
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Python High
Performance

Measure, optimize, and improve the performance of
your Python code with this easy-to-follow guide

Fernando Doglio

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Python High Performance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1030915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-930-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Fernando Doglio

Reviewers
Erik Allik

Mike Driscoll

Enrique Escribano

Mosudi Isiaka

Commissioning Editor
Kunal Parikh

Acquisition Editors
Vivek Anantharaman

Richard Brookes-Bland

Content Development Editors
Akashdeep Kundu

Rashmi Suvarna

Technical Editor
Vijin Boricha

Copy Editors
Relin Hedly

Karuna Narayanan

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Fernando Doglio has been working as a web developer for the past 10 years.

During that time, he shifted his focus to the Web and grabbed the opportunity of
working with most of the leading technologies, such as PHP, Ruby on Rails, MySQL,
Python, Node.js, AngularJS, AJAX, REST APIs, and so on.

In his spare time, Fernando likes to tinker and learn new things. This is why his
GitHub account keeps getting new repos every month. He's also a big open source
supporter and tries to win the support of new people with the help of his website,
lookingforpullrequests.com.

You can reach him on Twitter at @deleteman123.

When he is not programming, he spends time with his family.

I'd like to thank my lovely wife for putting up with me and the
long hours I spent writing this book; this book would not have
been possible without her continued support. I would also like to
thank my two sons. Without them, this book would've been finished
months earlier.

Finally, I'd like to thank the reviewers and editors. They helped me get
this book in shape and achieve the quality level that you deserve.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Erik Allik is a self-taught multilingual, multiparadigm full-stack software engineer.
He started programming at the age of 14. Since then, Erik has been working with
many programming languages (both imperative and functional) and various web
and non-web-related technologies.

He has worked primarily with Python, Scala, and JavaScript. Erik is currently
focusing on applying Haskell and other innovative functional programming
techniques in various industries and leveraging the power of a mathematical
approach and formalism in the wild.

www.allitebooks.com

http://www.allitebooks.org

Mike Driscoll has been programming in Python since 2006. He enjoys writing
about Python on his blog at http://www.blog.pythonlibrary.org/. Mike has
coauthored Core Python refcard for DZone. He recently authored Python 101 and
was a technical reviewer for the following books by Packt Publishing:

• Python 3 Object-Oriented Programming
• Python 2.6 Graphics Cookbook
• Tkinter GUI Application Development Hotshot

I would like to thank my beautiful wife, Evangeline, for supporting
me throughout. I would also like to thank my friends and family for
all their help. Also, thank you Jesus Christ for taking good care of me.

www.allitebooks.com

http://www.blog.pythonlibrary.org/
http://www.allitebooks.org

Enrique Escribano lives in Chicago and is working as a software engineer at
Nokia. Although he is just 23 years old, he holds a master's of computer science
degree from IIT (Chicago) and a master's of science degree in telecommunication
engineering from ETSIT-UPM (Madrid). Enrique has also worked as a software
engineer at KeepCoding and as a developer intern at Telefonica, SA, the most
important Spanish tech company.

He is an expert in Java and Python and is proficient in using C/C++. Most of his
projects involve working with cloud-based technologies, such as AWS, GAE,
Hadoop, and so on. Enrique is also working on an open source research project
based on security with software-defined networking (SDN) with professor
Dong Jin at IIT Security Lab.

You can find more information about Enrique on his personal website
at enriquescribano.com. You can also reach him on LinkedIn at
linkedin.com/in/enriqueescribano.

I would like to thank my parents, Lucio and Carmen, for all the
unconditional support they have provided me with over the years.
They allowed me to be as ambitious as I wanted. Without them,
I may never have gotten to where I am today.

I would like to thank my siblings, Francisco and Marta. Being
the eldest brother is challenging, but you both keep inspiring me
everyday.

Lastly, I would also like to thank Paula for always being my main
inspiration and motivation since the very first day. I am so fortunate
to have her in my life.

www.allitebooks.com

enriquescribano.com
linkedin.com/in/enriqueescribano
http://www.allitebooks.org

Mosudi Isiaka is a graduate in electrical and computer engineering from the
Federal University of Technology Minna, Niger State, Nigeria. He demonstrates
excellent skills in numerous aspects of information and communication technology.
From a simple network to a mid-level complex network scenario of no less than
one thousand workstations (Microsoft Windows 7, Microsoft Windows Vista, and
Microsoft Windows XP), along with a Microsoft Windows 2008 Server R2 Active
Directory domain controller deployed in more than a single location, Mosudi has
extensive experience in implementing and managing a local area network. He has
successfully set up a data center infrastructure, VPN, WAN link optimization,
firewall and intrusion detection system, web/e-mail hosting control panel,
OpenNMS network management application, and so on.

Mosudi has the ability to use open source software and applications to achieve
enterprise-level network management solutions in scenarios that cover a virtual
private network (VPN), IP PBX, cloud computing, clustering, virtualization, routing,
high availability, customized firewall with advanced web filtering, network load
balancing, failover and link aggregation for multiple Internet access solutions, traffic
engineering, collaboration suits, network-attached storage (NAS), Linux systems
administration, virtual networking and computing.

He is currently employed as a data center manager at One Network Ltd., Nigeria.
Mosudi also works with ServerAfrica(http://www.serverafrica.com) as a
managing consultant (technicals).

You can find more information about him at http://www.mioemi.com. You can also
reach him at http://ng.linkedin.com/pub/isiaka-mosudi/1b/7a2/936/.

I would like to thank my amiable wife, Mosudi Efundayo Coker, for
her moral support.

Also, many thanks to my colleague, Oyebode Micheal Tosin,
for his timely reminders and technical suggestions during the
reviewing process.

www.allitebooks.com

http://www.serverafrica.com
http://www.mioemi.com
http://ng.linkedin.com/pub/isiaka-mosudi/1b/7a2/936/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Profiling 101 1

What is profiling? 2
Event-based profiling 2
Statistical profiling 5

The importance of profiling 6
What can we profile? 8

Execution time 8
Where are the bottlenecks? 10

Memory consumption and memory leaks 11
The risk of premature optimization 15
Running time complexity 15

Constant time – O(1) 16
Linear time – O(n) 16
Logarithmic time – O(log n) 17
Linearithmic time – O(nlog n) 18
Factorial time – O(n!) 18
Quadratic time – O(n^) 19

Profiling best practices 22
Build a regression-test suite 22
Mind your code 22
Be patient 22
Gather as much data as you can 23
Preprocess your data 23
Visualize your data 23

Summary 25

Table of Contents

[ii]

Chapter 2: The Profilers 27
Getting to know our new best friends: the profilers 27

cProfile 28
A note about limitations 30
The API provided 30
The Stats class 34
Profiling examples 38

Fibonacci again 38
Tweet stats 44

line_profiler 52
kernprof 54
Some things to consider about kernprof 55
Profiling examples 56

Back to Fibonacci 56
Inverted index 58

Summary 69
Chapter 3: Going Visual – GUIs to Help
Understand Profiler Output 71

KCacheGrind – pyprof2calltree 72
Installation 72
Usage 73
A profiling example – TweetStats 75
A profiling example – Inverted Index 78

RunSnakeRun 82
Installation 83
Usage 84
Profiling examples – the lowest common multiplier 85
A profiling example – search using the inverted index 87

Summary 96
Chapter 4: Optimize Everything 97

Memoization / lookup tables 98
Performing a lookup on a list or linked list 102
Simple lookup on a dictionary 103
Binary search 103
Use cases for lookup tables 103

Usage of default arguments 108
List comprehension and generators 110
ctypes 115

Loading your own custom C library 116
Loading a system library 118

Table of Contents

[iii]

String concatenation 119
Other tips and tricks 123
Summary 126

Chapter 5: Multithreading versus Multiprocessing 127
Parallelism versus concurrency 128

Multithreading 128
Threads 130

Multiprocessing 143
Multiprocessing with Python 144

Summary 150
Chapter 6: Generic Optimization Options 151

PyPy 151
Installing PyPy 153
A Just-in-time compiler 154
Sandboxing 155
Optimizing for the JIT 156

Think of functions 156
Consider using cStringIO to concatenate strings 157
Actions that disable the JIT 159

Code sample 160
Cython 161

Installing Cython 162
Building a Cython module 163
Calling C functions 166

Solving naming conflicts 167
Defining types 168
Defining types during function definitions 169
A Cython example 171
When to define a type 173
Limitations 178

Generator expressions 178
Comparison of char* literals 179
Tuples as function arguments 179
Stack frames 179

How to choose the right option 180
When to go with Cython 180
When to go with PyPy 181

Summary 181

Table of Contents

[iv]

Chapter 7: Lightning Fast Number Crunching with Numba,
Parakeet, and pandas 183

Numba 184
Installation 185
Using Numba 187

Numba's code generation 187
Running your code on the GPU 194

The pandas tool 195
Installing pandas 195
Using pandas for data analysis 196

Parakeet 200
Installing Parakeet 201
How does Parakeet work? 202

Summary 204
Chapter 8: Putting It All into Practice 205

The problem to solve 205
Getting data from the Web 206
Postprocessing the data 209

The initial code base 209
Analyzing the code 217

Scraper 217
Analyzer 222

Summary 229
Index 231

[v]

Preface
The idea of this book came to me from the nice people at Packt Publishing.
They wanted someone who could delve into the intricacies of high performance
in Python and everything related to this subject, be it profiling, the available
tools (such as profilers and other performance enhancement techniques),
or even alternatives to the standard Python implementation.

Having said that, I welcome you to Mastering Python High Performance. In this
book, we'll cover everything related to performance improvements. Knowledge
about the subject is not strictly required (although it won't hurt), but knowledge
of the Python programming language is required, especially in some of the
Python-specific chapters.

We'll start by going through the basics of what profiling is, how it fits into the
development cycle, and the benefits related to including this practice in it. Afterwards,
we'll move on to the core tools required to get the job done (profilers and visual
profilers). Then, we will take a look at a set of optimization techniques and finally
arrive at a fully practical chapter that will provide a real-life optimization example.

What this book covers
Chapter 1, Profiling 101, provides information about the art of profiling to those who
are not aware of it.

Chapter 2, The Profilers, tells you how to use the core tools that will be mentioned
throughout the book.

Chapter 3, Going Visual – GUIs to Help Understand Profiler Output, covers how to
use the pyprof2calltree and RunSnakeRun tools. It also helps the developer to
understand the output of cProfile with different visualization techniques.

Preface

[vi]

Chapter 4, Optimize Everything, talks about the basic process of optimization and a set
of good/recommended practices that every Python developer should follow before
considering other options.

Chapter 5, Multithreading versus Multiprocessing, discusses multithreading and
multiprocessing and explains how and when to apply them.

Chapter 6, Generic Optimization Options, describes and shows you how to install and
use Cython and PyPy in order to improve code performance.

Chapter 7, Lightning Fast Number Crunching with Numba, Parakeet, and pandas, talks
about tools that help optimize Python scripts that deal with numbers. These specific
tools (Numba, Parakeet, and pandas) help make number crunching faster.

Chapter 8, Putting It All into Practice, provides a practical example of profilers, finds
its bottlenecks, and removes them using the tools and techniques mentioned in this
book. To conclude, we'll compare the results of using each technique.

What you need for this book
Your system must have the following software before executing the code mentioned
in this book:

• Python 2.7
• Line profiler 1.0b2
• Kcachegrind 0.7.4
• RunSnakeRun 2.0.4
• Numba 0.17
• The latest version of Parakeet
• pandas 0.15.2

Who this book is for
Since the topics tackled in this book cover everything related to profiling and
optimizing the Python code, Python developers at all levels will benefit from
this book.

The only essential requirement is to have some basic knowledge of the Python
programing language.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
can print/gather the information we deem relevant inside the PROFILER function."

A block of code is set as follows:

import sys

def profiler(frame, event, arg):
 print 'PROFILER: %r %r' % (event, arg)

sys.setprofile(profiler)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Traceback (most recent call last):
 File "cprof-test1.py", line 7, in <module>
 runRe() ...
 File "/usr/lib/python2.7/cProfile.py", line 140, in runctx
 exec cmd in globals, locals
 File "<string>", line 1, in <module>
NameError: name 're' is not defined

Any command-line input or output is written as follows:

$ sudo apt-get install python-dev libxml2-dev libxslt-dev

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Again,
with the Callee Map selected for the first function call, we can see the entire map
of our script."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/9300OS_GraphicBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

https://www.packtpub.com/sites/default/files/downloads/9300OS_GraphicBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/9300OS_GraphicBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Profiling 101
Just like any infant needs to learn how to crawl before running 100 mts with
obstacles in under 12 seconds, programmers need to understand the basics of
profiling before trying to master that art. So, before we start delving into the
mysteries of performance optimization and profiling on Python programs,
we need to have a clear understanding of the basics.

Once you know the basics, you'll be able to learn about the tools and techniques.
So, to start us off, this chapter will cover everything you need to know about
profiling but were too afraid to ask. In this chapter we will do the following things:

• We will provide a clear definition of what profiling is and the different
profiling techniques.

• We will explain the importance of profiling in the development cycle,
because profiling is not something you do only once and then forget about
it. Profiling should be an integral part of the development process, just like
writing tests is.

• We will cover things we can profile. We'll go over the different types of
resources we'll be able to measure and how they'll help us find our problems.

• We will discuss the risk of premature optimization, that is, why optimizing
before profiling is generally a bad idea.

• You will learn about running time complexity. Understanding profiling
techniques is one step into successful optimization, but we also need to
understand how to measure the complexity of an algorithm in order to
understand whether we need to improve it or not.

• We will also look at good practices. Finally, we'll go over some good
practices to keep in mind when starting the profiling process of your project.

Profiling 101

[2]

What is profiling?
A program that hasn't been optimized will normally spend most of its CPU cycles
in some particular subroutines. Profiling is the analysis of how the code behaves
in relation to the resources it's using. For instance, profiling will tell you how
much CPU time an instruction is using or how much memory the full program is
consuming. It is achieved by modifying either the source code of the program or the
binary executable form (when possible) to use something called as a profiler.

Normally, developers profile their programs when they need to either optimize their
performance or when those programs are suffering from some kind of weird bug,
which can normally be associated with memory leaks. In such cases, profiling can
help them get an in-depth understanding of how their code is using the computer's
resources (that is, how many times a certain function is being called).

A developer can use this information, along with a working knowledge of the source
code, to find the program's bottlenecks and memory leaks. The developer can then
fix whatever is wrong with the code.

There are two main methodologies for profiling software: event-based profiling and
statistical profiling. When using these types of software, you should keep in mind
that they both have pros and cons.

Event-based profiling
Not every programming language supports this type of profiling. Here are some
programming languages that support event-based profiling:

• Java: The JVMTI (JVM Tools Interface) provides hooks for profilers to trap
events such as calls, thread-related events, class loads and so on

• .NET: Just like with Java, the runtime provides events (http://
en.wikibooks.org/wiki/Introduction_to_Software_Engineering/
Testing/Profiling#Methods_of_data_gathering)

• Python: Using the sys.setprofile function, a developer can
trap events such as python_[call|return|exception] or c_
[call|return|exception]

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering

Chapter 1

[3]

Event-based profilers (also known as tracing profilers) work by gathering data
on specific events during the execution of our program. These profilers generate a
large amount of data. Basically, the more events they listen to, the more data they
will gather. This makes them somewhat impractical to use, and they are not the
first choice when starting to profile a program. However, they are a good last resort
when other profiling methods aren't enough or just aren't specific enough. Consider
the case where you'd want to profile all the return statements. This type of profiler
would give you the granularity you'd need for this task, while others would simply
not allow you to execute this task.

A simple example of an event-based profiler on Python could be the following code
(we'll understand this topic better once we reach the upcoming chapters):

import sys

def profiler(frame, event, arg):
 print 'PROFILER: %r %r' % (event, arg)

sys.setprofile(profiler)

#simple (and very ineficient) example of how to calculate the
Fibonacci sequence for a number.
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

def fib_seq(n):
 seq = []
 if n > 0:
 seq.extend(fib_seq(n-1))
 seq.append(fib(n))
 return seq

print fib_seq(2)

Profiling 101

[4]

The preceding code contributes to the following output:

PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'return' 0
PROFILER: 'c_call' <built-in method append of list object at
0x7f570ca215f0>
PROFILER: 'c_return' <built-in method append of list object at
0x7f570ca215f0>
PROFILER: 'return' [0]
PROFILER: 'c_call' <built-in method extend of list object at
0x7f570ca21bd8>
PROFILER: 'c_return' <built-in method extend of list object at
0x7f570ca21bd8>
PROFILER: 'call' None
PROFILER: 'return' 1
PROFILER: 'c_call' <built-in method append of list object at
0x7f570ca21bd8>
PROFILER: 'c_return' <built-in method append of list object at
0x7f570ca21bd8>
PROFILER: 'return' [0, 1]
PROFILER: 'c_call' <built-in method extend of list object at
0x7f570ca55bd8>
PROFILER: 'c_return' <built-in method extend of list object at
0x7f570ca55bd8>
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'return' 1
PROFILER: 'call' None
PROFILER: 'return' 0
PROFILER: 'return' 1
PROFILER: 'c_call' <built-in method append of list object at
0x7f570ca55bd8>
PROFILER: 'c_return' <built-in method append of list object at
0x7f570ca55bd8>
PROFILER: 'return' [0, 1, 1]
[0, 1, 1]
PROFILER: 'return' None
PROFILER: 'call' None
PROFILER: 'c_call' <built-in method discard of set object at
0x7f570ca8a960>
PROFILER: 'c_return' <built-in method discard of set object at
0x7f570ca8a960>
PROFILER: 'return' None

Chapter 1

[5]

PROFILER: 'call' None
PROFILER: 'c_call' <built-in method discard of set object at
0x7f570ca8f3f0>
PROFILER: 'c_return' <built-in method discard of set object at
0x7f570ca8f3f0>
PROFILER: 'return' None

As you can see, PROFILER is called on every event. We can print/gather the
information we deem relevant inside the PROFILER function. The last line on the
sample code shows that the simple execution of fib_seq(2) generates a lot of
output data. If we were dealing with a real-world program, this output would be
several orders of magnitude bigger. This is why event-based profiling is normally the
last option when it comes to profiling. There are other alternatives out there (as we'll
see) that generate much less output, but, of course, have a lower accuracy rate.

Statistical profiling
Statistical profilers work by sampling the program counter at regular intervals. This
in turn allows the developer to get an idea of how much time the target program is
spending on each function. Since it works by sampling the PC, the resulting numbers
will be a statistical approximation of reality instead of exact numbers. Still, it should
be enough to get a glimpse of what the profiled program is doing and where the
bottlenecks are.

Some advantages of this type of profiling are as follows:

• Less data to analyze: Since we're only sampling the program's execution
instead of saving every little piece of data, the amount of information to
analyze will be significantly smaller.

• Smaller profiling footprint: Due to the way the sampling is made (using
OS interrupts), the target program suffers a smaller hit on its performance.
Although the presence of the profiler is not 100 percent unnoticed, statistical
profiling does less damage than the event-based one.

Here is an example of the output of OProfile (http://oprofile.sourceforge.net/
news/), a Linux statistical profiler:

Function name,File name,Times Encountered,Percentage
"func80000","statistical_profiling.c",30760,48.96%
"func40000","statistical_profiling.c",17515,27.88%
"func20000","static_functions.c",7141,11.37%
"func10000","static_functions.c",3572,5.69%
"func5000","static_functions.c",1787,2.84%
"func2000","static_functions.c",768,1.22%

http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/

Profiling 101

[6]

"func1500","statistical_profiling.c",701,1.12%
"func1000","static_functions.c",385,0.61%
"func500","statistical_profiling.c",194,0.31%

Here is the output of profiling the same Fibonacci code from the preceding code
using a statistical profiler for Python called statprof:

 % cumulative self
 time seconds seconds name
100.00 0.01 0.01 B02088_01_03.py:11:fib
 0.00 0.01 0.00 B02088_01_03.py:17:fib_seq
 0.00 0.01 0.00 B02088_01_03.py:21:<module>

Sample count: 1
Total time: 0.010000 seconds

As you can see, there is quite a difference between the output of both profilers for the
same code.

The importance of profiling
Now that we know what profiling means, it is also important to understand
how important and relevant it is to actually do it during the development cycle
of our applications.

Profiling is not something everyone is used to do, especially with non-critical software
(unlike peace maker embedded software or any other type of execution-critical
example). Profiling takes time and is normally useful only after we've detected that
something is wrong with our program. However, it could still be performed before
that even happens to catch possible unseen bugs, which would, in turn, help chip away
the time spent debugging the application at a later stage.

As hardware keeps advancing, getting faster and cheaper, it is increasingly hard
to understand why we, as developers, should spend resources (mainly time) on
profiling our creations. After all, we have practices such as test-driven development,
code review, pair programming and others that assure us our code is solid and that
it'll work as we want it. Right?

Chapter 1

[7]

However, what we sometimes fail to realize is that the higher level our languages
become (we've gone from assembler to JavaScript in just a few years), the less
we think about CPU cycles, memory allocation, CPU registries, and so on. New
generations of programmers learn their craft using higher level languages because
they're easier to understand and provide more power out of the box. However,
they also abstract the hardware and our interaction with it. As this tendency keeps
growing, the chances that new developers will even consider profiling their software
as another step on its development grows weaker by the second.

Let's look at the following scenario:

As we know, profiling measures the resources our program uses. As I've stated earlier,
they keep getting cheaper and cheaper. So, the cost of getting our software out and the
cost of making it available to a higher number of users is also getting cheaper.

These days, it is increasingly easy to create and publish an application that will be
reached by thousands of people. If they like it and spread the word through social
media, that number can blow up exponentially. Once that happens, something that is
very common is that the software will crash, or it'll become impossibly slow and the
users will just go away.

A possible explanation for the preceding scenario is, of course, a badly thought and
non-scalable architecture. After all, one single server with a limited amount of RAM
and processing power will get you so far until it becomes your bottleneck. However,
another possible explanation, one that proves to be true many times, is that we failed
to stress test our application. We didn't think about resource consumption; we just
made sure our tests passed, and we were happy with that. In other words, we failed
to go that extra mile, and as a result, our project crashed and burned.

Profiling can help avoid that crash and burn outcome, since it provides a fairly
accurate view of what our program is doing, no matter the load. So, if we profile it
with a very light load, and the result is that we're spending 80 percent of our time
doing some kind of I/O operation, it might raise a flag for us. Even if, during our
test, the application performed correctly, it might not do so under heavy stress.
Think of a memory leak-type scenario. In those cases, small tests might not generate
a big enough problem for us to detect it. However, a production deployment under
heavy stress will. Profiling can provide enough evidence for us to detect this problem
before it even turns into one.

Profiling 101

[8]

What can we profile?
Going deeper into profiling, it is very important to understand what we can actually
profile. Measuring is the core of profiling, so let's take a detailed look at the things
we can measure during a program's execution.

Execution time
The most basic of the numbers we can gather when profiling is the execution time.
The execution time of the entire process or just of a particular portion of the code
will shed some light on its own. If you have experience in the area your program is
running (that is, you're a web developer and you're working on a web framework),
you probably already know what it means for your system to take too much time. For
instance, a simple web server might take up to 100 milliseconds when querying the
database, rendering the response, and sending it back to the client. However, if the
same piece of code starts to slow down and now it takes 60 seconds to do the same
task, then you should start thinking about profiling. You also have to consider that
numbers here are relative. Let's assume another process: a MapReduce job that is
meant to process 2 TB of information stored on a set of text files takes 20 minutes. In
this case, you might not consider it as a slow process, even when it takes considerably
more time than the slow web server mentioned earlier.

To get this type of information, you don't really need a lot of profiling experience or
even complex tools to get the numbers. Just add the required lines into your code
and run the program.

For instance, the following code will calculate the Fibonnacci sequence for the
number 30:

import datetime

tstart = None
tend = None

def start_time():
 global tstart
 tstart = datetime.datetime.now()
def get_delta():
 global tstart
 tend = datetime.datetime.now()
 return tend - tstart

 def fib(n):

Chapter 1

[9]

 return n if n == 0 or n == 1 else fib(n-1) + fib(n-2)

def fib_seq(n):
 seq = []
 if n > 0:
 seq.extend(fib_seq(n-1))
 seq.append(fib(n))
 return seq

start_time()
print "About to calculate the fibonacci sequence for the number 30"
delta1 = get_delta()

start_time()
seq = fib_seq(30)
delta2 = get_delta()

print "Now we print the numbers: "
start_time()
for n in seq:
 print n
delta3 = get_delta()

print "====== Profiling results ======="
print "Time required to print a simple message: %(delta1)s" % locals()
print "Time required to calculate fibonacci: %(delta2)s" % locals()
print "Time required to iterate and print the numbers: %(delta3)s" %
locals()
print "====== ======="

Now, the code will produce the following output:

About to calculate the Fibonacci sequence for the number 30
Now we print the numbers:
0
1
1
2
3
5
8
13
21
#...more numbers
4181

www.allitebooks.com

http://www.allitebooks.org

Profiling 101

[10]

6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
====== Profiling results =======
Time required to print a simple message: 0:00:00.000030
Time required to calculate fibonacci: 0:00:00.642092
Time required to iterate and print the numbers: 0:00:00.000102

Based on the last three lines, we see the obvious results: the most expensive part of
the code is the actual calculation of the Fibonacci sequence.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Where are the bottlenecks?
Once you've measured how much time your code needs to execute, you can profile
it by paying special attention to the slow sections. These are the bottlenecks, and
normally, they are related to one or a combination of the following reasons:

• Heavy I/O operations, such as reading and parsing big files, executing
long-running database queries, calling external services (such as HTTP
requests), and so on

• Unexpected memory leaks that start building up until there is no memory
left for the rest of the program to execute properly

• Unoptimized code that gets executed frequently
• Intensive operations that are not cached when they could be

Chapter 1

[11]

I/O-bound code (file reads/write, database queries, and so on) is usually harder
to optimize, because that would imply changing the way the program is dealing
with that I/O (normally using core functions from the language). Instead, when
optimizing compute-bound code (like a function that is using a badly implemented
algorithm), getting a performance improvement is easier (although not necessarily
easy). This is because it just implies rewriting it.

A general indicator that you're near the end of a performance optimization process is
when most of the bottlenecks left are due to I/O-bound code.

Memory consumption and memory leaks
Another very important resource to consider when developing software is memory.
Regular software developers don't really care much about it, since the era of
the 640 KB of RAM PC is long dead. However, a memory leak on a long-running
program can turn any server into a 640 KB computer. Memory consumption is not
just about having enough memory for your program to run; it's also about having
control over the memory that your programs use.

There are some developments, such as embedded systems, that actually require
developers to pay extra attention to the amount of memory they use, because it is a
limited resource in those systems. However, an average developer can expect their
target system to have the amount of RAM they require.

With RAM and higher level languages that come with automatic memory
management (like garbage collection), the developer is less likely to pay much
attention to memory utilization, trusting the platform to do it for them.

Profiling 101

[12]

Keeping track of memory consumption is relatively straightforward. At least for a
basic approach, just use your OS's task manager. It'll display, among other things,
the amount of memory used or at least the percentage of total memory used by your
program. The task manager is also a great tool to check your CPU time consumption.
As you can see in the next screenshot, a simple Python program (the preceding one)
is taking up almost the entire CPU power (99.8 percent), and barely 0.1 percent of the
total memory that is available:

With a tool like that (the top command line tool from Linux), spotting memory leaks
can be easy, but that will depend on the type of software you're monitoring. If your
program is constantly loading data, its memory consumption rate will be different
from another program that doesn't have to deal much with external resources.

Chapter 1

[13]

For instance, if we were to chart the memory consumption over time of a program
dealing with lots of external data, it would look like the following chart:

There will be peaks, when these resources get fully loaded into memory, but there
will also be some drops, when those resources are released. Although the memory
consumption numbers fluctuate quite a bit, it's still possible to estimate the average
amount of memory that the program will use when no resources are loaded. Once
you define that area (marked as a green box in the preceding chart), you can spot
memory leaks.

Let's look at how the same chart would look with bad resource handling (not fully
releasing allocated memory):

Profiling 101

[14]

In the preceding chart, you can clearly see that not all memory is released when a
resource is no longer used, which is causing the line to move out of the green box.
This means the program is consuming more and more memory every second, even
when the resources loaded are released.

The same can be done with programs that aren't resource heavy, for instance, scripts
that execute a particular processing task for a considerable period of time. In those
cases, the memory consumption and the leaks should be easier to spot.

Let's take a look at an example:

When the processing stage starts, the memory consumption should stabilize within a
clearly defined range. If we spot numbers outside that range, especially if it goes out
of it and never comes back, we're looking at another example of a memory leak.

Let's look at an example of such a case:

Chapter 1

[15]

The risk of premature optimization
Optimization is normally considered a good practice. However, this doesn't hold
true when the act of optimization ends up driving the design decisions of the
software solution.

A very common pitfall developers face while starting to code a new piece of software
is premature optimization.

When this happens, the end result ends up being quite the opposite of the intended
optimized code. It can contain an incomplete version of the required solution, or it
can even contain errors derived from the optimization-driven design decisions.

As a normal rule of thumb, if you haven't measured (profiled) your code, optimizing
it might not be the best idea. First, focus on readable code. Then, profile it and find out
where the real bottlenecks are, and as a final step, perform the actual optimization.

Running time complexity
When profiling and optimizing code, it's really important to understand what
Running time complexity (RTC) is and how we can use that knowledge to
properly optimize our code.

RTC helps quantify the execution time of a given algorithm. It does so by providing
a mathematical approximation of the time a piece of code will take to execute for any
given input. It is an approximation, because that way, we're able to group similar
algorithms using that value.

RTC is expressed using something called Big O notation. In mathematics, Big O
notation is used to express the limiting behavior of a given function when the terms
tend to infinity. If I apply that concept in computer science, we can use Big O notation
to express the limiting behavior of the function describing the execution time.

In other words, this notation will give us a broad idea of how long our algorithm
will take to process an arbitrarily large input. It will not, however, give us a precise
number for the time of execution, which would require a more in-depth analysis of
the source code.

As I've said earlier, we can use this tendency to group algorithms. Here are some of
the most common groups:

Profiling 101

[16]

Constant time – O(1)
This is the simplest of them all. This notation basically means that the action we're
measuring will always take a constant amount of time, and this time is not dependent
on the size of the input.

Here are some examples of code that have O(1) execution time:

• Determining whether a number is odd or even:
if number % 2:
 odd = True
else:
 odd = False

• Printing a message into standard output:
print "Hello world!"

Even something more conceptually complex, like finding the value of a key inside
a dictionary (or hash table), if implemented correctly, can be done in constant time.
Technically speaking, accessing an element on the hash takes O(1) amortized time,
which roughly means that the average time each operation takes (without taking into
account edge cases) is a constant O(1) time.

Linear time – O(n)
Linear time dictates that for a given input of arbitrary length n, the amount of time
required for the execution of the algorithm is linearly proportional to n, for instance,
3n, 4n + 5, and so on.

Chapter 1

[17]

The preceding chart clearly shows that both the blue (3n) line and the red one
(4n + 5) have the same upper limit as the black line (n) when x tends to infinity.
So, to simplify, we can just say that all three functions are O(n).

Examples of algorithms with this execution order are:

• Finding the smallest value in an unsorted list
• Comparing two strings
• Deleting the last item inside a linked list

Logarithmic time – O(log n)
An algorithm with logarithmic execution time is one that will have a very
determined upper limit time. A logarithmic function grows quickly at first,
but it'll slow down as the input size gets bigger. It will never stop growing,
but the amount it grows by will be so small that it will be irrelevant.

The preceding chart shows three different logarithmic functions. You can clearly
see that they all possess a similar shape, including the upper limit x, which keeps
increasing to infinity.

Some examples of algorithms that have logarithmic execution time are:

• Binary search
• Calculating Fibonacci numbers (using matrix multiplications)

Profiling 101

[18]

Linearithmic time – O(nlog n)
A particular combination of the previous two orders of execution is the linearithmic
time. It grows quickly as soon as the value of x starts increasing.

Here are some examples of algorithms that have this order of execution:

• Merge sort
• Heap sort
• Quick sort (at least its average time complexity)

Let's see a few examples of plotted linearithmic functions to understand them better:

Factorial time – O(n!)
Factorial time is one of the worst execution times we might get out of an algorithm.
It grows so quickly that it's hard to plot.

Chapter 1

[19]

Here is a rough approximation of how the execution time of our algorithm would
look with factorial time:

An example of an algorithm with factorial execution time is the solution for
the traveling salesman using brute force search (basically checking every
single possible solution).

Quadratic time – O(n^)
Quadratic execution time is another example of a fast growing algorithm. The bigger
the input size, the longer it's going to take (this is true for most complexities, but then
again, specially true for this one). Quadratic execution time is even less efficient that
linearithmic time.

Some examples of algorithms having this order of execution are:

• Bubble sort
• Traversing a 2D array
• Insertion sort

www.allitebooks.com

http://www.allitebooks.org

Profiling 101

[20]

Here are some examples of plotted exponential functions:

Finally, let's look at all examples plotted together to get a clear idea of
algorithm efficiency:

Chapter 1

[21]

Leaving aside constant execution time, which is clearly faster but most of the time
impossible to achieve in complex algorithms, the order or preference should be:

• Logarithmic
• Linear
• Linearithmic
• Quadratic
• Factorial

Obviously, there are cases when you'll have no choice but to get a quadratic execution
time as the best possible result. The idea is to always aim for the faster algorithms, but
the limitations of your problems and technology will affect the actual result.

Note that between quadratic and factorial times, there are
several other alternatives (cubic, n ^ 4, and so on).

Another important consideration is that most algorithms don't have only a single
order of execution time. They can have up to three orders of execution time: for the
best case, normal case, and worst case scenarios. The scenario is determined by the
properties of the input data. For instance, the insertion sort algorithm will run much
faster if the input is already sorted (best case), and it will be worst (exponential
order) for other types of input.

Other interesting cases to look at are the data types used. They inherently come
with execution time that is associated with actions you can perform on them
(lookup, insert, search, and so on). Let's look at some of the most common
data types and their associated actions:

Data
Structure

Time complexity

Average case Worst case

Indexing Search Insertion Deletion Indexing Search Insertion Deletion

List O(1) O(n) - - O(1) O(n) - -

Linked list O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(n)

Doubly
linked list

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Dictionary - O(1) O(1) O(1) - O(n) O(n) O(n)

Binary
search tree

O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n)

Profiling 101

[22]

Profiling best practices
Profiling is a repetitive task. You'll do it several times inside the same project in order
to get the best results, and you'll do it again on the next project. Just like with any other
repetitive task in software development, there is a set of best practices you can follow
to ensure that you get the most out of the process. Let's look at some of them:

Build a regression-test suite
Before starting any kind of optimization process, you need to make sure that the
changes you make to the code will not affect its functioning in a bad way. The best
way to do this, especially when it's a big code base, is to create a test suite. Make sure
that your code coverage is high enough to provide the confidence you need to make
the changes. A test suite with 60 percent code coverage can lead to very bad results.

A regression-test suite will allow you to make as many optimization tries as you
need to without fear of breaking the code.

Mind your code
Functional code tends to be easier to refactor, mainly because the functions
structured that way tend to avoid side effects. This reduces any risk of affecting
unwanted parts of your system. If your functions avoid a local mutable state,
that's another winning point for you. This is because the code should be pretty
straightforward for you to understand and change. Functions that don't follow the
previously mentioned guidelines will require more work and care while refactoring.

Be patient
Profiling is not fast, not easy, and not an exact process. What this means is that you
should not expect to just run the profiler and expect the data from it to point directly
to your problem. That could happen, yes. However, most of the time, the problems
you're trying to solve are the ones that simple debugging couldn't fix. This means
you'll be browsing through data, plotting it to try to make sense of it, and narrowing
down the source of your problem until you either need to start again, or you find it.

Keep in mind that the deeper you get into the profiled data, the deeper into the
rabbit hole you get. Numbers will stop making sense right away, so make sure you
know what you're doing and that you have the right tools for the job before you
start. Otherwise, you'll waste your time and end up with nothing but frustration.

Chapter 1

[23]

Gather as much data as you can
Depending on the type and size of software you're dealing with, you might want to
get as much data as you can before you start analyzing it. Profilers are a great source
for this. However, there are other sources, such as server logs from web applications,
custom logs, system resources snapshots (like from the OS task manager), and so on.

Preprocess your data
After you have all the information from your profilers, your logs, and other sources,
you will probably need to preprocess the data before analyzing it. Don't shy away
from unstructured data just because a profiler can't understand it. Your analysis of
the data will benefit from the extra numbers.

For instance, getting the web server logs is a great idea if you're profiling a
web application, but those files are normally just text files with one line per
request. By parsing it and getting the data into some kind of database system
(like MongoDB, MySQL, or the like), you'll be able to give that data meaning
(by parsing the dates, doing geolocation by source IP address, and so on) and
query that information afterwards.

The formal name for the stage is ETL, which stands for extracting the data from it's
sources, transforming it into something with meaning, and loading it into another system
that you can later query.

Visualize your data
If you don't know exactly what it is that you're looking for and you're just looking for
ways to optimize your code before something goes wrong, a great idea to get some
insight into the data you've already preprocessed is to visualize it. Computers are
great with numbers, but humans, on the other hand, are great with images when we
want to find patterns and understand what kind of insight we can gather from the
information we have.

Profiling 101

[24]

For instance, to continue with the web server logs example, a simple plot (such as the
ones you can do with MS Excel) for the requests by hour can provide some insight
into the behavior of your users:

The preceding chart clearly shows that the majority of requests are done during late
afternoon and continue into the night. You can use this insight later on for further
profiling. For instance, an optional improvement of your setup here would be to
provide more resources for your infrastructure during that time (something that
can be done with service providers such as Amazon Web Services).

Chapter 1

[25]

Another example, using custom profiling data, could be the following chart:

It uses data from the first code example of this chapter by counting the number of
each event that triggers the profile function. We can then plot it and get an idea
of the most common events. In our case, the call and return events are definitely
taking up most of our program's time.

Summary
In this chapter, we've covered the basics of profiling. You understood profiling and
its importance. You also learned how we can leverage it in order to get the most out
of our code.

In the next chapter, we'll start getting our hands dirty by looking at some Python
profilers and how we can use them on our applications.

[27]

The Profilers
In the previous chapter, we covered the basics of profiling and understood its
importance. You learned how it will help the development process if we incorporate
the practice of profiling into the cycle of development. We also went over some good
profiling practices.

Finally, we covered some theory about the different execution times our program
can have. In this chapter, we'll use the first part (the part about profiling). Then, with
the help of two specific Python profilers (cProfile and line_profilers), we'll start
putting into practice some theory that you have learned.

In this chapter, we will cover the following topics:

• Some basic information about each profiler
• How to download and install each profiler
• Use cases examples with different options
• Differences and similarities between both profilers

Getting to know our new best friends: the
profilers
After all the theory and generic examples from the previous chapter, it is time for
some real Python. So, let's begin with two of the most known and used Python
profilers: cProfile and line_profiler. They will help us profile our code in two
different ways.

The Profilers

[28]

On one hand, we have cProfile (https://docs.python.org/2/library/
profile.html#module-cProfile), It comes by default with Python since version 2.5
and is the recommended profiler for most use cases. At least that is what the official
Python documentation says about it. On the other hand, we have line_profiler
(https://github.com/rkern/line_profiler), which is not an official part of the
Python programming language, but it's a well-known profiler out there.

Let's go over both of them in more detail.

cProfile
Like I've already mentioned, cProfile comes by default with the standard Python
interpreter (cPython) since version 2.5. Other versions, such as PyPy, don't have it.
It is a deterministic profiler. It provides a set of APIs that allow the developers to
gather information about the execution of Python programs, more specifically,
about the CPU time used by each function. It also provides other details, such
as the number of times a function was called.

It exclusively measures CPU time and pays no attention to memory consumption
and other memory related stats. Nonetheless, it is a great starter point, since most
of the times, if we're trying to optimize code, this type of analysis will provide an
immediate set of optimization candidates.

There is no need for installation, since it's part of the language already. To use it, all
you have to do is to import the cProfile package.

A deterministic profiler is just another name for an event-based profiler
(check out the previous chapter for more details). This means that that
this profiler will be aware of every function call, return statement, and
other events during the execution of our code. It will also measure
everything that happens during that time (unlike the statistical profiler
we saw in the previous chapter).

Here is a very simple example taken from Python's documentation:

import cProfile
import re
cProfile.run('re.compile("foo|bar")')

https://docs.python.org/2/library/profile.html#module-cProfile
https://docs.python.org/2/library/profile.html#module-cProfile
https://github.com/rkern/line_profiler

Chapter 2

[29]

The preceding code outputs the following text:

 197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.001 0.001 <string>:1(<module>)
 1 0.000 0.000 0.001 0.001 re.py:212(compile)
 1 0.000 0.000 0.001 0.001 re.py:268(_compile)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:172(_compile_charset)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:201(_optimize_charset)
 4 0.000 0.000 0.000 0.000
 sre_compile.py:25(_identityfunction)
 3/1 0.000 0.000 0.000 0.000
 sre_compile.py:33(_compile)

From this output, the following information can be gathered:

• The first line tells us that 197 function calls were monitored, and out of them,
192 were primitive calls, which means no recursion was involved.

• ncalls reports the number of calls to the function. If there are two numbers
in this column, it means there was recursion. The second one is the number
of primitive calls, and the first one is the total number of calls. This number
can be helpful to identify the possible bugs (unexpected high numbers) or
possible inline expansion points.

• tottime is the total time spent inside the function (excluding the time spent
doing subcalls to other functions). This particular information can help the
developer find long running loops that could be optimized.

• percall is simply the quotient of tottime divided by ncalls.
• cumtime is the cumulative time spent inside the function including the

time spent in subfunctions (this includes recursive calls as well). This
number could help identify higher level errors, such as those in the
selection of the algorithm.

• percall is the quotient of cumtime divided by primitive calls.
• filename:lineno(function) provides the file name, line number, and

function name of the analyzed function.

www.allitebooks.com

http://www.allitebooks.org

The Profilers

[30]

A note about limitations
There is no such thing as the invisible profiler. This means that even in the case of
cProfile, which has a very small overhead, it still adds an overhead to our code.
On every event that is triggered, there is some lag between the time that the event
actually happens and that time that the profiler gets to query the state of the internal
clock. At the same time, there is some lag between the moment the program counter
leaves the profiler's code and goes back into the user's code to continue with
the execution.

Adding to the fact, that as any piece of data inside a computer, the internal clock has
a set precision, and any measurement that is smaller than that precision will be lost.
That being said, the developer needs to have a special consideration when profiling
code with a high number of recursive calls or, in particular cases, when a function
calls many other functions, since that error can accumulate and begin to be significant.

The API provided
The cProfile profiler provides a set of methods that will help the developer gather
statistics in different contexts:

run(command, filename=None, sort=-1)

This classic method used in the preceding example gathers statistics about the
execution of the command. After that, it calls the following function:

exec(command, __main__.__dict__, __main__.__dict__)

If no file name is given, it'll create a new instance of stats (more on this class in a
minute). Here is the preceding same example, but using the extra parameters:

import cProfile
import re
cProfile.run('re.compile("foo|bar")', 'stats', 'cumtime')

If you run the preceding code, you'll notice that nothing gets printed out. However,
if you inspect the content of the folder, you'll notice a new file, called stats. If you
try to open that file, you won't be able to understand its meaning because it was
saved using a binary format. In a few minutes, we'll see how to read that information
and manipulate it to create our own reports:

runctx(command, globals, locals, filename=None)

Chapter 2

[31]

This method is very similar to the preceding one. The only difference is that it also
receives the globals and locals dictionaries for the command-line string. After
that, it executes the following function:

exec(command, globals, locals)

It gathers profiling statistics just like run does. Let's see an example of the main
difference between run and runctx.

Let's stick to run and write the following code:

import cProfile
def runRe():
 import re
 cProfile.run('re.compile("foo|bar")')
runRe()

What we would actually get when running the code is the following error message:

Traceback (most recent call last):
 File "cprof-test1.py", line 7, in <module>
 runRe() ...
 File "/usr/lib/python2.7/cProfile.py", line 140, in runctx
 exec cmd in globals, locals
 File "<string>", line 1, in <module>
NameError: name 're' is not defined

The re module is not found by the run method because as we saw earlier that run
calls the exec function with the __main__.__dict__ as parameters.

Now, let's use runctx in the following manner:

import cProfile
def runRe():
 import re
 cProfile.runctx('re.compile("foo|bar")', None, locals())
runRe()

Then the output would change into a valid one as follows:

 194 function calls (189 primitive calls) in 0.000 seconds
 Ordered by: standard name
 ncalls tottime percall cumtime percall
 filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 re.py:188(compile)
 1 0.000 0.000 0.000 0.000 re.py:226(_compile)

The Profilers

[32]

 1 0.000 0.000 0.000 0.000
 sre_compile.py:178(_compile_charset)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:207(_optimize_charset)
 4 0.000 0.000 0.000 0.000
 sre_compile.py:24(_identityfunction)
 3/1 0.000 0.000 0.000 0.000
 sre_compile.py:32(_compile)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:359(_compile_info)
 2 0.000 0.000 0.000 0.000
 sre_compile.py:472(isstring)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:478(_code)
 1 0.000 0.000 0.000 0.000
 sre_compile.py:493(compile)
 5 0.000 0.000 0.000 0.000
 sre_parse.py:126(__len__)
 12 0.000 0.000 0.000 0.000
 sre_parse.py:130(__getitem__)
 7 0.000 0.000 0.000 0.000
 sre_parse.py:138(append)
 3/1 0.000 0.000 0.000 0.000
 sre_parse.py:140(getwidth)
 1 0.000 0.000 0.000 0.000
 sre_parse.py:178(__init__)
 10 0.000 0.000 0.000 0.000
 sre_parse.py:182(__next)
 2 0.000 0.000 0.000 0.000
 sre_parse.py:195(match)
 8 0.000 0.000 0.000 0.000
 sre_parse.py:201(get)
 1 0.000 0.000 0.000 0.000
 sre_parse.py:301(_parse_sub)
 2 0.000 0.000 0.000 0.000
 sre_parse.py:379(_parse)
 1 0.000 0.000 0.000 0.000
 sre_parse.py:67(__init__)
 1 0.000 0.000 0.000 0.000
 sre_parse.py:675(parse)
 3 0.000 0.000 0.000 0.000
 sre_parse.py:90(__init__)
 1 0.000 0.000 0.000 0.000 {_sre.compile}
 15 0.000 0.000 0.000 0.000 {isinstance}
 38/37 0.000 0.000 0.000 0.000 {len}
 2 0.000 0.000 0.000 0.000 {max}

Chapter 2

[33]

 48 0.000 0.000 0.000 0.000 {method 'append' of
 'list' objects}
 1 0.000 0.000 0.000 0.000 {method 'disable' of
 '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'get' of
 'dict' objects}
 1 0.000 0.000 0.000 0.000 {method 'items' of
 'dict' objects}
 8 0.000 0.000 0.000 0.000 {min}
 6 0.000 0.000 0.000 0.000 {ord}

The Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
method returns a class, providing more control to the developer during the profiling
process than run and runctx do.

The timer parameter is a custom function that can be used to measure time in a
different way than the one provided by default. It must be a function returning a
number representing the current time. If the developer needs a custom function, it
should be as fast as possible to lower overhead and avoid problems of calibration
(please refer to A note about limitations section a few pages back).

If the number returned by the timer is an integer, the timeunit parameter specifies
the multiplier that represents the duration of each unit of time. For example, if the
returned value is in milliseconds, then timeunit would be .001.

Let's also take a look at the methods provided by the returned class:

• enable(): This starts collecting profiling data
• disable(): This stops collecting profiling data
• create_stats(): This stops collecting data and records the information

gathered as the current profile
• print_stats(sort=-1): This creates a stats object and prints the result

into STDOUT
• dump_stats(filename): This writes the content of the current profile

into a file
• run(cmd): This is same as the run function we saw earlier
• runctx(cmd, globals, locals): This is same as the runctx function we

saw earlier
• runcall(func, *args, **kwargs): This gathers profiling information

about the function called

The Profilers

[34]

Let's see the preceding example, using the following method this time:

import cProfile

def runRe():
 import re
 re.compile("foo|bar")

prof = cProfile.Profile()
prof.enable()
runRe()
prof.create_stats()
prof.print_stats()

There are more lines involved to get the profiling going, but it is clearly less invasive
to the original code. That is an advantage when trying to profile code that's already
been written and tested. This way, we can add and remove our profiling code
without having to modify the original code.

There is an even less invasive alternative, which involves not adding code at all, but
using some specific command-line parameters when running the script instead:

$ python -m cProfile your_script.py -o your_script.profile

Note that this will profile the entire code, so if you were actually just profiling
a specific portion of your script, the preceding approach would not return the
same results.

Now, before going into more detailed and interesting examples, let's first look at the
Stats class and understand what it can do for us.

The Stats class
The pstats module provides the developer with the Stats class, which, in turn,
allows them to read and manipulate the content of the stats file (the file into which
we saved the profiling information using one of the methods described earlier).

For example, the following code loads the stats file and prints out the sorted statistics:

import pstats
p = pstats.Stats('stats')
p.strip_dirs().sort_stats(-1).print_stats()

Chapter 2

[35]

Note that the Stats class constructor is able to receive
a cProfile.Profile instance instead of the file
name as the source of the data.

Let's take a closer look at the methods provided by the pstats.Stats class:

• strip_dirs(): This removes all the leading paths' information from the
file names in the report. This method modifies the stats instance, so any
instance that has this method executed will be considered to have its items
in a random order. If two entries are considered to be the same (same line on
the same file name having the same function name), then those entries would
be accumulated.

• add(*filenames): This method loads more information into stats from the
files referenced in the file names. It's worth mentioning that just like with
only one file, the stats entries that reference the same function (file name,
and line and function name) will be accumulated.

• dump_stats(filename): Just like in the cProfile.Profile class, this
method saves the data loaded into the Stats class inside a file.

• sort_stats(*keys): This method is present since version 2.3, and it
modifies the stats object by sorting its entries by the given criteria. When
more than one criteria is given, then the additional ones are used only when
there is equality in the previous ones. For instance, if sort_stats ('name',
'file') is used, it would sort all entries by function name, and when that
name is the same, it would sort those entries by file name.

The method is smart enough to understand abbreviations as long as they're
unambiguous, so be careful there. The full list of the currently supported sorting
criteria is as follows:

Criteria Meaning Ascending/Descending
calls Total number of calls Descending
cumulative Cumulative time Descending
cumtime Cumulative time Descending
file File name Ascending
filename File name Ascending
module File name Ascending
ncalls Total number of calls Descending
pcalls Primitive call count Descending
line Line number Ascending

The Profilers

[36]

Criteria Meaning Ascending/Descending
name Function name Ascending
nfl Composite of name/file/line Descending
stdname Standard name Ascending
time Internal time Descending
tottime Internal time Descending

A note on nfl versus stdname
The main difference between these two sort types is that the latter
is a sort of the printed name. This means the line numbers will be
sorted as strings (which means that for 4, 20, and 30 the sorting will
be 20, 30, 4). The nfl sort does a numeric comparison of the line
number fields.

Finally, for backward compatibility reasons, some numeric values are accepted,
instead of the ones in the preceding table. They are -1, 0, 1, and 2, and they're
translated into stdname, calls, time, and cumulative, respectively.

• reverse_order(): This method reverses the default order of the sort key
selected (so, if the key is by the default ascending order, it would be in the
descending order now).

• print_stats(*restrictions): This method takes care of printing out the
stats into STDOUT. The optional argument is meant to restrict the output of
this function. It can either be an integer value, a decimal value, or a string.
They are explained here:

 ° integer: This will limit the number of lines printed
 ° Decimal between 0.0 and 1.0 (inclusive): This will select the

percentage of the lines
 ° String: This is a regular expression to match against the standard name

Chapter 2

[37]

The preceding screenshot shows the output we get from calling the print_stats
method as follows:

import cProfile
import pstats

def runRe():
 import re
 re.compile("foo|bar")
prof = cProfile.Profile()
prof.enable()
runRe()
prof.create_stats()

p = pstats.Stats(prof)
p.print_stats(10, 1.0, '.*.py.*') #print top 10 lines that match the
given reg exp.

If more than one parameter is passed, then they are applied sequentially. As we've
seen in the preceding lines of code, the output of this profiler can be quite long.
However, if we sort it properly, then we can summarize that output using this
parameter and still get relevant information.

The print_callers(*restrictions) function works with the same input and
restriction rules than the previous one, but the output is a bit different. For every
function called during the execution of our program, it'll show the number of times
each call was made, the total and cumulative times, and a combination of filename,
and the line and function names.

Let's look at a quick example of how using cProfile.Profile and Stats can render
the list of caller functions:

import cProfile
import pstats

def runRe():
 import re
 re.compile("foo|bar")
prof = cProfile.Profile()
prof.enable()
runRe()
prof.create_stats()

p = pstats.Stats(prof)
p.print_callers()

The Profilers

[38]

Notice how we're combining the pstats.Stats class with the cProfile.Profile
class. They're working together to gather and show the information in the way we
need it. Now, look at the output:

The print_callees(*restrictions) method prints a list of functions that call
other functions. The format of the data shown and the restrictions are same as the
preceding example.

You may encounter a block like the one shown in the following screenshot as part of
the output:

This output means that the functions on the right-hand side were called by the same
function on the left-hand side.

Profiling examples
Now that we've seen the basics of how to use cProfile and Stats, let's dig into
some more interesting and practical examples.

Fibonacci again
Let's go back to the Fibonacci example, since a basic recursive Fibonacci sequence
calculator has a lot of room for improvement.

Chapter 2

[39]

Let's first look at the unprofiled, unoptimized code:

import profile

def fib(n):
 if n <= 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

def fib_seq(n):
 seq = []
 if n > 0:
 seq.extend(fib_seq(n-1))
 seq.append(fib(n))
 return seq

profile.run('print fib_seq(20); print')

This code will output the following results:

The output is printed correctly, but look at the highlighted sections in the preceding
screenshot. These sections are explained here:

• There are 57.356 function calls during those 0.114 seconds
• Out of those, only 66 were primitive calls (not called by recursion)
• In line 3 of our code, 57.270 (57.291—21) were recursion-induced function calls

www.allitebooks.com

http://www.allitebooks.org

The Profilers

[40]

As we all know, the act of calling another function adds an overhead to our time.
Since it looks like (for the cumtime column) that most of the execution time is spent
inside this function, we can safely assume that if we speed this up, the entire script's
time would be affected.

Now, let's apply a simple decorator to the fib function that will allow us to cache the
previously calculated values (a technique also known as memoization, about which
you'll read in the upcoming chapters) so that we don't have to call fib more than once
per value:

import profile

class cached:
 def __init__(self, fn):
 self.fn = fn
 self.cache = {}

 def __call__(self, *args):
 try:
 return self.cache[args]
 except KeyError:
 self.cache[args] = self.fn(*args)
 return self.cache[args]

@cached
def fib(n):
 if n <= 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

def fib_seq(n):
 seq = []
 if n > 0:

 seq.extend(fib_seq(n-1))
 seq.append(fib(n))
 return seq

profile.run('print fib_seq(20); print')

Chapter 2

[41]

Now, let's run the code again and look at the output:

We went from around 57k total calls to only 145 and from 0.114 seconds to 0.001.
That's an amazing improvement! However, we have more primitive calls, but we
also have significantly less recursive calls.

Let's continue with another possible optimization. Our example works quite fast for
a single call, but let's try to do several runs in a row and get the combined stats for
that execution. Perhaps, we'll get something interesting back. To do this, we need to
use the stats module. Let's see an example for this:

import cProfile
import pstats
from fibo4 import fib, fib_seq

filenames = []
profiler = cProfile.Profile()
profiler.enable()
for i in range(5):
 print fib_seq(1000); print
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()
stats.print_callers()

The Profilers

[42]

We've pushed the envelope here. Getting the Fibonacci sequence for 1000 might be
too much to ask, especially from a recursive implementation. Indeed, we ran out of
recursion depth. This is mainly due to the fact that cPython has a guard to prevent
a stack overflow error generated by the amount of recursive calls (ideally, a tail
recursion optimization would solve this, but cPython does not provide it). So, we
just found another issue. Let's try to fix it and reanalyze the code:

import profile
def fib(n):
 a, b = 0, 1
 for i in range(0, n):
 a,b = b, a+b
 return a

def fib_seq(n):
 seq = []
 for i in range(0, n + 1):
 seq.append(fib(i))
 return seq

print fib_seq(1000)

The preceding lines of code print a huge list of really big numbers, but these lines
prove that we made it. We can now compute the Fibonacci sequence for the number
1000. Now, let's analyze it and see what we find.

Using the new profiling code, but requiring the iterative version of the Fibonacci
implementation, we will get this:

import cProfile
import pstats
from fibo_iter import fib, fib_seq

filenames = []
profiler = cProfile.Profile()
profiler.enable()
for i in range(5):
 print fib_seq(1000); print
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()
stats.print_callers()

Chapter 2

[43]

This, in turn, will yield the following result into the console:

Our new code is taking 0.187 seconds to calculate the Fibonacci sequence of 1000 five
times. It's not a bad number, but we know we can improve it by caching the results,
just like we did earlier. As you can see, we have 5005 calls to the fib function. If we cache
it, we would have a lot less function calls, which would mean less execution time.

With very little effort, we can improve that time by caching the calls to the fib
function, which, according the preceding report, is called 5005 times:

import profile

class cached:
 def __init__(self, fn):
 self.fn = fn
 self.cache = {}

 def __call__(self, *args):
 try:
 return self.cache[args]
 except KeyError:
 self.cache[args] = self.fn(*args)
 return self.cache[args]

@cached
def fib(n):
 a, b = 0, 1
 for i in range(0, n):

The Profilers

[44]

 a,b = b, a+b
 return a

def fib_seq(n):
 seq = []
 for i in range(0, n + 1):
 seq.append(fib(i))
 return seq

print fib_seq(1000)

You should get something like the following output:

Simply by caching the call to fib, we went from 0.187 seconds to 0.006 seconds. This
is an amazing improvement. Well done!

Tweet stats
Let's look at another example, something a bit more conceptually complex, since
calculating the Fibonacci sequence is not really an everyday use case. Let's do
something a bit more interesting. These days, Twitter allows you to download your
complete list of tweets in the form of a CSV file. We'll use this file to generate some
statistics from our feed.

Chapter 2

[45]

Using the data provided, we'll calculate the following statistics:

• The percentage of messages that are actual replies
• The percentage of tweets that were made from the website

(https://twitter.com)
• The percentage of tweets that were made from a mobile phone

The output form our script will look like the one shown in the following screenshot:

To keep things simple, we'll take care of parsing the CSV file and doing these
basic calculations. We won't use any third-party modules; that way, we'll be in
total control of the code and its analysis. This means leaving out obvious things,
such as using the CSV module from Python.

Other bad practices shown earlier, such as the inc_stat function or the fact that
we're loading the entire file into memory before processing it, will remind you that
this is just an example to show basic improvements.

Here is the initial code of the script:

def build_twit_stats():
 STATS_FILE = './files/tweets.csv'
 STATE = {
 'replies': 0,
 'from_web': 0,
 'from_phone': 0,
 'lines_parts': [],
 'total_tweets': 0
 }
 read_data(STATE, STATS_FILE)
 get_stats(STATE)
 print_results(STATE)

def get_percentage(n, total):
 return (n * 100) / total

def read_data(state, source):

https://twitter.com

The Profilers

[46]

 f = open(source, 'r')

 lines = f.read().strip().split("\"\n\"")
 for line in lines:

 state['lines_parts'].append(line.strip().split(','))
 state['total_tweets'] = len(lines)

def inc_stat(state, st):
 state[st] += 1

def get_stats(state):
 for i in state['lines_parts']:
 if(i[1] != '""'):
 inc_stat(state, 'replies')
 if(i[4].find('Twitter Web Client') > -1):
 inc_stat(state, 'from_web')
 else:
 inc_stat(state, 'from_phone')

def print_results(state):
 print "-------- My twitter stats -------------"
 print "%s%% of tweets are replies" %
 (get_percentage(state['replies'], state['total_tweets']))
 print "%s%% of tweets were made from the website" %
 (get_percentage(state['from_web'], state['total_tweets']))
 print "%s%% of tweets were made from my phone" %
 (get_percentage(state['from_phone'], state['total_tweets']))

To be fair, the code doesn't do anything too complicated. It loads the content of
the file, splits it into lines, and then it splits each line into different fields. Finally, it
counts things. One might think that with this explanation, there is nothing much to
optimize, but we're about to see that there is always room for some optimization.

Another important thing to note is that the CSV file we'll be processing has almost
150 MB of tweets data.

Here is the script that imports that code, uses it, and generates a profiling report:

import cProfile
import pstats

from B02088_02_14 import build_twit_stats

Chapter 2

[47]

profiler = cProfile.Profile()

profiler.enable()

build_twit_stats()

profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()

The output we get from this execution is as follows:

There are three main areas of interest in the preceding screenshot:

1. Total execution time
2. Cumulative times of individual function calls
3. Total number of calls for individual functions

The Profilers

[48]

Our aim is to lower the total execution time. For that, we will pay special attention
to the cumulative times of individual functions and the total number of calls for
individual functions. We can infer the following conclusions for the last two points:

• The build_twit_stats function is the one that takes the most time.
However, as you can see in the preceding lines of code, it just calls all other
functions, so it makes sense. We can focus on read_data since it's the second
most time-consuming function. This is interesting, because it means that our
bottleneck is not when we calculate the stats, but when we load the data for it.

• In the third line of the code, we also see exactly our bottleneck inside
read_data. We perform too many split commands and they add up.

• We also see that the fourth most time-consuming function is get_stats.

So, let's tackle these issues and see if we get better results. The biggest bottleneck
we had was the way we were loading data. We were loading it all into memory
first and then iterating over it to calculate our stats. We can improve this by reading
the file line by line and calculating the stats after each one. Let's see how that code
would look.

The new read_data method looks like this:

 def read_data(state, source):
 f = open(source)

 buffer_parts = []
 for line in f:
 #Multi line tweets are saved in several lines in the file,
 so we need to
 #take that into account.
 parts = line.split('","')
 buffer_parts += parts
 if len(parts) == 10:
 state['lines_parts'].append(buffer_parts)
 get_line_stats(state, buffer_parts)
 buffer_parts = []
 state['total_tweets'] = len(state['lines_parts'])

We had to add some logic to take into account multiline tweets, which are also
saved as multiline records on our CSV file. We changed our get_stats function into
get_line_stats, which simplifies its logic since it only calculates the values for the
current record:

def get_line_stats(state, line_parts):
 if line_parts[1] != '' :
 state['replies'] += 1

Chapter 2

[49]

 if 'Twitter Web Client' in line_parts[4]:
 state['from_web'] += 1
 else:
 state['from_phone'] += 1

The two final improvements were to remove the calls to inc_stat, since, thanks to
the dictionary we're using, the call is unnecessary. We also replaced the usage of the
find method using the more proficient in operator.

Let's run the code again and see the changes:

We went from 2 seconds to 1.6; that was a considerable improvement. The read_data
function is still up there with the most time-consuming functions, but that's just
because it now also calls the get_line_stats function. We can also improve on this,
since even though the get_line_stats function does very little, we're incurring in
a lookup time by calling it so often inside the loop. We could inline this function and
see if that helps.

The new code would look like this:

def read_data(state, source):
 f = open(source)

 buffer_parts = []
 for line in f:
 #Multi line tweets are saved in several lines in the file,
 so we need to
 #take that into account.

www.allitebooks.com

http://www.allitebooks.org

The Profilers

[50]

 parts = line.split('","')
 buffer_parts += parts
 if len(parts) == 10:
 state['lines_parts'].append(buffer_parts)
 if buffer_parts[1] != '' :
 state['replies'] += 1
 if 'Twitter Web Client' in buffer_parts[4]:
 state['from_web'] += 1
 else:
 state['from_phone'] += 1
 buffer_parts = []
 state['total_tweets'] = len(state['lines_parts'])

Now, with the new changes, the report will look like this:

There is a notable improvement between the first screenshot and the preceding one.
We got the time down to barely above 1.4 seconds from 2 seconds. The number of
function calls is considerably lower as well (it went from around 3 million calls to
1.7 million), which in turn should help lower the time spent doing lookups and calls.

As an added bonus, we will improve the readability of our code by simplifying it.
Here is the final code all together:

def build_twit_stats():
 STATS_FILE = './files/tweets.csv'
 STATE = {
 'replies': 0,
 'from_web': 0,

Chapter 2

[51]

 'from_phone': 0,
 'lines_parts': [],
 'total_tweets': 0
 }
 read_data(STATE, STATS_FILE)
 print_results(STATE)

def get_percentage(n, total):
 return (n * 100) / total

def read_data(state, source):
 f = open(source)

 buffer_parts = []
 for line in f:
 #Multi line tweets are saved in several lines in the file,
 so we need to
 #take that into account.
 parts = line.split('","')
 buffer_parts += parts
 if len(parts) == 10:
 state['lines_parts'].append(buffer_parts)
 if buffer_parts[1] != '' :
 state['replies'] += 1
 if 'Twitter Web Client' in buffer_parts[4]:
 state['from_web'] += 1
 else:
 state['from_phone'] += 1
 buffer_parts = []
 state['total_tweets'] = len(state['lines_parts'])

def print_results(state):
 print "-------- My twitter stats -------------"

 print "%s%% of tweets are replies" %
 (get_percentage(state['replies'], state['total_tweets']))

 print "%s%% of tweets were made from the website" %
 (get_percentage(state['from_web'], state['total_tweets']))

 print "%s%% of tweets were made from my phone" %
 (get_percentage(state['from_phone'], state['total_tweets']))

The Profilers

[52]

This is it for our review of cProfile. With it, we managed to profile our scripts,
getting per-function numbers and total function calls. It helped us improve on the
overall view of the system. We'll now look at a different profiler, which will give us
per-line details that cProfile is not capable of providing.

line_profiler
This profiler is different from cProfile. It helps you profile a function line by line
instead of doing a deterministic profiling, like the other one does.

To install this profiler, you can use the pip (https://pypi.python.org/pypi/pip)
command-line tool, with the following command:

$ pip install line_profiler

If you run into any trouble, such as missing files during installation,
make sure you have all development dependencies installed. In the
case of Ubuntu, you can ensure that all the dependencies are installed
by running the following command:
$ sudo apt-get install python-dev libxml2-dev
libxslt-dev

This profiler is trying to fill in a breach left by cProfile and others like it. Other
profilers cover CPU time on function calls. Most of the time, this is more than enough
to catch the problems and fix them (we saw that earlier). However, sometimes, the
problem or bottleneck is related to one specific line inside the function and that is
where line_profiler comes into play.

The author recommends us to use the kernprof utility, so we'll look at examples of
it. Kernprof will create an instance of the profiler and insert it into the __builtins__
namespace with the name, profile. The profiler was designed to be used as a
decorator, so you can just decorate any function you want, and it will time the
execution for each line of it.

This is how we'll execute the profiler:

$ kernprof -l script_to_profile.py

https://pypi.python.org/pypi/pip

Chapter 2

[53]

The decorated function is ready to be profiled:

@profile
def fib(n):
 a, b = 0, 1
 for i in range(0, n):
 a,b = b, a+b
 return a

By default, kernprof will save the results into a file called script_to_profile.
py.lprof, but you can tell it to display the results right away using the -v attribute:

$ kernprof -l -v script_to_profile.py

Here is a simple example output to help you understand what you'll be looking at:

The output contains every line of the function, next to the timing information.
There are six columns of information, and this is what they mean:

• Line #: This is the line number inside the file.
• Hits: This is the number of times this line is executed during the profiling.
• Time: This is the total execution time of that line, specified in timer's unit.

In the header information before the table with the results, you'll notice a
field called Timer unit, that number is the conversion factor to seconds (to
calculate the actual time, you'll have to do time x timer's unit). It might be
different on different systems.

• Per hit: The average amount of time spent executing that line of code. This
is also specified in timer's units.

• % Time: The percentage of time spent executing that line, relative to the total
time spent executing the entire function.

The Profilers

[54]

If you're building another tool that leverages line_profiler, there are two
ways to let it know which functions to profile: using the constructor and using
the add_function method.

The line_profiler also provides the same run, runctx, runcall, enable, and
disable methods that cProfile.Profile provides. However, the last two aren't
safe when nesting, so be careful. After profiling, you can dump the stats into a file
using the dump_stats(filename) method, or you can print them using the print_
stats([stream]) method. It'll print the results into sys.stdout or whatever other
stream you pass it as parameter.

Here is an example of the same function from earlier. This time, the function is being
profiled using the line_profiler API:

import line_profiler
import sys

def test():
 for i in range(0, 10):
 print i**2
 print "End of the function"

prof = line_profiler.LineProfiler(test) #pass in the function to
profile

prof.enable() #start profiling
test()
prof.disable() #stop profiling

prof.print_stats(sys.stdout) #print out the results

kernprof
The kernprof is the profiling utility that comes bundled with line_profiler
and allows us to abstract most of the profiling code from our own source code.
This means we can use it to profile our application, like we saw earlier. kernprof
will do several things for us:

• It'll work with cProfile, lsprof, and even the profile module, depending
on which one is available.

• It'll find our script properly. If the script is not inside the current folder, it'll
even check the PATH variable.

Chapter 2

[55]

• It'll instantiate and insert the profiler into the __builtins__ namespace with
the name profile. This will allow us to use the profiler inside our code. In
the case of line_profiler, we can even use it as a decorator without having
to worry about importing anything.

• The output files with the profiling stats can be viewed using the pstats.
Stats class or even from the command line as follows:
$ python -m pstats stats_file.py.prof

Or in the case of lprof files:
$ python -m line_profiler stats_file.py.lprof

Some things to consider about kernprof
There are a couple of things to take into consideration when reading the output from
kernprof. In some cases, the output might be confusing, or the numbers might not
add up. Here are the answers to some of the most common questions:

• Line-by-line time doesn't add up to total time when the profile function
calls another one: When profiling a function that gets called by another
profiled function, sometimes, it might happen that the numbers don't add
up. This is because kernprof is only recording the time spent inside the
function and tries to avoid measuring any overhead added by the profiler
itself, as shown in the following screenshot:

The Profilers

[56]

The preceding screenshot shows an example of this. The printI function
takes 0.010539 seconds according to the profiler. However, inside the test
function, the total amount of time spent seems to be 19567 timer's units,
which amounts to 0.019567 seconds.

• List comprehension lines have a lot more hits than they should inside the
report: This is basically because the report is adding one hit per iteration
inside the expression. Here is an example of this:

You can see how the actual expression line has 102 hits, 2 for each time the
printExpression function is called, and the other 100 due to the range used.

Profiling examples
Now that we've seen the basics of how to use line_profiler and kernprof, let's get
our hands dirty with more interesting examples.

Back to Fibonacci
Yes, let's again profile our original Fibonacci code. It'll be good to compare the
output from both profilers to see how they work.

Chapter 2

[57]

Let's first look at the output from this new profiler:

Out of all the numbers in the report, we can rest assured that timing is not an issue.
Inside the fib function, none of the lines take too long (nor should they). Inside
fib_seq, only one does, but that's because of the recursion shown inside fib.

So, our problem (as we already know) is the recursion and the number of times we're
executing the fib function (57, 291 times to be exact). Every time we make a function
call, the interpreter has to do a lookup by name and then execute the function. Every
time we call the fib function, two more calls are made.

The Profilers

[58]

The first thing that comes to mind is to somehow lower the number of recursive calls.
We can rewrite it into an iterative version or do a quick fix by adding the cached
decorator, like we did earlier. We can see the results in the following report:

The number of hits for the fib function went from 57, 291 hits to 21. This is another
proof that the cached decorator is a great optimization in this case.

Inverted index
Instead of repeating the second example from within a different profiler, let's look
at another problem: creating an inverted index (http://en.wikipedia.org/wiki/
inverted_index).

An inverted index is a resource used by many search engines to find words in
several files at the same time. The way they work is by pre-scanning all files, splitting
their content into words, and then saving the relations between those words and the
files (some even save the position of the word too). This way, when a search is made
on a specific word, the searching time is O(1) (constant).

Chapter 2

[59]

Let's see a simple example:

//With these files:
file1.txt = "This is a file"
file2.txt = "This is another file"
//We get the following index:
This, (file1.txt, 0), (file2.txt, 0)
is, (file1.txt, 5), (file2.txt, 5)
a, (file1.txt, 8)
another, (file2.txt, 8)
file, (file1.txt, 10), (file2.txt, 16)

So now, if we were to look for the word file, we know it's in both files (at different
positions). Let's see the code that calculates this index (again, the point of the
following code is to show classic improvement opportunities, so stick with us until
we see the optimized version of the code):

#!/usr/bin/env python

import sys
import os
import glob

def getFileNames(folder):
 return glob.glob("%s/*.txt" % folder)

def getOffsetUpToWord(words, index):
 if not index:
 return 0
 subList = words[0:index]
 length = sum(len(w) for w in subList)
 return length + index + 1

def getWords(content, filename, wordIndexDict):
 STRIP_CHARS = ",.\t\n |"
 currentOffset = 0

 for line in content:
 line = line.strip(STRIP_CHARS)
 localWords = line.split()
 for (idx, word) in enumerate(localWords):
 word = word.strip(STRIP_CHARS)
 if word not in wordIndexDict:

The Profilers

[60]

 wordIndexDict[word] = []

 line_offset = getOffsetUpToWord(localWords, idx)
 index = (line_offset) + currentOffset
 currentOffset = index
 wordIndexDict[word].append([filename, index])

 return wordIndexDict

def readFileContent(filepath):
 f = open(filepath, 'r')
 return f.read().split(' ')

def list2dict(list):
 res = {}
 for item in list:
 if item[0] not in res:
 res[item[0]] = []
 res[item[0]].append(item[1])
 return res

def saveIndex(index):
 lines = []
 for word in index:
 indexLine = ""
 glue = ""
 for filename in index[word]:
 indexLine += "%s(%s, %s)" % (glue, filename,
 ','.join(map(str, index[word][filename])))
 glue = ","
 lines.append("%s, %s" % (word, indexLine))

 f = open("index-file.txt", "w")
 f.write("\n".join(lines))
 f.close()

def __start__():
 files = getFileNames('./files')
 words = {}
 for f in files:
 content = readFileContent(f)
 words = getWords(content, f, words)

Chapter 2

[61]

 for word in (words):
 words[word] = list2dict(words[word])
 saveIndex(words)

__start__()

The preceding code is as simple as it gets. It gets the job done for simple .txt files,
and that is what we want right now. It'll load all .txt files inside the files folder, split
their content into words, and calculate the offset of those words inside the document.
Finally, it'll save all this information into a file called index-file.txt.

So, let's begin profiling and see what we get. Since we don't really know exactly
which are the heavy-duty functions and which ones are the light ones, let's add
the @profile decorator to all of them and run the profiler.

getOffsetUpToWord
The getOffsetUpToWord function looks like a great candidate for optimization,
since it gets called quite a few times during execution. Let's keep the decorator
on it for now.

The Profilers

[62]

getWords
The getWords function does a lot of processing. It even has two nested for loops, so
we'll keep the decorator on as well.

list2dict
The list2dict function takes care of grabbing a list of arrays with two elements
and returning a dictionary, using the first element of the array items as key and the
second one as values. We'll leave the @profile decorator on for now.

Chapter 2

[63]

readFileContent
The readFileContent function has two lines, and the significant one simply calls the
split method on the content of the file. There is not a lot to improve here, so we'll
discard it and focus on the other ones.

saveIndex
The saveIndex function writes the results of the processing to a file, using a specific
format. We might be able to get some better numbers here too.

The Profilers

[64]

__start__
Finally, the main method, __start__, takes care of calling the other functions and
doesn't do much heavy lifting, so we'll also discard it.

So, let's summarize. We originally had six functions, out of which we discarded two,
because they were too trivial or just didn't do anything relevant. Now, we have a
total of four functions to review and optimize.

getOffsetUpToWord
Let's first look at the getOffsetUpToWord function, which has a lot of lines for
something as simple as adding up the length of the words leading up to the current
index. There is probably a more Pythonic way to go about it, so let's try it out.

This function originally comprised 1.4 seconds of the total execution time, so let's
try to lower that number by simplifying the code. The adding up of the length of
the words can be translated into a reduce expression, as shown here:

def getOffsetUpToWord(words, index):
 if(index == 0):
 return 0
 length = reduce(lambda curr, w: len(w) + curr, words[0:index],
 0)
 return length + index + 1

Chapter 2

[65]

This simplification removes the need for extra time doing variable assignments and
lookups. It might not seem like much. However, if we run the profiler again with this
new code, the time would go down to 0.9 seconds. There is still an obvious drawback
to that implementation: the lambda function. We're dynamically creating a function
every time we call getOffsetUpToWord. We're calling it 313,868 times, so it would be
a good idea to have this function already created. We can just add a reference to it in
the reduce expression, as shown here:

def addWordLength(curr, w):
 return len(w) + curr

@profile
def getOffsetUpToWord(words, index):
 if not index:
 return 0
 length = reduce(addWordLength, words[0:index], 0)
 return length + index + 1

The output should be similar to the following screenshot:

With this minor improvement, the execution time goes down to 0.8 seconds. In
the preceding screenshot, we can see that there are still a lot of unwanted hits (and
therefore time) spent in the first two lines of the function. This check is unnecessary
because the reduce function already defaults to 0. Finally, the assignment to the
length variable can be removed, and we can return directly the sum of the length,
the index, and the integer 1.

With that, we're left with the following code:

def addWordLength(curr, w):
 return len(w) + curr

@profile
def getOffsetUpToWord(words, index):
 return reduce(addWordLength, words[0:index], 0) + index + 1

The total execution time for this function went from 1.4 to an amazing 0.67 seconds.

The Profilers

[66]

getWords
Let's now move on to the next one: the getWords function. It is a pretty
slow one. According to the screenshot, the execution of this function adds up
to 4 seconds. That's not good. Let's see what we can do about it. First things first,
the most expensive (time-consuming) line in this function is the one that calls the
getOffsetUpToWord function. Since we already optimized that one, the total time
of this function is now 2.2 seconds (down from 4 seconds).

That's a pretty decent side effect optimization, but we can still do a bit more for
this function. We're using a normal dictionary for the wordIndexDict variable, so
we have to check whether a key is set before actually using it. Doing that check
inside this function takes up about 0.2 seconds. It is not a lot, but an optimization
nonetheless. To remove that check, we can use the defaultdict class. It is a subclass
of the dict class, which adds an extra functionality. It sets a default value for when a
key doesn't exist. This will remove the need for those 0.2 seconds inside the function.

Another trivial but helpful optimization is the assignment of results to variables.
It might seem like a small thing, but doing it 313,868 times will no doubt hurt our
timing. So, take a look at these lines:

 35 313868 1266039 4.0 62.9 line_offset
 = getOffsetUpToWord(localWords, idx)
 36 313868 108729 0.3 5.4 index =
 (line_offset) + currentOffset
 37 313868 101932 0.3 5.1
 currentOffset = index

These lines can be changed into a single line of code, as shown here:

 currentOffset = getOffsetUpToWord(localWords, idx) +
 currentOffset

With that, we shaved off another 0.2 seconds. Finally, we're doing a strip operation
on every line and then on every word. We can simplify this by calling the replace
method several times for the entire content when loading the file. This will take care
of cleaning up the text we'll be processing and remove added time for lookups and
method calls inside the getWords function.

The new code looks like this:

def getWords(content, filename, wordIndexDict):
 currentOffset = 0
 for line in content:
 localWords = line.split()
 for (idx, word) in enumerate(localWords):

Chapter 2

[67]

 currentOffset = getOffsetUpToWord(localWords, idx) +
 currentOffset
 wordIndexDict[word].append([filename, currentOffset])])])
 return wordIndexDict

It only takes 1.57 seconds to run. There is one extra optimization that we might want
to look at. It fits this particular case, because the getOffsetUpToWord function is only
used in one place. Since this function got reduced to a one-liner, we can just put the
one-liner in place of the function call. This one-liner will subtract the lookup time
and give us a whopping 1.07 seconds (that's a 0.50 seconds reduction!). This is how
the latest version of the function looks:

If you'll call the function from several places, this might be an optimization that
is not worth having, since it'll hurt the code maintainability. Code maintainability
is also an important aspect when developing. It should be a deciding factor when
trying to figure out when to stop with the optimization process.

list2dict
Moving on, for the list2dict function, we can't really do much, but we can clean
it up to get a more readable code and shave of about 0.1 seconds. Again, we're not
doing this strictly for the speed gain, but for the readability gain. We have a chance
to use the defaultdict class again and remove the check for a key so that the new
code looks like this:

def list2dict(list):
 res = defaultdict(lambda: [])
 for item in list:
 res[item[0]].append(item[1])
 return res

The preceding code has less lines, is easier to read, and more easy to understand.

The Profilers

[68]

saveIndex
Finally, let's take a look at the saveIndex function. According to our initial report,
this function took 0.23 seconds to preprocess and save the data into the index file.
That's a pretty good number already, but we can do a bit better by taking a second
look at all the string concatenations we have.

Before saving the data, for every word we generate a string by concatenating
several pieces together. In that same loop, we will also reset the indexLine
and glue variables. These actions will add up to a lot of time, so we might
want to change our strategy.

This is shown in the following code:

def saveIndex(index):
 lines = []
 for word in index:
 indexLines = []
 for filename in index[word]:
 indexLines.append("(%s, %s)" % (filename, ','.join(index[word]
[filename])))
 lines.append(word + "," + ','.join(indexLines))

 f = open("index-file.txt", "w")
 f.write("\n".join(lines))
 f.close()

As you can see in the preceding code, we changed the entire for loop. Now, instead
of adding the new string to the indexLine variable, we appended it into a list. We
also removed the map call, which was making sure we were dealing with strings
during the join call. That map was moved into the list2dict function, casting the
indexes to the string directly while appending them.

Finally, we used the + operator to concatenate strings instead of doing string
expansion, which is a more expensive operation. In the end, this function went
down from 0.23 seconds to 0.13, giving us a 0.10-second gain in speed.

Chapter 2

[69]

Summary
To sum things up, we've seen two major profilers used with Python: cProfile,
which comes bundled with the language, and line_profiler, which gives us the
chance to look at each line of code independently. We also covered some examples
of analysis and optimization using them.

In the next chapter, we will look at a set of visual tools that will help us in our job by
displaying the same data we covered in this chapter, but in a graphic manner.

[71]

Going Visual – GUIs to Help
Understand Profiler Output

Although we already covered profiling in the previous chapter, the process we went
through was like walking in the dark, or at least, in a place with very little light. We
kept looking at numbers. Basically, we kept trying to decrease the number of hits,
number of seconds, or other similar numbers. However, it was hard to understand
how those numbers related to each other based on the representation we had of them.

We couldn't easily see the big blueprint of our system, based off of that output.
If our systems would've been even bigger, seeing that blueprint would've been
even harder.

Simply because we're human beings and not computers ourselves, we work better
when we have some sort of visual aid. In this particular case, our work would benefit
if we could better understand how everything is related. To do this, we have tools
that provide visual representations of the numbers we saw in the previous chapter.
These tools will provide us with much needed help. In turn, we'll be able to locate
and fix the bottlenecks of our systems much faster. As an added bonus, we'll have a
better understanding of our system.

In this chapter, we'll cover two tools that fall into this category:

• KCacheGrind / pyprof2calltree: This combo will provide the ability to
transform the output of cProfile into the format required by KCacheGrind,
which in turn will help us visualize the information.

• RunSnakeRun (http://www.vrplumber.com/programming/
runsnakerun/): This tool will also allow us to visualize and analyze the
output from cProfile. It provides square maps and sortable lists to help
us in our task.

http://www.vrplumber.com/programming/runsnakerun/
http://www.vrplumber.com/programming/runsnakerun/

Going Visual – GUIs to Help Understand Profiler Output

[72]

For each one, we'll go over the basics of installation and UI explanation. Then, we'll
grab the examples from Chapter 2, The Profilers, and reanalyze them based on the
output from these tools.

KCacheGrind – pyprof2calltree
The first GUI tool we will see is KCacheGrind. It is a data visualization tool designed
to parse and display different formats of profiling data. For our case, we will display
the output from cProfile. However, to do this, we'll also need the help from the
command-line tool called pyprof2calltree.

This tool is a rebranding of a very popular one called lsprofcalltree.py
(https://people.gnome.org/~johan/lsprofcalltree.py). It tries to behave more
like the kcachegrind-converter (https://packages.debian.org/en/stable/
kcachegrind-converters) package from Debian. We'll use the tool to transform
the output from cProfile into something KCacheGrind can understand.

Installation
To install pyprof2calltree, you'll first need to install the pip command-line utility.
Then, just use the following command:

$ pip install pyprof2calltree

Note that all installation steps and instructions are meant for the Ubuntu 14.04 Linux
distribution, unless otherwise noted.

Now, for KCacheGrind, the installation is a bit different. The visualizer is part of
the KDE desktop environment, so if you already have it installed, chances are that
you already have KCacheGrind also. However, if you don't have it (maybe you're a
Gnome user), you can just use your package manager and install it. For instance, in
Ubuntu, you'd use the following command:

$ sudo apt-get install kcachegrind

With this command, you'll probably have to install a lot of packages
not directly related to the utility, but to KDE. So, the installation
might take some time depending on your Internet connection.

For Windows and OS X users, there is the option of installing the QCacheGrind branch
of KCacheGrind, which is already precompiled and can be installed as a binary.

https://people.gnome.org/~johan/lsprofcalltree.py

Chapter 3

[73]

Windows users can download it from http://sourceforge.net/projects/
qcachegrindwin/, and OS X users can install it using brew:

$ brew install qcachegrind

Usage
There are two ways to use pyprof2calltree: one is from the command line, passing
in arguments, and the other one is directly from the read–eval–print loop(REPL)
(or even from our own scripts being profiled).

The first one (command-line version) comes in very handy when we already have
the profiling results stored somewhere. So, with this tool, we can simply run the
following command and get the output when needed:

$ pyprof2calltree -o [output-file-name] -i input-file.prof

There are some optional parameters, which can help us in different cases. Two of
them are explained here:

• -k: If we want to run KCacheGrind on the output data right away, this
option will do it for us

• -r: If we don't have the profiling data already saved in a file, we can use this
parameter to pass in the Python script we'll use to collect the said data

Now, if you want to use it from the REPL instead, you can simply import either (or
both) the convert function or the visualize function from the pyprof2calltree
package. The first one will save the data into a file, and the second one will launch
KCacheGrind with the output from the profiler.

Here is an example:

from xml.etree import ElementTree
from cProfile import Profile
import pstats
xml_content = '<a>\n' + '\t<c><d>text</d></c>\n' * 100 + ''
profiler = Profile()
profiler.runctx(
"ElementTree.fromstring(xml_content)",
locals(), globals())

from pyprof2calltree import convert, visualize
stats = pstats.Stats(profiler)
visualize(stats) # run kcachegrind

http://sourceforge.net/projects/qcachegrindwin/
http://sourceforge.net/projects/qcachegrindwin/

Going Visual – GUIs to Help Understand Profiler Output

[74]

This code will call KCacheGrind. It'll show something like what you see in the
following screenshot:

In the preceding screenshot, you can see the list on the left-hand side (1) showing
some of the numbers we saw in the previous chapter. On the right-hand side (2),
we've selected one of the tabs, specifically the Callee Map tab. It shows a set of
boxes, representing the hierarchy of function calls from the one selected on the left-
hand side all the way down.

On the list from the left-hand side, there are two columns that we'll want to pay
special attention to:

• Incl. (from Inclusive time) column: This shows an indicator of how long
each function takes in aggregate. This means it adds up the time its code
takes plus the time that other functions called by it take. If a function has a
high number in this column, it doesn't necessarily mean that the function
takes too long. It could mean that the functions called by it do.

• Self column: This shows the time spent inside a particular function,
without taking into account the ones called by it. So, if a function has a
high Self value, then it probably means that a lot of time is spent inside it,
and it's a good place to start looking for optimization paths.

Chapter 3

[75]

Another useful view is Call Graph, which can be found on the lower-right box once
a function is selected on the list. It'll show a representation of the functions that
will help explain how each one calls the next one (and how many times). Here is an
example from the preceding code:

A profiling example – TweetStats
Let's now go back to the examples of Chapter 2, The Profilers, and tackle them using
the pyprof2calltree/kcachegrind combo.

Let's avoid the Fibonacci examples, since they're quite simple and we've been over
them already. So, let's jump directly to the code from the TweetStats module. It
would read a list of tweets and get some statistics from it. We're not modifying the
code. So, for reference, just take a look at it in Chapter 2, The Profilers.

As for the script using the class and printing the actual stats, we're modifying it to
save the stats instead. This is a very simple change as you can see here:

import cProfile
import pstats
import sys

from tweetStats import build_twit_stats

profiler = cProfile.Profile()

Going Visual – GUIs to Help Understand Profiler Output

[76]

profiler.enable()

build_twit_stats()
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').dump_stats('tweet-stats.
prof') #saves the stats into a file called tweet-stats.prof, instead
of printing them into stdout

Now, with the stats saved into the tweet-stats.prof file, we can use the following
command to transform it and start the visualizer all at once:

$pyprof2calltree -i tweet-stats.prof -k

This, in turn, will show us something like the following screenshot:

Again, with the Callee Map selected for the first function call, we can see the entire
map of our script. It clearly shows where the bottlenecks are (biggest blocks on the
right-hand side): read_data, the split method, and the get_data function on the
far right of the map.

Chapter 3

[77]

Inside the get_stats section of the map, we can see how there are two functions
that make up for part of the size: inc_stat and find from string. We know the first
one from seeing the code. This function does very little, so it's entire size will only be
due to lookup times accumulated (we're calling it around 760k times after all). The
same thing happens for the find method. We're calling it way too many times, so the
lookup time accumulates and starts to be of notice. So, let's apply a set of very simple
improvements to this function. Let's remove the inc_stat function and inline it's
behavior. Let's also change the find method line and use the in operator. The result
will look like the one shown in this screenshot: :

That other side of the map changed drastically. Now, we can see that the get_stats
function no longer calls other functions, so the lookup times were removed. It now
only represents 9.45 percent of the total execution time, down from 23.73 percent.

Going Visual – GUIs to Help Understand Profiler Output

[78]

Yes, the preceding conclusions are the same ones we arrived at in the previous
chapter, but we did so using a different method. Let's then keep doing the same
optimization we did earlier and see how the map changes again:

In the preceding screenshot, we see that by selecting the build_twitt_stats
function (in the list on the left-hand side), the functions that get called are simply
methods of the string objects.

Sadly, KCacheGrind isn't showing us the total time of execution. However, the map
clearly shows that we've simplified and optimized our code anyway.

A profiling example – Inverted Index
Again, let's get another example from Chapter 2, The Profilers: the inverted index.
Let's update its code in order to generate the stats data and save it into a file so
that we can later analyze it with KCacheGrind.

The only thing we need to change is the last line of the file, instead of just calling the
__start__ function. We have the following code:

profiler = cProfile.Profile()
profiler.enable()
__start__()
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').dump_stats('inverted-
index-stats.prof')

So now, executing the script will save the data into the inverted-index-stats.
prof file. Later, we can use the following command to start up KCacheGrind:

$ pyprof2calltree -i inverted-index-stats.prof -k

Chapter 3

[79]

This is what we will see first:

Let's first do a resort of the functions on the left-hand side by the second column
(Self). So, we can look at the functions that take the longest to execute because
of their code (not because of how long the functions it calls take). We will get the
following list:

Going Visual – GUIs to Help Understand Profiler Output

[80]

So, according to the preceding list, the two most problematic functions right now are
getWords and list2dict.

The first one can be improved in several ways, as follows:

• The wordIndexDict attribute can be changed to be of the defaultdict type,
which will remove the if statement checking for an existing index

• The strip statements can be removed from the readFileContent function,
simplifying our code here

• A lot of assignments can be removed, so avoid spending milliseconds in
them, since we can use the values directly

So, our new getWords function looks like this:

def getWords(content, filename, wordIndexDict):
 currentOffset = 0
 for line in content:
 localWords = line.split()
 for (idx, word) in enumerate(localWords):
 currentOffset = getOffsetUpToWord(localWords, idx) +
 currentOffset
 wordIndexDict[word].append([filename, currentOffset])
 return wordIndexDict

Now, if we run the stats again, the map and the numbers look a bit different:

So, our function is now using less time, both overall (Incl. column) and inside it
(Self column). However, there is still another detail we might want to look
into before leaving this function alone. The getWords function is calling
getOffsetUpToWord a total of 141,295 times, the lookup time spent in
there alone, should be enough to merit a review. So, let's see what we can do.

Chapter 3

[81]

We've already solved this issue in the earlier chapter. We saw that we can reduce the
entire getOffsetUpToWord function to a one-liner, which we can later write directly
inside the getWords function to avoid lookup time. With this in mind, let see what
our new map looks like:

Now, we have increased the overall time, but that's nothing to worry about. It is
due to the fact that now we have one function less to spread the timing between,
so the number changed for all other functions. However, the one we really care
about (the Self time) went down, by about 4 percent.

The preceding screenshot also shows the Call Graph view, which helps us see that
even though we made an improvement, the reduce function is still being called over
100,000 times. If you look at the code of the getWords function, you would notice we
don't really need the reduce function. This is because on every call, we're adding up
all the numbers we added on the previous call plus one more, so we can simplify this
in the following code:

def getWords(content, filename, wordIndexDict):
 currentOffset = 0
 prevLineLength = 0
 for lineIndex, line in enumerate(content):
 lastOffsetUptoWord = 0
 localWords = line.split()

 if lineIndex > 0:
 prevLineLength += len(content[lineIndex - 1]) + 1
 for idx, word in enumerate(localWords):
 if idx > 0:

Going Visual – GUIs to Help Understand Profiler Output

[82]

 lastOffsetUptoWord += len(localWords[idx-1])
 currentOffset = lastOffsetUptoWord + idx + 1 +
 prevLineLength

 wordIndexDict[word].append([filename, currentOffset])

With this final touch to the functions, the numbers change once again:

The inclusive amount of time of the function was lowered significantly, so overall,
this function now takes less time to execute (which was our goal). The internal time
(Self column) went down, which is a good thing. This is because it also means that
we're doing the same in less time (specially because we know that we're not calling
any other function).

RunSnakeRun
RunSnakeRun is yet another GUI tool to help us visualize the profiling output
and, in turn, help us make sense of it. This particular project is a simplified version
of KCacheGrind. Whereas the latter is also useful for C and C++ developers,
RunSnakeRun is specifically designed and written for Python developers.

Earlier, with KCacheGrind, if we wanted to plot the output of cProfile, we needed
an extra tool (pyprof2calltree). This time we won't. RunSnakeRun knows how to
interpret it and display it, so all we need to do is call it and pass in the path to the file.

Chapter 3

[83]

The features provided by this tool are as follows:

• Sortable data grid views with fields, such as:
 ° function name
 ° number of total calls
 ° cumulative time
 ° filename and line number

• Function-specific information, such as all callers of this function and all
callee's of this function

• Square map of the call tree with size proportional to the amount of time
spent inside each function

Installation
In order to install this tool, you have to make sure that several dependencies are
covered, mainly the following ones:

• Python profiler
• wxPython (2.8 or above) (http://www.wxpython.org/)
• Python (of course!) 2.5 or above, but lower than 3.x

You'll also need to have pip (https://pypi.python.org/pypi/pip) installed in
order to run the installation command.

So, make sure you have all these installed before moving forward. If you're
in a Debian-based distribution of Linux (say Ubuntu), you can use the following
line to make sure you have everything you need (provided you already have
Python installed):

$ apt-get install python-profiler python-wxgtk2.8 python-setuptools

Windows and OS X users will need to find the correct precompiled
binaries for their current OS version for each of the dependencies
mentioned earlier.

After that, you can just run this command:

$ pip install SquareMap RunSnakeRun

After that, you should be ready to go.

http://www.wxpython.org/
https://pypi.python.org/pypi/pip

Going Visual – GUIs to Help Understand Profiler Output

[84]

Usage
Now, to quickly show you how to use it, let's go back to previous last example:
inverted-index.py.

Let's execute that script using the cProfile profiler as a parameter and save that
output into a file. Then, we can just call runsnake and pass it the file path:

$ python -m cProfile -o inverted-index-cprof.prof inverted-index.py

$ runsnake inverted-index-cprof.prof

This will generate the following screenshot:

From the preceding screenshot, you can see the three main areas of interest:

• The sortable list, which contains all the numbers returned by cProfile
• The function-specific info section, which has several tabs of interest, such as

the Callees, Callers and Source Code tabs
• The square map section, which graphically represents the call tree of

the execution

Chapter 3

[85]

A nice little feature that the GUI has is that it'll highlight the related
box on the right-hand side if you hover your mouse over a function
in the list from the left-hand side. The same thing will happen if you
hover over a box on the right-hand side; its corresponding entry in
the list will be highlighted.

Profiling examples – the lowest common
multiplier
Let's take a look at a very basic, non-practical example of a function in need of
serious optimization and what it would look like using this GUI.

Our example function takes care of finding the lowest common multiplier between
two numbers. It's a pretty basic example: one you can find all over the Internet.
However, it's also a good place to start getting a feel of this UI.

The function's code is as follows:

def lowest_common_multiplier(arg1, arg2):
 i = max(arg1, arg2)
 while i < (arg1 * arg2):
 if i % min(arg1,arg2) == 0:
 return i
 i += max(arg1,arg2)
 return(arg1 * arg2)

print lowest_common_multiplier(41391237, 2830338)

I'm pretty sure you can spot every single possible optimization just by looking at
it, but stay with me. Let's profile this bad boy and load up the resulting output on
RunSnakeRun.

So, to run it, use this command:

$ python -m cProfile -o lcm.prof lcm.py

To start the GUI, use this command:

$ runsnake lcm.prof

Going Visual – GUIs to Help Understand Profiler Output

[86]

This is what we get:

One thing we didn't mention earlier, but that is a nice add-on to the square map,
is the fact that next to each box's name, we can see how much time it takes to run
that function.

So, at first sight, we can spot several issues already:

• We see that both max and min functions only take up to 0,228 seconds out of
the total 0,621 seconds that our function takes to run. So, there is more to our
function than simply max and min.

• We can also see that both max and min functions are called 943,446 times
each. No matter how small the lookup time is, if you call a function almost
1 million times it's going to add up.

Let's perform some obvious fixes to our code and see how it looks again, through the
eyes of the snake:

def lowest_common_multiplier(arg1, arg2):
 i = max(arg1, arg2)
 _max = i
 _min = min(arg1,arg2)
 while i < (arg1 * arg2):
 if i % _min == 0:
 return i
 i += _max
 return(arg1 * arg2)

print lowest_common_multiplier(41391237, 2830338)

Chapter 3

[87]

You should get something like what's shown in the following screenshot:

Now, neither min nor max even register on the square map. This is because we're just
only calling them once, and the function went from 0.6 seconds to 0.1 second. This is
the power of not doing unnecessary function lookups for you folks.

Now, let's take a look at another, more complex, and thus, interesting function in
dire need of optimization.

A profiling example – search using the
inverted index
Since the previous chapter, we've been over the code of the inverted index from all
possible angles. This is great, since we've analyzed it from several perspectives and
using different approaches. However, it would make no sense to also look at it using
RunSnakeRun, since this tool is very similar to the one we just tried (KCacheGrind).

So instead, let's use the output of the inverted search script and code ourselves, a
search script that will use that output. We will initially shoot for a simple search
function that will only look for one single word in the index. The steps are quite
straightforward:

1. Load the index in memory.
2. Search for the word and grab the indexing information.
3. Parse the indexing information.

Going Visual – GUIs to Help Understand Profiler Output

[88]

4. For each index entry, read the corresponding file and grab the surrounding
string as a result.

5. Print the results.

Here's the initial version of our code:

import re
import sys

#Turns a list of entries from the index file into a dictionary indexed
#by words
def list2dict(l):
 retDict = {}
 for item in l:
 lineParts = item.split(',')
 word = lineParts.pop(0)
 data = ','.join(lineParts)
 indexDataParts = re.findall('\(([a-zA-Z0-9\./,]{2,})\)'
 ,data)
 retDict[word] = indexDataParts
 return retDict

#Load the index's content into memory and parse itdef loadIndex():
 indexFilename = "./index-file.txt"
 with open(indexFilename, 'r') as fh:
 indexLines = []
 for line in fh:
 indexLines.append(line)
 index = list2dict(indexLines)

 return index

#Reads the content of a file, takes care of fixing encoding issues
with utf8 and removes unwanted characters (the ones we didn't want
when generating the index)
def readFileContent(filepath):
 with open(filepath, 'r') as f:
 return [x.replace(",",
 "").replace(".","").replace("\t","").replace("\r","")
 .replace("|","").strip(" ") for x in f.read()
 .decode("utf-8-sig").encode("utf-8").split('\n')]
def findMatch(results):
 matches = []

Chapter 3

[89]

 for r in results:
 parts = r.split(',')
 filepath = parts.pop(0)
 fileContent = ' '.join(readFileContent(filepath))
 for offset in parts:
 ioffset = int(offset)
 if ioffset > 0:
 ioffset -= 1
 matchLine = fileContent[ioffset:(ioffset + 100)]
 matches.append(matchLine)
 return matches

#Search for the word inside the index
def searchWord(w):
 index = None
 index = loadIndex()
 result = index.get(w)
 if result:
 return findMatch(result)
 else:
 return []

#Let the user define the search word...
searchKey = sys.argv[1] if len(sys.argv) > 1 else None

if searchKey is None: #if there is none, we output a usage message
 print "Usage: python search.py <search word>"
else: #otherwise, we search
 results = searchWord(searchKey)
 if not results:
 print "No results found for '%s'" % (searchKey)
 else:
 for r in results:
 print r

To run the code, just run the following command:

$ python -m cProfile -o search.prof search.py John

Going Visual – GUIs to Help Understand Profiler Output

[90]

The output we will get is similar to the following screenshot (given we have a few
books inside the files folder):

The output could be improved by highlighting the search term or showing some of
the previous words for more context. However, we'll run with it for the time being.

Now, let's see how our code looks when we open the search.prof file inside
RunSnakeRun:

Chapter 3

[91]

That's a lot of boxes, especially comparing it to our previous example of the
lowest common multiplier. However, let's see what insight can be gathered
from it at first sight.

The two most time-consuming functions are loadIndex and list2dict, closely
followed by readFileContent. We can see this on the left-side column:

• All these functions are actually spending most of their time inside other
functions they call. So, their cumulative time is high, but their local time
is considerably lower.

• If we sort by local time on the list, we would see that the top five
functions are:

 ° The read method from the file object
 ° The loadIndex function
 ° The list2dict function
 ° The findAll method of the regular expression object
 ° And the readFileContent function

So, let's first take a look at the loadIndex function. Even though most of its time is
spent inside the list2dict function, we still have one minor optimization to do,
which will simplify its code and significantly reduce its local time:

def loadIndex():
 indexFilename = "./index-file.txt"
 with open(indexFilename, 'r') as fh:
 #instead of looping through every line to append it into an
 array, we use the readlines method which does that already
 indexLines = fh.readlines()
 index = list2dict(indexLines)
 return index

This simple change took the local time of the function from 0.03s down to 0.00002s.
Even though it wasn't already a big pain, we both increased its readability and
improved its time. So, overall, we did well.

Now, based on the last analysis, we knew that most of the time spent inside
this function was actually spent inside another one called by it. So, now that we
basically decreased its local time to almost nothing, we need to focus on our next
target: list2dict.

Going Visual – GUIs to Help Understand Profiler Output

[92]

However, first, let's see how the picture has changed with the simple improvement
we did earlier:

Now, let's move on to list2dict. This function is the one in charge of parsing every
line of the index file into something we can use later. It will parse every line of the
index file, more specifically, into a hash table (or dictionary) indexed by a word,
which will make our search be of O(1) in average (read back to Chapter 1, Profiling
101, if you don't remember what this means) when we search. The values of the
dictionary are the path to the actual files and the different offsets where the word is.

From our analysis, we can see that though we spend some time inside the function
itself, most of the complexity is inside the regular expression methods. Regular
expressions are great for many reasons, but sometimes, we tend to overuse them in
cases where using simple split and replace functions would do. So, let's see how
we can parse our data, get the same output without the regular expressions, and see
if we can do it in less time:def list2dict(l):

 retDict = {}
 for item in l:
 lineParts = item.split(',(')
 word = lineParts[0]
 ndexDataParts = [x.replace(")","") for x in lineParts[1:]]
 retDict[word] = indexDataParts
 return retDict

Chapter 3

[93]

The code looks cleaner already. There are no regular expressions anywhere (which
will help readability sometimes, since not everyone is an expert in reading regular
expressions). We have less lines of code. We removed the join line, and we even got
rid of the nasty del line, which was not necessary.

We, however, added a list comprehension line, but this is just a simple replace
method on every item of the list in one line, that's all.

Let's see what our map looks like now:

Well, there is definitely a change there. If you compare the last two screenshots, you
would notice the box for the list2dict function has moved to the right. This means
it now takes less time than the readFileContent function. Our function's box is
also simpler now. The only things inside it are the split and the replace methods.
Finally, in case there was any doubt, let's look at the numbers:

• Local time went down from 0.024s to 0.019s. It makes sense that the local
time didn't decrease that much, because we're still doing all the work inside
the function. This decrease is mainly due to the absence of the del line and
the join line.

• The total cumulative time decreased considerably. It went down from 0.094s
to 0.031s, due to the lack of complex functions (regular expressions) used for
the job.

We took the total cumulative time of the function down to a third of what is was.
So, it was a good optimization, especially considering that if we had larger indexes,
then the time would be much bigger.

Going Visual – GUIs to Help Understand Profiler Output

[94]

The last assumption is not always true. It depends greatly on the type
of algorithm being used. However, in our case, since we're looping
over all the lines of the index file, we can safely assume it is.

Let's take a quick look at the numbers from the first analysis of the code and the last
one so that we can see if there is actually an improvement on the overall time:

Finally, as you can see, we went from around 0.2 seconds of execution with the
original code all the way down to 0.072 seconds.

Here's the final version of the code, all put together with the earlier improvements:

import sys

#Turns a list of entries from the index file into a dictionary indexed
#by words
def list2dict(l):
 retDict = {}
 for item in l:
 lineParts = item.split(',(')
 word = lineParts[0]
 indexDataParts = [x.replace(")","") for x in lineParts[1:]]
 retDict[word] = indexDataParts
 return retDict

#Load the index's content into memory and parse it
def loadIndex():
 indexFilename = "./index-file.txt"
 with open(indexFilename, 'r') as fh:

Chapter 3

[95]

 #instead of looping through every line to append it into an
 array, we use the readlines method which does that already
 indexLines = fh.readlines()
 index = list2dict(indexLines)
 return index

#Reads the content of a file, takes care of fixing encoding issues
with utf8 and removes unwanted characters (the ones we didn't want
when generating the index)#
def readFileContent(filepath):
 with open(filepath, 'r') as f:
 return [x.replace(",", "").replace(".","").replace("\t","").
replace("\r","").replace("|","").strip(" ") for x in f.read().
decode("utf-8-sig").encode("utf-8").split('\n')]

def findMatch(results):
 matches = []
 for r in results:
 parts = r.split(',')

 filepath = parts[0]
 del parts[0]
 fileContent = ' '.join(readFileContent(filepath))
 for offset in parts:
 ioffset = int(offset)
 if ioffset > 0:
 ioffset -= 1
 matchLine = fileContent[ioffset:(ioffset + 100)]
 matches.append(matchLine)
 return matches

#Search for the word inside the index
def searchWord(w):
 index = None
 index = loadIndex()
 result = index.get(w)
 if result:
 return findMatch(result)
 else:
 return []

#Let the user define the search word...
searchKey = sys.argv[1] if len(sys.argv) > 1 else None

if searchKey is None: #if there is none, we output a usage message

Going Visual – GUIs to Help Understand Profiler Output

[96]

 print "Usage: python search.py <search word>"
else: #otherwise, we search
 results = searchWord(searchKey)
 if not results:
 print "No results found for '%s'" % (searchKey)
 else:
 for r in results:
 print r

Summary
To summarize, in this chapter, we covered two of the most popular and common
tools used by Python developers trying to make sense of the numbers returned
by profilers such as cProfile. We analyzed the old code under this new light.
We even got to analyze some new code.

In the next chapter, we'll start talking about optimization in more detail. We will
cover some of the things we've already seen in practice and some recommendations
of good practices when profiling and optimizing code.

[97]

Optimize Everything
The path to mastering performance in Python has just started. Profiling only takes
us half way there. Measuring how our program is using the resources at its disposal
only tells us where the problem is, not how to fix it. In the previous chapters, we saw
some practical examples when going over the profilers. We did some optimization,
but we never really explained a lot about it.

In this chapter, we will cover the process of optimization, and to do that, we need to
start with the basics. We'll keep it inside the language for now: no external tools, just
Python and the right way to use it.

We will cover the following topics in this chapter:

• Memoization / lookup tables
• Usage of default arguments
• List comprehension
• Generators
• ctypes
• String concatenation
• Other tips and tricks of Python

Optimize Everything

[98]

Memoization / lookup tables
This is one of the most common techniques used to improve the performance of a
piece of code (namely a function). We can save the results of expensive function calls
associated with a specific set of input values and return the saved result (instead of
redoing the whole computation) when the function is called with the remembered
input. It might be confused with caching, since this is one type of memoization,
although this term also refers to other types of optimization (such as HTTP caching,
buffering, and so on).

This methodology is very powerful because in practice, it'll turn what should have
been a potentially very expensive call into a O(1) function call (for more information
about this, refer to Chapter 1, Profiling 101) if the implementation is right. Normally,
the parameters are used to create a unique key, which is then used on a dictionary to
either save the result or obtain it if it's been already saved.

There is, of course, a trade-off to this technique. If we're going to remember the
returned values of a memoized function, then we'll be exchanging memory space for
speed. This is a very acceptable trade-off, unless the saved data becomes more than
what the system can handle.

Classic use cases for this optimization are function calls that repeat the input
parameters often. This will assure that most of the time, the memoized results
are returned. If there are many function calls, but with different parameters, we'll
only store results and spend our memory without any real benefit, as shown in the
following image:

Chapter 4

[99]

You can clearly see how the blue bar (Fixed params, memoized) is clearly the fastest
use case, while the others are all similar due to their nature.

Here is the code that generates values for the preceding chart. To generate some sort
of time-consuming function, the code will call either the twoParams function or the
twoParamsMemoized function several hundred times under different conditions, and
it will log the execution time:

import math

import time

import random

class Memoized:

 def __init__(self, fn):

 self.fn = fn

 self.results = {}

 def __call__(self, *args):

 key = ''.join(map(str, args[0]))

 try:

 return self.results[key]

 except KeyError:

 self.results[key] = self.fn(*args)

 return self.results[key]

@Memoized

def twoParamsMemoized(values, period):

 totalSum = 0

 for x in range(0, 100):

Optimize Everything

[100]

 for v in values:

 totalSum = math.pow((math.sqrt(v) * period), 4) + totalSum

 return totalSum

def twoParams(values, period):

 totalSum = 0

 for x in range(0, 100):

 for v in values:

 totalSum = math.pow((math.sqrt(v) * period), 4) + totalSum

 return totalSum

def performTest():

 valuesList = []

 for i in range(0, 10):

 valuesList.append(random.sample(xrange(1, 101), 10))

 start_time = time.clock()

 for x in range(0, 10):

 for values in valuesList:

 twoParamsMemoized(values, random.random())

 end_time = time.clock() - start_time

 print "Fixed params, memoized: %s" % (end_time)

 start_time = time.clock()

 for x in range(0, 10):

 for values in valuesList:

Chapter 4

[101]

 twoParams(values, random.random())

 end_time = time.clock() - start_time

 print "Fixed params, without memoizing: %s" % (end_time)

 start_time = time.clock()

 for x in range(0, 10):

 for values in valuesList:

 twoParamsMemoized(random.sample(xrange(1,2000), 10),
 random.random())

 end_time = time.clock() - start_time

 print "Random params, memoized: %s" % (end_time)

 start_time = time.clock()

 for x in range(0, 10):

 for values in valuesList:

 twoParams(random.sample(xrange(1,2000), 10),
 random.random())

 end_time = time.clock() - start_time

 print "Random params, without memoizing: %s" % (end_time)

performTest()

The main insight to take from the preceding chart is that, just
like with every aspect of programming, there is no silver bullet
algorithm that will work for all cases. Memoization is clearly a
very basic way of optimizing code, but clearly, it won't optimize
anything given the right circumstances.

Optimize Everything

[102]

As for the code, there is not much to it. It is a very simple, non real-world example
of the point I was trying to send across. The performTest function will take care
of running a series of 10 tests for every use case and measure the total time each
use case takes. Notice that we're not really using profilers at this point. We're just
measuring time in a very basic and ad-hoc way, which works for us.

The input for both functions is simply a set of numbers on which they will run some
math functions, just for the sake of doing something.

The other interesting bit about the arguments is that, since the first argument is a list
of numbers, we can't just use the args parameter as a key inside the Memoized class'
methods. This is why we have the following line:

key = ''.join(map(str, args[0]))

This line will concatenate all the numbers from the first parameter into a single
value, which will act as the key. The second parameter is not used here because
it's always random, which would imply that the key will never be the same.

Another variation of the preceding method is to precalculate all values from the
function during initialization (assuming we have a limited number of inputs, of
course) initialization and then refer to the lookup table during execution. This
approach has several preconditions:

• The number of input values must be finite; otherwise it's impossible to
precalculate everything

• The lookup table with all of its values, must fit into memory
• Just like before, the input must be repeated, at least once, so the optimization

both makes sense and is worth the extra effort

There are different approaches when it comes to architecting the lookup table, all
offering different types of optimizations. It all depends on the type of application
and solution that you're trying to optimize. Here is a set of examples.

Performing a lookup on a list or linked list
This solution works by iterating over an unsorted list and checking the key against
each element, with the associated value as the result we're looking for.

This is obviously a very slow method of implementation, with a Big O notation
of O(n) for both the average and worst case scenarios. Still, given the right
circumstances, it could prove to be faster than calling the actual function every time.

Chapter 4

[103]

In this case, using a linked list would improve the performance of the
algorithm over using a simple list. However, it would still depend
heavily on the type of linked list it is (doubly linked list, simple linked
list with direct access to the first and last elements, and so on).

Simple lookup on a dictionary
This method works using a one-dimensional dictionary lookup, indexed by a
key consisting of the input parameters (enough of them create a unique key). In
particular cases (like we covered earlier), this is probably one of the fastest lookups,
even faster than binary search in some cases with a constant execution time (Big O
notation of O(1)).

Note that this approach is efficient as long as the key-generation
algorithm is capable of generating unique keys every time.
Otherwise, the performance could degrade over time due to the
many collisions on the dictionaries.

Binary search
This particular method is only possible if the list is sorted. This could potentially
be an option depending on the values to sort. Yet sorting them would require extra
effort that would hurt the performance of the entire effort. However, it presents
very good results, even in long lists (average Big O notation of O(log n)). It works by
determining in which half of the list the value is and repeating until either the value
is found or the algorithm is able to determine that the value is not in the list.

To put all of this into perspective, looking at the Memoized class mentioned earlier,
it implements a simple lookup on a dictionary. However, this would be the place to
implement either of the other algorithms.

Use cases for lookup tables
There are some classic example use cases for this type of optimization, but the most
common one is probably the optimization of trigonometric functions. Based on the
computing time, these functions are really slow. When used repeatedly, they can
cause some serious damage to your program's performance.

Optimize Everything

[104]

This is why it is normally recommended to precalculate the values of these functions.
For functions that deal with an infinite domain universe of possible input values,
this task becomes impossible. So, the developer is forced to sacrifice accuracy for
performance by precalculating a discrete subdomain of the possible input values
(that is, going from floating points down to integer numbers).

This approach might not be ideal in some cases, since some systems require both
performance and accuracy. So, the solution is to meet in the middle and use some
form of interpolation to calculate the required value, based on the ones that have
been precalculated. It will provide better accuracy. Even though it won't be as
performant as using the lookup table directly, it should prove to be faster than
doing the trigonometric calculation every time.

Let's look at some examples of this; for instance, for the following trigonometric
function:

def complexTrigFunction(x):
 return math.sin(x) * math.cos(x)**2

We'll take a look at how simple precalculation won't be accurate enough and how
some form of interpolation will result in a better level of accuracy.

The following code will precalculate the values for the function in a range from
-1000 to 1000 (only integer values). Then it'll try to do the same calculation
(only for a smaller range) for floating point numbers:

import math
import time
from collections import defaultdict
import itertools

trig_lookup_table = defaultdict(lambda: 0)

def drange(start, stop, step):
 assert(step != 0)
 sample_count = math.fabs((stop - start) / step)
 return itertools.islice(itertools.count(start, step),
 sample_count)

def complexTrigFunction(x):
 return math.sin(x) * math.cos(x)**2

def lookUpTrig(x):

Chapter 4

[105]

 return trig_lookup_table[int(x)]

for x in range(-1000, 1000):
 trig_lookup_table[x] = complexTrigFunction(x)

trig_results = []
lookup_results = []

init_time = time.clock()
for x in drange(-100, 100, 0.1):
 trig_results.append(complexTrigFunction(x))
print "Trig results: %s" % (time.clock() - init_time)

init_time = time.clock()
for x in drange(-100, 100, 0.1):
 lookup_results.append(lookUpTrig(x))
print "Lookup results: %s" % (time.clock() - init_time)

for idx in range(0, 200):
 print "%s\t%s" % (trig_results [idx], lookup_results[idx])

The results from the preceding code will help demonstrate how the simple
lookup table approach is not accurate enough (see the following chart). However,
it compensates for this with speed, as the original function takes 0.001526 seconds
to run while the lookup table only takes 0.000717 seconds.

Optimize Everything

[106]

The preceding chart shows how the lack of interpolation hurts the accuracy. You
can see how, even though both plots are quite similar, the results from the lookup
table execution aren't as accurate as the trig function used directly. So, now, let's
take another look at the same problem. However, this time, we'll add some basic
interpolation (we'll limit the rage of values from -PI to PI):

import math
import time
from collections import defaultdict
import itertools

trig_lookup_table = defaultdict(lambda: 0)

def drange(start, stop, step):
 assert(step != 0)
 sample_count = math.fabs((stop - start) / step)
 return itertools.islice(itertools.count(start, step),
 sample_count)

def complexTrigFunction(x):
 return math.sin(x) * math.cos(x)**2

reverse_indexes = {}
for x in range(-1000, 1000):
 trig_lookup_table[x] = complexTrigFunction(math.pi * x / 1000)

complex_results = []
lookup_results = []

init_time = time.clock()
for x in drange(-10, 10, 0.1):
 complex_results .append(complexTrigFunction(x))
print "Complex trig function: %s" % (time.clock() - init_time)

init_time = time.clock()
factor = 1000 / math.pi
for x in drange(-10 * factor, 10 * factor, 0.1 * factor):
 lookup_results.append(trig_lookup_table[int(x)])
print "Lookup results: %s" % (time.clock() - init_time)

for idx in range(0, len(lookup_results)):
 print "%s\t%s" % (complex_results [idx], lookup_results [idx])

Chapter 4

[107]

As you might've noticed in the previous chart, the resulting plot is periodic
(especially because we've limited the range from -PI to PI). So, we'll focus on
a particular range of values that will generate one single segment of the plot.

The output of the preceding script also shows that the interpolation solution is still
faster than the original trigonometric function, although not as fast as it was earlier:

Interpolation solution Original function
0.000118 seconds 0.000343 seconds

The following chart is a bit different from the previous one, especially because
it shows (in green) the error percentage between the interpolated value and the
original one:

The biggest error we have is around 12 percent (which represents the peaks we
see on the chart). However, it's for the smallest values, such as -0.000852248551417
versus -0.000798905501416. This is a case where the error percentage needs to be
contextualized to see if it really matters. In our case, since the values related to that
error are so small, we can ignore that error in practice.

There are other use cases for lookup tables, such as in image
processing. However, for the sake of this book, the preceding
example should be enough to demonstrate their benefits and
the trade-off implied in their usage.

Optimize Everything

[108]

Usage of default arguments
Another optimization technique, one that is contrary to memoization, is not
particularly generic. Instead, it is directly tied to how the Python interpreter works.

Default arguments can be used to determine values once at function creation time,
instead of at run time.

This can only be done for functions or objects that will
not be changed during program execution.

Let's look at an example of how this optimization can be applied. The following
code shows two versions of the same function, which does some random
trigonometric calculation:

import math

#original function
def degree_sin(deg):
 return math.sin(deg * math.pi / 180.0)

#optimized function, the factor variable is calculated during function
creation time,
#and so is the lookup of the math.sin method.
def degree_sin(deg, factor=math.pi/180.0, sin=math.sin):
 return sin(deg * factor)

This optimization can be problematic if not correctly documented.
Since it uses attributes to precompute terms that should not change
during the program's execution, it could lead to the creation of a
confusing API.

Chapter 4

[109]

With a quick and simple test, we can double-check the performance gain from
this optimization:

import time
import math

def degree_sin(deg):
 return math.sin(deg * math.pi / 180.0) * math.cos(deg * math.pi /
180.0)

def degree_sin_opt(deg, factor=math.pi/180.0, sin=math.sin, cos =
math.cos):
 return sin(deg * factor) * cos(deg * factor)

normal_times = []
optimized_times = []

for y in range(100):
 init = time.clock()
 for x in range(1000):
 degree_sin(x)
 normal_times.append(time.clock() - init)

 init = time.clock()
 for x in range(1000):
 degree_sin_opt(x)
 optimized_times.append(time.clock() - init)

print "Normal function: %s" % (reduce(lambda x, y: x + y, normal_
times, 0) / 100)
print "Optimized function: %s" % (reduce(lambda x, y: x + y,
optimized_times, 0) / 100)

Optimize Everything

[110]

The preceding code measures the time it takes for the script to finish each of
the versions of the function to run its code for a range of 1000. It saves those
measurements, and finally, it creates an average for each case. The result is
displayed in the following chart:

It clearly isn't an amazing optimization. However, it does shave off some
microseconds from our execution time, so we'll keep it in mind. Just remember
that this optimization could cause problems if you're working as part of an OS
developer team.

List comprehension and generators
List comprehension is a special construct provided by Python to generate lists by
writing in the way a mathematician would, by describing its content instead of
writing about the way the content should be generated (with a classic for loop).

Let's see an example of this to better understand how it works:

#using list comprehension to generate a list of the first 50 multiples
of 2
multiples_of_two = [x for x in range(100) if x % 2 == 0]

#now let's see the same list, generated using a for-loop
multiples_of_two = []
for x in range(100):
 if x % 2 == 0:
 multiples_of_two.append(x)

Chapter 4

[111]

Now, list comprehension is not meant to replace for loops altogether. They are a great
help when dealing with loops that, like the earlier one, are creating a list. However,
they aren't particularly recommended for those for loops that you write because of
their side effects. This means you're not creating a list. You're most likely calling a
function inside it or doing some other calculation that does not translate into a list.
For these cases, a list comprehension expression would actually hurt readability.

To understand why these expressions are more performant than regular for loops,
we need to do some disassembling and read a bit of bytecode. We can do this
because, even though Python is an interpreted language, it is still being translated
into bytecode by the compiler. This bytecode is the one that is interpreted. So, using
the dis module, we can turn that bytecode into something that humans can read,
and analyze its execution.

Let's look at the code then:

import dis
import timeit

programs = dict(
 loop="""
multiples_of_two = []
for x in range(100):
 if x % 2 == 0:
 multiples_of_two.append(x)
""",
 comprehension='multiples_of_two = [x for x in range(100) if x % 2
== 0]',
)

for name, text in programs.iteritems():
 print name, timeit.Timer(stmt=text).timeit()
 code = compile(text, '<string>', 'exec')
 dis.disassemble(code)

That code will output two things:

• The time each piece of code takes to run
• The set of instructions generated by the interpreter, thanks to the dis module

Optimize Everything

[112]

Here is a screenshot of how that output would look (in your system, the time might
change, but the rest should be pretty similar):

Chapter 4

[113]

First things first; the output proves that the list comprehension version of the code is,
indeed, faster. Now, let's take a closer look at both lists of instructions, side by side,
to try to understand them better:

The for loop instructions Comments The list
comprehension
instructions

Comments

BUILD_LIST BUILD_LIST

STORE_NAME The definition
of our
"multiples_of_
two" list

SETUP_LOOP

LOAD_NAME Range
function

LOAD_NAME Range function

LOAD_CONST 100 (the
attribute for
the range)

LOAD_CONST 100 (the attribute for
the range)

CALL_FUNCTION Calls range CALL_FUNCTION Calls range
GET_ITER GET_ITER

FOR_ITER FOR_ITER

STORE_NAME Our temp
variable x

STORE_NAME Our temp variable x

LOAD_NAME LOAD_NAME

LOAD_CONST X % 2 == 0 LOAD_CONST X % 2 == 0
BINARY_MODULO BINARY_MODULO

LOAD_CONST LOAD_CONST

COMPARE_OP COMPARE_OP

POP_JUMP_IF_FALSE POP_JUMP_IF_
FALSE

LOAD_NAME LOAD_NAME

LOAD_ATTR Lookup for
the append
method

LIST_APPEND Appends the value to
the list

LOAD_NAME Loads the
value of X

CALL_FUNCTION Appends the
actual value to
the list

POP_TOP

Optimize Everything

[114]

The for loop instructions Comments The list
comprehension
instructions

Comments

JUMP_ABSOLUTE JUMP_ABSOLUTE

JUMP_ABSOLUTE STORE_NAME

POP_BLOCK LOAD_CONST

LOAD_CONST RETURN_VALUE

RETURN_VALUE

From the preceding table, you can see how the for loop generates a longer list of
instructions. The instructions generated by the comprehension code almost looks
like a subset of the ones generated by the for loop, with the major difference of
how the values are added. For the for loop, they are added one by one, using three
instructions (LOAD_ATTR, LOAD_NAME, and CALL_FUNCTION). On the other hand, for
the list comprehension column, this is done with one single, optimized instruction
(LIST_APPEND).

This is the reason why when generating a list, the for loop
should not be your weapon of choice. This is because the list
comprehension you're writing is more efficient and sometimes,
even writes more readable code.

That being said, remember to not abuse these expressions by replacing every
for loop, even the ones that do other things (side effects). In these cases, list
comprehension expressions are not optimized and will take longer than a
regular for loop.

Finally, there is one more related consideration to take into account: when generating
big lists, comprehension expressions might not be the best solution. This is because
they still need to generate every single value. So, if you're generating a list of 100k
items, there is a better way. You can use generator expressions. Instead of returning
a list, they return a generator object, which has a similar API to what lists have.
However, every time you request a new item, that item will be dynamically generated.

The main difference between a generator object and a list object is that the first one
doesn't support random access. So, you can't really use the brackets notation for
anything. However, you can use the generator object to iterate over your list:

my_list = (x**2 for x in range(100))
#you can't do this

Chapter 4

[115]

print my_list[1]

#but you can do this
for number in my_list:
 print number

Another key difference between lists and generator objects is that you can only
iterate once over the latter, while you can do the same as many times as you like
over a list. This is a key difference because it will limit the usage of your efficiently
generated list. So, take it into account when deciding to go with a list comprehension
expression or a generator expression.

This approach might add a little overhead when accessing the values, but it'll be
faster when creating the list. Here is a comparison of both list comprehension and
generator expressions when creating lists of different lengths:

The chart clearly shows that the performance of the generator expressions is better
than the list comprehension expressions for lengthier lists. For smaller lists, the list
comprehension ones are better.

ctypes
The ctypes library allows the developer to reach under the hood of Python and tap
into the power of the C language. This is only possible with the official interpreter
(CPython) because it is written in C. Other versions of it, such as PyPy or Jython, do
not provide access to this library.

Optimize Everything

[116]

This interface to C can be used to do many things, since you literally have the ability
to load pre-compiled code and use it from C. This means you have access to libraries
such as kernel32.dll and msvcrt.dll for Windows systems, and libc.so.6 for
Linux systems.

For our particular case, we'll focus on ways to optimize our code, showing how
to load a custom C library and how to load a system library to take advantage of
its optimized code. For full details on how to use this library, refer to the official
documentation at https://docs.python.org/2/library/ctypes.html.

Loading your own custom C library
Sometimes, no matter how many optimization techniques we use on our code, they
won't be enough to help us achieve the best possible time. In these cases, we can
always write the sensitive code outside our program, in C, compile it into a library,
and import it into our Python code.

Let's look at an example of how we can do this and what type of performance boost
we are expecting.

The problem to solve is a very simple one, something really basic. We'll write the
code to generate a list of prime numbers, from a list of 1 million integers.

The Python code for that could be as follows:

import math
import time

def check_prime(x):
 values = xrange(2, int(math.sqrt(x)))
 for i in values:
 if x % i == 0:
 return False

 return True

init = time.clock()
numbers_py = [x for x in xrange(1000000) if check_prime(x)]
print "%s" % (time.clock() - init)

https://docs.python.org/2/library/ctypes.html

Chapter 4

[117]

The preceding code is simple enough. Yes, we could easily improve it by changing
the list comprehension expression for a generator. However, for the sake of showing
the improvement from the C code, let's not do that. Now, the C code is taking 4.5
seconds on average to run.

Let's now write the check_prime function in C, and let's export it into a shared
library (.so file):

#include <stdio.h>
#include <math.h>

int check_prime(int a)
{
 int c;
 for (c = 2 ; c <= sqrt(a) ; c++) {
 if (a%c == 0)
 return 0;
 }

 return 1;

}

To generate the library file, use the following command:

$gcc -shared -o check_primes.so -fPIC check_primes.c

Then, we can edit our Python script to run both versions of the function and compare
the times, like this:

import time
import ctypes
import math

check_primes_types = ctypes.CDLL('./check_prime.so').check_prime

def check_prime(x):
 values = xrange(2, int(math.sqrt(x)))
 for i in values:
 if x % i == 0:
 return False

 return True

init = time.clock()

Optimize Everything

[118]

numbers_py = [x for x in xrange(1000000) if check_prime(x)]
print "Full python version: %s seconds" % (time.clock() - init)

init = time.clock()
numbers_c = [x for x in xrange(1000000) if check_primes_types(x)]
print "C version: %s seconds" % (time.clock() - init)
print len(numbers_py)

The preceding code gives the following output:

Full Python version C version
4.49 seconds 1.04 seconds

The performance boost is pretty good. It has gone from 4.5 seconds down to
just 1 second!

Loading a system library
At times, there is no need to code your C function. The system's libraries probably
have it for you already. All you have to do is import that library and use the function.

Let's see another simple example to demonstrate the concept.

The following line generates a list of 1 million random numbers, taking 0.9 seconds:

randoms = [random.randrange(1, 100) for x in xrange(1000000)]While
this one, takes only 0.3 seconds:
randoms = [(libc.rand() % 100) for x in xrange(1000000)]

Here is the full code that runs both lines and prints out the times:

import time
import random
from ctypes import cdll

libc = cdll.LoadLibrary('libc.so.6') #linux systems
#libc = cdll.msvcrt #windows systems

init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Pure python: %s seconds" % (time.clock() - init)

init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)

Chapter 4

[119]

String concatenation
Python strings deserve a separate portion of this chapter because they're not like
strings in other languages. In Python, strings are immutable, which means that
once you create one you can't really change its value.

This is a relatively confusing affirmation, since we're used to doing things such as
concatenation or replacement on string variables. However, what the average Python
developer doesn't realize is that there is a lot more going on behind the curtains than
they think.

Since string objects are immutable, every time we do anything to change its content,
we're actually creating a whole new string with new content and pointing our
variable to that new string. So, we must be careful when working with strings to
make sure we actually want to do that.

There is a very simple way to check the preceding scenario. The following code will
create a set of variables with the same string (we'll write the string every time). Then,
using the id function (which, in CPython, returns the memory address where the
value the variable points to is stored), we'll compare them to each other. If strings
were mutable, then all objects would be different, and thus, the returned values
should be different. Let's look at the code:

a = "This is a string"
b = "This is a string"

print id(a) == id(b) #prints True

print id(a) == id("This is a string") #prints True

print id(b) == id("This is another String") #prints False

As the comments on the code state, the output will be True, True, and False,
thus showing how the system is actually reusing the This is a string string
every time we write it.

Optimize Everything

[120]

The following image tries to represent the same idea in a more graphical way:

Although we wrote the string twice, internally, both variables are referencing the
same block of memory (containing the actual string). If we assign another value
to one of them, we would not be changing the string content. We would just be
pointing our variable to another memory address.

Chapter 4

[121]

The same thing happens in the preceding case, where we have a variable b pointing
directly to variable a. Still, if we try to modify b, we would just be creating a new
string once again.

Finally, what happens if we change the value of both our variables from our
example? What happens to the hello world string stored in memory? Well, if there
are no other references to it, the Garbage Collector will eventually take care of it,
releasing that memory.

That being said, immutable objects are not all that bad. They are actually good for
performance if used right, since they can be used as dictionary keys, for instance, or
even shared between different variable bindings (since the same block of memory
is used every time you reference the same string). This means that the string hey
there will be the same exact object every time you use that string, no matter what
variable it is stored in (like we saw earlier).

With this in mind, think about what would happen for some common cases, such as
the following one:

full_doc = ""
for word in word_list:
 full_doc += word

The preceding code will generate a new string for full_doc for every item in the
word_list list. This is not really efficient memory usage, is it? This is a very common
case when we're trying to recreate a string from different parts. There is a better,
more memory efficient way of doing it:

full_doc = "".join(world_list)

Optimize Everything

[122]

The alternative is easier to read, faster to write, and more efficient, both memory
and time wise. The following code shows the time each option takes. With the right
command, we can also see that the for loop alternative uses a bit more memory:

import time
import sys

option = sys.argv[1]

words = [str(x) for x in xrange(1000000)]

if option == '1':
 full_doc = ""
 init = time.clock()
 for w in words:
 full_doc += w
 print "Time using for-loop: %s seconds" % (time.clock() - init)
else:
 init = time.clock()
 full_doc = "".join(words)
 print "Time using join: %s seconds" % (time.clock() - init)

With the following commands we can execute the script and measure the memory
used, using the Linux utility time:

• #for the for-loop version:
$ /usr/bin/time -f "Memory: %M bytes" python script.py 1

• #for the join version:
$ /usr/bin/time -f "Memory: %M bytes" python script.py 0

The output from the for-loop version command is as follows:

Time using for-loop: 0.155635 seconds

Memory: 66212 bytes

The output from the join version command is as follows:

Time using join: 0.015284 seconds

Memory: 66092 bytes

The join version clearly takes considerably less time, and the peak memory
consumption (measured by the time command) is also less.

Chapter 4

[123]

The other use case we want to consider when working with strings in Python is
a different type of concatenation; it is used when you're only dealing with a few
variables, such as the following one:

document = title + introduction + main_piece + conclusion

You'll end up creating a set of substrings every time the system computes a
new concatenation. So a better and more efficient way of doing this is using
variable interpolation:

document = "%s%s%s%s" % (title, introduction, main_piece, conclusion)

Alternatively, it is even better to create substrings using the locals function:

document = "%(title)s%(introduction)s%(main_piece)s%(conclusion)s" %
locals()

Other tips and tricks
The tips mentioned earlier are some of the most common techniques to optimize a
program. Some of them are Python specific (such as string concatenation or using
ctypes) and others are more generic (such as memoization and lookup tables).

There are still a few more minor tips and tricks specific to Python, which we will
cover here. They might not yield a significant boost of speed, but they will shed
some more light into the inner workings of the language:

• Membership testing: When trying to figure out if a value is inside a list (we
use the word "list" generically here, not specifically referencing the type
list), something such as "a in b", we would have better results using sets
and dictionaries (with a lookup time of O(1)) than lists or tuples.

• Don't reinvent the wheel: Python comes with built-in core blocks that are
written in optimized C. There is no need to use hand-built alternatives,
since the latter will most likely be slower. Datatypes such as lists, tuples,
sets, and dictionaries, and modules such as array, itertools, and
collections.deque are recommended. Built-in functions also apply here.
They'll always be faster to do something such as map(operator.add, list1,
list2) will always be faster than map(lambda x, y: x+y, list1, list2).

• Don't forget about deque: When needing a fixed length array or a variable
length stack, lists perform well. However, when dealing with the pop(0) or
insert(0, your_list) operation, try to use collections.deque, since it
offers fast (O(1)) appends and pops up on either end of the list.

Optimize Everything

[124]

• Sometimes is better not to def: Calling a function adds a lot of overhead
(as we already saw earlier). So, sometimes, in time-critical loops especially,
inlining the code of a function, instead of calling that function, will be
more performant. There is a big trade-off with this tip, since it could also
considerably hurt things such as readability and maintainability. So this
should only be done if, in fact, the boost on performance is absolutely
required. The following simple example shows how a simple lookup
operation ends up adding a considerable amount of time:
import time
def fn(nmbr):
 return (nmbr ** nmbr) / (nmbr + 1)
nmbr = 0
init = time.clock()
for i in range(1000):
 fn(i)
print "Total time: %s" % (time.clock() - init)

init = time.clock()
nmbr = 0
for i in range(1000):
 nmbr = (nmbr ** nmbr) / (nmbr + 1)
print "Total time (inline): %s" % (time.clock() - init)

• When possible, sort by the key: When doing a custom sort on a list, try not
to sort using a comparison function. Instead, when possible, sort by the key.
This is because the key function will be called only once per item, whereas
the comparison function will be called several times per item during the
process. Let's see a quick example comparing both methods:
import random
import time

#Generate 2 random lists of random elements
list1 = [[random.randrange(0, 100), chr(random.randrange(32,
122))] for x in range(100000)]
list2 = [[random.randrange(0, 100), chr(random.randrange(32,
122))] for x in range(100000)]

#sort by string, using a comparison function
init = time.clock()
list1.sort(cmp=lambda a,b: cmp(a[1], b[1]))
print "Sort by comp: %s" % (time.clock() - init) #prints 0.213434

#sort by key, using the string element as key

Chapter 4

[125]

init = time.clock()
list2.sort(key=lambda a: a[1])
print "Sort by key: %s" % (time.clock() - init) #prints 0.047623

• 1 is better than True: Python 2.3 while 1 gets optimized into a single jump,
while while True does not, thus taking several jumps to complete. This
implies that writing while 1 is more efficient than while True, although
just like inlining the code, this tip comes with a big trade-off.

• Multiple assignments are slow but...: Multiple assignments (a,b = "hello
there", 123) are generally slower than single assignments. However, again,
when doing variable swaps, it becomes faster than doing it the regular way
(because we skip the usage and assignment of the temporal variable):
a = "hello world"
b = 123
#this is faster
a,b = b, a
#than doing
tmp = a
a = b
b = tmp

• Chained comparisons are good: When comparing three variables with each
other, instead of doing x < y and y < z, you can use x < y < z. This should
prove easier to read (more natural) and faster to run.

• Using namedtuples instead of regular objects: When creating simple
objects to store data, using the regular class notation, the instances contain
a dictionary for attribute storage. This storage can become wasteful for
objects with few attributes. If you need to create a large number of those
objects, then that waste of memory adds up. For such cases, you can use
namedtuples. This is a new tuple subclass, which can be easily constructed
and is optimized for the task. For details on namedtuples, check the official
documentation at https://docs.python.org/2/library/collections.
html#collections.namedtuple. The following code creates 1 million
objects, both using regular classes and namedtuples, and displays the time
for each action:

import time
import collections

class Obj(object):
 def __init__(self, i):
 self.i = i
 self.l = []

https://docs.python.org/2/library/collections.html#collections.namedtuple
https://docs.python.org/2/library/collections.html#collections.namedtuple

Optimize Everything

[126]

all = {}

init = time.clock()
for i in range(1000000):
 all[i] = Obj(i)
print "Regular Objects: %s" % (time.clock() - init) #prints
Regular Objects: 2.384832

Obj = collections.namedtuple('Obj', 'i l')

all = {}
init = time.clock()
for i in range(1000000):
 all[i] = Obj(i, [])
print "NamedTuples Objects: %s" % (time.clock() - init) #prints
NamedTuples Objects: 1.272023

Summary
In this chapter, we covered several optimization techniques. Some of them are meant
to provide big boosts on speed, and/or save memory. Some of them are just meant
to provide minor speed improvements. Most of this chapter covered Python-specific
techniques, but some of them can be translated into other languages as well.

In the next chapter, we will go over optimization techniques. In particular, we'll
cover multi-threading and multiprocessing, and you'll learn when to apply each one.

[127]

Multithreading versus
Multiprocessing

When it comes to optimizing code, concurrency and parallelism are two topics that
are rarely left out of the conversation. However, in the case of Python these are topics
that are normally used to criticize the language. Critics normally blame the difficulty
of using these mechanics versus the actual benefit they bring to the table (which, in
some instances, is nonexistent).

In this chapter, we will see that the critics are right some of the time and wrong in
other cases. Just like with most tools, these mechanics require certain conditions to
work for the developer, instead of working against them. During our tour of the
internals of how we can achieve parallelism in Python and on which occasions it is
actually worth it, we'll discuss two specific topics:

1. Multithreading: This is the most classical approach in trying to achieve
true parallelism. Other languages such as C++ and Java provide this
feature as well.

2. Multiprocessing: Although not as common and with some potentially
difficult problems to solve, we'll discuss this feature as a valid alternative
to multithreading.

After reading this chapter, you'll fully understand the difference between
Multithreading and Multiprocessing. Moreover, you will also understand what a
Global Interpreter Lock (GIL) is, and how it will affect your decision when trying
to pick the right parallelism technique.

Multithreading versus Multiprocessing

[128]

Parallelism versus concurrency
These two terms are often used together and even interchangeably, but they are
technically two different things. On one side, we have parallelism, which happens
when two or more processes can run at the exact same time. This can happen, for
instance, in multicore systems, where each process runs on a different processor.

On the other hand, concurrency happens when two or more processes try to run at
the same time on top of the same processor. This is usually solved by techniques
such as time slicing. However, these techniques do not execute in a truly parallel
fashion. It just looks parallel to observers because of the speed at which the processor
switches between tasks.

The following diagram tries to illustrate this:

Parallelism

Concurrency

Task #1

Task #2

Processor #1 Time

Processor #2 Time

Processor's Time

Task #1

Task #2

Concurrency, for instance, is a technique used by all modern operating systems.
This is because irrespective of the number of processors a computer has, the system
alone will probably need to have more processes running at the same time, let alone
anything the user might want to do. So, to solve this, the operative system will take
care of scheduling time with the processor for each process that requires it. Then, it'll
switch context between them, giving each one a slice of time.

Now, with this in mind, how can we achieve either parallelism or concurrency in our
Python programs? This is where multithreading and multiprocessing come into play.

Multithreading
Multithreading is the ability of a program to run multiple threads within the context
of the same program. These threads share the process's resources and allow multiple
actions to run in the concurrent mode (for single processor systems) and in the
parallel mode (for multicore systems).

Chapter 5

[129]

Structuring your program to utilize these threads is not an easy task. However, it
comes with some very interesting benefits:

• Responsiveness: In single-threaded programs, executing a long running
task might cause the program to appear to freeze. Thanks to multithreading
and by moving such code into a worker thread, the program can remain
responsive while concurrently executing the long running task.

• Faster execution: In multicore processors or multiprocessor systems,
multithreading can be used to improve the program's performance by
achieving true parallelism.

• Lower resource consumption: Using threads, a program can serve many
requests using the resources from the original process.

• Simplified sharing and communication: Since threads already share the
same resources and memory space, communication between them is much
simpler than interprocess communication.

• Parallelization: Multicore or multiprocessor systems can be used to leverage
multithreading and run each thread independently. Compute Unified
Device Architecture (CUDA) from Nvidia (http://www.nvidia.com/
object/cuda_home_new.html) or OpenCL from Khronos Group (https://
www.khronos.org/opencl/) are GPU-computing environments that utilize
from dozens to hundreds of processors to run tasks in parallel.

There are also some drawbacks of multithreading:

• Thread synchronization: Since threads can potentially work on the same
data, you will need to implement some sort of mechanics to prevent race
conditions (causing corrupted data reads).

• Crash due to problematic thread: Although it might seem independent, a
single problematic thread acting up and performing an invalid action can
crash the entire process.

• Deadlocks: This is a common problem associated with working with threads.
Normally, when a thread needs a resource, it will lock it until it is done
with it. A deadlock occurs when one thread enters a wait state, waiting for
a second thread to release its resources but the second thread is, in turn,
waiting for the first one to release its locked ones.

Normally, this technique should be enough to achieve parallelism on multiprocessor
systems. However, the official version of Python (CPython) has a limitation called
GIL. This GIL prevents multiple native threads from running Python's bytecode at
once, which effectively trumps parallelism. If you have a four-processor system, your
code would not run at 400 percent. Instead, it would just run at 100 percent or a bit
slower actually, because of the extra overhead from threading.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

Multithreading versus Multiprocessing

[130]

Note that the GIL is not an invention only of Python (or CPython).
Other programming languages also have a GIL, such as Ruby's official
implementation Ruby MRI or even OCaml (https://ocaml.org/).

A GIL is necessary because the memory management in CPython is not thread safe.
So, by forcing everything to run serially, it makes sure that nothing corrupts the
memory. It is also faster for single-threaded programs and simplifies the creation of
C extensions, because they don't have to take multithreading into account.

There are, however, some ways around the GIL. For instance, since it only prevents
threads from running Python's bytecode at the same time, you could potentially code
your tasks in C and have Python just as a wrapper for that code. The GIL would not
stop the C code from running all threads concurrently in this case.

Another example where the GIL will not affect the performance would be a network
server, which spends most of its time reading packets off the network. In this case,
the added concurrency will allow more packets to be serviced, even if there is no real
parallelism. This effectively boosts the performance of our program (it can serve a lot
more clients per second), but it does not affect its speed, as every task takes the same
amount of time

Threads
Now, let's talk a bit about threads in Python in order to understand how to use them.
They are composed of a beginning, an execution sequence, and a conclusion. There is
also an instruction pointer, which keeps track of where a thread is currently running
within the thread's context.

That pointer can be pre-empted or interrupted in order to stop the thread.
Alternatively, it can also be put on hold temporarily. This basically means
putting the thread to sleep.

In order to work with threads in Python, we have the following two options:

• The thread module: This provides some limited ability to work with threads.
It's simple to use, and for small tasks, it adds little overhead.

• The threading module: This is newer and included in Python since version
2.4. It provides a more powerful and higher level support for threads.

https://ocaml.org/

Chapter 5

[131]

Creating a thread with the thread module
Although we'll focus on the threading module, we'll quickly show an example of
how to use this module for the simpler times, when not a lot of work is required
from your script.

The thread module (https://docs.python.org/2/library/thread.html)
provides the start_new_thread method. We can pass it in the following parameters:

• We can pass it in a function that will contain the actual code to run. Once this
function returns, the thread will be stopped.

• We can pass it in a tuple of arguments. This list will be passed to the function.
• Finally, we can pass it in an optional dictionary of named arguments.

Let's see an example of all the preceding parameters:

#!/usr/bin/python

import thread
import time

Prints the time 5 times, once every "delay" seconds
def print_time(threadName, delay):
 count = 0
 while count < 5:
 time.sleep(delay)
 count += 1
 print "%s: %s" % (threadName, time.ctime(time.time()))

Create two threads as follows
try:
 thread.start_new_thread(print_time, ("Thread-1", 2,))
 thread.start_new_thread(print_time, ("Thread-2", 4,))
except:
 print "Error: unable to start thread"

We need to keep the program working, otherwise the threads won't
live

while True:
 pass

https://docs.python.org/2/library/thread.html

Multithreading versus Multiprocessing

[132]

The preceding code prints the following output:

The preceding code is simple enough, and the output clearly shows how both
threads are actually running concurrently. The interesting thing about this is that in
the code, the print_time function itself has an inside loop. If we were to run this
function twice serially, then it would last 5 * delay seconds each time we call it.

However, using threads and without having to change anything, we're running the
loop twice concurrently.

This module also provides other threading primitives that can come in handy.
Here is an example:

interrupt_main

This method sends a keyboard interrupt exception to the main thread. This,
effectively, is like hitting CTRL+C on your program while running. If not caught,
the thread that sent the signal would terminate the program.

exit

This method exits the thread silently. It is a good way to terminate a thread without
affecting anything else. Let's assume that we changed our print_time function into
the following lines of code:

def print_time(threadName, delay):
 count = 0
 while count < 5:
 time.sleep(delay)
 count += 1
 print "%s: %s" % (threadName, time.ctime(time.time()))
 if delay == 2 and count == 2:
 thread.exit()

Chapter 5

[133]

In this case, the output would be as follows:

The allocate_lock method returns a lock for the threads to use. The lock will help
the developer protect sensitive code and make sure that there are no race conditions
during execution.

The lock objects returned have these three simple methods:

• acquire: This basically acquires the lock for the current thread. It accepts
an optional integer parameter. If it is zero, the lock would be acquired only
if it can be acquired immediately, without waiting. If it's non-zero, the lock
would be acquired unconditionally (like when you omit the parameter). This
means that if the thread needs to wait to acquire the lock, it would.

• release: This will release the lock for the next thread to acquire it.
• locked: This would return TRUE if the lock is acquired by some thread.

Otherwise, it would be FALSE.

Here is a very basic example of how locking can help multithreaded code. The
following code increments a global variable using 10 threads. Each one will add one
thread. So, by the end, we should have 10 threads in that global variable:

#!/usr/bin/python

import thread
import time

global_value = 0

def run(threadName):
 global global_value
 print "%s with value %s" % (threadName, global_value)
 global_value = global_value + 1

for i in range(10):

Multithreading versus Multiprocessing

[134]

 thread.start_new_thread(run, ("Thread-" + str(i),))

We need to keep the program working, otherwise the threads won't
live
while 1:
 pass

Here is the output of the preceding code:

Not only are we correctly incrementing the value of the global variable (we only got
up to 2), but we are also having issues printing out the strings. In some cases, we
have two strings in the same line, when they should each occupy one. This is because
when two strings existed in the same line, both threads tried to print at the same
time. At that time, the current line to print on was the same in both cases.

The same occurrence repeats for the global value. When threads 1, 3, 6, 8, 4, 2, and
7 read the value of the global variable in order to add 1, the value was 0 (which is
what they each copied to the local_value variable). We need to make sure that the
code that copies the value, increments it, and prints it out is protected (inside a lock)
so that no two threads can run it at the same time. To accomplish this, we'll use two
methods for the Lock object: acquire and release.

Use the following lines of code:

#!/usr/bin/python

import thread
import time

global_value = 0

def run(threadName, lock):
 global global_value
 lock.acquire()
 local_copy = global_value
 print "%s with value %s" % (threadName, local_copy)

Chapter 5

[135]

 global_value = local_copy + 1
 lock.release()

lock = thread.allocate_lock()

for i in range(10):
 thread.start_new_thread(run, ("Thread-" + str(i), lock))

We need to keep the program working, otherwise the threads won't
live
while 1:
 pass

Now, the output makes more sense:

The output now makes more sense, the format got fixed, and we successfully
incremented the value of our variable. Both fixes are due to the locking mechanics.
Regarding the code, to increment the value of global_value, the lock is preventing
other threads (those which have not yet acquired the lock) from executing that part
of the code (reading its value into a local variable and incrementing it). So, while the
lock is active, only the thread that acquired it will be able to run those lines. After the
lock has been released, the next thread in line will do the same. The preceding line of
code returns the current threads identified:

get_ident

This is a non-zero integer with no direct meaning other than identifying the current
thread between the lists of active ones. This number can be recycled after a thread
dies or exits, so it is not unique during the lifetime of the program. The following
code sets or returns the thread stack size used when creating new threads:

stack_size

Multithreading versus Multiprocessing

[136]

This supports an optional argument ("this" being the size to set for the stack). This
size must either be 0 or at least 32.768 (32 Kb). Depending on the system, there might
be other restrictions to the number or even to setting the stack size. So, check with
your OS's manual before trying to use this method.

Although it is not the target version of this book, in Python 3,
this module has been renamed to _thread.

Working with the threading module
This is the current and recommended way to work with threads in Python. This
module provides a better and higher level interface for that. It also adds complexity
to our code, since the simplicity of the _thread module will not be available now.

For this case, we can loosely quote Uncle Ben and say:

With great power comes great complexity.

Jokes apart, the threading module encapsulates the concept of thread inside a class,
which we're required to instantiate to be able to use.

We can create a subclass of the Thread class (https://docs.python.org/2/
library/thread.html) provided by the module (this is normally the preferred
way). Alternatively, we could even instantiate that class directly if we want to do
something very simple. Let's see how the preceding example would translate using
the threading module:

#!/usr/bin/python

import threading

global_value = 0

def run(threadName, lock):
 global global_value
 lock.acquire()
 local_copy = global_value
 print "%s with value %s" % (threadName, local_copy)
 global_value = local_copy + 1
 lock.release()

lock = threading.Lock()

for i in range(10):

https://docs.python.org/2/library/thread.html
https://docs.python.org/2/library/thread.html

Chapter 5

[137]

 t = threading.Thread(target=run, args=("Thread-" + str(i),
 lock))
 t.start()

For more complex things, we might want to create our own thread classes in order to
better encapsulate its behavior.

When using the subclass approach, there are a few things you need to take into
account when writing your own classes:

• They need to extend the threading.Thread class
• They need to overwrite the run method and, optionally, the __init__ method
• If you overwrite the constructor, make sure to call the parent's class

constructor (Thread.__init__) as the first action you take
• The thread will stop when the run method stops or throws an unhandled

exception, so plan your method with this in mind
• You can name your thread with the name argument on its constructor method

Although you'll have to overwrite the run method, which will contain the main logic
of the thread, you will not be in control of when that method is called. Instead, you
will call the start method, which, in turn, will create a new thread and call the run
method with that thread as context.

Let's now look at a simple example of a very common pitfall of working with threads:

import threading
import time

class MyThread(threading.Thread):

 def __init__(self, count):
 threading.Thread.__init__(self)
 self.total = count

 def run(self):

 for i in range(self.total):
 time.sleep(1)
 print "Thread: %s - %s" % (self.name, i)

t = MyThread(4)

Multithreading versus Multiprocessing

[138]

t2 = MyThread(3)

t.start()
t2.start()

print "This program has finished"

The output of that code is as follows:

As you can see highlighted in the preceding screenshot, the program is sending the
exit message before anything else. In this case, it's not a big issue. However, it would
be a problem if we had something like this:

#....
f = open("output-file.txt", "w+")
t = MyThread(4, f)
t2 = MyThread(3, f)

t.start()
t2.start()
f.close() #close the file handler
print "This program has finished"

Note that the preceding code will fail, because it will close the file
handler before any thread tries to use it in any way. If we want to avoid
this type of issue, we need to use the join method, which will halt the
calling thread until the target thread has completed execution.

In our case, if we use the join method from the main thread, it would make sure that
the program does not continue with the main chain of commands until both threads
complete execution. We need to make sure we use the join method on the threads
after both have started. Otherwise, we could end up running them serially:

#...
t.start()
t2.start()
#both threads are working, let's stop the main thread

Chapter 5

[139]

t.join()
t2.join()
f.close() #now that both threads have finished, lets close the file
handler
print "This program has finished"

This method also accepts an optional argument: a timeout (a float or None) in
seconds. However, the join method always returns None. So, to find out whether the
operation indeed timed out, we need to check whether the thread is still alive (with
the isAlive method) after the join method returns. If the thread is alive, then the
operation timed out.

Let's now see another example of a simple script to check the status code of a list of
sites. This script requires just a few lines of code to iterate over the list and collect the
status code returned:

import urllib2

sites = [
 "http://www.google.com",
 "http://www.bing.com",
 "http://stackoverflow.com",
 "http://facebook.com",
 "http://twitter.com"
]

def check_http_status(url):
 return urllib2.urlopen(url).getcode()

http_status = {}
for url in sites:
 http_status[url] = check_http_status(url)

for url in http_status#:
 print "%s: %s" % (url, http_status[url])

If you run the preceding code with the time command-line tool on Linux, you could
also get the time it takes to execute:

$time python non_threading_httpstatus.py

Multithreading versus Multiprocessing

[140]

The output is as follows:

Now, looking at the code and with what we've seen so far, a clear optimization
would be to turn the IO-bound function (check_http_status) into a thread. This
way, we can concurrently check the status for all sites, instead of waiting for each
request to finish before processing the next one:

import urllib2
import threading

sites = [
 "http://www.google.com",
 "http://www.bing.com",
 "http://stackoverflow.com",
 "http://facebook.com",
 "http://twitter.com"
]

class HTTPStatusChecker(threading.Thread):

 def __init__(self, url):
 threading.Thread.__init__(self)
 self.url = url
 self.status = None

 def getURL(self):
 return self.url

 def getStatus(self):
 return self.status

 def run(self):

Chapter 5

[141]

 self.status = urllib2.urlopen(self.url).getcode()

threads = []
for url in sites:
 t = HTTPStatusChecker(url)
 t.start() #start the thread
 threads.append(t)

#let the main thread join the others, so we can print their result
after all of them have finished.
for t in threads:
 t.join()

for t in threads:
 print "%s: %s" % (t.url, t.status)

Running the new script with time will produce the following result:

$time python threading_httpstatus.py

We will get the following output:

Clearly, the threaded alternative is faster. In our case, it is almost three times faster,
which is an amazing improvement.

Interthread communication with events
Although threads are normally thought of as individual or parallel workers,
sometimes, it is useful to allow them to communicate with each other.

To achieve this, the threading module provides the event construct (https://docs.
python.org/2/library/threading.html#event-objects). It contains an internal
flag, and caller threads can either use set() or clear().

https://docs.python.org/2/library/threading.html#event-objects
https://docs.python.org/2/library/threading.html#event-objects

Multithreading versus Multiprocessing

[142]

The Event class has a very simple interface. Here are the methods provided within
the class:

• is_set: this would return True if the internal flag of the event is set.
• set: this sets the internal flag to True. It awakens all threads waiting for this

flag to be set. Threads calling wait() will no longer be blocked.
• clear: this resets the internal flag. Any thread calling the wait() method

will become blocked until set() is called again.
• wait: this blocks the calling thread until the internal flag of the event is set.

This method accepts an optional argument for a timeout. If it is specified and
different from none, then the thread would be blocked only by that timeout.

Let's see a simple example of using events to communicate between two threads so
that they can take turns printing out to a standard output. Both threads will share the
same event object. One will set it on every iteration of the while loop, and the other
would clear it if it's set. On every action (set or clear), they'll print the right letter:

import threading
import time

class ThreadA(threading.Thread):

 def __init__(self, event):
 threading.Thread.__init__(self)
 self.event = event

 def run(self):
 count = 0
 while count < 5:
 time.sleep(1)
 if self.event.is_set():
 print "A"
 self.event.clear()
 count += 1

class ThreadB(threading.Thread):

 def __init__(self, evnt):
 threading.Thread.__init__(self)

Chapter 5

[143]

 self.event = evnt

 def run(self):
 count = 0
 while count < 5:
 time.sleep(1)
 if not self.event.is_set():
 print "B"
 self.event.set()
 count += 1

event = threading.Event()

ta = ThreadA(event)
tb = ThreadB(event)

ta.start()
tb.start()

In conclusion, the following table shows when to use multithreading and when not to:

Use threads Don't use threads
For heavy IO-bound scripts To optimize scripts that are heavily CPU

bound
When parallelism can be replaced by
concurrency

For programs that must take advantage of
multicore systems

For GUI development

Multiprocessing
Multithreading in Python fails to achieve real parallelism, thanks to the GIL, as we
saw earlier. Thus, some types of applications will not see a real benefit from using
this module.

Instead, Python provides an alternative to multithreading called multiprocessing. In
multiprocessing, threads are turned into individual subprocesses. Each one will run
with its own GIL (which means there are no limitations on the number of parallel
Python processes that can run at the same time).

Multithreading versus Multiprocessing

[144]

To clarify, threads are all part of the same process, and they share the same memory,
space, and resources. On the other hand, processes don't share memory space with
their spawning parent, so it might be more complicated for them to communicate
with each other.

This approach comes with advantages and disadvantages over the multithreading
alternative:

Advantages Disadvantages
Takes advantage of multicore
systems

Larger memory footprint

Separate memory space removes race
conditions from the equation

Harder to share mutable data between processes

Child processes are easily
interruptible (killable)

Interprocess communication (IPC) is harder than
with threads

Avoids the GIL limitation (although
only in the case of CPython)

Multiprocessing with Python
The multiprocessing module (https://docs.python.org/2/library/
multiprocessing.html) provides the Process class, which, in turn, has an API
similar to the threading.Thread class. So, migrating code from multithreading to
multiprocessing is not as difficult as one might think, because the basic structure of
your code would remain the same.

Let's look at a quick example of how we might structure a multiprocessing script:

#!/usr/bin/python

import multiprocessing

def run(pname):
 print pname

for i in range(10):
 p = multiprocessing.Process(target=run, args=("Process-" +
 str(i),))
 p.start()
 p.join()

The preceding code is a basic example, but it shows just how similar to
multithreading the code can be.

https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html

Chapter 5

[145]

Note that on Windows systems, you will need to add an extra
check to make sure that when the subprocesses include the main
code, it would not be executed again. To clarify, the main code
should look like this (if you plan to run it on Windows):

#!/usr/bin/python

import multiprocessing

def run(pname):
 print pname

if __name__ == '__main__':
 for i in range(10):
 p = multiprocessing.Process(target=run,
 args=("Process-" + str(i),))
 p.start()
 p.join()

Exit status
When each process is finished (or terminated), it has an exit code, which is a number
representing the result of the execution. This number might either indicate that the
process finished correctly, incorrectly, or that it was terminated by another process.

To be more precise:

• A code equal to 0 means there was no problem at all
• A code higher than 0 means the process failed and exited with that code
• A code lower than 0 means it was killed with a -1 * exit_code signal

The following code shows how to read the exit code and how it is set, depending on
the outcome of the task:

import multiprocessing
import time

def first():
 print "There is no problem here"

def second():
 raise RuntimeError("Error raised!")

def third():
 time.sleep(3)

Multithreading versus Multiprocessing

[146]

 print "This process will be terminated"

workers = [multiprocessing.Process(target=first), multiprocessing.
Process(target=second), multiprocessing.Process(target=third)]

for w in workers:
 w.start()

workers[-1].terminate()

for w in workers:
 w.join()

for w in workers:
 print w.exitcode

The output of this script is shown in the following screenshot:

Notice how the print property from the third worker is never executed. This is
because that process is terminated before the sleep method finishes. It is also
important to note that we're doing two separate for loops over the three workers:
one to start them and the second one to join them using the join() method. If we
were, for instance, to execute the join() method while starting each subprocess,
then the third subprocess would not fail. In fact, it would return an exit code of zero
(no problem), because as with multithreading, the join() method will block the
calling process until the target one finishes.

Chapter 5

[147]

Process pooling
This module also provides the Pool class (https://docs.python.org/2/library/
multiprocessing.html#module-multiprocessing.pool), which represents
a pool of worker processes that facilitate different ways to execute a set of tasks
in subprocesses.

The main methods provided by this class are:

• apply: This executes a function in a separate subprocess. It also blocks the
calling process until the called function returns.

• apply_async: This executes a function in a separate subprocess,
asynchronously, which means that it'll return immediately. It returns an
ApplyResult object. To get the actual returned value, you need to use the
get() method. This action will be blocked until the asynchronously executed
function finishes.

• map: This executes a function for a list of values. It is a blocking action, so the
returned value is the result of applying the function to each value of the list.

Each one of them provides a different way of iterating over your data, be it
asynchronously, synchronously, or even one by one. It all depends on your needs.

Interprocess communication
Now, getting the processes to communicate with each other is not, as we already
mentioned, as easy as with threads. However, Python provides us with several
tools to achieve this.

The Queue class provides a thread-safe and process-safe first in first out (FIFO)
(https://docs.python.org/2/library/multiprocessing.html#exchanging-
objects-between-processes) mechanism to exchange data. The Queue class
provided by the multiprocessing module is a near clone of Queue.Queue, so the same
API can be used. The following code shows an example of two processes interacting
through Queue:

from multiprocessing import Queue, Process
import random

def generate(q):
 while True:
 value = random.randrange(10)
 q.put(value)
 print "Value added to queue: %s" % (value)

def reader(q):

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes

Multithreading versus Multiprocessing

[148]

 while True:
 value = q.get()
 print "Value from queue: %s" % (value)

queue = Queue()
p1 = Process(target=generate, args=(queue,))
p2 = Process(target=reader, args=(queue,))

p1.start()
p2.start()

Pipes
Pipes provide (https://docs.python.org/2/library/multiprocessing.
html#exchanging-objects-between-processes) a bidirectional channel of
communication between two processes. The Pipe() function returns a pair of
connection objects, each representing one side of the pipe. Each connection object
has both a send() and a recv() method.

The following code shows a simple usage for the pipe construct, similar to the
preceding Queue example. This script will create two processes: one that will
generate random numbers and send them through the pipe and one that will
read the same one and write the numbers to a file:

from multiprocessing import Pipe, Process
import random

def generate(pipe):
 while True:
 value = random.randrange(10)
 pipe.send(value)
 print "Value sent: %s" % (value)

def reader(pipe):
 f = open("output.txt", "w")
 while True:
 value = pipe.recv()
 f.write(str(value))
 print "."

input_p, output_p = Pipe()

https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes

Chapter 5

[149]

p1 = Process(target=generate, args=(input_p,))
p2 = Process(target=reader, args=(output_p,))

p1.start()
p2.start()

Events
They are also present in the multiprocessing module, and they work in almost a
similar way. The developer only needs to keep in mind that event objects can't be
passed into worker functions. If you try to do that, a runtime error will be issued,
saying that semaphore objects can only be shared between processes through
inheritance. This means that you can't do what is shown in this code:

from multiprocessing import Process, Event, Pool
import time

event = Event()
event.set()

def worker(i, e):
 if e.is_set():
 time.sleep(0.1)
 print "A - %s" % (time.time())
 e.clear()
 else:
 time.sleep(0.1)
 print "B - %s" % (time.time())
 e.set()

pool = Pool(3)
pool.map(worker, [(x, event) for x in range(9)])
Instead, you'd have to do something like this:
from multiprocessing import Process, Event, Pool
import time

event = Event()
event.set()

def worker(i):
 if event.is_set():
 time.sleep(0.1)
 print "A - %s" % (time.time())
 event.clear()
 else:

Multithreading versus Multiprocessing

[150]

 time.sleep(0.1)
 print "B - %s" % (time.time())
 event.set()

pool = Pool(3)
pool.map(worker, range(9))

Summary
Now that we've covered both alternatives, their main characteristics, and their ups
and downs, it is really up to the developer to pick one or the other. There is clearly
no better one, since they are meant for different scenarios, although they might seem
to accomplish the same thing.

The main take-away from this chapter should be the points mentioned earlier, the
main characteristics of each approach, and when each one should be used.

In the next chapter, we'll continue with the optimization tools. This time, we will
look at Cython (an alternative that allows you to compile your Python code on C)
and PyPy (an alternative interpreter written in Python that is not bound to the GIL
like CPython is).

[151]

Generic Optimization Options
In the never-ending road to mastering optimization, we started by covering some
tips and tricks in Chapter 4, Optimize Everything. In Chapter 5, Multithreading versus
Multiprocessing, we went over two major optimization strategies: multithreading
and multiprocessing. We saw how they help us and when to use them.

Finally, we will deal with one of the many implementations of the Python language
(CPython). This implies that there are other alternatives to CPython. In this chapter,
we'll cover two of them:

• We'll cover PyPy, an alternative to the standard Python interpreter we've
been using throughout the book. This one is written in Python and has some
benefits over the standard version.

• We will talk about Cython, an optimizing static compiler, which will allow
us to write Python code and tap into the power of C and C++ easily.

Both alternatives will provide developers with the opportunity to run code in a more
optimized fashion, depending, of course, on the characteristics of that code. For each
option, we'll look into what exactly they are, how to install them, and some example
code on how to use them.

PyPy
Just like CPython is the standard implementation of the Python specifications and is
written in C (of course), PyPy is an alternative implementation of Python, both for
version 2.x and 3.x. It tries to mimic the behavior of the language that is written in
RPython, a limited version of Python with static types.

Generic Optimization Options

[152]

The PyPy project (http://pypy.org/) is a continuation of another, older project
called Psycho, which was a JIT compiler for Python, written in C. It worked great on
32-bit Intel processors, but it was never updated. Its latest stable release was in 2007,
so it is now deprecated. PyPy took over in 2007 with its 1.0 release. Although it was
initially considered a research project, it grew over the years. Finally, in 2010, version
1.4 was released. With this version, there was an increase in confidence that systems
written in PyPy were production ready and compatible with Python 2.5.

The latest stable version of PyPy, released in June 2014, is version 2.5, which, in turn,
is compatible with Python 2.7. There is also a beta release of PyPy3, which is, as
expected, a version of PyPy that is compatible with Python 3.x.

The reason we will go over PyPy as a viable way of optimization for our scripts is
due to these features:

• Speed: One of the main features of PyPy is its speed boost over regular
Python. This is due to the in-built Just-in-time (JIT) compiler. It provides
flexibility over statically compiled code, since it can adapt to the current
platform (processor type, OS version, and so on) during execution time. On
the other hand, a statically compiled program would need one executable or
every single combination of cases.

• Memory: Memory-consuming scripts will consume much less memory when
executed using PyPy than with regular CPython.

• Sandboxing: PyPy provides a sandboxing environment where every call to
an external C library is stubbed. These calls communicate with an external
process that handles the actual policy. Although this feature is promising, it
is still only a prototype and needs more work to become useful.

• Stackless: PyPy also provides a somewhat equivalent set of language
features to the ones provided by Stackless Python (http://www.stackless.
com/). Some may even consider it a more powerful and flexible version than
the latter.

http://pypy.org/
http://www.stackless.com/
http://www.stackless.com/

Chapter 6

[153]

Installing PyPy
There are several ways to install PyPy into your system:

• You can download the binary files directly from their page (http://pypy.
org/download.html#default-with-a-jit-compiler). Just make sure you
download the right file, according to the OS indication next to the link on their
website. Otherwise, there is a good chance it won't work on your system:

If you're using a Linux distribution or OS X, you can check whether its
official package repository contains the PyPy package. Normally, systems
such as Ubuntu, Debian, Homebrew, MacPorts, Fedora, Gentoo, and Arch
tend to have it already. For Ubuntu, you can use the following line of code:
$ sudo apt-get install pypy

• Finally, another option is to download the source code and compile it
yourself. This might be a harder task than downloading the binaries.
However, if done correctly, it would assure you that the resulting
installation is fully compatible with your system.

http://pypy.org/download.html#default-with-a-jit-compiler
http://pypy.org/download.html#default-with-a-jit-compiler

Generic Optimization Options

[154]

Be warned though, compiling from source might sound like an
easy task, but it will take a considerable amount of time. On an
i7 with 8 GB of RAM, the entire process took about an hour, as
shown in the following screenshot:

A Just-in-time compiler
This is one of the main features provided by PyPy. It's the main reason for its
superior speed results compared to regular Python (CPython).

According to PyPy's official site, the performance might vary depending on the task,
but on average, this compiler claims to be seven times faster than CPython.

Normally, with standard compiled programs, we translate the entire source code
into machine code before we even execute it the first time. Otherwise, we won't be
able to try it. This is the standard set of steps that normally compiled programs go
through (preprocessing and translation of the source code, and finally, assembling
and linking).

JIT means that the compilation of our code will take place during execution
time instead of before it. What normally happens is that the code is translated
in a two-step process:

1. First, the original source code is translated into an intermediate language.
For some languages, such as Java, it is called bytecode.

2. After we have the bytecode, we start compiling it and translating it into
machine code, but only when we need it. One of the peculiarities of JIT
compilers is that they only compile the code that needs to be run, and not
everything at once.

The second step is what differentiates this type of implementation from other
interpreted languages, such as CPython, when the bytecode is interpreted instead
of being compiled. Additionally, JIT compilers normally cache compiled code so
that the next time it is needed, the overhead of compilation will be avoided.

Chapter 6

[155]

With all of this in mind, it is clear that for a program to take real advantage of a JIT
compiler, it needs to run for at least a few seconds so that the instruction caching can
take effect. Otherwise, the effect might be the opposite of what is intended, since the
overhead of the compilation will be the only real-time difference that the developer
will notice.

One of the main advantages of using a JIT compiler is that the program being
executed is able to optimize the machine code for the specific system it is running
on (including CPU, OS, and so on). Thus, it provides a level of flexibility that is
completely out of scope for static compiled (and even interpreted) programs.

Sandboxing
Although the sandboxing feature of PyPy is still considered as a prototype, we'll
cover its basics internal workings to understand the potential it provides.

Sandboxing consists of providing a safe environment where untrusted Python code
can run without any fear of causing harm to the host system.

This is achieved in PyPy in particular through a two-process model:

1. On one side, we have a customized version of PyPy compiled specifically
to function in the sandbox mode. In particular, this means that any library
or system call (I/O for instance) gets marshaled into stdout waiting for a
marshaled response back.

2. On the other hand, we have a container process, which could be running
using PyPy or CPython. This process will take care of answering the library
and system calls from the internal PyPy process:

Generic Optimization Options

[156]

The preceding diagram shows the entire process where a piece of Python code that is
executed in the sandbox mode is doing an external library call.

The container process is the one that decides what type of virtualization it provides.
For instance, the inner process could be creating file handlers, which, in reality, are
being faked by the container process. The process acts as a layer between the real OS
and the sandboxed process.

Note that the mechanics explained earlier are very different from sandboxing at the
language level. The entire set of instructions is available to the developer. Thus, you
achieve a very transparent and secure system with code that could very well run on
a standard system and on a secured one.

Optimizing for the JIT
Like we already discussed, the JIT from PyPy is what sets it apart from CPython's
implementation. It is this same feature that makes it so fast when running Python code.

Just using PyPy directly on our unchanged Python code, we'll most likely get
better results. However, we should take into account some guidelines if we
want to optimize our code even further.

Think of functions
JIT works by analyzing which functions are "hotter" (get executed more times)
than others. Thus, we're better off structuring our code into functions, specifically
for functions that will be executed repeatedly.

Let's see a quick example. The following code will show the time difference between
doing the same calculation directly inline versus having it encapsulated inside a
function and dealing with the added time relating to the function lookup and the
function call itself:

import math
import time

TIMES = 10000000

init = time.clock()
for i in range(TIMES):
 value = math.sqrt(i * math.fabs(math.sin(i - math.cos(i))))

print "No function: %s" % (init - time.clock())

def calcMath(i):

Chapter 6

[157]

 return math.sqrt(i * math.fabs(math.sin(i - math.cos(i))))
init = time.clock()
for i in range(TIMES):
 value = calcMath(i)
print "Function: %s" % (init – time.clock())

The code is very simple, but you can still see how the second output shows that
it is the faster implementation. Regular old CPython will work the opposite way,
since there is no real-time optimization of the code. The second approach will yield
slightly worse results because of the overhead of the function lookup and function
call code. However, PyPy and its JIT prove once again that if you want to optimize
your code for them, you need to stop thinking the old way.

The results from the preceding screenshot show what we've been discussing so far:

• PyPy runs the same code considerably faster than CPython
• The JIT is optimizing our code in real time while CPython isn't

Consider using cStringIO to concatenate strings
This is not a small optimization, with respect to both code changes and achieved
optimization. We've already covered the fact that for Python, strings are immutable
objects. So, if we want to concatenate a large number of strings into a single one, we
would be better off doing it with another structure instead of the string itself, since
that would yield the worst performance.

In the case of PyPy, it still holds true. However, instead of using lists as the best
option, we'll use the cStringIO module (http://pymotw.com/2/StringIO/),
which, as we'll see, provides the best results.

http://pymotw.com/2/StringIO/

Generic Optimization Options

[158]

Note that because of the nature of PyPy, mentioning cStringIO instead of StringIO
might be confusing, since we're referencing a C standard library instead of a pure
Python one. This is correct and valid, since some of the C standard libraries common
to CPython also work correctly on PyPy. In our case, the following code will calculate
the time needed to perform the same concatenation operation in three different ways
(using simple strings, using the cStringIO library, and finally, using lists):

from cStringIO import StringIO
import time

TIMES = 100000

init = time.clock()
value = ''
for i in range(TIMES):
 value += str(i)
print "Concatenation: %s" % (init - time.clock())

init = time.clock()
value = StringIO()
for i in range(TIMES):
 value.write(str(i))
print "StringIO: %s" % (init - time.clock())

init = time.clock()
value = []
for i in range(TIMES):
 value.append(str(i))
finalValue = ''.join(value)
print "List: %s" % (init - time.clock())

Out of the three alternatives, StringIO is the best one in PyPy. It is much better than
simple string concatenation, and even slightly better than using lists.

Chapter 6

[159]

If we run the same code through CPython, we will get different results. Thus, the
best solution is still using lists.

The preceding screenshot corroborates this. Note how with PyPy, the first approach
is especially bad performance-wise.

Actions that disable the JIT
Although not directly an optimization, there are some specific methods that will
disable the effectiveness of the JIT if we use them. So, it's important to know about
these methods.

The following three methods from the sys module disable the JIT (according to the
current version of PyPy; this could, of course, change in the future):

• _getframe: This method returns a frame object from the callstack. It even
accepts an optional depth parameter that returns frame objects back from the
callstack. The performance penalty is quite big, so its use is recommended
only when it is absolutely needed, such as when developing a debugger.

• exc_info: This method returns a tuple of three elements that provide
information about the exception being handled. These elements are type,
value, and traceback. They are explained here:

 ° type: This is the type of the exception being handled
 ° value: This gets the exception parameter
 ° traceback: This gets the traceback object, which encapsulates a

callstack object the moment the exception was thrown

• Settrace: This method sets the tracing function, which allows you to
trace Python code from within Python. As mentioned earlier, its use is not
recommended unless it is absolutely necessary, since it needs to disable the
JIT in order to work properly.

Generic Optimization Options

[160]

Code sample
As a final example for this topic, let's take a look at the code from the great_circle
function (explained later). The great circle calculation consists of finding the distance
between two points on the earth's surface.

The script will do a for loop of 5 million iterations. In particular, it calls the same
function over and over (5 million times to be precise). This scenario is less than
ideal for the CPython interpreter, since it will complete the function lookup that
many times.

However, on the other hand and as we've already mentioned, calling the same
function over time allows for PyPy's JIT to start optimizing that call. This basically
means that in our case, the code is already somewhat optimized for PyPy:

import math

def great_circle(lon1,lat1,lon2,lat2):
 radius = 3956 #miles
 x = math.pi/180.0

 a = (90.0-lat1)*(x)
 b = (90.0-lat2)*(x)
 theta = (lon2-lon1)*(x)
 c = math.acos((math.cos(a)*math.cos(b)) +
 (math.sin(a)*math.sin(b)*math.cos(theta)))
 return radius*c

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):great_circle(lon1,lat1,lon2,lat2)

The preceding code can be further optimized following the same principle we just
mentioned. We can remove one line from the great_circle function into a separate
function, optimizing that execution even further, as shown here:

import math

def calcualte_acos(a, b ,theta):
 return math.acos((math.cos(a)*math.cos(b)) +
 (math.sin(a)*math.sin(b)*math.cos(theta)))

def great_circle(lon1,lat1,lon2,lat2):
 radius = 3956 #miles

Chapter 6

[161]

 x = math.pi/180.0

 a = (90.0-lat1)*(x)
 b = (90.0-lat2)*(x)
 theta = (lon2-lon1)*(x)
 c = calcualte_acos(a, b, theta)
 return radius*c

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):
 great_circle(lon1,lat1,lon2,lat2)

You can see how we moved the acos calculation into a separate function, since it
was the most expensive line in the entire function (there is a total of six trig functions
being called there). By moving that line into another function, we allowed the JIT to
take care of optimizing its calls.

In the end, due to that simple change and the fact that we're using PyPy instead
of regular Python, we have an execution time of 0.5 seconds. If, on the other hand,
we were to run that same code using regular CPython, we would get a time of
4.5 seconds (on my current machine), which is considerably slower.

Cython
Although technically, Cython (http://cython.org/) is not exactly an alternative to
using the standard CPython interpreter, it will let us write Python code and compile
it into C (something CPython doesn't do).

You'll see that Cython could be considered a transpiler, which simply means it's a
piece of software meant to translate source code from one language into another.
There are other similar products out there, such as CoffeeScript and Dart. Both are
very different languages, and both are translated into JavaScript.

In our case, Cython translates a super set of Python (an extended version of the
language) into optimized C/C++ code. Then, it's compiled into a Python extension
module. This, in turn, allows the developer to:

• Write Python code that calls back and forth C or C++ code natively
• Tune Python code into C-level performance using static-type declarations

http://cython.org/

Generic Optimization Options

[162]

Static typing is the key feature that allows this transpiler to generate optimized
C code, thus letting Cython move out of the dynamic nature of Python into a more
static, yet faster, territory (sometimes, even by several orders of magnitude).

This, of course, makes the Python code more verbose, which, in turn, might hurt
other aspects such as maintainability and readability. So, normally, using static
typing is not recommended unless there is some kind of proof that clearly shows
that adding it will indeed generate a faster running code.

All C types are available for developers to use. Cython is prepared to automatically
perform type conversion on assignment. In the special case of Python's arbitrary long
integers, when casting to C's integers, a Python overflow error will be raised if an
overflow does happen.

The following table shows the same example written in pure Python and the
Cython version:

Python version Cython version
def f(x):
 return x**2-x

def integrate_f(a, b, N):
 s = 0
 dx = (b-a)/N
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

def f(double x):
 return x**2-x

def integrate_f(double a,
double b, int N):
 cdef int i
 cdef double s, dx
 s = 0
 dx = (b-a)/N
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

The main difference in both codes is highlighted. It is only the definition of the types
of every variable, both the parameters received by both functions, and the local
variables used. With this alone, Cython can generate an optimized C version of the
code on the left-hand side.

Installing Cython
There are a couple of ways to install Cython into your system. However, for every
case, the common requirement is to have a C compiler previously installed. We will
not go over the steps required for this, because the instructions might vary from
system to system.

Chapter 6

[163]

Once the C compiler is installed, in order to get Cython, you can perform these steps:

1. Download the latest release from their website (http://cython.org),
unpack the tarball file, enter the directory, and run the following command:
$python setup.py install

2. If you have the setup tools installed in your system, you can run this command:
$pip install cython

If you're already using one of the following development
environments, it's quite likely that Cython is already installed
in your system. However, you can use the earlier steps to
update your current version as well:

• Anaconda
• Enthought Canopy
• PythonXY
• Sage

Building a Cython module
Cython is able to compile our code into C modules, which we can later import into
our main code. In order to do this, you need to carry out the following steps:

1. First, a .pyx file needs to be compiled (or translated) into a .c file by Cython.
These are the source code files, basically Python code with some extensions
added by Cython. We'll see some examples in a bit.

2. The .c file will, in turn, be compiled into a .so library by the C compiler.
This library can later be imported by Python.

3. There are several ways in which we can compile the code, as explained earlier:
 ° We can create a distutils setup file. Distutils is a module that

facilitates the creation of other modules, so we can use it to generate
our custom C-compiled ones.

 ° We can run the cython command line to create a .c file from the
.pyx one. Then, use the C compiler to manually compile the C code
into the library.

 ° Finally, another option would be to use the pyximport module and
import the .pyx files as if they were .py files.

http://cython.org

Generic Optimization Options

[164]

4. To illustrate the preceding points, let's look at an example using the
distutils option:
#test.pyx
def join_n_print(parts):
 print ' '.join(parts)

#test.py
from test import join_n_print
join_n_print(["This", "is", "a", "test"])

#setup.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
 name = 'Test app',
 ext_modules = cythonize("test.pyx"),
)

5. That's it! The preceding code that is to be exported should be inside the
.pyx file. The setup.py file will normally be the same. It will call the setup
function with different variations of the parameters. Finally, it will call the
test.py file, which imports our compiled library and makes use of it.

6. To effectively compile the code, you can use the following command:
$ python setup.py build_ext –inplace

The following screenshot shows the output from the preceding command. You can
see how it doesn't just translate (cythonize) the code, but also compiles the library
using the C compiler installed:

Chapter 6

[165]

The preceding example shows a very simple module. However, normally, for more
complex cases, a Cython module is comprised of two types of files:

• Definition files: These have a .pxd extension and contain C declarations of
names that need to be available to other Cython modules.

• Implementation files: These have a .pyx extension and contain the actual
implementation of the functions declared on the .pxd files.

Definition files normally contain C type declarations, external C functions or variable
declarations, and declarations of C functions defined in the module. They cannot
contain the implementation of any C or Python function, nor can they contain the
definition of any Python class or any executable lines.

On the other hand, an implementation file can have almost any kind of
Cython statement.

Here is a typical two-file module example taken from Cython's official
documentation (http://docs.cython.org/src/userguide/sharing_
declarations.html); it shows how to import .pxd files:

#dishes.pxd
cdef enum otherstuff:
 sausage, eggs, lettuce

cdef struct spamdish:
 int oz_of_spam
 otherstuff filler

#restaurant.pyx:
cimport dishes
from dishes cimport spamdish

cdef void prepare(spamdish *d):
 d.oz_of_spam = 42
 d.filler = dishes.sausage

def serve():
 cdef spamdish d
 prepare(&d)
 print "%d oz spam, filler no. %d" % (d.oz_of_spam, d.filler)

By default, when cimport is executed, it will look for a file called modulename.pxd
in the search path. Whenever the definition file changes, each file importing it will
need to be recompiled. Luckily, for us, the Cythin.Build.cythonize utility will
take care of that.

http://docs.cython.org/src/userguide/sharing_declarations.html
http://docs.cython.org/src/userguide/sharing_declarations.html

Generic Optimization Options

[166]

Calling C functions
Just like regular Python, Cython allows the developer to directly interface with C
by calling functions compiled in external libraries. To import these libraries, the
procedure is similar to the standard Python procedure:

from libc.stdlib cimport atoi

The cimport statement is used in implementation or definition files in order to gain
access to names declared in other files. Its syntax is exactly the same as standard
Python's import statement.

If you also need to access the definition of some types defined in a library, you
would need the header file (.h file). For these cases, with Cython it is not as simple as
referencing the file. You'll also need to redeclare the types and structures you will use:

cdef extern from "library.h":
 int library_counter;
 char *pointerVar;

The preceding example performs the following actions for Cython:

• It lets Cython know how to place a #include statement in the generated
C code, referencing the library we're including

• It prevents Cython from generating any C code for the declarations inside
the block

• It treats all declarations inside the block as if they were made with cdef
extern, which, in turn, means those declarations are defined elsewhere

Note that this syntax is required because Cython does not, at any moment, read
the content of the header file. So, you still need to redeclare the content for it. As a
caveat, you technically only need to redeclare the part that you'll use, leaving out
anything that's not directly needed by your code. For instance, if you had a big
structure declared in your header file with a lot of members, you could redeclare it
with only the members you'd need. This would work since during compiling time,
the C compiler would use the original code with the full version of the structure.

Chapter 6

[167]

Solving naming conflicts
An interesting problem arises when names from the imported functions are the same
as the ones from your functions.

Say, you have your myHeader.h file that defines the print_with_colors function,
and you need to wrap it in some Python function that you also want to call print_
with_colors; Cython provides a way for you to work around this and keep the
names as you want them.

You can add extern C function declarations into a Cython declaration file
(.pxd file) and then cimport it into your Cython code file as follows:

#my_declaration.pxd
cdef extern "myHeader.h":
 void print_with_colors(char *)

#my_cython_code.pyx
from my_declaration cimport print_with_colors as c_print_with_colors

def print_with_colors(str):
 c_print_with_colors(str)

You can also avoid renaming the function and use the name of the declaration file as
a prefix:

#my_cython_code.pyx
cimport my_declaration
def print_with_colors(str):
 my_declaration.print_with_colors(str)

Both alternatives are valid, and the decision of using one
over the other is completely up to the developer. For more
information on this subject, head to: http://docs.cython.
org/src/userguide/external_C_code.html.

http://docs.cython.org/src/userguide/external_C_code.html
http://docs.cython.org/src/userguide/external_C_code.html

Generic Optimization Options

[168]

Defining types
As mentioned earlier, Cython allows the developer to define the type of a variable
or the return type of a function. In both cases, the keyword used for this is cdef.
Typing is actually optional, since Cython will try to optimize the Python code by
turning it into C. That being said, defining the static types where they're needed
will certainly help.

Let's now look at a very basic example of a piece of code in Python and how the
same code executes in its three versions: pure Python, compiled by Cython without
typing, and finally, compiled and using typing.

The code is as follows:

Python Cython
def is_prime(num):
 for j in range(2,num):
 if (num % j) == 0:
 return False
 return True

def is_prime(int num):
 cdef int j;
 for j in range(2,num):
 if (num % j) == 0:
 return False
 return True

Thanks to the fact that we're declaring the for loop variable as a C integer. Cython
will turn this loop into an optimized C for loop, which will be one of the major
improvements to this code.

Now, we will set up a main file that will import that function:

import sys
from <right-module-name> import is_prime

def main(argv):

 if (len(sys.argv) != 3):
 sys.exit('Usage: prime_numbers.py <lowest_bound> <upper_bound>')

 low = int(sys.argv[1])
 high = int(sys.argv[2])

 for i in range(low,high):
 if is_prime(i):
 print i,

if __name__ == "__main__":
 main(sys.argv[1:])

Chapter 6

[169]

Then, we will execute our script like this:

$ time python script.py 10 10000

We will get the following interesting results:

Pure Python version Compiled without typing Compiled with typing
0.792 seconds 0.694 seconds 0.043 seconds

Even though the non-optimized version of the code is faster than the pure Python
one, we only see the real power of Cython when we start declaring the types.

Defining types during function definitions
There are two different types of functions that can be defined in Cython:

• Standard Python functions: These are normal functions that are exactly like
the ones declared in pure Python code. To do this, you need the standard
cdef keyword, and these functions will receive Python objects as parameters
and also return Python objects.

• C functions: These are the optimized versions of the standard functions.
They take either Python objects or C values as parameters and can also
return both. To define these, you need the special cdef keyword.

Either type of function can be called from within a Cython module. However (and this
is a very important difference), if you want to call your functions from within your
Python code, you either need to make sure the function is declared as standard or you
need to use the special cpdef keyword. This keyword will create a wrapper object
for the function. So, when the function is called from within Cython, it'll use the C
function, and when called from within Python code, it'll use the Python version.

When dealing with C types for the parameters of the function, an automatic
conversion will be done (if possible) from the Python object to the C value. This is
only currently possible for numeric types, strings, and struct types. If you attempt
to use any other type, it will result in a compile-time error.

The following simple example illustrates the difference between both modes:

#my_functions.pxd

#this is a pure Python function, so Cython will create a make it
return and receive Python objects instead of primitive types.
cdef full_python_function (x):

Generic Optimization Options

[170]

 return x**2

#This function instead, is defined as both, a standard function and an
optimized C function, thanks to the use of the cpdef keyword.
cpdef int c_function(int num):
 return x**2

If the return type or the type of parameter is left undefined,
then it will be assumed to be a Python object.

Finally, C functions that don't return a Python object have no way to report Python
exceptions to its caller. So, when an error occurs, a warning message is printed and
the exception is ignored. This is, of course, far from ideal. Luckily, for us, there is a
way around this.

We can use the except keyword during function definition. This keyword specifies
that whenever an exception occurs inside the function, a specific value will be
returned. Here is an example:

cdef int text(double param) except -1:

With the preceding code, whenever an exception occurs, -1 will be returned. It is
important that you don't manually return the exception value from your function.
This is especially relevant if you define False to be your exception value because
any False value will do here.

For cases where any possible return value is a valid return value, then there is an
alternate notation that you can use:

cdef int text(double param) except? -1:

The ? sign sets -1 as a possible exception value. When returned, Cython will call
PyErr_Occurred() to make sure that it is really an error and not just a normal
return action.

There is one more variation of the except keyword, which makes sure to call
PyErr_Occurred() after every return:

cdef int text(double param) except *:

The only real use of the preceding notation is for functions returning void that need
to propagate errors. This is because in these special cases, there is no value to check;
otherwise, there is no real use case for it.

Chapter 6

[171]

A Cython example
Let's take a quick look at the same example we used for PyPy. It shows us how to
improve the performance of a script. The code will again do the same calculation
5 million times: from math, import PI, acos, cos, and sin:

def great_circle(lon1,lat1,lon2,lat2):
 radius = 3956 #miles
 x = PI/180.0

 a = (90.0-lat1)*(x)
 b = (90.0-lat2)*(x)
 theta = (lon2-lon1)*(x)
 c = acos((cos(a)*cos(b)) +

 (sin(a)*sin(b)*cos(theta)))
 return radius*c

Then, we will test it by running the function 5,000,000 times with the following script:

from great_circle_py import great_circle

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):
 great_circle(lon1,lat1,lon2,lat2)

Again, as I've already mentioned earlier, if we run this script using the time
command-line utility from Linux with the CPython interpreter, we will see that
the resulting execution takes around 4.5 seconds to run (in my current system).
Your numbers will most likely be different.

Instead of going to the profiler, like we did in earlier chapters, we'll go directly to
Cython now. We'll implement some of the improvements we've been discussing
into a Cython module that we can import from our test script.

Here's our first try at it:

#great_circle_cy_v1.pyx
from math import pi as PI, acos, cos, sin

def great_circle(double lon1,double lat1,double lon2,double lat2):

Generic Optimization Options

[172]

 cdef double a, b, theta, c, x, radius

 radius = 3956 #miles
 x = PI/180.0

 a = (90.0-lat1)*(x)
 b = (90.0-lat2)*(x)
 theta = (lon2-lon1)*(x)
 c = acos((cos(a)*cos(b)) +
 (sin(a)*sin(b)*cos(theta)))
 return radius*c
#great_circle_setup_v1.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
 name = 'Great Circle module v1',
 ext_modules = cythonize("great_circle_cy_v1.pyx"),
)

As you can see in the preceding code, all we did was give a C type to all the variables
and parameters we're using in our code. This alone took the execution time from
4.5 seconds down to 3. We shaved off 1.5 seconds, but we can probably do better.

Our code is still using a Python library math. Since Cython allows us to mix
Python and C libraries, it comes in handy when we're in a hurry. It takes care of
the conversions for us, but as we can see here, not without a cost. Let's now try to
remove the dependency of that Python library and call upon C's math.h file:

#great_circle_cy_v2.pyx
cdef extern from "math.h":
 float cosf(float theta)
 float sinf(float theta)
 float acosf(float theta)

def great_circle(double lon1,double lat1,double lon2,double lat2):
 cdef double a, b, theta, c, x, radius
 cdef double pi = 3.141592653589793

 radius = 3956 #miles
 x = pi/180.0

 a = (90.0-lat1)*(x)

Chapter 6

[173]

 b = (90.0-lat2)*(x)
 theta = (lon2-lon1)*(x)
 c = acosf((cosf(a)*cosf(b)) +
 (sinf(a)*sinf(b)*cosf(theta)))
 return radius*c

After removing all references to the math Python library and working directly with
C's math.h file, we went from the 3.5 seconds in our previously optimized code to an
amazing 0.95 seconds.

When to define a type
The previous example might seem obvious and simple to optimize. However, for
bigger scripts, redeclaring every variable as a C variable and importing all C libraries
instead of Python ones (whenever possible) is not always the best way to go.

Going about it this way will lead to readability and maintainability issues. It will also
hurt the inherent flexibility of Python code. It could, in fact, even end up hurting the
performance by adding unnecessary type checks and conversions. So, there must
be a way to determine the best places to add types and switch libraries. This way is
using Cython. Cython comes with the ability to annotate your source code and show
you, very graphically, how each line of code can be translated into C code.

Using the -a attribute in Cython, you can generate an HTML file that will highlight
your code with yellow. The more yellow a line is, the more C-API interactions are
required to translate that piece of code into C. White lines (lines without any color)
are directly translated into C. Let's look at how our original code is rendered under
this new tool:

$ cython -a great_circle_py.py

Generic Optimization Options

[174]

The following screenshot shows the HTML file generated from the preceding
command:

We can clearly see that most of our code needs at least a few interactions with
the C-API in order to be translated into C (only line 4 is completely white). It is
important to understand that our aim should be to get as many lines to white as
possible. The lines with a + sign indicate that they can be clicked, and the C code
generated will be displayed, as shown here:

Chapter 6

[175]

Now, by looking at our results, we can see that the lighter yellow lines are the simple
assignments (lines 5, 7, 8, and 9). They can be easily fixed by doing what we initially
did: declare those variables as C variables instead of letting them be Python objects,
which would require us to convert code.

By doing the conversion, we will get something like the next screenshot. This
screenshot shows the resulting report from analyzing the great_circle_cy_v1.pyx
file:

Generic Optimization Options

[176]

Much better! Now, those lines are fully white, except line 7, which is still light yellow.
This is, of course, because that line is actually referencing the math.pi object. We could
fix it simply by initializing the pi variable with a fixed value of PI. However, we still
have the big yellow block, that is, lines 12 and 13. This is also due to our usage of the
math library. So, after we get rid of it, we will get the following file:

The preceding screenshot shows the final code we presented earlier. Almost all
of our code is directly translatable to C, and we got a good performance out of it.
Now, we still have two yellow lines: 6 and 18.

Chapter 6

[177]

We can't do much about line 6 because that function is the Python function we need to
execute. If we were to declare it with cdef, we would not have access to it. However,
again, line 18 is not completely white. This is because great_circle is a Python
function and the returned value is a Python object, which needs to be wrapped
and translated into a C value. If we click on it, we can see the generated code:

The only way we can fix this is by declaring our function with cpdef, which will
create a wrapper for it. However, it will also let us declare the return type. So, we're
no longer returning a Python object. Instead, we're returning a double value, and the
resulting code and annotated screenshot is as follows:

Generic Optimization Options

[178]

We can see how the C code generated for the returned statement got simplified with
this latest change. The performance got a small boost as well, since we went from
0.95 seconds down to 0.8 seconds.

Thanks to our analysis of the code, we were able to go one step further and optimize
it a bit more. This technique is a good way to check your progress when optimizing
code for Cython. This technique provides a visual and simple indicator of the
complexity of the optimized code.

Note that in this particular case, the results obtained from going
the Cython route for this optimization are not as good as the
ones obtained using PyPy earlier in this chapter (0.8 seconds
with Cython versus 0.5 seconds with PyPy).

Limitations
Everything we've seen so far seems to indicate that Cython is a perfectly viable
option to our performance needs. However, the truth is that Cython is not yet
100 percent compatible with the Python syntax. Sadly, there are some limitations
that we need to take into consideration before deciding to use this tool for our
performance enhancement needs. From the current list of public bugs on the
project, we can gather the list of current limitations.

Generator expressions
These expressions are currently the ones that suffer the most, since they have several
issues in the current version of Cython. These issues are as follows:

• Using iterables inside the generator expression causes a problem since there
are issues with the evaluation scope.

• Also, related to iterables inside a generator, Cython appears to be evaluating
them inside the generator's body. On the other hand, CPython does it
outside, before creating the actual generator.

• Generators in Cpython have attributes that allow for introspection. Cython is
still not fully up to date when it comes to supporting those attributes.

Chapter 6

[179]

Comparison of char* literals
The current implementation of Cython performs comparsons of byte literals based
on the pointers used, instead of the actual value of the string.

cdef char* str = "test string"
print str == b"test string"

The preceding code will not always print True. It will depend on the pointer used to
store the first string instead of depending on the actual string value.

Tuples as function arguments
Although only a Python 2 feature, the language allows for the following syntax:

def myFunction((a,b)):
 return a + b
args = (1,2)
print myFunction(args)

However, the preceding code is not even correctly parsed by Cython. This particular
feature is flagged as probably "not fixable" in the future of Cython, since Python 3.x
has removed it as well.

Note that the Cython team is expecting to fix most of the limitations
mentioned earlier by the time they release version 1.0.

Stack frames
Currently, Cython is generating fake tracebacks as part of its exception propagation
mechanics. They're not filling in locals and co_code values. In order to do this
properly, they would have to generate the stack frames on function call time,
incurring in a potential performance penalty. So, it is unclear whether they
will fix this in the future or not.

Generic Optimization Options

[180]

How to choose the right option
Up to this point, we've gone over two different alternatives to radically optimize our
code. However, how do we know which one is the right one? Or even better, which
one is the best one?

The answer to both those questions is the same: there is no single best or right one.
Whether one of the options is better or worse depends entirely on one or more
of these aspects:

• The actual use case you're trying to optimize
• The familiarity of the developer with either Python or C
• The importance of readability of your optimized code
• The amount of time at hand to perform the optimization

When to go with Cython
Here are the situations when you should go with Cython:

• You're familiar with C code: It's not like you'll be coding in C, but you
will be using principles that are common to C, such as static types, and
C libraries, such as math.h. So, being familiar with the language and its
internals will definitely be helpful.

• Losing Python's readability is not a problem: The code you'll write for
Cython is not fully Python, so part of its readability will be lost.

• Full support of the Python language is needed: Even though Cython is not
Python, it is more an extension than a subset of the language. So, if you need
full compatibility with the language, Cython might be the right choice.

Chapter 6

[181]

When to go with PyPy
Here are the situations when you should go with PyPy:

• You're not dealing with an execute once script: PyPy's JIT optimization
is great if your script is a long running program, with loops that can be
optimized, but if instead, the script you're trying to improve will run once
and be done, then PyPy is actually slower than the original CPython.

• Full support of third-party libraries is not required: Even though PyPy
is compatible with Python 2.7.x, it is not fully compatible with its external
libraries, especially if they're C libraries. So, depending on your code, PyPy
might not really be an option.

• You need your code to be compatible with CPython: If you need your
code to run for both implementations (PyPy and CPython), then the Cython
alternative is completely out of the question. PyPy becomes the only option.

Summary
In this chapter, we have covered two alternatives to the standard Python
implementation. One is PyPy, which consists of a version of Python and is
implemented in RPython. It has a JIT compiler in charge of optimizing the code
during execution time. The other one is Cython, which is basically a transpiler of
Python code into C code. We saw how each of them worked, how to install them,
and how our code needed to be changed in order to gain benefits from using them.

Finally, we went over a few points on how and when to choose one over the other.

In the next chapter, we'll focus on a very specific use case for Python: number
crunching. The topic is very common in the Python community, since the language
is very often used for scientific purposes. We'll cover three options that will help us
write code faster: Numba, Parakeet, and pandas.

[183]

Lightning Fast Number
Crunching with Numba,

Parakeet, and pandas
Number crunching is a topic specific to the programming world. However, given
that Python is so often used for scientific research and data science problems,
number crunching ends up being a very common topic in the Python world.

That being said, we could just as easily implement our algorithms using the
information from the earlier six chapters, and we would most likely end up with pretty
fast and performant code. Again, that information is meant to be for generic use cases.
There will always be something to say about optimizing for a particular case.

In this chapter, we'll cover three options that will help us write faster and more
optimized code focused on scientific problems. For each one, we'll go over the
basic installation instructions. We will also look at some code samples showing
the benefits of each option.

The tools we'll review in this chapter are as follows:

• Numba: This is a module that allows you to write high-performance
functions in pure Python by generating optimized machine code.

• Parakeet: This is a runtime compiler for scientific operations written in a
subset of Python. It is ideal for expressing numerical computations.

• pandas: This is a library that provides a set of high-performance data
structures and analysis tools.

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[184]

Numba
Numba (http://numba.pydata.org/) is a module that allows you to indicate
(via decorators) to the Python interpreter which functions should be translated into
machine code. Numba thus provides equivalent performance to C or Cython without
the need to either use a different interpreter or actually code in C.

The module will generate optimized machine code just by requiring it. It can even be
compiled to run on either CPU or GPU hardware.

Here is a very basic example taken from their official site, showing how to use it.
We'll go into more detail in a bit:

from numba import jit
from numpy import arange

jit decorator tells Numba to compile this function.
The argument types will be inferred by Numba when function is
called.
@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

Note that even though the promise of Numba sounds impressive, the library is
meant to optimize operations on arrays. It is considerably tied to NumPy (which
we'll review shortly). So, not every function will be optimizable by it, and using it
might even hurt performance.

http://numba.pydata.org/

Chapter 7

[185]

For instance, let's take a look at a similar example, one that doesn't use NumPy and
accomplishes a similar task:

from numba import jit
from numpy import arange

jit decorator tells Numba to compile this function.
The argument types will be inferred by Numba when function is
called.
@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

The preceding code has the following execution times, depending on whether we
keep the @jit line or not:

• With the @jit line on: 0.3 seconds
• Without the @jit line: 0.1 seconds

Installation
There are actually two ways to install Numba: you can either use the conda package
manager from Anaconda, or you can just clone the GitHub repo and compile it.

If you're going for the conda approach, you can install the command-line tool
called miniconda (which can be downloaded from http://conda.pydata.org/
miniconda.html). After installing it, you can just use the following command:

$ conda install numba

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[186]

The following screenshot shows the output from this command. The command lists
all packages that will be installed or updated, specifically numpy and llvmlite,
which are direct dependencies from Numba:

If, on the other hand, you want to use the source code, you could clone the repo by
using this command:

$ git clone git://github.com/numba/numba.git

You'll need to have numpy and llvmlite installed as well. After that, you can use the
following command:

$ python setup.py build_ext –inplace

Chapter 7

[187]

Note that the preceding command will succeed even if you
don't have the requirements installed. However, you won't
be able to use Numba unless you install them.

In order to check whether your installation was successful, you can do a simple
check from the Python REPL:

>>> import numba
>>> numba.__version__
'0.18.2'

Using Numba
Now that you have managed to install Numba, let's take a look at what we can do
with it. The main features provided by this module are as follows:

• On-the-fly code generation
• Native code generation for both CPU and GPU hardware
• Integration with Python's scientific software, thanks to the Numpy dependency

Numba's code generation
When it comes to code generation, the main feature of Numba is its @jit decorator.
Using it, you can mark a function for optimization under Numba's JIT compiler.

We already talked about the benefits of having a JIT compiler in the previous
chapter, so we won't go into the details here. Instead, let's see how to use the
decorator for our benefit.

There are several ways to use this decorator. The default one, which is also the
recommended way, is the one we already showed earlier:

Lazy compilation

The following code will cause Numba to generate the optimized code once the
function is called. It'll try to infer the types of its attributes and the return type
of the function:

from numba import jit

@jit
def sum2(a,b):
 return a + b

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[188]

If you call the same function with different types, then different code paths will be
generated and optimized.

Eager compilation
On the other hand, if you happen to know the types that your function will receive
(and optionally, return), you could pass those to the @jit decorator. Then, only that
specific case would be optimized.

The following code shows the added code needed to pass in the function signature:

from numba import jit, int32

@jit(int32(int32, int32))
def sum2(a,b):
 return a + b

Here are the most common types that are used to specify function signatures:

• void: These are used as the return type for functions not returning anything
• intp and uintp: These are pointer-sized integers, signed and unsigned

respectively
• intc and uintc: These are the C equivalent to the int and unsigned int types
• int8, int16, int32, and int64: These are the fix-width integers of the

corresponding bit width (for the unsigned version, just add u as a prefix,
for instance, uint8)

• float32 and float64: These are single and double-precision
floating-point numbers

• complex64 and complex128: These represent single and double-precision
complex numbers

• Arrays can also be declared by indexing any of the numeric types, for
example, float32[:] for a one-dimensional floating-point number array
and int32[:,:] for a two-dimensional integer array

Other configuration settings
Apart from eager compilation, there are two more options we can pass onto the
@jit decorator. These options will help us force Numba's optimization. They are
described here.

Chapter 7

[189]

No GIL
Whenever our code is optimized using native types (rather than using Python
types), the GIL (which we discussed in Chapter 6, Generic Optimization Options)
is no longer necessary.

We have a way of disabling the GIL in such cases. We can pass the nogil=True
attribute to the decorator. This way, we can run Python code (or Numba code)
concurrently with other threads.

That being said, remember that if you don't have the GIL limitation, then you will
have to deal with the common problems of multithreaded systems (consistency,
synchronization, race conditions, and so on).

NoPython mode
This option will let us set the compilation mode of Numba. By default, it will try to
jump between modes. It will try to decide the best mode possible depending on the
code of the optimized function.

There are two modes that are available. On one hand, there is object mode. It
generates code capable of handling all Python objects and uses the C API to perform
operations on those objects. On the other hand, the nopython mode generates much
faster code by avoiding the calls to the C API. The only problem with it is that only a
subset of functions and methods are available to be used.

The object mode will not generate faster code unless Numba can take advantage
of loop-jitting (which means that a loop can be extracted and compiled in nopython
mode).

What we can do is force Numba to go into nopython mode and raise an error if such
a thing is not possible. This can be done using these lines of code:

@jit(nopython=True)
def add2(a, b):
 return a + b

The issue with the nopython mode is that it has certain restrictions, apart from the
limited subset of Python it supports:

• The native types used for all values inside the function have to be capable of
being inferred

• No new memory can be allocated inside the function

As an added extra, for loop-jitting to take place, the to-be-optimized loops can't have
a return statement inside. Otherwise, they won't be eligible for optimization.

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[190]

So, let's now look at an example of how this will look for our code:

def sum(x, y):
 array = np.arange(x * y).reshape(x, y)
 sum = 0
 for i in range(x):
 for j in range(y):
 sum += array[i, j]
 return sum

The preceding example is taken from the Numba site. It shows a function that is
eligible for loop-jitting, also called loop-lifting. To make sure it works as expected,
we can use the Python REPL as follows:

Alternatively, we can also call the inspect_types method directly from our
code. The benefit of the latter is that we'll also have access to the source code of
our functions. This is a great advantage when trying to match Numba-generated
instructions to lines of code.

The preceding output is useful to understand the behind-the-scenes action that goes
on when we optimize our code with Numba. More specifically, we can understand
how it infers the types, whether there is any automatic optimization going on, and
basically, how many instructions each Python line is translated into.

Chapter 7

[191]

Let's take a look at the output we would get from calling the inspect_types method
from within our code (which is considerably more detailed than using the REPL):

Note that the following code is a reduced version of the entire
output. If you want to study it completely, you need to run the
command on your computer.

sum_auto_jitting (int64, int64)

File: auto-jitting.py
--- LINE 6 ---

@jit

--- LINE 7 ---

def sum_auto_jitting(x, y):

 # --- LINE 8 ---
 # label 0
 # x = arg(0, name=x) :: pyobject
 # y = arg(1, name=y) :: pyobject
 # $0.1 = global(np: <module 'numpy' from '/home/fernando/
miniconda/lib/python2.7/site-packages/numpy/__init__.pyc'>) ::
pyobject
 # $0.2 = getattr(attr=arange, value=$0.1) :: pyobject
 # del $0.1
 # $0.5 = x * y :: pyobject
 # $0.6 = call $0.2($0.5,) :: pyobject
 # del $0.5
 # del $0.2
 # $0.7 = getattr(attr=reshape, value=$0.6) :: pyobject
 # del $0.6
 # $0.10 = call $0.7(x, y,) :: pyobject
 # del $0.7
 # array = $0.10 :: pyobject
 # del $0.10

 array = np.arange(x * y).reshape(x, y)

 # --- LINE 9 ---
 # $const0.11 = const(int, 0) :: pyobject
 # sum = $const0.11 :: pyobject

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[192]

 # del $const0.11

 sum = 0

 # --- LINE 10 ---
 # jump 40.1
 # label 40.1
 # $const40.1.1 = const(LiftedLoop, LiftedLoop(<function
 sum_auto_jitting at 0x7ff5f94756e0>)) :: XXX Lifted Loop XXX
 # $40.1.6 = call $const40.1.1(y, x, sum, array,) :: XXX
 Lifted Loop XXX
 # del y
...

 # jump 103
 for i in range(x):
 # --- LINE 11 ---
 for j in range(y):
 # --- LINE 12 ---
 sum += array[i, j]
 # --- LINE 13 ---
 # label 103
 # $103.2 = cast(value=sum.1) :: pyobject
 # del sum.1
 # return $103.2
 return sum
The function contains lifted loops
Loop at line 10
Has 1 overloads
File: auto-jitting.py
--- LINE 6 ---

@jit
--- LINE 7 ---
def sum_auto_jitting(x, y):
 # --- LINE 8 ---
 array = np.arange(x * y).reshape(x, y)
 # --- LINE 9 ---
 sum = 0
 # --- LINE 10 ---
 # label 37
 # y = arg(0, name=y) :: int64
 # x = arg(1, name=x) :: int64

Chapter 7

[193]

 # sum = arg(2, name=sum) :: int64
 # array = arg(3, name=array) :: array(int64, 2d, C)
 # $37.1 = global(range: <built-in function range>) :: range
 # $37.3 = call $37.1(x,) :: (int64,) -> range_state64
 # del x
 # del $37.1
 # $37.4 = getiter(value=$37.3) :: range_iter64
 # del $37.3
 # $phi50.1 = $37.4 :: range_iter64
 # del $37.4
 # jump 50
 # label 50
 # $50.2 = iternext(value=$phi50.1) :: pair<int64, bool>
 # $50.3 = pair_first(value=$50.2) :: int64
 # $50.4 = pair_second(value=$50.2) :: bool
 # del $50.2
 # $phi53.1 = $50.3 :: int64
 # del $50.3
 # branch $50.4, 53, 102
 # label 53
 # i = $phi53.1 :: int64
 # del $phi53.1

 for i in range(x):

 # --- LINE 11 ---
 # jump 56
 # label 56

...
 # j = $phi72.1 :: int64
 # del $phi72.1

 for j in range(y):

 # --- LINE 12 ---
 # $72.6 = build_tuple(items=[Var(i, auto-jitting.py
 (10)), Var(j, auto-jitting.py (11))]) :: (int64 x 2)
 # del j
 # $72.7 = getitem(index=$72.6, value=array) ::
 int64

...

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[194]

 # return $103.3

 sum += array[i, j]

 # --- LINE 13 ---

 return sum

In order to understand the preceding output, notice how every commented block
starts with the line number of the original source code. It then follows with the
instructions generated by that line, and finally, you'll see the uncommented Python
line you wrote.

Notice the LiftedLoop line. In this line, you can see the automatic optimization
done by Numba. Also, notice the type inferred by Numba at the end of most lines.
Whenever you see a pyobject property, it means that it is not using a native type.
Instead, it is using a generic object that wraps all Python types.

Running your code on the GPU
As it's been already mentioned, Numba provides support to run our code on
both CPU and GPU hardware. This, in practice, would allow us to improve the
performance of certain computations by running them in an environment better
suited for parallel computation than the CPU.

More specifically, Numba supports CUDA programming (http://www.nvidia.
com/object/cuda_home_new.html) by translating a subset of Python functions
into CUDA kernels and devices following the CUDA execution model.

CUDA is a parallel computing platform and programming model invented by
Nvidia. It enables considerable speed boosts by harnessing the power of GPUs.

GPU programming is a topic that could most likely fill an entire book, so we won't
go into details here. Instead, we'll just mention that Numba possesses this capability
and that it can be achieved using the @cuda.jit decorator. For full documentation
on this subject, refer to the official documents at http://numba.pydata.org/
numba-doc/0.18.2/cuda/index.html.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
 http://numba.pydata.org/numba-doc/0.18.2/cuda/index.html
 http://numba.pydata.org/numba-doc/0.18.2/cuda/index.html

Chapter 7

[195]

The pandas tool
The second tool that we'll discuss in this chapter is called pandas (http://pandas.
pydata.org/). It is an open source library that provides high-performance,
easy-to-use data structures, and data-analysis tools for Python.

This tool was invented back in 2008 by developer Wes McKinney while needing a
performant solution to perform quantitative analysis on financial data. The library
has become one of the most popular and active projects in the Python community.

One thing to note regarding the performance of code written using pandas is that
parts of its critical code paths were written using Cython (we covered Cython in
Chapter 6, Generic Optimization Options).

Installing pandas
Given the popularity of pandas, there are many ways to install it onto your system.
It all depends on the type of setup you have.

The recommended way is to directly install the Anaconda Python distribution
(docs.continuum.io/anaconda/), which comes packed with pandas and the
rest of the SciPy stack (such as NumPy, Matplotlib, and so on). This way, by the
time you're done, you'd have installed over 100 packages and downloaded several
100 megabytes of data during the process.

If, on the other hand, you don't want to deal with the full Anaconda distribution,
you could use miniconda (which we already covered earlier when discussing
Numba's installation). With this approach, you can use the conda package
manager by following these steps:

1. Create a new environment in which you can install a new version of Python
using this line of code:
$ conda create -n my_new_environment python

2. Enable that environment:
$ source activate my_new_environment

3. Finally, install pandas:
$ conda install pandas

Additionally, pandas can be installed using the pip command-line tool (probably,
the easiest and most compatible way of doing it) using this line of code:

$ pip install pandas

http://pandas.pydata.org/
http://pandas.pydata.org/
docs.continuum.io/anaconda/

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[196]

Finally, one more option could be installing it using your OS's package manager,
given that the package is available:

Distribution Repo link Installation method
Debian packages.debian.org/search?

keywords=pandas&searchon=na
mes&suite=all§ion=all

$ sudo apt-get
install python-
pandas

Ubuntu http://packages.ubuntu.com/
search?keywords=pandas&sea
rchon=names&suite=all§
ion=all

$ sudo apt-get
install python-
pandas

OpenSUSE and Fedora http://software.opensuse.
org/package/python-
pandas?search_term=pandas

$ zypper in python-
pandas

If the preceding options fail and you choose to install pandas from source, you can
get the instructions from their website at http://pandas.pydata.org/pandas-
docs/stable/install.html.

Using pandas for data analysis
In the world of big data and data analytics, having the right tools for the job means
having the upper hand (of course, this is just one side of the story; the other one is
knowing how to use them). For data analysis and, more specifically, for ad hoc tasks
and data cleanup processes, one would normally use a programming language.
A programming language would provide considerably more flexibility than a
standard tool.

That being said, there are two languages that lead this particular performance race: R
and Python. In the case of Python, this might come as a bit of a shock for some, since
we've been showing nothing but evidence that Python by itself is not fast enough
when it comes to number crunching. This is why libraries such as pandas are created.

It provides tools designed to ease and simplify the task commonly known as "data
wrangling", such as:

• The ability to load big data files into memory and stream out
• Simple integration with matplotlib (http://matplotlib.org/), which

enables it to create interactive plots with very few lines of code
• Simple syntax to deal with missing data, dropping fields, and so on

packages.debian.org/search?keywords=pandas&searchon=names&suite=all§ion=all
packages.debian.org/search?keywords=pandas&searchon=names&suite=all§ion=all
packages.debian.org/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://matplotlib.org/

Chapter 7

[197]

Let's now look at a very simple and quick example of how using pandas can benefit
the performance of your code as well as improve the syntax of your programs. The
following code grabs a CSV file, with a portion of the export (a 500 MB file) from
the 311 service requests from 2010 to present taken from the NYC OpenData site
(https://data.cityofnewyork.us/Social-Services/311-Service-Requests-
from-2010-to-Present/erm2-nwe9).

It then tries to simply calculate the number of records per zip code using both plain
Python and pandas code:

import pandas as pd
import time
import csv
import collections

SOURCE_FILE = './311.csv'

def readCSV(fname):
 with open(fname, 'rb') as csvfile:
 reader = csv.DictReader(csvfile)
 lines = [line for line in reader]
 return lines

def process(fname):
 content = readCSV(fname)
 incidents_by_zipcode = collections.defaultdict(int)
 for record in content:
 incidents_by_zipcode[toFloat(record['Incident Zip'])] += 1
 return sorted(incidents_by_zipcode.items(), reverse=True,
 key=lambda a: int(a[1]))[:10]

def toFloat(number):
 try:
 return int(float(number))
 except:
 return 0

def process_pandas(fname):
 df = pd.read_csv(fname, dtype={'Incident Zip': str, 'Landmark':
 str, 'Vehicle Type': str, 'Ferry Direction': str})

 df['Incident Zip'] = df['Incident Zip'].apply(toFloat)
 column_names = list(df.columns.values)
 column_names.remove("Incident Zip")

https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[198]

 column_names.remove("Unique Key")
 return df.drop(column_names, axis=1).groupby(['Incident Zip'],
 sort=False).count().sort('Unique Key', ascending=False).head(10)

init = time.clock()
total = process(SOURCE_FILE)
endtime = time.clock() - init
for item in total:
 print "%s\t%s" % (item[0], item[1])

print "(Pure Python) time: %s" % (endtime)

init = time.clock()
total = process_pandas(SOURCE_FILE)
endtime = time.clock() - init
print total
print "(Pandas) time: %s" % (endtime)

The process function is very simple. It has only five lines of code. It loads the file,
does a bit of processing (mainly manual grouping and counting), and finally, it
sorts the results and returns the first 10 of them. As an added bonus, we use the
defaultdict data type, which we mentioned a few chapters ago as a possible
performance improvement in these cases.

On the other side, the process_pandas function does essentially the same thing,
only with pandas. We have some more lines of code, but they are quite simple to
understand. They're clearly "data-wrangling oriented", as you can see that there are
no loops declared. We can even access the columns by name automatically and apply
functions over those groups of records without having to manually iterate over them.

Chapter 7

[199]

The following screenshot shows the output of the preceding code:

As you can see, there is a 3-second improvement on the performance of our algorithm
when we simply reimplement it in pandas. Let's now dig a bit deeper into the API of
pandas in order to get even better numbers. There are two major improvements we
can make to our code, and they're both related to the read_csv method, which uses a
lot of parameters. Two of these parameters are of real interest to us:

• usecols: This will only return the columns we want, effectively helping us
deal with only 2 columns out of the 40+ our dataset has. This will also help
us get rid of the logic that we have to drop the columns before returning
the results.

• converters: This allows us to auto-convert data with a function, instead of
calling the apply method, as we will do now.

Our new function looks like this:

def process_pandas(fname):
 df = pd.read_csv(fname, usecols=['Incident Zip', 'Unique Key'],
 converters={'Incident Zip': toFloat}, dtype={'Incident Zip':
 str})
 return df.groupby(['Incident Zip'],
 sort=False).count().sort('Unique Key', ascending=False).head(10)

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[200]

That's right. Only two lines of code! The reader will do all the work for us. Then, we
need to simply group, count, and sort. Now, check out how this looks compared to
our previous results:

That's a 10-second improvement on the performance of our algorithm and
considerably less code to deal with, otherwise known as a "win-win" situation.

An added bonus to our code is that it scales. The pandas-based function can deal
with a 5.9 GB file in just 30 seconds with no changes. On the other hand, our pure
Python code won't even load that file in that time, let alone process it if we don't
have enough resources.

Parakeet
This one is the most specific tool yet to deal with numbers in Python. It is very specific
because it only supports a very narrow subset of the resulting combination of Python
and NumPy. So, if you're dealing with anything outside that universe, this might not
be an option for you, but if you can fit your solution into it, then keep on reading.

Chapter 7

[201]

To be more specific about the limited universe that Parakeet supports (normally
useful only to express numerical computations), here is a short list:

• Types supported by Python are numbers, tuples, slices, and NumPy's arrays
• Parakeet follows the upcasting rule, that is, whenever two values of different

types try to reach the same variable, they'll be upcast into a unifying one. For
instance, the Python expression 1.0 if b else false would translate to
1.0 if b else 0.0, but when automatic casting isn't possible, such as 1.0
if b else (1,2), then an uncatchable exception (see next point) will be
raised during compilation time.

• Catching or even raising exceptions isn't possible in Parakeet; neither are
break and continue statements. This is because Parakeet represents programs
using structured SSA (http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.45.4503).

• Array broadcasting (a feature of NumPy) is partially implemented by
inserting explicit map operators based on the types of array arguments. This
is a limited implementation because it can't really handle an expansion of
dimensions (such as broadcasting 8 x 2 x 3 and 7 x 2 arrays).

• There is only a small subset of the built-in functions of Python and NumPy
that have been implemented. The complete list can be seen at https://
github.com/iskandr/parakeet/blob/master/parakeet/mappings.py.

• List comprehension expressions are treated as array comprehensions.

Installing Parakeet
The installation of Parakeet is simple enough. There are no hard-to-get requirements
if you want to go with the pip route. Simply type the following command:

$ pip install parakeet

And you're done!

If, on the other hand, you want to directly try the source code approach, you would
need some other packages installed beforehand. Here is a list of these packages:

• Python 2.7
• dsltools (https://github.com/iskandr/dsltools)
• nose for running the tests (https://nose.readthedocs.org/en/latest/)
• NumPy (http://www.scipy.org/install.html)
• appDirs (https://pypi.python.org/pypi/appdirs/)
• gcc 4.4+ for the OpenMP back-end, which is the default one

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4503
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4503
https://github.com/iskandr/parakeet/blob/master/parakeet/mappings.py
https://github.com/iskandr/parakeet/blob/master/parakeet/mappings.py
https://github.com/iskandr/dsltools
https://nose.readthedocs.org/en/latest/
http://www.scipy.org/install.html
https://pypi.python.org/pypi/appdirs/

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[202]

If you're on a Windows box, you would have better luck if it's a 32-bit
machine. Otherwise, you might be out of luck since there is no official
documentation on the subject.
If you are a OS X user you'll probably want to install a more up-to-date
version of the C compiler using HomeBrew, since either clang or the
installed version of gcc might not be updated enough.

After the prerequisites are met, simply download the code from: https://github.
com/iskandr/parakeet and run the following command (from within the code's
folder):

$ python setup.py install

How does Parakeet work?
Instead of going deep into the details about the theory behind Parakeet, let's simply
see how to use it to optimize our code. This will help you get a feel of the module
without having to chew through all the documentation.

The main construct of this library is a decorator that you can apply to your functions,
so Parakeet can take control and optimize your code if possible.

For our simple test, let's take one of the example functions presented on Parakeet's
website and run a simple test against a 4000 * 4000 random floating-point list. The
code will run the same function in both an optimized way using Parakeet, and in an
unoptimized way. Then, it will measure the time each one takes to process the exact
same input:

from parakeet import jit
import random
import numpy as np
import time

@jit
def allpairs_dist_prkt(X,Y):
 def dist(x,y):
 return np.sum((x-y)**2)
 return np.array([[dist(x,y) for y in Y] for x in X])

def allpairs_dist_py(X,Y):
 def dist(x,y):
 return np.sum((x-y)**2)

https://github.com/iskandr/parakeet
https://github.com/iskandr/parakeet

Chapter 7

[203]

 return np.array([[dist(x,y) for y in Y] for x in X])

input_a = [random.random() for x in range(0, 4000)]
input_b = [random.random() for x in range(0, 4000)]

print "--"
init = time.clock()
allpairs_dist_py(input_a, input_b)
end = time.clock()
print "Total time pure python: %s" % (end - init)
print
init = time.clock()
allpairs_dist_prkt(input_a, input_b)
end = time.clock()
print "Total time parakeet: %s" % (end – init)
print "--"

In an i7 processor, with 8 GB of RAM, this is the performance we get:

The preceding screenshot shows the amazing performance boost we get in this
particular function (which complies with the required subset of Python supported
by Parakeet).

Simply put, the decorated function is being used as a template from which several
type-specialized functions are created, one for each input type (in our case, we only
need one). It is these new functions that get optimized in several different ways by
Parakeet before getting translated into native code.

Note that even though the performance gain is amazing, Parakeet only
supports a very limited version of Python, so it is not really meant to be
a general purpose optimizer (quite the opposite actually).

Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[204]

Summary
In this chapter, we covered three alternatives to data processing with Python. We
covered specific use cases (but with amazing benefits), such as Parakeet, and others
more generic ones, such as pandas and Numba. For all three of them, we covered
the basics: description, installation, and an example. There is a lot more to discover
for each one, depending on your specific needs. However, the information provided
here should be enough to start you in the right direction.

For the next and final chapter, we'll cover a practical example of a script in need of
optimization. We'll try to apply everything (or as much as makes sense) that we've
covered so far in the book.

[205]

Putting It All into Practice
Welcome to the last chapter of the book. If you've made it this far, you've gone over
several optimization techniques, both specific to the Python programming language
and generic ones applicable to other similar technologies.

You've also read about tools for profiling and visualizing those results. We also
delved into one specific use case for Python, which is number crunching for scientific
purposes. You learned about the tools that allow you to optimize the performance of
your code.

In this final chapter, we'll go over one practical use case that covers all the technologies
we covered in the earlier chapters (remember that some of the tools we've seen are
alternatives, so using all of them is not really a good plan). We will write an initial
version of the code, measure its performance, and then go through the optimization
process to finally rewrite the code and measure the performance again.

The problem to solve
Before we even start thinking about writing the initial version of our code, we need
to understand the problem we're trying to solve.

Given the scope of the book, a full-blown application might be too big an
undertaking, so we'll focus on a small task. It'll give us better control over what we
want to do, and we won't run the risk of having too many things to optimize at the
same time.

Putting It All into Practice

[206]

To keep things interesting, we'll split the problem into the following two parts:

• Part 1: This will take care of finding the data we want to process. It won't just
be a dataset we download from some given URL. Instead, we'll scrape it from
the Web.

• Part 2: This will focus on processing the data obtained after solving the first
part of the problem. In this step, we may perform the most CPU-intensive
computations and calculate some statistics from the data gathered.

In both cases, we'll create an initial version of the code that solves the problem
without taking performance into account. Afterwards, we'll analyze each solution
individually and try to improve them as much as we can.

Getting data from the Web
The site we'll scrape is Science Fiction & Fantasy (http://scifi.stackexchange.
com/). The site is dedicated to answering questions about sci-fi and fantasy topics.
It is much like StackOverflow but meant for sci-fi and fantasy geeks.

To be more specific, we'll want to scrape the list of latest questions. For each
question, we'll get the page with the question's text and all the available answers.
After all the scraping and parsing is done, we'll save the relevant information in
the JSON format for easier postprocessing.

Remember that we'll deal with HTML pages. However, we don't want that. We want
to strip away all HTML code and save only the following items:

• The question's title
• The question's author
• The question's body (the actual text of the question)
• The body of the answers (if there are any)
• The answer's author

With this information, we'll be able to do some interesting postprocessing and get
some relevant statistics (more on that in a minute).

http://scifi.stackexchange.com/
http://scifi.stackexchange.com/

Chapter 8

[207]

Here is a quick example of how the output of this script should look:

{
 "questions": [
 {
 "title": "Ending of John Carpenter's The Thing",
 "body": "In the ending of John Carpenter's classic 1982 sci-
 fi horror film The Thing, is ...",
 "author": "JMFB",
 "answers": [
 {
 "body": "This is the million dollar question, ...
 Unfortunately, he is notoriously ... ",
 "author": "Richard",
 },
 {
 "body": "Not to point out what may seem obvious,
 but Childs isn't breathing. Note the total absence of ",
 "author": "user42"
 }
]
 },
 {
 "title": "Was it ever revealed what pedaling the bicycles in
 the second episode was doing?",
 "body": "I'm going to assume they were probably some sort of
 turbine...electricity...something, but I'd prefer to know
 for sure.",
 "author": "bartz",
 "answers": [
 {
 "body": "The Wikipedia synopsis states: most citizens
 make a living pedaling exercise bikes all day in order
 to generate power for their environment",
 "author": "Jack Nimble"
 }
]
 }
]
}

This script will take care of saving all the information into one single JSON file,
which will be predefined inside its code.

Putting It All into Practice

[208]

We'll try to keep the initial version of both scripts simple. This means using the least
amount of modules. In this case, the main list of modules will be as follows:

• Beautiful Soup (http://www.crummy.com/software/BeautifulSoup/):
This is used to parse the HTML files, mainly because it provides a full
parsing API, automatic encoding detection (which, if you've being in this
business long enough, you've probably come to hate) and the ability to use
selectors to traverse the parsed tree.

• Requests (http://docs.python-requests.org/en/latest/): This is used
to make HTTP requests. Although Python already provides the required
modules for this, this module simplifies the API and provides a more
Pythonic way of handling this task.

You can install both modules using the pip command-line tool:

$ pip install requests beautifulsoup4

The following screenshot shows an example of the pages we'll be scraping and
parsing in order to get the data:

http://www.crummy.com/software/BeautifulSoup/
http://docs.python-requests.org/en/latest/

Chapter 8

[209]

Postprocessing the data
The second script will take care of reading the JSON-encoded file and getting some
stats out of it. Since we want to make it interesting, we won't limit ourselves to just
counting the number of questions per user (although we will get this stat as well).
We'll also calculate the following elements:

• Top ten users with most questions
• Top ten users with most answers
• Most common topics asked about
• The shortest answer
• Top ten most common phrases
• Top ten most answered questions

Since this book's main topic is performance and not Natural Language Processing
(NLP), we will not delve into the details of the small amount of NLP that this script
will have. Instead, we'll just limit ourselves to improving the performance based on
what we've seen so far about Python.

The only non-built-in module we'll use in the first version of this script is NLTK
(http://www.nltk.org) to handle all the NLP functionalities.

The initial code base
Let's now list all of the code that we'll optimize in future, based on the
earlier description.

The first of the following points is quite simple: a single file script that takes care of
scraping and saving in JSON format like we discussed earlier. The flow is simple,
and the order is as follows:

1. It will query the list of questions page by page.
2. For each page, it will gather the question's links.
3. Then, for each link, it will gather the information listed from the

previous points.
4. It will move on to the next page and start over again.
5. It will finally save all of the data into a JSON file.

http://www.nltk.org

Putting It All into Practice

[210]

The code is as follows:

from bs4 import BeautifulSoup
import requests
import json

SO_URL = "http://scifi.stackexchange.com"
QUESTION_LIST_URL = SO_URL + "/questions"
MAX_PAGE_COUNT = 20

global_results = []
initial_page = 1 #first page is page 1

def get_author_name(body):
 link_name = body.select(".user-details a")
 if len(link_name) == 0:
 text_name = body.select(".user-details")
 return text_name[0].text if len(text_name) > 0 else 'N/A'
 else:
 return link_name[0].text

def get_question_answers(body):
 answers = body.select(".answer")
 a_data = []
 if len(answers) == 0:
 return a_data

 for a in answers:
 data = {
 'body': a.select(".post-text")[0].get_text(),
 'author': get_author_name(a)
 }
 a_data.append(data)
 return a_data

def get_question_data (url):
 print "Getting data from question page: %s " % (url)
 resp = requests.get(url)
 if resp.status_code != 200:
 print "Error while trying to scrape url: %s" % (url)
 return
 body_soup = BeautifulSoup(resp.text)
 #define the output dict that will be turned into a JSON structue

Chapter 8

[211]

 q_data = {
 'title': body_soup.select('#question-header .question-
 hyperlink')[0].text,
 'body': body_soup.select('#question .post-
 text')[0].get_text(),
 'author': get_author_name(body_soup.select(".post-
 signature.owner")[0]),
 'answers': get_question_answers(body_soup)
 }
 return q_data

def get_questions_page (page_num, partial_results):
 print "==="
 print " Getting list of questions for page %s" % (page_num)
 print "==="

 url = QUESTION_LIST_URL + "?sort=newest&page=" + str(page_num)
 resp = requests.get(url)
 if resp.status_code != 200:
 print "Error while trying to scrape url: %s" % (url)
 return
 body = resp.text
 main_soup = BeautifulSoup(body)

 #get the urls for each question
 questions = main_soup.select('.question-summary .question-
 hyperlink')
 urls = [SO_URL + x['href'] for x in questions]
 for url in urls:
 q_data = get_question_data(url)
 partial_results.append(q_data)
 if page_num < MAX_PAGE_COUNT:
 get_questions_page(page_num + 1, partial_results)

get_questions_page(initial_page, global_results)
with open('scrapping-results.json', 'w') as outfile:
 json.dump(global_results, outfile, indent=4)

print '--'
print 'Results saved'

Putting It All into Practice

[212]

By looking at the preceding code, you'll notice that we kept our promise. Right now,
we're only using the proposed external modules, plus the JSON module, which
comes built-in with Python.

The second script, on the other hand, is split into two, mainly for organizational
purposes:

• analyzer.py: This file contains the main code. It takes care of loading the
JSON file into a dict structure and performs a series of calculations.

• visualizer.py: This file simply contains a set of functions used to visualize
the different results from the analyzer.

Let's now take a look at the code in both these files. The first set of functions will be
the utility functions used to sanitize the data, load it into memory, and so on:

#analyzer.py
import operator
import string
import nltk
from nltk.util import ngrams
import json
import re
import visualizer

SOURCE_FILE = './scrapping-results.json'

Load the json file and return the resulting dict
def load_json_data(file):
 with open(file) as input_file:
 return json.load(input_file)

def analyze_data(d):
 return {
 'shortest_answer': get_shortest_answer(d),
 'most_active_users': get_most_active_users(d, 10),
 'most_active_topics': get_most_active_topics(d, 10),
 'most_helpful_user': get_most_helpful_user(d, 10),
 'most_answered_questions': get_most_answered_questions(d, 10),
 'most_common_phrases': get_most_common_phrases(d, 10, 4),
 }

Creates a single, lower cased string from the bodies of all
questions

Chapter 8

[213]

def flatten_questions_body(data):
 body = []
 for q in data:
 body.append(q['body'])
 return '. '.join(body)

Creates a single, lower cased string from the titles of all
questions
def flatten_questions_titles(data):
 body = []
 pattern = re.compile('(\[|\])')
 for q in data:
 lowered = string.lower(q['title'])
 filtered = re.sub(pattern, ' ', lowered)
 body.append(filtered)
 return '. '.join(body)

The following set of functions are the ones that actually performs the counting of data
and gets the statistics we want by analyzing the JSON in different ways:

Returns the top "limit" users with the most questions asked
def get_most_active_users(data, limit):
 names = {}
 for q in data:
 if q['author'] not in names:
 names[q['author']] = 1
 else:
 names[q['author']] += 1
 return sorted(names.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

def get_node_content(node):
 return ' '.join([x[0] for x in node])

Tries to extract the most common topics from the question's titles
def get_most_active_topics(data, limit):
 body = flatten_questions_titles(data)
 sentences = nltk.sent_tokenize(body)
 sentences = [nltk.word_tokenize(sent) for sent in sentences]
 sentences = [nltk.pos_tag(sent) for sent in sentences]
 grammar = "NP: {<JJ>?<NN.*>}"
 cp = nltk.RegexpParser(grammar)
 results = {}
 for sent in sentences:

Putting It All into Practice

[214]

 parsed = cp.parse(sent)
 trees = parsed.subtrees(filter=lambda x: x.label() == 'NP')
 for t in trees:
 key = get_node_content(t)
 if key in results:
 results[key] += 1
 else:
 results[key] = 1
 return sorted(results.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

Returns the user that has the most answers
def get_most_helpful_user(data, limit):
 helpful_users = {}
 for q in data:
 for a in q['answers']:
 if a['author'] not in helpful_users:
 helpful_users[a['author']] = 1
 else:
 helpful_users[a['author']] += 1

 return sorted(helpful_users.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

returns the top "limit" questions with the most amount of answers
def get_most_answered_questions(d, limit):
 questions = {}

 for q in d:
 questions[q['title']] = len(q['answers'])
 return sorted(questions.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

Finds a list of the most common phrases of 'length' length
def get_most_common_phrases(d, limit, length):
 body = flatten_questions_body(d)
 phrases = {}
 for sentence in nltk.sent_tokenize(body):
 words = nltk.word_tokenize(sentence)
 for phrase in ngrams(words, length):
 if all(word not in string.punctuation for word in phrase):
 key = ' '.join(phrase)

Chapter 8

[215]

 if key in phrases:
 phrases[key] += 1
 else:
 phrases[key] = 1

 return sorted(phrases.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

Finds the answer with the least amount of characters
def get_shortest_answer(d):

 shortest_answer = {
 'body': '',
 'length': -1
 }
 for q in d:
 for a in q['answers']:
 if len(a['body']) < shortest_answer['length'] or
 shortest_answer['length'] == -1:
 shortest_answer = {
 'question': q['body'],
 'body': a['body'],
 'length': len(a['body'])
 }
 return shortest_answer

The following code shows how to use the functions declared earlier and display their
results. It all boils down to three steps:

1. It loads the JSON into memory.
2. It processes the data and saves the results into a dictionary.
3. It goes over that dictionary to display the results.

The preceding steps are performed in the following code:

data_dict = load_json_data(SOURCE_FILE)

results = analyze_data(data_dict)

print "=== (Shortest Answer) === "
visualizer.displayShortestAnswer(results['shortest_answer'])

print "=== (Most Active Users) === "

Putting It All into Practice

[216]

visualizer.displayMostActiveUsers(results['most_active_users'])

print "=== (Most Active Topics) === "
visualizer.displayMostActiveTopics(results['most_active_topics'])

print "=== (Most Helpful Users) === "
visualizer.displayMostHelpfulUser(results['most_helpful_user'])

print "=== (Most Answered Questions) === "
visualizer.displayMostAnsweredQuestions(results['most_answered_
questions'])

print "=== (Most Common Phrases) === "
visualizer.displayMostCommonPhrases(results['most_common_phrases'])

The code in the following file is merely used to format the output in a human-friendly
way:

#visualizer.py
def displayShortestAnswer(data):
 print "A: %s" % (data['body'])
 print "Q: %s" % (data['question'])
 print "Length: %s characters" % (data['length'])

def displayMostActiveUsers(data):
 index = 1
 for u in data:
 print "%s - %s (%s)" % (index, u[0], u[1])
 index += 1

def displayMostActiveTopics(data):
 index = 1
 for u in data:
 print "%s - %s (%s)" % (index, u[0], u[1])
 index += 1

def displayMostHelpfulUser(data):
 index = 1
 for u in data:
 print "%s - %s (%s)" % (index, u[0], u[1])
 index += 1

def displayMostAnsweredQuestions(data):
 index = 1
 for u in data:

Chapter 8

[217]

 print "%s - %s (%s)" % (index, u[0], u[1])
 index += 1

def displayMostCommonPhrases(data):
 index = 1
 for u in data:
 print "%s - %s (%s)" % (index, u[0], u[1])
 index += 1

Analyzing the code
Analyzing the code will be done in two steps, just like we've being doing so far.
For each project, we'll profile the code, get the numbers, consider our optimization
alternatives, and then refactor and measure the code's performance again.

As the process described earlier can lead to several iterations of
profiling—refactoring—profiling again, we'll limit the steps to the final
results. However, keep in mind that this process is long and takes time.

Scraper
To start off the optimization process, let's first get some measurements so that we can
compare our changes with them.

An easy-to-get number is the total time spent during the program's execution
(in our example, and to keep things simple, we're limiting the total number of
pages to query to 20).

Simply using the time command-line tool, we can get that number:

$ time python scraper.py

The following screenshot shows that we have 7 minutes and 30 seconds to scrape
and parse the 20 pages of questions, which translate into a 3 MB JSON file:

Putting It All into Practice

[218]

The scraper script is essentially an IO-bound loop that pulls data from the Internet
with a minimum amount of processing. So, the first and most logical optimization
we can spot here is the lack of parallelization of the requests. Since our code is
not really CPU-bound, we can safely use the multithreading module (refer to
Chapter 5, Multithreading versus Multiprocessing) and get an interesting speed
boost with minimum effort.

Just to clarify what we're going to be doing, the following diagram shows the current
status of the scraper script:

HTML parsing
and other operations

I/O Operation
(HTTP requests)

I/O I/O I/O I/O

We're spending most of our running time on I/O operations, more specifically on the
HTTP requests we're doing to get the list of questions and each question's page.

As we've seen earlier, I/O operations can be parallelized easily using the
multithreading module. So, we will transform our script so it resembles
as shown in the following diagram:

Concurrent HTTP requests

ThreadManager
(Shared data)

I/O I/O I/O I/O

I/O I/O I/O I/O

Thread #1

Thread #2

Chapter 8

[219]

Now, let's look at the actual optimized code. We'll first look at the ThreadManager
class, which will take care of centralizing the configuration of the threads as well as
the status of the entire parallel process:

from bs4 import BeautifulSoup
import requests
import json
import threading

SO_URL = "http://scifi.stackexchange.com"
QUESTION_LIST_URL = SO_URL + "/questions"
MAX_PAGE_COUNT = 20

class ThreadManager:
 instance = None
 final_results = []
 threads_done = 0
 totalConnections = 4 #Number of parallel threads working, will
 affect the total amount of pages per thread

 @staticmethod
 def notify_connection_end(partial_results):
 print "==== Thread is done! ====="
 ThreadManager.threads_done += 1
 ThreadManager.final_results += partial_results
 if ThreadManager.threads_done ==
 ThreadManager.totalConnections:
 print "==== Saving data to file! ===="
 with open('scrapping-results-optimized.json', 'w') as
 outfile:
 json.dump(ThreadManager.final_results, outfile, indent=4)

The following functions take care of scraping the information from a page using
BeatifulSoup, either by getting the lists of pages or getting the actual information
for each question:

def get_author_name(body):
 link_name = body.select(".user-details a")
 if len(link_name) == 0:
 text_name = body.select(".user-details")
 return text_name[0].text if len(text_name) > 0 else 'N/A'
 else:

Putting It All into Practice

[220]

 return link_name[0].text

def get_question_answers(body):
 answers = body.select(".answer")
 a_data = []
 if len(answers) == 0:
 return a_data

 for a in answers:
 data = {
 'body': a.select(".post-text")[0].get_text(),
 'author': get_author_name(a)
 }
 a_data.append(data)
 return a_data

def get_question_data (url):
 print "Getting data from question page: %s " % (url)
 resp = requests.get(url)
 if resp.status_code != 200:
 print "Error while trying to scrape url: %s" % (url)
 return
 body_soup = BeautifulSoup(resp.text)
 #define the output dict that will be turned into a JSON structue
 q_data = {
 'title': body_soup.select('#question-header .question-
 hyperlink')[0].text,
 'body': body_soup.select('#question .post-
 text')[0].get_text(),
 'author': get_author_name(body_soup.select(".post-
 signature.owner")[0]),
 'answers': get_question_answers(body_soup)
 }
 return q_data

def get_questions_page (page_num, end_page, partial_results):
 print "==="
 print " Getting list of questions for page %s" % (page_num)
 print "==="

 url = QUESTION_LIST_URL + "?sort=newest&page=" + str(page_num)
 resp = requests.get(url)

Chapter 8

[221]

 if resp.status_code != 200:
 print "Error while trying to scrape url: %s" % (url)
 else:
 body = resp.text
 main_soup = BeautifulSoup(body)

 #get the urls for each question
 questions = main_soup.select('.question-summary .question-
 hyperlink')
 urls = [SO_URL + x['href'] for x in questions]
 for url in urls:
 q_data = get_question_data(url)
 partial_results.append(q_data)
 if page_num + 1 < end_page:
 get_questions_page(page_num + 1, end_page, partial_results)
 else:
 ThreadManager.notify_connection_end(partial_results)
pages_per_connection = MAX_PAGE_COUNT / ThreadManager.totalConnections
for i in range(ThreadManager.totalConnections):
 init_page = i * pages_per_connection
 end_page = init_page + pages_per_connection
 t = threading.Thread(target=get_questions_page,
 args=(init_page, end_page, [],),
 name='connection-%s' % (i))
 t.start()

The highlighted code in the preceding snippet shows the main change done to the
initial script. Instead of starting at page 1 and moving forward one by one, we're
starting a preconfigured number of threads (using the threading.Thread class
directly) that will call our get_question_page function in parallel. All we had
to do was pass in that function as the target of each new thread.

After that, we also needed a way to centralize the configuration parameters and the
temporary results from each thread. For that, we created the ThreadManager class.

With this change, we go from the 7 minutes mark all the way down to 2 minutes
13 seconds, as shown in the following screenshot:

Tweaking the number of threads, for instance, might lead to even better numbers,
but the main improvement is already there.

Putting It All into Practice

[222]

Analyzer
The code for the analyzer script is different compared to the scraper. Instead of
having a heavy I/O-bound script, we have the opposite: a CPU-bound one. It does
very little I/O, mainly to read the input file and output the results. So, we will focus
on measuring in more detail.

Let's first get some basic measurements so that we know where we stand:

The preceding screenshot shows the output of the time command-line utility.
So now that we have a base number to work with, we know we need to get the
execution time lower than 3.5 seconds.

The first approach would be to use cProfile and start getting some numbers
from the inside of our code. This should help us get a general overview of our
program to start understanding where our pain points are. The output looks
like the following screenshot:

Chapter 8

[223]

There are two areas of interest in the preceding screenshot:

• On the left-hand side, we can see the functions and how much time they
consume. Pay attention to how most of the list is composed of external
functions, mainly from the nltk module (the first two are just consumers of
the others below, so they don't really matter).

• On the right-hand side, the Callee Map looks way too complex to interpret it
(quite apart from the fact that again, most of the functions listed there aren't
from our code, but from the libraries we're using).

With that being said, it looks like improving our code directly is not going to be a
simple task. Instead, we might want to go on another route: since we're doing a lot of
counting, we might benefit from typed code. So, let's try our hand at using Cython.

An initial analysis using the Cython command-line utility shows that most of our
code can't directly be translated into C, as shown in the following screenshot:

Putting It All into Practice

[224]

The preceding screenshot shows a portion of the analysis of our code. We can clearly
see the darker lines filling most of the screen, showing that most of our code can't be
directly translated into C. Sadly, this is because we're dealing with a complex object
in most of our functions, so there isn't much we can do about it.

Still, simply by compiling our code with Cython, we get much better results. So,
let's take a look at how we need to modify the source so that we can compile it with
Cython. The first file is basically the same as the original analyzer with the changes
highlighted in the code and minus the actual function calls, as we're now turning it
into an external library:

#analyzer_cython.pyx
import operator
import string
import nltk
from nltk.util import ngrams
import json
import re

SOURCE_FILE = './scrapping-results.json'

Returns the top "limit" users with the most questions asked
def get_most_active_users(data, int limit):
 names = {}
 for q in data:
 if q['author'] not in names:
 names[q['author']] = 1
 else:
 names[q['author']] += 1
 return sorted(names.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

def get_node_content(node):
 return ' '.join([x[0] for x in node])

Tries to extract the most common topics from the question's titles

def get_most_active_topics(data, int limit):
 body = flatten_questions_titles(data)
 sentences = nltk.sent_tokenize(body)
 sentences = [nltk.word_tokenize(sent) for sent in sentences]
 sentences = [nltk.pos_tag(sent) for sent in sentences]
 grammar = "NP: {<JJ>?<NN.*>}"
 cp = nltk.RegexpParser(grammar)

Chapter 8

[225]

 results = {}
 for sent in sentences:
 parsed = cp.parse(sent)
 trees = parsed.subtrees(filter=lambda x: x.label() == 'NP')
 for t in trees:
 key = get_node_content(t)
 if key in results:
 results[key] += 1
 else:
 results[key] = 1
 return sorted(results.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

Returns the user that has the most answers

def get_most_helpful_user(data, int limit):
 helpful_users = {}
 for q in data:
 for a in q['answers']:
 if a['author'] not in helpful_users:
 helpful_users[a['author']] = 1
 else:
 helpful_users[a['author']] += 1

 return sorted(helpful_users.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

returns the top "limit" questions with the most amount of answers

def get_most_answered_questions(d, int limit):
 questions = {}

 for q in d:
 questions[q['title']] = len(q['answers'])
 return sorted(questions.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

Creates a single, lower cased string from the bodies of all
questions
def flatten_questions_body(data):
 body = []
 for q in data:
 body.append(q['body'])

Putting It All into Practice

[226]

 return '. '.join(body)

Creates a single, lower cased string from the titles of all
questions
def flatten_questions_titles(data):
 body = []
 pattern = re.compile('(\[|\])')
 for q in data:
 lowered = string.lower(q['title'])
 filtered = re.sub(pattern, ' ', lowered)
 body.append(filtered)
 return '. '.join(body)

Finds a list of the most common phrases of 'length' length

def get_most_common_phrases(d, int limit , int length):
 body = flatten_questions_body(d)
 phrases = {}
 for sentence in nltk.sent_tokenize(body):
 words = nltk.word_tokenize(sentence)
 for phrase in ngrams(words, length):
 if all(word not in string.punctuation for word in phrase):
 key = ' '.join(phrase)
 if key in phrases:
 phrases[key] += 1
 else:
 phrases[key] = 1

 return sorted(phrases.items(), reverse=True,
 key=operator.itemgetter(1))[:limit]

Finds the answer with the least amount of characters
def get_shortest_answer(d):

 cdef int shortest_length = 0;

 shortest_answer = {
 'body': '',
 'length': -1
 }
 for q in d:
 for a in q['answers']:

Chapter 8

[227]

 if len(a['body']) < shortest_length or shortest_length == 0:
 shortest_length = len(a['body'])
 shortest_answer = {
 'question': q['body'],
 'body': a['body'],
 'length': shortest_length
 }
 return shortest_answer

Load the json file and return the resulting dict
def load_json_data(file):
 with open(file) as input_file:
 return json.load(input_file)

def analyze_data(d):
 return {
 'shortest_answer': get_shortest_answer(d),
 'most_active_users': get_most_active_users(d, 10),
 'most_active_topics': get_most_active_topics(d, 10),
 'most_helpful_user': get_most_helpful_user(d, 10),
 'most_answered_questions': get_most_answered_questions(d, 10),
 'most_common_phrases': get_most_common_phrases(d, 10, 4),
 }

The following file is the one that takes care of setting everything up for
Cython to compile our code, we've seen this code before (refer to Chapter 6,
Generic Optimization Options):

#analyzer-setup.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
 name = 'Analyzer app',
 ext_modules = cythonize("analyzer_cython.pyx"),
)

Putting It All into Practice

[228]

The last file is the one that uses our new external library by importing the compiled
module. The file calls on the load_json_data and analyze_data methods and,
finally, uses the visualizer module to format the output:

#analyzer-use-cython.py
import analyzer_cython as analyzer
import visualizer

data_dict = analyzer.load_json_data(analyzer.SOURCE_FILE)

results = analyzer.analyze_data(data_dict)

print "=== (Shortest Answer) === "
visualizer.displayShortestAnswer(results['shortest_answer'])

print "=== (Most Active Users) === "
visualizer.displayMostActiveUsers(results['most_active_users'])

print "=== (Most Active Topics) === "
visualizer.displayMostActiveTopics(results['most_active_topics'])

print "=== (Most Helpful Users) === "
visualizer.displayMostHelpfulUser(results['most_helpful_user'])

print "=== (Most Answered Questions) === "
visualizer.displayMostAnsweredQuestions(results['most_answered_
questions'])

print "=== (Most Common Phrases) === "
visualizer.displayMostCommonPhrases(results['most_common_phrases'])

The preceding code can be compiled using the following line:

$ python analyzer-setup.py build_ext –inplace

Chapter 8

[229]

Then, by running the analyzer-use-cython.py script, we will get the following
execution time:

The time went down from 3.5 to 1.3 seconds. This is quite an improvement from
simply reorganizing of our code and compiling it using Cython, like we saw in
Chapter 6, Generic Optimization Options. This simple compilation can produce
great results.

The code can be further broken down and rewritten to remove most of the need for
complex structures, thus allowing us to declare the primitive types for all variables.
We could even try to remove nltk and use some NLP library written in C, such as
OpenNLP (http://opennlp.sourceforge.net/projects.html).

Summary
You've reached the end of the chapter and, with it, the end of this book. The examples
provided in this last chapter are meant to show how a random piece of code can be
analyzed and improved using the techniques shown in the previous chapters.

As not all techniques are compatible with each other, not all of them were applicable
here. However, we were able to see how some of them work, more specifically,
multithreading, profiling with cProfile and kcachegrind, and finally, compilation
with Cython.

Thank you for reading and, hopefully, enjoying the book!

http://opennlp.sourceforge.net/projects.html

[231]

Index
A
Anaconda Python distribution

URL 195
appDirs

URL 201

B
Big O notation 15

C
code optimization

about 180
with Cython 180
with PyPy 181

Compute Unified Device Architecture
(CUDA)

about 194
URL 194

configuration, Numba
No GIL 189
NoPython mode 189-194

constant time - O(1) 16
cProfile

about 28
API 30-34
example 28, 29
Fibonacci example 38-44
limitations 30
methods, using 30-34
Stats class 34-38
Tweet stats example 44-52

URL 28
cStringIO

URL 157
using 157-159

ctypes library
about 115
custom C library, loading 116-118
system library, loading 118
URL 116

Cython
about 161, 162
C functions, calling 166
C functions, defining 169
considerations 180
example 171-173
function types, defining 169, 170
installing 162, 163
limitations 178
naming conflicts, solving 167
standard Python functions, defining 169
type definition, considerations 173-178
types, defining 168, 169
URL 161

Cython, limitations
comparison of char* literals 179
generator expressions 178
stack frames 179
tuples, as function arguments 179

Cython module
building 163-165
definition files 165
implementation files 165
reference link 165

[232]

D
data analysis

with pandas 196-200
default arguments 108-110
definition files 165
deterministic profiler 28
dsltools

URL 201

E
event-based profilers 3
event-based profiling 2-5
events 149
execution time

profiling 8, 9

F
factorial time - O(n!) 18, 19
first in first out (FIFO) 147

G
generators 110-115
Global Interpreter Lock (GIL) 127, 129
GPU

code, executing 194

I
implementation files 165
initial code base

about 209-216
analyzing 217
for analyzer script 222-229
scraper 217-221

inverted index
__start__ method, using 64
about 58
creating, with line_profiler 58-61

getOffsetUpToWord function,
using 61, 64, 65

getWords function, using 62, 66, 67
list2dict function, using 62, 67
readFileContent function, using 63
saveIndex function, using 63, 68
URL 58

issues
data, getting from Web 206-208
data, postprocessing 209
solving 205, 206

J
Just-in-time (JIT) compiler

about 152
cStringIO, using 157-159
disabling 159
functions, using 156, 157
optimizing 156
using 154, 155

JVM Tools Interface (JVMTI) 2

K
KCacheGrind

about 72
inverted index example 78-82
TweetStats example 75-78

kernprof
about 54
considerations 55, 56
Fibonacci example 56-58
using 54

L
linearithmic time - O(nlog n) 18
linear time - O(n) 16, 17
line_profiler

about 28, 52
Fibonacci example 56-58
installing 52

[233]

inverted index, creating 58-61
kernprof, using 52-54
URL 28
using 53, 54

list comprehension 110-115
logarithmic time - O(log n) 17
lookup tables

about 98-102
binary search 103
on dictionary 103
on linked list 102, 103
on list 102, 103
use cases 103-107

lsprofcalltree.py tool
about 72
URL 72

M
matplotlib

URL 196
memoization. See lookup tables
memory consumption 11-14
memory leaks 11-14
miniconda

about 185
URL 185

multiprocessing
about 127, 143
advantages 144
benefits 129
disadvantages 144

multiprocessing, with Python
about 144
events 149
exit status 145, 146
interprocess communication 147
pipes 148
process pooling 147
URL 144

multithreading
about 127, 128
drawbacks 129

N
namedtuples

URL 125
Natural Language Processing (NLP) 209
nfl sort

versus stdname sort 36
NLTK

URL 209
Numba

about 183-185
code, executing in GPU 194
code generation 187, 188
compilation 188
configuration settings 188
installing 185-187
URL 184
using 187

NumPy
URL 201

O
OCaml

URL 130
OpenCL

from Khronos Group, URL 129
OProfile

URL 5
optimization

tips 123-125
tricks 123-125

P
pandas

about 183, 195
installing 195, 196
URL 195
used, for data analysis 196-200

Parakeet
about 183, 200
features 201

[234]

installing 201, 202
URL 202
working with 202, 203

parallelism
versus concurrency 128

pip
URL 83

pipes
about 148
URL 148

premature optimization
risk 15

profilers
about 27
cProfile 28
line_profiler 28

profiling
about 2
best practices 22
bottlenecks 10
event-based profiling 2-5
execution time 8, 9
importance 6, 7
measuring 8
statistical profiling 5

profiling, best practices
be patient 22
data, gathering 23
data, preprocessing 23
data, visualizing 23-25
functional code 22
regression-test suite, building 22

pyprof2calltree
about 72
installation 72
inverted index example 78-82
TweetStats example 75-78
usage 73, 74

PyPy
about 151, 152
code sample 160, 161
considerations 181
features 152

installing 153, 154
Just-in-time (JIT) compiler 154, 155
sandboxing 155, 156
URL 152

Q
QCacheGrind

installing 72
URL 73

quadratic time - O(n^) 19-21

R
read-eval-print loop (REPL) 73
Running Time Complexity (RTC)

about 15
constant time - O(1) 16
factorial time - O(n!) 18, 19
linearithmic time - O(nlog n) 18
linear time - O(n) 16, 17
logarithmic time - O(log n) 17
quadratic time - O(n^) 19-21

RunSnakeRun
about 71, 82
features 83
installation 83
lowest common multiplier, obtaining 85-87
URL 71
usage 84, 85
word, searching inside

inverted index 87-94

S
sandboxing 155, 156
statistical profiling

about 5
advantages 5, 6

Stats class
about 34
example 37, 38
methods 35
sorting criteria 35

[235]

stdname sort
versus nfl sort 36

string concatenation 119-123

T
threading module

event construct, URL 141
thread class, URL 136
working with 136-141

threads
about 130
creating, thread module used 131-136
in Python 130
interthread communication,

with events 142, 143
threading module 130
thread module 130

tracing profilers 3

W
wxPython

URL 83

Thank you for buying
Mastering Python High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs
using advanced techniques

1. Identify the bottlenecks in your
applications and solve them using
the best profiling techniques.

2. Write efficient numerical code in NumPy
and Cython.

3. Adapt your programs to run on multiple
processors with parallel programming.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

Please check www.PacktPub.com for information on our titles

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials for
developers who are new to Python or charting
in Python.

Python Network Programming
Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various
besopke client/server networking
applications using standard and
popular third-party Python libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Profiling 101
	What is profiling?
	Event-based profiling
	Statistical profiling

	The importance of profiling
	What can we profile?
	Execution time
	Where are the bottlenecks?

	Memory consumption and memory leaks
	The risk of premature optimization
	Running time complexity
	Constant time – O(1)
	Linear time – O(n)
	Logarithmic time – O(log n)
	Linearithmic time – O(nlog n)
	Factorial time – O(n!)
	Quadratic time – O(n^)

	Profiling best practices
	Build a regression-test suite
	Mind your code
	Be patient
	Gather as much data as you can
	Preprocess your data
	Visualize your data

	Summary

	Chapter 2: The Profilers
	Getting to know our new best friends: the profilers
	cProfile
	A note about limitations
	The API provided
	The Stats class
	Profiling examples
	Fibonacci again
	Tweet stats

	line_profiler
	kernprof
	Some things to consider about kernprof
	Profiling examples
	Back to Fibonacci
	Inverted index

	Summary

	Chapter 3: Going Visual: GUIs to Help Understand Profiler Output
	KCacheGrind – pyprof2calltree
	Installation
	Usage
	A profiling example – TweetStats
	A profiling example – Inverted Index

	RunSnakeRun
	Installation
	Usage
	Profiling examples – the lowest common multiplier
	A profiling example – search using the inverted index

	Summary

	Chapter 4: Optimize Everything
	Memoization / lookup tables
	Performing a lookup on a list or linked list
	Simple lookup on a dictionary
	Binary search
	Use cases for lookup tables

	Usage of default arguments
	List comprehension and generators
	ctypes
	Loading your own custom C library
	Loading a system library

	String concatenation
	Other tips and tricks
	Summary

	Chapter 5: Multithreading versus Multiprocessing
	Parallelism versus concurrency
	Multithreading
	Threads

	Multiprocessing
	Multiprocessing with Python

	Summary

	Chapter 6: Generic Optimization Options
	PyPy
	Installing PyPy
	A Just-in-time compiler
	Sandboxing
	Optimizing for the JIT
	Think of functions
	Consider using cStringIO to concatenate strings
	Actions that disable the JIT

	Code sample

	Cython
	Installing Cython
	Building a Cython module
	Calling C functions
	Solving naming conflicts

	Defining types
	Defining types during function definitions
	A Cython example
	When to define a type
	Limitations
	Generator expressions
	Comparison of char* literals
	Tuples as function arguments
	Stack frames

	How to choose the right option
	When to go with Cython
	When to go with PyPy

	Summary

	Chapter 7: Lightning Fast Number Crunching with Numba, Parakeet, and pandas
	Numba
	Installation
	Using Numba
	Numba's code generation
	Running your code on the GPU

	The pandas tool
	Installing pandas
	Using pandas for data analysis

	Parakeet
	Installing Parakeet
	How does Parakeet work?

	Summary

	Chapter 8: Putting It All into Practice
	The problem to solve
	Getting data from the Web
	Postprocessing the data

	The initial code base
	Analyzing the code
	Scraper

	Analyzer

	Summary

	Index

