
www.allitebooks.com

http://www.allitebooks.org

Mastering Puppet

Pull the strings of Puppet to configure enterprise-grade
environments for performance optimization

Thomas Uphill

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Puppet

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1090714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-218-9

www.packtpub.com

Cover image by Gagandeep Sharma (er.gagansharma@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Thomas Uphill

Reviewers
Ugo Bellavance

C. N. A. Corrêa

Jeroen Hooyberghs

Johan De Wit

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Sharvari Tawde

Technical Editors
Veena Pagare

Anand Singh

Copy Editors
Sarang Chari

Mradula Hegde

Project Coordinator
Danuta Jones

Proofreaders
Faye Coulman

Maria Gould

Indexers
Mariammal Chettiyar

Tejal Soni

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Thomas Uphill is an RHCA who has been using Puppet since version 0.24.
He has been a system administrator for nearly 20 years, more than 10 of which
have been with Red Hat Linux and its derivatives. He has presented tutorials on
Puppet at LOPSA-East and has spoken at PuppetConf 2013. He enjoys teaching
others how to use Puppet to automate as much system administration tasks
as possible. When he's not at the Seattle Puppet Meetup, you can find him
at http://ramblings.narrabilis.com.

I am very thankful to my friend and colleague Joško Plazonić for
introducing me to Puppet and getting me started on this journey. I
would like to thank my wife Priya Fernandes for putting up with the
long nights and weekends it took to finish this book. Thanks to Nate
Tade for his encouragement while I worked on this book, the rest of
my team for trying my crazy ideas, and Shawn Foley for a few
not-so-crazy ideas. Thanks to Theresa, David, and Ben for
their support.

www.allitebooks.com

http://ramblings.narrabilis.com
http://www.allitebooks.org

About the Reviewers

Ugo Bellavance has done most of his studies in e-commerce. He started using
Linux from RedHat 5.2, got Linux training from Savoir-faire Linux at age 20, and
got his RHCE on RHEL 6 in 2011. He's been a consultant in the past, but he's now
an employee for a provincial government agency for which he manages the IT
infrastructure (servers, workstations, network, security, virtualization, SAN/NAS,
and PBX). He's a big fan of open source software and its underlying philosophy.
He has worked with Debian, Ubuntu, and SUSE, but what he knows best is
RHEL-based distributions. He's known for his contributions to the MailScanner
project (he has been a technical reviewer for MailScanner User Guide and Training
Manual, Julian Field), but he has also given time to different open source projects
such as Mondo Rescue, OTRS, SpamAssassin, pfSense, and a few others. He's
been a technical reviewer for Centos 6 Linux Server Cookbook, Jonathan Hobson,
Packt Publishing and Puppet 3 Beginner's Guide, John Arundel, Packt Publishing.

I thank my lover, Lysanne, who accepted to allow me some free
time slots for this review even with two dynamic children to take
care of. The presence of these three human beings in my life is
simply invaluable.

I must also thank my friend Sébastien, whose generosity is only
matched by his knowledge and kindness. I would never have
reached this high in my career if it wasn't for him.

www.allitebooks.com

http://www.allitebooks.org

C. N. A. Corrêa (@cnacorrea) is an IT operations manager and consultant. He is
also a Puppet enthusiast and an old-school Linux hacker. He has a master's degree
in Systems Virtualization and holds the CISSP and RHCE certifications. Backed
by a 15-year career on systems administration, Carlos leads IT operations teams
for companies in Brazil, Africa, and the USA. He is also a part-time professor for
graduate and undergraduate courses in Brazil. Carlos co-authored several research
papers on network virtualization and OpenFlow, presented on peer-reviewed IEEE
and ACM conferences worldwide.

I thank God for all the opportunities of hard work and all the lovely
people I always find on my way. I thank the sweetest of them all,
my wife Nanda, for all her loving care and support that pushes me
forward. I would also like to thank my parents, Nilton and Zélia, for
being such a big inspiration for all the things I do.

Jeroen Hooyberghs has eight years of professional experience in many different
Linux environments. Currently, he's employed as an Open Source and Linux
Consultant at Open-Future in Belgium. Since the past year, a lot of his time has
been going into implementing and maintaining Puppet installations for clients.

I would like to thank my two girls, Eveline and Tess, for
understanding that a passion for open source requires evenings
and weekends spent on it.

www.allitebooks.com

http://www.allitebooks.org

Johan De Wit was an early Linux user, and he still remembers the day he built
a 0.9x Linux kernel on his brand new 486 computer that took an entire night. His
love for the UNIX operating systems existed before Linux was announced. It is not
surprising that he started a career as a UNIX system administrator.

He doesn't remember precisely when he started working with open source software,
but since 2009, he is working as an Open Source Consultant at Open-Future, where
he got the opportunity to work with Puppet. Right now, Puppet has become Johan's
biggest interest. He also loves to teach Puppet as one of the few official Puppet
trainers in Belgium.

Johan started the Belgian Puppet User Group a year ago, where he tries to bring
some Puppeteers together having great and interesting meetups. When he takes
time writing some Puppet-related blogs, he mostly does that at http://puppet-be.
github.io/, the BPUG website. Also, from time to time, he tries to spread some
hopefully wise Puppet words by presenting talks at Puppet camps across
in Europe.

Besides having fun at work, he spends a lot of his free time with his two lovely
kids, his two Belgian draft horses, and if time and the weather permits, he likes
to (re)build and drive his old-school chopper.

www.allitebooks.com

http://puppet-be.github.io/
http://puppet-be.github.io/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Dealing with Load/Scale	 7

Divide and conquer	 7
Puppet with passenger	 8
Splitting up the workload	 15

Certificate signing	 15
Reporting	 15
Storeconfigs	 15
Catalog compilation	 16
Keeping the code consistent	 22

One more split	 23
One last split or maybe a few more	 27

Conquer by dividing	 28
Creating an rpm	 30
Creating the YUM repository	 33

Summary	 35
Chapter 2: Organizing Your Nodes and Data	 37

Getting started	 37
Organizing the nodes with ENC	 38

A simple example	 39
Hostname strategy	 42
Modified ENC using hostname strategy	 43

LDAP backend	 47
OpenLDAP configuration	 47

Hiera	 53
Configuring hiera	 53
Using hiera_include	 56

Summary	 62

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Git and Environments	 63
Environments	 63

Environments and hiera	 66
Multiple hierarchies	 67
Single hierarchy for all environments	 68

Dynamic environments	 70
Git	 71

Why Git?	 72
A simple Git workflow	 73
Git Hooks	 81

Using post-receive to set up environments	 82
Puppet-sync	 85

Playing nice with other developers	 86
Not playing nice with others	 89

Git for everyone	 93
Summary	 95

Chapter 4: Public Modules	 97
Getting modules	 97
Using GitHub for public modules	 97
Modules from the Forge	 101
Using librarian	 102
Using r10k	 105
Using modules	 110

concat	 110
inifile	 114
firewall	 119
lvm	 123
stdlib	 127

Summary	 130
Chapter 5: Custom Facts and Modules	 131

Module manifest files	 132
Module files and templates	 135
Naming a module	 136
Creating modules with a Puppet module	 137

Comments in modules	 137
Multiple definitions	 139

Custom facts	 142
Creating custom facts	 143
Creating a custom fact for use in hiera	 150

Summary	 153

Table of Contents

[iii]

Chapter 6: Custom Types	 155
Parameterized classes	 155
Defined types	 156
Types and providers	 167

Creating a new type	 168
Summary	 174

Chapter 7: Reporting and Orchestration	 175
Turning on reporting	 175
Syslog	 176
Store	 177
IRC	 177
Foreman	 181

Installing Foreman	 182
Attaching Foreman to Puppet	 182
Using Foreman	 185

Puppet Dashboard	 187
Using passenger with Dashboard	 189
Linking Dashboard to Puppet	 192
Processing reports	 193
mcollective	 194

Installing activemq	 195
Configuring nodes to use activemq	 198
Connecting a client to activemq	 201
Using mcollective	 203

Summary	 205
Chapter 8: Exported Resources	 207

Configuring puppetdb – using the forge module	 208
Manually installing puppetdb	 210

Installing Puppet and puppetdb	 211
Installing and configuring PostgreSQL	 211
Configuring puppetdb to use PostgreSQL	 213
Configuring Puppet to use puppetdb	 214

Exported resource concepts	 215
Declaring exported resources	 215
Collecting exported resources	 216

Simple example: a host entry	 216
Resource tags	 218

Exported SSH keys	 219
sshkey collection for laptops	 220

Putting it all together	 222
Summary	 231

Table of Contents

[iv]

Chapter 9: Roles and Profiles	 233
Design pattern	 233
Creating an example CDN role	 234

Creating a sub-CDN role	 238
Dealing with exceptions	 240
Summary	 241

Chapter 10: Troubleshooting	 243
Connectivity issues	 243
Catalog failures	 247

Full trace of a catalog compile	 251
The classes.txt file	 252

Debugging	 253
Personal and bugfix branches	 254

Echo statements	 255
Scope	 255
Profiling and summarizing	 257

Summary	 258
Index	 259

Preface
Every project changes when you scale it out. Puppet is no different. Working on a
small number of nodes with a small team of developers is a completely different
task than working with thousands of nodes with a large group of developers.

Mastering Puppet deals with the issues faced with larger deployments, such as scaling
and duplicate resource definitions. It will show you how to fit Puppet into your
organization and keep everyone working. The concepts presented can be adopted
to suit organizations of any size.

What this book covers
Chapter 1, Dealing with Load/Scale, deals with scaling out your Puppet infrastructure
to handle a large number of nodes. Using proxying techniques, a sample deployment
is presented.

Chapter 2, Organizing Your Nodes and Data, is where we examine different methods of
applying modules to nodes. In addition to ENCs (external node classifiers), we use
hiera and hiera_include to apply modules to nodes.

Chapter 3, Git and Environments, shows you how to use Git hooks to deploy your code
to your Puppet masters and enforce access control for your modules.

Chapter 4, Public Modules, presents several supported modules from the Puppet Forge
and has real-world example use cases.

Chapter 5, Custom Facts and Modules, is all about extending facter with custom facts
and rolling your own modules to solve problems.

Chapter 6, Custom Types, covers how to implement defined types and create your own
custom types where appropriate.

Preface

[2]

Chapter 7, Reporting and Orchestration, says that without reporting you'll never know
when everything is broken. We explore two popular options for reporting, Foreman
and Puppet Dashboard. We then configure and use the marionette collective
(mcollective or mco) to perform orchestration tasks.

Chapter 8, Exported Resources, is an advanced topic where we have resource
definitions on one node applying to another node. We start by configuring puppetdb
and more onto real-world exported resources examples with Forge modules.

Chapter 9, Roles and Profiles, is a popular design paradigm used by many large
installations. We show how this design can be implemented using all of the
knowledge from the previous chapters.

Chapter 10, Troubleshooting, is a necessity. Things will always break, and we will always
need to fix them. This chapter shows some common techniques for troubleshooting.

What you need for this book
All the examples in this book were written and tested using an Enterprise Linux 6.5
derived installation such as CentOS 6.5, Scientific Linux 6.5, or Springdale Linux 6.5.
Additional repositories used were EPEL (Extra Packages for Enterprise Linux), the
Software Collections (SCL) Repository, the Foreman repository, and Puppet Labs
repository. The version of Puppet used was the latest 3.4 series at the time of writing.

Who this book is for
This book is for system administrators and Puppeteers writing Puppet code
in an enterprise setting. Puppet masters will appreciate the scaling and
troubleshooting chapters and Puppet implementers will find useful tips
in the customization chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Puppet code words in text, module names, folder names, filenames, dummy URLs,
and user input are shown as follows: "The file /var/lib/puppet/classes.txt
contains a list of the classes applied to the machine."

Preface

[3]

A block of code is set as follows:

class base {
 file {'one':
 path => '/tmp/one',
 ensure => 'directory',
 }
 file {"two":
 path => "/tmp/one$one",
 ensure => 'file',
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

service {'nginx':
 require => Package['nginx'],
 ensure => true,
 enable => true,
}

Any command-line input or output is written as follows:

$ mco ping

worker1.example.com time=86.03 ms

node2.example.com time=96.21 ms

node1.example.com time=97.64 ms

---- ping statistics ----

3 replies max: 97.64 min: 86.03 avg: 93.29

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Then
navigate to the settings section and update the trusted_puppetmaster_hosts setting."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata is verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

copyright@packtpub.com

Dealing with Load/Scale
A large deployment will have a large number of nodes. If you are growing your
installation from scratch, you may have started with a single Puppet master running
the built-in WEBrick server and moved up to a passenger installation. At a certain
point in your deployment, a single Puppet master just won't cut it—the load will
become too great. In my experience, this limit was around 600 nodes. Puppet agent
runs begin to fail on the nodes, and catalogs fail to compile. There are two ways to
deal with this problem: divide and conquer or conquer by dividing.

That is, we can either split up our Puppet master and divide the workload among
several machines or we can make each of our nodes apply our code directly using
Puppet agent (this is known as a masterless configuration). We'll examine each of
these solutions separately.

Divide and conquer
When you start to think about dividing up your Puppet server, the main thing to
realize is that many parts of Puppet are simply HTTP SSL transactions. If you treat
those things as you would a web service, you can scale out to any size required using
HTTP load balancing techniques.

The first step in splitting up the Puppet master is to configure the Puppet master to
run under passenger. To ensure we all have the same infrastructure, we'll install a
stock passenger configuration together and then start tweaking the configuration.
We'll begin building on an x86_64 Enterprise 6 rpm-based Linux; the examples in
this book were built using CentOS 6.5 and Springdale Linux 6.5 distributions.
Once we have passenger running, we'll look at splitting up the workload.

www.allitebooks.com

http://www.allitebooks.org

Dealing with Load/Scale

[8]

Puppet with passenger
In our example installation, we will be using the name puppet.example.com for
our Puppet server. Starting with a server installation of Enterprise Linux version 6,
we install httpd and mod_ssl using the following code:

yum install httpd mod_ssl

Installed:

 httpd-2.2.15-29.el6_4.x86_64

 mod_ssl-2.2.15-29.el6_4.x86_64

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In each example, I will install the latest available version for Enterprise
Linux 6.5 and display the version for the package requested (some
packages may pull in dependencies—those versions are not shown).

To install mod_passenger, we pull in the Extra Packages for Enterprise Linux
(EPEL) repository available at https://fedoraproject.org/wiki/EPEL. Install
the EPEL repository by downloading the rpm file from http://download.
fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html
or use the following code:

yum install http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

Installed:

 epel-release-6-8.noarch

Once EPEL is installed, we install mod_passenger from that repository using the
following code:

yum install mod_passenger

Installed:

 mod_passenger-3.0.21-5.el6.x86_64

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://fedoraproject.org/wiki/EPEL
http://download.fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html

Chapter 1

[9]

Next, we will pull in Puppet from the puppetlabs repository available at http://
docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-
red-hat-enterprise-linux-and-derivatives using the following code:

yum install http://yum.puppetlabs.com/el/6/products/x86_64/puppetlabs-
release-6-7.noarch.rpm

Installed:

 puppetlabs-release-6-7.noarch

With the puppetlabs repository installed, we can then install Puppet using the
following command:

yum install puppet
Installed:
 puppet-3.3.2-1.el6.noarch

The Puppet rpm will create the /etc/puppet and /var/lib/puppet directories.
In /etc/puppet, there will be a template puppet.conf; we begin by editing that
file to set the name of our Puppet server (puppet.example.com) in the certname
setting using the following code:

[main]
 logdir = /var/log/puppet
 rundir = /var/run/puppet
 vardir = /var/lib/puppet
 ssldir = $vardir/ssl
 certname = puppet.example.com
 [agent]
 server = puppet.example.com
 classfile = $vardir/classes.txt
 localconfig = $vardir/localconfig

The other lines in this file are defaults. At this point, we would expect puppet.
example.com to be resolved with a DNS query correctly, but if you do not control
DNS at your organization or cannot have this name resolved properly at this point,
edit /etc/hosts, and put in an entry for your host pointing to puppet.example.com.
In all the examples, you would substitute example.com for your own domain name.

127.0.0.1 localhost localhost.localdomain puppet
 puppet.example.com

We now need to create certificates for our master; to ensure the Certificate Authority
(CA) certificates are created, run Puppet cert list using the following command:

puppet cert list
Notice: Signed certificate request for ca

http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives

Dealing with Load/Scale

[10]

In your enterprise, you may have to answer requests from multiple DNS names,
for example, puppet.example.com, puppet, and puppet.devel.example.com.
To make sure our certificate is valid for all those DNS names, we will pass the
dns-alt-names option to puppet certificate generate; we also need to
specify that the certificates are to be signed by the local machine using the
following command:

puppet# puppet certificate generate --ca-location local --dns-alt-names
puppet,puppet.prod.example.com,puppet.dev.example.com puppet.example.com
Notice: puppet.example.com has a waiting certificate request
true

Now, to sign the certificate request, first verify the certificate list using the
following commands:

puppet# puppet cert list

 "puppet.example.com" (SHA256) E5:F7:26:0A:6C:41:26:FA:80:02:E5:A6:A1
:DB:F4:E0:9D:9C:5B:2D:A5:BF:EC:D1:FA:84:51:F4:8C:FD:9B:AF (alt names:
"DNS:puppet", "DNS:puppet.dev.example.com", "DNS:puppet.example.com",
"DNS:puppet.prod.example.com")

puppet# puppet cert sign puppet.example.com

Notice: Signed certificate request for puppet.example.com

Notice: Removing file Puppet::SSL::CertificateRequest puppet.example.com
at '/var/lib/puppet/ssl/ca/requests/puppet.example.com.pem'

We specified the ssldir directive in our configuration.
To interactively determine where the certificates will be
stored using the following command line:
$ puppet config print ssldir

One last task is to copy the certificate that you just signed into certs by navigating
to /var/lib/puppet/ssl/certs. You can use Puppet certificate find to do this using
the following command:

puppet certificate find puppet.example.com --ca-location local
-----BEGIN CERTIFICATE-----
MIIF1TCCA72gAwIBAgIBAjANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw
...
-----END CERTIFICATE-----

When you install Puppet from the puppetlabs repository, the rpm will create an
Apache configuration file called apache2.conf. Locate this file and copy it into
your Apache configuration directory using the following command:

cp /usr/share/puppet/ext/rack/example-passenger-vhost.conf /etc/httpd/
conf.d/puppet.conf

Chapter 1

[11]

We will now show the Apache config file and point out the important settings using
the following configuration:

PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RackAutoDetect Off
RailsAutoDetect Off

The preceding lines of code configure passenger for performance.
PassengerHighPerformance turns off some compatibility that isn't required. The
other options are tuning parameters. For more information on these settings, see
http://www.modrails.com/documentation/Users%20guide%20Apache.html.

Next we will need to modify the file to ensure it points to the newly created
certificates. We will need to edit the lines for SSLCertificateFile and
SSLCertificateKeyFile. The other SSL file settings should point to the
correct certificate, chain, and revocation list files as shown in the following code:

Listen 8140
<VirtualHost *:8140>
 ServerName puppet.example.com
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.example.com.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.
example.com.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 # If Apache complains about invalid signatures on the CRL, you can
try disabling
 # CRL checking by commenting the next line, but this is not
recommended.
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 # The `ExportCertData` option is needed for agent certificate
expiration warnings
 SSLOptions +StdEnvVars +ExportCertData
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /etc/puppet/rack/public/

http://www.modrails.com/documentation/Users%20guide%20Apache.html

Dealing with Load/Scale

[12]

 RackBaseURI /
<Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
</Directory>
</VirtualHost>

In this VirtualHost we listen on 8140 and configure the SSL certificates in the SSL
lines. The RequestHeader lines are used to pass certificate information to the Puppet
process spawned by passenger. The DocumentRoot and RackBaseURI settings are
used to tell passenger where to find its configuration file config.ru. We create
/etc/puppet/rack and it's subdirectories and then copy the example config.ru
into that directory using the following commands:

mkdir -p /etc/puppet/rack/{public,tmp}

cp /usr/share/puppet/ext/rack/files/config.ru /etc/puppet/rack

chown puppet:puppet /etc/puppet/rack/config.ru

We change the owner of config.ru to puppet:puppet as the passenger process will
run as the owner of config.ru. Our config.ru will contain the following code:

$0 = "master"

if you want debugging:

ARGV << "--debug"

ARGV << "--rack"

ARGV << "--confdir" << "/etc/puppet"

ARGV << "--vardir" << "/var/lib/puppet"

require 'puppet/util/command_line'

run Puppet::Util::CommandLine.new.execute

In this example, we have used the repository rpms supplied by Puppet
and EPEL. In a production installation, you would use reposync to copy
these repositories locally so that your Puppet machines do not need to
access the Internet directly.

Chapter 1

[13]

The config.ru file sets the command-line arguments for Puppet. The ARGV lines
are used to set additional parameters to the puppet process. As noted in the Puppet
master main page, any valid configuration parameter from puppet.conf can be
specified as an argument here. Only the options that affect where Puppet will look
for files should be specified here. Once puppet knows where to find puppet.conf,
adding arguments here could be confusing.

With this configuration in place, we are ready to start Apache as our Puppet master.
Simply start Apache with a service httpd start.

SELinux
Security Enhanced Linux (SELinux) is a system for Linux that provides
support for mandatory access controls (MAC). If your servers are
running with SELinux enabled, great! You will need to make some
policy changes to allow Puppet to work within passenger. The easiest
way to build up your policy is to use audit2allow, which is provided in
policycoreutils-python. Rotate the audit logs to get a clean log file, and
then start a Puppet run. After the Puppet run, get audit2allow to build a
policy module for you and insert it. Then turn SELinux back on. Refer to
https://bugzilla.redhat.com/show_bug.cgi?id=1051461 for
more information.
setenforce 0
service auditd rotate
service httpd restart
(start a puppet run remotely)
audit2allow -i /var/log/audit/audit.log -M puppet_
passenger
semodule -i puppet_passenger.pp
setenforce 1

If necessary, repeat the process until everything runs cleanly. semodule
will sometimes suggest enabling the allow_ypbind Boolean; this is a
very bad idea. The allow_ypbind Boolean allows so many things that it
is almost as bad as turning SELinux off.

Now that Puppet is running, you'll need to open the local firewall (iptables) on
port 8140 to allow your nodes to connect. Then you'll need an example site.pp to
get started. For testing we will create a basic site.pp that defines a default node
with a single class attached to the default node as shown in the following code:

node default {
 include example
}

class example {
 notify {"This is an example": }
}

https://bugzilla.redhat.com/show_bug.cgi?id=1051461

Dealing with Load/Scale

[14]

You can start a practice node or two and run their agent against the Puppet server
either using --server puppet.example.com or editing the agents puppet.conf
file to point at your server. Agents will by default look for an unqualified host called
Puppet. Then search based on your DNS configuration (search in /etc/resolv.
conf), and if you do not control DNS, you may have to edit the local /etc/hosts
file to specify the IP address of your Puppet master. A sample run, for a node
called node1, should look something like the following commands:

[root@node1 ~]# puppet agent -t

Info: Creating a new SSL key for node1

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for node1

Info: Certificate Request fingerprint (SHA256): C4:0D:7A:54:ED:C8:E8:CC:6
8:D0:A6:13:C4:91:28:3D:B1:66:71:48:57:85:D8:99:AF:D0:81:54:B9:64:AB:F2

Exiting; no certificate found and waitforcert is disabled

Sign the certificate on the Puppet master and run again; the run should look like the
following commands:

[root@puppet ~]# puppet cert sign node1

Notice: Signed certificate request for node1

Notice: Removing file Puppet::SSL::CertificateRequest node1 at '/var/lib/
puppet/ssl/ca/requests/node1.pem'

[root@node1 ~]# puppet agent -t

Info: Caching certificate for node1

Info: Caching certificate_revocation_list for ca

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1386310193'

Notice: This is an example

Notice: /Stage[main]/Example/Notify[This is an example]/message: defined
'message' as 'This is an example'

Notice: Finished catalog run in 0.03 seconds

You now have a working passenger configuration. This configuration can handle a
much larger load than the default WEBrick server provided with puppet. Puppet
Labs suggests the WEBrick server is appropriate for small installations; in my
experience that number is much less than 100 nodes, maybe even less than 50. You
can tune the passenger configuration and handle a large number of nodes, but to
handle a very large installation (1000s of nodes), you'll need to start splitting up
the workload.

Chapter 1

[15]

Splitting up the workload
Puppet is a web service. But there are several different components supporting that
web service, as shown in the following diagram:

CERTIFICATES
(SSL)

MANIFESTS

MODULES

STORECONFIGS

CATALOGS

FILES

FACTS

REPORTS

Each of the different components in your Puppet infrastructure: SSL CA,
Reporting, Storeconfigs, and Catalog compilation can be split up into their
own server or servers.

Certificate signing
Unless you are having issues with certificate signing consuming too many resources,
it's simpler to keep the signing machine a single instance, possibly with a hot spare.
Having multiple certificate signing machines means that you have to keep certificate
revocation lists synchronized.

Reporting
Reporting should be done on a single instance if possible. Reporting options will be
shown in Chapter 7, Reporting and Orchestration.

Storeconfigs
Storeconfigs should be run on a single server, storeconfigs allows for exported
resources and is optional. The recommended configuration for storeconfigs is
puppetdb, which can handle several thousand nodes in a single installation.

Dealing with Load/Scale

[16]

Catalog compilation
Catalog compilation is the one task that can really bog down your Puppet
installation. Splitting compilation among a pool of workers is the biggest win for
scaling your deployment. The idea here is to have a primary point of contact for all
your nodes—the Puppet master. Then, using proxying techniques, the master will
direct requests to specific worker machines within your Puppet infrastructure. From
the perspective of the nodes checking into the Puppet master, all the interaction
appears to come from the main proxy machine.

To understand how we are going to achieve this load balancing, we first need to
look at how the agents request data from our Puppet master. The request URL sent
to our Puppet master has the format https://puppetserver:8140/environment/
resource/key. The "environment" in the request URL is the Puppet environment
in use by the node. It defaults to production but can be other values as we will see
in later chapters. The resource being requested can be any of the accepted REST API
calls, such as: catalog, certificate, resource, report, file_metadata, or file_content.
A complete listing of the http_api is available at http://docs.puppetlabs.com/
guides/rest_api.html.

Requests from nodes to the Puppet masters follow a pattern that we can use to
configure our proxy machine. The pattern is as follows:

/environment/resource/key

For example, when node1.example.com requests its catalog in the production
environment, it connects to the server and requests the following (using
URL encoding):

https://puppet.example.com:8140/production/catalog/node1.example.com.

Knowing that there is a pattern to the requests, we can configure Apache to
redirect requests based on regular expression matches to different machines
in our Puppet infrastructure.

Our first step in splitting up our load will be to clone our Puppet master server
twice to create two new worker machines, which we will call worker1.example.
com and worker2.example.com. In this example, we will use 192.168.100.101
for worker1 and 192.168.100.102 for worker2. Create a private network for all
the Puppet communication on 192.168.100.0/24. Our Puppet master will use the
address 192.168.100.100. It is important to create a private network for the worker
machines as our proxy configuration removes the SSL encryption, which means that
communication between the workers and the master proxy machine is unencrypted.

http://docs.puppetlabs.com/guides/rest_api.html
http://docs.puppetlabs.com/guides/rest_api.html

Chapter 1

[17]

Our new Puppet infrastructure is shown in the following diagram:

nodes

puppet:8140

192.168.100.103 192.168.100.101
192.168.100.102

public
private

puppet:18140

/report /certificate /catalog

public

On our Puppet server, we will change the Apache puppet.conf as follows. Instead
of listening on 8140, we will listen on 18140, and importantly, only listen on our
private network as this traffic will be unencrypted. Next, we will not enable SSL
on 18140. And finally we will remove any header settings we were making in our
original file as shown in the following configuration:

PassengerHighPerformance on

PassengerMaxPoolSize 12

PassengerPoolIdleTime 1500

PassengerMaxRequests 1000

PassengerStatThrottleRate 120

RackAutoDetect Off

RailsAutoDetect Off

Listen 127.0.0.1:18140

Listen 192.168.100.100:18140

<VirtualHost *:18140>

 ServerName puppet.example.com

 DocumentRoot /etc/puppet/rack/public/

 RackBaseURI /

 <Directory /etc/puppet/rack/>

 Options None

 AllowOverride None

 Order allow,deny

 allow from all

 </Directory>

</VirtualHost>

www.allitebooks.com

http://www.allitebooks.org

Dealing with Load/Scale

[18]

The configuration for this VirtualHost is much simpler. Now, on the worker
machines, create /etc/httpd/conf.d/puppet.conf files that are identical to
the previous files but have different Listen directives shown as follows:

•	 On worker1:
Listen 192.168.100.101:18140

•	 On worker2:
Listen 192.168.100.102:18140

Remember to open port 18140 on the worker machines' firewalls (iptables)
and start httpd.

Returning to the Puppet master machine, create a proxy.conf file in the Apache
conf.d directory (/etc/httpd/conf.d) to point at the workers. We will create
two proxy pools. The first is for certificate signing, called puppetca, as shown in
the following configuration:

<Proxy balancer://puppetca>

BalancerMember http://127.0.0.1:18140

</Proxy>

A second proxy pool is for catalog compilation, called puppetworker, as shown in
the following configuration:

<Proxy balancer://puppetworker>

BalancerMember http://192.168.100.102:18140

BalancerMember http://192.168.100.101:18140

</Proxy>

Next recreate the Puppet VirtualHost listener for 8140 with the SSL and certificate
information used previously, as shown in the following configuration:

LoadModule ssl_module modules/mod_ssl.so

Listen 8140

<VirtualHost *:8140>

ServerName puppet.example.com

 SSLEngine on

 SSLProtocol -ALL +SSLv3 +TLSv1

 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-

 EXP

http://127.0.0.1:18140
http://192.168.100.102:18140
http://192.168.100.101:18140

Chapter 1

[19]

 SSLCertificateFile

 /var/lib/puppet/ssl/certs/puppet.example.com.pem

 SSLCertificateKeyFile

 /var/lib/puppet/ssl/private_keys/puppet.example.com.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem

 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem

 # If Apache complains about invalid signatures on the CRL, you can
try disabling

 # CRL checking by commenting the next line, but this is not
recommended.

 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

 SSLVerifyClient optional

 SSLVerifyDepth 1

 # The `ExportCertData` option is needed for agent certificate
expiration warnings

 SSLOptions +StdEnvVars +ExportCertData

 # This header needs to be set if using a loadbalancer or proxy

 RequestHeader unset X-Forwarded-For

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

Since we know that we want all certificate requests going to the puppetca balancer,
we use ProxyPassMatch to match URLs that have a certificate as the second
phrase following the environment as shown in the next configuration. Our regular
expression searches for a single word followed by /certificate.*, and any match
is sent to our puppetca balancer.

ProxyPassMatch ^/([^/]+/certificate.*)$ balancer://puppetca/$1

The only thing that remains is to send all noncertificate requests to our load
balancing pair, worker1 and worker2, as shown in the following configuration:

ProxyPass / balancer://puppetworker/

ProxyPassReverse / balancer://puppetworker

</VirtualHost>

At this point, we can restart Apache on the Puppet master.

Dealing with Load/Scale

[20]

SELinux
You'll need to allow Puppet to bind to port 18140 at this point since the
default puppet SELinux module allows for 8140 only. You will also need
to allow Apache to connect to the worker instances; there is a Boolean for
that, httpd_can_network_connect.

Now, when a node connects, if it requests for a certificate, it will be redirected to the
VirtualHost on port 18140 on the Puppet master. If the node requests a catalog, it will
be redirected to one of the worker nodes. To convince yourself that this is the case,
edit /etc/puppet/manifests/site.pp on your worker1 node and insert notify
as shown in the following configuration:

node default {
 include example
 notify {'Compiled on worker1': }
}

Do the same on worker2 with the message Compiled on worker2, run puppet
agent again on your node, and see where the catalog is being compiled using the
following commands:

[root@node1 ~]# puppet agent –t

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1386312527'

Notice: Compiled on worker1

Notice: /Stage[main]//Node[default]/Notify[Compiled on worker1]/message:
defined 'message' as 'Compiled on worker1'

Notice: This is an example

Notice: /Stage[main]/Example/Notify[This is an example]/message: defined
'message' as 'This is an example'

Notice: Finished catalog run in 0.10 seconds

You may see "Compiled on worker2", which is expected.

To verify that certificates are being handled properly, clean the certificate for your
example node, remove it from the node, and restart the agent.

•	 On the master:
master# puppet cert clean node1

Chapter 1

[21]

•	 On the node:
node1# \rm -r /var/lib/puppet/ssl/*

node1# puppet agent -t

Alternatively to this configuration, you could use the puppetca setting in
puppet.conf on your nodes to get clients to use a specific machine for
signing requests.

Since this is an enterprise installation, we should have a dashboard of some kind
running to collect reports from workers.

If your reports setting on the master is either HTTP or puppetdb, then
this section won't affect you.

We'll clone our worker again to make a new server called reports (192.168.100.103),
which will collect our reports. We then have to add another line to our Apache
proxy.conf configuration file to use the new server, and we need to place this line
directly after the certificate proxy line. Since reports must all be sent to the same
machine to be useful, we won't use a balancer line as before, and we will simply
set the proxy to the address of the reports machine directly.

ProxyPassMatch ^/([^/]+/certificate.*)$ balancer://puppetca/$1

ProxyPassMatch ^/([^/]+/report/.*)$ http://192.168.100.103/$1

ProxyPass / balancer://puppetworker/

Keep the /etc/httpd/conf.d/proxy.conf balancer section updated to send reports
to 192.168.100.103.

Again, restart Apache and make sure that report=true is set on the node in the
[agent] section of puppet.conf. Run Puppet agent on the node, and verify that
the report gets sent to 192.168.100.103 (look in /var/lib/puppet/reports/).

If you are still seeing problems with client catalog compilation timeouts
after creating multiple catalog workers, it may be that your client is
timing out the connection before the worker has a chance to compile the
catalog. Try experimenting with the configtimeout parameter in the
[agent] section of puppet.conf

configtimeout=300

Setting this higher may resolve your issue. You will need to change the
ProxyTimeout directive in the proxy.conf configuration for Apache
as well. This will be revisited in Chapter 10, Troubleshooting.

http://192.168.100.103/$1

Dealing with Load/Scale

[22]

Keeping the code consistent
At this point, we are able to scale out our catalog compilation to as many servers as
we need, but we've neglected one important thing: we need to make sure that the
Puppet code on all the workers remains in sync. There are a few ways we can do this,
and when we cover integration with Git in Chapter 3, Git and Environments, we will
see how to use Git to distribute the code.

Rsync
A simple way to distribute the code is with rsync; this isn't the best solution, but just
for example, you will need to run rsync whenever you change the code. This will
require changing the Puppet user's shell from /sbin/nologin to /bin/bash or
/bin/rbash, which is a potential security risk.

If your puppet code is on a filesystem that supports ACLs, then creating
an rsync user and giving that user rights to that filesystem is a better
option. Using setfacl, it is possible to grant write access to the
filesystem for a user other than Puppet.

First we create an ssh-key for rsync to use to ssh between the worker nodes and the
master. We then copy the key into the authorized_keys file of the Puppet user on
the workers using the ssh-copy-id command as follows:

puppet# ssh-keygen -f puppet_rsync

(creates puppet_rsync.pub puppet_rsync)

worker1# mkdir /var/lib/puppet/.ssh

cp puppet_rsync.pub /var/lib/puppet/.ssh/authorized_keys

chown -R puppet:puppet /var/lib/puppet/.ssh

chmod 700 /var/lib/puppet/.ssh

chmod 600 /var/lib/puppet/.ssh/authorized_keys

chsh -s /bin/bash puppet

puppet# rsync -e 'ssh -i puppet_rsync' -az /etc/puppet/ puppet@worker1:/
etc/puppet

Creating SSH Keys and using rsync
The trailing slash on the first part /etc/puppet/ and the absence of the
slash on the second part, puppet@worker1:/etc/puppet is by design.
That way, we get the contents of /etc/puppet on the master placed into
/etc/puppet on the worker.

Chapter 1

[23]

Using rsync is not a good enterprise solution, and the concept of using SSH Keys
and transferring the files as the Puppet user is the important part of this method.

NFS
A second option to keep the code consistent is to use NFS. If you already have
an NAS appliance, then using the NAS to share out the Puppet code may be the
simplest solution. If not, using the Puppet master as an NFS server is another, but
this does make your Puppet master a big, single point of failure. NFS is not the best
solution to this sort of problem.

Clustered filesystem
Using a clustered filesystem such as gfs2 or glusterfs is a good way to maintain
consistency between nodes. This also removes the problem of the single point of
failure with NFS.

Git
A third option is to have your version control system keep the files in sync with a
post-commit hook or scripts that call Git directly, such as r10k or puppet-sync.
We will cover how to configure Git to do some housekeeping for us in a later
chapter. Using Git to distribute the code is a popular solution since it only
updates the code when a commit is made, the continuous delivery model.
If your organization would rather push code at certain points, then using
the scripts mentioned earlier on a routine basis is the solution I would suggest.

One more split
Now that we have our Puppet infrastructure running on two workers and the
master, you might notice that the main Apache virtual machine need not be on the
same machine as the certificate-signing machine. At this point, there is no need to
run passenger on that main gateway machine, and you are open to use whatever
load balancing solution you see fit. In this example I will be using nginx as the
main proxy point.

Using nginx is not required, but you may wish to use nginx as the proxy
machine. This is because nginx has more configuration options for its
proxy module, such as redirecting based on client IP address.

Dealing with Load/Scale

[24]

The important thing to remember here is that we are just providing a web service.
We'll intercept the SSL part of the communication with nginx and then forward it
onto our worker and CA machines as necessary. Our configuration will now look
like the following diagram:

nodes gateway: 8140

public private /files
/certificates

/catalog

puppet-workers: 18140

puppet:18140

We will start with a blank machine this time; we do not need to install passenger
or Puppet on the machine. To make use of the latest SSL-handling routines, we will
download nginx from the nginx repository.

yum install http://nginx.org/packages/rhel/6/noarch/RPMS/nginx-release-
rhel-6-0.el6.ngx.noarch.rpm

Installed:

 nginx-release-rhel.noarch 0:6-0.el6.ngx

yum install nginx

Installed:

 nginx-1.4.4-1.el6.ngx.x86_64

Now we need to copy the SSL CA files from the Puppet master to this gateway using
the following commands:

puppet# scp /var/lib/puppet/ssl/ca/ca_crl.pem gateway:/etc/nginx

puppet# scp /var/lib/puppet/ssl/ca/ca_crt.pem gateway:/etc/nginx

puppet# scp /var/lib/puppet/ssl/certs/puppet.example.com.pem gateway:/
etc/nginx

puppet# scp /var/lib/puppet/ssl/private_keys/puppet.example.com.pem
gateway:/etc/nginx/puppet.example.com.key

Now we need to create a gateway configuration for nginx, which we will place in
/etc/ngninx/conf.d/puppet-proxy.conf

Chapter 1

[25]

We will define the two proxy pools as we did before, but using nginx syntax this time.

upstream puppetca {

 server 192.168.100.100:18140;

}

upstream puppetworkers {

 server 192.168.100.101:8140;

 server 192.168.100.102:8140;

}

Next, we create a server stanza, specifying that we handle the SSL connection,
and we need to set some headers before passing on the communication to our
proxied servers.

server {

 listen 8140 ssl;

 server_name puppet.example.com;

 default_type application/x-raw;

 ssl on;

 ssl_certificate puppet.example.com.pem;

 ssl_certificate_key puppet.example.com.key;

 ssl_trusted_certificate ca_crt.pem;

 ssl_crl ca_crl.pem;

 ssl_session_cache shared:SSL:5m;

 ssl_session_timeout 5m;

 ssl_protocols SSLv2 SSLv3 TLSv1;

 ssl_ciphers

 ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

 ssl_prefer_server_ciphers on;

 ssl_verify_client optional_no_ca;

Dealing with Load/Scale

[26]

Setting ssl_verify_client to optional_no_ca is important, since on the first
connection, the client will not have a signed certificate, so we need to accept all
connections but mark a header with the verification status.

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Client-Verify $ssl_client_verify;
 proxy_set_header X-Client-DN $ssl_client_s_dn;
 proxy_set_header X-SSL-Subject $ssl_client_s_dn;
 proxy_set_header X-SSL-Issuer $ssl_client_i_dn;
 proxy_read_timeout 1000;

The header X-Client-Verify will hold success or failure at this point, so our
Puppet master will know if the certificate is valid. Now we need to look for
certificate requests and hand those off to the puppetca pool:

location ~* ^/.*/certificate {
 proxy_pass http://puppetca;
 proxy_redirect off;
 proxy_read_timeout 1000;
}

Then we can send all other requests to our worker pool

location / {
 proxy_pass http://puppetworkers;
 proxy_redirect off;
 proxy_read_timeout 1000;
}

Now we need to start nginx on the gateway machine, open up port 8140 on the
firewall, and open up 18140 on the Puppet master firewall (gateway will now
need to communicate with that port).

Running puppet again on your node will now produce the same results as before,
but you are now able to leverage the load balancing of nginx over that of Apache.

You will need to synchronize the SSL CA Certificate Revocation List
(CRL) from the Puppet master to the gateway machine. Without
synchronization, the keys that are removed from the Puppet master
will not be revoked on the gateway machine.

http://puppetca
http://puppetca
http://puppetworkers
http://puppetworkers

Chapter 1

[27]

One last split or maybe a few more
We have already split our workload into a certificate-signing machine (the master
or puppetca), a pool of catalog machines, and a report-gathering machine. What is
interesting as an exercise at this point is that we can also serve files up using our
gateway machine.

Based on what we know about the puppet HTTP API, we know that requests for
file_buckets, and files have specific URIs that we can serve directly from nginx
without using passenger or Apache or even puppet. To test the configuration,
alter the definition of the example class to include a file as follows:

class example {
 notify { 'This is an example': }
 file {'/tmp/example':
 mode => 644,
 owner => 100,
 group => 100,
 source => 'puppet:///modules/example/example',
 }
}

Create the example file in /etc/puppet/modules/example/files/example.

This file lives on the workers. On the gateway machine, rsync your Puppet module
code from the workers into /var/lib/nginx/puppet. Now, to prove that the file is
coming from the gateway, edit the example file after you run the rsync.

The /etc/puppet/modules/example/files/example file lives on the gateway.
At this point, we can start serving up files from nginx by putting in a location clause
as follows; we will do two stanzas, one for files outside modules and the other for
module-provided files at /etc/nginx/conf.d/gateway.conf.

location ~* ^/.*/file_content/modules {
 rewrite ^/([^/]+)/file_content/modules/([^/]+)/(.*) /$2/files/$3;
 break;
 root /var/lib/nginx/puppet/modules/;
}
location ~* ^/.*/file_content/ {
 rewrite ^/([^/]+)/file_content/([^/]+)/(.*) /$2/files/$3;
 break;
 root /var/lib/nginx/puppet/;
}

www.allitebooks.com

http://www.allitebooks.org

Dealing with Load/Scale

[28]

Restart nginx on the gateway machine, and then run Puppet on the node using the
following command:

[root@node1 ~]# puppet agent –t

…

Notice: /Stage[main]/Example/File[/tmp/example]/ensure: defined content
as '{md5}c83849f23a139c41edfbcd8473a81ac1'

…

Notice: Finished catalog run in 0.16 seconds

[root@node1 ~]# cat /tmp/example

This file lives on the gateway

As we can see, although the file living on the workers has the contents "This file lives
on the workers," our node is getting the file directly from nginx on the gateway.

Our node will keep changing /tmp/example to the same file each time
because the catalog is compiled on the worker machine with contents
different from those of the gateway. In a production environment, all the
files would need to be synchronized.

One important thing to consider is security, as any configured client can retrieve
files from our gateway machine. In production, you would want to add ACLs to
the file location.

As we have seen, once the basic proxying is configured, further splitting up of the
workload becomes a routine task. We can split the workload to scale to handle as
many nodes as we require.

Conquer by dividing
Depending on the size of your deployment and the way you connect to all your
nodes, a masterless solution may be a good fit. In a masterless configuration, you
don't run the Puppet agent; rather, you push the Puppet code to a node, and then
run Puppet apply. There are a few benefits to this method and a few drawbacks.

Chapter 1

[29]

Benefits Drawbacks
No single point of failure Can't use built-in reporting tools such

as dashboard.
Simpler configuration Exported resources requires nodes have

write access to the database.
Finer-grained control on where code
is deployed

Each node has access to all the code

Multiple simultaneous runs do not affect
each other (reduces contention)

More difficult to know when a node is
failing to apply catalog correctly

Connection to Puppet master not required
(offline possible)

No certificate management

No certificate management

The idea with a masterless configuration is that you distribute the Puppet code to
each node individually and then kick off a puppet run to apply that code. One of
the benefits of Puppet is that it keeps your system in a known good state, so when
choosing masterless it is important to build your solution with this in mind. A cron
job configured by your deployment mechanism that can apply Puppet to the node on
a routine schedule will suffice.

The key parts of a masterless configuration are: distributing the code, pushing
updates to the code, and ensuring the code is applied routinely to the nodes. Pushing
a bunch of files to a machine is best done with some sort of package management.

Many masterless configurations use Git to have clients pull the files,
this has the advantage of clients pulling changes.

For Linux systems, the big players are rpm and dpkg, whereas for MacOS, Installer
package files can be used. It is also possible to configure the nodes to download the
code themselves from a web location. Some large installations use Git to update the
code as well.

The solution I will outline is that of using an rpm deployed through yum to install
and run Puppet on a node. Once deployed, we can have the nodes pull updated code
from a central repository rather than rebuild the rpm for every change.

Dealing with Load/Scale

[30]

Creating an rpm
To start our rpm, we will make an rpm spec file, we can make this anywhere since
we don't have a master in this example. Start by installing rpm-build, which will
allow us to build the rpm.

yum install rpm-build

Installing

 rpm-build-4.8.0-37.el6.x86_64

It will be important later to have a user to manage the repository, so create a user
called builder at this point. We'll do this on the Puppet master machine we built
earlier. Create an rpmbuild directory with the appropriate subdirectories, and then
create our example code in this location.

sudo -iu builder

$ mkdir -p rpmbuild/{SPECS,SOURCES}

$ cd SOURCES

$ mkdir -p modules/example/manifests

$ cat <<EOF>modules/example/manifests/init.pp

class example {

notify {"This is an example.": }

file {'/tmp/example':

mode => '0644',

owner => '0',

group => '0',

content => 'This is also an example.'

}

}

EOF

$ tar cjf example.com-puppet-1.0.tar.bz2 modules

Next, create a spec file for our rpm in rpmbuild/SPECS as shown in the
following commands:

Name: example.com-puppet

Version: 1.0

Release: 1%{?dist}

Summary: Puppet Apply for example.com

Group: System/Utilities

Chapter 1

[31]

License: GNU

Source0: example.com-puppet-%{version}.tar.bz2

BuildRoot: %(mktemp -ud %{_tmppath}/%{name}-%{version}-%{release}-XXXXXX)

Requires: puppet

BuildArch: noarch

%description

This package installs example.com's puppet configuration

and applies that configuration on the machine.

%prep

%setup -q -c

%install

mkdir -p $RPM_BUILD_ROOT/%{_localstatedir}/local/puppet

cp -a . $RPM_BUILD_ROOT/%{_localstatedir}/local/puppet

%clean

rm -rf %{buildroot}

%files

%defattr(-,root,root,-)

%{_localstatedir}/local/puppet

%post

run puppet apply

/bin/env puppet apply --logdest syslog --modulepath=%{_localstatedir}/
local/puppet/modules %{_localstatedir}/local/puppet/manifests/site.pp

%changelog

* Fri Dec 6 2013 Thomas Uphill <thomas@narrabilis.com> - 1.0-1

- initial build

Dealing with Load/Scale

[32]

Then use rpmbuild to build the rpm based on this spec, as shown in the
following command:

$ rpmbuild -ba example.com-puppet.spec

…

Wrote: /home/builder/rpmbuild/SRPMS/example.com-puppet-1.0-1.el6.src.rpm

Wrote: /home/builder/rpmbuild/RPMS/noarch/example.com-puppet-1.0-1.el6.
noarch.rpm

Now, deploy a node and copy the rpm onto that node. Verify that the node installs
Puppet and then does a Puppet apply run.

yum install example.com-puppet-1.0-1.el6.noarch.rpm

Loaded plugins: downloadonly

…

Installed:

 example.com-puppet.noarch 0:1.0-1.el6

Dependency Installed:

 augeas-libs.x86_64 0:1.0.0-5.el6

...

 puppet-3.3.2-1.el6.noarch

…

Complete!

Verify that the file we specified in our package has been created by using the
following command:

cat /tmp/example

This is also an example.

Now, if we are going to rely on this system of pushing Puppet to nodes, we have
to make sure we can update the rpm on the clients and we have to ensure that the
nodes still run Puppet regularly so as to avoid configuration drift (the whole point
of Puppet). There are many ways to accomplish these two tasks. We can put the cron
definition into the post section of our rpm:

%post

install cron job

/bin/env puppet resource cron 'example.com-puppet' command='/bin/
env puppet apply --logdest syslog --modulepath=%{_localstatedir}/
local/puppet/modules %{_localstatedir}/local/puppet/manifests/site.pp'
minute='*/30' ensure='present'

Chapter 1

[33]

We could have a cron job be part of our site.pp, as shown in the following command:

cron { 'example.com-puppet':

 ensure => 'present',

 command => '/bin/env puppet apply --logdest syslog --modulepath=/var/
local/puppet/modules /var/local/puppet/manifests/site.pp',

 minute => ['*/30'],

 target => 'root',

 user => 'root',

}

To ensure the nodes have the latest version of the code, we can define our package in
the site.pp.

package {'example.com-puppet': ensure => 'latest' }

In order for that to work as expected, we need to have a yum repository for the
package and have the nodes looking at that repository for packages.

Creating the YUM repository
Creating a YUM repository is a very straightforward task. Install the createrepo
rpm and then run createrepo on each directory you wish to make into a repository.

mkdir /var/www/html/puppet

yum install createrepo

…

Installed:

 createrepo.noarch 0:0.9.9-18.el6

chown builder /var/www/html/puppet

sudo -iu builder

$ mkdir /var/www/html/puppet/{noarch,SRPMS}

$ cp /home/builder/rpmbuild/RPMS/noarch/example.com-puppet-1.0-1.el6.
noarch.rpm /var/www/html/puppet/noarch

$ cp rpmbuild/SRPMS/example.com-puppet-1.0-1.el6.src.rpm /var/www/html/
puppet/SRPMS

$ cd /var/www/html/puppet

$ createrepo noarch

$ createrepo SRPMS

Dealing with Load/Scale

[34]

Our repository is ready, but we need to export it with the web server to make it
available to our nodes. This rpm contains all our Puppet code, so we need to ensure
that only the clients we wish get access to the files. We'll create a simple listener on
port 80 for our Puppet repository

Listen 80

<VirtualHost *:80>

 DocumentRoot /var/www/html/puppet

</VirtualHost>

Now, the nodes need to have the repository defined on them so they can download
the updates when they are made available via the repository. The idea here is
that we push the rpm to the nodes and have them install the rpm. Once the rpm is
installed, the yum repository pointing to updates is defined and the nodes continue
updating themselves.

yumrepo { 'example.com-puppet':
 baseurl => 'http://puppet.example.com/noarch',
 descr => 'example.com Puppet Code Repository',
 enabled => '1',
 gpgcheck => '0',
}

So to ensure that our nodes operate properly, we have to make sure of the
following things:

•	 Install code
•	 Define repository
•	 Define cron job to run Puppet apply routinely
•	 Define package with latest tag to ensure it is updated

A default node in our masterless configuration requires that the cron task and the
repository be defined. If you wish to segregate your nodes into different production
zones (such as development, production, and sandbox), I would use a repository
management system like Pulp. Pulp allows you to define repositories based on
other repositories and keeps all your repositories consistent.

You should also setup a gpg key on the builder account that
can sign the packages it creates. You would then distribute the
gpg public key to all your nodes and enable gpgcheck on the
repository definition.

Chapter 1

[35]

Summary
Dealing with scale is a very important task in enterprise deployments.
As your number of nodes increases beyond the proof-of-concept stage (> 50 nodes),
the simple WEBrick server cannot be used. In the first section, we configured
a Puppet master with passenger to handle a larger load. We then expanded
that configuration with load balancing and proxying techniques realizing
that Puppet is simply a web service. Understanding how nodes request files,
catalogs, and certificates allows you to modify the configuration and bypass
or alleviate bottlenecks.

In the last section, we explored masterless configuration, wherein instead of checking
into Puppet to retrieve new code, the nodes check out the code first and then run
against it on a schedule.

Now that we have dealt with the load issue, we need to turn our attention to
managing the modules to be applied to nodes. We will cover organizing the
nodes in the next chapter.

Organizing Your Nodes
and Data

Now that we can deal with a large number of nodes in our installation, we need a
way of organizing which classes we apply to each node.

There are quite a few solutions to the problem of attaching classes to nodes; in this
chapter, we will examine the following node organization methods:

•	 An External Node Classifier (ENC)
•	 LDAP backend
•	 Hiera

Getting started
For the remainder of this chapter, we will assume your Puppet infrastructure is
configured with a single Puppet master used for signing and a worker machine
used for catalog compilation, as pictured in the following diagram:

nodes

public
private

192.168.122.100

master

192.168.100.100

Puppet

192.168.100.101
worker1

www.allitebooks.com

http://www.allitebooks.org

Organizing Your Nodes and Data

[38]

Any Puppet master configuration will be sufficient for this chapter; the previous
configuration is only provided for reference.

Organizing the nodes with ENC
An ENC is a script that is run on the Puppet master, or the host compiling the
catalog, to determine which classes are applied to the node. The ENC script can be
written in any language, and it receives as a command-line argument certname
(certificate name) from the node. In most cases, this will be the Fully Qualified
Domain Name (FQDN) of the node; we will assume that the certname setting
has not been explicitly set and that the FQDN of our nodes is being used.

We will only use the hostname portion as the FQDN can be unreliable
in some instances. Across your enterprise, the naming convention of the
host should not allow for multiple machines to have the same hostname.
The FQDN is determined by a fact; this fact is the union of the hostname
fact and the domain fact. The domain fact on Linux is determined by
running the command hostname -f. If DNS is not configured correctly
or reverse records do not exist, the domain fact will not be set and the
FQDN will also not be set, as shown in the following commands:
facter domain
example.com
facter fqdn
node1.example.com
mv /etc/resolv.conf /etc/resolv.conf.bak
facter domain
facter fqdn
#

The output of the ENC script is a YAML file, which defines the classes, variables,
and environment for the node.

Unlike site.pp, the ENC script can only assign classes, make top-scope
variables, and set the environment of the node. Environment is only set
from ENC on version 3 and above of Puppet.

Chapter 2

[39]

A simple example
To use ENC, we need to make one small change in our Puppet worker machine.
We'll add the node_terminus and external_nodes lines to the [master] section
of puppet.conf, as shown in the following code (we only need make this change
on the worker machines as this is concerned with catalog compilation only):

[master]
 node_terminus = exec
 external_nodes = /usr/local/bin/simple_node_classifier

The puppet.conf files need not be the same across our installation;
workers and CA machines may have different settings.

Our first example, as shown in the following code snippet, will be written in Ruby
and live in the file /usr/local/bin/simple_node_classifier:

#!/bin/env ruby

require 'yaml'

create an empty hash to contain everything

@enc = Hash.new

@enc["classes"] = Hash.new

@enc["classes"]["base"] = Hash.new

@enc["parameters"] = Hash.new

@enc["environment"] = 'production'

#convert the hash to yaml and print

puts @enc.to_yaml

exit(0)

Make this script executable and test it on the command line as shown in the
following snippet:

chmod 755 /usr/local/bin/simple_node_classifier

/usr/local/bin/simple_node_classifier

classes:

 base: {}

environment: production

parameters: {}

Organizing Your Nodes and Data

[40]

This script returns a properly formatted YAML file.

YAML files start with three dashes (---); they use colons (:) to separate
parameters from values, and hyphens (-) to separate multiple values
(arrays). For more information on YAML, visit http://www.yaml.org/.

If you use a language such as Ruby or Python, you do not need to know the syntax
of YAML as the built-in libraries take care of the formatting for you. The following
is the same example in Python. To use the Python example, you will need to install
PyYAML, that is, the Python YAML interpreter as shown in the following commands:

yum install PyYAML

Installed:

 PyYAML.x86_64 0:3.10-3.el6

The Python version starts with an empty dictionary. We then use sub-dictionaries
to hold the classes, parameters, and environment. We will call our Python example
/usr/local/bin/simple_node_classifier_2. The following is our example:

#!/bin/env python

import yaml

import sys

create an empty hash

enc = {}

enc["classes"] = {}

enc["classes"]["base"] = {}

enc["parameters"] = {}

enc["environment"] = 'production'

output the ENC as yaml

print "---"

print yaml.dump(enc)

sys.exit(0)

http://www.yaml.org/

Chapter 2

[41]

Make /usr/local/bin/simple_node_classifier_2 executable and run it using
the following commands:

worker1# chmod 755 /usr/local/bin/simple_node_classifier_2

worker1# /usr/local/bin/simple_node_classifier_2

classes:

 base: {}

environment: production

parameters: {}

The order of the lines below the --- may be different on your machine;
when Python dumps the hash of values, the order is not specified.

The Python script outputs the same YAML as the Ruby code. We will now define
the base class referenced in our ENC script, as shown in the following code snippet:

class base {
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("Managed Node: <%= hostname %>\nManaged
by Puppet version <%= puppetversion %>\n"),
 }
}

Now that our base class is defined, when we run Puppet on our node, we will see
that our message of the day (/etc/motd) has been updated using an inline template,
as shown in the following command-line output:

node1# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1386748797'

Notice: /File[/etc/motd]/ensure: defined content as '{md5}
ad29f471b2cbf5754c706cdc0a54684b'

Notice: Compiled on worker1

Organizing Your Nodes and Data

[42]

Notice: /Stage[main]//Node[default]/Notify[Compiled on worker1]/message:
defined 'message' as 'Compiled on worker1'

Notice: This is an example

Notice: /Stage[main]/Example/Notify[This is an example]/message: defined
'message' as 'This is an example'

Notice: Finished catalog run in 0.11 seconds

node1# cat /etc/motd

Managed Node: node1

Managed by Puppet version 3.3.2

Since ENC is only given one piece of data ever, that is, FQDN (certname),
we need to create a naming convention that provides us with enough
information to determine which classes should be applied to the node.

Hostname strategy
In an enterprise, it's important that your hostnames are meaningful. By meaningful
I mean that the hostname should give you as much information as possible about
the machine; when encountering a machine in a large installation, it is very likely
that you did not build the machine. You need to know as much as possible about the
machine just from its name. The following key points should be readily determined
from the hostname:

•	 Operating system
•	 Application/role
•	 Location
•	 Environment
•	 Instance

It is important that the convention is standardized and consistent. In our example,
let us suppose that the application is the most important component for our
organization, so we put that first, and the physical location comes next (which
datacenter), followed by the operating system, environment, and instance number.
The instance number will be used when you have more than one machine with the
same role, location, environment, and operating system. Since we know that the
instance number will always be a number, we can omit the underscore between
the operating system and environment, making the hostname a little easier to
type and remember.

Chapter 2

[43]

Your enterprise may have more or less information, but the principle will remain the
same. To delineate our components, we will use underscores (_); some companies
rely on a fixed length for each component of the hostname so as to mark the
individual components of the hostname by position alone.

In our example, we will have the following environments:

•	 p: This stands for production
•	 n: This stands for non-production
•	 d: This stands for development/testing/lab

Our applications will be of the following types:

•	 web

•	 db

Our operating system will be Linux, which we will shorten to just l, and our location
will be our main datacenter (main). So, a production web server on Linux in the main
datacenter would have the hostname web_main_lp01.

If you think you are going to have more than 99 instances of any single
service, you might want to have another leading zero to the instance
number (001).

Now this looks pretty good. We know that this is a web server in our main
datacenter. It's running on Linux, and it's the first machine like this in production.
Now that we have a nice convention like this, we need to modify our ENC to use
the convention to glean all this information from the hostname.

Modified ENC using hostname strategy
We'll build our Python ENC script (/usr/local/bin/simple_node_classifier_2)
and update it to use the new hostname strategy as shown in the following commands:

#!/bin/env python

Python ENC

receives fqdn as argument

import yaml

import sys

Organizing Your Nodes and Data

[44]

"""output_yaml renders the hash as yaml and exits cleanly"""

def output_yaml(enc):

 # output the ENC as yaml

 print "---"

 print yaml.dump(enc)

 quit()

Python is very particular about spacing; if you are new to Python, take care to copy
the indenting exactly as given in the previous snippet.

We define a function to print the YAML and exit the script as shown in the following
commands; if the hostname doesn't match our naming standards, we'll exit the
script early:

create an empty hash

enc = {}

enc["classes"] = {}

enc["classes"]["base"] = {}

enc["parameters"] = {}

try:

 hostname=sys.argv[1]

except:

 # need a hostname

 sys.exit(10)

Exit the script early if the hostname is not defined. This is a minimum requirement,
we should never reach this point.

We split the hostname using underscores (_) in an array called parts; we then assign
indexes of parts to role, location, os, environment, and instance, as shown in
the following commands:

split hostname on _

try:

 parts = hostname.split('_')

 role = parts[0]

 location = parts[1]

 os = parts[2][0]

 environment = parts[2][1]

 instance = parts[2][2:]

Chapter 2

[45]

We are expecting hostnames to conform to the standard; if you cannot guarantee
this, then you would have to use something like the regular expression module to
deal with exceptions to the naming standard.

except:

 # hostname didn't conform to our standard

 # include a class which notifies us of the problem

 enc["classes"]["hostname_problem"] = hostname

 output_yaml(enc)

 raise SystemExit

We wrapped the previous assignments in a try statement; in this except statement,
we exit printing the YAML and assign a class named hostname_problem. This
class would be used to alert us in the console or reporting system that this host
has a problem.

The environment is a single character in the hostname; hence, we use a dictionary
to assign a full name to the environment, as shown in the following snippet:

map environment from hostname into environment

environments = {}

environments['p'] = 'production'

environments['n'] = 'nonprod'

environments['d'] = 'devel'

environments['s'] = 'sbx'

try:

 enc["environment"] = environments[environment]

except:

 enc["environment"] = 'undef'

The following commands are used to map a role from hostname into role:

map role from hostname into role

enc["classes"][role] = {}

Next, we assign top scope variables to the node based on the values we obtained
from the parts array previously:

set top scope variables

enc["parameters"]["enc_hostname"] = hostname

enc["parameters"]["role"] = role

enc["parameters"]["location"] = location

Organizing Your Nodes and Data

[46]

enc["parameters"]["os"] = os

enc["parameters"]["instance"] = instance

output_yaml(enc)

Heading back to web_main_lp01, we run Puppet, sign the certificate on our
puppetca machine, and then run Puppet again to verify that the web class is
applied, as shown in the following commands:

web_main_lp01# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for web-main-lp01

Info: Applying configuration version '1386834979'

Notice: /File[/etc/motd]/ensure: defined content as '{md5}
a828f52c2447032b1864405626f4e3a4'

Notice: /Stage[main]/Web/Package[httpd]/ensure: created

Notice: /Stage[main]/Web/Service[httpd]/ensure: ensure changed 'stopped'
to 'running'

Info: /Stage[main]/Web/Service[httpd]: Unscheduling refresh on
Service[httpd]

Notice: Finished catalog run in 10.14 seconds

Our machine has been installed as a web server without any intervention on our
part; the system knew which classes to apply to the machine based solely on the
hostname. Now, if we try to run Puppet against our node1 machine created earlier,
our ENC includes the class hostname_problem with the parameter of the hostname
passed to it. We can create this class to capture the problem and notify us. Create
the hostname_problem module in /etc/puppet/modules/hostname_problem/
manifests/init.pp, as shown in the following snippet:

class hostname_problem ($enc_hostname) {

 notify {"WARNING: $enc_hostname ($::ipaddress) doesn't conform to
naming standards": }

}

Now when we run Puppet on our node1 machine, we will get a useful warning
that node1 isn't a good hostname for our enterprise, as you can see in the
following commands:

node1# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1386916930'

Chapter 2

[47]

Notice: WARNING: node1 (192.168.122.132) doesn't conform to naming
standards

Notice: /Stage[main]/Hostname_problem/Notify[WARNING: node1
 (192.168.122.132) doesn't conform to naming standards]/message:
 defined 'message' as 'WARNING: node1 (192.168.122.132) doesn't
 conform to naming standards'

Notice: Finished catalog run in 0.05 seconds

Your ENC can be customized much further than this simple example; you have the
power of Python, Ruby, or any other language you wish to use. You could connect
to a database and run some queries to determine classes to install. For example, if
you have a CMDB at your enterprise, you could connect to the CMDB and retrieve
information based on the FQDN of the node and apply classes based on that
information. You could connect to a URI and retrieve a catalog (dashboard and
foreman do something similar). There are many ways to expand this concept.
In the next section, we'll look at using LDAP to store class information.

LDAP backend
If you already have an LDAP implementation in which you can extend the schema,
then you can use the LDAP node terminus that ships with Puppet. Using this schema
adds a new objectclass called puppetclass. Using this objectclass, you can
set the environment, set top scope variables, and include classes. The LDAP schema
that ships with Puppet includes puppetClass, parentNode, environment, and the
puppetVar attributes that are assigned to the objectclass named puppetClient.
LDAP experts should note that all four of these attributes are marked as optional
and the objectclass named puppetClient is non-structural. To use the LDAP
terminus, you must have a working LDAP implementation, apply the Puppet
schema to that installation and add the ruby-ldap package to your workers
(to allow Puppet to query for node information).

OpenLDAP configuration
We'll begin by setting up a fresh OpenLDAP implementation and adding a puppet
schema. Create a new machine and install openldap-servers; my installation
installed the version openldap-servers-2.4.23-32.el6_4.1.x86_64.
This version requires configuration with OLC (OpenLDAP Configuration
or runtime configuration); further information on OLC can be obtained at
http://www.openldap.org/doc/admin24/slapdconf2.html. OLC
configures LDAP using LDAP.

www.allitebooks.com

http://www.openldap.org/doc/admin24/slapdconf2.html
http://www.allitebooks.org

Organizing Your Nodes and Data

[48]

After installing openldap-servers, your configuration will be in /etc/openldap/
slapd.d/cn=config. There is a file named olcDatabase={2}.bdb.ldif in this
directory. Edit the file and change the following lines:

olcSuffix: dc=example,dc=com

olcRootDN: cn=Manager,dc=example,dc=com

olcRootPW: packtpub

The olcRootPW line is not present in the default file, you will have to
add it here. If you're going into production with LDAP, you should set
olcDbConfig parameters as outlined at http://www.openldap.org/
doc/admin24/slapdconf2.html.

These lines set the top-level location for your LDAP and the password for RootDN. This
password is in plain text; a production installation would use SSHA encryption. You
will be making schema changes, so you must also edit olcDatabase={0}config.ldif
and set rootDN and rootPW. For our example, we will use the default rootDN value
and set the password to packtpub, as shown in the following commands:

olcRootDN: cn=config

olcRootPW: packtpub

You would want to keep this RootDN value and the previous RootDN
values separate so that this RootDN value is the only one that can modify
schema and top-level configuration parameters.

Next, use ldapsearch (provided by the openldap-clients package, which has to
be installed separately) to verify that LDAP is working properly. Start slapd with
service slapd start, and then verify with the following ldapsearch command:

ldapsearch -LLL -x -b'dc=example,dc=com'

No such object (32)

This result indicates that LDAP is running but the directory is empty. To import
the puppet schema into this version of OpenLDAP, copy the puppet.schema from
/usr/share/puppet/ext/ldap/puppet.schema to /etc/openldap/schema. Then
create a configuration file named /tmp/puppet-ldap.conf with an include line
pointing to that schema, as shown in the following snippet:

include /etc/openldap/schema/puppet.schema

http://www.openldap.org/doc/admin24/slapdconf2.html
http://www.openldap.org/doc/admin24/slapdconf2.html

Chapter 2

[49]

Then run slaptest against that configuration file, specifying a temporary
directory as storage for the configuration files created by slaptest, as shown
in the following commands:

mkdir /tmp/puppet-ldap

slaptest -f puppet-ldap.conf -F /tmp/puppet-ldap/

config file testing succeeded

This will create an OLC structure in /tmp/puppet-ldap; the file we need is in
/tmp/puppet-ldap/cn=config/cn=schema/cn={0}puppet.ldif. To import this
file into our LDAP instance, we need to remove the ordering information (the braces
and numbers ({0},{1},...) in this file). We also need to set the location for our
schema, cn=schema,cn=config. All the lines after structuralObjectClass should
be removed. The final version of the file will be in /tmp/puppet-ldap/cn=config/
cn=schema/cn={0}puppet.ldif and will be as follows:

dn: cn=puppet,cn=schema,cn=config

objectClass: olcSchemaConfig

cn: puppet

olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.10 NAME 'puppetClass' DESC
'Pu

ppet Node Class' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.

1.26)

olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.9 NAME 'parentNode' DESC
'Pupp

et Parent Node' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1

.26 SINGLE-VALUE)

olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.11 NAME 'environment' DESC
'Pu

ppet Node Environment' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.11

5.121.1.26)

olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.12 NAME 'puppetVar' DESC 'A
va

riable setting for puppet' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.146

6.115.121.1.26)

olcObjectClasses: (1.3.6.1.4.1.34380.1.1.1.2 NAME 'puppetClient' DESC
'Pup

pet Client objectclass' SUP top AUXILIARY MAY (puppetclass $ parentnode
$ en

vironment $ puppetvar))

Organizing Your Nodes and Data

[50]

Now add this new schema to our instance using ldapadd as follows using the
RootDN value cn=config:

ldapadd -x -f cn\=\{0\}puppet.ldif -D'cn=config' -W

Enter LDAP Password:

adding new entry "cn=puppet,cn=schema,cn=config"

Now we can start adding nodes to our LDAP installation. We'll need to add some
containers and a top-level organization to the database before we can do that.
Create a file named start.ldif with the following contents:

dn: dc=example,dc=com

objectclass: dcObject

objectclass: organization

o: Example

dc: example

dn: ou=hosts,dc=example,dc=com

objectclass: organizationalUnit

ou: hosts

dn: ou=production,ou=hosts,dc=example,dc=com

objectclass: organizationalUnit

ou: production

If you are unfamiliar with how LDAP is organized, review the
information at http://en.wikipedia.org/wiki/Lightweight_
Directory_Access_Protocol#Directory_structure.

Now add the contents of start.ldif to the directory using ldapadd as follows:

ldapadd -x -f start.ldif -D'cn=manager,dc=example,dc=com' -W

Enter LDAP Password:

adding new entry "dc=example,dc=com"

adding new entry "ou=hosts,dc=example,dc=com"

adding new entry "ou=production,ou=hosts,dc=example,dc=com"

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure

Chapter 2

[51]

At this point, we have a container for our nodes at ou=production,ou=hosts,dc=ex
ample,dc=com; we can add an entry to our LDAP with the following LDIF, which we
will name web_main_lp01.ldif:

dn: cn=web_main_lp01,ou=production,ou=hosts,dc=example,dc=com

objectclass: puppetClient

objectclass: device

environment: production

puppetClass: web

puppetClass: base

puppetvar: role='Production Web Server'

We then add this LDIF to the directory using ldapadd again, as shown in the
following commands:

ldapadd -x -f web_main_lp01.ldif -D'cn=manager,dc=example,dc=com' -W

Enter LDAP Password:

adding new entry "cn=web_main_lp01,ou=production,ou=hosts,dc=example,dc=c
om"

With our entry in LDAP, we are ready to configure our worker nodes to look
in LDAP for node definitions. Change /etc/puppet/puppet.conf to have the
following lines in the [master] section:

node_terminus = ldap

ldapserver = ldap.example.com

ldapbase = ou=hosts,dc=example,dc=com

We are almost ready; we need ruby-ldap installed on the worker machine before
Puppet can use LDAP to look up the node information. We can install it using the
following steps:

#yum install ruby-ldap

Installed:

ruby-ldap-0.9.7-10.el6.x86_64

Organizing Your Nodes and Data

[52]

Now restart httpd to have the changes picked up. To convince yourself that the
node definition is now coming from LDAP, modify the base class in /etc/puppet/
modules/base/manifests/init.pp to include the role variable, as shown in the
following snippet:

class base {

 file {'/etc/motd':

 mode => '0644',

 owner => '0',

 group => '0',

 content => inline_template("Role: <%= role %>\nManaged Node: <%=
hostname %>\nManaged by Puppet version <%= puppetversion %>\n"),

 }

}

You will also need to open port 389, the standard LDAP port, on ldap.
example.com, to allow the Puppet masters to query the LDAP machine.

Then run Puppet on web_main_lp01 and verify the contents of /etc/motd using the
following commands:

cat /etc/motd

Role: 'Production Web Server'

Managed Node: web_main_lp01

Managed by Puppet version 3.4.0

Keeping your class and variable information in LDAP makes sense if you already
have all your nodes in LDAP for other purposes, such as DNS or DHCP. One
potential drawback of this is that all of the class information for the node has to be
stored within a single LDAP entry. It is useful to be able to apply classes to machines
based on criteria. In the next section, we look at hiera, a system which allows for this
type of criteria-based application.

Before starting the next section, comment out the LDAP ENC lines in /etc/puppet.
conf as follows:

node_terminus = ldap
ldapserver = puppet.example.com
ldapbase = ou=hosts,dc=example,dc=com

ldap.example.com
ldap.example.com

Chapter 2

[53]

Hiera
Hiera allows you to create a hierarchy of node information. Using hiera, you can
separate your variables and data from your modules. You start by defining what
that hierarchy will be by ordering lookups in the main configuration file, hiera.
yaml. The hierarchy is based on facts. Any fact can be used, even your own custom
facts may be used. The values of the facts are then used as values for the YAML files
stored in a directory, usually called hieradata. More information on hiera may be
found on the Puppet Labs website at http://docs.puppetlabs.com/hiera/1.

Facts are case sensitive in hiera and templates; this could be important
when writing your hiera.yaml script.

Configuring hiera
Hiera only needs to be installed on your worker nodes. Using the Puppet Labs repo,
the package to install is hiera; our installation pulled down hiera-1.3.0-1.el6.
noarch. The command-line hiera tool looks for the hiera configuration file, hiera.
yaml, in /etc/hiera.yaml. Puppet will by default look for hiera.yaml in /etc/
puppet/hiera.yaml. To use the command-line utility consistently with Puppet,
symlink one to the other. I suggest making /etc/puppet/hiera.yaml the main file
and /etc/hiera.yaml the link.

If you wish to use the /etc/hiera.yaml file, you can also specify
hiera_config=/etc/hiera.yaml in /etc/puppet.conf.

The hieradata directory should also be under the /etc/puppet directory.
We will create a directory to hold hieradata at /etc/puppet/hieradata and
make the symlink between the hiera.yaml configuration files, as shown in the
following commands:

worker1# mkdir /etc/puppet/hieradata
worker1# rm /etc/hiera.yaml
worker1# ln -s /etc/puppet/hiera.yaml /etc/hiera.yaml

Now we can create a simple hiera.yaml in /etc/puppet/hiera.yaml to show
how the hierarchy is applied to a node, as shown in the following code snippet:

:hierarchy:
- "hosts/%{::hostname}"
- "roles/%{::role}"

http://docs.puppetlabs.com/hiera/1

Organizing Your Nodes and Data

[54]

- "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease} "
- "is_virtual/%{::is_virtual} "
- common
:backends:
- yaml
:yaml:
:datadir: '/etc/puppet/hieradata'

The lsbmajdistrelease fact requires that the Linux System Base (LSB) package be
installed (redhat-lsb).

This hierarchy is quite basic. Hiera will look for a variable starting with the
hostname of the node in the host's directory and then move to the top scope
variable role in the directory roles. If a value is not found in roles, it will look
in the directory /etc/puppet/hieradata/kernel/osfamily/ for a file named
lsbmajdistrelease.yaml. On my test node, this would be /etc/puppet/
hieradata/Linux/RedHat/6.yaml. If the value is not found there, then hiera will
continue to look in hieradata/is_virtual/true.yaml (as my node is a virtual
machine, the value of is_virtual will be true). If the value is still not found, the
default file common.yaml will be tried. If the value is not found in common, then the
command-line utility will return nil.

When using hiera in manifests, always set a default value, as failure to
find anything in hiera will lead to a failed catalog (although having the
node fail when this happens is also an often employed tactic).

As an example, we will set a variable syslogpkg to indicate which syslog package is
used on our nodes. For EL6 machines, the package is rsyslog; for EL5, the package
is syslog. Create two YAML files, one for EL6 at /etc/puppet/hieradata/Linux/
RedHat/6.yaml using the following code:

syslogpkg: rsyslog

Create another YAML file for EL5 at /etc/puppet/hieradata/Linux/RedHat/5.
yaml using the following code:

syslogpkg: syslog

Chapter 2

[55]

With these files in place, we can test our hiera by setting top scope variables
(facts) from the command line. We run hiera three times, changing the value
of lsbmajdistrelease each time, as shown in the following commands:

worker1# hiera syslogpkg ::kernel=Linux ::osfamily=RedHat
::lsbmajdistrelease=6

rsyslog

worker1# hiera syslogpkg ::kernel=Linux ::osfamily=RedHat
::lsbmajdistrelease=5

syslog

worker1# hiera syslogpkg ::kernel=Linux ::osfamily=RedHat
::lsbmajdistrelease=4

nil

In the previous commands, we change the value of lsbmajdistrelease from 6 to 5
to 4 to simulate the nodes running on EL6, EL5, and EL4. We do not have a 4.yaml
file, so there is no setting of syslogpkg and hiera that returns nil.

Now to use hiera in our manifests, we can use the hiera function inline or set a variable
using hiera. When using hiera, the syntax is hiera('variable','default'). The
variable value is the key you are interested in looking at; the default value is the
value to use when nothing is found in the hierarchy. Create a syslog module in
/etc/puppet/modules/syslog/manifest/init.pp that starts syslog and makes
sure the correct syslog is installed, as shown in the following code:

class syslog {
 $syslogpkg = hiera('syslogpkg','syslog')
 package {"$syslogpkg":
 ensure => 'installed',
 }
 service {"$syslogpkg":
 ensure => true,
 enable => true,
 }
}

Organizing Your Nodes and Data

[56]

Then create an empty /etc/puppet/manifests/site.pp file that includes syslog,
as shown in the following code:

node default {
 include syslog
}

In this code, we set our default node to include the syslog module, and then we
define the syslog module. The syslog module looks for the hiera variable syslogpkg
to know which syslog package to install. Running this on our test node, we see that
rsyslog is started as we are running EL6, as shown in the following commands:

node1# puppet agent -t
Info: Retrieving plugin
Info: Caching catalog for node1
Info: Applying configuration version '1388785169'
Notice: /Stage[main]/Syslog/Service[rsyslog]/ensure: ensure changed
'stopped' to 'running'
Info: /Stage[main]/Syslog/Service[rsyslog]: Unscheduling refresh on
Service[rsyslog]
Notice: Finished catalog run in 0.71 seconds

If you didn't already disable the LDAP ENC we configured in the
previous section, instructions are provided at the end of the LDAP
backend section from this chapter.

In the enterprise, you want a way to automatically apply classes to nodes based on
facts. This is part of a larger issue of separating the code of your modules from the
data used to apply them. We will examine this issue in greater depth in Chapter 9, Roles
and Profiles. Hiera has a function that makes this very easy—hiera_include. Using
hiera_include you can have hiera apply classes to a node based upon the hierarchy.

Using hiera_include
To use hiera_include, we set a hiera variable to hold the name of the classes we
would like applied to the nodes. By convention, this is called classes, but it could
be anything. We'll also set a variable role that we'll use in our new base class. We
modify site.pp to include all classes defined in the hiera variable classes. We also
set a default value should no values be found; this way we guarantee that catalogs
will compile and that all nodes receive at least the base class. Edit /etc/puppet/
manifest/site.pp as follows:

node default {
 hiera_include('classes', 'base')
}

Chapter 2

[57]

For the base class, we'll just set the motd file as we've done previously. We'll also
set a welcome string in hiera; in common.yaml, we'll set this to something generic
and override the value in a hostname-specific YAML file. Edit the base class in
/etc/puppet/modules/base/manifests/init.pp as follows:

class base {
 $welcome = hiera('welcome','Welcome')
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("<%= welcome %>\nManaged Node: <%=
hostname
%>\nManaged by Puppet version <%= puppetversion %>\n"),
 }
}

This is our base class; it uses an inline template to set up the "message of the day"
file (/etc/motd). We then need to set the welcome information in hieradata; edit
/etc/puppet/hieradata/common.yaml to include the default welcome message,
as shown in the following code snippet:

welcome: 'Welcome to Example.com'
classes: - 'base'
syslog: 'nothing'

Now we can run Puppet on our node1 machine; after the successful run,
our /etc/motd has the following contents:

Welcome to Example.com
Managed Node: node1
Managed by Puppet version 3.4.1

Now to test if our hierarchy is working as expected, we'll create a YAML file
specifically for node1, /etc/puppet/hieradata/hosts/node1.yaml as follows:

welcome: 'Welcome to our default node'

Again, we run Puppet on node1 and examine the contents of /etc/motd, as shown in
the following code:

Welcome to our default node
Managed Node: node1
Managed by Puppet version 3.4.1

www.allitebooks.com

http://www.allitebooks.org

Organizing Your Nodes and Data

[58]

Now that we have verified that our hierarchy performs as we expect, we can use
hiera to apply a class to all nodes based on a fact. In this example we'll use the
is_virtual fact to do some performance tuning on our virtual machines. We'll
create a virtual class in /etc/puppet/modules/virtual/manifests/init.pp,
which installs the tuned package. It then sets the tuned profile to virtual-guest
and starts the tuned service, as shown in the following code:

class virtual {
 # performance tuning for virtual machine
 package {'tuned':
 ensure => 'present',
 }
 service {'tuned':
 enable => true,
 ensure => true,
 require => Package['tuned']
 }
 exec {'set tuned profile':
 command => '/usr/sbin/tuned-adm profile virtual-guest',
 unless => '/bin/grep -q virtual-guest /etc/tune-profiles/
activeprofile',
 }
}

In a real-world example, we'd verify that we only apply this to
nodes running on EL6.

This module ensures that the tuned package is installed and the tuned service is
started. It then verifies that the current tuned profile is set to virtual-guest (using
a grep statement in the unless parameter to the exec), if the current profile is not
virtual-guest, the profile is changed to virtual-guest using tuned-adm.

Tuned is a tuning daemon included on enterprise Linux systems,
which configures several kernel parameters related to scheduling
and I/O operations.

To ensure that this class is applied to all virtual machines, we simply need to add it
to the classes hiera variable in /etc/puppet/hieradata/is_virtual/true.yaml,
as shown in the following snippet:

classes: - 'virtual'

Chapter 2

[59]

Now our test node node1 is indeed virtual, so if we run Puppet now, the virtual
class will be applied to the node, and we will see that the tuned profile is set to
virtual-guest. Running tuned-admin active on the host returns the currently
active profile; when we run it initially the command is not available as the tuned
rpm has not been installed yet, as you can see in the following commands:

node1# tuned-adm active

-bash: tuned-adm: command not found

node1# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1388817444'

Notice: /Stage[main]/Virtual/Package[tuned]/ensure: created

Notice: /Stage[main]/Virtual/Exec[set tuned profile]/returns: executed
successfully

Notice: Finished catalog run in 9.65 seconds

node1# tuned-adm active

Current active profile: virtual-guest

Service tuned: enabled, running

Service ktune: enabled, running

This example shows the power of using hiera with hiera_include and a
well-organized hierarchy. Using this method, we can have classes applied to nodes
based on facts and reduce the need for custom classes on nodes. We do, however,
have the option of adding classes per node since we have a hosts/%{::hostname}
entry in our hierarchy. If you had, for instance, a module that only needed to
be installed on 32-bit systems, you could make an entry in hiera.yaml for
%{::architecture} and only create an i686.yaml file that contained the class
in question. Building up your classes in this fashion reduces the complexity of
your individual node configurations.

Another great feature of hiera is its ability to automatically fill in values for
parameterized class attributes. For this example, we will create a class called
resolver and set the search parameter for our /etc/resolv.conf file
using augeas.

Augeas is a tool for modifying configuration files as though they were
objects. For more information on augeas, visit the project website at
http://augeas.net. In this example, we will use augeas to modify
only a section of the /etc/resolv.conf file.

http://augeas.net

Organizing Your Nodes and Data

[60]

First, we will create a resolver class as follows in /etc/puppet/modules/
resolver/manifests/init.pp:

class resolver($search = "example.com") {
 augeas { 'set resolv.conf search':
 context => '/files/etc/resolv.conf',
 changes => [
 "set search/domain '${search}'"
],
 }
}

Then we add resolver to our classes in /etc/puppet/hieradata/hosts/node1.
yaml so as to have resolver applied to our node, as shown in the following code:

welcome: 'Welcome to our default node'
classes: - resolver

Now we run Puppet on node1 as shown in the following commands; augeas
will change the resolv.conf file to have the search domain set to the default
example.com.

node1# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1388818864'

Notice: Augeas[set resolv.conf search](provider=augeas):

--- /etc/resolv.conf 2014-01-04 01:59:43.769423982 -0500

+++ /etc/resolv.conf.augnew 2014-01-04 02:00:09.552425174 -0500

@@ -1,2 +1,3 @@

; generated by /sbin/dhclient-script

nameserver 192.168.122.1

+search example.com

Notice: /Stage[main]/Resolver/Augeas[set resolv.conf search]/returns:
executed successfully

Notice: Finished catalog run in 1.09 seconds

Chapter 2

[61]

Now, to get hiera to override the default parameter for the parameterized class
resolver, we simply set the hiera variable resolver::search in our /etc/puppet/
hieradata/hosts/node1.yaml file, as shown in the following code:

welcome: 'Welcome to our default node'
classes: - resolver
resolver::search: 'devel.example.com'

Running puppet agent another time on node1 will change the search from
example.com to devel.example.com using the value from the hiera hierarchy
file, as you can see in the following commands:

[root@node1 ~]# puppet agent -t

Info: Retrieving plugin

Info: Caching catalog for node1.example.com

Info: Applying configuration version '1388818864'

Notice: Augeas[set resolv.conf search](provider=augeas):

--- /etc/resolv.conf 2014-01-04 02:09:00.192424927 -0500

+++ /etc/resolv.conf.augnew 2014-01-04 02:13:24.815425173 -0500

@@ -1,4 +1,4 @@

; generated by /sbin/dhclient-script

nameserver 192.168.122.1

domain example.com

-search example.com

+search devel.example.com

Notice: /Stage[main]/Resolver/Augeas[set resolv.conf search]/returns:
executed successfully

Notice: Finished catalog run in 1.07 seconds

By building up your catalog in this fashion, it's possible to override parameters to
any class. At this point, our node1 machine has the virtual, resolver and base
classes, but our site manifest (/etc/puppet/manifests/site.pp) only has a
hiera_include line, as shown in the following code:

node default {
 hiera_include('classes',base)
}

Organizing Your Nodes and Data

[62]

In the enterprise, this means that you can add new hosts without modifying your site
manifest and that you can customize the classes and any parameters to those classes.

Two other functions exist for using hiera; they are hiera_array and hiera_hash.
These functions do not stop at the first match found in hiera and instead return
either an array or hash of all the matches. This can also be used in powerful ways to
build up definitions of variables. One good use of this is in setting the nameservers a
node will query. Using hiera_array instead of hiera function, you can not only set
nameservers based on the hostname of the node or some other facts, but also have
the default name servers from your common.yaml file applied to the node.

Summary
The classes that are applied to nodes should be as automatic as possible. By using
a hostname convention and an ENC script, it is possible to have classes applied to
nodes without any node-level configuration.

Using LDAP as a backend for class information may be a viable alternative at your
enterprise. The LDAP schema included with Puppet can be successfully applied to
an OpenLDAP instance or integrated into your existing LDAP infrastructure.

Hiera is a powerful tool for separating data from your module definitions.
By utilizing a hierarchy of facts, it is possible to dynamically apply classes to
nodes based on their facts.

The important concept in the enterprise is to minimize the customization required in
the modules and push that customization up into the node declaration. To separate
the code required to deploy your nodes from the specific data, through either LDAP,
a custom ENC, or clever use of hiera. If starting from scratch, hiera is the most
powerful and flexible solution to this problem.

In the next chapter, we will see how we can utilize Puppet environments to make
hiera even more flexible. We will cover using Git to keep our modules under
version control.

Git and Environments
When working in a large organization, changes can break things. Every developer
will need a sandbox to test their code. A single developer may have to work on two
or three issues independently throughout the day but may not apply the working
code to any nodes. It would be great if you could work on a module and verify it in
a development environment or even on a single node before pushing it to the rest of
your fleet. Environments allow you to carve up your fleet into as many development
environments as needed. Environments allow nodes to work from different versions
of your code. Keeping track of the different versions with Git allows for some
streamlined workflows. Other versioning systems can be used, but the bulk of
integration in Puppet is done with Git.

Environments
When every node requests an object from the Puppet master, they inform the
Puppet master of their environment. Depending on how the master is configured,
the environment can change the set of modules, the contents of hiera, or the site
manifest (site.pp). The environment is set on the agent in their puppet.conf file
or on the command line with puppet agent --environment.

In addition, environment may also be set from both the ENC and the LDAP node
terminus. In Puppet version 3, setting the environment from the ENC overrides the
setting in puppet.conf. If no environment is set, then production, which is the
default environment, is applied.

On the master, if a configuration block's name matches the environment's name,
then the settings in that block will take effect for the nodes that use that environment.

Environment names cannot be the same as that of the main config blocks
of the puppet.conf file (main, master, agent, and so on).

Git and Environments

[64]

The configuration block can contain the location of the site manifest (manifest), the
path to find modules (modulepath), the path to find manifests (manifestdir), and
the path to find templates (templatedir). Alternatively, the $environment variable
can be used in puppet.conf to have dynamic paths based on the environment rather
than hard coding specific environments.

The configuration of environments with sections is known as config file
environments and is soon to be deprecated. Environments based on the
setting environmentpath will replace configuration file environments.
These are equivalent to the dynamic environments we define later in
the chapter. If you are using a version of Puppet greater than or equal to
3.6, you will receive deprecation warning when setting manifestdir
and modulepath in /etc/puppet/puppet.conf. The new method
to configure environments, directory environments, uses the variable
environmentpath to specify a directory containing environments.
Each directory in environmentpath is assumed to have modules
and manifests directories. In addition, modulepath and manifest
may be overridden using an environment.conf file within any given
environment directory. More information on this change is available on
Puppet Labs at http://docs.puppetlabs.com/puppet/latest/
reference/environments.html.

In the remainder of this chapter we will not use the ENC script we configured in
Chapter 2, Organizing Your Nodes and Data, modify /etc/puppet/puppet.conf on
worker1, and comment out the two ENC-related settings which we configured
in Chapter 2, Organizing Your Nodes and Data. Next, add two new sections for the
production and development environments, as shown in the following snippet:

[production]
 modulepath = $confdir/production/modules
 manifestdir = $confdir/production/manifests
[development]
 modulepath = $confdir/development/modules
 manifestdir = $confdir/development/manifests

Next, create the two new environment directories (production and development)
and copy our modules and site manifest into the new directories using the
following commands:

worker1# cd /etc/puppet
worker1# mkdir production development
worker1# cp -a manifests modules production
worker1# cp -a manifests modules development

http://docs.puppetlabs.com/puppet/latest/reference/environments.html
http://docs.puppetlabs.com/puppet/latest/reference/environments.html

Chapter 3

[65]

Restart httpd for the changes to puppet.conf to take effect. Then, go to /etc/
puppet/production/modules/base/manifests/init.pp, and change the
motd to show that the node is in the production environment, as shown in the
following code:

class base {
 $welcome = hiera('welcome','Unwelcome')
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("PRODUCTION\n<%= welcome
 %>\nManaged Node: <%= hostname %>\nManaged by Puppet
 version <%= puppetversion %>\n"),
 }
}(The environment is also available as a variable, we could
 have used <%= environment.upcase %> in the above example)

Now, run puppet agent on node1 and verify whether the production module is
being used, as shown in the following commands:

node1# puppet agent -t

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-06 01:54:43.933328053 -0500

+++ /tmp/puppet-file20140106-15383-1476fsl-0	 2014-01-06
01:54:48.204327062 -0500

@@ -1,3 +1,4 @@

+PRODUCTION

 Welcome to our default node

 Managed Node: node1

 Managed by Puppet version 3.4.1

...

Notice: Finished catalog run in 1.18 seconds

Now, go to the development module and change the motd for development
(/etc/puppet/development/modules/base/manifests/init.pp), as shown
in the following snippet:

class base {
 $welcome = hiera('welcome','Unwelcome')
 file {'/etc/motd':
 mode => '0644',

Git and Environments

[66]

 owner => '0',
 group => '0',
 content => inline_template("DEVELOPMENT\n<%= welcome
 %>\nManaged Node: <%= hostname %>\nManaged by Puppet version
 <%= puppetversion %>\n"),
 }
}

Then, run puppet agent on node1 with the environment set to development,
as shown in the following command:

node1# puppet agent -t --environment development

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-06 02:15:29.547327060 -0500

+++ /tmp/puppet-file20140106-19402-14qquyt-0	 2014-01-06
 02:17:38.502327062 -0500

@@ -1,4 +1,4 @@

-PRODUCTION

+DEVELOPMENT

 ...

Notice: Finished catalog run in 1.25 seconds

This will perform a one-time compilation in the development environment;
in the next Puppet run, where the environment is not explicitly set, this will
default to production again. To permanently move the node to the development
environment, edit /etc/puppet/puppet.conf and set the environment, as shown
in the following code:

[agent]
 environment = development

Environments and hiera
Hiera's main configuration file can also use environment as a variable. This leads
to two options: a single hierarchy with the environment as a hierarchy item, and
multiple hierarchies where the path to the hieradata directory comes from the
environment setting. To have separate hieradata trees, you can use the environment
in the datadir setting for the backend, or to have parts of the hierarchy tied to
your environment, put %{::environment} in the hierarchy.

Chapter 3

[67]

Multiple hierarchies
To have a separate data tree, we will first copy the existing hieradata directory into
the production and development directories, as shown in the following commands:

worker1# cp -a hieradata production

worker1# cp -a hieradata development

Now edit /etc/puppet/hiera.yaml and change :datadir as follows:

:yaml:
 :datadir: '/etc/puppet/%{::environment}/hieradata'

Now, edit the welcome message in the node1.yaml file of the production (/etc/
puppet/production/hieradata/hosts/node1.yaml) hieradata tree, as shown
in the following line:

welcome: 'Careful, this is a production node'

Also, edit the development (/etc/puppet/development/hieradata/hosts/node1.
yaml) hieradata tree to reflect the different environments, as shown in the
following line:

welcome: 'This is a development node, play away'

Now, run Puppet on node1 to see the /etc/motd file change according to the
environment. First, we run the agent without setting an environment, so the
default setting of production is applied, as shown in the following command:

node1# puppet agent -t

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-07 00:40:03.349098133 -0500

+++ /tmp/puppet-file20140107-22532-1murkny-0	 2014-01-07
00:46:41.822098133 -0500

@@ -1,4 +1,4 @@

 PRODUCTION

-Welcome to our production node

+Careful, this is a production node

...

Notice: Finished catalog run in 1.28 seconds

Git and Environments

[68]

If you previously set the environment value to development
by adding environment=development in puppet.conf,
remove that setting.

Then, we run agent with environment set to development to see the change,
as shown in the following command:

node1# puppet agent -t --environment development

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-07 00:46:41.849098133 -0500

+++ /tmp/puppet-file20140107-22797-oe04zc-0	 2014-01-07
00:48:03.134098133 -0500

@@ -1,4 +1,4 @@

-PRODUCTION

-Careful, this is a production node

+DEVELOPMENT

+This is a development node, play away

 Managed Node: node1

 Managed by Puppet version 3.4.1

...

Notice: Finished catalog run in 1.17 seconds

Configuring hiera in this fashion will allow you to keep completely distinct
hieradata trees for each environment. You can, however, configure hiera to
look for environment-specific information in a single tree.

Single hierarchy for all environments
To have one hierarchy for all environments, edit hiera.yaml as follows:

:hierarchy:
 - "environments/%{::environment}"
 - "hosts/%{::hostname}"
 - "roles/%{::role}"
 - "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease}"
 - "is_virtual/%{::is_virtual}"
 - common
:backends:
 - yaml
:yaml:
 :datadir: "/etc/puppet/hieradata"

Chapter 3

[69]

Next, create an environment directory in /etc/puppet/hieradata and create
the following two YAML files: one for production (/etc/puppet/hieradata/
environments/production.yaml) and another for development (/etc/puppet/
hieradata/environments/development.yaml). The following will be the
welcome message for the production file:

welcome: 'Single tree production welcome'

The following will be the welcome message for the development file:

welcome: 'Development in Single Tree'

Restart httpd on worker1 and run Puppet on node1 again to see the new motd for
production, as shown in the following commands:

node1# puppet agent -t

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-07 00:48:03.160098133 -0500

+++ /tmp/puppet-file20140107-23083-4z1ztk-0	 2014-01-07
00:57:48.273098134 -0500

@@ -1,4 +1,4 @@

-DEVELOPMENT

-This is a development node, play away

+PRODUCTION

+Single tree production welcome

 Managed Node: node1

 Managed by Puppet version 3.4.1

...

Notice: Finished catalog run in 1.20 seconds

puppet run against the single tree hieradata

Having the production and development environments may be sufficient for a
small operation (a manageable amount of nodes, typically less than a thousand),
but in an enterprise, you will need many more such environments to help admins
avoid stumbling upon one another. In the next section, we'll configure Puppet to
use dynamic environments.

Git and Environments

[70]

Dynamic environments
Our configuration for hiera did not specify production or development
environments in hiera.yaml. We used the value environment to fill in a path on the
filesystem. We can do the same thing in puppet.conf and allow for environments
to be defined dynamically. While doing this, it's important to always account for
the production environment since that is the default setting for any node where
environment is not explicitly set. Note that the modulepath can include multiple
directories; it is possible to put environment-specific modules first and always
have the production modules included, as shown in the following code:

modulepath = /etc/puppet/environments/$environment/modules:/etc/
puppet/environments/production/modules

A useful configuration for modulepath is to include a set of standard modules
(modules that your company and coworkers will not be changing) in another
directory and append that to the path, for example, the stdlib module from
Puppet Labs, as shown in the following code

[master]
modulepath = /etc/puppet/environments/$environment/modules:/etc/
puppet/environments/production/modules:/etc/puppet/public/modules

In version 3.6 and above, Puppet will look in $environmentpath/
modules then /etc/puppet/modules unless a modulepath
is specified in an environment.conf file within any given
environment directory.

With this configuration, when we change our environment, the modulepath will first
look in the new environment directory, then the production directory, followed
by our public module directory. With this scenario, any developer can change the
modules applied to a node but cannot modify the site.pp file. To allow developers
to modify the site.pp file, change manifestdir as well, as shown in the
following code:

manifestdir = $confdir/environments/$environment/manifests

Now, create a new environment, sandbox, by creating a copy of the production
directory using the following commands:

mkdir /etc/puppet/environments

mv /etc/puppet/production /etc/puppet/environments/

cp -a /etc/puppet/environments/production /etc/puppet/environments/
sandbox

Chapter 3

[71]

We can now edit the files in sandbox and change the behavior of Puppet, starting
with the default node definition in /etc/puppet/environments/sandbox/
manifests/site.pp, as shown in the following code:

node default {
 hiera_include('classes',base)
 notify {"Playing in the sandbox":}
}

Then, when we run puppet agent on node1 with the environment value set to
sandbox, we see the new notice, as shown in the following commands:

node1# puppet agent -t --environment sandbox

...

Notice: Playing in the sandbox

Notice: /Stage[main]/Main/Node[default]/Notify[Playing in the sandbox]/
message: defined 'message' as 'Playing in the sandbox'

Notice: Finished catalog run in 1.04 seconds

This type of playing around with environments is great for a single developer, but
when you work in a large team, you'll need some version control and automation to
convert this to a workable solution. In the next section, we'll use Git to automatically
create environments and share environments between developers.

For further reading on environments, refer to the Puppet Labs website at
http://docs.puppetlabs.com/guides/environment.html.

Git
Git is a version control system, written by Linus Torvalds, which is used to work on
the Linux Kernel source code. Its support for rapid branching and merging make it
the perfect choice for a Puppet implementation. Each commit has references to its
parent commits; to reconstruct a branch, you only need to follow the trail back.
We will be exploiting the rapid branch support to have environments defined
from Git branches.

It is possible to use Git without a server and to make copies of repositories
using only local Git commands.

http://docs.puppetlabs.com/guides/environment.html

Git and Environments

[72]

In your organization, you likely have some version control software. The software
in question isn't too important, but the methodology used is important. Long
running branches or a stable trunk are the terms used in the industry to describe
the development cycle. In our implementation, we will assume that development
and production are long running branches. By long running we mean that these
branches will persist throughout the lifetime of the repository. Most other branches
are dead ends—they solve an immediate issue, then get merged into the long
running branches and cease to exist, or they fail to solve the issue and are destroyed.

Why Git?
Git is the defacto standard version control software with Puppet because of its
implementation of rapid branching. There are numerous other reasons for using Git
in general. Each user of Git is given a complete copy of the revision history whenever
they clone a Git repository. Each developer is capable of backing up the entire
repository should the need arise. Git allows each developer to work independently
from the master repository, allowing developers to work off site and even without
network connectivity.

This section isn't intended to be an exhaustive guide to using Git. We'll cover
enough commands to get your job done, but I recommend you do some reading
on the subject to get well acquainted with the tool.

The main page for Git documentation is http://git-scm.com/
documentation. Also worth reading is the information on getting
started by GitHub at http://try.github.io.

To get started with Git, we need to create a bare repository. By bare we mean
that only the meta information and checksums will be stored; the files will be
in the repository but only in the checksum form. Only the main location for the
repository needs to be stored in this fashion.

In the enterprise, you likely want the Git server to be a separate machine,
independent of your Puppet master. Perhaps, your Git server isn't even specific
to your Puppet implementation. The great thing about Git is that it doesn't really
matter at this point; we can put the repository wherever we wish.

To make things easier to understand, we'll work on our single worker machine
for now, and in the final section, we will create a new Git server to hold our
Git repository.

http://git-scm.com/documentation
http://git-scm.com/documentation
http://try.github.io

Chapter 3

[73]

A simple Git workflow
On our worker machine, install Git using yum, as shown in the following commands:

worker1# yum install -y git

...

Installed: git.x86_64 0:1.7.1-3.el6_4.1

Now, decide on a directory to hold all your Git repositories. We'll use /var/lib/
git in this example. A directory under /srv may be more appropriate at your
organization. The /var/lib/git path more closely resembles the paths used by
other EL packages. Since running everything as root is unnecessary, we will
create a Git user and make that user the owner of the Git repositories.

Create the directory to contain our repository first (/var/lib/git) and then
create an empty Git repository (git init --bare) in that location, as shown
in the following commands:

worker1# useradd git -c 'Git Repository Owner' -d /var/lib/git

worker1# sudo -iu git

git@worker1$ pwd

/var/lib/git

git@worker1$ git init --bare puppet.git

Initialized empty Git repository in /var/lib/git/puppet.git/

git@worker1$ cd /tmp

git@worker1$ git clone /var/lib/git/puppet.git

Initialized empty Git repository in /tmp/puppet/.git/

warning: You appear to have cloned an empty repository.

git@worker1$ cd puppet

git@worker1$ git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

Git and Environments

[74]

Now that our repository is created, we should start adding files to the repository;
however, we should first configure Git. Git will store our username and e-mail
address with each commit. These settings are controlled with git config. We will
add the --global option to ensure the config file in ~/.git is modified, as shown
in the following commands:

git@worker1$ git config --global user.name 'Git Repository Owner'

git@worker1$ git config --global user.email 'git@example.com'

Now, we'll copy in our production modules and commit them; we'll copy the
files from the /etc/puppet/environments/production directory of our worker
machines and then add them to the repository using git add, as shown in the
following commands:

git@worker1$ cp -a /etc/puppet/environments/production/*.

git@worker1$ ls

hieradata manifests modules

git@worker1$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

hieradata/

manifests/

modules/

nothing added to commit but untracked files present (use "git add" to
track)

We've copied our hieradata, manifests, and modules directories, but Git doesn't
know anything about them. We now need to add them to the Git repository and
commit to the default branch master. This is done with two Git commands, first
using git add and then using git commit, as shown in the following commands:

git@worker1$ git add hieradata manifests modules

git@worker1$ git commit -m "initial commit"

[master (root-commit) 153426e] initial commit

 15 files changed, 87 insertions(+), 0 deletions(-)

...

 create mode 100644 hieradata/Linux/RedHat/6.yaml

Chapter 3

[75]

To see the files that will be committed when you issue git commit, use
git status after the git add command.

At this point, we've committed our changes to our local copy of the repository.
To ensure that we understand what is happening, we'll clone the initial location
again into another directory (/tmp/puppet2), as shown in the following commands:

git@worker1$ cd /tmp

git@worker1$ mkdir puppet2

git@worker1$ cd puppet2

git@worker1$ git clone /var/lib/git/puppet.git.

Initialized empty Git repository in /tmp/puppet2/.git/

warning: You appear to have cloned an empty repository.

git@worker1$ ls

Our second copy doesn't have the files we just committed, and they only exist in
the first local copy of the repository. One of the powerful features of Git is that it
is a self-contained environment. Going back to our first clone (/tmp/puppet),
examine the contents of the .git/config file. The url setting for the remote
"origin" points to the remote master that our repository is based on
(/var/lib/git/puppet.git), as shown in the following code:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 fetch = +refs/heads/*:refs/remotes/origin/*
 url = /var/lib/git/puppet.git
[branch "master"]
 remote = origin
 merge = refs/heads/master

In Git, origin is where the original remote repository lives; in this example, it is a
local location (/var/lib/git/puppet.git), but it could also be an HTTPS URI or
SSH URI.

Git and Environments

[76]

To push the local changes to the remote repository, we use git push; the default
push operation is to push to the first remote repository called origin to the
currently selected branch. The default branch in Git is always called master as we
can see in the [branch "master"] section. To emphasize what we are doing, we'll
type in the full arguments to push (although git push will achieve the same result
in this case), as you can see in the following commands:

git@worker1$ cd /tmp/puppet

git@worker1$ git push origin master

Counting objects: 40, done.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (40/40), 3.05 KiB, done.

Total 40 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (40/40), done.

To /var/lib/git/puppet.git

 * [new branch] master -> master

pushing our changes to the remote origin

Now that our remote repository has the updates, we can pull them down to
our second copy using git pull. Again, we will type in the full argument list
(this time, git pull will do the same thing), as shown in the following commands:

git@worker1$ cd /tmp/puppet2

git@worker1$ git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

git@worker1$ ls

git@worker1$ git pull origin master

remote: Counting objects: 40, done.

remote: Compressing objects: 100% (15/15), done.

remote: Total 40 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (40/40), done.

From /var/lib/git/puppet

 * branch master -> FETCH_HEAD

git@worker1$ ls

hieradata manifests modules

Chapter 3

[77]

Two useful commands to know at this point are git log and git show. The git
log command will show you the log entries from Git commits. Using the log entries,
you can run git show to piece together what your fellow developers have been
doing. The following snippet shows the use of these two commands in our example:

git@worker1$ git log

commit 1b2bf23df837d4853f911b44823a776956849581

Author: Git Repository Owner <git@example.com>

Date: Thu Jan 9 01:08:59 2014 -0500

 initial commit

git@worker1$ git show 1b2bf23df837d4853f911b44823a776956849581

...

diff --git a/hieradata/Linux/CentOS/6.yaml b/hieradata/Linux/CentOS/6.
yaml

new file mode 100644

index 0000000..8a79b14

--- /dev/null

+++ b/hieradata/Linux/CentOS/6.yaml

@@ -0,0 +1,2 @@

+---

+welcome: 'CentOS 6'

...

The git show command takes the commit hash as an optional argument and returns
all the changes that were made with that hash.

Now that we have our code in the repository, we need to create a production
branch for our production code. Branches are created using git branch; the
important concept to note is that they are local until they are pushed to the origin.
When git branch is run without arguments, it returns the list of available branches
with the currently selected branch highlighted with an asterisk, as shown in the
following commands:

git@worker1$ cd /tmp/puppet

git@worker1$ git branch

* master

git@worker1$ git branch production

git@worker1$ git branch

* master

 production

Git and Environments

[78]

This sometimes confuses people. You have to check the newly created branch after
creating it; you can do this in one step using the git checkout -b <branch_name>
command, but I believe using this shorthand initially leads to confusion. We'll now
checkout our production branch and make a change which we can commit to the
local repository and then push to the remote, as shown in the following commands:

git@worker1$ git checkout production

Switched to branch 'production'

git@worker1$ git branch

 master

* production

git@worker1$ cd hieradata/hosts

git@worker1$ sed -i -e 's/Careful/Be very Careful/' node1.yaml

git@worker1$ git add node1.yaml

git@worker1$ git commit -m 'modifying welcome message on node1'

[production 5ba7c42] modifying welcome message on node1

 1 files changed, 1 insertions(+), 1 deletions(-)

git@worker1$ git push origin production

Counting objects: 9, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 620 bytes, done.

Total 5 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

To /var/lib/git/puppet.git

 * [new branch] production -> production

Now, in our second copy of the repository, let's confirm that the production branch
has been added to the origin using git fetch to retrieve the latest metadata from
the remote origin, as shown in the following commands:

git@worker1$ cd /tmp/puppet2

git@worker1$ git branch

* master

git@worker1$ git fetch

remote: Counting objects: 9, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 5 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

From /var/lib/git/puppet

 * [new branch] production -> origin/production

Chapter 3

[79]

It is important to run git fetch routinely to see changes that your teammates may
have made and branches that they may have created. Now, we can verify whether
the production branch has the change we made. We'll display the current contents
of node1.yaml and then run git checkout production to see the production
version, as shown in the following snippet:

git@worker1$ cd hieradata/hosts/

git@worker1$ cat node1.yaml

welcome: 'Careful, this is a production node'

classes: - resolver

resolver::search: 'prod.example.com'

git@worker1$ git checkout production

Branch production set up to track remote branch production from origin.

Switched to a new branch 'production'

git@worker1$ cat node1.yaml

welcome: 'Be very Careful, this is a production node'

classes: - resolver

resolver::search: 'prod.example.com'

As we can see, the welcome message in the production branch is different from
that of the master branch. At this point, we'd like to have the production branch in
/etc/puppet/environments/production and the master branch in /etc/puppet/
environments/master, as shown in the following commands. We'll perform these
commands as the root user for now:

worker1# cd /etc/puppet

worker1# mv environments environments.orig

worker1# mkdir environments

worker1# cd environments

worker1# git clone -b production /var/lib/git/puppet.git production

Initialized empty Git repository in /etc/puppet/environments/production/.
git/

remote: Counting objects: 45, done.

remote: Compressing objects: 100% (19/19), done.

remote: Total 45 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (45/45), 3.63 KiB, done.

worker1# cd production

Git and Environments

[80]

worker1# ls

hieradata manifests modules

worker1# git status

On branch production

nothing to commit (working directory clean)

Now that our production branch is synchronized with the remote, we can do
the same for the master branch and verify whether the branches differ, using
the following commands:

worker1# cd ..

worker1# git clone -b master /var/lib/git/puppet.git master

Initialized empty Git repository in /etc/puppet/environments/master/.git/

remote: Counting objects: 45, done.

remote: Compressing objects: 100% (19/19), done.

remote: Total 45 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (45/45), done.

worker1# cd master

worker1# ls

hieradata manifests modules

worker1# git status

On branch master

nothing to commit (working directory clean)

worker1$ diff hieradata/hosts/node1.yaml ../production/hieradata/hosts/
node1.yaml

2c2

< welcome: 'Careful, this is a production node'

> welcome: 'Be very Careful, this is a production node'

verifying that the master and production branches differ.

If you changed hiera.yaml for the single tree example, change it to
the following:

:datadir: "/etc/puppet/environments/%{::environment}/
hieradata"

Chapter 3

[81]

Running Puppet on node1 in the production environment will now produce the
change we expect in /etc/motd as follows:

PRODUCTION
Be very Careful, this is a production node
Managed Node: node1
Managed by Puppet version 3.4.2

Run the agent again with the master environment to change the motd, as shown in
the following command:

node1# puppet agent -t --environment master

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-09 02:15:53.961359763 -0500

+++ /tmp/puppet-file20140109-10057-1wbjy4p-0	 2014-01-09
02:17:38.611359763 -0500

@@ -1,4 +1,4 @@

 PRODUCTION

-Be very Careful, this is a production node

+Careful, this is a production node

So, each branch is mapped to a Puppet environment. As new branches are added,
we manually have to set up the directory and push the contents to the new directory.
If we were working in a small environment, this arrangement of Git pulls would be
fine, but in an enterprise, we would want this to be automatic. Git can run scripts
at various points in the commitment of code to the repository—these scripts are
called hooks.

Git Hooks
Git provides several hook locations that are documented in the githooks man page.
The hooks of interest are post-receive and pre-receive. A post-receive hook
is run after a successful commit to the repository and a pre-receive hook is run
before any commit is attempted. Git Hooks can be written in any language; the only
requirement is that they should be executable. The post-receive and pre-receive
hooks are both passed three parameters via stdin: the first is the commit that you
are starting from (oldrev), the second is the new commit you are creating (newrev),
and the third is a reference to the type of change that was made to the repository, in
that reference is the branch that was updated. Using these hooks, we can automate
our workflow. We'll start using the post-receive hook to set up our environments
for us.

Git and Environments

[82]

Using post-receive to set up environments
What we would like to happen at this point is a series of steps, discussed as follows:

1.	 A developer works on a file in a branch.
2.	 The developer commits that change and pushes it to the origin.
3.	 If the branch doesn't exist, create it in /etc/puppet/

environments/<branch>.
4.	 Pull the updates for the branch into /etc/puppet/environments/<branch>.

In our initial configuration, we will write a post-receive hook that will implement
the previously mentioned steps 3 and 4. Later on, we'll ensure that only the correct
developers commit to the correct branch with a pre-receive hook. To ensure that
our Puppet user has access to the files in /etc/puppet/environments, we will use
sudo to run the commits as the Puppet user.

Our hook doesn't need to do anything with the reference other than extract the name
of the branch and then update /etc/puppet/environments as necessary. In the
interest of simplicity, this hook will be written in bash. Create the script in /var/
lib/git/puppet.git/hooks/post-receive, as follows:

#!/bin/bash
PUPPETDIR=/etc/puppet/environments
REPOHOME=/var/lib/git/puppet.git
GIT=/usr/bin/git
umask 0002
unset GIT_DIR

We will start by setting some variables for the location of the Git repository and the
location of the Puppet environments directory. It will become clear later why we
set umask at this point, we want the files created by our script to be group writable.
The unset GIT_DIR line is important; the hook will be run by Git after a successful
commit where GIT_DIR was set to ".". We unset the variable so that Git doesn't get
confused. Next, we will read the variables oldrev, newrev, and refname from
stdin (not command-line arguments), as shown in the following code:

read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z $branch]; then
 echo "ERROR: Updating $PUPPETDIR"
 echo " Branch undefined"
 exit 10
fi

Chapter 3

[83]

After extracting the branch from the third argument, we will verify whether we were
able to extract a branch. If we are unable to parse out the branch name, we will quit
the script and warn the user.

Now, we have three scenarios that we will account for in the script, as shown
in the following snippet. The first is that the directory exists in /etc/puppet/
environments and that it is a Git repository.

if directory exists, check it is a git repository
if [-d "$PUPPETDIR/$branch/.git"]; then
 cd $PUPPETDIR/$branch
 echo "Updating $branch in $PUPPETDIR"
 sudo -u puppet $GIT pull origin $branch
 exit=$?

In this case, we will cd to the directory and issue a git pull origin <branchname>
command to update the directory. We will run the Git pull command using sudo
with -u puppet to ensure that the files are created as the Puppet user.

The second scenario is that the directory exists but it was not created via a
Git checkout. We will quit early if we run into this option, as shown in the
following snippet:

elif [-d "$PUPPETDIR/$branch"]; then
 # directory exists but is not in git
 echo "ERROR: Updating $PUPPETDIR"
 echo " $PUPPETDIR/$branch is not a git repository"
 exit=20

The third option is that the directory doesn't exist yet. In this case, we will clone
the branch using the git clone command in a new directory as the Puppet user
(using sudo again), as shown in the following snippet:

else
 # directory does not exist, create
 cd $PUPPETDIR
 echo "Creating new branch $branch in $PUPPETDIR"
 sudo -u puppet $GIT clone -b $branch $REPOHOME $branch
 exit=$?
fi

In each case, we retained the return value from Git so that we can exit the script
with the appropriate exit code at this point as follows:

exit $exit

Git and Environments

[84]

Now, let's see this in action. Change the permissions on the post-receive script to
make it executable (chmod 755 post-receive). Now, to ensure that our Git user
can run the Git commands as the Puppet user, we need to create a sudoers file. We
need the Git user to run /usr/bin/git; so, we put in a rule to allow this in a new file
called /etc/sudoers.d/sudoers-puppet as follows:

git ALL = (puppet) NOPASSWD: /usr/bin/git *

In this example, we'll create a new local branch, make a change in the branch, and
then push the change to the origin. Our hook will be called and a new directory will
be created in /etc/puppet/environments.

worker1# sudo -iu git

git@worker1$ ls /etc/puppet/environments

master production

git@worker1$ cd /tmp/puppet

git@worker1$ git branch thomas

git@worker1$ git checkout thomas

Switched to branch 'thomas'

git@worker1$ ls

hieradata manifests modules

git@worker1$ cd hieradata/hosts/

git@worker1$ sed -i node1.yaml -e "s/welcome:.*/welcome: 'Thomas
Branch'/"

git@worker1$ git add node1.yaml

git@worker1$ git commit -m "Adding thomas branch"

[thomas a266d91] Adding thomas branch

 1 files changed, 1 insertions(+), 1 deletions(-)

git@worker1$ git push origin thomas

Counting objects: 9, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 625 bytes, done.

Total 5 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

remote: Creating new branch thomas in /etc/puppet/environments

remote: Initialized empty Git repository in /etc/puppet/environments/
thomas/.git/

To /var/lib/git/puppet.git

 * [new branch] thomas -> thomas

git@worker1$ ls /etc/puppet/environments

master production thomas

Chapter 3

[85]

Our Git Hook has created a new environment without our intervention; we'll now
run puppet agent on the node to see the new environment in action, as shown in
the following command:

[root@node1 puppet]# puppet agent -t --environment thomas

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-10 01:31:06.286261652 -0500

+++ /tmp/puppet-file20140112-18203-18sjzjb-0	 2014-01-12
01:05:34.369163541 -0500

@@ -1,4 +1,4 @@

 PRODUCTION

-Be very Careful, this is a production node

+Thomas Branch

...

Notice: Finished catalog run in 3.10 seconds

Using sudo in our post-receive hook guarantees that the users who belong to
the pupdevs group do not have write access to /etc/puppet/environments; they
are only allowed to run Git as the Puppet user. They may only modify the code by
updating the Git repository.

The users that belong to the pupdevs group can still clone a new
repository or add a new remote to gain unauthorized access to
your Puppet tree.

Puppet-sync
The problem of synchronizing Git repositories for Puppet is common enough that a
script exists on GitHub that can be used for this purpose. The puppet-sync script is
available at https://github.com/pdxcat/puppet-sync.

To use puppet-sync, you install the script on your worker machine and edit
the post-receive hook to run puppet-sync with appropriate arguments.
The updated post-receive hook will have the the following lines:

REPO="/var/lib/git/puppet.git"
DEPLOY="/etc/puppet/environments"
["$newrev" -eq 0] 2> /dev/null && DELETE='--delete' || DELETE=''
sudo -u puppet /usr/bin/puppet-sync \
 --branch "$BRANCH" \
 --repository "$REPO" \
 --deploy "$DEPLOY" \
 $DELETE

https://github.com/pdxcat/puppet-sync

Git and Environments

[86]

This process can be extended as a solution to pushing across multiple workers by
placing the call to puppet-sync within a for loop which SSHes to each worker
and then runs puppet-sync on each of them.

This can be extended further by replacing the call to puppet-sync
with a call to Ansible to update a group of Puppet workers defined
in your Ansible host's file. More information on Ansible is available
at http://docs.ansible.com/.

Playing nice with other developers
Up to this point, we've been working with the Git account to make our changes.
In the real world, we would want the developers to work as their own user account.
We need to worry about permissions at this point. When each developer commits
their code, the commit will run as their user, so files will get created with them as the
owner, which might prevent other developers from pushing additional updates. Our
post-receive hook will run as their user, so they need to be able to use sudo just
like the Git user. To mitigate some of these issues, we'll use Git's shareddirectory
setting to ensure that the files are group readable in /var/lib/git/puppet.git
and use sudo to ensure that the files in /etc/puppet/environments are created
and owned by the Puppet user.

We can use Git's built-in sharedrepository setting to ensure that
all members of the group have access to the repository, but each user's
umask setting may prevent files from being created with group write
permissions. Putting a umask setting in our script and running Git using
sudo is a more reliable way of ensuring access. To create a Git repository
as a shared repository, use shared=group while creating the bare
repository, as shown in the following commands:
git@worker1$ cd /var/lib/git

git@worker1$ git init --bare --shared=group newrepo.git

Initialized empty shared Git repository in /var/lib/git/
newrepo.git/

http://docs.ansible.com/

Chapter 3

[87]

First, we'll modify our puppet.git bare repository to enable shared access, then
we'll have to retroactively change the permissions to ensure group access is granted.
We'll edit /var/lib/git/puppet.git/config as follows:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = true
 sharedrepository = 1

To illustrate our workflow, we'll create a new group and add a user to that group,
as shown in the following commands:

worker1# groupadd pupdevs
worker1# useradd -g pupdevs -c "Sample Developer" samdev
worker1# id samdev
uid=502(samdev) gid=502(pupdevs) groups=502(pupdevs)

Now, we need to retroactively go back and change the ownership of files in
/var/lib/git/puppet.git to ensure that the pupdevs group have write access
to the repository. We'll also set the setgid bit on that directory so that new files
are group owned by pupdevs, as shown in the following commands:

worker1# cd /var/lib/git

worker1# find puppet.git -type d -exec chmod g+rwxs {} \;

worker1# find puppet.git -type f -exec chmod g+rw {} \;

worker1# chgrp -R pupdevs puppet.git

Now the repository is accessible to anyone in the pupdevs group. We now need to
add a rule to our sudoers file to allow anyone in the pupdevs group to run Git as
the Puppet user, as shown in the following code:

%pupdevs ALL = (puppet) NOPASSWD: /usr/bin/git *

With this sudo rule in place, sudo to samdev, clone the repository and modify the
production branch, as shown in the following commands:

worker1# sudo -iu samdev

samdev@worker1$ git clone /var/lib/git/puppet.git

Initialized empty Git repository in /home/samdev/puppet/.git/

samdev@worker1$ cd puppet

samdev@worker1$ git config --global user.name "Sample Developer"

Git and Environments

[88]

samdev@worker1$ git config --global user.email "samdev@example.com"

samdev@worker1$ git checkout production

samdev@worker1$ cd hieradata/hosts

samdev@worker1$ sed -i -e "s/welcome: .*/welcome: 'Sample Developer Made
this change'/" node1.yaml

samdev@worker1$ echo "Example.com Puppet repository" >README

samdev@worker1$ git add node1.yaml README

samdev@worker1$ git commit -m "Sample Developer changing welcome"

sam

samdev@worker1$ git push origin production

Counting objects: 9, done.

...

remote: 2 files changed, 1 insertions(+), 3 deletions(-)

To /var/lib/git/puppet.git

 63c027a..64416fd production -> production

We've updated our production branch. Our changes were automatically propagated
to the Puppet environments directory. Now, we can run Puppet on node1 (in the
production environment) to see the change, as shown in the following command:

node1# puppet agent -t

...

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2014-01-12 01:05:34.393163541 -0500

+++ /tmp/puppet-file20140113-20261-23hj51-0	 2014-01-13
02:06:06.216032724 -0500

@@ -1,4 +1,4 @@

 PRODUCTION

-Thomas Branch

+Sample Developer Made this change

...

Notice: Finished catalog run in 3.72 seconds

Now, any user we add to the pupdevs group will be able to update our Puppet
code and have it pushed to any branch. If we look in /etc/puppet/environments,
we can see that the owner of the files is also the Puppet user due to the use of sudo,
as shown in the following commands:

worker1# ls -l /etc/puppet/environments

total 8

drwxr-sr-x. 6 puppet pupdevs 4096 Jan 17 02:29 master

drwxr-sr-x. 6 puppet pupdevs 4096 Jan 17 02:13 production

Chapter 3

[89]

Not playing nice with others
Our configuration at this point allows all users in the pupdevs group the ability to
push changes to all branches. A complaint usually made about Git is that it lacks a
good system of access control. Using filesystem ACLs, it is possible to allow only
certain users to push changes to specific branches. Another way to control commits
is to use a pre-receive hook and verify if access will be granted before accepting
the commit.

The pre-receive hook receives the same information as the post-receive
hook. The hook runs as the user performing the commit so that we can use that
information to block a user from committing to a branch or even doing certain types
of commits; merges, for instance, can be denied. To illustrate how this works, we'll
create a new user called newbie and add them to the pupdevs group, as shown in
the following commands:

worker1# useradd -g pupdevs -c "Rookie Developer" newbie

worker1# sudo -iu newbie

We'll have newbie check our production code; make a commit and then push the
change to production, as shown in the following commands:

newbie@worker1$ git clone /var/lib/git/puppet.git

Initialized empty Git repository in /home/newbie/puppet/.git/

newbie@worker1$ cd puppet

newbie@worker1$ git config --global user.name "Newbie"

newbie@worker1$ git config --global user.email "newbie@example.com"

newbie@worker1$ git checkout production

Branch production set up to track remote branch production from origin.

Switched to a new branch 'production'

newbie@worker1$ echo "Rookie mistake" >README

newbie@worker1$ git add README

newbie@worker1$ git commit -m "Rookie happens"

[production 8dcf9b0] Rookie happens

 1 files changed, 1 insertions(+), 12 deletions(-)

Our rookie managed to wipe out the README file in production; if this were an
important file, then the deletion may have caused problems. It would be better
if the rookie couldn't make changes to production.

Git and Environments

[90]

We'll create a pre-receive hook that only allows certain users to commit to the
production branch. Again, we'll use bash for simplicity. We will start by defining
who will be allowed to commit and which branch we are interested in protecting,
as shown in the following snippet:

#!/bin/bash

ALLOWED_USERS="samdev git root"
PROTECTED_BRANCH="production"

We will then use whoami to determine who has run the script (the developer who
performed the commit) as follows:

user=$(whoami)

Now, just like we did in post-receive, we'll parse out the branch name, and exit the
script if we cannot determine the branch name, as shown in the following code:

read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z $branch]; then
 echo "ERROR: Branch undefined"
 exit 10
fi

We compare the $branch variable against our protected branch and exit cleanly if
this isn't a branch we are protecting, as shown in the following code. Exiting with
an exit code of 0 informs Git that the commit should proceed.

if ["$branch" != "$PROTECTED_BRANCH"]; then
 # branch not protected, exit cleanly
 exit 0
fi

Exiting with an exit code of 0`informs Git that the commit should proceed.

If we make it to this point in the script, we are on the protected branch, and the
$user variable has our username. So, we will just loop through the $ALLOWED_USERS
variable looking for a user who is allowed to commit to the protected branch. If we
find a match, we will exit cleanly, as shown in the following code:

for allowed in $ALLOWED_USERS
do
 if ["$user" == "$allowed"]; then
 # user allowed, exit cleanly
 echo "$PROTECTED_BRANCH change for $user"
 exit 0
 fi
done

Chapter 3

[91]

If the user was not in the $ALLOWED_USERS variable, then their commit is denied
and we exit with a non-zero exit code to inform Git that the commit should not be
allowed, as shown in the following code:

not an allowed user
echo "Error: Changes to $PROTECTED_BRANCH must be made by $ALLOWED_
USERS"
exit 10

Save this file with the name pre-receive in /var/lib/git/puppet.git/hooks/
and then change the ownership to git. Make it executable using the following
commands:

chmod 755 pre-receive

chown git:git pre-receive

Now, we'll go back and make a simple change to the repository as root as shown in
the following commands. It is important to always get in the habit of running git
fetch and git pull origin <branch> when you start working on a branch.
You need to do this to ensure that you have the latest version of the branch
from your origin.

worker1# cd puppet2

worker1# git fetch

...

Receiving objects: 100% (110/110), 12.41 KiB, done.

Resolving deltas: 100% (5/5), done.

...

worker1# git branch

 master

* production

worker1# git pull origin production

...

Updating 53ba47b..7a07bed

Fast-forward

...

worker1# echo root >> README

worker1# git add README

worker1# git commit -m README

[production 0766b31] README

 1 files changed, 1 insertions(+), 0 deletions(-)

Git and Environments

[92]

Now, with the simple change made (we appended our username to the README file),
we can push the change to the origin using the following command:

worker1# git push origin production

...

remote: README | 1 +

remote: 1 files changed, 1 insertions(+), 0 deletions(-)

...

 7a07bed..0766b31 production -> production

As expected, there are no errors and the README file is updated in the production
branch by our post-receive hook. Now, we will attempt a similar change as the
newbie user, as shown in the following commands:

worker1# sudo -iu newbie

newbie@worker1$ cd puppet

newbie@worker1$ git branch

 master

* production

newbie@worker1$ git fetch

...

 1bbf263..0766b31 production -> origin/production

newbie@worker1$ git pull origin production

...

 1 files changed, 7 insertions(+), 0 deletions(-)

newbie@worker1$ echo Again? >README

newbie@worker1$ git add README

newbie@worker1$ git commit -m "oops\!"

[production 77483c2] oops\!

 1 files changed, 1 insertions(+), 8 deletions(-)

Our newbie user has wiped out the README file; they meant to append to the file
using two less than (>>) signs but instead used a single less than (>) sign and
clobbered the file. Now, newbie attempts to push the change to production,
as shown in the following commands:

newbie@worker1$ git push origin production

Counting objects: 5, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 340 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

Chapter 3

[93]

Unpacking objects: 100% (3/3), done.

remote: Error: Changes to production must be made by samdev git root

To /var/lib/git/puppet.git

 ! [remote rejected] production -> production (pre-receive hook declined)

error: failed to push some refs to '/var/lib/git/puppet.git'

We see the commit beginning—the changes from the local production branch in
newbie are sent to the origin. However, before working with the changes, Git runs
the pre-receive hook and denies the commit. So, from the origin's perspective, the
commit never took place. The commit only exists in the newbie user's directory. If
the newbie user wishes this change to be propagated, they'll need to contact either
samdev, git, or root.

Git for everyone
At this point, we've shown how to have Git work from one of the worker machines.
In a real enterprise solution, the workers would have some sort of shared storage
configured or another method of having the Puppet code updated automatically.
In that scenario, the Git repository wouldn't live on a worker but instead be pushed
to a worker. Git has a workflow for this which uses SSH keys to grant access to the
repository. With minor changes to the shown solution, it is possible to have users
SSH to a machine as the Git user to make commits. Git also ships with a restricted
shell, git-shell, which can be used to only allow a user to update Git repositories.
In our configuration, we will change the git user's shell to git-shell using chsh,
as shown in the following commands:

worker1# chsh -s $(which git-shell) git

Changing shell for git.

Warning: "/usr/bin/git-shell" is not listed in /etc/shells.

Shell changed.

Now, we will have our developer generate an SSH key using the following commands:

remotedev@host $ ssh-keygen

Generating public/private rsa key pair.

...

Your identification has been saved in /home/remotedev/.ssh/id_rsa.

Your public key has been saved in /home/remotedev/.ssh/id_rsa.pub.

Git and Environments

[94]

Then, copy the key into the authorized_keys file for the Git user as shown in the
following commands:

remotedev@host $ ssh-copy-id -i ~/.ssh/id_rsa git@worker1

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to
filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are
prompted now it is to install the new keys

Number of key(s) added: 1

Now try logging into the machine, with ssh 'git@worker1' and check to make sure
that only the key(s) you wanted were added.

If you are copying the keys manually, remember that permissions are
important here. They must be restrictive for SSH to allow access. SSH
requires that ~git (Git's home directory) should not be group writable,
that ~git/.ssh be 700, and also that ~git/.ssh/authorized_keys
be no more than 600. Check in /var/log/secure for messages from
SSH if your remote user cannot SSH successfully as the Git user.

When a user attempts to connect to our machine as the git user, they will not be able
to login, as you can see in the following commands:

remotedev@host $ ssh -i .ssh/id_rsa git@worker1

Last login: Sat Jan 18 02:07:29 2014 from 192.168.100.1

fatal: What do you think I am? A shell?

Connection to worker1 closed.

However, if they attempted to use Git commands, as shown in the following snippet,
they will succeed:

remotedev@host $ git clone git@worker1:puppet.git

Cloning into 'puppet'...

remote: Counting objects: 188, done.

remote: Compressing objects: 100% (134/134), done.

remote: Total 188 (delta 12), reused 0 (delta 0)

Receiving objects: 100% (188/188), 19.59 KiB | 0 bytes/s, done.

Resolving deltas: 100% (12/12), done.

Chapter 3

[95]

Now, when a remote user executes a commit, it will run as the git user. We need to
modify our sudoers file to allow sudo to run remotely. Add the following line at the
top of /etc/sudoers.d/sudoers-puppet (possibly using visudo):

Defaults !requiretty

At this point, our sudo rule for the post-receive hook will work as expected,
but we will lose the restrictiveness of our pre-receive hook since everything
will be running as the git user. SSH has a solution to this problem: we can set an
environment variable in the authorized_keys file that is the name of our remote
user. Edit ~git/.ssh/authorized_keys as follows:

environment="USER=remotedev" ssh-rsa AAAA...b remotedev@host

Finally, edit the pre-receive hook, changing the user=$(whoami) line to
user=$USER.

Now, when we use our SSH key to commit remotely, the environment variable set
in the SSH key is used to determine who ran the commit.

Running an enterprise-level Git server is a complex task in itself; the scenario
presented here can be used as a road map to develop your solution.

Summary
In this chapter, we have seen how to configure Puppet to work in different
environments. We have seen how having hieradata in different environments
can allow developers to work independently.

Leveraging the utility of Git and Git Hooks, we can have custom build environments
for each developer built automatically when the code is checked into our Git
repository. This will allow us to greatly increase our developers' productivity
and allow a team full of system administrators to work simultaneously on the
same code base.

When your system administrators work on the same code, they will
inevitably run into situations where they have edited the same code
as each other. This leads to conflicts. Merging conflicts is a big part of
working in a large group. There are numerous resources available only
to help resolve merging issues. The Git branching game at http://
pcottle.github.io/learnGitBranching/ is a good place to start.

In the next chapter, we'll see how public modules from the Puppet Forge can be used
to accomplish complex configurations on our nodes.

http://pcottle.github.io/learnGitBranching/
http://pcottle.github.io/learnGitBranching/

Public Modules
The default types shipped with Puppet can be used to do almost everything you
need to do to configure your nodes. When you need to perform more tasks than the
defaults can provide, you can either write your own custom modules or turn to the
Forge (http://forge.puppetlabs.com/) and use a public module. The Puppet
Forge is a public repository of shared modules. Several of these modules enhance
the functionality of Puppet, provide a new type, or solve a specific problem. In this
chapter, we will first cover how to keep your public modules organized for your
enterprise, then we will go over specific use cases for some popular modules.

Getting modules
Modules are just files and a directory structure. They can be packaged as a ZIP
archive or shared via a Git repository. Indeed, most modules are hosted on GitHub in
addition to the Puppet Forge. You will find most public modules on the Forge, and the
preferred method to keep your modules up to date is to retrieve them from the Forge.

Using GitHub for public modules
If you have a module you wish to use that is only hosted on GitHub,
(github.com is an online Git service for sharing code using Git) a good way
to keep your modules organized is to create a local Git repository and make
the GitHub module a submodule of your modules.

We'll start by creating a new Git repository for our public modules:

git@worker1$ git init --bare --shared=group public.git

Initialized empty shared Git repository in /var/lib/git/public.git/

http://forge.puppetlabs.com/
www.github.com

Public Modules

[98]

If your Git user still has git-shell set as its login shell from
the previous chapter, change it back to bash, as shown in the
following commands:
chsh -s /bin/bash git

Changing shell for git.

Shell changed.

The first module we will download from GitHub is puppetdb, which is a module to
install and configure puppetdb. This module is available at https://github.com/
puppetlabs/puppetlabs-puppetdb.

With our public repository created, we will clone the repository in another location
and create a Git submodule for the puppetlabs-puppetdb repository in a directory
called puppetdb, as shown in the following commands. Git submodules are a way
of including other Git repositories within your repository. The advantage of a
submodule is that when the external repository is updated, your local repository
can pull in those changes.

git@worker1$ cd /tmp

git@worker1$ git clone /var/lib/git/public.git

Initialized empty Git repository in /tmp/public/.git/

warning: You appear to have cloned an empty repository.

git@worker1$ cd public

git@worker1$ git submodule add https://github.com/puppetlabs/puppetlabs-
puppetdb.git puppetdb

Initialized empty Git repository in /tmp/public/puppetdb/.git/

remote: Reusing existing pack: 927, done.

remote: Total 927 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (927/927), 226.25 KiB, done.

Resolving deltas: 100% (385/385), done.

As shown in the following commands, we can see that puppetdb has been added to
our repository using status:

git@worker1$ git status

On branch master

#

Initial commit

#

https://github.com/puppetlabs/puppetlabs-puppetdb
https://github.com/puppetlabs/puppetlabs-puppetdb

Chapter 4

[99]

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: .gitmodules

new file: puppetdb

#

Now, we need to add puppetdb to our repository and commit it as well as the
.gitmodules file, as shown in the following commands:

git@worker1$ git add .gitmodules puppetdb

git@worker1$ git commit -m "adding puppetdb as submodule"

[master (root-commit) 17ad531] adding puppetdb as submodule

 2 files changed, 4 insertions(+), 0 deletions(-)

 create mode 100644 .gitmodules

 create mode 160000 puppetdb

git@worker1$ git push origin master

Counting objects: 3, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 341 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

To /var/lib/git/public.git

 * [new branch] master -> master

The .gitmodules file contains references to the upstream Git repositories we use for
our submodules; in this case, the .gitmodules file will contain the following:

[submodule "puppetdb"]
 path = puppetdb
 url = https://github.com/puppetlabs/puppetlabs-puppetdb.git

Now, when puppetlabs-puppetdb is updated on GitHub, we can pull down the
latest commit with git submodule update.

If you create an account on GitHub, you can "watch" this repository
and be notified when an update is made.

Public Modules

[100]

While working with this workflow, it is important to know that the top-level
repository (public) only knows where the submodules live, and it doesn't know
anything about the contents of the submodules. So, when you checkout the public
repository again, the submodules will only be there as stubs, as you can see in the
following commands:

git@worker1$ cd /tmp/

git@worker1$ git clone /var/lib/git/public.git/ public2

Initialized empty Git repository in /tmp/public2/.git/

git@worker1$ cd public2

git@worker1$ ls -l puppetdb

total 0

We need to run git submodule update --init to retrieve the latest commit for the
submodule, using the following commands:

git@worker1$ git submodule update --init

Submodule 'puppetdb' (https://github.com/puppetlabs/puppetlabs-puppetdb.
git) registered for path 'puppetdb'

Initialized empty Git repository in /tmp/public2/puppetdb/.git/

remote: Reusing existing pack: 927, done.

remote: Total 927 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (927/927), 226.25 KiB | 336 KiB/s, done.

Resolving deltas: 100% (385/385), done.

Submodule path 'puppetdb': checked out
'6d5f329e2a329654efbb0e3b036523b3a67c0a2c'

This shows a shortcoming of this workflow—each developer will have his/her own
version of the submodule based on when he/she checked out the submodule. If you
agree to always work on the latest commit, then this solution is workable; however,
this can get confusing. Submodules are best used for internal repositories—to allow
one group to pull in the work of another one within their enterprise and to allow the
teams to work independently on their respective components. If you are primarily
using modules available from the Forge, then downloading them directly from the
Forge is preferable for this method because only the release versions are posted to
the Forge. The modules pulled directly from GitHub can be development releases.
Also, you will need to know which modules are required for these modules to work
and their dependencies. The puppetdb module is a good example to highlight this
problem; it requires many Forge modules to function properly, as we will see in the
the following section.

Chapter 4

[101]

Modules from the Forge
Modules on the Puppet Forge can be installed using Puppet's built-in module
command. The modules on the Forge have files named Modulefile, which define
their dependencies; so, if you download modules from the Forge using puppet
module install, then their dependencies will be resolved in a way similar to
how yum resolves dependencies for rpm packages.

To install the puppetlabs-puppetdb module, as we did previously, we will simply
issue a puppet module install command in the appropriate directory. We'll create
a new directory in tmp; for our example this will be /tmp/public3, as shown in the
following commands:

git@worker1$ mkdir public3

git@worker1$ cd public3

Then, we'll inform Puppet that our modulepath is /tmp/public3 and install the
puppetdb module, using the following commands:

git@worker1 public3$ puppet module install --modulepath=/tmp/public3
puppetlabs-puppetdb

Notice: Preparing to install into /tmp/public3 ...

Notice: Downloading from https://forge.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/tmp/public3

└─┬ puppetlabs-puppetdb (v3.0.0)

 ├── puppetlabs-firewall (v0.4.2)

 ├── puppetlabs-inifile (v1.0.0)

 ├─┬ puppetlabs-postgresql (v3.2.0)

 │ ├── puppetlabs-apt (v1.4.0)

 │ └── puppetlabs-concat (v1.0.0)

 └── puppetlabs-stdlib (v4.1.0)

Using module install, we retrieved puppetlabs-firewall, puppetlabs-inifile,
puppetlabs-postgresql, puppetlabs-apt, puppetlabs-concat, and puppetlabs-
stdlib all at once. So, not only have we satisfied dependencies automatically, but we
also have retrieved release versions of the modules as opposed to the development
code. We can, at this point, add these modules to a local repository and guarantee
that our fellow developers will be using the same versions as we have checked out.
Otherwise, we can inform our developers about the version we are using and have
them checkout the modules using the same versions.

Public Modules

[102]

You can specify the version with puppet module install as follows:

git@worker1$ \rm -r stdlib

git@worker1$ puppet module install --modulepath=/tmp/public3 puppetlabs-
stdlib --version 3.2.0

Notice: Preparing to install into /tmp/public3 ...

Notice: Downloading from https://forge.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/tmp/public3

└── puppetlabs-stdlib (v3.2.0)

The \rm in the previous example is a shorthand in Unix to disable shell
expansion of variables. rm is usually aliased to rm -i, which would
have prompted us when we wanted to delete the directory.

Keeping track of the installed versions can become troublesome; a more stable
approach is to use librarian-puppet to pull in the modules you require for
your site.

Using librarian
Librarian is a bundler for Ruby. It handles dependency checking for you.
The project to use librarian with Puppet is called librarian-puppet and is available
at http://rubygems.org/gems/librarian-puppet. To install librarian-puppet,
we'll use RubyGems since no rpm packages exist in public repositories at this
time. To avoid user-installed gems from polluting our Ruby structure, we'll install
librarian-puppet into the Git user's .gem directory, and copy the modules into a
directory the Puppet master can use, using the following commands:

git@worker1$ gem install --user-install librarian-puppet

WARNING: You don't have /var/lib/git/.gem/ruby/1.8/bin in your PATH,

 gem executables will not run.

Successfully installed thor-0.18.1

Successfully installed librarian-puppet-0.9.10

2 gems installed

Installing ri documentation for thor-0.18.1...

Installing ri documentation for librarian-puppet-0.9.10...

Installing RDoc documentation for thor-0.18.1...

Installing RDoc documentation for librarian-puppet-0.9.10...

http://rubygems.org/gems/librarian-puppet

Chapter 4

[103]

Gem was kind enough to remind us that we don't have the new path we just created
in our $PATH; we'll now add it using the following command:

git@worker1$ echo export PATH=\$PATH:/var/lib/git/.gem/ruby/1.8/bin >>~/.
bashrc

git@worker1$. .bashrc

We can now run librarian-puppet as follows:

[git@worker1 ~]$ librarian-puppet version

librarian-puppet v0.9.10

The librarian-puppet project uses a Puppetfile to define the modules that will
be installed. The syntax is the name of the module followed by a comma and the
version to install. You can override the location of the Puppet Forge using a forge
line as well. Our initial Puppetfile would be the following:

forge "http://forge.puppetlabs.com"
mod 'puppetlabs/puppetdb', '3.0.0'
mod 'puppetlabs/stdlib', '3.2.0'

We'll create a new public directory in /tmp/public4 and include the Puppetfile in
that directory, as shown in the following commands:

git@worker1$ cd /tmp

git@worker1$ mkdir public4 && cd public4

git@worker1$ cat <<EOF>Puppetfile

> forge "http://forge.puppetlabs.com"

> mod 'puppetlabs/puppetdb', '3.0.0'

> mod 'puppetlabs/stdlib', '3.2.0'

> EOF

Next, we'll tell librarian-puppet to install everything we've listed in the
Puppetfile as follows:

git@worker1$ librarian-puppet update

git@worker1$ ls

modules Puppetfile Puppetfile.lock

The Puppetfile.lock file is a file used by librarian-puppet to keep track of
installed versions and dependencies; in our example, it contains the following:

FORGE
 remote: http://forge.puppetlabs.com
 specs:

Public Modules

[104]

 puppetlabs/apt (1.4.0)
 puppetlabs/stdlib (>= 2.2.1)
 puppetlabs/concat (1.1.0-rc1)
 puppetlabs/stdlib (>= 3.0.0)
 puppetlabs/firewall (0.4.2)
 puppetlabs/inifile (1.0.0)
 puppetlabs/postgresql (3.2.0)
 puppetlabs/apt (>= 1.1.0, < 2.0.0)
 puppetlabs/concat (>= 1.0.0, < 2.0.0)
 puppetlabs/firewall (>= 0.0.4)
 puppetlabs/stdlib (>= 3.2.0, < 5.0.0)
 puppetlabs/puppetdb (3.0.0)
 puppetlabs/firewall (>= 0.0.4)
 puppetlabs/inifile (~> 1)
 puppetlabs/postgresql (>= 3.1.0, < 4.0.0)
 puppetlabs/stdlib (>= 2.2.0)
 puppetlabs/stdlib (3.2.0)
DEPENDENCIES
 puppetlabs/puppetdb (= 3.0.0)
 puppetlabs/stdlib (= 3.2.0)

Our modules are installed in /tmp/public4/modules. Now, we can go back and
add all these modules to our initial Puppetfile to lockdown the versions of the
modules for all our developers. The process for a developer to clone our working
tree would be to install librarian-puppet and then pull down our Puppetfile.
We will add the Puppetfile to our Git repository to complete the workflow. Thus,
each developer will be guaranteed of having the same public module structure.

We can then move these modules to /etc/puppet/public and change permissions
for the Puppet user, using the following commands:

worker1# cd /tmp/public4/

worker1# cp -a . /etc/puppet/public

worker1# chown -R puppet:puppet /etc/puppet/public

worker1# ls -l /etc/puppet/public/modules

total 28

drwxrwxr-x. 8 puppet puppet 4096 Jan 21 02:16 apt

...

drwxrwxr-x. 6 puppet puppet 4096 Jan 21 02:16 stdlib

This method works fairly well, but we still need to update the modules
independently of our Git updates; we need to do these two actions together.
This is where r10k comes into play.

Chapter 4

[105]

Using r10k
r10k is an automation tool for Puppet environments. It is hosted on GitHub at
https://github.com/adrienthebo/r10k. The project is used to speed up
deployments when there are many environments and many Git repositories in use.
From what we've covered so far, we can think of it as librarian-puppet and Git
Hooks in a single package. r10k takes the Git repositories specified in /etc/r10k.yaml
and checks out each branch of the repositories into a subdirectory of the environment
directory (the environment directory is also specified in /etc/r10k.yaml). If there is
a Puppetfile in the root of the branch, then r10k parses the file in the same way that
librarian-puppet does, and it uses puppet module install to install the specified
modules in a directory named modules under the environment directory.

To use r10k, we'll replace our post-receive Git Hook from the previous chapter
with a call to r10k, and we'll move our librarian-puppet configuration to a place
where r10k is expecting it. Since r10k will only be used by the Puppet user, we'll
install r10k in the Puppet user's home directory and add the user rubygem path
to the Puppet users' path.

Set up the Puppet user with a normal shell and login files, as shown in the
following commands:

worker1# chsh -s /bin/bash puppet worker1# sudo -iu puppet

puppet@worker1$ cp /etc/skel/.bashrc ~

puppet@worker1$ cp /etc/skel/.bash_profile ~

Now, install the r10k gem as shown in the following commands:

puppet@worker1$ gem install r10k --user-install

WARNING: You don't have /var/lib/puppet/.gem/ruby/1.8/bin in your PATH,

 gem executables will not run.

...

Successfully installed r10k-1.1.2

6 gems installed

...

puppet@worker1$ echo "export PATH=\$PATH:~/.gem/ruby/1.8/bin" >>~/.bashrc

puppet@worker1$ exit

logout

worker1# sudo -iu puppet

puppet@worker1$ r10k version

1.1.2

https://github.com/adrienthebo/r10k

Public Modules

[106]

Next, we'll create a /etc/r10k.yaml file to point to our local Git repository.
We will also specify that our Puppet environments will reside in /etc/puppet/
environments, as shown in the following snippet:

:cachedir: '/var/cache/r10k'
:sources:
 :plops:
 remote: '/var/lib/git/puppet.git'
 basedir: '/etc/puppet/environments'

Now, we need to create the cache directory and make it owned by the Puppet user.
We will use the following commands to do so:

worker1# mkdir /var/cache/r10k

worker1# chown puppet:puppet /var/cache/r10k

Now, we need to checkout our code and add a Puppetfile to the root of the
checkout. In each environment, create a Puppetfile that contains which modules
you want installed in that environment; we'll copy the previous Puppetfile as
shown in the following code:

forge "http://forge.puppetlabs.com"
mod 'puppetlabs/puppetdb', '3.0.0'
mod 'puppetlabs/stdlib', '3.2.0'

Add the Puppetfile to the Git repository using the following commands:

samdev@worker1$ git checkout master

samdev@worker1$ git add Puppetfile

samdev@worker1$ git commit -m "adding Puppetfile"

[master 880486a] adding Puppetfile

 1 files changed, 3 insertions(+), 0 deletions(-)

 create mode 100644 Puppetfile

Now, r10k expects that the modules specified in the Puppetfile will get installed
in $environment/modules, but we already have modules in that location. Move the
existing modules into another directory as shown in the following commands; dist
or local are commonly used:

samdev@worker1$ git mv modules dist

samdev@worker1$ git commit -m "moving modules to dist"

[master f0909fc] moving modules to dist

 7 files changed, 0 insertions(+), 0 deletions(-)

...

 rename {modules => dist}/web/manifests/init.pp (100%)

Chapter 4

[107]

Now that our modules are out of the way, we don't want a modules directory to
be tracked by Git, so add modules to .gitignore using the following commands:

samdev@worker1$ echo "modules/" >>.gitignore

samdev@worker1$ git add .gitignore

samdev@worker1$ git commit -m "adding .gitignore"

[master da71672] adding .gitignore

 1 files changed, 1 insertions(+), 0 deletions(-)

 create mode 100644 .gitignore

Ok, we are finally ready to test. Well almost. We want to test r10k, so we need to
disable our post-receive hook; just disable the execute bit on the script as shown
in the following commands:

git@worker1$ cd /var/lib/git/puppet.git/hooks/

git@worker1$ chmod -x post-receive

Now we can finally push our changes to the Git repository, as shown in the
following commands:

git@worker1$ exit

root@worker1# sudo -iu samdev

samdev@worker1$ git push origin master

Counting objects: 6, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 609 bytes, done.

Total 5 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

To /var/lib/git/puppet.git

 1a0d896..da71672 master -> master

Note that there are no remote lines in the output since we no longer have
a post-receive hook running. We can now clean out the environments
directory and test r10k, using the following commands:

samdev@worker1$ exit

root@worker1# sudo -iu puppet

puppet@worker1$ cd /etc/puppet

puppet@worker1$ \rm -r environments

puppet@worker1$ mkdir environments

puppet@worker1$ r10k deploy environment -p

Public Modules

[108]

puppet@worker1$ ls environments

master production thomas

puppet@worker1$ ls environments/production/

hieradata manifests modules README

puppet@worker1$ ls environments/production/modules

puppet@worker1$ ls environments/master/

dist hieradata manifests modules Puppetfile README

puppet@worker1$ ls environments/master/modules/

puppetdb stdlib

As we can see, r10k did a Git checkout of our code in the master, thomas,
and production branches. We added a Puppetfile to the master branch;
so, when we look in /etc/puppet/environments/master/modules, we will
see the puppetdb and stdlib modules defined in the Puppetfile.

To switch our workflow to use r10k, we'll change our post-receive hook to use
r10k. Our post-receive hook will be greatly simplified; we'll just call r10k with
the name of the branch and exit. Alternatively, we can have r10k run on every
environment if we choose to; this way, it will only update a specific branch each
time. To make the hook work again, we'll first need to enable the execute bit on
the file, as shown in the following commands:

root@worker1# sudo -iu git

git@worker1$ cd /var/lib/git/puppet.git/hooks

git@worker1$ chmod +x post-receive

Next, we'll replace the contents of post-receive with the following script:

#!/bin/bash
r10k=/var/lib/puppet/.gem/ruby/1.8/bin/r10k
read oldrev newrev refname
 branch=${refname#*\/*\/}
 # let r10k take care of everything, all we need is the branch name
 sudo -u puppet $r10k deploy environment $branch -p
 exit=$?
exit $exit

Now, we need to edit our sudoers file to allow Git to run r10k as Puppet, as shown
in the following code:

git ALL = (puppet) NOPASSWD: /var/lib/puppet/.gem/ruby/1.8/bin/r10k
%pupdevs ALL = (puppet) NOPASSWD: /var/lib/puppet/.gem/ruby/1.8/bin/
r10k

Chapter 4

[109]

Now, to test whether everything is working, remove a module from the master
environment using the following command:

[puppet@worker1 puppet]$ \rm -fr environments/master/modules/stdlib/

[puppet@worker1 puppet]$ exit

logout

Now, make a change in master and push that change to the origin to trigger
an r10k run, as shown in the following commands:

worker1# sudo -iu samdev

samdev@worker1$ cd puppet

samdev@worker1$ echo "Using r10k in post-recieve" >>README

samdev@worker1$ git add README

samdev@worker1$ git commit -m "triggering r10k rebuild"

[master afad1cd] triggering r10k rebuild

 1 files changed, 1 insertions(+), 0 deletions(-)

samdev@worker1$ git push origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Unpacking objects: 100% (3/3), done.

Writing objects: 100% (3/3), 298 bytes, done.

Total 3 (delta 2), reused 0 (delta 0)

To /var/lib/git/puppet.git

 afad1cd..0d1695a master -> master

Finally, verify whether the stdlib module was recreated or not using the
following command:

samdev@worker1$ ls /etc/puppet/environments/master/modules/

puppetdb stdlib

Keeping everything in r10k allows us to have mini labs for developers to work
on a copy of our entire infrastructure with a few commands. They will only need
a copy of our Git repository and our r10k.yaml file to recreate the configuration
on a private Puppet master.

Public Modules

[110]

Using modules
Many of the modules found on the public Forge are of high quality and have good
documentation. The modules we will cover in this section are well-documented.
What we will do is use concrete examples to show how to use these modules to solve
real-world problems. Though I have covered only those modules I personally found
useful, there are many excellent modules that can be found on the Forge. I encourage
you to have a look at them first before starting to write their own modules.

The modules that we will cover are as follows:

•	 concat

•	 inifile

•	 firewall

•	 lvm

•	 stdlib

These modules extend Puppet with custom types and, therefore, require that
pluginsync be enabled on our nodes. Pluginsync copies Ruby libraries from the
modules to /var/lib/puppet/lib/puppet and /var/lib/puppet/lib/facter.
To enable pluginsync, set pluginsync=true in /etc/puppet/puppet.conf,
or add pluginsync to the puppet agent command line.

Pluginsync is enabled by default in Puppet versions 3.0 and higher.

concat
When we distribute files with Puppet, we either send the whole file as is, or we
send over a template that has references to variables. The concat module offers us a
chance to build up a file from fragments and have it reassembled on the node. Using
concat, we can have files, which live locally on the node, incorporated into the final
file as sections. More importantly, while working in a complex system, we can have
more than one module adding sections to the file. In a simple example, we can have
four modules all operating on /etc/issue. The modules are as follows:

•	 issue – This is the base module that puts a header on /etc/issue
•	 issue_confidential – This module adds a confidential warning

to /etc/issue

Chapter 4

[111]

•	 issue_secret – This module adds a secret level warning to /etc/issue
•	 issue_topsecret – This module adds a top secret level warning to

/etc/issue

Using either the file or the template method to distribute the file won't work here
because all of the four modules are modifying the same file. What makes this harder
still is that we will have machines in our organization that require one, two, three,
or all four of the modules to be applied. The concat module allows us to solve this
problem in an organized fashion (not a haphazard series of execs with awk and sed).
To use concat, you first define the container, which is the file that will be populated
with the fragments. concat calls the sections of the file fragments. The fragments
are assembled based on their order. The order value is assigned to the fragments
and should have the same number of digits, that is, if you have 100 fragments, then
your first fragment should have 001, and not 1, as the order value. Our first module
issue will have the following init.pp manifest file:

class issue {
 concat { 'issue':
 path => '/etc/issue',
 }
 concat::fragment {'issue_top':
 target => 'issue',
 content => "Example.com\n",
 order => '01',
 }
}

This defines /etc/issue as a concat container and also creates a fragment
to be placed at the top of the file (order 01). When applied to a node,
the /etc/issue container will simply contain Example.com.

Our next module is issue_confidential. This includes the issue module to ensure
that the container for /etc/issue is defined and we have our header. We then define
a new fragment to contain the confidential warning, as shown in the following code:

class issue_confidential {
 include issue
 concat::fragment {'issue_confidential':
 target => 'issue',
 content => "Unauthorised access to this machine is strictly
 prohibited. Use of this system is limited to authorised
 parties only.\n",
 order => '05',
 }
}

Public Modules

[112]

This fragment has order 05, so it will always appear after the header. The next
two modules are issue_secret and issue_topsecret. They both perform the
same function as issue_confidential but with different messages and orders,
as you can see in the following code:

class issue_secret {
 include issue
 concat::fragment {'issue_secret':
 target => 'issue',
 content => "All information contained on this system is protected,
no information may be removed from the system unless authorised.\n",
 order => '10',
 }
}
class issue_topsecret {
 include issue
 concat::fragment {'issue_topsecret':
 target => 'issue',
 content => "You should forget you even know about this system.\n",
 order => '15',
 }
}

Using our hiera configuration from the previous chapter, we will modify the node1.
yaml file to contain the issue_confidential class; this will cause the /etc/issue
file to contain the header and the confidential warning.

After running this configuration on node1, we see the following while attempting
to log in to the system:

Example.com

Unauthorised access to this machine is strictly prohibited. Use of this
system is limited to authorised parties only.

node1.example.com login:

Now, we will go back to our node1.yaml file and add issue_secret, as shown in
the following snippet:

welcome: 'Sample Developer Made this change'
classes: - issue_confidential
 - issue_secret

Chapter 4

[113]

After a successful Puppet run, the login looks like the following:

Example.com

Unauthorised access to this machine is strictly prohibited. Use of this
system is limited to authorised parties only.

All information contained on this system is protected, no information may
be removed from the system unless authorized.

node1.example.com login:

Adding the issue_topsecret module is left as an exercise, but we can see the utility
of being able to have several modules modify a file. We can also have a fragment
defined from a file on the node. We'll create another module called issue_local and
add a local fragment. To specify a local file resource, we will use the source attribute
of concat::fragment, as shown in the following code:

class issue_local {
 include issue
 concat::fragment {'issue_local':
 target => 'issue',
 source => '/etc/issue.local',
 order => '99',
 }
}

Now, we add issue_local to node1.yaml, but before we can run the puppet agent
on node1, we have to create /etc/issue.local, or the catalog will fail. This is a
shortcoming of the concat module—if you specify a local path, then it has to exist.
You can overcome this by having a file resource defined that creates an empty file if
the local path doesn't exist, as shown in the following snippet:

 file {'issue_local':
 path => '/etc/issue.local',
 ensure => 'file',
 }

Then, modify the concat::fragment to require the file resource, as shown in the
following snippet:

concat::fragment {'issue_local':
 target => 'issue',
 source => '/etc/issue.local',
 order => '99',
 require => File['issue_local'],
 }

Public Modules

[114]

Now, we can run puppet agent on node1; nothing will happen but the catalog
will compile. Next, add some content to /etc/issue.local as shown in the
following statement:

node1# echo "This is an example node, avoid storing protected material
here" >/etc/issue.local

Now after running Puppet, our login prompt will look like this:

Example.com

Unauthorised access to this machine is strictly prohibited. Use of this
system is limited to authorised parties only.

All information contained on this system is protected, no information may
be removed from the system unless authorized.

This is an example node, avoid storing protected material here

node1.example.com login:

There are many places where you would like to have multiple modules modify a
file. When the structure of the file isn't easily determined, concat is the only viable
solution. If the file is highly structured, then other mechanisms, such as augeas,
can be used. When the file has a syntax of the inifile type, there is a module
specifically made for inifiles.

inifile
The inifile module modifies the ini-style configuration files, such as those used
by Samba, System Security Services Daemon (SSSD), YUM, tuned, and many
others, including Puppet. The module uses the ini_setting type to modify
settings based on their section, name, and value. Consider the gpgcheck
setting in the following /etc/yum.conf file:

[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

Chapter 4

[115]

As an example, we will modify that setting using puppet resource, as shown in the
following commands:

node1# puppet resource ini_setting dummy_name path=/etc/yum.conf
section=main setting=gpgcheck value=0

Notice: /Ini_setting[dummy_name]/value: value changed '1' to '0'

ini_setting { 'dummy_name':

 ensure => 'present',

 value => '0',

}

When we look at the file, we will see that the value was indeed changed:

[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=0
plugins=1
installonly_limit=3

The power of this module is the ability to change only part of a file and not clobber
the work of another module. To show how this can work, we'll modify the SSSD
configuration file. SSSD manages access to remote directories and authentication
systems. It supports talking to multiple sources; we can exploit this to create
modules that only define their own section of the configuration file. In this example,
we'll assume there are production and development authentication LDAP directories
called prod and devel. We'll create modules called sssd_prod and sssd_devel to
modify the configuration file. Starting with sssd_prod, we'll add a [domain/prod]
section to the file, as shown in the following snippet:

class sssd_prod {
 ini_setting {'krb5_realm_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_realm',
 value => 'PROD',
 }
 ini_setting {'ldap_search_base_prod':
 path => '/etc/sssd/sssd.conf',

Public Modules

[116]

 section => 'domain/PROD',
 setting => 'ldap_search_base',
 value => 'ou=prod,dc=example,dc=com',
 }
 ini_setting {'ldap_uri_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'ldap_uri',
 value => 'ldaps://ldap.prod.example.com',
 }
 ini_setting {'krb5_kpasswd_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_kpasswd',
 value => 'secret!',
 }
 ini_setting {'krb5_server_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_server',
 value => 'kdc.prod.example.com',
}

These ini_setting resources will create five lines within the [domain/PROD]
section of the configuration file. We need to add PROD to the list of domains;
for this, we'll use ini_subsetting as shown in the following snippet.
The ini_subsetting type allows us to add sub settings to a single setting.

ini_subsetting {'domains_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'sssd',
 setting => 'domains',
 subsetting => 'PROD',
 }

Now, we'll add sssd_prod to our node1.yaml file and apply puppet agent on
node1 to see the changes, as shown in the following commands:

node1# puppet agent -t --pluginsync --environment master

...

Notice: /Stage[main]/Sssd_prod/Ini_subsetting[domains_prod]/ensure:
created

...

Notice: Finished catalog run in 0.68 seconds

Chapter 4

[117]

Now when we look at /etc/sssd/sssd.conf, we will see the [sssd] and [domain/
PROD] sections are created (they are incomplete for this example, you will need many
more settings to make SSSD work properly), as shown in the following snippet:

[sssd]
domains = PROD

[domain/PROD]
krb5_server = kdc.prod.example.com
krb5_kpasswd = secret!
ldap_search_base = ou=prod,dc=example,dc=com
ldap_uri = ldaps://ldap.prod.example.com
krb5_realm = PROD

Now, we can create our sssd_devel module and add the same setting as we had
done for prod, changing their values for devel, as shown in the following code:

class sssd_devel {
 ini_setting {'krb5_realm_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_realm',
 value => 'DEVEL',
 }
 ini_setting {'ldap_search_base_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'ldap_search_base',
 value => 'ou=devel,dc=example,dc=com',
 }
 ini_setting {'ldap_uri_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'ldap_uri',
 value => 'ldaps://ldap.devel.example.com',
 }
 ini_setting {'krb5_kpasswd_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_kpasswd',
 value => 'DevelopersDevelopersDevelopers',
 }
 ini_setting {'krb5_server_devel':

Public Modules

[118]

 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_server',
 value => 'dev1.devel.example.com',
 }

Again, we will add DEVEL to the list of domains using ini_subsetting, as shown in
the following code:

 ini_subsetting {'domains_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'sssd',
 setting => 'domains',
 subsetting => 'DEVEL',
 }

Now, after adding sssd_devel to node1.yaml, we run puppet agent on node1 and
examine the /etc/sssd/sssd.conf file after, as shown in the following snippet:

[sssd]
domains = PROD DEVEL

[domain/PROD]
krb5_server = kdc.prod.example.com
krb5_kpasswd = secret!
ldap_search_base = ou=prod,dc=example,dc=com
ldap_uri = ldaps://ldap.prod.example.com
krb5_realm = PROD

[domain/DEVEL]
krb5_realm = DEVEL
ldap_uri = ldaps://ldap.devel.example.com
ldap_search_base = ou=devel,dc=example,dc=com
krb5_server = dev1.devel.example.com
krb5_kpasswd = DevelopersDevelopersDevelopers

As we can see, both realms have been added to the domains section, and each
realm has had its own configuration section created. To complete this example,
we will need an SSSD module that each of these modules calls with include sssd.
In that module, we will define the SSSD service and have our changes send a
notify signal to the service. I would place the notify signal in the domain's
ini_subsetting resource.

Chapter 4

[119]

Having multiple modules work on the same files simultaneously can make your
Puppet implementation a lot simpler. It's counterintuitive, but having the modules
coexist means you don't need as many exceptions in your code. The Samba
configuration file can be managed by a Samba module, but shares can be added
by other modules using inifile and not interfere with the main Samba module.

firewall
If your organization uses host-based firewalls, filters that run on each node
filtering network traffic, then the firewall module will soon become a friend.
On enterprise Linux systems, the firewall module can be used to configure
iptables automatically. Effective use of this module requires having all your
iptables rules in Puppet.

The firewall module has some limitations—if your systems require
large rulesets, your agent runs may take some time to complete.

The default configuration can be a little confusing—there are ordering issues
that have to be dealt with while working with the firewall rules. The idea here
is to ensure that there are no rules at the start. This is achieved with purge,
as shown in the following code:

 resources { "firewall":
 purge => true
 }

Next, we need to make sure that any firewall rules we define are inserted after our
initial configuration rules and before our final deny rule. To ensure this, we use a
resource default definition. Resource defaults are made by capitalizing the resource
type. In our example, firewall becomes Firewall, and we define the before and
require attributes such that they point to the location where we will keep our setup
rules (pre) and our final deny statement (post), as shown in the following snippet:

 Firewall {
 before => Class['example_fw::post'],
 require => Class['example_fw::pre'],
 }

Public Modules

[120]

Because we are referencing example_fw::pre and example_fw::post, we'll need to
include them at this point. The module also defines a firewall class that we should
include. Rolling all that together, we have our example_fw class with the following:

class example_fw {
 include example_fw::post
 include example_fw::pre
 include firewall

 resources { "firewall":
 purge => true
 }
 Firewall {
 before => Class['example_fw::post'],
 require => Class['example_fw::pre'],
 }
}

Now we need to define our default rules to go to example_fw::pre. We will allow
all ICMP traffic, all established and related TCP traffic, and all SSH traffic. Since we
are defining example_fw::pre, we need to override our earlier require attribute at
the beginning of this class, as shown in the following code:

class example_fw::pre {
 Firewall {
 require => undef,
 }

Then, we can add our rules using the firewall type provided by the module.
When we define the firewall resources, it is important to start the name of the
resource with a number, as shown in the following snippet. The numbers are
used for ordering by the firewall module.

 firewall { '000 accept all icmp':
 proto => 'icmp',
 action => 'accept',
 }
 firewall { '001 accept all to lo':
 proto => 'all',
 iniface => 'lo',
 action => 'accept',
 }
 firewall { '002 accept related established':
 proto => 'all',

Chapter 4

[121]

 state => ['RELATED', 'ESTABLISHED'],
 action => 'accept',
 }
 firewall { '022 accept ssh':
 proto => 'tcp',
 port => '22',
 action => 'accept',
 }
}

Now, if we finished at this point, our rules would be a series of allow statements.
Without a final deny statement, everything is allowed. We need to define a drop
statement in our post class. Again, since this is example_fw::post, we need to
override the earlier setting to before, as shown in the following code:

class example_fw::post {
 firewall { '999 drop all':
 proto => 'all',
 action => 'drop',
 before => undef,
 }
}

Now, we can apply this class in our node1.yaml file and run Puppet to see the
firewall rules getting rewritten by our module. The first thing we will see is the
current firewall rules being purged, as shown in the following commands:

node1# puppet agent -t --pluginsync --environment master

...

Notice: /Stage[main]/Example_fw/Firewall[9006
32828795e9fcabe60ef2ca2c1d6ccf05]/ensure: removed

Notice: /Stage[main]/Example_fw/Firewall[9004
dc0f1adfee77aa04ef7fdf348860a701]/ensure: removed

Notice: /Stage[main]/Example_fw/Firewall[9005
738c8429dea5edc3ad290a06dc845dc9]/ensure: removed

Notice: /Stage[main]/Example_fw/Firewall[9001
fe701ab7ca74bd49f13b9f0ab39f3254]/ensure: removed

Notice: /Stage[main]/Example_fw/Firewall[9007
9c205c1da32aab86e155ff77334c5fc8]/ensure: removed

Notice: /Stage[main]/Example_fw/Firewall[9002
a627067f779aaa7406fa9062efa4550e]/ensure: removed

Public Modules

[122]

Next, our pre section will apply our initial allow rules:

Notice: /Stage[main]/Example_fw::Pre/Firewall[002 accept related
established]/ensure: created

Notice: /Stage[main]/Example_fw::Pre/Firewall[000 accept all icmp]/
ensure: created

Notice: /Stage[main]/Example_fw::Pre/Firewall[022 accept ssh]/ensure:
created

Notice: /Stage[main]/Example_fw::Pre/Firewall[001 accept all to lo]/
ensure: created

Finally, our post section adds a drop statement to the end of the rules, as shown in
the following commands:

Notice: /Stage[main]/Example_fw::Post/Firewall[999 drop all]/ensure:
created

Notice: Finished catalog run in 5.90 seconds

Earlier versions of this module did not save the rules; you would need to execute
iptables-save after the post section. The module now takes care of this so that
when we examine /etc/sysconfig/iptables, we see our current rules saved,
as shown in the following snippet:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [1:180]
-A INPUT -p icmp -m comment --comment "000 accept all icmp" -j ACCEPT
-A INPUT -i lo -m comment --comment "001 accept all to lo" -j ACCEPT
-A INPUT -m comment --comment "002 accept related established" -m
state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m multiport --ports 22 -m comment --comment "022
accept ssh" -j ACCEPT
-A INPUT -m comment --comment "999 drop all" -j DROP
COMMIT

Now that we have our firewall controlled by Puppet, when we apply our web
module to our node, we can have it open port 80 on the node as well, as shown
in the following code. Our earlier web module can just use include example_fw
and define a firewall resource.

class web {
 package {'httpd':
 ensure => 'installed'
 }

Chapter 4

[123]

 service {'httpd':
 ensure => true,
 enable => true,
 require => Package['httpd'],
 }
 include example_fw
 firewall {'080 web server':
 proto => 'tcp',
 port => '80',
 action => 'accept',
 }
}

Now when we apply this class to node1, we will see that port 80 is applied after our
SSH rule and before our deny rule as expected:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [566:72386]
-A INPUT -p icmp -m comment --comment "000 accept all icmp" -j ACCEPT
-A INPUT -i lo -m comment --comment "001 accept all to lo" -j ACCEPT
-A INPUT -m comment --comment "002 accept related established" -m
state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m multiport --ports 22 -m comment --comment "022
accept ssh" -j ACCEPT
-A INPUT -p tcp -m multiport --ports 80 -m comment --comment "080 web
server" -j ACCEPT
-A INPUT -m comment --comment "999 drop all" -j DROP
COMMIT

Using this module, it's possible to have very tight host-based firewalls on your
systems that are flexible and easy to manage.

lvm
This module allows you to create volume groups, logical volumes, and filesystems
with Puppet using the logical volume manager (lvm) tools in Linux.

Having Puppet automatically configure your logical volumes can be a
great benefit, but it can also cause problems. The module is very good at
not shrinking filesystems, but you may experience catalog failures when
physical volumes do not have sufficient free space.

Public Modules

[124]

If you are not comfortable with lvm, then I suggest you do not start with this
module. This module can be of great help if you have products that require their
own filesystems or auditing requirements that require application logs to be on
separate filesystems. The only caveat here is that you need to know where your
physical volumes reside, that is, which device contains the physical volumes for
your nodes. If you are lucky and have the same disk layout for all nodes, then
creating a new filesystem for your audit logs, /var/log/audit, is very simple.
Assuming we have an empty disk at /dev/sdb, we can create a new volume group
for audit items and a logical volume to contain our filesystem. The module takes care
of all the steps that have to be performed. It creates the physical volume and creates
the volume group using the physical volume. Then, it creates the logical volume and
creates a filesystem on that logical volume.

To show the lvm module in action, we'll create node2 that has a boot device
and a second drive. On my system, the first device is /dev/vda and the second
drive is /dev/sda. We can see the disk layout using lsblk as shown in the
following screenshot:

We can see that /dev/sda is available on the system but nothing is installed on it.
We'll create a new module called lvm_web, which will create a logical volume of
4 GB, and format it with an ext4 filesystem, as shown in the following code:

class lvm_web {
 lvm::volume {"lv_var_www":
 ensure => present,
 vg => "vg_web",
 pv => "/dev/sda",
 fstype => "ext4",
 size => "4G",
 }
}

Chapter 4

[125]

Now we'll create a node2.yaml file in hieradata/hosts/node2.yaml, as shown
in the following snippet:

welcome: 'lvm node'
classes: - lvm_web

Now when we run puppet agent on node2, we will see that the vg_web
volume group is created, followed by the lv_var_www logical volume,
and the filesystem after that:

node2# puppet agent -t --pluginsync --environment master

...

Info: Caching catalog for node2

Info: Applying configuration version '1391408119'

...

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Volume_group[vg_
web]/ensure: created

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Logical_volume[lv_
var_www]/ensure: created

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Filesystem[/dev/vg_
web/lv_var_www]/ensure: created

Now when we run lsblk again, we will see that the filesystem was created:

Public Modules

[126]

Note that the filesystem is not mounted yet, only created. To make this a fully
functional class, we would need to add the mount location for the filesystem
and ensure that the mount point exists, as shown in the following code:

 file {'/var/www/html':
 ensure => 'directory',
 owner => '48',
 group => '48',
 mode => '0755',
 }
 mount {'lvm_web_var_www':
 name => '/var/www/html',
 ensure => 'mounted',
 device => "/dev/vg_web/lv_var_www",
 dump => '1',
 fstype => "ext4",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["lv_var_www"],File["/var/www/html"]],
 }

Now when we run Puppet again, we can see that the directories are created and
the filesystem is mounted:

node2# puppet agent -t --pluginsync --environment master

...

Info: Caching catalog for node2

Info: Applying configuration version '1391408851'

Notice: /Stage[main]/Lvm_web/File[/var/www]/ensure: created

Notice: /Stage[main]/Lvm_web/File[/var/www/html]/ensure: created

Notice: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]/ensure: defined
'ensure' as 'mounted'

Info: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Scheduling refresh of
Mount[lvm_web_var_www]

Info: Mount[lvm_web_var_www](provider=parsed): Remounting

Notice: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Triggered 'refresh'
from 1 events

Info: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Scheduling refresh of
Mount[lvm_web_var_www]

Notice: Finished catalog run in 1.21 seconds

Chapter 4

[127]

Now when we run lsblk, we see the filesystem is mounted, as shown in the
following screenshot:

This module can save you a lot of time. The steps required to set up a new volume
group, add a logical volume, format the filesystem correctly, and then mount the
filesystem can all be reduced to including a single class on a node.

stdlib
The standard library (stdlib) is a collection of useful facts, functions, types, and
providers not included with the base language. Even if you do not use the items
within stdlib directly, reading about how they are defined is useful to figure out
how to write your own modules.

Several functions are provided by stdlib; these can be found at https://forge.
puppetlabs.com/puppetlabs/stdlib. Also, several string-handling functions are
provided by it, such as capitalize, chomp, and strip. There are functions for array
manipulation and some arithmetic operations, such as absolute value (abs) and
minimum (min). When you start building complex modules, the functions provided
by the stdlib can occasionally reduce your code complexity.

Many parts of stdlib have been merged into facter and Puppet. One useful
capability originally provided by stdlib is the ability to define custom facts based
on text files or scripts on the node. This allows processes that run on nodes to supply
facts to Puppet to alter the behavior of the agent. To enable this feature, we have
to create a directory called /etc/facter/facts.d (Puppet enterprise uses /etc/
puppetlabs/facter/facts.d), as shown in the following commands:

node2# facter -p myfact

node2# mkdir -p /etc/facter/facts.d

https://forge.puppetlabs.com/puppetlabs/stdlib
https://forge.puppetlabs.com/puppetlabs/stdlib

Public Modules

[128]

node2# echo "myfact=myvalue" >/etc/facter/facts.d/myfact.txt

node2# facter -p myfact

myvalue

The facter_dot_d mechanism can use text files (.txt), .yaml, or .json files based
on the extension. If you create an executable file, then it will be executed and the
results parsed for fact values as though you had a .txt file (fact = value). When
using script files, you should create a time-to-live (ttl) file in the /etc/facts/
facts.d directory to tell facter how long to wait between running the script.

If you are using a facter version earlier than 1.7, then you will need
the facter.d mechanism provided by stdlib. This was removed
in stdlib version 3 and higher; the latest stable stdlib version that
provides facter.d is 2.6.0. You will also need to enable pluginsync
on your nodes (the default setting on Puppet 2.7 and higher).

To illustrate the usefulness, we will create a fact that returns the gems installed on
the system. I'll run this on a host with a few gems to illustrate the point. Place the
following script in /etc/facter/facts.d/gems.sh and make it executable
(chmod +x gems.sh):

#!/bin/bash

gems=$(/usr/bin/gem list --no-versions | /bin/grep -v "^$" | /usr/bin/
paste -sd ",")
echo "gems=$gems"
echo $(date) >>/tmp/gems

Now run facter to see the output from the fact:

gemhost# facter -p gems

bigdecimal,bropages,builder,bundler,commander,hiera,hiera-
puppet,highline,io-console,json,json_pure,mime-types,net-http-
persistent,nokogiri,psych,puppet-lint,rbvmomi,rdoc,rest-client,smart_
colored,thor,trollop

gemhost# facter -p gems

bigdecimal,bropages,builder,bundler,commander,hiera,hiera-
puppet,highline,io-console,json,json_pure,mime-types,net-http-
persistent,nokogiri,psych,puppet-lint,rbvmomi,rdoc,rest-client,smart_
colored,thor,trollop

Chapter 4

[129]

By default, the script will run every time we run facter. When we look in /tmp/gems,
we see this happening:

gemhost# cat /tmp/gems

Sun Feb 2 23:33:02 PST 2014

Sun Feb 2 23:33:05 PST 2014

Now, we will create a ttl file and run facter -p twice again, as shown in the
following commands;

gemhost# echo 600 >/etc/facter/facts.d/gems.sh.ttl

gemhost# facter -p gems

bigdecimal,bropages,builder,bundler,commander,hiera,hiera-
puppet,highline,io-console,json,json_pure,mime-types,net-http-
persistent,nokogiri,psych,puppet-lint,rbvmomi,rdoc,rest-client,smart_
colored,thor,trollop

gemhost# facter -p gems

bigdecimal,bropages,builder,bundler,commander,hiera,hiera-
puppet,highline,io-console,json,json_pure,mime-types,net-http-
persistent,nokogiri,psych,puppet-lint,rbvmomi,rdoc,rest-client,smart_
colored,thor,trollop

gemhost# cat /tmp/gems

Sun Feb 2 23:33:02 PST 2014

Sun Feb 2 23:33:05 PST 2014

Sun Feb 2 23:33:21 PST 2014

The ttl file prevents the script from running too often. We can now use these gems
fact in our manifests to ensure that the gems we require are available. Another use
of this fact mechanism could be to obtain the version of an installed application
that doesn't use normal package-management methods. We can create a script that
queries the application for its installed version and returns this as a fact. We will
cover this in more detail when we build our own custom facts in a later chapter.

Public Modules

[130]

Summary
In this chapter, we explored how to pull in modules from the Puppet Forge and
other locations. We looked at methods for keeping our public modules in order such
as librarian-puppet and r10k. We revised our Git Hooks to use r10k and created
an automatic system to update public modules. We then examined a selection of
the Forge modules that are useful in the enterprise. In the next chapter, we will
start writing our own custom modules.

Custom Facts and Modules
We have already created and used modules up to this point, when we installed and
configured tuned using the is_virtual fact. We created a module called virtual
in the process. Modules are nothing more than organizational tools; manifests,
and plugin files that are grouped together.

We mentioned pluginsync in the previous chapter. By default, in Puppet 3.0
and higher, plugins in modules are synchronized from the master to the nodes.
Plugins are special directories in modules that contain Ruby code.

Plugins are contained within the /lib subdirectory of a module, and there can be
four possible subdirectories defined: files, manifests, templates, and lib. The
manifests directory holds our manifests as we know, files has our files, and
templates has the templates, and lib is where we extend augeas, hiera, facter,
and/or Puppet depending on the files we place there. In this chapter, we will cover
how to use the modulename/lib/facter directory to create custom facts, and in
subsequent chapters, we will see how to use the /lib/puppet directory to create
custom types.

Custom Facts and Modules

[132]

The structure of a module is shown in the following diagram:

module-name
manifests

files
templates
lib

augeas
lenses

facter

init.pp

puppet
parser

functions
provider

provider-name
(exec, file, package
etc)

type

A module is a directory within the modulepath setting of Puppet that is searched
when a module is included by name in a node manifest. If the module name
is base and our modulepath is $confdir/environments/$environment/
modules:$confdir/environments/$environment/dist:$confdir/
environments/production/modules, then the search is done as follows
(assuming confdir is /etc/puppet):

/etc/puppet/environments/$environment/modules/base/manifests/init.pp
/etc/puppet/environments/$environment/modules/dist/base/manifests/
init.pp
/etc/puppet/environments/production/modules/base/manifests/init.pp

Module manifest files
Each module is expected to have an init.pp file defined which has the top level
class definition; in the case of our base example, init.pp is expected to contain
class base { }.

Now, if we include base::subitem in our node manifest, then the file that Puppet
would search for will be base/manifests/subitem.pp, and that file should contain
class base::subitem { }.

Chapter 5

[133]

It is also possible to have subdirectories of the manifests directory defined to split up
the manifests even more. As a rule, a manifest within a module should only contain
a single class. If we wish to define base::subitem::subsetting, then the file
would be base/manifests/subitem/subsetting.pp, and it would contain
class base::subitem::subsetting { }.

Naming your files correctly means they will be loaded automatically as needed, and
you won't have to use the import function. By creating multiple subclasses, it is easy
to separate a module into its various components; this is important later when you
need to include only parts of the module in another module. As an example, say we
have a database system called judy, and judy requires the judy-server package to
run. The judy service requires the users judy and judyadm to run. Users judy and
judyadm require the judygrp group, and they all require a filesystem to contain the
database. We will split up these various tasks into separate manifests. We'll only
sketch the contents of this fictional module as follows:

•	 In judy/manifests/groups.pp
class judy::groups {
 group {'judygrp': }

}

•	 In judy/manifests/users.pp:
class judy::users {
 include judy::groups
 user {'judy':
 require => Group['judygrp']
 }
 user {'judyadm':
 require => Group['judygrp']
 }
}

•	 In judy/manifests/packages.pp:
class judy::packages {
 package {'judy-server':
 require => User['judy','judyadm']
 }
}

Custom Facts and Modules

[134]

•	 In judy/manifests/filesystem.pp:
class judy::filesystem {
 lvm {'/opt/judy':
 require => File['/opt/judy']
 }
 file {'/opt/judy': }
}

•	 Finally, our service is started from judy/manifests/service.pp:
class judy::service {
 service {'judy':
 require => [
 Package['judy-server'],
 File['/opt/judy'],
 Lvm['/opt/judy'],
 User['judy','judyadm']
],
 }
}

Now, we can include each one of these components separately, and our node can
contain judy::packages or judy::service without using the entire judy module.
We will define our top level module (init.pp) to include all these components,
as shown in the following code:

class judy {
 include judy::users
 include judy::group
 include judy::packages
 include judy::filesystem
 include judy::service
}

Thus, a node that uses include judy will receive all of those classes, but if we
have a node that only needs the judy and judyadm users, we need to include
only judy::users in the code.

Chapter 5

[135]

Module files and templates
Transferring files with Puppet is something best done within modules. When you
define a file resource, you can use content => "something", or you can push a file
from the Puppet master using source. As an example, using our judy database,
we can have judy::config with the following file definition:

class judy::config {
 file {'/etc/judy/judy.conf':
 source => 'puppet:///modules/judy/judy.conf'
 }
}

Now, Puppet will search for this file in the judy/files directory. It is also possible
to add full paths and have your module mimic the filesystem. Thus, the previous
source line will be changed to source => 'puppet:///modules/judy/etc/judy/
judy.conf', and the file will be found at judy/files/etc/judy/judy.conf.

The puppet:/// url source line given previously has three backslashes; optionally,
the name of a Puppet server may appear between the second and third backslash.
If this field is left blank, the Puppet server that performs catalog compilation is
used to retrieve the file. You can alternatively specify the server using source =>
'puppet://puppetfile.example.com/modules/judy/judy.conf'.

Having files that come from specific Puppet servers can make
maintenance difficult. If you change the name of your Puppet
server, you have to change all references to that name as well.

Templates are searched in a similar fashion. In this example, to specify the template
in judy/templates, you will use content => template('judy/template.erb')
to have the Puppet look for the template in your modules templates directory. As an
example, another config file for judy can be
as follows:

 file {'/etc/judy/judyadm.conf':
 content => template('judy/judyadm.conf.erb')
 }

Custom Facts and Modules

[136]

Puppet will look for the 'judy/judyadm.conf.erb' file at modulepath/judy/
templates/judyadm.conf.erb. We haven't covered Ruby templates up to this
point; templates are files that are parsed according to the erb syntax rules.
If you need to distribute a file where you need to change some settings based
on variables, then a template can help. The erb Syntax is covered in detail at
http://docs.puppetlabs.com/guides/templating.html.

Modules can also include custom facts as we've already seen in this chapter. Using
the lib subdirectory, it is possible to modify both facter and Puppet. In the next
section, we will discuss module implementations in a large organization before
writing custom modules.

Naming a module
Modules must begin with a lowercase letter and only contain lowercase letters,
numbers, and the underscore (_) symbol. No other characters should be used. While
writing modules that will be shared across the organization, use names that are
obvious and won't interfere with other groups' modules or modules from the forge.
A good rule of thumb is to insert your corporation's name at the beginning of the
module name and, possibly, your group name.

While uploading to the forge, your forge username will be prepended
to the module.

While designing modules, each module should have a specific purpose and not pull
in manifests from other modules, and each module should be autonomous. Classes
should be used within the module to organize functionality. For instance, you have
a module called example_foo that installs a package and configures a service.
Now, separating these two functions and their supporting resources into the
example_foo::pkg and example_foo:svc classes makes it easier to find the
code you need to work on, when you need to modify these different components.
In addition, when you have all the service accounts and groups in another file,
it makes it easy to find them as well.

http://docs.puppetlabs.com/guides/templating.html

Chapter 5

[137]

Creating modules with a Puppet module
To start with a simple example, we will use Puppet's module command to generate
empty module files with comments. The module name will be example_phpmyadmin,
and generate expects the generated argument to be [our username] hyphen
[module name]; thus, using our sample developer, samdev, the argument will
be samdev-example_phpmyadmin, as shown in the following commands:

samdev@worker1$ cd puppet/dist
samdev@worker1$ puppet module generate samdev-example_phpmyadmin
Notice: Generating module at /home/samdev/puppet/dist/samdev-example_
phpmyadmin
samdev-example_phpmyadmin
samdev-example_phpmyadmin/manifests
samdev-example_phpmyadmin/manifests/init.pp
samdev-example_phpmyadmin/spec
samdev-example_phpmyadmin/spec/spec_helper.rb
samdev-example_phpmyadmin/Modulefile
samdev-example_phpmyadmin/README
samdev-example_phpmyadmin/tests
samdev-example_phpmyadmin/tests/init.pp

If you plan on uploading your module to the forge or Github, use your
forge/Github account name for the user portion of the module name
(in the example, replace samdev with your Github account).

Comments in modules
The previous command generates Modulefile and README that can be modified for
your use as needed. The Modulefile file is where you specify who wrote the module
and which license it is released under. If your module depends on any other module,
you can specify that in the dependency section of this file. In addition to the README
text, an init.pp template is created in the manifests directory. At the top of this
file, there are example comments that allow Puppet doc to parse the manifests and
generate a documentation tree in RDoc.

To see this in action, run the following command as any user, and use full
paths so that the Puppet doc can find the modules:
$ puppet doc --all --mode rdoc --modulepath /etc/puppet/
environments/production/dist/ --manifestdir /etc/puppet/
manifests/

Then, point your web browser at the index.html file created inside the
doc directory.

Custom Facts and Modules

[138]

For Puppet to find your module, link the directory created as shown in the
following command:

samdev@worker1$ ln -s samdev-example_phpmyadmin example_phpmyadmin

Our phpmyadmin package will need to install Apache (httpd) and configure the
httpd service, so we'll create two new files in the manifests directory, pkg.pp
and svc.pp.

It's important to be consistent from the beginning; if you choose to use
package.pp and service.pp, use that everywhere to save yourself
time later.

In init.pp, we'll include our example_phpmyadmin::pkg and
example_phpmyadmin::svc classes, as shown in the following code:

class example_phpmyadmin {
 include example_phpmyadmin::pkg
 include example_phpmyadmin::svc

}

pkg.pp will define example_phpmyadmin::pkg, as shown in the following code:

class example_phpmyadmin::pkg {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }

}

svc.pp will define example_phpmyadmin::svc, as shown in the following code:

class example_phpmyadmin::svc {
 service {'httpd':
 ensure => 'running',
 enable => true
 }
}

Now, we'll define another module called example_phpldapadmin using Puppet
module in the following command:

samdev@worker1$ puppet module generate samdev-example_phpldapadmin
Notice: Generating module at /home/samdev/puppet/dist/samdev-example_
phpldapadmin
…

samdev@worker1$ ln -s samdev-example_phpldapadmin example_phpldapadmin

Chapter 5

[139]

We'll define the init.pp, pkg.pp, and svc.pp files in this new module just as we did
in our last module so that our three class files contain the following:

class example_phpldapadmin {
 include example_phpldapadmin::pkg
 include example_phpldapadmin::svc
}
class example_phpldapadmin::pkg {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }
}
class example_phpldapadmin::svc {
 service {'httpd':
 ensure => 'running',
 enable => true
 }
}

Now, we have a problem. phpldapadmin uses the httpd package, and so does
phpmyadmin, and it's quite likely that these two modules may be included in the
same node. We'll include both of them on our node1 by editing node1.yaml and
then we will run Puppet by using the following command:

node1# puppet agent -t --environment master

Error: Could not retrieve catalog from remote server: Error 400 on
SERVER: Duplicate declaration: Package[httpd] is already declared in file
/etc/puppet/environments/master/dist/example_phpmyadmin/manifests/pkg.
pp:5; cannot redeclare at /etc/puppet/environments/master/dist/example_
phpldapadmin/manifests/pkg.pp:5 on node node1

Warning: Not using cache on failed catalog

Error: Could not retrieve catalog; skipping run

Multiple definitions
A resource in Puppet can only be defined once per node. What this means is
that if our module defines the httpd package, no other module can define httpd.
There are several ways to deal with this problem, and we will work through
two different solutions.

Custom Facts and Modules

[140]

The first solution is the more difficult option—use virtual resources to define the
package and then realize the package in each place you need it. Virtual resources
are like a placeholder for a resource; you define the resource but you don't use it.
This means that the Puppet master knows about the Puppet definition when you
virtualize it, but it doesn't include the resource in the catalog at that point. Resources
are included when you realize them later—the idea being that you can virtualize
the resources multiple times and not have them interfere with each other. Working
through our example, we will use the @ (at) symbol to virtualize our package and
service resources. To use this model, it's helpful to create a container for the resources
you are going to virtualize. In this case, we'll make modules for example_packages
and example_services using Puppet module's generate command again.
The init.pp file for example_packages will contain the following:

class example_packages {
 @package {'httpd':
 ensure => 'installed',
 alias => 'apache',
 }
}

The init.pp file for example_services will contain the following:

class example_services {
 @service {'httpd':
 ensure => 'running',
 enable => true,
 require => Package['httpd'],
 }
}

These two classes define the package and service for httpd as virtual. We then need
to include these classes in our example_phpmyadmin and example_phpldapadmin
classes. The modified example_phpmyadmin::pkg class will now look as follows:

class example_phpmyadmin::pkg {
 include example_packages
 realize(Package['httpd'])
}

And the example_phpmyadmin::svc class will now be the following:

class example_phpmyadmin::svc {
 include example_services
 realize(Service['httpd'])
}

Chapter 5

[141]

We will modify the example_phpldapadmin class in the same way and then
attempt another Puppet run on node1 (which still has example_phpldapadmin
and example_phpmyadmin classes) as shown in the following command:

node1# puppet agent -t --environment master

…

Info: Caching catalog for node1

Info: Applying configuration version '1392191121'

…

Notice: /Stage[main]/Example_services/Service[httpd]/ensure: ensure
changed 'stopped' to 'running'

Info: /Stage[main]/Example_services/Service[httpd]: Unscheduling refresh
on Service[httpd]

Notice: Finished catalog run in 2.35 seconds

For this solution to work, you need to migrate any resource that may be used by
multiple modules to your top-level resource module and include the resource
module wherever you need to realize the resource.

In addition to the realize function used previously, a collector exists for virtual
resources. A collector is a kind of glob that can be applied to virtual resources to
realize resources based on a tag. A tag in Puppet is just a meta attribute of a resource
that can be used for searching later. Tags are only used by collectors (for both virtual
and exported resources, and exported resources will be explored in a later chapter)
and do not affect the resource.

To use a collector in the previous example, we will have to define a tag in the virtual
resources, for the httpd package this will be as follows:

class example_packages {
 @package {'httpd':
 ensure => 'installed',
 alias => 'apache',
 tag => 'apache',
 }
}

And then to realize the package using the collector, we will use the following code:

class example_phpldapadmin::pkg {
 include example_packages
 Package <| tag == 'apache' |>
}

Custom Facts and Modules

[142]

The second solution would be to move the resource definitions into their own class
and include that class wherever you need to realize the resource. This is considered
to be the more correct way of solving the problem. Using the virtual resources
described previously splits the definition of the package away from its use area.

For the previous example, instead of a class for all package resources, we will
create one specifically for Apache and include that wherever we need to use
Apache. We'll create the example_apache module monolithically with a single
class for the package and the service as shown in the following code:

class example_apache {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }
 service {'httpd':
 ensure => 'running',
 enable => true,
 require => Package['httpd'],
 }
}

Now, in example_phpldapadmin::pkg and example_phpldapadmin::svc,
we only need to include example_apache. This is because we can include a
class any number of times in a catalog compilation without error. So, both our
example_phpldapadmin::pkg and example_phpldapadmin::svc classes are going
to receive definitions for the package and service of httpd; however, this doesn't
matter as they only get included once in the catalog, as shown in the following code:

class example_phpldapadmin::pkg {
 include example_apache
}

Both these methods solve the issue of having a resource used in multiple packages.
The rule is that a resource can only be defined once per catalog, but you should think
of that rule as once per organization so that your modules won't interfere with those
of another group within your organization.

Custom facts
While managing a complex environment, facts can be used to bring order out
of chaos. If your manifests have large case statements or nested if statements, a
custom fact may help reduce the complexity or allow you to change your logic.

Chapter 5

[143]

When you work in a large organization, keeping the number of facts to a minimum
is important as several groups may be working on the same system and thus
interaction between users may adversely affect one another's work or they
may find it difficult to understand how everything fits together.

As we have already seen in the previous chapter, if our facts are simple text values
that are node specific, we can just use stdlib's facts.d directory to create static facts
that are node specific.

This facts.d mechanism is included by default on facter Versions 1.7 and higher,
and they are referred to as external facts.

Creating custom facts
We will be creating some custom facts, so we will create our Ruby files in the
module_name/lib/facter directory. While designing your facts, choose names that
are specific to your organization. Unless you plan on releasing your modules on the
forge, avoid calling your fact something similar to a predefined fact or using a name
that another developer might use. The names should be meaningful and specific—a
fact named foo is probably not a good idea. Facts should be placed in the specific
module that requires them. Keeping the fact name related to the module name will
make it easier to determine where the fact is being set later.

For our example.com organization, we'll create a module named example_facts
and place our first fact in there. As a first example, we'll create a fact that returns 1
(true) if the node is running the latest installed kernel or 0 (false) if not. As we don't
expect this fact to become widely adopted, we'll call it example_latestkernel.
The idea here is that we can apply modules to nodes that are not running the
latest installed kernel, such as locking them down or logging them more closely.

To begin writing the fact, we'll start writing a Ruby script, you can also work in
irb while you're developing your fact. Interactive Ruby (irb) is like a shell to write
the Ruby code, where you can test your code instantly. Our fact will use a function
from Puppet, so we will require puppet and facter. Fact scripts are run from within
facter so that the require lines are removed once we are done with our development
work. The script is written as follows:

#!/usr/bin/env ruby
require 'puppet'
require 'facter'
drop alpha numeric endings
def sanitize_version (version)
 temp = version.gsub(/.(el5|el6|fc19|fc20)/,'')
 return temp.gsub(/.(x86_64|i686|i586|i386)/,'')
 end

www.example.com

Custom Facts and Modules

[144]

We define a function to remove textual endings on kernel versions and architectures.
Textual endings like el5 and el6 will make our version comparison return incorrect
results. For example, 2.6.32-431.3.1.el6 is less than 2.6.32-431.el6 because the
e in el6 is higher in ASCII than 3. It greatly simplifies our script if we simply remove
known endings. We then obtain a list of installed kernel packages; the easiest way is
with rpm, as shown in the following command:

kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')

kernels = sanitize_version(kernels)

latest = ''

We will then set the latest variable to empty, and we'll loop through the installed
kernels by comparing them to latest—if their values are greater than latest, then
we convert latest such that it is equal to the value of the kernels. At the end of the
loop, we have the latest (largest version number) kernel in the variable. For kernel
in kernels, we will use the following commands:

kernel=kernel.chomp()

 if latest == ''

 latest = kernel

 end

 #print "%s > %s = %s\n" % [kernel,latest,Puppet::Util::Package.
versioncmp(kernel,latest)]

 if Puppet::Util::Package.versioncmp(kernel,latest) > 0

 latest = kernel

 end

end

We use versioncmp from puppet::util::package to compare the versions.
I've included a debugging statement in the following code that we will remove
later. At the end of this loop, the variable latest contains the largest version
number and the latest installed kernel.

kernelrelease = Facter.value('kernelrelease')

kernelrelease = sanitize_version(kernelrelease)

Chapter 5

[145]

Now, we will ask facter for the value of kernelrelease. We don't need to
run uname or a similar tool as we'll rely on facter to get the value using the
Facter.value('kernelrelease') command. Here, Facter.value() returns
the value of a known fact. We will run the result of Facter.value() through
our sanitize_version function to remove textual endings. We will then
compare the value of kernelrelease with latest and update the
kernellatest variable accordingly:

if Puppet::Util::Package.versioncmp(kernelrelease,latest) == 0

 kernellatest = 1

else

 kernellatest = 0

end

At this point, kernellatest will contain 1 if the system is running the
kernel installed with latest and 0 if not. We will then print some debugging
information to confirm whether our script is doing the right thing, as shown in
the following command:

print "running kernel = %s\n" % kernelrelease

print "latest installed kernel = %s\n" % latest

print "kernellatest = %s\n" % kernellatest

We'll now run the script on node1 and compare the results with the output of
rpm -q kernel to see whether our fact is calculating the correct value:

node1# rpm -q kernel

kernel-2.6.32-431.el6.x86_64

kernel-2.6.32-431.1.2.el6.x86_64

kernel-2.6.32-431.3.1.el6.x86_64

node1# ./latestkernel.rb

running kernel = 2.6.32-431.3.1

latest installed kernel = 2.6.32-431.3.1

kernellatest = 1

Custom Facts and Modules

[146]

Now that we've verified that our fact is doing the right thing, we need to call
Facter.add() to add a fact to facter. The reason behind this will become clear
in a moment, but we will place all our code within the Facter.add section,
as shown in the following code:

Facter.add("example_latestkernel") do

 kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')

 ...

End

Facter.add("example_latestkernelinstalled") do

 setcode do latest end

end

This will add two new facts to facter. We now need to go back and remove
our require lines and print statements. The complete fact should look like
the following script:

drop alpha numeric endings

def sanitize_version (version)

 temp = version.gsub(/.(el5|el6|fc19|fc20)/,'')

 return temp.gsub(/.(x86_64|i686|i586|i386)/,'')

end

Facter.add("example_latestkernel") do

 kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')

 kernels = sanitize_version(kernels)

 latest = ''

 for kernel in kernels do

 kernel=kernel.chomp()

 if latest == ''

 latest = kernel

 end

 if Puppet::Util::Package.versioncmp(kernel,latest) > 0

 latest = kernel

 end

 end

 kernelrelease = Facter.value('kernelrelease')

Chapter 5

[147]

 kernelrelease = sanitize_version(kernelrelease)

 if Puppet::Util::Package.versioncmp(kernelrelease,latest) == 0

 kernellatest = 1

 else

 kernellatest = 0

 end

 setcode do kernellatest end

end

Facter.add("example_latestkernelinstalled") do

 setcode do latest end

end

Now, we need to create our module on our Git repository on worker1 and have that
checked out by node1 to see the fact in action. Switch back to the samdev account to
add the fact to Git as follows:

worker1# sudo -iu samdev

samdev@worker1$ cd puppet

samdev@worker1$ git checkout master

samdev@worker1$ cd dist

samdev@worker1$ mkdir -p example_facts/lib/facter

samdev@worker1$ cd example_facts/lib/facter

samdev@worker1$ cp ~/latestkernel.rb .

samdev@worker1$ git add latestkernel.rb

samdev@worker1$ git commit -m "adding first fact to example_facts"

[master d42bc22] adding first fact to example_facts

 1 files changed, 33 insertions(+), 0 deletions(-)

 create mode 100755 dist/example_facts/lib/facter/latestkernel.rb

samdev@worker1$ git push origin master

…

To /var/lib/git/puppet.git

 3bf0c18..d42bc22 master -> master

Now, we will go back to node1, run the Puppet agent and see that latestkernel.rb
is placed in /var/lib/puppet/lib/facter/latestkernel.rb so that facter can now use
the new fact.

Custom Facts and Modules

[148]

This fact will be in the /dist folder of the environment. In the previous chapter,
we added /etc/puppet/environments/$environment/dist to modulepath in
puppet.conf; if you haven't done this already, do so now.

node1# puppet agent -t --environment master

InfoInfo: Retrieving plugin

Notice: /File[/var/lib/puppet/lib/facter/latestkernel.rb]/ensure: defined
content as '{md5}361cc146c5ab4fde8a948d9b503bd3c2'

…

Notice: Finished catalog run in 1.18 seconds

node1# facter -p |grep example

example_latestkernel => 1

example_latestkernelinstalled => 2.6.32-431.3.1

Now, this fact works fine for systems that use rpm for package management; it will
not work on an apt system. To ensure our fact doesn't fail on these systems, we
can use a confine statement to confine the fact calculation to systems where it will
succeed. We can assume our script will work on all systems that report RedHat for
the osfamily fact, so we will confine on that fact.

For instance, if we run Puppet on a Debian-based node to apply our custom fact,
it fails when we run facter, as shown in the following code:

cat /etc/debian_version

wheezy/sid

facter -p example_latestkernelinstalled

sh: 1: rpm: not found

Could not retrieve example_latestkernelinstalled: undefined local
variable or method `latest' for #<Facter::Util::Resolution:0xb6bd386c>

Now, if we add a confine statement to confine the fact to nodes where osfamily is
RedHat, this doesn't happen, as shown in the following code:

Facter.add("example_latestkernel") do

 confine :osfamily => RedHat

…

End

Facter.add("example_latestkernelinstalled") do

 confine :osfamily => RedHat

 setcode do latest end

end

Chapter 5

[149]

When we run facter on the Debian node again, we will see that the fact is simply not
defined by using the following command:

facter -p example_latestkernelinstalled

##

In the previous command, the prompt is returned without an error, and
confine statements prevent the fact from being defined, so there is no
error to return.

This simple example creates two facts that can be used in modules. You can,
for instance, add a warning to motd to say that the node needs to reboot based
on this fact.

If you want to become really popular at work, have the node turn off SSH
until it's running the latest kernel in the name of security.

While implementing a custom fact such as this, every effort should be made to
ensure that the fact doesn't break facter compilation on any OS's within your
organization. Using confine statements is one way to ensure your facts stay
where you designed them.

So, why not just use the external fact (/etc/facter/facts.d) mechanism all
the time? We could have easily written the previous fact script in bash and put
the executable script in /etc/facter/facts.d. Indeed, there is no problem in
doing it that way. We can also have the script run every so often by including
a [script_name].ttl file as well. The problem with using the external fact
mechanism is timing and precedence. Fact files placed in lib/facter are synced
to nodes when pluginsync is set to true, so the custom fact is available for use
during the initial catalog compilation. If you use the external fact mechanism, you
have to send your script or text file to the node during the agent run so that the fact
isn't available until after the file has been placed there (after the first run, any logic
built around that fact will be broken until the next Puppet run). The second problem
is preference. External facts are given a very high weight by default. Weight in the
facter world is used to determine when a fact is calculated, and facts with low
weight are calculated first and cannot be overridden by facts with higher weight.

Weights are often used when a fact may be determined by one of the
several methods. The preferred method is given the lowest weight. If the
preferred method is unavailable (due to a confine), then the next higher
weight fact is tried.

Custom Facts and Modules

[150]

One great use case for external facts is having a system task (something that runs
out of cron perhaps) that generates the text file in /etc/facter/facts.d. Initial
runs of the Puppet agent won't see the fact until after cron runs the script, so you
can use this to trigger further configuration by having your manifests key off the
new fact. As a concrete example, you can have your node installed as a web server
for a load-balancing cluster as part of modules that run a script from cron to ensure
that your web server is up and functioning and ready to take part of the load.
The cron script would then define a load_balancer_ready=true fact. It would
then be possible to have the next Puppet agent run and add the node to the load
balancer configuration.

Creating a custom fact for use in hiera
The most useful custom facts are those that return a calculated value that you can
use to organize your nodes. Such facts allow you to group your nodes into smaller
groups or create groups with like functionality or locality. These facts allow you to
separate the data component of your modules from the logic or code components.
This is a common theme that will be addressed again in Chapter 9, Roles and Profiles.
Such a fact can be used in your hiera.yaml file to add a level to the hierarchy. One
aspect of the system that can be used to determine information about the node is
the IP address. Assuming you do not reuse IP addresses within your organization,
the IP address can be used to determine where or in which part a node resides on
a network, that is, the zone. In this example, we will define three zones in which
machines reside: production, development, and sandbox. The IP addresses in each
zone are on different subnets. We'll start by building up a script to calculate the zone
and then turn it into a fact like our last example. Our script will need to calculate IP
ranges using netmasks, so we'll import the ipaddr library and use IPAddr objects to
calculate ranges.

require('ipaddr')
require('facter')
require('puppet')

Next, we'll define a function that takes an IP address as the argument and returns the
zone to which that IP address belongs:

def zone(ip)
 zones = {
 'production' => [IPAddr.new('192.168.122.0/24'),IPAddr.
new('192.168.124.0/23')],
 'development' => [IPAddr.new('192.168.123.0/24'),IPAddr.
new('192.168.126.0/23')],
 'sandbox' => [IPAddr.new('192.168.128.0/22')]
 }

Chapter 5

[151]

 for zone in zones.keys do
 for subnet in zones[zone] do
 if subnet.include?(ip)
 return zone
 end
 end
 end
 return 'undef'
end

This function will loop through the zones looking for a match on the IP address. If no
match is found, the value of undef is returned. We then obtain the IP address for the
machine that is using the IP address fact from facter.

ip = IPAddr.new(Facter.value('ipaddress'))

Then, we will call the zone function with this IP address to obtain the zone.

print zone(ip),"\n"

Now, we can make this script executable and test it:

node1# facter ipaddress

192.168.122.132

node1# ./example_zone.rb

production

Now, all we have to do is replace print zone(ip),"\n" with the following code to
define the fact:

Facter.add('example_zone') do
 setcode do zone(ip) end
end

Now, when we insert this code into our example_facts module and run Puppet on
our nodes, the custom fact is available:

facter -p example_zone

production

Custom Facts and Modules

[152]

Now that we can define a zone based on a custom fact, we can go back to our hiera.
yaml file and add %{::example_zone} to the hierarchy. The hiera.yaml hierarchy
will now contain the following:

:hierarchy:
 - "zones/%{::example_zone}"
 - "hosts/%{::hostname}"
 - "roles/%{::role}"
 - "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease}"
 - "is_virtual/%{::is_virtual}"
 - common

After restarting httpd to have the hiera.yaml file reread, we create a zones
directory in hieradata and add production.yaml with the following content:

welcome: "example_zone - production"

Now when we run Puppet on our node1, we see motd updated with the new
welcome message as follows:

node1# cat /etc/motd

PRODUCTION

example_zone – production

Managed Node: node1

Managed by Puppet version 3.4.2

Creating a few key facts that can be used to build up your hierarchy can greatly
reduce the complexity of your modules. There are several workflows available,
in addition to the custom fact we just described previously. You can use the /etc/
facter/facts.d directory with static files or scripts, or you can have tasks run
from other tools that dump files into that directory to create custom facts.

While writing Ruby scripts, you can use any other fact by calling Facter.
value('factname'). If you write your script in Ruby, you can access any Ruby
library using require. Your custom fact can query the system using lspci or lsusb
to determine which hardware is specifically installed on that node. As an example,
you can use lspci to determine the make and model of graphics card on the
machine and return that as a fact, such as videocard. In the next section, we'll write
our own custom modules that will take such a fact and install the appropriate driver
for the video card based on the custom fact.

Chapter 5

[153]

Summary
In this chapter, we used ruby to extend facter and define custom facts. Custom facts
can be used in hiera hierarchies to reduce complexity and organize our nodes.
We then began writing our own custom modules and ran into a few problems with
multiple defined resources. Two solutions were presented, virtual resources and
refactoring the code. In the next chapter, we will be making our custom modules
more useful with custom types.

Custom Types
Puppet is about configuration management. As you write more and more code
in puppet, patterns will begin to emerge—sections of code that repeat with only
minor differences. If you were writing your code in a regular scripting language,
you'd reach for a function or subroutine definition at this point. Puppet, like other
languages, supports the blocking of code in multiple ways; where you'd reach for
functions, you can use defined types; and where you might overload an operator,
you can use a parameterized class. In this chapter, we will show you how to use
parameterized classes and introduce the define function to define new user-defined
types. Following that we will introduce custom types written in Ruby.

Parameterized classes
Parameterized classes are classes where you have defined several parameters that
can be overridden when you instantiate the class for your node. The use case for
parameterized classes is when you have something that won't be repeated within
a single node. You cannot define the same parameterized class more than once per
node. As a simple example, we'll create a class that installs a database program and
starts that database's service. We'll call this class example::db; the definition will
live in modules/example/manifests/db.pp as follows:

class example::db ($db) {
 case $db {
 'mysql': {
 $dbpackage = 'mysql-server'
 $dbservice = 'mysqld'
 }
 'postgresql': {
 $dbpackage = 'postgresql-server'
 $dbservice = 'postgresql'
 }

Custom Types

[156]

 }
 package { "$dbpackage": }
 service { "$dbservice":
 ensure => true,
 enable => true,
 require => Package["$dbpackage"]
 }
}

This class takes a single parameter ($db) that specifies the type of the database, in
this case either postgresql or mysql. To use this class, we have to instantiate it as
follows:

class { 'example::db':
 db => 'mysql'
}

Now when we apply this to a node, we see that mysql-server is installed, and
mysqld is started and enabled at boot. This works great for something like a database
since we don't think we will have more than one type of database server on a single
node. If we try to instantiate the example::db class with postgresql on our node,
we'll get an error, as shown in the following screenshot:

Defined types
A situation where you have a block of code that is repeated within a single node
can be managed with defined types. You create a defined type with a call to define.
define is a block of Puppet code that receives a set of parameters when instantiated.
Our previous database example could be rewritten as a defined type to allow more
than one type of database server to be installed on a single node.

Chapter 6

[157]

Another example of where a defined type is useful is building filesystems with the
LVM module. When we used the LVM module to build a filesystem, there were
three steps required: we needed a filesystem (a logical volume or LVM resource),
a location to mount the filesystem (a file resource), and a mount command (a mount
resource). Every time we liked to mount a filesystem, we'll need these three things.
To make our code cleaner, we'll create a defined type for filesystem. Since we don't
believe this will be used outside our example organization, we'll call it example::fs.

Defined types start with the keyword define, and then the name of the defined type
and the parameters wrapped in parenthesis as shown in the following code:

define example::fs
(
 $mnt = "$title", # where to mount the filesystem
 $vg = 'VolGroup', # which volume group
 $pv, # which physical volume
 $lv, # which logical volume
 $fs_type = 'ext4', # the filesystem type
 $size, # how big
 $owner = '0', # who owns the mount point
 $group = '0', # which group owns the mount point
 $mode = '0755' # permissions on mount point
)

These are all the parameters for our defined type. Every defined type has to have a
$title variable defined. An optional $name variable can be defined.

Both $title and $name are available within the attribute list, so you specify
other attributes using these variables. This is why we are able to specify our $mnt
attributes using $title. In this case, we'll use the mount point for the filesystem as
$title, it should be unique on the node. Any of the previous parameters that are not
given a default value, with = syntax, must be provided or Puppet will fail catalog
compilation with the error message must pass param to Example::Fs[title]at
/path/to/fs.pp:lineno on node nodename.

Providing sane defaults for parameters means most of the time you won't have to
pass parameters to your defined types, making your code cleaner and easier to read.

Custom Types

[158]

Now that we've defined all the parameters required for our filesystem and mount
combination type, we need to define the type; we can use any of the variables we've
asked for as parameters. The definition follows the same syntax as a class definition
as follows:

 {
 # create the filesystem
 lvm::volume {"$lv":
 ensure => 'present',
 vg => "$vg",
 pv => "$pv",
 fstype => "$fs_type",
 size => "$size",
 }

 # create the mount point (mnt)
 file {"$mnt":
 ensure => 'directory',
 owner => "$owner",
 group => "$group",
 mode => "$mode",
 }
 # mount the filesystem $lv on the mount point $mnt
 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["$lv"],File["$mnt"]],
 }
}

Note that we use the CamelCase notation for requiring Lvm::Volume for the mount.
CamelCase is the practice of capitalizing each word of a compound word or phrase.
This will become useful in the next example where we have nested filesystems that
depend on one another. Now, we can redefine our lvm_web class using the new
define to make our intention much clearer as follows:

class lvm_web {
 example::fs {'/var/www/html':
 vg => 'vg_web',
 lv => 'lv_var_www',
 pv => '/dev/sda',

Chapter 6

[159]

 owner => '48',
 group => '48',
 size => '4G',
 mode => '0755',
 require => File['/var/www'],
 }
 file {'/var/www':
 ensure => 'directory',
 mode => '0755',
 }
}

Now it's clear that we are making sure /var/www exists for our /var/www/html
directory to exist and then creating and mounting our filesystem at that point. Now,
when we need to make another filesystem on top of /var/www/html, we will need
to require the first example::fs resource. To illustrate, we will define a subdirectory
/var/www/html/drupal and require /var/www/html Example::Fs; the code
becomes easier to follow, which is shown as follows:

example::fs {'/var/www/html/drupal':
 vg => 'vg_web',
 lv => 'lv_drupal',
 pv => '/dev/sda',
 owner => '48',
 group => '48',
 size => '2G',
 mode => '0755',
 require => Example::Fs['/var/www/html']
 }

The capitalization of Example::Fs is important; it needs to be Example::Fs in order
for Puppet to recognize this as a reference to the defined type example::fs.

Encapsulation makes this sort of chaining much simpler. Also, any enhancements
we make to our defined type are then added to all the instances of it. This keeps our
code modular and makes it more flexible. For instance, what if we wanted to use our
example::fs type for a directory that may be defined somewhere else in the catalog.
We could add a parameter to our definition and set the default value so that previous
uses of the type won't cause compilation errors, as shown in the following code:

define example::fs
(
...
$managed = true, # do we create the file resource or not.
…
)

Custom Types

[160]

Now we can use the if conditional to either create the file and require it or not,
as shown in the following code:

if ($managed) {
 file {"$mnt":
 ensure => 'directory',
 owner => "$owner",
 group => "$group",
 mode => "$mode",
 }
 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["$lv"],File["$mnt"]],
 }
 } else {
 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => Lvm::Volume["$lv"],
 }
 }

None of our existing uses of the example::fs type will need modification, but now
those cases where we only want the filesystem created and mounted are able to use
this type.

For any portion of code that has repeatable parts, defined types can help abstract
your classes to make your meaning more obvious. As another example, we'll develop
the idea of an admin user—a user that should be in certain groups, have certain files
in their home directory defined, and SSH keys added to their account. The idea here
is that your admin users could be defined outside your enterprise authentication
system and only be defined on the nodes to which they have admin rights.

Chapter 6

[161]

We'll start small using the file and user types to create the users and their home
directories. The user has a managehome parameter that creates the home directory,
but with default permissions and ownership, we'll be modifying those in our type.

If you rely on managehome, do understand that managehome just passes
an argument to the user provider asking the OS specific tool to create the
directory using whatever default permissions are provided by that tool.
In the case of useradd on Linux, the -m option is added.

We'll define ~/.bashrc and ~/.bash_profile for our user, so we'll need parameters
to hold those. An SSH key is useful for admin users, so we'll include a mechanism to
include that as well. This isn't an exhaustive solution, just an outline of how you can
use defines to simplify your life. In real-world admin scenarios, I've seen the admin
define a sudoers file for the admin user as well and set up command logging with the
audit daemon. Taking all the information we need to define an admin user, we have
the following list of parameters:

define example::admin
(
 $user = $title,
 $ensure = 'present',
 $uid,
 $home = "/var/home/$title",
 $mode = '0750',
 $shell = "/bin/bash",
 $bashrc = undef,
 $bash_profile = undef,
 $groups = ['wheel','bin'],
 $comment = "$title Admin User",
 $expiry = 'absent',
 $forcelocal = true,
 $key,
 $keytype = 'ssh-rsa',
)

Now since define will be called multiple times and we need the admin group to
exist before we start defining our admin users, we put the group into a separate
class and include it here as follows:

 include example::admin::group

Custom Types

[162]

The definition of example::admin::group is as follows:

class example::admin::group {
 group {'admin':
 gid => 1001,
 }
}

With example::admin::group included, we move on to define our user,
being careful to require the group as follows:

 user { "$user":
 ensure => $ensure,
 allowdupe => 'true',
 comment => "$comment",
 expiry => "$expiry",
 forcelocal => $forcelocal,
 groups => $groups,
 home => "$home",
 shell => "$shell",
 uid => $uid,
 gid => 1001,
 require => Group['admin']
 }

Now our problem turns to ensuring that the directory containing the home directory
exists, the logic here could get very confusing. Since we are defining our admin
group by name rather than by gid, we need to ensure that the group exists before we
create the home directory (so that the permissions can be applied correctly). We are
also allowing the home directory location not to exist, so we need to make sure that
the directory containing our home directory exists by using the following code:

We are accounting for a scenario where admin users have their home
directories under /var/home. This example complicates the code
somewhat but also shows the usefulness of a defined type.

 # ensure the home directory location exists
 $grouprequire = Group['admin']
 $dirhome = dirname($home)

Chapter 6

[163]

Since we will require the group in all cases, we make a variable hold a copy of that
resource definition, as shown in the following code:

 case $dirhome {
 '/var/home': {
 include example::admin::varhome
 $homerequire = [$grouprequire,File['/var/home']]
 }

If the home directory is under /var/home, we know that the home directory requires
the class example::admin::varhome and also File['/var/home']. Next, if the
home directory is under /home, then the home directory only needs the group
require, as shown in the following code:

 '/home': {
 # do nothing, included by lsb
 $homerequire = $grouprequire
 }

As the default for our case statement, we assume the home directory needs to require
that the directory ($dirhome) exist, but the user of this define will have to create that
resource themselves (File[$dirhome]) as follows:

 default: {
 # rely on definition elsewhere
 $homerequire = [$grouprequire,File[$dirhome]]
 }
 }

Now we create the home directory using our $homerequire variable to define
require for the resource as follows:

 file {"$home":
 ensure => 'directory',
 owner => "$uid",
 group => 'admin',
 mode => "$mode",
 require => $homerequire
 }

Custom Types

[164]

Next, we create the .ssh directory as shown in the following code:

 # ensure the .ssh directory exists
 file {"$home/.ssh":
 ensure => 'directory',
 owner => "$uid",
 group => 'admin',
 mode => "0700",
 require => File["$home"]
 }

Then, we create an SSH key for the admin user; we require the .ssh directory,
which requires the home directory, making a nice chain of existence. The home
directory has to be made first, then the .ssh directory, and then the key added
to authorized_keys, as shown in the following code:

 ssh_authorized_key { "$user-admin":
 user => "$user",
 ensure => present,
 type => "$keytype",
 key => "$key",
 require => [User[$user],File["$home/.ssh"]]
 }

Now we can do something fancy. We know that not every admin likes to work
in the same way, so we can have them add custom code to their .bashrc and
.bash_profile files using a concat for the two files. In each case, we'll include
the system default file from /etc/skel and then permit the instance of the admin
user to add to the files using concat, as shown in the following code:

 # build up the bashrc from a concat
 concat { "$home/.bashrc":
 owner => $uid,
 group => $gid,
 }
 concat::fragment { "bashrc_header_$user":
 target => "$home/.bashrc",
 source => '/etc/skel/.bashrc',
 order => '01',
 }
 if $bashrc != undef {
 concat::fragment { "bashrc_user_$user":
 target => "$home/.bashrc",
 content => $bashrc,
 order => '10',
 }
 }

Chapter 6

[165]

And the same goes for .bash_profile, as shown in the following code:

 #build up the bash_profile from a concat as well
 concat { "$home/.bash_profile":
 owner => $uid,
 group => $gid,
 }
 concat::fragment { "bash_profile_header_$user":
 target => "$home/.bash_profile",
 source => '/etc/skel/.bash_profile',
 order => '01',
 }
 if $bash_profile != undef {
 concat::fragment { "bash_profile_user_$user":
 target => "$home/.bash_profile",
 content => $bash_profile,
 order => '10',
 }
 }

We then close our definition with a right brace:

}

Now to define an admin user, we call our defined type as shown in the following
code and let the type do all the work.

 example::admin {'theresa':
 uid => 1002,
 home => '/home/theresa',
 key => 'BBBB...z',
 }

We can add another user easily using the following code:

 example::admin {'thomas':
 uid => 1001,
 key => 'AAAA...z',
 bashrc => "alias vi=vim\nexport EDITOR=vim\n"
 }

Custom Types

[166]

Now when we add these resources to a node and run Puppet, we see the users created.

In this example, we defined a type that created a user and a group, created the user's
home directory, added an SSH key to the user, and created their dotfiles. There are
many examples where a defined type can streamline your code. Common examples
of defined types include apache vhosts and Git repositories.

Defined types work well when you can express the thing you are trying to create
with types that are already defined. If the new type can be expressed better with
Ruby, then you might have to create your own type by extending Puppet with a
custom type.

Chapter 6

[167]

Types and providers
Puppet separates the implementation of a type into the type definition and any
one of many providers for that type. For instance, the package type in Puppet has
multiple providers depending on the platform in use (apt, yum, rpm, and others).
Early on in Puppet development there were only a few core types defined. Since
then, the core types have expanded to the point where anything that I feel should be
a type is already defined by core Puppet. The modules presented in Chapter 5, Custom
Facts and Modules, each created their own types using this mechanism. The LVM
module created a type for defining logical volumes; the concat module created
types for defining file fragments. The firewall module created a type for defining
firewall rules. Each of these types represents something on the system with the
following properties:

•	 Unique
•	 Searchable
•	 Atomic
•	 Destroyable
•	 Creatable

When creating a new type, you have to make sure your new type has these
properties. The resource defined by the type has to be unique, which is why the file
type uses the path to a file as the naming variable (namevar). A system may have
files with the same name (not unique), but it cannot have more than one file with
an identical path. As an example, the ldap configuration file for openldap is /etc/
openldap/ldap.conf, the ldap configuration file for the name services library is /
etc/ldap.conf. If you used filename, then they would both be the same resource.
Resources must be unique. By atomic, I mean it is indivisible; it cannot be made
of smaller components. For instance, the firewall module creates a type for single
iptables rules. Creating a type for the tables (INPUT, OUTPUT, FORWARD) within
iptables wouldn't be atomic—each table is made up of multiple smaller parts, the
rules. Your type has to be searchable so that Puppet can determine the state of the
thing you are modifying. A mechanism has to exist to know what the current state is
of the thing in question. The last two properties are equally important. Puppet must
be able to remove the thing, destroy it, and likewise, Puppet must be able to create
the thing anew.

Custom Types

[168]

Given these criteria, there are several modules that define new types, with some
examples including types that manage:

•	 Git repositories
•	 Apache virtual hosts
•	 LDAP entries
•	 Network routes
•	 Gem modules
•	 Perl CPAN modules
•	 Databases
•	 Drupal multisites

Creating a new type
As an example, we will create a gem type for managing Ruby gems installed for a
user. Ruby gems are packages for Ruby that are installed on the system and can be
queried like packages.

Installing gems with Puppet can already be done using the gem
provider with the package type.

To create a custom type requires some knowledge of Ruby. In this example, we
assume the reader is fairly literate in Ruby. We start by defining our type in the
lib/puppet/type directory of our module. We'll do this in our example module,
modules/example/lib/puppet/type/gem.rb.

The file will contain the newtype method and a single property for our type, version
as shown in the following code:

Puppet::Type.newtype(:gem) do
 ensurable
 newparam(:name, :namevar => true) do
 desc 'The name of the gem'
 end
 newproperty(:version) do
 desc 'version of the gem'
 validate do |value|
 fail("Invalid gem version #{value}") unless value =~
/^[0-9]+[0-9A-Za-z\.-]+$/
 end
 end
end

Chapter 6

[169]

The ensurable keyword creates the ensure property for our new type, allowing the
type to be either present or absent. The only thing we require of the version is that it
start with a number and only contain numbers, letters, periods, or dashes.

A more thorough regular expression here could save you time later,
such as checking that the version ends with a number or letter.

Now we need to start making our provider. The name of the provider is the name of
the command used to manipulate the type. For packages, the providers are named
things like yum, apt, and dpkg. In our case we'll be using the gem command to
manage gems, which makes our path seem a little redundant. Our provider will
live at modules/example/lib/puppet/provider/gem/gem.rb.

We'll start our provider with a description of the provider and the commands it will
use as shown in the following code:

Puppet::Type.type(:gem).provide :gem do
 desc "Manages gems using gem"

 commands :gem => "gem"

Then we'll define a method to list all the gems installed on the system as shown in
the following code, which defines the self.instances method:

 def self.instances
 gems = []
 begin
 execpipe("#{command(:gem)} list -l") { |process|
 process.each_line { |line|
 (name,version) = line.split(' ')
 hash = {}
 hash[:provider] = self.name
 hash[:name] = name
 hash[:ensure] = :present
 hash[:version] = version.tr('()','')
 gems << new(hash)
 }
 }
 rescue Puppet::ExecutionFailure
 raise Puppet::Error, "Failed to list gems"
 end

 gems
 end
end

Custom Types

[170]

This method runs gem list -l and then parses the output looking for lines such as
gemname (version). We then strip the parenthesis from the version and appends
the lines to an instance hash, named gems. The gems hash is returned and then
Puppet knows all about the gems installed on the system.

Puppet needs two more methods at this point and a method to determine if
the gem exists (is installed), and if it does exist, which version is installed.
We already populated the ensure parameter, so as to use that to define our
exists method as follows:

 def exists?
 @property_hash[:ensure] == :present
 end

To determine the version of an installed gem, we can use the property_hash
variable as follows:

 def version
 @property_hash[:version] || :absent
 end

To test this, add the module to a node and pluginsync the module over to the node
as follows:.

node1# puppet plugin download

Notice: /File[/var/lib/puppet/lib/puppet/provider/gem/gem.rb]/ensure:
defined content as '{md5}48749efcd33ce06b401d5c008d10166c'

Notice: /File[/var/lib/puppet/lib/puppet/type/gem.rb]/ensure: defined
content as '{md5}78a1f1b995beb2852a60da72c6879904'

This will install our type/gem.rb and provider/gem/gem.rb files into /var/lib/
puppet on the node. After that, we are free to run puppet resource on our new
type to list the available gems as shown in the following code:

puppet resource gem
gem { 'bigdecimal':
 ensure => 'present',
 version => '1.2.0',
}
gem { 'bropages':
 ensure => 'present',
 version => '0.1.0',
}
…

Chapter 6

[171]

Now, if we want to manage gems, we'll need to create and destroy them, and we'll
need to provide methods for those operations. If we try at this point, Puppet will fail,
as we can see from the following output:

So we'll need a method to destroy (remove) gems, gem uninstall should do the
trick, as shown in the following code:

 def destroy
 g = @resource[:version] ? [@resource[:name], '--version', @
resource[:version]] : @resource[:name]
 gem('uninstall', g, '-q', '-x')
 @property_hash.clear
 end

Using the ternary operator, we either run gem uninstall name -q -x if no version
is defined, or gem uninstall name --version version -q -x if a version is
defined. We finish by calling @property_hash.clear to remove the gem from the
property_hash since the gem is now removed.

Custom Types

[172]

Now we need to let Puppet know about the state of the bropages gem using
our instances method we defined earlier, we'll need to write a new method to
prefetch all the available gems. This is done with self.prefetch, as shown in
the following code:

 def self.prefetch(resources)
 gems = instances
 resources.keys.each do |name|
 if provider = gems.find{ |gem| gem.name == name }
 resources[name].provider = provider
 end
 end
 end

We can see this in action using the --debug option to Puppet resource as shown in
the following screenshot:

Chapter 6

[173]

Almost there, now we want to add bropages back, we'll need a create method,
as shown in the following code:

 def create
 g = @resource[:version] ? [@resource[:name], '--version', @
resource[:version]] : @resource[:name]
 gem('install', g)
 @property_hash[:ensure] = :present
 end

Now when we run puppet resource to create the gem, we see the installation,
as shown in the following screenshot:

Nearly done now, we need to handle versions. If we want to install a specific version
of the gem, we'll need to define methods to deal with versions.

 def version=(value)
 begin
 gem('install',@resource[:name],'--version',@resource[:version])
 rescue Puppet::ExecutionFailure
 raise Puppet::Error, "Failed to install gem #{resource[:name]}
(#{resource[:version]})"
 end
 @property_hash[:version] = value
 end

Custom Types

[174]

Now, we can tell Puppet to install a specific version of the gem and have the correct
results. This is where our choice of gem as an example breaks down as gem provides
for multiple versions of a gem to be installed. Our gem provider, however, works
well enough for use at this point. We can specify the gem type in our manifests and
have gems installed or removed from the node.

Summary
Using parameterized classes and defined types, it is possible to increase the
readability and resiliency of your code. Encapsulating sections of your code within
a defined type makes your code more modular and easier to support. When defined
types are not enough, you can extend Puppet with custom types and providers
written in Ruby. The details of writing providers are best learned by reading the
already written providers and referring to the documentation on the Puppet Labs
website. The public modules covered in an earlier chapter make use of defined types
and custom types and providers and can serve as a starting point to writing your
own types. The module augeasproviders is another module to read when looking
to write your own types and providers. In the next chapter, we will set up reporting
and look at Puppet Dashboard and The Foreman.

Reporting and Orchestration
Reports return all the log messages from the Puppet nodes to the master.
In addition to log messages, reports send other useful metrics such as timing
(time spent performing different operations) and statistical information (counts
of resources and number of failed resources). With reports, you can know when
your Puppet runs fail and most importantly, why. In this chapter, we will cover
the following reporting mechanisms.

•	 Syslog
•	 Store (YAML)
•	 IRC
•	 Foreman
•	 Puppet Dashboard

In addition to reporting, we will configure the marionette collective (mcollective)
system to allow for orchestration tasks. In the course of configuring reporting, we
will show different methods of signing and transferring SSL keys for systems that
are subordinate to our master, puppet.example.com.

Turning on reporting
To turn on reporting, set report = true in the [agent] section of puppet.conf
on all your nodes.

Once you have done that, you need to configure the master to deal with
reports. There are several report types included with Puppet; they are listed
at http://docs.puppetlabs.com/references/latest/report.html.

http://docs.puppetlabs.com/references/latest/report.html

Reporting and Orchestration

[176]

There are two simple reporting options included with Puppet: log and store.
The log option uses syslog to output messages from the nodes via syslog on the
master. This is a reasonable option if you cannot guarantee syslog connectivity at
your nodes due to a firewall or other restrictions. The other option is store, which
simply stores the report as a file in the reportdir of the master.

To use a report, add it by name to the reports section on the master. This is a
comma-separated list of reports. You can have many different report handlers.
Report handlers are stored at site_ruby/[version]/puppet/reports/ and
/var/lib/puppet/lib/puppet/reports. The latter directory is where modules
can send report definitions to be installed on clients (using the pluginsync
mechanism; remember that things get purged from the pluginsync directories,
so unless you are placing files there with Puppet, they will be removed).

Syslog
To use syslog, set reports = log in the main section of /etc/puppet/puppet.conf
and report=true on all the nodes, as shown in the following snippet:

[main]
 reports = log
[agent]
 report = true

After restarting httpd on our masters, we'll see catalog compilation messages from
nodes appearing in our syslog logs. By default, Puppet will use the daemon facility
to change the facility set syslogfacility in the [main] section of puppet.conf.
To determine your current facility, use the following command:

puppet master --configprint syslogfacility

daemon

On our system using rsyslog, we can have all Puppet report messages go into a
Puppet logfile using syslogfacility = local5, as shown in the following snippet:

[main]
 reports = log
 syslogfacility = local5

Then, in /etc/rsyslog.conf or /etc/syslog.conf (similar syntax), redirect all
local5 level messages to puppet.log, as shown in the following snippet:

local5.* /var/log/puppet.log

Chapter 7

[177]

Even if you use one of the GUIs in the next few sections, having your catalog
compilation logs going into syslog can be useful. If you have a log aggregation
and searching mechanism such as Splunk or Elasticsearch/Logstash/Kibana (ELK),
you can quickly correlate catalog compilation problems.

Store
To enable the store mechanism, use reports = store. We'll add this to our log
destination in this example, as shown in the following snippet:

[main]
 reports = log, store

The default location for reports is reportdir. To see your current reportdir
directory, use the --configprint option of master, as shown in the following snippet:

puppet master --configprint reportdir
/var/lib/puppet/reports

The store option is on by default; however, once you specify the reports setting as
anything in the main section of puppet.conf, you disable store. By placing log and
store in reports, we will have both reports. Remember though, once you enable
store for reports, report files will start accumulating on the master. It's a good
idea to enable purging of those reports. In our multiple worker scenario, it's a good
idea to set report_server in the agent section of the nodes if you are using log or
store, as shown in the following commands. The default setting for report_server
is the same as the server parameter.

node1# puppet agent --configprint report_server
puppet.example.com
node1# puppet agent --configprint server
puppet.example.com

IRC
If you have an internal Internet Relay Chat (IRC) server, using the IRC report
plugin can be useful. This report sends failed catalog compilations to an IRC
chatroom. You can have this plugin installed on all your catalog workers; each
catalog worker will login to the IRC server and send failed reports. That works very
well, but in this example we'll configure a new worker called reports.example.com.
It will be configured as though it were a standalone worker; the reports machine will
need the same packages as a regular worker (puppet, httpd, and mod_passenger).
We'll enable the IRC logging mechanism on this server. That way we only have to
install the dependencies for the IRC reporter on one worker.

Reporting and Orchestration

[178]

The reports server will need certificates signed by puppet.example.com. There are
two ways you can have the keys created; the simplest way is to make your reports
server a client node of puppet.example.com and have Puppet generate the keys.
We will show how to use puppet certificate generate to manually create and
download keys for our reports server.

First, generate certificates for this new server on puppet.example.com using puppet
certificate generate.

The command puppet certificate generate may be issued from
either puppet.example.com or reports.example.com. When
running from puppet.example.com, the command looks as follows:
puppet certificate generate --ca-location local
reports.example.com

When running from reports.example.com, the command looks as follows:
puppet certificate generate --ca-location remote
--server puppet.example.com reports.example.com

You will then need to sign the certificate on puppet.example.com using the
following command:

puppet cert sign reports.example.com

Notice: Signed certificate request for reports.example.com

Notice: Removing file Puppet::SSL::CertificateRequest reports.example.com
at '/var/lib/puppet/ssl/ca/requests/reports.example.com.pem'

If you used puppet certificate generate, then you will need to download the
public and private keys from puppet.example.com to reports.example.com. The
private key will be in /var/lib/puppet/ssl/private_keys/reports.example.
com.pem, and the public key will be in /var/lib/puppet/ssl/ca/signed/reports.
example.com.pem.

We can use puppet certificate to do this as well. On the reports machine, run the
following command:

puppet certificate find reports.example.com --ca-location remote
--server puppet.example.com

-----BEGIN CERTIFICATE-----

...

2jU/DvBAhWVxZEd674ATk21lyfncm3CDapW7/hiyb/eG

-----END CERTIFICATE-----.

Chapter 7

[179]

The report machine will need the the certificate authority files as well (/var/lib/
puppet/ssl/ca/ca_crt.pem and /var/lib/puppet/ssl/ca/ca_crl.pem);
the CRL should be kept in sync using an automated mechanism.

To download the CA from puppet.example.com, use the following command:

puppet certificate find ca --ca-location remote --server puppet.
example.com

The CRL will have to be downloaded manually. Create a passenger configuration
file for this new server, as shown in the following configuration file:

PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RackAutoDetect Off
RailsAutoDetect Off

Listen 8140

LoadModule ssl_module modules/mod_ssl.so
<VirtualHost *:8140>
 ServerName reports.example.com
 # SSL settings
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
 SSLCertificateFile /var/lib/puppet/ssl/certs/reports.example.
com.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/reports.
example.com.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars +ExportCertData

 # Pass SSL information to puppet
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /etc/puppet/rack/public/

Reporting and Orchestration

[180]

 RackBaseURI /
 # where to find config.ru
 <Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

Now, you can run Puppet on your nodes that are configured to send reports
to report_server=reports.example.com, and the reports will show up in
$reportdir. With that in place, we'll turn to installing the IRC plugin. First
use puppet module to install the module.

puppet module install jamtur01/irc

Notice: Preparing to install into /etc/puppet/modules ...

Notice: Downloading from https://forge.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/etc/puppet/modules

└── jamtur01-irc (v0.0.6)

cp /etc/puppet/modules/irc/lib/puppet/reports/irc.rb /usr/lib/ruby/
site_ruby/1.8/puppet/reports

Search for puppet/reports to find the reports directory.

Now copy the irc.yaml configuration file into /etc/puppet, and edit as
appropriate. Our IRC server is irc.example.com. We'll use the username
puppetbot and password PacktPubBot, as shown in the following snippet:

:irc_server: 'irc://puppetbot:PacktPubBot@irc.example.com:6667#puppet'
:irc_ssl: false
:irc_register_first: false
:irc_join: true
:report_url: 'http://foreman.example.com/hosts/%h/reports/last'

Chapter 7

[181]

We are almost ready; the IRC report plugin uses The RubyGem
carrier-pigeon to do the IRC work, so we'll need to install that now,
as shown in the following command:

reports# gem install carrier-pigeon

Successfully installed addressable-2.3.5

Successfully installed carrier-pigeon-0.7.0

2 gems installed

Now we can restart httpd on our reports worker and create a catalog compilation
problem on node1 (I sent it multiple definitions of a resource), as shown in the
following screenshot:

So, whenever there is a catalog compilation issue, the puppetbot user will login
to our #puppet channel and let us know. Now for our next task—the given URL
requires that Foreman is configured; we'll set up that now.

Foreman
Foreman is more than just a Puppet reporting tool, it bills itself as a complete life
cycle management platform. Foreman can act as the External Node Classifier (ENC)
for your entire installation and configure DHCP, DNS, and PXE booting. It's a
one-stop shop. We'll configure Foreman to be our report backend in this example.

Reporting and Orchestration

[182]

Installing Foreman
To install Foreman, we'll need the Extra Packages for Enterprise Linux (EPEL)
(https://fedoraproject.org/wiki/EPEL) and Software Collections (SCL)
(https://fedorahosted.org/SoftwareCollections/), which are the YUM
repositories for ruby193 and its dependencies. We have previously used the EPEL
repository; the SCL repository is used for updated versions of packages that already
exist on the system, in this case, Ruby 1.9.3 (Ruby 1.8.7 is the default on Enterprise
Linux 6.5). The SCL repositories have updated versions of other packages as well.

yum -y install http://yum.theforeman.org/releases/1.4/el6/x86_64/
foreman-release.rpm

yum -y install foreman-installer

The foreman-installer command uses puppet apply to configure Foreman
on the server. Since we will only be using Foreman for reporting in this example,
we can just use the installer, as shown in the following command:

foreman# foreman-installer --no-enable-foreman-proxy --no-enable-puppet
--puppet-ca-server puppet.example.com

Installing Done [100%] [............
..]

 Success!

 * Foreman is running at https://foreman.example.com

 Default credentials are 'admin:changeme'

 The full log is at /var/log/foreman-installer/foreman-installer.log

The installer will pull down all the RubyGems required for Foreman and install and
configure PostgreSQL by default. The database will be populated and started with
all using puppet apply. The Foreman web application will be configured using
mod_passenger and Apache.

Attaching Foreman to Puppet
With Foreman installed and configured, create certificates for foreman.example.com
on puppet.example.com ,and copy the keys over to Foreman; they will go in /var/
lib/puppet/ssl using the same procedure as we did for reports.example.com at
the beginning of the chapter.

https://fedoraproject.org/wiki/EPEL
https://fedorahosted.org/SoftwareCollections/

Chapter 7

[183]

We need our report server to send reports to Foreman, so we need the foreman-
report file. You can download this from https://raw.github.com/theforeman/
puppet-foreman/master/templates/foreman-report_v2.rb.erb or use the one
that foreman-installer installed for you. This file will be located in /usr/lib/
ruby/site_ruby/1.8/puppet/reports/foreman.rb.

Copy this file to reports.example.com into /usr/lib/ruby/site_ruby/1.8/
puppet/reports/foreman.rb. Edit the file so that the Foreman URL and SSL
settings are as follows:

URL of your Foreman installation
$foreman_url='https://foreman.example.com'
if CA is specified, remote Foreman host will be verified
$foreman_ssl_ca = "/var/lib/puppet/ssl/certs/ca.pem"
ssl_cert and key are required if require_ssl_puppetmasters is
enabled in Foreman
$foreman_ssl_cert = "/var/lib/puppet/ssl/certs/reports.example.com.
pem"
$foreman_ssl_key = "/var/lib/puppet/ssl/private_keys/reports.example.
com.pem"

So far we have our Puppet nodes sending reports to our reporting server, which is
in turn sending reports to Foreman. Foreman will reject the reports at this point until
we allow reports.example.com. Login to https://foreman.example.com using
admin:changeme, as shown in the following screenshot:

https://raw.github.com/theforeman/puppet-foreman/master/templates/foreman-report_v2.rb.erb
https://raw.github.com/theforeman/puppet-foreman/master/templates/foreman-report_v2.rb.erb

Reporting and Orchestration

[184]

Then navigate to the Settings section as shown in the following screenshot, click on
the Auth tab, and update the trusted_puppetmaster_hosts setting:

Note that this must be an array, so keep the [] brackets around reports.example.
com as shown in the following screenshot:

With all this in place, when a node compiles a catalog, it will send the report to
reports.example.com, which will send the report on to foreman.example.com.
After a few reports arrive, our Foreman homepage will list hosts and reports.

Chapter 7

[185]

Using Foreman
Let's first look at the Hosts window:

The icons next to the hostnames indicate the status of the last Puppet run. You can
also navigate to the Monitor | Reports section to see the latest reports, as shown in
the following screenshot:

Reporting and Orchestration

[186]

Clicking on worker1.example.com shows the failed catalog run and the contents of
the error message, as shown in the following screenshot:

Another great feature of Foreman is that when a file is changed by Puppet, Foreman
will show the diff file for the change in a pop-up window. When we configured our
IRC bot to inform us of failed Puppet runs in the last section, the bot presented URLs
for reports; those URLs were Foreman specific and will now work as intended. The
Foreman maintainers recommend purging your Puppet reports to avoid filling the
database and slowing down Foreman. They have provided a rakefile that can be run
with foreman-rake to delete old reports, as shown in the following command:

foreman-rake reports:expire days=7

To complete this example, we will have our worker facts sent to Foreman.
This is something that can be run from cron. Copy the node.rb ENC script
from foreman.example.com to worker1.example.com, as shown in the
following command:

scp /etc/puppet/node.rb worker1.example.com:/etc/puppet

Edit node.rb and change the SSL information as follows:

 :ssl_cert => "/var/lib/puppet/ssl/certs/worker1.example.com.pem",
 :ssl_key => "/var/lib/puppet/ssl/private_keys/worker1.example.
com.pem"

Chapter 7

[187]

Again, go back into Foreman and add worker1.example.com to trusted_
puppetmaster_hosts. Then, from worker1 run the node.rb script with --push-
facts to push all the facts to Foreman, as shown in the following command:

/etc/puppet/node.rb --push-facts

Now when you view hosts in Foreman, they will have their facts displayed. Foreman
also includes rakefiles to produce e-mail reports on a regular basis. Information on
configuring this is available at http://projects.theforeman.org/projects/
foreman/wiki/Mail_Notifications.

With this configuration, Foreman is only showing us the reports. Foreman can be
used as a full ENC implementation and take over the entire life cycle of provisioning
hosts. I recommend looking at the documentation and exploring the GUI to see if
you might benefit from using more of Foreman's features.

Puppet Dashboard
The Dashboard is an open source GUI. It was previously used by Puppet enterprise.
Dashboard uses MySQL as its backend unlike Foreman.

New versions of Puppet enterprise use the Puppet console, which uses
PostgreSQL as its backend.

We'll create another vm for Dashboard. Starting with an empty image, we will
add the puppetlabs repository and the mysql-server packages using the
following commands:

yum install https://yum.puppetlabs.com/el/6/products/x86_64/
puppetlabs-release-6-7.noarch.rpm mysql-server

yum install puppet-dashboard

http://projects.theforeman.org/projects/foreman/wiki/Mail_Notifications
http://projects.theforeman.org/projects/foreman/wiki/Mail_Notifications

Reporting and Orchestration

[188]

With MySQL installed, we'll start MySQL with service mysqld start, and then
run the secure installation script to set a root password before connecting to the
database, as shown in the following command:

mysql_secure_installation

The Dashboard works with reports from the nodes, some of which can be very large.
To accommodate this, change the maximum size of a commit message, as noted in
the Dashboard installation manual (http://docs.puppetlabs.com/dashboard/
manual/1.2/bootstrapping.html), as shown in the following snippet. Puppet
can sometimes send very large results.

[mysqld]
...
max_allowed_packet=32M

Restart mysqld after this to make the change take effect.

Create or edit the database.yml file in /usr/share/puppet-dashboard/config to
reflect our new database and database user we just created:

production:
 database: dashboard
 username: dashboard
 password: PacktPubDashboard
 encoding: utf8
 adapter: mysql

http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html

Chapter 7

[189]

With the database defined, it's now time to create the tables (schema) in our database;
this is done with a rake task:

rake RAILS_ENV=production db:migrate

== BasicSchema: migrating ==

...

== RemoveUrlFromNodes: migrating =======================================
-- remove_column(:nodes, :url)

 -> 0.0383s

== RemoveUrlFromNodes: migrated (0.0386s) ==============================

Using passenger with Dashboard
For production, we'll run Dashboard through mod_passenger with Apache,
so install mod_passenger from EPEL, and then install Puppet, as shown in
the following command:

yum -y install mod_passenger mod_ssl puppet

The Dashboard RPM includes an Apache vhost configuration file that can be used
as a reference. With mod_passenger installed, create a dashboard.conf file in
/etc/httpd/conf.d with the following:

Passenger configuration
PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RailsAutoDetect On

<VirtualHost *:80>
 ServerName dashboard.example.com
 DocumentRoot /usr/share/puppet-dashboard/public/
 <Directory /usr/share/puppet-dashboard/public/>
 Options None
 Order allow,deny
 allow from all
 </Directory>
 ErrorLog /var/log/httpd/dashboard.example.com_error.log
 LogLevel warn

Reporting and Orchestration

[190]

 CustomLog /var/log/httpd/dashboard.example.com_access.log combined
 ServerSignature On
</VirtualHost>

Listen 443
<VirtualHost *:443>
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
 SSLCertificateFile /usr/share/puppet-dashboard/certs/
dashboard.example.com.pem
 SSLCertificateKeyFile /usr/share/puppet-dashboard/dashboard.
example.com-private.pem
 SSLCACertificateFile /usr/share/puppet-dashboard/certs/ca.pem
 SSLCARevocationFile /usr/share/puppet-dashboard/certs/ca_crl.
pem

 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars
 ServerName dashboard.example.com
 DocumentRoot /usr/share/puppet-dashboard/public
 <Directory /usr/share/puppet-dashboard/public>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
 <Location / >
 Order deny,allow
 Allow from ALL
 </Location>
</VirtualHost>

mod_passenger creates a passenger.conf file with the required
LoadModule and PassengerRoot values.

Chapter 7

[191]

This configuration references certificates for dashboard.example.com.
We'll need to generate those certificates now. We installed Puppet, so we'll
use puppet certificate generate on the Dashboard machine, as shown in
the following commands:

cd /usr/share/puppet-dashboard/certs

puppet certificate generate dashboard.example.com --ca-location remote
--server puppet.example.com

Now go sign the certificate on puppet.example.com with puppet cert sign
dashboard.example.com. Then, back on Dashboard, download the signed
certificate using the following command:

puppet certificate find dashboard.example.com --ca-location remote
--server puppet.example.com

-----BEGIN CERTIFICATE-----

...

2jU/DvBAhWVxZEd674ATk21lyfncm3CDapW7/hiyb/eG

-----END CERTIFICATE-----

Download the CA from puppet.example.com, as shown in the following command:

puppet certificate find ca --ca-location remote --server puppet.
example.com

Copy ca_crl.pem from /var/lib/puppet/ssl/ca on puppet.example.com to
ca_crl.pem in /usr/share/puppet-dashboard/certs. Copy the other three files
into the directory as well, as shown in the following commands:

cd /usr/share/puppet-dashboard/certs

cp /var/lib/puppet/ssl/private_keys/dashboard.example.com.pem
dashboard.example.com-private.pem

cp /var/lib/puppet/ssl/certs/dashboard.example.com.pem .

cp /var/lib/puppet/ssl/certs/ca.pem .

Now with all the files in place, we can start httpd and view our Dashboard at
https://dashboard.example.com.

You may have to comment out VirtualHost in the ssl.conf file
created by mod_ssl before you can start httpd. You may also have
to change the ownership on production.log, as shown in the
following command:
chown puppet-dashboard:puppet-dashboard /usr/share/
puppet-dashboard/log/production.log

Reporting and Orchestration

[192]

The following screenshot shows our Dashboard:

Linking Dashboard to Puppet
Dashboard is operational but not functional yet. Just as we had to do for Foreman,
we need to configure reports.example.com to forward reports to Dashboard (or
configure our catalog workers to send reports directly to Dashboard). On reports.
example.com, we change /etc/puppet/puppet.conf to add the new Dashboard
report, as shown in the following snippet:

[main]
...
 reports = irc,foreman,http
 reporturl = http://dashboard.example.com/reports/upload

Restart httpd on reports.example.com, and wait for a node to run; you will see the
report in Dashboard. Well, not really; you'll see it waiting in Dashboard, as shown in
the following screenshot:

Chapter 7

[193]

Processing reports
Dashboard processes report asynchronously, so we need to start some Dashboard
worker processes to handle these reports. With our RPM installation, these processes
are controlled via the init script puppet-dashboard-workers. Puppet Labs
recommends you to run as many of these workers as you have CPU cores on the
system. To do this, create a file /etc/sysconfig/puppet-dashboard-workers,
and place the following:

CPUS=xxx

Here xxx is the number of CPU cores on the system. Then start the workers as
shown in the following line:

service puppet-dashboard-workers

Now go back to the Dashboard GUI, and see that the pending tasks have been dealt
with, as shown in the following screenshot:

The background tasks box now shows All systems go. If the load on your Dashboard
worker ever becomes too great, or the delayed_job processes (puppet-dashboard-
workers) are unable to keep up, this will change to a list of jobs pending execution.

Dashboard is now configured to show us the reports from the nodes; we would
use chkconfig to ensure the workers and puppet-dashboard-httpd process start
automatically on reboot, if this were a production system.

Reporting and Orchestration

[194]

All of these reporting mechanisms so far have dealt with collecting information from
Puppet runs. If you wish to query nodes live, then the marionette collective is the
tool of choice.

mcollective
mcollective is an orchestration tool created by Puppet Labs that is not specific
to Puppet. Plugins exist to work with other configuration management systems.
mcollective uses a Message Queue (MQ) tool with active connections from all
active nodes to enable parallel job execution on large numbers of nodes.

To understand how mcollective works, we'll consider the following high-level
diagram and work through the various components. The configuration of
mcollective is somewhat involved and prone to errors. Still, once mcollective is
working properly, the power it provides can become addictive. It will be worth
the effort, I promise.

In the following diagram, we see that the client executing the mcollective
command communicates with the MQ server. The MQ server then sends the
query to each of the nodes connected to the queue.

client

MQ

connection 61614

nodes

The default MQ installation for marionette uses activemq. The activemq package
provided by the Puppet Labs repository is known to work.

mcollective uses a generic message queue and can be configured
to use your existing message queue infrastructure.

Chapter 7

[195]

If using activemq, a single server can handle 800 nodes. After that, you'll need to
spread out to multiple MQ servers. We'll cover the standard mcollective installation
using Puppet's certificate authority to provide SSL security to mcollective. The theory
here is that we trust Puppet to configure the machines already; we can trust it a little
more to run arbitrary commands. We'll also require that users of mcollective have
proper SSL authentication.

You can install mcollective using the mcollective module from Forge
(https://forge.puppetlabs.com/puppetlabs/mcollective).
In this section, we will install mcollective manually to explain the
various components.

Installing activemq
activemq is the recommended messaging server for mcollective. If you already have
a messaging server in your infrastructure, you can use your existing server and just
create a message queue for mcollective.

•	 We will install activemq from the Puppet Labs repository to puppet.
example.com using the following command:
yum install activemq

...

Installed:

 activemq.noarch 0:5.8.0-3.el6

•	 Next, download the sample activemq config file using the
following commands:
cd /etc/activemq

mv activemq.xml activemq.xml.orig

wget -q https://raw.github.com/puppetlabs/marionette-collective/
master/ext/activemq/examples/single-broker/activemq.xml

•	 This will create activemq.xml. This file needs to be owned by the user
activemq, and since we will be adding passwords to the file shortly,
we'll set its access permissions to user only:
chown activemq activemq.xml

chmod 0600 activemq.xml

https://forge.puppetlabs.com/puppetlabs/mcollective

Reporting and Orchestration

[196]

•	 Now create an mcollective password and admin password for your message
queue using the following code. The defaults in this file are marionette and
secret respectively.
<simpleAuthenticationPlugin>
 <users>
 <authenticationUser username="mcollective"
password="PacktPubSecret" groups="mcollective,everyone"/>
 <authenticationUser username="admin"
password="PacktPubSuperSecret" groups="mcollective,admins,everyo
ne"/>
 </users>
</simpleAuthenticationPlugin>

•	 Next, change the transportConnectors section to use SSL, as shown in the
following snippet:
<transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61616"/>
 <transportConnector name="stomp+ssl" uri="stomp+ssl://0.0.0.0:61
614?needClientAuth=true"/>
</transportConnectors>

•	 Immediately following the transportConnectors, we'll define an
sslContext, which will contain the SSL keys from our Puppet master
in a format compatible with activemq (keystores):
 <sslContext>
 <sslContext
 keyStore="keystore.jks" keyStorePassword="PacktPubKeystore"
 trustStore="truststore.jks" trustStorePassword="PacktPubTru
st"
 />
 </sslContext>

This section should be within the <broker> definition. For simplicity,
just stick it right after the <transportConnectors> section.

•	 Now we need to create keystore.jks and truststore.jks. Start
by copying the certificates from Puppet into a temporary directory,
as shown in the following commands:
cd /etc/activemq

mkdir tmp

cd tmp

cp /var/lib/puppet/ssl/certs/ca.pem .

cp /var/lib/puppet/ssl/certs/puppet.example.com.pem .

Chapter 7

[197]

cp /var/lib/puppet/ssl/private_keys/puppet.example.com.pem
puppet.example.com.private.pem

keytool -import -alias "Example CA" -file ca.pem -keystore
truststore.jks

Enter keystore password: PacktPubTrust

Re-enter new password: PacktPubTrust

Owner: CN=Puppet CA: puppet.example.com

Issuer: CN=Puppet CA: puppet.example.com

...

Trust this certificate? [no]: yes

Certificate was added to keystore

•	 The truststore.jks keystore is now complete. We next need to create
the keystore.jks keystore. We start by combining the public and private
portions of the Puppet server certificate. The combined file is then fed to
OpenSSL's pkcs12 command to create a pkcs12 file suitable for import
using keytool.
cat puppet.example.com.pem puppet.example.com.private.pem
>puppet.pem

openssl pkcs12 -export -in puppet.pem -out activemq.p12 -name
puppet.example.com

Enter Export Password: PacktPubKeystore

Verifying - Enter Export Password: PacktPubKeystore

keytool -importkeystore -destkeystore keystore.jks -srckeystore
activemq.p12 -srcstoretype PKCS12 -alias puppet.example.com

Enter destination keystore password: PacktPubKeystore

Re-enter new password: PacktPubKeystore

Enter source keystore password: PacktPubKeystore

•	 Now that these files are created, move them into /etc/activemq, and make
sure they have appropriate permissions.
chown activemq truststore.jks keystore.jks

chmod 0600 truststore.jks keystore.jks

mv truststore.jks keystore.jks /etc/activemq/

•	 We can now start activemq; make sure that your firewall allows
connections inbound on port 61614, which is the port specified in
the transportConnector line in activemq.xml, as shown in the
following command:
service activemq start

Starting ActiveMQ Broker...

Reporting and Orchestration

[198]

•	 Verify that the broker is listening on 61614 using lsof:

lsof -i |grep 61614

java 17734 activemq 138u IPv6 72619 0t0 TCP *:61614
(LISTEN)

Configuring nodes to use activemq
Now we need to create a module to install mcollective on every node and have the
nodes mcollective configuration point back to our message broker. Each node will
use a shared key which we will now generate and sign on puppet.example.com as
shown in the following commands:

puppet certificate generate mcollective-servers --ca-location local

Notice: mcollective-servers has a waiting certificate request

true

puppet cert sign mcollective-servers

Notice: Signed certificate request for mcollective-servers

Notice: Removing file Puppet::SSL::CertificateRequest mcollective-servers
at '/var/lib/puppet/ssl/ca/requests/mcollective-servers.pem'

We'll now copy the certificate and private keys for this new certificate into our
modules files directory and add these files to our module definition. The certificate will
be in /var/lib/puppet/ssl/ca/signed/mcollective-servers.pem and the private
key will be in /var/lib/puppet/ssl/private_keys/mcollective-servers.pem.
The definitions for these files would be as shown in the following snippet:

 file {'mcollective_server_cert':
 path => '/etc/mcollective/ssl/mcollective_public.pem',
 owner => 0,
 group => 0,
 mode => 0640,
 source => 'puppet:///modules/example/mcollective/mcollective_
public.pem',
 }
 file {'mcollective_server_private':
 path => '/etc/mcollective/ssl/mcollective_private.pem',
 owner => 0,
 group => 0,
 mode => 0600,
 source => 'puppet:///modules/example/mcollective/mcollective_
private.pem',
 }

Chapter 7

[199]

With the certificates in place, we'll move on to the configuration of the service as
shown in the following snippet:

class example::mcollective {
 $mcollective_server = 'puppet.example.com'
 package {'mcollective':
 ensure => true,
 }
 service {'mcollective':
 ensure => true,
 enable => true,
 require => [Package['mcollective'],File['mcollective_server_
config']]
 }
 file {'mcollective_server_config':
 path => '/etc/mcollective/server.cfg',
 owner => 0,
 group => 0,
 mode => 0640,
 content => template('example/mcollective/server.cfg.erb'),
 require => Package['mcollective'],
 notify => Service['mcollective'],
 }

This is a pretty clean package-file-service relationship. We need to define the
mcollective server.cfg configuration file. We'll define this with a template as
shown in the following code:

main_collective = mcollective
collectives = mcollective
libdir = /usr/libexec/mcollective
daemonize = 1

logging
logger_type = file
logfile = /var/log/mcollective.log
loglevel = info
logfile = /var/log/mcollective.log
logfacility = user
keeplogs = 5
max_log_size = 2097152

activemq

Reporting and Orchestration

[200]

connector = activemq
plugin.activemq.pool.size = 1
plugin.activemq.pool.1.host = <%= mcollective_server %>
plugin.activemq.pool.1.port = 61614
plugin.activemq.pool.1.user = mcollective
plugin.activemq.pool.1.password = PacktPubSecret
plugin.activemq.pool.1.ssl = 1
plugin.activemq.pool.1.ssl.ca = /var/lib/puppet/ssl/certs/ca.pem
plugin.activemq.pool.1.ssl.cert = /var/lib/puppet/ssl/certs/<%= @fqdn
%>.pem
plugin.activemq.pool.1.ssl.key = /var/lib/puppet/ssl/private_keys/<%=
@fqdn %>.pem
plugin.activemq.pool.1.ssl.fallback = 0

SSL security plugin settings:
securityprovider = ssl
plugin.ssl_client_cert_dir = /etc/mcollective/ssl/clients
plugin.ssl_server_private = /etc/mcollective/ssl/mcollective_private.
pem
plugin.ssl_server_public = /etc/mcollective/ssl/mcollective_public.pem

Facts, identity, and classes:
identity = <%= @fqdn %>
factsource = yaml
plugin.yaml = /etc/mcollective/facts.yaml
classesfile = /var/lib/puppet/state/classes.txt

registerinterval = 600

The next thing we need is a facts.yaml file populated, as shown in the following
snippet, so that we can query facts on the nodes and filter results:

 file {'facts.yaml':
 path => '/etc/mcollective/facts.yaml',
 owner => 0,
 group => 0,
 mode => 0640,
 loglevel => debug,
 content => inline_template("---\n<% scope.to_hash.reject { |k,v|
k.to_s =~ /(uptime_seconds|timestamp|free)/ }.sort.each do |k, v| %>
<%= k %>: \"<%= v %>\"\n<% end %>\n"),
 require => Package['mcollective'],
 }
}

Chapter 7

[201]

In the previous example, the inline_template uses a call to sort due to
random ordering in the hash. Without the sort, the resulting facts.yaml
file is completely different on each Puppet run, resulting in the entire file
being rewritten every time.

Almost there; now we have all our nodes pointing to our activemq server. We need
to configure a client to connect to the server.

Connecting a client to activemq
Clients would normally be installed on the admin user's desktop. We will use
puppet certificate generate here just as we have in previous examples.
We will now outline the steps needed to have a new client connect to mcollective:

1.	 Create certificates for Thomas and name his certificates thomas:
$ puppet certificate generate thomas --ssldir ~/.mcollective.d/
credentials --ca-location remote --ca_server puppet.example.com

2.	 Sign the cert on puppet.example.com (our SSL master):
puppet cert sign thomas

Notice: Signed certificate request for thomas

Notice: Removing file Puppet::SSL::CertificateRequest thomas at '/
var/lib/puppet/ssl/ca/requests/thomas.pem'

3.	 Retrieve the signed certificate on your client:
$ puppet certificate find thomas --ssldir ~/.mcollective.d/
credentials --ca-location remote --ca_server puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFTjCCAzagAwIBAgIBEjANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

...

36ZEB0C+UZij9VVy/ekN2AV0

-----END CERTIFICATE-----

This certificate gets downloaded to ~/.mcollective.d/credentials/
certs/thomas.pem.

Reporting and Orchestration

[202]

4.	 Download the mcollective-servers key:
$ puppet certificate find mcollective-servers --ssldir
~/.mcollective.d/credentials --ca-location remote --ca_server
puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFWzCCA0OgAwIBAgIBEzANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

...

Vd5M0lfdYSDKOA+b1AXXoMaAn9n9j7AyBhQhie52Og==

-----END CERTIFICATE-----

This gets downloaded into ~/.mcollective.d/credentials/certs/
mcollective-servers.pem.

5.	 Download our main CA for certificate verification purposes using the
following command:
$ puppet certificate find ca --ssldir ~/.mcollective.d/credentials
--ca-location remote --ca_server puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFRjCCAy6gAwIBAgIBATANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

...

XO+dgA5aAhUUMg==

-----END CERTIFICATE-----

This gets downloaded into ~/.mcollective.d/credentials/certs/ca.pem.

6.	 Now we need to create the configuration file of mco at ~/.mcollective:
connector = activemq
direct_addressing = 1
ActiveMQ connector settings:
plugin.activemq.pool.size = 1
plugin.activemq.pool.1.host = puppet.example.com
plugin.activemq.pool.1.port = 61614
plugin.activemq.pool.1.user = mcollective
plugin.activemq.pool.1.password = PacktPubSecret
plugin.activemq.pool.1.ssl = 1
plugin.activemq.pool.1.ssl.ca = /home/thomas/.mcollective.d/
credentials/certs/ca.pem
plugin.activemq.pool.1.ssl.cert = /home/thomas/.mcollective.d/
credentials/certs/thomas.pem
plugin.activemq.pool.1.ssl.key = /home/tuphill/.mcollective.d/
credentials/private_keys/thomas.pem
plugin.activemq.pool.1.ssl.fallback = 0

Chapter 7

[203]

securityprovider = ssl
plugin.ssl_server_public = /home/thomas/.mcollective.d/
credentials/certs/mcollective-servers.pem
plugin.ssl_client_private = /home/thomas/.mcollective.d/
credentials/private_keys/thomas.pem
plugin.ssl_client_public = /home/thomas/.mcollective.d/
credentials/certs/thomas.pem
default_discovery_method = mc
direct_addressing_threshold = 10
ttl = 60
color = 1
rpclimitmethod = first
libdir = /usr/libexec/mcollective
logger_type = console
loglevel = warn
main_collective = mcollective

7.	 Now, we need to add our public key to all the nodes so that they will accept
our signed messages. We do this by copying our public key into example/
files/mcollective/clients and creating a file resource to manage that
directory with recurse => true, as shown in the following snippet:

 file {'mcollective_clients':
 ensure => 'directory',
 path => '/etc/mcollective/ssl/clients',
 mode => '0700',
 owner => 0,
 group => 0,
 recurse => true,
 source => 'puppet:///modules/example/mcollective/clients',
 }

Using mcollective
With everything in place, our client will now pass messages that will be
accepted by the nodes, and we in turn will accept the messages signed by
the mcollective-servers key.

thomas@host $ mco ping

worker1.example.com time=86.03 ms

node2.example.com time=96.21 ms

node1.example.com time=97.64 ms

---- ping statistics ----

3 replies max: 97.64 min: 86.03 avg: 93.29

Reporting and Orchestration

[204]

Any admin that you wish to add to your team will need to generate a certificate
for themselves and have the puppet CA sign the key. Then they can copy your
.mcollective file and change the keys to their own. After adding their public key
to the example/mcollective/clients directory, the nodes will start to accept
their messages. You can also add a key for scripts to use; in those cases, using the
hostname of the machine running the scripts will make it easier to distinguish the
host that is running the mco queries.

Now that mco is finally configured, we can use it to generate reports as shown in the
following command. The inventory service is a good place to start.

$ mco inventory node1.example.com

Inventory for node1.example.com:

 Server Statistics:

 Version: 2.4.1

 Start Time: 2014-03-03 00:33:29 -0800

 Config File: /etc/mcollective/server.cfg

 Collectives: mcollective

 Main Collective: mcollective

 Process ID: 885

 Total Messages: 5

 Messages Passed Filters: 5

 Messages Filtered: 0

 Expired Messages: 0

 Replies Sent: 4

 Total Processor Time: 0.46 seconds

 System Time: 0.19 seconds

The facts returned in the inventory command, and in fact in any mco
command, are the redacted facts from the /etc/mcollective/facts.
yaml file we created.

Other common uses of mco are to find nodes that have classes applied to them,
as shown in the following command:

$ mco find --wc webserver

www.example.com

Chapter 7

[205]

Another use of mco is to find nodes that have a certain value for a fact. You can
use regular expression matching using /something/ notation, as shown in the
following command:

$ mco find --wf hostname=/^node/

node2.example.com

node1.example.com

Using the built-in modules, it's possible to start and stop services. Check file contents
and write your own modules to perform tasks.

Summary
Reports help you understand when things go wrong. Using some of the built-in
report types, it's possible to alert your admins of Puppet failures. The two GUIs
outlined here, Foreman and Dashboard, allow you to review Puppet run logs. Both
GUIs have more advanced features, and each can be used as an ENC. Of the two,
Foreman has the most polished feel and makes it easier to link directly to reports
and search for reports. Dashboard was produced by Puppet Labs and is
the predecessor of the Puppet console used in the enterprise product line.
mcollective is an orchestration utility that allows you to actively query and
modify all the nodes in an organized manner interactively via a message broker.

In the next chapter, we will be installing puppetdb and creating exported resources.

Exported Resources
When automating tasks among many servers, information from one node may
affect the configuration of another node or nodes. For example, if you configure DNS
servers using Puppet, then you can have Puppet tell the rest of your nodes where all
the DNS servers are located. This sharing of information is called catalog storage and
searching in Puppet.

Catalog storage and searching was previously known as storeconfigs and
enabled using the storeconfig option in puppet.conf. Storeconfigs
was able to use sqlite, MySQL, and PostgreSQL; it is now deprecated in
favor of puppetdb.

The currently supported method of supporting exported resources is puppetdb,
which uses Java and PostgreSQL and can support hundreds to thousands of nodes
with a single puppetdb instance. Most scaling issues with puppetdb can be solved
by beefing up the PostgreSQL server, either adding a faster disk or more CPU,
depending on the bottleneck.

We will begin our discussion of exported resources by configuring puppetdb.
We will then discuss exported resource concepts and some example usage.

Exported Resources

[208]

Configuring puppetdb – using the forge
module
The easy way to configure puppetdb is to use the puppetdb Puppet module
on Puppet Forge at https://forge.puppetlabs.com/puppetlabs/puppetdb.
The steps to install and use puppetdb that we will outline are as follows:

1.	 Install the puppetdb module on Puppet master/worker.
2.	 Install puppetlabs-repo and Puppet on puppetdb host.
3.	 Deploy the puppetdb module onto puppetdb host.
4.	 Update configuration of the Puppet master to use puppetdb.

We will start with a vanilla EL6 machine and install puppetdb using the puppetdb
module. In Chapter 4, Public Modules, we used a Puppetfile in combination
with librarian-puppet or r10k to download modules. We used the puppetdb
module since it was a good example of dependencies; we will rely on puppetdb
being available to our catalog worker for this example. If you do not already have
puppetdb downloaded, do so now using one of those methods or simply use puppet
module install puppetlabs/puppetdb as shown in the following screenshot:

https://forge.puppetlabs.com/puppetlabs/puppetdb

Chapter 8

[209]

After installing the puppetdb module, we need to install the puppetlabs repo on our
puppetdb machine and install Puppet using the following command:

yum -q -y install puppetlabs-release-6-7.noarch.rpm

yum -q -y install puppet

Our next step is to deploy puppetdb on the puppetdb machine using Puppet. We'll
create a wrapper class to install and configure puppetdb on our worker as shown in
the following code (in the next chapter this will become a profile). Wrapper classes,
or profiles, are classes that bundle lower-level classes (building blocks) into
higher-level classes.

class pdb {
 # puppetdb class
 class { 'puppetdb::server': }
 class { 'puppetdb::database::postgresql': listen_addresses => '*' }
}

At this point, the puppetdb server also needs network ports opened in iptables;
the two ports are 5432 (postgresql) and 8081 (puppetdb). Using our knowledge
of the firewall module, we could do this with the following snippet included in our
pdb class:

 firewall {'5432 postgresql':
 action => 'accept',
 proto => 'tcp',
 dport => '5432',
 }
 firewall {'8081 puppetdb':
 action => 'accept',
 proto => 'tcp',
 dport => '8081',
 }

We then apply this pdb class to our puppetdb machine. For this example, I used the
hiera_include method and the following puppetdb.yaml file:

classes: pdb

Now we run the Puppet agent on puppetdb to have puppetdb installed (running the
Puppet agent creates the SSL keys for our puppetdb server as well; remember to sign
those on the master).

Exported Resources

[210]

Back on our workers, we need to tell Puppet to use puppetdb; we can do this by
defining a worker class that configures Puppet and applying it to our workers:

class worker {
 class {'puppetdb::master::config':
 puppetdb_server => 'puppetdb.example.com',
 puppet_service_name => 'httpd',
 }
}

In the previous puppetdb class definition, puppetdb::master::config expects
the Puppet master service to be puppetmaster, but since we are using passenger,
we need to change this name to httpd so that Puppet will restart Apache and not
try to start the puppetmaster service. Now we configure our worker1.yaml file to
include the previous class as follows:

classes: worker

The worker will need to be able to resolve puppetdb.example.com, either through
DNS or static entries in /etc/hosts. Now run Puppet on our worker to have the
worker configured to use puppetdb. The worker will attempt to communicate with
the puppetdb machine over port 8081. You'll need the firewall (iptables) rules to
allow this access in place at this point.

Now we can test that puppetdb is operating by using Puppet node status as follows:

worker1# puppet node status puppetdb.example.com

puppetdb.example.com

Currently active

Last catalog: 2014-03-13T06:59:31.773Z

Last facts: 2014-03-13T06:59:26.681Z

Manually installing puppetdb
The puppetlabs/puppetdb module does a great job of installing puppetdb and
getting you running quickly. Unfortunately it also obscures a lot of the configuration
details. In the enterprise, you'll need to know how all the parts fit together. We will
now install puppetdb manually in the following five steps:

1.	 Install Puppet and puppetdb
2.	 Install and configure PostgreSQL
3.	 Configure puppetdb to use PostgreSQL

Chapter 8

[211]

4.	 Start puppetdb and open firewall ports
5.	 Configure the Puppet master to use puppetdb

Installing Puppet and puppetdb
To manually install puppetdb, start with a fresh machine and install the puppetlabs
repository, as in previous examples. We'll call this new server puppetdb_manual.
example.com to differentiate it from our automatically installed puppetdb instance
(puppetdb.example.com).

Install Puppet, do a Puppet agent run as shown in the following command to
generate certificates, and sign them on the master as we did when we used the
puppetlabs/puppetdb module. Alternatively use puppet certificate generate
as we have shown in previous chapters.

yum -q -y install puppetlabs-release-6-7.noarch.rpm

yum -q -y install puppet

puppet agent -t

Sign the certificate on the master as follows:

puppet# puppet cert sign puppetdb_manual.example.com

Notice: Signed certificate request for puppetdb_manual.example.com

Notice: Removing file Puppet::SSL::CertificateRequest puppetdb_manual.
example.com at '/var/lib/puppet/ssl/ca/requests/puppetdb_manual.example.
com.pem'

Install puppetdb as follows:

yum -q -y install puppetdb

Installing and configuring PostgreSQL
If you already have an enterprise PostgreSQL server configured, you can
simply point puppetdb at that instance. To install PostgreSQL, install the
postgresql-server package, and initialize the database as follows:

yum -q -y install postgresql-server

service postgresql initdb

Initializing database: [OK]

service postgresql start

Starting postgresql service: [OK]

Exported Resources

[212]

Next create a puppetdb postgres user, and create the puppetdb database
(allowing the puppetdb user to access that database) as follows:

sudo -iu postgres

$ createuser -DRSP puppetdb

Enter password for new role: PacktPub

Enter it again: PacktPub

$ createdb -E UTF8 -O puppetdb puppetdb

Allow puppetdb to connect to the PostgreSQL server using md5 on the localhost
since we'll keep puppetdb and the PostgreSQL server on the same machine
(puppetdb_manual.example.com).

You would need to change the allowed address rules from 127.0.0.1/32
to that of the puppetdb server, if puppetdb was on a different server than
the PostgreSQL server.

Edit /var/lib/pgsql/data/pg_hba.conf and add the following:

local puppetdb puppetdb md5

host puppetdb puppetdb 127.0.0.1/32 md5

host puppetdb puppetdb ::1/128 md5

The default configuration uses ident authentication; you must remove
the following lines:
local all all ident

host all all 127.0.0.1/32 ident

host all all ::1/128 ident

Restart PostgreSQL and test connectivity as follows:

service postgresql restart
Stopping postgresql service: [OK]
Starting postgresql service: [OK]
psql -h localhost puppetdb puppetdb
Password for user puppetdb: PacktPub
psql (8.4.20)
Type "help" for help.

puppetdb=> \d
No relations found.
puppetdb=> \q

Chapter 8

[213]

Now that we've verified that PostgreSQL is working, we need to configure puppetdb
to use PostgreSQL.

Configuring puppetdb to use PostgreSQL
Locate the database.ini file in /etc/puppetdb/conf.d, and replace it with the
following code snippet:

[database]
classname = org.postgresql.Driver
subprotocol = postgresql
subname = //localhost:5432/puppetdb
username = puppetdb
password = PacktPub

If it's not present in your file, configure automatic tasks of puppetdb, such as garbage
collection (gc-interval) as shown in the following code. Puppetdb will remove
stale nodes every 60 minutes. For more information on the other settings refer to the
Puppet Labs documentation at http://docs.puppetlabs.com/puppetdb/latest/
configure.html.

gc-interval = 60
log-slow-statements = 10
report-ttl = 14d
syntax_pgs = true
conn-keep-alive = 45
node-ttl = 0s
conn-lifetime = 0
node-purge-ttl = 0s
conn-max-age = 60

Start puppetdb using the following command:

service puppetdb start

Starting puppetdb: [OK]

Allow external connections to port 8081

iptables -I INPUT -p tcp -m state --state NEW -m tcp --dport 8081 -j
ACCEPT

http://docs.puppetlabs.com/puppetdb/latest/configure.html
http://docs.puppetlabs.com/puppetdb/latest/configure.html

Exported Resources

[214]

Configuring Puppet to use puppetdb
Perform the following steps to configure Puppet to use puppetdb:

1.	 To use puppetdb, the worker will need the puppetdb node terminus
package; we'll install that first by using the following command:
yum -y install puppetdb-terminus

2.	 Create /etc/puppet/puppetdb.conf, and point puppetdb at
puppetdb_manual.example.com:
[main]

port = 8081

soft_write_failure = false

server = puppetdb_manual.example.com

3.	 Tell Puppet to use puppetdb for storeconfigs by adding the following in the
[master] section:
[master]

storeconfigs = true

storeconfigs_backend = puppetdb

4.	 Next, create a routes.yaml file that will make Puppet use puppetdb for
inventory purposes:

master:

 facts:

 terminus: puppetdb

 cache: yaml

5.	 Restart httpd to restart the worker's passenger process and start using
puppetdb. Verify that puppetdb is working by running the puppet agent
again on puppetdb_manual.example.com. After the second Puppet agent
runs, you can inspect the PostgreSQL database for a new catalog as follows:

puppetdb=> \x

Expanded display is on.

puppetdb=> SELECT * from catalogs;

-[RECORD 1]----+---

id | 1

hash | 0e8749558ee701f26de4eedcc15b00cbb1bc7fc9

api_version | 1

Chapter 8

[215]

catalog_version | 1394781065

transaction_uuid | 04a5c02f-5a52-4c37-8a91-99686502733c

timestamp | 2014-03-14 03:11:05.502-04

certname | puppetdb_manual.example.com

Exported resource concepts
Now that we have puppetdb configured, we can begin exporting resources into
puppetdb. In Chapter 5, Custom Facts and Modules, we introduced virtual resources.
Virtual resources are resources that are defined but not instantiated. The concept
with virtual resources is that a node has several resources defined, but only one
or a few resources are instantiated. Unstantiated resources are not used in catalog
compilation. This is one method of overcoming some "duplicate definition" type
problems. The concept with exported resources is much the same, the difference
being that exported resources are published to puppetdb and made available to any
node in the enterprise. In this way, resources defined on one node can be instantiated
(realized) on another node.

What actually happens is quite simple. Exported resources are put into the
catalog_resources table in the PostgreSQL backend of puppetdb. The table
contains a column named exported. This column is set to true for exported
resources. When trying to understand exported resources, just remember that
exported resources are just entries in a database.

To illustrate exported resources, we will walk through a few simple examples.
Before we start, you need to know two terms used with exported resources:
declaring and collecting.

Declaring exported resources
Exported resources are declared with the @@ operator. You define the resource as
you would normally but prepend the definition with @@. For example, the following
host resource:

host {'exported':
 host_aliases => 'exported-resources',
 ip => '1.1.1.1',
}

It can be declared as the exported resource:

@@host {'exported':
 host_aliases => 'exported-resources',
 ip => '1.1.1.1',
}

Exported Resources

[216]

Any resource can be declared as an exported resource. The process of realizing
exported resources is known as collecting.

Collecting exported resources
Collecting is performed using a special form of the collecting syntax. When we
collected virtual resources, we used <| |> to collect the resources. For exported
resources, we use <<| |>>. To collect the previous host resource, we would use
the following:

Host <<| |>>

To take advantage of exported resources, we need to think about what we are trying
to accomplish. We'll start with a simplified example.

Simple example: a host entry
It makes sense to have static host entries in /etc/hosts for some nodes since DNS
outages may disrupt the services provided by those nodes. Examples of such services
are backups, authentication, and kerberos. We'll use LDAP (authentication) in this
example. In this scenario, we'll apply the ldap::server class to any LDAP server
and add a collector for Host entries to our base class (the base class will be a default
applied to all nodes). First, declare the exported resource in ldap::server, as shown
in the following code snippet:

class ldap::server {
 @@host {"ldap-$::hostname":
 host_aliases => ["$::fqdn",'ldap'],
 ip => "$::ipaddress",
 }
}

This will create an exported entry on any host to which we apply the ldap::server
class. We'll apply this class to node2 and then run Puppet to have the resource
exported. After running the Puppet agent on node2, we will examine the contents
of puppetdb, as shown in the following screenshot:

Chapter 8

[217]

The catalog_resources table holds the catalog resource mapping information.
Using the resource ID from this table, we can retrieve the contents of the resource
from the resource_params table, as shown in the following screenshot:

As we can see, the node2 host entry has been made available in puppetdb.
The host_aliases and ip information has been stored in puppetdb.

To use this exported resource, we will need to add a collector to our base class
as follows:

class base {
 Host <<| |>>
}

Exported Resources

[218]

Now when we run puppet agent on any host in our network (any host that has the
base class applied), we will see the following host entry:

node1# grep ldap /etc/hosts

192.168.122.133 ldap-node2 node2.example.com ldap

The problem with this example is that every host with ldap::server applied will
be sent to every node in the enterprise. To make things worse, any exported host
resource will be picked up by our collector. We need a method to be specific when
collecting our resources. Puppet provides tags for this purpose.

Resource tags
Resource tags are metaparameters available to all resources in Puppet. They are used
in collecting only and do not affect the definition of resources.

Metaparameters are part of how Puppet compiles the catalog and not
part of the resource to which they are attached. Metaparameters include
before, notify, require, and subscribe. More information on
metaparameters is available at http://docs.puppetlabs.com/
references/latest/metaparameter.html.

Any tags explicitly set on a resource will be appended to the array of tags. In our
previous example, we saw the tags for our host entry in the PostgreSQL output as
follows, but we didn't address what the tags meant:

{default,node,server,ldap,host,ldap-node2,ldap::server,class}

All these tags are defaults set by puppet. To illustrate how tags are used, we can
create multiple exported host entries with different tags. We'll start with adding
a tag search to our Host collector in the base class as follows:

 Host <<| tag == 'ldap-server' |>>

Then we'll add an ldap-client exported host resource to the base class with the tag
'ldap-client' as follows:

 @@host {"ldap-client-$::hostname":
 host_aliases => ["$::fqdn","another-$::hostname"],
 ip => "$::ipaddress",
 tag => 'ldap-client',
 }

http://docs.puppetlabs.com/references/latest/metaparameter.html
http://docs.puppetlabs.com/references/latest/metaparameter.html

Chapter 8

[219]

Now all nodes will only collect Host resources marked as ldap-server. Every node
will create an ldap-client exported host resource, we'll add a collector for those to
the ldap::server class:

Host <<| tag == 'ldap-client' |>>

One last change: we need to make our ldap-server resource-specific, so we'll add a
tag to it in ldap::server as follows:

 @@host {"ldap-$::hostname":
 host_aliases => ["$::fqdn",'ldap'],
 ip => "$::ipaddress",
 tag => 'ldap-server',
 }

Now every node with the ldap::server class exports a host resource tagged
with ldap-server and collects all host resources tagged with ldap-client. After
running Puppet on our worker1 and nodes 1 and 2, we see the following on node2
as the host resources tagged with ldap-client get defined:

Exported SSH keys
Most exported resource documentation starts with an SSH key example. sshkey
is a Puppet type that creates or destroys entries in the ssh_known_hosts file used
by SSH to verify the validity of remote servers. The sshkey example is a great use
of exported resources, but since most examples put the declaration and collecting
phases in the same class, it may be a confusing example for those starting out
learning exported resources. It's important to remember that exporting and
collecting are different operations.

Exported Resources

[220]

sshkey collection for laptops
We'll outline an enterprise application of the sshkey example. We'll define a class
for login servers—any server that allows users to login directly. Using that class to
define exported resources for ssh_host_keys, we'll then create an ssh_client class
that collects all the login server ssh_keys. In this way, we can apply the ssh_client
class to any laptops that might connect and have them get updated SSH host keys.
To make this an interesting example, we'll run Puppet as non-root on the laptop and
have Puppet update the user's known_hosts file ~/.ssh/known_hosts instead of the
system file.

This is a slightly novel approach to run Puppet without
root privileges.

We'll begin by defining our example::login_server class that exports the RSA
and DSA SSH host keys. RSA and DSA are the two types of encryption keys that
can be used by the SSH daemon; the name refers to the encryption algorithm used
by each key type. We will need to check if a key of each type is defined as it is only
a requirement that one type of key be defined for the SSH server to function,
as shown in the following code:

class example::login_server {
 if ($::sshrsakey != undef) {
 @@sshkey {"$::fqdn-rsa":
 host_aliases => ["$::hostname","$::ipaddress"],
 key => "$::sshrsakey",
 type => 'rsa',
 tag => 'example::login_server',
 }
 }
 if ($::sshdsakey != undef) {
 @@sshkey {"$::fqdn-dsa":
 host_aliases => ["$::hostname","$::ipaddress"],
 key => "$::sshdsakey",
 type => 'dsa',
 tag => 'example::login_server',
 }
 }
}

Chapter 8

[221]

This class will export two SSH key entries, one for the rsa key and another for the
dsa key. It's important to populate the host_aliases array as we have done so that
both the IP address and short hostname are verified with the key when using SSH.

Now we could define an example::laptop class that simply collects the keys and
applies them to the system-wide ssh_known_hosts file. Instead, we will define a
new fact, homedir in base/lib/facter/homedir.rb to determine if Puppet is
being run by a non-root user as follows:

Facter.add(:homedir) do
 if Process.uid != 0 and ENV['HOME'] != nil
 setcode do
 begin
 ENV['HOME']
 rescue LoadError
 nil
 end
 end
 end
end

This simple fact checks the UID of the running Puppet process, if it is not 0 (root),
it looks for the environment variable HOME and sets the fact homedir equal to the
value of that environment variable.

Now we can key off this fact as a top scope variable in our definition of the
example::laptop class as follows:

class example::laptop {
 # collect all the ssh keys
 if $::homedir != undef {
 Sshkey <<| tag == 'login_server' |>> {
 target => "$::homedir/.ssh/known_hosts"
 }
 } else {
 Sshkey <<| tag == 'login_server' |>>
 }
}

Depending on the value of the $::homedir fact, we either define system-wide SSH
keys or userdir keys. The SSH key collector (Sshkey <<| tag == 'login_server'
|>>) uses the tag login_server to restrict the SSH key resources to those defined by
our example::login_server class.

Exported Resources

[222]

To test this module, we apply the example::login_server class to both node1 and
node2, thereby creating the exported resources. Now on our laptop, we run Puppet
as ourselves and sign the key on the Puppet master.

If Puppet has already run as root or another user, the certificate may have
already been generated for your laptop hostname; use the --certname
option to puppet agent to request a new key.

We add the example::laptop class to our laptop machine and examine the output
of our Puppet run.

Our laptop is likely not a normal client of our Puppet master, so when calling the
Puppet agent, we define the Puppet server and environment as follows:

$ puppet agent -t --environment production --server puppet.example.com
--waitforcert 60

…

Info: Applying configuration version '1395123100'

Notice: /Stage[main]/Example::Laptop/Sshkey[node1.example.com-dsa]/
ensure: created

Info: FileBucket adding {md5}36209b6aed02c7a30ac2351a777590b4

Notice: /Stage[main]/Example::Laptop/Sshkey[node1.example.com-rsa]/
ensure: created

Notice: Finished catalog run in 0.15 seconds

Since we ran the agent as non-root, the system-wide SSH keys in ssh_known_hosts
cannot have been modified, looking at ~/.ssh/known_hosts, we see the new entries
at the bottom of the file as follows:

node2.example.com-dsa,node2,192.168.122.133 ssh-dss AAAA...91+
node2.example.com-rsa,node2,192.168.122.133 ssh-rsa AAAA...w==
node1.example.com-dsa,node1,192.168.122.132 ssh-dss AAAA...91+
node1.example.com-rsa,node1,192.168.122.132 ssh-rsa AAAA...w==

Putting it all together
Any resource can be exported, including defined types and your own custom types.
Tags may be used to limit the set of exported resources collected by a collector.
Tags may include local variables, facts, and custom facts. Using exported resources,
defined types and custom facts, it is possible to have Puppet generate complete
interactions without intervention (automatically).

Chapter 8

[223]

As an abstract example, think of any clustered service where members of a cluster
need to know about the other members of the cluster. You could define a custom
fact, clustername, that defines the name of the cluster based on information either
on the node or in a central Configuration Management DataBase (CMDB).

CMDBs are the data warehouses of an organization. Examples of CMDBs
include OneCMDB, Itop, or BMC Atrium.

You would then create a cluster module, which would export firewall rules to allow
access from each node. The nodes in the cluster would collect all the exported rules
based on the relationship tag=="clustername". Without any interaction, a complex
firewall rule relationship would be built up between cluster members. If a new
member is added to the cluster, the rules will be exported, and with the next
Puppet run, the node will be permitted access to the other cluster members.

Another useful scenario is where there are multiple slave nodes that need to be
accessed by a master node, such as with backup software or a software distribution
system. The master node needs the slave nodes to allow it access to them. The slave
nodes need to know which node is the master node. In this relationship, you would
define a master and a slave module and apply them accordingly. The slave node
would export its host configuration information, and the master would export both
its firewall access rule and master configuration information. The master would
collect all the slave configuration resources. The slaves would each collect the
firewall and configuration information from the master. The great thing about this
sort of configuration is that you can easily migrate the master service to a new node.
As slaves check into Puppet, they will receive the new master configuration and
begin pointing at the new master node.

To illustrate this concept, we will go through a DNS configuration example.
We will configure a DNS server with the example::dns::server class. We will
then configure clients using a example::dns::client class. DNS servers are
configured with zone files. Zone files come in two forms: the forward zones map
hostnames to IP addresses and the reverse zones map IP address to hostnames.
To make a fully functioning DNS implementation, our clients will export a
concat::fragment resource which will be collected on the master and used
to build both the forward and reverse DNS zone files.

Exported Resources

[224]

The following diagram outlines the process where two nodes export
concat::fragment resources that are assembled with a header into a
zone file on the DNS server node:

example::dns::server

concat::fragment
header

concat::fragment
nodeA

concat::fragment
nodeB

dns zone file

example::dns::client
nodeA

example::dns::client
nodeB

@@concat::dns::client

Concat : : Fragment << <<

custom fact

@@concat::dns::client

custom fact

To start, we will define two custom facts that produce the reverse of the IP address
suitable for use in a DNS reverse zone and the network in Classless Inter-Domain
Routing (CIDR) notation used to define the reverse zone file as follows:

reverse.rb
Set a fact for the reverse lookup of the network on eth0

require 'ipaddr'
require 'puppet/util/ipcidr'

define 2 facts for each interface passed in
def reverse(dev)
 # network of device
 ip = IPAddr.new(Facter.value("network_#{dev}"))
 # network in cidr notation (uuu.vvv.www.xxx/yy)
 nm = Puppet::Util::IPCidr.new(Facter.value("network_#{dev}")).
mask(Facter.value("netmask_#{dev}"))
 cidr = nm.cidr

 # set fact for network in reverse vvv.www.uuu.in-addr.arpa
 Facter.add("reverse_#{dev}") do
 setcode do ip.reverse.to_s[2..-1] end
 end

 # set fact for network in cidr notation
 Facter.add("network_cidr_#{dev}") do
 #
 setcode do cidr end
 end
end

Chapter 8

[225]

We put these two fact definitions into a Ruby function so that we can loop through
the interfaces on the machine and define the facts for each interface as follows:

loop through the interfaces, defining the two facts for each
interfaces = Facter.value('interfaces').split(',')
interfaces.each do
 |eth| reverse(eth)
end

Save this definition in example/lib/facter/reverse.rb, and then run Puppet
to synchronize the fact definition down to the nodes. After the fact definition has
been transferred, we can see its output for node1 (IP address 192.168.122.132)
as follows:

node1# facter -p ipaddress

192.168.122.132

node1# facter -p reverse_eth0

122.168.192.in-addr.arpa

node1# facter -p network_cidr_eth0

192.168.122.0/24

In our earlier custom fact example, we built a custom fact for the zone based on
the IP address. We could use the fact here to generate zone-specific DNS zone
files. To keep this example simple, we will skip this step. With our fact in place,
we can export our client's DNS information in the form of concat::fragments
that can be picked up by our master later. To define the clients, we'll create an
example::dns::client class as follows:

class example::dns::client
 (
 $domain = 'example.com',
 $search = prod.example.com example.com'
) {

We start with defining the search and domain settings and providing defaults. If we
need to override the settings, we can do so from hiera. These two settings would be
defined as the following in a hiera YAML file:

example::dns::client::domain: 'subdomain.example.com'

example::dns::client::search: 'sub.example.com prod.example.com'

Exported Resources

[226]

Be careful when modifying /etc/resolv.conf. This can change
the way Puppet defines certname used to verify the nodes' identity
to the Puppet server. If you change your domain, a new certificate
will be requested, and you will have to sign the new certificate
before you can proceed.

We then define a concat container for /etc/resolv.conf as follows:

 concat {'/etc/resolv.conf':
 mode => 0644,
 }

 # search and domain settings
 concat::fragment{'resolv.conf search/domain':
 target => '/etc/resolv.conf',
 content => "search $search\ndomain $domain\n",
 order => 07,
 }

The concat::fragment will be used to populate the /etc/resolv.conf file on the
client machines. We then move on to collect the nameserver entries, which we will
later export in our example::dns::server class using the tag 'resolv.conf'. We
use the tag to make sure we only receive resolv.conf-related fragments as follows:

 Concat::Fragment <<| tag == 'resolv.conf' |>> {
 target => '/etc/resolv.conf'
 }

We use a piece of syntax we haven't used yet for exported resources called modify
on collect. With modify on collect, we are overriding settings in the exported
resource when we collect. In this case, we are utilizing modify on collect to modify
the exported concat::fragment to include a target. When we define the exported
resource, we leave the target off so that we do not need to define a concat container
on the server. We'll be using this same trick when we export our DNS entries to
the server.

Next we export our zone file entries as concat::fragments and close the class
definition as follows:

 @@concat::fragment {"zone example $::hostname":
 content => "$::hostname A $::ipaddress\n",
 order => 10,
 tag => 'zone.example.com',
 }

Chapter 8

[227]

 $lastoctet = regsubst($::ipaddress_eth0,'^([0-9]+)[.]([0-9]+)[.]([0-
9]+)[.]([0-9]+)$','\4')
 @@concat::fragment {"zone reverse $::reverse_eth0 $::hostname":
 content => "$lastoctet PTR $::fqdn.\n",
 order => 10,
 tag => "reverse.$::reverse_eth0",
 }
}

In the previous code, we used the regsubst function to grab the last octet from
the nodes' IP address. We could have made another custom fact for this, but the
regsubst function is sufficient for this usage.

Now we move on to the DNS server; to install and configure bind's named
daemon, we need to configure the named.conf file and the zone files.
We'll define the named.conf file from a template first as follows:

class example::dns::server {

 # setup bind
 package {'bind': }
 service {'named': require => Package['bind'] }

 # configure bind
 file {'/etc/named.conf':
 content => template('example/dns/named.conf.erb'),
 owner => 0,
 group => 'named',
 require => Package['bind'],
 notify => Service['named']
 }

Next we'll define an exec that reloads named whenever the zone files are altered
as follows:

 exec {'named reload':
 refreshonly => true,
 command => 'service named reload',
 path => '/usr/sbin:/sbin',
 require => Package['bind'],
 }

Exported Resources

[228]

At this point we'll export an entry from the server defining it as nameserver as
follows (we already defined the collection of this resource in the client class):

 @@concat::fragment {"resolv.conf nameserver $::hostname":
 content => "nameserver $::ipaddress\n",
 order => 10,
 tag => 'resolv.conf',
 }

Now for the zone files, we'll define concat containers for the forward and reverse
zone files, and then header fragments for each as follows:

 concat {'/var/named/zone.example.com':
 mode => 0644,
 notify => Exec['named reload'],
 }
 concat {'/var/named/reverse.122.168.192.in-addr.arpa':
 mode => 0644,
 notify => Exec['named reload'],
 }
 concat::fragment {'zone.example header':
 target => '/var/named/zone.example.com',
 content => template('example/dns/zone.example.com.erb'),
 order => 01,
 }
 concat::fragment {'reverse.122.168.192.in-addr.arpa header':
 target => '/var/named/reverse.122.168.192.in-addr.arpa',
 content => template('example/dns/reverse.122.168.192.in-addr.arpa.
erb'),
 order => 01,
 }

Our clients exported concat::fragments for each of the previous zone files.
We collect them here and use the same modify on collect syntax as we did for
the client as follows:

 Concat::Fragment <<| tag == "zone.example.com" |>> {
 target => '/var/named/zone.example.com'
 }
 Concat::Fragment <<| tag == "reverse.122.168.192.in-addr.arpa" |>> {
 target => '/var/named/reverse.122.168.192.in-addr.arpa'
 }
}

Chapter 8

[229]

The server class is now defined. We only need to create the template and header files
to complete our module. The named.conf.erb template makes use of our custom
facts as well, as shown in the following code:

options {
 listen-on port 53 { 127.0.0.1; <%= @ipaddress_eth0 -%>;};
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 allow-query { localhost; <%- interfaces.split(',').each do
|eth| if has_variable?("network_cidr_#{eth}") then -%><%= scope.
lookupvar("network_cidr_#{eth}") -%>;<%- end end -%> };
 recursion yes;

 dnssec-enable yes;
 dnssec-validation yes;
 dnssec-lookaside auto;

 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";
};

This is a fairly typical DNS configuration file. The allow-query setting makes use of
the network_cidr_eth0 fact to allow hosts in the same subnet as the server to query
the server.

named.conf then includes definitions for the various zones handled by the server,
as shown in the following code:

zone "." IN {
 type hint;
 file "named.ca";
};

zone "example.com" IN {
 type master;
 file "zone.example.com";
 allow-update { none; };
};

Exported Resources

[230]

zone "<%= @reverse_eth0 -%>" {
 type master;
 file "reverse.<%= @reverse_eth0 -%>";
};

The zone file headers are defined from templates that use the local time to update the
zone serial number.

DNS zone files must contain a Start Of Authority (SOA) record that
contains a timestamp used by downstream DNS servers to determine if
they have the most recent version of the zone file. Our template will use
the Ruby function Time.now.gmtime to append a timestamp to our
zone file.

The zone for example.com is as follows:

$ORIGIN example.com.
$TTL 1D
@ IN SOA root hostmaster (
 <%= Time.now.gmtime.strftime("%Y%m%d%H") %> ;
serial
 8H ; refresh
 4H ; retry
 4W ; expire
 1D) ; minimum
 NS ns1
 MX 10 ns1
;
; just in case someone asks for localhost.example.com
localhost A 127.0.0.1
ns1 A 192.168.122.1
; exported resources below this point

The definition of the reverse zone file template contains a similar SOA record and is
defined as follows:

$ORIGIN 122.168.192.in-addr.arpa.
$TTL 1D
@ IN SOA dns.example. hostmaster.example. (
 <%= Time.now.gmtime.strftime("%Y%m%d%H") %> ; serial
 28800 ; refresh (8 hours)
 14400 ; retry (4 hours)
 2419200 ; expire (4 weeks)
 86400 ; minimum (1 day)
)
 NS ns.example.
; exported resources below this point

Chapter 8

[231]

With all this in place, we need to only apply the example::dns::server class
to a machine to turn it into a DNS server for example.com. As more and more
nodes are given the example::dns::client class, the DNS server receives their
exported resources and builds up zone files. Eventually, when all the nodes have
the example::dns::client class applied, the DNS server knows about all the nodes
under Puppet control within the enterprise. Although this is a simplified example,
the usefulness of this technique is obvious; it is applicable to many situations.

Summary
In this chapter, we installed and configured puppetdb. Once installed, we used
puppetdb as our storeconfigs container for exported resources. We then showed how
to use exported resources to manage relationships between nodes. Finally we used
many of the concepts from earlier chapters to build up a complex node relationship
for the configuration of DNS services. In the next chapter, we will explore a design
paradigm that reduces clutter in node configuration and makes understanding the
ways in which your modules interact easier to digest.

Roles and Profiles
In Chapter 2, Organizing Your Nodes and Data, we showed you how to organize
your nodes using an ENC or hiera, and ideally both. At that point, we hadn't
covered the forge modules or writing your own modules as we did in Chapter 4,
Public Modules and Chapter 5, Custom Facts and Modules. In this chapter, we will
cover a popular design concept in large installations of Puppet. The idea was
originally made popular by Craig Dunn in his blog, which can be found at
http://www.craigdunn.org/2012/05/239/.

Design pattern
The concept put forth by Craig Dunn in his blog is one that most Puppet masters
arrive at independently. Modules should be nested in such a way that common
components can be shared among nodes. The naming convention generally accepted
is that roles contain one or more profiles. Profiles in turn contain one of more
modules. Using the roles and profiles design pattern together with an ENC and
hiera, you can have node-level logic that is very clean and elegant. The ENC and or
hiera can be used to enforce standards on your nodes without interfering with the
roles and profiles. We showed in Chapter 2, Organizing Your Nodes and Data, that with
the virtual module, it is possible to have classes automatically applied by hiera to
any system where the is_virtual fact is true. Using the same logic applied to facts
such as osfamily, we can ensure that all the nodes for which osfamily is RedHat
receive an appropriate module.

http://www.craigdunn.org/2012/05/239/

Roles and Profiles

[234]

Putting all these elements together, we arrive at the following diagram of how
modules are applied to a node.

node

role ENC

profile

HIERA

module

module

module

module

module module module module module

module

module

profile

module

Roles are the high level abstraction of what a node will do.

Creating an example CDN role
We will start by constructing a module for a web server (the cliché example). What
though, is a web server? Is a web server an Apache server or a Tomcat server or both,
or maybe even nginx? What filesystems are required? What firewall rules should
always be applied? The design problem is figuring out what the commonalities
are going to be and where to divide. In most enterprises, creating a blanket "web
server" module won't solve any problems and will potentially generate huge case
statements. If your modules follow the roles-and-profiles design pattern, you
shouldn't need huge case statements keyed off $::hostname; nodes shouldn't be
mentioned in your role module. To illustrate this point, we'll look at an example for
our companies' Content Delivery Network (CDN) implementation. Nodes in the
CDN will be running nginx.

The use of nginx for a CDN is only given as an example. This in no
way constitutes an endorsement of nginx for this purpose.

We'll create an nginx module, but we'll keep it simple so that it just does the following:

•	 Installs nginx
•	 Configures the service to start
•	 Starts the service

Chapter 9

[235]

To configure nginx, we need to create the global configuration file, /etc/nginx/
nginx.conf. We will also need to create site configuration files for any site that we
wish to include in /etc/nginx/conf.d/<sitename>.conf. Changes to either of
these files need to trigger a refresh of the nginx service. This is a great use case for
a parameterized class. We'll make the nginx.conf file a template and allow some
settings to be overridden, as shown in the following code:

class nginx (
 $worker_connections = 1024,
 $worker_processes = 1,
 $keepalive_timeout = 60,
 $nginx_version = 'installed',
) {
 file {'nginx.conf':
 path => '/etc/nginx/nginx.conf',
 content => template('nginx/nginx.conf.erb'),
 mode => 0644,
 owner => '0',
 group => '0',
 notify => Service['nginx'],
 require => Package['nginx'],
 }
 package {'nginx':
 ensure => $nginx_version,
 }
 service {'nginx':
 require => Package['nginx'],
 ensure => true,
 enable => true,
 }
}

The nginx.conf.erb template will be very simple, as shown in the following code:

HEADER: created by puppet
HEADER: do not edit, contact puppetdevs@example.com for changes
user nginx;
worker_processes <%= @worker_processes -%>;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections <%= @worker_connections -%>;
}

Roles and Profiles

[236]

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local]
"$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log /var/log/nginx/access.log main;
 sendfile on;
 keepalive_timeout <%= @keepalive_timeout -%>;
 include /etc/nginx/conf.d/*.conf;
}

Now, we need to create the define for an nginx server (not specific to the CDN
implementation), as shown in the following code:

define nginx::server (
 $server_name,
 $error_log,
 $access_log,
 $root,
 $listen = 80,
) {
 include nginx
 file {"nginx::server::$server_name":
 path => "/etc/nginx/conf.d/${server_name}.conf",
 content => template('nginx/server.conf.erb'),
 mode => 0644,
 owner => '0',
 group => '0',
 notify => Service['nginx'],
 require => Package['nginx']
 }
}

To ensure that the autoloader finds this file, we put the definition in a file called
server.pp within the manifest's directory of the nginx module (nginx/manifests/
server.pp). With the defined type for nginx::server in hand, we create a CDN
profile to automatically configure a node with nginx and create some static content
as follows:

class profile::cdn{
 (

 $listen = "80",

Chapter 9

[237]

) {

 nginx::server {"profile::nginx::cdn::$::fqdn":
 server_name => "${::hostname}.cdn.example.com",
 error_log => "/var/log/nginx/cdn-${::hostname}-error.log",
 access_log => "/var/log/nginx/cdn-${::hostname}-access.log",
 root => "/srv/www",
 listen => "$listen",

 }
 file {'/srv/www':
 ensure => 'directory',
 owner => 'nginx',
 group => 'nginx',
 require => Package['nginx'],
 }
 file {'/srv/www/index.html':
 mode => '0644',
 owner => 'nginx',
 group => 'nginx',
 content => "<html><head><title>${::hostname} cdn node</title></
head>\n<body><h1>${::hostname} cdn node</h1><h2>Sample Content</h2>\
n</body></html>",
 require => [Package['nginx'],File['/srv/www']],
 }
}

Now all that is left is to define the role to include this profile definition as follows:

class role::cdn {
 include profile::cdn
}

Now the node definition for a CDN node would only contain the role::cdn class
as follows:

node firstcdn {
 include role::cdn
}

Roles and Profiles

[238]

Creating a sub-CDN role
Now that we have a role::cdn class to configure a CDN node, we will now
configure some nodes to run varnish in front of nginx.

Varnish is a web accelerator (caching HTTP reverse proxy). More
information on varnish is available at http://www.varnish-
cache.org. In our implementation, varnish will be provided by
the EPEL repository.

In this configuration, we will need to change nginx to only listen on 127.0.0.1
port 80 so that varnish can attach to port 80 on the default IP address. Varnish will
accept incoming connections and retrieve content from nginx. Varnish will cache
any data it retrieves and only retrieve from nginx when it needs to update its cache.
We will start by defining a module for varnish that installs the package, updates the
configuration, and starts the service, as shown in the following code:

class varnish
 (
 $varnish_listen_address = "$::ipaddress_eth0",
 $varnish_listen_port = '80',
 $backend_host = '127.0.0.1',
 $backend_port = '80',
) {
 package {'varnish':
 ensure => 'installed'
 }
 service {'varnish':
 ensure => 'running',
 enable => true,
 require => Package['varnish'],
 }
 file {'/etc/sysconfig/varnish':
 mode => 0644,
 owner => 0,
 group => 0,
 content => template('varnish/sysconfig-varnish.erb'),
 notify => Service['varnish']
 }

 file {'/etc/varnish/default.vcl':
 mode => 0644,
 owner => 0,

http://www.varnish-cache.org
http://www.varnish-cache.org

Chapter 9

[239]

 group => 0,
 content => template('varnish/default.vcl.erb'),
 notify => Service['varnish'],
 }
}

Now we need to create a profile for varnish as shown in the following code. In this
example, it will only contain the varnish class, but adding this level allows us to add
any extra modules to the profile later.

profile::varnish
default is to listen on 80 and use 127.0.0.1:80 as backend
class profile::varnish{
 include ::varnish
}

We need to specify ::varnish to include the module called varnish.
Puppet will look for varnish at the current scope (profile) and find
profile::varnish.

Next, we create the role cdn::varnish, which will use role::cdn as a base class
as follows:

class role::cdn::varnish inherits role::cdn {
 include profile::varnish
}

One last thing we need to do is to tell nginx to only listen on the loopback device
(127.0.0.1). We can do that with hiera; we'll assign a top scope variable called
role to our node. You can do this through your ENC or in site.pp as follows:

$role = hiera('role','none')
node default {
 hiera_include('classes',base)
}

Now create a YAML file for our cdn::varnish role at hieradata/roles/
role::cdn::varnish.yaml with the following content:

profile::cdn::listen: '127.0.0.1:80'

Roles and Profiles

[240]

We made a parameter named listen in profile::cdn so that we could override that
value. Now when we apply the role::cdn::varnish role to a node, the node will
be configured with nginx to listen only to the loopback device. Varnish will listen
on the public IP address (::ipaddress_eth0) on port 80. Varnish will cache content
that it retrieves from nginx.

We didn't need to modify role::cdn, and we made role::cdn::varnish inherit
role::cdn. This model allows you to create multiple sub roles to fit all the use
cases. Using hiera to override certain values for different roles removes any ugly
conditional logic from these definitions.

Dealing with exceptions
In a pristine environment, all your nodes with a certain role would be identical in
every way, and there would be no exceptions. Unfortunately dealing with exceptions
is a large part of the day-to-day business of running Puppet. Using roles and profiles
together with hiera, it is possible to remove node level data from your code (roles,
profiles, and modules).

Hiera can be used to achieve this separation of code from data. In Chapter 2,
Organizing Your Nodes and Data, we configured hiera.yaml with roles/%{::role}
in the hierarchy. The defaults for any role would be put in hieradata/roles/
[rolename].yaml. The hierarchy determines the order in which files are searched
for the hiera data. Our configuration is as follows:

:hierarchy:
 - "zones/%{::example_zone}"
 - "hosts/%{::hostname}"
 - "roles/%{::role}"
 - "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease}"
 - "is_virtual/%{::is_virtual}"
 - common

Any single host that requires an exception to the default value from the roles level
YAML file, can be put in either the hosts level or zones level YAML files.

The idea here is to keep the top-level role definition as clean as possible, it should
only include profiles. Any ancillary modules (such as the virtual module) that need
to be applied to specific nodes will be handled by either hiera (via hiera_include)
or the ENC.

Chapter 9

[241]

Summary
In this chapter, we explored a design concept that aims to reduce complexity at the
topmost level making your node definitions cleaner. Breaking up module application
into multiple layers forces your Puppeteers to compartmentalize their definitions.
If all the contributors to your code base keep this in mind, collisions will be kept
to a minimum. Exceptions can be handled with host-level hiera definitions. In the
next chapter, we will look at how to diagnose inevitable problems with catalog
compilation and execution.

Troubleshooting
Inevitably, you will run into problems with your Puppet runs. Having good
reporting is the key to knowing when failures occur. When most of your Puppet
runs are error free, the IRC report mechanism we showed in Chapter 7, Reporting
and Orchestration, is useful to detect errors quickly.

If you have more than the occasional error, then the IRC report will
just become noise that you'll learn to ignore. If you are having multiple
failures in your code, you should start looking at the acceptance testing
procedures provided by Puppet beaker. More information on Puppet
beaker is available at https://github.com/puppetlabs/beaker.

Most of the Puppet failures I've come across end up in two buckets. These buckets
are as follows:

•	 Connectivity to Puppet and certificates
•	 Catalog failure

We'll examine these separately and provide some methods to diagnose issues.
We will also be covering debugging, in detail.

Connectivity issues
As we have seen in Chapter 1, Dealing with Load/Scale, by noticing that at its core,
Puppet communication is done using a web service. When troubleshooting problems
with the Puppet infrastructure, we should always start with that mindset. Assuming
you are having trouble accessing the Puppet master, Puppet should be listening on
port 8140 by default.

https://github.com/puppetlabs/beaker

Troubleshooting

[244]

This port is configurable; you should verify the port is 8140 by
running the following command:
puppet config print masterport

8140

You should be able to successfully connect to masterport. Check that you get a
successful connection using netcat (nc).

Netcat can be used to check the connectivity of TCP and UDP sockets. If you do not
have netcat (nc) available, you can use telnet for the same purpose. To exit telnet,
you would issue Control-] followed by quit.

To exit netcat after the successful connection, type Control+D. If you don't see
succeeded! in the output, then you are having trouble reaching the Puppet server
on port 8140. For this type of error, you'll need to check your network settings and
diagnose the connection issue. The common tools for that are ping, which uses
ICMP ECHO messages, and mtr, which mimics traceroute functionality. Don't
forget your host-based firewall (iptables) rules, you'll need to allow the inbound
connection on port 8140.

Assuming the previous connection was successful, the next thing you can do is either
use wget or curl to try retrieving the CA certificate from the Puppet master.

wget and curl are simple tools used to download information
using the HTTP protocol. Any tool that can communicate using
HTTP with SSL encryption can be used for our purposes.

Retrieving the CA certificate and requesting a certificate to be signed are two
operations that can occur without having certificates. Your nodes need to be able
to verify the Puppet master and request certificates before they have had their
certificates issued. We will use wget to download the CA certificate, as shown
in the following screenshot:

Chapter 10

[245]

Another option is using gnutls-cli or the openssl s_client client programs.
Each of these tools will help you diagnose certificate issues; you want to verify
that the Puppet master is sending the certificate you think it should.

To use gnutls-cli, you install the gnutls-utils package. To connect to your
Puppet master on port 8140, use the following command:

gnutls-cli -p 8140 puppet.example.com

Resolving 'puppet.example.com'...

Connecting to '192.168.122.100:8140'...

- Successfully sent 0 certificate(s) to server.

...

- Simple Client Mode:

Troubleshooting

[246]

You will then have an SSL-encrypted connection to the server, and you may issue
standard HTTP commands, such as GET. Attempt to download the CA certificate
by typing the following command:

GET /production/certificate/ca HTTP/1.0

Accept: text/plain

The CA certificate will be returned as text, so we need to specify that we will accept
a response that is not HTML. We use Accept: text/plain to do this. The CA
certificate should be exported following the HTTP response header as shown in
the following screenshot:

Using OpenSSL's s_client program is similar to using gnutls-cli. You
will need to specify the host and port using the -host and -port parameters
as follows (s_client has a less verbose mode, -quiet, which we'll use to make
our screenshot smaller):

Chapter 10

[247]

Catalog failures
When the client requests a catalog, it is compiled on the master and sent down to
the client. If the catalog fails to compile, the error is printed and can most likely be
corrected easily. For example, the following base class has an obvious error:

class base {
 file {'one':
 path => '/tmp/one',
 ensure => 'directory',
 }
 file {'one':
 path => '/tmp/one',
 ensure => 'file',
 }
}

Troubleshooting

[248]

The file resource is defined twice with the same name. When we run Puppet,
the error appears as shown in the following screenshot:

The duplicate declaration error is shown following Error 400 on SERVER.

HTTP 400 errors indicate that the request sent to the web server (Puppet server
in this case) was malformed. In this case, the Puppet server are letting the client
know that there was a problem with the request to compile a catalog. The
previous versions of Puppet did not return error codes as useful as those shown
in the preceding screenshot. Fixing this type of duplicate declaration is very
straightforward, the line numbers to each declaration are printed in the error
message. Simply locate the two files and remove one of the entries.

A more perplexing issue is when the catalog compiles cleanly but fails to apply on
the node. To illustrate, we'll rewrite our base class to fail on application, and not
compilation, as follows:

class base {
 file {'one':
 path => '/tmp/one',
 ensure => 'directory',
 }
 file {"two":
 path => "/tmp/one$one",
 ensure => 'file',
 }
}

Chapter 10

[249]

Now, when we attempt to run the agent, we retrieve a good catalog, but it fails to
apply. The agent displays an error message, as shown in the following screenshot:

In this example, it is still easy to see the problem. But if the problem is obscured
or non-obvious, we can go look at the catalog. The catalog is stored in the agent's
client_data directory (current versions use JSON files, earlier versions used YAML
files). In this case, the file is stored in /var/lib/puppet/client_data/catalog/
node1.example.com.json. Using jq, we can examine the JSON file and find the
problem definitions.

jq is a JSON processor and is available in the EPEL repository on Enterprise
Linux installations.

You can always just read the JSON file directly, but using jq on extremely
large files is useful. You can use jq as you would grep on a file, making
searching within a JSON file much easier. More information on jq can be
found at http://stedolan.github.io/jq/.

$ jq .data.resources[].title <node1.example.com.json
"main"
"Settings"
"Main"
"default"
"Base"
"one"
"two"

http://stedolan.github.io/jq/

Troubleshooting

[250]

Now to look at our problem definition, we'll select the resource whose title is "two"
as shown in the following command:

$ jq '.data.resources[] | select(.title=="two")' <node1.example.com.json

{

 "type": "File",

 "line": 9,

 "exported": false,

 "tags": [

 "default",

 "two",

 "class",

 "file",

 "base",

 "node"

],

 "parameters": {

 "path": "/tmp/one",

 "ensure": "file"

 },

 "file": "/etc/puppet/environments/production/dist/base/manifests/init.
pp",

 "title": "two"

}

From this JSON, we can see that the path for File['two'] is /tmp/one, so in the
definition "/tmp/one$one", the variable $one must be empty.

You can also manually download the catalog in yaml format if you find that easier to
debug. Doing this with wget, you need to specify the certificate and CA files for your
node so that Puppet grants access to the catalog. The following is a simple script to
perform this action:

#!/bin/bash
SSL=$(puppet config print ssldir)
FQDN=$(facter fqdn)
PUPPET=puppet.example.com
ENV=production
exec wget --certificate ${SSL}/certs/${FQDN}.pem \
 --private-key ${SSL}/private_keys/${FQDN}.pem \
 --ca-certificate ${SSL}/certs/ca.pem \
 --header="Accept: yaml" \
 https://${PUPPET}:8140/$ENV/catalog/${FQDN}

Chapter 10

[251]

The client catalog will also be available on the Puppet master in the /var/lib/
puppet/yaml/node directory; however, in a multiple master environment, tracking
down which master compiled the catalog may be slower than downloading a fresh
copy. Alternatively, you may force a master to compile a catalog for a node as
follows (Puppet will print out the catalog, in JSON format, to the terminal):

worker1# puppet master --compile node1.example.com
Notice: Compiled catalog for node1.example.com in environment production
in 1.16 seconds
{
 "data": {
 "edges": [
 {
 "source": "Stage[main]",
 "target": "Class[main]"
 },
...

Full trace of a catalog compile
Using puppet master --compile, you can also specify to run a full trace on the
compilation with the --trace option. This option will show which providers were
run and a much higher level of detail than the debug output. To do so, specify the
log destination as well. Running a full trace will generate a lot of data and you'll
want to store that in a logfile.

Troubleshooting

[252]

The output in the previous screenshot shows that we can see a lot more information
than the normal --debug flag will show, including the low-level calls to /bin/rpm to
determine the version of rpm installed on the system.

The log file /var/log/puppet/node1.example.com.log will
contain all of this output without the ANSI color codes, making it
suitable for searching.

The logfile will also compile the catalog in the production environment by default.
To compile for another environment, specify the environment with --environment
as shown in the following command:

worker1# puppet master --compile node1.example.com --debug --trace

--logdest /var/log/puppet/node1.example.com.log --environment sandbox

The classes.txt file
The /var/lib/puppet/classes.txt file contains a list of the classes applied to the
machine. If you are having trouble with a node, you can look here for the last set of
classes that were successfully applied to a node. But, when you are having trouble,
you are most interested in the classes in the current catalog, and which classes are
different or missing.. We can use jq again to query the JSON of the current catalog
as shown in the following command:

$ jq '.data.classes[]' <node1.example.com.json

"settings"

"default"

"base"

Settings and default are classes internal to Puppet, and not user
defined. In this output, only the base was defined by our manifests.

We can compare the list of classes returned by jq to those listed in classes.txt.
The classes shown in classes.txt are from the last successful run of Puppet. The
file is created at the end of the Puppet agent run. The classes returned by jq are from
the catalog, which just fail to apply if we are debugging. These two lists would be
consistent on a node with a successful Puppet agent run.

Chapter 10

[253]

Debugging
Turning on the debugging option on your Puppet master isn't such a big deal with a
few hundred nodes. However, in an environment with thousands of nodes, it isn't a
viable option. Nevertheless, you sometimes need to enable debugging to figure out
where catalog compilation is failing. Our proxy configuration comes to the rescue
here. The idea is to have a worker dedicated to debugging. The debugging server
will have debugging turned on, using the --debug and --logdest options in the
config.ru file. The advantage of this method over that of running puppet master
--compile as we showed earlier, is that while you are debugging your node, you
place it in a debugging environment (problem for instance). While the node is in the
debugging environment, it will be removed from your reporting infrastructure and
not continue to alert you of failures.

To do this, we go back to our proxy.conf file on our Puppet master and define
a new balancer named puppetproblem that goes to our debugging worker.
We'll use worker2 (192.168.100.102) in the following example:

<Proxy balancer://puppetproblem>
BalancerMember http://192.168.100.102:18140
</Proxy>

We then add a new ProxyPassMatch line to our VirtualHost right after the
certificate matching line:

ProxyPassMatch ^/(problem/.*)$ balancer://puppetproblem/$1

Whenever adding a new ProxyPassMatch line to the proxy.conf file,
make sure the first entry is always the certificate matching line. If you
place anything before the certificate line, certificate requests will not be
routed to your CA machines.

Restart httpd on the master to make the change effective. With this in place, we edit
the config.ru on worker2 and add the following command lines:

ARGV << "--debug"
ARGV << "--logdest" << "/var/log/puppet/problem.log"

Troubleshooting

[254]

These two settings are passed as command-line arguments to Puppet master when
passenger starts the master service. Any other configuration changes should be made
to /etc/puppet/puppet.conf to avoid confusion.

Restart httpd on worker2 to make the change effective. Now, when you have a
problem with a node, you can send it to worker2 by specifying the environment
"problem" when running the agent. If you are using dynamic environments,
the steps to diagnose a problem would be as follows:

1.	 Create the problem branch in Git.
2.	 Work on the issue.
3.	 Set the environment of a test node to the new environment.
4.	 Solve the problem.
5.	 Merge that branch back into the working branch or production.

Using this method, you also tie the catalog compilation to a specific worker, which
makes tracking down bugs much easier. Without this, your catalog may compile on
any one of your workers, and some large installations have several workers.

Personal and bugfix branches
When working through a catalog compilation issue, it is sometimes useful to start
attacking the problem and changing things on the fly. To avoid problems with other
nodes, you should work in a new branch (which will create a new environment, just
as we configured our Puppet masters to have dynamic environments in Chapter 3,
Git and Environments). If you are frequently creating branches, you can create one
named after yourself or your username, for instance. In an example in Chapter 3, Git
and Environments, we created a thomas branch and worked in the thomas branch by
specifying --environment thomas when running puppet agent. Working through
problems in a personal branch is a great troubleshooting technique that allows the
rest of the nodes to continue working against the main branch or master. If multiple
members of your team are working on an issue, it is useful to create a working
branch for your team, possibly named either after the issue or more likely after
the trouble ticket created by the issue.

Chapter 10

[255]

Echo statements
When working on a problem branch, you are free to add any number of debugging
print or echo statements to your code. In Puppet, these take the form of notice
or notify lines. I prefer notify lines since notify lines will be printed when I run
puppet agent -t on a node. I usually place all the variables in the affected module
in a single notify statement to verify that the variables are getting set to the values I
believe they should. This method is very useful when working with data from hiera,
where you would like to know the value returned by hiera is correct, as shown in the
following example:

$importantSetting = hiera('importantSetting','defaultValue')
notify {"importantSetting is $importantSetting": }

It is not uncommon to have many notify lines throughout a module during the
development phase.

Scope
When working on a large code base, occasionally you will have naming
conflicts with variables or modules. For variables, using an echo statement can
quickly determine if your code is using the variable you believe it should. For
modules it can sometimes be difficult to determine if the module you intended
is being included. For example, you have two modules called packages and
example::ntp::packages. The packages module contains a single notify
statement in packages/manifests/init.pp as shown in the following code:

class packages {

 notify {"this is packages":}

}

The example::ntp::packages module has a similar notify statement in
example/manifests/ntp/packages.pp as shown in the following code:

class example::ntp::packages {

 notify {"this is example::ntp::packages": }

}

Troubleshooting

[256]

Now in example/manifest/ntp.pp, we use include packages, as shown in the
following code:

class example::ntp {

 include packages

}

You may be surprised by the following result from puppet agent:

puppet agent -t

...

Notice: this is example::ntp::packages

Notice: /Stage[main]/Example::Ntp::Packages/Notify[this is
example::ntp::packages]/message: defined 'message' as 'this is
example::ntp::packages'

We might have expected include packages to use the top-scope packages class,
but it actually searched the local scope and used example::ntp::packages instead.
When working in a large environment, it is advisable to use very specific names for
classes or always specify the scope. We could achieve the result we expected using
the following code for the definition of example::ntp:

class example::ntp {
 include ::packages
}

If we run Puppet agent against this version, we see the notify we were expecting,
as follows:

puppet agent -t

...

Notice: this is packages

Notice: /Stage[main]/Packages/Notify[this is packages]/message: defined
'message' as 'this is packages'

Chapter 10

[257]

Profiling and summarizing
If your Puppet runs are taking a long time to complete, it is useful to see where
there are bottlenecks. From the command line, you can pass the --summarize
option to puppet agent to tell the agent to keep track of how long operations
took to complete and display a summary at the end of compilation as shown in
the following screenshot:

After you have configured one of your workers to be your debugging worker, as we
showed in the Debugging section of this chapter, you can enable profiling support by
adding the following code to /etc/puppet/puppet.conf:

profile = true

After making that change, when a node runs against that master, the profiling
information will be written to the location pointed to by logdest, /var/log/
puppet/problem.log in our example configuration. A sample of this output
is shown as follows:

 1.1 Setup server facts for compiling: took 0.0139 seconds
 1.2 Found facts: took 0.2459 seconds
...
 1.4.3 Compile: Evaluated main: took 0.0007 seconds
...
 1.4.7 Compile: Finished catalog: took 0.0025 seconds
1.4 Compiled catalog for node1.example.com in environment problem:
took 0.0237 seconds

Troubleshooting

[258]

Using this information, you can determine where the slow operations are with your
catalog compilation and delivery to the nodes.

Summary
In this chapter, we examined a few troubleshooting techniques that are useful in the
enterprise. Troubleshooting basic network and system connectivity is the first thing
to be checked. Using Puppet's rest API, we were able to talk directly to the master
with the help of HTTP tools such as wget and gnutls-cli. We learned how to
read the catalog and use jq to search the catalog on the client. Finally, we showed a
method of enabling the expensive debugging feature for specific nodes by creating a
debugging worker and directing nodes to that specific worker.

In this book, we took advantage of Puppet's rest API to scale out our Puppet
infrastructure in order to accommodate a large number of nodes. Working in the
enterprise, the division of code from data is important to allow modules to be reused
and to reduce complexity. A large number of nodes will introduce its own set of
complexities. Working to reduce the complexity in your environment will allow
you to grow and adapt quickly.

Index
Symbols
$ALLOWED_USERS variable 91
$branch variable 90
--certname option 222
.gitmodules file 99
--global option 74
--summarize option 257

A
activemq

client, connecting to 201-203
installing 195-197
used, through node configuration 198-200

allow-query setting 229
Ansible

URL 86
augeas

about 59
URL 59

B
base class 41
branches

creating 254
buckets 243

C
CamelCase 158
catalog compilation 16-21
catalog failures

about 247-251
classes.txt file 252
full trace, running 251, 252

catalog_resources table 217
CDN role

creating 234
certificate

signing 15
classes.txt file 252
Classless Inter-Domain Routing (CIDR)

notation 224
client

connecting, to activemq 201-203
clustered filesystem 23
cluster module

creating 223
code consistency

clustered filesystem 23
Git 23
NFS 23
rsync 22, 23

collector 141
concat container

defining 226
concat module 110-114
config file environments 64
configtimeout parameter 21
Configuration Management DataBase

(CMDB) 223
connectivity issues 243-246
Content Delivery Network (CDN) 234
curl tool 244
custom facts

about 142
creating 143-150
creating, for hiera 150-152

custom type
creating 168

[260]

D
Dashboard

about 187, 188
linking, to Puppet 192
marionette collective (mcollective) 194, 195
passenger, using with 189-191
reports, processing 193, 194

debugging option
branches, creating 254
profiling 257, 258
scope 255, 256
summarizing 257, 258
turning on 253, 254

defined types
creating 156-166
example 157

define function 155
design pattern 233
DNS server

configuring 223-231
DNS zone files 230
dynamic environment 70, 71

E
echo statements

adding 255
Elasticsearch/Logstash/Kibana (ELK) 177
ENC

about 181
example 39-42
hostname 42, 43
nodes, organizing with 38

ensurable keyword 169
environment

about 63-66
and hiera 66
dynamic environment 70, 71
multiple hierarchies 67, 68
single hierarchy 68, 69

EPEL
about 182
URL 8, 182

erb Syntax
URL 136

example::dns::server class 231

example::laptop class
creating 221

exceptions
dealing with 240

exported resources
about 215
collecting 216
declaring 215
using 217

exported SSH keys
about 219
sshkey collection, for laptops 220-222

External Node Classifier. See ENC
Extra Packages for Enterprise

Linux. See EPEL

F
files

transferring, with Puppet 135
filesystem ACLs

using 89
firewall module 119-123
Foreman

about 181
attaching, to Puppet 182-184
installing 182
using 185-187

forge module
used, for configuring puppetdb 208-210

fragments 111
full trace

running 251, 252
Fully Qualified Domain Name (FQDN) 38

G
gem command 169
gem type

creating 168
Git

about 23, 71
need for 72
using 93-95
workflow 73-81

git clone command 83
Git documentation

URL 72

[261]

Git hooks
post-receive hook, using 82-85
puppet-sync 85

GitHub
URL 72
using, for public modules 97-100

git log command 77
git pull origin <branchname> command 83
git show command 77
gnutls-cli

using 245

H
hiera

about 53
and environment 66
configuring 53-56
custom fact, creating for 150-152
hiera_include, using 56-62

hiera_array function 62
hiera_hash function 62
hiera_include

using 56-62
hooks 81
host entry

example 216, 217
hostname 42, 43
hostname_problem class 45
hostname strategy

used, with Python ENC script 43-47
http_api

URL 16

I
inifile module 114-119
ini_subsetting module 116
installation, activemq 195-198
installation, Foreman 182
installation, librarian-puppet 102
Internet Relay Chat. See IRC
iptables 119
IRC 177-181
issue_confidential module 110
issue module 110
issue_secret module 111
issue_topsecret module 111

J
jq

URL 249

L
LDAP backend

about 47
OLC 47-52

librarian
about 102
using 104

librarian-puppet
about 102
installing 102

Linux System Base (LSB) 54
log 176
lvm module

(logical volume manager) 123-127

M
managehome parameter 161
mandatory access controls (MAC) 13
manifests directory 131
marionette collective (mcollective)

about 175, 194, 195
activemq, installing 195-197
client, connecting to activemq 201-203
nodes, configuring 198-200
URL, for installing 195
using 203, 204

masterless configuration
benefits 29
drawbacks 29

Message Queue (MQ) tool 194
metaparameters

about 218
URL 218

modify on collect 226
module command 101
Modulefile file 137
modules

about 97, 132
comments 137-139
concat 110-114
creating, with Puppet module 137

[262]

files, transferring with Puppet 135
firewall 119-123
inifile 114-119
lvm 123-127
manifest files 132-134
naming 136
obtaining 97
stdlib 127-129
using 110

modules, operating on /etc/issue
issue 110
issue_confidential 110
issue_secret 111
issue_topsecret 111

modules, Puppet Forge 101
module structure 132
multiple definitions

solutions 139-142
multiple hierarchies 67, 68

N
named.conf 229
netcat

using 244
new type

creating 168-173
NFS 23
nginx

configuring 235, 236
creating 234
downloading 24
restarting 28
using 23-26

nodes
configuring, to use activemq 198-200
organizing, with ENC 38

O
OLC

about 47-52
URL 47

olcDbConfig parameters
URL 48

OpenLDAP Configuration. See OLC

P
parameterized classes

about 155, 156
example 155

parts 44
passenger

Puppet, using with 8-14
used, with Dashboard 189-191

plugins 131
Pluginsync 110
PostgreSQL

configuring 211-213
installing 211, 212
using, through puppetdb configuration 213

post-receive hook
about 81
using 82-85

pre-receive hook 89
problem branch

echo statements, adding 255
profiles 233
providers 167
public modules

GitHub, using for 97-100
Puppet

about 155
Dashboard, linking to 192
files, transferring with 135
Foreman, attaching to 182-184
installing 209-211
used, with passenger 8-14

Puppet beaker
URL 243

puppetclass 47
puppetdb

about 207
configuring, forge module used 208-210
configuring, to use PostgreSQL 213
installing 208-211
manual installation 210
using 208
using, through Puppet configuration 214

puppetdb, manual installation
PostgreSQL, configuring 211-213
PostgreSQL, installing 211-213
Puppet, configuring to use puppetdb 214

[263]

puppetdb, configuring to
use PostgreSQL 213

puppetdb, installing 211
Puppet, installing 211

puppetdb module
about 98
URL 98

Puppetfile.lock file 103
Puppet Forge

about 97
modules 101
URL 97, 208

Puppet Labs
URL 53, 64

Puppet Labs documentation
URL 213

Puppet Labs-puppetdb module
installing 101

Puppet Labs repository
URL 9

Puppet module
modules, creating with 137

puppet module install command 101
puppet-sync

about 85
URL 85
using 85

Python ENC script
building, hostname strategy used 43-47

R
r10k

about 105
using 105-109

realize function 141
regsubst function 227
reports

about 175, 176
log 176
processing, with Dashboard 193, 194
store 176
URL 175

resource definitions
moving 142

resource tags
about 218

exported SSH keys 219
reverse zone file

defining 224
RPM

creating 30-32
rsync 22, 23

S
scope 255, 256
Security Enhanced Linux (SELinux) 13
single hierarchy 68, 69
Software Collections (SCL)

about 182
URL 182

ssh_client class
creating 220

sshkey 219
sshkey collection

for laptops 220-222
standard library. See stdlib module
Start Of Authority (SOA) 230
stdin 81
stdlib module

about 127-129
URL, for functions 127

store 176, 177
storeconfigs 15, 207
sub-CDN role

creating 238-240
syslog 176
system 167
System Security Services

Daemon (SSSD) 114

T
tags 222
templates 135
Time.now.gmtime function 230
time-to-live (ttl) 128
type

creating, for tables 167
implementing 167
properties 167

[264]

V
varnish

about 238
URL 238

virtual resources
using 140

W
wget tool 244
workload

catalog compilation 16-21
certificate, signing 15
code consistency 22
reporting 15
splitting up 15
storeconfigs 15

wrapper class
creating 209

Y
YAML

about 40
URL 40

YUM repository
creating 33, 34

Z
zone file headers 230
zone files

forward zones 223
reverse zones 223

zone function 151

Thank you for buying
Mastering Puppet

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Puppet Reporting and Monitoring
ISBN: 978-1-78398-142-7 Paperback: 186 pages

Create insightful reports for your server
infrastructure using Puppet

1.	 Learn how to prepare and set up Puppet to
report on a wealth of data.

2.	 Develop your own custom plugins and work
with report processor systems.

3.	 Explore compelling ways to utilize and present
Puppet data with easy-to-follow examples.

Puppet 3 Beginner's Guide
ISBN: 978-1-78216-124-0 Paperback: 204 pages

Start from scratch with the Puppet configuration
management system, and learn how to fully utilize
Puppet through simple, practical examples

1.	 Shows you step-by-step how to install
Puppet and start managing your systems
with simple examples.

2.	 Every aspect of Puppet is explained in detail so
that you really understand what you're doing.

3.	 Gets you up and running immediately, from
installation to using Puppet for practical tasks
in a matter of minutes.

Please check www.PacktPub.com for information on our titles

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1.	 Use Puppet 3 to take control of your servers
and desktops, with detailed step-by-step
instructions.

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
and more.

3.	 Teaches you how to extend Puppet with
custom functions, types, and providers.

4.	 Packed with tips and inspiring ideas for
using Puppet to automate server builds,
deployments, and workflows.

Instant Puppet 3 Starter
ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Instant Puppet 3 Starter

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how deterministic results can vastly
reduce your workload.

3.	 Deploy Puppet Server as a Ruby-on-Rails
application to handle thousands of clients.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dealing with Load/Scale
	Divide and conquer
	Puppet with passenger
	Splitting up the workload
	Certificate signing
	Reporting
	Storeconfigs
	Catalog compilation
	Keeping the code consistent

	One more split
	One last split or maybe a few more

	Conquer by dividing
	Creating an rpm
	Creating the YUM repository

	Summary

	Chapter 2: Organizing Your Nodes
and Data
	Getting started
	Organizing the nodes with ENC
	A simple example
	Hostname strategy
	Modified ENC using hostname strategy

	LDAP backend
	OpenLDAP configuration

	Hiera
	Configuring hiera
	Using hiera_include

	Summary

	Chapter 3: Git and Environments
	Environments
	Environments and hiera
	Multiple hierarchies
	Single hierarchy for all environments

	Dynamic environments

	Git
	Why Git?
	A simple Git workflow
	Git Hooks
	Using post-receive to set up environments
	Puppet-sync

	Playing nice with other developers
	Not playing nice with others

	Git for everyone
	Summary

	Chapter 4: Public Modules
	Getting modules
	Using GitHub for public modules
	Modules from the Forge
	Using librarian
	Using r10k
	Using modules
	concat
	inifile
	firewall
	lvm
	stdlib

	Summary

	Chapter 5: Custom Facts and Modules
	Module manifest files
	Module files and templates
	Naming a module
	Creating modules with a Puppet module
	Comments in modules

	Multiple definitions

	Custom facts
	Creating custom facts
	Creating a custom fact for use in hiera

	Summary

	Chapter 6: Custom Types
	Parameterized classes
	Defined types
	Types and providers
	Creating a new type

	Summary

	Chapter 7: Reporting and Orchestration
	Turning on reporting
	Syslog
	Store
	IRC
	Foreman
	Installing Foreman
	Attaching Foreman to Puppet
	Using Foreman

	Puppet Dashboard
	Using passenger with Dashboard
	Linking Dashboard to Puppet
	Processing reports
	mcollective
	Installing activemq
	Configuring nodes to use activemq
	Connecting a client to activemq
	Using mcollective

	Summary

	Chapter 8: Exported Resources
	Configuring puppetdb – using the forge module
	Manually installing puppetdb
	Installing Puppet and puppetdb
	Installing and configuring PostgreSQL
	Configuring puppetdb to use PostgreSQL
	Configuring Puppet to use puppetdb

	Exported resource concepts
	Declaring exported resources
	Collecting exported resources

	Simple example: a host entry
	Resource tags
	Exported SSH keys
	sshkey collection for laptops

	Putting it all together
	Summary

	Chapter 9: Roles and Profiles
	Design pattern
	Creating an example CDN role
	Creating a sub-CDN role

	Dealing with exceptions
	Summary

	Chapter 10: Troubleshooting
	Connectivity issues
	Catalog failures
	Full trace of a catalog compile
	The classes.txt file

	Debugging
	Personal and bugfix branches
	Echo statements

	Scope
	Profiling and summarizing

	Summary

	Index

