
www.allitebooks.com

http://www.allitebooks.org

Mastering Proxmox

Master Proxmox VE to effectively implement server
virtualization technology within your network

Wasim Ahmed

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Proxmox

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1070714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-082-6

www.packtpub.com

Cover image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Wasim Ahmed

Reviewers
Rocco Alfonzetti Jr.

Alessio Bravi

Oleg Butovich

Daniel Lench

Razique Mahroua

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Mohammad Rizvi

Content Development Editor
Madhuja Chaudhari

Technical Editor
Rohit Kumar Singh

Copy Editors
Alisha Aranha

Sarang Chari

Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Amy Johnson

Linda Morris

Indexers
Mehreen Deshmukh

Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Wasim Ahmed, born in Bangladesh and now a citizen of Canada, is a veteran of the
IT world. He was introduced to computers in the year 1992 and never looked back.
Wasim has deep knowledge and understanding of network virtualization, big data
storage, and network security. By profession, Wasim is the CEO of an IT support and
cloud service provider company based in Calgary, Alberta. He serves many companies
and organizations through his company on a daily basis. Wasim's strength comes from
the experience he gained through learning and serving continually. Wasim strives on
finding the most effective solution at the most competitive price point. He hand-built
over a dozen enterprise production virtual infrastructures using Proxmox and Ceph
storage system.

Wasim is notoriously known not to simply accept a technology based on its
description alone, but put them through rigorous tests to check their validity.
Any new technology that his company provides goes through months of
continuous testing before it is accepted. Proxmox made the cut superbly.

I would like to thank all the staff at Proxmox for their support
and dedication to the hypervisor community. I would also like to
thank Packt Publishing for their vision of moving forward for this
one-of-a-kind book on Proxmox and their support throughout the
journey of making of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Rocco Alfonzetti Jr. is an IT consultant for small businesses and has specialized
in Linux and open source solutions for the last 15 years. Currently, he works for
a software development company as an e-mail security expert. He lives in rural
Connecticut with his wife and three children, and in his spare time, he enjoys
beekeeping, raising chickens, and gardening.

Alessio Bravi has been playing with bits since he was five. He started programming
at the age of six and soon focused his attention towards network administration and
IT systems security in the best growing-up period of the Internet.

When he was 19, he founded IntSec.NET, and started working as CTO and Network
and Security Administrator for Italian Internet service providers (ISPs/W-ISPs) and
as an IT security consultant for many companies in Europe.

Alessio works only with Unix-like operating systems and is specialized in IT
security analysis, network engineering and administration, autonomous systems
BGP routing, IPv4 and IPv6 routing and switching, operating system virtualization,
and data center management.

His personal blog can be found at http://blog.bravi.org/, where he writes
some technical articles to share IT hints with the digital world. More technical
skills and personal details about Alessio can be found on his LinkedIn© profile
page at http://www.linkedin.com/in/alessiobravi.

www.allitebooks.com

http://blog.bravi.org/
http://www.linkedin.com/in/alessiobravi
http://www.allitebooks.org

Oleg Butovich is a freelance senior software developer with a passion for
virtualization technologies. He has over 15 years of experience in the industry.
He has worked on booking systems, trading platforms, laser image generators,
digital media systems, medical and life science imaging systems, automatic
inspection systems, and embedded systems.

Daniel Lench is a self-proclaimed "fixer of all things". He is drawn to challenges,
both physical and theoretical. His background includes acting as an artisan at a state
museum, a production manager at a high-volume cabinet shop, AutoCAD expert for
civil engineering firms and government agencies, and almost two decades of being
professionally involved in the IT industry. In 2008, the challenge was to keep files
in sync between multiple computers in real time. Since then he has been focused on
finding the best answer. The NoFolder Project is an open source, real-time, private
cloud-based backup, file synchronization, and collaboration service that is self hosted
and administered in small business and enterprise settings. NoFolder addressed
the policy and privacy concerns over using third-party services to store and share
data. The project is for those concerned about data, the collaboration with it, and
the preservation of it. The company maintains offices in the U.S. and the U.K. with
additional resources in Sweden, Austria, and South Africa. Daniel is the founder
as well as the CEO for NoFolder Ltd.

I would like to thank Rocco for introducing Proxmox to me. I would
also like to thank Heather for the wonderful adventure.

Razique Mahroua is a technical consultant on High Availability systems
as well as a technical writer. Currently involved in several open source projects,
such as OpenStack and KVM, he has written about various technical topics for
IBM and Amazon.

His experience ranges from cloud solutions, implementations (IaaS and PaaS),
and by-products such as data clustering to network High Availability and data
integrity. He currently assists several companies looking for best practices
around cloud solutions.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my dear wife, Brigitta, whose love, constant support, and unshakeable faith in me
has allowed me to do what I do best, while she took care of the rest.

–Wasim Ahmed

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Dive into the Virtual World with Proxmox 5

Proxmox cluster required 7
The Proxmox Graphical User Interface (GUI) 7

The GUI menu system 8
Menu chart 9
The Datacenter menu 10

The Search tab 10
The Storage tab 10
The Backup tab 12

Node-specific tabs 14
The Summary tab 14
The Network tab 15
The Syslog tab 15
The UBC tab 16
The Subscription tab 17
The Updates tab 18
The Ceph tab 18

Virtual machine tabs 20
The Summary tab 20
The Hardware tab 20
The Options tab 22
The Backup tab 23
The Snapshots tab 24
The Permissions tab 24

Setting up a basic cluster 25
The hardware list 26
The software list 26
Hardware setup 27
Proxmox installation 27
Cluster creation 28

Table of Contents

[ii]

Proxmox subscription 31
Attaching shared storage 31
Adding virtual machines 32

Main virtual machine 33
Creating a KVM virtual machine 35
Creating an OpenVZ virtual machine 35

Proxmox cloning/template 38
Introducing cloning using a template 38
Transforming VM into a template 39
Cloning using a template 40

VM migration 41
Summary 42

Chapter 2: Proxmox Under the Hood 45
The Proxmox cluster directory structure 46
Dissecting the configuration files 48

The cluster configuration file 48
The storage configuration file 50

Local directory-based storage 51
NFS-shared storage 51
iSCSI/LVM shared storage 53

User configuration files 55
The password configuration file 55
The virtual machine configuration file 56

Arguments in the KVM configuration file 61
The Proxmox OpenVZ configuration file 61
The version configuration file 63

Member nodes 64
The .members file 64

The virtual machine list file 65
The cluster logfile 65
Summary 66

Chapter 3: Shared Storages with Proxmox 67
Local storage versus shared storage 68

Live migration of a virtual machine 68
Seamless expansion of multinode storage space 70
Centralized backup 71
Multilevel data tiering 71
Central storage management 72

Local and shared storage comparison 73
Virtual disk image 74

Supported image formats 74
The .qcow2 image type 75

Table of Contents

[iii]

The .raw image type 76
The .vmdk image type 77
Image file manipulation 77

Resizing virtual disk image 78
Moving a virtual disk image 79

Storage types in Proxmox 80
Directory 81
Logical Volume Management 81
Network File System 81
RADOS Block Device 82
GlusterFS 82

Noncommercial/commercial storage options 83
FreeNAS – budget shared storage 84
Summary 88

Chapter 4: A Virtual Machine for a Virtual World 89
Creating a VM from a template 90
Advanced configuration options for a VM 91

The hotplugging option for a VM 91
The hotplugging option for <vmid>.conf 91
Loading modules 92
Adding virtual disk/vNIC 93

Nested virtual environment 93
Enabling KVM hardware virtualization 95
Network virtualization 96

Backing up a virtual machine 96
Proxmox backup and snapshot options 97

Backing up a VM with a full backup 97
Creating snapshots 101
Deleting old backups 103
Restoring a virtual machine 105

Command-line vzdump 106
Backup configuration file – vzdump.conf 107

#bwlimit 107
#lockwait 108
#stopwait 108
#script 108
#exclude-path 110

Summary 111
Chapter 5: Network of Virtual Networks 113

Introduction to a virtual network 114
Physical network versus virtual network 115

Physical network 116
Virtual network 116

Table of Contents

[iv]

Networking components in Proxmox 117
Virtual Network Interface Card (vNIC) 117
Virtual bridge 118
Virtual LAN (VLAN) 118
Network Address Translation/Translator (NAT) 119
Network bonding 120
Components naming convention 121

Network configuration file 122
bridge_stp 123
bridge_fd 123

Adding a virtual bridge 124
Adding a bonding interface 126
Adding NAT/masquerading 130
Adding VLAN 131
Sample virtual networks 134

Network #1 – Proxmox in its simplest form 134
Network #2 – multitenant environment 135
Network #3 – academic institution 136

Multitenant virtual environment 137
Multitenant network diagram 138

Summary 141
Chapter 6: Proxmox HA – Zero Downtime 143

Understanding High Availability 143
High Availability in Proxmox 144

Requirements for HA setup 144
Fencing 145

Configuring Proxmox HA 146
Setting up node BIOS 146
Creating an APC-managed PDU user 147
Configuring Proxmox fencing 149
Configuring virtual machine HA 153
Testing Proxmox HA 155
Fencing manually 155

Proxmox HA need to know 156
Summary 157

Chapter 7: High Availability Storage for High Availability Cluster 159
Introducing the Ceph storage 160

Object Storage 160
Block Storage 160
Filesystem 161

Table of Contents

[v]

Reasons to use Ceph 161
Virtual Ceph for training 162
The Ceph components 162

Physical node 162
Maps 163
Cluster map 163
CRUSH map 164
Monitor 164
OSD 165
OSD Journal 165
MDS 166
Placement Group (PG) 166
Pool 167
Ceph components summary 168

The Ceph cluster 168
Hardware requirements 169
Software requirements 170

Installing Ceph using an OS 170
Installing and setting up Ubuntu 171
Creating an admin user 175
Assigning SUDO permission to a user 175
Updating Ubuntu 176
Generating an SSH Key 176
Installing ceph-deploy 176
Creating a Ceph cluster 177
Installing Ceph on nodes 179
Creating Monitors (MONs) 179
Gathering the admin keys 179
Creating OSDs 180
Connecting Proxmox to a Ceph cluster 182

Installing Ceph on Proxmox 184
Preparing a Proxmox node for Ceph 185
Installing Ceph 186
Creating MON from the Proxmox GUI 187
Creating OSD from the Proxmox GUI 188
Creating a new Ceph pool using the Proxmox GUI 189

Creating a Ceph FS 190
Setting up an MDS daemon 190
Setting up Ceph FS using FUSE 191
Mounting Ceph FS 191
Connecting Proxmox to Ceph FS 192

Table of Contents

[vi]

Learning Ceph's CRUSH map 193
Extracting the CRUSH map 194
Decompiling the CRUSH map 194
Editing the CRUSH map 194
Compiling the CRUSH map 200
Injecting the CRUSH map into the cluster 201
Verifying the new CRUSH map 201

Managing Ceph pools 204
Creating a new Ceph pool using the CLI 204
Verifying the new Ceph pool 204
Adding OSDs to a pool 205
Assigning a pool to the ruleset 208
Connecting Proxmox to the new pool 209

Ceph benchmarking 210
The Ceph command list 212
Summary 213

Chapter 8: Proxmox Production Level Setup 215
Defining a production level 216

Key parameters 216
Stable and scalable hardware 216
Current load versus future growth 217
Budget 217
Simplicity 217
Tracking the hardware inventory 218
Hardware selection 218

An entry-level Proxmox production setup 218
An i7-based Proxmox node 219
A Xeon-based Proxmox node 220

An entry-level Ceph production setup 221
An advanced-level Proxmox production setup 223

A Xeon-based Proxmox node 223
An advanced-level Ceph production setup 224
Desktop class versus server class 225

Brand servers 225
Hardware tracking 226

AMD-based hardware selection 227
An AMD-based entry-level Proxmox 227
An AMD-based advanced-level Proxmox 228
An AMD-based Ceph setup 229
Performance comparison 229

Summary 230

Table of Contents

[vii]

Chapter 9: Proxmox Troubleshooting 231
Main cluster issues 232

GUI shows everything is offline 232
Rejoining a Proxmox node with the same IP address 233
Disabling fencing temporarily 233
The occurrence of kernel panic when disconnecting USB devices 234
The occurrence of VM shutdown error when initiated from GUI 234
Kernel panic on Proxmox 3.2 with HP NC360T 234
VMs not booting after you restart the network service 235
Proxmox cluster is out of Quorum and cluster filesystem is read only 235
Proxmox boot failure due to the getpwnam error 236
Cannot log in to GUI as ROOT 236
Booting with a USB stick fails in Proxmox 237
The Upgrade from Proxmox 3.1 to Proxmox 3.2 is disabled
through GUI 237
VZ kernel 2.6.32-28-pve breaks libnl/netlink in host and VM 237
Nodes not visible on the Proxmox GUI after an upgrade 238
GRUB is in an endless loop after Proxmox installation 238
SSH access is possible but Proxmox node does not reboot 239

Storage issues 239
Deleting damaged LVM with error read failed from 0 to 4096 239
Proxmox cannot mount NFS share due to time-out error 240
Removing stale NFS shares when a stale file handle error occurs 240
The occurrence of '--mode session exit code 21' errors while
accessing iSCSI target 240
Cannot read an iSCSI target even after it has been deleted from
Proxmox storage 241
OSDs still show up in Proxmox after you remove the Ceph node 241
The 'No Such Block Device' error that shows up during creation of
an OSD 241
The fstrim command does not trim unused blocks for Ceph 242
The 'RBD Couldn't Connect To Cluster (500)' error when connecting
Ceph with Proxmox 242
Changing the storage type from ide to virtio 242
The 'pveceph configuration not initialized (500)' error for the Ceph tab 243
Ceph FS storage disappears after a Proxmox node reboots 243
VM cloning does not parse in Ceph storage 244

Network connectivity issues 244
No connectivity on Realtek RTL8111/8411 Rev. 06 NIC 244
Network performance is slower with e1000 vNIC 245

Table of Contents

[viii]

KVM virtual machine issues 245
Windows 7/XP machine converted to Proxmox KVM hangs during boot 245
Windows 7 VM only boots when rebooted manually 245
The Proxmox 3.2 upgrade adds two com ports and one parallel port
to the Windows VM 246
The qemu-img command does not convert the .vmdk image files
created with the .ova template in Proxmox VE 3.2 246
Online migration of a virtual machine fails with a 'Failed to sync
data' error 247
Change in memory allocation is not initialized after a VM is rebooted 247
The virtio virtual disk is not available during the Windows
Server installation 248

OpenVZ container issues 249
The creation of OpenVZ container takes a long time on NFS or
GlusterFS storage 249
OpenVZ containers are no longer shown after a cluster is created 250
Header error during the installation of PF_RING in Proxmox 250

Backup/restore issues 251
A Proxmox VM is locked after backup crashes unexpectedly 251
Backing up only the primary OS virtual disk 251
Backup of VMs stops prematurely with an 'Operation Not
Permitted' error 251
A backup task takes a very long time to complete, or it crashes
when multiple nodes are backing up to the same backup storage 252
Backup of virtual machines aborts a backup task prematurely 252
Backup storage has a lot of .dat files and .tmp directories using
the storage space 253

VNC/SPICE console issues 253
The mouse pointer is not shared with SPICE-VIEWER on
Windows 8 VM 253
The SPICE console has become unstable after the Proxmox
VE 3.2 update 254
Remote Viewer is unable to connect to a SPICE-enabled virtual
machine on Windows OS 254

Summary 255

Table of Contents

[ix]

Chapter 10: Putting It All Together 257
Scenario #1 – academic institution 258
Scenario #2 – multitier storage cluster using Proxmox cluster 259
Scenario #3 – virtual infrastructure for multitenant cloud
service provider 260
Scenario #4 – a nested virtual environment for a software
development company 261
Scenario #5 – a virtual infrastructure for the public library 262
Scenario #6 – multifloor office virtual infrastructure with
virtual desktops 263
Scenario #7 – virtual infrastructure for hotel industry 264
Scenario #8 – virtual infrastructure for a geological
survey organization 264
Network diagrams for scenarios 265
Summary 273

Index 275

www.allitebooks.com

http://www.allitebooks.org

Preface
This book is well overdue in the world of virtualization. When I first came in contact
with Proxmox several years ago, I did not have anything to fall back on other than
Proxmox Wiki and forum. I learned Proxmox through lots of trial and error and very
much had to reinvent wheels on my own in some cases. Since a lot of us went through
the frustration and I personally do not feel others should have to invest a lot of time
just to get to know Proxmox the hard way, this book has been written.

This book shows the inner workings of Proxmox including virtual network
components, shared storage systems, nested virtualization, complex network
topologies, and so on. With this book, we hope that the reader will be able to better
equip themselves to face any virtualization challenges of any virtual infrastructure.

What this book covers
Chapter 1, Dive into the Virtual World with Proxmox, introduces Proxmox in general
and the graphical user interface.

Chapter 2, Proxmox Under the Hood, introduces the Proxmox directory structure
and configuration files.

Chapter 3, Shared Storages with Proxmox, explains how Proxmox interacts with the
shared storage system and types of shared storage system supported.

Chapter 4, A Virtual Machine for a Virtual World, covers advanced virtual machine
configurations such as enabling sound, USB devices, and so on.

Chapter 5, Network of Virtual Networks, explains the different networking components
used in Proxmox to build virtual networks.

Chapter 6, Proxmox HA – Zero Downtime, explains the Proxmox High Availability
(HA) feature and how to configure it.

Preface

[2]

Chapter 7, High Availability Storage for High Availability Cluster, explains a step-by-step
process of setting up the Ceph cluster to be used as a shared storage system.

Chapter 8, Proxmox Production Level Setup, explains the type of hardware that should
be and can be used in a production level Proxmox cluster setup.

Chapter 9, Proxmox Troubleshooting, lists real incidents with solutions that may arise
in the Proxmox cluster.

Chapter 10, Putting It All Together, introduces several scenario-based virtual
environments along with full network diagrams.

What you need for this book
Since we will be working with the Proxmox cluster throughout the book, it will be
extremely helpful to have a working Proxmox cluster of your own. A very basic
cluster of two Proxmox nodes and a storage node will do just fine.

Who this book is for
This book is for readers who want to build a virtual infrastructure purely based on
Proxmox as hypervisor and Ceph as storage backend. Whether the reader is a veteran
in the virtualized industry but has never worked with Proxmox, or somebody just
starting out a promising career in this industry, this book will serve well.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The beginning of the tag shows the name of the cluster as name="pmx-cluster"."

A block of code is set as follows:

<?xml version="1.0"?>
<cluster name="pmx-cluster" config_version="2">
<cman keyfile="/var/lib/pve-cluster/corosync.authkey"></cman>
<clusternodes>
 <clusternode name="pmxvm01" votes="1" nodeid="1"/>

Preface

[3]

 <clusternode name="pmxvm02" votes="1" nodeid="2"/>
</clusternodes>
</cluster>

Any command-line input or output is written as follows:

ssh root@192.168.145.1

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Storage tab is probably one of the most important options in the Proxmox GUI."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Dive into the Virtual World
with Proxmox

With the rise in energy costs and the advancement of computer processing power
and memory capacity, running separate, under-utilized server hardware with
specific roles is no longer a luxury, and thus was born the technology we so
affectionately call virtualization. The term virtualization mainly refers to virtualizing
servers, but of late it is also being used for network or infrastructure virtualization.
Server and network virtualization enabled us to truly create a virtual world where
anything is possible. Virtual data centers, virtual storage systems, and virtual
desktop PCs are just a few real-world applications where virtualization is being
heavily used. Although nowadays the world is being swept by virtualization, the
term virtualization itself is not new. The concept was used in mainframes of the
1960s, where virtualization was a way to logically divide the mainframe's resources
for different application processing.

A hypervisor is the underlying platform or foundation that allows a virtual world to
be built upon. In a way it is the very building block of all virtualization. A bare metal
hypervisor acts as a bridge between physical hardware and the virtual machines
by creating an abstraction layer. Because of this unique feature, an entire virtual
machine can be moved over a vast distance over the Internet and be made able to
function exactly the same. A virtual machine does not see the hardware directly;
instead, it sees the layer of the hypervisor, which is the same no matter on what
hardware the hypervisor has been installed.

Dive into the Virtual World with Proxmox

[6]

The Proxmox hypervisor is one of the best kept secrets in the modern computer
world. The reason is simple. It allows for the building of an enterprise business-class
virtual infrastructure at a small business-class price tag without sacrificing stability,
performance, and ease of use. Whether it is a massive data center to serve millions of
people, a small educational institution, or a home serving important family members,
Proxmox can fulfil the needs of just about any situation. Even a novice networker can
get a stable virtualization platform up and running in less than an hour.

A Proxmox cluster consists of two or more computer nodes with Proxmox as the
operating system and connected in the same network. A virtual machine can migrate
from one node to another in the same cluster, which allows redundancy should a
node fail for any reason. Refer to the following diagram of a very basic two-node
Proxmox cluster with FreeNAS shared storage. Please note that while this form of
setup is good enough for learning purposes, it may not be enough for a production
environment where uptime is essential. In later chapters, we will see how to add
more Proxmox nodes and storage nodes into the cluster to ensure redundancy.

Internet

Firewall

Switch

Proxmox 1

Proxmox 2

FreeNAS Storage

In this and the upcoming chapters, we will see the mighty power of Proxmox
from inside out. We will deconstruct scenarios and create a very complex virtual
environment, which will challenge us to think outside the box. We will also see some
real incident-based issues and how to troubleshoot them. So strap yourself and let's
dive into the virtual world with the mighty hypervisor, Proxmox. The following are
some of the topics we are going to see in this chapter:

• Setting up a basic two-node Proxmox cluster
• Introduction to Proxmox Graphical User Interface (GUI)
• Setting up a virtual machine
• Proxmox virtual machine cloning and template

Chapter 1

[7]

Proxmox cluster required
A hands-on approach has been followed throughout this book to allow the reader
to learn Proxmox in a practical way. If you do not have a Proxmox cluster set up
or no access to an existing cluster, you can set up a basic-level Proxmox cluster by
following the installation instructions laid out in the Setting up a basic cluster section
of this chapter. If you already have a cluster, follow along from the next section,
The Proxmox Graphical User Interface (GUI).

The Proxmox Graphical User Interface
(GUI)
The Proxmox Graphical User Interface, or Proxmox GUI, allows users to interact
with the Proxmox cluster graphically using menus and a visual representation of
the cluster status. Even though all of the management can be done from the
Command-line Interface (CLI), it can be overwhelming at times, and managing
a cluster can become a daunting task. To properly utilize a Proxmox cluster, it
is very important to have a clear understanding of the Proxmox GUI. The GUI
can be easily accessed from just about any browser through a URL similar to
https://192.168.1.1:8006, as shown in the following screenshot:

https://192.168.1.1:8006

Dive into the Virtual World with Proxmox

[8]

The various fields marked in the previous screenshot are as follows:

• 1 shows the URL to access the Proxmox GUI through a browser
• 2 shows the logout button to exit the Proxmox GUI
• 3 shows the button to open the virtual machine creation dialog box
• 4 shows the button to open the OpenVZ container creation dialog box
• 5 shows the Proxmox tabbed menu bar
• 6 shows the drop-down menu to change the period of the status graphs
• 7 shows the status information block for Proxmox nodes, virtual machines,

or containers
• 8 shows the OpenVZ containers
• 9 shows the available virtual machine template for cloning
• 10 shows the KVM virtual machines
• 11 shows the Proxmox nodes
• 12 shows the shared storages
• 13 shows the resource pools
• 14 shows the graphical representation of various statuses
• 15 shows the task log

The GUI menu system
The Proxmox GUI is a one-page administration control panel. This means that no
matter which feature one is managing, the browser does not open a new page or
leave the existing page. Menus on the admin page change depending on the feature
that is being administered. For example, in the previous screenshot, the node
pmxvm02 is selected, so the main menu only shows node-specific menus. When a
virtual machine is selected, the menu looks like the following screenshot:

Chapter 1

[9]

Some features of the Proxmox GUI, such as VNC console and shell, require Java or
IcedTea (http://icedtea.classpath.org/wiki/Main_Page) to be installed on
the computer you are accessing the GUI from. The GUI works great with Firefox
and Google Chrome. The latest version of Internet Explorer may have an issue with
functioning properly if not in compatibility mode. The Proxmox GUI also works with
the Opera browser.

Menu chart
The following chart is a visual representation of a Proxmox GUI menu system. Some
menu options need to be set up once and do not need any regular attention, such as
DNS, Time, Services, and so on. Other menus, such as Summary, Syslog, Backup,
Permissions, and so on, are regularly used to ensure healthy cluster environment.

Config

SummarySearch

Hardware

Options

Task History

Monitor

Backup

Snapshots

Permissions

Status Monitor OSD Crush Log

Disks Pools Crush

Proxmox GUI
Menu System

Data Center Nodes

Search

Summary

Options

Storage

Backup

Users

Group

Pools

Permissions

Roles

Authentication

HA

Support

Summary

Service

Network

DNS

Time

Syslog

Bootlog

Task History

UBC

Subscription

Updates

Summary

Resources

Network

DNS

Options

Task History

UBC

Backup

Permissions

Virtual
Machine/KVM

Container/Open
VZ

CEPH

In this book, we will mostly look at the menu options relevant for regular
maintenance of a Proxmox cluster. We will also look at some of the advanced menu
options that are needed to create a complex network infrastructure, such as VLAN,
bridge, and so on. The rest of the menu options are very basic in nature and are very
much self-explanatory.

www.allitebooks.com

http://icedtea.classpath.org/wiki/Main_Page
http://www.allitebooks.org

Dive into the Virtual World with Proxmox

[10]

The Datacenter menu
In the Proxmox GUI, Datacenter is the main level folder of Proxmox nodes'/VMs'
tree. Each Datacenter folder can only hold one Proxmox cluster.

The Search tab
To use the Search tab, navigate to GUI | Server View | Datacenter | Search Tab |
Search Box.

It is very easy to manage a cluster with a small number of virtual machines with an
even smaller number of Proxmox and storage nodes. When maintaining hundreds
or thousands of virtual machines with several dozen Proxmox nodes in a cluster,
the Search option makes it easier to find a particular virtual machine. Scrolling
through a list of virtual machines to find a particular one is very time consuming.
The following screenshot shows the Search option:

The search box under Datacenter | Search shows the result in real time as you type
in the box. It can search with any string in the Type or Description columns. It can
be the partial name of a VM, VMID, or VM type (qemu, openvz). The preceding
screenshot shows all the virtual machines that have the word ceph in the description.

The Storage tab
To use the Storage tab, navigate to GUI | Server View | Datacenter | Storage.

The Storage tab is probably one of the most important options in the Proxmox GUI.
This is where the Proxmox cluster and storage systems come together. This is the
only menu to attach any storage system with Proxmox. Whether it is local/shared
storage, NFS/RBD/LVM, all are done here. The following screenshot shows the
Storage tab:

Chapter 1

[11]

As of Version 3.2, Proxmox supports the following storage types:

• Directory: This is mostly local storage
• LVM: These are local or shared iSCSI targets
• NF: This can be OmniOS, FreeNAS, Ubuntu, and so on
• GlusterFS: Visit www.gluster.org for more information
• RBD: Visit www.ceph.com for more information

In this book, we will be using NFS for basic low-end setup and RBD for advanced,
distributed storage with a high level of redundancy. The following screenshot shows
the storage types:

www.gluster.org
www.ceph.com

Dive into the Virtual World with Proxmox

[12]

Although storage can be changed at a later time, it is very important
to have a clear understanding of all storage types for better planning
in the beginning. All storage types have both advantages and
disadvantages. The ultimate decision will come down to performance,
stability, and redundancy.

The Backup tab
Cluster-wide backup schedules are created through this menu. Backup is the first
line of defense against any form of cluster disaster. With a good backup plan,
downtime can be minimized and valuable data can be saved. Although Proxmox
backup system cannot do a granular file backup of a virtual machine, the ability to
do full virtual machine backup is one of the strengths of Proxmox. This inclusion of
a backup system is one of the best in the industry, and it "just works". The backup
menu can be found in the following menu system.

To use the Backup tab, navigate to GUI | Server View | Datacenter | Backup.
The following screenshot shows the Backup tab:

Proxmox only allows schedule creation on a daily and weekly basis. Select VMs to
be backed up, day of the week, and time of the day, and backup will do the job on
its own. The following screenshot shows the dialog box to create a schedule:

Chapter 1

[13]

LZO compression and Snapshot mode are default in the Proxmox backup.
Compression can be selected as None, LZO, and GZIP. In most cases, LZO works
great. It has less compression but it is fast and easier on the hardware. GZIP can
compress further, but it also takes up lot of CPU resources during backup.

The Snapshot mode allows live backup without needing to shut down running VM,
thus minimizing downtime. In an always-on network environment, downtime may
not be permitted. Other modes, such as Suspend and Stop may be used in special
cases where shutting down the VM during backup is absolute necessary to ensure
data integrity.

Please note that this Snapshot mode is not the same as the Snapshots option for
a virtual machine. During full backup of a live virtual machine, LVM Snapshot is
used, whereas Live Snapshots are used to preserve the state of a KVM-based virtual
machine. Live Snapshots can be done for the OpenVZ container in Proxmox.

If the selected VMs are scattered over multiple nodes, it is very
important to keep in mind that when backup starts at the scheduled
time, it will simultaneously create a backup of VMs on multiple nodes
to a single backup storage. If the backup storage is not powerful
enough to handle all the incoming data from multiple Proxmox nodes,
the backup process may fail.

Dive into the Virtual World with Proxmox

[14]

Node-specific tabs
The node-specific tabs are specific to each node in the cluster. New menu tabs
become visible when the node is selected.

The Summary tab
To use the Summary tab, navigate to GUI | Server View | Node | Summary.

The Summary tab for a node is a visual representation of the node's health. It
shows vital information, such as Uptime and Resource Consumption. As you can
see in the following screenshot, the Summary screen also shows CPU usage, Server
Load, Memory Usage, and Network Traffic in a very easy-to-understand graph.
An administrator can get the necessary information about a node just by glancing
at the summary. Summary can be viewed on hourly, daily, weekly, monthly, and
yearly bases.

Chapter 1

[15]

The Network tab
To use the Network tab, navigate to GUI | Server View | Node | Network.

The Network menu acts as glue between all virtual machines, nodes, and shared
storage systems. Without a proper Network Interface Card (NIC) or Virtual NIC
(vNIC) and a virtual bridge setup, no communication can take place. Deeper
understanding of this menu will allow you to create a very complex web of clusters,
nodes, and virtual machines. Due to the importance of this menu option, we will
look into this menu in greater detail later in this chapter.

The concept of virtual network depends on the building block of the
virtual bridge, virtual vNIC, and virtual LAN. Network virtualization
is the future transformation of physical networks as server
virtualization had been for physical servers.

The Syslog tab
To use the Syslog tab, navigate to GUI | Server View | Node | Syslog.

The Syslog option allows an administrator to view the system log in real time.
Syslog gives feedback as it happens in the node. It also allows scrolling up to view
logs in the past. More importantly, if any error occurs in the node, Syslog gives that
information in real time with the time and date stamp. This helps to pinpoint an
issue exactly when it occurred. Here's an example of a Syslog menu visit scenario:
if the node cannot connect to a storage system, the Syslog screen will show the error
that is preventing connection.

Dive into the Virtual World with Proxmox

[16]

The following screenshot shows the Syslog option:

The UBC tab
To use the UBC tab, navigate to GUI | Server View | Node | UBC.

User Bean Counters (UBC) is a set of limits, which guarantees resources control
per container. This is a vital component for OpenVZ/container resource
management. The UBC menu option in the Proxmox GUI is for viewing only.
There is no option to edit any of the limits.

The UBC screen only gets populated when an OpenVZ container is selected,
as shown in the following screenshot:

Chapter 1

[17]

The Subscription tab
To use the Subscription tab, navigate to GUI | Server View | Node | Subscription.
Proxmox can be downloaded and used for free without any restriction for any
feature. It is by no means a trialware, shareware, or an n-day evaluation hypervisor.
However, Proxmox also has a subscription model, which allows enterprise-class
repositories. The free version of Proxmox only comes with standard repositories.
The main difference between enterprise and standard repositories is that enterprise
repositories go through a higher level of testing to ensure a very stable cluster
environment. The following screenshot shows the Subscription tab:

Keep in mind that even with the free version, Proxmox is still very
stable. Do not let the subscription level fool you to think the free version
is not even worth considering.

This level of tests is mandatory for an enterprise-class network environment where
a small issue can cost a company a lot of money. A highly stable environment is
usually not needed in a home-based platform or small business environment.
The Subscription tab allows activating purchased subscription on a node.

Proxmox has the very best prices per subscription in the virtualization
product industry. The operating cost of Proxmox cluster is very
minimal compared with a giant virtual product such as VMware.
Proxmox provides big business virtualization at small business
cost. For details of different subscription levels, visit the link
http://proxmox.com/proxmox-ve/pricing.

http://proxmox.com/proxmox-ve/pricing

Dive into the Virtual World with Proxmox

[18]

The Updates tab
To use the Updates tab, navigate to GUI | Server View | Node | Updates.

The Proxmox node can be updated right from the GUI through the Updates tab.
Each node checks daily for any available updates and alerts administrator through
e-mail if there are any new updates. It is important to keep all nodes up to date by
updating regularly. The Updates menu enables upgrading by just using a few
mouse clicks. The following screenshot shows the Updates tab:

Always update one node at a time. Some updates require the node to
be restarted. If uptime is important, then migrate all running virtual
machines to a different node before restarting the upgraded node.

The Ceph tab
Ceph is a robust and powerfully distributed storage system that can be used as
shared storage for Proxmox cluster. Ceph provides the RADOS Block Device (RBD)
storage backend. A Ceph storage cluster can scale out to several petabytes. Ceph is
powerful enough to handle infrastructure of any size while being resilient enough
to provide great storage redundancy. Understanding the true potential of Ceph,
we have dedicated an entire chapter in this book to show you how to set up a Ceph
cluster using both command line and the Proxmox GUI to build truly enterprise class
complex virtual infrastructures.

Chapter 1

[19]

Starting with Proxmox VE 3.2, Ceph server is added as technology preview. This
allows both Proxmox and Ceph to co-exist on the same node. Ceph itself does not
come with any graphical user interface to manage Ceph storage, with the exception
being the subscription version of Ceph. Proxmox enables us to manage Ceph cluster
almost entirely from the Proxmox GUI. Currently CrushMAP cannot be edited
and multiple Ceph clusters cannot be managed through the GUI. The following
screenshot shows the Ceph menu tab along with Ceph-related tabs:

We will look into the Ceph tab in greater detail in Chapter 7, High Availability Storage
for High Availability Cluster. The following list is a short description of Ceph-related
tabs and their functions:

• Status: This shows the current status or health of a Ceph storage
• Config: This displays the content of the Ceph cluster configuration file

cluster.conf

• Monitor: This starts, stops, creates, removes, and displays a list of Ceph
Monitors (MONs)

• Disks: This displays the available drives attached to the Proxmox nodes
and creates new OSDs

• OSD: This manages OSDs of Ceph clusters
• Pools: This creates, removes, and displays the list of pools
• Crush: This displays the content of CrushMAP
• Log: This displays the Ceph cluster log in real time

www.allitebooks.com

http://www.allitebooks.org

Dive into the Virtual World with Proxmox

[20]

Virtual machine tabs
The following menu tabs are available when a virtual machine is selected.

The Summary tab
The Summary menu tab represents similar information such as the one accessed by
navigating to Node | Summary. Valuable information can be gathered, which shows
the real-time status of a virtual machine. One additional feature this menu has is the
addition of the Notes textbox. By double-clicking on the Notes box, it brings up a
multiline textbox where an administrator can enter data such as the department, the
usage the VM is intended for, or just about any other information that needs to be
on hand.

The Hardware tab
The initially created and configured virtual machine sometimes needs further
resource allocation. As the functions of VM rise, it becomes necessary to add
additional virtual drives or network interfaces. The Hardware menu tab under
the virtual machine is where the adding and removing of devices happens. The
following screenshot shows the Hardware tab:

Chapter 1

[21]

Through the Add menu, additional CD drives, hard drives, and network interfaces
(bridge, vNIC, and so on) can be added to a virtual machine, as shown in the
following screenshot:

Each of these additions requires the virtual machine to be fully powered off and not
just the restart/reboot process. Ejecting an ISO image file to attach a different one
does not require any VM power cycle. By adding some configuration arguments in
the virtual machine configuration file, it is possible to hot swap a virtual hard disk
into a VM. This configuration is further explained in Chapter 4, A Virtual Machine for
a Virtual World.

Besides the Add menu, other menus such as Remove, Edit, Resize Disk, and Move
Disk are also available through the Hardware menu. All these additional menus
except Add require a hardware item to be selected. Resize Disk and Move Disk
will be enabled for clicking when a virtual drive is selected. We will see these in
greater detail in later chapters.

Dive into the Virtual World with Proxmox

[22]

Move Disk is the safest way to move a virtual hard drive
from one storage to another. If the virtual disk is on a shared
storage, then live migration of the virtual disk is possible,
allowing a great amount of time saving.

The Options tab
The Options menu under virtual machine allows further tweaking, such as changing
name, boot order, and so on. Most of the options here can be left to default.

If you want the virtual machine to auto-start as soon as the
Proxmox node reboots, set the Start at boot option to Yes.

The Options tab is shown in the following screenshot:

Chapter 1

[23]

The Backup tab
A good backup plan is the first line of defense against any disaster, which can cause
major or minor data loss. In our ultra-modern digital world, data is much more
valuable than ever before. Every virtual environment administrator struggles with
backup strategy of his/her virtual environment. The following screenshot shows
the Backup tab:

The fine line between granular files and an entire machine backup is somewhat
diminished in a virtual environment. To take the daily struggle of backup plan out
of the equation, Proxmox added an excellent backup system right in the hypervisor
itself. Although the backup system cannot backup individual files inside a virtual
machine, it works well while backing up an entire virtual machine.

Proxmox backup system can only do full backup of a virtual machine
and cannot be used to backup individual files inside the virtual machine
at the granular level.

Proxmox backups can be scheduled over multiple storage systems and multiple
days. A backup system is only as good as the ability to restore the backup. Both
backup and restore can be done from single menu under virtual machine. It also
allows backups browsing and manual deletion of any backups. All these are done
from a single interface with a few mouse clicks. Due to the importance of backup
strategy in a virtual environment, we will look into Proxmox backup system in
much greater detail in Chapter 4, A Virtual Machine for a Virtual World.

Dive into the Virtual World with Proxmox

[24]

The Snapshots tab
Proxmox Snapshots is a way to roll back a KVM-based virtual machine to a previous
state. Although it provides similar protection to Proxmox Backup, it comes with
speed. Proxmox Snapshot is extremely fast when compared with Proxmox Backup,
thus allowing a user to take several snapshots a day. The following screenshot shows
the Snapshots tab:

A common scenario where Snapshots can be used is when a user wants to install
or update a software. He or she can take a snapshot, execute the program, and if
anything goes wrong, then simply roll back to the previous state. It creates Snapshot
with the RAM itself, so the virtual machine stays exactly the same as it is running.
Live snapshots are not included in full virtual machine backups.

Never depend solely on Snapshots. Snapshots are not a full backup. It is
merely a state when the virtual machine is frozen in time. Always do a
full backup of virtual machines for maximum protection.

The Permissions tab
The Permissions menu allows the management of user permissions for a particular
virtual machine. It is possible to give multiple users access to the same virtual
machine. Click on Add to add users or groups to the permission. The following
screenshot shows the Permissions tab:

Chapter 1

[25]

A common scenario of permission usage is in an office setup where there is one
accounting virtual machine and multiple staff need to access data. A permission can
be set either at the user or the group level.

Setting up a basic cluster
This section will help you to create a shopping list of components that you need and
provide you step-by-step instructions to set up a basic Proxmox cluster. The steps in
this section are in a much simpler form to get you up and running quickly. You can
see Proxmox setup instructions in greater details from Proxmox Wiki documentation
at http://pve.proxmox.com/wiki/Installation.

To set up a shared storage to be used with a Proxmox cluster, we are going to
use Ubuntu or FreeNAS storage. There are options other than FreeNAS, such as
OpenMediaVault, NAS4Free, GlusterFS, and DRBD to name a few. FreeNAS is
an excellent choice for shared storage due to its ZFS filesystem implementation,
simplicity of installation, large active community, and no licensing cost. Although
we have used FreeNAS in this book, you can use just about any flavor of shared
storage with the NFS and iSCSI support you want. Installation guide to set up
FreeNAS is beyond the scope of this book.

For complete setup instructions for FreeNAS, visit http://doc.
freenas.org/index.php/Installing_from_CDROM.

Ubuntu is also a great choice to learn how shared storage works with Proxmox.
Almost anything you can set up with FreeNAS, you can also set up in Ubuntu.
The only difference is that there is no user-friendly graphical interface in Ubuntu
as in FreeNAS. Deeper into the book, we will look at the ultimate shared storage
solution using Ceph. But to get our first basic cluster up and running, we will use
Ubuntu or FreeNAS to set up an NFS and iSCSI share.

For installation instructions for Ubuntu server, visit
http://www.ubuntu.com/download/server.

http://pve.proxmox.com/wiki/Installation
http://doc.freenas.org/index.php/Installing_from_CDROM
http://doc.freenas.org/index.php/Installing_from_CDROM
http://www.ubuntu.com/download/server

Dive into the Virtual World with Proxmox

[26]

The hardware list
The following is a list of hardware components that we will need to put together our
first basic Proxmox cluster. If you already have some components you would like to
use to set up your cluster, it is important to check if they will support virtualization.
Not all hardware platforms support virtualization, especially if they are quite old.
To get details on how to check your components, visit http://virt-tools.org/
learning/check-hardware-virt/.

A quicker way to check is through the BIOS and look for one of the following
settings in the BIOS option. Any one of the these should be Enabled in order for
the hypervisor to work.

• Intel ® Virtualization Technology
• Virtualization Technology (VTx)
• Virtualization

This list of hardware is to build a bare minimum Proxmox
cluster for learning purposes only and not suitable for
enterprise-class infrastructure.

Component type Brand/model Quantity
CPU/Processor Intel i3-2120 3.30 Ghz 4 Core 2
Motherboard Asus P8B75-M/CSM 2
RAM Kingston 8 GB 1600 Mhz DDR3 240 Pin Non-ECC 3
HDD Seagate Momentus 250 GB 2.5" SATA 2
USB stick Patriot Memory 4 GB 1
Power supply 300+ Watt 3
LAN switch Netgear GS108NA 8-Port Gigabit Switch 1

The software list
Download the software given in the following table in the ISO format from their
respective URL, and then create a CD from the ISO images.

Software Download link
Proxmox VE http://proxmox.com/downloads

FreeNAS http://www.freenas.org/download-releases.html

Ubuntu Server http://www.ubuntu.com/download

clearOS
community

http://www.clearfoundation.com/Software/downloads.
html

http://virt-tools.org/learning/check-hardware-virt/
http://virt-tools.org/learning/check-hardware-virt/
http://proxmox.com/downloads
http://www.freenas.org/download-releases.html
http://www.ubuntu.com/download
http://www.clearfoundation.com/Software/downloads.html
http://www.clearfoundation.com/Software/downloads.html

Chapter 1

[27]

Hardware setup
The next diagram is a network diagram of a basic Proxmox cluster. We will start with
two node clusters with one shared storage setup with either Ubuntu or FreeNAS.
The setup in the illustration is a guideline only. Depending on the level of experience,
budget, and available hardware on hand, you can set up any way you see fit.
Regardless of whatever setup you use, it should meet the following requirements:

• Two Proxmox nodes with two Network Interface Cards
• One shared storage with NFS and iSCSI connectivity
• One physical firewall
• One 8+ port physical switch
• One KVM virtual machine
• One OpenVZ/container machine

This book is intended for beyond-beginner-level user and, therefore, full instruction
of the hardware assembly process is not detailed here. After connecting all
equipment together, it should resemble the following diagram:

Proxmox installation
Perform the following simple steps to install Proxmox VE on Proxmox nodes:

1. Assemble all three nodes with proper components, and connect all of them
with a LAN switch.

2. Power up the first node and access BIOS to make necessary changes such as
enabling virtualization.

Dive into the Virtual World with Proxmox

[28]

3. Boot the node from the Proxmox installation disc.
4. Follow along the Proxmox graphical installation process. Enter the IP address

192.168.145.1, or any other subnet you wish, when prompted. Also enter
pmxvm1.domain.com or any other hostname that you choose to use.

5. Perform step 3 and 4 for second node. Use IP address 192.168.145.2 or any
other subnet. Use pmxvm2.domain.com as hostname or any other hostname.

Cluster creation
We are now going to create a Proxmox cluster with two Proxmox nodes we just
installed. From admin PC, (Linux/Windows), log in to Proxmox node #1 (pmxvm01)
through secure login. If the admin PC is Windows based, use program such as
PuTTY to remotely log in to Proxmox node.

Download PuTTY from http://www.chiark.greenend.org.
uk/~sgtatham/putty/download.html.

Linux users use the following command to securely log in to Proxmox node:

ssh root@192.168.145.1

After logging in, it is now time to create our cluster. The command to create a
Proxmox cluster is as follows:

pvecm create <cluster_name>

This command can be executed on any of the Proxmox nodes but only once.

Never run a cluster creation command on more than one node in the
same cluster. The cluster creation process must be completed on one
node before adding nodes to the cluster.

The cluster does not operate on master/slave basis, but on Quorum. In order to
achieve healthy cluster status, all nodes need to be online. Let's execute the following
command and create the cluster:

root@pmxvm01:~# pvecm create pmx-cluster

The preceding command will display the following messages on the screen as it
creates a new cluster and activates it:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Chapter 1

[29]

Restarting pve cluster filesystem: pve-cluster[dcdb] notice: wrote new
cluster config '/etc/cluster/cluster.conf'

Starting cluster:

 Checking if cluster has been disabled at boot. . . [OK]

 Checking Network Manager. . . [OK]

 Global setup. . . [OK]

 Loading kernel modules. . . [OK]

 Mounting configfs. . . [OK]

 Starting cman. . . [OK]

 Waiting for quorum. . . [OK]

 Starting fenced. . . [OK]

 Starting dlm_controld. . . [OK]

 Tuning DLM kernel config. . . [OK]

 Unfencing self. . . [OK]

root@pmxvm01:~#

After cluster creation is complete, check its status by using the following command:

root@pmxvm01:~# pvecm status

The preceding command will display the following output:

Version: 6.2.0

Config Version: 1

Cluster Name: pmx-cluster

Cluster ID: 23732

Cluster Member: Yes

Cluster Generation: 4

Membership status: Cluster-Member

Nodes: 1

Expected votes: 1

Total votes: 1

Quorum: 1

Active subsystem: 5

Flags:

Ports Bound: 0

www.allitebooks.com

http://www.allitebooks.org

Dive into the Virtual World with Proxmox

[30]

Node name: pxvm01

Node ID: 1

Multicast addresses: 239.192.92.17

Node addresses: 192.168.145.1

root@pmxvm01:~#

The status shows some vital information that is needed to see how the cluster is
doing and what the other member nodes of the cluster are. Although from Proxmox
GUI we can visually see cluster health, command-line information gives a little bit
more in-depth picture.

After the cluster has been created, the next step is to add Proxmox nodes into the
cluster. Securely log in to the other node and run the following command:

root@pmxvm02:~# pvecm add 192.168.145.1

Verify that this node is now joined with the cluster with the following command:

root@pmxvm02:~# pvecm nodes

It should print the following node list that are member of the cluster we have
just created:

Node Sts Inc Joined Name

 1 M 4900 2014-01-26 16:02:34 pmxvm01

 2 M 4774 2014-01-26 16:12:19 pmxvm02

The next step is to log in to Proxmox Web GUI to see the cluster and attach shared
storage. Use the URL in the following format from a browser on the admin computer
to access the Proxmox graphical user interface:

https://<ip_proxmox_node>:8006

The cluster should look similar to the following screenshot:

Chapter 1

[31]

Proxmox subscription
On a clean installed Proxmox node, a paid subscription-based repository is enabled
by default. When you log in to the Proxmox GUI, the following message will pop up
on entering login information:

If you want to continue using Proxmox without subscription, perform the following
steps to remove the enterprise repository and enable a subscription-less repository.
This needs to be done on all Proxmox nodes in the cluster.

1. Run the following command:
nano /etc/apt/sources.list.d/pve-enterprise.list

2. Comment out enterprise repository as follows:
#deb https://enterprise.proxmox.com/debian wheezy pve-
 enterprise

3. Run the following command:
nano /etc/apt/sources.list

4. Add a subscription-less repository as follows:
deb http://download.proxmox.com/debian wheezy pve-no-
 subscription

Attaching shared storage
A Proxmox cluster can function with local storage just fine. But shared storage
has many advantages over local storage, especially when we throw migration and
disaster-related downtime in the mix. Live migration while a virtual machine is
powered on is not possible without shared storage. We will start our journey into
Proxmox with NFS/iSCSI shared storage, such as Ubuntu or FreeNAS.

Take a pause reading right here, and set up the third node with
Ubuntu or FreeNAS. Both websites Ubuntu and FreeNAS have
complete instructions to get you up and running.

Dive into the Virtual World with Proxmox

[32]

After you have the choice of shared storage server setup, attach the storage with
Proxmox by navigating to Datacenter | Storage. There should be three shares as
shown in the following table:

Share ID Share type Content Purpose
ISO-nfs-01 NFS ISO, templates To store ISO images
vm-nfs-01 NFS Image, containers To store VM with the qcow2 vmdk

image and containers
nas-lvm-01 iSCSI Image To store a raw VM

After setting up both the NFS and iSCSI shares, the Proxmox GUI should look like
the following screenshot:

Adding virtual machines
With our cluster up and running, it is time to add some virtual machines to it.
Click on Create VM to start a KVM virtual machine creation process. The option
window to create a virtual machine looks like the following screenshot:

Chapter 1

[33]

Main virtual machine
The virtual machine we are going to create will act as main server for the rest of
the virtual machines in the cluster. This will provide services such as DHCP, DNS,
and so on. You can use any Linux flavor you are familiar with to get the DHCP/
DNS Server set up. The ClearOS Community edition is a great choice since it allows
putting all services in one machine and actually works very well.

ClearOS is an open source, server-in-a-box Linux distribution, which
means it can pull the weight of multiple servers/services in one
setup. ClearOS is a Linux replacement of Windows Small Business
Server. Learn more details and download it from http://www.
clearfoundation.com/Software/overview.html.

Before creating a KVM-based virtual machine from scratch, we have to upload an
ISO image of an operating system into Proxmox. This also applies to any ISO image
we want a user to have access to, such as an ISO image of the installation disk for
Microsoft Office or any other software. Not all storage types are supported to store
ISO images. As of this writing, only local Proxmox storage, NFS, Ceph FS, and
GlusterFS can be used to store ISO images. To upload an ISO image, perform the
following steps:

1. Select proper storage from the Datacenter or Storage view on the
Proxmox GUI.

2. Click on the Content tab.
3. Click on the Upload button to open the upload dialog box as shown in

the following screenshot:

http://www.clearfoundation.com/Software/overview.html
http://www.clearfoundation.com/Software/overview.html

Dive into the Virtual World with Proxmox

[34]

4. Click on the Select File… button to select the ISO image, and then click on
the Upload button. After uploading, the ISO will show up on the content
page as shown in the following screenshot:

Since the upload happens through the browser, it may cause a timeout error while
uploading a large ISO file. In these cases, use a client program such FileZilla to
upload the ISO image. Usually the Proxmox directory path to upload an ISO file
is /mnt/pve/<storage_name>/template/iso.

After the ISO image is in place, we can proceed with KVM virtual machine creation
using the configuration in the following table:

VM creation tab Specification Selection
General Node pmxvm01

Virtual machine ID 101
Virtual machine name pmxMS01

OS Linux/other OS types Linux 3.x/2.6 Kernel
CD/DVD Use CD/DVD disc image file ClearOS 6 Community
Hard disk Bus/device virtio

Storage vm-nfs-01
Disk size (GB) 25
Format QEMU image (qcow2)

CPU Sockets 1
Cores 1
Type Default (kvm64)

Memory Automatically allocate
memory within range

Max. 1024 MB
Minimum 512 MB

Network Bridged mode vmbr0
Model Intel E1000 / VirtIO

Chapter 1

[35]

Creating a KVM virtual machine
After the main server is set up, we are now going to create a second virtual machine
with Ubuntu as the operating system. Proxmox has a cloning feature, which saves
lot of time when deploying VMs with the same operating system and configuration.
We will use the Ubuntu virtual machine as the template for all Linux-based VMs
throughout this book. Create the Ubuntu VM with the following configuration:

VM creation tab Specification Selection
General Node pmxvm01

Virtual machine ID 201
Virtual machine name template-Ubuntu

OS Linux/other OS types Linux 3.x/2.6 Kernel
CD/DVD Use CD/DVD disc image file Ubuntu server ISO
Hard disk Bus/device virtio

Storage vm-nfs-01
Disk size (GB) 30
Format QEMU image (qcow2)

CPU Sockets 1
Cores 1
Type Default (kvm64)

Memory Automatically allocate memory
within range

Maximum 1024 MB
Minimum 512 MB

Network Bridged mode vmbr0
Model Intel E1000 / VirtIO

Creating an OpenVZ virtual machine
Now we will create one OpenVZ/container virtual machine. OpenVZ is
container-based virtualization for Linux where all containers share the base
host operating system. At this moment, only the Linux OpenVZ virtual machine
is possible, and no Windows-based container. Although OpenVZ containers act as
independent virtual machines, they rely heavily on the underlying Linux kernel of
the hypervisor. All containers in a cluster share the same Linux kernel of the same
version. The biggest advantage of the OpenVZ container is soft memory allocation
where memory not used in one container can be used by other containers. Since
each container does not have its own full version of the operating system, the backup
size of containers is much smaller than the KVM-based virtual machine. OpenVZ
is a great option for an environment such as a web hosting provider, where many
instances can run simultaneously to host client sites.

Dive into the Virtual World with Proxmox

[36]

Go to http://openvz.org/Main_Page for more details
on OpenVZ.

Unlike a KVM virtual machine, OpenVZ containers cannot be installed using an
ISO image. Proxmox uses templates to create OpenVZ container virtual machines
and comes with the very nice feature of templates repository. At the time of this
writing, the repository has close to 400 templates ready to download through the
Proxmox GUI.

Templates could also be user-created with specific configurations. Creating your
own template can be a difficult task and usually requires extensive knowledge of
the operating system. To take the difficulties out of the equation, Proxmox provides
an excellent script called Debian Appliance Builder (DAB) to create OpenVZ
templates. Visit the following links before undertaking OpenVZ templates:

• http://wiki.openvz.org/Category:Templates

• http://pve.proxmox.com/wiki/Debian_Appliance_Builder

From the Proxmox GUI, click on the Templates button as shown in the
following screenshot to open the built-in template browser dialog box and
to download templates:

For our OpenVZ virtual machine lesson, we will be using the Ubuntu 12.04 template
under Section: system as shown in the following screenshot:

http://openvz.org/Main_Page
http://wiki.openvz.org/Category:Templates
http://pve.proxmox.com/wiki/Debian_Appliance_Builder

Chapter 1

[37]

Create the OpenVZ container using the following specifications:

OpenVZ creation tab Specification Selection
General Node pxvm01

Virtual machine ID 121
Virtual machine hostname ubuntuCT-01
Storage vm-nfs-01
Password any

Template Storage ISO-nfs-01
Template ubuntu-12.04-standard

Resources Memory 1024 MB
Swap 512 MB
Disk size (GB) 30
CPUs 1

Network Bridged mode vmbr0

Dive into the Virtual World with Proxmox

[38]

OpenVZ containers cannot be cloned for mass deployment. If such
mass deployment is required, then the container can be backed up
and restored with different VM IDs as many times as required.

With all three of the virtual machines created, the Proxmox cluster GUI should
look like the following screenshot:

Proxmox cloning/template
One of the great features of Proxmox is the ability to clone a virtual machine for mass
deployment. It saves an enormous amount of time while deploying virtual machines
with similar operating systems.

Introducing cloning using a template
It is entirely possible to clone a virtual machine without ever creating a template.
The main advantage of creating a template is virtual machine organizing within
the cluster.

The template for cloning is not the same as the template required
to create OpenVZ/container.

Chapter 1

[39]

A template has a distinct icon as seen in the following screenshot, which easily
identifies it from a standard virtual machine. Just create a VM with desired
configuration, and then by the touch of a mouse click, turn the VM into a
template. Whenever a new VM is required, just clone the template.

For a small cluster with few virtual machines, it is not an issue. But an enterprise
cluster with hundreds, if not thousands, of virtual machines, finding the right
template can become a tedious task. By right-clicking on a VM, you can pull up
a context menu, which shows the option related to that VM.

Menu item Function
Start Starts virtual machine.
Migrate Allow online/offline migration of virtual machine.
Shutdown Safely powers down virtual machine.
Stop Powers down virtual machine immediately. Might cause data

loss. Similar to holding down the Power button for 6 seconds
on a physical machine.

Clone Clones virtual machine.
Convert to Template Transforms a virtual machine into a template for cloning.

Templates themselves cannot be used as a regular
virtual machine.

Console Opens a virtual machine in a VNC console.

Transforming VM into a template
Let's turn our Ubuntu virtual machine we created in the Creating a KVM virtual
machine section into a template. Perform the following steps:

1. Right-click on a virtual machine to open the context menu.

www.allitebooks.com

http://www.allitebooks.org

Dive into the Virtual World with Proxmox

[40]

2. Click on Convert to template as shown in the following screenshot. This will
convert the VM into a template that can be used to clone an unlimited number
of virtual machines. While creating a template, keep in mind that a template
itself cannot be used as a virtual machine. But it can be migrated to different
hosts just like a virtual machine.

Cloning using a template
The template is now ready for cloning. Right-clicking on the template will open up
the context menu, which will have only two menu options: Migrate and Clone.
Click on Clone to open the template cloning option window as shown in the
following screenshot:

Chapter 1

[41]

The most important option to notice in this menu is the Mode option. A clone can be
created from a template using either Full Clone or Linked Clone.

Full Clone versus Linked Clone
The following is a comparison table with features of Full Clone and Linked Clone:

Full clone Linked clone
Fully independent from original
VM/template

Linked with original VM/template it was
created from

Takes the same amount of disk space
as original VM/template

Takes less disk space than original
VM/template

Supported file types: raw, qcow2,
and vmdk in LVM, NFS or iSCSI

Does not support storage file in lvm
and iSCSI

If original VM/template is lost or
damaged, the cloned VM stays intact

If original VM/template is lost, the cloned
VM can no longer function. All linked VMs
are connected to original VM/template

Full Clone has greater performance over
Linked Clone

Performance degrades in Linked VM as more
people share the same original VM/template

Full Clone takes much longer to create Linked Clone can be created within minutes
Full Clone is a replica of the original Linked Clone is created from a snapshot of

original VM/template

From the previous table, we can see that both Full Clone and Linked Clone have pros
and cons. One rule of thumb is that if performance is the main focus, go with Full
Clone. If storage space conservation is the focus, then go with Linked Clone.

Attention: a damaged original VM/template can render all
linked VMs unusable!

VM migration
Proxmox migration allows a VM or OpenVZ container to be moved to a Proxmox
node in both offline and online modes. The most common scenario of VM migration
is when a Proxmox node needs a reboot due to a major kernel update. Without the
migration option, each reboot would be very difficult for an administrator as all the
running VMs have to be stopped first before reboot occurs, which will cause major
downtime in a mission-critical virtual environment.

Dive into the Virtual World with Proxmox

[42]

With the migration option, a running VM can be moved to another node without
a single downtime. During live migration, VM does not experience any major
slowdown. After the node reboots, simply migrate the VMs back to the original
node. Any offline VMs can also be moved with ease.

Proxmox takes a very minimalistic approach to the migration process. Just select
the destination node and online/offline check box. Then hit the Migrate button to
get the migration process started. Depending on the size of virtual drive and
allocated memory of the VM, the entire migration process time can vary.

Live/online migration also migrates virtual memory content of the
VM. The bigger the memory, the longer it will take to migrate.

Summary
In this chapter, we saw what a basic Proxmox cluster looks like and went through the
setup process of Proxmox nodes. We took a closer look at the Proxmox GUI where we
will spend almost all of our virtual infrastructure administrative life. We also have set
up a basic-level Proxmox cluster, which will serve us as a foundation for the rest of the
book and help us to gain knowledge of inner workings of Proxmox.

We created virtual machines in our cluster and learned how cloning and template
can save an enormous amount of time. We attached a shared storage with our cluster
using FreeNAS. FreeNAS is an excellent open source choice for all Network Attached
Storage (NAS) needs. It supports NFS, CIFS, AFP, iSCSI, FTP, TFTP, RSYNC, ZFS,
and many more storage-related features.

There is a lot of information on Proxmox available at the official wiki page at
https://pve.proxmox.com/wiki/Main_Page.

https://pve.proxmox.com/wiki/Main_Page

Chapter 1

[43]

With the introductory chapter out of the way, in the next chapter, we will take
a look at what is under the hood of Proxmox hypervisor. We will see how the
Proxmox folder structure is laid out to hold some of the important files, which
make Proxmox run so effectively. Most importantly, we will go deeper into some
of the configuration and see their function line by line. In order to build a complex
enterprise-class Proxmox cluster, it is important to be quite familiar with these
configurations. Proxmox cluster can be tweaked and tailored further beyond the
GUI through these files.

For more information, you can visit http://www.masteringproxmox.com/.
You can use this forum for discussing about Proxmox and related topics.

http://www.masteringproxmox.com/

Proxmox Under the Hood
In the previous chapter, we have seen how a Proxmox GUI looks like and set up
a basic cluster, which we are going to use for hands-on learning of Proxmox. In
this chapter, we will look at how configuration files hold a Proxmox virtualization
platform together, files to be used for advanced configuration, and how to
troubleshoot a Proxmox platform. Proxmox is built on Debian Linux, which is
very stable with a large active community. So, it inherited the heavy dependency
on configuration or the .conf files as we Linux users lovingly like to call them.
The Proxmox GUI provides you with the ability to manage a cluster, but does not
provide direct access to any configuration files. Any direct changes by an advanced
user have to be done through CLI. Commonly used scenarios such as adding special
arguments in configuration files are also done through CLI. In this chapter, we will
look at the following topics:

• The Proxmox directory structure
• Configuration files' locations and their functions
• Arguments and syntaxes used in configuration files

Proxmox Under the Hood

[46]

The Proxmox cluster directory structure
Proxmox is a cluster-based hypervisor. It is meant to be used with several server
nodes. By using multiple nodes in a cluster, we provide redundancy or High
Availability to the platform while increasing uptime. A production virtual
environment may have several dozens to several hundreds of nodes in a cluster.
As an administrator, it may not be a realistic scenario to change configuration files
in the cluster one node at a time. Depending on the number of nodes in a cluster, it
may take several hours just to change one small argument in a configuration file of
all the nodes. An administrator would have to go from node to node to apply these
changes. To alleviate wastage of precious time, Proxmox implemented the clustered
filesystem to keep all the configuration files, or any other common files shared by all
the nodes in the cluster, in a synchronous state. Its official name is Proxmox Cluster
file system or pmxcfs, which is a database-driven filesystem to store configuration
files. Any changes made to any files or copied/deleted in this filesystem get
replicated in real time to all the nodes using Corosync. Corosync Cluster Engine
is a group communication system used to implement High Availability within
an application. You can learn more about Corosync by visiting the link
http://corosync.github.io/corosync/.

Any file added to this filesystem almost instantly gets replicated to all the nodes
in the cluster, thus saving enormous amount of time for a system administrator.

The pmxcfs filesystem is database-driven and is used to store the
Proxmox cluster configuration files or any other files commonly shared
by all the nodes in the Proxmox cluster. To know more about pmxcfs,
please visit Proxmox Wiki at http://pve.proxmox.com/wiki/
Proxmox_Cluster_file_system_(pmxcfs).

The pmxcfs filesystem is mounted at:

/etc/pve

All cluster-related files are stored in this folder path. Now, let us take a look at the
folder tree, which shows the location of the files stored and their function:

Filename/location File function
/etc/pve/datacenter.cfg Proxmox VE datacentre configuration file. Used

to change options, such as default language,
keyboard layout, default console, and so on.

/etc/pve/cluster.conf Cluster main configuration file. Can also be used
to change the vote of a particular node.

http://corosync.github.io/corosync/
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

Chapter 2

[47]

Filename/location File function
/etc/pve/storage.cfg PVE storage configuration file. Holds all the

information about local or shared storage system.
/etc/pve/user.cfg User list and access control configuration for all

users and groups in the cluster.
/etc/pve/authkey.pub Public key used by the ticket system.

/etc/pve/priv/shadow.
cfg

Shadow password file for users.

/etc/pve/priv/authkey.
key

Private key used by the ticket system.

/etc/pve/nodes/<name>/
pve-ssl.pem

Public SSL key for the web server. Used to access
Proxmox WebGUI.

/etc/pve/nodes/<name>/
priv/pve-ssl.key

Private SSL key.

/etc/pve/nodes/<name>/
qemu-server/<vmid>.conf

Virtual machine configuration data for KVM VMs.

/etc/pve/nodes/<name>/
openvz/ <vmid>.conf

Virtual machine configuration data for
OpenVZ containers.

/etc/pve/.version File versions' data to detect file modifications.
/etc/pve/.members Information nodes that are members of the cluster.
/etc/pve/.vmlist List of all VMs in the cluster.
/etc/pve/.clusterlog Last 50 entries of the cluster log.
/etc/pve/.rrd Most recent entries of RRD data.

Any changes on these files or any other files inside pmxcfs mounted under
folder /etc/pve will get replicated automatically. For this reason, we will have to
take extra care about what we do to these files. For example, if we delete a .conf
file from one node by mistake, it will also be deleted from all the other nodes in the
Proxmox cluster.

Regular manual backup of the /etc/pve folder should be a
common practice, in case the cluster needs rebuilding after any
disaster or accidental file deletion/change.

On a regular day-to-day basis, a system administrator will not need to access these
files from the command line since almost all of these are editable from the Proxmox
GUI. But knowing the location of these files and what they hold might save the day
when GUI becomes inaccessible for whatever reason.

Proxmox Under the Hood

[48]

Dissecting the configuration files
We now know where all the important files that hold a Proxmox cluster together
are placed. We will now go inside some of these files for better understanding of
what they do and the command arguments they use. You can use any Linux editor to
view/edit these configuration files. In this book, we will use #nano to view and edit.

During the learning process, it will be a good idea to make a backup of the
configuration files before editing them. In case something goes wrong, you will
be able to replace it with the original working configuration file. Simply copy a
configuration file using the following command:

cp /etc/pve/<config_file> /home/<any_folder>

We can also use the SCP command to back up files to another node:

scp /etc/pve/<config_file> <user>@<ip_or_hostname>:/<folder>

The cluster configuration file
The following code is what our cluster.conf file currently looks like from the cluster
we created earlier in Chapter 1, Dive into the Virtual World with Proxmox. The Proxmox
cluster configuration file is located under /etc/pve/cluster.conf. Its contents are
as follows:

<?xml version="1.0"?>
<cluster name="pmx-cluster" config_version="2">
<cman keyfile="/var/lib/pve-cluster/corosync.authkey"></cman>
<clusternodes>
 <clusternode name="pmxvm01" votes="1" nodeid="1"/>
 <clusternode name="pmxvm02" votes="1" nodeid="2"/>
</clusternodes>
</cluster>

Now, let us see what function each XML tag performs in this configuration file.

Corosync uses XML for configuration files. Since all cluster messaging between
nodes is handled by Corosync, XML syntaxes are used in the Proxmox cluster
configuration file. The <?xml .. > tag shows the XML version number as shown:

<?xml version="1.0"?>

Now let us take a look at the following code:

<cluster name="pmx-cluster" config_version="2">
. . . .
. . . .
</cluster>

Chapter 2

[49]

The <cluster>..</cluster> tag acts as the main body of the configuration file.
All other syntaxes reside inside this tag. The beginning of this tag shows the name
of the cluster as name="pmx-cluster" and the config file version number as config
_version="2". This number represents how many times the file has been changed.
Each change increases the version number incrementally:

<cman keyfile="/var/lib/pve-cluster/corosync.authkey"></cman>

The <cman> tag represents the location of authorization key file for Corosync. This key
file is needed by Corosync for authentication within cluster communication from one
node to another.

Now have a look at the following code:

<clusternodes>
 <clusternode name="pmxvm01" votes="1" nodeid="1"/>
 <clusternode name="pmxvm02" votes="1" nodeid="2"/>
</clusternodes>

The <clusternode> tag shows the names of all the member nodes in the cluster,
node ID, and expected votes to form Quorum. In order to have a healthy cluster or
the cluster to be ready, it is very important to form Quorum. A cluster has a specific
number of nodes and each node is considered as one vote. When majority (over 50
percent) of the votes or nodes are available, Quorum is achieved. If the number of
votes falls below the majority, the cluster stops providing services. But nodes will
continue listening for incoming connections from other nodes in case failed nodes
appear again on the network.

When Quorum is lost, pmxcfs becomes inaccessible to prevent data inconsistency.
If it is very important to access the pmxcfs on a node when Quorum is lost, then
executing the following command on the same node will form a Quorum:

pvecm expected 1

This command will let the node know that only one vote is expected to have
Quorum, even though there are other nodes in the cluster.

A Quorum is the minimum number of nodes needed to achieve a healthy
cluster. Proxmox needs a minimum of three nodes to form a Quorum, or
a shared storage system to store a Quorum disk for a two-node cluster.

Although not recommended, it is possible to create a Proxmox cluster with just
two nodes and achieve High Availability. Look into the Wiki page at http://pve.
proxmox.com/wiki/Two-Node_High_Availability_Cluster to get details on how
to create a two-node High Availability cluster.

www.allitebooks.com

http://pve.proxmox.com/wiki/Two-Node_High_Availability_Cluster
http://pve.proxmox.com/wiki/Two-Node_High_Availability_Cluster
http://www.allitebooks.org

Proxmox Under the Hood

[50]

It is possible to operate a cluster with just two nodes. But this form of setup is only
good for very small usage, such as the home or test platform where downtime really
has no effect on operation.

The storage configuration file
The following is the storage configuration file for our basic cluster. This file is
located under /etc/pve/storage.cfg. Currently, we have local, nfs, iscsi, and lvm
shared storage attached to the basic Proxmox cluster we created in Chapter 1, Dive
into the Virtual World With Proxmox. Later in the book, we will add a Ceph-distributed
storage system to the cluster, which provides RBD-shared storage. We will revisit this
storage.cfg file at that time to learn about options for RBD storage. But for now,
this is how our storage is configured through /etc/pve/storage.cfg for our
hands-on cluster:

dir: local
 path /var/lib/vz
 content images,iso,vztmpl,rootdir
 maxfiles 0

nfs: ISO-nfs-01
 path /mnt/pve/ISO-nfs-01
 server 192.168.145.11
 export /mnt/pmxnas01
 options vers=3
 content iso,vztmpl
 maxfiles 1

iscsi: nas-iscsi-01
 target iqn.2011-03.org.example.istgt:pmxtgt01
 portal 192.168.145.11
 content none

lvm: nas-lvm-01
 vgname nas-lvm-01
 base nas-iscsi-01:0.0.0.scsi-330000000391132dd
 shared
 content images

nfs: vm-nfs-01
 path /mnt/pve/vm-nfs-01
 server 192.168.145.11
 export /mnt/pmxnas01

Chapter 2

[51]

 options vers=3
 content images,vztmpl,backup,rootdir
 maxfiles 1

Almost all the settings in storage.cfg can be changed from the Proxmox GUI
without using any CLI.

Attached storages abide by the following common format in the storage.cfg file:

storage_type : storage_name
 path </path to folder>
 target <target file name> (for iSCSI)
 portal <server IP address> (for iSCSI)
 vgname <volume group name> (for LVM)
 base <base volume group> (for LVM)
 server <storage server IP address>
 export </shared location on NFS server>
 content <type of files the storage can hold>
 maxfile <maximum number of old backup to keep>

Local directory-based storage
Based on the previous storage configuration format, let us take a look at the local
storage segment in the storage.cfg file:

dir: local
 path /var/lib/vz
 content images,iso,vztmpl,rootdir
 maxfiles 0

From the previous configuration, we can tell that this is a local directory-based
storage, which is mounted on the /var/lib/vz path in the local Proxmox node.
The following are the content types it can hold:

• Images: Actual virtual machine images
• ISOs: ISO images of CDs
• OpenVZ templates: OpenVZ/container templates

With maxfiles set to 0, this storage location cannot do any VM backup.

NFS-shared storage
Now, we will look at the second storage section in the storage.cfg file as follows:

nfs: ISO-nfs-01
 path /mnt/pve/ISO-nfs-01

Proxmox Under the Hood

[52]

 server 192.168.145.11
 export /mnt/pmxnas01
 options vers=3
 content iso,vztmpl
 maxfiles 1

Now, we will explain the individual lines of the previous code.

The following line is an NFS storage type with the name ISO-nfs-01. We can
provide any alphanumeric name. But a meaningful name helps to easily identify
the purpose of the storage. In this instance, the name represents an NFS share,
which holds ISO files:

nfs: ISO-nfs-01

The NFS share is mounted on all nodes present in the path /mnt/pve/ISO-nfs-01,
as shown in the following code:

path /mnt/pve/ISO-nfs-01

The address in the following line is the NFS server IP address:

server 192.168.145.11

The path in the following line is the path where the actual NFS share is mounted
on the NFS server:

export /mnt/pmxnas01

By default, Proxmox uses NFS Version 3 due to its maturity and stability as shown
in the following line:

options vers=3

There is no clear performance advantage to moving from NFSv3 to NFSv4. There is
no option to change to NFSv4 through GUI. It has to be done through CLI by editing
the storage.cfg file. Change the vers option to 4 to use NFSv4. NFSv4 does add
some new improvements in Version 3. The following table shows a comparison
between NFSv3 and NFSv4:

Features NFSv3 NFSv4
State Stateless Stateful
Authentication AUTH_SYS (weak) Kerberos (strong)
Data transport UDP and TCP TCP
Permissions Unix based MS Windows-like
ID 32-bit UID/GID String based

Chapter 2

[53]

The following line shows the NFS-shared storage configured to hold an ISO image
and OpenVZ/container template only:

content iso,vztmpl

The NFS-shared storage can keep a maximum of one latest backup as shown:

maxfiles 1

Older backups get deleted. When setting the maxfiles parameter, always be sure
that the storage has enough space to keep up with the retained backups. For example,
if maxfiles is set to 10, the storage will keep 10 latest backups and delete the older
ones. When backing up 200 GB of data of virtual machines with maxfiles set to 10,
the NFS-shared storage will need 2 TB of space at all times to hold 10 backups.

The same NFS share can be attached to Proxmox multiple times for
different purposes. For example, an NFS share/nfs_server/share_name
can be attached to nfs-iso-01 to store ISO and as nfs-vm-01 to store
virtual machines.

iSCSI/LVM shared storage
iSCSI/LVM requires extra steps than NFS to set up. For this type of share to work
with Proxmox, an iSCSI share first needs to be attached with Proxmox, and then an
LVM storage can be created on top of it. The following is the iSCSI/LVM configuration
from our basic cluster:

iscsi: nas-iscsi-01
 target iqn.2011-03.org.example.istgt:pmxtgt01
 portal 192.168.145.11
 content none
lvm: nas-lvm-01
 vgname nas-lvm-01
 base nas-iscsi-01:0.0.0.scsi-330000000391132dd
 shared
 content images

Let's take a look at each line of the previous code.

The following line is an iSCSI type share with name nas-iscsi-01. Always give
iSCSI share a distinguished name, since the Proxmox GUI shows both iSCSI and
LVM as storage, but only LVM has usable storage space. The iSCSI share will always
show available space as zero (0). Also, Proxmox identifies an iSCSI base storage with
this name:

iscsi: nas-iscsi-01

Proxmox Under the Hood

[54]

The following line shows the iSCSI extent stored on the iSCSI server, which could
be backed up by a physical disk or a file. In our setup, we have used a file-based
iSCSI extent:

target iqn.2011-03.org.example.istgt:pmxtgt01

The address in the following line is the IP address for the iSCSI server:

portal 192.168.145.11

Content for iSCSI is always set to none as shown in the following line. The Proxmox
GUI has no option to set content on iSCSI. The content is configured on LVM created
based on the iSCSI target. iSCSI is a media object without any partition or filesystem.
Proxmox also allows iSCSI LUNs to be directly connected with Proxmox, but due to
stability issues this is not recommended.

content none

The following line shows the name of the LVM storage created based on the
iSCSI target attached. It should be named different than an iSCSI share that is
easily identifiable.

lvm: nas-lvm-01

The following line shows a volume group name for the LVM storage:

vgname nas-lvm-01

The following line shows the base iSCSI target that was attached in the iSCSI section:

base nas-iscsi-01:0.0.0.scsi-330000000391132dd

If shared is enabled, the LVM storage will be available through all the nodes. It is
worth mentioning here that a shared storage is required to configure node failovers
or High Availability (HA). Shared is enabled as follows:

shared

The iSCSI LVM storage can only hold VM image files. It can be used to hold ISO,
template, or any backup files, as shown in the following line:

content images

Chapter 2

[55]

User configuration files
The user.cfg file holds all user and group information in the cluster and is located
under /etc/pve/. It follows the following format to store all user information:

• For user information, the format is as follows:
<type>:<user>@realm:enable:expiry:f_name:l_name:email:
 comment

• For group information, the format is as follows:

<type>:<group_name>:user@realm:comment

Based on this format, the following is what our user.cfg file looks like right now.
Depending on user information you have entered, the file content may vary:

user:root@pam:1:0:::admin@domain.com::
user:pmxuser@pve:1:0:ABC:XYZ:pmxuser@domain.com:A User:

group:test:wahmed@pve:This is Test Group:

Note that the file user.cfg does not hold any user password. This information is
stored under /etc/pve/priv/shadow.cfg.

The password configuration file
The password configuration file is located under /etc/pve/priv/shadow.cfg and
stores all the passwords for users in the cluster. The format is rather simple but the
function of this file is rather crucial. The format to store password information is
as follows:

<user_name>:<encrypted_password>

We have one user pmxuser in the cluster. The file looks as follows:

wahmed:aLKJ98213498lsdfMN/KSDkwhkjfh290342340823:

Notice that the password file is in a /priv folder inside /etc/pve. Sensitive
information such as password, private authorization key, and known hosts
are kept in the /etc/pve/priv folder. When a new user is created through
the Proxmox GUI, a new entry is added here as password entry.

Proxmox Under the Hood

[56]

The virtual machine configuration file
The vmid.conf file stores configuration information for each virtual machine
and is located under /etc/pve/nodes/<name>/qemu-server/<vmid.conf>.
The folder structure divides all VM configuration files into categories based on
nodes. For example, the configuration file for our VM with ID#101 is stored in
the following location:

/etc/pve/nodes/pmxvm01/qemu-server/101.conf

When we migrate a VM from one node to another, Proxmox just moves the
configuration file to the destination node. If the VM is powered on during the
migration, then the entire memory content of the VM is also migrated to the
destination node. For our VM 101, if we migrate it to the second node in the
cluster, which is pmxvm02, then the location of the 101.conf file would be
as follows:

/etc/pve/nodes/pmxvm02/qemu-server/101.conf

If a node with virtual machines in it becomes inaccessible, simply
moving the <vm_id>.conf files to a different node will allow
accessing all the VMs from a different node. Any files of the folder
inside /etc/pve can be seen from any node in the cluster.

We will now look at a <vm_id>.conf file itself to see what makes up a virtual
machine behind the scenes. This configuration file follows a simple OPTION:
value format. The following is the configuration file for our VM 101:

ballon: 512
bootdisk: virtio0
cores: 1
ide2: none,media=cdrom
kvm: 0
memory: 1024
name: pmxms01
net0: e1000=42:5C:EB:2A:5F:05,bridge=vmbr0
ostype: 126
sockets: 1
virtio0: vm-nfs-01:101/vm-101-disk-1.qcow2,format=qcow2,size=15G

Chapter 2

[57]

Almost all the options in this file can be set through the Proxmox GUI under the
KVM virtual machine option menu tab. Some option values such as args, hotplug,
and so on have to be added through CLI. The following is a chart of the possible
options. The values can be used as virtual machine configurations:

Options Description Possible values
acpi: Enable/disable ACPI for VM. 1

0
args: Allows passing arguments to VM.

Features such as sound can be activated
by using KVM arguments. See the
Arguments in the KVM configuration file
section for more details on arguments
used in KVM.

See the Arguments in the KVM
configuration file section

autostart: Autorestart virtual machine after crash.
Default is 0.

1
0

ballon: Targeted RAM for VM in MB. Integer number
boot: Default boot device. c | d | n

c=hdd; d=cd-rom; n=network
bootdisk: Enable booting from a specific disk. ide | sata | scsi | virtio
core: Number of cores per socket. Default is

1.
Integer number

cpu: Emulated CPU types. Default is kvm64. 486 | kvm32 | kvm64 |
qemu32 | qemu64 | conroe |
haswell | nehalem | opteron_
G1/G2/G3/G4/G5 | penryn
| sandybridge | westmere |
athlon | core2duo | coreduo
| host | pentium | pentium2
| pentium3 | phenom

cpuunits: This is the CPU weight for the VM.
This value is used by the kernel fair
scheduler. The larger the value is, the
more CPU time VM will get. Note that
this value is relative to the weights of
all other running VMs in the cluster.
Default is 1000.

Integer 0 to 500000

description: Notes for the VM. Plain texts
freeze: Freezes CPU at startup. 1 | 0

Proxmox Under the Hood

[58]

Options Description Possible values
hostpci(n): The option allows a VM direct access

to host the hardware. When this option
is used, it is no longer possible to
migrate the VM. Caution should be
used for this option as it is still in the
experimental stage. Not recommended
for the production environment.

HOSTPCIDEVICE
Syntax for HOSTPCIDEVICE
is:
bus: <pci_device_
number>

Get pci_device_number from
the command #lspci

hotplug: Enables hotplug for disk and network
devices. Default is 0.

1 | 0

ide(n): Allows volume to be used as IDE disk
or CD-ROM. n in ide(n) is limited to
0-3.

[volume=]image_
name],[media=cdrom|disk],
[cyls=c,heads=h,
secs=s,[trans=t]],
[snapshot=on|off], [cache
=none|writethrough|writ
eback|unsafe|directsync],
[format=f], [backup=yes|no],
[rerror=ignore|report|stop],
[werror=enospc|ignore|repor
t|stop], [aio=native|threads]

kvm: Enable/disable KVM hardware
virtualization. This option disables any
hardware acceleration within a VM. A
possible usage scenario is when you are
setting up a nested virtualized cluster.
Default is 1.

1 | 0

lock: Enables locking/unlocking for VM. backup | migrate | rollback |
snapshot

memory: Allocated amount of RAM for the VM. Integer number from 16 to n
migrate_
downtime:

Value in seconds for the maximum
tolerated downtime for migration.
Default is 0.1

Number 0 to n

migrate_
speed:

Value for maximum speed in MBps for
VM migrations. Set value to 0 for no
limit. Default is 0

Integer from 0 to n

name: Name for the VM Text

Chapter 2

[59]

Options Description Possible values
net(n): Specified network devices.

MODEL=XX:XX:XX:XX:XX:XX,
[bridge=<dev>],[rate=<mbps>],
[tag=<vlanid>]

MODEL= e1000 | i82551 |
i82557b | i82559er | ne2k_isa
| ne2k_pci | pcnet | rtl8139
| virtio

onboot: Enable/disable VM autostart during
host node reboot

1 | 0

sata(n): Allows volume to be used as an SATA
disk or CD-ROM. n in sata(n) is
limited to 0-5.

[volume=]volume],
[media=cdrom|disk], [cyl
s=c,heads=h,secs=s,[trans
=t]], [snapshot=on|off] ,[cac
he=none|writethrough|wr
iteback|unsafe|directsync],
[format=f], [backup=yes|no],
[rerror=ignore|report|stop],
[werror=enospc|ignore|repor
t|stop], [aio=native|threads]

scsi(n): Allows volume to be used as an SCSI
disk or CD-ROM. n in scsi(n) is
limited to 0-13.

[volume=]volume],
[media=cdrom|disk], [cyl
s=c,heads=h,secs=s[,trans
=t]], [snapshot=on|off], [cac
he=none|writethrough|wr
iteback|unsafe|directsync],
[format=f], [backup=yes|no],
[rerror=ignore|report|stop],
[werror=enospc|ignore|repor
t|stop], [aio=native|threads]

scsihw: SCSI controller type. Default is lsi. lsi | megasas | virtio-scsi-pci
shares: This is the value-allocated amount of

RAM for autoballooning. The larger
this value is, the more RAM the VM
will get. The value 0 disables this
option. Default is 1,000.

Integer from 0 to 50,000

sockets: Number of CPU sockets. Default is 1. Integer from 1 to N
startdate: This option sets the initial date of the

real-time clock
now | YYYY-MM-DD |
YYYY-MM-DDTHH:MM:SS

Proxmox Under the Hood

[60]

Options Description Possible values
startup: This option sets the behavior for VM

startup and shutdown. Order is a
positive integer number, which sets
the order in which VMs will start.
Shutdown follows the order value
in reverse. The delay of startup and
shutdown can be set up and down in
seconds.

[order=+ Int], [up=+ Int],
[down=+ Int]

tablet: Enables/disables the USB tablet device
in VM. When running a lot of consoles
on the only VM on a host, disabling
this feature can save context switches
(http://en.wikipedia.org/
wiki/Context_switch). Default is 1.

1 | 0

unused(n): Unused volumes in VM. When a
virtual drive is deleted from a VM,
the volume does not get deleted
instantly. Instead, the status changes to
unused:<volume_name>. At a later
time, if the volume is needed, it can
be reattached to the VM by changing
the option to ide(n): | scsi(n): |
sata(n):.

String

usb(n): Enables pass-through direct access to
a USB device. n can be set to 0 to 4.
When this option is used, it is no longer
possible to migrate the VM.

HOSTUSBDEVICE
Syntax for HOSTUSBDEVICE
is:
<vendor_id:product_id>.
Get pci_device_number from
the command #lsusb -t

vga: VM display type. cirrus | std | vmware | qxl
virtio(n): Allows volume to be used as a virtio

disk. n in virtio(n) is limited to 0-15.
[volume=]volume],
[media=cdrom|disk], [cyl
s=c,heads=h,secs=s[,trans
=t]], [snapshot=on|off], [cac
he=none|writethrough|wr
iteback|unsafe|directsync],
[format=f], [backup=yes|no],
[rerror=ignore|report|stop],
[werror=enospc|ignore|repor
t|stop], [aio=native|threads]

http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Context_switch

Chapter 2

[61]

Arguments in the KVM configuration file
Arguments in a virtual machine configuration file is a way to extend the capability
of the VM beyond just the default. For example, by default, sound is not enabled
for a VM. In order to give a VM the ability to play audio/video, an argument has
to be passed through the VM configuration file. The following are some examples
of arguments that can be used in a Proxmox VM configuration file. Arguments can
be added in the following format:

args: -<device_arguments_1> -<device_arguments_2>
ballon: 512
bootdisk: virtio0
cores: 1
ide2: none,media=cdrom
. . . .
. . . .

Enable serial device in VM by using the following code:

args: -serial /dev/ttyS0

Enable sound in Windows XP VM by using the following line:

args: -device AC97,addr=0x18

Enable sound in Windows 7 VM by using the following code:

args -device intel-hda,id=sound5,bus=pci.0,addr=0x18 –device had-
 micro,id=sound5-codec0,bus=sound5.0,cad=0 –device had-
 duplex,id=sound5-codec1,bus=sound5.0,cad=1

Enable UUID in VM using the following line:

args –uuid fl234a93-20d32-2398-129032ds-2322

Enables support for aio=native in VM as follows:

args: -drive
 file=/dev/VGGRP/VOL,if=virtio,index=1,cache=none,aio=native

The Proxmox OpenVZ configuration file
The following is the OpenVZ configuration file of the container #121 that we created
in Chapter 1, Dive into the Virtual World with Proxmox.

ONBOOT="no"

PHYSPAGES="0:1024M" //RAM Allocated in bytes

Proxmox Under the Hood

[62]

SWAPPAGES="0:1024M" //Swap Allocated in bytes
KMEMSIZE="465M:512M" //Size of unswappable memory in bytes
DCACHESIZE="232M:256M"
LOCKEDPAGES="512M"
PRIVVMPAGES="unlimited" //Memory allocation limit in pages
SHMPAGES="unlimited"
NUMPROC="unlimited"
VMGUARPAGES="0:unlimited" //Guarantees the available physical
 resources of high memory consumption
 by system processes
OOMGUARPAGES="0:unlimited" //Guaranteed amount of memory during
 out-of-memory situation
NUMTCPSOCK="unlimited"
NUMFLOCK="unlimited"
NUMPTY="unlimited"
NUMSIGINFO="unlimited"
TCPSNDBUF="unlimited" //Size of buffers used to send data
 over tcp network connections
TCPRCVBUF="unlimited" //Size of buffers used to temporarily store
 data coming from tcp network connections
OTHERSOCKBUF="unlimited" //Size of buffers used by local
 connections between processes inside
 the system
DGRAMRCVBUF="unlimited" //Size of buffers used to temporarily
 store the incoming packets of UDP and
 other datagram protocols
NUMOTHERSOCK="unlimited"
NUMFILE="unlimited"
NUMIPTENT="unlimited"

Disk quota parameters (in form of softlimit:hardlimit)
DISKSPACE="15G:16896M"
DISKINODES="3000000:3300000"
QUOTATIME="0"
QUOTAUGIDLIMIT="0"

CPU fair scheduler parameter
CPUUNITS="1000" //CPU Time Weights
CPUS="1" //Number of CPU core
HOSTNAME="ubuntuCT-01.domain.com" //Container Hostname

Chapter 2

[63]

SEARCHDOMAIN="domain.com" //Container Domain
NAMESERVER="208.67.222.222" //IP address of Nameserver
NETIF="ifname=eth0,mac=3E:FF:77:32:B2:A0,host_ifname=veth121.0,
 host_mac=16:0D:1E:20:B5:7A,bridge=vmbr0" //network device

Almost all the parameters in the OpenVZ configuration file can be left at their default
values. For a complete list of parameters that can be used in OpenVZ configuration,
visit the link http://openvz.org/Man/ctid.conf.5.

OpenVZ containers that are created with Linked Cloning are heavily
dependent on the original KVM virtual machine template they are
created from. Any damages to the main template will render all the
linked containers unusable.

The version configuration file
The version configuration file shows the version numbers of configuration files in
the cluster and is located under /etc/pve/.version. Every time a configuration
file is edited, the version number increases in the .version file. The following is
the .version file in our cluster at this moment:

{
 "starttime": 1390947588,
 "clinfo": 9,
 "vmlist": 24,
 "cluster.conf": 1,
 "cluster.conf.new": 1,
 "storage.cfg": 2,
 "user.cfg": 6,
 "domains.cfg": 1,
 "priv/shadow.cfg": 2,
 "datacenter.cfg": 1,
 "vzdump.cron": 1,
 "kvstore": {
 "pmxvm01": {
 "tasklist": 127987}
 ,
 "pmxvm02": {
 "tasklist": 127925}
 }
}

 http://openvz.org/Man/ctid.conf.5

Proxmox Under the Hood

[64]

Member nodes
Located under /etc/pve/.members, the member node file shows all the member
nodes that are a part of the Proxmox cluster. It is a great way to see the cluster status,
when the Proxmox GUI becomes inaccessible for any reason. The following is the
.members file in our basic cluster:

{
 "nodename": "pmxvm01",
 "version": 9,
 "cluster": { "name": "pmx-cluster", "version": 2, "nodes": 2,
 "quorate": 1 },
 "nodelist": {
 "pmxvm01": { "id": 1, "online": 1, "ip": "192.168.145.1"},
 "pmxvm02": { "id": 2, "online": 1, "ip": "192.168.145.2"}
 }
}

The .members file
The content of a .members file is as follows:

"nodename": "pmxvm01"

The previous code section shows the current node where the .members file is
being accessed.

"version": 9

The .members file has its own version numbering system. Like the .version file,
every time .members is changed, the version increases. For example, when a node
is added or removed from the cluster, the version number moves upward.

"cluster": { "name": "pmx-cluster", "version": 2, "nodes": 2,
 "quorate": 1 },

The previous section shows cluster information, such as cluster name, cluster
version, number of member nodes, and the number of votes (quorate) needed
to form a quorum.

"pmxvm01": { "id": 1, "online": 1, "ip": "192.168.145.1"

Nodes mentioned in the node list section give information, such as ID,
online/offline status, and IP address belonging to each node.

Chapter 2

[65]

The virtual machine list file
Located under /etc/pve/.vmlist, the virtual machine list file stores a list of all the
virtual machines within the Proxmox cluster. The .vmlist file uses the following
format to store the list:

"<vmid>": { "node": "<nodename>", "type": "<vm_type>", "version":
 <int> }

We have two virtual machines and one template in our basic cluster. The following
is the information stored in the .vmlist file:

{
 "version": 24,
 "ids": {
 "121": { "node": "pmxvm01", "type": "openvz", "version": 20 },
 "101": { "node": "pmxvm01", "type": "qemu", "version": 11 },
 "201": { "node": "pmxvm01", "type": "qemu", "version": 22 }}
}

Please note that a VM with ID 201 is a KVM template in our cluster. But the .vmlist
file does not show any distinguishable information. One way to separate them is
by assigning IDs to all the templates within a particular VM. For example, all the
templates can have an assigned VM ID between 501 to 599.

The cluster logfile
The cluster logfile is for the cluster itself and is located under /etc/pve/.clusterlog.
It mostly maintains a log of login authentication of users. The following is a snippet of
our .clusterlog file:

{
 "data": [
 {"uid": 931, "time": 1392231446, "pri": 6, "tag": "pvedaemon",
 "pid": 118644, "node": "pmxvm01", "user": "root@pam", "msg":
 "successful auth for user 'root@pam'"},
 {"uid": 930, "time": 1392230545, "pri": 6, "tag": "pvedaemon",
 "pid": 115769, "node": "pmxvm01", "user": "root@pam", "
 msg": "successful auth for user 'root@pam'"},
 {"uid": 929, "time": 1392229645, "pri": 6, "tag": "pvedaemon",
 "pid": 115769, "node": "pmxvm01", "user": "root@pam", "
 msg": "successful auth for user 'root@pam'"},
. . . .
. . . .

Proxmox Under the Hood

[66]

Summary
In this chapter, we looked at the location of important configuration files needed to
run a healthy Proxmox cluster. We also looked through the configuration files from
inside to have a better understanding at the parameters used and other possible values
for different parameters. As mentioned earlier, most of these configuration files can be
changed via a Proxmox GUI. But when the GUI becomes inaccessible for any reason,
knowing where these files are located can save a tremendous amount of time by
accessing them through CLI.

In the next chapter, we will look at the exciting options of shared storage system,
VM image formats used by Proxmox, commercial/noncommercial shared storage
options, and set up an advanced shared storage using FreeNAS.

Shared Storages
with Proxmox

In simple terms, shared storage is a medium to store data for simultaneous access by
multiple devices or nodes in a network. As server and desktop virtualizations become
the norm, shared storage today is much more critical for a virtual environment.

In Chapter 1, Dive into the Virtual World with Proxmox, we set up our cluster with
NFS file sharing using FreeNAS or any other operating system you may have chosen.
Although a Proxmox cluster can fully function with Direct Attached Storage (DAS)
or a local storage system in the same Proxmox node, shared storage system has many
benefits in a production environment, such as increased manageability, seamless
storage expansion, and redundancy just to name a few. In this chapter, we are going
to look at the following topics:

• Difference between local and shared storage
• Virtual disk images supported by Proxmox
• Storage types supported by Proxmox
• Commercial and noncommercial shared storage options
• FreeNAS as a shared storage option

Local or shared, a storage system is a vital component of a Proxmox cluster.
A storage system is where all the virtual machines reside. Therefore, a deeper
understanding of different storage systems will allow an administrator to properly
plan storage requirements for any cluster environment.

Shared Storages with Proxmox

[68]

Local storage versus shared storage
Shared storage is not absolutely necessary in a Proxmox cluster environment, but
without a doubt it makes storage management a walk in the park. In a small business
with an extremely limited budget and IT staff, a local storage system will suffice.
But when data grows beyond several terabytes and keeps growing exponentially
every month due to virtual machine backups, shared storage starts to make a whole
lot of sense. In most enterprise virtual environments with critical data, shared storage
is the only logical choice due to the benefits it brings to the whole cluster operation.
The following are considered benefits of using shared storage:

• Live migration of a virtual machine
• Seamless expansion of multinode storage space
• Centralized backup
• Multilevel data tiering
• Central storage management

Live migration of a virtual machine
This is probably one of the important sought after reasons to go for shared storage
system. Live migration is when a virtual machine can be moved to a different node
without shutting it down first. Offline migration is when the virtual machine is
powered off prior migration. Proxmox nodes need updates and patches from time
to time. Some updates require immediate reboot while some require none at all.
The primary function of Proxmox nodes in a cluster is to run virtual machines.
When a node needs to be rebooted, all the running VMs must be stopped or migrated
to other nodes. Then, migrate them back to the original node after the reboot cycle is
complete. In Proxmox, a powered-on VM cannot be migrated using live migration
without powering it down first if the VM is on a local disk of the node in question.

The other drawback of local storage is that if a total Proxmox node failure occurs for
any reason, all the VMs stored in that node will be completely unavailable until the
node is fixed or replaced. This is because VMs cannot be accessed to be moved to a
different node until the issue node is powered up.

In most cases, shutting down all VMs just to reboot the host node is not an option.
This causes too much downtime depending on the number of VMs the node handles.
In order to migrate locally stored VMs, they must be stopped and migration should
be initiated from the Proxmox GUI. Migration from local storage to another local
storage takes a long time depending on the size of the VM, since Proxmox moves
an entire image file using rsync to relocate the VM to another node. Let us take a
look at the following diagram of a cluster with 40 locally stored virtual machines
with 10 on each of the four Proxmox nodes:

Chapter 3

[69]

In the previous overly simplified diagram, there are four Proxmox nodes with 10
virtual machines on each. If node 01 needs to reboot, all the 10 virtual machines have
to be stopped, the node needs to be rebooted, and then all the virtual machines must
be powered up. If node 01 needs to be taken offline for hardware upgrade, then all
virtual machines need to be stopped and we have to manually migrate each virtual
machine to a different node. If node 01 fails completely, then all these 10 virtual
machines will be inaccessible till node 01 is back on again. A brave administrator
might just take the hard drives out of the failed node, plug them into another Linux
machine, copy the virtual machine image files directly to another node, and then
power them up. But it will not work if node 01 had anything but mirror RAID in it
for all the hard drives.

So clearly, a cluster setup with a local storage for virtual machines can bring chaos
when migration is needed. Now, let us take a look at the following diagram where
four Proxmox nodes with 40 virtual machines are stored on a shared storage system:

Shared Storages with Proxmox

[70]

In the previous diagram, all 40 virtual machines are stored on a shared storage
system. The Proxmox node only holds the configuration files for each virtual
machine. In this scenario, if node 01 needs to be rebooted due to a security patch,
all the virtual machines can be simply migrated to another node without powering
down a single virtual machine. A virtual machine user will never notice that his or
her machine has actually moved to a different node. If total Proxmox node failure
occurs, the virtual machine configuration file can simply be moved from /etc/pve/
nodes/node01/qemu-server/<vmid>.conf to /etc/pve/nodes/node02/qemu-
server/<vmid>.conf.

Since all virtual machine configuration files are in a Proxmox-clustered filesystem,
they can be accessed from any node. Refer to Chapter 2, Proxmox Under the Hood, for
Proxmox cluster filesystem or pmxcfs. With virtual machine image files on shared
storage, Proxmox migration does not have to move all the image files using rsync from
one node to another, which allows much faster virtual machine migration. The rsync
is an open source program and network protocol for Unix-based systems. It provides
nonencrypted or encrypted incremental file transfers from one location to another.

The bigger the memory (RAM), the longer it will take to employ
live migration on a powered-on virtual machine.

It should be noted that shared storage can cause a single point of failure if a single
node-based shared storage is set up, such as FreeNAS or NAS4Free without High
Availability configured. By using multinode or distributed shared storage such as
Ceph Gluster and DRBD, the single point of failure can be eliminated. On a single
-node shared storage, all virtual machines are stored on one node. If a node failure
occurs, the storage will become inaccessible by Proxmox cluster, thus rendering all
running virtual machines unusable.

Seamless expansion of multinode
storage space
Digital data is growing faster than ever before in our modern 24x7 digitally
connected world. The growth has been exponential since the introduction of
virtualization. Since it is much easier to set up a virtual server at a moment's notice,
an administrator can simply clone a virtual server template and within minutes a
new virtual server is up and running, consuming storage space. If left unchecked,
this regular creating and retiring of virtual machines can force a company to grow
out of available storage space. Shared storage system is designed with this very
specific need in mind.

Chapter 3

[71]

In an enterprise environment, storage space should be added seamlessly without
shutting down critical nodes or virtual machines. By using a shared storage system,
virtual machines can now go beyond one node to scattered multiple nodes spanned
across regions. Shared storage such as distributed filesystem (for example, Ceph) can
span across several racks and comprise well over several petabytes of usable storage
space. Simply add a new node with a full bay of drives and tell the storage cluster to
recognize the new node to increase storage space for the entire cluster. Since shared
storage is separated from the virtual machine host nodes, storage can be increased
or decreased without disturbing any running virtual machines. Later in the book,
we will see how the Ceph-distributed filesystem can be expanded as much as your
budget or needs allow you to.

Centralized backup
Shared storage makes centralized backup possible by allowing each virtual machine
host node to create a backup on one central location. This helps a backup manager or
an administrator to implement a solid backup plan and manage the existing backups.
Since a Proxmox node failure will not take the shared storage system down, virtual
machines can be easily restored to a new node to reduce downtime.

Always use a separate node for backup purposes. It is not a good
practice to store both virtual machines and their backups on the
same node.

Multilevel data tiering
Data tiering is a concept where different files can be stored on different storage
pools based on their performance requirement. For example, a virtual file server
can provide very fast service if this VM is stored on an SSD storage pool, while a
virtual backup server can be stored on a slower HDD storage since backup files are
not frequently accessed, and thus, do not require very fast I/O. Tiering can be set up
using different shared storage nodes with different performance levels. It can also be
set up on the same node by assigning volumes or pools to specific sets of drives.

Shared Storages with Proxmox

[72]

Central storage management
By separating shared storage clusters from primary Proxmox clusters, we can
manage two clusters without them interfering with each other. Since shared storage
systems can be set up with separate nodes and physical switches, managing them
based on different authorizations and permissions becomes an easier task. NAS,
SAN, and other types of viable shared storage solutions come with their own
management programs, from where an administrator or operator can check storage
cluster health, disk's online/offline status, storage availability, and so on. The Ceph
storage itself does not have a graphical interface for management. The following
screenshot is what a typical Ceph command-line status looks like in order to check
all the attached nodes and health of the storage cluster:

With the recent version of Proxmox, Ceph has been included as a technology
preview. Using API, Proxmox can now collect Ceph cluster data and display
them through Proxmox GUI, as shown in the following screenshot:

Other NAS solutions such as FreeNAS, OpenMediaVault, and NAS4Free also have
a nice, user-friendly GUI. The following screenshot is an example of the hard drive
status from a FreeNAS GUI window:

Chapter 3

[73]

Local and shared storage comparison
The following table shows a comparison of both, the local and shared storage for
quick reference:

Local storage Shared storage
Virtual machine
live migration

No Yes

High Availability No Yes, when used in
multinode shared storage

Cost Lower Significantly higher
I/O performance Native disk drive speed Slower than native disk

drive speed
Skill requirements No special storage

skills required
Must be skilled on the
shared storage option used

Shared Storages with Proxmox

[74]

Local storage Shared storage
Expandability Limited to available drive

bays of a node
Expandable over multiple
nodes when multinode
or distributed shared
storage used

Maintenance complexity Virtually maintenance free Storage cluster requires
regular monitoring

Virtual disk image
We now know the great benefits of using a shared storage system over local storage
system. Now, let us take a look at the type of virtual disk image formats Proxmox
supports. Virtual disk images are the medium where a virtual machine stores its
data. If a VM configuration file is destroyed, we can just recreate it and then attach
the saved virtual image to bring everything back online. But if the image itself is
lost, so is the virtual machine. There are different types of virtual disk image formats
available to be used with a virtual machine. It is essential to know the different
types of image formats in order to have an optimal performing VM. Knowing the
disk images also helps to prevent premature shortage of space by over provisioning
virtual disks.

Supported image formats
Proxmox supports .raw, .qcow2, and .vmdk virtual disk formats. Each format has its
own set of strengths and weaknesses. The image format is usually chosen based on
the function of the virtual machine, storage system in use, performance requirement,
and available budget. The following screenshot shows the menu where we can
choose an image type during a virtual disk creation through the GUI:

Chapter 3

[75]

The following table is a brief summary of the different image formats and their
possible usage:

Image
type

Storage
supported Strength Weakness

.qcow2 NFS and
directory

Allows dynamic virtual
storage image files

Complex file formats with
additional software layers

Stable and secure High I/O overhead
Most features rich among
image types

.raw
LVM, RBD,
iSCSI, and
directory

No additional software layer.
Direct access to image files

Fixed virtual image only.
Cannot be used to store
dynamic images

Stable, secure, and fastest VM takes longer to back up due
to the size of image files

.vmdk NFS and
directory

Works exceptionally well
with VMware infrastructure

Additional software layer, thus
slower performance

Allows dynamic virtual
storage image files

Not completely tested with
Proxmox

Setting up virtual machines with the wrong image format is very
forgiving. You can always convert these image types from one format
to another. Conversion can be done from both, CLI and GUI. Virtual
disk image conversion is explained later in this chapter.

The .qcow2 image type
The .qcow2 type is a very stable and matured VM image format. Proxmox
completely supports this file format. A VM disk created using .qcow2 is much
smaller since by default it creates thin-provisioned disk images. For example, an
Ubuntu VM created with 50 GB storage space may have an image file with a size
around 1 GB. As a user stores data in the VM, this image file will grow gradually.
The .qcow2 image format allows an administrator to overpopulate shared storage
by over provisioning VMs with the .qcow2 image file. This is not a problem if users
do not store data rapidly and fill up their virtual machines. In that case, the shared
storage will run out of space to accommodate all the growing virtual image files.
Available storage space should be regularly monitored in such an environment. It
is a good practice to add additional storage space when the overall storage space
consumption reaches around 80 percent.

Shared Storages with Proxmox

[76]

Thin provisioning is when the virtual disk image file does not preallocate
all the blocks, thus keeping the size of the image file to only what we want.
As more data is stored in the virtual machine, the thin provisioned image
file grows till it reaches the maximum size allocated. Thick provisioning,
on the other hand, is when the virtual disk image file preallocates all the
blocks, thus creating an image file which is exactly of the size set prior to
creating the virtual disk image file.

The .qcow2 format also has very high I/O overhead due to its additional software
layer. Thus, it is a bad choice of image format for a VM such as a database server.
Any data being read or written into the image format goes through the qcow2
software layer, which increases the I/O making it slower. A backup created from a
qcow2 image can only be restored to an NFS or local directory.

When budget is the main concern and storage space is very limited, qcow2 is an
excellent choice. This image type supports KVM live snapshots to preserve states of
virtual machines.

The .raw image type
The .raw image type is also a very stable and matured VM image format. Its primary
strength lies in performance. There is no additional software layer for data to go
through. VM has direct pass-through access to the raw file, which makes it much
faster. Also, there is no software component attached to it, so it is much less problem
prone. The raw format can only create a fixed-size or thick-provisioned VM image
file. For example, an Ubuntu VM created with 50 GB storage space will have a 50 GB
image file. This helps an administrator to know exactly how much storage is in use,
so there is no chance of an uncontrolled out-of-storage situation.

The .raw type is the preferred file format for all Proxmox VMs. A raw image
format VM can be restored to just about any storage type. In a virtual environment,
additional virtual disk image files can be added to a virtual machine at any time. So,
it is not necessary to initially allocate a larger size .raw virtual disk image file with
possible future growth in mind. The VM can start with a smaller .raw image file and
add more disk images as needed. For example, a VM with 50 GB data starts with an
80 GB .raw image file. It then adds more virtual disk images at a 50 GB increment
as need arises. Proxmox allows quite a few additional virtual drives to be added to
a VM. The following is a table of the maximum number of allowed disk device per
VM by Proxmox:

Chapter 3

[77]

Bus/device type Maximum allowed
IDE 3
SATA 5
VirtIO 15
SCSI 13

Since all the .raw disk image files are preallocated, there are no risks of over
provisioning beyond the total available storage space. KVM live snapshots are also
supported by the .raw image format.

The .vmdk image type
The .vmdk image format is very common in the VMware infrastructure. The only
advantage of Proxmox supporting .vmdk is the ease of VM migration from VMware
to Proxmox cluster. A VM created in VMware with a .vmdk image format can easily
be configured for use in the Proxmox cluster and converted. There are no possible
reasons to keep using .vmdk without converting it to .raw or .qcow2, except during a
transitional period such as converting virtual machines from VMware infrastructure.

Image file manipulation
A Proxmox virtual image file can be manipulated from both, WebGUI and CLI.
The WebGUI allows the resize (increase only), move, and delete options.

Shared Storages with Proxmox

[78]

When a disk image file is selected, the Resize disk and Move disk buttons become
available. Virtual machine image files can also be manipulated using CLI commands.
The following are a few examples of the most common commands to delete, convert,
and resize an image file:

Usage: qemu-img command [command options]
#qemu-img create –f <type> -o <filename> <size>

#qemu-img create –f raw test.raw 1024M
Create image file

#qemu-img convert <source> -O <type> <destination>

#qemu-img convert test.vmdk –O qcow2 test.qcow2
Convert image file

#qemu-img resize <filename> <+|-><size>

#qemu-img resize test.qcow2 +1024M
Resize image file

Resizing virtual disk image
Resize disk only supports increasing the size of the virtual disk image file. It has no
shrink function. The Proxmox resize option only adjusts the size of the virtual disk
image file. After any resizing, the partition must be adjusted from inside the VM.
The safest way to resize partitions is to boot a Linux-based virtual machine with a
partitioning ISO image such as gparted (http://gparted.org/download.php),
and then resize the partitions using gparted graphical interface. It is also possible
to perform an online partition resizing while the virtual machine is powered on.
Resizing a virtual disk image file involves the following three steps:

1. Resize the virtual disk image file in Proxmox using any one of the following:
 ° From GUI: Select the virtual disk and then click on Resize disk
 ° From CLI: Run the command # qm resize <vm_id> <virtual_

disk> +<size>G

2. Resize the partition of the virtual disk image file from inside VM using any
one of the following:

 ° For Windows VM: Resize the disk by navigating to Administrative
Tools | Computer Management

 ° For Linux VM with RAW partition, use the following command:
cfdisk <disk_image>

 ° For Linux VM with LVM partition, use the following command:
cfdisk </dev/XXX/disk_image>

http://gparted.org/download.php

Chapter 3

[79]

 ° For Linux VM with QCOW2 partition, use the following
command lines:
apt-get install nbd-client

qemu-ndb –connect /dev/nbd0 <disk_image>

cfdisk /dev/nbd0

qemu-nbd –d /dev/nbd0

3. Resize the filesystem in the partition of the virtual disk image file using any
one of the following methods:

 ° For a Linux client with LVM:
pvscan (find PV name)

pvresize /dev/xxx (/dev/xxx found from pvscan)

lvscan (find LVname)

lvresize –L+<size>G /dev/xxx/lv_<disk>

 ° To use 100 percent free space:

lvresize –l +100%FREE /dev/xxx/lv_<disk>

resize2fs /dev/xxx/lv_<disk> (resize filesystem)

Steps 2 and 3 are only necessary if online resizing is done without shutting down a
VM. If gparted or another bootable partitioning medium is used, then only step 1 is
needed before booting the VM with ISO.

Moving a virtual disk image
Move disk allows the image file to be moved to a different storage or converted to a
different image type, as shown in the following screenshot:

Shared Storages with Proxmox

[80]

In the Move disk option menu, just select the Target Storage and Format type, and
then click on Move disk to move the image file. Moving can be done live without
shutting down the VM. Checking Delete source will delete the source image file after
the move is complete.

The Format type in the Move disk option will be greyed out if the
destination storage only supports one image format type. In the
previous example, ssd-ceph-01 is an RBD storage in Ceph Pool. Since
RBD only supports the RAW format, the format type has been greyed
out automatically. Learn more about Ceph in Chapter 7, High Availability
Storage for High Availability Cluster.

Storage types in Proxmox
In the previous section, we saw the image types that can be used in a Proxmox
cluster to create a virtual machine. We will now look at different storage types where
we can store those image files. Proxmox supports a wide selection of storage types
for virtual machine storing:

• Directory: This is mostly a locally mounted folder
• LVM: This stands for the Logical Volume Management group
• NFS: This stands for the Network File System share
• iSCSI: This stands for the Internet SCSI target
• GlusterFS: This stands for Gluster File System
• RBD: This stands for RADOS Block Devices

The storage types are shown in the following screenshot:

Chapter 3

[81]

Directory
Directory storage is mostly a mounted folder on the Proxmox local node. It is mainly
used as local storage. By default, this location is mounted under /var/lib/vz.

Any VM stored in this Directory storage does not allow live migration. The VM must
be stopped before migrating to another node. All virtual disk image file types can be
stored in the Directory storage.

Logical Volume Management
Logical Volume Management (LVM) provides a method of storage space allocation
by using one or more disk partitions or drives as the underlying base storage. LVM
storage requires a base storage to be set up and function properly. In Proxmox, the
base storage is provided through an iSCSI device. LVM allows scalable storage space
since the base storage could be on the same node or on a different one. LVM storage
only supports a RAW virtual disk image format. For more details on LVM, visit the
link http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux).

Network File System
Network File System or NFS in short is a well-matured filesystem protocol originally
developed by Sun Microsystems in 1984. Currently, Version 4 of the NFS protocol is in
effect. But it was not as widely accepted as Version 3 due to a few compatibility issues.
But the gap is closing fast between Version 3 and 4. Proxmox, by default, uses Version
3 of the NFS protocol, while administrators can change to Version 4 through the use
of option in storage.cfg. NFS storage can store the .qcow2, .raw, and .vmdk image
formats, providing versatility and flexibility in a clustered environment. NFS is also the
easiest to set up and requires the least amount of upfront hardware cost, thus allowing
a budget-conscious small business to get their hands on a stable shared storage system.

Care should be taken when using NFS Version 4 instead of 3 in Proxmox.
There are still few bugs that exist in NFSv4, such as kernel panic during
system startup while mounting the NFSv4 share.

Although NFS is a long-standing storage type, supported by just about any
Linux-based operating system, NFS should not be used for VMs requiring a high
performing I/O. For in-depth details on NFS, visit the link http://en.wikipedia.
org/wiki/Network_File_System.

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)
http://en.wikipedia.org/wiki/Network_File_System
http://en.wikipedia.org/wiki/Network_File_System

Shared Storages with Proxmox

[82]

RADOS Block Device
RADOS Block Device or RBD storage is provided by Ceph distributed storage
system. It is the most complex storage system, which requires multiple nodes to
be set up. By design, Ceph is a distributed storage system and can be spanned over
several dozen nodes. The RBD storage can only store raw image formats. To expand
a Ceph cluster, simply add a hard drive or a node and let Ceph know about the new
addition. Ceph will automatically rebalance data to accommodate the new hard
drive or node. Ceph can be scaled to several petabytes or more. Ceph also allows
multiple pool creations for different disk drives. For example, we can store database
servers' VM images on an SSD-driven pool and backup server images on a slower-
spinning drive pool. Ceph is the recommended storage system for medium to large
cluster environments due to its resiliency against data loss and the simplicity of
storage expandability.

From Proxmox VE Version 3.2, the Ceph server has been integrated into Proxmox to
coexist on the same node. The ability to manage Ceph clusters through the Proxmox
GUI has also been added. In Chapter 7, High Availability Storage for High Availability
Cluster, we will see Ceph in greater details. To know more about Ceph storage,
visit the link http://ceph.com/docs/master/start/intro/.

GlusterFS
GlusterFS is a powerful, distributed filesystem, which can be scaled to several
Petabytes under a single mount point. Gluster is a fairly new addition into Proxmox,
which allows GlusterFS users to take full advantage of the Proxmox cluster.
GlusterFS uses the Stripe, Replicate, or Distribute mode to store files. Although
the Distribute mode offers the option of scalability, it should be noted that in the
Stripe mode when a GlusterFS node goes down, all the files in that server become
inaccessible. Meaning, if a particular file is saved by the GlusterFS translator into
that server, only that node holds the entire data of that file. Even though all other
nodes are operational, that particular file will no longer be available. GlusterFS can
be scaled up to petabytes inside a single mount. The GlusterFS storage can be set up
with just two nodes and supports NFS, thus allowing to store any image file format.
To know more details on GlusterFS, visit http://www.gluster.org/community/
documentation/index.php/GlusterFS_Concepts.

http://ceph.com/docs/master/start/intro/
http://www.gluster.org/community/documentation/index.php/GlusterFS_Concepts
http://www.gluster.org/community/documentation/index.php/GlusterFS_Concepts

Chapter 3

[83]

Noncommercial/commercial storage
options
We have discussed which virtual machine image formats and storage types are
supported by Proxmox. To better acquaint ourselves for test or practice labs, we
are now going to take a look at what noncommercial and commercial options we
have out there to set up a storage system for a Proxmox-clustered environment.
By noncommercial, I mean they are free without any primary features missing and
without any trial limits.

These noncommercial options will allow you to set up a fully functional shared
storage system with some hard work. Commercial versions usually come with
full support from the provider company and in some cases the ongoing Service
Level Agreement (SLA) contract. The following list is by no means a complete one,
but a guideline to point you to the direction you need to go when planning and
implementing a Proxmox cluster environment. Each of these products can provide
everything you need to set up a shared storage:

Noncommercial Commercial
Solaris+napp-IT www.napp-it.org Nexenta www.nexenta.com

FreeNAS www.freenas.org FalconStor www.falconstor.com

GlusterFS www.gluster.org EMC2 www.emc.com

Ceph www.ceph.com Yottabyte www.yottabyte.com

Open-E DSS www.open-e.com

NetApp www.netapp.com

A question often asked is "Can I set up a Proxmox production cluster environment
by using only noncommercial solutions?" The short answer is, "YES!"

It is indeed possible to create an entire complex Proxmox cluster by using only
noncommercial storage solutions. But you have to be prepared for the unexpected
and spend a significant amount of time learning the system. Commercial solutions
aside, just studying a system will give an administrator an advantage when
unforeseen issues arise. The main difference between these noncommercial and
commercial solutions is the company support behind it. Typically, noncommercial
solutions only have community-driven support through forums and message boards.
Commercial offerings come with technical support with the response time varying
from anything between immediate time to 24 hours.

www.napp-it.org
www.nexenta.com
www.freenas.org
www.falconstor.com
www.gluster.org
www.emc.com
www.ceph.com
www.yottabyte.com
www.open-e.com
www.netapp.com

Shared Storages with Proxmox

[84]

Trade-off of noncommercial open source solutions is the money
that is saved, which usually gets exchanged with the time spent on
research and mistakes.

In this book, we will look at two noncommercial storage options, FreeNAS and
Ceph. Both are stable enough to set up a fully functional Proxmox cluster. FreeNAS
is more targeted for small businesses or home lab usage, while Ceph is capable
enough to take on just about any simple or complex cluster environment. There are
some scenarios where FreeNAS has been used as backup servers to back up virtual
machines. Multiple FreeNAS servers can be set up to perform separate backup tasks.

Although Ceph is on the noncommercial side of the table, it also has paid
commercial support. Inktank, the maker of Ceph has complete details of
commercial support subscription. Just visit www.inktank.com for more
information on Inktank.

FreeNAS – budget shared storage
For an environment where the budget is extremely tight and minor downtime is not
a big issue, FreeNAS is very much capable to provide all shared storage needs. It is
easy to set up, feature rich, and best of all, free. The following screenshot is a typical
FreeNAS dashboard presented upon login. The screenshot has been taken from
FreeNAS 9.2.1.5. Other versions may be slightly different.

www.inktank.com

Chapter 3

[85]

FreeNAS provides many services such as AFP, NFS, CIFS, iSCSI, FTP, SSH, SNMP,
RSYNC, and so on. FreeNAS can take advantage of ZFS, which offers a stable
platform to build a virtual environment on.

ZFS was originally designed by Sun Microsystems combining filesystem
and logical volume manager to create a new type of filesystem, which
supports high storage capacities, provides protection against data
corruption, performs continuous integrity checking, and so on. To know
more about ZFS, visit http://en.wikipedia.org/wiki/ZFS.

At a glance from the FreeNAS volume status page, as shown in the following
screenshot, an administrator can check the health of all the volumes in FreeNAS:

The whole of FreeNAS is menu driven and organized with a very user-friendly
graphical interface. All the tasks of storage management can be accomplished
without a single CLI command. The following screenshot is a menu-driven
window to create a new ZFS volume:

http://en.wikipedia.org/wiki/ZFS

Shared Storages with Proxmox

[86]

FreeNAS also supports advanced networking features such as network bonding to
increase storage node bandwidth. The only drawback of noncommercial FreeNAS
is that it does not have High Availability or an out-of-the-box clustering option.
With some work, it is possible to set up High Availability FreeNAS cluster using
heartbeat, but it is not stable to be used in a production environment. But a setup of
two replicated non-High Availability FreeNAS nodes can be easily achieved using
RSYNC built-in with FreeNAS.

For those who really want to try a shared storage such as FreeNAS but with
availability, give NAS4Free (http://www.nas4free.org) a try. By following the
instructions at http://blackcatsoftware.us/inprogress-configure-nas4free-
high-availabilty-storage-carphastzfs/, High Availability shared storage can
be created with NAS4Free.

Despite the lack of High Availability in FreeNAS, it is a better choice over NAS4Free
from the stability point of view. NAS4Free is built on the very latest kernel and thus
prone to have issues due to bugs.

To take full potential advantage of FreeNAS, it is recommended to use the ZFS volume
system. ZFS has very high resiliency against data loss. FreeNAS also supports Stripe,
Mirror, RAIDZ1=1 disk failure, RAIDZ2 =2 disks failure, and RAIDZ3=3 disks failure,
providing a high-level of redundancy. In case of total node failure, all the hard drives
can be moved to a new node with FreeNAS already set up and brought by importing
into new FreeNAS.

One thing to keep in mind is that the ZFS filesystem consumes a large amount of
memory for caching. Any leftover memory will be consumed by ZFS to provide fast
I/O. So, if you see that your FreeNAS node is running out of memory, do not panic.
It is not always necessary to go out and buy more RAM every time FreeNAS runs
out of memory. A general rule of thumb is 1 GB of RAM for every TB of hard drive
space. FreeNAS will perform satisfactorily if it has a minimum of 8 GB RAM. If RAM
is extremely scarce, try to use UFS instead of the ZFS volume. Memory consumption
ratio is much smaller in UFS than ZFS.

Like Ceph or GlusterFS, it is also possible to create different volumes on different
pools of disk drive. For example, a volume of SSD pool can be created just by selecting
SSD drives, while an HDD volume can comprise of the remaining spinning hard disk
drives. This will allow testing different pool performances while giving somebody a
chance to learn about pooling and data tiering. The only drawback of FreeNAS in this
scenario is pools cannot be spanned over multiple nodes as Ceph can.

http://www.nas4free.org
http://blackcatsoftware.us/inprogress-configure-nas4free-high-availabilty-storage-carphastzfs/
http://blackcatsoftware.us/inprogress-configure-nas4free-high-availabilty-storage-carphastzfs/

Chapter 3

[87]

The most common usage of FreeNAS with the Proxmox cluster is for backup purpose.
Since backup nodes do not need to be high performing nodes and downtime is
tolerable, FreeNAS is an excellent choice for this task. With two FreeNAS backup
nodes, VM backups can be replicated to each FreeNAS node and provide backup
redundancy. NFS share is most commonly used for a Proxmox VM backup.

FreeNAS has an excellent built-in reporting system, which shows minute-by-minute
information of different critical parts of the FreeNAS node. Data is presented in a
very easy way to understand the graphical format. Information about CPU, memory,
storage quota, network bandwidth, and so on can prove very valuable when there is
an issue. Sometimes, this data can also prevent disasters by spotting symptoms such
as out of memory or high CPU consumption continuously. The following screenshot
is an example of the Reporting system showing CPU Usage and System Load:

As mentioned earlier, FreeNAS is a great choice to learn what shared storage is all
about and have a fully functional Proxmox cluster set up and running in no time.
It can also be used in a small business setup where the budget is extremely limited
and redundancy is not the top priority.

Shared Storages with Proxmox

[88]

Summary
In this chapter, we took a look at what storage options are supported by Proxmox and
their advantages and disadvantages. We also saw the types of virtual image files that
can be used with Proxmox and when to use them. Storage is an important component
for Proxmox clustering. Since a storage system is where virtual machines are created
and operated from, a properly implemented storage system is very critical to make any
cluster a successful one. With proper planning of different storage needs and choosing
the right format and option, a lot of hassle and frustration can be minimized later on.

In the previous chapter, we very briefly saw the arguments usage in the Proxmox
configuration files. In the next chapter, Chapter 4, A Virtual Machine for a Virtual World,
we will analyze those arguments in greater detail to extend the cluster ability beyond
just its default. Using arguments, we can enable features such as sound, USB, backup
performance, and so on for a virtual machine.

A Virtual Machine for a
Virtual World

We are about to embark upon a new kind of virtual world, which is beyond just
basic. Through previous chapters, we have familiarized ourselves with Proxmox up
close and personal. We saw what a Proxmox GUI looks like and got our hands dirty
with the Proxmox configuration files and directory structure. We also learned what
shared storage system is and how it is integrated with the Proxmox cluster. In this
chapter, we are going to take it one step further by covering at the following topics:

• Advanced configuration options for virtual machines
• Nested virtual environment
• Proxmox backup/restore system
• Virtual machine snapshots
• Command-line backup

A Virtual Machine for a Virtual World

[90]

Creating a VM from a template
Let us start by creating our second virtual machine from the Ubuntu template we
created in the Transforming VM into a Template section in Chapter 1, Dive into the
Virtual World with Proxmox. Right-click on the template and select Clone, as shown
in the following screenshot:

Use the settings shown in the following screenshot for the new virtual machine.
You can also use any virtual machine name you like. A VM name can only be
alphanumeric without any special characters.

You can also use any other VM you have already created in your own virtual
environment. Access the virtual machine through the Proxmox console after cloning
and setting up network connectivity such as IP address, hostname, and so on. For
our Ubuntu virtual machine, we are going to edit interfaces in /etc/network/,
hostname in /etc/, and hosts in /etc/.

Chapter 4

[91]

Advanced configuration options for a VM
We will now look at some of the advanced configuration options we can use to
extend the capability of a KVM virtual machine.

The hotplugging option for a VM
Although it is not a very common occurrence, a virtual machine can run out of storage
unexpectedly whether due to over provisioning or improper storage requirement
planning. For a physical server with hot swap bays, we can simply add a new hard
drive and then partition it, and you are up and running. Imagine another situation
when you have to add some virtual network interface to the VM right away, but you
cannot afford shutting down the VM to add the vNICs. The hotplug option also
allows hotplugging virtual network interfaces without shutting down a VM.

Proxmox virtual machines by default do not support hotplugging. There are some
extra steps needed to be followed in order to enable hotplugging for devices such
as virtual disks and virtual network interfaces. Without the hotplugging option,
the virtual machine needs to be completely powered off and then powered on after
adding a new virtual disk or virtual interface. Simply rebooting the virtual machine
will not activate the newly added virtual device. In Proxmox 3.2 and later, the hotplug
option is not shown on the Proxmox GUI. It has to be done through CLI by adding
options to the <vmid>.conf file. Enabling the hotplug option for a virtual machine
is a three-step process:

1. Shut down VM and add the hotplug option into the <vmid>.conf file.
2. Power up VM and then load modules that will initiate the actual hotplugging.
3. Add a virtual disk or virtual interface to be hotplugged into the

virtual machine.

The hotplugging option for <vmid>.conf
Shut down the cloned virtual machine we created earlier and then open the
configuration file from the following location. Securely log in to the Proxmox
node or use the console in the Proxmox GUI using the following command:

nano /etc/pve/nodes/<node_name>/qemu-server/102.conf

A Virtual Machine for a Virtual World

[92]

With default options added during the virtual machine creation process, the following
code is what the VM configuration file looks like:

ballon: 512
bootdisk: virtio0
cores: 1
ide2: none, media=cdrom
kvm: 0
memory: 1024
name: pmxUB01
net0: e1000=56:63:C0:AC:5F:9D,bridge=vmbr0
ostype: l26
sockets: 1
virtio0: vm-nfs-01:102/vm-102-disk-1.qcow2,format=qcow2,size=32G

Now, at the bottom of the 102.conf configuration file located under /etc/pve/
nodes/<node_name>/qemu-server/, we will add the following option to enable
hotplugging in the virtual machine:

hotplug: 1

Save the configuration file and power up the virtual machine.

To find out more details on the possible options available for
Proxmox virtual machines, refer to Chapter 2, Proxmox Under the
Hood, and visit Proxmox Wiki at https://pve.proxmox.com/
wiki/Manual:_vm.conf.

Loading modules
After the hotplug option is added and the virtual machine is powered up, it is now
time to load two modules into the virtual machine, which will allow hotplugging
a virtual disk anytime without rebooting the VM. Securely log in to VM or use the
Proxmox GUI console to get into the command prompt of the VM. Then, run the
following commands to load the acpiphp and pci_hotplug modules. Do not load
these modules to the Proxmox node itself:

sudo modprobe acpiphp

sudo modprobe pci_hotplug

The acpiphp and pci_hotplug modules are two hot plug drivers
for the Linux operating system. These drivers allow addition of a
virtual disk image or virtual network interface card without shutting
down the Linux-based virtual machine.

https://pve.proxmox.com/wiki/Manual:_vm.conf
https://pve.proxmox.com/wiki/Manual:_vm.conf

Chapter 4

[93]

The modules can also be loaded automatically during the virtual machine boot by
inserting them in /etc/modules. Simply add acpiphp and pci_hotplug on two
separate lines in /etc/modules.

Adding virtual disk/vNIC
After loading both the acpiphp and pci_hotplug modules, all that remains is adding
a new virtual disk or virtual network interface in the virtual machine through a web
GUI. On adding a new disk image, check that the virtual machine operating system
recognizes the new disk through the following command:

#sudo fdisk -l

For a virtual network interface, simply add a new virtual interface from a web GUI
and the operating system will automatically recognize a new vNIC. After adding
the interface, check that the vNIC is recognized through the following command:

#sudo ifconfig –a

Please note that while the hotplugging option works great with Linux-based
virtual machines, it is somewhat problematic on Windows XP/7-based VMs.
Hotplug seems to work great with both 32- and 64-bit versions of the Windows
Server 2003/2008/2012 VMs. The best practice for a Windows XP/7-based virtual
machine is to just power cycle the virtual machine to activate newly added virtual
disk images. Forcing the Windows VM to go through hotplugging will cause an
unstable operating environment. This is a limitation of the KVM itself.

Nested virtual environment
In simple terms, a virtual environment inside another virtual environment is known
as a nested virtual environment. If the hardware resource permits, a nested virtual
environment can open up whole new possibilities for a company. The most common
scenario of a nested virtual environment is to set up a fully isolated test environment to
test software such as hypervisor, or operating system updates/patches before applying
them in a live environment.

A nested environment can also be used as a training platform to teach computer
and network virtualization, where students can set up their own virtual environment
from the ground without breaking the main system. This eliminates the high cost of
hardware for each student or for the test environment. When an isolated test platform
is needed, it is just a matter of cloning some real virtual machines and giving access to
authorized users. A nested virtual environment has the potential to give the network
administrator an edge in the real world by allowing cost cutting and just getting things
done with limited resources.

A Virtual Machine for a Virtual World

[94]

One very important thing to keep in mind is that a nested virtual environment
will have a significantly lower performance than a real virtual environment. If
the nested virtual environment also has virtualized storage, performance will
degrade significantly. The loss of performance can be offset by creating a nested
environment with an SSD storage backend. When a nested virtual environment
is created, it usually also contains virtualized storage to provide virtual storage
for nested virtual machines. This allows for a fully isolated nested environment
with its own subnet and virtual firewall.

There are many debates about the viability of a nested virtual environment. Both
pros and cons can be argued equally. But it will come down to the administrator's
grasp on his or her existing virtual environment and good understanding of the
nature of requirement. The cluster that we have been building through out this
book so far is a nested virtual cluster itself, specifically created to write this book.
This allowed us to build a fully functional Proxmox cluster from the ground up
without using additional hardware. The following screenshot is a side-by-side
representation of a nested virtual environment scenario:

In the previous comparison, on the right-hand side we have our basic cluster we
have been building so far. On the left-hand side we have the actual physical nodes
and virtual machines used to create the nested virtual environment to help us along
the book.

Chapter 4

[95]

Our nested cluster is completely isolated from the rest of the physical cluster with
a separate subnet. Internet connectivity is provided to the nested environment by
using a virtualized firewall 1001-scce-fw-01.

Like the hotplugging option, nesting is also not enabled in the Proxmox cluster by
default. Enabling nesting will allow nested virtual machines to have KVM hardware
virtualization, which increases the performance of nested virtual machines. To enable
KVM hardware virtualization, we have to edit the modules in /etc/ of the physical
Proxmox node and <vmid>.conf of the virtual machine. We can see that the option is
disabled for our cloned nested virtual machine in the following screenshot:

Enabling KVM hardware virtualization
KVM hardware virtualization can be added just by performing the following few
additional steps:

1. In each Proxmox node, add the following line in the /etc/modules file:
kvm-amd nested=1

2. Migrate or shut down all virtual machines of Proxmox nodes and then reboot.

A Virtual Machine for a Virtual World

[96]

3. After the Proxmox nodes reboot, add the following argument in the <vmid>.
conf file of the virtual machines used to create a nested virtual environment:
args: -enable-nesting

4. Enable KVM hardware virtualization from the virtual machine option menu
through GUI. Restart the nested virtual machine.

Network virtualization
Network virtualization is a software approach to set up and maintain network
without physical hardware. Proxmox has great features to virtualize the network
for both real and nested virtual environments. By using virtualized networking,
management becomes simpler and centralized. Since there is no physical hardware
to deal with, the network ability can be extended within a minute's notice. Especially
in a nested virtual environment, the use of virtualized network is very prominent.
We will look at network virtualization at greater length in the next chapter. But it
suffices to say that in order to set up a successful nested virtual environment, a better
grasp of the Proxmox network feature is required. With the introduction of Open
vSwitch (www.openvswitch.org) in Proxmox 3.2 and later, network virtualization
is now much more efficient.

Backing up a virtual machine
A good backup strategy is the last line of defense against disasters, such as hardware
failure, environmental damages, accidental deletions, and misconfigurations. In a
virtual environment, a backup strategy turns into a daunting task because of the
number of machines needed to be backed up. In a busy production environment,
virtual machines may be created and discarded whenever needed or not needed.
Without a proper backup plan, the entire backup task can go out of control. Gone
are those days when we only had few server hardware to deal with and backing
them up was an easy task. Today's backup solutions have to deal with several
dozens or possibly several hundred virtual machines.

Depending on the requirement, an administrator may have to backup all the virtual
machines regularly instead of just the files inside them. Backing up an entire virtual
machine takes up a very large amount of space after a while depending on how many
previous backups we have. A granular file backup helps to quickly restore just the file
needed but sure is a bad choice if the virtual server is badly damaged to a point that it
becomes inaccessible. Here, we will see different backup options available in Proxmox,
their advantages, and disadvantages.

www.openvswitch.org

Chapter 4

[97]

Proxmox backup and snapshot options
Proxmox has the following two backup options:

• Full backup: This backs up the entire virtual machine.
• Snapshot: This only creates a snapshot image of the virtual machine.

Proxmox 3.2 and above can only do a full backup and cannot do any
granular file backup from inside a virtual machine. Proxmox also does
not use any backup agent.

Backing up a VM with a full backup
All full backups are in the .tar format containing both the configuration file and
virtual disk image file. The TAR file is all you need to restore the virtual machine
on any nodes and on any storage. Full backups can also be scheduled on a daily
and weekly basis. Full virtual backup files are named based on the following format:

vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.lzo

The following screenshot shows what a typical list of virtual machine backups
looks like:

A Virtual Machine for a Virtual World

[98]

Proxmox 3.2 and above cannot do full backups on LVM and Ceph RBD storage.
Full backups can only occur on local, Ceph FS, and NFS-based storages, which are
defined as backup during storage creation. Please note that Ceph FS and RBD are
not the same type of storage even though they both coexist on the same Ceph cluster.
In Chapter 7, High Availability Storage for High Availability Cluster, we will create both
RBD and Ceph FS in a Ceph cluster. The following screenshot shows the storage
feature through the Proxmox GUI with backup-enabled attached storages:

The backup menu in Proxmox is a true example of simplicity. With only three
choices to select, it is as easy as it can get. The following screenshot is an example
of a Proxmox backup menu. Just select the backup storage, backup mode,
and compression type and that's it:

Creating a schedule for Backup
Schedules can be created from the virtual machine backup option. We will see
each option box in detail in the following sections. The options are shown in the
following screenshot:

Chapter 4

[99]

Node
By default, a backup job applies to all nodes. If you want to apply the backup job to a
particular node, then select it here. With a node selected, backup job will be restricted
to that node only. If a virtual machine on node 1 was selected for backup and later on
the virtual machine was moved to node 2, it will not be backed up since only node 1
was selected for this backup task.

Storage
Select a backup storage destination where all full backups will be stored. Typically
an NFS server is used for backup storage. They are easy to set up and do not require
a lot of upfront investment due to their low performance requirements. Backup
servers are much leaner than computing nodes since they do not have to run
any virtual machines. Backups are supported on local, NFS, and Ceph FS storage
systems. Ceph FS storages are mounted locally on Proxmox nodes and selected as
a local directory. Both Ceph FS and RBD coexist on the same Ceph cluster. More
details about Ceph/RBD/Ceph FS are given in Chapter 7, High Availability Storage
for High Availability Cluster.

Day of Week
Select which day or days the backup task applies to. Days' selection is clickable in a
drop-down menu. If the backup task should run daily, then select all the days from
the list.

A Virtual Machine for a Virtual World

[100]

Start Time
Unlike Day of Week, only one time slot can be selected. Multiple selections of time
to backup different times of the day are not possible. If the backup must run multiple
times a day, create a separate task for each time slot.

Selection mode
The All selection mode will select all the virtual machines within the whole Proxmox
cluster. The Exclude selected VMs mode will back up all VMs except the ones selected.
Include selected VMs will back up only the ones selected.

Send email to
Enter a valid e-mail address here so that the Proxmox backup task can send an e-mail
upon backup task completion or if there was any issue during backup. The e-mail
includes the entire log of the backup tasks. It is highly recommended to enter the
e-mail address here so that an administrator or backup operator can receive backup
task feedback e-mails. This will allow us to find out if there was an issue during
backup or how much time it actually takes to see if any performance issue occurred
during backup. The following screenshot is a sample of a typical e-mail received
after a backup task:

Chapter 4

[101]

Compression
By default, the LZO compression method is selected. LZO (http://en.wikipedia.
org/wiki/Lempel–Ziv–Oberhumer) is based on a lossless data compression algorithm,
designed with the decompression ratio in mind. LZO is capable to do fast compression
and even faster decompressions. GZIP will create smaller backup files at the cost of
high CPU usage to achieve a higher compression ratio. Since higher compression ratio
is the main focal point, it is a slow backup process. Do not select the None compression
option, since it will create large backups without compression. With the None method,
a 200 GB RAW disk image with 50 GB used will have a 200 GB backup image. With
compression turned on, the backup image size will be around 70-80 GB.

Mode
Typically, all running virtual machine backups occur with the Snapshot option.
Do not confuse this Snapshot option with Live Snapshots of VM. The Snapshot
mode allows live backup while the virtual machine is turned on, while Live Snapshots
captures the state of the virtual machine for a certain point in time. With the Suspend
or Stop mode, the backup task will try to suspend the running virtual machine or
forcefully stop it prior to commencing full backup. After backup is done, Proxmox
will resume or power up the VM. Since Suspend only freezes the VM during backup,
it has less downtime than the Stop mode because VM does not need to go through the
entire reboot cycle. Both the Suspend and Stop modes backup can be used for VM,
which can have partial or full downtime without disrupting regular infrastructure
operation, while the Snapshot mode is used for VMs that can have a significant
impact due to their downtime.

Creating snapshots
Snapshots are a great way to preserve the state of a virtual machine. It is much faster
compared to full backup since it does not copy the data. Snapshot is not really a
backup in a way and does not perform granular level backup. It captures the state in
a point in time and allows rollback to that previous state. Snapshot is a great feature
to be used in between full backups. The Proxmox snapshot even allows to capture
memory of the virtual machine, so when rolled back, it is almost as if it never changed.
The following screenshot is our virtual machine pmxUB01 without any snapshot:

http://en.wikipedia.org/wiki/Lempel-Ziv-Oberhumer
http://en.wikipedia.org/wiki/Lempel-Ziv-Oberhumer

A Virtual Machine for a Virtual World

[102]

The actual snapshot creation process is very straightforward. Just enter a name, select
the RAM content, and type in some description. The Name textbox does not allow any
spaces and the name must start with an alphabet as shown in the following screenshot:

Keep in mind that when you select to include RAM in the snapshot, the bigger the
RAM allocation is for the virtual machine, the longer it will take to create a snapshot.
But it is still much faster than full backup. The Snapshot feature is only available for
KVM virtual machines and not for OpenVZ containers.

Now, we have our very first snapshot of a virtual machine. If we want to go back to
the snapshot image, just select the snapshot we want to go back to and click on
Rollback. The following screenshot shows the Snapshots tab:

Rollback will erase all the changes that happened to the virtual machine between
the time of rolling back and the snapshot being rolled back to. When full backup
occurs on a virtual machine with snapshots, Proxmox only backs up the main
configuration file and disk image file. It does not include any snapshot images.

Proxmox Snapshot does not offer any scheduling option. All snapshots are taken
through a manual process. A lot of feature requests have been made to make snapshot
scheduling available. Hopefully, in the future versions this feature will be included.
In an environment with several dozen virtual machines, manual snapshots can become
a time-consuming task. It is possible to set up snapshot scheduling by using bash, cron,
and qm, but it is known to be somewhat unstable and, therefore, not recommended for
production environment.

Chapter 4

[103]

Snapshots are also a great way to test new software or configuration on a virtual
machine. Take a snapshot before installing a software or applying new configuration.
After the software test or if the configuration does not work as intended, simply roll
back to the previous snapshot. This is much faster and cleaner instead of uninstalling
the tested software itself.

Deleting old backups
Depending on the backup strategy and business requirement, there may be a need to
keep certain periods of backup history. Proxmox allows both automatic and manual
deletion of any backups outside the required history range. The following screenshot
shows the storage edit dialog box where we can set the maximum number of backups
we want to keep. This maximum backup value is for each virtual machine backup:

We can enter any numeric number between 0 and 365 as Max Backups. For example,
our NFS storage has a Max Backups value of 3. This means that during full backup,
Proxmox will keep three newest backups of each virtual machine and delete anything
beyond that. If we did daily backup, we could potentially keep 365 days or 1 year
worth of backups at any given time. If we did backup every other day, then it would
be two years worth of backup. It is possible to create separate shared storages daily,
weekly, monthly, and yearly in order to store backups. As long as we have the
schedule created just right, Proxmox will do the rest.

A Virtual Machine for a Virtual World

[104]

For higher backup redundancy and assurance, we can attach multiple shared storages
to store backups. In the example shown in the following screenshot, there are four
separate shared storages attached for daily, weekly, monthly, and yearly backup.
There are also two backup tasks scheduled: one for daily backup, which keeps six
days of backups, and the second task for weekly backup, which keeps four backups
The following screenshot shows the Backup tab:

Since Proxmox does not have any option to backup monthly or yearly, the only
option we have is to modify the second backup task in the previous screenshot and
change the destination storage appropriately based on monthly or yearly backup
needs. The reason to separate the storages from weekly or monthly backup is so that
wrong backups do not get deleted automatically. If we store all backups under one
share and set the Max Backups value of that storage, then regardless of when the
backups were made older backups beyond the Max Backups range will get deleted.
The following screenshot shows the configuration for daily backup on
host 192.168.145.11 set up to be daily backup node.

The following screenshot shows the configuration for weekly backup on host
192.168.145.12 setup to be weekly backup node:

Chapter 4

[105]

Having multiple physical hosts to store backups separately provides a very high level
of redundancy and assurance. This way not all backups are kept in one backup node.
The monthly or yearly backup node can actually be taken offsite when not in use and
brought back once a month or once a year for monthly or yearly backup. Although
Proxmox cannot perform granular file backup inside VM or detailed scheduling
options, it is still a powerful and simple enough feature to support all sizes of
Proxmox clusters.

Restoring a virtual machine
To keep up with the simplicity theme, the Proxmox Restore option also features a
very simple interface. We just need to select which virtual machine we want to restore,
the destination storage, and virtual machine ID, as shown in the following screenshot:

If the same VM ID is kept, then the existing virtual machine with the same ID will be
deleted and restored from the backup version. One important thing to remember is
a full backup created for a virtual machine with the qcow2 or vmdk image format can
only be restored to local, Ceph FS, or NFS-like storages. But a virtual machine with
the RAW image format can be restored on just about any storage system. RBD or LVM
storages do not support image types such as qcow2 or vmdk. There is no restoration
for snapshot images. The snapshots can only be rolled back to the previous state.

A Virtual Machine for a Virtual World

[106]

Command-line vzdump
The entire backup process can be handled from the command line in case the
GUI becomes inaccessible. The command to start a backup is as follows:

vzdump <vmid> <options>

There is a long list of the vzdump options that can be used with the command.
The following are just a few of the most commonly used ones:

Options Description
-all Default is 0. This option will back up all the available virtual

machines in a Proxmox node.
-bwlimit Adjust the backup bandwidth in KBPS.
-compress Default is LZO. Sets the compression type or disables compression.

The available options are 0, 1, gzip, and lzo.
-mailto E-mail address to send backup report.
-maxfiles Integer number. Sets maximum number of backup files to be kept.
-mode Default is Stop. Sets backup mode. Available options are snapshot,

stop, and suspend.
-remove Default is 1. Removes older backups if more than the value entered

in –maxfiles.

There are two commands available to restore the KVM and OpenVZ virtual
machines. They are as follows:

• For KVM machines, the command is as follows:
#qmrestore <backup_file> <vmid> <options>

Options Description
-force 0 or 1. This option allows overwriting the existing VM. Use this option

with caution.
-unique 0 or 1. Assigns a unique random Ethernet address to the virtual

network interface.

• For OpenVZ machines, the command is as follows:
#vzrestore <backup_file> <vmid> <options>

Options Description
-force 0 or 1. This option allows overwriting the existing VM. Use this option

with caution.
-unique 0 or 1. Assigns a unique random Ethernet address to the virtual

network interface.

Chapter 4

[107]

For a complete list of options for vzdump, qmrestore, and
vzrestore, visit the following pages:

• http://pve.proxmox.com/wiki/Vzdump_manual
• http://pve.proxmox.com/wiki/Qmrestore_manual
• http://pve.proxmox.com/wiki/Vzrestore_manual

Backup configuration file – vzdump.conf
The vzdump.conf file in Proxmox allows advanced backup configuration to go beyond
just the default. For example, if we want to limit the backup speed so that the backup
task does not consume all of the available network bandwidth, we can limit it with the
#bwlimit option. In Proxmox Version 3.2 and above, the vzdump.conf file cannot be
edited from GUI. It has to be done from CLI using an editor. The following code is the
default vzdump.conf file on a new Proxmox cluster:

vzdump default settings
#tmpdir: DIR
#dumpdir: DIR
#storage: STORAGE_ID
#mode: snapshot|suspend|stop
#bwlimit: KBPS
#ionice: PRI
#lockwait: MINUTES
#stopwait: MINUTES
#size: MB
#maxfiles: N
#script: FILENAME
#exclude-path: PATHLIST

All the options are commented by default in the file because Proxmox has a set of
default options already encoded in the operating system. Changing the vzdump.conf
file overwrites the default settings and allows us to customize the Proxmox backup.

#bwlimit
The most common option to edit in vzdump.conf is to adjust the backup speed.
This is usually done in case of remotely stored backups and interface saturation if
the backup interface is the same used for the VM production traffic. For example,
to limit backup to 200 Mbps, make the following adjustment:

bwlimit: 200000

http://pve.proxmox.com/wiki/Vzdump_manual
http://pve.proxmox.com/wiki/Qmrestore_manual
http://pve.proxmox.com/wiki/Vzrestore_manual

A Virtual Machine for a Virtual World

[108]

#lockwait
The Proxmox backup uses a global lock file to prevent multiple instances running
simultaneously. More instances put extra load on the server. The default lock wait
in Proxmox is 180 minutes. Depending on different virtual environments and number
of virtual machines, the lock wait time may need to be increased. If the limit needs to
be 10 hours or 600 minutes, adjust the option as follows:

lockwait: 600

The lock prevents the VM from migrating or shutting down while the backup
task is running. Any backup interruptions such as failback storage, I/O bottleneck,
and so on can cause the VM to remain locked. In such cases, the VM needs to be
unlocked with the following command from CLI:

qm unlock <vmid>

#stopwait
The #stopwait value is the maximum time in minutes the backup will wait till
a VM is stopped. A use case scenario is a VM, which takes much longer to shut
down, for example, exchange server or database server. If V M is not stopped
within the allocated time, backup is skipped for that VM.

#script
It is possible to create backup scripts and hook them up with a backup task.
This script basically is a set instruction that can be called upon during entire
backup tasks to accomplish various backup-related tasks such as start/stop a
backup, shut down/suspend VM, and so on. We can add customized scripts as:

script: /etc/pve/script/my-script.pl

Here is a sample publicly available hook script for a backup task. The following
script is courtesy Dietmar Maurer from the Proxmox staff. The script is shown
here to point you to the right direction. Full customization details of the script
language are beyond the scope of this book:

#!/usr/bin/perl -w

example hook script for vzdump (--script option)

use strict;

print "HOOK: " . join (' ', @ARGV) . "\n";

my $phase = shift;

Chapter 4

[109]

if ($phase eq 'job-start' ||
 $phase eq 'job-end' ||
 $phase eq 'job-abort') {

 my $dumpdir = $ENV{DUMPDIR};

 my $storeid = $ENV{STOREID};

 print "HOOK-ENV: dumpdir=$dumpdir;storeid=$storeid\n";

 # do what you want

} elsif ($phase eq 'backup-start' ||
 $phase eq 'backup-end' ||
 $phase eq 'backup-abort' ||
 $phase eq 'log-end' ||
 $phase eq 'pre-stop' ||
 $phase eq 'pre-restart') {

 my $mode = shift; # stop/suspend/snapshot

 my $vmid = shift;

 my $vmtype = $ENV{VMTYPE}; # openvz/qemu

 my $dumpdir = $ENV{DUMPDIR};

 my $storeid = $ENV{STOREID};

 my $hostname = $ENV{HOSTNAME};

 # tarfile is only available in phase 'backup-end'
 my $tarfile = $ENV{TARFILE};

 # logfile is only available in phase 'log-end'
 my $logfile = $ENV{LOGFILE};

 print "HOOK-ENV:
 vmtype=$vmtype;dumpdir=$dumpdir;storeid=$storeid;
 hostname=$hostname;tarfile=$tarfile;logfile=$logfile\n";

 # example: copy resulting backup file to another host
 using scp
 if ($phase eq 'backup-end') {
 #system ("scp $tarfile backup-host:/backup-dir") == 0 ||
 # die "copy tar file to backup-host failed";

A Virtual Machine for a Virtual World

[110]

 }

 # example: copy resulting log file to another host using scp
 if ($phase eq 'log-end') {
 #system ("scp $logfile backup-host:/backup-dir") == 0 ||
 # die "copy log file to backup-host failed";
 }

} else {

 die "got unknown phase '$phase'";
}

exit (0);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

#exclude-path
To ignore certain folders from backing up, use the exclude-path option. All paths
must be entered on one line without breaks. Please keep in mind that this option is
only for OpenVZ containers:

exclude-path: "/log/.+" "/var/cache/.+"

The previous example will exclude all the files and directories under /log and /
var/cache. To manually exclude other directories from being backed up, simply
use the following format:

exclude-path: "/<directory_tree>/.+" 3

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 4

[111]

Summary
In this chapter, we have covered some interesting topics, such as nested virtual
environment, the hotplug feature, and Proxmox backup/restore. A good backup
plan can save the day many times over. Although Proxmox does not provide
everything you need for backup such as a granular file backup, to back up a virtual
machine is very helpful. Backup features in the Proxmox platform have proven to
be reliable in production environments and during actual disaster scenarios.

In the next chapter, we are going to look at an even more interesting topic: network
virtualization. Although it is a fairly new concept, it is by no means immature. In an
ever-growing virtual environment, a good virtualized network design can alleviate
management issues without adding any overhead. We will see how we can take
complete advantage of network virtualization in Proxmox to bind volumes of
virtual machines together and work in harmony.

Network of Virtual Networks
In this chapter, we are going to take an in-depth look at how we can create a
virtualized network within a virtual environment. We will learn what the network
building blocks are that make up the Proxmox hypervisor and how it manages
both internal and external network connectivity. We will examine several network
diagrams to see how Proxmox can be pushed further to create an entire colony of
virtual machines connected with virtual networks. We will also look at the Proxmox
network configuration file, network bonding, VLAN, and so on. We can create dozens
of virtual machines at will, but without a planned network model, we will fail to run
a good virtual environment. If we compare virtual machines with bricks as building
blocks, then it is the network that acts as mortar to create anything from a basic hut
to a cathedral.

In this chapter, we will cover the following topics:

• Definition of a virtual network
• Networking components of Proxmox, such as bridge, vNIC, VLAN,

bonding, and so on
• Proxmox network configuration file
• Adding network components in a VM
• Sample virtual networks
• Multitenant virtual environments

Network of Virtual Networks

[114]

Introduction to a virtual network
A virtual network is a software-defined network where all links and components
may or may not have direct interaction with physical hardware. In most cases,
direct interaction with physical hardware is made by the hypervisor or the host
controller. All links between virtual machines, virtual switches, virtual bridges,
and virtual network interfaces are made completely virtually. The following are
the two types of network virtualization:

• External network virtualization: This consists of several local networks
operating as one virtual network. Physical LANs could be in the same
location or spread over multiple locations. Usually, external virtualization
is a cloud network service-based model that multiple companies can use
to connect their multisite virtual environment for a service fee. External
network virtualization can be easily achieved by combining several
internal virtual networks into a single virtualized network using a
WAN or the Internet.

• Internal network virtualization: This usually happens locally within a
hypervisor between virtual machines. Do not confuse this with the local
area network. Here, internal network virtualization is referring to the
network connectivity between VMs, bridges, vNICs, and so on, which do
not necessarily have to utilize external LAN. This provides company IT
staff total control over virtual network operation. Network issues can be
diagnosed faster; customization of expansion or contraction can happen
without delay. Internal virtualization heavily uses virtual components,
such as virtual bridges and vNIC, to form a virtual network.

For in-depth information on external and internal network
virtualizations, have a look at the link http://en.wikipedia.org/
wiki/Network_virtualization. Specially follow the References
and Further reading book list at the bottom of the Wiki page.

In this book, we will mainly look at internal network virtualization in the Proxmox
hypervisor. We will see some network diagrams of internal and external virtual
network combinations later in the book in Chapter 10, Putting It All Together.

http://en.wikipedia.org/wiki/Network_virtualization
http://en.wikipedia.org/wiki/Network_virtualization

Chapter 5

[115]

Physical network versus virtual network
Let us look at the following diagrams to see the difference between a physical
network and a virtual network. The following diagram represents a physical
network without any virtualization platform:

Physical network diagram

The following diagram represents virtualization as main infrastructure:

Virtual network diagram

Network of Virtual Networks

[116]

Do not worry if the virtualization diagram is overwhelming at first glance. We will
learn about all the components used in both diagrams later on. Both diagrams are
in basic form. Some non-relevant components may have been omitted to keep the
diagrams simpler.

Before we dive into virtual network building blocks, we need to understand how
networks are set up in the preceding diagrams. Both the diagrams represent the same
office setup where the main administrative department is on the second floor, and
the accounting department is on the fourth floor of the building. It is apparent from
the diagrams that a physical network is undoubtedly simpler than a virtual network,
but by leveraging virtualization, we can cut cost, increase efficiency, reduce hardware
maintenance complexity, and increase portability.

Physical network
In the first diagram of the physical network, there is no virtualization platform set up.
The whole network is set up with physical devices, such as firewalls, switches, servers,
and full desktops. Each department has its own servers and separate networks. A
centralized management for the whole company does not exist. This is a costly solution
due to all the physical hardware. If redundancy is a requirement, it will incur twice
the cost since we will need identical physical servers. All connectivity in this network
is done with physical cable links. Backups in this setup are quite challenging since all
the physical servers in two departments have to be backed up individually.

Virtual network
The virtual network diagram represents how Proxmox can handle a multidepartment
setup. All connections between servers and the user's virtual machines happen
virtually without a physical network device. Using virtual bridges and vNICs,
both the administrative and accounting departments can coexist on the same
Proxmox cluster. Since all computing happens in the hypervisor, end users can
have thin workstations to minimize cost significantly. Users connect to their
virtual machines with remote protocols, such as SPICE, VNC, or RDP.

Thin workstations are very underpowered, cheap, basic computers for
the end user. Since all processing happens in a virtual environment, thin
workstations do not need to be very powerful. The main purpose of a
thin workstation is to allow the user to connect peripherals such as the
monitor, keyboard, mouse, and network cable. A thin workstation can
be purchased under $200.

Chapter 5

[117]

In this setup, all servers and user machines are virtualized. If there is a need for
a new server, it is just a matter of creating a virtual server with vNIC with a few
clicks. Since Proxmox as a hypervisor has redundancy by design, a dead physical
server node is no longer an issue. In such a scenario, all virtual machines can simply
be migrated to another available Proxmox node, and everything is up and running
in minutes. Both the departments are separated by two virtual bridges.

Through the use of the Proxmox GUI, all management can be done from one location,
including backup and restore. Virtual servers can be sent to another remote company
location through WAN. Although a virtual network setup is much more robust and
feature-rich, it has a much lower budget requirement. New departments can be added
by creating new virtual bridges for separate subnets and using VLANS on existing
physical network switches.

Networking components in Proxmox
We will now look at the components used in Proxmox that make the virtual network
possible within the Proxmox virtual environment.

Virtual Network Interface Card (vNIC)
Virtual Network Interface Card (vNIC) is a software-defined representation of a
Media Access Control (MAC) interface of physical network interfaces. It is basically
a virtual network card for a virtual machine. Multiple vNICs can share a physical
network interface of a host node. In a way, networking starts with vNIC when a
virtual machine sends data to reach other virtual machines or networking devices
within a virtual environment or physical environment. In the following diagram,
the virtual machine has two virtual network interfaces assigned with an Intel e1000
driver. Both of them are configured with bridge vmbr601.

Network of Virtual Networks

[118]

Intel e1000 is a Linux kernel driver to virtualize Intel architecture-based virtual
network interfaces. This is the default vNIC for new virtual machines in Proxmox
since it is supported by all major operating systems, such as Linux, Windows, and
Mac OS X, without needing additional drivers. Proxmox has four models of virtual
network interfaces: Intel e1000, VirtIO, Realtek RTL8139, and VMware vmxnet3.
It should be noted that out of these four models, VirtIO provides the maximum
network performance for a VM. All Linux-based operating systems come equipped
with VirtIO drivers. For Windows, the VirtIO interface driver can be downloaded
from http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_
Drivers. For Mac OS, the VirtIO interface driver can be downloaded from
https://github.com/pmj/virtio-net-osx.

Virtual bridge
Just as a real-world bridge connects the two sides of a river, a virtual bridge
connects a Proxmox virtual network with a physical network. A virtual bridge is
like a physical network switch where all virtual machines connect to and can be
configured using the Spanning Tree Protocol (STP). A virtual bridge is a great
way to create separate subnets. All VMs in the same subnet can connect to their
respective bridges. Each Proxmox node can support up to 4,094 bridges. When
the same bridge configuration is entered on all nodes, the bridge can be used from
any nodes in the cluster, thus making live migration possible without network
connectivity interruption. The common naming format of a bridge is vmbrX,
where X represents an integer between 0 and 4,094.

Virtual LAN (VLAN)
Virtual Local Area Network (VLAN) is a logical local area network within a physical
local area network. It can be compared with partitions within a physical disk storage.
A physical network interface can be partitioned to transport data for multiple separate
subnets. This partition is achieved using VLAN ID. For details on VLAN or IEEE
802.1q standard, refer to http://en.wikipedia.org/wiki/IEEE_802.1Q.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
https://github.com/pmj/virtio-net-osx
http://en.wikipedia.org/wiki/IEEE_802.1Q

Chapter 5

[119]

Once VLAN data leaves the virtual environment, a physical network switch with
the VLAN feature tags each data with an ID and then directs the data to its proper
destination. Each subnet should have the same VLAN ID on the virtual environment
and on the physical network switch. VLAN helps reduce the broadcast traffic of
multiple domains on the same network. By segmenting a large network into smaller
VLAN, broadcasts can be sent only to relevant VLAN without interrupting other data
traffic on the network.

Imagine a 10-lane highway connecting point A to point B. Each lane is designated
to one manufacturing plant that needs to transport goods from point A to point B.
Plant 1 is designated to lane number 1 (VLAN ID 1); plant 2 is designated to lane
number 2 (VLAN ID 2); and so on. Even though all plants share the same highway,
they each have their own lane not shared by others. VLAN follows the same logic.

VLAN also provides an added security layer on a multidomain network since a
user can no longer just plug into the network and capture just about any data of
any domains on the network. Network segmentation is usually done with a layer
3 device such as a router. But using VLAN, significant cost saving can be achieved
with an already-existing layer 2 device on the network such as a switch. There are
seven layers defined by the Open Systems Interconnection (OSI) model by which
network communication takes place. For in-depth details on OSI, follow the link
http://en.wikipedia.org/wiki/OSI_model.

Network Address Translation/Translator (NAT)
Network Address Translation/Translator (NAT) is the translation of an IP address
between known and/or unknown networks. NAT allows an outbound internal
network to have a designated public IP address on the Internet. So when a network
device initiates an outbound connection, it uses the designated IP address instead
of the local IP address designated to the device. NAT reduces the exposure of the
internal IP address to the public network, thus providing protection from
internal IP exposure. NAT is usually configured in the router or firewall of a
network, where the policy is created for local-to-global and global-to-local IP
address mapping. It should be noted that NAT is relevant for IPv4 networks.
An IPv6 network diminishes the need to use NAT, because IPv6 addressing is
always public.

http://en.wikipedia.org/wiki/OSI_model

Network of Virtual Networks

[120]

Network bonding
Network bonding or Teaming or Link aggregation is a concept where multiple
interfaces are combined to increase throughput, set up network redundancy, and
balance network load. This concept is heavily used in high-demand environments
where downtime and slow network I/O are not acceptable. The Proxmox GUI
provides the excellent feature of creating and managing bonding within the cluster
node. Bonding modes supported by Proxmox are balance-rr, active-backup, balance
-xor, broadcast, Link Aggregation Control Protocol (LACP), or 802.3ad, balance-tlb,
and balance-alb. The following table lists the various bonding modes as well their
policies and descriptions:

Bonding Mode Policy Description
balance-rr
or
Mode 0

Round robin Packet transmission takes places sequentially from the
first participating network interface to the last. This
provides load balancing and fault tolerance

active-backup
or
Mode 1

Active
backup

Only one participating network interface is active. The
next interface becomes active when the previous active
interface fails. This only provides fault tolerance.

balance-xor
or
Mode 2

XOR This mode selects the same participating interface for
each destination MAC address. Transmission takes
place based on bonded network interfaces of MAC
address XOR'd with the destination MAC address. This
provides both load balancing and fault tolerance.

broadcast
or
Mode 3

Broadcast Transmission takes place on all participating bonded
network interfaces. Provides fault tolerance only.

802.3ad
or
Mode 4

Dynamic link
aggregation

All participating network interfaces in the aggregated
group share the same speed and duplex settings.
All interfaces are utilized according to the 802.3ad
specification. A network switch with 802.3ad or LACP
feature is required. This provides fault tolerance.

Chapter 5

[121]

Bonding Mode Policy Description
balance-tlb
or
Mode 5

Adaptive
transmit load
balancing

Outgoing packets are distributed according to current
load on each participated interface. Incoming packets
are received on current interface, and if the same
interfaces fails, then the next available interface takes
over. This provides fault tolerance and load balancing
for only outbound packets.

balance-alb
or
Mode 6

Adaptive
load
balancing

Same as balance-tlb with the inclusion of load balancing
for incoming packets on all interfaces. This provides
fault tolerance and load balancing for both incoming
and outgoing traffic.

The following screenshot shows the Proxmox menu system for creating new bonding:

Components naming convention
The following table shows different components used in Proxmox and their naming
conventions. A proper understanding of how the components are named helps to
pinpoint an interface much faster. It also helps to organize or map a network much
more efficiently.

Interface Naming convention Example
Physical Ethernet devices ethX; X = 0 to 99 eth0, eth1, eth20, and so on
Virtual bridges vmbrX; X = 0 to 4094 vmbr0, vmbr1, vmbr2000, and so on
Network bonds bondX; X = 0 to 9 bond0, bond1, bond9, and so on
VLAN ethX.<VLAN ID>; X = 0

to 4095
VLAN with ID 3 = eth0.3
VLAN with ID 10 = eth0.10

Network of Virtual Networks

[122]

Network configuration file
We are now going to a look at how a Proxmox network configuration file works
and how we can modify it to adapt to different networking environments. This
configuration file is stored at /etc/network/interfaces. Network configuration
can be modified both from the GUI and the CLI. Any changes made from the GUI
are saved temporarily in /etc/network/interfaces.new. The changes get
transferred to /etc/network/interface only after reboot. You can also directly
edit the interfaces file at /etc/network/ and activate or deactivate components
with #ifup <name> or #ifdown <name> without needing to reboot. All virtual
bridges must be configured on all the Proxmox nodes in the cluster. If there is a
lot of bridge configurations in the interface file, simply copy them to all nodes and
modify only the physical interfaces on each node. The following screenshot is the
GUI representation of the configuration file for node pmxvm01:

The following code is how the configuration file in /etc/network/interfaces looks
like from the command line:

auto lo
iface lo inet loopback

auto vmbr0
iface vmbr0 inet static
 address 192.168.145.1
 netmask 255.255.255.0
 gateway 192.168.145.254
 bridge_ports eth0
 bridge_stp off
 bridge_fd 0

auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1
 netmask 255.255.255.0
 bridge_ports eth1
 bridge_stp off
 bridge_fd 0

Chapter 5

[123]

Based on this configuration, the pmxvm01 node has two virtual bridges set up.
Bridge vmbr0 is tied to physical network interface eth0, and bridge vmbr1 is tied to
eth1 of the node. If we want to create a fully isolated subnet without any outgoing
traffic, we could edit bridge vmbr1 to look like the following code:

auto vmbr1
iface vmbr1 inet manual
 bridge_ports none
 bridge_stp off
 bridge_fd 0

bridge_stp
The bridge_stp option allows multiple bridges to communicate with each other
for network discovery and loop avoidance. This is useful to eliminate data cycles
to provide optimal packet routing, because with STP on, bridges can talk to each
other and figure out how they are connected and then provide best routing possible
for data packet transmission. STP also allows fault tolerance since it will check the
network topology if a bridge fails. To turn on the STP option, just modify the bridge
configuration as follows:

bridge_stp on

STP increases bandwidth efficiency while posing security issues. Do not use STP
when a virtual subnet requires isolation from other virtual subnets in the same
cluster, and you do not want the bridges to talk to each other. It is a useful option
when working in a virtual environment of the same company where data can flow
freely between department subnets. STP does not have any authentication and
assumes all network interfaces to be trustworthy. When a hostile bridge enquires
about the network topology from another bridge, information is freely shared
without any authentication. Thus, a user in the hostile bridge could potentially
gather data of the entire network topology and other bridges in the network.
This leads to a dangerous situation with bridging between the internal
environment and the Internet. STP is turned off by default.

bridge_fd
FD refers to Forwarding Delay. The bridge_fd option sets the delay of how
long before the interface will be ready. During the delay, bridge tries to discover
other bridges and checks there are no network loops if STP is on. By default,
the forwarding delay is set to 0 as shown in the following line of code:

bridge_fd 0

Network of Virtual Networks

[124]

For the most part, the default value of 0 is enough. In a very complex virtual
environment with several dozen bridges, increasing this number to 3 or 4 might help.
Without this delay, the bridge will start transmitting data packet regardless of whether
the other destination bridge is available or not. Increasing the delay time allows the
source bridge to check all bridges and not transmit any data if the destination bridge
is down, thus preventing unnecessary network bandwidth consumption.

There are many more bridge_ options to be used in the network
configuration file, such as bridge_hello, bridge_maxage,
bridge_bridgeprio, and so on. Bridge options are Linux-
specific and beyond the topic of this book. For in-depth information
on bridges, visit http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge.

Adding a virtual bridge
We have seen the networking components used in Proxmox; we went through
the configuration file and saw how those components come together. We are now
going to create a new virtual bridge for our cluster. We will use this bridge to create
an isolated network later on in this book. Perform the following steps to create a
virtual bridge in Proxmox:

1. Securely log in to the node pmxvm01.
2. Open the interface file # nano /etc/network/interfaces using an editor.
3. Add the following lines at the end of the file:

auto vmbr200
iface vmbr1 inet static
 bridge_ports none
 bridge_stp off
 bridge_fd 0

4. Save the file and exit the editor
5. Activate the bridge from the CLI using the following command:

ifup vmbr200

6. Do the same for the second node pmxvm02.

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge

Chapter 5

[125]

The new virtual bridge vmbr200 should now be activated and running. If there are
more cluster nodes, then the steps from 1 to 5 must be completed on all the nodes.
The /etc/network/interfaces configuration file should look as follows:

auto lo
iface lo inet loopback

auto vmbr0
iface vmbr0 inet static
 address 192.168.145.1
 netmask 255.255.255.0
 gateway 192.168.145.254
 bridge_ports eth0
 bridge_stp off
 bridge_fd 0

auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1
 netmask 255.255.255.0
 bridge_ports eth1
 bridge_stp off
 bridge_fd 0

auto vmbr200
iface vmbr1 inet static
 bridge_ports none
 bridge_stp off
 bridge_fd 0

We can verify the new bridge from the Proxmox GUI as shown in the
following screenshot:

Network of Virtual Networks

[126]

Adding a bonding interface
We will now see network bonding in our cluster. There are several types of bonding
options available. But only balance-rr, active-backup, and LACP (802.3ad) are most
widely used. The balance-rr option provides the round robin method to increase
overall interface bandwidth with failover. The balance-rr option does not require
any special network switch. Just about any switch can be used to make this work.
The major drawback of balance-rr is waste of data packets. LACP is known as
industry quality bonding.

In this book, we will only look at the LACP bonding protocol. But to give you
an idea of how a balance-rr bonding looks like, the following diagram shows
balance-rr bonding between Proxmox nodes and Ceph distributed storage clusters.
In this example, the Proxmox public network is on 192.168.10.0/24, while the storage
backend is on a private 192.180.201.0/24 subnet. Separate switches are used for
the Ceph storage network to increase redundancy. Each Proxmox node has three
1-gigabit NICs. One is used from the main cluster to server virtual machines, and
the remaining two are used for balance-rr bonding. This type of bonding is a very
economical way to provide network redundancy.

LACP can combine multiple interfaces to increase the total throughput but not
the actual connection. For example, an LACP bonding of four 1-gigabit network
interfaces will still have total connection speed of 1 gigabit, but it will be able to
respond to more simultaneous requests at closer to 1 gigabit speed.

To know more about Link aggregation/Bonding/Teaming, visit
http://en.wikipedia.org/wiki/Link_Aggregation_
Control_Protocol#Link_Aggregation_Control_Protocol.

For LACP to work, it is very important to know if the physical switch supports this
feature. A quick visit to a switch manufacturer's website will give us the information
if the LACP feature is supported. Some manufacturers will list this feature as 802.3ad.

http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol

Chapter 5

[127]

In our cluster, we are now going to set up LACP bonding for the bridge vmbr1.
Later in the book, we will set up an enterprise-standard distributed shared storage
system using Ceph. We will use the bridge vmbr1 to connect the shared storage
with the Proxmox cluster. Let's start by adding a third network interface card on
each node if you have not done so. So, both nodes now should have three physical
network interface cards on each. Perform the following steps to configure LACP
or 802.3ad network bonding:

1. Securely log in to the node pmxvm01.
2. Open the interface file # nano /etc/network/interfaces using an editor.
3. Add the following lines at the beginning of the file:

bring up interfaces
auto eth1
iface eth1 inet manual
auto eth2
iface eth2 inet manual

bonding interfaces
auto bond0
iface bond0 inet manual
 slaves eth1 eth2
 bond_miimon 100
 bond_mode 802.3ad

4. Change ports for the bridge vmbr1 as follows:
auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1
 netmask 255.255.255.0
 # change bridge port to bond0 interface
 bridge_ports bond0
 bridge_stp off
 bridge_fd 0

5. Save the file and exit the editor.
6. Activate the bridge by rebooting the node or from CLI by stopping

and restarting the bridge. Use the following commands:
ifup bond0

ifdown vmbr1

ifup vmbr1

7. Do the same for the second node pmxvm02.

Network of Virtual Networks

[128]

8. Set up LACP or link aggregation on a physical switch. The following
screenshot is an example of LACP setting on Netgear GS724T 24 port switch:

The final interface configuration of our node should be as follows:

auto lo
iface lo inet loopback

bring up interfaces
auto eth1
iface eth1 inet manual
auto eth2
iface eth2 inet manual

bonding interfaces
auto bond0
iface bond0 inet manual
 slaves eth1 eth2
 bond_miimon 100
 bond_mode 802.3ad

auto vmbr0
iface vmbr0 inet static
 address 192.168.145.1
 netmask 255.255.255.0
 gateway 192.168.145.254
 bridge_ports eth0
 bridge_stp off
 bridge_fd 0

auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1

Chapter 5

[129]

 netmask 255.255.255.0
 bridge_ports bond0
 bridge_stp off
 bridge_fd 0

auto vmbr200
iface vmbr1 inet static
 bridge_ports none
 bridge_stp off
 bridge_fd 0

We can also verify it from the Proxmox GUI as shown in the following screenshot:

The following diagram is an example of an advanced cluster with four Proxmox
nodes, three Ceph nodes, and a Netgear switch with LACP bonding set up. Four
Link Aggregation Groups (LAGs) have been created.

LAG is a combination of multiple links between switches or nodes to
form a single large link.

The following diagram shows a setup of three NICs bonding:

Network of Virtual Networks

[130]

The following several options can be used while configuring bonding:

bond_miimon X X = integer number. It sets the MII link monitoring frequency
in milliseconds. This option checks the frequency at which each
slave port is inspected for link failures.

bond_downdelay X X = integer number. It sets the time in milliseconds to wait
before disabling a slave after a link failure has been detected.

bond_updelay X X = integer number. It sets the time in milliseconds to wait
before enabling a slave after a link recovery has been detected.

Adding NAT/masquerading
NAT is a way to hide internal network IP addresses from the external network,
such as the Internet. Any outgoing traffic uses the main host IP address instead
of using own local IP address. Add the last three lines of the following post-up
and post-down settings in the configuration file /etc/network/interfaces.
Only add these lines under the virtual bridge configuration which needs the
NAT option. Have a look at the following code snippet:

auto vmbr0
iface vmbr0 inet static
address 192.168.145.1
netmask 255.255.255.0
bridge_ports none
bridge_stp off
bridge_fd 0post-up echo 1 > /proc/sys/net/ipv4/ip_forward
post-up iptables -t nat -A POSTROUTING -s '192.168.145.0/24' -o
 eth0 -j MASQUERADE
post-down iptables -t nat -D POSTROUTING -s '192.168.145.0/24' -o
 eth0 -j MASQUERADE

It is much easier and manageable to handle NAT using a physical or
virtual firewall. Most of the firewalls have the NAT option out of the
box. Also, using virtualized firewalls, we can create truly isolated virtual
networks for multiple clients on the same Proxmox cluster. Having a
virtual firewall provides the client control over their own filtering while
keeping their network hidden from other client networks in the cluster.

Chapter 5

[131]

Adding VLAN
VLAN can be set up on both virtual machines and bridges. If the VLAN traffic leaves
the virtual environment, it is important to set VLAN on physical network switch by
configuring port trunking and VLAN tagging. Tagging VMs with a VLAN ID is very
straightforward through the Proxmox GUI. Just enter the VLAN ID when adding a
network interface to the VM or edit already added vNICs. The following screenshot
shows the dialog box to edit a network device through the Proxmox GUI:

In the preceding example, we tagged virtual machine pmxMS01 in our cluster
with VLAN ID 1. After adding VLAN with the VM, the following screenshot is
what it looks like from the Proxmox GUI. Notice the VLAN ID 1 is tag=1 at the
end of Network Device. It should be noted that when using VLAN, all devices
and virtual machines should be VLAN compatible.

We are now going to create a VLAN on the bonded interface bond0 on our Proxmox
node pmxvm01. Perform the following steps to do so:

1. Securely log in to the node pmxvm01.
2. Open the interface file # nano /etc/network/interfaces using an editor.

Network of Virtual Networks

[132]

3. Add the following lines at the beginning of the file:
auto bond0.10
iface bond0.10 inet manual
 vlan-raw-device bond0

4. Create a new bridge vmbr10 as follows:
auto vmbr10
iface vmbr10 inet manual
 bridge_ports bond0.10
 bridge_stp off
 bridge_fd 0

5. Save the file and exit the editor.
6. Activate the bridge by rebooting the node or from CLI by stopping

and restarting the bridge using the following command:
ifup vmbr10

7. Do the same for the second node pmxvm02.
8. Set up VLAN on the physical switch by configuring trunk ports. The

following screenshot is an example of a VLAN setup on Netgear GS724T
24 port switch. VLAN pmxvm01 with ID 10 is set up for the vmbr10.

Chapter 5

[133]

Our final network interface configuration should look as follows:

auto lo
iface lo inet loopback

bring up interfaces
auto eth1
iface eth1 inet manual
auto eth2
iface eth2 inet manual
auto bond0.10
iface bond0.10 inet manual
 vlan-raw-device bond0

bonding interfaces
auto bond0
iface bond0 inet manual
 slaves eth1 eth2
 bond_miimon 100
 bond_mode 802.3ad

auto vmbr0
iface vmbr0 inet static
 address 192.168.145.1
 netmask 255.255.255.0
 gateway 192.168.145.254
 bridge_ports eth0
 bridge_stp off
 bridge_fd 0

auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1
 netmask 255.255.255.0
 bridge_ports bond0
 bridge_stp off
 bridge_fd 0

auto vmbr200
iface vmbr1 inet static

Network of Virtual Networks

[134]

 bridge_ports none
 bridge_stp off
 bridge_fd 0

auto vmbr10
iface vmbr1 inet static
 bridge_ports bond0.10
 bridge_stp off
 bridge_fd 0

A good practice to identify which VLAN belongs to which bridge is
to use the same numeric number for both the interfaces. For example,
a bridge vmbr10 will have the same VLAN ID 10. Without some
order in the beginning, bridges and VLANs will quickly get out of
control as network grows over time.

Sample virtual networks
At this stage, we have covered components of virtual networks within the
Proxmox cluster environment. We know the components Proxmox uses to
hold everything together.

We are going to take a look at a few virtual environment scenarios to solidify
our understanding of networking in the Proxmox virtual environment.
These are scenario-based network diagrams, and some of them are taken
from the real production environment.

Network #1 – Proxmox in its simplest form
This is a small-scale Proxmox cluster with three nodes and two subnets within the
virtual environment. Each Proxmox node has two NICs, and both bridges vmbr0
and vmbr1 are attached with eth0 and eth1, respectively. Each bridge has three
virtual machines attached to them. Outside the virtual environment, there is
a physical switch, which connects Proxmox nodes, and an admin console for
all management work. This is Proxmox in its simplest form in a production
environment. This type of network can be used as a learning platform or in
a very small business environment with a less demanding workload. Internet
connectivity is provided to the second subnet directly from the firewall with
a second NIC, as shown in the following diagram:

Chapter 5

[135]

Network #2 – multitenant environment
This network setup is almost the same as the previous network with the added
benefit of fully multitenant virtual platform. In a physical firewall, we can only
add a very small number of NICs to provide Internet connectivity to isolated
subnets. Using a virtualized firewall, we can add as many firewalls or vNICs as
we want. This setup is especially useful when multiple, isolated client subnets need
to be hosted and each subnet requires its own firewall control for filtering purposes.
In this example, vmbr0 is directly served by the physical firewall. Bridge vmbr1
and vmbr200 have their own virtualized firewalls. The firewalls also act as bridges
between bridges. For example, the firewall for subnet 2 has two vNICs. One of
these setups was WAN, where vmbr0 acts as an Internet provider. The second
vNIC is LAN-facing, which serves the subnet 2.

This is a common scenario for infrastructure service providers who host virtual
networks for multiple clients. Since multiple companies can access their virtual
networks remotely, it puts extra workload on the physical firewall. Single-point
firewall failure should be avoided at all costs by creating a cluster of physical
firewalls to provide load balance and failover firewall service.

Never use a virtualized firewall on the same cluster to connect to the
Internet directly. Always use separate physical hardware as the main
firewall to act as a barrier between the Internet and internal network.

Network of Virtual Networks

[136]

For firewall virtualization, pfsense is a great choice to set up. It is easy to set up,
yet extremely powerful and customizable. Get pfsense and more information
from www.pfsense.org.

The following diagram is an example of a multitenant virtual environment:

Network #3 – academic institution
This network diagram is an example of an academic institution network. The
following diagram shows network connectivity between the admin office, library,
and a remote campus. There are two physical firewalls providing Internet connectivity
redundancies. The main virtual network consists of the database server, file server,
accounting server, and library catalog server. The database server and the file server
are connected with bridge vmbr0. The accounting server is connected with bridge
vmbr10 and VLAN ID 10. The library server is connected with bridge vmbr20 and
VLAN ID 20. The main switch is set up with VLAN 10 and VLAN 20. The library
switch is set up with VLAN 20. In this set up, accounting server data goes straight
to the admin office and the library catalog server data goes to the library building
without causing additional stress on the network. Remote campus students and
staff can access main campus network through VPN, thus eliminating the need to
set up a separate virtual environment.

www.pfsense.org

Chapter 5

[137]

Of course, the following diagram is a very simplified form of the actual network
topology of an academic institution. But the basics of using VLANs and bridges
are the same for any network size.

Multitenant virtual environment
Multitenancy is a very frequently used word in the world of cloud computing, where
a virtual environment is regularly used by different clients from different organizations
set up with fully isolated networks. Multitenancy is an integral part for a service
provider who provides Infrastructure-As-A-Service (IAAS) to many clients.

To know more about cloud computing, visit http://en.wikipedia.
org/wiki/Cloud_computing.

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

Network of Virtual Networks

[138]

In this type of setup, the service provider hosts or "rents out" computing time and
storage space to their clients. Because of standard monthly subscription or SLA-based
payment methods required for this type of service, the term multitenancy quickly
gained popularity. Basically, a multitenant virtual environment is where several
isolated networks coexist on the same platform without interfering with one another.
Almost all public datacenters are multitenancy platforms.

Multitenancy is not new in the world of information. The first multitenant
environment appeared back in the 1960s, when companies rented processing
time and storage space on mainframe computers to reduce giant expenses of
mainframe operation. The virtual environment only augmented the same idea
exponentially by leveraging all the virtualization features Proxmox provides. By
combining virtualization with cloud computing, multitenancy is able to get a very
strong footing to serve better and to more customers without increasing financial
overheads. Prior to virtualization, the physical space and power requirements to
host customers in an IAAS environment meant it was rare and very expensive,
thus not many people enjoyed its benefit.

The Proxmox hypervisor is well capable of setting up a stable and scalable
multitenant virtual environment. All the networking components we have seen
so far, such as vNIC, virtual bridge, and VLAN, are the building blocks to setting
up a multitenant virtual environment. Once we understand the relationships
between virtual machines and virtual bridges, it is fairly easy to set up a
multitenant virtual environment with Proxmox.

When setting up a multitenant virtual environment, it is very important
to take special care so that one network traffic does not get intercepted by
another network. Without a proper VLAN and subnet, it is possible for
one network to sniff network packets on the entire virtual environment,
thus stealing data from other tenant organizations on the network.

Multitenant network diagram
The following is an example of a network diagram of a typical cloud service provider
who provides IAAS to their clients. The entire client network is virtualized within
the service provider's virtual environment.

Chapter 5

[139]

Network of Virtual Networks

[140]

On the client side, they only have simple desktop computers and mobile devices
to access their virtual cloud resources, such as desktop, storage, processing power,
and so on. Clients access these resources through a virtual means, such as Virtual
Network Computing (VNC), SPICE, or Remote Desktop Protocol (RDP).

Virtual networks are isolated with separate subnets. VLANs are set up (not shown
in the diagram) to reduce mass broadcast traffic. All virtual machine data is stored
on a separate storage cluster with full redundancy. A backup cluster does regular
backup of all virtual machines, and granular file backup with histories are done
with a third-party backup software. A virtual firewall cluster is set up in between
the virtual environment and the host Ethernet interface to provide Internet
connectivity to all client virtual machines. Each virtualized firewall has several
vNICs to connect to each subnet. A typical virtual firewall with multiple vNIC
would look as shown in the following screenshot:

Chapter 5

[141]

Since the firewall is virtualized, we can add any number of virtual network interfaces
without worrying about running out of physical slots. A virtualized clustered firewall
provides maximum uptime. Each company network in this example has its own
virtual bridge, which only talks to that company's virtual machines and firewall
interface, eliminating any chance of packet sniffing by other company networks.

Packet sniffing is a process when data packets passing through a
network interface are captured and analyzed. A packet sniffer software
can be placed in a subnet to capture data. This is common practice of
someone with malicious intention to capture sensitive unencrypted
data passing through such as usernames and passwords in clear texts.

This environment is serving multiple clients or organizations, so uptime is a big
concern. To eliminate this issue, the entire virtual environment is replicated to
another datacenter for ensuring 99.9 percent uptime. The previous diagram is an
overly simplified version of what really goes on inside a very busy Proxmox virtual
environment. Studying this diagram will give you a clear understanding of virtual
network mechanics. From the previous diagram, we can see that this network
environment heavily uses virtual bridges. So it is imperative to understand the role
of bridges and plan out a draft diagram before actually setting up a virtual network
of this level of complexity.

When working with a complex virtual network, always keep a
network diagram handy and update it whenever you make any
changes. An up-to-date network diagram will help greatly to have
total control over a virtual network. Especially when any issue
arises, it is easy to pinpoint the cause of issue with a diagram.

Summary
We were very busy in this lively chapter. We looked at the differences between
physical and virtual networks. We learned about the Proxmox network components
that make up a Proxmox-based virtual network. We saw how to work with the
configuration file to add and remove virtual interfaces. We even got to analyze a
few network diagrams from the basic to the advanced to get a better understanding
of how the Proxmox virtual network really comes to life. We even looked at what
a multitenant network is and how the common datacenter environment looks like
under the hood.

Network of Virtual Networks

[142]

Proxmox provides all the tools we need to build any level of virtual network.
It comes down to the network administrator's imagination, the company's budget,
and the need to foresee how all pieces should come together to form a well-designed
and efficient virtual network. The best part is that any mistake is easily correctable
in a virtual environment. We can always go back and change things until we are
satisfied. For this very reason a virtual network is always evolving. Over time,
a virtual network becomes an extension of the network administrator's mind
network. The configurations and design of a virtual network infrastructure can
give us a window into how that administrator thinks and the logic they used to
construct the environment.

In the next chapter, we are going to learn the High Availability feature of Proxmox,
which provides automatic redundancy to the Proxmox virtual environment. To reduce
downtime, it is important to have a functional High Availability to automigrate virtual
machines to healthy nodes during any incident. We will look at some configuration
files to enable High Availability in our cluster.

Proxmox HA – Zero
Downtime

In this chapter, we are going to see one of the most important features, which makes
Proxmox an enterprise-class hypervisor. Proxmox High Availability or Proxmox
HA gives the ability to move or migrate virtual machines from one node to another
without any user interaction. We will look at the following topics:

• Understanding High Availability
• Which environment can fully take advantage of HA
• How to set up HA in Proxmox
• Downside of High Availability in Proxmox

Understanding High Availability
High Availability is a combination of components and configurations that allow
continuous operation of a computational environment on a daily basis. Basically, it
means that even when unattended server hardware goes bad in a live environment,
High Availability can manage the server on its own and keep a virtual environment
running by automatically migrating virtual machines from one node to another. A
properly set up HA requires very little actual user interaction during hardware failure.
Without HA in place, a system administrator will have to monitor the environment
for failures and manually move or migrate virtual machines to healthy nodes.

Proxmox HA – Zero Downtime

[144]

In a small environment this can be manageable, but in a large environment of
hundreds of virtual machines and nodes, constant monitoring is just not realistic.
Although there can be monitoring software in place to automatically alert
administrators about any node failure, without HA the administrator will have
to manually move or migrate any virtual machine from a faulty node. This can
cause longer downtime due to human response time. HA takes the longer response
time out of the equation by simply moving or migrating virtual machines to a node
as soon as server hardware failure occurs.

High Availability in Proxmox
To set up a functional HA, it is important to have all the virtual machines on a
shared storage. Proxmox HA only handles Proxmox nodes and virtual machines
within a Proxmox cluster. These HA features are not be confused with shared
storage redundancy, which Proxmox can utilize for it's HA deployment.
A third-party shared storage may provide its own HA features.

There can be levels of redundancy in a Proxmox computing node, such as the
use of RAID, redundant power supply, aggregated network link or bond, and so
on. HA in Proxmox is not a replacement for any of these layers. It just facilitates
redundancy features for virtual machines to keep running during a node failure.

It should be noted that in a Proxmox node, a reboot due to an applied update will
cause all HA-enabled virtual machines to shut down and move to the next available
Proxmox node and restart again. In such a situation, it may be necessary to manually
live migrate virtual machines first, which requires minimum interruption, before
rebooting the node.

Requirements for HA setup
Proxmox HA can be set up with just two Proxmox nodes. But since this type of
setup is not ideal for a production environment, three or more Proxmox nodes are
recommended to set up a Proxmox HA because with three nodes or more, achieving
Quorum is possible. Quorum is the minimum number of votes required for a Proxmox
cluster operation. This minimum number is the total vote by a majority of the nodes.
For example, in a cluster of three Proxmox nodes, a minimum vote of two Proxmox
nodes is required to form a Quorum. In another example of clusters with eight-nodes,
a minimum vote of 5 Proxmox nodes is required to form a Quorum. With just two
nodes, the ratio of vote remains at 1:1, so no Quorum is possible. To know more
about how to set up High Availability with just two Proxmox nodes, visit http://
pve.proxmox.com/wiki/Two-Node_High_Availability_Cluster. Almost all
the configurations of Proxmox HA can be done from the GUI, except the fencing
configuration. This portion of the setup must be done through the CLI.

http://pve.proxmox.com/wiki/Two-Node_High_Availability_Cluster
http://pve.proxmox.com/wiki/Two-Node_High_Availability_Cluster

Chapter 6

[145]

Fencing
Fencing is a concept of isolating a node or its resources during node failure so that
other nodes cannot access the same resources causing data corruption. In Proxmox,
fencing prevents multiple nodes from running on the same virtual machine or
cluster-specific services. Without fencing, Proxmox HA cannot be set up. Fencing
ensures data integrity during a failure by preventing all nodes from running on the
same virtual machine or cluster services at the same time. There are several ways to
set up fencing such as the following:

• Using fence_xvmd: The host node needs to be configured with fence_xvmd
while the virtual machine needs to be configured with fence_xvm

• Using libvirt: Both the host and virtual machines need to be configured
with libvirt

• Using Intelligent Platform Managament Interface or IPMI
• Using managed switch with SNMP
• Using managed Power Distribution Unit or PDU

In this chapter, we are going to learn how to set up fence and HA with managed
PDU as a hardware fencing device.

Managed PDUs are physical hardware devices, which enable a Proxmox node to
power cycle another node during a failover before starting the HA service. An
example of such a fencing device is APC-managed PDU AP7921 (http://www.apc.
com/products/resource/include/techspec_index.cfm?base_sku=AP7921).

A managed PDU allows an administrator to remotely power cycle a
device connected to the power outlet of the unit. This is useful when
IPMI is not available and a node needs to be rebooted. By logging in
remotely into a PDU user interface, any power outlet of the PDU can
be turned on or off.

There are the following two types of fencing available:

• Resource-level fencing
• Node-level fencing

http://www.apc.com/products/resource/include/techspec_index.cfm?base_sku=AP7921
http://www.apc.com/products/resource/include/techspec_index.cfm?base_sku=AP7921

Proxmox HA – Zero Downtime

[146]

Resource-level fencing prevents the same cluster-related services or resources from
starting on all nodes in the cluster simultaneously. Node-level fencing makes sure
that the node in question does not run any services at all by simply power cycling
the node with the help of a managed PDU or IPMI. This method is also known as
STONITH or Shoot The Offending Node In The Head. There are several types of
fencing devices, such as a network-managed switch, APC master switch, Dell drac
card, and so on. In this chapter, we are going to use APC-managed PDU AP7921 to
set up device-based fencing. AP7921 is completely tested with Proxmox and very
much dependable. Also, setting up fencing with PDU is very simple. If you would
like to try setting up fencing using other methods, visit the Proxmox Wiki
at https://pve.proxmox.com/wiki/Fencing.

We can summarize the requirements of device-based fencing and HA setup as follows:

• A minimum of three properly set up and updated Proxmox nodes.
Currently, a maximum of 16 Proxmox nodes per cluster can be used
for HA.

• Shared storage for all virtual machines.
• A fencing device setup.

Configuring Proxmox HA
High Availability configuration in Proxmox is a five-step process as follows:

1. Set up node BIOS
2. Create an APC-managed PDU user
3. Set up fencing
4. Configure a VM/OpenVZ container
5. Test HA

Setting up node BIOS
Before we set up fencing and Proxmox HA, we have to make sure that nodes can
boot immediately after a power cycle or power loss. Usually, this feature is disabled
by default, as shown in the following screenshot:

https://pve.proxmox.com/wiki/Fencing

Chapter 6

[147]

To make sure that this feature is truly enabled, try to unplug the power cord and then
plug it back in to see if the node powers up. Without this feature enabled, the node
cannot be power cycled by the fencing device.

Creating an APC-managed PDU user
To create an APC-managed PDU user, we have to create a user on the APC PDU
fencing device, which we will use with our fencing configuration. The following
steps create a limited access for the user without any admin privileges. This allows
the user account to only interact with power outlets such as the power cycle and
not the administration of the PDU itself. This unit comes with its own web-based
control panel. Go to the admin section securely with a browser simply by entering
the device IP address as https://<apc_device_ip_address>.

A typical APC web admin section is shown in the following screenshot:

Proxmox HA – Zero Downtime

[148]

We can create the new user from Outlet Manager under the Device Manager tab. Fill
in the information as shown in the following screenshot and then simply hit Apply:

Next, make sure to have the SSH access enabled by navigating to Administration |
Network. SSH will allow this newly created user to perform a power cycle without
a login via graphical interfaces. The following screenshot shows the Network menu:

Chapter 6

[149]

Configuring Proxmox fencing
Fencing must be set up before starting the actual Proxmox HA configuration
process. Without a properly set up fencing, the error message shown in the
following screenshot will be produced by Proxmox:

Before we get to the actual fencing configuration, we have to enable fencing on
all nodes by performing the following steps:

1. Uncomment the very last line in the file #/etc/default/redhat-cluster-pve.
Do this only on one node. The edited file should look as follows:
this file is sourced by the following init scripts:
/etc/init.d/cpglockd
/etc/init.d/cman
/etc/init.d/rgmanager

FENCE_JOIN="yes"

2. Join each node by using the following command from CLI. Do not join a
node into a fence if you do not want it be part of High Availability:
fence_tool join

If the node ever needs to be detached from fencing, then simply run the
following command from the node itself:

fence_tool leave

3. After adding all the nodes, check the status using the following command:
fence_tool ls

If all went okay, then the output should look like this:

fence domain
member count 3
victim count 0
victim now 0
master nodeid 1
wait state none
member 1 2 3

Proxmox HA – Zero Downtime

[150]

The fence_tool program is in the Linux operating system. It is
used to join or leave nodes in the default fence domain. It also starts
the fence daemon fenced. Even though fenced can be started or
stopped without fence_tool, this small tool takes some added
measures that are very helpful in a production environment. To get
more information on fence_tool and other options that can be
used, visit http://linux.die.net/man/8/fence_tool.

4. We are now going to edit the /etc/pve/cluster.conf file to add a fencing
device. We can edit the file from the CLI and activate it from the GUI. We
must remember to increase the config_version number when we make
any changes to the cluster.conf file. This ensures that all the nodes will
apply the new settings. Our current cluster.conf file looks as follows:

<?xml version="1.0"?>
<cluster config_version="13" name="pmx-cluster">

 <cman keyfile="/var/lib/pve-cluster/corosync.authkey">
 </cman>

 <clusternodes>
 <clusternode name="pmxvm01" nodeid="1" votes="1"/>
 <clusternode name="pmxvm02" nodeid="2" votes="1"/>
 <clusternode name="pmxvm02" nodeid="3" votes="1"/>
 </clusternodes>

</cluster>

We can also see the cluster.conf file from the Proxmox GUI by
navigating to Datacenter | HA. We will see cluster.conf as shown
in the following screenshot:

http://linux.die.net/man/8/fence_tool

Chapter 6

[151]

Before we start editing the cluster.conf file, we are going to copy the file and edit
the copied file. That way we can activate it from the GUI. The command to do so is
as follows:

cp /etc/pve/cluster.conf /etc/pve/cluster.conf.new

Any changes made to a configuration file with the extension .new at the end are
treated as temporary changes. When activated from the GUI or through node reboot,
these temporary changes permanently get transferred to the main configuration file.
In this case, our main cluster file is /etc/pve/cluster.conf. This also helps to
validate any new changes before they are applied. Validation checks each line to
make sure there are no syntax errors in the configuration file. Validation can be
done through the following command:

ccs_config_validate –v –f /etc/pve/cluster.conf.new

Let us now add the fencing to the cluster configuration file cluster.conf.new.
In this configuration, the power_wait option sets the delay between performing
power cycles. Without this option, nodes will be turned off immediately and turned
back on without any delay. Setting a delay ensures that nodes will be turned off for
a set amount of time before powering them back on. The following code shows
delay set for 10 seconds:

nano /etc/pve/cluster.conf.new

<?xml version="1.0"?>
<cluster config_version="13" name="pmx-cluster">

 <cman keyfile="/var/lib/pve-cluster/corosync.authkey">
 </cman>

 <fencedevices>
 <fencedevice agent="fence_apc" ipaddr="192.168.145.250"
 login="pmxfence" name="apc" passwd="99999" power_wait="10"/>
 </fencedevices>

<clusternodes>
 <clusternode name="pmxvm01" nodeid="1" votes="1">
 <fence>
 <method name="power">
 <device name="apc" port="1" secure="on"/>
 </method>
 </fence>

Proxmox HA – Zero Downtime

[152]

 </clusternode>

 <clusternode name="pmxvm02" nodeid="2" votes="1">
 <fence>
 <method name="power">
 <device name="apc" port="2" secure="on"/>
 </method>
 </fence>
 </clusternode>

 <clusternode name="pmxvm03" nodeid="3" votes="1">
 <fence>
 <method name="power">
 <device name="apc" port="3" secure="on"/>
 </method>
 </fence>
 </clusternode>

</clusternodes>

</cluster>

Take special care to enter the right port for the right node. In the APC
PDU, each power socket is referred to as a port. If a node is plugged into
the wrong port or socket, the wrong node might go through the power
cycle. Always label the power cords so that they do not get mixed up.

After we have edited the cluster.conf file, let us check the file for any errors with
the ccs_config_validate command. If there are no errors, it should show the
following messages:

Creating temporary file: /tmp/tmp.jOGM6BP15k

Config interface set to:

Configuration stored in temporary file

Updating relaxng schema

Validating..

Configuration validates

Validation completed

Let us now look at the temporary configuration by navigating to Proxmox GUI
| Datacenter | HA. The GUI should look like the following screenshot prior to
activating the changes:

Chapter 6

[153]

If everything looks good without any errors, click on Activate to apply the changes.
No reboot will be required.

Configuring virtual machine HA
With the fencing activated, we can now proceed to configuring the virtual machine
to become part of the High Availability feature. All VM configurations can be done
through the GUI. We can check the HA status of a VM from the virtual machine
Summary screen. When a VM is not part of High Availability, the Summary screen
will show No for the Managed by HA status, as shown in the following screenshot:

Proxmox HA – Zero Downtime

[154]

We can enable the HA feature for a virtual machine by navigating to Datacenter |
HA, as shown in the following screenshot:

Click on HA managed VM/CT to open the option window, as shown in the following
screenshot, to add a virtual machine. Simply select a VM/CT ID and then click on
Create. In our cluster, we are going to add VM 101 into the HA.

Notice the addition of a new segment in the cluster.conf, as shown in the
following screenshot:

Chapter 6

[155]

In the previous screenshot, rm simply means resource manager. We can see that the
VM 101 is now part of Proxmox HA. Any virtual machine we add in HA will show
under the rm segment of cluster.conf.

We can also see the virtual machine's HA status in the Summary screen, as shown
in the following screenshot:

Testing Proxmox HA
Now that we have properly set up High Availability, it is time to put it to test to
observe its functionality. The test is as simple as pulling the power cord out of the
node and watch High Availability come into action. Also, unplug the network cable
from the node to simulate a node failure. This should also power cycle the failed
node and move all the virtual machines to another node.

If there are any error messages, check the error log to pinpoint the cause. Usually,
the error happens due to a disabled SSH on the managed PDU. The chances of
getting an error are lower if the cluster.conf.new file has been validated with
the validation command.

Fencing manually
When fencing hardware is not present, manual fencing can be used for testing
or learning purposes. During the manual fencing process, the fencing agent fence
_manual (http://linux.die.net/man/8/fence_manual) writes into the system log
of the node indicating that the node requires fencing. An administrator must manually
reset the node and then run the following command from the command prompt to
acknowledge that the node has been reset:

fence_ack_manual <node_name>

http://linux.die.net/man/8/fence_manual

Proxmox HA – Zero Downtime

[156]

Recovery of the node will continue only after the command has been entered.

Manual fencing requires user intervention and should not be used in
a production environment.

The command fence_ack_manual can also be used if any fence failure occurs during
fencing. Cluster operation is stopped during fencing. So by manually acknowledging
node reset through the fence_ack_manual command, cluster can resume operation.
The fence_ack_manual command is not dependent on any service and can be used
whenever a fence failure occurs.

Proxmox HA need to know
Although the Proxmox High Availability feature is a great addition to a virtual cluster
environment, there are few things you will have to keep in mind while implementing
this feature.

If a Proxmox HA node needs a reboot due to a kernel update or anything else, then
the rgmanager program must first be stopped on the node before rebooting. It can
be stopped through the CLI. The command usually takes a while to complete. Always
monitor the Task Log from the GUI. When the rgmanager program is stopped, reboot
the node. To stop the rgmanager program, use the following command:

/etc/init.d/rgmanager stop

The rgmanager or resource group manager program manages High
Availability resources such as cluster services to provide failover
abilities. During a node failure, rgmanager relocates cluster-specific
services to different nodes with minimal interruption.

Chapter 6

[157]

Summary
In this chapter, we have covered an important feature named Proxmox High
Availability. It is a feature that gives control to Proxmox nodes to automigrate
virtual machines during a node failure or maintenance. We also saw how this
feature actually works and what are the steps involved in setting it up. We learned
about new equipment called managed PDU, which allows an administrator to
power up or power down an equipment remotely. We also configured one of
our virtual machines to take advantage of High Availability.

In the next chapter, we are going to look at an enterprise-class distributed storage
system named Ceph, and set up a Ceph cluster to work with Proxmox. We will
go through a step-by-step process of the Ceph configuration and have a deeper
understanding of why an administrator should use Ceph and how it works.

High Availability Storage for
High Availability Cluster

In Chapter 3, Shared Storages with Proxmox, we looked into what a shared storage is and
why it is important for a Proxmox cluster. In this chapter, we are going to dig deeper
into the concept of shared storage by setting up an enterprise-class storage cluster
using Ceph. This storage system allows you to build a fully scalable storage cluster
using commodity hardware, while providing a stable storage platform to store all
virtual machines. Throughout this chapter, we are going to cover the following topics:

• Definition of Ceph
• Reasons to use Ceph as a shared storage
• Components used in Ceph
• A step-by-step process to set up a Ceph cluster
• Definition of Ceph FS
• Getting to know Ceph's CRUSH map
• Storage pool management in Ceph
• Learning Ceph through a virtual Ceph setup

High Availability Storage for High Availability Cluster

[160]

Introducing the Ceph storage
Ceph is a distributed storage system designed keeping performance, reliability,
and scalability in mind. Performance, reliability, and scalability are three keys for
any enterprise-class network environment, and Ceph provides just that. As the
capacity of Ceph cluster grows with the addition of new hard drives or solid-state
drives, performance grows with it. This is simply because when user data is sent
to a Ceph cluster, it is divided into a number of pieces depending on the disk
drives and is written simultaneously by all the disk drives. Of course, this is
an overly simplified explanation of the entire process. We will look into Ceph
mechanisms later in this chapter. Ceph's built-in self-healing system provides
outstanding reliability, and the simplicity of adding disk drives or a physical
node in the cluster to increase overall capacity provides unprecedented scalability.

A Ceph cluster provides the following three storage types:

• Object Storage
• Block Storage
• Filesystem

Object Storage
Ceph Object Storage is the foundation of all other storage features offered by
Ceph clusters. Data is written and retrieved through an API that is compatible
with Amazon S3 or OpenStack Swift. This is a suitable solution for cloud storage
integration and not the storage of virtual machine images. Currently, Proxmox
does not support Ceph Object Storage.

For more details on Ceph Object Storage, visit http://ceph.com/
docs/master/radosgw/.

Block Storage
Ceph Block Storage stores block device images as objects by interacting with Ceph
Object Storage. This storage is also known as RADOS Block Device (RBD), which
is supported by Proxmox. Ceph RBD is integrated with kernel, allowing access to
virtual machine images on RBD storage. Ceph Block Storage can be connected with
Proxmox through a GUI using the RBD storage plugin.

For more details on Ceph Block Storage, visit http://ceph.com/
docs/master/rbd/rbd/.

http://ceph.com/docs/master/radosgw/
http://ceph.com/docs/master/radosgw/
http://ceph.com/docs/master/rbd/rbd/
http://ceph.com/docs/master/rbd/rbd/

Chapter 7

[161]

Filesystem
Ceph Filesystem sits on top of Object Storage and provides a POSIX-compliant
filesystem to store files and folders such as a disk drive. The Filesystem storage
type uses a MetaData Server (MDS), which maps files and directories stored in
the Filesystem to the objects stored in Object Storage. MDS can also rebalance data
stored in Filesystem among cluster hosts, ensuring high performance and preventing
higher load on a specific host. Loss of MDS will cause loss of data. Ceph FS can be
integrated with Proxmox by mounting a local directory on the Ceph FS pool.

To learn more about Ceph FS, visit http://ceph.com/docs/
master/cephfs/.

If you have never used Ceph before, it might be a little difficult at first to grasp the
concept of how it works because Ceph has a non-traditional approach toward storing
and distributing data in a Ceph cluster. This mechanism allows new disk drives or
nodes to be added to the cluster and increase overall storage space within minutes.
It does not matter if you are building a 20-terabyte or 20-petabytes storage system;
the entire scalability process is the same for all sizes. Imagine a RAID 5 or 6 system
with 10 HDD in a single server node. RAID will allow the failure of multiple disk
drives and continue to provide node services. Now imagine a Ceph cluster with five
physical nodes and eight HDDs in each node. If one of the nodes fails completely,
along with all the eight HDDs in that node, the storage system will not stop working.
Instead, it will go into self-healing mode while providing an uninterrupted storage
service and giving you the opportunity to replace the failed node.

Reasons to use Ceph
In the data storage world, there are many choices other than Ceph. What sets Ceph
apart is the simplicity of Ceph's cluster management and the significant cost reduction
by leveraging commodity hardware and the absence of a vendor license lock-in. Ceph
provides all these features without compromising on any enterprise-class feature such
as performance, reliability, and scalability.

Proxmox recently released Version 3.2 of the hypervisor integrated with a Ceph
API, allowing users to manage a full Ceph cluster using the Proxmox GUI.
Now Proxmox and Ceph can actually coexist on the same node, thus reducing
management overhead. The following screenshot shows the integration of Ceph
in the Proxmox GUI:

http://ceph.com/docs/master/cephfs/
http://ceph.com/docs/master/cephfs/

High Availability Storage for High Availability Cluster

[162]

Without the Proxmox GUI, the only way to manage a Ceph cluster is through
the CLI. There is a list of Ceph commands at the end of this chapter in The Ceph
command list section.

With Ceph's architecture, a user talks to disk drives or OSDs when directly requesting
for data in the cluster (explained in The Ceph components section). There are no single
points of failure, with the exception of Ceph FS, where an MDS maintains a map of
files and directories in the Ceph FS. Thus, by simply adding new disk drives or nodes,
a Ceph cluster scales up simply by adding new disk drives or nodes.

Ceph was created with commodity hardware in mind. Ceph's open model eliminates
vendor lock-in issues through proprietary appliance or an additional software layer.
It can be installed on just about any off-the-shelf hardware. Of course, for reliability,
quality hardware should be used.

Virtual Ceph for training
It is possible to set up an entire Ceph cluster in a virtual environment. However,
this cluster should only be used for training and learning purposes. If you are
learning Ceph for the first time, and do not want to invest in physical hardware,
then a virtualized Ceph platform is certainly possible. This will eliminate the need
for physical hardware to set up Ceph nodes.

The Ceph components
Before we dive in, let's take a look at some key components that make up a
Ceph cluster.

Physical node
A physical node is the actual server hardware that holds Object Storage Daemon
(OSDs), monitors, and MDSs.

Chapter 7

[163]

Maps
In Ceph, maps hold information such as a list of participating nodes in a cluster
and their locations, data paths, and a list of OSDs with certain data chunks. There
are several maps in a Ceph cluster: a cluster map, OSD map for a list of OSDs,
monitor map for known monitor nodes, Placement Group (PG) map for the location
of objects or data chunks, and a CRUSH map to determine the storage and retrieval
of data by computing the data storage location.

Cluster map
A cluster map is a map of devices and buckets that comprise a Ceph cluster. Ceph
uses a bucket hierarchy to define nodes or node locations, such as a room, rack, shelf,
and host. For example, let's say there are four disk drives used as four OSDs in the
following bucket hierarchy:

Bucket datacenter = dc01

Bucket room = 101

Bucket rack = 22

Bucket host = ceph-node-1

Bucket osd = osd.1, osd.2, osd.3, osd.4

In the previous example, osd.1 to osd.4 are in the ceph-node-1 rack in rack 22, which
is in room 101 inside datacenter dc01. If osd.3 fails, and there is an on-site technician,
then an administrator can quickly give the technician the previous bucket hierarchy
to identify the exact disk drive location to replace it. There could be hundreds of
OSDs in a cluster. A cluster map helps to pin point a single host or disk drive using
the bucket hierarchy.

High Availability Storage for High Availability Cluster

[164]

CRUSH map
Controlled Replication Under Scalable Hashing (CRUSH) is an algorithm used
in Ceph to store and retrieve data by computing data storage locations within the
cluster. It does so by providing a per-device weight value to distribute data objects
among storage devices. The value is autoassigned based on the actual size of the disk
drive being used. For example, a 2 TB disk drive may have the approximate weight of
1.81. The drive will keep writing data until it reaches this weight. By design, CRUSH
distributes data evenly across weighted devices to maintain a balanced utilization of
storage and device bandwidth resources. A user can customize a CRUSH map to fit
any cluster environment of any size.

For more details on CRUSH maps, visit http://ceph.com/docs/
master/rados/operations/crush-map/.

Monitor
A Ceph Monitor (MON) is a cluster monitor daemon node that holds the OSD map,
PG map, CRUSH map, and Monitor map. Monitors can be set up on the same server
node with OSDs or on a fully separated machine. For a stable Ceph cluster, setting
up separate nodes with Monitors is highly recommended. Since Monitors only
keep track of everything that happens within the cluster and not the actual read/
write process of cluster data, the Monitor node can be very underpowered, and thus
less expensive. To achieve a healthy status of the Ceph cluster, a minimum of three
monitors is needed to be set up. A healthy status is when every status in the cluster
is OK, without any warnings or errors. Note that with the recent integration of Ceph
with Proxmox, the same Proxmox node can be used as a Monitor. Starting from
Proxmox 3.2, it is possible to set up Ceph Monitors on the same Proxmox node, thus
eliminating the need to use a separate node for Monitors. Monitors can also
be managed using the Proxmox GUI.

For details on Ceph Monitor, visit http://ceph.com/docs/
master/man/8/ceph-mon/.

http://ceph.com/docs/master/rados/operations/crush-map/
http://ceph.com/docs/master/rados/operations/crush-map/
http://ceph.com/docs/master/man/8/ceph-mon/
http://ceph.com/docs/master/man/8/ceph-mon/

Chapter 7

[165]

OSD
Object Storage Daemon (OSD) is an actual storage media or partition within media
such as HDD/SSD that stores the actual cluster data. OSDs are responsible for data
replication, recovery, and rebalancing. Each OSD provides monitored information
to Ceph Monitors to check for a heartbeat. A Ceph cluster requires a minimum of
two OSDs to be in the active+clean state. A Ceph cluster regularly provides feedback
on a cluster status. An active+clean state expresses an error- or warning-free cluster.
See the Placement Group section for the other states that a Ceph cluster can achieve.
As of Proxmox Version 3.2, OSDs can be managed through the Proxmox GUI.

OSD Journal
In Ceph, I/O writes are first written to an OSD Journal before they is transferred to
an actual OSD. Journals are simply smaller partitions that accept smaller data at
a time while the backend OSDs catch up with the writings. By putting Journals on
faster access disk drives such as SSD, we can increase a Ceph operation significantly
because user data is written to a Journal at a higher speed. At the same time, the
Journal sends short bursts of data to OSDs, giving them time to catch up. Journals
for multiple OSDs can be stored in one SSD per node. Alternatively, OSDs can be
divided into multiple SSDs. For a small cluster of up to eight OSDs per node, using
an SSD improves performance. However, while working with a larger cluster with
a higher number OSDs per node, collocating the Journal with the same OSDs,
 rather than SSD, increases performance. The combined write speed for all the
OSDs outperforms the speed of one or two SSDs as a Journal.

The important thing about Journal to remember is that the loss of a Journal partition
causes OSD data loss. Thus, when using a single SSD to store all OSD Journals,
we recommend that you add the SSD to the RAID configuration.

Note that as of the Ceph release codenamed Firefly, Journal is not needed any more.
However, since these changes are too new, we recommend that you wait for several
months before implementing the new release of Ceph in a production environment.
By this time, the Ceph developer will have taken care of any major known or
unknown bug in the new release. In this chapter, we are going to create a Ceph
cluster using Journal. The installation process is the same as that for Ceph Firefly.

High Availability Storage for High Availability Cluster

[166]

MDS
MDS stores Meta information for Ceph FS. Ceph Block and Object Storage do not
use MDS. So in a cluster, if Block and Object are the only types being used, it is not
necessary to set up an MDS server. Like Monitors, MDS needs to be set up on a
different machine to achieve high performance. As of Proxmox Version 3.2, MDS
cannot be managed or created from the Proxmox GUI.

Ceph FS is not fully standardized yet and is still in the development
phase. It should not be used to store mission critical data. It is mostly
stable, but unforeseen bugs may still cause major issues such as data
loss. Note that there have not been many reports of mass data loss due
to unstable Ceph FS. Two of the virtual machines used to write this
book have been running for more than 11 months without any issue.

There should be two MDS nodes in a cluster to provide redundancy because the loss
of an MDS node will cause the loss of data on Ceph FS and will render it inaccessible.
Two MDS nodes will act as active+passive when one node failure is taken over by
another node and vice versa. To learn about MDS and Ceph FS, visit http://ceph.
com/docs/master/cephfs/.

Placement Group (PG)
The main function of Placement Group (PG) is to combine several objects into a
group and then map the group to several OSDs. A per-group mechanism is much
more efficient than a per-object mechanism since the former uses fewer resources.
When data is retrieved, it is far more efficient to call a group than an individual
object in a group. The following diagram shows how PGs are related to OSD:

http://ceph.com/docs/master/cephfs/
http://ceph.com/docs/master/cephfs/

Chapter 7

[167]

For better efficiency, we recommend a total of 50-100 PGs per OSD for all pools.
Each PG will consume a certain number of node resources, such as CPUs and memory.
A balanced distribution of PGs ensures that all nodes and OSDs in the nodes are not
out of memory or that the CPU does not face overload issues. A simple formula to
follow while allocating PG for a pool is as follows:

()Total PGs = OSD×100 / Number of Replicas

The result of the total PG should be rounded up to the nearest power of two. In a Ceph
cluster with 3 nodes (replicas) and 24 OSDs, the total PG count should be as follows:

()Total PGs = 24 100 / 3 = 800×

If we divide 800 by 24, which is the total number of OSDs, then we get 33.33. This is
the number of PGs per replica per OSD. Since we have three replicas, we multiply
33.33 with 4 and get 99.99. This is the total number of PGs per OSD in the previous
example. The formula will always calculate the PGs per replica. For a three-replica
setup, each PG is written thrice. Thus, we multiplied 33.33 by 3 to get the total
number of PGs per OSD.

Let's see another example to calculate PG. The following setup has 150 OSDs,
three Ceph nodes, and two replicas:

()Total PGs = 150 100 / 2 = 7500×

If we divide 7500 by 150, the number of total OSDs, we get 50. Since we have
two replicas, we multiply 50 by 2 and get 100. Thus, each OSD in this cluster
can store 100 PGs. In both examples, our total PG per OSD was within the 50-100
recommended range. Always round up the PG value to remove any decimal point.

For in-depth details on Ceph PG, visit http://ceph.com/docs/
master/rados/operations/placement-groups/.

Pool
Pool is like a logical partition where Ceph stores data. When we set a PG or the
number of replicas, we actually set them for each pool. When creating a Ceph
cluster, three pools are created by default: data, metadata, and RBD. Data and
metadata pools are used by the Ceph cluster, while the pool RBD is available to
store actual user data. PGs are set on a per-pool basis. The formula discussed in
the Placement Group (PG) section calculates the PGs required per pool. Thus, when
creating multiple pools, it is important to slightly modify the formula so that the
total PG stays within 50-100 per OSD.

http://ceph.com/docs/master/rados/operations/placement-groups/
http://ceph.com/docs/master/rados/operations/placement-groups/

High Availability Storage for High Availability Cluster

[168]

For instance, in the example of 150 OSDs, three Ceph nodes, and two replicas, our
PG was 7500 per pool. This gave us 50 PGs per OSD. If we had three pools in that
setup and each pool had 7500 PGs, then the total number of PGs would have been
150 per OSD. To balance the PGs across the cluster, divide 7500 by 3 for three pools
and set a PG of 2500 for each pool. This gives us 2500/150 OSDs = 16 PGs per pool
per OSD or 16 x 3 pools = 48 total PGs per OSD. Since we have two replicas in this
setup, the final total PGs per OSD will be 48 x 2 replicas = 96 PGs. This is within the
recommended 50-100 range of PGs per OSD.

Here is another example scenario. Try to see if you can come up with the final PG
value on your own. The answer is given after the scenario. The calculation for this
scenario is given at the end of this chapter.

Question: The Ceph cluster has five nodes, 120 OSDs, three replicas, and four pools.
What is the PG value per pool? What is the total number of PGs per OSD for each
replica? What is the total PGs per OSD for all pools and replicas?

Answer: Total PG for each pool is 1000. Each replica of pools will have 32 PGs per
OSD. The total PGs per OSD for all pools and replicas is 96.

Ceph components summary
If we want to understand the relationship between all the Ceph components we
have seen so far, think of it this way: each Pool comprises multiple PGs. Each PG
comprises multiple OSDs. The OSD map keeps track of the number of OSDs in the
cluster and in the nodes they are in. The MON map keeps track of the number of
Monitors in a cluster to form a Quorum and maintains a master copy of the cluster
map. A CRUSH map dictates how much data needs to be written to an OSD and
how to write or read it. These are the building blocks of a Ceph cluster.

The Ceph cluster
The following diagram is a basic representation of Proxmox and the Ceph cluster.
Note that both clusters are on a separate subnet on separate switches.

Chapter 7

[169]

A Ceph cluster should be set up with a separate subnet on a separate switch to keep
it isolated from the Proxmox public subnet. The advantage of this practice is to keep
Ceph's internal traffic isolated so that it does not interfere with the traffic of running
virtual machines. On a healthy Ceph cluster with the active+clean state, this is not a
big issue. However, when Ceph goes into self-healing mode due to OSD or a node
failure, it rebalances itself by moving PGs around, which causes very high bandwidth
consumption. On a bad day, separating two clusters ensures that the cluster does not
slow down significantly due to the shortage of network bandwidth.

This also provides added security since the Ceph cluster network is completely
hidden from any public access using a separate switch. In our previous example,
we have three MONs, two MDSs, and three OSD nodes connected to a dedicated
switch used only for the Ceph cluster. The Proxmox cluster connects to the Ceph
cluster by creating a storage connection using the Proxmox GUI.

Hardware requirements
Now, let's look at what hardware we are going to need to start setting up our first
Ceph cluster. To build our learning cluster, we are going to use basic off-the-shelf
hardware for our Ceph nodes. Note that this is only a guideline. You can use any
hardware available or set up Monitors and MDSs as virtual machines and then use
a physical node for OSDs. The entire Ceph cluster in this chapter can be also be set
up in a virtual environment for learning purpose.

High Availability Storage for High Availability Cluster

[170]

The following table shows the hardware list for a basic-level Ceph cluster:

Node type Components Quantity
OSD = 2 nodes Motherboard: MSI H81M-P33 LGA1150 2

RAM: 4 GB DDR3 2
CPU: Intel i3-4130 3.40 GHz 2
HDD: Seagate 2TB 7200 3.5" 4
SSD for OS: Corsair Force LS 2
NIC: Intel Pro/1000 CT Gigabit Adapter 2
Power supply: 300 Watt 2
Chassis: In-Win BL-631 2

MON = 3 nodes
MDS = 2 nodes

Motherboard: MSI FM2-A55M-E33 5
RAM: 1 GB DDR3 5
CPU: AMD A4-6300 3.7GHz 5
SSD for OS: Corsair Force LS 5
NIC: Intel Pro/1000 CT Gigabit Adapter 5
Power supply: 220 Watt 5
Chassis: In-Win BL-631 5

Ceph cluster Switch: Netgear ProSafe 16 Port Gigabit 1

The cost of this basic setup can be further reduced if existing hardware is reused.
For MON and MDS nodes, just about any computer will do.

Software requirements
For the Ceph cluster, it is best to use Ubuntu Server Edition since Ceph developers
use this operating system to test Ceph. Any variant of Debian will also do. Ubuntu
Server is stable and simple enough for just about anybody. For our cluster, Ubuntu
Server 12.04.4 LTS is the only operating system we need to download and create a CD.

Installing Ceph using an OS
As of Proxmox 3.2, a Ceph server can directly run on the Proxmox node. We can
also manage the Ceph cluster from the Proxmox GUI. Ceph can function just the
same whether it is installed as an additional service on Proxmox node or separately
on a different node using another Debian-based operating system. In this chapter,
we are going to look at both installation processes.

Chapter 7

[171]

We will try our best to look into all aspects of the Ceph installation in this chapter.
However, if we have missed out on something, Ceph's official documentation may
be a good start for additional information.

For the official Ceph documentation, visit http://www.ceph.com/
docs/master/start/intro.
For the official Proxmox documentation to install Ceph on the same
Proxmox node, visit http://pve.proxmox.com/wiki/Ceph_Server.

The installation process of Ceph in the documentation may be a little overwhelming
at first, but repeated study will allow for a better understanding of this great
technology. In this chapter, you will find a much simpler process that is broken
down into chunks to help you move along the Ceph installation process.

Our first task is to put the computers together and connect them with the switch.
We should have two nodes for OSDs, three nodes for Monitors, and two nodes for
MDSs. If you are using virtual machines for OSDs and MONs, then you should have
two OSD nodes, three virtual machines for MONs, and two for MDSs. Connect the
switch to the Internet so that the Ceph cluster can have internet connectivity during
the installation. The operating system will need to be updated with the latest packages.

We recommend that you disconnect the Internet connection from the
Ceph cluster at all times in a production environment. Allow internet
connectivity on a Ceph network only to apply updates or patches.
This prevents the chances of a security breach in the Ceph cluster
through WAN, should the firewall be compromised.

Installing and setting up Ubuntu
Install Ubuntu Server on all the nodes as suggested by the Ubuntu documentation
(http://www.ubuntu.com/download/server/install-ubuntu-server). Once the
installation is complete, we are going to set up network interfaces and a hostname
on all nodes using the following commands:

sudo nano /etc/network/interfaces

address 192.168.10.11

netmask 255.255.255.0

gateway 192.168.10.254

#if using your own local DNS server, use your IP address instead of
 public DNS server

http://www.ceph.com/docs/master/start/intro
http://www.ceph.com/docs/master/start/intro
http://pve.proxmox.com/wiki/Ceph_Server
http://www.ubuntu.com/download/server/install-ubuntu-server

High Availability Storage for High Availability Cluster

[172]

dns-nameservers 208.67.222.222

sudo nano /etc/hostname

ceph-admin-01

sudo nano /etc/hosts

192.168.10.10 ceph-admin-01.domain.com ceph-admin-01

We are now going to change the interface, hostname, and hosts' configuration for all
Ceph nodes based on the following table:

Hostname IP address Hosts
ceph-mon-01 192.168.10.11 192.168.10.11 ceph-mon-01.domain.com ceph-mon-01
ceph-mon-02 192.168.10.12 192.168.10.12 ceph-mon-02.domain.com ceph-mon-02
ceph-mon-03 192.168.10.13 192.168.10.13 ceph-mon-03.domain.com ceph-mon-03
ceph-mds-01 192.168.10.16 192.168.10.16 ceph-mds-01.domain.com ceph-mds-01
ceph-mds-02 192.168.10.17 192.168.10.17 ceph-mds-02.domain.com ceph-mds-02
ceph-osd-01 192.168.10.21 192.168.10.21 ceph-osd-01.domain.com ceph-osd-01
ceph-osd-02 192.168.10.22 192.168.10.22 ceph-osd-02.domain.com ceph-osd-02

We are going to use Monitor 1 as the admin node for the Ceph cluster. We are going
to add all other Ceph hosts into the admin node's host file. Ceph requires a hostname
rather than IP addresses to communicate with each other. We could also set up a local
DNS server to handle the hostname resolution in a large Ceph cluster. We can sue the
admin node or set up another node or virtual machine as a local DNS server. Perform
the following steps to set up a local DNS server using Ubuntu server:

1. Install DNS server software in Ubuntu using the following command:
sudo apt-get install bind9

2. Configure the DNS server to cache requests and forward unknown requests
to another DNS server using the following command:
sudo nano /etc/bind/named.conf.options

3. Uncomment or add forwarder section, followed by the IP address of any
public DNS server, such as OpenDNS or Google:
forwarders {
 208.67.222.222;
 8.8.8.8;
};

Chapter 7

[173]

4. Define zones for the local domain using the following command:
sudo nano /etc/bind/named.conf.local

Enter the following entries in the named.conf.local file:

zone "domain.com" IN {
 type master;
 file "/etc/bind/zones/domain.com.db";
};

5. We will now add a reverse DNS lookup as follows for the local network in
the same named.conf.local file:
zone "10.168.192.in-addr.arpa" {
 type master;
 file "/etc/bind/zones/rev.10.168.192.in-addr.arpa";
};

6. Create a zones directory using the following command:
sudo mkdir /etc/bind/zones

7. Configure the local domain using the following command:
sudo nano /etc/bind/zones/domain.com.db

Enter the following settings in the domain.com.db file. Match the IP
addresses and hostnames with your network:

; Use semicolons to add comments.
; Host-to-IP Address DNS Pointers for home.lan
; Note: The extra "." at the end of the domain names are
important.

; The following parameters set when DNS records will expire, etc.
; Importantly, the serial number must always be iterated upward to
prevent
; undesirable consequences. A good format to use is YYYYMMDDII
where
; the II index is in case you make more that one change in the
same day.
$ORIGIN .
$TTL 86400 ; 1 day
domain.com. IN SOA ceph-admin-01.domain.com. hostmaster.domain.
com. (
 2014060601 ; serial
 8H ; refresh
 4H ; retry

High Availability Storage for High Availability Cluster

[174]

 4W ; expire
 1D ; minimum
)

; NS indicates that ubuntu is the name server on home.lan
domain.com. IN NS ceph-admin-01.domain.com.

$ORIGIN domain.com.

; Set the address for localhost.domain.com
localhost IN A 127.0.0.1

; Set the hostnames
ceph-admin-01 IN A 192.168.10.10
ceph-mon-01 IN A 192.168.10.11
ceph-mon-02 IN A 192.168.10.12
ceph-mon-03 IN A 192.168.10.13
ceph-mds-01 IN A 192.168.10.16
ceph-mds-02 IN A 192.168.10.17
ceph-osd-01 IN A 192.168.10.21
ceph-osd-01 IN A 192.168.10.22

8. Configure a reverse lookup using the following command:
sudo nano /bind/zones/rev.10.168.192.in-addr.arpa

Enter the following settings in the rev.10.168.192.in-addr.arpa file.
Match the IP addresses and hostnames with your network:

; IP Address-to-Host DNS Pointers for the 192.168.10 subnet
@ IN SOA ceph-admin-01.domain.com. hostmaster.domain.com. (
 2014060601 ; serial
 8H ; refresh
 4H ; retry
 4W ; expire
 1D ; minimum
)
; define the authoritative name server
 IN NS ceph-admin-01.domain.com.

; Set the Hostnames
1 IN PTR ceph-admin-01.domain.com.
2 IN PTR ceph-mon-01.domain.com.
3 IN PTR ceph-mon-02.domain.com.
4 IN PTR ceph-mon-03.domain.com.

Chapter 7

[175]

5 IN PTR ceph-mds-01.domain.com.
6 IN PTR ceph-mds-02.domain.com.
7 IN PTR ceph-osd-01.domain.com.
8 IN PTR ceph-osd-02.domain.com.

9. Restart the bind services using the following command:
sudo service bind9 restart

10. Enter the IP address 192.168.10.10 in the network configuration for all
other Ceph nodes.

If you are not using a dedicated local DNS server, then this is how the admin
node hosts file should look to point the hostnames to IP addresses manually:

127.0.0.1 localhost.localdomain localhost

192.168.10.11 ceph-mon-01.domain.com ceph-mon-01

192.168.10.12 ceph-mon-02.domain.com ceph-mon-02

192.168.10.13 ceph-mon-03.domain.com ceph-mon-03

192.168.10.16 ceph-mds-01.domain.com ceph-mds-01

192.168.10.17 ceph-mds-02.domain.com ceph-mds-02

192.168.10.21 ceph-osd-01.domain.com ceph-osd-01

192.168.10.22 ceph-osd-01.domain.com ceph-osd-02

Creating an admin user
Create an admin user cephadmin on all the Ceph nodes and add it to sudo file
using the following command:

sudo useradd –d /home/cephadmin –m cephadmin

sudo passwd cephadmin

Assigning SUDO permission to a user
Enter the following command to give the sudo permission to the admin
user cephadmin:

echo "cephadmin ALL = (root) NOPASSWD:ALL" | sudo tee
 /etc/sudoers.d/cephadmin

sudo chmod 0440 /etc/sudoers.d/cephadmin

Run the previous commands on all the Ceph nodes.

High Availability Storage for High Availability Cluster

[176]

Updating Ubuntu
Once the network is set up, update Ubuntu and reboot all the nodes using the
following commands:

sudo apt-get update

sudo apt-get dist-upgrade

Generating an SSH Key
Log in to the ceph-admin-01 node with the new admin user cephadmin; this is
the user we will use for Ceph management. We will now generate SSH keys and
copy it to all the nodes. This will allow a password-less login to all the Ceph nodes.
The following command is used to create the SSH key from the admin node:

ssh-keygen

Once the SSH key has been created, copy the key to all the Ceph nodes. The following
commands need to be executed from the admin node:

ssh-copy-id cephadmin@ceph-mon-01

ssh-copy-id cephadmin@ceph-mon-02

ssh-copy-id cephadmin@ceph-mon-03

ssh-copy-id cephadmin@ceph-mds-01

ssh-copy-id cephadmin@ceph-mds-02

ssh-copy-id cephadmin@ceph-osd-01

ssh-copy-id cephadmin@ceph-osd-02

Installing ceph-deploy
The ceph-deploy tool is used to install Ceph on multiple nodes from a single node
and many other useful tasks, such as formatting disk drives and creating OSDs from
a single admin node. Before we install ceph-deploy, add a Ceph repository and
download a repository key. Run the following commands on the admin node only:

wget –q –O-
 'https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/release.asc'
 | sudo apt-key add -

echo deb http://ceph.com/debian-firefly/ $(lsb_release –sc) main |
 sudo tee /etc/apt/sources.list.d/ceph.list

sudo apt-get update

sudo apt-get install ceph-deploy

Chapter 7

[177]

As of this writing, the codename of Ceph's latest release is Firefly. Before installing
ceph-deploy, be sure to check Ceph's latest codename. Change the name in the echo
command accordingly:

echo deb http://ceph.com/debian-<ceph_codename>/ $(lsb_release –sc)
 main | sudo tee /etc/apt/sources.list.d/ceph.list

Creating a Ceph cluster
We are now going to create a cluster configuration file using the ceph-deploy
command. It is best to store all of the Ceph cluster configuration in one folder for
easy management and backup. We will create a new folder in the ceph-admin-01
node under /home/cephadmin and call it pmxceph. The command format to create
a new cluster is as follows:

cephadmin@ceph-admin-01:# ceph-deploy new <monitor_nodes>

By default, Ceph creates a cluster with the name ceph. If you want a different name
for your cluster, then the command format will be the following:

ceph-deploy --cluster <new_name> new <monitor_nodes>

The option to name a cluster is useful when setting up multiple Ceph clusters on
the same hardware. For example, separate clusters can coexist on the same hardware
for SSD and HDD pools to create a multi-tiered storage. The commands to do so are
as follows:

cephadmin@ceph-admin-01:# cd /home/cephadmin

cephadmin@ceph-admin-01:# mkdir pmxceph

cephadmin@ceph-admin-01:# cd pmxceph

cephadmin@ceph-admin-01:/pmxceph# ceph-deploy new ceph-mon-01 ceph-
 mon-02 ceph-mon-03

At this point, Ceph will create the following three files inside the pmxceph folder:

• Ceph cluster configuration file ceph.conf
• Ceph cluster creation logfile ceph.log
• Ceph monitor's keyring file ceph.mon.keyring

The following is the content of each file created during the Ceph cluster setup:

• Ceph cluster configuration file ceph.conf:
[global]
fsid = 467cefbe-19a6-40y7-a322-5d217ae89fb3
mon_initial_members = ceph-mon-01, ceph-mon-02, ceph-mon-03

High Availability Storage for High Availability Cluster

[178]

mon_host = 192.168.10.11,192.168.10.12,192.168.10.13
auth_cluster_required = cephx
auth_service_required = cephx
auth_client_required = cephx
filestore_xattr_use_omap = true

• Ceph cluster creation log file ceph.log:
[ceph_deploy.cli][INFO] Invoked (1.4.0): /usr/bin/ceph-
 deploy new ceph-mon-01 ceph-mon-02 ceph-mon-03
[ceph_deploy.new][DEBUG] Creating new cluster named ceph
[ceph_deploy.new][DEBUG] Resolving host ceph-mon-01
[ceph_deploy.new][DEBUG] Monitor ceph-mon-01 at
 192.168.10.11
[ceph_deploy.new][INFO] making sure passwordless SSH
 succeeds
[ceph_deploy.new][DEBUG] Resolving host ceph-mon-02
[ceph_deploy.new][DEBUG] Monitor ceph-mon-02 at
 192.168.10.12
[ceph_deploy.new][INFO] making sure passwordless SSH
 succeeds
[ceph-mon-02][DEBUG] connected to host: ceph-mon-01
[ceph-mon-02][INFO] Running command: ssh -CT -o
 BatchMode=yes ceph-mon-02
[ceph_deploy.new][DEBUG] Resolving host ceph-mon-03
[ceph_deploy.new][DEBUG] Monitor ceph-mon-03 at
 192.168.10.13
[ceph_deploy.new][INFO] making sure passwordless SSH
 succeeds
[ceph-mon-03][DEBUG] connected to host: ceph-mon-01
[ceph-mon-03][INFO] Running command: ssh -CT -o
 BatchMode=yes ceph-mon-03
[ceph_deploy.new][DEBUG] Monitor initial members are
 ['ceph-mon-01', 'ceph-mon-02', 'ceph-mon-03']
[ceph_deploy.new][DEBUG] Monitor addrs are
 ['192.168.10.11', '192.168.10.12', '192.168.10.13']
[ceph_deploy.new][DEBUG] Creating a random mon key...
[ceph_deploy.new][DEBUG] Writing initial config to
 ceph.conf...
[ceph_deploy.new][DEBUG] Writing monitor keyring to
 ceph.mon.keyring...

• Ceph cluster monitors keyring file ceph.mon.keyring:

[mon.]
key = AQDgpklTAGCRTBAAZIIHqPYn0kVNmduOjB9sdA==
caps mon = allow *

Chapter 7

[179]

Complete details of the Ceph configuration or other files are beyond
the scope of this book. A detailed documentation is available at
http://ceph.com/docs/master/.

Installing Ceph on nodes
After the admin node is set up, we are now going to install Ceph on all the other
nodes using a simple command as follows:

ceph-deploy install <node_name>

Run the previous command from the admin node. Simply change the appropriate
node name in the command. For our cluster, we are using one of the ceph-mon-01
monitor nodes as the admin and monitor. The initial command will look as follows:

ceph-deploy install ceph-mon-01

Creating Monitors (MONs)
In our cluster, we have three monitor nodes. We are now going to create the actual
Monitor daemon on all these three nodes. Simply run the following command with
appropriate node name:

ceph-deploy mon create ceph-mon-01

Gathering the admin keys
To run the Ceph admin commands for cluster management, we must have all the
Ceph admin keys in a folder. After creating MONs, we can simply use the following
command to gather admin keys from any one of the MON nodes:

ceph-deploy gatherkeys ceph-mon-01

All together, we should now have seven files in the pmxceph cluster folder:

• ceph.bootstrap-mds.keyring

• ceph.bootstrap-osd.keyring

• ceph.client.admin.keyring

• ceph.mon.keyring

• ceph.conf

• ceph.log

• release.asc

http://ceph.com/docs/master/

High Availability Storage for High Availability Cluster

[180]

The Ceph cluster creates a default user named admin for cluster management during
the cluster creation process. The user admin uses ceph.client.admin.keyring for
all administrative tasks in a Ceph cluster.

Let's check our progress so far using the keys we just gathered. Simply run the
following command to check the cluster status:

sudo ceph –s

If all went ok this far, the previous command should print the following result on
the screen:

cephadmin@ceph-mon-01:~/pmxceph$ sudo ceph -s

 cluster 472cefbe-11a6-40f7-a352-5d245ae89fb3

 health HEALTH_ERR 192 pgs stuck inactive; 192 pgs stuck unclean;
 no osds

 monmap e2: 3 mons at {ceph-mon-01=192.168.10.11:6789/0,ceph-mon-
 02=192.168.10.12:6789/0,ceph-mon-03=192.168.10.13:6789/0},
 election epoch 6, quorum 0,1,2 ceph-mon-01,ceph-mon-02,ceph-
 mon-03

 osdmap e1: 0 osds: 0 up, 0 in

 pgmap v2: 192 pgs, 3 pools, 0 bytes data, 0 objects

 0 kB used, 0 kB / 0 kB avail

 192 creating

According to this status, we have successfully created our MONs. By default,
Ceph creates three pools with 192 PGs. PGs are in creating mode because we
have not added any OSD yet.

Creating OSDs
With the initial cluster and MONs setup, we are now ready to start adding OSDs
in the Ceph cluster. For simplicity, we are going to put Journal on the same OSD.
Without journaling, an OSD cannot function. Any data coming to the Ceph cluster is
first written into the journal device and then transferred to OSD. Thus, performance
can be increased greatly by putting Journal on SSD while using HDD for OSD.

For a small Ceph cluster, putting Journal on SSD is acceptable. When
the cluster grows beyond eight OSDs per physical node, it is wise to
put Journal on the same HDD. A lost journal due to SSD failure will
cause mass data loss for any OSD that stores its journal on that SSD.
By putting Journal on the same HDD, we prevent the single point of
failure. To see the difference in performance for OSSD on SSD and
HDD, see the section Ceph benchmarking section later in this chapter.

Chapter 7

[181]

Before we create OSDs, we need to know the drives available in the nodes and the
drive names. The following command format will give us a list of drives for a node
in the cluster:

ceph-deploy disk list <node_name>

Using the following command format we can get a disk list from the Ceph OSD node:

cephadmin@ceph-mon-01:~/pmxceph$ ceph-deploy disk list ceph-osd-01

The following is the information displayed after the disk list command
is executed:

[ceph_deploy.cli][INFO] Invoked (1.4.0): /usr/bin/ceph-deploy disk
 list ceph-osd-01

[ceph-osd-01][DEBUG] connected to host: ceph-osd-01

[ceph-osd-01][DEBUG] detect platform information from remote host

[ceph-osd-01][DEBUG] detect machine type

[ceph_deploy.osd][INFO] Distro info: Ubuntu 12.04 precise

[ceph_deploy.osd][DEBUG] Listing disks on ceph-osd-01...

[ceph-osd-01][INFO] Running command: sudo ceph-disk list

[ceph-osd-01][DEBUG] /dev/sda :

[ceph-osd-01][DEBUG] /dev/sda1 other, ext2, mounted on /boot

[ceph-osd-01][DEBUG] /dev/sda2 other

[ceph-osd-01][DEBUG] /dev/sda5 other, LVM2_member

[ceph-osd-01][DEBUG] /dev/vda other, unknown

[ceph-osd-01][DEBUG] /dev/vdb other, unknown

We can see from the previous information that the drives /dev/vda and /dev/vdb
are the HDDs we are going to use to create OSDs on the ceph-osd-01 node.

First, we need to format the drive using the following commands:

ceph-deploy disk zap ceph-osd-01:/dev/vda

ceph-deploy disk zap ceph-osd-01:/dev/vdb

This will erase all the data on the drives and have them ready to accept the OSD
daemon. Now we will create the OSD with a single command per OSD. For our
four OSDs in this cluster, we are going to run the following four commands:

ceph-deploy osd create ceph-osd-01:/dev/vda

ceph-deploy osd create ceph-osd-01:/dev/vdb

ceph-deploy osd create ceph-osd-02:/dev/vda

ceph-deploy osd create ceph-osd-02:/dev/vdb

High Availability Storage for High Availability Cluster

[182]

As soon as the OSDs are created, the Ceph cluster will achieve the active+clean status
for the PGs. We can verify the status of the cluster with the following command:

sudo ceph –s

cluster 472cefbe-11a6-40f7-a352-5d245ae89fb3

 health HEALTH_OK

 monmap e2: 3 mons at {ceph-mon-01=192.168.10.11:6789/0,ceph-mon-
 02=192.168.10.12:6789/0,ceph-mon-03=192.168.10.13:6789/0},
 election epoch 6, quorum 0,1,2 ceph-mon-01,ceph-mon-02,ceph-
 mon-03

 osdmap e17: 4 osds: 4 up, 4 in

 pgmap v30: 192 pgs, 3 pools, 0 bytes data, 0 objects

 142 MB used, 299 GB / 299 GB avail

 192 active+clean

We can see the OSD placements and their status within the cluster from the
following command:

sudo ceph osd tree

id weight type name up/down reweight

-1 0.28 root default

-2 0.14 host ceph-osd-01

0 0.06999 osd.0 up 1

2 0.06999 osd.2 up 1

-3 0.14 host ceph-osd-02

1 0.06999 osd.1 up 1

3 0.06999 osd.3 up 1

Connecting Proxmox to a Ceph cluster
With the Ceph cluster creation complete, we are now going to connect the Ceph RBD
storage with Proxmox so that we can start storing our VMs on it. Proxmox will not
be able to talk to the Ceph cluster without the admin keyring ceph.client.admin.
keyring. We can copy the admin keyring and connect Ceph with Proxmox by copying
the admin keyring to /etc/pve/priv/ceph on the Proxmox node from the Ceph
admin node.

Chapter 7

[183]

Run the following commands on any Proxmox node:

mkdir /etc/pve/priv/ceph

cd /etc/pve/priv/ceph# scp <ceph-
 admin>:/etc/ceph/ceph.client.admin.keyring
 /etc/pve/priv/ceph/<storageID>.keyring

Note that storageID is the name of the storage we are going to create through the
Proxmox GUI. We are going to use cephrbd01 as the Proxmox RBD storage name.
Our command will be as follows:

scp ceph-admin-01:/home/cephadmin/pmxceph
 /ceph.client.admin.keyring
 /etc/pve/priv/ceph/cephrbd01.keyring

We can now proceed to the Proxmox GUI to start creating the Ceph storage. Simply
go to Datacenter | Storage | Add on the Proxmox GUI. Fill in the boxes with the
data as shown in the following screenshot:

One of the pools Ceph creates during initial setup is rbd. Always enter the IP address
and port number in the Monitor Host field. All Monitor IP addresses and ports
entered should be separated by a semicolon (;). This way, if one monitor node fails,
another monitor will take over. FQDN of a host will not be accepted.

The default port number in the Ceph cluster is 6789. If you are
creating multiple Ceph clusters on the same hardware, be sure
to use a different port number for the cluster. For example, tier 1
storage with SSD as OSD can be on port 6789, while tier 2 storage
HDD as OSD can be on port 6790.

High Availability Storage for High Availability Cluster

[184]

If all went successful thus far, the newly created storage should look like the
following screenshot from the Proxmox GUI:

The following snippet is how the storage.cfg file should look for the rbd portion:

rbd: cephrbd01
 monhost 192.168.10.11:6789
 pool rbd
 content images
 username admin

We can now start storing our virtual machines on the new Ceph RBD storage.
Keep in mind that the Ceph RBD storage can only hold KVM virtual machine
images at this moment. We cannot store other files such as OpenVZ containers,
backups, templates, and ISO files in this type of storage. In order to store these
file types, we need Ceph FS.

Installing Ceph on Proxmox
As of Proxmox Version 3.2, it is now possible to install Ceph on the same Proxmox
node, thus reducing the number of separate Ceph nodes needed, such as the admin
node, Monitor node, or OSD node. Proxmox also provides GUI features that we
can use to view the Ceph cluster and manage OSDs, MONs, pools, and so on. In
this section, we are going to see how we can install Ceph on the Proxmox node.
As of Version 3.2, MDS server and CRUSH map management is not possible from
the Proxmox GUI.

Chapter 7

[185]

Preparing a Proxmox node for Ceph
Since we are installing Ceph on the same Proxmox node, we are going to set up
the network interfaces for a separate network for Ceph traffic only. We will set up
three Proxmox nodes—pmxvm01, pmxvm02, and pmxvm03—with Ceph. On all
three nodes, we are going to add the following interfaces section in /etc/network/
interfaces. You can also use any IP address that suits your network environment.

Run the following command from the Proxmox node pmxvm01:

root@pmxvm01:/# nano /etc/network/interfaces

Enter the following section to add the second network:

auto eth2
iface eth2 inet static
 address 192.168.10.1
 netmask 255.255.255.0

Run the following command to make the new interface active:

root@pmxvm01:/# ifup eth2

Run the following command from the Proxmox node pmxvm02:

root@pmxvm02:/# nano /etc/network/interfaces

Enter the following section to add the second network:

auto eth2
iface eth2 inet static
 address 192.168.10.2
 netmask 255.255.255.0

Run the following command to make the new interface active:

root@pmxvm02:/# ifup eth2

Run the following command from the Proxmox node pmxvm03:

root@pmxvm03:/# nano /etc/network/interfaces

Enter the following section to add the second network:

auto eth2
iface eth2 inet static
 address 192.168.10.3
 netmask 255.255.255.0

Run the following command to make the new interface active:

root@pmxvm03:/# ifup eth2

High Availability Storage for High Availability Cluster

[186]

Installing Ceph
Proxmox added a small command-line utility called pveceph to perform various
Ceph-related tasks. The following table lists the commands and the tasks that can
be performed using pveceph:

Command Task performed
pveceph createmon This creates Ceph Monitors and must be run

from the node to become a Monitor.
pveceph createpool <name> This creates a new pool and can be used from

any node.
pveceph destroymon <mon_id> This removes Monitor.
pveceph destroypool <name> This removes the Ceph pool.
pveceph init --network
<x.x.x.0/x>

This creates the initial Ceph configuration file
based on the network CIDR used.

pveceph start <service> This starts Ceph daemon services such as MON,
OSD, and MDS.

pveceph stop <service> This stops Ceph daemon services such as MON,
OSD, and MDS.

pveceph status This shows cluster, Monitor, MDS, OSD status,
and cluster ID.

pveceph createosd </dev/X> This creates OSD daemons.
pvecph destroyosd <osdid> This removes OSD daemons.
pveceph install This installs Ceph on the Proxmox node.
pveceph purge This removes Ceph and all Ceph-related data

from the node the command is running from.

Ceph must be installed and at least one Monitor must be created using a command
line initially before managing it through the Proxmox GUI. We can perform the
following steps to install Ceph on the Proxmox nodes:

1. First, we need to install the Ceph software on the Proxmox node using the
following command. Run this command on all Proxmox nodes that will be
part of the Ceph cluster:
root@pmxvm01:/# pveceph install –version emperor

root@pmxvm02:/# pveceph install –version emperor

root@pmxvm02:/# pveceph install –version emperor

Chapter 7

[187]

Please note that the latest version of Ceph is codenamed Firefly, released
with major changes such as the omission of Journal for OSD. You should
wait several months before using Firefly in the production environment
so that known or unknown bugs can be sorted out. There isn't enough
usage data yet to be sure about the stability of Ceph's Firefly. If you intend
to use Firefly, simply change the version name from emperor to firefly.
Ceph's Emperor was the final stable release before Firefly. Run the
following commands:

root@pmxvm01:/# pveceph install –version firefly

root@pmxvm02:/# pveceph install –version firefly

root@pmxvm02:/# pveceph install –version firefly

2. We are going to create an initial Ceph configuration file on the first
Proxmox node. Run the following command once from one node:
root@pmxvm01:/# pveceph init --network 192.168.10.0/24

3. We will now create the first Ceph Monitor using the following command
on the same node, where we just created the initial configuration file:

root@pmxvm01:/# pveceph createmon

After these steps, we can proceed with the Proxmox GUI to create more MONs,
OSDs, or Pools.

Creating MON from the Proxmox GUI
To view and create Monitors from the Proxmox GUI, navigate to Datacenter |
pmxvm01 | Ceph | Monitor. The following screenshot shows the first monitor
we created using CLI:

High Availability Storage for High Availability Cluster

[188]

Click on Create to open the Monitor creation dialog box, shown in the following
screenshot. Select a Proxmox node from the drop-down list and click on the Create
button to initiate the Monitor creation.

Creating OSD from the Proxmox GUI
To view the installed disk drives in the node and create OSDs from the Proxmox
GUI, navigate to Datacenter | pmxvm01 | Ceph | Disk. Select an available disk
drive to create OSD. The following screenshot shows two available disk drives, /
dev/vdb and /dev/vdc:

To create an OSD, click on the Create: OSD button to open a dialog box as shown in
the following screenshot. Select an available disk drive from the drop-down list and
click on the Create button. Click on the Journal Disk drop-down button to select a
different disk drive to store the OSD journal.

Chapter 7

[189]

Creating a new Ceph pool using the Proxmox
GUI
To create a new pool using the Proxmox GUI, go to Datacenter | <node> | Ceph
| Pools. The pool interface shows information about existing pools, such as name,
replica number, PG number, and per pool percentage used, as shown in the
following screenshot:

To create a new pool, click on the Create button to open the pool creation dialog
box as shown in the following screenshot. Enter a name for the pool in the Name
field, number of replica in Size, leave Min. Size to 1, change Crush Ruleset to 2 or
any other ruleset you wish to use, and enter the proper PG number based on the PG
calculation formula shown in the Placement Group (PG) section. Click on OK to start
the pool's creation.

High Availability Storage for High Availability Cluster

[190]

Creating a Ceph FS
Ceph FS requires MDS to function. We have already put together two physical nodes
to set up MDS. We are now going to set up an MDS daemon on them to set up Ceph
FS. Note that we do not recommend Ceph FS in a production environment yet to
store mission-critical virtual machines or other data.

Setting up an MDS daemon
The following steps can be performed from the admin mode to install Ceph on MDS
nodes and set up MDS daemons:

1. Install Ceph on the MDS node using the following commands:
ceph-deploy install ceph-mds-01

ceph-deploy install ceph-mds-02

2. Set up the MDS daemon on an MDS nodes using the following commands:
ceph-deploy mds create <ceph_mds_01>

ceph-deploy mds create <ceph_mds_02>

3. Now let's check the status of the cluster with the MDS nodes:

cephadmin@ceph-admin-01:/pmxceph# sudo ceph –s

We should have the following output on our screen:

 cluster 472cefbe-11a6-40f7-a352-5d245ae89fb3

 health HEALTH_OK

 monmap e2: 3 mons at {ceph-mon-01=192.168.10.11:6789/0,ceph-mon-
 02=192.168.10.12:6789/0,ceph-mon-03=192.168.10.13:6789/0},
 election epoch 6, quorum 0,1,2 ceph-mon-01,ceph-mon-02,ceph-
 mon-03

 mdsmap e5: 1/1/1 up {0=ceph-mds-01=up:active}, 1 up:standby

 osdmap e17: 4 osds: 4 up, 4 in

 pgmap v37: 192 pgs, 3 pools, 9470 bytes data, 21 objects

 138 MB used, 299 GB / 299 GB avail

 192 active+clean

 client io 0 B/s rd, 10837 B/s wr, 13 op/s

From the previous status, we can see a new line has been added for the mdsmap and
it shows one MDS node is active while the other one is standing by. Whenever one
of the MDS nodes fails, the other one will pick up automatically and almost instantly.

Chapter 7

[191]

Setting up Ceph FS using FUSE
Unlike the RBD storage, Ceph FS works with Proxmox with mount points. That is,
Ceph FS needs to be locally mounted on the Proxmox nodes, and then attach the
storage as a local directory to be used with Proxmox. We have to mount the Ceph FS
on a directory under /mnt and then connect it to Proxmox through the local directory.
Let's create a directory on Proxmox to mount Ceph FS using the following command:

mkdir /mnt/cephfs01

Install ceph-fuse using the following command on the Proxmox node:

sudo apt-get install ceph-fuse

Mounting Ceph FS
Once we have created a directory and ceph-fuse has been installed, the only thing
remaining is to run the following command from a Proxmox node to mount Ceph FS:

ceph-fuse –k <ceph_keyring> -m <mon_host:6789> /mnt/<folder>

ceph-fuse –k /etc/pve/priv/ceph/ceph.client.admin.keyring –m
 192.168.10.11:6789 /mnt/cephfs01

Note that since Ceph FS is mounted locally on a Proxmox node, the storage will be
only available from that particular Proxmox node. In order to access Ceph FS from all
the nodes, we have to locally mount Ceph FS on all the Proxmox nodes in the cluster.

When trying to mount Ceph FS on the other nodes after it has already been mounted
and some data has been stored, you may see following error messages:

ceph-fuse[756903]: starting ceph client

fuse: mountpoint is not empty

fuse: if you are sure this is safe, use the 'nonempty' mount option

ceph-fuse[756903]: fuse failed to initialize

2014-04-13 11:03:31.571116 7f8752aa0760 -1
 fuse_mount(mountpoint=/mnt/cephfs01) failed.

ceph-fuse[756901]: mount failed: (5) Input/output error

This is not a bug and it only means that the Ceph FS is not empty. This is a usual
case after mounting on a node for the first time. Simply mount it again using the
following command format, which includes the –o nonempty option:

ceph-fuse –k <ceph_keyring> -m <mon_host:6789> /mnt/<folder> -o
 nonempty

High Availability Storage for High Availability Cluster

[192]

To mount Ceph FS during a Proxmox node boot, add the following line in /
etc/fstab:

id=admin /mnt/cephfs01 fuse.ceph defaults 0 0

Connecting Proxmox to Ceph FS
After the mounting is done, we now have to connect Proxmox to the Ceph FS.
Simply go to Datacenter | Storage | Add | Directory and fill in the boxes with
the information shown in the following screenshot:

We can check if the connection is successful through the storage status shown in
the following screenshot:

Chapter 7

[193]

We can store any files, including ISO, templates, backups, and OpenVZ containers,
in this storage. Since both RBD and Ceph FS are on the same hardware, we do not
recommend that you store backups primarily on Ceph FS. Backup should always be
done on separate hardware. The best course of action would be setting up a separate
Ceph cluster with Ceph FS only and storing Proxmox backups there. However, for a
light load, such as storing ISOs and templates, Ceph FS works great. This eliminates
the need to have separate file storage such as FreeNAS or any other type of storage
to store ISO images, templates, or OpenVZ containers.

Ceph FS has not yet reached industry quality according to the Ceph
developers. Minor occasional glitches are to be expected. But from my
personal experience, even after using Ceph FS for 11 months straight on
a regular basis, I have not came across any glitches or disappointment.

We now have a working Ceph cluster with RBD and Ceph FS connected to our
Proxmox cluster. In the next section, we are going to look at Ceph's CRUSH map
and how we can manipulate it to customize a Ceph cluster.

Learning Ceph's CRUSH map
A CRUSH map is the heart of Ceph's storage system. The algorithm of CRUSH dictates
how data is stored and retrieved through the Ceph cluster. The topic of CRUSH alone
is worthy of an entire book, but here, it is sufficient to understand that learning to
manipulate CRUSH provides administrator an upper hand in storage management.
It is only by manipulating CRUSH that we can set up a multitiered Ceph cluster to
store virtual machines based on performance requirements.

Using CRUSH, we can move OSD from one node to another or even move an entire
node to a different location without causing major disruption in the storage service.
A CRUSH map is not readily available in the Ceph admin directory. We have to
use CRUSH commands to extract, edit, and inject a CRUSH map back into a Ceph
cluster. Basically, it is a five-step process:

1. Extract the CRUSH map.
2. Decompile it.
3. Edit the map.
4. Compile it.
5. Inject the map back into the cluster.

Let's look into a CRUSH map by first extracting it from the Ceph cluster. The CRUSH
map will always need to be extracted first and decompiled to make it humanly
readable, and then recompiled before injecting it into Ceph cluster.

High Availability Storage for High Availability Cluster

[194]

Extracting the CRUSH map
Before any sort of CRUSH map manipulation, the map has to be extracted from the
Ceph cluster. Simply run the following command to extract the CRUSH map:

ceph osd getcrushmap –o <any_name>

Once the extraction is complete, we highly recommend that you keep the first CRUSH
map in a safe place as backup. This way, we can always put the original CRUSH map
back into the cluster if something goes wrong when editing later. For our cluster,
we are going to run the following command from the admin node:

ceph osd getcrushmap –o crushmap1

We are going to put away this Crush map, crushmap1, in a folder in /home/
cephadmin/pmxceph/backup/crushmap.

After successful extraction, we will see something like the following information:

got crush map from osdmap epoch 17

Decompiling the CRUSH map
To make the extracted CRUSH map humanly readable, we need to decompile it
with the following command format:

crushtool –d <source_map> -o <readable.txt>

We will now use the following command format to decompile our crushmap1 file
extracted earlier:

crushtool –d crushmap1 -o crushmap1.txt

Editing the CRUSH map
We now have the CRUSH map in an easily readable text format. We can use any
editor to open the CRUSH map for editing. For our cluster, we are going to use
the nano editor. The following code is how our CRUSH map will look like:

begin crush map

devices
device 0 osd.0
device 1 osd.1
device 2 osd.2
device 3 osd.3

types

Chapter 7

[195]

type 0 osd
type 1 host
type 2 rack
type 3 row
type 4 room
type 5 datacenter
type 6 root

buckets
host ceph-osd-01 {
 id -2 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 0.070
 item osd.2 weight 0.070
}
host ceph-osd-02 {
 id -3 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.1 weight 0.070
 item osd.3 weight 0.070
}
root default {
 id -1 # do not change unnecessarily
 # weight 0.280
 alg straw
 hash 0 # rjenkins1
 item ceph-osd-01 weight 0.140
 item ceph-osd-02 weight 0.140
}

rules
rule data {
 ruleset 0
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit

High Availability Storage for High Availability Cluster

[196]

}
rule metadata {
 ruleset 1
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}
rule rbd {
 ruleset 2
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}

end crush map

Before editing the CRUSH map, we highly recommend studying it with the help of
Ceph CRUSH documentation. The documentation can be found at https://ceph.
com/docs/master/rados/operations/crush-map/.

There are two terms we need to look at before proceeding with the CRUSH Map.
They are bucket and ruleset.

Bucket in Ceph is a term used in CRUSH map hierarchy. For example, an OSD is
in the host-01 bucket node, the host is in the rack-10 bucket, the rack is in the row-05
bucket, the row is in the bucket room 101, the room is in the bucket datacenter dc-01,
and the datacenter is in the root bucket default.

In our previous CRUSH Map example, we have seven types of bucket for our Ceph
cluster: osd, host, rack, row, room, datacenter, and root. Depending on how meticulous
we want the management control to be, we can create more bucket types. For example,
if we have a bunch of host nodes connected to a managed power distribution unit and
we want to treat those hosts as a group, we will create a new bucket type, let's say pdu.
Our bucket types in our CRUSH map will look like the following:

types
type 0 osd
type 1 host

https://ceph.com/docs/master/rados/operations/crush-map/
https://ceph.com/docs/master/rados/operations/crush-map/

Chapter 7

[197]

type 2 rack
type 3 row
typw 4 pdu
type 5 room
type 6 datacenter
type 7 root

When creating new buckets, be sure to maintain the sequence in the bucket types.
For example, a room always belongs to a datacenter, so a datacenter should not
come before the room in the types.

A ruleset in Ceph defines the strategies of how object replicas are distributed among
OSDs based on the CRUSH map. For example, if we have a set of SSDs in the Ceph
cluster, and we want a particular pool to store data only on those SSDs, we will create
a ruleset and the ruleset to that pool. Whenever data is stored, that pool will always
use the SSDs we have allocated in the ruleset. There are virtually no limitations on how
ruleset can be used to dictate how and where Ceph pools can store data. Each ruleset
has an integer numeric value. We use this value to assign a specific ruleset to a pool.

We are now going to add a root bucket named ssd and a ruleset ssd to the CRUSH
map. Add the following bucket under the root default in the map:

root ssd {
 id -5 # do not change unnecessarily
 # weight 0
 alg straw
 hash 0 # rjenkins1
 item ceph-ssd-01 weight 0
 item ceph-ssd-02 weight 0
}

Add the following ruleset at the bottom of the map:

rule ssd {
 ruleset 3
 type replicated
 min_size 1
 max_size 10
 step take ssd
 step chooseleaf firstn 0 type host
 step emit
}

High Availability Storage for High Availability Cluster

[198]

Add the following host bucket under the host segment:

host ceph-ssd-01 {
 id -6
 alg straw
 hash 0
}
host ceph-ssd-02 {
 id -7
 alg straw
 hash 0
}

Note that we just added two hosts, ceph-ssd-01 and ceph-ssd-02. However, these
nodes do not exist in our cluster. In a Ceph CRUSH map, we can add virtual hosts to
separate pools and OSDs. When we add some SSDs, we can simply set the mode of
the OSDs to these two hosts. The final CRUSH map should like the following code:

begin crush map

devices
device 0 osd.0
device 1 osd.1
device 2 osd.2
device 3 osd.3

types
type 0 osd
type 1 host
type 2 rack
type 3 row
type 4 room
type 5 datacenter
type 6 root

buckets
host ceph-osd-01 {
 id -2 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 0.070
 item osd.2 weight 0.070
}
host ceph-osd-02 {

Chapter 7

[199]

 id -3 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.1 weight 0.070
 item osd.3 weight 0.070
}
root default {
 id -1 # do not change unnecessarily
 # weight 0.280
 alg straw
 hash 0 # rjenkins1
 item ceph-osd-01 weight 0.140
 item ceph-osd-02 weight 0.140
}
host ceph-ssd-01 {
 id -6 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
}
host ceph-ssd-02 {
 id -7 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
}
root ssd {
 id -5 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item ceph-ssd-01 weight 0.000
 item ceph-ssd-02 weight 0.000
}

rules
rule data {
 ruleset 0
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host

High Availability Storage for High Availability Cluster

[200]

 step emit
}
rule metadata {
 ruleset 1
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}
rule rbd {
 ruleset 2
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}
rule ssd {
 ruleset 3
 type replicated
 min_size 1
 max_size 10
 step take ssd
 step chooseleaf firstn 0 type host
 step emit
}

end crush map

Compiling the CRUSH map
We are now going to compile our edited CRUSH map from text to a machine-readable
format with the following command:

crushtool –c crushmap1.txt –o crushmap1

Ceph's crushtool has a built-in validation system. If we have made a syntax error
while editing, crushtool will let us know the error before proceeding further.

Chapter 7

[201]

Injecting the CRUSH map into the cluster
To inject the new CRUSH map, run the following command:

ceph osd setcrushmap –i crushmap1

After injecting the new CRUSH map successfully, we should see the following
message on the screen:

set crush map

Verifying the new CRUSH map
We are now going to verify our new CRUSH map. We can verify it using the
following command:

cephadmin@ceph-admin-01:~/pmxceph$ sudo ceph osd tree

After the command is executed, the following output will be displayed:

id weight type name up/down reweight

-5 0 root ssd

-6 0 host ceph-ssd-01

-7 0 host ceph-ssd-02

-1 0.28 root default

-2 0.14 host ceph-osd-01

0 0.06999 osd.0 up 1

2 0.06999 osd.2 up 1

-3 0.14 host ceph-osd-02

1 0.06999 osd.1 up 1

3 0.06999 osd.3 up 1

We can see that we have successfully added a new host and root bucket. There are
no OSDs in them because we have not moved any OSD yet.

Let's extract and decompile our CRUSH map from the steps we have already seen.
The extracted CRUSH map should look like the following text:

devices
device 0 osd.0
device 1 osd.1

High Availability Storage for High Availability Cluster

[202]

device 2 osd.2
device 3 osd.3

types
type 0 osd
type 1 host
type 2 rack
type 3 row
type 4 room
type 5 datacenter
type 6 root

buckets
host ceph-osd-01 {
 id -2 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 0.070
 item osd.2 weight 0.070
}
host ceph-osd-02 {
 id -3 # do not change unnecessarily
 # weight 0.140
 alg straw
 hash 0 # rjenkins1
 item osd.1 weight 0.070
 item osd.3 weight 0.070
}
root default {
 id -1 # do not change unnecessarily
 # weight 0.280
 alg straw
 hash 0 # rjenkins1
 item ceph-osd-01 weight 0.140
 item ceph-osd-02 weight 0.140
}
host ceph-ssd-01 {
 id -6 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
}

Chapter 7

[203]

host ceph-ssd-02 {
 id -7 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
}
root ssd {
 id -5 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item ceph-ssd-01 weight 0.000
 item ceph-ssd-02 weight 0.000
}

rules
rule data {
 ruleset 0
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}
rule metadata {
 ruleset 1
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}
rule rbd {
 ruleset 2
 type replicated
 min_size 1
 max_size 10
 step take default
 step chooseleaf firstn 0 type host
 step emit
}

High Availability Storage for High Availability Cluster

[204]

rule ssd {
 ruleset 3
 type replicated
 min_size 1
 max_size 10
 step take ssd
 step chooseleaf firstn 0 type host
 step emit
}

end crush map

Managing Ceph pools
Ceph stores data on pools assigned to a specific ruleset. A ruleset in a CRUSH map
dictates which pools belong to which OSDs. By simply changing an assigned ruleset,
we can use a complete set of OSDs to store existing data. In this example, we are going
to create a new pool and assign the pool to the new ruleset ssd, which we created
earlier. Then we will add some SSDs to the cluster.

Creating a new Ceph pool using the CLI
The following is the command format to create the Ceph pool:

ceph osd pool create <poolname> <pg> <pgs(equal to pg)>

Before we create the pool, we need to calculate the number of PGs for the pool. We will
use the same formula seen in the Placement Group (PG) section earlier in this chapter:

()Total PGs = OSD×100 / Number of Replicas

We have two nodes and will use two SSDs in each node. According to the formula,
we need the following number of PGs:

()Total PGs = 4 100 / 2 = 200×

Our new pool should have 200 PGs. So the following is our command to create a pool:

ceph osd pool create ssd 256 256

Verifying the new Ceph pool
We can verify whether the new pool is created using the following command:

rados lspools

Chapter 7

[205]

The command should show the following result:

data

metadata

rbd

ssd

We can also check the status of a cluster along with the number of PGs using the
following command:

ceph –s

We will see the following status of the Ceph cluster:

cluster 472cefbe-11a6-40f7-a352-5d245ae89fb3

 health HEALTH_OK

 monmap e2: 3 mons at {ceph-mon-01=192.168.10.11:6789/0,ceph-mon-
 02=192.168.10.12:6789/0,ceph-mon-03=192.168.10.13:6789/0},
 election epoch 6, quorum 0,1,2 ceph-mon-01,ceph-mon-02,ceph-
 mon-03

 mdsmap e5: 1/1/1 up {0=ceph-mds-01=up:active}, 1 up:standby

 osdmap e20: 4 osds: 4 up, 4 in

 pgmap v71: 448 pgs, 4 pools, 18610 bytes data, 21 objects

 141 MB used, 299 GB / 299 GB avail

 448 active+clean

Based on the status information, we now have four pools with 448 active+clean PGs.

Adding OSDs to a pool
We will now add some SSDs to our new pool to be used as high-performing storage.
Perform the steps mentioned in the Creating OSDs subsection (in the Installing Ceph
using an OS section of this chapter) to add the OSDs. Be advised that when adding
or removing OSDs, the cluster goes to recovery mode, which might slow down the
network by increasing traffic on the Ceph cluster-dedicated network.

Recovery mode or rebalancing in Ceph means when there is an OSD or
node failure or new OSDs are added, the Ceph cluster will automatically
try to redistribute or rebalance data among the remaining active OSDs
and nodes. During this rebalancing, the Ceph cluster creates heavy
I/O and network bandwidth traffic causing slow downs. The period of
recovery mode or rebalancing depends on how much data is stored in
the cluster and how many objects the cluster has to rebalance.

High Availability Storage for High Availability Cluster

[206]

It is best to set a cluster to not bring OSDs online right away to prevent rebalancing.
Run the following commands to prevent the OSDs from coming online as soon as
they are added:

ceph osd set noin

ceph osd set noup

This will prevent new OSDs from reaching the up and in statuses. Each OSD can
have several statuses to let us know the condition the OSD is in. The presence of an
OSD in the cluster is represented by 0 or 1 for an in or out condition, while the OSD
daemon connection is represented by an up or down condition. For example, an OSD
which is active in the cluster and receives acknowledgement from Ceph Monitor
will have a status of up and 1. If the OSD is still in the cluster but OSD daemon is not
responding to Monitor, the status will be down and 1. When the OSD is deactivated
or fails completely, the status will be down and 0, that is, it is down and out of the
cluster. The Ceph cluster will start balancing as soon as the OSD status changes.

By default, when we add OSD, they are put in the default ruleset. In this case, we
want to put SSD OSDs into ruleset 3 created earlier. So we do not want the cluster
to start distributing data to this new OSD right away before we move them to ruleset
created for the SSD.

After adding the new OSDs, the following is the status information we should get
from the osd tree command:

cephadmin@ceph-admin-01:~/pmxceph$ sudo ceph osd tree

After the command is executed, we can see the following output:

id weight type name up/down reweight

-5 0 root ssd

-6 0 host ceph-ssd-01

-7 0 host ceph-ssd-02

-1 0.3599 root default

-2 0.18 host ceph-osd-01

0 0.06999 osd.0 up 1

2 0.06999 osd.2 up 1

4 0.01999 osd.4 up 0

5 0.01999 osd.5 up 0

-3 0.18 host ceph-osd-02

1 0.06999 osd.1 down 1

3 0.06999 osd.3 down 1

Chapter 7

[207]

6 0.01999 osd.6 up 0

7 0.01999 osd.7 up 0

In the previous output, osd.4, osd.5, osd.6, and osd.7 are the four SSD OSDs
we added. Now we will move them to their respective virtual host buckets.

Virtual host buckets are nothing but aliases for the existing physical nodes we
created through the CRUSH map. The ceph-osd-01 and ceph-osd-02 nodes are
main physical nodes. The ceph-ssd-01 and ceph-ssd-02 nodes are aliases for the
ceph-osd-01 and ceph-osd-02 nodes, which separate the pool to be used with
SSD-based OSDs. We can create as many virtual hosts as required to separate
any number of pools or assign specific OSDs to a given pool.

We are going to use the following command format to move OSDs to virtual
host buckets:

ceph osd crush set <osd.id> <weight> <host_bucket>

Based on this format, we will enter the following commands to move osd.4, osd.5,
osd.6, and osd.7 to the virtual host nodes ceph-ssd-01 and ceph-ssd-02:

ceph osd crush set osd.4 0.0199 host=ceph-ssd-01

ceph osd crush set osd.5 0.0199 host=ceph-ssd-02

ceph osd crush set osd.6 0.0199 host=ceph-ssd-01

ceph osd crush set osd.7 0.0199 host=ceph-ssd-02

After the OSDs are moved, we are now going to bring the OSDs online using the
following commands. First we have to remove the restriction placed earlier to
prevent OSDs from coming online on their own:

ceph osd unset noin

ceph osd unset noup

Now we will start putting all the new OSDs online using the following commands:

ceph osd in osd.4

ceph osd in osd.5

ceph osd in osd.6

ceph osd in osd.7

Our OSDs placement will look like the following code:

cephadmin@ceph-mon-01:~/pmxceph$ sudo ceph osd tree

High Availability Storage for High Availability Cluster

[208]

We can see the following output after the command is executed:

id weight type name up/down reweight

-5 0.07959 root ssd

-6 0.03979 host ceph-ssd-01

4 0.0199 osd.4 up 1

5 0.0199 osd.5 up 1

-7 0.03979 host ceph-ssd-02

6 0.0199 osd.6 up 1

7 0.0199 osd.7 up 1

-1 0.28 root default

-2 0.14 host ceph-osd-01

0 0.06999 osd.0 up 1

2 0.06999 osd.2 up 1

-3 0.14 host ceph-osd-02

1 0.06999 osd.1 up 1

3 0.06999 osd.3 up 1

Assigning a pool to the ruleset
The only thing we have left to do is set the ruleset for the new pool, ssd. By default,
ruleset 0 is set for a pool. In order to get the assigned ruleset for a pool, we will use
the following command:

ceph osd pool get ssd crush_ruleset

The previous command should print the following result on the screen:

crush_ruleset: 0

We will set ruleset 3 to the SSD pool using the following command:

ceph osd pool set ssd crush_ruleset 3

The previous command should print the following result on the screen:

crush_ruleset: 3

Chapter 7

[209]

Connecting Proxmox to the new pool
After we assign the ruleset, our pool is ready to be connected to Proxmox. Perform
the following steps mentioned in the Connecting Proxmox to a Ceph cluster subsection
in the Installing Ceph using an OS section. We will name the storage cephssd01. So we
need to copy the Ceph admin keyring to /etc/pve/priv/ceph/cephssd01.keyring.
Then use the information shown in the following screenshot to connect the pool
to Proxmox:

We can verify that both the RBD storages are functioning from the Proxmox GUI
status page:

High Availability Storage for High Availability Cluster

[210]

Please note that both storage pools will show the exact same size and usage
information because they are on the same cluster. The only way to fully separate
them is to create two separate Ceph clusters. Clusters can be on the same or
different hardware.

Ceph benchmarking
There are many ways to run a benchmark test on a Ceph cluster to check disk
drive, network, and cluster performance. Use the following commands to test
the performance of the Ceph cluster.

To write a block of data to test write performance, use the following command:

root@node:/# rados –p <pool> bench –b <blockSize> <seconds> <write> -
 t <threads> --no-cleanup

To read a block of data to test read performance, use the following command:

root@node:/# rados –p <pool> bench –b <blockSize> <seconds> <seq> -t
<threads>

After each of the previous commands, run the following command to clear cache:

root@node:/# echo 3 > tee /proc/sys/vm/drop_caches && sync

We can create a separate pool for the purpose of benchmarking so that we do not
run benchmark tests on live production pools. Let us create a pool to run cluster
benchmarking using the following command:

root@node:/# ceph osd pool create test 256 256

For a good spread of benchmarks, use the block sizes of 4096, 131072, and 4194304
bytes. After each write performance, run the read benchmark. The no-cleanup option
will make sure that data written for write performance is not automatically deleted
after the write test. We will need the written data to perform the read test. Based
on the benchmark command format, the four following steps test each block size.
Use 300 seconds and 32 threads for sustained performance tests:

1. To test data with block size 4096 bytes for a write performance, use the
following command:
root@node:/#rados –p test bench –b 4096 300 write –t 32 --no-
 cleanup

2. Clear cache using the following command:
root@node:/# echo 3 > tee /proc/sys/vm/drop_caches && sync

Chapter 7

[211]

3. Test data with block size 4096 bytes for read performance:
root@node:/#rados –p test bench –b 4096 300 write –t 32 --no-
 cleanup

4. Clear cache again:

root@node:/# echo 3 > tee /proc/sys/vm/drop_caches && sync

The following table shows some benchmark results from the four different Ceph
clusters with a various number of OSDs and SSDs. All benchmarking was done with
a 1 gigabit network, desktop-class 1 TB hard drives, and Kingston KC300 240 GB
SSDs. The benchmark commands we saw in this section were primarily used for
all benchmarks.

The following table shows benchmark results with six SSDs as the OSD:

Blocksize (bytes) Throughput (MBps) IOPS per disk Total IOPS
Write Read Write Read Write Read

4096 7.078 12.771 301.995 544.896 1811.968 3269.376
131,072 93.084 74.421 124.112 99.227 744.672 595.362
4,194,304 106.536 85.433 4.439 3.559 26.634 21.358

The following table shows benchmark results with six desktop HDDs as the OSD:

Blocksize (bytes) Throughput (MBps) IOPS per disk Total IOPS
Write Read Write Read Write Read

4096 0.242 4.125 10.325 176 61.952 1056
131,072 8.139 45.529 10.852 60.705 65.112 364.232
4,194,304 54.124 74.114 2.255 3.088 13.531 18.528

The following table shows benchmark results with eight desktop HDDs as the OSD:

Blocksize (bytes) Throughput (MBps) IOPS per disk Total IOPS
Write Read Write Read Write Read

4096 1.137 12.172 36.384 389.504 291.072 3116.032
131,072 16.422 56.857 16.422 56.857 131.376 454.856
4,194,304 88.661 78.277 2.770 2.447 22.165 19.569

High Availability Storage for High Availability Cluster

[212]

The following table shows benchmark results with 26 desktop HDDs as the OSD:

Blocksize (bytes) Throughput (MBps) IOPS Per Disk Total IOPS
Write Read Write Read Write Read

4096 2.139 17.754 21.061 174.809 547.584 4545.024
131,072 18.061 108.86 5.557 33.495 144.488 870.88
4,194,304 109.787 112.042 1.056 1.077 27.447 28.011

From the previous tables of benchmark results, it can be clearly seen that the
higher number of OSDs does increase performance in Ceph cluster. Out of the four
setups, the benchmark with six OSDs has the worst performance. In all the previous
benchmarks, Journal is co-located with each OSD.

The Ceph command list
The following table shows a list of Ceph commands most frequently used to run a
healthy cluster:

Command Description
ceph-deploy install <node> Install Ceph on nodes
ceph-deploy disk list <node> Disk list
ceph-deploy disk zap <node>:/dev/
sdX

Format disk

ceph-deploy osd create <node>:/
dev/sdX

Create OSD

ceph osd out <osd.id>

stop ceph-osd <osd.id>

umount /var/lib/ceph/
osd/<cluster>.<osdid>

ceph osd crush remove <osd.id>

ceph auth del <osd.id>

ceph osd rm <osd.id>

Remove OSD manually

ceph-deploy mon create <node> Deploy Monitor (MON)
ceph-deploy mon destroy <node> Delete Monitor (MON)
ceph-deploy mds create <node> Deploy MetaData Server (MDS)
ceph-deploy mds destroy <node> Delete MetaData Sever (MDS)
ceph-deploy gatherkeys <mon_node> Gather admin keys
ceph osd lspools List pools

Chapter 7

[213]

Command Description
ceph osd pool create <name> <pg>
<pgs>

Create pool

ceph osd pool delete <name>
[<name> --yes-i-really-really-
mean-it]

Delete pool

ceph osd pool get <name> pg_num Get the number of PG of pool
ceph osd pool set <name> crush_
ruleset <value>

Set pool CRUSH ruleset

ceph osd getcrushmap –o <name> Get CRUSH map
crushtool –d <name> -i <name.txt> Decompile CRUSH map
crushtool –c <name.txt> -o <name> Compile CRUSH map
ceph osd setcrushmap –i <name> Inject CRUSH map
ceph-fuse –k <keyring> -m
<mon:port> /<folder> -o nonempty

Mount Ceph FS

Fusermount –u /<folder> Unmount Ceph FS

Summary
In this chapter, we learned to install a Ceph cluster from the ground up and
connected it to our Proxmox cluster. Treat this chapter as an introduction to
Ceph. There is a lot more to Ceph than what has been covered here. Read the
Ceph official documentation to learn about Ceph in greater detail.

Ceph is an excellent choice for a shared storage system for Proxmox due to its
stability, performance, and significant lower cost. No matter the workload, a Ceph
cluster can expand to meet the demand. Whether it is a single-tier or multitier storage
environment, Ceph can handle them with ease. With Proxmox Version 3.2, managing
Ceph just got better.

In the next chapter, we are going to get a glimpse of an enterprise-sized virtual
environment, hardware requirements, and what keeps a cluster going month after
month without downtime.

Exercise:

Consider a Ceph cluster has five nodes, 120 OSDs, three replicas, and four pools.
Based on this information, we need to find the following values:

• What is the PG value per pool?
• How many PGs per OSD for each replica?
• What is the total PGs per OSD for all pools and replicas?

High Availability Storage for High Availability Cluster

[214]

Total PG for each pool is 1000. Each replica of pools will have 32 PGs per OSD.
Total PGs per OSD for all pools and replicas is 96. The calculations are as follows:

()Total PGs = 120 100 / 3 replicas = 4000×

Since there are four pools, each pool will have 4000 / 4 = 1000 PGs.

PGs per OSD per pool for each replica = 1000 PGs / 120 OSDs = 8.

PGs per OSD for all 4 pools for each replica = 8 x 4 = 32.

PGs per OSD for all 4 pools for all 3 replicas = 32 x 3 = 96.

Proxmox Production
Level Setup

Throughout the book so far, we have seen the internal workings of Proxmox.
We now know how to properly set up a fully functional Proxmox cluster. We
learned about Ceph—one of the best shared storage systems—and how we can
connect it with Proxmox. We also saw what a virtual network is and how it
works with the Proxmox cluster.

In previous chapters, we built a very basic Proxmox cluster. For learning purposes
this might be okay, but in a fully operational production environment we need
a robust setup to handle the workload. That is what a production level setup is
all about. In this chapter, we are going to cover the following topics:

• Definition of production level
• Key components of a production level setup
• Entry-level and advanced-level hardware requirements
• A simple way to track the hardware inventory
• AMD-based hardware in a production level environment

Throughout this chapter, you will notice that we will use a user-built hardware
configuration instead of ready-made brand servers. The purpose of this is to show
you what sort of node configuration is possible using the off-the-shelf commodity
hardware to cut the cost while setting up a stable Proxmox cluster. All example
configurations shown in this chapter are not theoretical scenarios, but taken from
live clusters in service. Use the information in this chapter purely as guidelines
so that you can select proper hardware for your environment on any budget.

Proxmox Production Level Setup

[216]

Defining a production level
Production level or mode is a stage where a company's cluster environment is fully
functional and actively serving its users or clients on a regular basis. It is no longer
considered as a platform to learn Proxmox or a test platform to test different things
on. A production level setup requires much advanced planning and preparation.
This is because once the setup is complete and the cluster has been brought online,
it just cannot be taken offline completely at a moment's notice, especially when users
become dependent on it. A properly planned production level setup can save hours
or days of headache. In this section, we will see how to preplan and choose the right
equipment for a production level cluster.

Key parameters
There are several key parameters to be kept in mind while planning for a production
level cluster setup due to stability and performance requirements; some of them are
as follows:

• Stable and scalable hardware
• Current load versus future growth
• Budget
• Simplicity
• Tracking the hardware inventory

Stable and scalable hardware
Stable hardware means minimum downtime. Period! Without quality hardware, it
is not unusual to have a simultaneous failure of hardware in a cluster environment,
causing massive downtime. It is very important to select a hardware brand with
good reputation and support behind it. For example, Intel is well known for its
superb stability and support. It is true that you need to pay more for Intel products,
but sometimes stability outweighs the higher cost per hardware. AMD is also an
excellent choice, but statistically, AMD-based hardware has more stability issues.

For a budget-conscious enterprise environment, we can mix both Intel- and
AMD-based hardware in the same cluster. Since Proxmox provides us with the full
migration option, we can have Intel nodes serving us full time, while AMD nodes
only act as a failover, thus reducing the cost without compromising on stability.
Throughout this chapter, we are going to stay primarily with Intel-based hardware.
At the end of this chapter, we will look at some proven AMD-based cluster to give
you some idea of how viable AMD usage is in a Proxmox cluster environment.

Chapter 8

[217]

Current load versus future growth
Never design a cluster with only the present day in mind; always look into the
future, at least the near future. An enterprise cluster must be able to grow with the
company and adapt to the increased operations. However, for the most part, plan
in such a way that a cluster does not max out in a very short period of time. Both
Proxmox and the Ceph cluster have the ability to grow at any time to any size: this
provides the ability to simply add new hardware nodes to expand the size of the
cluster and increase the resources required by virtual machines.

When installing memory in nodes, never add memory only to run the existing virtual
machines, but foresee any future virtual machine migration to any nodes during
a node failure. For example, let's say all the six nodes in a Proxmox cluster have
64 GB of memory, and 60 GB is consumed at all times by all the virtual machines.
If node 1 fails, you will not be able to migrate all the virtual machines from node
1 to the other five nodes. This is because there will not be enough memory to go
around. We could just add another spare node and migrate all the virtual machines,
but we have to make sure that there are enough power outlets to even plug in the
new node. Usually, 50 percent of the maximum capacity should be free in a cluster
environment. This is possible if you have a large budget.

Budget
Budgetary concerns always play a role in decision making, no matter what kind of
network environment we are dealing with. However, the fact is that a setup can be
adaptable to just about any budget with some clever and creative planning. Times
too numerous to count, administrators have had to work with a very small IT budget.
Hopefully, this chapter will help you find that missing thread to connect a budget with
proper hardware components.

Simplicity
Simplicity is often overlooked in a network environment. A lot of times, it just happens
naturally. If we are not mindful about simplicity, we can very quickly make a network
unnecessarily complex. By mixing hardware RAID with software RAID, putting one
RAID within another RAID, or through a multidrive setup to protect the OS, we can
quickly make the cluster go out of control. Both Proxmox and Ceph can run on high-
grade commodity hardware. For example, just by selecting the desktop-class i7 over
the server-class Xeon, we can slash the cost by 50 percent while providing a very stable
and simple cluster setup, unless the task specifically calls for multi-Xeon setup.

Proxmox Production Level Setup

[218]

Tracking the hardware inventory
There are several key pieces of information for the hardware that is being used
in a network that an administrator should any time have access to: these include
information such as the brand, model and serial number of a hardware component,
when was it purchased, who was the vendor, when is it due for replacement, and
so on. A proper tracking system can save a lot of time when any of this information
needs to be retrieved. Each company is different; accordingly, the tracking system
could be different. Nevertheless, the responsibility of gathering this information
solely falls on the network manager or administrator. If there is no system in
place, then merely creating a simple spreadsheet can be enough to keep track of
all hardware-related information.

Hardware selection
Several factors affect the process of selecting a type of hardware. For example,
is the cluster going to support many virtual machines with smaller resources or
will it serve a few virtual machines with high resources? A cluster focused on
many virtual machines needs to have many more core counts. So our goal should
be to put as many cores as possible per node. A cluster is focused on a few virtual
machines; therefore, if there are many users per virtual machine, we need to have
a large memory. Thus, a system with less core but large memory is much more
appropriate. Also, with this, a cluster can focus on both the types and create a
hybrid cluster environment. A hybrid environment usually starts with an entry
-level hardware setup and then matures into an advanced-level setup as the
company grows and budget becomes available. For example, a small company
can start its cluster infrastructure with a stable desktop-class hardware and then
gradually replace them with a server-class platform such as Xeon to accommodate
the company's expansion. Since we are working with a clustered environment,
we will assume that all our nodes are identical to each other. Therefore, we are
only going to look at one node setup.

An entry-level Proxmox production setup
Do not let the word entry-level fool you to think that it is a substandard,
under-performing cluster setup. An entry-level setup provides a balance between
high-core and high-memory cluster hardware setup. It is usually a single CPU setup,
which can be easily set up using commodity hardware. This is a setup where choices
between desktop CPUs, such as i5 and i7, and server CPUs, such as Xeon, can be made.

Chapter 8

[219]

The following are examples of desktop- and server-class components from two live
clusters currently in service. Both of these examples belong to two low IT budget
organizations. Please note that these components are listed only to provide you
with a guideline.

An i7-based Proxmox node
The following image shows a rack-mounted Proxmox node based on a desktop CPU
and motherboard. The hardware details are as follows:

• CPU: Intel i7-4820K LGA 2011.
• Motherboard: MSI X79A-GD45 LGA 2011. The maximum amount of

memory supported is 128 GB.

http://us.msi.com/product/mb/X79AGD45_Plus.html

• Chassis: In-Win IW-R200 ATX 500W PSU.

http://www.in-win.com.tw/Server/zh/goods.php?act=view&id=IW-R200

• SSD for OS: Kingston KC300 60 GB.

Proxmox Production Level Setup

[220]

Based on this Intel i7 CPU and MSI motherboard, each Proxmox node can have a
total of eight cores and 128 GB of memory without spending significant amount of
money on server-class hardware.

A Xeon-based Proxmox node
The following image shows a rack-mounted Proxmox node based on a Xeon CPU
and motherboard. The hardware details are as follows:

• CPU: Intel Xeon E3-1245v3 LGA 1150.
• Motherboard: Intel S1200V3RPS. The maximum amount of memory

supported is 32 GB.

http://ark.intel.com/products/71385/Intel-Server-Board-S1200V3RPS

• Chassis: In-Win IW-R200 ATX 500W PSU.
• SSD for OS: Kingston KC300 60 GB.

Chapter 8

[221]

Based on this Intel Xeon CPU and server motherboard, each Proxmox node can have
a total of eight cores and 32 GB of memory.

Although both the setups are of the similar price range, with the i7 setup we actually
stand to gain much more. The performance of i7-4820K is slightly better than Xeon's
E3-1245v3, and it provides us with the ability to have a full array of 128 GB of
memory for very high-performing virtual machines.

This entry-level setup is deployed in a real production environment and has been in
operation for more than a year without any issue.

An entry-level Ceph production setup
The Ceph storage system requires very less CPU resources and a moderate amount
of memory. The following is an entry-level setup for Ceph:

• CPU: Intel i3-3220 LGA 1155.
• Motherboard: Intel Server S1200BTLR LGA 1155. The installed memory is

8 GB ECC.

http://ark.intel.com/products/67494/Intel-Server-Board-S1200BTLR

• Chassis: In-Win IW-RS212-02 12 Bay Hot Swap.

http://www.in-win.com.tw/Server/zh/goods.php?act=view&id=IW-RS212-02

Proxmox Production Level Setup

[222]

• RAID controller: Intel RS2WC040 6G SAS PCI-E.

http://ark.intel.com/products/43165/Intel-RAID-Controller-RS2WC040

• RAID controller expander: Intel RES2SV240 RAID Expander.

http://www.intel.com/content/www/us/en/servers/raid/raid-controller-res2sv240.html

• SSD for OS: Kingston KC300 60 GB.
• HDD for storage: Seagate 2 TB Standard or Seagate Hybrid 2 TB SSHD.

Note that we have added a RAID controller and an expander to the previous Ceph
setup. Neither RAID nor expander cards are used to provide the RAID service; they
are used to connect 12 drives. This same combination of RAID and expander is also
capable of running a 24 Hot Swap bay chassis. An expander card connects to one
port of the RAID controller, and the backplane of a Hot Swap port connects to the
expander card.

Chapter 8

[223]

With the entire Hot Swap bay filled with 2 TB HDD, this setup can handle 24 TB of
storage without breaking a sweat. If you use 4 TB HDD across all the bays, then install
an additional 8 GB of RAM to handle a total storage of 48 TB. When Ceph is set up
with three identical nodes with the previously mentioned hardware components,
it can provide a very stable shared storage system for the Proxmox cluster.

An advanced-level Proxmox production setup
When setting up advanced-level enterprise class nodes, quality, stability, and
performance usually come before budget. However, the selection has to start from
somewhere, and the following setup should be that starting point. There is no place
for desktop-class hardware at this stage. The following components or similar should
be the minimum standard for an advanced-level setup. Use this information only
as guidelines.

A Xeon-based Proxmox node
The following image shows a rack-mounted Proxmox node based on an Intel Xeon
CPU and Intel motherboard with 10 GB of network backing. The hardware details
are as follows:

• CPU: Intel Xeon E5-2620v2 LGA 2011.
• Motherboard: Intel S2600CP2 Dual LGA 2011. The maximum amount of

memory supported is 512 GB.

http://ark.intel.com/products/56333/Intel-Server-Board-S2600CP2

Proxmox Production Level Setup

[224]

• Chassis: In-Win IW-RS104-02 Redundant PSU.

http://www.in-win.com.tw/Server/zh/goods.php?act=view&id=IW-RS104-02

• 10 GB network card: Intel X520-SR2 Dual 10 GB.

http://ark.intel.com/products/39774/Intel-Ethernet-Converged-Network-Adapter-X520-SR2

• SSD for OS: Intel S3500 SSD 120 GB.

Based on the Intel Dual Xeon CPU and server motherboard, each Proxmox node can
have total of 16 cores and 512 GB of memory where 10 GB network connectivity will
provide a high bandwidth and reliable shared storage data transfer.

An advanced-level Ceph production setup
The following are the components for an advanced-level Ceph setup:

• CPU: Intel Xeon E3-1230v2 LGA 1155.
• Motherboard: Intel Server S1200BTLR LGA 1155. The installed memory is

32 GB ECC.
• Chassis: In-Win IW-RS212-02 12 Bay Hot Swap with Redundant PSU.
• RAID controller: Intel RS2WC040 6G SAS PCI-E.
• RAID controller expander: Intel RES2SV240 RAID Expander.
• 10 GB network card: Intel X520-SR2 Dual 10 GB.

Chapter 8

[225]

• SSD for OS: Intel S3500 SSD 120 GB.
• HDD for storage: Seagate Constellation 2 TB Enterprise.
• SSD for Storage: Intel SSD DC S3700 800 GB. Use this SSD when creating

all SSD-Ceph shared storage nodes.

Compared to the entry-level Ceph setup, we have not changed much in this
advanced-level Ceph setup. We have replaced the Intel i3 CPU with the Intel Xeon
E3 series' CPU and added a full array of 32 GB of memory. Also, we have added a
dual 10 GB network interface card to create a 10 GB backing storage backbone. In
both the setups, we have taken the hardware-based RAID completely out of the
equation. Due to the nature of Ceph, we no longer need a RAID-based hardware
to provide storage redundancy, thus keeping storage nodes simple.

The components mentioned previously for an advanced-level Proxmox and Ceph
should be considered as a bare minimum configuration for a very high-demand
virtual environment with mission-critical data. Since both Proxmox and Ceph have
clustering, it is just a matter of adding more identical nodes to increase the capacity.
Depending on high computing needs, a Proxmox node can have four CPUs set up
with a higher Xeon CPU.

Desktop class versus server class
The main benefit of having desktop-class hardware over server-class hardware is
to be able to have many cheaper nodes in the cluster rather than a few powerful
pricey nodes. By having many nodes, we increase our chances of redundancy while
spreading the computational load over many nodes. There are many real-world
virtual environments that are run using an array of desktop-class components.
However, do keep in mind that although you will pay a much higher price, there
is really no substitute to using the extremely stable and consistent performance of
pricey server-class components.

Brand servers
The server node setup we have seen so far can easily be assembled in house. Also
preassembled brand servers such as Intel, Dell, HP, IBM, or Supermicro can also be
purchased based on the previous components' guidelines. The downside of brand
servers is their higher cost. In some cases, it may cost twice the cost of assembling
them in house. However, if you want to opt for brand servers, we recommend
you to stay with Intel or Supermicro (www.supermicro.com). Supermicro has a
great reputation for their product lines, and their price is well balanced for the
performance they deliver. There are also other brands such as Dell and IBM that
are worth considering while deciding on brand servers.

www.supermicro.com

Proxmox Production Level Setup

[226]

Hardware tracking
No matter which tracking system is used, the goal of hardware tracking is to get
information about the components used throughout the Proxmox and Ceph cluster
environment. Information such as the serial number, brand/model, due date of
components' replacement, and so on must be close on hand of any network manager
or administrator. Some companies have a tracking system developed in house, some
use a professional inventory tracking system, and some use a plain simple spreadsheet
to keep track of the installed components. Although a spreadsheet is a quick and easy
way to keep component information handy, it can quickly get out of hand in a cluster
environment with several dozen nodes. Have a look at the following excerpt of a
simple spreadsheet used by an administrator in his or her production environment:

Chapter 8

[227]

The first portion of the spreadsheet has information of all the nodes that include
Proxmox, Backup, and Ceph nodes. The second portion of the spreadsheet has
information of all the hard drives installed into each 12-bay Hot Swap Ceph node.
We can see that eight bays out of 12 have hard drives with the OSD number and
the serial numbers related to each hard drive. If we need to find a particular serial
number, all we have to do is open the Find option and search for the serial number
related to a component.

There are also open source options for inventory tracking such as vTiger and
Spiceworks. vTiger and Spiceworks both have an asset-tracking option. For a robust
network environment with several dozens of nodes and a couple of hundred SSDs
or HDDs, the only wise option is to get a real asset-tracking system such as WASP
Asset Tracking Software from Wasp Technologies (http://www.waspbarcode.com/
asset-tracking). The paid version of a tracking program has a lot more polished
features and is able to handle hardware in different categories and levels.

AMD-based hardware selection
Although we recommend Intel-based hardware for a high-demand production
environment, in many cases, AMD can take on the challenge at a reduced cost
without sacrificing too much on performance and stability. It should be noted that
for a mission-critical environment, an Intel-based platform should be considered as
the first choice. In the following sections, there are some hardware components that
are actually used in some production environments without any major issue.

An AMD-based entry-level Proxmox
The following image shows an AMD-based CPU and motherboard that can be used
for an entry-level Proxmox node. The hardware details are as follows:

• CPU: AMD FX-9370 4.4Ghz AM3+.

http://www.waspbarcode.com/asset-tracking
http://www.waspbarcode.com/asset-tracking

Proxmox Production Level Setup

[228]

• Motherboard: Gigabyte GA-990FXA-UD5. The maximum amount of
memory supported is 32 GB.

http://www.gigabyte.com/products/product-page.aspx?pid=3891#ov

With an AMD-based desktop motherboard, the option to install over 32 GB of
memory is extremely limited. AMD FX-9370 delivers almost the same performance
as that of Intel i7-4820K, but at a reduced cost.

An AMD-based advanced-level Proxmox
The following image shows an AMD-based CPU and motherboard and an
advanced-level Proxmox node. The hardware details are as follows:

• CPU: AMD Opteron 6308
• Motherboard: Asus KGPE-D16 Dual G34

http://www.asus.com/Commercial_Servers_Workstations/KGPED16/

Chapter 8

[229]

An AMD-based Ceph setup
Since a Ceph node uses a RAID controller and expander card, using an AMD-based
component is not recommended. On numerous occasions, we have noticed there
is an incompatibility issue with the RAID controller card, AMD chipset, and Ceph.
Issues such as not recognizing a RAID card are very common.

Performance comparison
Courtesy www.cpubenchmark.net, the following image shows a comparison of Intel
and AMD high-end desktop-class CPU performance:

Clearly, AMD has an advantage over Intel in the price arena. AMD-9590 has a higher
performance rating than Intel i7-4820K at about the same price. On the other hand,
AMD-9370 has a very close performance rating as compared to i7-4820K at a much
lower cost.

www.cpubenchmark.net

Proxmox Production Level Setup

[230]

Summary
There are no one-setup-fits-all solutions when it comes to a server node setup.
The components described in this chapter are mere examples of the possible setups.
However, this should provide you with a baseline to direct your thinking when
choosing components for the cluster environment you are responsible for. We hope
this will aid you in your quest to find that perfect balance between performance and
budget that all network administrators crave for.

In the next chapter, we are going to see some real incidental-based issues and how
to troubleshoot a Proxmox cluster environment. These issues have been taken from
day-to-day running clusters in production scenarios.

Proxmox Troubleshooting
In this chapter, we are going to learn about some real-life issues taken from Proxmox's
production environment and their solutions. Once a Proxmox cluster is set up, it
usually runs without issues. However, when issues arise, a system administrator's
knowledge is tested. Learning about troubleshooting is like learning from other
people's mistakes. Throughout this chapter, we will gain some insight into Proxmox
troubleshooting and hope that when we face these in our own clusters, we will know
what do at a moment's notice.

All the issues explained in this chapter are those few that you may come across in your
cluster environment. There could be more that are not covered in this chapter. It is just
not possible to mention every possible issue that a Proxmox cluster can face. As you
run your own cluster, you will have more unexpected issues that you will add to this
list. It is a common practice for an administrator or operator to keep a documentation
to enter new issues and their solutions. That way, we do not have to research a
particular issue all over again.

The issues are divided into the following sections:

• The main cluster
• Storage
• Network connectivity
• The KVM virtual machine
• OpenVZ containers
• Backup/restore
• VNC/SPICE console

Proxmox Troubleshooting

[232]

Main cluster issues
This section contains issues related to the main Proxmox's cluster operations.

GUI shows everything is offline
The scenario where everything in the GUI is shown offline is usually caused when
one of the three services such as pvedaemon, pvestatd, or pveproxy crashes or stops
working for any number of reasons. This situation usually looks as shown in the
following screenshot:

In the previous screenshot, both virtual machines and all the three Proxmox nodes are
running, but the Proxmox GUI shows everything is offline. Simply restarting them
through SSH will fix this issue. Run the following commands in the given order:

service pvedaemon restart

service pvestatd restart

service pveproxy restart

We can also check whether the services are running or not using the
following command:

ps xa | grep pve

If the GUI keeps showing all the nodes and VMs offline, check the syslog of nodes
to spot any errors or warnings. In some cases, a failed attached storage will also
cause the GUI to show that everything is offline. In such cases, check whether the
storage node is functioning properly and then run restart the pvedaemon, pvestatd,
and pveproxy services.

Chapter 9

[233]

Rejoining a Proxmox node with the same IP
address
If you are rejoining a Proxmox node back to the cluster with the same IP address,
then the joining command must run with the --force option. Run the following
command from the node that is being rejoined:

pvecm add <any_proxmox_node_ip> –force

Disabling fencing temporarily
At times, it is necessary to disable fencing to diagnose an issue. There is no option
in GUI to disable fencing. A simpler way to do this is to remove or comment out
the fencing device for the node from the cluster.conf file, as shown in the
following code:

<cluster config_version="16" name="pmx-cluster">
 <cman keyfile="/var/lib/pve-cluster/corosync.authkey"/>
 <fencedevices>
 <fencedevice agent="fence_apc" ipaddr="192.168.145.250"
 login="pmxfence" name="apc" passwd="99999" power_wait="10"/>
 </fencedevices>
 <clusternodes>
 <clusternode name="pmxvm01" nodeid="1" votes="1">
 <fence>
 <method name="power">
 <device name="apc" port="1" secure="on"/>
 </method>
 </fence>
 </clusternode>
 <clusternode name="pmxvm02" nodeid="2" votes="1">
 # <fence>
 # <method name="power">
 # <device name="apc" port="2" secure="on"/>
 # </method>
 # </fence>
 </clusternode>
 <clusternode name="pmxvm03" nodeid="3" votes="1">
 </clusternode>
 </clusternodes>
 <rm/>
</cluster>

Proxmox Troubleshooting

[234]

The occurrence of kernel panic when
disconnecting USB devices
On rare occasions, kernel panic occurs in Proxmox when disconnecting USB devices
such as keyboard, mouse, or UPS. There is no real solution to this issue yet as the issue
is not reproducible all the time. This issue has been seen on variety of hardware with
both standard and nonstandard Proxmox installations. However, almost all the time,
the issue does not cause the server to freeze permanently. In almost all cases, the panic
can be just ignored and you can go on as usual.

Kernel panic seems to mostly occur with kernel 2.6.32-26, 2.6.32-27, and 2.6.32-28.
It is nonexistent on kernel 3.2 or 3.10. For regular day-to-day operations of a cluster,
this issue can be safely ignored unless it causes the node to freeze on rare occasions.

The occurrence of VM shutdown error when
initiated from GUI
The VM shutdown error issue is not consistent and is not directly related to Proxmox.
The Shutdown button on Proxmox's GUI, as seen in the following screenshot, only
sends an ACPI signal to a virtual machine to initiate the shutdown process.

Once the VM receives an ACPI signal, it starts the shutdown process. However, if the
VM has a number of running processes in the memory, it might take a while to end the
processes before the shutdown. The ending of processes may take longer, which causes
Proxmox to issue a timeout error. The issue may occur for both Windows and Linux.
The workaround for this is to access the VM through a console or SPICE and then
manually shut down the VM. Also, check whether the guest VM has ACPI installed
and loaded to correctly receive the poweroff signal from the host node.

Kernel panic on Proxmox 3.2 with HP NC360T
In some cases, on Proxmox 3.2, kernel panic occurs when you use a network interface
based on an Intel 82571EB chipset, such as HP NC360T. An immediate workaround
is to use broadcom for the network interface card. The permanent fix is to download
E1000 drivers from the Intel website and compile a module from those sources.
The E1000 driver can be downloaded from http://www.intel.com/support/
network/sb/cs-006120.htm.

http://www.intel.com/support/network/sb/cs-006120.htm
http://www.intel.com/support/network/sb/cs-006120.htm

Chapter 9

[235]

VMs not booting after you restart the network
service
On a very rare occasion, virtual machines do not power up after you restart the
network service on a Proxmox node. This occurs when corosync and rgmanager
services are not automatically loaded when you reboot the Proxmox node. Starting
these services will allow the VMs to start again. Use the following commands to
start corosync and rgmanager:

corosync

service rgmanager start

Proxmox cluster is out of Quorum and cluster
filesystem is read only
The error Proxmox cluster is out of Quorum and cluster filesystem is read-only occurs
when the Proxmox node is not included in Quorum. To prevent any occurrence of this
error in cluster configuration files, Proxmox puts the cluster filesystem in the read-only
mode for the node in question. Run the following commands from the node with this
issue. We have to stop the cluster service, start it in local mode, delete or move the
existing cluster.conf file, and then restart the cluster. A new cluster.conf file
will be synced with the node with a read-only issue. Perform the following steps to
overcome this issue:

1. Stop the cluster in the node using the following command:
/etc/init.d/pve-cluster stop

2. Start the cluster filesystem in local mode using the following command:
/usr/bin/pmxcfs -l

3. Remove or back up the cluster.conf file using the following command.
In this example, we created a backup directory named backup under /home.
mv /etc/pve/cluster.conf /home/backup

4. Stop and start the cluster normally using the following commands:

/etc/init.d/pve-cluster stop

/etc/init.d/pve-cluster start

Proxmox Troubleshooting

[236]

Proxmox boot failure due to the getpwnam
error
Boot the Proxmox node in recovery mode using the Proxmox installation disk, or
select the recovery option from Proxmox's boot menu at the beginning of the boot
process. Recovery usually happens on the second line of Proxmox's boot menu, as
shown in the following screenshot:

After the recovery shell is loaded, run the following command from the command
prompt and then reboot:

apt-get update && apt-get dist-upgrade

Cannot log in to GUI as ROOT
Sometimes the Proxmox GUI may prevent a root login through a browser after you
reinstall Proxmox on the same node. In order to log in as root into the Proxmox GUI,
local loopback must be enabled in the network interface file. Look for the following
two lines to make sure they are not commented out in /etc/network/interfaces:

auto lo
iface lo inet loopback

Chapter 9

[237]

Booting with a USB stick fails in Proxmox
The recommended storage to install Proxmox is SSD or HDD. The only way to install
it on a USB stick is to install Debian Linux first and then install Proxmox on top of it
by adding the Proxmox VE repositories and installing packages.

A USB thumb drive or flash drive should never be used as the primary
Proxmox OS installation storage in a production environment.

The Upgrade from Proxmox 3.1 to Proxmox
3.2 is disabled through GUI
There are three most common reasons why the Upgrade button could be disabled
on Proxmox GUI. Check the following alternatives to fix this issue:

• If the node does not have a valid subscription, ensure that the pve-no-
subscription repository is added. For Proxmox repository information,
visit https://pve.proxmox.com/wiki/Package_repositories.

• Refresh the browser cache.
• A very basic mistake, but not unheard of, is to make sure the root user

is logged in to facilitate the upgrade. The Upgrade button is only visible
when you log in with the root privilege.

VZ kernel 2.6.32-28-pve breaks libnl/netlink in
host and VM
A kernel that breaks libnl/netlink in host and VM is an error caused by a known
issue in libnl and not directly related to Proxmox. The libnl library is known to
work with vzkernel-2.6.32-042stab084.20.src.rpm but not with newer kernels,
including the latest testing kernel, namely, vzkernel-2.6.32-042stab088.4. At the
time of writing this, the bus issue is open in a ticket at https://bugzilla.openvz.
org/show_bug.cgi?id=2939.

https://pve.proxmox.com/wiki/Package_repositories
https://bugzilla.openvz.org/show_bug.cgi?id=2939
https://bugzilla.openvz.org/show_bug.cgi?id=2939

Proxmox Troubleshooting

[238]

Nodes not visible on the Proxmox GUI after
an upgrade
Proxmox nodes may not be visible after you upgrade to Proxmox VE 3.2. It is a
common issue when accessing the Proxmox GUI with the Internet Explorer 11 browser.
Use Firefox or the Chrome browser to correctly view the Proxmox GUI. There is a bug
report filed for this known issue that is available at https://bugzilla.proxmox.com/
show_bug.cgi?id=475.

GRUB is in an endless loop after Proxmox
installation
After installing Proxmox, GRUB may go in an endless loop, which is a common
occurrence when Proxmox is installed on a newer desktop class with UEFI BIOS.
Simply disabling the UEFI mode and enabling the Legacy mode in BIOS will allow
the system to boot. This option interface varies from motherboard to motherboard,
but usually it resembles the following screenshot:

If this does not work, Proxmox should be installed manually over Debian Wheezy.
To get instructions on how to install Proxmox when the ISO installer does not work,
visit http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Wheezy.

https://bugzilla.proxmox.com/show_bug.cgi?id=475
https://bugzilla.proxmox.com/show_bug.cgi?id=475
http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Wheezy

Chapter 9

[239]

SSH access is possible but Proxmox node
does not reboot
On numerous occasions, a Proxmox node may not reboot when the process of
rebooting is initiated through GUI or from the command prompt. In such cases,
the only option available is to physically power cycle a node. In almost all the cases,
the node can still be accessed through SSH. If the node is on PDU, it can be forcefully
power cycled remotely. However, for those nodes that are not on PDU and physical
access is not possible right away, there are the following two methods that you can
use to force the process of rebooting the node.

• In the first method, you can log in to the node through SSH. Then, you simply
apply the reboot command once or twice:
reboot

• In the second method, you can run the following commands from the
command prompt if the reboot command has no effect:

echo 1 > /proc/sys/kernel/sysrq

echo b > /proc/sysrq-trigger

Please note that these commands will forcefully reboot a Proxmox node and any
running VMs will be forcefully shut down. These may cause data loss or corruption
within a VM. Before rebooting a Proxmox node, always make sure that there are no
VMs running or VMs have been migrated to a different node.

Storage issues
This section contains issues related to storage systems supported by Proxmox,
such as local, NFS, Ceph, GlusterFS, and so on.

Deleting damaged LVM with error read failed
from 0 to 4096
Sometimes it may be necessary to remove damaged LVM storages from a cluster.
Run the following command from the CLI to remove such LVMs. Please be aware
that it will remove the LVM permanently.

dmsetup remove /dev/<volume_group>/<lvm_name>

Proxmox Troubleshooting

[240]

Proxmox cannot mount NFS share due to
time-out error
Some NFS servers such as FreeNAS do a reverse lookup for hostnames. We have to
add Proxmox hostnames to the host files of the NFS server. Use any editor of your
choice to open the hosts file:

nano /etc/hosts

Add Proxmox nodes' hostnames as in the following examples:

192.168.145.1 pmxvm01.domain.com pmxvm01
192.168.145.2 pmxvm02.domain.com pmxvm02
192.168.145.3 pmxvm03.domain.com pmxvm03
192.168.145.4 pmxvm04.domain.com pmxvm04

Removing stale NFS shares when a stale file
handle error occurs
When NFS shares are deleted from Proxmox storage, there are cases where they
still remain mounted; this causes the NFS stale file handle error. Simply manually
unmounting the share and removing the NFS mount point folder from the Proxmox
directory will fix this issue. Run the following commands from the Proxmox node:

umount –f /mnt/<nfs_share>

rmdir <nfs_share>

The occurrence of '--mode session exit code
21' errors while accessing iSCSI target
Run the following command from the Proxmox node to fix the error:

iscsiadm –m node –l ALL

Chapter 9

[241]

Cannot read an iSCSI target even after it has
been deleted from Proxmox storage
When trying to read the same iSCSI target after it had been deleted from Proxmox
storage, an error occurs mentioning the target that has already been added to
Proxmox. In these cases, the iSCSI daemon has to be restarted to clear this issue.
Run the following command from all the Proxmox nodes. Beware that this
command will disconnect all the existing iSCSI targets:

/etc/init.d/open-iscsi restart

OSDs still show up in Proxmox after you
remove the Ceph node
This is a common occurrence when a Ceph node is taken offline without removing
all the Ceph-related processes first. The OSDs in the node must be removed or
moved to another node before taking the node offline. Run the following commands
to remove OSDs:

ceph osd out <osd.id>

ceph osd crush remove osd <osd.id>

ceph auth del osd.<id>

ceph osd rm <osd.id>

The 'No Such Block Device' error that shows
up during creation of an OSD
When creating an OSD through the Proxmox GUI on Proxmox 3.2, sometimes this
error occurs. This is not a common occurrence and is not reproducible at all times.
Although there are no permanent fixes for this issue, it can be ignored. So just retry
to create an OSD. Keep in mind that the inclusion of Ceph is a technology preview in
Proxmox. Minor glitches are to be expected. This is not a shortcoming of Ceph itself,
but the attempt of combining Proxmox and Ceph in the same node.

Proxmox Troubleshooting

[242]

The fstrim command does not trim unused
blocks for Ceph
To properly trim unused blocks for virtual disks stored on the Ceph storage,
perform the following steps:

1. Use a virtio disk type for a virtual disk.
2. Enable the discard option through <vm_id>.conf. Add discard=on to

the drive properties of virtio0 as shown in the following command line:

<rbd_storage>:<virtual_disk>,cache=writethrough,size=50G,
 discard=on

The 'RBD Couldn't Connect To Cluster (500)'
error when connecting Ceph with Proxmox
Authentication failure is the most common cause for this error when Ceph RBD
storage cannot connect to Proxmox. Proxmox requires a copy of the Ceph admin
keyring to authenticate. The name of the keyring must match with the storage ID
assigned through a Proxmox GUI as shown in the following screenshot:

In the previous example, the Ceph admin keyring name must match with the storage
ID rbd-store-01 and stored as /etc/pve/priv/ceph/rbd-store-01.keyring.

Changing the storage type from ide to virtio
If IDE was used during the initial VM setup and if it needs to be changed to virtio later,
it can be done through the Proxmox GUI without reinstalling the OS. The VM will
need to be powered off first and then the virtual disk needs to be removed through
the Proxmox GUI. Clicking on Remove will cause the virtual disk to become unused,
as shown in the following screenshot:

Chapter 9

[243]

Double-click on the unused virtual disk to add it back to the VM. Select VIRTIO
from the dialog box as shown in the following screenshot:

The 'pveceph configuration not initialized
(500)' error for the Ceph tab
Non-initialization of the pveceph configuration is an error that occurs when we click
on the Ceph tab in the Proxmox GUI without initializing the Ceph storage. If Ceph is
not going to be used along with Proxmox on the same cluster on the same Proxmox
node, then this error should be simply ignored. Refer to Chapter 7, High Availability
Storage for High Availability Cluster, to initialize the Ceph server on the same
Proxmox node.

Ceph FS storage disappears after a Proxmox
node reboots
Ceph FS needs to be mounted in order to make it available for storage service. If the
mount point is not set in /etc/fstab, it will need to be remounted after each reboot.
The following format is used to enter Ceph FS in /etc/fstab:

id={user-ID}[,conf={path/to/conf.conf}] /mount/path fuse.ceph
 defaults 0 0

Based on this format, we can add the following line:

id=admin,conf=/etc/ceph/conf.conf /mnt/<path> fuse.ceph defaults
 0 0

Proxmox Troubleshooting

[244]

VM cloning does not parse in Ceph storage
When full cloning is performed on a virtual machine stored on Ceph storage, the
virtual disk looses parsing. This means that when parsing for VM cloning, Proxmox
uses the qemu-img method instead of rbd flattening. Until flattening is implemented in
later versions of Proxmox, VM clones will lose parsing when stored on Ceph storage.

Network connectivity issues
This section contains issues related to virtual or physical network connectivity
within Proxmox.

No connectivity on Realtek RTL8111/8411 Rev.
06 NIC
A network interface based on Realtek RTL8111/8411 revision 06 seems to be up
but with no connectivity. The issue is that some newer Realtek chipsets don't get
compiled with the right drivers. This causes the interface to be up without any
network traffic. In order to fix this issue, the older driver needs to be downloaded
from the Realtek site and compiled manually. The driver can be downloaded from
http://www.realtek.com.tw/Downloads/.

Since this driver is manually installed, during a kernel update it will get updated
automatically. To prevent this and ensure the driver builds itself automatically when
a new kernel is installed, run the following commands and then reboot the node:

apt-get install dkms build-essentials pve-headers-2.6.32-25-pve

cat <<EOF > /usr/src/r8168-8.037.00/dkms.conf

PACKAGE_NAME=r8168

PACKAGE_VERSION=8.037.00

MAKE[0]="'make'"

BUILT_MODULE_NAME[0]=r8168

BUILT_MODULE_LOCATION[0]="src/"

DEST_MODULE_LOCATION[0]="/kernel/updates/dkms"

AUTOINSTALL="YES"

EOF

http://www.realtek.com.tw/Downloads/

Chapter 9

[245]

Network performance is slower with e1000
vNIC
The performance of e1000 virtual network interfaces is about 30-35 percent lesser as
compared to virtio virtual network interfaces. Changing vNICs to virtio will increase
the overall network bandwidth of a virtual machine. The virtio drivers are included
in all major Linux flavors. For Windows machines, an ISO file with virtio drivers can
be downloaded from http://www.linux-kvm.org/page/WindowsGuestDrivers/
Download_Drivers.

KVM virtual machine issues
This section contains issues related to KVM virtual machines only.

Windows 7/XP machine converted to Proxmox
KVM hangs during boot
The Windows operating system can be unforgiving when you convert or migrate
from one type of hardware to another. It is certainly possible to convert/migrate
just about any Windows OS as long as proper procedure is followed. For in-depth
information on the proper procedure to migrate Windows machines to a virtual
machine, visit the Proxmox Wiki at http://pve.proxmox.com/wiki/Migration_
of_servers_to_Proxmox_VE#mergeide.

Windows 7 VM only boots when rebooted
manually
This issue causes a Windows 7 virtual machine to shut down when initiated reboot
from within OS. A manual power on through the Proxmox GUI is required to power
up the VM. This is an issue caused by the installation of Windows itself, especially a
VM that is configured with a standard video. Changing the display to SPICE solves
the issue for a Windows 7 virtual machine. This is not a common occurrence and
causes an issue in some Windows 7 VMs, while others just run fine.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide
http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide

Proxmox Troubleshooting

[246]

The Proxmox 3.2 upgrade adds two com ports
and one parallel port to the Windows VM
After you upgrade a node to Proxmox VE 3.2, all Windows-based VMs add two com
ports and one parallel port as shown in the following screenshot:

The issue seems to originate due to the new pve-qemu-kvm package. Downgrading it
to pve-qemu-kvm-1.4.-17 will fix this issue. As of this writing, there is no updated
pve-qemu-kvm package to fix the issue permanently.

The qemu-img command does not convert
the .vmdk image files created with the .ova
template in Proxmox VE 3.2
We can usually convert any vmdk disk image file with the following command:

root@pve:~# qemu-img convert -f vmdk disk1.vmdk -O qcow2 vm-101-disk-
 1.qcow2

However, the .vmdk image files created with VMware's .ova template may
present one or more of the following error messages while converting it with
the qemu-img command:

qemu-img: 'image' uses a vmdk feature which is not supported by this
 qemu version: VMDK version 3

qemu-img: Could not open 'disk1.vmdk': Could not open 'disk1.vmdk':
 Wrong medium type

qemu-img: Could not open 'disk1.vmdk'

Chapter 9

[247]

The .vmdk3 format is only supported in pve-qemu-kvm 2.0. Enter the following
command to check the version installed in the Proxmox node:

pveversion –v

Look for the version number of pve-qemu-kvm. A .vmdk3 file can still be converted
to qcow2 by following the instructions given at http://carlos-spitzer.
com/2013/12/26/how-to-convert-vmdk-3-images-to-qcow2-even-when-qemu-
img-fails-o/.

Online migration of a virtual machine fails
with a 'Failed to sync data' error
In order to migrate virtual machines online without powering them off, the virtual
disk of the VM must be on a shared storage system. Any VM with a virtual disk on
local storage cannot be migrated live. The error will look as follows:

Mar 18 19:54:37 starting migration of VM 5134 to node 'titan'
 (192.168.10.1)

Mar 18 19:54:37 copying disk images

Mar 18 19:54:37 ERROR: Failed to sync data - can't do online
 migration - VM uses local disks

Mar 18 19:54:37 aborting phase 1 - cleanup resources

Mar 18 19:54:37 ERROR: migration aborted (duration 00:00:00): Failed
 to sync data - can't do online migration - VM uses local disks

TASK ERROR: migration aborted

Change in memory allocation is not initialized
after a VM is rebooted
A virtual machine must be powered off to make changes to the memory, video, or
virtual network interface. No changes will take effect if a VM is simply restarted.

http://carlos-spitzer.com/2013/12/26/how-to-convert-vmdk-3-images-to-qcow2-even-when-qemu-img-fails-o/
http://carlos-spitzer.com/2013/12/26/how-to-convert-vmdk-3-images-to-qcow2-even-when-qemu-img-fails-o/
http://carlos-spitzer.com/2013/12/26/how-to-convert-vmdk-3-images-to-qcow2-even-when-qemu-img-fails-o/

Proxmox Troubleshooting

[248]

The virtio virtual disk is not available during
the Windows Server installation
The virtio drivers are not included in the Windows Server installation. During the
installation, the Windows setup will not see any virtio virtual disks attached with
the virtual machine as shown in the following screenshot:

A virtio driver must be downloaded and loaded during the installation in order to
activate the virtio virtual disk with the Windows operating system. The ISO image
of virtio drivers can be downloaded from http://www.linux-kvm.org/page/
WindowsGuestDrivers/Download_Drivers. The driver installation window is
shown in the following screenshot:

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Chapter 9

[249]

OpenVZ container issues
This section contains issues related to OpenVZ containers only.

The creation of OpenVZ container takes a
long time on NFS or GlusterFS storage
OpenVZ parameters depend on BeanCounters. Settings such as numproc, numtcpsock,
kmemsize, numfile, tcpsndbuf, and tcprcvbuf in UBC need to be tweaked to increase
the performance. Changes can be made to the container configuration file under /etc/
pve/openvz. Visit the following links to get more details on the parameters used by
OpenVZ containers:

• http://wiki.openvz.org/UBC_primary_parameters

• https://wiki.openvz.org/UBC_secondary_parameters

http://wiki.openvz.org/UBC_primary_parameters
https://wiki.openvz.org/UBC_secondary_parameters

Proxmox Troubleshooting

[250]

OpenVZ containers are no longer shown after
a cluster is created
This is a common case when a single node Proxmox was set up with an OpenVZ
container, and then later when the actual cluster was created and the node in question
was added to the cluster. Very likely, all the CT configuration files are in /var/lib/
vz/private. Simply copying the CT configuration files from /var/lib/vz/private
to /etc/pve/openvz will make them visible from the Proxmox GUI. The directory
location /etc/pve/ is synced over multiple nodes in the cluster to ensure all the nodes
have identical configuration. Refer to The Proxmox cluster directory structure section in
Chapter 2, Proxmox Under the Hood, for explanation on /etc/pve.

Header error during the installation of
PF_RING in Proxmox
While installing PF_RING to be used with an OpenVZ container, the installation is
interrupted with the following error messages:

Configuring securityonion-pfring-ld (20120827-
 0ubuntu0securityonion4)...

Configuring securityonion-pfring-userland (20130828-
 0ubuntu0securityonion1)...

Configuring securityonion-pfring-module (20121107-
 0ubuntu0securityonion10)...

Creating symlink /var/lib/dkms/pf_ring/5/source -> /usr/src/pf_ring-5

DKMS: add completed.

Error! Your kernel headers for kernel 2.6.32-26-pve cannot be found.

Please install the linux-headers-2.6.32-26-pve package,

or use the --kernelsourcedir option to tell DKMS where it's located

WARNING: Deprecated config file /etc/modprobe.conf, all config files
 belong into /etc/modprobe.d/.

FATAL: Module pf_ring not found.

dpkg: error processing securityonion-pfring-module (--configure):

subprocess installed post-installation script returned error exit
 status 1

The error occurs due to the lack of development headers. Simply installing them
using the following command will fix the issue:

apt-get install pve-headers-$(uname –r)

Chapter 9

[251]

Backup/restore issues
This section contains issues related to backing up and restoring Proxmox.

A Proxmox VM is locked after backup crashes
unexpectedly
A Proxmox VM getting locked is commonly caused after a VM backup is interrupted
or crashed. Simply unlocking the VM through SSH using the following command
will fix this issue:

qm unlock <vm_id>

Backing up only the primary OS virtual disk
By default, Proxmox backup will back up all the virtual disks assigned to a VM. If we
want to exclude certain virtual disks from the backup process, we only need to add the
option backup=no at the end of a virtual disk line item in <vm_id>.conf, as follows.

virtio0: rbd-hdd-01:vm-101-disk1,size=80G
virtio0: rbd-hdd-01:vm-101-disk2,size=200G,backup=no

In the previous example, the virtual machine has two virtual disks. Disk 1 is for
the primary OS and disk 2 is for the secondary. By adding backup=no, Proxmox
will skip this disk during the backup process and only back up the primary disk.

Backup of VMs stops prematurely with an
'Operation Not Permitted' error
The premature stopping of VMs' backup usually looks like the following message
that is taken from the syslog of a Proxmox node:

ERROR: job failed with err -1 - Operation not permitted

INFO: aborting backup job

INFO: stopping kvm after backup task

ERROR: Backup of VM 101 failed - job failed with err -1 - Operation not
permitted

The primary cause of this issue is that the backup storage has less space than the
total storage required to perform a backup task. Verify the total storage space that
is required for backing up the selected virtual machines.

Proxmox Troubleshooting

[252]

A backup task takes a very long time to
complete, or it crashes when multiple nodes
are backing up to the same backup storage
When multiple Proxmox nodes are backing up to same the backup storage
simultaneously, it tends to take a very long time or the backup is crashed. This is a
common occurrence when backup traffic coexists with the main cluster traffic on a
gigabit network and the backup node only has one network interface. By separating
backups in multiple subnets with multiple network interface cards, we can prevent
this issue. Linking the aggregation of multiple network interfaces to form a bigger
bandwidth, as shown in the following screenshot, can also help to avoid backup
traffic congestion.

Backup of virtual machines aborts a backup
task prematurely
During a VM backup, the following error message appears in the backup log after
it aborts a running backup task:

101: INFO: status: 1% (129309081/4294967296), sparse 0% (886784),
 duration 91, 33/33 MB/s

[...]

Chapter 9

[253]

107: INFO: status: 80% (2706263244/4294967296), sparse 16%
 (698703462), duration 1950, 5/4 MB/s

107: ERROR: interrupted by signal

107: INFO: aborting backup job

This error usually occurs when there is a version mismatch for the pve-qemu-kvm
package in Proxmox. As of this writing, the available pve-qemu--kvm package version
is 1.7-8. Check for the version that is installed when you get this error during a backup
using the following command:

pveversion –v

If you're using an older version, then upgrade to the latest version using the
following command to fix the issue:

apt-get install pve-qemu-kvm

Backup storage has a lot of .dat files and .tmp
directories using the storage space
Due to a backup crash or unfinished backups, there may be backup leftover files
in the backup storages such as the .dat files and .tmp directories. These files and
folders can be easily deleted to reclaim storage space. Run the following command
from the backup storage to find these files and directories:

root@pve:/ # find –name *tmp

root@pve:/ # find –name *dat

VNC/SPICE console issues
This section contains issues related to the VNC and SPICE consoles in Proxmox.

The mouse pointer is not shared with
SPICE-VIEWER on Windows 8 VM
In order to have a seamless mouse point between the VM and host machine, SPICE
Guest Tools must be installed inside the VM. The Guest Tools package contains full
driver support for Windows 7 and Windows 2008 R2. However, the support for
Windows 8 or 8.1 is close to nonexistent.

Proxmox Troubleshooting

[254]

The SPICE console has become unstable
after the Proxmox VE 3.2 update
After clicking on the SPICE button for a SPICE-enabled VM, the browser gives an
empty ticket error. This is a common occurrence if the browser cache is not updated
after a Proxmox upgrade. Just refreshing the browser will fix this issue.

Remote Viewer is unable to connect to
a SPICE-enabled virtual machine on
Windows OS
This issue is caused by a firewall that blocks the SPICE port, which prevents
SPICE-enabled virtual machines to be connected to SPICE. The error message
is shown in the following screenshot:

Open port 3128 from Windows firewall, as shown in the following screenshot,
to allow Remote Viewer to connect to a SPICE virtual machine.

Chapter 9

[255]

Summary
We hope this troubleshooting chapter has provided you with some insight into
some of the common issues that are most likely to surface in a Proxmox cluster.
As mentioned earlier in this chapter, this is by no means a complete list of all the
possible issues. If at all possible, always hold off major Proxmox upgrades for a
production cluster. Give it some time to work out the bugs. This way your cluster
will have a very little chance to go down due to any unforeseen bugs.

Acquiring Proxmox's subscription is the best way to ensure that there are fewer
bugs in the repositories since Proxmox Enterprise repositories goes through an
additional layer of scrutiny and testing. For information on Proxmox subscriptions,
refer to https://www.proxmox.com/proxmox-ve/pricing.

The Proxmox forum is also a great place to ask for help or share issues with the
community. There are many forum users who are ready to provide their expertise.
Visit the forum at http://forum.proxmox.com.

In the next chapter, we are going to put our knowledge together through some
networking scenarios where Proxmox can be used. The first part of the chapter will
have the scenarios described, while the second part of the chapter will have network
diagrams that show the scenarios in action.

https://www.proxmox.com/proxmox-ve/pricing
http://forum.proxmox.com

Putting It All Together
Equipped with all the knowledge we have gathered from the previous chapters in
this book, we are now ready to put all the pieces together to form an advanced virtual
environment. We can do this for just about any scenarios that we will be called for
by proposing an adequate solution for a virtual environment. In the first part of this
chapter, you are given a set of scenarios to build networks using Proxmox for various
industries. In the second part of the chapter, you will find complete network diagrams
of each scenario given in the first part of the chapter so that you can try to formulate
the diagram on your own first, and then match it with the solutions provided.

Some scenarios have been taken from real-life production environments, and some
are theoretical to show how you can build advanced networks with Proxmox. You
can refer to these network models and use them as they are, or modify them to suit
your needs better.

We hope that through these network scenarios and models, you will start seeing
Proxmox from a whole new point of view and be fully prepared to face any level
of virtual infrastructure you are going to be challenged with.

While analyzing these scenarios, keep in mind that the solutions and
diagrams provided in this chapter are one of the many ways in which
the network infrastructure could be set up. To fit the diagrams within
the confinement of the book, some non-vital components such as
physical switches, cabling, and so on may have been omitted.

These network diagrams show the relationship between components within an
infrastructure, such as virtual environment, cluster of nodes, and overall network
connectivity. They also represent virtual network components such as how bridges
relate to each other, network segmentation, and so on.

Putting It All Together

[258]

The Ceph cluster has been used as a primary storage backend in all these scenarios.
The latest Proxmox VE Version 3.2 supports co-existence of Proxmox and Ceph on
the same node. This is a Proxmox technology preview in this version. This preview
is solely the inclusion of Ceph in the Proxmox hypervisor and not the Ceph itself.
Ceph is very much well established and stable. For the purpose of stability and any
unknown bugs, we are going to use a separate Ceph cluster in network diagrams.

All IP addresses and hostnames used in this chapter are fictitious. Any
resemblances to real networks or hostnames are purely coincidental.

Scenario #1 – academic institution
This scenario is for a typical academic institution with multiple networks, multiple
campuses, and a multibuilding setup with both private and public networks.

The following are the key requirements for this scenario:

• Network isolation to protect sensitive data.
• Ability to have centralized management for network infrastructure.
• Professors should be on a separate Wi-Fi network that only they have

access to. This network should give them the ability to log in to the
campus main server to retrieve their files for a lecture.

• Students should have on-campus Wi-Fi access and a wired Internet
connection to their dormitories. These subnets must be separated from
the main campus network.

• Library should be on a separate subnet with its own servers.
• Classrooms, admin offices, and professors should be on the main isolated

network. Professors should have the ability to retrieve their files from the
file server connected to the classroom computers during lectures.

This is a scenario of a typical campus network of an academic institution. Thanks to
Proxmox, we can have all the main server equipments and virtual environments in
one place to have centralized management. There are the following five subnets in
this network:

Subnet Description
192.170.10.0 This is the wired network for the dormitory. Firewall provides DHCP.

This subnet does not need to go through the main network.
192.180.10.0 This denotes the student and public Wi-Fi on campus. Firewall provides

DHCP. This subnet does not need to go through the main network.

Chapter 10

[259]

Subnet Description
192.160.10.0 This is the main administrative and professors' network. Private Wi-Fi

for professors' usage is an extension of this network to allow professors
to retrieve their files in a wireless fashion. All classrooms are also on this
network to provide in-class access of files for professors.

192.110.10.0 This is the storage cluster.
192.190.10.0 This is the library subnet. DHCP is provided by the virtualized library

server. This server is for library usage only. Separate LAN (eth2) is used
to connect the virtual machine with the library building.

Scenario #2 – multitier storage cluster
using Proxmox cluster
The following are the key requirements for this scenario:

• Separate storage clusters for SSD, hybrid HDD, and HDD
• Storage clusters should be on separate subnets
• Storage should be distributed with High Availability and high scalability

For this scenario, each Proxmox node must have at least four network interface
cards: three to connect three storage cluster subnets, and one to connect to Proxmox
virtual environment. This example is for six virtual machines to have access to three
different performing storages. The following table shows three Ceph clusters and
their performance categories:

Subnet Description
192.168.10.0:6789 This is for Ceph cluster #1 with SSDs for all OSDs.

This subnet is connected with Proxmox nodes through
eth1. This storage is used by VM6.

192.168.20.0:6790 This is for Ceph cluster #2 with hybrid HDDs for all
OSDs. This subnet is connected with Proxmox nodes
through eth2. This storage is used by VM5.

192.168.30.0:6791 This is for Ceph cluster #3 with HDDs for all OSDs.
This subnet is connected with Proxmox nodes through
eth3. This storage is used by VM1, VM2, VM3, and VM4.

192.160.10.0 This is the main subnet for all virtual machines.

Putting It All Together

[260]

If you are going to use the latest Proxmox VE 3.2 to create a multitier
Ceph cluster, keep in mind that as of now, the Proxmox GUI does
not support multi-Ceph clusters. You can only manage one cluster
through the Proxmox GUI and additional Ceph clusters will have to
be managed through the CLI.

Multitiered infrastructure is very typical for data centers, where there is a different
level of SLA-based clients with various requirements for storage performance.

Scenario #3 – virtual infrastructure for
multitenant cloud service provider
The following are the key requirements for this scenario:

• There should be a firewall cluster for edge firewalls
• Each client network must be fully isolated from each other
• A separate storage cluster for backup
• Client users must be able to access their company virtual desktops via RDP
• There must be bandwidth control ability for client networks'

Internet connectivity
• Ability to replicate all data to another data center

In this scenario, the virtualized firewall and virtual bridges are used to separate
traffic between each client network. Virtual firewall has seven virtual network
interfaces to connect six client networks within a virtual environment and to provide
WAN connectivity. Internet bandwidth is controlled through a virtual firewall for
each vNIC. A virtual firewall is connected to WAN through the main virtual bridge
vmbr0. Proxmox cluster has virtual bridges listed in the following table:

Virtual bridge Description
vmbr0 This is the main virtual bridge to provide WAN connection to virtual

firewalls
vmbr1 This connects the main storage cluster
vmbr5 This connects the storage cluster for backup

Chapter 10

[261]

Virtual bridge Description
vmbr10 This is the bridge for the subnet 192.10.10.0 of the company ABC
vmbr20 This is the bridge for the subnet 192.20.20 of the company XYZ.0
vmbr30 This is the bridge for the OpenVZ containers for web hosting instances
vmbr40 This is the bridge for the Object Storage instances to be used by a

software developer
vmbr50 This is the bridge for the subnet 192.50.50.0 of the company 123
vmbr60 This is the bridge for a small business virtual cluster

Each bridge connects the client company's virtual machines together and creates an
isolated internal network for respective clients.

Scenario #4 – a nested virtual
environment for a software development
company
The key requirements for this scenario are as follows:

• The developer must have a nested virtual environment to test software
• Outsourced developers should have access to nested virtual environments

using RDP
• The developer must have control to create or delete a virtual cluster
• A tested virtual environment must be fully isolated from the main

company's network

In this scenario, a nested Proxmox virtual cluster is created inside the main cluster
mainly for software testing purposes for a software development company. Since
virtual clusters can be created at any time and taken down, it reduces the cost and
time by not setting up the entire hardware and setup process. A virtual firewall is
used to direct traffic between nested and main virtual environments. All developers
access their nested virtual machines through RDP port forwarding. Outsourced
developers also connect to nested virtual environments using RDP. The main
firewall does port forwarding to the virtual firewall. Then, the virtual firewall does
port forwarding to nested virtual machines.

Putting It All Together

[262]

Four subnets used in this example are listed in the following table:

Subnet Description
192.160.10.0 This is the main company subnet. All staff, including developers,

are on this subnet.
192.160.20.0 This is the main storage cluster subnet. It is connected to the main

cluster with vmbr1.
194.160.10.0 This is the nested cluster subnet. It is isolated from the main cluster

with vmbr2, which is only connected to the virtual firewall.
194.160.20.0 This is the nested storage cluster subnet.

Virtual machines VM Proxmox 1, VM Proxmox 2, and VM Proxmox 3 are used
to create the nested Proxmox cluster while VM Storage 1, VM Storage 2, and VM
Storage 3 virtual machines are used to create the nested storage cluster.

Scenario #5 – a virtual infrastructure for
the public library
The key requirements for this scenario are as follows:

• Catalog consoles or terminals should be on a separate subnet along
with the main admin subnet

• Public Wi-Fi and consoles or terminals for public Internet usage
should be on the same separate subnet

• Kiosks for self check-in/check-out books and media
• Access to online library catalog
• Public Internet traffic must be monitored for any Internet usage

policy violation
• Public computers should have printer access

This is a typical scenario for a public library network. Since a public library is a public
place with access to computers for public usage, it is very important to isolate sensitive
networks such as a library member database and library office administration. In this
example, the network is isolated by using two subnets listed in the following table:

Subnet Description
192.160.10.0 This is the main network only for the library staff and protected consoles

such as catalog, Kiosks, staff printers, and self check-in/check-out.
192.200.200.0 This is the public subnet for public Wi-Fi, internet consoles, and printers

with the payment system.

Chapter 10

[263]

The network 192.200.200.0 is controlled, managed, and isolated using a virtual
firewall VM5. The virtual firewall has two vNICs, one for a WAN connection
through vmbr3, and the other to connect to the dedicated NIC on the Proxmox
node through vmbr4. The eth2 network interface card of Proxmox node is
connected to a separate LAN switch to only connect public devices. The virtual
firewall provides the ability to monitor Internet traffic to keep in line with any
violation of the library's Internet usage policy.

Each Proxmox nodes has four network interface cards, eth0, eth1, eth2, and eth3,
and the cluster has three virtual bridges, vmbr0, vmbr2, and vmbr4. The main
storage cluster is connected to the Proxmox node through eth1 and the backup
cluster is connected to eth3.

Scenario #6 – multifloor office virtual
infrastructure with virtual desktops
The key requirements for this scenario are as follows:

• All staff should be on virtual desktops
• Redundant Internet connectivity
• Each department should have their own remote desktop server
• The accounting department network traffic should only be directed to

their department

This is a common scenario for an office building where departments are on different
floors of the building. Since the accounting department requires data isolation, we
are going to use vLAN to isolate their data. Administrative offices and the copy room
main server room are on the fourth floor. The Human Resource department is on the
fifth floor, the Marketing department is on the sixth, and the Accounting department
is on the seventh floor. The fifth, sixth, and seventh floors have their own LAN
switches. So, we can easily use vLAN for other floors if it was required. We only
need to set up vLAN on the switch on the fourth floor.

Each Proxmox node has two network interfaces. The eth1 card is used to connect
storage cluster and eth0 is used to connect all virtual machines to their departments.
Vlan0.10 is used to separate only the accounting traffic directly to the seventh floor.

All department staff use virtual desktops through RDP. Each department virtual
server acts as remote desktop servers and the department's main server.

Putting It All Together

[264]

Scenario #7 – virtual infrastructure for
hotel industry
The key requirements for this scenario are as follows:

• Centralized IT infrastructure management.
• Dedicated secured Wi-Fi access for guests.
• Secured private Wi-Fi access in restaurants and bars for menu tablets

only. The Wi-Fi needs to talk to the restaurant and bar servers.
• All staff must have remote desktops for day-to-day work.
• The video surveillance system should be integrated with the

virtual environment.

This is a scenario for a typical hotel establishment with an in-house restaurant. This
example uses a central virtualized database server to store all information. Although
it is an unconventional way to connect all departments with a single database,
including the surveillance system, it is possible to use an all-in-one single solution to
reduce the cost and management overhead. In a typical scenario, separate software
is used to handle different departments without data portability. In this example,
unified management software connects all departments with a single database and a
customized user interface for each department.

Secured non-filtered Wi-Fi connectivity is provided to all guests. DHCP is provided
directly by the firewall. Secured private Wi-Fi is set up for restaurant menu tablets
only. All menu tablets only connect to the restaurant/bar virtual server with IP
192.190.1.5. All department thin clients and IP-based surveillance cameras are
connected to the main network subnet 192.190.1.0.

Scenario #8 – virtual infrastructure for a
geological survey organization
The key requirements for this scenario are as follows:

• Field surveyors should submit their work orders from their mobile devices
through a VPN connection

• There must be a failover infrastructure in multisite network topologies

Chapter 10

[265]

In this scenario, a geographical survey company has a main office and a branch office
connected with a 1+GBps hardlink network connectivity. Each office has an identical
infrastructure setup. All surveyors use mobile devices such as tablets for their survey
work. The survey software autodetects which office IP is live and sends data to the
infrastructure of that office. All data is replicated on a block level in real-time between
two offices.

If the infrastructure of one office becomes unavailable, the staff can simply continue
to work out of infrastructure from the other office.

Network diagrams for scenarios
The following is the network diagram for Scenario #1 – academic institution:

Putting It All Together

[266]

The following is the network diagram for Scenario #2 – multitier storage cluster with
Proxmox cluster:

Chapter 10

[267]

The following is the network diagram for Scenario #3 – virtual infrastructure for
multitenant cloud service provider:

Putting It All Together

[268]

The following is the network diagram for Scenario #4 – a nested virtual environment for
a software development company:

Chapter 10

[269]

The following is the network diagram for Scenario #5 – a virtual infrastructure for the
public library:

Putting It All Together

[270]

The following is the network diagram for Scenario #6 – multifloor office virtual
infrastructure with virtual desktops:

Chapter 10

[271]

The following is the network diagram for Scenario #7 – virtual infrastructure for
hotel industry:

Putting It All Together

[272]

The following is the network diagram for Scenario #8, virtual infrastructure for a
geological survey organization:

Chapter 10

[273]

Summary
We do hope that these network diagrams were helpful to understand the flexibility
and customizability of Proxmox. These are just very few scenarios out of hundreds
that you might face in the real world. The concept of network diagraming will also
help you visualize a network before you start implementing it. A network diagram
on paper helps you to figure out data path or connectivity before implementing or
documenting an existing network to see how the network environment is set up.

Although we are at the end of this book, your journey into the world of virtualization
using Proxmox is just beginning. If the knowledge from this book has helped you to
understand Proxmox better and you actually have leaped forward many steps, then
this book has fulfilled its purpose. I would personally like to thank you for going
through the journey together and wish you all the best in your virtualization career.

Index
Symbols
192.110.10.0 subnet 259
192.160.10.0 subnet 259
192.160.10.0 subnet, academic

institution 259
192.168.10.0:6789 subnet 259
192.168.20.0:6790 subnet 259
192.168.30.0:6791 subnet 259
192.170.10.0 subnet, academic

institution 258
192.180.10.0 subnet, academic

institution 258
192.190.10.0 subnet, academic

institution 259
802.3ad (Mode 4) 120
-all option 106
-bwlimit option 106
#bwlimit path option 107
-compress option 106
#exclude-path option 110
-force option 106
#lockwait option 108
-mailto option 106
-maxfiles option 106
.members file 64
-mode option 106
.qcow2 image type 75, 76
.raw image type 75-77
-remove option 106
#script option 108
#stopwait option 108
-unique option 106
.vmdk image type 75, 77

A
academic institution scenario

key requirements 258
network diagram 136, 265
subnets 258

acpi: option 57
acpiphp modules 92
active-backup (Mode 1) 120
admin keys

gathering 179
admin user

creating 175
advanced configuration options, VM

hotplugging 91
advanced-level Ceph production

setup 224, 225
advanced-level Proxmox production setup

about 223
Xeon-based Proxmox node 223, 224

AMD-based advanced-level Proxmox
hardware details 228

AMD-based Ceph setup 229
AMD-based entry-level Proxmox node

hardware details 227, 228
AMD-based hardware selection

about 227
advanced-level Proxmox node 228
AMD-based Ceph setup 229
entry-level Proxmox node 227, 228

AMD CPU performance
versus Intel CPU performance 229

APC-managed PDU AP7921
URL 145

[276]

APC-managed PDU user
creating 147, 148

args: option 57
autostart: option 57

B
backup/restore issues 251, 252
Backup tab, Datacenter menu 12, 13
Backup tab, virtual machine 23
balance-alb (Mode 6) 121
balance-rr (Mode 0) 120
balance-tlb (Mode 5) 121
balance-xor (Mode 2) 120
ballon: option 57
basic cluster

cluster, creating 28-30
hardware components 26
hardware setup 27
Proxmox subscription 31
Proxmox VE, installing on Proxmox

nodes 27
setting up 25
shared storage, attaching 31, 32
software components 26
virtual machines, adding 32
VM migration 41, 42

benchmark test
running, on Ceph 210, 212

block storage 160
bond_downdelay X 130
bonding interface

adding 126-130
bonding options

bond_downdelay X 130
bond_miimon X 130
bond_updelay X 130

bond_miimon X 130
bond_updelay X 130
boot: option 57
bootdisk: option 57
brand servers

about 225
hardware tracking 226, 227

bridge_fd option 123, 124
bridge_stp option 123
broadcast (Mode 3) 120

C
centralized backup 71
Ceph

about 160
benchmark test, running on 210, 212
command list 212
components 162
CRUSH map 193
features 161, 162
installing 186, 187
installing, on Proxmox 184
installing, OS used 170, 171
Proxmox node, preparing for 185
storage types 160
URL 83

Ceph cluster
about 168, 169
hardware requirements 169, 170
Proxmox, connecting to 182-184
setting up, in virtual environment 162
software requirements 170
storage types, block storage 160
storage types, filesystem 161
storage types, object storage 160

Ceph components
Ceph Monitor (MON) 164
cluster map 163
CRUSH map 164
maps 163
MDS 166
OSD 165
OSD Journal 165
PG 166, 167
physical node 162
pool 167, 168
summary 168

ceph-deploy disk list <node> command 212
ceph-deploy disk zap <node>:/dev/sdX

command 212
ceph-deploy gatherkeys <mon_node>

command 212

[277]

ceph-deploy install <node> command 212
ceph-deploy mds create <node>

command 212
ceph-deploy mds destroy <node>

command 212
ceph-deploy mon create <node>

command 212
ceph-deploy mon destroy <node>

command 212
ceph-deploy osd create <node>:/dev/sdX

command 212
ceph-deploy tool

installing 176, 177
Ceph FS

about 166
creating 190
MDS daemon, setting up 190
mounting 191
Proxmox, connecting to 192, 193
setting up, FUSE used 191
URL 161

ceph- fuse -k <keyring> -m <mon:port>
/<folder> -o nonempty
command 213

Ceph installation, on Proxmox
MON, creating from Proxmox GUI 187
new Ceph pool, creating with Proxmox

GUI 189
OSD, creating from Proxmox GUI 188
Proxmox node, preparing 185
steps 186, 187

Ceph installation, OS used
about 170, 171
admin keys, gathering 179
admin user, creating 175
Ceph cluster, creating 177, 178
ceph-deploy tool, installing 176, 177
Ceph, installing on nodes 179
MON, creating 179
OSDs, creating 180, 181
Proxmox, connecting to Ceph

cluster 182, 184
SSH Key, generating 176
SUDO permission, assigning to user 175
Ubuntu, installing 171-175

Ubuntu, setting up 171-175
Ubuntu, updating 176

Ceph Monitor (MON)
about 164
URL 164

ceph osd getcrushmap -o <name>
command 213

ceph osd lspools command 212
ceph osd pool create <name> <pg> <pgs>

command 213
ceph osd pool delete <name> [<name >

--yes-i-really-really-mean-it]
command 213

ceph osd pool get <name> pg_num
command 213

ceph osd pool set <name> crush_ruleset
<value> command 213

ceph osd setcrushmap -i <name>
command 213

Ceph PG
URL 167

Ceph pool
assigning, to ruleset 208
creating, CLI used 204
managing 204
OSDs, adding to 205-207
Proxmox, connecting to 209, 210
verifying 204

Ceph-related tabs
Config function 19
Crush function 19
Disks function 19
Log function 19
Monitor function 19
OSD function 19
Pools function 19
Status function 19

Ceph storage
URL 82

Ceph tab, node-specific tabs 18, 19
ClearOS 33
Ceph

documentation 171
CLI

used, for Ceph pool creation 204

[278]

cloud computing
URL 137

cluster logfile 65
cluster map 163
cluster operation, issues

fencing, disabling 233
GRUB endless loop error 238
kernel panic 234
node invisibility 238
node rebooting error 239
offline status, in GUI 232
out of Quorum error 235
Proxmox 3.1 to Proxmox upgradation 237
Proxmox 3.2 kernel panic 234
Proxmox boot failure 236
Proxmox node, rejoining 233
read-only filesystem 235
root login error, in GUI 236
USB stick booting 237
VMs booting up, on network service

restart 235
VM shutdown error occurrence 234
VZ kernel 2.6.32-28-pve break error 237

Command-line Interface (CLI) 7
commercial storage options 83
configuration files

about 48
cluster.conf file 48-50
iSCSI/LVM shared storage 53
local directory-based storage 51
NFS-shared storage 52, 53
storage configuration file 50, 51

configuration, Proxmox fencing 149-153
configuration, Proxmox HA

about 146
APC-managed PDU user, creating 147, 148
fencing, setting up 149-153
HA, testing 155
manual fencing 155, 156
node BIOS, setting up 146, 147
VM/OpenVZ container,

configuring 153, 154
configuration, virtual machine HA 153, 154
considerations, Proxmox HA 156
Controlled Replication Under Scalable

Hashing. See CRUSH
core: option 57
Corosync Cluster Engine 46
cpu: option 57
cpubenchmark

URL 229
cpuunits: option 57
CRUSH

about 164
documentation 196
URL 164

CRUSH map, Ceph
compiling 200
decompiling 194
editing 194-198
extracting 194
injecting, into cluster 201
process, steps 193
verifying 201

crushtool -c <name.txt> -o <name>
command 213

crushtool -d <name> -i <name.txt>
command 213

D
Datacenter menu

Backup tab 12, 13
Search tab 10
Storage tab 10, 12

data tiering 71
Debian Appliance Builder (DAB) 36
description: option 57
desktop class

versus server class 225
device-based fencing, and HA setup

requisites 146
Direct Attached Storage (DAS) 67
Directory storage 81
DNS 9

E
EMC2

URL 83
entry-level Ceph production setup

about 221-223

[279]

entry-level Proxmox production setup
about 218, 219
i7-based Proxmox node 219, 220
Xeon-based Proxmox node 220, 221

external network virtualization 114

F
FalconStor

URL 83
FD 123
fence_ack_manual command 156
fence_manual agent

URL 155
fence_tool program 150
fence_xvmd 145
fencing

about 145
node-level fencing 146
resource-level fencing 146

filesystem 161
Forwarding Delay. See FD
FreeNAS

about 84-87
advantage 86
drawback 86
URL 83
using 87

freeze: option 57
full backup option, for VM backup

about 97, 98
All selection mode 100
Day of Week 99
LZO compression method 101
node, selecting 99
schedule, creating 98
Send email to 100
Start Time 100
Stop mode 101
storage destination, selecting 99
Suspend mode 101

Full Clone
features 41

FUSE
used, for Ceph FS setup 191

Fusermount -u /<folder> command 213

G
GlusterFS

about 82
URL 82, 83

gparted
URL 78

Graphical User Interface (GUI) 6

H
hardware requirements, Ceph cluster

Ceph cluster 170
MDS = 2 nodes 170
MON = 3 nodes 170
OSD = 2 nodes 170

Hardware tab, virtual machine 20, 21
hardware tracking 226, 227
High Availability (HA)

about 143
in Proxmox 144

High Availability (HA), with two
Proxmox nodes

URL 144
hostpci(n): option 58
hotplug: option 58
hotplugging option, VM

enabling 91
for <vmid>.conf 91, 92
modules, loading 92, 93
virtual disk/vNIC, adding 93

hypervisor 5

I
i7-based Proxmox node

hardware details 219, 220
IAAS 138
IcedTea

URL 9
ide(n): option 58
Infrastructure-As-A-Service. See IAAS
installation

Ceph 186, 187
ceph-deploy tool 176

[280]

Intel CPU performance
versus AMD CPU performance 229

Intelligent Platform Management Interface.
See IPMI

internal network virtualization 114
IPMI 145
iSCSI LVM storage 53

K
key parameters, production level

budget 217
current load versus future growth 217
hardware inventory, tracking 218
hardware selection 218
simplicity 217
stable and scalable hardware 216

kvm: option 58
KVM hardware virtualization

adding 95, 96
KVM virtual machine issues

about 245
failed to sync data error 247
Proxmox 3.2 upgrade 246
qemu-img command, error messages 246
virtio driver 248
Windows 7 VMs, rebooting manually 245
Windows 7/XP machine 245

L
LACP bonding

setting up, for bridge vmbr1 127
libvirt 145
Link aggregation. See network bonding
Link Aggregation Control Protocol

(LACP) 120
Link Aggregation Groups (LAGs) 129
Linked Clone

features 41
live migration

about 68
of virtual machine 68-70

local directory-based storage
content types 51
viewing 51

local storage
comparing, with shared storage 73
drawback 68

lock: option 58
Logical Volume Management (LVM) 81
LZO

URL 101

M
managed PDUs 145
maps 163
MDS 166
MDS daemon

setting up 190
Media Access Control (MAC) interface 117
member node

.members file 64
about 64

memory: option 58
menu system, Proxmox GUI 8
MetaData Server (MDS) 161
migrate_downtime: option 58
migrate_speed: option 58
MON

creating 179
creating, from Proxmox GUI 187, 188

Move Disk 22
multifloor office virtual infrastructure,

with Proxmox cluster
network diagram 266

multifloor office virtual infrastructure,
with virtual desktops

about 263
key requirements 263
network diagram 270

multitenant environment
about 135, 137
network diagram 138-141
setting up 138

multitier storage cluster, using Promox
cluster

192.160.10.0 subnet 259
192.168.10.0:6789 subnet 259
192.168.20.0:6790 subnet 259
192.168.30.0:6791 subnet 259
Ceph clusters 259

[281]

N
name: option 58
NAS4Free

URL 86
NAT

about 119
adding 130

nested virtual environment
about 93, 94
enabling 95
KVM hardware virtualization, adding 95
network virtualization 96
using 93

nested virtual environment, for software
development company

192.160.10.0 subnet 262
192.160.20.0 subnet 262
194.160.10.0 subnet 262
194.160.20.0 subnet 262
key requirements 261
network diagram 268

NetApp
URL 83

net(n): option 59
Network Address Translation/Translator.

See NAT
network bonding

about 120
URL 126

network bonding policies
802.3ad (Mode 4) 120
active-backup (Mode 1) 120
balance-alb (Mode 6) 121
balance-rr (Mode 0) 120
balance-tlb (Mode 5) 121
balance-xor (Mode 2) 120
broadcast (Mode 3) 120

network configuration file
bridge_fd option 123, 124
bridge_stp option 123
using 122, 123

network connectivity issue
Realtek RTL8111/8411 Rev. 06 NIC 244
slow performance 245

network diagram
about 257
of academic institution 265
of multifloor office virtual infrastructure

with virtual desktops 270
of multitier storage cluster, with Proxmox

cluster 266
of nested virtual environment, for software

development company 268
of virtual infrastructure for geological

survey organization 272
of virtual infrastructure for hotel

industry 271
of virtual infrastructure for multitenant

cloud service provider 267
Network File System. See NFS
networking components, Proxmox

naming convention 121
NAT 119
network bonding 120, 121
virtual bridge 118
VLAN 119
vNIC 117, 118

Network Interface Card (NIC) 15
Network tab, node-specific tabs 15
network virtualization

about 96
external 114
internal 114
URL 114

Nexenta
URL 83

NFS 81
node 01 69
node BIOS

setting up 146, 147
node-level fencing 146
node-specific tabs

Ceph tab 18, 19
Network tab 15
Subscription tab 17
Summary tab 14
Syslog tab 15
UBC tab 16
Updates tab 18

noncommercial storage options 83

[282]

O
Object Storage Daemon. See OSD
Offline migration 68
old backups

deleting 103-105
onboot: option 59
Open-E DSS

URL 83
Open Systems Interconnection model.

See OSI model
Open vSwitch

URL 96
OpenVZ

URL 36
OpenVZ configuration file 61, 63
OpenVZ container issues

about 249, 250
header error 250

OpenVZ containers
URL 249

Options tab, virtual machine 22
OS

used, for Ceph installation 170
OSD

about 163, 165
adding, to Ceph pool 205-207
creating 180-188
creating, from Proxmox GUI 188

OSD Journal 165
OSI model

about 119
URL 119

P
packet sniffing 141
password configuration file 55
pci_hotplug modules 92
PDU 145
Permissions tab, virtual machine 24
PG 166, 167
physical network

about 116
versus virtual network 115, 116

Placement Group. See PG
pmxceph cluster folder

files 179
pmxceph folder

files 177
pool 167
Power Distribution Unit. See PDU
production level

advanced-level Ceph setup 224, 225
advanced-level setup 223, 224
defining 216
desktop class versus server class 225
entry-level Ceph setup 221-223
entry-level setup 218-221
key parameters 216-218

Proxmox
about 17
Ceph, installing on 184-189
cloning, template used 38, 39
cluster operation, issues 232
connecting, to Ceph cluster 182-184
connecting, to Ceph FS 192, 193
connecting, to Ceph pool 209, 210
feature 38
full backup option 97
network connectivity issue 244
snapshot option 97
storage system issues 239
storage types 80
VNC/SPICE console issues 253

Proxmox cluster
about 6
directory structure 46

Proxmox Cluster file system (pmxcfs) 46
Proxmox Graphical User Interface

(Proxmox GUI)
about 7, 8
menu chart 9
menu system 8

Proxmox HA
configuring 146
considerations 156
requisites, for setup 144
testing 155

Proxmox High Availability. See
Proxmox HA

[283]

Proxmox hypervisor 6
Proxmox node

preparing, for Ceph 185
Proxmox node #1 (pmxvm01) 28
Proxmox VE

installing, on Proxmox nodes 27, 28
Proxmox Wiki

about 245
URL, for fencing setup 146

Proxmox GUI
Ceph pool, creating with 189
MON, creating from 187, 188
OSD, creating from 188

pveceph createmon command 186
pveceph createosd </dev/X> command 186
pveceph createpool <name> command 186
pveceph destroymon <mon_id>

command 186
pveceph destroypool <name> command 186
pveceph init --network <x.x.x.0/x>

command 186
pveceph install command 186
pveceph purge command 186
pveceph start <service> command 186
pveceph status command 186
pveceph stop <service> command 186
pvecph destroyosd <osdid> command 186

Q
Quorum 144

R

RADOS Block Device (RBD) 18, 82, 160
rebalancing 205
recovery mode 205
Remote Desktop Protocol (RDP) 140
requisites, Proxmox HA

fencing 145, 146
resource group manager program

(rgmanager program 156
resource-level fencing 146
ruleset

Ceph pool, assigning to 208
in Ceph 197

S
sata(n): option 59
scenarios

academic institution 258
multifloor office virtual infrastructure

with virtual desktops 263
multitier storage cluster, using Proxmox

cluster 259
nested virtual environment, for software

development company 261
network diagrams 265, 266
virtual infrastructure, for geological survey

organization 264
virtual infrastructure for hotel industry 264
virtual infrastructure, for multitenant cloud

service provider 260
virtual infrastructure for public library 262

scsihw: option 59
scsi(n): option 59
Search tab, Datacenter menu 10
server class

versus desktop class 225
Service Level Agreement (SLA) 83
Services 9
shared storage

about 67
benefits 68
centralized backup 71
Central storage management 72
comparing, with local storage 73
space, expanding 71
versus local storage 68
versus shared storage 68

shares: option 59
Shoot The Offending Node In The Head.

See STONITH
snapshot option, for VM backup

creating 101, 102
Snapshots tab, virtual machine 24
sockets: option 59
Solaris+napp-IT

URL 83
Spanning Tree Protocol (STP) 118
SSH Key

generating 176

[284]

startdate: option 59
startup: option 60
STONITH 146
storage system issues

Ceph FS, mounting 243
damaged LVM storage 239
iSCSI target reading error 241
mode session exit code 21 errors 240
NFS shares, deleting 240
No Such Block Device error 241
OSDs existence, after Ceph node

removal 241
pveceph configuration not initialized

(500) error 243
RBD Couldn't Connect To Cluster

(500) error 242
storage type, changing from ide to

virtio 242
time-out error 240
unused blocks, trimming 242
VM parsing error 244

Storage tab, Datacenter menu 10-12
storage types, Proxmox

directory 80
GlusterFS 80
iSCSI 80
LVM 80
NFS 80
RBD 80

subnets, academic institution
192.110.10.0 259
192.160.10.0 259
192.170.10.0 258
192.180.10.0 258
192.190.10.0 259

Subscription tab, node-specific tabs 17
SUDO permission

assigning, to user 175
Summary tab, node-specific tabs 14
Summary tab, virtual machine 20
Supermicro

URL 225
Syslog tab, node-specific tabs 15

T
tablet: option 60
Teaming. See network bonding
template

cloning 40
cloning, Linked Clone 41

thick provisioning 76
thin provisioning 76

U
UBC tab, node-specific tabs 16
Ubuntu

installing 171-175
setting up 171-175
updating 176

UCB 16
unused(n): option 60
Updates tab, node-specific tabs 18
usb(n): option 60
user

SUDO permission, assigning to 175
User Bean Counters. See UCB
user configuration files (user.cfg file)

format 55
password configuration file 55
Proxmox OpenVZ configuration file 61, 63
version configuration file 63
virtual machine configuration file

(vmid.conf) 56

V
version configuration file(.version file) 63
vga: option 60
virtio driver

ISO image download, URL 248
VirtIO interface driver, Mac OS

URL 118
VirtIO interface driver, Windows

URL 118
virtio(n): option 60
virtual bridge

about 118
adding 124-126

[285]

virtual disks image
.qcow2 image type 75, 76
.raw image type 76, 77
.vmdk image type 77
about 74
file, manipulating 77
supported image formats 74

virtual image file
manipulating 77
moving 79, 80
resizing 78, 79

virtual infrastructure, for geological
survey organization

key requirements 264
network diagram 272

virtual infrastructure, for hotel industry
about 264
key requirements 264
network diagram 271

virtual infrastructure, for multitenant cloud
service provider

key requirements 260
network diagram 267
vmbr0 260
vmbr5 260
vmbr10 261
vmbr20 261
vmbr30 261
vmbr40 261
vmbr50 261
vmbr60 261

virtual infrastructure, for public library
192.160.10.0 subnet 262
192.200.200.0 subnet 262
about 262, 263
key requirements 262
network diagram 269

virtualization 5
Virtual Local Area Network. See VLAN
virtual machine

live migration 68-70
virtual machine configuration file

about 56, 57
KVM configuration file, arguments 61
values 58-60

virtual machine HA
configuring 153, 154

virtual machine list file
cluster logfile 65

virtual machine list file(vmlist file) 65
virtual machines, basic cluster

adding 32
KVM virtual machine, creating 35
main virtual machine 33, 34
OpenVZ virtual machine, creating 35-38

virtual machine tabs
Backup tab 23
Hardware tab 20, 21
Options tab 22
Permissions tab 24, 25
Snapshots tab 24
Summary tab 20

virtual network
about 114, 116
network virtualization 114
versus physical network 115, 116

Virtual Network Computing (VNC) 140
Virtual Network Interface Card. See vNIC
virtual network scenarios

about 134
academic institution 136, 137
multitenant environment 135
simplest form, of Proxmox 134

VLAN
about 118, 119
adding 131-134
URL 118

VM
advanced configuration options 91, 92
backing up 96
backing up, with full backup 97
creating, from template 90
restoring 105
transforming, into template 39

VM, backing up
full backup option 97
snapshot option 97
vzdump 106
vzdump.conf file 107

vmbr0, virtual bridge 260

[286]

vmbr1, virtual bridge 260
vmbr5, virtual bridge 260
vmbr10, virtual bridge 261
vmbr20, virtual bridge 261
vmbr30, virtual bridge 261
vmbr40, virtual bridge 261
vmbr50, virtual bridge 261
vmbr60, virtual bridge 261
vmbrX 118
VNC/SPICE console issues 253, 254
vNIC 15, 117
vzdump.conf file

about 107
#bwlimit 107
#exclude-path 110
#lockwait 108
#script 108, 110
#stopwait 108

vzdump options
-all 106
-bwlimit 106
-compress 106
-mailto 106
-maxfiles 106
-mode 106
-remove 106

W
WASP Asset Tracking Software

URL 227

X
Xeon-based Proxmox node

hardware details 220, 221

Y
Yottabyte

URL 83

Z
ZFS 85

Thank you for buying
Mastering Proxmox

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Microsoft System Center Virtual
Machine Manager 2012 Cookbook
ISBN: 978-1-84968-632-7 Paperback: 342 pages

Over 60 recipes for the administration and
management of Microsoft System Center
Virtual Machine Manager 2012 SP1

1. Create, deploy, and manage Datacentres,
Private and Hybrid Clouds with hybrid
hypervisors by using VMM 2012 SP1, App
Controller, and Operations Manager.

2. Integrate and manage fabric (compute,
storages, gateways, networking) services
and resources. Deploy Clusters from bare
metal servers.

Xen Virtualization
ISBN: 978-1-84719-248-6 Paperback: 148 pages

A concise guide for professionals working
with the Xen hypervisor to support multiple
operating systems

1. Installing and configuring Xen.

2. Managing and administering Xen servers
and virtual machines.

3. Setting up networking, storage, and encryption.

4. Backup and migration.

Please check www.PacktPub.com for information on our titles

Getting Started with Citrix
XenApp 6
ISBN: 978-1-84968-128-5 Paperback: 444 pages

Design and implement Citrix farms based on
XenApp 6

1. Use Citrix management tools to publish
applications and resources on client devices
with this book and eBook.

2. Deploy and optimize XenApp 6 on
Citrix XenServer, VMware ESX, and Microsoft
Hyper-V virtual machines and physical servers.

3. Understand new features included in
XenApp 6 and review Citrix farms
terminology and concepts.

VMware View 5 Desktop
Virtualization Solutions
ISBN: 978-1-84968-112-4 Paperback: 288 pages

A complete guide to planning and designing
solutions based on VMware View 5

1. Written by VMware experts Jason Langone
and Andre Leibovici, this book is a complete
guide to planning and designing a solution
based on VMware View 5.

2. Secure your Visual Desktop Infrastructure
(VDI) by having firewalls, antivirus, virtual
enclaves, USB redirection and filtering,
and smart card authentication.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dive into the Virtual World with Proxmox
	Proxmox cluster required
	The Proxmox Graphical User Interface (GUI)
	The GUI menu system
	Menu chart
	The Datacenter menu
	The Search tab
	The Storage tab
	The Backup tab

	Node-specific tabs
	The Summary tab
	The Network tab
	The Syslog tab
	The UBC tab
	The Subscription tab
	The Updates tab
	The Ceph tab

	Virtual machine tabs
	The Summary tab
	The Hardware tab
	The Options tab
	The Backup tab
	The Snapshots tab
	The Permissions tab

	Setting up a basic cluster
	The hardware list
	The software list
	Hardware setup
	Proxmox installation
	Cluster creation
	Proxmox subscription
	Attaching shared storage
	Adding virtual machines
	Main virtual machine
	Creating a KVM virtual machine
	Creating an OpenVZ virtual machine

	Proxmox cloning/template
	Introducing cloning using template
	Transforming VM into template
	Cloning using template

	VM migration

	Summary

	Chapter 2: Proxmox Under the Hood
	The Proxmox cluster directory structure
	Dissecting the configuration files
	The cluster configuration file
	The storage configuration file
	Local directory-based storage
	NFS-shared storage
	iSCSI/LVM shared storage

	User configuration files
	The password configuration file
	The virtual machine configuration file
	Arguments in the KVM configuration file

	The Proxmox OpenVZ configuration file
	The version configuration file

	Member nodes
	The .members file

	The virtual machine list file
	The cluster logfile
	Summary

	Chapter 3: Shared Storages
with Proxmox
	Local storage versus shared storage
	Live migration of a virtual machine
	Seamless expansion of multinode
storage space
	Centralized backup
	Multilevel data tiering
	Central storage management

	Local and shared storage comparison
	Virtual disk image
	Supported image formats
	The .qcow2 image type
	The .raw image type
	The .vmdk image type
	Image file manipulation
	Resizing virtual disk image
	Move a virtual disk image

	Storage types in Proxmox
	Directory
	Logical Volume Management
	Network File System
	Rados Block Device
	GlusterFS

	Noncommercial/commercial storage options
	FreeNAS – budget shared storage
	Summary

	Chapter 4: A Virtual Machine for a
Virtual World
	Creating VM from template
	Advanced configuration options for VM
	The hotplugging option for VM
	The hotplugging option for <vmid>.conf
	Loading modules
	Adding virtual disk/vNIC

	Nested virtual environment
	Enabling KVM hardware virtualization
	Network virtualization

	Backing up a virtual machine
	Proxmox backup and snapshot options
	Backing up VM with full backup
	Creating snapshots
	Deleting old backups
	Restoring a virtual machine

	Command-line vzdump
	Backup configuration file – vzdump.conf
	#bwlimit
	#lockwait
	#stopwait
	#script
	#exclude-path

	Summary

	Chapter 5: Network of Virtual Networks
	Introduction to a virtual network
	Physical network versus virtual network
	Physical network
	Virtual network

	Networking components in Proxmox
	Virtual Network Interface Card (vNIC)
	Virtual bridge
	Virtual LAN (VLAN)
	Network Address Translation/Translator (NAT)
	Network bonding
	Components naming convention

	Network configuration file
	bridge_stp
	bridge_fd

	Adding a virtual bridge
	Adding bonding interface
	Adding NAT/masquerading
	Adding VLAN
	Sample virtual networks
	Network #1 – Proxmox in its simplest form
	Network #2 – multitenant environment
	Network #3 – academic institution

	Multitenant virtual environment
	Multitenant network diagram

	Summary

	Chapter 6: Proxmox HA – Zero Downtime
	Understanding High Availability
	High Availability in Proxmox
	Requirements for HA setup
	Fencing

	Configuring Proxmox HA
	Setting up node BIOS
	Creating an APC-managed PDU user
	Configuring Proxmox fencing
	Configuring virtual machine HA
	Testing Proxmox HA
	Fencing manually

	Proxmox HA need to know
	Summary

	Chapter 7: High Availability Storage for High Availability Cluster
	Introducing the Ceph storage
	Object Storage
	Block Storage
	Filesystem

	Reasons to use Ceph
	Virtual Ceph for training
	The Ceph components
	Physical node
	Maps
	Cluster map
	CRUSH map
	Monitor
	OSD
	OSD Journal
	MDS
	Placement Group (PG)
	Pool
	Ceph components summary

	The Ceph cluster
	Hardware requirement
	Software requirement

	Installing Ceph using an OS
	Installing and setting up Ubuntu
	Creating an admin user
	Assigning SUDO permission to a user
	Updating Ubuntu
	Generating an SSH Key
	Installing ceph-deploy
	Creating a Ceph cluster
	Installing Ceph on nodes
	Creating Monitors (MONs)
	Gathering the admin keys
	Creating OSDs
	Connecting Proxmox to a Ceph cluster

	Installing Ceph on Proxmox
	Preparing Proxmox node for Ceph
	Installing Ceph
	Creating MON from the Proxmox GUI
	Creating OSD from the Proxmox GUI
	Creating a new Ceph pool using the Proxmox GUI

	Creating a Ceph FS
	Setting up an MDS daemon
	Setting up Ceph FS using FUSE
	Mounting Ceph FS
	Connecting Proxmox to Ceph FS

	Learning Ceph's CRUSH map
	Extracting the CRUSH map
	Decompiling the CRUSH map
	Editing the CRUSH map
	Compiling the CRUSH map
	Injecting the CRUSH map into the cluster
	Verifying the new CRUSH map

	Managing Ceph pools
	Creating a new Ceph pool using the CLI
	Verifying the new Ceph pool
	Adding OSDs to a pool
	Assigning a pool to ruleset
	Connecting Proxmox to the new pool

	Ceph benchmarking
	The Ceph command list
	Summary

	Chapter 8: Proxmox Production Level Setup
	Defining a production level
	Key parameters
	Stable and scalable hardware
	Current load versus future growth
	Budget
	Simplicity
	Tracking the hardware inventory
	Hardware selection

	An entry-level Proxmox production setup
	An i7-based Proxmox node
	A Xeon-based Proxmox node

	An entry-level Ceph production setup
	An advanced-level Proxmox production setup
	A Xeon-based Proxmox node

	An advanced-level Ceph production setup
	Desktop class versus server class

	Brand servers
	Hardware tracking

	AMD-based hardware selection
	An AMD-based entry-level Proxmox
	An AMD-based advanced-level Proxmox
	An AMD-based Ceph setup
	Performance comparison

	Summary

	Chapter 9: Proxmox Troubleshooting
	Main cluster issues
	GUI shows everything is offline
	Rejoining a Proxmox node with the same IP address
	Disabling fencing temporarily
	The occurrence of kernel panic when disconnecting USB devices
	The occurrence of VM shutdown error when initiated from GUI
	Kernel panic on Proxmox 3.2 with HP NC360T
	VMs not booting after you restart the network service
	Proxmox cluster is out of Quorum and cluster filesystem is read only
	Proxmox boot failure due to the getpwnam error
	Cannot log in to GUI as ROOT
	Booting with a USB stick fails in Proxmox
	The Upgrade from Proxmox 3.1 to Proxmox 3.2 is disabled through GUI
	VZ kernel 2.6.32-28-pve breaks libnl/netlink in host and VM
	Nodes not visible on the Proxmox GUI after an upgrade
	GRUB is in an endless loop after Proxmox installation
	SSH access is possible but Proxmox node is not rebooting

	Storage issues
	Deleting damaged LVM with error read failed from 0 to 4096
	Proxmox cannot mount NFS share due to timing out error
	Removing stale NFS shares when a stale file handle error occurs
	The occurrence of '--mode session exit code 21' errors while accessing iSCSI target
	Cannot read an iSCSI target even after it has been deleted from Proxmox storage
	OSDs still show up in Proxmox after you remove the Ceph node
	The 'No Such Block Device' error that shows up during creation of an OSD
	The fstrim command does not trim unused blocks for Ceph
	The 'RBD Couldn't Connect To Cluster (500)' error when connecting Ceph with Proxmox
	Changing the storage type from ide to virtio
	The 'pveceph configuration not initialized (500)' error for the Ceph tab
	Ceph FS storage disappears after a Proxmox node reboots
	VM cloning does not parse in Ceph storage

	Network connectivity issues
	No connectivity on Realtek RTL8111/8411 Rev. 06 NIC
	Network performance is slower with e1000 vNIC

	KVM virtual machine issues
	Windows 7/XP machine converted to Proxmox KVM hangs during boot
	Windows 7 VM only boots when rebooted manually
	The Proxmox 3.2 upgrade adds two com ports and one parallel port to the Windows VM
	The qemu-img command does not convert the .vmdk image files created with the .ova template in Proxmox VE 3.2
	Online migration of a virtual machine fails with a 'Failed to sync data' error
	Change in memory allocation is not initialized after a VM is rebooted
	The virtio virtual disk is not available during the Windows Server installation

	OpenVZ container issues
	The creation of OpenVZ container takes long time on NFS or GlusterFS storage
	OpenVZ containers are no longer shown after a cluster is created
	Header error during the installation of
PF_RING in Proxmox

	Backup/restore issues
	A Proxmox VM is locked after backup crashes unexpectedly
	Backing up only the primary OS virtual disk
	Backup of VMs stops prematurely with an 'Operation Not Permitted' error
	A backup task takes a very long time to complete, or it crashes when multiple nodes are backing up to the same backup storage
	Backup of virtual machines aborts a backup task prematurely
	Backup storage has a lot of .dat files and .tmp directories using the storage space

	VNC/SPICE console issues
	Mouse pointer is not shared with SPICE-VIEWER on Windows 8 VM
	The SPICE console has become unstable after the Proxmox VE 3.2 update
	Remote Viewer is unable to connect to a SPICE-enabled virtual machine on Windows OS

	Summary

	Chapter 10: Putting It All Together
	Scenario #1 – academic institution
	Scenario #2 – multitier storage cluster using Proxmox cluster
	Scenario #3 – virtual infrastructure for multitenant cloud service provider
	Scenario #4 – a nested virtual environment for a software development company
	Scenario #5 – a virtual infrastructure for the public library
	Scenario #6 – multifloor office virtual infrastructure with virtual desktops
	Scenario #7 – virtual infrastructure for hotel industry
	Scenario #8 – virtual infrastructure for a geological survey organization
	Network diagrams for scenarios
	Summary

	Index

