function and doesn't
needs to notify subscribers:

ko.utils.arrayForEach(["pop", "push", "reverse", "shift", "sort",
 "splice", "unshift"], function (methodName) {
 ko.observableArray['fn'][methodName] = function () {
 var underlyingArray = this.peek();
 this.valueWillMutate();
 this.cacheDiffForKnownOperation(underlyingArray, methodName,
 arguments);
 var methodCallResult = underlyingArray[methodName].apply(
 underlyingArray, arguments);
 this.valueHasMutated();
 return methodCallResult;
 };
});

This function has barely changed since Knockout 1.0, where it added the methods
to each instance instead of the observable array's fn prototype. The only addition
is the call to cacheDiffForKnownOperation, which works with the internal
trackArrayChanges extender to provide smaller, faster change notifications
for incremental updates to the array. Prior to this extender, observable arrays
broadcasted their entire contents on every update.

Under the Hood

[224]

This function is not too different from the write function of normal observables; it
calls valueWillMutate before performing an update, and it calls valueHasMutated
afterward. Instead of setting its own value, it just applies the original method name
to the underlying array.

The slice function is even simpler. It does not cause subscriptions to fire, as it is
read-only. All it does is wrap the original function on the underlying array:

ko.utils.arrayForEach(["slice"], function (methodName) {
 ko.observableArray['fn'][methodName] = function () {
 var underlyingArray = this();
 return underlyingArray[methodName].apply(underlyingArray,
 arguments);
 };
});

The utility methods
In addition to the standard methods, Knockout also provides friendly functions
to common array changes that JavaScript, for some reason, still hasn't bothered
to implement: remove, removeAll, destroy, destroyAll, and replace.

You should be able to guess what these functions look like by now; peek to get
the underlying array, call valueWillMutate, make some changes, and then finish
with valueHasMutated. The interesting part about the preceding functions is the
arguments they take. If you pass an object to remove, it will predictably remove that
object from the array if it exists. However, if you pass a function, it will be used as a
predicate, removing any elements in the array, which causes the predicate to return
truthy (I'm very fond of this pattern):

remove: function (valueOrPredicate) {
 var underlyingArray = this.peek();
 var removedValues = [];
 var predicate = typeof valueOrPredicate == "function" &&
 !ko.isObservable(valueOrPredicate) ? valueOrPredicate :
 function (value) { return value === valueOrPredicate; };
 for (var i = 0; i < underlyingArray.length; i++) {
 var value = underlyingArray[i];
 if (predicate(value)) {
 //Remove element, add to removedValues
 }
 }
 if (removedValues.length) {

Chapter 9

[225]

 this.valueHasMutated();
 }
 return removedValues;
}

This works by converting single values into a predicate that checks for strict equality.
The check for !ko.isObservable(valueOrPredicate) is important as observables
are functions but should be treated as values here and not as predicates.

This same pattern is used for destroy, except that it marks the observables with
the _destory property instead of removing them.

The removeAll and destroyAll functions are also overloaded: they can take an array
of values to be removed, or it can remove all elements if no argument is provided. In
the case where an array of values is provided, they just call remove/destroy with a
predicate based on the array:

removeAll: function (arrayOfValues) {
 // If you passed zero args, we remove everything
 if (arrayOfValues === undefined) {
 //remove all elements
 }
 return this['remove'](function (value) {
 return ko.utils.arrayIndexOf(arrayOfValues, value) >= 0;
 });
}

The prototype chain
Back in Chapter 1, Knockout Essentials, I showed you this diagram:

Under the Hood

[226]

The way functions are inherited by these objects is not through the normal JavaScript
prototype chain, where a constructor function has its prototype assigned to an object.
This is because observables are functions and not objects, and functions cannot
be created with constructors or the Object.create function. Standard JavaScript
prototypical inheritance doesn't work for functions. To see how Knockout shares
methods, let's look at how subscribable and its descendant observable are constructed.

First, the base methods for subscribables are defined on the fn object:

var ko_subscribable_fn = {
 subscribe: function (callback, target, event) { /* logic */ },
 notifySubscribers: function (value, event) { /* logic */ },
 limit: function(limitFunction) { /* logic */ },
 hasSubscriptionsForEvent: function(event) { /* logic */ },
 getSubscriptionsCount: function () { /* logic */ },
 isDifferent: function(oldValue, newValue) { /* logic */ },
 extend: applyExtenders
};
ko.subscribable['fn'] = ko_subscribable_fn;

This is added to subscribables during the construction:

ko.subscribable = function () {
 ko.utils.setPrototypeOfOrExtend(this, ko.subscribable['fn']);
 this._subscriptions = {};
}

The setPrototypeOfOrExtend method will either assign the __proto__ property
of an object—something higher IE versions can't do—or use ko.utils.extend
to extend the object.

Observables are built differently. Their factory method returns an internally built
object, which uses both ko.subscribable.call and setPrototypeOfOrExtend
to inherit methods:

ko.observable = function (initialValue) {
 var _latestValue = initialValue;

 function observable() {
 //build observable
 }
 ko.subscribable.call(observable);
 ko.utils.setPrototypeOfOrExtend(observable, ko.observable
 ['fn']);

Chapter 9

[227]

 observable.peek = function() { return _latestValue };
 observable.valueHasMutated = function () {
 observable["notifySubscribers"](_latestValue);
 }
 observable.valueWillMutate = function () {
 observable["notifySubscribers"](_latestValue, "beforeChange");
 }

 return observable;
}

An observable is built and then run through the subscribable's constructor, extended
with the observable[''fn''] object, and finally has its own methods added.

The ko.isObservable function
In standard JavaScript inheritance, the instanceof operator can be used to check
whether an object, or any of its prototypes, has a constructor that matches the
supplied function. Because Knockout isn't using standard inheritance, it cannot
use the instanceof operator; instead Knockout uses the following code for the
ko.isObservable function.

var protoProperty = ko.observable.protoProperty = "__ko_proto__";
ko.observable['fn'][protoProperty] = ko.observable;

ko.hasPrototype = function(instance, prototype) {
 if ((instance === null) || (instance === undefined) ||
 (instance[protoProperty] === undefined)) return false;
 if (instance[protoProperty] === prototype) return true;
 return ko.hasPrototype(instance[protoProperty], prototype); //
 Walk the prototype chain
};

ko.isObservable = function (instance) {
 return ko.hasPrototype(instance, ko.observable);
}

Knockout defines a __ko_proto__ property on the observable[''fn''] object,
which is set to the ko.observable object. This custom prototype property is used
by hasPrototype in place of the instanceof operator to determine whether an
instanced object is an observable.

Under the Hood

[228]

The binding expression parser
The expressions written in data-bind attributes are not truly JavaScript or JSON,
though they look very similar. Knockout has its own parser to convert these
attributes into JavaScript. Say you write a data-bind attribute like this one:

data-bind="value: name, visible: showName"

Then, the binding provider's job is to return an object like this:

{
 value: function() { return name; },
 visible: function() { return showName; }
}

The default binding provider does this using the ko.expressionRewriting module,
which is responsible for calling binding preprocessors and returning a JSON-esque
string. Internally, this is done using regex to parse the full attribute into a key/value
pair array. This might sound messy, but it gets the job done. That being said, even for
an under the hood look, the details are not very relevant to Knockout, as the parsing is
general purpose. If you are still curious, the code is located at https://github.com/
knockout/knockout/blob/master/src/binding/expressionRewriting.js, and
its inline comments are better than average.

After parsing the data-bind attribute, the array of key/value pairs is iterated to build
an array of JSON-esque strings:

function processKeyValue(key, val) {
 var writableVal;
 function callPreprocessHook(obj) {
 return (obj && obj['preprocess']) ? (val =
 obj['preprocess'](val, key, processKeyValue)) : true;
 }
 if (!bindingParams) {
 if (!callPreprocessHook(ko['getBindingHandler'](key)))
 return;

 if (twoWayBindings[key] && (writableVal =
 getWriteableValue(val))) {
 //provide a write method in case the value
 // isn't a writable observable.
 propertyAccessorResultStrings.push("'" + key +
 "':function(_z){" + writableVal + "=_z}");
 }
 }

https://github.com/knockout/knockout/blob/master/src/binding/expressionRewriting.js
https://github.com/knockout/knockout/blob/master/src/binding/expressionRewriting.js

Chapter 9

[229]

 if (makeValueAccessors) {
 val = 'function(){return ' + val + ' }';
 }
 resultStrings.push("'" + key + "':" + val);
}

The key is used to look up the binding handler to call its preprocess
function. If it returns falsy, the processing stops, as the binding was removed.
The makeValueAccessors property will be true when it comes from
getBindingAccessors and false when it comes from getBindings.
The result is then added to a running list.

The twoWayBindings block adds a special function string to
propertyAccessorResultStrings, which is checked after all the other
bindings keys are finished:

if (propertyAccessorResultStrings.length)
 processKeyValue('_ko_property_writers', "{" +
 propertyAccessorResultStrings.join(",") + " }");

This adds one extra binding property, _ko_property_writers, which is a function
that will return a binding object that can be used to write to bound properties instead
of reading from them. We will come back to this in just a minute.

Finally, the running list of strings is returned with a join:

return resultStrings.join(",");

The resulting string from the example binding will look like this:

'value': function() { return name; }, 'visible': function() {
 return showName; '_ko_property_writers':function(){return
 {'value':function(_z){ name =_z} } } }

The binding provider turns this string into a real object by putting the string inside
a function body and calling the function with the binding context and the element
being bound:

var rewrittenBindings = ko.expressionRewriting.
 preProcessBindings(bindingsString, options),
 functionBody = "with($context){with($data||{}){return{" +
 rewrittenBindings + "}}}";
 return new Function("$context", "$element", functionBody);

Under the Hood

[230]

This use of new Function causes Knockout's default binding provider
to fail in environments using a Content Security Policy (CSP) that
blocks new Function and eval, such as in Google Chrome Extensions.
Knockout Secure Binding, which is a binding provider that does not use
new Function, allows Knockout to be used with a CSP (see https://
github.com/brianmhunt/knockout-secure-binding).

When this function is evaluated with the binding context and element, it produces
the final binding object:

{
 value: function() { return name; },
 visible: function() { return showName; },
 _ko_property_writers: function (){
 return {'value':function(_z){query=_z} }
 }
}

Knockout property writers
We haven't covered the _ko_property_writers property yet, because it's surprising
to most people and would have been distracting. The role of this property is to
expose writing functions for nonobservable values so that two-way binding handlers
can still update their values. They aren't observable, so notifications won't occur, but
it's still a supported scenario.

This special binding is carried on the binding accessor. When two-way bindings,
such as value, need to update the viewmodel they, call ko.expressionRewriting.
writeValueToProperty:

writeValueToProperty: function(property, allBindings, key, value,
checkIfDifferent) {
 if (!property || !ko.isObservable(property)) {
 var propWriters = allBindings.get('_ko_property_writers');
 if (propWriters && propWriters[key])
 propWriters[key](value);
 } else if (ko.isWriteableObservable(property) &&
 (!checkIfDifferent || property.peek() !== value)) {
 property(value);
 }
}

https://github.com/brianmhunt/knockout-secure-binding
https://github.com/brianmhunt/knockout-secure-binding

Chapter 9

[231]

This is an undocumented part of the API, so it is subject to changing
without notice.

If the property is not observable and a property writer exists for it, then it is used
to update the value. If the property is observable, the property is written directly.

Applying bindings
The binding application process takes place primarily in the
bindingAttributeSyntax module, which defines the ko.bindingContext class as
well as the ko.applyBindings method. The high-level overview looks like this:

1. The ko.applyBindings method is called with the viewmodel.
2. A binding context is constructed using the viewmodel.
3. The binding provider is retrieved from ko.bindingProvider.instance.
4. Knockout works with the DOM tree:

 ° It is passed through the binding provider's node preprocessor
(except the root node)

 ° The binding handlers for the node are constructed using the
binding provider

 ° The binding handlers are sorted by ensuring that any bindings
in their after property are loaded first

 ° The binding handlers are iterated through, calling each handler's
init and update function.

The first three steps are pretty straightforward; even the walking algorithm is
just a simple recursion that applies bindings to a node and then iterates over
its children to preprocess and bind them. The real meat of this process is the
applyBindingsToNodeInternal function, which actually does the work of
applying bindings to a node.

The first half of the function is safety checks. We are going to skip the code for this,
as it's not very important to understanding how the binding part works. As we have
already covered how the binding provider generates bindings, we are only going to
look at the last two bullet points.

Under the Hood

[232]

Sorting binding handlers
Knockout uses a topological sort to order the binding handlers.

If you are unfamiliar with topological sorting, remember that it comes from graph
theory. We will not go into the details of graph theory here (if you are interested,
Google can tell you all about it), but a topological sort is basically an ordering of
elements, which ensures that all dependencies of an element come before the element
itself. Topological sorts do not guarantee the same order every time; it's just that no
dependency cycles exist.

This is the sort function that Knockout uses to order binding handlers; it is a fairly
common implementation:

function topologicalSortBindings(bindings) {
 // Depth-first sort
 var result = [], // The list of key/handler pairs
 that we will return
 bindingsConsidered = {}, // A temporary record of which
 bindings are already in 'result'
 cyclicDependencyStack = []; // Keeps track of a depth-search so
 that, if there's a cycle, we know which bindings caused it
 ko.utils.objectForEach(bindings, function pushBinding
 (bindingKey) {
 if (!bindingsConsidered[bindingKey]) {
 var binding = ko['getBindingHandler'](bindingKey);
 if (binding) {
 // First add dependencies (if any) of the current binding
 if (binding['after']) {
 cyclicDependencyStack.push(bindingKey);
 ko.utils.arrayForEach(binding['after'],
 function(bindingDependencyKey) {
 if (bindings[bindingDependencyKey]) {
 if (ko.utils.arrayIndexOf(cyclicDependencyStack,
 bindingDependencyKey) !== -1) {
 throw Error("Cannot combine the following
 bindings, because they have a cyclic dependency:
 " + cyclicDependencyStack.join(", "));
 } else {
 pushBinding(bindingDependencyKey);
 }
 }
 });
 cyclicDependencyStack.length--;
 }

Chapter 9

[233]

 // Next add the current binding
 result.push({ key: bindingKey, handler: binding });
 }
 bindingsConsidered[bindingKey] = true;
 }
 });

 return result;
}

This function loops through the supplied bindings, skipping bindings it has already
processed; if it has an after property, it starts the dependency check. It pushes the
current binding into the array-tracking dependencies, and then loops through each
of the bindings in the after property. If a dependent binding is already found to be
in the array of dependencies Knockout throws an exception, it would mean a cycling
dependency. If the dependent binding is not found, it recurses into the loop handler
so that its dependencies are checked.

After the dependent bindings are checked, the last element in the array of
dependencies is removed and the current binding is pushed to the array of results
and the array of already processed bindings. If a future binding requires it as a
dependency, the loop handler will return immediately, indicating that the future
binding is safe to continue.

Running the binding handlers
After getting the binding handlers in the proper order, they are iterated through.
One last safety check is made in order to ensure that if the node is a comment node,
the binding handler is allowed for virtual elements. Then the init and update
functions are called inside a try/catch block:

// Run init, ignoring any dependencies
var handlerInitFn = bindingKeyAndHandler.handler["init"];
if (typeof handlerInitFn == "function") {
 ko.dependencyDetection.ignore(function() {
 var initResult = handlerInitFn(node,
 getValueAccessor(bindingKey),
 allBindings,
 bindingContext['$data'],
 bindingContext);

 // If this binding handler claims to control descendant
 bindings, make a note of this

Under the Hood

[234]

 if (initResult && initResult['controlsDescendantBindings']) {
 if (bindingHandlerThatControlsDescendantBindings !==
 undefined)
 throw new Error("Multiple bindings (" +
 bindingHandlerThatControlsDescendantBindings + " and " +
 bindingKey + ") are trying to control descendant bindings
 of the same element. You cannot use these bindings
 together on the same element.");
 bindingHandlerThatControlsDescendantBindings = bindingKey;
 }
 });
}

The whole thing is run in a scope with dependency detection disabled, as the init
function does not run twice. The init handler passes all the required arguments,
and the result is checked to see whether this handler wants to control descendant
bindings. If it isn't the first handler to control descendant bindings, then Knockout
throws an exception:

// Run update in its own computed wrapper
var handlerUpdateFn = bindingKeyAndHandler.handler["update"];
if (typeof handlerUpdateFn == "function") {
 ko.dependentObservable(
 function() {
 handlerUpdateFn(node,
 getValueAccessor(bindingKey),
 allBindings,
 bindingContext['$data'],
 bindingContext);
 },
 null,
 { disposeWhenNodeIsRemoved: node }
);
}

The update handler is run inside of a computed observable (dependantObservable
was the original name for computeds and is still used in the source code), which will
automatically rerun it when dependencies change. This is one of my favorite parts
of Knockout: binding handlers rerun automatically when observable dependencies
change because they are inside observables themselves.

Chapter 9

[235]

Once the binding handlers have all been looped through,
applyBindingsToNodeInternal returns with an object that tells its caller whether
or not to recurse into the current node's children using the flag from the init
handler's result:

return {
 'shouldBindDescendants': bindingHandlerThatControls
 DescendantBindings === undefined
};

Templates
Knockout's template system is incredibly flexible: it works with anonymous templates,
named templates, and allows the engine that renders templates to be overridden. The
template binding is also used by the foreach binding, which is just a syntactic sugar
for the { foreach: someExpression } template. To understand how the template
system works, let's start with the template-binding handler.

The template binding handler
The init function of the template binding understands that templates can either
be named (loaded from a source) or inline (loaded using the contents of the
bound element):

'init': function(element, valueAccessor) {
 // Support anonymous templates
 var bindingValue = ko.utils.unwrapObservable(valueAccessor());
 if (typeof bindingValue == "string" || bindingValue['name']) {
 // It's a named template - clear the element
 ko.virtualElements.emptyNode(element);
 } else {
 var templateNodes = ko.virtualElements.childNodes(element),
 container = ko.utils.moveCleanedNodesToContainer
 Element(templateNodes);
 new ko.templateSources.anonymousTemplate
 (element)['nodes'](container);
 }
 return { 'controlsDescendantBindings': true };
}

Under the Hood

[236]

If the binding value is just a string, or if the binding value is an object with a name
property, then we are using a named source and the only work that needs to be
done is to empty the node. Named sources need to be changed when the name of
the template changes, so all of the work of actually rendering the template is in the
update method.

If it's an anonymous template, moveCleanedNodesToContainerElement removes
the children from the element and places them in a div container, but the div
container isn't placed in the DOM. A new anonymous template source is created
with the element, and the div container is passed to the template's nodes function.
The nodes function stores the container with utils.domData.

A template source is an object that is used by the template engine to provide
the DOM that is required to render the template. It must provide either a nodes
function that returns a container with the nodes to be used, or a text function that
provides a stringified version of the same. The ko.templateSources array contains
two template source types: domElement for named sources and anonymousTemplate
for inline sources.

Finally, the init function returns { 'controlsDescendantBindings': true }.

The update function has three different branches: branches that render a single
template, branches that render an array of templates with foreach, and branches
that remove everything if an if (or ifnot) binding is present and false. The
last branch doesn't need much explanation, and the first two branches are very
functionally similar: they call renderTemplate on the template engine, which
returns an array of DOM nodes that are then added to the DOM. After this,
they each call applyBindings on the template.

The template engine
The template engine is responsible for generating DOM nodes. It can't be used
on its own though, as it's just a base class. When renderTemplate is called on
the base template engine, it calls makeTemplateSource and passes the result to
renderTemplateSource.

The default makeTemplateSource method takes a template parameter. If a template
is a string, it will try to find a script by that name and create a domElement source.
If the template is a node, it will create and return a new anonymousTemplate source
from it.

The default renderTemplateSource method is not implemented and will throw an
error. A template implementation must override this method in order to work.

Chapter 9

[237]

Knockout provides two template engine implementations out of the box: native and
jQuery.tmpl. The jQuery.tmpl engine hasn't been under development since 2011, and
I think Knockout's continued inclusion with the standard distribution is probably
more backwards-compatibility than anyone really needs. It's there, but we are going
to ignore it.

The native template engine overrides renderTemplateSource with this:

function (templateSource, bindingContext, options) {
 // IE<9 cloneNode doesn't work properly
 var useNodesIfAvailable = !(ko.utils.ieVersion < 9),
 templateNodesFunc = useNodesIfAvailable ?
 templateSource['nodes'] : null,
 templateNodes = templateNodesFunc ? templateSource['nodes']() :
 null;

 if (templateNodes) {
 return ko.utils.makeArray(templateNodes.cloneNode
 (true).childNodes);
 } else {
 var templateText = templateSource['text']();
 return ko.utils.parseHtmlFragment(templateText);
 }
};

If nodes is present, it will be used to get the template node container, clone it, and
return it. If it's in an higher IE, where clone doesn't work, or if nodes isn't provided,
the text source will be parsed by ko.utils and will be returned.

The template engine does not add the nodes to the DOM and does not bind them;
it just returns them. The template binding takes care of this part after it gets the
generated template from the template engine.

The ko.utils reference
The ko.utils namespace is Knockout's bucket for utility functions. Not all of these
functions are publicly exposed—at least not in a usable way. Knockout's minification
process obfuscates more than half of them. As the unobfuscated methods are a public
API that Knockout has committed to providing, changing them would be a major
change. Despite considering all of the exposed methods on the ko.utils part of
the API, Knockout does not provide any documentation for them.

Under the Hood

[238]

Here is a complete list of the public functions on ko.utils as of Knockout 3.2:

• addOrRemoveItem(array, item, included): If included is true, it will
add the item to the array if it is not already there; if included is false, it
will remove the item from the array if it is present.

• arrayFilter(array, predicate): This returns an array of elements from
the array that returns true from the predicate using predicate(element,
index).

• arrayFirst(array, predicate, predicateOwner): This returns the first
element in the array that returns true from the predicate using predicate.
call(predicateOwner, element, index). This makes predicateOwner
an optional parameter, which controls this in the predicate.

• arrayForEach(array, action): This calls the action on each element in the
array with action(element, index).

• arrayGetDistinctValues(array): This returns an array with only distinct
elements from the original array. It uses ko.utils.arrayIndexOf to
determine the uniqueness.

• arrayIndexOf(array, item): If Array.prototype.indexOf is present,
arrayIndexOf(array, item) will call it, otherwise it will loop the array
manually and return the index or -1 if the element isn't found. This is a
polyfill for versions of Internet Explorer less than 9.

• arrayMap(array, mapping): This is not quite a polyfill for Array.
prototype.map; this function returns an array by calling mapping(element,
index) on each element of the original array.

• arrayPushAll(array, valuesToPush): This pushes the valuesToPush
parameter into the array parameter. This function handles cases where
valuesToPush is like an array but is not a real array, such as HTMLCollection,
where calling array.push.apply(array, valuesToPush) would
normally fail.

• arrayRemoveItem(array, itemToRemove): This removes the item from the
array by either splicing or shifting, depending on the item's index.

• domData: This object provides a get, set, and clear method in order to work
with arbitrary key/value pairs on DOM nodes. Knockout uses it internally to
track the binding information, but it can be used to store anything.

Chapter 9

[239]

• domNodeDisposal: This object provides the following utilities that are
related to DOM's cleanup tasks:

 ° addDisposeCallback(node, callback): This adds a callback to the
node with domData. The callback will be used if Knockout removes
the node via templating or control flow.

 ° cleanNode(node): This runs all the associated disposal callbacks that
were registered with addDisposeCallback. This function is aliased
as ko.cleanNode.

 ° cleanExternalData(node): This uses jQuery's cleanData function
to remove data added by jQuery plugins. It does nothing if jQuery is
not found.

 ° removeDisposeCallback(node, callback): This removes the
callback from the node's domData function.

 ° removeNode(node): This cleans the node with cleanNode and then
removes it from the DOM. This function is aliased as ko.removeNode.

• Extend(target, source): This is a run-of-the-mill extend method; it adds
or overwrites all properties on the target with those on the source. It filters
source properties with hasOwnProperty.

• fieldsIncludedWithJsonPost: This is an array of default fields that are
used for postJson if an includeFields option is not specified.

• getFormFields(form, fieldName): This returns all the input or textarea
fields from a form that matches fieldname, which can be either a string, a
regex, or an object with a test predicate that takes the field's name.

• objectForEach(obj, action): This calls action(properyName,
propetyValue) on each property in obj, filtering it with hasOwnProperty.

• parseHtmlFragment(html): If jQuery is present, this function uses its
parseHTML function; otherwise, it uses a simple internal HTML parse.
It returns DOM nodes.

• parseJson(jsonString): This will return a JavaScript object by parsing
the supplied string. If the JSON object exists, it will be used; otherwise,
new Function will be used.

• peekObservable(value): Just like ko.unwrap, this is a safety method. If the
value is observable, it will return the result of its peek; otherwise, it will just
return the value.

Under the Hood

[240]

• postJson(urlOrForm, data, options): This will perform a post by
creating a new form, appending it to the DOM, and calling submit on it.
The form will use data to create its fields. If urlOrForm is a form, its fields
will be included in the data if they match options[''includeFields'']
(or fieldsIncludedWithJsonPost if options[''includeFields''] isn't
present), and its action will be used as the URL.

• Range(min, max): This returns an array of values between min and max. It
uses ko.unwrap on both the arguments.

• registerEventHandler(element, eventType, handler): This attaches an
event handler to the element. It uses jQuery if possible, addEventListener
if available or attachEvent as a last resort (Internet Explorer). If using
attachEvent, it registers a disposal handler to call detachEvent, as IE
does not do so automatically.

• setHtml(node, html): This empties the node's contents, unwraps the
HTML, and sets the node's HTML using either jQuery.html, if available,
or parseHtmlFragement.

• stringifyJson(data, replacer, space): This uses ko.unwrap to
handle observable data and calls JSON.stringify. The replacer and
space parameters are optional. If the JSON object is not present, it throws
an exception.

• toggleDomNodeCssClass(node, classNames, shouldHaveClass):
This uses the shouldHaveClass Boolean to either add or remove all of
classNames Boolean from the node.

• triggerEvent(element, eventType): This triggers the event on the
element. It uses jQuery when applicable and handles known issues with
raising the click event in IE and in jQuery.

• unwrapObservable(value): This was the original name of ko.unwrap and is
maintained for backward compatibility. It will either return the underlying
value of an observable or the value itself if it's not an observable.

Summary
While this certainly isn't an exhaustive look at the guts of Knockout, which you
probably wouldn't want anyway, you should at least have a good understanding
of how Knockout gets most of the important things done. This chapter covered
dependency tracking, the prototype (fn) chain, the binding expression parser, how
ko.applyBindings works, how Knockout handles templates, and the ko.utils
namespace. Hopefully, you will feel comfortable with how each of these systems work
internally. Knowing how these pieces fit together should help you in troubleshooting
those really tricky bugs.

Index
Symbol
$root context

setting 68, 69

A
accessors

applying 56
activate

viewmodels, preparing with 150-152
activation lifecycle 149
activator

about 149
using 184, 185

activator, properties
activate 149
canActivate 149
canDeactivate 149
Deactivate 149

advanced binding handlers
about 57
APIs, exposing through bindings 61-64
complex data, binding with charts 57-60

advanced composition
about 173
templated mode 176, 177
transitions 174, 175
view caching 173

AMD
about 98
registering 109, 110

animated binding handlers 49, 50
animation handlers 192
anytime login

about 168, 169

responding, to user's login changes 169-172
APIs

exposing, through bindings 61-63
APIs, dialog context

addHost(dialog) 180
compositionComplete(child, parent,

context) 181
removeHost(dialog) 181

application events 164, 165
applyBindingAccessorsToNode method 56
applyBindingsToNode method 56
Asynchronous Module

Definitions. See AMD
autocomplete binding 207

B
basic component registration

about 103, 104
custom elements, in IE 8 and higher 105

binding contexts
about 64
extending 67, 68

binding expression parser
about 228, 229
Knockout property writers 230, 231

binding filters
about 93
custom filters, writing 94

binding handler
about 47
components 47
order, controlling of 56
running 233-235
sorting 232, 233

[242]

binding providers
about 84
custom binding providers 84-91

binding providers, functions
getBindingAccessors(node,

bindingContext) 84
nodeHasBindings(node) 84

bindings
APIs, exposing through 61-63
applying 231
applying, to new children elements 54, 55
DOM, modifying with 52-54
wrapping 77, 78

bindings, applying to new
children elements

accessors, applying 56
bindings, to plain JavaScript objects

about 186
computed observables 188, 189
extenders, adding 187
observable plugin setup 187
promises 189
sample 189
subscriptions, setting up 187

C
canDeactivate

navigation, checking with 152-154
charts

complex data, binding with 57-60
Charts.js

about 57
URL 57

chart type
adjusting, dynamically 60

child binding contexts 65-67
child routers

about 178, 179
dynamic child routes 179, 180

child routes 178
complex data, binding with charts

about 57-60
chart type, adjusting dynamically 60

component loader
implementing 114
methods 114

component object, properties
createViewModel(params,

componentInfo) 113
template 113

components
about 103
AMD registration 109, 110
basic component registration 103, 104
changes, observing in component

parameters 110, 111
combining, with data bindings 112
disposal 112
lifecycle 111
loading, with custom configurations 116
template registration 105
viewmodel registration 108

components, binding handler 47
compose binding 132-134
composition lifecycle 154
composition options

about 134
constructor 134, 135
containerless composition 136
explicit models 136
module ID strings 135
module instance 134
viewpath strings 135
views 136

composition system
about 131
compose binding 132-134
root, composing of shell viewmodel 132
view locations 137, 138

computed observables
about 12
pure computed observables 14
writable computed observables 13

configuration, router 138, 139
constructor, composition option 134, 135
Contacts List application

contact model 33-35
Contacts page viewmodel 35-39
mock data service 40
overview 32
view 41

containerless control flow 28

[243]

containerless syntax, with custom bindings
about 70, 71
virtual elements API, using 71-73

Content Security Policy (CSP) 230
control flow bindings

about 22
foreach binding 25, 26
if binding 23
with binding 24

CRUD (Create, Read, Update, Delete) 36
currying 164
custom binding handlers

using 48
custom binding providers 84-91
custom component loaders 113
custom configurations

components, loading with 116
custom dialogs

about 145-148
alternative method 148, 149

custom elements
registering 115

custom loader
registering 115

custom modal dialogs
about 180-182
default context, replacing 183

D
data-bind attribute 18
data binding pattern 45-47
data bindings

components, combining with 112
data-bind syntax

about 18
binding, against functions 20
binding, with expressions 20
binding, with function expressions 21
binding, with nested properties 19
ko.toJSON, used for debugging 22
parentheses, using in bindings 21

data-part attributes
used, for modifying Durandal

widgets 157, 158

debouncing functions
URL 39

default loader 114, 115
default message 202
define method

about 99
dependencies parameter 99
module function parameter 99
module name parameter 99

dependencies
registering 220
subscribing to 221, 222

dependency tracking
about 217
ko.dependencyDetection module 218-220

descendant bindings
about 64
controlling 65

dirty flag
URL 153

disposal handler 52
DOM

modifying, with bindings 52, 54
DOM local storage

URL 35
domNodeDisposal object

methods 239
Durandal

overview 128-131
promises 128
URL, for documentation 128

dynamic child routes 179, 180
dynamic namespaced bindings 92, 93
dynamic templates 28

E
embedded Ruby syntax interpolation

adding 83
embedded text bindings 91
environment setup

about 8
JavaScript's compatibility 9
samples of code, viewing 9

[244]

events
proxying 163
raising 163
subscribing to 162
unsubscribing from 162, 163

events, composition stages
activate() 154
attached(view, parent) 154
bindingComplete(view) 154
binding(view) 154
compositionComplete(view, parent) 154
detached(view, parent) 154
getView() 154
viewUrl 154

events module 162
explicit models, composition option 136
extenders

about 29
simple extenders 29
targets, replacing 31, 32
with options 30, 31

F
filters

on other bindings 94
foreach binding 25, 26
frame 219
functions, cache

ko.components.
clearCachedDefinition(name) 113

ko.components.get(name, callback) 113

G
gated login 167, 168
Git

about 8
URL, for installation instructions 8

GitHub
URL 8

guarded routes 172

H
handler preprocessing, binding

about 75
uppercase preprocessor 76, 77

I
if binding 23
Immediately Evaluating Function

Expressions (IEFE) 98
Immediately-Invoked Function

Expression (IIFE)
about 33
references 33

instance
versus singleton 195

isNavigating property, router 152

J
JavaScript

navigation, controlling from 142

K
Kendo UI

URL 207
keys

using, for array updates 205
Knockout

overview 9, 10
URL, for observables 39
URL, for tutorials 52, 64

Knockout.BindingConventions plugin
URL 85

Knockout Bootstrap
about 210, 211
URL 211

Knockout documentation
URL 19, 23

Knockout-ES5
about 214, 215
browser support 216

KnockoutJS 7
Knockout Kendo

about 207
URL 207

Knockout Mapping
about 203
options 204
unmapping 204
URL 207
viewmodel, updating 204

[245]

Knockout Mapping, options
challenges 206
create, used for object construction 205
keys, using for array updates 205
properties, selecting 206
updates, controlling 205

Knockout Projections 212-214
Knockout property writers 230, 231
Knockout punches

about 91
additional preprocessors, adding 95
binding filters 93
embedded text bindings 91
namespaced bindings 92

Knockout.Punches
URL 91

Knockout Switch-Case 211, 212
knockout-table plugin

URL 208
Knockout Validation

about 199, 200
binding handlers 201, 202
custom rules, creating 202, 203
default validation rules 200
options, configuring 201

ko.applyBindings once (per root)
calling 196

ko.contextFor (element) parameter 197
ko.dataFor (element) parameter 197
ko.dependencyDetection module 218-220
KoGrid

about 207-209
features 208

ko.isObservable function 52, 227
ko.toJS function 18
ko.toJSON function 18
ko.unwrap utility method 49
ko.utils namespace

about 237
public functions 238-240

ko.virtualElements object
methods 72

L
lifecycle 149
logins

anytime login 168, 169
gated login 167, 168
handling 166

M
message boxes

about 143, 144
settings 145

methods, component loader
getConfig(name, callback) 114
loadComponent(name, componentConfig,

callback) 114
loadTemplate(name, templateConfig,

callback) 114
loadViewModel(name, viewModelConfig,

callback) 114
methods, default loader

ko.components.isRegistered(name) 114
ko.components.register(name,

configuration) 114
ko.unregister(name) 114

methods, domNodeDisposal object
addDisposeCallback(node, callback) 239
cleanExternalData(node) 239
cleanNode(node) 239
removeDisposeCallback(node,

callback) 239
removeNode(node) 239

methods, ko.virtualElements object
childNodes(containerElement) 72
emptyNode(containerElement) 72
firstChild(containerElement) 72
insertAfter(containerElement,

nodeToInsert, insertAfter) 72
nextSibling(node) 72
prepend(containerElement,

nodeToPrepend) 72
setDomNodeChildren(containerElement,

arrayOfNodes) 72

[246]

modal dialogs
about 143
custom dialogs 145-148
message boxes 143, 144

model
versus viewmodel 39

Model-View-ViewModel pattern. See
MVVM pattern

module ID strings, composition option 135
module instance, composition option 134
module-scoped events 166
MVVM pattern

about 9, 45, 191
view 191
view, cluttering 193, 194
viewmodel 46, 47, 191
viewmodel, cluttering 192, 193

N
namespaced bindings

about 92
dynamic namespaced bindings 92, 93

navigation
checking, with canDeactivate 152-154
controlling, from JavaScript 142
hash change, versus push state 141, 142

nested routes 178
Node.js

URL, for downloading 8
node preprocessors

about 78, 79
alternate syntaxes, supporting 80-83
virtual template nodes, closing 79, 80

O
object construction

create, using for 205
observable arrays

about 11
subscribing to 223

observable function 10
observables

about 10
computed observables 12

manual subscriptions 14, 15
observable arrays 11

one-way binding 19, 50
options object, properties

callback 219
computed 219
isInitial 219

P
page components creation

about 119
edit page 120, 121
list page 121, 122

panTo function 63
parameters, app.showMessage

Autoclose (boolean, optional) 143
Buttons (array, optional) 143
Message (string) 143
Settings (object, optional) 143
Title (string, optional) 143

parameter, showMessage
buttonClass 145
class 145
primaryButtonClass 145
secondaryButtonClass 145
style 145

parameters, ko.bindingHandlers
allBindings 48
bindingContext 48
Element 48
valueAccessor 48
Viewmodel 48

performance concerns
about 196
active bindings, limiting 197
delegated events 197, 198
observable loops 196, 197

plain JavaScript objects
binding to 186

polyfill 9
preprocess function, parameters

addBinding 76
name 76
value 76

[247]

preprocessors
creating 76

promises
about 128
URL, for A+ specification 128

properties, Knockout Mapping
copy 206
ignore 206
include 206
observe 206

prototype chain
about 225, 226
ko.isObservable function 227

public functions, on ko.utils
addOrRemoveItem(array, item,

included) 238
arrayFilter(array, predicate) 238
arrayFirst(array, predicate,

predicateOwner) 238
arrayForEach(array, action) 238
arrayGetDistinctValues(array) 238
arrayIndexOf(array, item) 238
arrayMap(array, mapping) 238
arrayPushAll(array, valuesToPush) 238
arrayRemoveItem(array,

itemToRemove 238
domData 238
domNodeDisposal 239
Extend(target, source) 239
fieldsIncludedWithJsonPost 239
getFormFields(form, fieldName) 239
objectForEach(obj, action) 239
parseHtmlFragment(html) 239
parseJson(jsonString) 239
peekObservable(value) 239
postJson(urlOrForm, data, options) 240
Range(min, max) 240
registerEventHandler(element, eventType,

handler 240
setHtml(node, html) 240
stringifyJson(data, replacer, space) 240
toggleDomNodeCssClass(node,

classNames, shouldHaveClass) 240
triggerEvent(element, eventType) 240
unwrapObservable(value) 240

publishing 161

publish/subscribe implementation
about 161
URL 222

pure computed observables 14

R
recursive templates 27
RequireJS

about 98
app, starting 101
configuring 100
overview 98
starting 99
text plugin 102
URL 98
URL, for configuration 101

Respond.js 9
reusable templates 27
revealing module pattern

URL 219
root

composing, of shell viewmodel 132
router

binding 140, 141
configuring 138, 139
isNavigating property 152
using 138

router, properties
hash 139
moduleId 139
nav 140
route 139
title 140

routes
activating 141

routing 117
rules 200

S
SammyJS

overview 118
URL 117

self keyword 16

[248]

service modules
using 194

shell viewmodel
root, composing of 132

simple binding handlers
about 48
animated binding handlers 49, 50
DOM, modifying with handlers 52-54
new bindings, applying to children

elements 54, 55
order of binding handlers, controlling 56
working with third-party controls 50, 51

simple extenders 29
Single Page Application (SPA) 28
Single Page Application (SPA) routing

about 117
navigation, controlling 118
page components, creating 119
pages, coordinating 122-125

singleton
versus instance 195

slideVisible binding 50
small modules

creating 194
Stack Overflow

URL 51
standard array functions, JavaScript 223
states, pure computed observables

listening 14
sleeping 14

StringInterpolatingBindingProvider demo
URL 83

subscribe function 15
subscribing 161
Sugar.js 9

T
template binding

about 26
dynamic templates 28
recursive templates 27
reusable templates 27

template binding handler 235, 236

templated mode, advanced
composition 176, 177

template engine 236, 237
template registration

about 105
AMD module 107
array, of DOM nodes 106
document fragments 107
element ID 106
element instance 106
HTML strings 107

templates 235
template source 236
text plugin 102
thenables 128
this keyword 16
throttling

URL 39
transclusion 155
transitions, advanced composition 174, 175
two-way bindings 19, 50

U
UI datepicker, jQuery

about 50
URL 51

unit tests
writing 195

unmapping 204
unobtrusive event handlers 197
updates

controlling 205
uppercase preprocessor 76, 77
User Interface (UI) 9
utility methods

destroyAll 225
remove 224
removeAll 225
replace 225

utility methods, Knockout
ko.toJS 18
ko.toJSON 18

[249]

V
validationElement binding 202
validator function 202
view caching, advanced composition 173
view, composition option 136
view, Contacts List application

about 41
contacts list 42, 43
edit form 41, 42

view locations 137, 138
viewmodel

defining 16
issues, with prototypes 17
preparing, with activate 150-152
self keyword 16
serializing 18
this keyword 16
updating 204
versus model 39

viewmodel, MVVM pattern
about 191
cluttering 192, 193

viewmodel registration
about 108
AMD module used 109
constructor function 108
factory function 109
singleton object 108

view, MVVM pattern
about 191
cluttering 193, 194

viewpath strings, composition option 135
virtual template nodes

closing 79, 80

W
widgets, Durandal

about 155
creating 155, 156
modifying, with data-part

attributes 157, 158
using 156, 157

Windows Presentation
Foundation (WPF) 10

with binding 24
writable computed observables 13

Thank you for buying
Mastering KnockoutJS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

KnockoutJS Starter
ISBN: 978-1-78216-114-1 Paperback: 50 pages

Learn how to knock out your next app in no time
with KnockoutJS

1. Learn something new in an instant!
A short, fast, focused guide that delivers
immediate results.

2. Learn how to develop a deployable app as
the author walks you through each step.

3. Understand how to customize and extend
KnockoutJS to take your app to the next level.

4. Great examples that show how KnockoutJS can
simplify your code and make it more robust.

Building UIs with Wijmo
ISBN: 978-1-84969-606-7 Paperback: 116 pages

Build user interfaces quickly using widgets

1. Learn to configure Wijmo components for
common usage scenarios.

2. Build adaptive websites that work on
desktops and mobile devices.

3. Integrate Wijmo with Knockout to develop
real-time applications.

Please check www.PacktPub.com for information on our titles

jQuery HOTSHOT
ISBN: 978-1-84951-910-6 Paperback: 296 pages

Ten practical projects that exercise your skill, build
your confidence, and help you master jQuery

1. See how many of jQuery's methods and
properties are used in real situations.
Covers jQuery 1.9.

2. Learn to build jQuery from source files,
write jQuery plugins, and use jQuery UI
and jQuery Mobile.

3. Familiarize yourself with the latest
related technologies such as HTML5, CSS3,
and frameworks such as Knockout.js.

Real-time Web Application
Development using Vert.x 2.0
ISBN: 978-1-78216-795-2 Paperback: 122 pages

An intuitive guide to building applications for the
real-time web with the Vert.x platform

1. Get started with developing applications for
the real-time Web.

2. From concept to deployment, learn the
full development workflow of a real-time
web application.

3. Utilize the Java skills you already have while
stepping up to the next level.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Knockout Essentials
	The environment setup
	Looking at the samples
	JavaScript's compatibility

	An overview of Knockout
	Observables
	Observable arrays
	Computed observables
	Writable computed observables
	Pure computed observables

	Manual subscriptions

	Defining viewmodels
	The this and self keywords
	Problems with prototypes
	Serializing viewmodels

	The data-bind syntax
	Binding with nested properties
	Binding against functions
	Binding with expressions
	Binding with function expressions
	Using parentheses in bindings
	Debugging with ko.toJSON

	Control flow bindings
	The if binding
	The with binding
	The foreach binding

	Template binding
	Reusable templates
	Recursive templates
	Dynamic templates

	Containerless control flow
	Extenders
	Simple extenders
	Extenders with options
	Extenders that replace the target

	The Contacts List application
	Overview
	The contact model
	The Contacts page viewmodel
	A philosophical note on a model versus a viewmodel

	Mock data service
	The view
	The edit form
	Contacts list

	Summary

	Chapter 2: Extending Knockout with Custom Binding Handlers
	The data binding pattern
	Components of a binding handler
	Using custom binding handlers

	Simple binding handlers
	Animated binding handlers
	Working with third-party controls
	Modifying the DOM with bindings
	Applying new bindings to new children elements
	Applying accessors

	Controlling the order of binding handlers

	Advanced binding handlers
	Binding complex data with charts
	Dynamically adjusting the chart type

	Exposing APIs through bindings
	Binding contexts and descendant bindings
	Controlling descendant bindings
	Child binding contexts
	Extending binding contexts
	Setting a new $root context

	Containerless syntax with custom bindings
	Using the virtual elements API

	Summary

	Chapter 3: Extending Knockout with Preprocessors and Providers
	Binding the handler preprocessing
	Creating preprocessors
	The uppercase preprocessor
	Wrapping existing bindings

	Node preprocessors
	Closing virtual template nodes
	Supporting alternate syntaxes
	Multiple syntaxes

	Binding providers
	Custom binding providers

	Knockout punches
	Embedded text bindings
	Namespaced bindings
	Dynamic namespaced bindings

	Binding filters
	Writing custom filters
	Filters on other bindings

	Adding additional preprocessors

	Summary

	Chapter 4: Application Development with Components and Modules
	RequireJS – AMD viewmodels
	An overview of RequireJS
	Asynchronous Module Definitions
	Starting RequireJS
	Configuration
	Starting the app
	The text plugin

	Components
	The basic component registration
	Custom elements in IE 8 and higher

	Template registration
	The element ID
	The element instance
	An array of DOM nodes
	Document fragments
	HTML strings
	Registering templates using the AMD module

	The viewmodel registration
	The constructor function
	A singleton object
	The factory function
	Registering viewmodels using an AMD module

	Registering AMD
	Observing changes in component parameters
	The component's life cycle
	The component's disposal
	Combining components with data bindings
	Implementing a component loader
	The default loader
	Registering a custom loader
	Registering custom elements
	Loading components with custom configurations

	Single Page Application (SPA) routing
	An overview of SammyJS
	Controlling the navigation
	Creating page components
	The edit page
	The list page

	Coordinating pages

	Summary

	Chapter 5: Durandal – the Knockout Framework
	An overview of the Durandal framework
	Promises
	Getting started

	The composition system
	The compose binding
	Composition options
	Module instance
	Constructor
	Module ID strings
	Viewpath strings
	Explicit models and views
	Containerless composition

	View locations

	Using the router
	Configuring the router
	Route properties
	Binding the router
	Activating routes
	Navigation – hash change versus push state
	Controlling the navigation from JavaScript

	Modal dialogs
	Message boxes
	Message box settings

	Custom dialogs
	An alternative method

	The application's life cycle
	The activation life cycle
	Preparing viewmodels with activate
	A note on the router's isNavigating property
	Checking navigation with canDeactivate

	Composition

	Widgets
	Creating a new widget
	Using a widget
	Modifying widgets with data-part attributes

	Summary

	Chapter 6: Advanced Durandal
	Publishing and subscribing
	The events module
	Subscribing to events
	Raising events
	Proxying events

	Application events
	Module-scoped events

	Handling logins
	Gated login
	Anytime login

	Guarded routes
	Advanced composition
	View caching
	Transitions
	The templated mode

	Child routers
	Dynamic child routes

	Custom modal dialogs
	Replacing the default context

	Using activators
	Binding to plain JavaScript objects
	Observable plugin setup
	Subscribing and extending
	Computed observables
	Promises
	Sample

	Summary

	Chapter 7: Best Practices
	Sticking to MVVM
	The view and the viewmodel
	Cluttering the viewmodel
	Cluttering the view

	Using service modules
	Creating small modules
	Writing unit tests
	Singleton versus instance
	Calling ko.applyBindings once (per root)
	Performance concerns
	Observable loops
	Limit active bindings
	Delegated events

	Summary

	Chapter 8: Plugins and Other Knockout Libraries
	Knockout Validation
	Default validation rules
	Configuring validation options
	Validation binding handlers
	Creating custom rules

	Knockout Mapping
	Updating the viewmodel
	Unmapping
	Mapping options
	Using keys for array updates
	Using create for the object construction
	Controlling updates
	Choosing which properties get mapped
	Challenges

	Knockout Kendo
	KoGrid
	Knockout Bootstrap
	Knockout Switch-Case
	Knockout Projections
	Knockout-ES5
	Browser support

	Summary

	Chapter 9: Under the Hood
	Dependency tracking
	ko.dependencyDetection
	Registering dependencies
	Subscribing to dependencies
	Subscribing to observable arrays
	Standard array functions
	The utility methods

	The prototype chain
	The ko.isObservable function

	The binding expression parser
	Knockout property writers

	Applying bindings
	Sorting binding handlers
	Running the binding handlers

	Templates
	The template binding handler
	The template engine

	The ko.utils reference
	Summary

	Index

