
www.allitebooks.com

http://www.allitebooks.org

Mastering NServiceBus
and Persistence

Design and build various enterprise solutions
using NServiceBus while utilizing persistence
enterprise objects

Rich Helton

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering NServiceBus and Persistence

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1200814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-381-6

www.packtpub.com

Cover image by Zarko Piljak (zpiljak@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rich Helton

Reviewers
Andrew Church

Eben Roux

Commissioning Editor
Usha Iyer

Acquisition Editor
Neha Nagwekar

Content Development Editor
Shaon Basu

Technical Editor
Manal Pednekar

Copy Editors
Sarang Chari

Mradula Hegde

Gladson Monteiro

Alfida Paiva

Adithi Shetty

Project Coordinator
Sanghamitra Deb

Proofreaders
Simran Bhogal

Stephen Copestake

Linda Morris

Indexer
Rekha Nair

Production Coordinators
Manu Joseph

Conidon Miranda

Alwin Roy

Nitesh Thakur

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rich Helton is the Principal Software Engineer at the Colorado Department of
Labor and Employment (CDLE) in their IT office. He works on several projects, such
as Unemployment Insurance's WyCAN (Wyoming-Colorado-Arizona-North Dakota)
and CDLE's Internet Self-Service (ISS). He has spent time as a technical manager,
as an information security officer, and an enterprise services manager for the state.
Rich has an experience of more than 2 decades in building large-scale enterprise
systems, working as the principal architect for a customer list that includes ADP,
Jeppesen, J.B. Hunt, Schneider Logistics, US West, DCN, and many more. He has
implemented Java and C# projects since these languages were in beta, and he has
built many projects in frameworks to include Spring, ORMs, NoSQL, and multiple
ESB frameworks since their beginning.

He has several patents in the field of mobile video from when he was the VP of
Technology of Digital Camera Networks. He holds many certifications in security
and software development and a Master's degree in software. He has taught many
software and application security classes as a consultant in both the public and
private sectors. He posts some of his classes on http://www.slideshare.net/
rhelton_1. Rich has built many monitoring systems, network tools, and mobile
tools for decades as an independent consultant to include C# system tools and
Java Android applications.

I would like to thank the ongoing support of my wife, Johennie, and
my daughters, Ashley and Courtney.

www.allitebooks.com

http://www.slideshare.net/rhelton_1
http://www.slideshare.net/rhelton_1
http://www.allitebooks.org

About the Reviewers

Andrew Church is a senior software engineer and alumni of the Rochester Institute
of Technology. Andrew has 5 years of experience working on enterprise-distributed
systems for large companies, including a large retailer, as well as product systems for
small start-ups. Andrew has also spent time in product development and innovation
for a start-up in Rochester, NY.

I would like to acknowledge my parents for always telling me
that I could do anything that I set out to do. I would also like to
acknowledge my best friend, my wife Taylor, whose unwavering
support for all of my crazy ambitions is nothing but inspiring.

Eben Roux has been an IT professional since 1995 and has acted as a developer,
consultant, and architect within many industries. He has also provided strategies
and solutions that have contributed to the successful implementation of various
systems, which includes an NServiceBus solution for an insurance firm.

He is the owner of the free open source Shuttle Service Bus project and believes firmly
in the development of quality software that empowers users to get their job done.

Having come from a Visual Basic background, Eben first became a Microsoft
Certified Professional in 1998, and by 2003, had completed three Microsoft Certified
Solution Developer certifications (VB5, VB6, and VB.NET). Since moving exclusively
to C# development in 2007, he has focused on a domain-driven design implemented
within an event-driven architecture based on message-oriented middleware.

Eben can be contacted at me@ebenroux.co.za or via his blog at www.ebenroux.co.za.

I would like to thank my wife, Amanda, and our sons, Reynard and
Reynier, for allowing me to contribute to the community.

www.allitebooks.com

www.ebenroux.co.za
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: NServiceBus Persistence Introduction 7

Introduction to SOA 8
The need for metadata 12
The need for persistence patterns 14
Fallacies of distributed computing 16
The need for sagas 17
A real-life saga 18

Beginning an NServiceBus saga 20
Beginning NServiceBus assemblies 22
Summary 28

Chapter 2: The NServiceBus Architecture 29
Benefits of NSB 30

More on endpoints 31
The application security perspective 32
NSB hosting versus self-hosting 32
Using Powershell commands 35

Message exchange patterns 36
The publish/subscribe pattern 36
Request-response messages 38

Saga services 39
Some saga features 40
Timeout messages 41
Message mutations 43
Message encryption 45
Cluster messaging 47

Performance monitoring 49

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Gateway messaging 52
Data bus messaging 55

Storage patterns 56
Backing it up 59

Monitoring 59
Sample e-mail notification 62

Let's recap 65
Summary 66

Chapter 3: Particular Service Platform 67
ServicePulse 68
ServiceControl 70
ServiceInsight 76
ServiceMatrix 81

Introducing custom checks 91
Publish/subscribe through ServiceMatrix 94

Sagas through ServiceMatrix 99
Summary 103

Chapter 4: Knowing Your IBus 105
Understanding the basics of IBus 105
Configuring IBus 107

Interface configurations 111
Using the Fluent Configure.With() 114

The transport storage 116
The saga persister 116
The timeout persister 117
The gateway persister 117
The subscription storage 118
Finding more configuration settings 118

Using saga and NHibernate 119
Defining NHibernate 125
The saga database data 126
Logging 128
Buyer's remorse code walkthrough 130

Message mutators 137
Encryption 139

Services and deployment 140
Summary 142

Chapter 5: Persistence Architecture 143
Persistence basics 143
Supporting frameworks for persistence 145

Introducing Entity Framework 146

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

XML serialization 150
C# reflection 154

The PayQueue sample 155
The SQL queuing sample 158
Database logging 163
Summary 167

Chapter 6: SQL Server Examples 169
The SQL Server example 169
The MVC-EF example 174
Entity Framework snippets 180

Creating tables with EF 180
Creating tables from the EF code 183
Creating tables from EF models 184

Code-first EF 188
Code-first EF and configurations 191

Unit testing NServiceBus 194
Message handler unit testing 196
Saga handler unit testing 202

Summary 203
Chapter 7: Persistent Snippets 205

Entering NHibernate 205
Using saga and NHibernate 209

Defining NHibernate 215
The saga database data 216

Logging 217
Entering RavenDB 219
Entering MongoDB 223

NServiceBus MongoDB persistence 227
Summary 228

Chapter 8: The NSB Cloud 229
Introducing the cloud and NSB 229
Introducing PaaS, IaaS, and SaaS 231
Cloud vendors 232
Using Microsoft Azure 237

Virtual machines 240
Azure Service Bus 247
Service bus for Windows Server 250
Other Azure services 255

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Adding NServiceBus 256
NServiceBus for Azure 256
Azure support for NServiceBus 256

NSB in the mobile world 260
Recap 261
Questions that were answered 262
Summary 263

Index 265

Preface
Starting with the basics of NServiceBus (NSB), this book will provide you with all the
skills you need to successfully design, develop, and architect C# enterprise systems
with NSB. We will walk through many enterprise NSB scenarios with different
persistence models. Some of these enterprise solutions will include additional
frameworks, such as Model-View-Controller, Entity Frameworks, NHibernate, SFTP,
and WCF. There will be discussions on MongoDB, RavenDB, and NHibernate as they
relate to NSB. The Particular Service Platform, including ServiceControl, ServicePulse,
and ServiceInsight, will be discussed at length with examples.

You will be taken through IBus characteristics, followed by the Persistent and
NServiceBus saga architectures. You will get to know about the basics of persistence
and the supporting frameworks for persistence, followed by SQL queuing and
database logging. This will be followed by an in-depth look at the saga architecture,
covering the mechanics, message mapping, and internal configuration, as well as
tips on how to avoid certain common errors.

We will discuss how NSB provides an enhanced quality of software through the use of
security, logging, monitoring, notification, and persisting objects and messages. There
will be many examples. We will end the book with future enhancements to NSB, how
NSB is part of the cloud space, and how it finds itself in use in the mobile world.

What this book covers
Chapter 1, NServiceBus Persistence Introduction, will discuss NSB and the basic
persistence design pattern it uses, which include the sagas, gateways, subscriptions,
messages, and timeout design patterns. We will also discuss the benefits of using
NSB, and what it brings to the table in terms of software design.

Preface

[2]

Chapter 2, The NServiceBus Architecture, will focus on the NServiceBus architecture.
We will also discuss the different message and storage types supported in NSB.
This discussion will include an introduction to some of the tools and advantages
of using NSB as we conceptually look at how some of the pieces fit together.
We will back up the discussions with code examples.

Chapter 3, Particular Service Platform, will focus on Particular Service Platform
that includes ServicePulse, ServiceControl, ServiceInsight, and ServiceMatrix.
As the name implies, ServicePulse gives us a pulse on the messages, services, and
endpoints. ServiceControl is the control API that ServicePulse and ServiceInsight
depend on to get their internal information. ServiceInsight gives us graphical and
message-level drilldown into the services, endpoints, and messages that also include
a saga drilldown. ServiceMatrix is the graphical interface into code generation for
NServiceBus endpoints, services, and messages in a Visual Studio canvas.

Chapter 4, Knowing Your IBus, will discuss various configurations and examples of
the NSB IBus. In Enterprise Service Bus (ESB), the bus is the backbone of the sagas,
subscriptions, sending, timeouts, and gateways. For NServiceBus, the bus interface
is known as the IBus. Knowing your IBus is the most important part of NServiceBus.

Chapter 5, Persistence Architecture, will cover persisting items to the database,
including messages and logging. For the ESB bus, persistence is the key element
for the storing of messages, which could be associated as business objects that run
through the ESB workflow. The metadata comprises other persistent elements
that define how the messages and workflow are being handled in the ESB through
configuration. Persistence can also be considered the feedback that the ESB gives
back to the system in the form of logging, errors, and audits.

Chapter 6, SQL Server Examples, will focus on snippets about SQL Server examples.
We will discuss queuing in SQL Server. More advanced features for Entity Framework
will be discussed, as will MVC-EF examples. This chapter is for developers who are
working with SQL Server and Entity Frameworks with NServiceBus.

Chapter 7, Persistent Snippets, will focus on snippets about persistence. We will
discuss NHibernate, RavenDB, and MongoDB. We will dive into code to accomplish
some database tasks related to NServiceBus. This code could be applied to many
tasks that are not ESB-specific. But this is a much needed chapter on database code
itself. We will create SQL Server databases without the use of SQL code and read
tables that NServiceBus created in RavenDB. We will show how to create tables
with code, read tables, and display tables in NHibernate and RavenDB.

Preface

[3]

Chapter 8, The NSB Cloud, will focus on snippets about NServiceBus in the Azure
cloud after an introduction to various components about the Azure cloud services.
NSB has a lot of support for the Azure cloud. Be it SQL Storage, Azure Queues,
or the Azure Service Bus, NSB is headed in a direction of working more with
Cloud Services. We will briefly discuss Salesforce and even NSB integration into
mobile devices.

What you need for this book
Beginner-level knowledge of Visual Studio 2012 with C# will be required. This could
be the Visual Studio 2012 Express Edition from Microsoft.

Who this book is for
This book is for any person who wishes to develop, design, or architect NServiceBus's
ESB systems in C# as a possible solution. We discuss many items that go beyond
NSB, such as MVC-EF frameworks and databases such as RavenDB, SQL Server,
and MongoDB.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First, run the Install commands for the pieces that are accomplished in
PowerShell commandlets."

A block of code is set as follows:

using System;
using System.IO;
using ServiceControl.Plugin.CustomChecks;
using ServiceControl.Plugin.CustomChecks.Messages;
using ServiceControl.Plugin.CustomChecks.Internal;
namespace PaymentEngine.ECommerce

Preface

[4]

{
 public class MyCustomCheck : CustomCheck
 {
 public MyCustomCheck()
 : base("ECommerce SubmitPayment check", "ECommerce")
 {
 ReportPass();
 }
 }}

Any command-line input or output is written as follows:

"PM> Get-NserviceBusLocalMachineSettings"

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
the Component Services option under the Administrative Tools menu."

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

NServiceBus Persistence
Introduction

In this chapter, we will discuss NServiceBus (NSB) and the basic persistence design
pattern it uses, which includes the saga, gateway, subscription, messages, and timeout
design patterns. We will also discuss the benefits of using NSB and what it brings to
the table in software design. Finally, we will discuss the following topics:

• Introduction to SOA
 ° The need for metadata
 ° The need for persistence patterns
 ° The need for enterprise frameworks
 ° Fallacies of distributed computing
 ° The need for sagas
 ° A real-life saga

• Beginning an NServiceBus saga
• Beginning NServiceBus assemblies

NServiceBus Persistence Introduction

[8]

Introduction to SOA
Service Oriented Architecture (SOA) is a very important architectural
concept (http://en.wikipedia.org/wiki/Service-oriented_architecture).
To understand what services it brings to the table, we bring up the four tenets of
services, also known as the Principles of Service Oriented Design (for more details
refer to http://msdn.microsoft.com/en-us/library/bb972954.aspx). They
are autonomous, boundaries, share schema and class, and compatibility.

• Autonomous: Services are autonomous; this means that each individual
service takes care of its own self-contained life cycle independent of other
services, and changing a particular service will not have any side effects
on other services.

• Boundaries: Boundaries to services are explicit. There are distinct entry
and exit points for messaging; it is well defined where these points are
in the service.

• Share schema and class: Services share schema and contract, but not their
classes. This means that the internals of the services are not exposed. Again,
the messaging interface is defined, but the internals of what is going on are
not exposed across the platform. This adds a layer of abstraction to services
that define a business requirement, say an order service, without having to
go into every detail of the business.

• Compatibility: A service's compatibility is based on its policy. The policy
defines the nonfunctional requirements of what the service must conform
to while it is being produced. For example, what is the level of encryption,
maintenance, and effort required? For instance, in an order service, what
data needs to be saved to the disk, what data needs to be encrypted, and
what is the level of fault tolerance of the service?

A simple example comes from ordering websites that need to send payments to
third-party servers to receive the payment. Assume a pizza-ordering site; there are a
number of issues that may occur at the time of credit card processing, which include
insufficient funds as well as network and connectivity issues. If SOA or ESB is not
used, the customer may be asked not to refresh the page. This is required so that the
payment request is sent to the third-party processing server, and the customer may
even receive a network error. When an error is received, the customer is asked to
retry again.

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://msdn.microsoft.com/en-us/library/bb972954.aspx

Chapter 1

[9]

There are many major ordering websites that function in this way today. As a
customer, some of the concerns include the integrity of how a website handles orders
since it requires customer validation and intervention to process payments. Even
ensuring that a page does not refresh relies on the customer, which makes the site
less appealing in comparison to those that do not require customer intervention for
issues the customer does not need to be made aware of.

Instead, the responsibility to ensure the funds are processed should be on the
system rather than on the customer. Of course, in order for a website to take on the
responsibility of firing off the message to an SOA, there has to be an SOA in place to
take on the responsibility of processing the message for the payment.

While developing an SOA or ServiceBus system, many software architects consider
starting it from scratch. However, they soon realize that there are many unstated
requirements that are expected to be incorporated. These requirements assume a
specific behavior and do not explicitly call them out. It is a given fact that a good
design takes these non-business functional requirements into account.

Some examples of these requirements include second-level retries for when a
credit card isn't processed the first time. When this happens, the system stores the
messages along the way; keeps track of the state of the services; and integrates into
other company systems network errors, the encryption of the credit card number,
and the access control level that different users and systems may need.

These requirements become complex quickly, as the following diagram implies.
It may take years to resolve some of the issues but most of the time, the business
allocates months rather than years to address them. In order to resolve these
non-business functional requirements and to address the associated issues that
may arise, it is best to study solutions that other architects have provided for
similar situations.

www.allitebooks.com

http://www.allitebooks.org

NServiceBus Persistence Introduction

[10]

For instance, use a ServiceBus product such as NServiceBus as a guide to
performance-enhanced products with built-in message reliability and integrity.

Continuing with the order system for a pizza establishment, the website would
process the order and hand off the message to ServiceBus to process the payment.
Then, the system takes the ownership of the payment message instead of relying
on the customer.

The messages need to accommodate the partner's systems. However, the bus
handles data and queues internally and saves the state, messages, and objects if
something goes wrong. This is important since payments affect the bottom line,
and the company has a business need to keep track of its payments.

The hand-off of messaging allows a customer to continue to the next action or
website page. The payment response is later processed as the system takes on
the responsibility for the payment.

Chapter 1

[11]

The messages are sent between services as autonomous tasks, and the messages
need to be made durable, scalable, reliable, secure, transactional, and capable of
being distributed among different systems. This backbone, the pieces as a whole,
is by definition an Enterprise Service Bus (ESB). ESB is simply a common bus
across the enterprise, with the preceding characteristics (durable, scalable, reliable,
secure, transactional, and distributable).

A saga is a mechanism that evolved in ESBs to save the state of messages. A saga
also keeps track of the originating message's endpoints so that it can respond to the
originator with changes to the message.

Just as an accountant must keep track of receivable payments and orders in a
company, so must a company's systems—record keeping is of paramount concern.
Once a user creates an account, they become a customer; as a customer, they assume
that the company protects their information, unless told otherwise.

Throughout history, many companies that are no longer in existence neither
protected users' data, nor adequately kept track of payments and orders. Security
and sales are an overall concern in the industry. A company's main goal is to make
more money than it spends, which includes keeping track of the company's data.
Losing sales and data can be expensive. Reporting where data is and its current state
(be it a sale or customer's data) is important. Therefore, of course, it is better to have a
system that never has an issue. Though, if a system has an issue (such as losing data
or funds), it is best to know the magnitude of the issue and as much information as
possible. Therefore, when building payment engines, it is not uncommon to require
daily reports of dollar totals, the number of successes or failures, reasons for failures,
root cause of failures, and more.

In order to provide such reports, there needs to be an end-to-end tracking of messages.
A message is nothing more than a piece of data that travels through a system as the
system completes a transaction.

A transaction is a completed unit of work, such as completing a payment. A message
can be saved after a transaction is completed in order to keep a record and be able to
provide feedback on what happened through the workflow.

A workflow is the end-to-end processing of transactions as the message moves
through the system to complete its life cycle. During a message's life cycle, some data
may be mutated. An example is payment in part or additional fees. The system uses
the message's metadata to determine how the message moves through the workflow.

Metadata is information about the message itself, such as a message ID or header
information. Header information is used to keep information that may show, for
instance, the originating system and destination.

NServiceBus Persistence Introduction

[12]

A saga uses a message ID to save and lookup the state of the message at a given
point using the originator of the message to respond, with the status of the message,
to the originator.

All of the previous work is performed in order to do reporting; also, instead of
creating a solution from the ground up, NServiceBus is built explicitly to simplify
and assist with the amount of work within a system. NServiceBus uses queuing to
pass messages to other services, such as MSMQ, which includes error queues and
audit queues.

For example, a simple report may be there to send a daily message of how many
messages were sent to the error queue. Since messages can be created in XML, there
could be an error field to be easily parsed out for error details. However, in no way
does this replace logging.

Products such as ServicePulse and other reporting mechanisms are used to assist
in giving reports of the company's messages and data. This simple example could
be expanded to send messages that contain payments above a threshold ($100 for
instance) to one queue and under the threshold to a different queue. A report could
be made daily based on timestamps. Since sagas are saved in databases before
a message is completed, another report could be generated to report on all the
payments over $100 that are not processed.

There are many ways to provide reports of messages, and because sagas and queues
are used, it can be drilled down to very detailed information. It is obvious that there
is extensive work to be done to create and implement a solution from scratch.

The need for metadata
During the course of building enterprise systems, there are functional and
nonfunctional requirements. Functional requirements describe the business rules,
and nonfunctional requirements are system characteristics with non-business rules.
A simple nonfunctional requirement for a system is, for instance, that any SSN must
be encrypted both at rest and in-transient states. Nonfunctional requirements simply
go beyond security requirements; nonfunctional requirements include notifications,
alerts, monitoring, logging, and other software qualities.

Nonfunctional requirements include many of the components that make up
software quality http://en.wikipedia.org/wiki/Software_quality. Software
quality includes some of the software characteristics already mentioned, such as
maintainability, security, code quality, reliability, integrity, and so on. Software
quality is the ideal state for software to achieve; nonfunctional requirements form
the specifics of how to achieve certain pieces.

http://en.wikipedia.org/wiki/Software_quality

Chapter 1

[13]

The problem is that, while business requirements may be clearly spelled out,
nonfunctional requirements may not be defined clearly or negotiated enough ahead
of time. Therefore, tweaks are required along the way during the application life
cycle, including development or maintenance. Metadata and precreated frameworks
are the key players of this tweaking.

Consider an administration application that business analysts (BAs) and operational
teams use to check the current state of an enterprise application. The application takes
orders for aircraft maps and equipment, and customer service representatives (CSRs)
have an interface for working with the customers and changing their data at will.
Operations use an administration application to monitor the end-to-end throughput
from a browser to a database and receive notifications if the levels are not achieved.

In the previous example, notifications and monitoring are nonfunctional
requirements. BAs may use the administration application to handle special
customer cases and monitor the number of orders, customers, and other reports.
The generation of the reports, the data for monitoring, is based on the business
data and generates metadata. This metadata is used to check the business data.

The following is a common 3-tier diagram for an application that gathers
sales information:

NServiceBus Persistence Introduction

[14]

The application has a frontend, a logic tier (middle tier), and a data tier. So far,
this is a very common design for an application. The frontend is done in HTML or
ASP.NET to control the presentation layer in a browser. The logic tier contains the
workflow and messaging to handle business logic. Finally, the data tier is the storage
to hold the information in a persisted repository—usually a database, mainframe,
file I/O, or third-party server among other options.

When you look at this basic application, you'll realize that many endpoints are
missing. These endpoints are used to monitor the application, to log the application,
and perform other operational and administration tasks previously mentioned.
Therefore, this model is incomplete since it does not address nonfunctional
requirements.

Many software projects seem to need continuous enhancements because the
developer keeps on adding components for security, operational reports, and
other application characteristics that were not mentioned in the list of business
requirements, even though they are components required to ensure the integrity
of the application itself.

The need for persistence patterns
To paraphrase what's written in http://en.wikipedia.org/wiki/Service_
oriented_architecture, the idea behind Service-oriented Architecture (SOA)
is to decouple the end-to-end application functionality between discreet services.

So far, we have discussed sagas and some metadata of applications. There are other
types of data that are saved to the data store, including business objects that contain
the information used for business rules. Business rules run the business engines and
are used to execute business logic.

In the ESB world, the bus transports (moves) objects that could be considered business
objects; these business objects move through sagas. These objects are the pieces of
NSBs that are used for notifications, timeouts, gateways for message distribution,
Second–level Retries (SLRs), and even endpoints to where the messages are sent.

The preceding objects make up many of the application metadata. Many of these are
the configurations of the services that make up the distribution of the messages and the
behavior of the transactions. The metadata that NSB keeps track of during a publish-
subscribe message pattern is the same subscription information required for NSB to
keep track of the publish-subscribe endpoints. The subscription information is needed
for the subscribers to keep track of the message types and queue endpoints. This is
needed to subscribe to the publishers. NSB uses the database to keep track of these
types of endpoints.

http://en.wikipedia.org/wiki/Service_oriented_architecture
http://en.wikipedia.org/wiki/Service_oriented_architecture

Chapter 1

[15]

A small table of what is available can be seen at http://docs.particular.net/
nservicebus/persistence-in-nservicebus.

The persistence configurations are just some of the typical ESB service configurations
in NSB. There are many more configurations as NSB is meant to do so much more
as a complete automation framework for the middleware. We will be discussing
the various features and their associated configurations on the bus called IBus
throughout this book.

Through this table, we know that the timeout for sagas, the saga object itself, the
subscription information for publish-subscribe, the second-level retries, the fault
management, notification, the gateway, and distributor can be supported in MSMQ.
Some of these pieces can be stored in the local memory of the host application; it
cannot be saved when the application is not running. Pieces can be saved in the
RavenDB database, which is a NoSQL document-oriented database. Pieces can also be
saved using the NHibernate database connecter, which is an ORM mapper to various
relational databases, such as SQL Server, MySQL, and Oracle. Some of the items have
been referred to as data, which is data that describes the messages versus the messages
themselves that will be part of the ESB workflow. The workflow itself makes up the
business logic, while the messages themselves could be considered as business objects.

The benefit of NServiceBus is that it will handle the persisting of the object's
messages and various pieces for the developer, as long as the developer has
configured NSB correctly.

For instance, when using NHibernate, NSB will perform the mapping of the
messages to the relational database, and the developer does not have to configure
the NHibernate-mapping properties to map the objects to the relational database.
This saves the developer a lot of time and effort. The messages themselves can also
be persisted through various means using the settings for using the transport in IBus
configurations. These message queues include MSMQ, Azure queues, SQL Server
queues, ActiveMQ, and RabbitMQ.

http://docs.particular.net/nservicebus/persistence-in-nservicebus
http://docs.particular.net/nservicebus/persistence-in-nservicebus

NServiceBus Persistence Introduction

[16]

Fallacies of distributed computing
Many books are written on just various troubleshooting issues over networks and
servers. There are many issues that come up in operations and maintenance that
were never conceived as potential issues, anywhere from intermittent routers due
to a power cord not being plugged in all the way, patches that left the servers in a
hung state, DNS errors from a domain controller, and so on. There is no guarantee
that the networks, or servers, are secure, remain unchanged, and all the routes
remain reliable for the application that was built. Not having to deal with these
abnormal issues by having someone else deal with the uptime issues is what makes
cloud computing so attractive. In many enterprise applications, as in this usage, we
discuss where uptime is critical, and where it is normal to have to code, notification,
and monitoring, for failure along every step of the way between services and
clients. There are many assumptions that we can make, including the one that it is
someone else's concern; however, in the end, it becomes a piece of the application's
responsibility to describe how it is working.

Because the network may not be reliable, there may be a changeover in staff and
servers. The need for persistent enterprise objects, such as bus technology and
persistent messaging, has evolved. Also, the need for instrumentation has grown
to track the messages and objects. Not knowing where payments and orders are
in a system can be bad for any organization that needs to track them. In the end,
the data that runs through applications is owned by the organization; if it is hacked,
if financial data is lost, or if employees are not paid, it is their responsibility, rather
than considering that it lives in the cloud or it is the fault of a bad network or any
other condition. Because of this need for reporting on the systems, there is a need
for metadata, which is just another form of persisting the company's data, except for
business data such as a customer's address. Metadata is a form of reporting data, such
as the current state of a message or if there was an error with a message reaching its
endpoint. It is a snapshot in the organization's operations of applications. Sometimes
these snapshots are very important; in many cases, where money and personal
identifying information are involved, they are used to provide information, even
to courts, on what happened when the money goes missing. We will start on this
journey of running through the designing of systems with a common SOA design
pattern called saga that will assist us in providing these pieces discussed thus far.

Chapter 1

[17]

The need for sagas
A saga is a design pattern that was originally coined in a paper by Hector
Garcia-Molina in 1987, http://www.amundsen.com/downloads/sagas.pdf.
To quote a piece:

"A long-lived transaction (LLT) is a saga if it can be written as a sequence of
transaction that can be interleaved with other transactions."

In Arnon Rotem-Gal-Oz's book on SOA Patterns, page 137 says:

"Sagas are a way for services to reach distributed consensus without relying
on distributed transactions."

It is expressed by many references that sagas may be built differently, depending
on the need.

A saga pattern is supported by NServiceBus; for more information see http://
docs.particular.net/nservicebus/sagas-in-nservicebus. A saga handles the
persisting of pieces of messages as part of an ESB. During a workflow of messages,
a message is sent to a saga; the saga persists the needed data and responds to the
original client with messages. A saga itself is a data object with an ID, getters, and
setters. As messages are passed back and forth between services, the saga is an
intermediate to save valuable data. The data are message parts.

The messages of a service bus are persisted by nature and can be replayed when
there is an issue with the delivery of the message with the endpoint; however, the
saga keeps track of the originator and can store other data to be associated with
the original message. This updated data, which is defined by the developer, may
be the state of the message, the session information related to the message, or any
other data needed by the application. The saga correlates messages it receives,
synchronizes the activity using the corresponding ID, and deals with other features
such as timeouts and lookups.

The saga evolves in the ServiceBus architecture as a pattern; it is discussed in greater
detail in the next chapters.

Many common frameworks such as Microsoft MVC and EF are designed for
business requirements only, with additional frameworks to assist in nonfunctional
requirements; this point is stressed throughout this book. Also, we emphasize the
concept of ServiceBus.

http://www.amundsen.com/downloads/sagas.pdf
http://docs.particular.net/nservicebus/sagas-in-nservicebus
http://docs.particular.net/nservicebus/sagas-in-nservicebus

NServiceBus Persistence Introduction

[18]

ServiceBus is a messaging workflow; it stores messages along the way. It is a workflow
since it incorporates both business and nonfunctional requirements. ServiceBus does
have transactional persistence to perform second-level retries if there is an error in
the server or the network. The saga pattern extends that concept by giving feedback
to services along the way to the originator and timing out messages. Also, it provides
feedback on which operations business analysts and CSRs normally require to perform
day-to-day operations. This information is used to correct issues that are of interest to
the business. Remember that the saga pattern is a framework that is easily extensible,
and so it is not a stress to use it for more than just retries.

A real-life saga
NServiceBus simplifies the implementation of the concepts in the previous section;
the following is a real-life scenario to illustrate them and multiple services that
communicate with each other.

Recall the pizza-ordering example we discussed earlier where the Please do not
refresh the page and wait for the order to complete message is displayed when a
user places an order. We discussed the concern that the user may have doubts about
whether the order is completed, and there is the implication that a browser refresh
could cause order issues. Obviously, an ASP or JSP web page waits for some web
service to go out and charge my card as it waits for the result. To avoid this behavior,
a better solution is needed. One such solution is a workflow for passing messages
around so that the system fires off a transaction to process the payments, allowing
user interaction to continue; eventually, the system is to receive an update once the
payment is processed.

There are a few possible solutions for the preceding example, and all of them
have one thing in common: combining a workflow with a middle layer simplifies
the solution.

One possible solution is to have several services that are responsible for
different actions. We need to save data entered by a user to a database; this can be
accomplished via some backend services. These services handle all the transactions
needed. A service, say Service1, can pick up the data and pass it into a MSMQ for
processing. This provides the separation of knowing which messages are in the state
of processing. Another service, say Service2, can be responsible for the interaction
with a payment engine.

Chapter 1

[19]

Continuing with the pizza-ordering example, Service1 is responsible for getting
the data entered by the customer and Service2 is responsible for processing the
credit card payment. If there are errors with the payment engine, Service2 and
the ServiceBus have the logic to retry again. However, Service1 remains unaware
that there are errors with the payment. Service2 is atomic and does not provide
notifications and feedback to the user. The payment service may place the error
in an error queue, but some information, such as why the payment was not
processed, will remain missing.

Using the saga pattern provides many of the features that are currently missing in
the solution presented thus far. The saga is the end-to-end message workflow that
can be used to save the state in an intermediate process. This can be accomplished
by saving an intermediate saga data object. This persistence typically is done to
a database and looked up when the same message is passed back through. Sagas
can get complicated but, because very little code is required—since the ServiceBus
handles most of the work—sagas can be simple to use.

As hinted previously, a saga can be created as an intermediate between the services to
keep the client, in our example Service1, informed about the progress of the message.

www.allitebooks.com

http://www.allitebooks.org

NServiceBus Persistence Introduction

[20]

The saga can update other endpoints of the message status and change the message
if it needs updating as it moves through the workflow. The important piece of a saga
is the one-to-one lookup of the data related to the message and the message itself.
This allows the workflow to follow a message's progress and know where it is at a
given moment along multiple services. We could define a timer to fail the message
if it continually errors out, since we don't want messages to live forever.

Returning back to the pizza-ordering example, instead of waiting and not refreshing
the page, we can create a page where the user can go to and check the status as the
order progresses through the ServiceBus workflow. Notice that this allows many
nonfunctional requirements to be addressed.

Nonfunctional requirements (such as monitoring, logging, manual retries, timeouts,
checking encryption, and the message) can be addressed by monitoring the services
and messages.

To recap, we can address the payment engine errors by adding logic to the saga to
notify the user, operations, and the organization of specific errors. For instance, we
could add logic to the saga to send an e-mail to the user saying that the order was
denied due to insufficient funds. In addition, we could add another error-checking
option into the workflow for network failure and other unexpected events. When
such events happen, have a notification sent to operations stating that the payment
engine server is not available at this time. Notice that the user does not need to be
notified of these errors. Therefore, the saga becomes the focal point for checking the
status of the message.

Beginning an NServiceBus saga
As mentioned earlier, sagas are a design pattern. They are not unique to NServiceBus
but are common in most enterprise service bus systems. There are many references
to sagas, for instance, http://vasters.com/clemensv/2012/09/01/Sagas.aspx
and http://msdn.microsoft.com/en-us/library/jj591569.aspx. These details
are discussed in greater detail later. For now, we will expand on the payment engine
example we have been exploring.

First, a saga in NServiceBus is always started and updated by a message.

Even when a timer is fired, a message is created. This timeout message is to be
handled by the saga—refer to the following class diagram.

http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://msdn.microsoft.com/en-us/library/jj591569.aspx

Chapter 1

[21]

In the class diagram, there is message that starts the saga container from Service1;
this means that the message is originated from the service that communicates with
the frontend. A saga data is created and saved to the database. This data may be
retrieved when the message passes the saga again; this means that the data that was
saved for a message from Service1 may be retrieved on the return trip from Service2.
Therefore, when returning from the payment service, persisted data can be retrieved
and the message can be updated with data that is not directly passed to the message.

There is a lot of debate on how sagas are used, mostly relating to how sagas can
be extended and used in multiple ways. However, the basics remain the same.
A message starts a saga, a saga saves the data that is associated with the message,
a saga handles other types of messages, a saga is able to lookup the original message
that it started with, a saga is able to add data to the original message, and a saga
routes messages to different destinations.

NServiceBus Persistence Introduction

[22]

Beginning NServiceBus assemblies
You can start your first NServiceBus installation from Visual Studio. There are some
preconditions that must be satisfied before NServiceBus is installed on the machine:

• Install DTC: Distributed Transaction Coordinator (DTC) is responsible
for ensuring that the transaction is committed or rolled back in Microsoft
technologies, such as SQL Server and MSMQ

• Install MSMQ: Microsoft Message Queuing (MSMQ is the messaging
system for Microsoft operating systems

• Install RavenDB: RavenDB is a NoSQL document-oriented database
that stores internal information for NServiceBus, such as the endpoint
subscription information

• Install performance counters: The performance counters are calls into the
Microsoft performance management system so that Microsoft operating
systems can give performance reports on NServiceBus

Before setting up NServiceBus itself, vanilla NServiceBus makes a lot of
use of MSMQ, DTC, RavenDB, and even performance counters to monitor
NServiceBus's performance.

We will need to install the PowerShell commandlets through Package Manager.

Many items can be managed in the Package Manager console program of Visual
Studio, 2012. We will need a solution, and we can start by using the MSMQ solution
from GitHub. It is available at https://github.com/Particular/NServiceBus.
Msmq.Samples/tree/master/VideoStore.Msmq. We will need to install the various
NserviceBus references by using NuGet, as in the following screenshot:

We need to make sure that the PowerShell commandlets are installed correctly first.
We do this by using Package Manager:

• Install the package, NServiceBus.PowerShell
• Import the module, .\packages\NServiceBus.PowerShell.4.3.0\lib\

net40\NServiceBus.PowerShell.dll

• Test NServiceBusPerformanceCountersInstallation

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/VideoStore.Msmq
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/VideoStore.Msmq

Chapter 1

[23]

The "import module" step is dependent on where NService.PowerShell.dll
was installed during the "install package" process. The "Install-package" command
will add the .dll module into a package directory related to the solution. We can
find out more on PowerShell commandlets at http://docs.particular.net/
nservicebus/managing-nservicebus-using-powershell and even by reviewing
the help section in Package Manager. Here, we see that we can insert configurations
into the App.config file when we look at the help section, PM> get-help
about_NServiceBus.

NServiceBus provides instructions for preparing your machine on http://docs.
particular.net/nservicebus/preparing-your-machine-to-run-nservicebus.
First, run the Install commands for the pieces that are accomplished in PowerShell
commandlets.

We can then run various Test commands to see whether the installations succeeded.

http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus

NServiceBus Persistence Introduction

[24]

This verifies that everything is set up correctly. I like using C# and NServiceBus
because I can then use other products to verify the correctness. We can verify many
pieces using services that come with Windows Server. These instructions will be
specific to Windows-operating systems, and we will use the Windows 2008 server
for these instructions. For instance, to verify that DTC is set up, we can check to see
how it's set up:

1. Go to the Component Services option under the Administrative Tools menu.
2. Expand the Computers mode under the Component Services node.
3. Right-click on Properties and select the MSDTC tab.
4. Hit the Security configuration button, as shown in the following screenshot:

This way, there is verification from Windows Server's tools that DTC is configured.
However, this does not mean that the firewall ports are open to ensure that DTC is
in operation. For example, a firewall may block the interaction of the DTC protocol
between machines.

Chapter 1

[25]

Due to firewalls not being allowed to open up all the ports between machines, it
is often a best practice to minimize the ports to run the transactions between ports
5000 and 6000. This can be done by setting the Ports Ranges value under Component
Service | My Computer | Default Protocols | Properties to 5000-6000.

DTC can be used to verify that the system is working before running a program.
Both machines have to be set up to run DTC, and there are many articles related to
troubleshooting DTC, such as http://blogs.msdn.com/b/distributedservices/
archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-
tool.aspx and http://docs.particular.net/nservicebus/transactions-
message-processing. Note that DTC is very dependent on the protocols that run
between machines and can cause many errors when not configured properly.

Even if we know that MSMQ is set up correctly (because we have tested it), we may
need to know which queues it is currently using.

http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://docs.particular.net/nservicebus/transactions-message-processing
http://docs.particular.net/nservicebus/transactions-message-processing

NServiceBus Persistence Introduction

[26]

Using the PowerShell PM> Get-NServiceBusLocalMachineSettings command,
we can see which queues it currently wishes to reference. Also, by viewing Visual
Studio Server Explorer, we can verify that they are present.

One of the many features I really like about NServiceBus is its ability to create
message queues, services, and DTC pieces. This is less work than what the server
staff does to maintain and install an application.

Here is a look at the queues now in Visual Studio Server Explorer:

We can see the RavenDB service is running without even leaving Visual Studio by
looking into the services section of the same Visual Studio Server Explorer in which
it was installed.

RavenDB is a document-oriented database that can operate completely independent
of NServiceBus. This means that you are now working on NoSQL development, and
it has an interface to save the collections of objects.

RavenDB must be running as NServiceBus uses it to store internal information such
as subscription endpoint information and message types. The following screenshot
is of Server Explorer in Visual Studio and shows that RavenDB is running:

Chapter 1

[27]

In addition, we can see that RavenDB is installed by its web interface. When running
one of the NServiceBus video store examples, we can see that it creates associated
tables in RavenDB for internal use. We can view it through the default port 8080
and access it using http://localhost:8080/raven/studio.html.

At this point, we have the basics to set up pieces that NServiceBus utilizes. We have
a data store for sagas and another persistence, RavenDB. Also, we have queues in
MSMQ that uses DTC to handle transactions. These are not the only options, but they
are the default options for NServiceBus.

RavenDB, a NoSQL database, comes standard with NServiceBus as a persister for
sagas and other NServiceBus controls. It is worth mentioning that the licensing of
RavenDB is part of NServiceBus.

NServiceBus Persistence Introduction

[28]

If you are to use RavenDB outside of NServiceBus, then you must license RavenDB
for your own use: http://ravendb.net/nservicebus-and-ravendb.

An alternate solution to RavenDB is to use other databases, such as SQL Server,
through an open source ORM connector (called NHibernate). This does not negate
the need to have RavenDB running, but it can offload many of the tables from
RavenDB to other databases.

Summary
In this chapter, we introduced and explained the need for the saga pattern.
We discussed how saga handles nonfunctional requirements that are commonly
overlooked. We also discussed the fallacies of distributed computing. We briefly
discussed the need for NServiceBus, its installation, and how it helps to improve
the quality of software while it provides support for nonfunctional requirements.

In the next chapter, we will discuss a particular service platform that includes
ServicePulse, ServiceControl, ServiceInsight, and ServiceMatrix.

http://ravendb.net/nservicebus-and-ravendb

The NServiceBus Architecture
In this chapter, we will focus on the NServiceBus architecture. We will discuss
the different message and storage types supported in NSB. This discussion
will include an introduction to some of the tools and advantages of using NSB.
We will conceptually look at how some of the pieces fit together while backing
up the discussions with code examples.

In this chapter, we will cover the following topics:

• Benefits of NSB
 ° More on endpoints
 ° The application security perspective

• Message exchange patterns
 ° The publish/subscribe pattern
 ° The request-response pattern
 ° Saga services

 ° Message mutations
 ° Message encryption
 ° Cluster messaging
 ° Performance monitoring
 ° Gateway messages

• Storage patterns
 ° Timeout storage
 ° Subscription storage
 ° Backing it up

www.allitebooks.com

http://www.allitebooks.org

The NServiceBus Architecture

[30]

• Monitoring
 ° A sample e-mail notification

• Recap

NSB is the cornerstone of automation. As an Enterprise Service Bus (ESB), NSB is the
most popular C# ESB solution. NSB is a framework that is used to provide many of
the benefits of implementing a service-oriented architecture (SOA). It uses an IBus
and its ESB bus to handle messages between NSB services, without having to create
custom interaction. This type of messaging between endpoints creates the bus. The
services, which are autonomous Windows processes, use both Windows and NSB
hosting services. NSB-hosting services provide extra functionalities, such as creating
endpoints; setting up Microsoft Queuing (MSMQ), DTC for transactions across
queues, subscription storage for publish/subscribe message information, NSB sagas;
and much more. Deploying these pieces for messaging manually can lead to errors
and a lot of work is involved to get it correct. NSB takes care of provisioning its
needed pieces.

NSB is not a frontend framework, such as Microsoft's Model-View-Controller (MVC).
It is not used as an Object-to-Relationship Mapper (ORM), such as Microsoft's
Entity Frameworks, to map objects to SQL Server tables. It is also not a web service
framework, such as Microsoft's Windows Communication Foundation (WCF). NSB is
a framework to provide the communication and support for services to communicate
with each other and provide an end-to-end workflow to process all of these pieces.

Benefits of NSB
NSB provides many components needed for automation that are only found in ESBs.
ESBs provide the following:

• Separation of duties: From the frontend to the backend by allowing the
frontend to fire a message to a service and continue with its processing not
worrying about the results until it needs an update. Also, you can separate
workflow responsibilities by separating NSB services. One service could be
used to send payments to a bank, and another service can be used to provide
feedback of the current status of the payment to the MVC-EF database so
that a user may see the status of their payment.

• Message durability: Messages are saved in queues between services so
that if the services are stopped, they can start from the messages saved in
the queues when they are restarted. This is done so that the messages will
persist, until told otherwise.

Chapter 2

[31]

• Workflow retries: Messages, or endpoints, can be told to retry a number of
times until they completely fail and send an error. The error is automated
to return to an error queue. For instance, a web service message can be sent
to a bank, and it can be set to retry the web service every 5 minutes for 20
minutes before giving up completely. This is useful while fixing any network
or server issues.

• Monitoring: NSB's ServicePulse can keep a check on the heartbeat of its
services. Other monitoring checks can be easily performed on NSB queues
to report the number of messages.

• Encryption: Messages between services and endpoints can be easily encrypted.
• High availability: Multiple services, or subscribers, could be processing the

same or similar messages from various services that live on different servers.
When one server, or a service, goes down, others could be made available to
take over that are already running.

More on endpoints
While working with a service-to-service interaction, messages are transmitted in
the form of XML through queues that are normally part of Microsoft Server such
as MSMQ, SQL Server such as SQL queuing, or even part of Microsoft Azure
queues for cloud computing.

There are other endpoints that services use to process resources that are not part of
service-to-service communications. These endpoints are used to process commands
and messages as well, for instance, sending a file to non-NSB-hosted services, sending
SFTP files to non-NSB-hosted services, or sending web services, such as payments, to
non-NSB services. While at the other end of these communications are non-NSB-hosted
services, NSB offers a lot of integrity by checking how these endpoints were processed.
NSB provides information on whether a web service was processed or not, with or
without errors, and provides feedback and monitoring, and maintains the records
through queues. It also provides saga patterns to provide feedback to the originating
NSB services of the outcome while storing messages from a particular NSB service to
the NSB service of everything that has happened.

In many NSB services, an audit queue is used to keep a backup of each message that
occurred successfully, and the error queue is used to keep track of any message that
was not processed successfully.

The NServiceBus Architecture

[32]

The application security perspective
From the application security perspective, OWASP's top ten list of concerns,
available at https://www.owasp.org/index.php/Top_10_2013-Top_10, seems
to always surround injection, such as SQL injection, broken authentication, and
cross-site scripting (XSS). Once an organization puts a product in production,
they usually have policies in place for the company's security personnel to scan
the product at will. Not all organizations have these policies in place, but once an
organization attaches their product to the Internet, there are armies of hackers that
may try various methods to attack the site, depending on whether there is money
to be gained or not. Money comes in a new economy these days in the form of using
a site as a proxy to stage other attacks, or to grab usernames and passwords that a
user may have for a different system in order to acquire a user's identity or financial
information. Many companies have suffered bankruptcy over the last decades
thinking that they were secure.

NSB offers processing pieces to the backend that would normally be behind a
firewall to provide some protection. Firewalls provide some protection as well
as Intrusion Detection Systems (IDSes), but there is so much white noise for
viruses and scans that many real hack attacks may go unnoticed, except by very
skilled antihackers. NSB offers additional layers of security by using queuing and
messaging. The messages can be encrypted, and the queues may be set for limited
authorization from production administrators.

NSB hosting versus self-hosting
NServiceBus.Host is an executable that will deploy the NSB service. When the
NSB service is compiled, it turns into a Windows DLL that may contain all the
configuration settings for the IBus. If there are additional settings needed for the
endpoint's configuration that are not coded in the IBus's configuration, then it
can be resolved by setting these configurations in the Host command.

However, NServiceBus.Host need not be used to create the program that is used
in NServiceBus. As a developer, you can create a console program that is run by a
Window's task scheduler, or even create your own services that run the NSB IBus code
as an endpoint. We can see samples of this type of code in the MVC samples in other
chapters. Not using the NSB-hosting engine is normally referred to as self-hosting.

https://www.owasp.org/index.php/Top_10_2013-Top_10

Chapter 2

[33]

The NServiceBus host streamlines service development and deployment, allows you
to change technologies without code, and is administrator friendly when setting
permissions and accounts. It will deploy your application as an NSB-hosted solution.
It can also add configurations to your program at the NServiceBus.Host.exe
command line. If you develop a program with the NServiceBus.Host reference, you
can use EndpoinConfig.cs to define your IBus configuration in this code, or add it
as part of the command line instead of creating your own Program.cs that will do a
lot of the same work with more code. When debugging with the NServiceBus.Host
reference, the Visual Studio project is creating a windows DLL program that is run
by the NserviceBus.Host.exe command.

Here's an example form of the properties of a Visual Studio project:

The NServiceBus Architecture

[34]

The NServiceBus.Host.exe command line has support for deploying Window's
services as NSB-hosted services:

These configurations are typically referred to as the profile for which the service will
be running. Here are some of the common profiles:

• MultiSite: This turns on the gateway.
• Master: This makes the endpoint a "master node endpoint". This means

that it runs the gateway for multisite interaction, the timeout manager, and
the distributor. It also starts a worker that is enlisted with the distributor.
It cannot be combined with the worker or distributor profiles.

• Worker: This makes the current endpoint enlist as a worker with its
distributor running on the master node. It cannot be combined with
the master or distributor profiles.

• Distributor: This starts the endpoint only as a distributor. This means that
the endpoint does no actual work and only distributes the load among its
enlisted workers. It cannot be combined with the Master and Worker profiles.

Chapter 2

[35]

• Performance counters: This turns on the NServiceBus-specific performance
counters. Performance counters are installed by default when you run a
Production profile.

• Lite: This keeps everything in memory with the most detailed logging.
• Integration: This uses technologies closer to production but without a

scale-out option and less logging. It is used in testing.
• Production: This uses scale-out-friendly technologies and minimal

file-based logging. It is used in production.

Using Powershell commands
Many items can be managed in the Package Manager console program of Visual
Studio 2012. Just as we add commands to the NServiceBus.Host.exe file to extend
profiles and configurations, we may also use VS2012 Package Manager to extend
some of the functionalities while debugging and testing. We will use the ScaleOut
solution discussed later just to double check that the performance counters are
installed correctly. We need to make sure that the PowerShell commandlets are
installed correctly first. We do this by using Package Manager:

Install the package, NServiceBus.PowerShell

Import the module, .\packages\NServiceBus.PowerShell.4.3.0\lib\net40\
NServiceBus.PowerShell.dll

Test NServiceBusPerformanceCountersInstallation

The "Import module" step is dependent on where NService.PowerShell.dll was
installed during the "Install package" process. The "Install-package" command will
add the DLL into a package directory related to the solution. We can find out more
on PowerShell commandlets at http://docs.particular.net/nservicebus/
managing-nservicebus-using-powershell and even by reviewing the help
section of Package Manager.

http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell

The NServiceBus Architecture

[36]

Here, we see that we can insert configurations into App.config when we look at the
help section, PM> get-help about_NServiceBus.

Message exchange patterns
Let's discuss the various exchange patterns now.

The publish/subscribe pattern
One of the biggest benefits of using the ESB technology is the benefits of the
publish/subscribe message pattern; refer to http://en.wikipedia.org/wiki/
Publish-subscribe_pattern.

http://en.wikipedia.org/wiki/Publish-subscribe_pattern
http://en.wikipedia.org/wiki/Publish-subscribe_pattern

Chapter 2

[37]

The publish/subscribe pattern has a publisher that sends messages to a queue, say a
MSMQ MyPublisher queue. Subscribers, say Subscriber1 and Subscriber2, will
listen for messages on the queue that the subscribers are defined to take from the
queue. If MyPublisher cannot process the messages, it will return them to the queue
or to an error queue, based on the reasons why it could not process the message. The
queue that the subscribers are looking for on the queue are called endpoint mappings.
The publisher endpoint mapping is usually based on the default of the project's name.
This concept is the cornerstone to understand NSB and ESBs. No messages will be
removed, unless they are explicitly told to be removed by a service. Therefore, no
messages will be lost, and all are accounted for from the services. The configuration
data is saved to the database. Also, the subscribers can respond back to MyPublisher
with messages indicating that everything was alright or not using the queue.

So why is this important? It's because all the messages can then be accounted for,
and feedback can be provided to all the services. A service is a Windows service
that is created and hosted by the NSB host program. It could also be a Windows
command console program or even an MVC program, but the service program is
always up and running on the server, continuously checking queues and messages
that are sent to it from other endpoints.

The NServiceBus Architecture

[38]

These messages could be commands, such as instructions to go and look at the
remote server to see whether it is still running, or data messages such as sending a
particular payment to the bank through a web service. For NSB, we formalize that
events are used in publish/subscribe, and commands are used in a request-response
message exchange pattern.

Windows Server could have too many services, so some of these services could just
be standing by, waiting to take over if one service is not responding or processing
messages simultaneously. This provides a very high availability.

Request-response messages
There is also the message exchange pattern of request-response; you can refer to
http://en.wikipedia.org/wiki/Request-response. The concept is simple: we
send a request to a specific endpoint and get a response only from that endpoint.
There are no additional subscribers listening in to process the message. This is done
using a Bus.Send(command) function, where command is a type of message, in NSB.
In the request-response pattern, we send a message to a specific queue indicating
that only one endpoint is being listened to and no one else. We can send a message
to each service as a heartbeat or to get an update of the status of each service.

http://en.wikipedia.org/wiki/Request-response

Chapter 2

[39]

Saga services
As messages move through the workflow of service-to-service, new messages are
created and sent to the next service. There is a need to keep track of the relationship
of messages when responses are sent back to the service. A lookup of message states,
or sessions, needs to be done in a saga entity object saved to a database. This concept
is like a session cookie for session state information when a user moves from web
page to web page. A service needs to respond to the original service to provide a
progress of the original message. In order to do this, the saga entity also stores the
originator of the message to be able to provide a response to the original message.

The saga entity is an interface derived from IContainSagaData that will contain
the mandatory getter/setter fields of Id, Originator and OriginalMessageId.
These properties are needed to reply to the client with information from the
original message.

www.allitebooks.com

http://www.allitebooks.org

The NServiceBus Architecture

[40]

Some saga features
As we have mentioned, sagas are design patterns. This means that they are reusable
patterns used in designing software for the purpose of saving different states in
messages, as they are processed through an end-to-end workflow. They have many
features and characteristics:

• Sagas are started by a message, maybe more than one. A saga is started by a
message in the interface, for example, "IAmStartedByMessage<Message1>".

• Sagas contain long-lived transactions (LLTs) that contain database
information for the messages for relatively long periods of time. LLT is
used when conditions such as short-lived transactions are not adequate.
A short-lived transaction is when a call to a database, or MSQM, performs
a straightforward rollback or commit. For queues, NServiceBus performs
second-level retries (SLRs) to try to commit a number of times before
performing a rollback. In LLT, there can be multiple conditions and actions
that need to take place for a message to be fully completed, or operations
performed to start the message right from the beginning. LLT is used for
messages where a simple short-term transaction may not suffice. In an SOA,
there are multiple endpoints and services. Most messages will start with a
starting type and will continue to pass through different services in an SOA,
all the while completing operations and updating information. They will start
as one type and pass through a service when they change to a different type
of message. During these transformations of the message, a saga can globally
keep track of the message's state through this workflow of services. It can
respond back to the different originating services indicating that everything
was processed successfully, or respond that there were errors and that there
is a need to rollback the message to each client.

• Sagas contain timeout. There is a condition where a message needs to have
a timer to interrupt its actions regardless of what it is doing. Going back
to the pizza-ordering example, we may want to check with the customer
whether the order takes longer than 20 minutes to see if they still wish to
order the pizza. For this reason, you may want to interrupt the order in
progress, which is in the form of a message, and time it out and check
with the customer before proceeding.

• Sagas contain state-related information. Sagas save saga data to the
database. Saga data is initially started with a message, and it is also
updated with messages that are passed in with the same identification
information. When a message passes between different services in an
end-to-end workflow, saving the state information before the next
service is wise if it needs to change back to its original state.

Chapter 2

[41]

• Sagas handle messages. A saga is started by a message and passes it through
its message handler. As messages are passed into the saga that are not the
started message, the saga updates its saga data from these messages through
a message handler. The message doesn't normally end at the saga; the saga
forwards it to its next endpoint.

Timeout messages
There is the need in ESBs to set timers for various messages to ensure that they
do not live in the services and queues for an infinite period of time. Even most
production databases require an archive and purging schedule to clean up old
data that may not be relevant anymore. Since messages live on queues as a form of
data, there also needs to be archiving and purging plans to revisit any messages that
could reside in the system when there is no longer a need for them to do so. For this
reason, as NSB is all about automation, timers can be set to relook at a message to
check its status or even delete some resident messages that are no longer needed.

Sagas support timeout messages that are set using the RequestTimeout function of
a saga. This code will look as follows:

TimeoutMessage is a user-defined message from the interface IMessage that will be
sent when the timer is expired. In this case, it will be 60 seconds. A timeout message
will be received on the saga instance like any other message handler, and the code
is put in the timeout message handler to perform any cleanup required to get rid of
the message information that is no longer required. The timeout message may be an
empty message:

The NServiceBus Architecture

[42]

The saga process does not have to be used to set timeouts in NSB. For similar tasks,
as the one described previously, we may also use NServiceBus.Schedule as well.

In this section, we will be using the TimeoutManager solution with the
following projects:

• TimeoutManager: This project will perform several timeout functions.

Running the TimeoutManager project, we will be presented with a couple of options:

We can delay the processing of a message or schedule a task with NSB. This is done
in support of the NServiceBus.Schedule function where we can schedule actions or
send messages based on time. Here, we are showing the support of scheduling a task
to be performed after a minute:

namespace MyServer.Scheduling
{
 public class ScheduleATaskHandler : IHandleMessages<ScheduleATask>
 {
 private readonly IBus bus;

 public ScheduleATaskHandler(IBus bus)
 {
 this.bus = bus;
 }

Chapter 2

[43]

 public void Handle(ScheduleATask message)
 {
 Console.WriteLine("Scheduling a task to be executed every
1 minute");
 Schedule.Every(TimeSpan.FromMinutes(1)).Action(() => bus.
SendLocal(new ScheduledTaskExecuted()));
 }
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

By default, the timeout data will be persisted in RavenDB but may be stored in other
databases, such as SQL Server, using the NHibernate connector as well. Here's what
a document entry for a timeout would look like in RavenDB:

Message mutations
Message mutators allow you to change messages by plugging custom logic into
a couple of simple interfaces. For instance, you can encrypt all or part of a message.
The encryption message mutator is part of the NServiceBus library and can be used
at any time. You can intercept the incoming message, then mutate it before sending
it as an outgoing message. This is the process of changing messages; they leave a
client and enter a server.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

The NServiceBus Architecture

[44]

In this section, we will be using the MessageMutators solution with the
following projects:

• Client: The client will send messages to the server.
• Server: The server will receive the mutated message.
• Messages: This refers to the message format that is being passed between

the client and the server.
• MessageMutators: This project will contain the mutation code to compress

and uncompress the messages in TransportMessageCompressionMutator.
cs and validate the message annotation in ValidateMessageMutator.cs.

The client and server needs to be running. The client will prompt to send a good or
bad message. The good message is compressed so that it will pass the 4 MB MSMQ
buffer size:

The queue will be validated and compressed from the client before processing it on
the MSMQ:

Client → send message → Validate (Outgoing) → TransportCompression
(Outgoing) ---> To MSMQ

Then, the server will receive the message from MSMQ, but before processing it, this
will decompress and validate the message before the server processes the message.
It will unmutate the message that the client mutated:

From MSMQ → TransportCompression (Incoming)→ Validate (Incoming) →
Server

Chapter 2

[45]

This is just a simple compressing and data annotation validation to ensure that MSMQ
will process the message. There may be many other reasons for mutating the message;
one of them may be to encrypt the credit card within a payment message.

Message encryption
NSB supports the AES or Rijndael encryption algorithm. This is a symmetric key
algorithm, so both the program encrypting the data and decrypting the data must
share a secret key for their effort; see http://en.wikipedia.org/wiki/Advanced_
Encryption_Standard.

Encrypting data will depend on the needs of the organization, but common items
could be any passwords, financial information, or customer's personal identification
information. AES is the strongest symmetric encryption algorithm, and most
languages, such as Java and C#, provide API support to use it.

We know that part of the configuration on both sides will be a secret key.

In this section, we will be using the Encryption solution with the following projects:

• Client: The client will send encrypted credit card messages to the server.
• Server: The server will receive the credit card message and decrypt it.
• Messages: This refers to the message format that is being passed between

the client and the server.

Both the client and server must be running. The client will have a prompt to send
messages to the server:

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

The NServiceBus Architecture

[46]

Once you press Enter, you will see that the message is encrypted on the server queue:

When running the server, NSB will decrypt the message before it passes it to the
server's message handler.

All that is really needed is that both the ends should be enabled for AES in IBus using
the configuration, .RijindaelEncryptionService();. We set a part of the message
that we want to encrypt using public WireEncryptionString Secret { get;set;
} where WireEncryptionString defines that the string will be encrypted. Also, the
secret key has to be in App.config of both the client and the server.

Chapter 2

[47]

Cluster messaging
As mentioned earlier, one of the many benefits of using NSB is that you can distribute
the load or the NSB services or processes. This is commonly known as scaling out the
services. The idea is that you can copy a service, say an order handler, and copy the
exact code or DLL to be a worker to distribute the work. The worker will be exactly
the same as the order handler, except for its configuration. The configuration of the
original order handler would normally be labeled as the master, and the subsequent
extra workers will be labeled as worker processes. The worker processes could be
running locally, but that wouldn't be helpful if the local server is overtaxed with work
already, or they could be framed out to other servers that have process speed to spare.

This model is a form of round-robin clustering, where a handler can distribute its
workload to additional workers doing exactly the same kind of work. A distributor is
used with MSMQ. If an endpoint has a critical time set for performance and requires
more processing help, this clustering could be used to spawn off work to the same
services that live on other machines to share the load. If the machine processing the
message crashes, the message would be rolled back to the queue and other machines
could then process it accordingly.

Worker services send messages through a control queue saying that they are ready
for work. The distributor stores these messages, and when it receives the messages,
it farms them out of the available queues. All the pending work stays in the
distributor's queue so that messages can be timed for performance.

In this section, we will be using the ScaleOut solution with the following projects:

• Orders.Messages: This refers to the common messages for the sender
and handlers.

• Orders.Sender: This will send messages to Orders.Handler to be
handled across the workers, worker1 and worker2.

• Orders.Handler.Worker1: This is one of the worker services that uses
a worker profile to send a response back to the sender. This will be an
additional worker copy of Orders.Handler.

• Orders.Handler.Worker2: This is one of the worker services that uses
a worker profile to send a response back to the sender. This will be an
additional worker copy of Orders.Handler.

• Orders.Handler: This is an endpoint that processes the message and
configures it to the distributor. This will be the master profile that the
sender will send the place order command to in the orders.handler
MSMQ. In the Visual Studio 2012 debugger, NServiceBus.Integration
NserviceBus.Master is set in the command line to be used instead of
Configure.Instance.RunDistributor().

The NServiceBus Architecture

[48]

The solution for the ordering will look like the following:

If there are too many place orders for Orders.Handler to receive, then a round-
robin effect will happen to the worker services across the orders.handler.worker
MSMQ. The control queue is orders.handler.distibutor.control and the data
queue is orders.handler.distibutor.storage. The DataInputQueue, or the
data queue, is the queue where the client processes send their applicative messages.
ControlInputQueue, or the control queue, is the queue where the worker nodes
send their control messages. The control queue is the distributor queue that the
workers will signal to the handler indicating that they are available to process the
message. These queues and worker processes could be spanned across machines or
used on the same machine to distribute the load of the messages. If no workers are
available for the handler to distribute the messages, then the handler will process
the message and respond back to the sender. The workers are duplicated code
for the handler and perform the same function; their purpose is just to take the
workload off the handler to distribute the load.

Chapter 2

[49]

By default, there will be subscription storage information saved in the RavenDB
database. This information is for the worker processes to understand whom to
respond back to when responding. The master node is the handler, which receives
messages from the sender client. So, it knows that it has to respond to the sender
client. However, the handler, which is the master, sends the messages to the worker
processes. So, the workers are only aware of the handler. The handler will create
subscription information so that the workers know that they have to respond back
to the sender client. This will be the subscription storage information that will be
stored by default in the RavenDB, but the subscription storage's configuration can
be changed to save it to other databases as well.

Performance monitoring
When using clustering, an important practice is to monitor the performance
of the handlers and workers. This is needed to determine whether workers
are even needed, and if so, how many.

The first step is to ensure that the solution has the performance counters
installed. We discussed this in the use of PowerShell to test the installation
of the performance counters.

There are two main types of performance counters in NSB. The first is the critical
time performance that is more of an end-to-end performance, and the other is
the endpoint Service-level agreement (SLA) that monitors the mean time of the
endpoint to ensure it meets the service level. The SLA endpoint has to specify a
time that it must meet in the performance. In order to do this, the endpoint SLQ
must be set in code. The monitor will show the seconds left until you breach your
SLA time. Let's look at adding the code into the handler's EndpointConfig.cs:.

In this section, we will be using the ScaleOut - Performance solution, which
is the same as the ScaleOut solution, except for the fact that some performance
settings have been added to this solution.

www.allitebooks.com

http://www.allitebooks.org

The NServiceBus Architecture

[50]

The performance counters are used by default if the profile of the deployment
is in production mode. This mode is set by default, but it needs to be specified
if other parameters such as master or worker are used. Let's look at the handler's
deployment properties:

We can see that the performance counters are installed at startup:

Chapter 2

[51]

Then, all we have to do is start the server's performance monitor and start adding
the services that we wish to monitor and specify the SLA, critical times, and "# of
the messages":

The NServiceBus Architecture

[52]

Running the performance monitor, we can drill down into the specifics of the NSB
process and even see whether the SLA has any issues that need to be met:

Gateway messaging
There are cases for when one part of the services may be stored on one part of
an organization's LAN, while other services are stored on another LAN; the only
mode of transport that both these parts have to pass messages to NSB is through
the use of an HTTP or HTTPS tunnel.

The main purpose of the gateway is to allow you to perform the same durable
fire-and-forget messaging that you are accustomed to with NServiceBus across
physically separated sites, where sites are locations where you run the IT
infrastructure and not the websites.

Chapter 2

[53]

The gateway only comes into play when you can't use the normal LAN-to-LAN VPN
tunnels or internal LAN servers to communicate MSMQ to MSMQ. The purpose of
the gateway is to create messages that communicate through HTTP, but it would be
preferable to use HTTPS to ensure that messages are secured.

In this section, we will be using the Gateway solution:

• Headquarter.Messages: This refers to the common messages for
Headquarters, SiteA and SiteB.

• Headquarter: This will receive messages from http://localhost:
25899/Headquarter/ and http://localhost:25899/Headquarter2/,
and send messages to http://localhost:25899/SiteA/ and
http://localhost:25899/SiteB/.

• SiteA: This is a project that will receive the update price information from
Headquarters via http://localhost:25899/SiteA/ and respond that it
was successful back to the Headquarters via http://localhost:25899/
Headquarter2/.

• SiteB: This is a project that will receive the update price information from
Headquarters via http://localhost:25899/SiteB/.

• WebClient: This will have an Index.htm page to send a JSON script to
http://localhost:25899/Headquarter/.

These were run in VS2012 in Windows Server 2012 with MSMQ, DTC, NServiceBus
references, and SQL Server 2012 Express LocalDB installed.

The NServiceBus Architecture

[54]

In a gateway, there are incoming channels and defined site keys to send outgoing
messages to their sites. We can see in App.config of the headquarters that
the receiving channels for the headquarters are http://localhost:25899/
Headquarter/ and http://localhost:25899/Headquarter2/.

There will be a site keys set for the sending sites that make up SiteA and SiteB:

The site keys are used for Bus.SendToSites(new[] { "SiteA", "SiteB"}, which
will take in an array of keys to send the messages to their sites. For instance, the
parameter of SiteA will send the message to http://localhost:25899/SiteA/.

Going across alternate channels such as HTTP means that you lose out on MSMQ's
safety guarantee of exactly one message. This means that communication errors
resulting in retries can lead to receiving messages more than once. To avoid
burdening you with deduplication, the NServiceBus gateway supports this out of
the box. You just need to store the message IDs of all the received messages so it
can detect potential duplicates. The deduplication code can be stored in SQL Server
using the NHibernate persistence configuration. This will be configured on IBus
using .UseNHibernateGatewayDeduplication(). Of course, settings always need
to be applied in the App.config file to define the database connection. Here, we are
connecting to the local SQLExpress instance.

Chapter 2

[55]

This is the deduplication table in SQL Server.

Data bus messaging
Data bus is used to send large chunks of data or files across as an attachment
because of the limitations of MSMQ to 4 MB. For this reason, a reference can
be passed on to a local file to transfer data using the data bus method.

In this section, we will continue to use the Gateway solution.

The path of the data bus has to be set in the configuration of the endpoint. We will
be using a relative path to where the gateway project is running. Both SiteA and
SiteB will also have relative paths. There will be a relative path to the binary data
with a data bus subdirectory that contains the files that will have large data.

When we execute the gateway project, it will have SomeLargeString to simulate
data that is larger than 4 MB.

The NServiceBus Architecture

[56]

If we execute the gateway project, it will create a message to the relative path of its
binary, save the message under databus, and use it as a reference to send to SiteA
and SiteB. Here, we see the message saved to the local relative path.

The data bus is very useful to move the files around or for data that is too large
for MSMQ.

Storage patterns
Here is a very important chart that we will continuously refer to:

The type is the various persistence storage properties that can be persisted.
For instance, when performing publish/subscribe messaging, there is subscription
information that needs to be saved to a database that details the subscribers and the
message types that they are listening for in their queues.

Chapter 2

[57]

We can have various configurations for these persistence stores: InMemory,
RavenDB, NHibernate and MSMQ. The following bullet list provides a brief
explanation of these stores:

• InMemory: This refers to the data that is persisted only to the local memory
of the NSB service. This also means that when a service is stopped or restarted,
the data is no longer saved. A reboot will cause the data to disappear.

• RavenDB: This refers to the data that is persisted to a Raven database.
RavenDB is a document-oriented NoSQL database. Regardless of a
reboot, the data in RavenDB will be persisted. It uses JSON documents for
communication; see http://ravendb.net/docs/intro/ravendb-in-a-
nutshell. The default for almost all persistences, except the distributor,
which is just MSMQ, is RavenDB.

• NHibernate: This is ORM that connects objects to relational databases, such
as SQL Server, MySQL, and Oracle. It normally needs a mapper properties
file usually in the form of XML to map the objects to the SQL. In NSB,
it will handle any mapping that it requires with NHibernate, otherwise
you will have to use the mapping interface; see http://nhforge.org/.
Regardless of a reboot, the data will be persisted. For NSB configurations,
see http://docs.particular.net/nservicebus/relational-
persistence-using-nhibernate.

• MSMQ: This refers to the data that is persisted to Microsoft Message
Queues (MSMQs). MSMQ is an installation of the Windows server that
is used for queuing messages; see http://en.wikipedia.org/wiki/
Microsoft_Message_Queuing. Regardless of a reboot, the messages
will be persisted in this configuration.

The data that is typically persisted in these methods have to deal with message
information such as Timeouts, Subscriptions, sagas' objects, Gateways, and
Distributors. The following bullet list provides a brief explanation of this
message information:

• Timeouts: Timeout entities is the message information that has to be stored
when a timer message is used. Sagas use timeouts, and timers can also be
set when scheduling NSB tasks and messages. This is used with the timeout
persister, such as .UseNHibernateTimeoutPersister(), to persist the data
in the SQL Server database, as shown in the following screenshot:

http://ravendb.net/docs/intro/ravendb-in-a-nutshell
http://ravendb.net/docs/intro/ravendb-in-a-nutshell
http://nhforge.org/
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://en.wikipedia.org/wiki/Microsoft_Message_Queuing
http://en.wikipedia.org/wiki/Microsoft_Message_Queuing

The NServiceBus Architecture

[58]

• Subscription: Subscription information is used in publish/subscribe scenarios
to keep track of the subscribers' information. This will typically be the queues
that they are subscribing to and the messages that the subscribers are looking
for. By viewing a publish/subscribe example that is defaulted to RavenDB for
the subscription information, we can see the client queues and the message
types that they process.

• Sagas: Sagas store their message information in a saga data object
that will contain at least the Id, Originator, and OriginalMessageId.
This is the generated information from the saga engine to respond to
the client with a relationship to the original message. If a timeout is set,
it will also persist the timeout information as well. We can configure
.UseNHibernateSagaPersister() to persist the saga entity information
to SQL Server as follows:

• Gateway storage: Gateway acts like a router to remote sites through HTTP
and HTTPS to forward and receive messages that are remote and cannot use
IPSEC or VPN tunnels. Using .UseNHibernateGatewayPersister(); in
the Headquarters project for SQL Server will store the gateway messaging
results, as follows, for persistence:

Chapter 2

[59]

• Distributor Storage: In the scale-out example, we needed to store distributor
data to get the necessary workers available. This data is stored in MSMQ.

Backing it up
NSB utilizes a lot of the storage mechanisms that other C# enterprise applications
would normally utilize in the Microsoft world. If data and messages are stored in SQL
Server, then the organization's normal operations for backing up SQL Server would
suffice. For MSMQ, and all the services running in the Windows Server, a daily backup
of the server itself will be advisable. Another method of backing up MSMQ is that all
the messages in the queues are in XML, and daily saving of messages through MSMQ
tools to files could be accomplished. Another method when sending a file to MSMQ is
to save a copy of the message to the disk; alternatively, you can turn on the auditing
function and then create a console program with a daily task scheduler to save all the
new audit messages of the day to the disk. There are many different ways to do this
using the NSB framework or other SQL Server and MSMQ utilities. Because these are
normal Microsoft C# processes, there are many, many different ways to automate
these tasks.

Monitoring
This form of architecture may be referred to as an event-driven SOA where
the events drive the design of the architecture, and the numerous services
make up the flow of the disparate events that drive the workflow; please refer
to http://en.wikipedia.org/wiki/Event-driven_SOA,. In an event-driven
workflow, business users monitor the events.

www.allitebooks.com

http://en.wikipedia.org/wiki/Event-driven_SOA
http://www.allitebooks.org

The NServiceBus Architecture

[60]

In this case, the events are messages; one way to monitor the messages in the queues
is to examine the queues. If SQL Server queues are being used, then the tables can
be examined. If MSMQ is being used, then products such as MSMQCommander
(https://github.com/sverrehundeide/MSMQCommander) can be used to examine
the messages.

There are many examples to look at MSMQ and SQL Server queues. Another one
can be found at http://blog.halan.se/page/Service-Bus-MQ-Manager.aspx
that will work like the following:

However, the preferred method is to use the NSB ServicePulse tool found at
http://particular.net/servicepulse, which can check the heartbeat of
an NSB-hosted service by accessing the browser at http://localhost:9090/#/
dashboard. ServicePulse is monitored through a web browser.

https://github.com/sverrehundeide/MSMQCommander
http://blog.halan.se/page/Service-Bus-MQ-Manager.aspx
http://particular.net/servicepulse

Chapter 2

[61]

Another NSB tool that offers more insight into the services, endpoints, and messages
is NSB's ServiceInsight. It allows you to have a detailed look into the messages, visual
diagrams of the message flows, and detailed endpoint information.

The NServiceBus Architecture

[62]

There are many features in the NSB product ServiceMatrix that provide standard
development features to develop endpoints, services, and messages. ServiceMatrix
provides a visual canvas to graphically design endpoints, services, and messages.

Sample e-mail notification
We mentioned earlier that normal production is filled with notifications related
to checking queues, tables, processes, tasks, and more for both businesses and
operations. We will create a console program that just formats an e-mail, reads the
error queue in MSMQ, saves the number of errors in the queue, and sends it via an
e-mail. Programs such as these don't do much work, but they can be added to check
tasks, services, and even send log details via e-mail as time progresses. Some people
like to only see e-mails if something is not working. However, having a daily e-mail
that indicates whether all the systems are working or not is something that is found
to be useful; this is because when systems fail, they have a tendency to have issues
with notifications as well.

Chapter 2

[63]

In this section, we will be using the ConsoleReadTasks solution:

This will be the ConsoleReadTasks solution:

using System.Messaging;
using System.Net.Mail;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleReadTasks
{
 class Program
 {
 static void Main(string[] args)
 {

 // Set the machine to read queues and processes
 string machineToRead = System.Environment.MachineName;
 /*****
 * Checking MSMQ status
 * *****/
 StringBuilder sendMessage = new StringBuilder();
 sendMessage.AppendLine(" Message from Daily Status Process
on " + System.Environment.MachineName);
 sendMessage.AppendLine(System.Environment.MachineName + "
Searching on machine " + machineToRead);
 Console.WriteLine("<--------Checking MSMQ status --------
------->");
 sendMessage.AppendLine("<--------Checking MSMQ status ----
----------->");
 sendMessage.AppendLine(" Reading MSMQ Status");

 // read all the queues
 var queues = MessageQueue.GetPrivateQueuesByMachine(machi
neToRead);
 foreach (MessageQueue queue in queues)
 {

 MessageQueue new_queue = new MessageQueue(queue.Path);
 queue.MessageReadPropertyFilter.SentTime = true;
 queue.MessageReadPropertyFilter.Body = true;
 new_queue.MessageReadPropertyFilter.SentTime = true;
 Message[] msgs = new_queue.GetAllMessages();
 // We will keep track of the error queue
 if (queue.QueueName == "private$\\error")

The NServiceBus Architecture

[64]

 {
 sendMessage.AppendLine(" Error Queue :" + msgs.
Length);
 Console.WriteLine(" Error Queue :" + msgs.Length);
 }
 }
 sendMessage.AppendLine("-------------End of EMa
il--------------------------");
 MailMessage nMail = new MailMessage();
 nMail.To.Add("test@google.com");
 nMail.From = new MailAddress("test@google.com");
 nMail.Subject = ("Testing A message from " + System.
Environment.MachineName);
 nMail.Body = sendMessage.ToString();
 SmtpClient sc = new SmtpClient("localhost");
 sc.Send(nMail);
 }
 }
}

To test the e-mail, here is a simple Simple Mail Transfer Protocol (SMTP) listener that
will intercept the e-mails locally on port 25 to view, or rather test, your e-mail sending
scenarios. It can be found at http://smtp4dev.codeplex.com/. When the e-mail is
sent to the localhost, it will be recorded for review in the smtp4dev software.

http://smtp4dev.codeplex.com/

Chapter 2

[65]

To receive a check only on a daily schedule, say 09:00 A.M, the Windows Task
Scheduler normally takes a console program such as this one to set a daily running
schedule. It's easy to use Task Scheduler to set up a daily recurring task that will just
execute this console program to send a daily e-mail. To use the Task Scheduler, just
see http://technet.microsoft.com/en-us/library/cc766428.aspx. We could
add tasks to check the database table, to see whether RavenDB is running, to get a
total of the messages, and more. This is just a beginning sample from a piece of code
that monitors many different endpoints that we will cover in the upcoming chapter.

Let's recap
Here are some of the benefits of NSB that we have demonstrated:

1. NSB offers a workflow and can save the message state for services with the
use of sagas.

2. NSB can host an NSB service in which NSB can deploy many of the
settings to install Windows' services through the NserviceBus.Host.exe
command line.

3. NSB can distribute or scale out duplicate services to distribute the load
across machines. This provides high availability.

http://technet.microsoft.com/en-us/library/cc766428.aspx

The NServiceBus Architecture

[66]

4. NSB can deploy its own gateway to send messages across the Intranet,
or Internet, to remote services.

5. NSB has a tool called ServiceInsight to provide the insight on messages,
endpoints and services.

6. NSB has production tools to check for a heartbeat on an endpoint
called ServicePulse.

7. NSB has a tool called ServiceMatrix that helps you work on visual
development on a canvas in Visual Studio.

8. Because NSB uses common Microsoft Windows Server services, such
as MSMQ and SQL Server, you can take advantage of many tools and
deployment techniques in C#.

9. NSB supports many message and storage patterns to build applications
to perform full monitoring, reporting, scalability functions, and to never
lose a message.

10. There are no special backup mechanisms that are needed for NSB that
an organization would not normally have to back up queuing as well
as databases. If everything, messages and persistence, is stored in SQL
Server, then the normal backup procedures for SQL Server should be
applied, such as using a database backup agent or a data vault.

Summary
ESBs like NSB are a necessity to perform workflows in C# using sagas. While there
are frameworks for C# in web services and SFTP clients, it is NSB that establishes
a workflow with the many benefits to ensure that messages and data is not lost as
files are transferred, web services are processed, or SFTP interfaces are established.
Without it, file sharing from mainframes to Windows could be easily untraceable
and could not be processed with durable integrity. There are many benefits of using
NSB. We discussed some of the messaging patterns from encryption, gateways,
clustering, and many more, as how they relate to persistence. We also discussed
monitoring and availability.

In the next chapter, we are going to take a look at a particular service platform that
includes ServicePulse, ServiceControl, ServiceInsight, and ServiceMatrix.

Particular Service Platform
In this chapter, we will focus on Particular Service Platform, which includes
ServicePulse, ServiceControl, ServiceInsight, and ServiceMatrix.

As the names imply, ServicePulse gives us a pulse of the messages, services, and
endpoints; ServiceControl is a control API that ServicePulse and ServiceInsight
depend on to get their internal information; ServiceInsight gives us a graphical
and message-level drilldown into services, endpoints, and messages, and it
includes a Saga drilldown as well.

ServiceMatrix is a graphical interface into code generation for NServiceBus
endpoints, services, and messages in a Visual Studio canvas. In this chapter,
we will cover the following topics:

• ServicePulse
• ServiceControl
• ServiceInsight
• ServiceMatrix

 ° Introducing custom checks
 ° Publish-subscribe through ServiceMatrix

• Sagas through ServiceMatrix

Particular Service Platform

[68]

There are many tools that can be licensed through http://particular.net. These
tools work in developing and monitoring NServiceBus and can be found from their
download page, http://particular.net/downloads. However, one of the benefits
of NServiceBus using Microsoft protocols such as DTC and MSMQ and databases
such as RavenDB and SQL Server is that other tools from Microsoft and Visual
Studio may work as well. The drawback is that a developer or software architect
who is developing and designing in NServiceBus will lose many of the benefits
of NServiceBus without using additional tools. These tools include ServiceMatrix,
ServicePulse, and ServiceInsight.

The names of these services explain their use. ServiceMatrix is a development
application in Visual Studio that helps you develop endpoints, messages, and services
that include sagas; it has modeling and code generation tools. ServicePulse takes a
quick pulse of NServiceBus's endpoints, messages, and services, providing you with
an option to quickly monitor them and get their status; it is a monitoring tool for
production operations. ServiceInsight provides as much detail as possible of endpoints,
messages, and services and allows you to perform enhanced debugging of these pieces.

ServicePulse
ServicePulse is an operation-monitoring tool for applications in NServiceBus. It has
three main functions:

• Monitoring heartbeats
• Monitoring errors and retries
• Extensibility for custom checks

Using ServicePulse, we can get a dashboard of failed messages, endpoint heartbeats,
successful messages, and custom checks.

http://particular.net
http://particular.net/downloads

Chapter 3

[69]

Besides the dashboard, we can get endpoint overviews, failed messages, custom
checks, and configurations.

Particular Service Platform

[70]

ServiceControl
ServiceControl can be downloaded from http://particular.net/downloads.
For ServicePulse and ServiceInsight to work, ServiceControl has to be installed.
ServiceControl is an auditing and monitoring service for NServiceBus endpoints
and applications. This will define the transport type and port number that
ServiceControl will be using.

ServiceControl gathers the audited messages forwarded by NServiceBus endpoints
and sends them to the configured Audit queue; additionally, it exposes the HTTP
API that provides data and functionality services for ServiceInsight and ServicePulse.
Many of the ServiceControl configuration and troubleshooting instructions can be
found at http://docs.particular.net/servicecontrol/.

ServiceControl supports other queuing types, for instance, SQL Server queues, Azure,
and RabbitMQ. You will find instructions on this at http://docs.particular.net/
servicecontrol/multi-transport-support.

http://particular.net/downloads
http://docs.particular.net/servicecontrol/
http://docs.particular.net/servicecontrol/multi-transport-support
http://docs.particular.net/servicecontrol/multi-transport-support

Chapter 3

[71]

ServiceControl, by default, will be installed at C:\Program Files (x86)\
Particular Software\ServiceControl. ServiceControl has its own RavenDB
that keeps track of the messages when it runs as a Windows service. RavenDB for
NServiceBus must be installed. Most of the NServiceBus databases are located at
C:\Program Files\NServiceBus.Persistence.v4 by default. ServiceControl is
managed through http://localhost:33333/api, and its database is defaulted at
C:\ProgramData\Particular\ServiceControl\localhost-33333. The following
is a snippet on how a database may look:

We will be using the ScaleOut-ServiceControl solution. This solution is similar to an
earlier chapter's example, except that there we added service control plugins through
NuGet to generate service control endpoints for monitoring purposes:

• ServiceControl.Plugin.DebugSession: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.DebugSession/. When deployed,
the debug session plugin adds a specified debug session identifier to the
header of each message sent by the endpoint. This allows messages sent by
debugging or a test run within Visual Studio to be correlated, filtered, and
highlighted within ServiceInsight.

https://www.nuget.org/packages/ServiceControl.Plugin.DebugSession/
https://www.nuget.org/packages/ServiceControl.Plugin.DebugSession/

Particular Service Platform

[72]

• ServiceControl.Plugin.CustomChecks: This is found at https://www.
nuget.org/packages/ServiceControl.Plugin.CustomChecks. The
result of a custom check is either a success or a failure (with a detailed
description defined by the developer). This result is sent as a message
to the ServiceControl queue.

• ServiceControl.Plugin.Heartbeat: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.Heartbeat. The heartbeat
plugin sends heartbeat messages from the endpoint to the ServiceControl
queue. These messages are sent every 10 seconds (by default).

• ServiceControl.Plugin.SagaAudit: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.SagaAudit. The Saga Audit
plugin collects the activity information of a saga runtime. This information
enables the display of detailed saga data, behaviors, and the current status
in ServiceInsight Saga View. The plugin sends the relevant saga state
information as messages to the ServiceControl queue whenever a saga
state changes.

ServiceControl normally runs through the URL at http://localhost:33333/api.
If the ServiceControl screen does not come up correctly, you may want to check
to see whether the Particular.ServiceControl Windows service has started.
ServiceInsight and ServicePulse will be looking to read the endpoint information
from this port.

https://www.nuget.org/packages/ServiceControl.Plugin.CustomChecks
https://www.nuget.org/packages/ServiceControl.Plugin.CustomChecks
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.SagaAudit
https://www.nuget.org/packages/ServiceControl.Plugin.SagaAudit

Chapter 3

[73]

These are the starting URLs to provide the endpoint information. If we look at this
page, we can see the URL structure to get further information, such as endpoints via
http://localhost:33333/api/endpoints/.

We can also view the messages from ServiceControl via http://localhost:33333/
api/messages/.

This is our message list with key-value pairs that define the collection of messages
that have been captured. Notice that it is a key-value JSON format that is given in the
ServiceControl interface. The ServiceControl's RavenDB performs a fetch in storage
in JSON as well, so there is very little translation needed from the tables in RavenDB
to be posted in HTTP protocol at port 33333.

Particular Service Platform

[74]

We can add the message GUID to the URL in the ServiceControl browser to see the
message body from one of the messages listed as shown in the following screenshot:

Then, when installing ServicePulse, it will define how it will access ServiceControl.

Chapter 3

[75]

Let's look at a simple example. We can start with the publish-subscribe MSMQ
example from https://github.com/Particular/NServiceBus.Msmq.Samples/
tree/master/PubSub. We will add the ServiceControl plugins for heartbeats and
custom checks through NuGet.

Then, we can check the heartbeats in ServicePulse to validate that the applications
are available; this is indicated in the form of heartbeats. We monitor ServicePulse
through the URL http://localhost:9090.

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub

Particular Service Platform

[76]

If there are issues with the services, always check that ServiceControl and
ServicePulse are running.

ServiceInsight
ServiceInsight provides a detailed insight into a specific message. It provides a
detailed flow, timing, and errors of the message; also, it provides you with the
ability to retry and sort the messages, look at their headers and their sagas, copy
the headers and the messages, and more.

We have an endpoint explorer that provides us with details of the messages,
a Message Properties window to drill down into the details of the message,
and a Flow Diagram window to give us a graphical overview of the messages
and endpoints.

ServiceInsight will collect endpoint information from ServiceControl through its
web API. ServiceControl is a collector of endpoint information for ServiceInsight
and ServicePulse.

The directory for the code is under the BasicSagas-ServiceControl directory.
We will use this solution to generate some saga messages to look at through
ServiceInsight.

The solution was run in VS2012 in Windows Server 2012, with MSMQ, DTC,
RavenDB, NServiceBus version 4.0 references, and SQL Server 2012 Express
LocalDB installed.

ServiceInsight will have four main parts to view. You have the Messages window
to select which message to view, the Message Properties window to view the
properties of the details of a message, the view canvas that currently displays a
Saga View window, and the Endpoint Explorer window to look for messages
based on the available endpoints.

Chapter 3

[77]

The Endpoint Explorer window gives a list of the available endpoints that have been
captured in ServiceControl. This list can be used to filter all of the available messages
so that you may view just the messages on an endpoint. The following is an example
of an Endpoint Explorer tree that is viewed:

Particular Service Platform

[78]

The collection of messages can be viewed for a single endpoint or in total, from the
collection of messages available and stored in the ServiceControl RavenDB. This will
appear as follows:

In the Flow Diagram view, we have selections at the bottom for the flow view of
the message, the Saga view tab, the Headers view tab, the Body tab, and the Logs
tab of ServiceInsight.

Chapter 3

[79]

The Logs tab of the Flow Diagram window displays details of the interactions when
ServiceInsight polls ServiceControl for more data, such as the example that appears
in the following screen:

The Body view tab shows the body of a particular message; notice that we were able
to view this in the ServiceControl browser earlier:

The Headers view will give the NSB header information related to the message:

Particular Service Platform

[80]

So, now that we have covered views and messages, there's more. There are also
properties on each message that details NSB properties for the time transmitted,
saga IDs, performance information, message IDs, and other distinct details of the
NSB message details. The saga information will include the saga ID, originator,
and OriginalMessageId that the saga needs for the original client. Here's a
sample of the properties tab:

ServiceInsight gives more information than is usually needed to troubleshoot
messages, endpoints, or services with some amount of detail. The future of NSB
ServiceInsight is to add more detail, such as sequence diagrams to enhance the
flow of the views and add more details to view saga information.

Chapter 3

[81]

ServiceMatrix
ServiceMatrix is a series that can start projects as NServiceBus projects with pieces
already integrated for faster development. However, it is not necessary to use
ServiceMatrix to build NServiceBus components. A step-by-step guide on how to
use ServiceMatrix is available at http://docs.particular.net/servicematrix/
getting-started-with-servicematrix-2.0, and the process of using code without
ServiceMatrix is found at http://particular.net/articles/NServiceBus-Step-
by-Step-Guide.

We install ServiceMatrix in Visual Studio using the Extensions and Updates... option
under the Tools menu.

http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://particular.net/articles/NServiceBus-Step-by-Step-Guide
http://particular.net/articles/NServiceBus-Step-by-Step-Guide

Particular Service Platform

[82]

We can create an NServiceBus project by navigating to the Project option under the
Files | New menu. Here, we will create a PaymentEngine example:

Normally, there will be three different areas for the standard development
environment. There will be Solution Builder on the left-hand side, NServiceBus
Canvas in the center, and Solution Explorer on the right-hand side.

Chapter 3

[83]

We will create another endpoint called PaymentProcessing that will be
an NServiceBus host program. The NServiceBus host streamlines service
development and deployment, allows you to change technologies without
code, and is administrator-friendly when setting permissions and accounts.
Refer to http://docs.particular.net/nservicebus/the-nservicebus-host.

The Solution Builder window contains four main sections:

• Infrastructure: This is used to create and manage NServiceBus authentication
and auditing

• Libraries: This is used to create and manage NServiceBus reusable libraries
• Endpoints: This is used to create and manage NServiceBus endpoints
• Services: This is used to create and manage NServiceBus services

http://docs.particular.net/nservicebus/the-nservicebus-host

Particular Service Platform

[84]

By right-clicking on the elements of these sections, we can add or change
their properties.

We can also accomplish similar tasks in the NServiceBus Canvas window with the
difference being that it is a visual graph instead of a tree hierarchy.

Chapter 3

[85]

The Solutions Explorer window will give the resultant generated code. Some of
the code will be stubs that are created to add more detail during development. An
event can be created using Publish Event..., and a command message can be created
using Send Command.... We can create a send command message. We will create a
ServiceName of Payments for the command message, SubmitPayment.

The Contracts section will contain NServiceBus events, and the Internal section will
contain NServiceBus commands. Notice that SubmitOrder.cs was created when we
created the SubmitPayment command.

Particular Service Platform

[86]

In the following screenshot, we can see the code that would normally contain your
command message; at this time, it is nothing but a code stub. Here, we add a string
field call data to be passed through the message.

At this point, the code will not be compiled because the message only
has one endpoint. We need to deploy the other endpoint with the Deploy
Component... command.

We can select the available endpoints. In this case, we also created an endpoint,
PaymentProcessing. We also have the ability to create new endpoints.

Chapter 3

[87]

Then, we will have two endpoints with a command message being sent from
ECommerce, an MVC controller, to PaymentProcessing, and an NSB Host;
both these endpoints will be created by a command prompt or service.

Endpoints

Particular Service Platform

[88]

The SubmitPaymentSender function will send the message and the
SubmitPaymentHandler function will receive the message, as shown in the
previous screenshot. These functions are already created from ServiceMatrix
and can be extended. Looking at SubmitPaymentHandler, we can extend the
function to print the data field.

When we run the project, without adding further code, we get an ASP interface to
send the data in the message.

Chapter 3

[89]

Once you send the message, we receive the data that was sent in PaymentProcessing.

If we open up ServicePulse, at http://localhost:9090/#/dashboard, we can see
that the message will appear at the two endpoints; however, we will need to install
the plugin to monitor the endpoint.

The plugins can be installed via NuGet.

Particular Service Platform

[90]

Again, there are four ServiceControl plugins that can be installed:

• The ServiceControl plugin for CustomChecks: The custom checks plugin
allows the developer of an NServiceBus endpoint to define a set of conditions
that are checked periodically or during an endpoint's startup.

• The ServiceControl plugin for DebugSessions: Debug session is a dedicated
plugin that enables integration between ServiceMatrix and ServiceInsight.

• The ServiceControl plugin for Heartbeats: The Heartbeat plugin sends
heartbeat messages from the endpoint to the ServiceControl queue.
These messages are sent every 10 seconds (by default).

• The ServiceControl plugin for Saga Audits: The Saga Audit plugin collects
saga runtime activity information. This information enables the display of
detailed saga data, behavior, and the current status of the ServiceInsight
saga view.

By installing the Heartbeats plugin into the ECommerce and PaymentProcessing
projects, ServicePulse will provide heartbeat information on the uptime of these
services.

We can also run ServiceInsight to visually see the flow of the Ecommerce MVC by
sending SubmitPayment to PaymentProcessing.

Chapter 3

[91]

We can walk down the message and drill down into further information to gain
insight into the performance and operation of the messages and endpoints.

Introducing custom checks
With ServiceControl.Plugin.CustomChecks installed, we can perform several checks.

In this section, we will be using the PubSub--ReportFailure solution—the
MyPublisher project reports a failure check that will be reported in ServicePulse.
This solution shows custom checks.

In this section, we will also be using the PubSub--ReportPass solution—the
MyPublisher project reports a pass check that will be reported in ServicePulse.
This solution shows custom checks.

There are the following base constructors under the CustomCheck package—the
base constructor is used to define which class is passing or failing:

• ReportPass: This will report that the custom check has passed
• ReportFailed: This will report that a custom check has failed, passing

in the string stating the reason for the failure

Here, we create the code for a custom check object that can be called when we submit
a payment as an additional check. It is a simple constructor in a MyCustomCheck class
that will pass information through the base class of CustomCheck. We call this class
when we send the SubmitPayment command from the ECommerce project using
MyCustomCheck myCheck = new MyCustomCheck();:

using System;
using System.IO;
using ServiceControl.Plugin.CustomChecks;

Particular Service Platform

[92]

using ServiceControl.Plugin.CustomChecks.Messages;
using ServiceControl.Plugin.CustomChecks.Internal;
namespace PaymentEngine.ECommerce
{
 public class MyCustomCheck : CustomCheck
 {
 public MyCustomCheck()
 : base("ECommerce SubmitPayment check", "ECommerce")
 {
 ReportPass();
 }
 }
}

So, when a submit payment is sent, we get an additional message on ServicePulse.

We can use conditional statements to check whether files are present, other messages
are present, and a number of conditions that can be reported as either passing or
failing while providing status information to ServicePulse for operations to take action.

In the CustomChecks class, we can also set a timer to periodically check for files
using the PeriodicCheck interface. This will set a timer to call the class back and
send the condition to ServicePulse. It operates differently from ReportPass as the
condition here is reported based on a timer. It will use the function PerformCheck()
that it must override; this will return CheckResult (either passed or failed) to inform
ServicePulse. We will check the status every 2 minutes in this example; depending
on the seconds, it will return a result as either passed or failed:

namespace PaymentEngine.PaymentProcessing
{
 class CheckHealth : PeriodicCheck
 {
 public CheckHealth()
 : base("PaymentProcessing Healthcheck",
"PaymentProcessing", TimeSpan.FromMinutes(2))
 {
 }

Chapter 3

[93]

 public override CheckResult PerformCheck()
 {
 // Fake a failure once in a while
 if (DateTime.Now.Second % 2 == 0)
 {
 return CheckResult.Failed("PaymentProcessing fake
failure");
 }
 return CheckResult.Pass;
 }
 }
}

Passing a failure for a custom check in ServicePulse:

Passing a pass for a custom check in ServicePulse:

There are many uses of custom checks in ServicePulse to give operations and
the business the internal operations of the services, endpoints, and messages
in NServiceBus.

We called the MyCustomCheck class when we passed messages to the MyPublisher
queue using MyCustomCheck myCheck = new MyCustomCheck();.

We can then put conditional statements to check the condition and report whether
the check has failed or passed. We will show how we can pass a message to
ServicePulse to report that it has passed. We can report a failure by replacing the
report that has passed with the one that failed, such as ReportFailed("Testing").
It will then log the failures in ServicePulse.

Particular Service Platform

[94]

ServicePulse provides a visual interface to show the history of the heartbeats,
failures, and custom checks when it is running, and we can configure which
available endpoints to check.

Publish/subscribe through ServiceMatrix
The publish/subscribe messaging pattern is where senders, called publishers, send
messages without direct receivers; this is because the receivers of the messages,
called subscribers, subscribe to the messages that they are interested in receiving.

In this section, we will be using the Payment-Saga solution created with
ServiceMatrix. So, ServiceMatrix must be installed. This will be a walk-through
of ServiceMatrix.

The Publish Event... command is used to create the message to be published.

We name the publisher event message PaymentAccepted via the
PaymentProcessing host.

Chapter 3

[95]

A code-convenient window will be created to review the code before it is deployed.

This is so that you can review the code before copying it into the message handler
that you will be publishing from:

 public partial class SubmitPaymentHandler
 {
 partial void HandleImplementation(SubmitPayment message)
 {
 // TODO: SubmitPaymentHandler: Add code to handle the
SubmitPayment message.
 Console.WriteLine("Payments received " + message.
GetType().Name);
 Console.WriteLine("Data " + message.data);
 var paymentAccepted = new PaymentEngine.Contracts.
Payments.PaymentAccepted();
 Bus.Publish(paymentAccepted);

 }
 }

Particular Service Platform

[96]

To add a subscriber to the publisher, simply use the Add Subscriber... command.

We can then add the subscriber to a new service; let's call it Paying.

Chapter 3

[97]

After these changes are made, we should have the following:

The properties description of the solution will define the error and audit queues:

Particular Service Platform

[98]

The properties description of the solution will also define the various types of queues
that can be used.

When running the solution and rerunning ServicePulse, we can see the additional
Paying endpoint created that didn't have the plugins installed.

If we review the flow in ServiceInsight, we will see the new flows.

Chapter 3

[99]

Sagas through ServiceMatrix
Not only can we develop endpoints for command and publish/subscribe messages,
but we can also develop sagas in ServiceMatrix. We will start by creating a new
command message, PaymentNotification.

The copy preview box will appear again as we copy the sending of the new
command message to the message handler:

 public partial class PaymentAcceptedHandler
 {

 partial void HandleImplementation(PaymentAccepted message)
 {
 // TODO: PaymentAcceptedHandler: Add code to handle the
PaymentAccepted message.
 Console.WriteLine("Paying received " + message.GetType().
Name);
 var paymentNotification = new PaymentEngine.Internal.
Commands.Paying.PaymentNotification();
 Bus.Send(paymentNotification);
 }
 }

Particular Service Platform

[100]

We will deploy the receiving endpoint on to a new endpoint called NotifyProcessing.

This is what we should have so far:

Chapter 3

[101]

To start the saga process, we need to click on Reply with Message....

This will allow us to convert PaymentAcceptedHandler into a saga.

Particular Service Platform

[102]

After the saga is created, we can run the code from Visual Studio. If we look
at ServiceInsight, we will see the updated flow diagram that contains all the
endpoint components.

Drill down to the saga component in the Paying service and the
PaymentAcceptedHandler component—where the saga is initiated with
PaymentAccepted, saving the PaymentNotification data—and update
the PaymentNotificationResponse message.

Chapter 3

[103]

Summary
In this chapter, we looked at the various tools of Particular Service Platform; these
included ServiceMatrix, ServicePulse, and ServiceInsight.

We gave a very brief introduction to ServiceMatrix as we walked through a
description of building an e-commerce MVC solution that worked with request/
reply messages using the send command. This was followed by publish/subscribe
messages, showing ServicePulse and ServiceInsight results. Finally, these derived
into Saga components to show the result in ServiceInsight.

Knowing Your IBus
In Enterprise Service Bus (ESB), bus is the backbone of the sagas, subscriptions,
sending of messages, timeouts, and gateways. For NServiceBus, the bus interface
is IBus. Knowing your IBus is the most important part of NServiceBus.

In this chapter, we will cover the following topics:

• The basics of IBus, including the different basic configurations
 ° Config
 ° Interfaces
 ° Configure

• A basic walk-through of saga with NHibernate
 ° Logging

• A more advanced NHibernate walk-through with saga
 ° Message mutators
 ° Encryption

• Services and deployment

Understanding the basics of IBus
Up to this point, it is assumed that you have been exposed to some of the examples
in the previous chapters. By now, we know that IBus orchestrates messages in various
queues, such as MSMQ, RabbitMQ, and ActiveMQ. Also, messages, sagas, gateways,
and timeouts can be stored in the memory; RavenDB; or various databases, specifically
SQL Server.

Knowing Your IBus

[106]

Many examples are available, and knowing a few basic examples will allow one to
understand almost all the examples; most are just variations of some of the same
code. Many of these samples are similar to that of Video Store examples. Here's just a
small breakdown of the various examples from https://github.com/Particular.
For instance, the source code of NServiceBus.Nhibernate can be found at https://
github.com/Particular/NServiceBus.Nhibernate. However, NServiceBus.
Nhibernate, which appears in the table, is taken from the https://github.com/
Particular link. The X in the table means that the source code is part of the
original package.

Package Samples from
https://github.
com/Particular/

Source from
https://github.
com/Particular/

Nuget installers from
http://www.nuget.
org/packages/

SQL Server NServiceBus.SqlServer.
Samples

NServiceBus.
SqlServer

NServiceBus.SqlServer

NHibernate NServiceBus.
Nhibernate.Samples

NServiceBus.
Nhibernate

NServiceBus.
NHibernate

MSMQ NServiceBus.MSMQ.
Samples

X X

RabbitMQ NServiceBus.RabbitMQ.
Samples

NServiceBus.
RabbitMQ

NServiceBus.
RabbitMQ

ActiveMQ NServiceBus.ActiveMQ.
Samples

NServiceBus.
ActiveMQ

NServiceBus.
ActiveMQ

Azure NServiceBus.Azure.
Samples

NServiceBus.Azure NServiceBus.Azure

Notifications NServiceBus.
Notifications

NServiceBus.
Notifications

IBus will take care of a lot of the mapping; for instance, the developer doesn't need to
provide the mapping from objects to tables for NHibernate or from objects to XML
to put into MSMQ. This saves you from a lot of work in developing ESB pieces.

The three main pieces that need to be understood with NServiceBus is IBus, which
includes the configurations in the app.config file, messages, and message handlers.
Knowing this breakdown helps with a lot of the basics. Also, queues and tables are
normally created by the namespace names of the applications, which NServiceBus
handles using the C# reflection. This basic knowledge is needed to understand sagas,
message handling, and persistence understanding.

https://github.com/Particular
https://github.com/Particular/NServiceBus.Nhibernate
https://github.com/Particular/NServiceBus.Nhibernate
https://github.com/Particular
https://github.com/Particular
https://github.com/Particular/
https://github.com/Particular/
https://github.com/Particular/
https://github.com/Particular/
http://www.nuget.org/packages/
http://www.nuget.org/packages/
https://docs.particular.net/Platform/samples
https://docs.particular.net/Platform/samples

Chapter 4

[107]

Configuring IBus
There are several parts to configuring IBus; let me reiterate that the configuration
relies on the app.config file, IBus, messages, and message handlers as a whole.

We will start with the configurations in the app.config file, where many pieces of
the code will come from https://github.com/Particular/NServiceBus/tree/
develop/src/NServiceBus.Core/Config.

Another valuable source to get some of this information is through the sources
on NServiceBus, such as http://www.nudoq.org/#!/Packages/NServiceBus/
NServiceBus.Core.

In the following table, the app.config file will be referred to as "config", and IBus
will be referred to as "configuration". Here are some of the config sections that will
be defined in many of your app.config files:

Name Description Detailed link
AuditConfig This is the config section

for the auditing feature
http://docs.
particular.net/
nservicebus/
auditing-with-
nservicebus

GatewayConfig This is the config section
for the gateway

http://docs.
particular.net/
NServiceBus/the-
gateway-and-multi-
site-distribution

Logging This the section for
logging the configuration

http://docs.
particular.net/
NServiceBus/logging-
in-nservicebus

MasterNodeConfig This is the configuration
section to hold the node
that is the master

http://docs.
particular.net/
NServiceBus/load-
balancing-with-the-
distributor

MessageEndpointMappings This is a configuration
element that represents
which message types map
to which endpoint.

http://docs.
particular.net/
nservicebus/how-
do-i-specify-to-
which-destination-a-
message-will-be-sent

https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Core/Config
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Core/Config
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent

Knowing Your IBus

[108]

Name Description Detailed link
MessageForwardingInCase
OfFaultConfig

This is the section for
message forwarding in
case of faulty config

http://docs.
particular.net/
NServiceBus/
msmqtransportconfig

MsmqMessageQueueConfig This contains the
properties that represent
the MsmqMessageQueue
configuration section

MsmqSubscriptionStorage This contains the
properties that
represent the
MsmqSubscriptionStorage
configuration section.

http://docs.
particular.net/
NServiceBus/
publish-subscribe-
configuration

RijndaelEncryption
ServiceConfig

The AES encryption
service

http://docs.
particular.net/
NServiceBus/
encryption-sample

SecondLevelRetriesConfig This is the section for
retrying multiple times
after error

http://docs.
particular.net/
NServiceBus//second-
level-retries

TransportConfig http://docs.
particular.net/
NServiceBus/
msmqtransportconfig

UnicastBusConfig This is a configuration
section for UnicastBus-
specific settings.

http://docs.
particular.net/
NServiceBus/hosting-
nservicebus-in-your-
own-process

To view the different sections of the app.config file in the code, we can pull out the
configurations through the NSB code with something as simple as the following:

namespace MyMessages
{
 [Serializable]
// Reading configurations from App configuration
UnicastBusConfig unicastBusCfg = Configure.GetConfigSection<UnicastBu
sConfig>();
Logging loggingCfg = Configure.GetConfigSection<Logging>();

http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process

Chapter 4

[109]

TransportConfig transportCfg = Configure.GetConfigSection<Trans
portConfig>();
SecondLevelRetriesConfig secondCfg = Configure.GetConfigSection<Second
LevelRetriesConfig>();
AuditConfig auditCfg = Configure.GetConfigSection<AuditConfig>();
 MsmqSubscriptionStorageConfig endpoinsCfg Configure.GetCon
figSection<MsmqSubscriptionStorageConfig>();

We can view the details in Visual Studio as we step through the code.

For instance, in the first line, we have a config object called UnicastBusConfig that
retrieves the settings that are configured either from the app.config file or the code.
The structure of UnicastBusConfig appears as follows:

Knowing Your IBus

[110]

Inspecting a sample UnicastBusConfig, we can see that this section has three
mapping endpoints.

This is a reflection of what is being set in the app.config file and possibly any
settings that may exist in the code to direct the IBus config settings. In this sample,
we had three mapping endpoints in app.config. This is very useful in tracing how
IBus is intended to operate while debugging. When we view the config file, we see
three endpoints.

Chapter 4

[111]

Interface configurations
Instead of using the IBus' configuration, or app.config configuration, NSB can use
the Host configuration by extending the EndpointConfigclasses. These tables are
not to be all inclusive, but a starting point to understand the various pieces of IBus:

Name Description Detailed link
INeedInitialization Here, implementers will be

called after NServiceBus.
Configure.With completes
and a container has been set.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

IWantToRunWhen
ConfigurationIsComplete

Here, implementers
are invoked when a
configuration is complete.
Also, implementers are
resolved from the container
and so have access to full DI.

http://docs.
particular.net/
NServiceBus/
profiles-for-
nservicbus-host

IWantToRunWhenBus
StartsAndStops

In this interface, Start and
Stop implementers will be
invoked when the endpoint
starts up. A dependency
injection is provided for
these types.

http://docs.
particular.net/
NServiceBus/
scheduling-with-
nservicebus

We have the addition of the following interfaces defined at the root of the
NServiceBus code:

Name Description Detailed link
IConfigureThisEndpoint This indicates that the

implementing class will specify the
configuration.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

http://docs.
particular.net/
NServiceBus/how-
to-specify-your-
input-queue-name

http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name

Knowing Your IBus

[112]

Name Description Detailed link
IWantCustomInitialization If you want to specify your

own container or serializer,
implement this interface on
the class that implements
IConfigureThisEndpoint.
Implementers will be invoked
before the endpoint starts up.
A dependency injection is not
provided for these types.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

IWantCustomLogging If you want to specify your own
logging, implement this interface
on the class that implements
IConfigureThisEndpoint.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

IWantTheEndPointConfig In this interface, implementers
will be provided with a reference
to IConfigureThisEndpoint,
and they must inherit either
IHandleProfile or
IWantCustomInitialization.

http://docs.
particular.net/
NServiceBus/
profiles-for-the-
nservicebus-host

IWantToRunAtStartup In this interface, implementers will
be invoked when the endpoint
starts up. A dependency injection
is provided for these types.

http://docs.
particular.net/
NServiceBus/
NServiceBus-Step-
by-Step-Guide

IWantToRunBefore
Configuration

This interface indicates that this
class contains logic that needs
to be executed before other
configurations.

http://docs.
particular.net/
NServiceBus/how-
do-i-centralize-
all-unobtrusive-
declarations

http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations

Chapter 4

[113]

By adding NServiceBus.Hosting, we get the following roles:

Name Description Detailed link
AsA_Client This sets the class as a client

role. As a client, every time
it starts, it will do so with a
new material.

http://docs.particular.net/
NServiceBus/NServiceBus-
Step-by-Step-Guide

AsA_Publisher This is the same as AsA_
Server but subscriptions need
to be set. As a server, it is fault
tolerant and holds a message
for continuous use.

http://docs.particular.
net/NServiceBus//publish-
subscribe-sample

AsA_Server This sets the class as a
server role.

http://docs.particular.net/
NServiceBus/NServiceBus-
Step-by-Step-Guide

Most of the examples will have an EndpointConfig.cs file that will define IBus
with the endpoint of the application. Here's an example from the MySaga project
in EndpointConfig.cs that is defining an endpoint and configuring IBus:

In this example, a MySaga endpoint will be created as a server via AsA_Server.
It will have to implement the overwritten functions' Start() and Stop()
functionalities due to IWantToRunWhenBusStartsAndStops. We will use this
class to configure the endpoint, and since we did not explicitly configure and
name the endpoint in IBus, the namespace MySaga will be used because of
IConfigureThisEndpoint. This class will have an Init() function to define
IBus because of the use of IWantCustomInitialization; otherwise, an IBus
will be created with the default values and app.config.

http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide

Knowing Your IBus

[114]

Using the Fluent Configure.With()
There are many configuration settings for IBus. We will be discussing several of them
as they relate to sagas and persisters. There are too many different configurations
to discuss in their entirety and many are not used in most common configurations.
NSB can be explicitly configured to accommodate many, many situations. For a
more complete listing of some of the configurations, as far as available functions are
concerned, please refer to http://www.nudoq.org/#!/Packages/NServiceBus/
NServiceBus.Core/Configure.

1. Let's start by breaking down a sample IBus configuration:

2. For IBus, the first piece to define is the IoC, we have to set the container,
http://docs.particular.net/NServiceBus/containers:

 ° DefaultBuilder(): This is the default Autofac
 ° NinjectBuilder(): This is the most popular C# IoC container

found at http://www.ninject.org/
 ° StructureMapBuilder(): This can be found at

http://docs.structuremap.net/

 ° UnityBuilder(): This can be found at http://unity.codeplex.com/
 ° SpringBuilder(): This can be found at http://www.spring.net/
 ° CastleWindsorBuilder(): This can be found at

http://www.castleproject.org/

 ° AutofacBuilder(): This can be found at
http://code.google.com/p/autofac/

3. We have to ensure that the proper reference is installed; for instance,
NHibernate.Unity must be installed to use UnityBuilder.

http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://docs.particular.net/NServiceBus/containers
http://www.ninject.org/
http://docs.structuremap.net/
http://unity.codeplex.com/
http://www.spring.net/
http://www.castleproject.org/
http://code.google.com/p/autofac/

Chapter 4

[115]

4. Next, we want to ensure that the serialization is set. By default, XML
serialization is used. In Version 4.0, the serialization is set in front of
the IBus' configuration, Configure.With().

By default, IBus uses the XML serialization, but it could be set directly by using
the following:

The options for the IBus serialization are as follows:

• XmlSerialization: This is set by default, and it serializes data into an
XML form.

• BinarySerialization: This is a serialization in binary form.
• BsonSerialization: This is a serialization for binary-encoded serialization for

JSON-like documents; for more information, refer to http://codebetter.
com/karlseguin/2010/03/05/bson-serialization/.

• JsonSerialization: This is a JavaScript Object Notation (JSON) format; for
more information, refer to http://msdn.microsoft.com/en-us/library/
bb410770%28v=vs.110%29.aspx.

http://codebetter.com/karlseguin/2010/03/05/bson-serialization/
http://codebetter.com/karlseguin/2010/03/05/bson-serialization/
http://msdn.microsoft.com/en-us/library/bb410770%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/bb410770%28v=vs.110%29.aspx

Knowing Your IBus

[116]

The transport storage
We need to set the transport information using the .UseTransport() configured
portion of the IBus. This will be the transportation method that will be followed
across the bus, and remember that the endpoints that you want to communicate
together must all communicate across the transport method. In other words, a
message on MSMQ and message in SQL will not see each other. An example is
already given previously, but here are some of the following choices:

• UseTransport<Msmq>: You can use MSMQ transport for messages.
• UseTransport<SqlServer>: You can use a SqlServer table to

queue messages.
• UseTransport<ActiveMQ>: You can use ActiveMQ to queue messages.
• UseTransport<RabbitMQ>: You can use RabbitMQ to queue messages.
• UseTransport<AzureServiceBus>: You can use Azure ServiceBus;

see http://docs.particular.net/NServiceBus/windows-azure-
transport. A sample of this is found at https://github.com/Particular/
NServiceBus.Azure.Samples.

• UseTransport<AzureStorageQueue>: You can use Azure queues;
see http://docs.particular.net/NServiceBus/windows-azure-
transport. A sample of this is found at https://github.com/Particular/
NServiceBus.Azure.Samples.

The saga persister
The saga persister is where the saga message data will be saved. It is just data, but it
is handled like a message in many cases. When setting up saga data, we have a few
choices on whether to save it to a database or not, and there are many databases that
NHibernate will support. By default, the RavenDB database will be used. Here are
some of the saga persister choices:

• UseNHibernateSagaPersister(): You can use NHiberntae based on the
connection string in app.config to store the saga instance

• UseInMemorySagaPersister(): You can use volatile memory storage to
store the saga instance

• RavenSagaPersister(): You can use RavenDB to store the saga instance

http://docs.particular.net/NServiceBus/windows-azure-transport
http://docs.particular.net/NServiceBus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples
https://github.com/Particular/NServiceBus.Azure.Samples
http://docs.particular.net/NServiceBus/windows-azure-transport
http://docs.particular.net/NServiceBus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples
https://github.com/Particular/NServiceBus.Azure.Samples

Chapter 4

[117]

The timeout persister
The procedure to set up a timeout persister can be found in many documents, such
as the saga documentation at http://docs.particular.net/NServiceBus/sagas-
in-nservicebus. When designing a saga message handler, the timeout creation is
entered early on in the functions to ensure that any code beforehand is not a concern.
For example, we are setting up the saga timeout code; while doing this, the creation
code will create a timeout message, say of 60 seconds, and the question that will
remain is where the timer and timeout messaging code will be saved. If it is in the
memory, and obviously if the system is rebooted and the application shuts down, it
is no longer persisted as it was in memory. Many NSB services are designed in a way
that when a server is completely rebooted and the services are restarted, they would
start from where they had left off, including timeouts that would still be running in
sagas. For this reason, the timeout messaging has to be persisted to a database, thus
enters RavenDB and the NHibernate interface of databases for the timeout persister.
By default, the RavenDB database will be used. Here are a few variations on how the
timeout message can be persisted as it is timing down:

• UseNHibernateTimeoutPersister(): Using the implementation of the
NHibernate package for Timeout Manager

• UseInMemoryTimeoutPersister(): Using the volatile local memory to
store Timeout Manager

• UseRavenTimeoutPersister(): Using RavenDB to store Timeout Manager
• DisableTimeoutManager(): As Timeout Manager is on by default for server

roles, use this method to turn off Timeout Manager

The gateway persister
Another persister for NServiceBus is the gateway pieces of NSB; see http://docs.
particular.net/NServiceBus/the-gateway-and-multi-site-distribution.
An instance of a gateway example can be found at https://github.com/
Particular/NServiceBus.Msmq.Samples. The persister will keep track of
message IDs for duplication. Some persisters that are offered are as follows:

• UseRavenGatewayPersister(): This uses the RavenDB message persistence
via the gateway.

• UseRavenGatewayDeduplication(): This uses RavenDB for message
deduplication via the gateway.

• RunGateway(): This is used as a configuration to run the gateway. By default,
a gateway will use RavenPersistence (see the GatewayDefaults class).

http://docs.particular.net/NServiceBus/sagas-in-nservicebus
http://docs.particular.net/NServiceBus/sagas-in-nservicebus
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
https://github.com/Particular/NServiceBus.Msmq.Samples
https://github.com/Particular/NServiceBus.Msmq.Samples

Knowing Your IBus

[118]

• UseInMemoryGatewayPersister(): This uses the in-memory and volatile
message persistence via the gateway.

• UseInMemoryGatewayDeduplication(): This uses an in-memory message
deduplication for the gateway.

• UseNHibernateGatewayPersister(): This configuration will use the
NHibernate framework to persist the NSB gateway data.

• DisableGateway(): The gateway is turned on by default for the master role.
Call the DisableGateway() method to turn the gateway off.

By default, the RavenDB database will be used.

The subscription storage
The subscription storage is an IBus configuration to set where the subscription
metadata information will reside. It will define the subscription endpoint information
in publish/subscribe. The subscription storage keeps track of publish/subscribe
endpoint information. More information on subscription storage can be found at
http://docs.particular.net/NServiceBus/publish-subscibe-configuration.
This is not the messaging process itself, that is, the publisher message being sent and
saved, because that will be the transport setting, but this is the information saved for
NSB saying that specific messages are sent and received by each subscription endpoint.
Without this information, subscription message routing will not work, but the host
programs will normally set these settings when they are started by default. Again,
RavenDB stores the data by default. However, these persisters are also available:

• RavenSubscriptionStorage(): Uses subscription storage using RavenDB
• MsmqSubscriptionStorage(): Uses subscription storage using MSMQ
• UseNHibernateSubscriptionPersister(): Uses subscription storage

using NHibernate; see http://docs.particular.net/NServiceBus/
relational-persistence-using-nhibernate—nservicebus-4.x

• InMemorySubscriptionStorage(): Uses subscription storage in the local
memory, which is volatile

Finding more configuration settings
These are just some basic settings. Going through the settings and then adding on the
many other variations of configurations from sources such as Nudoq documentation
with the many different configurations, http://www.nudoq.org/#!/Packages/
NServiceBus/NServiceBus.Core/Configure, as an example defining the endpoint,
the various messages, and more, can seem overwhelming. NSB offers a lot of default
settings that are most commonly used.

http://docs.particular.net/NServiceBus/publish-subscibe-configuration
http://docs.particular.net/NServiceBus/relational-persistence-using-nhibernate-nservicebus-4.x
http://docs.particular.net/NServiceBus/relational-persistence-using-nhibernate-nservicebus-4.x
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure

Chapter 4

[119]

NSB offers many common examples that could be used out of the box for many
designs. An easy way to learn is to take an MSMQ example, and if you wish to
learn RabbitMQ instead, just change the settings for RabbitMQ. The samples are
free and offer a great learning experience.

Using saga and NHibernate
We will walk through a modified example of a basic saga, originally from
https://github.com/jkillingsworth/NServiceBus-BasicSagas. However,
this example has been modified to use NHibernate, which uses a local SQL Express
database. NHibernate was added using some of the steps from http://docs.
particular.net/nservicebus/relational-persistence-using-nhibernate.
We also added logging using the NLog framework to log the functionality as we go.
The NHibernate ORM framework was chosen because it can connect to a multitude
of different databases using the same code, the difference being to the different
databases is the connection string in the app.config file.

To elaborate on this Saga example, there is a MySaga program that directs the
messages using message handlers that creates new messages to send and respond
through the workflow. The saga object is persisting the message states to be used
during these message handlers. The saga persistence keeps track of the information
that we defined to be saved in a saga entity object. It is the state and session
information of the message that we deem relevant.

https://github.com/jkillingsworth/NServiceBus-BasicSagas
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate

Knowing Your IBus

[120]

The saga acts as an anchor that we can persist as we orchestrate messages moving
across the bus. We can retrieve the instance of the saga associated with the message,
update it, and keep it stored, as even the original message morphs into different
types of messages. The following screenshot demonstrates this orchestration:

In this application, we sent IAmStartedByMessages<SubmitRequestCommand> from
an AppSubmittingRequests application that is seen here as Purchase Order Requests.
It creates and submits SubmitRequestCommand that takes the data from this message
and creates a saga on the bus, along with a unique ID. It also sets a 60-second timer
that will send a timeout message from the bus once 60 seconds are over.

Chapter 4

[121]

Then, it sends an approval that creates the level 1 approval, which is an application
called AppForApprovalsLevel1. After the Approve or Deny button is selected, it
creates a new message that is sent back to the saga, and the saga handles the messages.
Depending on the return message, it will either call the IHandleMessages<Approve
RequestCommand> or IHandleMessages<DenyRequestCommand> handler. The saga
will be pulled up by the bus, as we had the mapping code in this example to map the
messages to RequestID.

Knowing Your IBus

[122]

We can pull up the saga that matches the message and routes it based on some
logic—in this case, the cost—or returns it to the originating client. The saga
may contain a huge part of the original message, so all of it doesn't need to be
propagated through messages.

The saga is aware of its originator; it knows that it needs to match RequestId because
of the mapping, and the bus keeps an internal ID to keep all the sagas unique. All the
sagas must have the Id, Originator, and OriginalMessageId fields that the bus will
use to keep track of the saga. Here, we also have a [Unique] attribute to ensure that
RequestId is kept unique to ensure that the map is made to return to the correct saga.

Chapter 4

[123]

The EndpointConfig.cs file of the MySaga project contains the Init() method. This
function contains the initial configuration of the endpoint for the IBus. The endpoint
will default to the namespace of the project; for instance, in this case, MySaga will be
the endpoint as it is associated with the namespace.

However, you may explicitly define your endpoints on IBus with Configure.
With().DefineEndpointName("MyEndpoint");, where MyEndpoint is the IBus'
endpoint to be defined.

Knowing Your IBus

[124]

As always, the NSB IBus will create the appropriate endpoints if defined correctly.
Here, we have it based on the different projects' namespaces in the solution. The
different projects are MySaga, AppforApprovalsLevel1, AppforApprovalsLevel2,
AppForSubmittingRequests, and AppForAccountingDept. Note that NSB will
create them in lowercase and it will also create the appropriate timeout, error,
and audit queues.

We are going to configure IBus in the EndpointConfig.cs file, which in most cases
is where IBus will be configured to use saga and timeout persistence in NHibernate.

Chapter 4

[125]

Defining NHibernate
NHibernate is configured in the app.config file for the MySaga project to configure
the NHibernate interface to connect to the local SQL Express Server instance.

Here, we can see the NServiceBus NHibernate connection strings and its app settings.
Now that we have NHibernate configured for NServiceBus, we can check SQL Server
after we start the sample solution. Once we start the solution, NServiceBus will create
the appropriate tables for saga and timeouts in the nservicebus database.

We see the base saga that is normally created called ContainSagaData, which has Id,
Originator, and OriginalMessageId, to always be able to find the correct unique
saga instance; it also has the originator information to reply to the client that sent this
handler the message to start the saga.

Knowing Your IBus

[126]

It also created the PurchaseOrderRequestData saga where the table will match the
object. The object will appear as follows:

The saga database data
So, the database table associated with the object will look like the following:

Chapter 4

[127]

Note that we neither needed to create any mapping files to do any of the mappings
for NHibernate, nor create the table. We simply created the NSB configuration. NSB
created the tables and performed the mapping. Look, no need to do SQL.

Likewise, I have a timeout message as an object, as follows:

However, since IBus keeps extra information to keep track of the correct saga and
have IBus execute the timer separately from the current thread, there will be a lot
of extra information in its timeout table for IBus' use.

Knowing Your IBus

[128]

Logging
In this example, we also have to set the app.config file to use NLog. NServiceBus
will support the common logging frameworks, common logging, NLog, Log4Net,
and Serilog. Refer to http://docs.particular.net/NServiceBus/logging-in-
nservicebus for more information.

For NLog, we need to add the Nlog Nuget reference to the project.

We need to set the logging levels and the location of where the logs are being sent to
in the app.config file.

http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Chapter 4

[129]

The app.config file is set using Nlog in the same way like most applications
do, the difference being that there needs to be a section name for NServiceBus
to use Nlog, for example, <section name="nlog" type="NLog.Config.
ConfigSectionHandler, NLog" />; for a tutorial on NLog, please see
https://github.com/nlog/nlog/wiki/Tutorial. We also set the local
configuration using SetLoggingLibrary.NLog();.

From the app.config file, we are saving a lot of traceable information daily in the
C:\logs\ directory while creating a new file with a filename of the date.

Logging becomes a necessity when trying to document the internal happening of
messages, sagas, and persistence.

https://github.com/nlog/nlog/wiki/Tutorial

Knowing Your IBus

[130]

Buyer's remorse code walkthrough
We will walk through the sample for NHibernate that is found at https://github.
com/Particular/NServiceBus.NHibernate.Samples. The reason that we keep
choosing NHibernate for now is its ability to work with many different database
products, including SQL Server and MySQL. We have also walked through a
NHibernate example previously, so we are just extending those fundamental
concepts.

This example will use SQL Server to store subscriptions, sagas, and timeouts.
It will be a fictional video store with a web frontend, communicating with sagas
and message handlers as before.

First, we have an e-commerce endpoint implemented as an ASP.NET MVC4
application that uses the following:

For Microsoft.AspNet.SignalR, see http://www.asp.net/signalr to know
how to provide feedback to the user. SignalR allows you to have bidirectional
communication between the server and client. ASP.NET MVC4 will provide a
very generic home website to place orders for NServiceBus videos.

The MVC application will send MvcApplication.Bus.Send(command); to the
bus with a command that contains the order information.

When the application starts, an nservicebus table is created with tables for
ContainSagaData for IBus to store specific data that contains Id, Originator,
and OriginalMessageId we have discussed before.

https://github.com/Particular/NServiceBus.NHibernate.Samples
https://github.com/Particular/NServiceBus.NHibernate.Samples
http://www.asp.net/signalr

Chapter 4

[131]

There will also be the sagas themselves, such as an instance of ProcessOrderSaga
and a timeout record while it is saving ProcessOrderSaga on IBus.

The timeout and sagas act as messages in the table because we set NHibernate from
the code in the following screenshot in InitializeNHibernatePersistence.cs. To
initialize the bus's sagas, timeouts, and subscriptions to NHibernate, this class needs
to be in all the applications. This is because you want the subscriptions of all the
applications to know the subscription definitions in order to transport the messages.

Knowing Your IBus

[132]

The subscription information that will be saved in SQL Server will be in the
Subscription table to define the queues that are available for the messages to
be transported. We can see that the ClientBecamePrefered message will be
placed on the VideoStore.CustomerRelations queue.

Now, to be clear, the preceding screenshot contains the message subscription's
definition that defines in which queues the messages will be transported to;
additionally, since we have not defined many other variables previously, we know
that IBus will use DafaultBuilder(), XML serialization, and MSMQ transportation
by default. If we want to use SQL Server as our method of transportation, then we
will have to use the definition, UseTransport<SqlServer>. The https://github.
com/Particular/NServiceBus.SqlServer link will demonstrate queuing across
SQL Server.

As always, it is important to check out what the saga is doing. The saga will be
located in the VideoStore.Sales project. This code may start to look very similar to
the previous BasicSaga code, but as with most of ESB, it works in the same pattern
and only adds minor differences. Here, we will be mapping SubmitOrder and
CancelOrder to the saga through OrderNumber. This is to look up the saga at a later
time by its unique OrderNumber that will keep the messages' mapping to the correct
saga instance. Notice that when the saga is started by the IAmStartedByMessages<
SubmitOrder> message handler, we start the timer; 20 seconds will be persisted to
SQL Server after the end of this function call. We save the message information—
specifically the uniqueness of the saga—and call OrderNumber and any information
that we wish to save additionally, then off it goes to SQL Server to be grabbed later
from the CancelOrder or SubmitOrder messages. This saga will be mostly used for
a buyer's remorse period of 20 seconds to return to the order information and then
publish it to process it if the user doesn't cancel it within 20 seconds.

https://github.com/Particular/NServiceBus.SqlServer
https://github.com/Particular/NServiceBus.SqlServer

Chapter 4

[133]

After the timeout period has elapsed, a BuyersRemorseIsOver object will be sent to
the message handler of the timeout through the IHandleTimeouts<ProcessOrderS
aga.BuyersRemorseIsOver> interface. Because this is part of the original saga, the
saga will be pulled in as the data object.

The public void Timeout(BuyersRemorseIsOver state) function will be called to
handle the message and a new OrderAccepted message will be created and populated
from the saga instance, while the saga is being cleaned up. The OrderAccepted
message will be published to the next endpoints for processing.

Knowing Your IBus

[134]

This seems like there is a lot of work, but as always, NserviceBus handles it using
just a few lines of code.

What the user will see is the timing out of the order at the bottom. This is their chance
to cancel the order if they change their mind, as it is in a pending state.

Chapter 4

[135]

If the Cancel button isn't clicked, the timer will timeout and create a new message
from a saga instance to publish a successful order; then, the saga will be cleaned up
after the order is published. If Cancel isn't clicked, we will clean up the saga first and
then publish the OrderCancelled message.

Where are these messages published? By looking at the subscriptions table
previously in SQL Server, we can see the map of the queues. See the previous
picture, but it just shows the following:

• VideoStore.Messages.Events.OrderAccepted: VideoStore.
ContentManagement@MachineName (just the local machine name)

• VideoStore.Messages.Events.OrderAccepted: VideoStore.
CustomerRelation@MachineName

• VideoStore.Messages.Events.OrderCancelled: VideoStore.ECommerce@
MachineName

Knowing Your IBus

[136]

If you have a look at MSMQ, you'll see that the messages for OrderCancelled are
placed on VideoStore.ContentManagement and VideoStore.CustomerRelation.

The customer relations application can then send coupons and special offers to the
customer, and the content management application returns a link to be clicked on
to download the video.

Chapter 4

[137]

There are various pieces that could be added, and we would have gone into a
lot more detail, but this is just to give you some understanding of the interaction
between ESB and NHibernate. The messages can be observed and the endpoints,
saga, and timeouts can be instrumented. Conditions can be added to the sagas and
messages for errors beyond the default error queue that messages will be returned
to if there are exceptions. There are many, many possibilities to extend this sample.

Message mutators
There was also a very handy utility to debug and watch this application get
embedded into the ESB and messaging itself. Refer to a checkbox that appears
at the bottom of the homepage, as follows:

Knowing Your IBus

[138]

Checking this checkbox will allow breakpoints to be executed at the Debugger.
Break() function.

The class that is created in these samples is called DebugFlagMutator.cs that will
incorporate the IMutateTransportMessage interface.

Chapter 4

[139]

This class will use the interface IMutateTransportMessage as a message mutator.
For more on message mutators, see http://docs.particular.net/NServiceBus/
nservicebus-message-mutators-sample. Message mutators can change the
message as it goes to and from the endpoint in transient. This happens in the
transport header in most cases, without it affecting the rest of the message
needed by the message handler.

Encryption
Also, please note that there are Rijndael Encryption configurations in the VideoStore.
ECommerce project. In the Global.asax file, there is a confirmation according to which
RijndaelEncryptionService can run on the bus:

http://docs.particular.net/NServiceBus/nservicebus-message-mutators-sample
http://docs.particular.net/NServiceBus/nservicebus-message-mutators-sample

Knowing Your IBus

[140]

The SubmitOrder message will have all the fields that start with the Encrypted word
as defined in the UnobtrusiveMessageConventions.cs file via the .DefiningEnc
ryptedPropertiesAs(p => p.Name.StartsWith("Encrypted")); configuration.
This will encrypt the fields that start with Encrypted.

We can verify this from the message being transported if the message has the
encrypted values for credit card and expiration date:

Services and deployment
Many of the programs that we have shown in the examples thus far have been console
applications that generally don't run in production.

There is a framework that is embedded in a lot of NserviceBus code called Topshelf;
see http://topshelf-project.com for the Topshelf website. TopShelf is a
framework used to build Windows services.

http://topshelf-project.com

Chapter 4

[141]

To deploy NServiceBus, a command script in Windows can be written to deploy
the application via the NServiceBys.Host.exe command from NServiceBus; refer
to http://docs.particular.net/NServiceBus/the-nservicebus-host. To see
what the available installations are, simply run NServiceBus.Host.exe /?.

A sample script to install a service can be created with something as simple as
the following:

As a note, besides Visual Studio 2012, I use Notepad++, Free Toad for SQL Server,
and MSMQ Commander.

http://docs.particular.net/NServiceBus/the-nservicebus-host

Knowing Your IBus

[142]

Summary
We have discussed many of the different configurations used to create IBus. Much
emphasis has been put on both sagas and persistence. We walked through two
similar but different examples and went through the Init() method, sagas, and
message handlers. The goal is that the reader has enough references and knowledge
about configurations to start configuring their own sagas and persistent examples
going forward. We discussed the creation of services and endpoints, debugging
through message mutators, and more. The NServiceBus IBus does the bulk of the
work, so coding is kept to a minimal.

Persistence Architecture
For the ESB bus, persistence is the key element in storing messages that could be
associated as business objects that run through the ESB workflow. There are other
persistent elements that comprise the metadata that define how the messages and
workflow are being handled in the ESB through configuration. Persistence can also
be considered the feedback that the ESB gives to the system in the form of logging,
errors, and audits. In this chapter, we will cover persisting items to the database,
including messages and logging.

We will cover the following topics:

• Persistence basics
• Supporting frameworks for persistence

 ° Introduction to Entity Framework
 ° XML serialization
 ° C# reflection

• The PayQueue sample
• The SQL queuing sample
• Database logging

Persistence basics
Up to this point, we have delved heavily into MSMQ. In later chapters, we will also
cover RabbitMQ and ActiveMQ. If you know MSMQ very well, learning RabbitMQ
and ActiveMQ will be simple, except that these technologies are not as tightly
coupled to the Windows Server as MSMQ.

Persistence Architecture

[144]

Let's face it: as a developer, and architect, you are likely reading this chapter to keep
up your skills. Your skills get you jobs. If you are skilled in both Java and C#, your
chances of getting employment is greater. The same logic applies if you know how
to build enterprise systems not only using message queues, but databases as well. It
will be easier to find server people who can administrate the databases rather than
message queue systems simply because databases are prevalent in storing data for a
multitude of desktop systems as well. Therefore, you may want to use databases for
message queuing. Most projects spend a lot of time persisting data to the databases
and building tables and databases, which we discuss through this chapter. However,
we will not run SQL commands in this chapter; rather, we will build objects on top
of C# frameworks to deal with SQL commands. In many modern technologies these
days, such as NServiceBus, Entity Frameworks, NHibernate, and Spring Roo, the
frameworks run a lot of SQL commands. We use objects in these frameworks, and
the frameworks either generate DDLs, XML mapping, or scripting. NSB will take
care of most of the mappings to the databases directly.

One of the reasons, besides heavily loading SQL Servers with stored procedures,
for the object relational mappers (ORMs) being more and more popular and also
NoSQL databases such as RavenDB and MongoDB, is not just to take advantage
of having modern frameworks do the heavy lifting, but to have the tools in the
frameworks do the heavy processing. SQL Server, and other databases, seem to
always have enough load.

The concept is to create the objects in code, and the frameworks will take care of the
SQL. This allows developers to code faster once they get used to the frameworks.
Some of the fathers of agile processes developed frameworks such as Spring
for all developers to glue frameworks as opposed to building everything from
scratch. The other reason is SQL Injection. Feel free to go through some of my
slides to understand some of this, http://www.slideshare.net/rhelton_1/
sql-injection-amp-entity-frameworks and http://www.slideshare.net/
rhelton_1/asp-mvs3-rev009. Here's a slide for a starting iPad development in C#,
http://www.slideshare.net/rhelton_1/the-ipad-monotouch. Here's an older
slide on NServiceBus, http://www.slideshare.net/rhelton_1/nservicebus.
If SQL commands are in code, and used close to the frontend of an application, a
hacker can try to inject SQL commands into the frontend pieces to see whether they
can execute SQL commands directly into the database. For instance, a form may have
SQL commands to access a database, and a hacker may inject SQL commands into
the form to try to return passwords and users.

http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/asp-mvs3-rev009
http://www.slideshare.net/rhelton_1/asp-mvs3-rev009
http://www.slideshare.net/rhelton_1/the-ipad-monotouch
http://www.slideshare.net/rhelton_1/nservicebus

Chapter 5

[145]

A typical scenario for injecting SQL into browsers would be to run the browser code
in a Firefox debugger, look for any functions or JavaScript that looks like it may take
SQL, and run a SQL Injection tool to try every combination of SQL through these
commands. There are many off-the-shelf tools to test the browser code available to
all. For those who hack or check hacking for a living, there are many, many freeware
tools that assist in finding SQL Injection, and even training sites to train your skills
in finding SQL Injection. If you practice hacking enough, such as SQL Injection,
there are many official contests to try your hacking skills at. The ultimate way to
get rid of SQL Injection is not to use SQL commands at all in code. With today's
modern frameworks, with ORMs and NoSQL, there is not absolute need to use SQL
commands. Also, the performance in NoSQL, and ORMs, to code, dependent on the
code base, has been shown to increase performance, decrease development time,
and decrease code.

Supporting frameworks for persistence
To familiarize you with SQL ORM's in Visual Studio, it would be negligent if
I did not cover Entity Framework, XML serialization, and C# reflection as not
only NSB, but many frameworks are based on these techniques. When working
with SQL Server, it is not uncommon to have several Entity Framework tools
for administration, monitoring, and synching data in SQL Server; otherwise,
the alternative would likely be SQL scripting and stored procedures.

NServiceBus, as well as any ESB, is heavily reliant on XML serialization and object
reflection, which will be covered as well.

In this section, we will be using the PayQueue solution:

• MyMessages: This is a payment message used for the projects
• AppForWritingXML: This is a project that writes payment XML files to

a local C:\ drive
• AppForReadingXML: This is a project to read XML files from the drive,

which saves a copy to the local database through Entity Framework,
using the routines from the AppForWritingToTable routines and
sending them to MSMQ to process as messages

• AppForWritinTables: These are just the data access routines for
AppForReadingXML

Persistence Architecture

[146]

The AppForWritingXML creates 5 XML files into C:\Load_XML_Files. The
AppForReadingXML will load the XML messages into the Payment table. The Payment
table for sending payments, the AppForReadingXML table for receiving payments,
the unicastconfig table and auditconfig tables need to be created. We see that the
messages move from files to the Payment table to the AppForReadinXML table using
various coding methods. A PayQueue database must be created in the SQLExpress.
If the database is new and the tables need to be created, then run the Model.edmx to
create the tables from the Model.edmx file of AppForWritingForTables using the
"Generate Database from model". This will create a file called Model1.edmx.sql that
when run will create the tables. This SQL script can be run to create the tables from
Visual Studio 2012. These were ran in VS2012 in Windows Server 2012, with MSMQ,
DTC, NServiceBus references, and SQL Server 2012 Express LocalDB installed.
Ensure that DTC, MSMQ, and NServiceBus is set up per http://docs.particular.
net/nservicebus/preparing-your-machine-to-run-nservicebus.

Run ApprForWritingXML to create XML files, and then AppForReadingXML to send
them to the SQL tables and MSMQ using NServiceBus. These were run in VS 2012
in Windows Server 2012, with MSMQ, DTC, and NServiceBus references, and SQL
Server 2012 Express LocalDB installed.

Introducing Entity Framework
Entity Framework (EF) has many tools designed to integrate well into Visual Studio.
EF is an object relational mapper (ORM) where Visual Studio, through wizards
into Visual Studio and SQL Server, takes care of a lot of the mapping effort and
even creates entity objects from existing database. We will briefly touch upon Entity
Framework for the needs of this book and working with SQL databases and MVC.
It is neither a requirement to know EF at this point nor to be an EF expert to work
with NSB; however, a developer should be familiar with EF so as to relate to Visual
Studio and SQL Servers, especially as a Microsoft best practice. If further information
is desired outside this book, feel free to visit my slides at http://www.slideshare.
net/rhelton_1/asp-mvc3-rev009.

http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://www.slideshare.net/rhelton_1/asp-mvc3-rev009
http://www.slideshare.net/rhelton_1/asp-mvc3-rev009

Chapter 5

[147]

EF can be installed into your application when developing just using NuGet.

After downloading it, we can create model objects from tables and databases. The
model will create the connection string for the entity models in the app.config file
as well as establish mapping to the entity objects, and the entity objects themselves.

Persistence Architecture

[148]

EF has the ability to update the tables to match any changes in the mapped models
and even update the models from changes done to the tables. This is done to keep
the mapping of the tables to entities synced.

Entity Framework uses Fluent API's lambda expressions, as does NServiceBus; see
http://msdn.microsoft.com/en-us/data/jj591620.aspx for more on this topic
of Entity Framework.

Here's a snippet of Entity Framework code where we get the database context for the
model, PayQueueEntities. We get a collection of all the rows in the Payments table
called payment_rows. We exercise the lambda Where clause to retrieve the first row
that has any primary of the message that we will update the database from; if none
are found, we add the record as follows:

 using (var context = new PayQueueEntities())
 {

 // Get the payment rows

http://msdn.microsoft.com/en-us/data/jj591620.aspx

Chapter 5

[149]

 var payment_rows = context.Payments;
 // Fluent API, check to see if there already is a payment
with this EventId (PK)
 var payment = payment_rows.Where(x => (x.EventId == details.
EventId)).FirstOrDefault();
 /***
 * If no payment in rows
 * Add row
 * Otherwise update row
 * *****/
 if (payment == null)
 {
 /**
 * Walk through the details object
 * Using Reflection
 * ***/
 Payment newPayment = new Payment(); // Create a new
payment row

Also, notice that a newPayment object was created to create a row in the database.
This is some of the generated code from EF that already has mapping to the tables
created through the Visual Studio wizard. It's nice not to have to create your own
objects, but just to call the objects that match the database rows that were created
with the Visual Studio ADO Entity class creation tools. The code, in the Where
command, will find any matching EventIds keys matching the selected messages.

NServiceBus does not currently officially integrate into Entity Framework but uses
NHibernate instead as a mapper to the SQL databases and creates the mapping
for NServiceBus. There are people working in developing code who are starting
to use Entity Framework as a persister, such as in a saga persister example at
https://github.com/Meksi/NServiceBus.Persistence. However, almost
every developer who executes MVC and C# has heard of, if not developed in,
Entity Framework to some degree as it follows the Microsoft best practices in
C# development.

Also, if you look in the examples discussed thus far, the Fluent API's lambda
expression is used throughout NServiceBus. We can see it in pieces when we
called UnobtrusiveMessageConventions:

 class UnobtrusiveMessageConventions : IWantToRunBeforeConfiguration
 {
 public void Init()
 {
 Configure.Instance

https://github.com/Meksi/NServiceBus.Persistence

Persistence Architecture

[150]

 .DefiningCommandsAs(t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith("Commands"))
 .DefiningEventsAs(t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith("Events"))
 .DefiningMessagesAs(t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith("RequestResponse"))
 .DefiningEncryptedPropertiesAs(p => p.Name.
StartsWith("Encrypted"));
 }
 }

Going forward, you may see many snippets of code in Entity Framework. Most of
the code will be generated using the tools found in Visual Studio, mostly Visual
Studio 2012.

XML serialization
NServiceBus, and ESBs in general, rely heavily on XML serialization and C#
reflection as well as many other frameworks, such as EF. There are many books
on XML serialization as well, but we will discuss it in brief as it applies to NSB
messages. It is not a requirement of this book to have skills in EF, MVC, reflection,
and XML serialization, so introductions will be provided. Working with NSB in
general may not require these skills at first, but digging into any messaging and NSB
code will start to require it; it will at least be beneficial for deeper understanding.
Extending the Entity Framework example, let's retrieve, as an exercise, XML files that
look like messages from a file directory, load them into a SQL Server table, and then
send the messages through message queuing. Later, we will extend this example
even more and load up the data through C# reflection. This example was derived
from the need to automatically send test message—only a few now—but it could
be extended to hundreds, through NSB into MSMQ. This is testing through console
programs, so a MVC video store frontend could be added after the other pieces have
been stress-tested. There are many applications that may not require a frontend,
as many organizations still use batch processing, especially those associated with
getting mainframe information, through the use of mainframe text files being parsed
into XML files as they are passed from text into message forms. Messaging has
evolved from various XML designs.

Chapter 5

[151]

While many of the examples thus far have had simple messages, it is pretty normal
that messages, just as with XML and databases, will have multiple parts to break
down the messages:

namespace MyMessages
{
 public class EventMessage : IMessage
 {
 public Guid EventId { get; set; }
 public PaymentReq paymentReq { get; set; }
 }

 public class PaymentReq
 {
 public string billerGroupId { get; set; }
 public string billerId { get; set; }
 public string bankRoutingNumber { get; set; } // 9-digits
 public string bankAccountNumber { get; set; } // 9-digits
 public string firstName { get; set; }
 public string lastName { get; set; } // 9-digits
 public Address address { get; set; }
 public string nameOnAccount { get; set; }
 public string phone { get; set; } // 10 digits
 public string companyName { get; set; } // 50 characters
 public Guid paymentReferenceId { get; set; }
 public string paymentChannel { get; set; } // Usually WEB
 public string paymentAmount { get; set; } // of the form
201.10
 }

 public class Address
 {
 public string streetAddress1 { get; set; }
 public string streetAddress2 { get; set; }
 public string city { get; set; }
 public string state { get; set; } // 2-chars
 public string zip { get; set; } // 5-digits
 }

Persistence Architecture

[152]

There are many mediums for XML messaging in NSB; we have mentioned SQL
Server, MSMQ, ActiveMQ, RabbitMQ, Azure, and others, but NSB could also
be used as the workflow for other endpoints, such as SFTP, WCF, and File I/O.
However, when using custom endpoints, the developer now becomes responsible
for the transactions and second-level retries. One way to handle these issues is the
use of sagas. Here's a snippet illustrating writing the preceding message to an XML
file using XML serialization.

 static void Main(string[] args)
 {

 string path = @"c:\Load_XML_Files\";

 /*****
 * Create 5 Sample XML Files
 * *****/
 for (int index = 0; index < 5; index++)
 {
 string filename = @"temp" + (index + 1) + ".xml";
 EventMessage details = new EventMessage();

 ...

 SerializeEventMessage(path+filename, details);
 }

 }

 static public void SerializeEventMessage(string pathname,
EventMessage details)
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Event
Message));
 using (TextWriter writer = new StreamWriter(pathname))
 {
 serializer.Serialize(writer, details);
 }
 }
 }

Chapter 5

[153]

We can read the XML data into the objects and then copy the data into the database.

 class Program
 {
 static void Main(string[] args)
 {
 /*****
 * Open the temp files in this directory
 * *****/
 string[] dirs = Directory.GetFiles(@"c:\Load_XML_Files",
"temp");
 foreach (string filename in dirs)
 {
 /***
 * De-serialize the XML into the objects
 * *****/
 EventMessage details = DeserializeEventMessage(filena
me);
 PaymentDAL payDAL = new PaymentDAL();
 /*****
 * Save to the database
 * *****/
 payDAL.writeEventMsg(details);

 }

 }
 static public EventMessage DeserializeEventMessage(string
filename)
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Event
Message));
 using (TextReader reader = new StreamReader(filename))
 {
 EventMessage eventMsg = (EventMessage)serializer.
Deserialize(reader);
 return eventMsg;
 }
 }
 }

After we read and write data from files, we can process them as messages or save
them to the database. This is a simple example of loading messages from files into
the database using reflection and Entity Framework.

Persistence Architecture

[154]

C# reflection
Reflection cannot be underestimated, especially when working with XML serialization
and Entity Framework.

C# uses reflection mostly with the System.Reflection namespace; for
further reading see http://msdn.microsoft.com/en-us/library/system.
reflection%28v=vs.110%29.aspx. Reflection can be used to get information from
assemblies, http://msdn.microsoft.com/en-us/library/ms173183.aspx, or
to get information from object and classes, http://msdn.microsoft.com/en-us/
library/b05d559ty%28v=vs.110%29.aspx.

So why does this help with all this development? Being able to walk through an
object and copy fields to fields, as with a deep cloning of an object, can only be
done with reflection. When copying from a message to a database row, it does not
necessarily have to be a one-to-one copy, but it saves having to know all the fields of
an object or changing the code when the fields of the objects change. Here's a snippet
from the PaymentDAL.cs file that shows a copy of the address piece of the message
object being copied into the Payments table address value with a payment row of
data. In this piece of code, we are copying values from a one object to a different
object with matching field names and putting in values, without calling these fields
directly, which would involve a lot more code and work.

 /*****
 * Copy the values of the old Address object
 * to the address fields in the database
 * *******/
 Address address = (Address)payPropertyInformation.
GetValue(paymentReq, null);
 PropertyInfo[] addressProperty
= address.GetType().GetProperties();
 // Get each field from the address object
 for (int index4 = 0; index4 < addressProperty.Length; index4++)
 {
 PropertyInfo addressPropertyInformation =
addressProperty[index4];
 string addressName = addressPropertyInformation.Name.
ToString();
 // Get the address field value
 var addressField = addressPropertyInformation.
GetValue(address, null);
 // Find the same field in the database row
 var field3 = newPayProperty.Where(x => (x.Name ==
addressName)).FirstOrDefault();

http://msdn.microsoft.com/en-us/library/system.reflection%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.reflection%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms173183.aspx
http://msdn.microsoft.com/en-us/library/b05d559ty%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/b05d559ty%28v=vs.110%29.aspx

Chapter 5

[155]

 //Set the database row with the address field value
 field3.SetValue(newPayment, addressField, null);
 }

This code uses C# reflection to copy one field in an object created from XML to an
object mapped in a table row and then saved.

The PayQueue sample
From these frameworks and the use of SQL Queuing, we will be introducing a
PayQueue sample that will be evolving over some of the following chapters.

The solution will start with four projects:

• MyMessages: This contains the common messages—currently EventMessage
given previously

• AppForWritingXML: This contains the application to write XML messages
to disk

Persistence Architecture

[156]

• AppForWritingTables: This contains Entity Framework and C# refection
to populate the PayQueue Payments table with the event message data

• AppForReadingXML: This reads the sample XML files from disk, populates
the Payments table, and sends the data through a SQL Queue

Many of the snippets have already been covered in part. The part that remains is
sending it across the bus in SQL Queuing. We set the logging (log4net in this case),
configure the bus, and send the message.

The installation piece creates the endpoints in SQL Server, and it knows to do this
because the transport is set to <SqlServer>:

 // Set the log4net
 SetLoggingLibrary.Log4Net(log4net.Config.XmlConfigurator.
Configure);
 // Configure the Bus
 bus = Configure.With()
 .DefaultBuilder()
 .UseTransport<SqlServer>()
 .UnicastBus()
 .CreateBus()
 .Start(() => Configure.Instance.
ForInstallationOn<NServiceBus.Installation.Environments.Windows>()
 .Install());
 /****
 * Send it to the Queue
 * ****/
 foreach (var msg in myXMLlist)
 {
 bus.Send(msg);
 }

However, this code is really a small piece of the recipe. The app.config file plays an
important role in configuring the bus:

1. We will define NServiceBus/Transport that will give the SQL connection
string for the queues, which will include the database and connection.

2. The Entity Framework connection string is used to perform other actions on
the database to load tables with utilities outside NServiceBus.

3. The error and audit queues need to be set.
4. A log4net file appender was added to debug.
5. The queue has to be defined based on the messages namespace.

Chapter 5

[157]

We can see that, when we started the program, the endpoints were created in the
PayQueue table as follows:

Persistence Architecture

[158]

We can also see that, when the program runs, it creates messages in the queues,
as shown in the following screenshot.

The SQL queuing sample
We have already explored MSMQ in previous chapters. Wouldn't it be nice to
store the messages in MySQL or SQL Server instead, and not worry so much about
tooling for MSMQ if the database is already tooled? Also, you can consolidate all
the data into a database, thus not having multiple products to maintain. MSMQ is
a product, and makes more used of database tools for these programs.

In this section, we will be using NserviceBus.SqlServer.Samples-master\
VideoStore.SqlServer, which is described in the SQL Queuing sample.
The sample runs a video store for SQL queuing to order videos.

The solution was run in VS 2012 in Windows Server 2012, with MSMQ, DTC,
NServiceBus references, and SQL Server 2012 Express LocalDB installed.

Running the example, https://github.com/Particular/NServiceBus.
SqlServer.Samples, we see that the queues are now created in the nservicebus
table instead of the MSMQ.

https://github.com/Particular/NServiceBus.SqlServer.Samples
https://github.com/Particular/NServiceBus.SqlServer.Samples

Chapter 5

[159]

We can see that the audit message queue in SQL Server is filling up with messages;
this is because audit logging is turned on via the registry and app.config. See
http://docs.particular.net/NServiceBus/auditing-with-nservicebus.

http://docs.particular.net/NServiceBus/auditing-with-nservicebus

Persistence Architecture

[160]

This is accomplished because of the configurations on the IBus in the VideoStore.
ECommerce project with the Global.asax.cs file. When reviewing the code, please
note the following points as to how the IBus is configured:

• Ensures that we are using the same central queue
• Appends log events to the debug system through log4net
• Use SQL Server as queuing
• Install and configure the NServiceBus instance in the Windows environment

Please see http://docs.particular.net/NServiceBus/hosting-nservicebus-
in-your-own-process-v4.x, which covers some of this information.

The SQL queening is defined in the web.config file of the VideoStore.ECommerce
project in the connection string section as the NServiceBus/Transport alias to
define the database and table.

In order for the UseTransport<SqlServer> form of queuing, the NServiceBus.
SqlServer package must be installed. Log4net must be installed to use Log4Net(new
DebugAppender { Threshold = Level.Warn}), which is discussed more in the
next section.

http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process-v4.x
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process-v4.x

Chapter 5

[161]

This sample is a video store sample, so we will have:

• VideoStore.Ecommerce: The MVC program that starts the bus with the
installations in Application_Start given previously. A web page is used
to select orders and the user is given 20 seconds to change their mind with
feedback given to the page through SignalR.

• VideoStore.Sales: This has a saga, and handles the timeout and
completion of the orders.

• VideoStore.Message: These are common messages for all the endpoints.
• VideoStore.ContentManagement: This returns the URL to be selected after

the order is performed.
• VideoStore.CustomerRelations: This has the potential to send coupons

to the customers for special offers.
• VideoStore.Operations: This has the potential to accept operational

messages such as for errors and reporting at a later time.

This sample works very much like earlier samples discussed for MSMQ, except now
all the pieces are in SQL Server. Or are they?

Persistence Architecture

[162]

If we look in MSMQ, it appears empty.

However, if we look in RavenDB for NServiceBus, we notice that tables have been
created for the various endpoints as normal. They are not populated, but they are
created as place holders for endpoint information.

We want to ensure that, even though we are using SQL Server for practically
everything in NServiceBus, for this example, we should still ensure that RavenDB,
DTC, and MSMQ are set up as normal.

Chapter 5

[163]

Database logging
In many organizations, there may be a security operations center, or network
operations center. In such environments, it is normal to consolidate logs of
applications for use in a syslog, http://en.wikipedia.org/wiki/Syslog, or
for use in a security event manager, http://en.wikipedia.org/wiki/Security_
event_manager. It could be that the developer will not be the person going through
all the logs, but they have to be shared with other teams for keeping a record of
hacking attempts to the system, for system reporting, for maintenance reporting,
and more. Depending on clients' requirements, it may change from environment
to environment. For this reason, logging and the consolation of logging become a
line item and may be a section of the architecture documents, for the application's
deployment in production.

There are many logging frameworks in both C# and Java that are common.
For NServiceBus, there are the three logging frameworks that are supported
out of the box:

• Log4net: This is a .NET port of Java's Log4J, the most popular logging
framework in Java. It originated from the Apache Foundation; see
http://logging.apache.org/log4net/

• NLog: This is a .NET logging framework; see http://nlog-project.org/
• Serilog: This is another .NET logging framework; see http://serilog.

net/. This is written to store in NoSQL document database

For Log4net examples, please see http://logging.apache.org/log4net/release/
config-examples.html and for NServiceBus, please see http://docs.particular.
net/NServiceBus/logging-in-nservicebus.

We are going to use Log4net, and its AdoNetAppender to log in to SQL databases.
The following steps will be accomplished:

1. Install Log4Net through NuGet.
2. Create a Log table in the nservicebus SQL database.
3. Configure the app.config file.
4. Configure NSB for Log4Net.

http://en.wikipedia.org/wiki/Syslog
http://en.wikipedia.org/wiki/Security_event_manager
http://en.wikipedia.org/wiki/Security_event_manager
http://logging.apache.org/log4net/
http://nlog-project.org/
http://serilog.net/
http://serilog.net/
http://logging.apache.org/log4net/release/config-examples.html
http://logging.apache.org/log4net/release/config-examples.html
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Persistence Architecture

[164]

We will need to install Log4Net. Here, we are using the Package Manager Console
that is a part of Visual Studio 2012. We are installing Log4Net Version 1.2.10 because
this example was using NServiceBus Version 4.4. We will use the Package Manager
Console to install the correct version.

We will create the Log table in the nservicebus database by running SQL commands
to create the Log table in the nservicebus table using Visual Studio 2012.

For the query, refer to the following code snippet:

CREATE TABLE [dbo].[Log] (
 [Id] [int] IDENTITY (1, 1) NOT NULL,
 [Date] [datetime] NOT NULL,
 [Thread] [varchar] (255) NOT NULL,

Chapter 5

[165]

 [Level] [varchar] (50) NOT NULL,
 [Logger] [varchar] (255) NOT NULL,
 [Message] [varchar] (4000) NOT NULL,
 [Exception] [varchar] (2000) NULL
)

The previous query created the Log table for nservicebus. SQL commands do have
their uses in commands.

We will configure the app.config file. We will add several areas to the
app.config file:

1. Log4net has to be included in the configuration section.
2. We will add an entire section for AdoNetAppender that will span many

lines telling the system how to configure the table, with specific files to
be added to each row in the table.

Persistence Architecture

[166]

3. We will reuse the existing connection string. Using the same connection
string several times in the same app.config file has a tendency to create
deadlocks, so it is best to reuse the same alias name originally created for
the connection string. In this case, NServiceBus/Transport.

We will configure NSB to log with Log4Net in code as follows:

Chapter 5

[167]

After this, when running the NServiceBus SQL Server sample, we should start to get
the following in the Log table.

In this example, we have put as many different pieces into the SQL Server as possible.

Summary
In this chapter, we have discussed persistence as a whole, where we discussed
supporting frameworks for XML, Entity Framework, and reflection in which we
introduced a PayQueue sample used for more backed processing. We walked
through a SQL Queuing example from NserviceBus while adding database logging.

In the next chapter, we will discuss saga architecture. Some may ask, "Why discuss
sagas in a persistence book?" Sagas are a method of persisting message data, mostly
state data, to a database. The difference is that the saga engine does a lot of the
persistence work.

SQL Server Examples
In this chapter, we will be focusing on snippets of SQL Server examples. We will
discuss queuing in SQL Server. In addition to this, more advanced features of Entity
Framework (EF), as well as MVC-EF examples will be discussed. This chapter is for
developers who work with SQL Server and Entity Framework with NServiceBus.

In this chapter, we will cover the following topics:

• The SQL Server example
• The MVC-EF example
• Entity Framework snippets
• Creating tables through EF

 ° Creating tables from the EF code-first
 ° Creating tables from the EF model-first

• Expanding the code
• Unit testing

The SQL Server example
One of the many benefits of using SQL Server to persist sagas, timeouts, logging,
and messages is that Visual Studio has many capabilities if it's used in EF, such
as wizards to create mapped objects from existing tables. So, when NSB is saving
messages, sagas, timeouts, logging, and other NSB artifacts to SQL database tables,
EF can be used in console applications to monitor these artifacts. We will look at
monitoring messages, and we'll choose EF for these examples because of its ease of
mapping in Visual Studio from existing SQL Servers. EF will generate the models
from existing tables that NSB creates.

SQL Server Examples

[170]

Let's start by building a simple publish or subscribe example from https://
github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub.
We have already walked through this in the previous example, so we will discuss
just modifying the sample to save data in SQL databases to time. We will send the
messages and subscription information to the nservicebus SQL database using
NHibernate. This will be our PubSub-SQL solution.

This example will populate the SQL nservicebus database with the
messages and subscription information from the original PubSub example by
changing the transport type to SQL Server in the IBus configuration, that is,.
UseTransport<SqlServer>(). Also, we will change the subscription persistence
type to NHibernate. The app.config file will have to contain the connection
information to point to the appropriate SQL Server database. We can study
some articles from http://docs.particular.net/nservicebus/relational-
persistence-using-nhibernate---nservicebus-4.x and http://docs.
particular.net/NServiceBus/publish-subscribe-configuration to change
the configurations to send the messages and map the subscriptions in SQL Server.

This will still be a PubSub example, except now the queues will be in the
nservicebus database for the MyPublisher, Subscriber1, and Subscriber2 tables.

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration

Chapter 6

[171]

The subscription storage, using NHibernate for the local SQL Express database,
will also be stored in the nservicebus database. First, we will install NServiceBus.
NHibernate via NuGet. This will be the PubSub–SQL solution.

You will now have to put the subscription information in the SQL
nservicebus table.

Even though the subscription table will now be in the SQL database, RavenDB
will still require some of the internal information for NSB, so it must remain
running as a service.

SQL Server Examples

[172]

In this section, we will be using the PubSub-SQL solution:

• MyMessages: This is a payment message used for the projects.
• MyPublisher: This is a project that publishes EventMessages to the SQL

Express nservicebus tables for publish or subscribe. The subscription
information is persisted in the SQL Express nservicebus tables instead
of RavenDB.

• Subscriber1: This is a project for subscribing to the NServicebus
Subscriber1 tables to read and handle EventMessages.

• Subscriber2: This is a project for subscribing to the NServicebus
Subscriber2 tables to read and handle the IMyEvent messages.

This is a publish or subscribe solution to publish messages that Subscriber1
and Subscriber2 handle. Subscriber1 processes one type of messages, whereas
Subscriber2 processes a different type of messages. These were run in VS 2012
in Windows Server 2012, with MSMQ, DTC, NServiceBus references, and SQL
Server 2012 Express LocalDB installed. An nservicebus database must be
present in SQL Server.

The code will look like the following in the MyPublisher, Subscriber1, and
Subscriber2 projects. Note the addition of .UseTransport<SqlServer>() to
send messages to SQL Server and .UseNHibernateSubscriptionPersister()
to save the subscription data in SQL Server.

using NServiceBus;

namespace MyPublisher
{
 class EndpointConfig : IConfigureThisEndpoint, AsA_Publisher,IWan
tCustomInitialization
 {
 public void Init()
 {
 Configure.With()
 .DefaultBuilder() // Ensure the default builder is
there
 .UseTransport<SqlServer>() // Use SQL Server Queues
 .UseNHibernateSubscriptionPersister() // Persist the
Subscription in SQL Server

Chapter 6

[173]

 .DefiningEventsAs(t => t.Namespace != null &&
t.Namespace.StartsWith("MyMessages"));
 }
 }
}

The DefiningEventAs() configuration is used to define the convention of the events
that are used for pub/sub messaging, as messages starting with MyMessages. These
messages are configured to process them as event messages for publish or subscribe.

We need to ensure that app.config is updated to send the messages and
subscription information to the correct database. We will set this in the
NServiceBus/Transport and NServiceBus/Persistence/NHibernate/
Subscription sections of the app.config file.

Don't forget to change the Subscriber1 and Subscriber2 endpoints and to
use .UseTransport<SqlServer>() in similar methods as well. Then, we will
just generate some messages to populate the database.

To populate the MyPublisher table with examples, we need to run the program and
create multiple messages.

SQL Server Examples

[174]

The MVC-EF example
Many C# developers create programs using MVC-EF as defined in Microsoft
architecture best practices. We will look at the example enclosed in this book called
MVC-SQL with an MVCApp project. This project will read the selected queues from the
browser and display what they contain. We will read the available queues in the
browser without the need to go through SQL Management Studio.

MVCApp is the main program that runs MVC-EF in SQL Server to view the tables created
in the PubSub-SQL solution. However, the PubSub-SQL solution needs to be run first.

These examples were run in VS 2012 in Windows Server 2012, with MSMQ, DTC,
NServiceBus references, and SQL Server 2012 Express LocalDB installed.

In order to get access to these tables in the nservicebus database, we need to create
objects that map to the tables. In order to do that, we add the ADO.NET Entity Data
Model, which will create the mapping to the tables.

Chapter 6

[175]

A database context will have to be added that will put a connection string in the
app.config file or the web.config file for MVC. In this case, the connection string
will be nservicebusrnentities.

The web.config file will now contain the connection string:

 <connectionStrings>
 <add name="nservicebusEntities" connectionString="metada
ta=res://*/DAL.Model1.csdl|res://*/DAL.Model1.ssdl|res://*/
DAL.Model1.msl;provider=System.Data.SqlClient;provider
connection string="data source=.\sqlexpress;initial
catalog=nservicebus;integrated security=True;MultipleActiveResul
tSets=True;App=EntityFramework"" providerName="System.Data.
EntityClient" />
</connectionStrings>

SQL Server Examples

[176]

In the MVCApp project, there will be models, views, and controllers to use the new
EF models. The different controllers for reading the different queues will be in the
UserController:

Looking at one of the controllers, Subscription, we will simply read the table using
the EF model and return it to the view when the controller is called:

 public ActionResult Subscription()
 {
 List<MVCApp.DAL.Subscription> models = new List<MVCApp.
DAL.Subscription>();

 using (var db = new nservicebusEntities())
 {
 var subscriptions = db.Subscriptions;
 foreach (var subscription in subscriptions)
 {
 models.Add(subscription);
 }
 }
 return View(models);
 }

Chapter 6

[177]

The view will display the data that we match up from the EF model to display
in Subscription.cshtml, which, in turn, will call the Subscription controller
that will return the populated models from the database. The database context
nservicebusrnentities is used to access the database, via the connection string,
to populate the MVCApp.DAL.Subscription model, which is a property of the
mapping in the Models1.edmx file. The sequence for the Subscription controller
appears as follows:

SQL Server Examples

[178]

The Models1.edmx file is an XML file that defines a conceptual model, a storage
model, and the mapping between these models for the nservicebus database.
The .edmx file also contains the information that is used by the ADO.NET Entity
Data Model Designer (Entity Designer) to render a model graphically. In the
following screenshot, we can see some of the graphical renderings of the file:

This file will contain not only the mappings but also the objects themselves that are
translated, or mapped, to the table. In this example, we populated the MVCApp.DAL.
Subscription model, which is not an object that we coded, but it was generated
as the entity object to be mapped from the .edmx file. Here, we can see the code of
the entity objects themselves; in this case, the MVCApp.DAL.Subscription entity is
the entity object generated from the EF. Visual Studio generates all the mapping,
including that of the entity objects on its own, such that we can use as models for
both controllers and views.

Chapter 6

[179]

So, when the Subscription link is clicked, we will populate the Subscription.
cshtml file with a collection of the table entries, as the entity models from the
controller, to display all the entries in the browser.

In a similar manner, we can add the same for the MyPublisher, Subscriber1,
Subscriber2, error, and audit queues to view their messages as well.

This is not a replacement for ServicePulse to get a pulse on NServiceBus, but this is
an exercise of the power that NSB has to offer, and why ESB engines, such as NSB,
are so powerful in using them. We just demonstrated through a simple program how
to visually create an administration tool to view queues. Features could be added to
send e-mails when there is a message in an error queue, to get an audit queue count
of messages for today, and many more such tracking features. This demonstrates
that not only are the message queues durable, but they can easily be tracked.

To recap MVC integration, MVC is the most common software design pattern used.
In the MVCApp project, we have built models-views-controllers.

SQL Server Examples

[180]

This example follows the MVC paradigm:

So, we have built a browser to review the publish or subscribe messages into the
nservicebus SQL database.

Entity Framework snippets
We have ventured into creating models in MVC and EF from an existing database.
There will be many cases where the database is not created. We listed previous
examples and described in previous chapters how to manually create a database,
but many ESB developers don't use SQL Server Management Studio, or SQL scripts,
very often. We will get into some details on how to create tables from either EF code
or models. There will be no SQL discussed here as we use objects to build tables
and populate them. EF plays a major role in reading and writing to the SQL Server
database. Since NSB will likely be deployed on a Windows Server machine to handle
the enterprise objects, it is natural that SQL Server will be used as well for many of
the Microsoft components.

Creating tables with EF
So far, the examples have shown us how to read messages in EF. We chose
Entity Frameworks to monitor and build SQL Server tables as Entity Framework
works well inside Visual Studio for modeling data. Also, using an ORM product
eliminates SQL Injection as there is no SQL code to review. Refer to http://www.
slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks for more
information on Entity Frameworks and SQL Injection. Besides security concerns, EF
is a recommended platform for programming C# into SQL Server from Microsoft.
Microsoft puts a lot of effort into both Visual Studio and the .NET frameworks to
make it as easy as possible.

http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks

Chapter 6

[181]

In the next two samples, we will show you how to populate sample messages
into SQL Server tables to test some of our NSB deployments. EF is a very useful
framework to generate code that will create tables and sample data, as well as read
tables quickly for SQL Server. In the next two examples, messages will be generated
through two means, one being code-first EF where a model does not have to be
created from an existing database, and one via model-first where a model does have
to created first from an existing database. In both examples, the frameworks will be
creating pay messages in the MVCApp1.AppContext table as we go through a generic
use. In the next chapter, we will create the same messages in nservicebus.

The goal of both these examples will be to create a pay message table and populate it:

The main function in both programs to create the messages will also be the same,
except they will be calling a different context that is used to create the database
and tables from code-first or from the model-first.

The code-first program will be called from the MVCApp1 solution and the
model first example will be called from the MVCApp1-ModelFirst solution.
The code-first solution is so named as the MVCApp1 namespace is used in
generating the database name.

We will start with the Program.cs file for both applications.

We will create a program to create the AppContext object, and use it to populate
the table with the Paymessage objects.

namespace MVCApp1
{
 class Program
 {
 static void Main(string[] args)
 {

 int length = 5;
 using (var db = new AppContext())
 {
 for (int index = 0; index < length; index++)
 {

SQL Server Examples

[182]

 Paymessage message = new Paymessage();
 message.id = index + 1;
 message.error = "None";
 message.state = "Initial";
 if (index == 0)
 message.EventId = new Guid("8b265223-dc9e-
4789-a6df-69d19f644ad7");
 else if (index == 1)
 message.EventId = new Guid("3721ba5d-4733-
4d98-a5e2-8e8afa3e61f4");
 else if (index == 2)
 message.EventId = new Guid("1ac188ec-4b2e-
436c-b989-db88c65db1fa");
 else if (index == 3)
 message.EventId = new Guid("9bf180fa-f8f4-
4b2b-8fac-cca73a4e2cab");
 else if (index == 4)
 message.EventId = new Guid("ee2c56f7-6d42-
4314-bce5-4825ed294437");
 db.Paymessages.Add(message);
 db.SaveChanges();
 }
 }
 }
 }
}

The following are the associated sequences for populating the five pay messages:

Chapter 6

[183]

The namespace to the database context is MVCApp1.AppContext, which will be used
to add messages inside the Paymessages database set. Another way this can be read
as the sequence executes is create an MVCApp1.AppContext database and then a
Paymessages table and populate it with the Paymessage object made up of id, error,
state, and EventId. This was all that was needed to create our sample message data
for testing and populating our SQL Server database into the following tables:

Creating tables from the EF code
In this example, we will be using the MVCApp1 solution to create some sample
messages. In this section, we will discuss using EF in code to create the tables with
sample messages versus having the user or developer use SQL Scripting or develop
the messages through the SQL Management Studio.

This will be a basic understanding of EF, and for more details, please refer to
http://www.slideshare.net/rhelton_1/asp-mvc3-rev009.

To create tables in code through EF, the generic DbContext is used. The DbContext is
a generic database context used to perform operations on the database. The best way
to think of DbContext is a session database context created by a connection string,
and no connection string will default to the local database. A DbContext article for
working with the context can be found at http://msdn.microsoft.com/en-us/
data/jj729737.aspx, but this example will work as it is.

http://www.slideshare.net/rhelton_1/asp-mvc3-rev009
http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://msdn.microsoft.com/en-us/data/jj729737.aspx

SQL Server Examples

[184]

In our example, we will extend the DbContext to tell it which sets of the database
we will be creating a database to handle.

You will see that the namespace is MVCApp1, the extended database context is
AppContext, and the table is be filled with Paymessage objects; so, the namespace
will be used as this is a lot of work. We will use AppContext to create the database
and tables from code. When we run the code, without any model, we will get the
tables and database filled.

Creating tables from EF models
An alternative to creating sample messages in straight EF code is to have generated
EF models create the sample messages table. Here are some basic steps from a
current database.

1. The database name needs to be created first and have a connection string
in the app.config file.

2. The model is created from an existing database through Visual Studio.
3. The model created from the database is used to create new databases,

in cases where it is not already created through Visual Studio.

Chapter 6

[185]

The program.cs will be the same in both files, the difference being the AppContext
to map out the objects to the tables. First, we will add Model1.edmx.

This will be created from the existing MVCApp1.AppContext database.
Call AppContext to match the same code for the main function.

SQL Server Examples

[186]

This mapping will also create the connection string in the app.config file to be
associated with the database:

<connectionStrings><add name="AppContext" connectionString
="metadata=res://*/Model1.csdl|res://*/Model1.ssdl|res://*/
Model1.msl;provider=System.Data.SqlClient;provider connection
string="data source=.\SQLExpress;initial catalog=MVCApp1.
AppContext;integrated security=True;MultipleActiveResultSets=True;App
=EntityFramework"" providerName="System.Data.EntityClient" /></
connectionStrings

Ensure that the database exists; if not, then create one.

To create the tables, (in this case, the MVCApp table to populate with messages)
simply right-click on Generate Database from Model... to create a DDL's SQL
script to create the model's table.

Chapter 6

[187]

This will generate the DDL schema to be run by clicking on the Finish button.

Once the DDL's SQL script is created, run the SQL script in Visual Studio.

SQL Server Examples

[188]

After the SQL script is run and the Visual Studio is generated from the model,
the table should be built.

Then, we will run the program, and it will populate the pay messages.

So, we simply had to do the following to create a table from a model:

1. Ensure that the database is present in the SQL Server.
2. Generate the SQL DDL script from the model for the new table using

the Generate Database from Model....
3. Ensure the database was present, and tables will be generated.
4. Run the generated SQL script in Visual Studio to create the new table

from the table. The table should now match the current model.

Then, we have a populated table from a model without writing the SQL
code ourselves.

Code-first EF
For many of the samples, data needs to be set up in the database. The preference
in this book is to use ORMs than SQL Scripts and EF is a Microsoft framework that
supports integration into Visual Studio. For some of the samples, we plan to read
and write data to nservicebus, and other databases, using EF and MVC.

One of the tables that we will use is to load messages through the saga system.
These messages would normally be the result of users populating MVC forms as
they enter orders, payments, or more.

Chapter 6

[189]

The table will appear as follows:

We have discussed that there is no need to create many pieces manually, and we
would use EF to perform some of these functions. We will log, audit, automate,
and check things as much as possible.

Code-first EF utilizes the generic DbContext as we have mentioned in previous
chapters. Here, we will extend it so that it is database specific. The DbContext is a
generic database context used to perform operations on the database. A DbContext
article for working with can be found at http://msdn.microsoft.com/en-us/
data/jj729737.aspx. We will extend the DbContext so that it knows the sets
of databases we will be creating to handle. To specify the connection string or
base database, see http://www.entityframeworktutorial.net/code-first/
database-initialization-in-code-first.aspx to create DbSet. We will
create a project called ConsoleDbContext to populate the necessary tables.

We will extend the database context with AppContext; this will create a table
called Paymessage to be filled with a set of Paymessages objects. To do all this
manually is a lot more work, so we will rely on automating the filling of the table.
The base("nservicebus") expression will dictate the code to put the table in the
nservicebus database. By default, it will use the local SQL Express instance.

http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://www.entityframeworktutorial.net/code-first/database-initialization-in-code-first.aspx
http://www.entityframeworktutorial.net/code-first/database-initialization-in-code-first.aspx

SQL Server Examples

[190]

We will create the program to create the AppContext object and use it to populate
the table with the Paymessage objects:

namespace MVCApp1
{
 class Program
 {
 static void Main(string[] args)
 {

 int length = 5;
 using (var db = new AppContext())
 {
 for (int index = 0; index < length; index++)
 {
 Paymessage message = new Paymessage();
 message.id = index + 1;
 message.error = "None";
 message.state = "initial";
 if (index == 0)
 message.EventId = new Guid("8b265223-dc9e-
4789-a6df-69d19f644ad7");
 else if (index == 1)
 message.EventId = new Guid("3721ba5d-4733-
4d98-a5e2-8e8afa3e61f4");
 else if (index == 2)
 message.EventId = new Guid("1ac188ec-4b2e-
436c-b989-db88c65db1fa");
 else if (index == 3)
 message.EventId = new Guid("9bf180fa-f8f4-
4b2b-8fac-cca73a4e2cab");
 else if (index == 4)
 message.EventId = new Guid("ee2c56f7-6d42-
4314-bce5-4825ed294437");
 db.Paymessages.Add(message);
 db.SaveChanges();
 }
 }
 }
 }
}

This will populate the database with the sample messages.

Chapter 6

[191]

Code-first EF and configurations
As we have mentioned earlier, we can perform the configuration in code and outside
the app.config file. The app.config file comes in very handy, but sometimes the
technical or non-functional requirements may require encryption of the configuration,
or that the configuration is more global by being entries in the database.

However, you may want to store this information in the database, as this
shows user IDs and passwords in plain text. This code will be found in the
ConsoleDbContext–Config directory.

We will walk you through a more extended example as it relates to NSB, just as
we established a relationship in the case of the previous DBContext with the
app.config file.

In this scenario, we want to store the UnicastBusConfig settings in the database.
The unicast bus configuration is made up of a collection of message endpoints.
So, we need a one-to-many relationship in the configuration in the database
that appears similar to the following diagram:

This shows a one-to-many mapping of the unicast configuration as it has a collection
called MessageEndpointMappingCollection of MessageEndpointMappings.
This is to allow many endpoint mappings in the app.config settings for unicast
in the following code:

SQL Server Examples

[192]

We can add many message endpoints. In order to create a database to hold
these name-value pairs, we will have to copy the UnicastBusConfig and
MessageEndpointMapping classes to create the database tables that contain the same
values. The reason that we cannot use the classes directly is that we need to add keys
for data storage and the relationship of one-to-many in the tables. We will call these
classes UnicastBusConfigDB and MessageEndpointMappingDB so that they are
database compatible. We will add their keys.

We will create the key for the MessageEndpointMappingDB class and the relationship
by going back to the UnicastBusConfigDB class.

This will create a relationship and the keys that we are aiming for in the Entity
Framework table diagrams created previously.

Chapter 6

[193]

To create the tables with a key that will relate the table of the endpoints to
the unicast.

Then, we can read the endpoint and unicast tables to get the configuration instead of
using the app.config file. This is a helpful exercise for those who do not wish to use
the app.config settings:

 static void Main(string[] args)
 {
 /**************
 * Read the database fields
 * ************/
 using (var db = new nservicebusEntities())
 {
 var unicasts = db.UnicastBusConfigDBs;
 // Get the first UnicastConfig record for now
 var unicastBusCfgDB = unicasts.FirstOrDefault();
 /*****
 * Get the message endpoints per unicast
 * ****/
 var messageEndpoints = db.MessageEndpointMappingDBs;
 foreach (var endpoint in messageEndpoints)
 {
 if (unicastBusCfgDB.id == endpoint.
UnicastBusConfigDBId)
 {
 unicastBusCfgDB.MessageEndpointMappingDBs.
Add(endpoint);
 }
 }
 /****
 * Fill in normal unicast config from DB
 * *****/
 UnicastBusConfig unicastBusCfg = new
UnicastBusConfig();
 unicastBusCfg.DistributorControlAddress =
unicastBusCfgDB.DistributorControlAddress;

SQL Server Examples

[194]

 unicastBusCfg.DistributorDataAddress =
unicastBusCfgDB.DistributorDataAddress;
 unicastBusCfg.ForwardReceivedMessagesTo =
unicastBusCfgDB.ForwardReceivedMessagesTo;
 unicastBusCfg.TimeoutManagerAddress = unicastBusCfgDB.
TimeoutManagerAddress;
 unicastBusCfg.TimeToBeReceivedOnForwardedMessages =
unicastBusCfgDB.TimeToBeReceivedOnForwardedMessages;
 Console.WriteLine(unicastBusCfg);
 /**
 * Add Message Endpoint Mappings
 * ***/
 unicastBusCfg.MessageEndpointMappings = new
MessageEndpointMappingCollection();
 foreach (var endpointDB in unicastBusCfgDB.
MessageEndpointMappingDBs)
 {
 MessageEndpointMapping endpoint = new
MessageEndpointMapping();
 endpoint.AssemblyName = endpointDB.AssemblyName;
 endpoint.Endpoint = endpointDB.Endpoint;
 endpoint.Messages = endpointDB.Messages;
 endpoint.Namespace = endpointDB.Namespace;
 endpoint.TypeFullName = endpointDB.TypeFullName;
 unicastBusCfg.MessageEndpointMappings.
Add(endpoint);
 Console.WriteLine(endpoint);
 }
 }

 }

Unit testing NServiceBus
Visual Studio 2012 has plenty of unit testing features. NServiceBus.Testing
offers testing by sending messages through message handlers and sagas. This
includes anything that a message handler and saga can do, including header
manipulation and dependency injection. You can visit http://docs.particular.
net/NServiceBus/unit-testing for some basic examples. For the source code of
NServiceBus.Testing, visit https://github.com/Particular/NServiceBus/
tree/develop/src/NServiceBus.Testing.

http://docs.particular.net/NServiceBus/unit-testing
http://docs.particular.net/NServiceBus/unit-testing
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Testing
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Testing

Chapter 6

[195]

The very basics of starting unit testing is to create a unit test project in
Visual Studio by adding a new unit test project to an existing solution.
See http://msdn.microsoft.com/en-us/library/hh598957.aspx/ for details.

We will add NServiceBus.Testing from NuGet by visiting http://www.nuget.
org/packages/NServiceBus.Testing/. We will initialize the tests using Test.
Initialize(), which is calling NServiceBus.Testing, thus starting the tests with
either Test.Handler<HandleName>() or Test.Saga<SagaName>().

http://msdn.microsoft.com/en-us/library/hh598957.aspx/
http://www.nuget.org/packages/NServiceBus.Testing/
http://www.nuget.org/packages/NServiceBus.Testing/

SQL Server Examples

[196]

When a test is built, we can run it or debug it. The test indicators will tell us whether
anything failed. We can also put in rules and assertions that if the correct response
does not happen, it will fail the test. This is a great feature of Visual Studio, and there
are many samples: http://msdn.microsoft.com/en-us/library/ms243176.
aspx, http://www.visualstudio.com/en-us/get-started/create-and-run-
unit-tests-vs.aspx, and extensions such as http://www.codeproject.com/
Articles/22358/Visual-Studio-Unit-Testing-Extensions.

Message handler unit testing
The message handler code will be in the unit test itself. From our \BasicWCF2\
MVCApp – WCF\UnitTestHandlers\ project, where we have various unit tests, we
will use this unit test, to debug, test, and walk through EventMessageHandler. The
EventMessageHandler receives SendCommand from MVCApp, via the saga, loads XML
messages, selects one if it has found one, and sends it to the WCF server, which will
respond back to the saga.

http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions

Chapter 6

[197]

We proceed with creating UnitTestHandler2.cs, and then add the header
information and [TestMethod]. This will be under BasicWCF2 in the
UnitTestHandlers project.

SQL Server Examples

[198]

After the base of the file is created, we will create a normal message, SendCommand,
with GUID and state that will inform where the message should be at before
reaching the message handler called command.

We see that the command message is passed to .OnMessage<SendMessa
ge>(command) and ResponseMessage in reply, with the state being set to
CompleteMyWCFClient. When calling the unit test in Debug, we can even
pass this message in the handler and see how it behaves.

Chapter 6

[199]

This allows us to design and debug the handler functionality in the unit test code.
There are many rules that can be used when testing the handler or saga. For instance,
ExpectNotReply where the handler does not reply with a specific message.

To get information on what is available in NServiceBus.Testing, we can:

• Try to enter something and hover the mouse over IntelliSense

• Read the documentation at http://www.nudoq.org/#!/Packages/
NServiceBus.Testing/NServiceBus.Testing/Handler(T)

SQL Server Examples

[200]

• To read the code in GitHub, refer to https://github.com/Particular/
NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs

So, there are many possibilities to test the code. For the message handler, it will get
the command with GUID and state, read the XML files to get a matching message,
and send it to the WCF service, which will respond back to the saga. The saga keeps
track of the message routing and states and will respond to MVCApp. The MVCApp
project will update its state in the table. There could normally be multiple views that
could read the state, maybe an admin utility to check on the state of the messages,
the CSR talking to the customer and telling them whether the payment has been
processed, or a confirmation form, or an e-mail to the customer telling them that the
payment is successful, or many other scenarios. Besides a couple of functions to read
the XML file for the message, which is just used for testing, there could be a number
of scenarios added; however, the majority of the code is simply the following, which
is simple enough:

 /****
 * The message handler
 * Matches a XML message GUID from a file and the command sent
 * to it from MVC via the Saga
 * If found, sends it to the WCF Server and responds
 * with the state of what happened.
 * The WCF Service must be running to complete.
 *
 * ****/
 public class EventMessageHandler :
IHandleMessages<SendCommand>
 {
 public IBus Bus { get; set; }
 public void Handle(SendCommand message)
 {
 ServiceReference1.WcfServiceOf_PayMessage_
ErrorCodesClient client1 =
 new ServiceReference1.WcfServiceOf_PayMessage_
ErrorCodesClient();

 // Create the response message

https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs

Chapter 6

[201]

 ResponseCommand command = new ResponseCommand();
 command.RequestId = message.RequestId;
 /****
 * Get the XML messages from the temp direcotry.
 * Find a match from the GUID
 * ****/
 List<PayMessage> list = EventMessageHandler.
GetMessages();
 PayMessage payMessage = null;
 foreach (var temp_message in list)
 {
 if (message.RequestId == temp_message.EventId)
 {
 payMessage = temp_message;
 }
 }
 // if no XML, just fail
 if (payMessage == null)
 {
 command.state = StateCodes.MyWCFClientFailXML;
 Bus.Reply(command);
 Console.WriteLine("No XML Found");
 }
 else
 {
 ErrorCodes returnCode = client1.
Process(payMessage);
 if (returnCode == ErrorCodes.None)
 {
 command.state = StateCodes.
CompleteMyWCFClient;
 }
 else
 {
 command.state = StateCodes.MyWCFClientFail;
 }

 Bus.Reply(command);
 Console.WriteLine("Success");
 }
 Console.WriteLine("=================================
===");
 }

After testing this code, we could use the tested code to create a class into a new
project, minus the unit testing, and start using it as a message handler. It saves
time by developing the code in a unit test, and putting the tested product into the
applications' project. The unit test project also serves as a backup of knowing what
it looked like during a good test.

SQL Server Examples

[202]

Saga handler unit testing
We will start testing saga code from \BasicWCF2\MVCApp – WCF\
UnitTestHandlers\, where we have various unit tests, including a copy of the
MySaga code in UnitTestSaga2.cs. Again, a sample of some of the workings can
be found at http://docs.particular.net/NServiceBus/unit-testing. Many
of the same principles apply as we saw in unit testing the message handler, except
now it will be saga handler, and our testing moves from Test.Handler to Test.
Saga. Now, we can study the source code from https://github.com/Particular/
NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs.

One thing to note is that if a saga entity object is deleted in different function calls,
with MarkAsComplete(), these should be tested separately because once we delete
the object, we cannot delete them again. For example, in our tests:

http://docs.particular.net/NServiceBus/unit-testing
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs

Chapter 6

[203]

In this snippet, we are testing the IHandleMessages<ResponseCommand>
message handler in the first test case, and in the second test case, we are testing
IHandleTimeouts<SendCommand> separately as they delete the saga object. We are
passing in prefabbed messages in the code to see whether they work well with the
normal messages.

The saga handler itself will act as an intermediate between the MVCApp and the
WCF client. This is needed so that it can timeout after three hours in case there is no
response from the WCF service.

Summary
We covered a lot of information in this chapter regarding persistence. This chapter
has a lot of associated code. We covered the highlights of working with NSB and
databases. NSB does take care of a lot of the workings with databases and mappings,
but because of the flexibility of NSB, various pieces can be extended through C# to
notify and monitor a variety of SQL Server pieces.

We covered how to create e-mail notifications by watching queues and notifying
operations of the workings of NSB.

We created a SQL Server database from object code, we created one from EF models,
we created MVC-EF code to read the tables for a PubSub that does most things in
SQL Server, and we changed some of the pieces from EF to NHibernate and then
from EF to RavenDB. We read the subscription tables of NServiceBus in code and
displayed them in MVC for both RavenDB and SQL Server. We also offered a small
sample on how to configure a daily check to send ourselves an e-mail if anything
was populated in the MSMQ error queue. Wow! for a small chapter, the reader has
a lot of information to build from.

The next chapter will be more into the code of general persistence. We will discuss
NHibernate, RavenDB, and MongoDB. We will dive into the code to accomplish
some database tasks since it relates to NServiceBus. This code can be applied to
many tasks that are not ESB-specific.

Persistent Snippets
In this chapter, we will be focusing on snippets about persistence. We will discuss
NHibernate, RavenDB, and MongoDB.

We will dive into the code to accomplish some database tasks since it relates to
NServiceBus. This code can be applied to many tasks that are not ESB-specific. But
this is a much-needed chapter on database code itself. We will create SQL Server
databases without the use of SQL code and read tables that NServiceBus created in
RavenDB. We will show how to create tables with code, read and display tables in
NHibernate and RavenDB, and even send ourselves an e-mail with the error queue
count. This will be the applied theory in this chapter.

In this chapter, we will cover:

• Entering NHibernate
• Using saga and NHibernate

 ° Defining NHibernate
 ° The saga database data

• Logging
• Entering RavenDB
• Entering MongoDB

Entering NHibernate
NServiceBus takes care of the mapping interface from the objects to relational
databases. We will briefly cover how mapping occurs with NHibernate in a typical
non-NSB application if the developer needs to walk through an NHibernate source
in NSB or extend it.

Persistent Snippets

[206]

Entity Framework is definitely the way to go for SQL Server, but there is a chance
that you may have to deal with Oracle or MySQL. There are multiple ways to
create the mapping from the objects to relations. One method is to code in the
hbm.xml files and another is to use Fluent API. For more on Fluent API, see
http://en.wikipedia.org/wiki/Fluent_interface.

We will use the Fluent API in NHibernate, which will utilize mapping in code
instead of in XML. You may find more information on Fluent NHibernate at
http://www.fluentnhibernate.org/. In order to use Fluent NHibernate,
we will need to add it as a reference via NuGet.

For the NHibernate pieces, there will be a session interface instead of an EF
context interface, which works similarly. We will need the entity object, which
is similar to the one created earlier, and the mapping that was created by EF.
We will create a different entity object. Notice that it is very similar to creating
an entity object except for the virtual keyword.

http://en.wikipedia.org/wiki/Fluent_interface

Chapter 7

[207]

This will be the MVC-NHibernate solution:

namespace MVCApp.Models
{
 public class AuditExt2
 {
 public virtual System.Guid Id { get; set; }
 public virtual string CorrelationId { get; set; }
 public virtual string ReplyToAddress { get; set; }
 public virtual bool Recoverable { get; set; }
 public virtual Nullable<System.DateTime> Expires { get; set; }
 public virtual string Headers { get; set; }
 public virtual byte[] Body { get; set; }
 public virtual long RowVersion { get; set; }
 }
}

Then, we will create the mapping. A more detailed description can be found at
http://github.com/jagregory/fluent-nhibernate/wiki/Getting-started.

The code snippet for mapping of Id and other variables will appear as follows:

using FluentNHibernate.Mapping;

namespace MVCApp.Mapping
{

 public class AuditExt2Map : ClassMap<MVCApp.Models.AuditExt2>
 {
 public AuditExt2Map()
 {
 Table("audit");
 Id(x => x.Id);
 Map(x => x.ReplyToAddress);
 Map(x => x.Recoverable);
 Map(x => x.Expires);
 Map(x => x.Headers);
 Map(x => x.Body);
 Map(x => x.RowVersion);
 }
 }
}

http://github.com/jagregory/fluent-nhibernate/wiki/Getting-started

Persistent Snippets

[208]

In this scenario, we are just providing a one-to-one mapping of the table values to the
object values. We were able to take a shortcut as we already had the EF entity, so we
could just copy and paste most of the pieces. So now we have an entity object and the
mapping; however, instead of just calling the EF context, we actually have to code
the NHibernate session. We will create NhibernateHelper.cs, which will contain
the connectionstring that points to the correct database. Instead of SQL Server,
we can easily use MySQL or SQLite on an iPhone or Android device. We will create
a configuration for the session factory:

 private static void InitializeSessionFactory()
 {
 _sessionFactory = Fluently.Configure()
 .Database(MsSqlConfiguration.MsSql2008
 .ConnectionString(
 @"Server=localhost\SQLExpress;Databa
se=nservicebus;Trusted_Connection=True;")
 .ShowSql()
)
 .Mappings(m =>
 m.FluentMappings
 .AddFromAssemblyOf<MVCApp.Models.
AuditExt2>())
 .BuildSessionFactory();
 }

Once we create the configuration, we will open the session and call the database
objects in a way that is similar to how we do it in EF. Most of the code of the new
function is made up by copying the NHibernate object into the previous EF object
that is displayed on the screen. The screen won't have to change, just the entity object
that NHibernate used:

public ActionResult Audit()
 {
 List<MVCApp.Models.AuditExt> models = new List<MVCApp.
Models.AuditExt>();
 using (var session = NHibernateHelper.OpenSession())
 {

 var audits = session.QueryOver<AuditExt2>().List();
 foreach (var audit in audits)
 {

Chapter 7

[209]

 AuditExt data = new AuditExt();
 data.audit = new DAL.audit();
 data.audit.Headers = audit.Headers;
 data.audit.Id = audit.Id;
 data.audit.ReplyToAddress = audit.ReplyToAddress;
 data.audit.Recoverable = audit.Recoverable;
 data.audit.Expires = audit.Expires;
 data.audit.RowVersion = audit.RowVersion;
 if (audit.Body == null)
 {
 data.reader = " ";
 }
 else
 {
 data.reader = System.Text.UTF8Encoding.UTF8.
GetString(audit.Body);
 }
 models.Add(data);
 }
 }
 return View(models);
 }

So what did we learn so far? We learned how to create objects from the NServiceBus
tables to C# using EF, how to display these objects in MVC, and how to extend them
into NHibernate so that we are not limited to just using SQL Server.

Using saga and NHibernate
We will walk through a modified example of a basic saga, originally from
https://github.com/jkillingsworth/NServiceBus-BasicSagas. However,
this example has been modified to use NHibernate, which uses a local SQL Express
database. NHibernate was added using some of the steps from http://docs.
particular.net/nservicebus/relational-persistence-using-nhibernate-
--nservicebus-4.x. We also added logging using the NLog framework to log
functionalities as we go. The NHibernate ORM framework was chosen because it
can connect to a multitude of different databases using the same code, the difference
being the connection string in the app.config file for the different databases.

https://github.com/jkillingsworth/NServiceBus-BasicSagas

Persistent Snippets

[210]

To elaborate on this saga example, there is a MySaga program that directs the
messages while saving a saga instance as the messages are being moved. The
saga persistence keeps track of the information that we defined to be saved in a
saga entity object. The saga acts as an anchor that we can persist as we orchestrate
messages moving across the bus. We can retrieve the instance of the saga associated
with the message, update it, and keep it stored, since the original message morphs
into different types of messages.

In this application, we sent IAmStartedByMessages<SubmitRequestCommand> from
the AppSubmittingRequests application, seen here as Purchase Order Requests. It
creates and submits SubmitRequestCommand, which takes the data from this message
and creates a saga on the bus with a unique ID. It also sets a 60-second timer that will
send a time-out message from the bus once the 60 seconds are completed.

Chapter 7

[211]

Then, it sends an approval that creates Level 1 Approval, an application called
AppForApprovalsLevel1 and, after the Approve or Deny button is clicked, it
creates a new message that is sent back to the saga; the saga handles the messages.
Depending on the return message, it will either call the IHandleMessages<Approve
RequestCommand> or IHandleMessages<DenyRequestCommand> handler. The saga
will be pulled up by the bus, since we used mapping code in this example to map
the messages to RequestId.

Persistent Snippets

[212]

We can pull up the saga that matches the message and route it based on some logic,
in this case, the cost, or return it to the originating client. The saga may contain
most of the original message, so all of it doesn't need to be propagated through
the messages.

The saga is aware of its originator. It knows to match the RequestId because of the
mapping, and the bus keeps an internal ID to keep all the sagas unique. All sagas
must have the Id, Originator, and OriginalMessageId fields that the bus will use
to keep track of the saga. Here, we also have the [Unique] attribute to ensure that
RequestId is kept unique so that the map is made to return the correct saga.

Chapter 7

[213]

The EndpointConfig.cs file of the MySaga project contains the Init() method. This
function contains the initial configuration for the endpoint of the IBus. The endpoint
will default to the namespace of the project, for instance; in this case, MySaga will be
the endpoint as it is associated with the namespace.

However, you may explicitly define your endpoints of the IBus with Configure.
With().DefineEndpointName("MyEndpoint");, where MyEndpoint is the IBus'
endpoint to be defined.

Persistent Snippets

[214]

As always, the NSB IBus will create the appropriate endpoints if defined correctly.
Here, we have it based on the different project's namespaces in the solution. The
different projects are MySaga, AppforApprovalsLevel1, AppforApprovalsLevel2,
AppForSubmittingRequests, and AppForAccountingDept. Notice that NSB
will create them in lowercase, and also create the appropriate time-out, error,
and audit queues.

We are going to configure the IBus in EndpointConfig.cs, which in most cases
is where the IBus will be configured to use the saga and time-out persistence in
NHibernate.

Chapter 7

[215]

Defining NHibernate
NHibernate is configured in the app.config file for the MySaga project, to configure
the NHibernate interface in order to connect to the local SQL Express Server instance.

Here, we can see the NServiceBus NHibernate connection strings and app settings.
Now that we have NHibernate configured for NServiceBus, we can check the SQL
Server after opening the sample solution. After opening the solution, NServiceBus
will create the appropriate tables for saga and time-outs in the nservicebus database.

Persistent Snippets

[216]

We see that the base saga that is normally created, called ContainSagaData, has Id,
Originator, and OriginalMessageId and is always able to find the correct unique
saga instance and the originator information to reply to the client that sent this
handler the message to start saga.

It also created the PurchaseOrderRequestData saga, where the table will match
the object. The object will appear as follows:

The saga database data
So the database table associated with the object will look like the following:

Please note that we did not need to create any mapping files for any of the
NHibernate mappings, nor did we need to create the table. We simply created the
NSB configuration. NSB created the tables and performed the mapping. Look! No
need to use SQL.

Chapter 7

[217]

Likewise, we have a time-out message as an object given as follows:

But since IBus retains extra information to keep track of the correct saga and has the
IBus execute the timer separately from the current thread, there will be a lot of extra
information in its time-out table for the IBus' use:

Logging
In the following example, we have also set the app.config file to use NLog.
NServiceBus will support the common logging frameworks, common logging,
NLog, Log4Net, and Serilog. Please see http://docs.particular.net/
NServiceBus/logging-in-nservicebus for more information.

http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Persistent Snippets

[218]

For NLog, we need to add the Nlog NuGet reference to the project:

We need to set the logging levels and the location of where the logs are being sent
to in the app.config file:

The app.config file is set in a way similar to most applications, using Nlog.

Chapter 7

[219]

For a tutorial on NLog, please check out https://github.com/nlog/nlog/wiki/
Tutorial. The difference is that there needs to be a section name for NServiceBus to
use Nlog, <section name="nlog" type="NLog.Config.ConfigSectionHandler,
NLog" />. We also set the local configuration by using SetLoggingLibrary.
NLog();.

From the app.config file, we are saving a lot of the trace information in the C:\logs\
directory while creating a new file daily with a filename of the current date:

Logging becomes a necessity when trying to document the internal happenings of
messages, sagas, and persistence.

Entering RavenDB
We have briefly discussed RavenDB in the earlier chapters of this book. NSB takes
care of the document mapping in the RavenDB database; however, we will cover
some of the basics of RavenDB in a typical C# program without NSB. I will remind
you to review the RavenDB licensing when working with RavenDB.

RavenDB is a document-oriented store database that is used by many defaults in
NServiceBus and makes use of the JSON format. See https://ravendb.net/ for
more information. In our previous PubSub example, we took out most pieces of
the persistence from RavenDB and put it in a SQL Server. Now, we will put the
subscriptions back into RavenDB.

https://github.com/nlog/nlog/wiki/Tutorial
https://github.com/nlog/nlog/wiki/Tutorial
https://ravendb.net/

Persistent Snippets

[220]

This is done by deleting .UseNHibernateSubscriptionPersister(), which we
put earlier in the PubSub MyPublisher example. After deleting this piece of code,
NServiceBus will default to storing the subscription information back into RavenDB.
When running the PubSub example, we can see that the subscription information
was generated in RavenDB.

However, this section is about accessing RavenDB through snippets of code. Our end
goal is to display the following screenshot through MVCApp by code so that we can
later extend the persistence of NServiceBus to automatically log, monitor, and do more
as we have been going through in this book. We wish to write the code to display it in
the browser without the RavenDB admin tool to show the following screenshot:

This is the subscription information of the MyPublisher, Subscriber1 and
Subscriber2 queues. We could see this earlier in the SQL Server as the following:

Chapter 7

[221]

To start developing with RavenDB, the RavenDB client will have to be installed from
NuGet. This will be the MVCApp – RavenDB solution. For more information, see
https://www.nuget.org/packages/RavenDB.Client.

Now, it is RavenDB's turn. RavenDB is a document oriented in the JSON format,
meaning that the string values of C# will be used heavily. For more on JSON, see
http://www.json.org/. We can see the record just by clicking on the icon on the
RavenDB screen and viewing its details.

https://www.nuget.org/packages/RavenDB.Client
http://www.json.org/

Persistent Snippets

[222]

This is an object of two values: MessageType and a list of Clients. Inside the
Clients list is Queue with the value of QueueSubscriber1, and Machine with
the value of WIN-...... We will create an entity object to mimic the document
data used previously to create our own list:

namespace MVCApp.Mapping
{
 public class SubscriptionExt
 {
 public string MessageType { get; set; }
 public List<Address> Clients { get; set; }
 }
 public class Address
 {
 public string Queue { get; set; }
 public string Machine { get; set; }
 }
}

We can see that there is a MessageType with a list of Clients containing Queue
and Machine. We need to mention that this code snippet found at https://gist.
github.com/johannesg/7984309 was helpful.

To display a list in the view, I am going to use a simpler object where I don't have
to worry about walking down multiple link lists until later, and just show the first
client's values. This will be the object to populate my view:

public class SubscriptionExtView
 {
 public string MessageType { get; set; }
 public string Queue { get; set; }
 public string Machine { get; set; }
 }

So let's recap. We have the view and entity objects defined. We will populate a list of
these objects that we read from a session to the database, as we did in the EF context
and the NHibernate session. Now, we start a RavenDB session. The RavenDB session
uses a URL as a connection string to the database. Once we open the session, we
are going to search for the data. One of the many features of RavenDB, especially
in searching is that RavenDB uses Lucene. Lucene is an open source Apache search
engine software; for more information, see https://lucene.apache.org. For building
Lucene queries in RavenDB, see http://ravendb.net/docs/2.0/client-api/
querying/query-and-lucene-query. So, now we will execute the following code:

https://gist.github.com/johannesg/7984309
https://gist.github.com/johannesg/7984309
https://lucene.apache.org
http://ravendb.net/docs/2.0/client-api/querying/query-and-lucene-query
http://ravendb.net/docs/2.0/client-api/querying/query-and-lucene-query

Chapter 7

[223]

We will perform the following steps:

1. Open the session with the URL of RavenDB. We will need the
MyPublisher database.

2. We will perform a Lucene search in the table to find our entities using the
entity object format.

3. We will copy the entity object into the view object to display the results.

This will display the subscription storage from RavenDB.

Entering MongoDB
A very popular NoSQL database that is being used more and more in the NoSQL
community is MongoDB. MongoDB is a document-oriented database system
that uses JSON-like documents with dynamic schemas. For more information on
MongoDB, see http://en.wikipedia.org/wiki/MongoDB. MongoDB can be found
at http://www.mongodb.org/ and the installation instructions for Windows can be
found at http://docs.mongodb.org/manual/tutorial/install-mongodb-on-
windows. MongoDB is written in C++, is open source, uses the Apache open source
license that most Apache Foundation products run under, and is cross-platform.

http://en.wikipedia.org/wiki/MongoDB
http://www.mongodb.org/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows

Persistent Snippets

[224]

To install MongoDB on Windows, download the installation file, which will install
it today at C:\Program Files\MongoDB 2.6 Standard. To start the installation,
open a command prompt, change the directory to C:\Program Files\MongoDB
2.6 Standard\bin, create the database directory using md \data\db, and start the
database via mongod.exe.

We can check on the database by running many MongoDB tools listed at http://
docs.mongodb.org/ecosystem/tools/administration-interfaces/ or http://
stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-
mongodb-for-windows. One of the many tools is UMongo, which is cross-platform
and built in Java; for more information see http://edgytech.com/umongo/. We can
see the MyPublisher subscription tables in the publish/subscribe example.

http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://edgytech.com/umongo/

Chapter 7

[225]

For developing in C#, mongocsharpdriver will need to be installed in the project
through NuGet using PM> Install-package mongocsharpdriver. For more
information, see https://www.nuget.org/packages/mongocsharpdriver/.

We will run through a small sample of C# MongoDB to get acclimatized to MongoDB
before diving into it with NServiceBus. In this example, we will place configurations in
the MongoDB local database.

In order to build data, we need to define the object in a form of BsonDocument, to
which we will add the collection of objects in the database table. BSON is Binary
JSON. For more information, see http://en.wikipedia.org/wiki/BSON. The
BsonDocument is the name-value pair of the data field to the data value that is added
to the database. An in-depth discussion can be found at http://docs.mongodb.
org/ecosystem/tutorial/use-csharp-driver/. We will connect to the database
by setting the connection string in the app.config file to Server=localhost:27017:

private static void CreateMessageMaps(MessageEndpointMappingDB
mapping)
 {
 var client = new MongoClient(ConnectionString);
 var server = client.GetServer();
 MongoDatabase myConfig = server.GetDatabase("MyConfig");

 MongoCollection<BsonDocument> endpoints = myConfig.GetColl
ection<BsonDocument>("MessageEndpointMappingDB");
 BsonDocument endpoint = new BsonDocument {
 { "AssemblyName", mapping.AssemblyName },
 { "Endpoint", mapping.Endpoint },
 { "Messages", mapping.Messages },

https://www.nuget.org/packages/mongocsharpdriver/
http://en.wikipedia.org/wiki/BSON
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/

Persistent Snippets

[226]

 { "Namespace", mapping.Namespace },
 { "TypeFullName", mapping.TypeFullName }
 };

 endpoints.Insert(endpoint);
 }

We create the BsonDocument, which contains the field names of the database, for
instance Server AssemblyName, and sets the associated string value in that field,
in this case, mapping.AssemblyName. The BsonDocument is then inserted into the
database, a collection of rows in endpoints.Insert(endpoint).

To retrieve the collection of objects, we return the MongoCollection of objects
and transform the collection into an object list:

public static List<MessageEndpointMappingDB> GetMessageMaps()
 {
 List<MessageEndpointMappingDB> endpointList = new List<Messa
geEndpointMappingDB>();

 var client = new MongoClient(ConnectionString);
 var server = client.GetServer();
 MongoDatabase myConfig = server.GetDatabase("MyConfig");

 MongoCollection<MessageEnd
pointMappingDB> endpoints = myConfig.
GetCollection<MessageEndpointMappingDB>("MessageEndpointMappingDB");
 foreach (var endpoint in endpoints.FindAll())
 {
 endpointList.Add(endpoint);
 }

 return endpointList;
 }

To delete the table, we simply perform Drop on the table, which is a MongoCollection
of objects related to the table itself. MongoDB is not an ORM. It is a document-oriented
database, meaning it handles the database as a collection of documents, in this case,
BSON documents (a collection of documents). Think of each document as a row in
the database and each field in the row as a name-value pair:

Chapter 7

[227]

public static void DeleteMessageMaps()
 {
 var client = new MongoClient(ConnectionString);
 var server = client.GetServer();
 MongoDatabase myConfig = server.GetDatabase("MyConfig");

 MongoCollection<MessageEnd
pointMappingDB> endpoints = myConfig.
GetCollection<MessageEndpointMappingDB>("MessageEndpointMappingDB");
 endpoints.Drop();
 }

This was a simple introduction into MongoDB.

NServiceBus MongoDB persistence
For the NuGet installation of the MongoDB persistence NServiceBus references, they
can be found at http://www.nuget.org/packages/NServiceBus.Persistence.
MongoDb/ and the associated source code can be found at https://github.com/
tekmaven/NServiceBus.Persistence.MongoDb.

In order to create the MongoDB subscription information for applications such
as MyPublisher, place the MongoDB configurations in IBus after installing the
references through NuGet, for instance, MongoDbSubscriptionStorage():

http://www.nuget.org/packages/NServiceBus.Persistence.MongoDb/
http://www.nuget.org/packages/NServiceBus.Persistence.MongoDb/
https://github.com/tekmaven/NServiceBus.Persistence.MongoDb
https://github.com/tekmaven/NServiceBus.Persistence.MongoDb

Persistent Snippets

[228]

Summary
We covered a lot of information in this chapter regarding persistence. This chapter
has a lot of associated code. We covered the highlights of working with NSB and
databases. NSB does take care of most of the workings of databases and mappings
however, because of the flexibility of NSB, various pieces can be extended through
C# to notify and monitor a variety of SQL Server pieces.

The next chapter will dive into the working of the Cloud. We will discuss the
coding practices we have learned so far to produce more end-to-end systems.

The NSB Cloud
In this chapter, we will be focusing on snippets of NServiceBus in the cloud after
a very brief introduction to the cloud and some of its services. While NServiceBus
has support as a service bus for the Microsoft Cloud of Azure, it is also a beneficial
tool to integrate into other cloud technologies as well, as all clouds have support for
third-party integration to pass data through web services.

In this chapter, we will cover the following topics:

• Introducing the cloud and NSB
• Introducing PaaS, IaaS, and SaaS
• Cloud vendors
• Using Microsoft Azure
• Adding NServiceBus
• NSB in the mobile world
• Questions that were answered

Introducing the cloud and NSB
At the beginning of this chapter, NSB Version 5.0 for Azure is in beta. This chapter
will explain how to use NSB without DTC. NSB is getting integrated more and more
into the Azure queues and Azure SQL Server, but the evolution will likely involve
Big Data as well. Just as computers were using 4 MB of RAM in the past, and now
more than 16 GB of RAM is pretty normal, queuing of data will increase as well.
Basic Big Data through databus has been around for some time; however, payment
engines and customer databases are always in the need of processing large files to
transfer data and funds. To understand the cloud is to understand the offloading of
queuing, small data, and large data into cloud servers, which are managed through
cloud wizards. This results in a loss of the on-premise viewing of fine details to some
degree, as the remote servers are dependent on the cloud wizards.

The NSB Cloud

[230]

The NSB tools are also adapting. ServiceInsight has grown to handle more details
with sequence diagrams for debugging outside of Visual Studio and MSMQ as
well. The tools are moving from being integrated locally into a physical server to
being integrated into a remote server where many of the details of the server itself
may be less important as servers are virtualized offsite. For instance, in the future,
ServiceInsight will add saga sequence diagrams to add more detail than
the current flow diagrams. The following sequence diagram shows what is in
store for ServiceInsight:

However, DTC is not supported in many cloud technology queues and RabbitMQ,
but enhancements are being made in NSB Version 5 and above to compensate this,
mostly by keeping track of messages that have either already been processed or
about to be processed in the transactional integrity of tables.

Chapter 8

[231]

Introducing PaaS, IaaS, and SaaS
In the evolution of cloud computing, there are the concepts of Platform as a
Service (PaaS), Software as a Service (SaaS), and Infrastructure as a Service (IaaS).

PaaS is the cloud computing service that provides a computing platform and
a solution stack as a service. In PaaS, the cloud solution provider provides the
operating systems, databases, web servers, development tools, and other services
that are required to host the consumer's application. IaaS is at a level below the PaaS,
as it provides the virtual (as well as physical) machines, servers, storage options,
load balancers, networks, and more basic components. SaaS is at a higher level than
PaaS, as it is the software distribution model in which the applications themselves
are hosted by a vendor or service provider and made available to customers over a
network, typically the Internet. Here is an image that shows how Windows Azure
supports IaaS and PaaS:

The NSB Cloud

[232]

Depending on the cloud vendor, some of these terminologies may be termed slightly
different. While all cloud vendors support these components, they differ on the level
of abstraction for these components. For example, Windows Azure will allow you
to configure a virtual machine in the cloud, while Salesforce clouds will not allow
you to know which infrastructure you are running on. The cloud vendor that is
selected, as well as licensing, will dictate your throttling level of transactions and
the limitation of your resources. There will be many limitations on resources and
transactions as you are sharing resources that other companies may be using as
well and paying more to utilize those resources. In the cloud world, consumption of
resources and transactions is based on licensing. There are many resources available
by all cloud vendors to develop in their cloud, and there is a lot of help available
as their goal is to get you to utilize their cloud as much as possible as that is their
revenue stream.

Cloud vendors
There are many cloud vendors, for example, Salesforce.com, Microsoft Azure,
Google App Engine (GAE), and Amazon Elastic Compute Cloud (EC2). Salesforce
uses a Java-like language called Apex. The GAE uses Java, Python, PHP, and Go.
Microsoft Azure uses .NET but also supports SDKs for Java, Python, PHP, and
NodeJS. Amazon uses Java, Python, PHP, Ruby, and .NET. NServiceBus supports
both the Microsoft Azure Cloud and the Amazon Cloud. The cloud solutions have
many templates that are considered to have an out-of-box (OOB) functionality
to build the cloud solution. There are also extra modules that can be installed;
many are free, and some require a subscription, such as Salesforce's AppExchange,
https://appexchange.salesforce.com. The supporting engines and
programming languages are used to extend none of the OOB functionalities.
These are additional modules or applications, for example, which connect
additional Salesforce features into Android or use Google mail.

While many cloud vendors, such as Amazon and Azure, can use NServiceBus to
interface directly into their queuing solution, other vendors, such as Salesforce,
which has its own language Apex, built on top of Java, cannot have NSB access its
queues as an ESB engine.

As Salesforce has connectors into other products such as Android APIs and Google
mail, connectors would have to be used to queue through external ESBs such as
NSB as well. Most connectors are built through the use of web services. Some of
this methodology is described at http://www.ramonsmits.com/2013/04/08/
receiving-salesforce-notifcations-with-nservicebus.html.

https://appexchange.salesforce.com
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html

Chapter 8

[233]

Developing an application from scratch seems easier when developing in the cloud
as many cloud vendors have templates and wizards to create data from scratch. The
complexity increases if an on-premise solution has to be migrated to an off-premise
cloud solution that is language dependent. For instance, if you have a .NET solution,
moving to Microsoft Azure may be relatively easy, but moving to Google Apps
may require a migration to Java first. Moving to Salesforce may require multiple
migrations to the data first, and then building the GUI through VisualForce, the
Salesforce visual interface, as most of the underlying infrastructure of the Salesforce
cloud, Force.com, is not exposed. For this reason, there are several tools to move
data into Salesforce objects, such as the data loader tool, https://developer.
salesforce.com/page/Data_Loader.

The following screenshot shows a sample VisualForce screen:

https://developer.salesforce.com/page/Data_Loader
https://developer.salesforce.com/page/Data_Loader

The NSB Cloud

[234]

For the Salesforce Apex language, there is a Developer Console that can be used in
the Force.com cloud to develop any code-specific application; however, the thought
with Salesforce is to get away from coding a lot of the data and visual objects. An
example of the Developer Console is shown in the following screenshot:

The issue with many off-premise scenarios is that while developing in the cloud, if
a current solution is currently working on-premise, there has to be a period of time
for turnover from on-premise to off-premise systems during which the data has to
be synched to both systems at the same time, and outages have to be scheduled. The
data has to be synched not only on a legacy system and a new system, but also on
the GUI and business logic as well. The switch from a legacy system to a new system
needs to be as seamless as possible to keep the customers of the system happy.
One of the problems frequently overlooked when moving from old systems to new
systems is that while new systems are being built, old systems may also be updated
with enhancements, which have to be updated in the new system as well before it
is completed. There are myriad issues involved while creating a new system, which
are beyond the scope of this book, but it will suffice to say that the more complex the
older system is, the more it can affect a new system. For the many reasons of jumping
from an old solution from an on-premise data center to a new solution off-premise
in the cloud, some of the changes can be eased with creating hybrid solutions where
an on-premise data is shared to the new cloud solution until a complete migration
is accomplished. For this purpose, NSB is a great solution for marshaling data and
business logic from an on-premise solution for an off-premise solution.

Chapter 8

[235]

Let's not say that this is a replacement for data warehousing where a central
repository is used for data, but when we update one system with a response of a
completed message, error, or another message that is performing an action through
SOA, we update the other system with the same message as well. The following
diagram shows a simple example where the on-premise contains most of the logic to
update a payment through a third-party service, but the response is sent to the cloud
as well that is duplicating some of the services to update not only the data but the
business processes as well:

This example shows the distribution of the ESB messages to the cloud through the
message queues. The Azure and Amazon Clouds would easily support this design.
However, some cloud vendors will not expose their queuing mechanisms, and for
this reason, WCF integration could be used as a connector to update the services
inside more proprietary clouds such as Salesforce.

The NSB Cloud

[236]

The service method of transferring data is a semi-real-time method of transferring
small amounts of data from one system to another through a secure pipe of HTTPS
using digital certificates. We also know that we can transfer messages through a
secure HTTPS gateway using NServiceBus. A lot of these messages have very small
limits by default; for MSMQ, we have 4 MB, and the default for WCF is roughly 64
KB. Some of these limits can be changed by using an NSB databus to set new limits
in WCF. However, it will not be sending very large files for a daily upload of files.
For this reason, Salesforce has a data loader.

In many systems, there are similar processes that derive from the Extract-Transform-
Load (ETL) process. See http://en.wikipedia.org/wiki/Extract,_transform,_
load. An ETL process will extract data from a system, say a SQL Server table that
had changes for that day; it will transform into data that can be loaded into the
system that needs the daily data, say an XML data file, and then load it into another
system, say a Salesforce Cloud system. Some systems may simply need a daily load
of the information instead of a second-by-second replay of the data that has changed.
The thought is that instead of sending web services or messages to cloud queues, a
daily snapshot can be taken from the on-premise MSMQ, or a SQL table, and sent
securely to the cloud to be uploaded through SFTP, a secure version of FTP. The
diagram will be similar to this picture:

http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load

Chapter 8

[237]

We could exponentially come up with a variety of ways to update the cloud with
local data or to load data to a new cloud system. Auditing and reporting should
be one of the characteristics of any form of sending data to the cloud, as any
organization may be called one day from an organization, such as the IRS, to show
that the customers were initially loaded and validated into the cloud solution. For
this reason, using the saga design pattern would be of a great benefit for taking a
snapshot of messages that were sent to the cloud solution through many of these
means. Even in the SFTP solution, we could take a snapshot of which records were
put into a file and verify the sending of the data to be uploaded into the cloud
database. The benefit of NSB is that we can take snapshots of messages, and audit
through queues and report on the interaction and endpoints.

Using Microsoft Azure
The benefit of Azure is that it can be used in Microsoft data centers around the
world. The purpose of Azure is to have a Software Development Kit for websites,
virtual machines, and cloud services for either the cloud, on-premise, or a hybrid
between the two. Some cloud technologies, such as Salesforce, are cloud-centric
and not on-premise-centric. The Windows Azure SDK is considered open source
from Microsoft, yes, open source, and it can be found at https://github.com/
Azure. There are Power Shell tools for Windows to deploy (see https://github.
com/Azure/azure-sdk-tools) and even command-line tools for the Linux and
Mac operating systems (see http://research.microsoft.com/en-us/projects/
azure/windows-azure-for-linux-and-mac-users.pdf and http://azure.
microsoft.com/en-us/documentation/articles/command-line-tools/).

Just as in Salesforce and other cloud technologies, there are galleries with pre-created
applications and modules (see http://azure.microsoft.com/en-us/gallery/
store/), and there are wizards to build the sites and samples (see http://azure.
microsoft.com/en-us/develop/net/samples/). Once you access Azure, you have
the ability to create various applications and services. There are many applications
and services on the left that can be created. All clouds use a pay-for-what-you-use
model, mostly in production, for licensing. In Azure, there is an Azure calculator to
calculate the costs, http://azure.microsoft.com/en-us/pricing/calculator/.

In Azure, there are three Execution models, meaning, there are normally three
different ways to deploy end-to-end applications:

• You can create a website, meaning, you can add backend storage, messaging,
and other pieces to it.

• You can create a virtual machine, meaning, you could add various pieces as
you would in a Linux or Windows Server to also deploy applications and
a website.

https://github.com/Azure
https://github.com/Azure
https://github.com/Azure/azure-sdk-tools
https://github.com/Azure/azure-sdk-tools
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
http://azure.microsoft.com/en-us/documentation/articles/command-line-tools/
http://azure.microsoft.com/en-us/documentation/articles/command-line-tools/
http://azure.microsoft.com/en-us/gallery/store/
http://azure.microsoft.com/en-us/gallery/store/
http://azure.microsoft.com/en-us/develop/net/samples/
http://azure.microsoft.com/en-us/develop/net/samples/
http://azure.microsoft.com/en-us/pricing/calculator/

The NSB Cloud

[238]

• You can create cloud services, such as web service, which also contains
backend storage, messaging, and other pieces.

The websites can be created in PHP, ASP.NET, Node.js, or Python. The website can
be created so that the platform, patches, and all the platform pieces are handled for
you. Since it is ASP, it could be built locally and even deployed through the source
control. You can even create a domain, other than the cloud domain, for this website
to be accessed on the Internet.

After a website is created, it can be edited in the cloud or locally through WebMatrix
(see http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-
windows-azure-with-webmatrix). Using WebMatrix is similar in nature to some
of the previous MVC examples, and Microsoft MVC can still be used in Microsoft
Azure. A simple page can be done in HTML with WebMatrix to build a website in
Azure in the following screenshot:

http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-windows-azure-with-webmatrix
http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-windows-azure-with-webmatrix

Chapter 8

[239]

More complex websites can be created using MVC-EF in Visual Studio and then
deployed to Azure using the publish interface in Visual Studio. So, we can use the
previous chapter's MVC-EF examples as well in Azure. However, WebMatrix is a
nice tool to create a sample Azure website quickly, and combinations of MVC with
Razor and WebMatrix can be used to create HTML5 pages.

The NSB Cloud

[240]

The Azure SDK is integrated into Visual Studio. The differences will be that Azure
Cloud services, such as the cloud website, storage, SQL database, active directory,
and other Windows services can be used instead of the local on-premise ones. A
point to note is that NServiceBus is integrated into Visual Studio as well. We can
install the Azure SDK 2.3 for Visual Studio 2012 using the Microsoft Web Platform
Installer from http://www.microsoft.com/web/downloads/platform.aspx. This
is shown in the following screenshot:

Virtual machines
Microsoft Azure gives customers complete control of virtual machines to run in
the cloud. There are many base VMware operating systems that can be created in
the cloud.

http://www.microsoft.com/web/downloads/platform.aspx

Chapter 8

[241]

We could easily create a virtual machine for Windows Server 2012, and utilize many
of the features that we would use locally in creating an application. The difference
would be that the licensing and administration would be based on cloud-based tools
and wizards.

Utilizing virtual machines off-premise is very much like having one on-premise,
except that you are paying for someone else to maintain it off-site. Therefore, if
MSMQ and SQL Server are configured on the virtual machine, they could be used in
a way similar to on-site NSB examples.

Not only can you deploy websites and virtual machines, but you can deploy other
applications as well, such as services that live in the cloud, which are called cloud
services. These can be servers or other types of services that a person would normally
deploy on a server. For instance, a backend process such as NServiceBus could be
considered a cloud service. IIS running in the cloud is considered a cloud service.
Many of the web services running in the cloud will be considered cloud services.

The cloud service also must have a role to run the service. There are two main roles
to run cloud services: one is the web role to run IIS, and websites built in PHP and
CGI, and the other is the worker role that is more geared to run backend processes
or backend cloud services. Both roles can run the .NET framework services, native
code, and the Windows Server services.

A cloud service can be published or packaged from Visual Studio. To publish a cloud
service, built in the Azure SDK, it will package and deploy the cloud service to your
Azure cloud services.

Another method to deploy a cloud service is to package it locally and upload the
pieces into the Azure cloud services to deploy it interactively with Azure.

The NSB Cloud

[242]

Depending on the cloud vendor, you can determine your development methodology.
We have provided some small examples for developing in Salesforce. While
developing in Google Apps, you can use the Eclipse IDE in Java, Apache Tomcat,
and the Mule ESB on-premise, and then upload it to the Google Cloud. For Azure,
you can develop your solution on-premise as well as in Visual Studio, and then
upload it and run it from Azure Cloud. However, for Azure, you will need cloud
development packages. There is a cloud service package, which is a development
ZIP file that will be deployed in a .cspkg format. It will need to be deployed with a
cloud configuration file as well, which is in the .cscfg file format.

However, in order to interact with the cloud services of Azure, and work with
Azure services locally, the Azure SDK has to be installed into the local machine
mentioned earlier.

For storage service's data management, we can create a SQL database in the cloud,
and use a SQL database on-premise from the cloud, or a hybrid thereof. The main
difference is that the connection string in the SQL Server database points towards an
on-premise or off-premise server. A virtual network can be set up between the cloud
and an on-premise LAN to provide a secure network connection. When connecting
to SQL Servers, IPs have to be explicitly allowed through the firewall to the cloud
database. There is a lot of built-in security to protect the cloud services. The Azure
SDK interfaces through Visual Studio so that there are tools to build SQL tables,
stored procedures, and more, from Visual Studio to the Azure cloud SQL database.

We can even manage the SQL database in the Azure Cloud from SQL
Management Studio.

Chapter 8

[243]

This, in turn, means that we can use it to create entity models, and use the remote
SQL database for NServiceBus persistence as we would in a local SQL database,
and any other coding that we would do in a local SQL database. The only difference
is that it is living in the Azure cloud. Here, we are developing entities from the
cloud database.

For business analytics and reporting, normal SQL Server tools can be used in
the cloud, such as SQL Server Reporting Services (SSRS); there is reporting on
the SQL database that normally comes with the SQL Server as well as Hadoop.
The SQL reporting can be to the off-premise in similar manner to the on-premise
SQL reporting with SSRS. In the off-premise cloud, there are additional Azure
management tools that can be used.

The NSB Cloud

[244]

However, working with SQL Server is for medium-size data in the cloud. There is
also Big Data. One might ask, why know Hadoop with NSB? Just as NSB works with
SQL Server today in many solutions, working with NSB with Hadoop in a databus
solution will be the future for moving large data.

Hadoop processes large data and assumes that the data is in BLOBs. It processes data
in parallel by running logic across multiple parallel machines by MapReduce jobs.
By processing large chunks independently using Hadoop Distributed File System
(HDFS), Hadoop also has its own SQL-like query language called Apache Hive
Interface (see http://hive.apache.org/). For non-SQL-like query languages, there is
the Pig Latin Hadoop language called Apache Pig (see http://pig.apache.org/).

HDInsight is Microsoft's 100 percent compatible distribution of Hadoop that is
managed in Azure or on the Windows Server, as shown in the following screenshot:

Other than adding a SQL database, we can add three other types of storage:

• A table storage that is based on a key-value No-SQL table format
• A Binary Large Object (BLOB) storage for binary storage, such as video files
• A queue storage to store messages

A BLOB is a group of containers, which is just unstructured data, such as a video or
audio file stored as binary storage in a data store.

http://hive.apache.org/
http://pig.apache.org/

Chapter 8

[245]

Table storage is a No-SQL solution instead of the relational SQL database. It can
store data across multiple machines. Each table can contain partitions across multiple
machines. These tables have entities with partition and row keys to access the entity.
Access to the table data uses a key-value pair to access the data store. These tables do
not enforce a SQL table schema that a SQL server would do for storage. Since there is
very little enforcement to create a table, the objects are loosely coupled to the access,
as there are just key-value pair references. This helps in access speed as management
of the data is minimal, and requires less storage as various SQL schema pieces for
table management are not used. Thus, it can take less storage, resulting in less cost
for the data. For table storage, there is a partition key, row key, and a timestamp:

• Partition key: This is a unique key associated with a partition as a collection
of all associated rows. This is defined to specify which partition to access.
An example is the name of the table.

• Row key: This is a unique key to identify the row in the partition, and is
usually a unique ID.

• Timestamp: This is the time at which the row was updated, and is updated
by Azure.

Queue storage is very similar to storing messages in MSMQ, except that the
management tools are in Azure Cloud. NSB uses Azure queues in a manner similar
to MSMQ and SQL Queues. However, Azure queues do not use DTC. There is a lot
of support from NServiceBus for both Azure queues and Azure service bus queues.

Just as many of the Azure Cloud items can be managed through the Azure SDK and
Visual Studio, storage queues can also be managed through the Visual Studio 2012
Server Explorer.

The NSB Cloud

[246]

Besides using Visual Studio, there are many open source tools such as Azure Storage
Explorer, found at http://azurestorageexplorer.codeplex.com/.

These are just some of the local tools working through the Azure portal in the Azure
Cloud that allow a person to monitor, log, send notifications, and more, on the
storage being allocated for use.

http://azurestorageexplorer.codeplex.com/

Chapter 8

[247]

Azure Service Bus
The Windows Azure Service Bus provides a hosted, secure, and widely available
infrastructure for widespread communication between different messaging
endpoints to include web services. The service bus communicates via three methods:

• Queues: You can perform one-to-one messaging through queues
• Topics: You can send one-to-many publish/subscribe messages from one

publish endpoint to many subscriber endpoints
• Relays: One-to-one requests-replies that will not be queuing passed

between endpoints

The NSB Cloud

[248]

Microsoft.ServiceBus.dll will be used to connect to the service bus, extend the service
bus, as well as work with the WCF and Windows workflow when interacting with
the service bus. The Azure Service Bus can be created in the Azure portal by first
creating the service bus namespace.

We can create the service bus queues, topics, and relays in the Azure portal, and we
can also manage the service bus through Visual Studio after it was initially created
in the Azure portal. The service bus will use a primary key and a connection string
(which is not too dissimilar from a connection string to a SQL database) to be accessed.

Chapter 8

[249]

Also note that there is a difference between storage queues and service bus queues.
Note the different names in this example. Service bus queues have more features for
management such as guaranteed FIFO, while Azure Queues have less manageability
built in. See http://msdn.micosoft.com/en-us/library/hh767287.aspx.
I contrast the differences as the service bus queues have some features such as
NServiceBus, while Azure Queues are more generic in nature, such as SQL Queues.
When creating an Azure service bus queue, we can see the granularity that is offered
during the creation.

http://msdn.micosoft.com/en-us/library/hh767287.aspx

The NSB Cloud

[250]

There are additional tools for exploring the Azure service bus, such as the Server Bus
Explorer found at http://code.msdn.microsoft.com/windowsazure/Service-
Bus-Explorer-f2abca5a.

Service bus for Windows Server
To develop with the Azure service bus on-premise, the service bus for Windows
Server needs to be installed from the Microsoft website; one download link is at
http://msdn.microsoft.com/en-US/library/jj193004.aspx.

We can also install it from the Web Platform Installer from
http://www.microsoft.com/web/downloads/platform.aspx.

http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://msdn.microsoft.com/en-US/library/jj193004.aspx
http://www.microsoft.com/web/downloads/platform.aspx

Chapter 8

[251]

After installation of the Azure service bus to a Windows server, a configuration must
take place with the service bus tools.

The NSB Cloud

[252]

The configuration for this service bus will create a "farm" in the SQL database, which
is normally local, but depending on the instance and database name entered in the
configuration, it could even be a cloud database instance as we discussed before.
The database will create three tables.

It will also create either two services, for Version 1.0, or four services, for Version 1.1,
to send and receive the service bus messages, excluding the Windows Fabric service.

The breakdown of the services is as follows:

• Windows Fabric: This is the core clustering technology that manages a "ring"
of the nodes in a farm.

• Service Bus Message Broker: This manages the send and receive operations
from service bus queues, topics, and subscriptions.

• Service Bus Gateway: This serves as the protocol head for supported service
bus protocols. The gateway also performs security validation on incoming
requests.

• Service Bus Resource Provider: This handles management requests from the
Windows Azure Pack Portal.

• Service Bus VSS: This discovers and automates backup and restore
operations using Microsoft's Volume Shadow Copy Service (VSS).

To view the logs of any event in the service bus for Windows Servers, the application
installs its own event log area.

Chapter 8

[253]

There are many PowerShell commands that can be used to administrate the
Windows service bus for the Windows Server. They can be found at http://msdn.
microsoft.com/en-us/library/jj659882.aspx. Some of the commands include:

• get-sbclientconfiguration: This gets the client configuration to connect
to the server

• get-sbfarm: This gets the configuration of the farm
• get-sbfarmstatus: This gets the current status of the farm connected
• get-sbnamespace: This gets the details of the namespace

There are many more. The following screenshot shows a small example of
get-sbfarm:

http://msdn.microsoft.com/en-us/library/jj659882.aspx
http://msdn.microsoft.com/en-us/library/jj659882.aspx

The NSB Cloud

[254]

After we create the configuration for the Azure service bus, I copy the logs during
the creation process; they will contain the connection string and other information
that created the service bus. By using the connection string from the creation process
while running the configuration tools, we are able to connect to the service bus
through Visual Studio using the Server Explorer for the Service bus.

Then, we can manage it in Visual Studio's Server Explorer.

Now, we have Azure Service bus running on-premise.

Chapter 8

[255]

Other Azure services
Windows Azure Active Directory is designed to be used with cloud applications
such as SaaS applications. It also provides a Single Sign On (SSO) technology to
work with Windows Server Active Directory, Facebook, Google, and many
other technologies.

Windows Azure Messaging allows applications to talk to other applications. The
Azure technologies provided for this are Windows Azure Service Bus and Windows
Azure Queues. The Azure Service Bus can have applications communicate with
each other through the cloud, on-premise or both. It communicates via queues,
topics, or relays. Queues are one-to-one messaging, topics are one-to-many publish/
subscribe messaging, and relays are bidirectional messaging. Relays do not store
messages in between. Windows Azure Queues provide the ability for queues to exist
between the web and worker roles to separate roles and responsibilities in passing
messages between cloud queues. This allows messages to be stored between the
responsibilities of applications. However, queuing in the cloud is not exactly the
same as queuing on-premises because the worker role is responsible for deleting the
messages, so there may be no guarantee that the message is used once.

Windows Azure provides different network connection configurations, such as
virtual network, connect, and traffic management. The virtual network can use a
static VPN through IPSec for an always-on connection to the cloud to continuously
connect on-premise to the cloud. This is for users and developers who need
continuous network access from on-premise to the cloud. It will appear to be on
the same network. There may be a need to connect specific on-premise machines to
specific cloud virtual machines. For this reason, we use Windows Azure Connect.
Specific cloud services connect to specific on-premise connections. This is to specify
developers and users to specific applications, for instance, connecting an on-premise
DBA to a cloud SQL database. Windows Azure Traffic Manager helps in routing
specific users to specific clouds, for instance, connecting Asian customers to the
Asian cloud. This is based on policies defined in the Traffic manager.

Windows Azure provides mobile and media services as well. Media service has
components to help deploy media to users, which includes content protection, using
different media types and formats to assist in streaming media. Windows Azure
mobile services allow the backend development for mobile services. While mobile
devices have native programming done in Objective-C, Android, Java, PhoneGap,
and Mono, mobile services allow a user to log in and access data and applications
to sync their devices through resources and web services. They also allow SSO
authentication and the ability to push to their devices when they log in to
receive updates.

The NSB Cloud

[256]

Adding NServiceBus
All cloud services communicate via web services to on-premise data or to other
cloud services. Even though products such as the Salesforce cloud is normally kept
in the cloud versus on-premise, there may still be data sent to Salesforce and kept
on-premise. There could be many reasons why some data could be kept on-premise
and not stored in the cloud; some reasons may be that there is proprietary data that a
company wishes not to store off-premise, or data for security reasons may need to be
kept on-premise.

Salesforce provides WSDL interfaces to their cloud by downloading their WSDL and
client certificate guide, https://help.salesforce.com/HTViewHelpDoc?id=dev_
wsdl.htm&language=en_US. A workflow rule in Salesforce would have to be created
to define the data fields that have to be defined. See the tutorial found at http://
www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-
nservicebus.html as an example. We have already covered setting up NServiceBus
with WCF in previous chapters.

NServiceBus for Azure
Azure has queuing and subscription services just as a local on-premise Windows
Server has MSMQ, but it is different. For this reason, NServiceBus has built interfaces
to use the Azure pieces in the IBus interface as well. See http://docs.particular.
net/nservicebus/windows-azure-transport. The examples can be found on
GitHub at https://github.com/Particular/NServiceBus.Azure.Samples.

We can develop using NServiceBus to manage the Azure service bus and Azure
queues in the following scenarios:

• NServiceBus managing an Azure service bus on-premise
• NServiceBus managing an Azure service bus in the Azure Cloud
• NServiceBus managing the Azure queues in the Azure Cloud
• NServiceBus managing the Azure queues in the Azure Cloud with multiple

endpoints hosted in the same role instance

Azure support for NServiceBus
Let's work with the MSMQ publish/subscribe example that we have worked with
multiple times. There will have to be multiple steps for either the Azure service bus
or Azure queues to be used with NServiceBus. These steps include:

https://help.salesforce.com/HTViewHelpDoc?id=dev_wsdl.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=dev_wsdl.htm&language=en_US
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://docs.particular.net/nservicebus/windows-azure-transport
http://docs.particular.net/nservicebus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples

Chapter 8

[257]

1. A reference for the NuGet reference for NServiceBus transport needs to
be installed for Azure Service Bus; we use NServiceBus.Azure.Transports.
WindowsAzureServiceBus, http://www.nuget.org/packages/
NServiceBus.Azure.Transports.WindowsAzureServiceBus/,
and for the Azure queue, we use NServiceBus.Azure.Transports.
WindowsAzureStorageQueues, http://www.nuget.org/packages/
NServiceBus.Azure.Transports.WindowsAzureStorageQueues/.

2. The app.config or web.config needs to contain the new NServiceBus/
Transport configuration. For the Azure Service bus, it will be of the form:
<connectionStrings>
 <add name="NServiceBus/Transport"
connectionString="Endpoint=sb://{namespace}.servicebus.windows.net
/;SharedSecretIssuer=owner;SharedSecretValue={key}" />
 </connectionStrings>

For the Azure queue, it will be of the form:

 <connectionStrings>
 <add name="NServiceBus/Transport" connectionString="UseDevelop
mentStorage=true" />
 </connectionStrings>

3. The transport of the IBus needs to change appropriately. For the Azure
service bus, the transport needs to be set to UseTransport<AzureServiceB
us>(). For Azure queues, the transport needs to be set to UseTransport<Azu
reStorageQueue>().

By running the NServiceBus video store example for the Azure queues found at
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/
VideoStore.AzureStorageQueues.Cloud, and creating the videostore-sales
queue to write to, we can see that the transport queues are created in a similar
manner as NServiceBus would do for MSMQ.

http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureServiceBus/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureServiceBus/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureStorageQueues/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureStorageQueues/
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureStorageQueues.Cloud
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureStorageQueues.Cloud

The NSB Cloud

[258]

After submitting several orders through the e-commerce site, we can see the
messages passed into the storage queue.

We can also use the NServiceBus example for the Azure Cloud service bus queues
from https://github.com/Particular/NServiceBus.Azure.Samples/tree/
master/VideoStore.AzureServiceBus.Cloud. We can get the Azure service bus
connection string from Azure in the connection information.

We copy the connection information into the app.config or web.config file:

https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud

Chapter 8

[259]

Then, we send the order through the videostore.ecommerce project. Ensure that
the videostore.sales queue is created in the Azure service bus.

Using the Service Bus Explorer, we can see that the message was sent to the Azure
service bus queue.

So, we have just tested the Azure service bus. To test the on-premise solution, it
is done in a similar manner, except that an on-premise emulator must be present.
The emulator is installed by installing a service bus for Windows Servers.

The NSB Cloud

[260]

NSB in the mobile world
While, one day, there may be the possibility of using MSMQ on the Windows Phone
operating system or using RabbitMQ queues and MySQL inside Android devices as
native applications, it may not seem practical as ESBs handle backend processing.
These may be possible features for running NSB on the phone, but the purpose of
NSB is to establish an SOA through the use of a C# ESB.

With the rise of different operating systems on the phones, be it iOS for the iPhone
and iPad, or be it Java Android for the Android phones and the Windows Phone
and tablet operating systems, many developers are turning towards "write-once
run-anywhere". This is a tagline used for the Java programming language, the
Mono development platform from Xamarin to use C# on different systems, to more
recently the use of writing games for the web browser using HTML5 and PhoneGap.
In HTML5, many of the native capabilities of mobile devices are available. In
PhoneGap, you can tap into more native mobile phone capabilities better than
HTML5. With HTML5, you can leverage Microsoft MVC as we have done in many
examples; the difference is now that you are upgrading your HTML to Version 5,
and using JavaScript APIs to support phone functionality.

Chapter 8

[261]

In this scenario, NSB is interacting with Microsoft MVC as it has in many examples
in this book, but now, Microsoft MVC is utilizing HTML5 for mobile development
in Visual Studio. There are many extensions to assist in HTML5 development
with Visual Studio for MVC, such as Mobile Ready HTML5 MVC.NET at
http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-
9aa1-a58786b7a1e4.

NSB becomes an even more valuable framework for decoupling the frontend
interaction from the backend processing. For instance, you may be playing a game,
and want to pay for the game. Decoupling the frontend will allow you to make a
payment for the game inside HTML5, during a pause of the game, and continue with
the game as the payment is being processed to the credit card service. Without the
NSB decoupling, the continuation of the game may be an issue while the payment is
being processed with the frontend processes. Imagine the pizza order scenario with
Do not Refresh this page while we are processing your order. This scenario may
be extended without the benefit of decoupling with NSB, for a game being played in
HTML5 as Do not Refresh this page on your phone while we are processing your
payment for the game. How embarrassing, but there are many popular websites that
have these warnings as they are processing orders and payments.

PhoneGap is an HTML5 application platform that allows you to author native
applications with web technologies and get access to APIs and application stores.
PhoneGap is basically used for developing working code for iPhones, Androids,
Blackberries, and WebOS devices that contain HTML, cascading style sheet(CSS),
and JavaScript. It can be found at http://phonegap.com/. PhoneGap is also
supported in Visual Studio and C#.

Recap
Here are some of the benefits of NSB that we have demonstrated in this chapter:

• NSB can send messages to some vendor queues such as access queues
through some cloud vendors such as Azure service bus queues

• Azure service bus can be used for on-premise testing by using ServiceBus
for Windows Servers, and the current version is Version 1.1

• For cloud vendors that do not expose their message queues, NSB services
can connect to them using web services, such as WCF

• For mobile phones, HTML5 can be used to extend MVC for mobile
applications to use NSB as it would normally be used for MVC

• NSB is a good solution for marshaling messages between on-premise and
off-premise data and business logic

http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-9aa1-a58786b7a1e4
http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-9aa1-a58786b7a1e4
http://phonegap.com/

The NSB Cloud

[262]

Questions that were answered
Here are some of the questions answered throughout this chapter:

1. What is the emulator for the on-premise service bus?
A. Service bus for Windows Servers.

2. What are two frameworks that could be used in C# to provide HTML browser
clients for mobile devices?
A. HTML5 and PhoneGap.

3. What is one of the tools to create Microsoft Azure websites?
A. WebMatrix.

4. What does HDFS stand for?
A. Hadoop Distributed File System (HDFS).

5. What is the Azure service bus pattern that is similar to MSMQ publish/subscribe?
A. Topics.

6. What SDK has to be installed for Visual Studio 2012 to use Azure Server Explorer?
A. Visual Studio 2012 for Web and Windows Azure SDK–2.3.

7. What's one way to install the Azure SDK and Service Bus for Windows Server?
A. By using the Microsoft Web Platform Installer.

8. Name one of the ways to use SQL Reporting in Azure.
A. SSRS.

9. Does NSB support Azure service bus and Azure storage queues?
A. Yes.

10. What is one of the ways to connect NSB to SalesForce?
A. WCF.

11. Does RabbitMQ support DTC?
A. No.

12. Are future versions of NSB adding support for Azure and the cloud?
A. Yes.

13. Is ServiceInsight supporting more sequence diagrams for sagas?
A. Yes.

Chapter 8

[263]

Summary
In this chapter, we took a deeper dive into Software as a Service (SaaS) and how
NServiceBus ties into cloud computing. We gave a very brief introduction to the
cloud and some of its services.

We discussed how NSB will be useful as well in the mobile device world going
forward by utilizing C# technology into HTML5 and PhoneGap. We know that
NServiceBus is a framework that is quickly adapting to the software industry
mobile and cloud trends going forward.

Index
A
Amazon Elastic Compute Cloud (EC2) 232
Apache Hive Interface

URL 244
Apache Pig

URL 244
application security perspective, NSB 32
AsA_Client role

about 113
URL 113

AsA_Publisher role
about 113
URL 113

AsA_Server role
about 113
URL 113

Azure
NServiceBus, using for 256

Azure calculator
URL 237

Azure Service Bus
about 247-250
queues method 247
relays method 247
topics method 247

Azure Storage Explorer
URL 246

Azure support
NServiceBus, using for 256-259

B
benefits, ESB

about 65, 66
encryption 31

high availability 31
message durability 30
monitoring checks 31
separation of duties 30
workflow retries 31

benefits, NSB
endpoints 31
NServiceBus.Host 32-35
Powershell commands, using 35
security perspective 32
self-hosting 32-34

Binary JSON (BSON)
URL 225

Binary Large Object (BLOB) 244
buyer's remorse sample, NHibernate

encryption 139, 140
message mutator 137-139
overview 130-137

C
cascading style sheet(CSS)

NSB, using 261
cloud vendors 232-237
cluster messaging

about 47, 48
performance monitoring 49-52

code-first EF
about 188-190
configuration, performing 191-193

configuration settings, NSB 119
C# reflection 154, 155
cross-site scripting (XSS) 32
custom checks

base constructor, ReportFailed 91
base constructor, ReportPass 91

[266]

performing 91-93
customer service representatives (CSRs) 13

D
database logging

about 163-167
Log4net 163
NLog 163
Serilog 163

data bus messaging 55, 56
data loader tool

URL 233
distributed computing

fallacies 16
Distributed Transaction

Coordinator (DTC)
about 22
URL 25

distributor profile, NSB 34
distributor storage pattern 59

E
EF

about 146-149, 169
URL 183
used, for creating tables 180-183

EF code
tables, creating from 183

EF models
tables, creating from 184-188

EF snippets
about 180
code-first EF 188-190
tables, creating with EF 180

e-mail notification
about 62
testing 64, 65

endpoints, NSB 31
Enterprise Service Bus (ESB) 11, 30, 105
Entity Framework. See EF
ESB bus

persistence 143
Extract-Transform-Load (ETL) process

URL 236

F
Fluent API

URL 206
using, in NHibernate 206

Fluent Configure.With()
about 114, 115
configuration settings 118
gateway persister 117, 118
saga persister 116
subscription storage 118
timeout persister 117
transport storage 116

Fluent NHibernate
URL 206

G
gateway messaging

about 52-54
Gateway solution, using 53

gateway persister
DisableGateway() 118
RunGateway() 117
URL 117
UseInMemoryGatewayDeduplication() 118
UseInMemoryGatewayPersister() 118
UseNHibernateGatewayPersister() 118
UseRavenGatewayDeduplication() 117
UseRavenGatewayPersister() 117

gateway storage pattern 58
Google App Engine (GAE) 232

H
Hadoop Distributed File

System (HDFS) 244

I
IBus

basics 105, 106
configuring 107-110
examples 106
interface configurations 111
NServiceBus 106

IBus configuration
AuditConfig section 107

[267]

GatewayConfig section 107
logging section 107
MasterNodeConfig section 107
MessageEndpointMappings section 107
MessageForwardingInCaseOfFaultConfig

section 108
MsmqMessageQueueConfig section 108
MsmqSubscriptionStorage section 108
RijndaelEncryptionServiceConfig

section 108
SecondLevelRetriesConfig section 108
TransportConfig section 108
UnicastBusConfig section 108
URL 114

IConfigureThisEndpoint, IBus
about 111
URL 111

INeedInitialization, IBus
about 111
URL 111

Infrastructure as a Service (IaaS) 231, 232
InMemory 57
integration profile, NSB 35
interface configurations, IBus

about 111, 113
INeedInitialization 111
IWantToRunWhenBusStartsAndStops 111
IWantToRunWhen

ConfigurationIsComplete 111
roles 113

Intrusion Detection Systems (IDSes) 32
IWantCustomInitialization, IBus

about 112
URL 112

IWantCustomLogging, IBus
about 112
URL 112

IWantTheEndPointConfig, IBus
about 112
URL 112

IWantToRunAtStartup, IBus
about 112
URL 112

IWantToRunBeforeConfiguration, IBus
about 112
URL 112

IWantToRunWhenBusStartsAndStops, IBus
about 111
URL 111

IWantToRunWhenConfigurationIsComplete,
IBus

about 111
URL 111

J
JSON

URL 221

L
lite profile, NSB 35
Log4net

URL 163
logging frameworks

for NLog 128, 129
logging, in NServiceBus 217-219
long-lived transactions (LLTs) 40
Lucene

URL 222

M
master profile, NSB 34
message encryption 45, 46
message exchange patterns

about 36
cluster messaging 47
data bus messaging 55, 56
gateway messaging 52-54
message encryption 45
message mutators 43, 44
publish/subscribe pattern 36
request-response 38
saga 40
timeout messages 41

message handler unit testing 196-201
message monitoring

about 60-62
e-mail notification 62-65

message mutators 43
metadata, SOA

about 11
need for 12-14

[268]

Microsoft Azure
Azure Service Bus 247
benefit 237
end-to-end applications, deploying 237
other services 255
service bus, for Windows Server 250-254
URL 237
using 237-240
virtual machines, creating 241-246

Microsoft Message Queues (MSMQs) 57
Microsoft Web Platform Installer

URL 240
mobile world

NSB, using 260, 261
Model-View-Controller (MVC) 30
MongoDB

about 223-226
installing, on Windows 224
NServiceBus MongoDB persistence 227
tools, URL 224
URL 223

MSMQCommander
URL 60

MultiSite profile, NSB 34
MVC-EF example 174-180

N
NHibernate

about 57, 205-209
configuring 125, 215, 216
Fluent API, using 206
URL 106
using 119-214

NHibernate ORM framework 209
NLog

URL 163
NSB ServiceInsight tool 61
NSB ServicePulse tool

URL 60
NServiceBus (NSB)

about 12, 14, 30
adding 256
benefit 30, 65, 68, 261
deploying 141
drawback 68

information, URL 199
logging 217-219
saga, URL 17
ServicePulse 68
unit testing 194
URL, for slide 144
used, for Azure support 256-259
used, in mobile world 260, 261
using 229, 230

NServiceBus.Host 32-34
NServiceBus installation, from Visual

Studio
installing 22-28
preconditions 22

NServiceBus MongoDB persistence
about 227
URL 227

NServiceBus saga
about 20, 21
URL 20

NServiceBus.Nhibernate
URL 106

O
object relational mappers (ORMs) 144
options, IBus serialization

BinarySerialization 115
BsonSerialization, URL 115
JsonSerialization, URL 115
XmlSerialization 115

options, saga persister
RavenSagaPersister() 116
UseInMemorySagaPersister() 116
UseNHibernateSagaPersister() 116

out-of-box (OOB) functionality 232

P
Particular Service Platform

ServiceControl 70
ServiceInsight 76
ServiceMatrix 81
ServicePulse 68
tools, URL 68
URL, for downloading 68

partition key 245

[269]

PayQueue sample
about 155-157
AppForReadingXML project 156
AppForWritingTables project 156
AppForWritingXML project 155
MyMessages project 155

PayQueue solution
using 145

persistence
about 143
basics 143-145
supporting frameworks 145

persistence patterns, SOA
need for 14, 15

PhoneGap
about 261
URL 261

Platform as a Service (PaaS) 231, 232
PowerShell commandlets

URL 23
production profile, NSB 35
Publish Event... command 94
publish/subscribe messaging pattern,

through ServiceMatrix
about 94
working 95-98

PubSub--ReportFailure solution 91
PubSub--ReportPass solution 91
PubSub-SQL solution, using

MyMessages method 172
MyPublisher method 172
Subscriber1 method 172
Subscriber2 method 172
URL 170

Q
queue storage, virtual machines 245

R
RavenDB

about 26, 27, 219-223
Lucene, using 222
URL 28, 57, 219-221

request-response message pattern
about 38

saga, features 40
saga services 39

row key 245

S
saga

about 11
database data 126, 127, 216
example 18, 19
logging frameworks, NLog 128
storage pattern 58
using 119-124, 209-214

saga handler unit testing
about 202, 203
source code, URL 202

saga persister 116
sagas, ServiceMatrix

developing 99-102
ScaleOut-ServiceControl solution 71
Second-level Retries (SLRs) 14
security event manager

URL 163
Serilog

URL 163
Server Bus Explorer

URL 250
service bus, for Windows Server

about 250-254
PowerShell commands, URL 253
Service Bus Gateway 252
Service Bus Message Broker 252
Service Bus Resource Provider 252
Service Bus VSS 252
URL 250
Windows Fabric 252

Service Bus Gateway 252
Service Bus Message Broker 252
Service Bus Resource Provider 252
Service Bus VSS 252
ServiceControl

about 70-76
configuration, URL 70
queuing types, URL 70
ServiceControl.Plugin.CustomChecks 72
ServiceControl.Plugin.DebugSession 71
ServiceControl.Plugin.Heartbeat 72

[270]

ServiceControl.Plugin.SagaAudit 72
URL 70

ServiceControl.Plugin.CustomChecks
URL 72

ServiceControl.Plugin.DebugSession
URL 71

ServiceControl.Plugin.Heartbeat
URL 72

ServiceControl.Plugin.SagaAudit
URL 72

ServiceControl plugins, ServiceMatrix
custom checks plugin 90
Debug session plugin 90
Heartbeat plugin 90
Saga Audit plugin 90

ServiceInsight 76-80
Service-level agreement (SLA) 49
ServiceMatrix

about 67, 81-91
custom checks, performing 91-93
installing 81
publish/subscribe messaging pattern 94-98
sagas, developing 99-102
ServiceControl plugins 90
Solution Builder window, sections 83
URL 81-83
uses 68

service-oriented architecture. See SOA
ServicePulse

about 67
functions 68
uses 68
using 68, 69

services, Microsoft Azure
Azure Service Bus 255
media service 255
mobile service 255
Windows Azure Active Directory 255
Windows Azure Connect 255
Windows Azure Messaging 255
Windows Azure Queues 255
Windows Azure Traffic Manager 255

services, NServiceBus 140, 141
service, SOA

autonomous 8
boundaries 8

compatibility 8
share schema and class 8

Simple Mail Transfer Protocol (SMTP) 64
Single Sign On (SSO) 255
SOA

about 9, 10, 30
developing 9
distributed computing, fallacies 16
example 8
metadata, need for 12-14
URL 8

Software as a Service (SaaS) 231, 232
software quality 12
SQL Injection

URL 144
SQL queuing sample

about 158-162
VideoStore.ContentManagement

method 161
VideoStore.CustomerRelations method 161
VideoStore.Ecommerce method 161
VideoStore.Message method 161
VideoStore.Operations method 161
VideoStore.Sales method 161

SQL Server
benefits 169
example 169-173

SQL Server example
about 169-173
URL 170

SQL Server Reporting Services (SSRS) 243
storage patterns

about 56, 57
backing up 59
distributor Storage 59
gateway storage 58
persistence stores 57
sagas 58
subscription storage 58
timeout storage 57

SubmitPaymentSender function 88
SubmitPaymentHandler function 88
subscription storage

about 118
persisters 118
URL 118

[271]

subscription storage pattern 58
supporting frameworks, persistence

about 145
C# reflection 154, 155
EF 146-149
XML serialization 150-153

syslog
URL 163

T
tables

creating, from EF code 183
creating, from EF models 184-188
creating, with EF 180-183

table storage, virtual machines
about 245
partition key 245
row key 245
timestamp 245

timeout messages 41-43
timeout persister

about 117
setting up, URL 117
variations 117

timeout storage pattern 57
timestamp 245
Topshelf

URL 140
transaction, SOA 11
transport storage

about 116
options 116

U
UMongo

URL 224
unit testing, NServiceBus

about 194-203
message handler unit testing 196-201
saga handler unit testing 202, 203
source code, URL 194
URL 195

V
virtual machines

about 240
creating 241-244
storages, adding 244

Visual Studio
URL 196

Volume Shadow Copy Service (VSS) 252

W
WebMatrix

URL 238
Windows Communication Foundation

(WCF) 30
Windows Fabric 252
worker processes 47
worker profile, NSB 34

X
XML serialization 150-153

Thank you for buying
Mastering NServiceBus and Persistence

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning NServiceBus
ISBN: 978-1-78216-634-4 Paperback: 136 pages

Build reliable and scalable distributed software
systems using the industry leading .NET Enterprise
Service Bus

1. Replace batch jobs with a reliable process.

2. Create applications that compensate for
system failure.

3. Build a message-driven system.

Instant Redis Persistence
ISBN: 978-1-78328-021-6 Paperback: 50 pages

Everything you need to know about configuring,
maintaining, and optimizing your Redis data storage

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Configure and manage how Redis stores
your data.

3. Optimize performance and ensure data
security with backups and encryption.

Please check www.PacktPub.com for information on our titles

Persistence in PHP with
Doctrine ORM
ISBN: 978-1-78216-410-4 Paperback: 114 pages

Build a model layer of your PHP applications
successfully, using Doctrine ORM

1. Develop a fully functional Doctrine-backed
web application.

2. Demonstrate aspects of Doctrine using
code samples.

3. Generate a database schema from your
PHP classes.

Java Persistence with MyBatis 3
ISBN: 978-1-78216-680-1 Paperback: 132 pages

A practical guide to MyBatis, a simple yet powerful
Java Persistence Framework!

1. Detailed instructions on how to use MyBatis
with XML and annotation-based SQL mappers.

2. An in-depth discussion on how to map complex
SQL query results such as one-to-many and
many-to-many using MyBatis ResultMaps.

3. Step-by-step instructions on how to integrate
MyBatis with a Spring framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: NServiceBus Persistence Introduction
	Introduction to SOA
	The need for metadata
	The need for persistence patterns
	Fallacies of distributed computing
	The need for sagas
	A real-life saga

	A beginning NServiceBus saga
	Beginning NServiceBus assemblies

	Summary

	Chapter 2: NServiceBus Architecture
	Benefits of NSB
	More on endpoints
	The application security perspective
	NSB hosting versus self-hosting
	Using Powershell commands

	Message exchange patterns
	The publish/subscribe pattern
	Request-response messages
	Saga services

	Some saga features
	Timeout messages
	Message mutations
	Message encryption
	Cluster messaging
	Performance monitoring

	Gateway messaging
	Data bus messaging

	Storage patterns
	Backing it up

	Monitoring
	Sample e-mail notification

	Let us recap
	Summary

	Chapter 3: Particular Service Platform
	ServicePulse
	ServiceControl
	ServiceInsight
	ServiceMatrix
	Introducing custom checks
	Publish/subscribe through ServiceMatrix

	Sagas through ServiceMatrix
	Summary

	Chapter 4: Knowing Your IBus
	Understanding the basics of IBus
	Configuring IBus
	Interface configurations
	Using the Fluent Configure.With()
	The transport storage
	The saga persister
	The timeout persister
	The gateway persister
	The subscription storage
	Finding more configuration settings

	Using saga and NHibernate
	Defining NHibernate
	The saga database data
	Logging
	Buyer's remorse code walkthrough
	Message mutators
	Encryption

	Services and deployment
	Summary

	Chapter 5: Persistence Architecture
	Persistence basics
	Supporting frameworks for persistence
	Introducing Entity Framework
	XML serialization
	C# reflection

	PayQueue sample
	SQL Queuing sample
	Database logging
	Summary

	Chapter 6: SQL Server Examples
	The SQL Server example
	The MVC-EF example
	Entity Framework snippets
	Creating tables with EF
	Creating tables from the EF code
	Creating tables from EF models

	Code-first EF
	Code-first EF and configurations

	Unit testing NServiceBus
	Message handler unit testing
	Saga handler unit testing

	Summary

	Chapter 7: Persistent Snippets
	Entering NHibernate
	Using saga and NHibernate
	Defining NHibernate
	The saga database data

	Logging
	Entering RavenDB
	Entering MongoDB
	NServiceBus MongoDB persistence

	Summary

	Chapter 8: The NSB Cloud
	Introducing the cloud and NSB
	Introducing PaaS, IaaS, and SaaS
	Cloud vendors
	Using Microsoft Azure
	Virtual machines
	Azure Service Bus
	Service bus for Windows Server
	Other Azure Services

	Adding NServiceBus
	NServiceBus for Azure
	Azure support for NServiceBus

	NSB in the mobile world
	Recap
	Questions that were answered
	Summary

	Index

