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Preface
The idea of this book came to me from the nice people at Packt Publishing.  
They wanted someone who could delve into the intricacies of high performance  
in Python and everything related to this subject, be it profiling, the available  
tools (such as profilers and other performance enhancement techniques),  
or even alternatives to the standard Python implementation.

Having said that, I welcome you to Mastering Python High Performance. In this  
book, we'll cover everything related to performance improvements. Knowledge 
about the subject is not strictly required (although it won't hurt), but knowledge  
of the Python programming language is required, especially in some of the  
Python-specific chapters.

We'll start by going through the basics of what profiling is, how it fits into the 
development cycle, and the benefits related to including this practice in it. Afterwards, 
we'll move on to the core tools required to get the job done (profilers and visual 
profilers). Then, we will take a look at a set of optimization techniques and finally 
arrive at a fully practical chapter that will provide a real-life optimization example.

What this book covers
Chapter 1, Profiling 101, provides information about the art of profiling to those who 
are not aware of it.

Chapter 2, The Profilers, tells you how to use the core tools that will be mentioned 
throughout the book.

Chapter 3, Going Visual – GUIs to Help Understand Profiler Output, covers how to 
use the pyprof2calltree and RunSnakeRun tools. It also helps the developer to 
understand the output of cProfile with different visualization techniques.
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Chapter 4, Optimize Everything, talks about the basic process of optimization and a set 
of good/recommended practices that every Python developer should follow before 
considering other options.

Chapter 5, Multithreading versus Multiprocessing, discusses multithreading and 
multiprocessing and explains how and when to apply them.

Chapter 6, Generic Optimization Options, describes and shows you how to install and 
use Cython and PyPy in order to improve code performance.

Chapter 7, Lightning Fast Number Crunching with Numba, Parakeet, and pandas, talks 
about tools that help optimize Python scripts that deal with numbers. These specific 
tools (Numba, Parakeet, and pandas) help make number crunching faster.

Chapter 8, Putting It All into Practice, provides a practical example of profilers, finds 
its bottlenecks, and removes them using the tools and techniques mentioned in this 
book. To conclude, we'll compare the results of using each technique.

What you need for this book
Your system must have the following software before executing the code mentioned 
in this book:

• Python 2.7
• Line profiler 1.0b2
• Kcachegrind 0.7.4
• RunSnakeRun 2.0.4
• Numba 0.17
• The latest version of Parakeet
• pandas 0.15.2

Who this book is for
Since the topics tackled in this book cover everything related to profiling and 
optimizing the Python code, Python developers at all levels will benefit from  
this book.

The only essential requirement is to have some basic knowledge of the Python 
programing language.
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We 
can print/gather the information we deem relevant inside the PROFILER function."

A block of code is set as follows:

import sys

def profiler(frame, event, arg):
    print 'PROFILER: %r %r' % (event, arg)

sys.setprofile(profiler)

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

Traceback (most recent call last): 
  File "cprof-test1.py", line 7, in <module> 
    runRe() ...
  File "/usr/lib/python2.7/cProfile.py", line 140, in runctx 
    exec cmd in globals, locals 
  File "<string>", line 1, in <module> 
NameError: name 're' is not defined 

Any command-line input or output is written as follows:

$ sudo apt-get install python-dev libxml2-dev libxslt-dev
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New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Again, 
with the Callee Map selected for the first function call, we can see the entire map  
of our script."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/9300OS_GraphicBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com
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Profiling 101
Just like any infant needs to learn how to crawl before running 100 mts with 
obstacles in under 12 seconds, programmers need to understand the basics of 
profiling before trying to master that art. So, before we start delving into the 
mysteries of performance optimization and profiling on Python programs,  
we need to have a clear understanding of the basics.

Once you know the basics, you'll be able to learn about the tools and techniques.  
So, to start us off, this chapter will cover everything you need to know about 
profiling but were too afraid to ask. In this chapter we will do the following things:

• We will provide a clear definition of what profiling is and the different 
profiling techniques.

• We will explain the importance of profiling in the development cycle, 
because profiling is not something you do only once and then forget about 
it. Profiling should be an integral part of the development process, just like 
writing tests is.

• We will cover things we can profile. We'll go over the different types of 
resources we'll be able to measure and how they'll help us find our problems.

• We will discuss the risk of premature optimization, that is, why optimizing 
before profiling is generally a bad idea.

• You will learn about running time complexity. Understanding profiling 
techniques is one step into successful optimization, but we also need to 
understand how to measure the complexity of an algorithm in order to 
understand whether we need to improve it or not.

• We will also look at good practices. Finally, we'll go over some good 
practices to keep in mind when starting the profiling process of your project.
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What is profiling?
A program that hasn't been optimized will normally spend most of its CPU cycles 
in some particular subroutines. Profiling is the analysis of how the code behaves 
in relation to the resources it's using. For instance, profiling will tell you how 
much CPU time an instruction is using or how much memory the full program is 
consuming. It is achieved by modifying either the source code of the program or the 
binary executable form (when possible) to use something called as a profiler.

Normally, developers profile their programs when they need to either optimize their 
performance or when those programs are suffering from some kind of weird bug, 
which can normally be associated with memory leaks. In such cases, profiling can 
help them get an in-depth understanding of how their code is using the computer's 
resources (that is, how many times a certain function is being called).

A developer can use this information, along with a working knowledge of the source 
code, to find the program's bottlenecks and memory leaks. The developer can then 
fix whatever is wrong with the code.

There are two main methodologies for profiling software: event-based profiling and 
statistical profiling. When using these types of software, you should keep in mind 
that they both have pros and cons.

Event-based profiling
Not every programming language supports this type of profiling. Here are some 
programming languages that support event-based profiling:

• Java: The JVMTI (JVM Tools Interface) provides hooks for profilers to trap 
events such as calls, thread-related events, class loads and so on

• .NET: Just like with Java, the runtime provides events (http://
en.wikibooks.org/wiki/Introduction_to_Software_Engineering/
Testing/Profiling#Methods_of_data_gathering)

• Python: Using the sys.setprofile function, a developer can 
trap events such as python_[call|return|exception] or c_
[call|return|exception]

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing/Profiling#Methods_of_data_gathering
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Event-based profilers (also known as tracing profilers) work by gathering data 
on specific events during the execution of our program. These profilers generate a 
large amount of data. Basically, the more events they listen to, the more data they 
will gather. This makes them somewhat impractical to use, and they are not the 
first choice when starting to profile a program. However, they are a good last resort 
when other profiling methods aren't enough or just aren't specific enough. Consider 
the case where you'd want to profile all the return statements. This type of profiler 
would give you the granularity you'd need for this task, while others would simply 
not allow you to execute this task.

A simple example of an event-based profiler on Python could be the following code 
(we'll understand this topic better once we reach the upcoming chapters):

import sys

def profiler(frame, event, arg):
    print 'PROFILER: %r %r' % (event, arg)

sys.setprofile(profiler)

#simple (and very ineficient) example of how to calculate the 
Fibonacci sequence for a number.
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

def fib_seq(n):
    seq = [ ]
    if n > 0:
        seq.extend(fib_seq(n-1))
    seq.append(fib(n))
    return seq

print fib_seq(2)
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The preceding code contributes to the following output:

PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'return' 0
PROFILER: 'c_call' <built-in method append of list object at 
0x7f570ca215f0>
PROFILER: 'c_return' <built-in method append of list object at 
0x7f570ca215f0>
PROFILER: 'return' [0]
PROFILER: 'c_call' <built-in method extend of list object at 
0x7f570ca21bd8>
PROFILER: 'c_return' <built-in method extend of list object at 
0x7f570ca21bd8>
PROFILER: 'call' None
PROFILER: 'return' 1
PROFILER: 'c_call' <built-in method append of list object at 
0x7f570ca21bd8>
PROFILER: 'c_return' <built-in method append of list object at 
0x7f570ca21bd8>
PROFILER: 'return' [0, 1]
PROFILER: 'c_call' <built-in method extend of list object at 
0x7f570ca55bd8>
PROFILER: 'c_return' <built-in method extend of list object at 
0x7f570ca55bd8>
PROFILER: 'call' None
PROFILER: 'call' None
PROFILER: 'return' 1
PROFILER: 'call' None
PROFILER: 'return' 0
PROFILER: 'return' 1
PROFILER: 'c_call' <built-in method append of list object at 
0x7f570ca55bd8>
PROFILER: 'c_return' <built-in method append of list object at 
0x7f570ca55bd8>
PROFILER: 'return' [0, 1, 1]
[0, 1, 1]
PROFILER: 'return' None
PROFILER: 'call' None
PROFILER: 'c_call' <built-in method discard of set object at 
0x7f570ca8a960>
PROFILER: 'c_return' <built-in method discard of set object at 
0x7f570ca8a960>
PROFILER: 'return' None
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PROFILER: 'call' None
PROFILER: 'c_call' <built-in method discard of set object at 
0x7f570ca8f3f0>
PROFILER: 'c_return' <built-in method discard of set object at 
0x7f570ca8f3f0>
PROFILER: 'return' None

As you can see, PROFILER is called on every event. We can print/gather the 
information we deem relevant inside the PROFILER function. The last line on the 
sample code shows that the simple execution of fib_seq(2) generates a lot of 
output data. If we were dealing with a real-world program, this output would be 
several orders of magnitude bigger. This is why event-based profiling is normally the 
last option when it comes to profiling. There are other alternatives out there (as we'll 
see) that generate much less output, but, of course, have a lower accuracy rate.

Statistical profiling
Statistical profilers work by sampling the program counter at regular intervals. This 
in turn allows the developer to get an idea of how much time the target program is 
spending on each function. Since it works by sampling the PC, the resulting numbers 
will be a statistical approximation of reality instead of exact numbers. Still, it should 
be enough to get a glimpse of what the profiled program is doing and where the 
bottlenecks are.

Some advantages of this type of profiling are as follows:

• Less data to analyze: Since we're only sampling the program's execution 
instead of saving every little piece of data, the amount of information to 
analyze will be significantly smaller.

• Smaller profiling footprint: Due to the way the sampling is made (using 
OS interrupts), the target program suffers a smaller hit on its performance. 
Although the presence of the profiler is not 100 percent unnoticed, statistical 
profiling does less damage than the event-based one.

Here is an example of the output of OProfile (http://oprofile.sourceforge.net/
news/), a Linux statistical profiler:

Function name,File name,Times Encountered,Percentage
"func80000","statistical_profiling.c",30760,48.96%
"func40000","statistical_profiling.c",17515,27.88%
"func20000","static_functions.c",7141,11.37%
"func10000","static_functions.c",3572,5.69%
"func5000","static_functions.c",1787,2.84%
"func2000","static_functions.c",768,1.22%

http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
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"func1500","statistical_profiling.c",701,1.12%
"func1000","static_functions.c",385,0.61%
"func500","statistical_profiling.c",194,0.31%

Here is the output of profiling the same Fibonacci code from the preceding code 
using a statistical profiler for Python called statprof:

  %   cumulative      self          
 time    seconds   seconds  name    
100.00      0.01      0.01  B02088_01_03.py:11:fib
  0.00      0.01      0.00  B02088_01_03.py:17:fib_seq
  0.00      0.01      0.00  B02088_01_03.py:21:<module>
---
Sample count: 1
Total time: 0.010000 seconds

As you can see, there is quite a difference between the output of both profilers for the 
same code.

The importance of profiling
Now that we know what profiling means, it is also important to understand  
how important and relevant it is to actually do it during the development cycle  
of our applications.

Profiling is not something everyone is used to do, especially with non-critical software 
(unlike peace maker embedded software or any other type of execution-critical 
example). Profiling takes time and is normally useful only after we've detected that 
something is wrong with our program. However, it could still be performed before 
that even happens to catch possible unseen bugs, which would, in turn, help chip away 
the time spent debugging the application at a later stage.

As hardware keeps advancing, getting faster and cheaper, it is increasingly hard 
to understand why we, as developers, should spend resources (mainly time) on 
profiling our creations. After all, we have practices such as test-driven development, 
code review, pair programming and others that assure us our code is solid and that 
it'll work as we want it. Right?
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However, what we sometimes fail to realize is that the higher level our languages 
become (we've gone from assembler to JavaScript in just a few years), the less 
we think about CPU cycles, memory allocation, CPU registries, and so on. New 
generations of programmers learn their craft using higher level languages because 
they're easier to understand and provide more power out of the box. However, 
they also abstract the hardware and our interaction with it. As this tendency keeps 
growing, the chances that new developers will even consider profiling their software 
as another step on its development grows weaker by the second.

Let's look at the following scenario:

As we know, profiling measures the resources our program uses. As I've stated earlier, 
they keep getting cheaper and cheaper. So, the cost of getting our software out and the 
cost of making it available to a higher number of users is also getting cheaper.

These days, it is increasingly easy to create and publish an application that will be 
reached by thousands of people. If they like it and spread the word through social 
media, that number can blow up exponentially. Once that happens, something that is 
very common is that the software will crash, or it'll become impossibly slow and the 
users will just go away.

A possible explanation for the preceding scenario is, of course, a badly thought and 
non-scalable architecture. After all, one single server with a limited amount of RAM 
and processing power will get you so far until it becomes your bottleneck. However, 
another possible explanation, one that proves to be true many times, is that we failed 
to stress test our application. We didn't think about resource consumption; we just 
made sure our tests passed, and we were happy with that. In other words, we failed 
to go that extra mile, and as a result, our project crashed and burned.

Profiling can help avoid that crash and burn outcome, since it provides a fairly 
accurate view of what our program is doing, no matter the load. So, if we profile it 
with a very light load, and the result is that we're spending 80 percent of our time 
doing some kind of I/O operation, it might raise a flag for us. Even if, during our 
test, the application performed correctly, it might not do so under heavy stress. 
Think of a memory leak-type scenario. In those cases, small tests might not generate 
a big enough problem for us to detect it. However, a production deployment under 
heavy stress will. Profiling can provide enough evidence for us to detect this problem 
before it even turns into one.
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What can we profile?
Going deeper into profiling, it is very important to understand what we can actually 
profile. Measuring is the core of profiling, so let's take a detailed look at the things 
we can measure during a program's execution.

Execution time
The most basic of the numbers we can gather when profiling is the execution time. 
The execution time of the entire process or just of a particular portion of the code 
will shed some light on its own. If you have experience in the area your program is 
running (that is, you're a web developer and you're working on a web framework), 
you probably already know what it means for your system to take too much time. For 
instance, a simple web server might take up to 100 milliseconds when querying the 
database, rendering the response, and sending it back to the client. However, if the 
same piece of code starts to slow down and now it takes 60 seconds to do the same 
task, then you should start thinking about profiling. You also have to consider that 
numbers here are relative. Let's assume another process: a MapReduce job that is 
meant to process 2 TB of information stored on a set of text files takes 20 minutes. In 
this case, you might not consider it as a slow process, even when it takes considerably 
more time than the slow web server mentioned earlier.

To get this type of information, you don't really need a lot of profiling experience or 
even complex tools to get the numbers. Just add the required lines into your code 
and run the program.

For instance, the following code will calculate the Fibonnacci sequence for the 
number 30:

import datetime

tstart = None
tend = None

def start_time():
    global tstart
    tstart = datetime.datetime.now()
def get_delta():
    global tstart
    tend = datetime.datetime.now()
    return tend - tstart
    
  

 def fib(n):
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     return n if n == 0 or n == 1 else fib(n-1) + fib(n-2)

def fib_seq(n):
    seq = [ ]
    if n > 0:
        seq.extend(fib_seq(n-1))
    seq.append(fib(n))
    return seq

start_time()
print "About to calculate the fibonacci sequence for the number 30"
delta1 = get_delta()

start_time()
seq = fib_seq(30) 
delta2 = get_delta()

print "Now we print the numbers: "
start_time()
for n in seq:
    print n
delta3 = get_delta()

print "====== Profiling results ======="
print "Time required to print a simple message: %(delta1)s" % locals()
print "Time required to calculate fibonacci: %(delta2)s" % locals()
print "Time required to iterate and print the numbers: %(delta3)s" % 
locals()
print "======  ======="

Now, the code will produce the following output:

About to calculate the Fibonacci sequence for the number 30
Now we print the numbers: 
0
1
1
2
3
5
8
13
21
#...more numbers
4181

www.allitebooks.com
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6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
====== Profiling results =======
Time required to print a simple message: 0:00:00.000030
Time required to calculate fibonacci: 0:00:00.642092
Time required to iterate and print the numbers: 0:00:00.000102

Based on the last three lines, we see the obvious results: the most expensive part of 
the code is the actual calculation of the Fibonacci sequence.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register 
to have the files e-mailed directly to you.

Where are the bottlenecks?
Once you've measured how much time your code needs to execute, you can profile 
it by paying special attention to the slow sections. These are the bottlenecks, and 
normally, they are related to one or a combination of the following reasons:

• Heavy I/O operations, such as reading and parsing big files, executing  
long-running database queries, calling external services (such as HTTP 
requests), and so on

• Unexpected memory leaks that start building up until there is no memory 
left for the rest of the program to execute properly

• Unoptimized code that gets executed frequently
• Intensive operations that are not cached when they could be
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I/O-bound code (file reads/write, database queries, and so on) is usually harder 
to optimize, because that would imply changing the way the program is dealing 
with that I/O (normally using core functions from the language). Instead, when 
optimizing compute-bound code (like a function that is using a badly implemented 
algorithm), getting a performance improvement is easier (although not necessarily 
easy). This is because it just implies rewriting it.

A general indicator that you're near the end of a performance optimization process is 
when most of the bottlenecks left are due to I/O-bound code.

Memory consumption and memory leaks
Another very important resource to consider when developing software is memory. 
Regular software developers don't really care much about it, since the era of  
the 640 KB of RAM PC is long dead. However, a memory leak on a long-running 
program can turn any server into a 640 KB computer. Memory consumption is not 
just about having enough memory for your program to run; it's also about having 
control over the memory that your programs use.

There are some developments, such as embedded systems, that actually require 
developers to pay extra attention to the amount of memory they use, because it is a 
limited resource in those systems. However, an average developer can expect their 
target system to have the amount of RAM they require.

With RAM and higher level languages that come with automatic memory 
management (like garbage collection), the developer is less likely to pay much 
attention to memory utilization, trusting the platform to do it for them.
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Keeping track of memory consumption is relatively straightforward. At least for a 
basic approach, just use your OS's task manager. It'll display, among other things, 
the amount of memory used or at least the percentage of total memory used by your 
program. The task manager is also a great tool to check your CPU time consumption. 
As you can see in the next screenshot, a simple Python program (the preceding one) 
is taking up almost the entire CPU power (99.8 percent), and barely 0.1 percent of the 
total memory that is available:

With a tool like that (the top command line tool from Linux), spotting memory leaks 
can be easy, but that will depend on the type of software you're monitoring. If your 
program is constantly loading data, its memory consumption rate will be different 
from another program that doesn't have to deal much with external resources.
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For instance, if we were to chart the memory consumption over time of a program 
dealing with lots of external data, it would look like the following chart:

There will be peaks, when these resources get fully loaded into memory, but there 
will also be some drops, when those resources are released. Although the memory 
consumption numbers fluctuate quite a bit, it's still possible to estimate the average 
amount of memory that the program will use when no resources are loaded. Once 
you define that area (marked as a green box in the preceding chart), you can spot 
memory leaks.

Let's look at how the same chart would look with bad resource handling (not fully 
releasing allocated memory):
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In the preceding chart, you can clearly see that not all memory is released when a 
resource is no longer used, which is causing the line to move out of the green box. 
This means the program is consuming more and more memory every second, even 
when the resources loaded are released.

The same can be done with programs that aren't resource heavy, for instance, scripts 
that execute a particular processing task for a considerable period of time. In those 
cases, the memory consumption and the leaks should be easier to spot.

Let's take a look at an example:

When the processing stage starts, the memory consumption should stabilize within a 
clearly defined range. If we spot numbers outside that range, especially if it goes out 
of it and never comes back, we're looking at another example of a memory leak.

Let's look at an example of such a case:
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The risk of premature optimization
Optimization is normally considered a good practice. However, this doesn't hold 
true when the act of optimization ends up driving the design decisions of the 
software solution.

A very common pitfall developers face while starting to code a new piece of software 
is premature optimization.

When this happens, the end result ends up being quite the opposite of the intended 
optimized code. It can contain an incomplete version of the required solution, or it 
can even contain errors derived from the optimization-driven design decisions.

As a normal rule of thumb, if you haven't measured (profiled) your code, optimizing 
it might not be the best idea. First, focus on readable code. Then, profile it and find out 
where the real bottlenecks are, and as a final step, perform the actual optimization.

Running time complexity
When profiling and optimizing code, it's really important to understand what 
Running time complexity (RTC) is and how we can use that knowledge to  
properly optimize our code.

RTC helps quantify the execution time of a given algorithm. It does so by providing 
a mathematical approximation of the time a piece of code will take to execute for any 
given input. It is an approximation, because that way, we're able to group similar 
algorithms using that value.

RTC is expressed using something called Big O notation. In mathematics, Big O 
notation is used to express the limiting behavior of a given function when the terms 
tend to infinity. If I apply that concept in computer science, we can use Big O notation 
to express the limiting behavior of the function describing the execution time.

In other words, this notation will give us a broad idea of how long our algorithm 
will take to process an arbitrarily large input. It will not, however, give us a precise 
number for the time of execution, which would require a more in-depth analysis of 
the source code.

As I've said earlier, we can use this tendency to group algorithms. Here are some of 
the most common groups:
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Constant time – O(1)
This is the simplest of them all. This notation basically means that the action we're 
measuring will always take a constant amount of time, and this time is not dependent 
on the size of the input.

Here are some examples of code that have O(1) execution time:

• Determining whether a number is odd or even:
if number % 2:
  odd = True 
else:
  odd = False

• Printing a message into standard output:
print "Hello world!"

Even something more conceptually complex, like finding the value of a key inside 
a dictionary (or hash table), if implemented correctly, can be done in constant time. 
Technically speaking, accessing an element on the hash takes O(1) amortized time, 
which roughly means that the average time each operation takes (without taking into 
account edge cases) is a constant O(1) time.

Linear time – O(n)
Linear time dictates that for a given input of arbitrary length n, the amount of time 
required for the execution of the algorithm is linearly proportional to n, for instance, 
3n, 4n + 5, and so on.
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The preceding chart clearly shows that both the blue (3n) line and the red one  
(4n + 5) have the same upper limit as the black line (n) when x tends to infinity.  
So, to simplify, we can just say that all three functions are O(n).

Examples of algorithms with this execution order are:

• Finding the smallest value in an unsorted list
• Comparing two strings
• Deleting the last item inside a linked list

Logarithmic time – O(log n)
An algorithm with logarithmic execution time is one that will have a very 
determined upper limit time. A logarithmic function grows quickly at first,  
but it'll slow down as the input size gets bigger. It will never stop growing,  
but the amount it grows by will be so small that it will be irrelevant.

The preceding chart shows three different logarithmic functions. You can clearly 
see that they all possess a similar shape, including the upper limit x, which keeps 
increasing to infinity.

Some examples of algorithms that have logarithmic execution time are:

• Binary search
• Calculating Fibonacci numbers (using matrix multiplications)
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Linearithmic time – O(nlog n)
A particular combination of the previous two orders of execution is the linearithmic 
time. It grows quickly as soon as the value of x starts increasing.

Here are some examples of algorithms that have this order of execution:

• Merge sort
• Heap sort
• Quick sort (at least its average time complexity)

Let's see a few examples of plotted linearithmic functions to understand them better:

Factorial time – O(n!)
Factorial time is one of the worst execution times we might get out of an algorithm.  
It grows so quickly that it's hard to plot.
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Here is a rough approximation of how the execution time of our algorithm would 
look with factorial time:

An example of an algorithm with factorial execution time is the solution for  
the traveling salesman using brute force search (basically checking every  
single possible solution).

Quadratic time – O(n^)
Quadratic execution time is another example of a fast growing algorithm. The bigger 
the input size, the longer it's going to take (this is true for most complexities, but then 
again, specially true for this one). Quadratic execution time is even less efficient that 
linearithmic time.

Some examples of algorithms having this order of execution are:

• Bubble sort
• Traversing a 2D array
• Insertion sort

www.allitebooks.com
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Here are some examples of plotted exponential functions:

Finally, let's look at all examples plotted together to get a clear idea of  
algorithm efficiency:
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Leaving aside constant execution time, which is clearly faster but most of the time 
impossible to achieve in complex algorithms, the order or preference should be:

• Logarithmic
• Linear
• Linearithmic
• Quadratic
• Factorial

Obviously, there are cases when you'll have no choice but to get a quadratic execution 
time as the best possible result. The idea is to always aim for the faster algorithms, but 
the limitations of your problems and technology will affect the actual result.

Note that between quadratic and factorial times, there are 
several other alternatives (cubic, n ^ 4, and so on).

Another important consideration is that most algorithms don't have only a single 
order of execution time. They can have up to three orders of execution time: for the 
best case, normal case, and worst case scenarios. The scenario is determined by the 
properties of the input data. For instance, the insertion sort algorithm will run much 
faster if the input is already sorted (best case), and it will be worst (exponential 
order) for other types of input.

Other interesting cases to look at are the data types used. They inherently come  
with execution time that is associated with actions you can perform on them  
(lookup, insert, search, and so on). Let's look at some of the most common  
data types and their associated actions:

Data 
Structure

Time complexity

Average case Worst case

Indexing Search Insertion Deletion Indexing Search Insertion Deletion

List O(1) O(n) - - O(1) O(n) - -

Linked list O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(n)

Doubly 
linked list

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1)

Dictionary - O(1) O(1) O(1) - O(n) O(n) O(n)

Binary 
search tree

O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n)
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Profiling best practices
Profiling is a repetitive task. You'll do it several times inside the same project in order 
to get the best results, and you'll do it again on the next project. Just like with any other 
repetitive task in software development, there is a set of best practices you can follow 
to ensure that you get the most out of the process. Let's look at some of them:

Build a regression-test suite
Before starting any kind of optimization process, you need to make sure that the 
changes you make to the code will not affect its functioning in a bad way. The best 
way to do this, especially when it's a big code base, is to create a test suite. Make sure 
that your code coverage is high enough to provide the confidence you need to make 
the changes. A test suite with 60 percent code coverage can lead to very bad results.

A regression-test suite will allow you to make as many optimization tries as you 
need to without fear of breaking the code.

Mind your code
Functional code tends to be easier to refactor, mainly because the functions 
structured that way tend to avoid side effects. This reduces any risk of affecting 
unwanted parts of your system. If your functions avoid a local mutable state, 
that's another winning point for you. This is because the code should be pretty 
straightforward for you to understand and change. Functions that don't follow the 
previously mentioned guidelines will require more work and care while refactoring.

Be patient
Profiling is not fast, not easy, and not an exact process. What this means is that you 
should not expect to just run the profiler and expect the data from it to point directly 
to your problem. That could happen, yes. However, most of the time, the problems 
you're trying to solve are the ones that simple debugging couldn't fix. This means 
you'll be browsing through data, plotting it to try to make sense of it, and narrowing 
down the source of your problem until you either need to start again, or you find it.

Keep in mind that the deeper you get into the profiled data, the deeper into the 
rabbit hole you get. Numbers will stop making sense right away, so make sure you 
know what you're doing and that you have the right tools for the job before you 
start. Otherwise, you'll waste your time and end up with nothing but frustration.
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Gather as much data as you can
Depending on the type and size of software you're dealing with, you might want to 
get as much data as you can before you start analyzing it. Profilers are a great source 
for this. However, there are other sources, such as server logs from web applications, 
custom logs, system resources snapshots (like from the OS task manager), and so on.

Preprocess your data
After you have all the information from your profilers, your logs, and other sources, 
you will probably need to preprocess the data before analyzing it. Don't shy away 
from unstructured data just because a profiler can't understand it. Your analysis of 
the data will benefit from the extra numbers.

For instance, getting the web server logs is a great idea if you're profiling a  
web application, but those files are normally just text files with one line per  
request. By parsing it and getting the data into some kind of database system  
(like MongoDB, MySQL, or the like), you'll be able to give that data meaning  
(by parsing the dates, doing geolocation by source IP address, and so on) and  
query that information afterwards.

The formal name for the stage is ETL, which stands for extracting the data from it's 
sources, transforming it into something with meaning, and loading it into another system 
that you can later query.

Visualize your data
If you don't know exactly what it is that you're looking for and you're just looking for 
ways to optimize your code before something goes wrong, a great idea to get some 
insight into the data you've already preprocessed is to visualize it. Computers are 
great with numbers, but humans, on the other hand, are great with images when we 
want to find patterns and understand what kind of insight we can gather from the 
information we have.
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For instance, to continue with the web server logs example, a simple plot (such as the 
ones you can do with MS Excel) for the requests by hour can provide some insight 
into the behavior of your users:

The preceding chart clearly shows that the majority of requests are done during late 
afternoon and continue into the night. You can use this insight later on for further 
profiling. For instance, an optional improvement of your setup here would be to 
provide more resources for your infrastructure during that time (something that  
can be done with service providers such as Amazon Web Services).
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Another example, using custom profiling data, could be the following chart:

It uses data from the first code example of this chapter by counting the number of 
each event that triggers the profile function. We can then plot it and get an idea 
of the most common events. In our case, the call and return events are definitely 
taking up most of our program's time.

Summary
In this chapter, we've covered the basics of profiling. You understood profiling and 
its importance. You also learned how we can leverage it in order to get the most out 
of our code.

In the next chapter, we'll start getting our hands dirty by looking at some Python 
profilers and how we can use them on our applications.
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The Profilers
In the previous chapter, we covered the basics of profiling and understood its 
importance. You learned how it will help the development process if we incorporate 
the practice of profiling into the cycle of development. We also went over some good 
profiling practices.

Finally, we covered some theory about the different execution times our program 
can have. In this chapter, we'll use the first part (the part about profiling). Then, with 
the help of two specific Python profilers (cProfile and line_profilers), we'll start 
putting into practice some theory that you have learned.

In this chapter, we will cover the following topics:

• Some basic information about each profiler
• How to download and install each profiler
• Use cases examples with different options
• Differences and similarities between both profilers

Getting to know our new best friends: the 
profilers
After all the theory and generic examples from the previous chapter, it is time for 
some real Python. So, let's begin with two of the most known and used Python 
profilers: cProfile and line_profiler. They will help us profile our code in two 
different ways.
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On one hand, we have cProfile (https://docs.python.org/2/library/
profile.html#module-cProfile), It comes by default with Python since version 2.5 
and is the recommended profiler for most use cases. At least that is what the official 
Python documentation says about it. On the other hand, we have line_profiler 
(https://github.com/rkern/line_profiler), which is not an official part of the 
Python programming language, but it's a well-known profiler out there.

Let's go over both of them in more detail.

cProfile
Like I've already mentioned, cProfile comes by default with the standard Python 
interpreter (cPython) since version 2.5. Other versions, such as PyPy, don't have it. 
It is a deterministic profiler. It provides a set of APIs that allow the developers to 
gather information about the execution of Python programs, more specifically,  
about the CPU time used by each function. It also provides other details, such  
as the number of times a function was called.

It exclusively measures CPU time and pays no attention to memory consumption 
and other memory related stats. Nonetheless, it is a great starter point, since most 
of the times, if we're trying to optimize code, this type of analysis will provide an 
immediate set of optimization candidates.

There is no need for installation, since it's part of the language already. To use it, all 
you have to do is to import the cProfile package.

A deterministic profiler is just another name for an event-based profiler 
(check out the previous chapter for more details). This means that that 
this profiler will be aware of every function call, return statement, and 
other events during the execution of our code. It will also measure 
everything that happens during that time (unlike the statistical profiler 
we saw in the previous chapter).

Here is a very simple example taken from Python's documentation:

import cProfile
import re
cProfile.run('re.compile("foo|bar")')

https://docs.python.org/2/library/profile.html#module-cProfile
https://docs.python.org/2/library/profile.html#module-cProfile
https://github.com/rkern/line_profiler
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The preceding code outputs the following text:

    197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000    0.001    0.001 <string>:1(<module>)
     1    0.000    0.000    0.001    0.001 re.py:212(compile)
     1    0.000    0.000    0.001    0.001 re.py:268(_compile)
     1    0.000    0.000    0.000    0.000  
    sre_compile.py:172(_compile_charset)
     1    0.000    0.000    0.000    0.000  
     sre_compile.py:201(_optimize_charset)
     4    0.000    0.000    0.000    0.000  
     sre_compile.py:25(_identityfunction)
   3/1    0.000    0.000    0.000    0.000  
   sre_compile.py:33(_compile)

From this output, the following information can be gathered:

• The first line tells us that 197 function calls were monitored, and out of them, 
192 were primitive calls, which means no recursion was involved.

• ncalls reports the number of calls to the function. If there are two numbers 
in this column, it means there was recursion. The second one is the number 
of primitive calls, and the first one is the total number of calls. This number 
can be helpful to identify the possible bugs (unexpected high numbers) or 
possible inline expansion points.

• tottime is the total time spent inside the function (excluding the time spent 
doing subcalls to other functions). This particular information can help the 
developer find long running loops that could be optimized.

• percall is simply the quotient of tottime divided by ncalls.
• cumtime is the cumulative time spent inside the function including the  

time spent in subfunctions (this includes recursive calls as well). This  
number could help identify higher level errors, such as those in the  
selection of the algorithm.

• percall is the quotient of cumtime divided by primitive calls.
• filename:lineno(function) provides the file name, line number, and 

function name of the analyzed function.
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A note about limitations
There is no such thing as the invisible profiler. This means that even in the case of 
cProfile, which has a very small overhead, it still adds an overhead to our code. 
On every event that is triggered, there is some lag between the time that the event 
actually happens and that time that the profiler gets to query the state of the internal 
clock. At the same time, there is some lag between the moment the program counter 
leaves the profiler's code and goes back into the user's code to continue with  
the execution.

Adding to the fact, that as any piece of data inside a computer, the internal clock has  
a set precision, and any measurement that is smaller than that precision will be lost. 
That being said, the developer needs to have a special consideration when profiling 
code with a high number of recursive calls or, in particular cases, when a function  
calls many other functions, since that error can accumulate and begin to be significant.

The API provided
The cProfile profiler provides a set of methods that will help the developer gather 
statistics in different contexts:

run(command, filename=None, sort=-1)

This classic method used in the preceding example gathers statistics about the 
execution of the command. After that, it calls the following function:

exec(command, __main__.__dict__, __main__.__dict__)

If no file name is given, it'll create a new instance of stats (more on this class in a 
minute). Here is the preceding same example, but using the extra parameters:

import cProfile
import re
cProfile.run('re.compile("foo|bar")', 'stats', 'cumtime')

If you run the preceding code, you'll notice that nothing gets printed out. However, 
if you inspect the content of the folder, you'll notice a new file, called stats. If you 
try to open that file, you won't be able to understand its meaning because it was 
saved using a binary format. In a few minutes, we'll see how to read that information 
and manipulate it to create our own reports:

runctx(command, globals, locals, filename=None)
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This method is very similar to the preceding one. The only difference is that it also 
receives the globals and locals dictionaries for the command-line string. After 
that, it executes the following function:

exec(command, globals, locals)

It gathers profiling statistics just like run does. Let's see an example of the main 
difference between run and runctx.

Let's stick to run and write the following code:

import cProfile
def runRe():
    import re 
    cProfile.run('re.compile("foo|bar")')
runRe()

What we would actually get when running the code is the following error message:

Traceback (most recent call last): 
  File "cprof-test1.py", line 7, in <module> 
    runRe() ...
  File "/usr/lib/python2.7/cProfile.py", line 140, in runctx 
    exec cmd in globals, locals 
  File "<string>", line 1, in <module> 
NameError: name 're' is not defined 

The re module is not found by the run method because as we saw earlier that run 
calls the exec function with the __main__.__dict__ as parameters.

Now, let's use runctx in the following manner:

import cProfile
def runRe():
    import re 
    cProfile.runctx('re.compile("foo|bar")', None, locals())
runRe()

Then the output would change into a valid one as follows:

         194 function calls (189 primitive calls) in 0.000 seconds 
  Ordered by: standard name 
   ncalls  tottime  percall  cumtime  percall  
   filename:lineno(function) 
        1    0.000    0.000    0.000    0.000 <string>:1(<module>) 
        1    0.000    0.000    0.000    0.000 re.py:188(compile) 
        1    0.000    0.000    0.000    0.000 re.py:226(_compile) 
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        1    0.000    0.000    0.000    0.000  
        sre_compile.py:178(_compile_charset) 
        1    0.000    0.000    0.000    0.000  
        sre_compile.py:207(_optimize_charset) 
        4    0.000    0.000    0.000    0.000  
        sre_compile.py:24(_identityfunction) 
      3/1    0.000    0.000    0.000    0.000  
        sre_compile.py:32(_compile) 
        1    0.000    0.000    0.000    0.000  
        sre_compile.py:359(_compile_info) 
        2    0.000    0.000    0.000    0.000  
        sre_compile.py:472(isstring) 
        1    0.000    0.000    0.000    0.000  
        sre_compile.py:478(_code) 
        1    0.000    0.000    0.000    0.000  
        sre_compile.py:493(compile) 
        5    0.000    0.000    0.000    0.000  
        sre_parse.py:126(__len__) 
       12    0.000    0.000    0.000    0.000  
        sre_parse.py:130(__getitem__) 
        7    0.000    0.000    0.000    0.000  
        sre_parse.py:138(append) 
      3/1    0.000    0.000    0.000    0.000  
        sre_parse.py:140(getwidth) 
        1    0.000    0.000    0.000    0.000  
        sre_parse.py:178(__init__) 
       10    0.000    0.000    0.000    0.000  
        sre_parse.py:182(__next) 
        2    0.000    0.000    0.000    0.000  
        sre_parse.py:195(match) 
        8    0.000    0.000    0.000    0.000  
        sre_parse.py:201(get) 
        1    0.000    0.000    0.000    0.000  
        sre_parse.py:301(_parse_sub) 
        2    0.000    0.000    0.000    0.000  
        sre_parse.py:379(_parse) 
        1    0.000    0.000    0.000    0.000  
        sre_parse.py:67(__init__) 
        1    0.000    0.000    0.000    0.000  
        sre_parse.py:675(parse) 
        3    0.000    0.000    0.000    0.000  
        sre_parse.py:90(__init__) 
        1    0.000    0.000    0.000    0.000 {_sre.compile} 
       15    0.000    0.000    0.000    0.000 {isinstance} 
    38/37    0.000    0.000    0.000    0.000 {len} 
        2    0.000    0.000    0.000    0.000 {max} 
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       48    0.000    0.000    0.000    0.000 {method 'append' of  
       'list' objects} 
        1    0.000    0.000    0.000    0.000 {method 'disable' of  
       '_lsprof.Profiler' objects} 
        1    0.000    0.000    0.000    0.000 {method 'get' of  
       'dict' objects} 
        1    0.000    0.000    0.000    0.000 {method 'items' of  
       'dict' objects} 
        8    0.000    0.000    0.000    0.000 {min} 
        6    0.000    0.000    0.000    0.000 {ord} 

The Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True) 
method returns a class, providing more control to the developer during the profiling 
process than run and runctx do.

The timer parameter is a custom function that can be used to measure time in a 
different way than the one provided by default. It must be a function returning a 
number representing the current time. If the developer needs a custom function, it 
should be as fast as possible to lower overhead and avoid problems of calibration 
(please refer to A note about limitations section a few pages back).

If the number returned by the timer is an integer, the timeunit parameter specifies 
the multiplier that represents the duration of each unit of time. For example, if the 
returned value is in milliseconds, then timeunit would be .001.

Let's also take a look at the methods provided by the returned class:

• enable(): This starts collecting profiling data
• disable(): This stops collecting profiling data
• create_stats(): This stops collecting data and records the information 

gathered as the current profile
• print_stats(sort=-1): This creates a stats object and prints the result 

into STDOUT
• dump_stats(filename): This writes the content of the current profile  

into a file
• run(cmd): This is same as the run function we saw earlier
• runctx(cmd, globals, locals): This is same as the runctx function we 

saw earlier
• runcall(func, *args, **kwargs): This gathers profiling information 

about the function called
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Let's see the preceding example, using the following method this time:

import cProfile

def runRe():
    import re
    re.compile("foo|bar")

prof = cProfile.Profile() 
prof.enable() 
runRe()
prof.create_stats()
prof.print_stats()

There are more lines involved to get the profiling going, but it is clearly less invasive 
to the original code. That is an advantage when trying to profile code that's already 
been written and tested. This way, we can add and remove our profiling code 
without having to modify the original code.

There is an even less invasive alternative, which involves not adding code at all, but 
using some specific command-line parameters when running the script instead:

$ python -m cProfile your_script.py -o your_script.profile

Note that this will profile the entire code, so if you were actually just profiling  
a specific portion of your script, the preceding approach would not return the  
same results.

Now, before going into more detailed and interesting examples, let's first look at the 
Stats class and understand what it can do for us.

The Stats class
The pstats module provides the developer with the Stats class, which, in turn, 
allows them to read and manipulate the content of the stats file (the file into which 
we saved the profiling information using one of the methods described earlier).

For example, the following code loads the stats file and prints out the sorted statistics:

import pstats
p = pstats.Stats('stats')
p.strip_dirs().sort_stats(-1).print_stats()
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Note that the Stats class constructor is able to receive 
a cProfile.Profile instance instead of the file 
name as the source of the data.

Let's take a closer look at the methods provided by the pstats.Stats class:

• strip_dirs(): This removes all the leading paths' information from the 
file names in the report. This method modifies the stats instance, so any 
instance that has this method executed will be considered to have its items 
in a random order. If two entries are considered to be the same (same line on 
the same file name having the same function name), then those entries would 
be accumulated.

• add(*filenames): This method loads more information into stats from the 
files referenced in the file names. It's worth mentioning that just like with 
only one file, the stats entries that reference the same function (file name, 
and line and function name) will be accumulated.

• dump_stats(filename): Just like in the cProfile.Profile class, this 
method saves the data loaded into the Stats class inside a file.

• sort_stats(*keys): This method is present since version 2.3, and it 
modifies the stats object by sorting its entries by the given criteria. When 
more than one criteria is given, then the additional ones are used only when 
there is equality in the previous ones. For instance, if sort_stats ('name', 
'file') is used, it would sort all entries by function name, and when that 
name is the same, it would sort those entries by file name.

The method is smart enough to understand abbreviations as long as they're 
unambiguous, so be careful there. The full list of the currently supported sorting 
criteria is as follows:

Criteria Meaning Ascending/Descending
calls Total number of calls Descending
cumulative Cumulative time Descending
cumtime Cumulative time Descending
file File name Ascending
filename File name Ascending
module File name Ascending
ncalls Total number of calls Descending
pcalls Primitive call count Descending
line Line number Ascending
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Criteria Meaning Ascending/Descending
name Function name Ascending
nfl Composite of name/file/line Descending
stdname Standard name Ascending
time Internal time Descending
tottime Internal time Descending

A note on nfl versus stdname
The main difference between these two sort types is that the latter 
is a sort of the printed name. This means the line numbers will be 
sorted as strings (which means that for 4, 20, and 30 the sorting will 
be 20, 30, 4). The nfl sort does a numeric comparison of the line 
number fields.

Finally, for backward compatibility reasons, some numeric values are accepted, 
instead of the ones in the preceding table. They are -1, 0, 1, and 2, and they're 
translated into stdname, calls, time, and cumulative, respectively.

• reverse_order(): This method reverses the default order of the sort key 
selected (so, if the key is by the default ascending order, it would be in the 
descending order now).

• print_stats(*restrictions): This method takes care of printing out the 
stats into STDOUT. The optional argument is meant to restrict the output of 
this function. It can either be an integer value, a decimal value, or a string. 
They are explained here:

 ° integer: This will limit the number of lines printed
 ° Decimal between 0.0 and 1.0 (inclusive): This will select the 

percentage of the lines
 ° String: This is a regular expression to match against the standard name
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The preceding screenshot shows the output we get from calling the print_stats 
method as follows:

import cProfile
import pstats

def runRe():
    import re
    re.compile("foo|bar")
prof = cProfile.Profile()
prof.enable()
runRe()
prof.create_stats()

p = pstats.Stats(prof)
p.print_stats(10, 1.0, '.*.py.*') #print top 10 lines that match the 
given reg exp.

If more than one parameter is passed, then they are applied sequentially. As we've 
seen in the preceding lines of code, the output of this profiler can be quite long. 
However, if we sort it properly, then we can summarize that output using this 
parameter and still get relevant information.

The print_callers(*restrictions) function works with the same input and 
restriction rules than the previous one, but the output is a bit different. For every 
function called during the execution of our program, it'll show the number of times 
each call was made, the total and cumulative times, and a combination of filename, 
and the line and function names.

Let's look at a quick example of how using cProfile.Profile and Stats can render 
the list of caller functions:

import cProfile
import pstats

def runRe():
    import re
    re.compile("foo|bar")
prof = cProfile.Profile()
prof.enable()
runRe()
prof.create_stats()

p = pstats.Stats(prof)
p.print_callers()
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Notice how we're combining the pstats.Stats class with the cProfile.Profile 
class. They're working together to gather and show the information in the way we 
need it. Now, look at the output:

The print_callees(*restrictions) method prints a list of functions that call 
other functions. The format of the data shown and the restrictions are same as the 
preceding example.

You may encounter a block like the one shown in the following screenshot as part of 
the output:

This output means that the functions on the right-hand side were called by the same 
function on the left-hand side.

Profiling examples
Now that we've seen the basics of how to use cProfile and Stats, let's dig into 
some more interesting and practical examples.

Fibonacci again
Let's go back to the Fibonacci example, since a basic recursive Fibonacci sequence 
calculator has a lot of room for improvement.
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Let's first look at the unprofiled, unoptimized code:

import profile

def fib(n):
    if n <= 1:
  return n
    else:
        return fib(n-1) + fib(n-2)

def fib_seq(n):
    seq = [ ]
    if n > 0:
        seq.extend(fib_seq(n-1))
    seq.append(fib(n))
    return seq

profile.run('print fib_seq(20); print')

This code will output the following results:

The output is printed correctly, but look at the highlighted sections in the preceding 
screenshot. These sections are explained here:

• There are 57.356 function calls during those 0.114 seconds
• Out of those, only 66 were primitive calls (not called by recursion)
• In line 3 of our code, 57.270 (57.291—21) were recursion-induced function calls
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As we all know, the act of calling another function adds an overhead to our time. 
Since it looks like (for the cumtime column) that most of the execution time is spent 
inside this function, we can safely assume that if we speed this up, the entire script's 
time would be affected.

Now, let's apply a simple decorator to the fib function that will allow us to cache the 
previously calculated values (a technique also known as memoization, about which 
you'll read in the upcoming chapters) so that we don't have to call fib more than once 
per value:

import profile

class cached:
    def __init__(self, fn):
        self.fn = fn
        self.cache = {}

    def __call__(self, *args):
        try:
            return self.cache[args]
        except KeyError:
            self.cache[args] = self.fn(*args)
            return self.cache[args]

@cached
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)

def fib_seq(n):
    seq = [ ]
    if n > 0: 

        seq.extend(fib_seq(n-1))
    seq.append(fib(n))
    return seq

profile.run('print fib_seq(20); print')
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Now, let's run the code again and look at the output:

We went from around 57k total calls to only 145 and from 0.114 seconds to 0.001. 
That's an amazing improvement! However, we have more primitive calls, but we 
also have significantly less recursive calls.

Let's continue with another possible optimization. Our example works quite fast for 
a single call, but let's try to do several runs in a row and get the combined stats for 
that execution. Perhaps, we'll get something interesting back. To do this, we need to 
use the stats module. Let's see an example for this:

import cProfile
import pstats
from fibo4 import fib, fib_seq

filenames = []
profiler = cProfile.Profile()
profiler.enable()
for i in range(5):
    print fib_seq(1000); print
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()
stats.print_callers()



The Profilers

[ 42 ]

We've pushed the envelope here. Getting the Fibonacci sequence for 1000 might be 
too much to ask, especially from a recursive implementation. Indeed, we ran out of 
recursion depth. This is mainly due to the fact that cPython has a guard to prevent 
a stack overflow error generated by the amount of recursive calls (ideally, a tail 
recursion optimization would solve this, but cPython does not provide it). So, we 
just found another issue. Let's try to fix it and reanalyze the code:

import profile
def fib(n):
    a, b = 0, 1 
    for i in range(0, n):
        a,b = b, a+b
    return a

def fib_seq(n):
    seq = [ ]
    for i in range(0, n + 1):
        seq.append(fib(i))
    return seq

print fib_seq(1000)

The preceding lines of code print a huge list of really big numbers, but these lines 
prove that we made it. We can now compute the Fibonacci sequence for the number 
1000. Now, let's analyze it and see what we find.

Using the new profiling code, but requiring the iterative version of the Fibonacci 
implementation, we will get this:

import cProfile
import pstats
from fibo_iter import fib, fib_seq

filenames = []
profiler = cProfile.Profile()
profiler.enable()
for i in range(5):
    print fib_seq(1000); print
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()
stats.print_callers()
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This, in turn, will yield the following result into the console:

Our new code is taking 0.187 seconds to calculate the Fibonacci sequence of 1000 five 
times. It's not a bad number, but we know we can improve it by caching the results, 
just like we did earlier. As you can see, we have 5005 calls to the fib function. If we cache 
it, we would have a lot less function calls, which would mean less execution time.

With very little effort, we can improve that time by caching the calls to the fib 
function, which, according the preceding report, is called 5005 times:

import profile

class cached:
    def __init__(self, fn):
        self.fn = fn
        self.cache = {}

    def __call__(self, *args):
        try:
            return self.cache[args]
        except KeyError:
            self.cache[args] = self.fn(*args)
            return self.cache[args]

@cached
def fib(n):
    a, b = 0, 1 
    for i in range(0, n):
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        a,b = b, a+b
    return a

def fib_seq(n):
    seq = [ ]
    for i in range(0, n + 1):
        seq.append(fib(i))
    return seq

print fib_seq(1000)

You should get something like the following output:

Simply by caching the call to fib, we went from 0.187 seconds to 0.006 seconds. This 
is an amazing improvement. Well done!

Tweet stats
Let's look at another example, something a bit more conceptually complex, since 
calculating the Fibonacci sequence is not really an everyday use case. Let's do 
something a bit more interesting. These days, Twitter allows you to download your 
complete list of tweets in the form of a CSV file. We'll use this file to generate some 
statistics from our feed.
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Using the data provided, we'll calculate the following statistics:

• The percentage of messages that are actual replies
• The percentage of tweets that were made from the website  

(https://twitter.com)
• The percentage of tweets that were made from a mobile phone

The output form our script will look like the one shown in the following screenshot:

To keep things simple, we'll take care of parsing the CSV file and doing these  
basic calculations. We won't use any third-party modules; that way, we'll be in  
total control of the code and its analysis. This means leaving out obvious things,  
such as using the CSV module from Python.

Other bad practices shown earlier, such as the inc_stat function or the fact that 
we're loading the entire file into memory before processing it, will remind you that 
this is just an example to show basic improvements.

Here is the initial code of the script:

def build_twit_stats():
    STATS_FILE = './files/tweets.csv'
    STATE = {
        'replies': 0,
        'from_web': 0,
        'from_phone': 0,
        'lines_parts': [],
        'total_tweets': 0
    }
    read_data(STATE, STATS_FILE)
    get_stats(STATE)
    print_results(STATE)

def get_percentage(n, total):
    return (n * 100) / total

def read_data(state, source):

https://twitter.com
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    f = open(source, 'r')

    lines = f.read().strip().split("\"\n\"")
    for line in lines:

       state['lines_parts'].append(line.strip().split(',')) 
    state['total_tweets'] = len(lines)

def inc_stat(state, st):
    state[st] += 1

def get_stats(state):
    for i in state['lines_parts']:
        if(i[1] != '""'):
            inc_stat(state, 'replies')
        if(i[4].find('Twitter Web Client') > -1):
            inc_stat(state, 'from_web')
        else:
            inc_stat(state, 'from_phone')

def print_results(state):
    print "-------- My twitter stats -------------"
    print "%s%% of tweets are replies" %  
    (get_percentage(state['replies'], state['total_tweets']))
    print "%s%% of tweets were made from the website" %  
    (get_percentage(state['from_web'], state['total_tweets']))
    print "%s%% of tweets were made from my phone" %  
    (get_percentage(state['from_phone'], state['total_tweets']))

To be fair, the code doesn't do anything too complicated. It loads the content of 
the file, splits it into lines, and then it splits each line into different fields. Finally, it 
counts things. One might think that with this explanation, there is nothing much to 
optimize, but we're about to see that there is always room for some optimization.

Another important thing to note is that the CSV file we'll be processing has almost 
150 MB of tweets data.

Here is the script that imports that code, uses it, and generates a profiling report:

import cProfile
import pstats

from B02088_02_14 import build_twit_stats
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profiler = cProfile.Profile()

profiler.enable()

build_twit_stats()

profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').print_stats()

The output we get from this execution is as follows:

There are three main areas of interest in the preceding screenshot:

1. Total execution time
2. Cumulative times of individual function calls
3. Total number of calls for individual functions
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Our aim is to lower the total execution time. For that, we will pay special attention 
to the cumulative times of individual functions and the total number of calls for 
individual functions. We can infer the following conclusions for the last two points:

• The build_twit_stats function is the one that takes the most time.  
However, as you can see in the preceding lines of code, it just calls all other 
functions, so it makes sense. We can focus on read_data since it's the second 
most time-consuming function. This is interesting, because it means that our 
bottleneck is not when we calculate the stats, but when we load the data for it.

• In the third line of the code, we also see exactly our bottleneck inside  
read_data. We perform too many split commands and they add up.

• We also see that the fourth most time-consuming function is get_stats.

So, let's tackle these issues and see if we get better results. The biggest bottleneck  
we had was the way we were loading data. We were loading it all into memory  
first and then iterating over it to calculate our stats. We can improve this by reading 
the file line by line and calculating the stats after each one. Let's see how that code 
would look.

The new read_data method looks like this:

  def read_data(state, source):
    f = open(source)

    buffer_parts = []
    for line in f:
      #Multi line tweets are saved in several lines in the file,  
      so we need to
      #take that into account.
      parts = line.split('","')
      buffer_parts += parts
      if len(parts) == 10:
        state['lines_parts'].append(buffer_parts) 
        get_line_stats(state, buffer_parts)
        buffer_parts = []
    state['total_tweets'] = len(state['lines_parts'])

We had to add some logic to take into account multiline tweets, which are also 
saved as multiline records on our CSV file. We changed our get_stats function into 
get_line_stats, which simplifies its logic since it only calculates the values for the 
current record:

def get_line_stats(state, line_parts):
  if line_parts[1] != '' :
      state['replies'] += 1
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  if 'Twitter Web Client' in line_parts[4]:
      state['from_web'] += 1
  else:
      state['from_phone'] += 1

The two final improvements were to remove the calls to inc_stat, since, thanks to 
the dictionary we're using, the call is unnecessary. We also replaced the usage of the 
find method using the more proficient in operator.

Let's run the code again and see the changes:

We went from 2 seconds to 1.6; that was a considerable improvement. The read_data 
function is still up there with the most time-consuming functions, but that's just 
because it now also calls the get_line_stats function. We can also improve on this, 
since even though the get_line_stats function does very little, we're incurring in 
a lookup time by calling it so often inside the loop. We could inline this function and 
see if that helps.

The new code would look like this:

def read_data(state, source):
    f = open(source)

    buffer_parts = []
    for line in f:
      #Multi line tweets are saved in several lines in the file,  
      so we need to
      #take that into account.

www.allitebooks.com

http://www.allitebooks.org
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      parts = line.split('","')
      buffer_parts += parts
      if len(parts) == 10:
        state['lines_parts'].append(buffer_parts) 
        if buffer_parts[1] != '' :
          state['replies'] += 1
        if 'Twitter Web Client' in buffer_parts[4]:
          state['from_web'] += 1
        else:
          state['from_phone'] += 1
        buffer_parts = []
    state['total_tweets'] = len(state['lines_parts'])

Now, with the new changes, the report will look like this:

There is a notable improvement between the first screenshot and the preceding one. 
We got the time down to barely above 1.4 seconds from 2 seconds. The number of 
function calls is considerably lower as well (it went from around 3 million calls to  
1.7 million), which in turn should help lower the time spent doing lookups and calls.

As an added bonus, we will improve the readability of our code by simplifying it. 
Here is the final code all together:

def build_twit_stats():
    STATS_FILE = './files/tweets.csv'
    STATE = {
        'replies': 0,
        'from_web': 0,
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        'from_phone': 0,
        'lines_parts': [],
        'total_tweets': 0
    }
    read_data(STATE, STATS_FILE)
    print_results(STATE)

def get_percentage(n, total):
    return (n * 100) / total

def read_data(state, source):
    f = open(source)

    buffer_parts = []
    for line in f:
      #Multi line tweets are saved in several lines in the file,  
      so we need to
      #take that into account.
      parts = line.split('","')
      buffer_parts += parts
      if len(parts) == 10:
        state['lines_parts'].append(buffer_parts) 
        if buffer_parts[1] != '' :
          state['replies'] += 1
        if 'Twitter Web Client' in buffer_parts[4]:
          state['from_web'] += 1
        else:
          state['from_phone'] += 1
        buffer_parts = []
    state['total_tweets'] = len(state['lines_parts'])

def print_results(state):
    print "-------- My twitter stats -------------"

    print "%s%% of tweets are replies" %  
    (get_percentage(state['replies'], state['total_tweets']))

    print "%s%% of tweets were made from the website" %  
    (get_percentage(state['from_web'], state['total_tweets']))

    print "%s%% of tweets were made from my phone" %  
    (get_percentage(state['from_phone'], state['total_tweets']))
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This is it for our review of cProfile. With it, we managed to profile our scripts, 
getting per-function numbers and total function calls. It helped us improve on the 
overall view of the system. We'll now look at a different profiler, which will give us 
per-line details that cProfile is not capable of providing.

line_profiler
This profiler is different from cProfile. It helps you profile a function line by line 
instead of doing a deterministic profiling, like the other one does.

To install this profiler, you can use the pip (https://pypi.python.org/pypi/pip) 
command-line tool, with the following command:

$ pip install line_profiler

If you run into any trouble, such as missing files during installation, 
make sure you have all development dependencies installed. In the 
case of Ubuntu, you can ensure that all the dependencies are installed 
by running the following command:
$ sudo apt-get install python-dev libxml2-dev 
libxslt-dev

This profiler is trying to fill in a breach left by cProfile and others like it. Other 
profilers cover CPU time on function calls. Most of the time, this is more than enough 
to catch the problems and fix them (we saw that earlier). However, sometimes, the 
problem or bottleneck is related to one specific line inside the function and that is 
where line_profiler comes into play.

The author recommends us to use the kernprof utility, so we'll look at examples of 
it. Kernprof will create an instance of the profiler and insert it into the __builtins__ 
namespace with the name, profile. The profiler was designed to be used as a 
decorator, so you can just decorate any function you want, and it will time the 
execution for each line of it.

This is how we'll execute the profiler:

$ kernprof -l script_to_profile.py

https://pypi.python.org/pypi/pip
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The decorated function is ready to be profiled:

@profile
def fib(n):
    a, b = 0, 1 
    for i in range(0, n):
        a,b = b, a+b
    return a

By default, kernprof will save the results into a file called script_to_profile.
py.lprof, but you can tell it to display the results right away using the -v attribute:

$ kernprof -l -v script_to_profile.py

Here is a simple example output to help you understand what you'll be looking at:

The output contains every line of the function, next to the timing information.  
There are six columns of information, and this is what they mean:

• Line #: This is the line number inside the file.
• Hits: This is the number of times this line is executed during the profiling.
• Time: This is the total execution time of that line, specified in timer's unit. 

In the header information before the table with the results, you'll notice a 
field called Timer unit, that number is the conversion factor to seconds (to 
calculate the actual time, you'll have to do time x timer's unit). It might be 
different on different systems.

• Per hit: The average amount of time spent executing that line of code. This 
is also specified in timer's units.

• % Time: The percentage of time spent executing that line, relative to the total 
time spent executing the entire function.
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If you're building another tool that leverages line_profiler, there are two  
ways to let it know which functions to profile: using the constructor and using  
the add_function method.

The line_profiler also provides the same run, runctx, runcall, enable, and 
disable methods that cProfile.Profile provides. However, the last two aren't 
safe when nesting, so be careful. After profiling, you can dump the stats into a file 
using the dump_stats(filename) method, or you can print them using the print_
stats([stream]) method. It'll print the results into sys.stdout or whatever other 
stream you pass it as parameter.

Here is an example of the same function from earlier. This time, the function is being 
profiled using the line_profiler API:

import line_profiler
import sys

def test():
    for i in range(0, 10):
        print i**2
    print "End of the function"

prof = line_profiler.LineProfiler(test) #pass in the function to 
profile

prof.enable() #start profiling
test()
prof.disable() #stop profiling

prof.print_stats(sys.stdout) #print out the results

kernprof
The kernprof is the profiling utility that comes bundled with line_profiler  
and allows us to abstract most of the profiling code from our own source code.  
This means we can use it to profile our application, like we saw earlier. kernprof 
will do several things for us:

• It'll work with cProfile, lsprof, and even the profile module, depending 
on which one is available.

• It'll find our script properly. If the script is not inside the current folder, it'll 
even check the PATH variable.
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• It'll instantiate and insert the profiler into the __builtins__ namespace with 
the name profile. This will allow us to use the profiler inside our code. In 
the case of line_profiler, we can even use it as a decorator without having 
to worry about importing anything.

• The output files with the profiling stats can be viewed using the pstats.
Stats class or even from the command line as follows:
$ python -m pstats stats_file.py.prof

Or in the case of lprof files:
$ python -m line_profiler stats_file.py.lprof

Some things to consider about kernprof
There are a couple of things to take into consideration when reading the output from 
kernprof. In some cases, the output might be confusing, or the numbers might not 
add up. Here are the answers to some of the most common questions:

• Line-by-line time doesn't add up to total time when the profile function 
calls another one: When profiling a function that gets called by another 
profiled function, sometimes, it might happen that the numbers don't add 
up. This is because kernprof is only recording the time spent inside the 
function and tries to avoid measuring any overhead added by the profiler 
itself, as shown in the following screenshot:
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The preceding screenshot shows an example of this. The printI function 
takes 0.010539 seconds according to the profiler. However, inside the test 
function, the total amount of time spent seems to be 19567 timer's units, 
which amounts to 0.019567 seconds.

• List comprehension lines have a lot more hits than they should inside the 
report: This is basically because the report is adding one hit per iteration 
inside the expression. Here is an example of this:

You can see how the actual expression line has 102 hits, 2 for each time the 
printExpression function is called, and the other 100 due to the range used.

Profiling examples
Now that we've seen the basics of how to use line_profiler and kernprof, let's get 
our hands dirty with more interesting examples.

Back to Fibonacci
Yes, let's again profile our original Fibonacci code. It'll be good to compare the 
output from both profilers to see how they work.
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Let's first look at the output from this new profiler:

Out of all the numbers in the report, we can rest assured that timing is not an issue. 
Inside the fib function, none of the lines take too long (nor should they). Inside  
fib_seq, only one does, but that's because of the recursion shown inside fib.

So, our problem (as we already know) is the recursion and the number of times we're 
executing the fib function (57, 291 times to be exact). Every time we make a function 
call, the interpreter has to do a lookup by name and then execute the function. Every 
time we call the fib function, two more calls are made.
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The first thing that comes to mind is to somehow lower the number of recursive calls. 
We can rewrite it into an iterative version or do a quick fix by adding the cached 
decorator, like we did earlier. We can see the results in the following report:

The number of hits for the fib function went from 57, 291 hits to 21. This is another 
proof that the cached decorator is a great optimization in this case.

Inverted index
Instead of repeating the second example from within a different profiler, let's look 
at another problem: creating an inverted index (http://en.wikipedia.org/wiki/
inverted_index).

An inverted index is a resource used by many search engines to find words in 
several files at the same time. The way they work is by pre-scanning all files, splitting 
their content into words, and then saving the relations between those words and the 
files (some even save the position of the word too). This way, when a search is made 
on a specific word, the searching time is O(1) (constant).
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Let's see a simple example:

//With these files:
file1.txt = "This is a file"
file2.txt = "This is another file"
//We get the following index:
This, (file1.txt, 0), (file2.txt, 0)
is, (file1.txt, 5), (file2.txt, 5)
a, (file1.txt, 8)
another, (file2.txt, 8)
file, (file1.txt, 10), (file2.txt, 16)

So now, if we were to look for the word file, we know it's in both files (at different 
positions). Let's see the code that calculates this index (again, the point of the 
following code is to show classic improvement opportunities, so stick with us until 
we see the optimized version of the code):

#!/usr/bin/env python

import sys
import os
import glob

def getFileNames(folder):
  return glob.glob("%s/*.txt" % folder)

def getOffsetUpToWord(words, index):
  if not index:
    return 0
    subList = words[0:index]
    length = sum(len(w) for w in subList)
    return length + index + 1
        
def getWords(content, filename, wordIndexDict):
  STRIP_CHARS = ",.\t\n |"
  currentOffset = 0

  for line in content:
    line = line.strip(STRIP_CHARS)
    localWords = line.split()
    for (idx, word) in enumerate(localWords):
      word = word.strip(STRIP_CHARS)
      if word not in wordIndexDict:
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        wordIndexDict[word] = []

      line_offset = getOffsetUpToWord(localWords, idx) 
      index = (line_offset) + currentOffset
      currentOffset = index 
      wordIndexDict[word].append([filename, index])

  return wordIndexDict

def readFileContent(filepath):
    f = open(filepath, 'r')
    return f.read().split( ' ' )

def list2dict(list):
  res = {}
  for item in list:
    if item[0] not in res:
      res[item[0]] = []
    res[item[0]].append(item[1])
  return res

def saveIndex(index):
  lines = []
  for word in index:
    indexLine = ""
    glue = ""
    for filename in index[word]:
      indexLine += "%s(%s, %s)" % (glue, filename,  
      ','.join(map(str, index[word][filename])))
     glue = ","
    lines.append("%s, %s" % (word, indexLine))

  f = open("index-file.txt", "w")
  f.write("\n".join(lines))
  f.close()

def __start__():
  files = getFileNames('./files')
  words = {}
  for f in files:
    content = readFileContent(f)
    words = getWords(content, f, words)
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  for word in (words):
    words[word] = list2dict(words[word])
  saveIndex(words)

__start__()

The preceding code is as simple as it gets. It gets the job done for simple .txt files, 
and that is what we want right now. It'll load all .txt files inside the files folder, split 
their content into words, and calculate the offset of those words inside the document. 
Finally, it'll save all this information into a file called index-file.txt.

So, let's begin profiling and see what we get. Since we don't really know exactly 
which are the heavy-duty functions and which ones are the light ones, let's add  
the @profile decorator to all of them and run the profiler.

getOffsetUpToWord
The getOffsetUpToWord function looks like a great candidate for optimization,  
since it gets called quite a few times during execution. Let's keep the decorator  
on it for now.
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getWords
The getWords function does a lot of processing. It even has two nested for loops, so 
we'll keep the decorator on as well.

list2dict
The list2dict function takes care of grabbing a list of arrays with two elements 
and returning a dictionary, using the first element of the array items as key and the 
second one as values. We'll leave the @profile decorator on for now.
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readFileContent
The readFileContent function has two lines, and the significant one simply calls the 
split method on the content of the file. There is not a lot to improve here, so we'll 
discard it and focus on the other ones.

saveIndex
The saveIndex function writes the results of the processing to a file, using a specific 
format. We might be able to get some better numbers here too.
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__start__
Finally, the main method, __start__, takes care of calling the other functions and 
doesn't do much heavy lifting, so we'll also discard it.

So, let's summarize. We originally had six functions, out of which we discarded two, 
because they were too trivial or just didn't do anything relevant. Now, we have a 
total of four functions to review and optimize.

getOffsetUpToWord
Let's first look at the getOffsetUpToWord function, which has a lot of lines for 
something as simple as adding up the length of the words leading up to the current 
index. There is probably a more Pythonic way to go about it, so let's try it out.

This function originally comprised 1.4 seconds of the total execution time, so let's  
try to lower that number by simplifying the code. The adding up of the length of  
the words can be translated into a reduce expression, as shown here:

def getOffsetUpToWord(words, index):
  if(index == 0):
    return 0
  length =  reduce(lambda curr, w: len(w) + curr, words[0:index],  
  0)
  return length + index + 1
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This simplification removes the need for extra time doing variable assignments and 
lookups. It might not seem like much. However, if we run the profiler again with this 
new code, the time would go down to 0.9 seconds. There is still an obvious drawback 
to that implementation: the lambda function. We're dynamically creating a function 
every time we call getOffsetUpToWord. We're calling it 313,868 times, so it would be 
a good idea to have this function already created. We can just add a reference to it in 
the reduce expression, as shown here:

def addWordLength(curr, w):
  return len(w) + curr

@profile
def getOffsetUpToWord(words, index):
  if not index:
    return 0
  length = reduce(addWordLength, words[0:index], 0)
  return length + index + 1

The output should be similar to the following screenshot:

With this minor improvement, the execution time goes down to 0.8 seconds. In 
the preceding screenshot, we can see that there are still a lot of unwanted hits (and 
therefore time) spent in the first two lines of the function. This check is unnecessary 
because the reduce function already defaults to 0. Finally, the assignment to the 
length variable can be removed, and we can return directly the sum of the length,  
the index, and the integer 1.

With that, we're left with the following code:

def addWordLength(curr, w):
  return len(w) + curr

@profile
def getOffsetUpToWord(words, index):
  return reduce(addWordLength, words[0:index], 0) + index + 1

The total execution time for this function went from 1.4 to an amazing 0.67 seconds.
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getWords
Let's now move on to the next one: the getWords function. It is a pretty  
slow one. According to the screenshot, the execution of this function adds up  
to 4 seconds. That's not good. Let's see what we can do about it. First things first, 
the most expensive (time-consuming) line in this function is the one that calls the 
getOffsetUpToWord function. Since we already optimized that one, the total time  
of this function is now 2.2 seconds (down from 4 seconds).

That's a pretty decent side effect optimization, but we can still do a bit more for 
this function. We're using a normal dictionary for the wordIndexDict variable, so 
we have to check whether a key is set before actually using it. Doing that check 
inside this function takes up about 0.2 seconds. It is not a lot, but an optimization 
nonetheless. To remove that check, we can use the defaultdict class. It is a subclass 
of the dict class, which adds an extra functionality. It sets a default value for when a 
key doesn't exist. This will remove the need for those 0.2 seconds inside the function.

Another trivial but helpful optimization is the assignment of results to variables. 
It might seem like a small thing, but doing it 313,868 times will no doubt hurt our 
timing. So, take a look at these lines:

    35    313868      1266039      4.0     62.9        line_offset  
    = getOffsetUpToWord(localWords, idx) 
    36    313868       108729      0.3      5.4        index =  
    (line_offset) + currentOffset
    37    313868       101932      0.3      5.1         
    currentOffset = index 

These lines can be changed into a single line of code, as shown here:

      currentOffset = getOffsetUpToWord(localWords, idx) +  
      currentOffset

With that, we shaved off another 0.2 seconds. Finally, we're doing a strip operation 
on every line and then on every word. We can simplify this by calling the replace 
method several times for the entire content when loading the file. This will take care 
of cleaning up the text we'll be processing and remove added time for lookups and 
method calls inside the getWords function.

The new code looks like this:

def getWords(content, filename, wordIndexDict):
  currentOffset = 0
  for line in content:
    localWords = line.split()
    for (idx, word) in enumerate(localWords):
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      currentOffset = getOffsetUpToWord(localWords, idx) +  
      currentOffset
      wordIndexDict[word].append([filename, currentOffset])])])
  return wordIndexDict

It only takes 1.57 seconds to run. There is one extra optimization that we might want 
to look at. It fits this particular case, because the getOffsetUpToWord function is only 
used in one place. Since this function got reduced to a one-liner, we can just put the 
one-liner in place of the function call. This one-liner will subtract the lookup time 
and give us a whopping 1.07 seconds (that's a 0.50 seconds reduction!). This is how 
the latest version of the function looks:

If you'll call the function from several places, this might be an optimization that 
is not worth having, since it'll hurt the code maintainability. Code maintainability 
is also an important aspect when developing. It should be a deciding factor when 
trying to figure out when to stop with the optimization process.

list2dict
Moving on, for the list2dict function, we can't really do much, but we can clean 
it up to get a more readable code and shave of about 0.1 seconds. Again, we're not 
doing this strictly for the speed gain, but for the readability gain. We have a chance 
to use the defaultdict class again and remove the check for a key so that the new 
code looks like this:

def list2dict(list):
  res = defaultdict(lambda: [])
  for item in list:
    res[item[0]].append(item[1])
  return res

The preceding code has less lines, is easier to read, and more easy to understand.
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saveIndex
Finally, let's take a look at the saveIndex function. According to our initial report, 
this function took 0.23 seconds to preprocess and save the data into the index file. 
That's a pretty good number already, but we can do a bit better by taking a second 
look at all the string concatenations we have.

Before saving the data, for every word we generate a string by concatenating  
several pieces together. In that same loop, we will also reset the indexLine  
and glue variables. These actions will add up to a lot of time, so we might  
want to change our strategy.

This is shown in the following code:

def saveIndex(index):
  lines = []
  for word in index:
    indexLines = []
    for filename in index[word]:
      indexLines.append("(%s, %s)" % (filename, ','.join(index[word]
[filename])))
    lines.append(word + "," +  ','.join(indexLines))

  f = open("index-file.txt", "w")
  f.write("\n".join(lines))
  f.close()

As you can see in the preceding code, we changed the entire for loop. Now, instead 
of adding the new string to the indexLine variable, we appended it into a list. We 
also removed the map call, which was making sure we were dealing with strings 
during the join call. That map was moved into the list2dict function, casting the 
indexes to the string directly while appending them.

Finally, we used the + operator to concatenate strings instead of doing string 
expansion, which is a more expensive operation. In the end, this function went  
down from 0.23 seconds to 0.13, giving us a 0.10-second gain in speed.
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Summary
To sum things up, we've seen two major profilers used with Python: cProfile, 
which comes bundled with the language, and line_profiler, which gives us the 
chance to look at each line of code independently. We also covered some examples  
of analysis and optimization using them.

In the next chapter, we will look at a set of visual tools that will help us in our job by 
displaying the same data we covered in this chapter, but in a graphic manner.
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Going Visual – GUIs to Help 
Understand Profiler Output

Although we already covered profiling in the previous chapter, the process we went 
through was like walking in the dark, or at least, in a place with very little light. We 
kept looking at numbers. Basically, we kept trying to decrease the number of hits, 
number of seconds, or other similar numbers. However, it was hard to understand 
how those numbers related to each other based on the representation we had of them.

We couldn't easily see the big blueprint of our system, based off of that output.  
If our systems would've been even bigger, seeing that blueprint would've been  
even harder.

Simply because we're human beings and not computers ourselves, we work better 
when we have some sort of visual aid. In this particular case, our work would benefit 
if we could better understand how everything is related. To do this, we have tools 
that provide visual representations of the numbers we saw in the previous chapter. 
These tools will provide us with much needed help. In turn, we'll be able to locate 
and fix the bottlenecks of our systems much faster. As an added bonus, we'll have a 
better understanding of our system.

In this chapter, we'll cover two tools that fall into this category:

• KCacheGrind / pyprof2calltree: This combo will provide the ability to 
transform the output of cProfile into the format required by KCacheGrind, 
which in turn will help us visualize the information.

• RunSnakeRun (http://www.vrplumber.com/programming/
runsnakerun/): This tool will also allow us to visualize and analyze the 
output from cProfile. It provides square maps and sortable lists to help  
us in our task.

http://www.vrplumber.com/programming/runsnakerun/
http://www.vrplumber.com/programming/runsnakerun/
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For each one, we'll go over the basics of installation and UI explanation. Then, we'll 
grab the examples from Chapter 2, The Profilers, and reanalyze them based on the 
output from these tools.

KCacheGrind – pyprof2calltree
The first GUI tool we will see is KCacheGrind. It is a data visualization tool designed 
to parse and display different formats of profiling data. For our case, we will display 
the output from cProfile. However, to do this, we'll also need the help from the 
command-line tool called pyprof2calltree.

This tool is a rebranding of a very popular one called lsprofcalltree.py 
(https://people.gnome.org/~johan/lsprofcalltree.py). It tries to behave more 
like the kcachegrind-converter (https://packages.debian.org/en/stable/
kcachegrind-converters) package from Debian. We'll use the tool to transform  
the output from cProfile into something KCacheGrind can understand.

Installation
To install pyprof2calltree, you'll first need to install the pip command-line utility. 
Then, just use the following command:

$ pip install pyprof2calltree

Note that all installation steps and instructions are meant for the Ubuntu 14.04 Linux 
distribution, unless otherwise noted.

Now, for KCacheGrind, the installation is a bit different. The visualizer is part of 
the KDE desktop environment, so if you already have it installed, chances are that 
you already have KCacheGrind also. However, if you don't have it (maybe you're a 
Gnome user), you can just use your package manager and install it. For instance, in 
Ubuntu, you'd use the following command:

$ sudo apt-get install kcachegrind

With this command, you'll probably have to install a lot of packages 
not directly related to the utility, but to KDE. So, the installation 
might take some time depending on your Internet connection.

For Windows and OS X users, there is the option of installing the QCacheGrind branch 
of KCacheGrind, which is already precompiled and can be installed as a binary.

https://people.gnome.org/~johan/lsprofcalltree.py
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Windows users can download it from http://sourceforge.net/projects/
qcachegrindwin/, and OS X users can install it using brew:

$ brew install qcachegrind

Usage
There are two ways to use pyprof2calltree: one is from the command line, passing 
in arguments, and the other one is directly from the read–eval–print loop(REPL)  
(or even from our own scripts being profiled).

The first one (command-line version) comes in very handy when we already have 
the profiling results stored somewhere. So, with this tool, we can simply run the 
following command and get the output when needed:

$ pyprof2calltree -o [output-file-name] -i input-file.prof

There are some optional parameters, which can help us in different cases. Two of 
them are explained here:

• -k: If we want to run KCacheGrind on the output data right away, this 
option will do it for us

• -r: If we don't have the profiling data already saved in a file, we can use this 
parameter to pass in the Python script we'll use to collect the said data

Now, if you want to use it from the REPL instead, you can simply import either (or 
both) the convert function or the visualize function from the pyprof2calltree 
package. The first one will save the data into a file, and the second one will launch 
KCacheGrind with the output from the profiler.

Here is an example:

from xml.etree import ElementTree
from cProfile import Profile
import pstats
xml_content = '<a>\n' + '\t<b/><c><d>text</d></c>\n' * 100 + '</a>'
profiler = Profile()
profiler.runctx(
"ElementTree.fromstring(xml_content)",
locals(), globals())

from pyprof2calltree import convert, visualize
stats = pstats.Stats(profiler)
visualize(stats)      # run kcachegrind

http://sourceforge.net/projects/qcachegrindwin/
http://sourceforge.net/projects/qcachegrindwin/
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This code will call KCacheGrind. It'll show something like what you see in the 
following screenshot:

In the preceding screenshot, you can see the list on the left-hand side (1) showing 
some of the numbers we saw in the previous chapter. On the right-hand side (2), 
we've selected one of the tabs, specifically the Callee Map tab. It shows a set of 
boxes, representing the hierarchy of function calls from the one selected on the left-
hand side all the way down.

On the list from the left-hand side, there are two columns that we'll want to pay 
special attention to:

• Incl. (from Inclusive time) column: This shows an indicator of how long 
each function takes in aggregate. This means it adds up the time its code 
takes plus the time that other functions called by it take. If a function has a 
high number in this column, it doesn't necessarily mean that the function 
takes too long. It could mean that the functions called by it do.

• Self column: This shows the time spent inside a particular function,  
without taking into account the ones called by it. So, if a function has a  
high Self value, then it probably means that a lot of time is spent inside it, 
and it's a good place to start looking for optimization paths.
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Another useful view is Call Graph, which can be found on the lower-right box once 
a function is selected on the list. It'll show a representation of the functions that 
will help explain how each one calls the next one (and how many times). Here is an 
example from the preceding code:

A profiling example – TweetStats
Let's now go back to the examples of Chapter 2, The Profilers, and tackle them using 
the pyprof2calltree/kcachegrind combo.

Let's avoid the Fibonacci examples, since they're quite simple and we've been over 
them already. So, let's jump directly to the code from the TweetStats module. It 
would read a list of tweets and get some statistics from it. We're not modifying the 
code. So, for reference, just take a look at it in Chapter 2, The Profilers.

As for the script using the class and printing the actual stats, we're modifying it to 
save the stats instead. This is a very simple change as you can see here:

import cProfile
import pstats
import sys

from tweetStats import build_twit_stats

profiler = cProfile.Profile()
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profiler.enable()

build_twit_stats()
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').dump_stats('tweet-stats.
prof') #saves the stats into a file called tweet-stats.prof, instead 
of printing them into stdout

Now, with the stats saved into the tweet-stats.prof file, we can use the following 
command to transform it and start the visualizer all at once:

$pyprof2calltree -i tweet-stats.prof -k

This, in turn, will show us something like the following screenshot:

Again, with the Callee Map selected for the first function call, we can see the entire 
map of our script. It clearly shows where the bottlenecks are (biggest blocks on the 
right-hand side): read_data, the split method, and the get_data function on the 
far right of the map.
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Inside the get_stats section of the map, we can see how there are two functions 
that make up for part of the size: inc_stat and find from string. We know the first 
one from seeing the code. This function does very little, so it's entire size will only be 
due to lookup times accumulated (we're calling it around 760k times after all). The 
same thing happens for the find method. We're calling it way too many times, so the 
lookup time accumulates and starts to be of notice. So, let's apply a set of very simple 
improvements to this function. Let's remove the inc_stat function and inline it's 
behavior. Let's also change the find method line and use the in operator. The result 
will look like the one shown in this screenshot: :

That other side of the map changed drastically. Now, we can see that the get_stats 
function no longer calls other functions, so the lookup times were removed. It now 
only represents 9.45 percent of the total execution time, down from 23.73 percent.
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Yes, the preceding conclusions are the same ones we arrived at in the previous 
chapter, but we did so using a different method. Let's then keep doing the same 
optimization we did earlier and see how the map changes again:

In the preceding screenshot, we see that by selecting the build_twitt_stats 
function (in the list on the left-hand side), the functions that get called are simply 
methods of the string objects.

Sadly, KCacheGrind isn't showing us the total time of execution. However, the map 
clearly shows that we've simplified and optimized our code anyway.

A profiling example – Inverted Index
Again, let's get another example from Chapter 2, The Profilers: the inverted index.  
Let's update its code in order to generate the stats data and save it into a file so  
that we can later analyze it with KCacheGrind.

The only thing we need to change is the last line of the file, instead of just calling the 
__start__ function. We have the following code:

profiler = cProfile.Profile()
profiler.enable()
__start__()
profiler.create_stats()
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats('cumulative').dump_stats('inverted-
index-stats.prof')

So now, executing the script will save the data into the inverted-index-stats.
prof file. Later, we can use the following command to start up KCacheGrind:

$ pyprof2calltree -i inverted-index-stats.prof -k
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This is what we will see first:

Let's first do a resort of the functions on the left-hand side by the second column 
(Self). So, we can look at the functions that take the longest to execute because 
of their code (not because of how long the functions it calls take). We will get the 
following list:
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So, according to the preceding list, the two most problematic functions right now are 
getWords and list2dict.

The first one can be improved in several ways, as follows:

• The wordIndexDict attribute can be changed to be of the defaultdict type, 
which will remove the if statement checking for an existing index

• The strip statements can be removed from the readFileContent function, 
simplifying our code here

• A lot of assignments can be removed, so avoid spending milliseconds in 
them, since we can use the values directly

So, our new getWords function looks like this:

def getWords(content, filename, wordIndexDict):
  currentOffset = 0
  for line in content:
    localWords = line.split()
    for (idx, word) in enumerate(localWords):
      currentOffset = getOffsetUpToWord(localWords, idx) +  
      currentOffset 
      wordIndexDict[word].append([filename, currentOffset])
  return wordIndexDict

Now, if we run the stats again, the map and the numbers look a bit different:

So, our function is now using less time, both overall (Incl. column) and inside it  
(Self column). However, there is still another detail we might want to look 
into before leaving this function alone. The getWords function is calling 
getOffsetUpToWord a total of 141,295 times, the lookup time spent in  
there alone, should be enough to merit a review. So, let's see what we can do.
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We've already solved this issue in the earlier chapter. We saw that we can reduce the 
entire getOffsetUpToWord function to a one-liner, which we can later write directly 
inside the getWords function to avoid lookup time. With this in mind, let see what 
our new map looks like:

Now, we have increased the overall time, but that's nothing to worry about. It is  
due to the fact that now we have one function less to spread the timing between,  
so the number changed for all other functions. However, the one we really care  
about (the Self time) went down, by about 4 percent.

The preceding screenshot also shows the Call Graph view, which helps us see that 
even though we made an improvement, the reduce function is still being called over 
100,000 times. If you look at the code of the getWords function, you would notice we 
don't really need the reduce function. This is because on every call, we're adding up 
all the numbers we added on the previous call plus one more, so we can simplify this 
in the following code:

def getWords(content, filename, wordIndexDict):
  currentOffset = 0
  prevLineLength = 0
  for lineIndex, line in enumerate(content):
    lastOffsetUptoWord = 0
    localWords = line.split()

    if lineIndex > 0:
      prevLineLength += len(content[lineIndex - 1]) + 1
    for idx, word in enumerate(localWords):
      if idx > 0:
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        lastOffsetUptoWord += len(localWords[idx-1])
      currentOffset = lastOffsetUptoWord + idx +  1 +  
      prevLineLength

      wordIndexDict[word].append([filename, currentOffset])

With this final touch to the functions, the numbers change once again:

The inclusive amount of time of the function was lowered significantly, so overall, 
this function now takes less time to execute (which was our goal). The internal time 
(Self column) went down, which is a good thing. This is because it also means that 
we're doing the same in less time (specially because we know that we're not calling 
any other function).

RunSnakeRun
RunSnakeRun is yet another GUI tool to help us visualize the profiling output 
and, in turn, help us make sense of it. This particular project is a simplified version 
of KCacheGrind. Whereas the latter is also useful for C and C++ developers, 
RunSnakeRun is specifically designed and written for Python developers.

Earlier, with KCacheGrind, if we wanted to plot the output of cProfile, we needed 
an extra tool (pyprof2calltree). This time we won't. RunSnakeRun knows how to 
interpret it and display it, so all we need to do is call it and pass in the path to the file.
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The features provided by this tool are as follows:

• Sortable data grid views with fields, such as:
 ° function name
 ° number of total calls
 ° cumulative time
 ° filename and line number

• Function-specific information, such as all callers of this function and all 
callee's of this function

• Square map of the call tree with size proportional to the amount of time 
spent inside each function

Installation
In order to install this tool, you have to make sure that several dependencies are 
covered, mainly the following ones:

• Python profiler
• wxPython (2.8 or above) (http://www.wxpython.org/)
• Python (of course!) 2.5 or above, but lower than 3.x

You'll also need to have pip (https://pypi.python.org/pypi/pip) installed in 
order to run the installation command.

So, make sure you have all these installed before moving forward. If you're  
in a Debian-based distribution of Linux (say Ubuntu), you can use the following  
line to make sure you have everything you need (provided you already have  
Python installed):

$ apt-get install python-profiler python-wxgtk2.8 python-setuptools

Windows and OS X users will need to find the correct precompiled 
binaries for their current OS version for each of the dependencies 
mentioned earlier.

After that, you can just run this command:

$ pip install  SquareMap RunSnakeRun

After that, you should be ready to go.

http://www.wxpython.org/
https://pypi.python.org/pypi/pip
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Usage
Now, to quickly show you how to use it, let's go back to previous last example: 
inverted-index.py.

Let's execute that script using the cProfile profiler as a parameter and save that 
output into a file. Then, we can just call runsnake and pass it the file path:

$ python -m cProfile -o inverted-index-cprof.prof inverted-index.py

$ runsnake inverted-index-cprof.prof

This will generate the following screenshot:

From the preceding screenshot, you can see the three main areas of interest:

• The sortable list, which contains all the numbers returned by cProfile
• The function-specific info section, which has several tabs of interest, such as 

the Callees, Callers and Source Code tabs
• The square map section, which graphically represents the call tree of  

the execution
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A nice little feature that the GUI has is that it'll highlight the related 
box on the right-hand side if you hover your mouse over a function 
in the list from the left-hand side. The same thing will happen if you 
hover over a box on the right-hand side; its corresponding entry in 
the list will be highlighted.

Profiling examples – the lowest common 
multiplier
Let's take a look at a very basic, non-practical example of a function in need of 
serious optimization and what it would look like using this GUI.

Our example function takes care of finding the lowest common multiplier between 
two numbers. It's a pretty basic example: one you can find all over the Internet. 
However, it's also a good place to start getting a feel of this UI.

The function's code is as follows:

def lowest_common_multiplier(arg1, arg2):
    i = max(arg1, arg2)
    while i < (arg1 * arg2):
        if i % min(arg1,arg2) == 0:
            return i
        i += max(arg1,arg2)
    return(arg1 * arg2)

print lowest_common_multiplier(41391237, 2830338)

I'm pretty sure you can spot every single possible optimization just by looking at 
it, but stay with me. Let's profile this bad boy and load up the resulting output on 
RunSnakeRun.

So, to run it, use this command:

$ python -m cProfile -o lcm.prof lcm.py

To start the GUI, use this command:

$ runsnake lcm.prof
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This is what we get:

One thing we didn't mention earlier, but that is a nice add-on to the square map,  
is the fact that next to each box's name, we can see how much time it takes to run  
that function.

So, at first sight, we can spot several issues already:

• We see that both max and min functions only take up to 0,228 seconds out of 
the total 0,621 seconds that our function takes to run. So, there is more to our 
function than simply max and min.

• We can also see that both max and min functions are called 943,446 times 
each. No matter how small the lookup time is, if you call a function almost  
1 million times it's going to add up.

Let's perform some obvious fixes to our code and see how it looks again, through the 
eyes of the snake:

def lowest_common_multiplier(arg1, arg2):
    i = max(arg1, arg2)
    _max = i
    _min = min(arg1,arg2)
    while i < (arg1 * arg2):
        if i % _min == 0:
            return i
        i += _max
    return(arg1 * arg2)

print lowest_common_multiplier(41391237, 2830338)
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You should get something like what's shown in the following screenshot:

Now, neither min nor max even register on the square map. This is because we're just 
only calling them once, and the function went from 0.6 seconds to 0.1 second. This is 
the power of not doing unnecessary function lookups for you folks.

Now, let's take a look at another, more complex, and thus, interesting function in 
dire need of optimization.

A profiling example – search using the 
inverted index
Since the previous chapter, we've been over the code of the inverted index from all 
possible angles. This is great, since we've analyzed it from several perspectives and 
using different approaches. However, it would make no sense to also look at it using 
RunSnakeRun, since this tool is very similar to the one we just tried (KCacheGrind).

So instead, let's use the output of the inverted search script and code ourselves, a 
search script that will use that output. We will initially shoot for a simple search 
function that will only look for one single word in the index. The steps are quite 
straightforward:

1. Load the index in memory.
2. Search for the word and grab the indexing information.
3. Parse the indexing information.
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4. For each index entry, read the corresponding file and grab the surrounding 
string as a result.

5. Print the results.

Here's the initial version of our code:

import re
import sys

#Turns a list of entries from the index file into a dictionary indexed
#by words
def list2dict(l):
  retDict = {}
  for item in l:
    lineParts = item.split(',')
    word = lineParts.pop(0)
    data = ','.join(lineParts)
    indexDataParts = re.findall('\(([a-zA-Z0-9\./, ]{2,})\)'  
    ,data)
    retDict[word] = indexDataParts
  return retDict

#Load the index's content into memory and parse itdef loadIndex():
  indexFilename = "./index-file.txt"
  with open(indexFilename, 'r') as fh: 
    indexLines = []
    for line in fh:
      indexLines.append(line)
    index = list2dict(indexLines)

    return index

#Reads the content of a file, takes care of fixing encoding issues 
with utf8 and removes unwanted characters (the ones we didn't want 
when generating the index)
def readFileContent(filepath):
    with open(filepath, 'r') as f:
    return [x.replace(",",  
    "").replace(".","").replace("\t","").replace("\r","") 
    .replace("|","").strip(" ") for x in f.read() 
    .decode("utf-8-sig").encode("utf-8").split( '\n' )]
def findMatch(results):
  matches = []
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  for r in results:
    parts = r.split(',')
    filepath = parts.pop(0)
    fileContent = ' '.join(readFileContent(filepath))
    for offset in parts:
      ioffset = int(offset)
      if ioffset > 0:
        ioffset -= 1
      matchLine = fileContent[ioffset:(ioffset + 100)]
      matches.append(matchLine)
  return matches

#Search for the word inside the index
def searchWord(w):
  index = None
  index = loadIndex()
  result = index.get(w)
  if result:
    return findMatch(result)
  else:
      return []

#Let the user define the search word...
searchKey = sys.argv[1] if len(sys.argv) > 1 else None 

if searchKey is None: #if there is none, we output a usage message
 print "Usage: python search.py <search word>"
else: #otherwise, we search
  results = searchWord(searchKey)
  if not results:
      print "No results found for '%s'" % (searchKey)
  else:
      for r in results:
      print r

To run the code, just run the following command:

$ python -m cProfile -o search.prof search.py John
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The output we will get is similar to the following screenshot (given we have a few 
books inside the files folder):

The output could be improved by highlighting the search term or showing some of 
the previous words for more context. However, we'll run with it for the time being.

Now, let's see how our code looks when we open the search.prof file inside 
RunSnakeRun:
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That's a lot of boxes, especially comparing it to our previous example of the  
lowest common multiplier. However, let's see what insight can be gathered  
from it at first sight.

The two most time-consuming functions are loadIndex and list2dict, closely 
followed by readFileContent. We can see this on the left-side column:

• All these functions are actually spending most of their time inside other 
functions they call. So, their cumulative time is high, but their local time  
is considerably lower.

• If we sort by local time on the list, we would see that the top five  
functions are:

 ° The read method from the file object
 ° The loadIndex function
 ° The list2dict function
 ° The findAll method of the regular expression object
 ° And the readFileContent function

So, let's first take a look at the loadIndex function. Even though most of its time is 
spent inside the list2dict function, we still have one minor optimization to do, 
which will simplify its code and significantly reduce its local time:

def loadIndex():
  indexFilename = "./index-file.txt"
  with open(indexFilename, 'r') as fh:
    #instead of looping through every line to append it into an  
    array, we use the readlines method which does that already
    indexLines = fh.readlines()
    index = list2dict(indexLines)
    return index

This simple change took the local time of the function from 0.03s down to 0.00002s. 
Even though it wasn't already a big pain, we both increased its readability and 
improved its time. So, overall, we did well.

Now, based on the last analysis, we knew that most of the time spent inside  
this function was actually spent inside another one called by it. So, now that we 
basically decreased its local time to almost nothing, we need to focus on our next 
target: list2dict.



Going Visual – GUIs to Help Understand Profiler Output

[ 92 ]

However, first, let's see how the picture has changed with the simple improvement 
we did earlier:

Now, let's move on to list2dict. This function is the one in charge of parsing every 
line of the index file into something we can use later. It will parse every line of the 
index file, more specifically, into a hash table (or dictionary) indexed by a word, 
which will make our search be of O(1) in average (read back to Chapter 1, Profiling 
101, if you don't remember what this means) when we search. The values of the 
dictionary are the path to the actual files and the different offsets where the word is.

From our analysis, we can see that though we spend some time inside the function 
itself, most of the complexity is inside the regular expression methods. Regular 
expressions are great for many reasons, but sometimes, we tend to overuse them in 
cases where using simple split and replace functions would do. So, let's see how 
we can parse our data, get the same output without the regular expressions, and see 
if we can do it in less time:def list2dict(l):

  retDict = {}
  for item in l:
    lineParts = item.split(',(')
    word = lineParts[0]
    ndexDataParts = [x.replace(")","") for x in lineParts[1:]]
  retDict[word] = indexDataParts
  return retDict
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The code looks cleaner already. There are no regular expressions anywhere (which 
will help readability sometimes, since not everyone is an expert in reading regular 
expressions). We have less lines of code. We removed the join line, and we even got 
rid of the nasty del line, which was not necessary.

We, however, added a list comprehension line, but this is just a simple replace 
method on every item of the list in one line, that's all.

Let's see what our map looks like now:

Well, there is definitely a change there. If you compare the last two screenshots, you 
would notice the box for the list2dict function has moved to the right. This means 
it now takes less time than the readFileContent function. Our function's box is 
also simpler now. The only things inside it are the split and the replace methods. 
Finally, in case there was any doubt, let's look at the numbers:

• Local time went down from 0.024s to 0.019s. It makes sense that the local 
time didn't decrease that much, because we're still doing all the work inside 
the function. This decrease is mainly due to the absence of the del line and 
the join line.

• The total cumulative time decreased considerably. It went down from 0.094s 
to 0.031s, due to the lack of complex functions (regular expressions) used for 
the job.

We took the total cumulative time of the function down to a third of what is was.  
So, it was a good optimization, especially considering that if we had larger indexes, 
then the time would be much bigger.
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The last assumption is not always true. It depends greatly on the type 
of algorithm being used. However, in our case, since we're looping 
over all the lines of the index file, we can safely assume it is.

Let's take a quick look at the numbers from the first analysis of the code and the last 
one so that we can see if there is actually an improvement on the overall time:

Finally, as you can see, we went from around 0.2 seconds of execution with the 
original code all the way down to 0.072 seconds.

Here's the final version of the code, all put together with the earlier improvements:

import sys

#Turns a list of entries from the index file into a dictionary indexed
#by words
def list2dict(l):
  retDict = {}
  for item in l:
    lineParts = item.split(',(')
  word = lineParts[0]
    indexDataParts = [x.replace(")","") for x in lineParts[1:]]
  retDict[word] = indexDataParts
  return retDict

#Load the index's content into memory and parse it
def loadIndex():
  indexFilename = "./index-file.txt"
  with open(indexFilename, 'r') as fh:
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    #instead of looping through every line to append it into an  
    array, we use the readlines method which does that already
    indexLines = fh.readlines()
    index = list2dict(indexLines)
    return index

#Reads the content of a file, takes care of fixing encoding issues 
with utf8 and removes unwanted characters (the ones we didn't want 
when generating the index)#
def readFileContent(filepath):
    with open(filepath, 'r') as f:
    return [x.replace(",", "").replace(".","").replace("\t","").
replace("\r","").replace("|","").strip(" ") for x in f.read().
decode("utf-8-sig").encode("utf-8").split( '\n' )]

def findMatch(results):
  matches = []
  for r in results:
    parts = r.split(',')

    filepath = parts[0]
    del parts[0]
    fileContent = ' '.join(readFileContent(filepath))
    for offset in parts:
      ioffset = int(offset)
      if ioffset > 0:
        ioffset -= 1
      matchLine = fileContent[ioffset:(ioffset + 100)]
      matches.append(matchLine)
  return matches

#Search for the word inside the index
def searchWord(w):
  index = None
  index = loadIndex()
  result = index.get(w)
  if result:
    return findMatch(result)
  else:
    return []

#Let the user define the search word...
searchKey = sys.argv[1] if len(sys.argv) > 1 else None

if searchKey is None: #if there is none, we output a usage message
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  print "Usage: python search.py <search word>"
else: #otherwise, we search
  results = searchWord(searchKey)
  if not results:
    print "No results found for '%s'" % (searchKey)
  else:
    for r in results:
    print r

Summary
To summarize, in this chapter, we covered two of the most popular and common 
tools used by Python developers trying to make sense of the numbers returned  
by profilers such as cProfile. We analyzed the old code under this new light.  
We even got to analyze some new code.

In the next chapter, we'll start talking about optimization in more detail. We will 
cover some of the things we've already seen in practice and some recommendations 
of good practices when profiling and optimizing code.
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Optimize Everything
The path to mastering performance in Python has just started. Profiling only takes 
us half way there. Measuring how our program is using the resources at its disposal 
only tells us where the problem is, not how to fix it. In the previous chapters, we saw 
some practical examples when going over the profilers. We did some optimization, 
but we never really explained a lot about it.

In this chapter, we will cover the process of optimization, and to do that, we need to 
start with the basics. We'll keep it inside the language for now: no external tools, just 
Python and the right way to use it.

We will cover the following topics in this chapter:

• Memoization / lookup tables
• Usage of default arguments
• List comprehension
• Generators
• ctypes
• String concatenation
• Other tips and tricks of Python
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Memoization / lookup tables
This is one of the most common techniques used to improve the performance of a 
piece of code (namely a function). We can save the results of expensive function calls 
associated with a specific set of input values and return the saved result (instead of 
redoing the whole computation) when the function is called with the remembered 
input. It might be confused with caching, since this is one type of memoization, 
although this term also refers to other types of optimization (such as HTTP caching, 
buffering, and so on).

This methodology is very powerful because in practice, it'll turn what should have 
been a potentially very expensive call into a O(1) function call (for more information 
about this, refer to Chapter 1, Profiling 101) if the implementation is right. Normally, 
the parameters are used to create a unique key, which is then used on a dictionary to 
either save the result or obtain it if it's been already saved.

There is, of course, a trade-off to this technique. If we're going to remember the 
returned values of a memoized function, then we'll be exchanging memory space for 
speed. This is a very acceptable trade-off, unless the saved data becomes more than 
what the system can handle.

Classic use cases for this optimization are function calls that repeat the input 
parameters often. This will assure that most of the time, the memoized results 
are returned. If there are many function calls, but with different parameters, we'll 
only store results and spend our memory without any real benefit, as shown in the 
following image:
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You can clearly see how the blue bar (Fixed params, memoized) is clearly the fastest 
use case, while the others are all similar due to their nature.

Here is the code that generates values for the preceding chart. To generate some sort 
of time-consuming function, the code will call either the twoParams function or the 
twoParamsMemoized function several hundred times under different conditions, and 
it will log the execution time:

import math

import time

import random

class Memoized:

  def __init__(self, fn):

    self.fn = fn

    self.results = {}

  def __call__(self, *args):

    key = ''.join(map(str, args[0]))

    try:

      return self.results[key]

    except KeyError:

      self.results[key] = self.fn(*args)

    return self.results[key]

@Memoized

def twoParamsMemoized(values, period):

  totalSum = 0

  for x in range(0, 100):
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    for v in values:

      totalSum = math.pow((math.sqrt(v) * period), 4) + totalSum

  return totalSum

def twoParams(values, period):

  totalSum = 0

  for x in range(0, 100):

    for v in values:

      totalSum = math.pow((math.sqrt(v) * period), 4) + totalSum

  return totalSum

def performTest():

    valuesList = []

    for i in range(0, 10):

        valuesList.append(random.sample(xrange(1, 101), 10))

    start_time = time.clock()

    for x in range(0, 10):

      for values in valuesList:

          twoParamsMemoized(values, random.random())

    end_time = time.clock() - start_time

    print "Fixed params, memoized: %s" % (end_time)

    start_time = time.clock()

    for x in range(0, 10):

      for values in valuesList:
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          twoParams(values, random.random())

    end_time = time.clock() - start_time

    print "Fixed params, without memoizing: %s" % (end_time)

    start_time = time.clock()

    for x in range(0, 10):

      for values in valuesList:

          twoParamsMemoized(random.sample(xrange(1,2000), 10),  
          random.random())

    end_time = time.clock() - start_time

    print "Random params, memoized: %s" % (end_time)

    start_time = time.clock()

    for x in range(0, 10):

      for values in valuesList:

          twoParams(random.sample(xrange(1,2000), 10),  
          random.random())

    end_time = time.clock() - start_time

    print "Random params, without memoizing: %s" % (end_time)

performTest()

The main insight to take from the preceding chart is that, just 
like with every aspect of programming, there is no silver bullet 
algorithm that will work for all cases. Memoization is clearly a 
very basic way of optimizing code, but clearly, it won't optimize 
anything given the right circumstances.
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As for the code, there is not much to it. It is a very simple, non real-world example 
of the point I was trying to send across. The performTest function will take care 
of running a series of 10 tests for every use case and measure the total time each 
use case takes. Notice that we're not really using profilers at this point. We're just 
measuring time in a very basic and ad-hoc way, which works for us.

The input for both functions is simply a set of numbers on which they will run some 
math functions, just for the sake of doing something.

The other interesting bit about the arguments is that, since the first argument is a list 
of numbers, we can't just use the args parameter as a key inside the Memoized class' 
methods. This is why we have the following line:

key = ''.join(map(str, args[0]))

This line will concatenate all the numbers from the first parameter into a single 
value, which will act as the key. The second parameter is not used here because  
it's always random, which would imply that the key will never be the same.

Another variation of the preceding method is to precalculate all values from the 
function during initialization (assuming we have a limited number of inputs, of 
course) initialization and then refer to the lookup table during execution. This 
approach has several preconditions:

• The number of input values must be finite; otherwise it's impossible to 
precalculate everything

• The lookup table with all of its values, must fit into memory
• Just like before, the input must be repeated, at least once, so the optimization 

both makes sense and is worth the extra effort

There are different approaches when it comes to architecting the lookup table, all 
offering different types of optimizations. It all depends on the type of application 
and solution that you're trying to optimize. Here is a set of examples.

Performing a lookup on a list or linked list
This solution works by iterating over an unsorted list and checking the key against 
each element, with the associated value as the result we're looking for.

This is obviously a very slow method of implementation, with a Big O notation 
of O(n) for both the average and worst case scenarios. Still, given the right 
circumstances, it could prove to be faster than calling the actual function every time.
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In this case, using a linked list would improve the performance of the 
algorithm over using a simple list. However, it would still depend 
heavily on the type of linked list it is (doubly linked list, simple linked 
list with direct access to the first and last elements, and so on).

Simple lookup on a dictionary
This method works using a one-dimensional dictionary lookup, indexed by a 
key consisting of the input parameters (enough of them create a unique key). In 
particular cases (like we covered earlier), this is probably one of the fastest lookups, 
even faster than binary search in some cases with a constant execution time (Big O 
notation of O(1)).

Note that this approach is efficient as long as the key-generation 
algorithm is capable of generating unique keys every time. 
Otherwise, the performance could degrade over time due to the 
many collisions on the dictionaries.

Binary search
This particular method is only possible if the list is sorted. This could potentially 
be an option depending on the values to sort. Yet sorting them would require extra 
effort that would hurt the performance of the entire effort. However, it presents 
very good results, even in long lists (average Big O notation of O(log n)). It works by 
determining in which half of the list the value is and repeating until either the value 
is found or the algorithm is able to determine that the value is not in the list.

To put all of this into perspective, looking at the Memoized class mentioned earlier, 
it implements a simple lookup on a dictionary. However, this would be the place to 
implement either of the other algorithms.

Use cases for lookup tables
There are some classic example use cases for this type of optimization, but the most 
common one is probably the optimization of trigonometric functions. Based on the 
computing time, these functions are really slow. When used repeatedly, they can 
cause some serious damage to your program's performance.
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This is why it is normally recommended to precalculate the values of these functions. 
For functions that deal with an infinite domain universe of possible input values, 
this task becomes impossible. So, the developer is forced to sacrifice accuracy for 
performance by precalculating a discrete subdomain of the possible input values 
(that is, going from floating points down to integer numbers).

This approach might not be ideal in some cases, since some systems require both 
performance and accuracy. So, the solution is to meet in the middle and use some 
form of interpolation to calculate the required value, based on the ones that have 
been precalculated. It will provide better accuracy. Even though it won't be as 
performant as using the lookup table directly, it should prove to be faster than  
doing the trigonometric calculation every time.

Let's look at some examples of this; for instance, for the following trigonometric 
function:

def complexTrigFunction(x):
  return math.sin(x) * math.cos(x)**2

We'll take a look at how simple precalculation won't be accurate enough and how 
some form of interpolation will result in a better level of accuracy.

The following code will precalculate the values for the function in a range from 
-1000 to 1000 (only integer values). Then it'll try to do the same calculation  
(only for a smaller range) for floating point numbers:

import math
import time
from collections import defaultdict
import itertools

trig_lookup_table = defaultdict(lambda: 0) 

def drange(start, stop, step):
    assert(step != 0)
    sample_count = math.fabs((stop - start) / step)
    return itertools.islice(itertools.count(start, step),  
    sample_count)

def complexTrigFunction(x):
  return math.sin(x) * math.cos(x)**2

def lookUpTrig(x):
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  return trig_lookup_table[int(x)]

for x in range(-1000, 1000):
  trig_lookup_table[x] = complexTrigFunction(x)

trig_results = []
lookup_results = []

init_time = time.clock()
for x in drange(-100, 100, 0.1):
  trig_results.append(complexTrigFunction(x))
print "Trig results: %s" % (time.clock() - init_time)

init_time = time.clock()
for x in drange(-100, 100, 0.1):
  lookup_results.append(lookUpTrig(x))
print "Lookup results: %s" % (time.clock() - init_time)

for idx in range(0, 200):
  print "%s\t%s" % (trig_results [idx], lookup_results[idx])

The results from the preceding code will help demonstrate how the simple  
lookup table approach is not accurate enough (see the following chart). However,  
it compensates for this with speed, as the original function takes 0.001526 seconds  
to run while the lookup table only takes 0.000717 seconds.
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The preceding chart shows how the lack of interpolation hurts the accuracy. You 
can see how, even though both plots are quite similar, the results from the lookup 
table execution aren't as accurate as the trig function used directly. So, now, let's 
take another look at the same problem. However, this time, we'll add some basic 
interpolation (we'll limit the rage of values from -PI to PI):

import math
import time
from collections import defaultdict
import itertools

trig_lookup_table = defaultdict(lambda: 0) 

def drange(start, stop, step):
    assert(step != 0)
    sample_count = math.fabs((stop - start) / step)
    return itertools.islice(itertools.count(start, step),  
    sample_count)

def complexTrigFunction(x):
  return math.sin(x) * math.cos(x)**2

reverse_indexes = {}
for x in range(-1000, 1000):
  trig_lookup_table[x] = complexTrigFunction(math.pi * x / 1000)

complex_results = []
lookup_results = []

init_time = time.clock()
for x in drange(-10, 10, 0.1):
  complex_results .append(complexTrigFunction(x))
print "Complex trig function: %s" % (time.clock() - init_time)

init_time = time.clock()
factor = 1000 / math.pi
for x in drange(-10 * factor, 10 * factor, 0.1 * factor):
  lookup_results.append(trig_lookup_table[int(x)])
print "Lookup results: %s" % (time.clock() - init_time)

for idx in range(0, len(lookup_results )):
  print "%s\t%s" % (complex_results [idx], lookup_results [idx])
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As you might've noticed in the previous chart, the resulting plot is periodic 
(especially because we've limited the range from -PI to PI). So, we'll focus on  
a particular range of values that will generate one single segment of the plot.

The output of the preceding script also shows that the interpolation solution is still 
faster than the original trigonometric function, although not as fast as it was earlier:

Interpolation solution Original function
0.000118 seconds 0.000343 seconds

The following chart is a bit different from the previous one, especially because 
it shows (in green) the error percentage between the interpolated value and the 
original one:

The biggest error we have is around 12 percent (which represents the peaks we 
see on the chart). However, it's for the smallest values, such as -0.000852248551417 
versus -0.000798905501416. This is a case where the error percentage needs to be 
contextualized to see if it really matters. In our case, since the values related to that 
error are so small, we can ignore that error in practice.

There are other use cases for lookup tables, such as in image 
processing. However, for the sake of this book, the preceding 
example should be enough to demonstrate their benefits and 
the trade-off implied in their usage.
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Usage of default arguments
Another optimization technique, one that is contrary to memoization, is not 
particularly generic. Instead, it is directly tied to how the Python interpreter works.

Default arguments can be used to determine values once at function creation time, 
instead of at run time.

This can only be done for functions or objects that will 
not be changed during program execution.

Let's look at an example of how this optimization can be applied. The following  
code shows two versions of the same function, which does some random 
trigonometric calculation:

import math 

#original function
def degree_sin(deg):
    return math.sin(deg * math.pi / 180.0)

#optimized function, the factor variable is calculated during function 
creation time, 
#and so is the lookup of the math.sin method.
def degree_sin(deg, factor=math.pi/180.0, sin=math.sin):
    return sin(deg * factor)

This optimization can be problematic if not correctly documented. 
Since it uses attributes to precompute terms that should not change 
during the program's execution, it could lead to the creation of a 
confusing API.
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With a quick and simple test, we can double-check the performance gain from  
this optimization:

import time
import math

def degree_sin(deg):
  return math.sin(deg * math.pi / 180.0) * math.cos(deg * math.pi / 
180.0)

def degree_sin_opt(deg, factor=math.pi/180.0, sin=math.sin, cos = 
math.cos):
  return sin(deg * factor) * cos(deg * factor)

normal_times = []
optimized_times = []

for y in range(100):
  init = time.clock()
   for x in range(1000):
    degree_sin(x)
  normal_times.append(time.clock() - init)

  init = time.clock()
  for x in range(1000):
    degree_sin_opt(x)
  optimized_times.append(time.clock() - init)

print "Normal function: %s" % (reduce(lambda x, y: x + y, normal_
times, 0) / 100)
print "Optimized function: %s" % (reduce(lambda x, y: x + y, 
optimized_times, 0 ) / 100)
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The preceding code measures the time it takes for the script to finish each of 
the versions of the function to run its code for a range of 1000. It saves those 
measurements, and finally, it creates an average for each case. The result is  
displayed in the following chart:

It clearly isn't an amazing optimization. However, it does shave off some 
microseconds from our execution time, so we'll keep it in mind. Just remember  
that this optimization could cause problems if you're working as part of an OS 
developer team.

List comprehension and generators
List comprehension is a special construct provided by Python to generate lists by 
writing in the way a mathematician would, by describing its content instead of 
writing about the way the content should be generated (with a classic for loop).

Let's see an example of this to better understand how it works:

#using list comprehension to generate a list of the first 50 multiples 
of 2
multiples_of_two = [x for x in range(100) if x % 2 == 0]

#now let's see the same list, generated using a for-loop
multiples_of_two = []
for x in range(100):
  if x % 2 == 0:
    multiples_of_two.append(x)
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Now, list comprehension is not meant to replace for loops altogether. They are a great 
help when dealing with loops that, like the earlier one, are creating a list. However, 
they aren't particularly recommended for those for loops that you write because of 
their side effects. This means you're not creating a list. You're most likely calling a 
function inside it or doing some other calculation that does not translate into a list.  
For these cases, a list comprehension expression would actually hurt readability.

To understand why these expressions are more performant than regular for loops, 
we need to do some disassembling and read a bit of bytecode. We can do this 
because, even though Python is an interpreted language, it is still being translated 
into bytecode by the compiler. This bytecode is the one that is interpreted. So, using 
the dis module, we can turn that bytecode into something that humans can read, 
and analyze its execution.

Let's look at the code then:

import dis
import timeit

programs = dict(
    loop="""
multiples_of_two = []
for x in range(100):
  if x % 2 == 0:
    multiples_of_two.append(x)
""",
    comprehension='multiples_of_two = [x for x in range(100) if x % 2 
== 0]',
)

for name, text in programs.iteritems():
    print name, timeit.Timer(stmt=text).timeit()
    code = compile(text, '<string>', 'exec')
    dis.disassemble(code)

That code will output two things:

• The time each piece of code takes to run
• The set of instructions generated by the interpreter, thanks to the dis module
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Here is a screenshot of how that output would look (in your system, the time might 
change, but the rest should be pretty similar):
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First things first; the output proves that the list comprehension version of the code is, 
indeed, faster. Now, let's take a closer look at both lists of instructions, side by side, 
to try to understand them better:

The for loop instructions Comments The list 
comprehension 
instructions

Comments

BUILD_LIST BUILD_LIST

STORE_NAME The definition 
of our 
"multiples_of_
two" list

SETUP_LOOP

LOAD_NAME Range 
function

LOAD_NAME Range function

LOAD_CONST 100 (the 
attribute for 
the range)

LOAD_CONST 100 (the attribute for 
the range)

CALL_FUNCTION Calls range CALL_FUNCTION Calls range
GET_ITER GET_ITER

FOR_ITER FOR_ITER

STORE_NAME Our temp 
variable x

STORE_NAME Our temp variable x

LOAD_NAME LOAD_NAME

LOAD_CONST X % 2 == 0 LOAD_CONST X % 2 == 0
BINARY_MODULO BINARY_MODULO

LOAD_CONST LOAD_CONST

COMPARE_OP COMPARE_OP

POP_JUMP_IF_FALSE POP_JUMP_IF_
FALSE

LOAD_NAME LOAD_NAME

LOAD_ATTR Lookup for 
the append 
method

LIST_APPEND Appends the value to 
the list

LOAD_NAME Loads the 
value of X

CALL_FUNCTION Appends the 
actual value to 
the list

POP_TOP
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The for loop instructions Comments The list 
comprehension 
instructions

Comments

JUMP_ABSOLUTE JUMP_ABSOLUTE

JUMP_ABSOLUTE STORE_NAME

POP_BLOCK LOAD_CONST

LOAD_CONST RETURN_VALUE

RETURN_VALUE

From the preceding table, you can see how the for loop generates a longer list of 
instructions. The instructions generated by the comprehension code almost looks 
like a subset of the ones generated by the for loop, with the major difference of 
how the values are added. For the for loop, they are added one by one, using three 
instructions (LOAD_ATTR, LOAD_NAME, and CALL_FUNCTION). On the other hand, for 
the list comprehension column, this is done with one single, optimized instruction 
(LIST_APPEND).

This is the reason why when generating a list, the for loop 
should not be your weapon of choice. This is because the list 
comprehension you're writing is more efficient and sometimes, 
even writes more readable code.

That being said, remember to not abuse these expressions by replacing every 
for loop, even the ones that do other things (side effects). In these cases, list 
comprehension expressions are not optimized and will take longer than a  
regular for loop.

Finally, there is one more related consideration to take into account: when generating 
big lists, comprehension expressions might not be the best solution. This is because 
they still need to generate every single value. So, if you're generating a list of 100k 
items, there is a better way. You can use generator expressions. Instead of returning 
a list, they return a generator object, which has a similar API to what lists have. 
However, every time you request a new item, that item will be dynamically generated.

The main difference between a generator object and a list object is that the first one 
doesn't support random access. So, you can't really use the brackets notation for 
anything. However, you can use the generator object to iterate over your list:

my_list = (x**2 for x in range(100))
#you can't do this
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print my_list[1]

#but you can do this
for number in my_list:
  print number

Another key difference between lists and generator objects is that you can only 
iterate once over the latter, while you can do the same as many times as you like 
over a list. This is a key difference because it will limit the usage of your efficiently 
generated list. So, take it into account when deciding to go with a list comprehension 
expression or a generator expression.

This approach might add a little overhead when accessing the values, but it'll be 
faster when creating the list. Here is a comparison of both list comprehension and 
generator expressions when creating lists of different lengths:

The chart clearly shows that the performance of the generator expressions is better 
than the list comprehension expressions for lengthier lists. For smaller lists, the list 
comprehension ones are better.

ctypes
The ctypes library allows the developer to reach under the hood of Python and tap 
into the power of the C language. This is only possible with the official interpreter 
(CPython) because it is written in C. Other versions of it, such as PyPy or Jython, do 
not provide access to this library.
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This interface to C can be used to do many things, since you literally have the ability 
to load pre-compiled code and use it from C. This means you have access to libraries 
such as kernel32.dll and msvcrt.dll for Windows systems, and libc.so.6 for 
Linux systems.

For our particular case, we'll focus on ways to optimize our code, showing how 
to load a custom C library and how to load a system library to take advantage of 
its optimized code. For full details on how to use this library, refer to the official 
documentation at https://docs.python.org/2/library/ctypes.html.

Loading your own custom C library
Sometimes, no matter how many optimization techniques we use on our code, they 
won't be enough to help us achieve the best possible time. In these cases, we can 
always write the sensitive code outside our program, in C, compile it into a library, 
and import it into our Python code.

Let's look at an example of how we can do this and what type of performance boost 
we are expecting.

The problem to solve is a very simple one, something really basic. We'll write the 
code to generate a list of prime numbers, from a list of 1 million integers.

The Python code for that could be as follows:

import math
import time

def check_prime(x):
  values = xrange(2, int(math.sqrt(x)))
  for i in values:
    if x % i == 0:
      return False 

  return True

init = time.clock()
numbers_py = [x for x in xrange(1000000) if check_prime(x)]
print "%s" % (time.clock() - init)

https://docs.python.org/2/library/ctypes.html
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The preceding code is simple enough. Yes, we could easily improve it by changing 
the list comprehension expression for a generator. However, for the sake of showing 
the improvement from the C code, let's not do that. Now, the C code is taking 4.5 
seconds on average to run.

Let's now write the check_prime function in C, and let's export it into a shared 
library (.so file):

#include <stdio.h>
#include <math.h>
 
int check_prime(int a)
{
  int c;
  for ( c = 2 ; c <= sqrt(a) ; c++ ) { 
    if ( a%c == 0 )
     return 0;
  }

  return 1;

}

To generate the library file, use the following command:

$gcc -shared -o check_primes.so -fPIC check_primes.c 

Then, we can edit our Python script to run both versions of the function and compare 
the times, like this:

import time
import ctypes
import math

check_primes_types = ctypes.CDLL('./check_prime.so').check_prime

def check_prime(x):
  values = xrange(2, int(math.sqrt(x)))
  for i in values:
    if x % i == 0:
      return False 

  return True

init = time.clock()
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numbers_py = [x for x in xrange(1000000) if check_prime(x)]
print "Full python version: %s seconds" % (time.clock() - init)

init = time.clock()
numbers_c = [x for x in xrange(1000000) if check_primes_types(x)]
print "C version: %s seconds" % (time.clock() - init)
print len(numbers_py)

The preceding code gives the following output:

Full Python version C version
4.49 seconds 1.04 seconds

The performance boost is pretty good. It has gone from 4.5 seconds down to  
just 1 second!

Loading a system library
At times, there is no need to code your C function. The system's libraries probably 
have it for you already. All you have to do is import that library and use the function.

Let's see another simple example to demonstrate the concept.

The following line generates a list of 1 million random numbers, taking 0.9 seconds:

randoms = [random.randrange(1, 100) for x in xrange(1000000)]While 
this one, takes only 0.3 seconds:
randoms = [(libc.rand() % 100) for x in xrange(1000000)]

Here is the full code that runs both lines and prints out the times:

import time
import random
from ctypes import cdll

libc = cdll.LoadLibrary('libc.so.6') #linux systems
#libc = cdll.msvcrt #windows systems

init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Pure python: %s seconds" % (time.clock() - init)

init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)
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String concatenation
Python strings deserve a separate portion of this chapter because they're not like 
strings in other languages. In Python, strings are immutable, which means that  
once you create one you can't really change its value.

This is a relatively confusing affirmation, since we're used to doing things such as 
concatenation or replacement on string variables. However, what the average Python 
developer doesn't realize is that there is a lot more going on behind the curtains than 
they think.

Since string objects are immutable, every time we do anything to change its content, 
we're actually creating a whole new string with new content and pointing our 
variable to that new string. So, we must be careful when working with strings to 
make sure we actually want to do that.

There is a very simple way to check the preceding scenario. The following code will 
create a set of variables with the same string (we'll write the string every time). Then, 
using the id function (which, in CPython, returns the memory address where the 
value the variable points to is stored), we'll compare them to each other. If strings 
were mutable, then all objects would be different, and thus, the returned values 
should be different. Let's look at the code:

a = "This is a string"
b = "This is a string"

print id(a) == id(b)  #prints  True

print id(a) == id("This is a string") #prints True

print id(b) == id("This is another String") #prints False

As the comments on the code state, the output will be True, True, and False,  
thus showing how the system is actually reusing the This is a string string  
every time we write it.
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The following image tries to represent the same idea in a more graphical way:

Although we wrote the string twice, internally, both variables are referencing the 
same block of memory (containing the actual string). If we assign another value 
to one of them, we would not be changing the string content. We would just be 
pointing our variable to another memory address.
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The same thing happens in the preceding case, where we have a variable b pointing 
directly to variable a. Still, if we try to modify b, we would just be creating a new 
string once again.

Finally, what happens if we change the value of both our variables from our 
example? What happens to the hello world string stored in memory? Well, if there 
are no other references to it, the Garbage Collector will eventually take care of it, 
releasing that memory.

That being said, immutable objects are not all that bad. They are actually good for 
performance if used right, since they can be used as dictionary keys, for instance, or 
even shared between different variable bindings (since the same block of memory 
is used every time you reference the same string). This means that the string hey 
there will be the same exact object every time you use that string, no matter what 
variable it is stored in (like we saw earlier).

With this in mind, think about what would happen for some common cases, such as 
the following one:

full_doc = ""
for word in word_list:
  full_doc += word

The preceding code will generate a new string for full_doc for every item in the 
word_list list. This is not really efficient memory usage, is it? This is a very common 
case when we're trying to recreate a string from different parts. There is a better, 
more memory efficient way of doing it:

full_doc = "".join(world_list)
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The alternative is easier to read, faster to write, and more efficient, both memory 
and time wise. The following code shows the time each option takes. With the right 
command, we can also see that the for loop alternative uses a bit more memory:

import time
import sys

option = sys.argv[1]

words =  [str(x) for x in xrange(1000000)]

if option == '1':
  full_doc = ""
  init = time.clock()
  for w in words:
    full_doc += w
  print "Time using for-loop: %s seconds" % (time.clock() - init)
else:
  init = time.clock()
  full_doc = "".join(words)
  print "Time using join: %s seconds" % (time.clock() - init)

With the following commands we can execute the script and measure the memory 
used, using the Linux utility time:

• #for the for-loop version:
$ /usr/bin/time -f "Memory: %M bytes" python script.py 1 

• #for the join version:
$ /usr/bin/time -f "Memory: %M bytes" python script.py 0 

The output from the for-loop version command is as follows:

Time using for-loop: 0.155635 seconds

Memory: 66212 bytes

The output from the join version command is as follows:

Time using join: 0.015284 seconds

Memory: 66092 bytes

The join version clearly takes considerably less time, and the peak memory 
consumption (measured by the time command) is also less.
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The other use case we want to consider when working with strings in Python is 
a different type of concatenation; it is used when you're only dealing with a few 
variables, such as the following one:

document = title + introduction + main_piece + conclusion

You'll end up creating a set of substrings every time the system computes a  
new concatenation. So a better and more efficient way of doing this is using  
variable interpolation:

document = "%s%s%s%s" % (title, introduction, main_piece, conclusion)

Alternatively, it is even better to create substrings using the locals function:

document = "%(title)s%(introduction)s%(main_piece)s%(conclusion)s" % 
locals()

Other tips and tricks
The tips mentioned earlier are some of the most common techniques to optimize a 
program. Some of them are Python specific (such as string concatenation or using 
ctypes) and others are more generic (such as memoization and lookup tables).

There are still a few more minor tips and tricks specific to Python, which we will 
cover here. They might not yield a significant boost of speed, but they will shed  
some more light into the inner workings of the language:

• Membership testing: When trying to figure out if a value is inside a list (we 
use the word "list" generically here, not specifically referencing the type 
list), something such as "a in b", we would have better results using sets 
and dictionaries (with a lookup time of O(1)) than lists or tuples.

• Don't reinvent the wheel: Python comes with built-in core blocks that are 
written in optimized C. There is no need to use hand-built alternatives, 
since the latter will most likely be slower. Datatypes such as lists, tuples, 
sets, and dictionaries, and modules such as array, itertools, and 
collections.deque are recommended. Built-in functions also apply here. 
They'll always be faster to do something such as map(operator.add, list1, 
list2) will always be faster than map(lambda x, y: x+y, list1, list2).

• Don't forget about deque: When needing a fixed length array or a variable 
length stack, lists perform well. However, when dealing with the pop(0) or 
insert(0, your_list) operation, try to use collections.deque, since it 
offers fast (O(1)) appends and pops up on either end of the list.
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• Sometimes is better not to def: Calling a function adds a lot of overhead 
(as we already saw earlier). So, sometimes, in time-critical loops especially, 
inlining the code of a function, instead of calling that function, will be 
more performant. There is a big trade-off with this tip, since it could also 
considerably hurt things such as readability and maintainability. So this 
should only be done if, in fact, the boost on performance is absolutely 
required. The following simple example shows how a simple lookup 
operation ends up adding a considerable amount of time:
import time
def fn(nmbr):
   return (nmbr ** nmbr) / (nmbr + 1)
nmbr = 0
init = time.clock()
for i in range(1000):
   fn(i)
print "Total time: %s" % (time.clock() - init)

init = time.clock()
nmbr = 0
for i in range(1000):
  nmbr = (nmbr ** nmbr) / (nmbr + 1)
print "Total time (inline): %s" % (time.clock() - init)

• When possible, sort by the key: When doing a custom sort on a list, try not 
to sort using a comparison function. Instead, when possible, sort by the key. 
This is because the key function will be called only once per item, whereas 
the comparison function will be called several times per item during the 
process. Let's see a quick example comparing both methods:
import random
import time

#Generate 2 random lists of random elements
list1 = [ [random.randrange(0, 100), chr(random.randrange(32, 
122))] for x in range(100000)]
list2 = [ [random.randrange(0, 100), chr(random.randrange(32, 
122))] for x in range(100000)]

#sort by string, using a comparison function
init = time.clock()
list1.sort(cmp=lambda a,b: cmp(a[1], b[1]))
print "Sort by comp: %s" % (time.clock() - init) #prints  0.213434

#sort by key, using the string element as key
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init = time.clock()
list2.sort(key=lambda a: a[1])
print "Sort by key: %s" % (time.clock() - init) #prints 0.047623

• 1 is better than True: Python 2.3 while 1 gets optimized into a single jump, 
while while True does not, thus taking several jumps to complete. This 
implies that writing while 1 is more efficient than while True, although 
just like inlining the code, this tip comes with a big trade-off.

• Multiple assignments are slow but...: Multiple assignments (a,b = "hello 
there", 123) are generally slower than single assignments. However, again, 
when doing variable swaps, it becomes faster than doing it the regular way 
(because we skip the usage and assignment of the temporal variable):
a = "hello world"
b = 123
#this is faster
a,b = b, a
#than doing
tmp  = a
a = b
b = tmp

• Chained comparisons are good: When comparing three variables with each 
other, instead of doing x < y and y < z, you can use x < y < z. This should 
prove easier to read (more natural) and faster to run.

• Using namedtuples instead of regular objects: When creating simple 
objects to store data, using the regular class notation, the instances contain 
a dictionary for attribute storage. This storage can become wasteful for 
objects with few attributes. If you need to create a large number of those 
objects, then that waste of memory adds up. For such cases, you can use 
namedtuples. This is a new tuple subclass, which can be easily constructed 
and is optimized for the task. For details on namedtuples, check the official 
documentation at https://docs.python.org/2/library/collections.
html#collections.namedtuple. The following code creates 1 million 
objects, both using regular classes and namedtuples, and displays the time 
for each action:

import time
import collections

class Obj(object):
  def __init__(self, i):
    self.i = i
    self.l = []

https://docs.python.org/2/library/collections.html#collections.namedtuple
https://docs.python.org/2/library/collections.html#collections.namedtuple
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all = {}

init = time.clock()
for i in range(1000000):
  all[i] = Obj(i)
print "Regular Objects: %s" % (time.clock() - init) #prints 
Regular Objects: 2.384832

Obj = collections.namedtuple('Obj', 'i l')

all = {}
init = time.clock()
for i in range(1000000):
  all[i] = Obj(i, [])
print "NamedTuples Objects: %s" % (time.clock() - init) #prints  
NamedTuples Objects: 1.272023

Summary
In this chapter, we covered several optimization techniques. Some of them are meant 
to provide big boosts on speed, and/or save memory. Some of them are just meant 
to provide minor speed improvements. Most of this chapter covered Python-specific 
techniques, but some of them can be translated into other languages as well.

In the next chapter, we will go over optimization techniques. In particular, we'll 
cover multi-threading and multiprocessing, and you'll learn when to apply each one.
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Multithreading versus 
Multiprocessing

When it comes to optimizing code, concurrency and parallelism are two topics that 
are rarely left out of the conversation. However, in the case of Python these are topics 
that are normally used to criticize the language. Critics normally blame the difficulty 
of using these mechanics versus the actual benefit they bring to the table (which, in 
some instances, is nonexistent).

In this chapter, we will see that the critics are right some of the time and wrong in 
other cases. Just like with most tools, these mechanics require certain conditions to 
work for the developer, instead of working against them. During our tour of the 
internals of how we can achieve parallelism in Python and on which occasions it is 
actually worth it, we'll discuss two specific topics:

1. Multithreading: This is the most classical approach in trying to achieve  
true parallelism. Other languages such as C++ and Java provide this  
feature as well.

2. Multiprocessing: Although not as common and with some potentially  
difficult problems to solve, we'll discuss this feature as a valid alternative  
to multithreading.

After reading this chapter, you'll fully understand the difference between 
Multithreading and Multiprocessing. Moreover, you will also understand what a 
Global Interpreter Lock (GIL) is, and how it will affect your decision when trying  
to pick the right parallelism technique.
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Parallelism versus concurrency
These two terms are often used together and even interchangeably, but they are 
technically two different things. On one side, we have parallelism, which happens 
when two or more processes can run at the exact same time. This can happen, for 
instance, in multicore systems, where each process runs on a different processor.

On the other hand, concurrency happens when two or more processes try to run at 
the same time on top of the same processor. This is usually solved by techniques 
such as time slicing. However, these techniques do not execute in a truly parallel 
fashion. It just looks parallel to observers because of the speed at which the processor 
switches between tasks.

The following diagram tries to illustrate this:

Parallelism

Concurrency

Task #1

Task #2

Processor #1 Time

Processor #2 Time

Processor's Time

Task #1

Task #2

Concurrency, for instance, is a technique used by all modern operating systems. 
This is because irrespective of the number of processors a computer has, the system 
alone will probably need to have more processes running at the same time, let alone 
anything the user might want to do. So, to solve this, the operative system will take 
care of scheduling time with the processor for each process that requires it. Then, it'll 
switch context between them, giving each one a slice of time.

Now, with this in mind, how can we achieve either parallelism or concurrency in our 
Python programs? This is where multithreading and multiprocessing come into play.

Multithreading
Multithreading is the ability of a program to run multiple threads within the context 
of the same program. These threads share the process's resources and allow multiple 
actions to run in the concurrent mode (for single processor systems) and in the 
parallel mode (for multicore systems).
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Structuring your program to utilize these threads is not an easy task. However, it 
comes with some very interesting benefits:

• Responsiveness: In single-threaded programs, executing a long running 
task might cause the program to appear to freeze. Thanks to multithreading 
and by moving such code into a worker thread, the program can remain 
responsive while concurrently executing the long running task.

• Faster execution: In multicore processors or multiprocessor systems, 
multithreading can be used to improve the program's performance by 
achieving true parallelism.

• Lower resource consumption: Using threads, a program can serve many 
requests using the resources from the original process.

• Simplified sharing and communication: Since threads already share the 
same resources and memory space, communication between them is much 
simpler than interprocess communication.

• Parallelization: Multicore or multiprocessor systems can be used to leverage 
multithreading and run each thread independently. Compute Unified 
Device Architecture (CUDA) from Nvidia (http://www.nvidia.com/
object/cuda_home_new.html) or OpenCL from Khronos Group (https://
www.khronos.org/opencl/) are GPU-computing environments that utilize 
from dozens to hundreds of processors to run tasks in parallel.

There are also some drawbacks of multithreading:

• Thread synchronization: Since threads can potentially work on the same 
data, you will need to implement some sort of mechanics to prevent race 
conditions (causing corrupted data reads).

• Crash due to problematic thread: Although it might seem independent, a 
single problematic thread acting up and performing an invalid action can 
crash the entire process.

• Deadlocks: This is a common problem associated with working with threads. 
Normally, when a thread needs a resource, it will lock it until it is done 
with it. A deadlock occurs when one thread enters a wait state, waiting for 
a second thread to release its resources but the second thread is, in turn, 
waiting for the first one to release its locked ones.

Normally, this technique should be enough to achieve parallelism on multiprocessor 
systems. However, the official version of Python (CPython) has a limitation called 
GIL. This GIL prevents multiple native threads from running Python's bytecode at 
once, which effectively trumps parallelism. If you have a four-processor system, your 
code would not run at 400 percent. Instead, it would just run at 100 percent or a bit 
slower actually, because of the extra overhead from threading.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
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Note that the GIL is not an invention only of Python (or CPython). 
Other programming languages also have a GIL, such as Ruby's official 
implementation Ruby MRI or even OCaml (https://ocaml.org/).

A GIL is necessary because the memory management in CPython is not thread safe. 
So, by forcing everything to run serially, it makes sure that nothing corrupts the 
memory. It is also faster for single-threaded programs and simplifies the creation of 
C extensions, because they don't have to take multithreading into account.

There are, however, some ways around the GIL. For instance, since it only prevents 
threads from running Python's bytecode at the same time, you could potentially code 
your tasks in C and have Python just as a wrapper for that code. The GIL would not 
stop the C code from running all threads concurrently in this case.

Another example where the GIL will not affect the performance would be a network 
server, which spends most of its time reading packets off the network. In this case, 
the added concurrency will allow more packets to be serviced, even if there is no real 
parallelism. This effectively boosts the performance of our program (it can serve a lot 
more clients per second), but it does not affect its speed, as every task takes the same 
amount of time

Threads
Now, let's talk a bit about threads in Python in order to understand how to use them. 
They are composed of a beginning, an execution sequence, and a conclusion. There is 
also an instruction pointer, which keeps track of where a thread is currently running 
within the thread's context.

That pointer can be pre-empted or interrupted in order to stop the thread. 
Alternatively, it can also be put on hold temporarily. This basically means  
putting the thread to sleep.

In order to work with threads in Python, we have the following two options:

• The thread module: This provides some limited ability to work with threads. 
It's simple to use, and for small tasks, it adds little overhead.

• The threading module: This is newer and included in Python since version 
2.4. It provides a more powerful and higher level support for threads.

https://ocaml.org/
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Creating a thread with the thread module
Although we'll focus on the threading module, we'll quickly show an example of 
how to use this module for the simpler times, when not a lot of work is required 
from your script.

The thread module (https://docs.python.org/2/library/thread.html) 
provides the start_new_thread method. We can pass it in the following parameters:

• We can pass it in a function that will contain the actual code to run. Once this 
function returns, the thread will be stopped.

• We can pass it in a tuple of arguments. This list will be passed to the function.
• Finally, we can pass it in an optional dictionary of named arguments.

Let's see an example of all the preceding parameters:

#!/usr/bin/python

import thread
import time

# Prints the time 5 times, once every "delay" seconds
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print "%s: %s" % ( threadName, time.ctime(time.time()) )

# Create two threads as follows
try:
   thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print "Error: unable to start thread"

# We need to keep the program working, otherwise the threads won't 
live

while True:
   pass

https://docs.python.org/2/library/thread.html
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The preceding code prints the following output:

The preceding code is simple enough, and the output clearly shows how both 
threads are actually running concurrently. The interesting thing about this is that in 
the code, the print_time function itself has an inside loop. If we were to run this 
function twice serially, then it would last 5 * delay seconds each time we call it.

However, using threads and without having to change anything, we're running the 
loop twice concurrently.

This module also provides other threading primitives that can come in handy.  
Here is an example:

interrupt_main

This method sends a keyboard interrupt exception to the main thread. This, 
effectively, is like hitting CTRL+C on your program while running. If not caught,  
the thread that sent the signal would terminate the program.

exit

This method exits the thread silently. It is a good way to terminate a thread without 
affecting anything else. Let's assume that we changed our print_time function into 
the following lines of code:

def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print "%s: %s" % ( threadName, time.ctime(time.time()) )
      if delay == 2 and count == 2:
      thread.exit()
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In this case, the output would be as follows:

The allocate_lock method returns a lock for the threads to use. The lock will help 
the developer protect sensitive code and make sure that there are no race conditions 
during execution.

The lock objects returned have these three simple methods:

• acquire: This basically acquires the lock for the current thread. It accepts 
an optional integer parameter. If it is zero, the lock would be acquired only 
if it can be acquired immediately, without waiting. If it's non-zero, the lock 
would be acquired unconditionally (like when you omit the parameter). This 
means that if the thread needs to wait to acquire the lock, it would.

• release: This will release the lock for the next thread to acquire it.
• locked: This would return TRUE if the lock is acquired by some thread. 

Otherwise, it would be FALSE.

Here is a very basic example of how locking can help multithreaded code. The 
following code increments a global variable using 10 threads. Each one will add one 
thread. So, by the end, we should have 10 threads in that global variable:

#!/usr/bin/python

import thread
import time

global_value = 0

def run( threadName ):
   global global_value
   print "%s with value %s" % (threadName, global_value)
   global_value = global_value + 1

for i in range(10):
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   thread.start_new_thread( run, ("Thread-" + str(i), ) )

# We need to keep the program working, otherwise the threads won't 
live
while 1:
   pass

Here is the output of the preceding code:

Not only are we correctly incrementing the value of the global variable (we only got 
up to 2), but we are also having issues printing out the strings. In some cases, we 
have two strings in the same line, when they should each occupy one. This is because 
when two strings existed in the same line, both threads tried to print at the same 
time. At that time, the current line to print on was the same in both cases.

The same occurrence repeats for the global value. When threads 1, 3, 6, 8, 4, 2, and 
7 read the value of the global variable in order to add 1, the value was 0 (which is 
what they each copied to the local_value variable). We need to make sure that the 
code that copies the value, increments it, and prints it out is protected (inside a lock) 
so that no two threads can run it at the same time. To accomplish this, we'll use two 
methods for the Lock object: acquire and release.

Use the following lines of code:

#!/usr/bin/python

import thread
import time

global_value = 0

def run( threadName, lock ):
   global global_value
   lock.acquire()
   local_copy = global_value
   print "%s with value %s" % (threadName, local_copy)
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   global_value = local_copy + 1
   lock.release()

lock = thread.allocate_lock()

for i in range(10):
   thread.start_new_thread( run, ("Thread-" + str(i), lock) )

# We need to keep the program working, otherwise the threads won't 
live
while 1:
   pass

Now, the output makes more sense:

The output now makes more sense, the format got fixed, and we successfully 
incremented the value of our variable. Both fixes are due to the locking mechanics. 
Regarding the code, to increment the value of global_value, the lock is preventing 
other threads (those which have not yet acquired the lock) from executing that part 
of the code (reading its value into a local variable and incrementing it). So, while the 
lock is active, only the thread that acquired it will be able to run those lines. After the 
lock has been released, the next thread in line will do the same. The preceding line of 
code returns the current threads identified:

get_ident

This is a non-zero integer with no direct meaning other than identifying the current 
thread between the lists of active ones. This number can be recycled after a thread 
dies or exits, so it is not unique during the lifetime of the program. The following 
code sets or returns the thread stack size used when creating new threads:

stack_size
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This supports an optional argument ("this" being the size to set for the stack). This 
size must either be 0 or at least 32.768 (32 Kb). Depending on the system, there might 
be other restrictions to the number or even to setting the stack size. So, check with 
your OS's manual before trying to use this method.

Although it is not the target version of this book, in Python 3, 
this module has been renamed to _thread.

Working with the threading module
This is the current and recommended way to work with threads in Python. This 
module provides a better and higher level interface for that. It also adds complexity 
to our code, since the simplicity of the _thread module will not be available now.

For this case, we can loosely quote Uncle Ben and say:

With great power comes great complexity.

Jokes apart, the threading module encapsulates the concept of thread inside a class, 
which we're required to instantiate to be able to use.

We can create a subclass of the Thread class (https://docs.python.org/2/
library/thread.html) provided by the module (this is normally the preferred 
way). Alternatively, we could even instantiate that class directly if we want to do 
something very simple. Let's see how the preceding example would translate using 
the threading module:

#!/usr/bin/python

import threading

global_value = 0

def run( threadName, lock ):
   global global_value
   lock.acquire()
   local_copy = global_value
   print "%s with value %s" % (threadName, local_copy)
   global_value = local_copy + 1
   lock.release()

lock = threading.Lock()

for i in range(10):

https://docs.python.org/2/library/thread.html
https://docs.python.org/2/library/thread.html
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   t = threading.Thread( target=run, args=("Thread-" + str(i),  
   lock) )
   t.start()

For more complex things, we might want to create our own thread classes in order to 
better encapsulate its behavior.

When using the subclass approach, there are a few things you need to take into 
account when writing your own classes:

• They need to extend the threading.Thread class
• They need to overwrite the run method and, optionally, the __init__ method
• If you overwrite the constructor, make sure to call the parent's class 

constructor (Thread.__init__) as the first action you take
• The thread will stop when the run method stops or throws an unhandled 

exception, so plan your method with this in mind
• You can name your thread with the name argument on its constructor method

Although you'll have to overwrite the run method, which will contain the main logic 
of the thread, you will not be in control of when that method is called. Instead, you 
will call the start method, which, in turn, will create a new thread and call the run 
method with that thread as context.

Let's now look at a simple example of a very common pitfall of working with threads:

import threading
import time

class MyThread(threading.Thread):

  def __init__(self, count):
    threading.Thread.__init__(self)
    self.total = count

  def run(self):

    for i in range(self.total):
      time.sleep(1)
      print "Thread: %s - %s" % (self.name, i)

t = MyThread(4)
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t2 = MyThread(3)

t.start()
t2.start()

print "This program has finished"

The output of that code is as follows:

As you can see highlighted in the preceding screenshot, the program is sending the 
exit message before anything else. In this case, it's not a big issue. However, it would 
be a problem if we had something like this:

#....
f = open("output-file.txt", "w+")
t = MyThread(4, f)
t2 = MyThread(3, f)

t.start()
t2.start()
f.close() #close the file handler
print "This program has finished"

Note that the preceding code will fail, because it will close the file 
handler before any thread tries to use it in any way. If we want to avoid 
this type of issue, we need to use the join method, which will halt the 
calling thread until the target thread has completed execution.

In our case, if we use the join method from the main thread, it would make sure that 
the program does not continue with the main chain of commands until both threads 
complete execution. We need to make sure we use the join method on the threads 
after both have started. Otherwise, we could end up running them serially:

#...
t.start()
t2.start()
#both threads are working, let's stop the main thread
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t.join() 
t2.join()
f.close() #now that both threads have finished, lets close the file 
handler
print "This program has finished"

This method also accepts an optional argument: a timeout (a float or None) in 
seconds. However, the join method always returns None. So, to find out whether the 
operation indeed timed out, we need to check whether the thread is still alive (with 
the isAlive method) after the join method returns. If the thread is alive, then the 
operation timed out.

Let's now see another example of a simple script to check the status code of a list of 
sites. This script requires just a few lines of code to iterate over the list and collect the 
status code returned:

import urllib2

sites = [
  "http://www.google.com",
  "http://www.bing.com",
  "http://stackoverflow.com",
  "http://facebook.com",
  "http://twitter.com"
]

def check_http_status(url):
  return urllib2.urlopen(url).getcode()

http_status = {}
for url in sites:
  http_status[url] = check_http_status(url)

for  url in http_status#:
  print "%s: %s" % (url, http_status[url])

If you run the preceding code with the time command-line tool on Linux, you could 
also get the time it takes to execute:

$time python non_threading_httpstatus.py
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The output is as follows:

Now, looking at the code and with what we've seen so far, a clear optimization 
would be to turn the IO-bound function (check_http_status) into a thread. This 
way, we can concurrently check the status for all sites, instead of waiting for each 
request to finish before processing the next one:

import urllib2
import threading

sites = [
  "http://www.google.com",
  "http://www.bing.com",
  "http://stackoverflow.com",
  "http://facebook.com",
  "http://twitter.com"
]

class HTTPStatusChecker(threading.Thread):

  def __init__(self, url):
    threading.Thread.__init__(self)
    self.url = url
    self.status = None

  def getURL(self):
    return self.url

  def getStatus(self):
    return self.status

  def run(self):
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    self.status = urllib2.urlopen(self.url).getcode()

threads = []
for url in sites:
  t = HTTPStatusChecker(url)
  t.start() #start the thread
  threads.append(t) 

#let the main thread join the others, so we can print their result 
after all of them have finished.
for t in threads:
  t.join()

for  t in threads:
  print "%s: %s" % (t.url, t.status)

Running the new script with time will produce the following result:

$time python threading_httpstatus.py

We will get the following output:

Clearly, the threaded alternative is faster. In our case, it is almost three times faster, 
which is an amazing improvement.

Interthread communication with events
Although threads are normally thought of as individual or parallel workers, 
sometimes, it is useful to allow them to communicate with each other.

To achieve this, the threading module provides the event construct (https://docs.
python.org/2/library/threading.html#event-objects). It contains an internal 
flag, and caller threads can either use set() or clear().

https://docs.python.org/2/library/threading.html#event-objects
https://docs.python.org/2/library/threading.html#event-objects
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The Event class has a very simple interface. Here are the methods provided within 
the class:

• is_set: this would return True if the internal flag of the event is set.
• set: this sets the internal flag to True. It awakens all threads waiting for this 

flag to be set. Threads calling wait() will no longer be blocked.
• clear: this resets the internal flag. Any thread calling the wait() method 

will become blocked until set() is called again.
• wait: this blocks the calling thread until the internal flag of the event is set. 

This method accepts an optional argument for a timeout. If it is specified and 
different from none, then the thread would be blocked only by that timeout.

Let's see a simple example of using events to communicate between two threads so 
that they can take turns printing out to a standard output. Both threads will share the 
same event object. One will set it on every iteration of the while loop, and the other 
would clear it if it's set. On every action (set or clear), they'll print the right letter:

import threading
import time

class ThreadA(threading.Thread):

  def __init__(self, event):
    threading.Thread.__init__(self)
    self.event = event

  def run(self):
    count = 0
    while count < 5:
      time.sleep(1)
      if self.event.is_set():
        print "A"
        self.event.clear()
      count += 1

class ThreadB(threading.Thread):

  def __init__(self, evnt):
    threading.Thread.__init__(self)
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    self.event = evnt

  def run(self):
    count = 0
    while count < 5:
      time.sleep(1)
      if not self.event.is_set():
        print "B"
        self.event.set()
      count += 1

event = threading.Event()

ta = ThreadA(event)
tb = ThreadB(event)

ta.start()
tb.start()

In conclusion, the following table shows when to use multithreading and when not to:

Use threads Don't use threads
For heavy IO-bound scripts To optimize scripts that are heavily CPU 

bound
When parallelism can be replaced by 
concurrency

For programs that must take advantage of 
multicore systems

For GUI development

Multiprocessing
Multithreading in Python fails to achieve real parallelism, thanks to the GIL, as we 
saw earlier. Thus, some types of applications will not see a real benefit from using 
this module.

Instead, Python provides an alternative to multithreading called multiprocessing. In 
multiprocessing, threads are turned into individual subprocesses. Each one will run 
with its own GIL (which means there are no limitations on the number of parallel 
Python processes that can run at the same time).
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To clarify, threads are all part of the same process, and they share the same memory, 
space, and resources. On the other hand, processes don't share memory space with 
their spawning parent, so it might be more complicated for them to communicate 
with each other.

This approach comes with advantages and disadvantages over the multithreading 
alternative:

Advantages Disadvantages
Takes advantage of multicore 
systems

Larger memory footprint

Separate memory space removes race 
conditions from the equation

Harder to share mutable data between processes 

Child processes are easily 
interruptible (killable)

Interprocess communication (IPC) is harder than 
with threads

Avoids the GIL limitation (although 
only in the case of CPython)

Multiprocessing with Python
The multiprocessing module (https://docs.python.org/2/library/
multiprocessing.html) provides the Process class, which, in turn, has an API 
similar to the threading.Thread class. So, migrating code from multithreading to 
multiprocessing is not as difficult as one might think, because the basic structure of 
your code would remain the same.

Let's look at a quick example of how we might structure a multiprocessing script:

#!/usr/bin/python

import multiprocessing

def run( pname ):
  print pname

for i in range(10):
  p = multiprocessing.Process(target=run, args=("Process-" +  
  str(i), ))
  p.start()
  p.join()

The preceding code is a basic example, but it shows just how similar to 
multithreading the code can be.

https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
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Note that on Windows systems, you will need to add an extra 
check to make sure that when the subprocesses include the main 
code, it would not be executed again. To clarify, the main code 
should look like this (if you plan to run it on Windows):

#!/usr/bin/python

import multiprocessing

def run( pname ):
  print pname

if __name__ == '__main__':
  for i in range(10):
    p = multiprocessing.Process(target=run,  
    args=("Process-" + str(i), ))
    p.start()
    p.join()

Exit status
When each process is finished (or terminated), it has an exit code, which is a number 
representing the result of the execution. This number might either indicate that the 
process finished correctly, incorrectly, or that it was terminated by another process.

To be more precise:

• A code equal to 0 means there was no problem at all
• A code higher than 0 means the process failed and exited with that code
• A code lower than 0 means it was killed with a -1 * exit_code signal

The following code shows how to read the exit code and how it is set, depending on 
the outcome of the task:

import multiprocessing
import time

def first():
  print "There is no problem here"

def second():
  raise RuntimeError("Error raised!")

def third():
  time.sleep(3)
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  print "This process will be terminated"

workers = [ multiprocessing.Process(target=first), multiprocessing.
Process(target=second), multiprocessing.Process(target=third)]

for w in workers:
  w.start()

workers[-1].terminate()

for w in workers:
  w.join()

for w in workers:
  print w.exitcode

The output of this script is shown in the following screenshot:

Notice how the print property from the third worker is never executed. This is 
because that process is terminated before the sleep method finishes. It is also 
important to note that we're doing two separate for loops over the three workers: 
one to start them and the second one to join them using the join() method. If we 
were, for instance, to execute the join() method while starting each subprocess, 
then the third subprocess would not fail. In fact, it would return an exit code of zero 
(no problem), because as with multithreading, the join() method will block the 
calling process until the target one finishes.
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Process pooling
This module also provides the Pool class (https://docs.python.org/2/library/
multiprocessing.html#module-multiprocessing.pool), which represents  
a pool of worker processes that facilitate different ways to execute a set of tasks  
in subprocesses.

The main methods provided by this class are:

• apply: This executes a function in a separate subprocess. It also blocks the 
calling process until the called function returns.

• apply_async: This executes a function in a separate subprocess, 
asynchronously, which means that it'll return immediately. It returns an 
ApplyResult object. To get the actual returned value, you need to use the 
get() method. This action will be blocked until the asynchronously executed 
function finishes.

• map: This executes a function for a list of values. It is a blocking action, so the 
returned value is the result of applying the function to each value of the list.

Each one of them provides a different way of iterating over your data, be it 
asynchronously, synchronously, or even one by one. It all depends on your needs.

Interprocess communication
Now, getting the processes to communicate with each other is not, as we already 
mentioned, as easy as with threads. However, Python provides us with several  
tools to achieve this.

The Queue class provides a thread-safe and process-safe first in first out (FIFO) 
(https://docs.python.org/2/library/multiprocessing.html#exchanging-
objects-between-processes) mechanism to exchange data. The Queue class 
provided by the multiprocessing module is a near clone of Queue.Queue, so the same 
API can be used. The following code shows an example of two processes interacting 
through Queue:

from multiprocessing import Queue, Process
import random

def generate(q):
  while True:
    value = random.randrange(10)
    q.put(value)
    print "Value added to queue: %s" % (value)

def reader(q):

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes


Multithreading versus Multiprocessing

[ 148 ]

  while True:
    value = q.get()
    print "Value from queue: %s" % (value)

queue = Queue()
p1 = Process(target=generate, args=(queue,))
p2 = Process(target=reader, args=(queue,))

p1.start()
p2.start()

Pipes
Pipes provide (https://docs.python.org/2/library/multiprocessing.
html#exchanging-objects-between-processes) a bidirectional channel of 
communication between two processes. The Pipe() function returns a pair of 
connection objects, each representing one side of the pipe. Each connection object  
has both a send() and a recv() method.

The following code shows a simple usage for the pipe construct, similar to the 
preceding Queue example. This script will create two processes: one that will 
generate random numbers and send them through the pipe and one that will  
read the same one and write the numbers to a file:

from multiprocessing import Pipe, Process
import random

def generate(pipe):
   while True:
    value = random.randrange(10)
    pipe.send(value)
    print "Value sent: %s" % (value)

def reader(pipe):
   f = open("output.txt", "w")
   while True:
     value = pipe.recv()
     f.write(str(value))
     print "."

input_p, output_p = Pipe()

https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes
https://docs.python.org/2/library/multiprocessing.html#exchanging-objects-between-processes
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p1 = Process(target=generate, args=(input_p,))
p2 = Process(target=reader, args=(output_p,))

p1.start()
p2.start()

Events
They are also present in the multiprocessing module, and they work in almost a 
similar way. The developer only needs to keep in mind that event objects can't be 
passed into worker functions. If you try to do that, a runtime error will be issued, 
saying that semaphore objects can only be shared between processes through 
inheritance. This means that you can't do what is shown in this code:

from multiprocessing import Process, Event, Pool
import time

event = Event()
event.set()

def worker(i, e):
    if e.is_set():
      time.sleep(0.1)
      print "A - %s" % (time.time())
      e.clear()
    else:
      time.sleep(0.1)
      print "B - %s" % (time.time())
      e.set()

pool = Pool(3)
pool.map(worker, [ (x, event) for x in range(9)])
Instead, you'd have to do something like this:
from multiprocessing import Process, Event, Pool
import time

event = Event()
event.set()

def worker(i):
   if event.is_set():
     time.sleep(0.1)
     print "A - %s" % (time.time())
     event.clear()
   else:
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     time.sleep(0.1)
     print "B - %s" % (time.time())
     event.set()

pool = Pool(3)
pool.map(worker, range(9))

Summary
Now that we've covered both alternatives, their main characteristics, and their ups 
and downs, it is really up to the developer to pick one or the other. There is clearly 
no better one, since they are meant for different scenarios, although they might seem 
to accomplish the same thing.

The main take-away from this chapter should be the points mentioned earlier, the 
main characteristics of each approach, and when each one should be used.

In the next chapter, we'll continue with the optimization tools. This time, we will 
look at Cython (an alternative that allows you to compile your Python code on C) 
and PyPy (an alternative interpreter written in Python that is not bound to the GIL 
like CPython is).
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Generic Optimization Options
In the never-ending road to mastering optimization, we started by covering some 
tips and tricks in Chapter 4, Optimize Everything. In Chapter 5, Multithreading versus 
Multiprocessing, we went over two major optimization strategies: multithreading  
and multiprocessing. We saw how they help us and when to use them.

Finally, we will deal with one of the many implementations of the Python language 
(CPython). This implies that there are other alternatives to CPython. In this chapter, 
we'll cover two of them:

• We'll cover PyPy, an alternative to the standard Python interpreter we've 
been using throughout the book. This one is written in Python and has some 
benefits over the standard version.

• We will talk about Cython, an optimizing static compiler, which will allow 
us to write Python code and tap into the power of C and C++ easily.

Both alternatives will provide developers with the opportunity to run code in a more 
optimized fashion, depending, of course, on the characteristics of that code. For each 
option, we'll look into what exactly they are, how to install them, and some example 
code on how to use them.

PyPy
Just like CPython is the standard implementation of the Python specifications and is 
written in C (of course), PyPy is an alternative implementation of Python, both for 
version 2.x and 3.x. It tries to mimic the behavior of the language that is written in 
RPython, a limited version of Python with static types.
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The PyPy project (http://pypy.org/) is a continuation of another, older project 
called Psycho, which was a JIT compiler for Python, written in C. It worked great on 
32-bit Intel processors, but it was never updated. Its latest stable release was in 2007, 
so it is now deprecated. PyPy took over in 2007 with its 1.0 release. Although it was 
initially considered a research project, it grew over the years. Finally, in 2010, version 
1.4 was released. With this version, there was an increase in confidence that systems 
written in PyPy were production ready and compatible with Python 2.5.

The latest stable version of PyPy, released in June 2014, is version 2.5, which, in turn, 
is compatible with Python 2.7. There is also a beta release of PyPy3, which is, as 
expected, a version of PyPy that is compatible with Python 3.x.

The reason we will go over PyPy as a viable way of optimization for our scripts is 
due to these features:

• Speed: One of the main features of PyPy is its speed boost over regular 
Python. This is due to the in-built Just-in-time (JIT) compiler. It provides 
flexibility over statically compiled code, since it can adapt to the current 
platform (processor type, OS version, and so on) during execution time. On 
the other hand, a statically compiled program would need one executable or 
every single combination of cases.

• Memory: Memory-consuming scripts will consume much less memory when 
executed using PyPy than with regular CPython.

• Sandboxing: PyPy provides a sandboxing environment where every call to 
an external C library is stubbed. These calls communicate with an external 
process that handles the actual policy. Although this feature is promising, it 
is still only a prototype and needs more work to become useful.

• Stackless: PyPy also provides a somewhat equivalent set of language 
features to the ones provided by Stackless Python (http://www.stackless.
com/). Some may even consider it a more powerful and flexible version than 
the latter.

http://pypy.org/
http://www.stackless.com/
http://www.stackless.com/
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Installing PyPy
There are several ways to install PyPy into your system:

• You can download the binary files directly from their page (http://pypy.
org/download.html#default-with-a-jit-compiler). Just make sure you 
download the right file, according to the OS indication next to the link on their 
website. Otherwise, there is a good chance it won't work on your system:

If you're using a Linux distribution or OS X, you can check whether its 
official package repository contains the PyPy package. Normally, systems 
such as Ubuntu, Debian, Homebrew, MacPorts, Fedora, Gentoo, and Arch 
tend to have it already. For Ubuntu, you can use the following line of code:
$ sudo apt-get install pypy

• Finally, another option is to download the source code and compile it 
yourself. This might be a harder task than downloading the binaries. 
However, if done correctly, it would assure you that the resulting  
installation is fully compatible with your system.

http://pypy.org/download.html#default-with-a-jit-compiler
http://pypy.org/download.html#default-with-a-jit-compiler
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Be warned though, compiling from source might sound like an 
easy task, but it will take a considerable amount of time. On an 
i7 with 8 GB of RAM, the entire process took about an hour, as 
shown in the following screenshot:

A Just-in-time compiler
This is one of the main features provided by PyPy. It's the main reason for its 
superior speed results compared to regular Python (CPython).

According to PyPy's official site, the performance might vary depending on the task, 
but on average, this compiler claims to be seven times faster than CPython.

Normally, with standard compiled programs, we translate the entire source code 
into machine code before we even execute it the first time. Otherwise, we won't be 
able to try it. This is the standard set of steps that normally compiled programs go 
through (preprocessing and translation of the source code, and finally, assembling 
and linking).

JIT means that the compilation of our code will take place during execution  
time instead of before it. What normally happens is that the code is translated  
in a two-step process:

1. First, the original source code is translated into an intermediate language.  
For some languages, such as Java, it is called bytecode.

2. After we have the bytecode, we start compiling it and translating it into 
machine code, but only when we need it. One of the peculiarities of JIT 
compilers is that they only compile the code that needs to be run, and not 
everything at once.

The second step is what differentiates this type of implementation from other 
interpreted languages, such as CPython, when the bytecode is interpreted instead  
of being compiled. Additionally, JIT compilers normally cache compiled code so  
that the next time it is needed, the overhead of compilation will be avoided.
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With all of this in mind, it is clear that for a program to take real advantage of a JIT 
compiler, it needs to run for at least a few seconds so that the instruction caching can 
take effect. Otherwise, the effect might be the opposite of what is intended, since the 
overhead of the compilation will be the only real-time difference that the developer 
will notice.

One of the main advantages of using a JIT compiler is that the program being 
executed is able to optimize the machine code for the specific system it is running 
on (including CPU, OS, and so on). Thus, it provides a level of flexibility that is 
completely out of scope for static compiled (and even interpreted) programs.

Sandboxing
Although the sandboxing feature of PyPy is still considered as a prototype, we'll 
cover its basics internal workings to understand the potential it provides.

Sandboxing consists of providing a safe environment where untrusted Python code 
can run without any fear of causing harm to the host system.

This is achieved in PyPy in particular through a two-process model:

1. On one side, we have a customized version of PyPy compiled specifically 
to function in the sandbox mode. In particular, this means that any library 
or system call (I/O for instance) gets marshaled into stdout waiting for a 
marshaled response back.

2. On the other hand, we have a container process, which could be running 
using PyPy or CPython. This process will take care of answering the library 
and system calls from the internal PyPy process:
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The preceding diagram shows the entire process where a piece of Python code that is 
executed in the sandbox mode is doing an external library call.

The container process is the one that decides what type of virtualization it provides. 
For instance, the inner process could be creating file handlers, which, in reality, are 
being faked by the container process. The process acts as a layer between the real OS 
and the sandboxed process.

Note that the mechanics explained earlier are very different from sandboxing at the 
language level. The entire set of instructions is available to the developer. Thus, you 
achieve a very transparent and secure system with code that could very well run on 
a standard system and on a secured one.

Optimizing for the JIT
Like we already discussed, the JIT from PyPy is what sets it apart from CPython's 
implementation. It is this same feature that makes it so fast when running Python code.

Just using PyPy directly on our unchanged Python code, we'll most likely get  
better results. However, we should take into account some guidelines if we  
want to optimize our code even further.

Think of functions
JIT works by analyzing which functions are "hotter" (get executed more times)  
than others. Thus, we're better off structuring our code into functions, specifically  
for functions that will be executed repeatedly.

Let's see a quick example. The following code will show the time difference between 
doing the same calculation directly inline versus having it encapsulated inside a 
function and dealing with the added time relating to the function lookup and the 
function call itself:

import math
import time

TIMES = 10000000

init = time.clock()
for i in range(TIMES):
    value = math.sqrt(i * math.fabs(math.sin(i - math.cos(i))))

print "No function: %s" % ( init - time.clock())

def calcMath(i):
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    return math.sqrt(i * math.fabs(math.sin(i - math.cos(i))))
init = time.clock()
for i in range(TIMES):
    value = calcMath(i)
print "Function: %s" % ( init – time.clock())

The code is very simple, but you can still see how the second output shows that 
it is the faster implementation. Regular old CPython will work the opposite way, 
since there is no real-time optimization of the code. The second approach will yield 
slightly worse results because of the overhead of the function lookup and function 
call code. However, PyPy and its JIT prove once again that if you want to optimize 
your code for them, you need to stop thinking the old way.

The results from the preceding screenshot show what we've been discussing so far:

• PyPy runs the same code considerably faster than CPython
• The JIT is optimizing our code in real time while CPython isn't

Consider using cStringIO to concatenate strings
This is not a small optimization, with respect to both code changes and achieved 
optimization. We've already covered the fact that for Python, strings are immutable 
objects. So, if we want to concatenate a large number of strings into a single one, we 
would be better off doing it with another structure instead of the string itself, since 
that would yield the worst performance.

In the case of PyPy, it still holds true. However, instead of using lists as the best 
option, we'll use the cStringIO module (http://pymotw.com/2/StringIO/), 
which, as we'll see, provides the best results.

http://pymotw.com/2/StringIO/
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Note that because of the nature of PyPy, mentioning cStringIO instead of StringIO 
might be confusing, since we're referencing a C standard library instead of a pure 
Python one. This is correct and valid, since some of the C standard libraries common 
to CPython also work correctly on PyPy. In our case, the following code will calculate 
the time needed to perform the same concatenation operation in three different ways 
(using simple strings, using the cStringIO library, and finally, using lists):

from cStringIO import StringIO
import time

TIMES = 100000

init = time.clock()
value = ''
for i in range(TIMES):
    value += str(i)
print "Concatenation: %s" % ( init - time.clock())

init = time.clock()
value = StringIO()
for i in range(TIMES):
    value.write(str(i))
print "StringIO: %s" % ( init - time.clock())

init = time.clock()
value = []
for i in range(TIMES):
    value.append(str(i))
finalValue = ''.join(value)
print "List: %s" % ( init - time.clock())

Out of the three alternatives, StringIO is the best one in PyPy. It is much better than 
simple string concatenation, and even slightly better than using lists.
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If we run the same code through CPython, we will get different results. Thus, the 
best solution is still using lists.

The preceding screenshot corroborates this. Note how with PyPy, the first approach 
is especially bad performance-wise.

Actions that disable the JIT
Although not directly an optimization, there are some specific methods that will 
disable the effectiveness of the JIT if we use them. So, it's important to know about 
these methods.

The following three methods from the sys module disable the JIT (according to the 
current version of PyPy; this could, of course, change in the future):

• _getframe: This method returns a frame object from the callstack. It even 
accepts an optional depth parameter that returns frame objects back from the 
callstack. The performance penalty is quite big, so its use is recommended 
only when it is absolutely needed, such as when developing a debugger.

• exc_info: This method returns a tuple of three elements that provide 
information about the exception being handled. These elements are type, 
value, and traceback. They are explained here:

 ° type: This is the type of the exception being handled
 ° value: This gets the exception parameter
 ° traceback: This gets the traceback object, which encapsulates a 

callstack object the moment the exception was thrown

• Settrace: This method sets the tracing function, which allows you to 
trace Python code from within Python. As mentioned earlier, its use is not 
recommended unless it is absolutely necessary, since it needs to disable the 
JIT in order to work properly.
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Code sample
As a final example for this topic, let's take a look at the code from the great_circle 
function (explained later). The great circle calculation consists of finding the distance 
between two points on the earth's surface.

The script will do a for loop of 5 million iterations. In particular, it calls the same 
function over and over (5 million times to be precise). This scenario is less than  
ideal for the CPython interpreter, since it will complete the function lookup that 
many times.

However, on the other hand and as we've already mentioned, calling the same 
function over time allows for PyPy's JIT to start optimizing that call. This basically 
means that in our case, the code is already somewhat optimized for PyPy:

import math

def great_circle(lon1,lat1,lon2,lat2):
    radius = 3956 #miles
    x = math.pi/180.0

    a = (90.0-lat1)*(x)
    b = (90.0-lat2)*(x)
    theta = (lon2-lon1)*(x)
    c = math.acos((math.cos(a)*math.cos(b)) +  
    (math.sin(a)*math.sin(b)*math.cos(theta))) 
    return radius*c

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):great_circle(lon1,lat1,lon2,lat2)

The preceding code can be further optimized following the same principle we just 
mentioned. We can remove one line from the great_circle function into a separate 
function, optimizing that execution even further, as shown here:

import math

def calcualte_acos(a, b ,theta):
  return math.acos((math.cos(a)*math.cos(b)) +  
  (math.sin(a)*math.sin(b)*math.cos(theta)))

def great_circle(lon1,lat1,lon2,lat2):
    radius = 3956 #miles
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    x = math.pi/180.0

    a = (90.0-lat1)*(x)
    b = (90.0-lat2)*(x)
    theta = (lon2-lon1)*(x)
    c = calcualte_acos(a, b, theta)
    return radius*c

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):
  great_circle(lon1,lat1,lon2,lat2)

You can see how we moved the acos calculation into a separate function, since it 
was the most expensive line in the entire function (there is a total of six trig functions 
being called there). By moving that line into another function, we allowed the JIT to 
take care of optimizing its calls.

In the end, due to that simple change and the fact that we're using PyPy instead  
of regular Python, we have an execution time of 0.5 seconds. If, on the other hand, 
we were to run that same code using regular CPython, we would get a time of  
4.5 seconds (on my current machine), which is considerably slower.

Cython
Although technically, Cython (http://cython.org/) is not exactly an alternative to 
using the standard CPython interpreter, it will let us write Python code and compile 
it into C (something CPython doesn't do).

You'll see that Cython could be considered a transpiler, which simply means it's a 
piece of software meant to translate source code from one language into another. 
There are other similar products out there, such as CoffeeScript and Dart. Both are 
very different languages, and both are translated into JavaScript.

In our case, Cython translates a super set of Python (an extended version of the 
language) into optimized C/C++ code. Then, it's compiled into a Python extension 
module. This, in turn, allows the developer to:

• Write Python code that calls back and forth C or C++ code natively
• Tune Python code into C-level performance using static-type declarations

http://cython.org/
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Static typing is the key feature that allows this transpiler to generate optimized  
C code, thus letting Cython move out of the dynamic nature of Python into a more 
static, yet faster, territory (sometimes, even by several orders of magnitude).

This, of course, makes the Python code more verbose, which, in turn, might hurt 
other aspects such as maintainability and readability. So, normally, using static 
typing is not recommended unless there is some kind of proof that clearly shows  
that adding it will indeed generate a faster running code.

All C types are available for developers to use. Cython is prepared to automatically 
perform type conversion on assignment. In the special case of Python's arbitrary long 
integers, when casting to C's integers, a Python overflow error will be raised if an 
overflow does happen.

The following table shows the same example written in pure Python and the  
Cython version:

Python version Cython version
def f(x):
    return x**2-x

def integrate_f(a, b, N):
    s = 0
    dx = (b-a)/N
    for i in range(N):
        s += f(a+i*dx)
    return s * dx

def f(double x):
    return x**2-x

def integrate_f(double a,  
double b, int N):
    cdef int i
    cdef double s, dx
    s = 0
    dx = (b-a)/N
    for i in range(N):
        s += f(a+i*dx)
    return s * dx

The main difference in both codes is highlighted. It is only the definition of the types 
of every variable, both the parameters received by both functions, and the local 
variables used. With this alone, Cython can generate an optimized C version of the 
code on the left-hand side.

Installing Cython
There are a couple of ways to install Cython into your system. However, for every 
case, the common requirement is to have a C compiler previously installed. We will 
not go over the steps required for this, because the instructions might vary from 
system to system.
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Once the C compiler is installed, in order to get Cython, you can perform these steps:

1. Download the latest release from their website (http://cython.org), 
unpack the tarball file, enter the directory, and run the following command:
$python setup.py install

2. If you have the setup tools installed in your system, you can run this command:
$pip install cython

If you're already using one of the following development 
environments, it's quite likely that Cython is already installed 
in your system. However, you can use the earlier steps to 
update your current version as well:

• Anaconda
• Enthought Canopy
• PythonXY
• Sage

Building a Cython module
Cython is able to compile our code into C modules, which we can later import into 
our main code. In order to do this, you need to carry out the following steps:

1. First, a .pyx file needs to be compiled (or translated) into a .c file by Cython. 
These are the source code files, basically Python code with some extensions 
added by Cython. We'll see some examples in a bit.

2. The .c file will, in turn, be compiled into a .so library by the C compiler. 
This library can later be imported by Python.

3. There are several ways in which we can compile the code, as explained earlier:
 ° We can create a distutils setup file. Distutils is a module that 

facilitates the creation of other modules, so we can use it to generate 
our custom C-compiled ones.

 ° We can run the cython command line to create a .c file from the 
.pyx one. Then, use the C compiler to manually compile the C code 
into the library.

 ° Finally, another option would be to use the pyximport module and 
import the .pyx files as if they were .py files.

http://cython.org
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4. To illustrate the preceding points, let's look at an example using the 
distutils option:
#test.pyx
def join_n_print(parts):
    print ' '.join(parts)

#test.py
from test import join_n_print
join_n_print( ["This", "is", "a", "test"] )

#setup.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
  name = 'Test app',
  ext_modules = cythonize("test.pyx"),
)

5. That's it! The preceding code that is to be exported should be inside the 
.pyx file. The setup.py file will normally be the same. It will call the setup 
function with different variations of the parameters. Finally, it will call the 
test.py file, which imports our compiled library and makes use of it.

6. To effectively compile the code, you can use the following command:
$ python setup.py build_ext –inplace

The following screenshot shows the output from the preceding command. You can 
see how it doesn't just translate (cythonize) the code, but also compiles the library 
using the C compiler installed:
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The preceding example shows a very simple module. However, normally, for more 
complex cases, a Cython module is comprised of two types of files:

• Definition files: These have a .pxd extension and contain C declarations of 
names that need to be available to other Cython modules.

• Implementation files: These have a .pyx extension and contain the actual 
implementation of the functions declared on the .pxd files.

Definition files normally contain C type declarations, external C functions or variable 
declarations, and declarations of C functions defined in the module. They cannot 
contain the implementation of any C or Python function, nor can they contain the 
definition of any Python class or any executable lines.

On the other hand, an implementation file can have almost any kind of  
Cython statement.

Here is a typical two-file module example taken from Cython's official 
documentation (http://docs.cython.org/src/userguide/sharing_
declarations.html); it shows how to import .pxd files:

#dishes.pxd
cdef enum otherstuff:
    sausage, eggs, lettuce

cdef struct spamdish:
    int oz_of_spam
    otherstuff filler

#restaurant.pyx:
cimport dishes
from dishes cimport spamdish

cdef void prepare(spamdish *d):
    d.oz_of_spam = 42
    d.filler = dishes.sausage

def serve():
    cdef spamdish d
    prepare(&d)
    print "%d oz spam, filler no. %d" % (d.oz_of_spam, d.filler)

By default, when cimport is executed, it will look for a file called modulename.pxd 
in the search path. Whenever the definition file changes, each file importing it will 
need to be recompiled. Luckily, for us, the Cythin.Build.cythonize utility will 
take care of that.

http://docs.cython.org/src/userguide/sharing_declarations.html
http://docs.cython.org/src/userguide/sharing_declarations.html
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Calling C functions
Just like regular Python, Cython allows the developer to directly interface with C 
by calling functions compiled in external libraries. To import these libraries, the 
procedure is similar to the standard Python procedure:

from libc.stdlib cimport atoi

The cimport statement is used in implementation or definition files in order to gain 
access to names declared in other files. Its syntax is exactly the same as standard 
Python's import statement.

If you also need to access the definition of some types defined in a library, you 
would need the header file (.h file). For these cases, with Cython it is not as simple as 
referencing the file. You'll also need to redeclare the types and structures you will use:

cdef extern from "library.h":
  int library_counter;
  char *pointerVar;

The preceding example performs the following actions for Cython:

• It lets Cython know how to place a #include statement in the generated  
C code, referencing the library we're including

• It prevents Cython from generating any C code for the declarations inside  
the block

• It treats all declarations inside the block as if they were made with cdef 
extern, which, in turn, means those declarations are defined elsewhere

Note that this syntax is required because Cython does not, at any moment, read 
the content of the header file. So, you still need to redeclare the content for it. As a 
caveat, you technically only need to redeclare the part that you'll use, leaving out 
anything that's not directly needed by your code. For instance, if you had a big 
structure declared in your header file with a lot of members, you could redeclare it 
with only the members you'd need. This would work since during compiling time, 
the C compiler would use the original code with the full version of the structure.
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Solving naming conflicts
An interesting problem arises when names from the imported functions are the same 
as the ones from your functions.

Say, you have your myHeader.h file that defines the print_with_colors function, 
and you need to wrap it in some Python function that you also want to call print_
with_colors; Cython provides a way for you to work around this and keep the 
names as you want them.

You can add extern C function declarations into a Cython declaration file  
(.pxd file) and then cimport it into your Cython code file as follows:

#my_declaration.pxd
cdef extern "myHeader.h":
  void print_with_colors(char *)

#my_cython_code.pyx
from my_declaration cimport print_with_colors as c_print_with_colors

def print_with_colors(str):
  c_print_with_colors(str)

You can also avoid renaming the function and use the name of the declaration file as 
a prefix:

#my_cython_code.pyx
cimport  my_declaration 
def print_with_colors(str):
  my_declaration.print_with_colors(str)

Both alternatives are valid, and the decision of using one 
over the other is completely up to the developer. For more 
information on this subject, head to: http://docs.cython.
org/src/userguide/external_C_code.html.

http://docs.cython.org/src/userguide/external_C_code.html
http://docs.cython.org/src/userguide/external_C_code.html
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Defining types
As mentioned earlier, Cython allows the developer to define the type of a variable  
or the return type of a function. In both cases, the keyword used for this is cdef. 
Typing is actually optional, since Cython will try to optimize the Python code by 
turning it into C. That being said, defining the static types where they're needed  
will certainly help.

Let's now look at a very basic example of a piece of code in Python and how the 
same code executes in its three versions: pure Python, compiled by Cython without 
typing, and finally, compiled and using typing.

The code is as follows:

Python Cython
def is_prime(num):
  for j in range(2,num):
    if (num % j) == 0:
      return False
  return True

def is_prime(int num):
  cdef int j;
  for j in range(2,num):
    if (num % j) == 0:
      return False
  return True

Thanks to the fact that we're declaring the for loop variable as a C integer. Cython 
will turn this loop into an optimized C for loop, which will be one of the major 
improvements to this code.

Now, we will set up a main file that will import that function:

import sys
from <right-module-name> import is_prime

def main(argv):

  if (len(sys.argv) != 3):
    sys.exit('Usage: prime_numbers.py <lowest_bound> <upper_bound>')

  low = int(sys.argv[1])
  high = int(sys.argv[2])

  for i in range(low,high):
    if is_prime(i):
      print i,

if __name__ == "__main__":
  main(sys.argv[1:])
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Then, we will execute our script like this:

$ time python script.py 10 10000

We will get the following interesting results:

Pure Python version Compiled without typing Compiled with typing
0.792 seconds 0.694 seconds 0.043 seconds

Even though the non-optimized version of the code is faster than the pure Python 
one, we only see the real power of Cython when we start declaring the types.

Defining types during function definitions
There are two different types of functions that can be defined in Cython:

• Standard Python functions: These are normal functions that are exactly like 
the ones declared in pure Python code. To do this, you need the standard 
cdef keyword, and these functions will receive Python objects as parameters 
and also return Python objects.

• C functions: These are the optimized versions of the standard functions. 
They take either Python objects or C values as parameters and can also  
return both. To define these, you need the special cdef keyword.

Either type of function can be called from within a Cython module. However (and this 
is a very important difference), if you want to call your functions from within your 
Python code, you either need to make sure the function is declared as standard or you 
need to use the special cpdef keyword. This keyword will create a wrapper object 
for the function. So, when the function is called from within Cython, it'll use the C 
function, and when called from within Python code, it'll use the Python version.

When dealing with C types for the parameters of the function, an automatic 
conversion will be done (if possible) from the Python object to the C value. This is 
only currently possible for numeric types, strings, and struct types. If you attempt 
to use any other type, it will result in a compile-time error.

The following simple example illustrates the difference between both modes:

#my_functions.pxd

#this is a pure Python function, so Cython will create a make it 
return and receive Python objects instead of primitive types.
cdef full_python_function (x):
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    return x**2

#This function instead, is defined as both, a standard function and an 
optimized C function, thanks to the use of the cpdef keyword.
cpdef int c_function(int num):
    return x**2

If the return type or the type of parameter is left undefined, 
then it will be assumed to be a Python object.

Finally, C functions that don't return a Python object have no way to report Python 
exceptions to its caller. So, when an error occurs, a warning message is printed and 
the exception is ignored. This is, of course, far from ideal. Luckily, for us, there is a 
way around this.

We can use the except keyword during function definition. This keyword specifies 
that whenever an exception occurs inside the function, a specific value will be 
returned. Here is an example:

cdef int text(double param) except -1:

With the preceding code, whenever an exception occurs, -1 will be returned. It is 
important that you don't manually return the exception value from your function. 
This is especially relevant if you define False to be your exception value because  
any False value will do here.

For cases where any possible return value is a valid return value, then there is an 
alternate notation that you can use:

cdef int text(double param) except? -1:

The ? sign sets -1 as a possible exception value. When returned, Cython will call 
PyErr_Occurred() to make sure that it is really an error and not just a normal  
return action.

There is one more variation of the except keyword, which makes sure to call  
PyErr_Occurred() after every return:

cdef int text(double param) except *:

The only real use of the preceding notation is for functions returning void that need 
to propagate errors. This is because in these special cases, there is no value to check; 
otherwise, there is no real use case for it.
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A Cython example
Let's take a quick look at the same example we used for PyPy. It shows us how to 
improve the performance of a script. The code will again do the same calculation  
5 million times: from math, import PI, acos, cos, and sin:

def great_circle(lon1,lat1,lon2,lat2):
    radius = 3956 #miles
    x = PI/180.0

    a = (90.0-lat1)*(x)
    b = (90.0-lat2)*(x)
    theta = (lon2-lon1)*(x)
    c = acos((cos(a)*cos(b)) +

                  (sin(a)*sin(b)*cos(theta)))
    return radius*c

Then, we will test it by running the function 5,000,000 times with the following script:

from great_circle_py import great_circle

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826
num = 5000000

for i in range(num):
  great_circle(lon1,lat1,lon2,lat2)

Again, as I've already mentioned earlier, if we run this script using the time 
command-line utility from Linux with the CPython interpreter, we will see that  
the resulting execution takes around 4.5 seconds to run (in my current system).  
Your numbers will most likely be different.

Instead of going to the profiler, like we did in earlier chapters, we'll go directly to 
Cython now. We'll implement some of the improvements we've been discussing  
into a Cython module that we can import from our test script.

Here's our first try at it:

#great_circle_cy_v1.pyx
from math import pi as PI, acos, cos, sin

def great_circle(double lon1,double lat1,double lon2,double lat2):
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    cdef double a, b, theta, c, x, radius 

    radius = 3956 #miles
    x = PI/180.0

    a = (90.0-lat1)*(x)
    b = (90.0-lat2)*(x)
    theta = (lon2-lon1)*(x)
    c = acos((cos(a)*cos(b)) +
                  (sin(a)*sin(b)*cos(theta)))
    return radius*c
#great_circle_setup_v1.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
  name = 'Great Circle module v1',
  ext_modules = cythonize("great_circle_cy_v1.pyx"),
)

As you can see in the preceding code, all we did was give a C type to all the variables 
and parameters we're using in our code. This alone took the execution time from  
4.5 seconds down to 3. We shaved off 1.5 seconds, but we can probably do better.

Our code is still using a Python library math. Since Cython allows us to mix 
Python and C libraries, it comes in handy when we're in a hurry. It takes care of 
the conversions for us, but as we can see here, not without a cost. Let's now try to 
remove the dependency of that Python library and call upon C's math.h file:

#great_circle_cy_v2.pyx
cdef extern from "math.h":
    float cosf(float theta)
    float sinf(float theta)
    float acosf(float theta)

def great_circle(double lon1,double lat1,double lon2,double lat2):
    cdef double a, b, theta, c, x, radius
    cdef double pi = 3.141592653589793

    radius = 3956 #miles
    x = pi/180.0

    a = (90.0-lat1)*(x)
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    b = (90.0-lat2)*(x)
    theta = (lon2-lon1)*(x)
    c = acosf((cosf(a)*cosf(b)) +
                  (sinf(a)*sinf(b)*cosf(theta)))
    return radius*c

After removing all references to the math Python library and working directly with 
C's math.h file, we went from the 3.5 seconds in our previously optimized code to an 
amazing 0.95 seconds.

When to define a type
The previous example might seem obvious and simple to optimize. However, for 
bigger scripts, redeclaring every variable as a C variable and importing all C libraries 
instead of Python ones (whenever possible) is not always the best way to go.

Going about it this way will lead to readability and maintainability issues. It will also 
hurt the inherent flexibility of Python code. It could, in fact, even end up hurting the 
performance by adding unnecessary type checks and conversions. So, there must 
be a way to determine the best places to add types and switch libraries. This way is 
using Cython. Cython comes with the ability to annotate your source code and show 
you, very graphically, how each line of code can be translated into C code.

Using the -a attribute in Cython, you can generate an HTML file that will highlight 
your code with yellow. The more yellow a line is, the more C-API interactions are 
required to translate that piece of code into C. White lines (lines without any color) 
are directly translated into C. Let's look at how our original code is rendered under 
this new tool:

$ cython -a great_circle_py.py
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The following screenshot shows the HTML file generated from the preceding 
command:

We can clearly see that most of our code needs at least a few interactions with 
the C-API in order to be translated into C (only line 4 is completely white). It is 
important to understand that our aim should be to get as many lines to white as 
possible. The lines with a + sign indicate that they can be clicked, and the C code 
generated will be displayed, as shown here:
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Now, by looking at our results, we can see that the lighter yellow lines are the simple 
assignments (lines 5, 7, 8, and 9). They can be easily fixed by doing what we initially 
did: declare those variables as C variables instead of letting them be Python objects, 
which would require us to convert code.

By doing the conversion, we will get something like the next screenshot. This 
screenshot shows the resulting report from analyzing the great_circle_cy_v1.pyx 
file:



Generic Optimization Options

[ 176 ]

Much better! Now, those lines are fully white, except line 7, which is still light yellow. 
This is, of course, because that line is actually referencing the math.pi object. We could 
fix it simply by initializing the pi variable with a fixed value of PI. However, we still 
have the big yellow block, that is, lines 12 and 13. This is also due to our usage of the 
math library. So, after we get rid of it, we will get the following file:

The preceding screenshot shows the final code we presented earlier. Almost all  
of our code is directly translatable to C, and we got a good performance out of it. 
Now, we still have two yellow lines: 6 and 18.
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We can't do much about line 6 because that function is the Python function we need to 
execute. If we were to declare it with cdef, we would not have access to it. However, 
again, line 18 is not completely white. This is because great_circle is a Python 
function and the returned value is a Python object, which needs to be wrapped  
and translated into a C value. If we click on it, we can see the generated code:

The only way we can fix this is by declaring our function with cpdef, which will 
create a wrapper for it. However, it will also let us declare the return type. So, we're 
no longer returning a Python object. Instead, we're returning a double value, and the 
resulting code and annotated screenshot is as follows:
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We can see how the C code generated for the returned statement got simplified with 
this latest change. The performance got a small boost as well, since we went from 
0.95 seconds down to 0.8 seconds.

Thanks to our analysis of the code, we were able to go one step further and optimize 
it a bit more. This technique is a good way to check your progress when optimizing 
code for Cython. This technique provides a visual and simple indicator of the 
complexity of the optimized code.

Note that in this particular case, the results obtained from going 
the Cython route for this optimization are not as good as the 
ones obtained using PyPy earlier in this chapter (0.8 seconds 
with Cython versus 0.5 seconds with PyPy).

Limitations
Everything we've seen so far seems to indicate that Cython is a perfectly viable  
option to our performance needs. However, the truth is that Cython is not yet  
100 percent compatible with the Python syntax. Sadly, there are some limitations  
that we need to take into consideration before deciding to use this tool for our 
performance enhancement needs. From the current list of public bugs on the  
project, we can gather the list of current limitations.

Generator expressions
These expressions are currently the ones that suffer the most, since they have several 
issues in the current version of Cython. These issues are as follows:

• Using iterables inside the generator expression causes a problem since there 
are issues with the evaluation scope.

• Also, related to iterables inside a generator, Cython appears to be evaluating 
them inside the generator's body. On the other hand, CPython does it 
outside, before creating the actual generator.

• Generators in Cpython have attributes that allow for introspection. Cython is 
still not fully up to date when it comes to supporting those attributes.
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Comparison of char* literals
The current implementation of Cython performs comparsons of byte literals based 
on the pointers used, instead of the actual value of the string.

cdef char* str = "test string"
print str == b"test string"

The preceding code will not always print True. It will depend on the pointer used to 
store the first string instead of depending on the actual string value.

Tuples as function arguments
Although only a Python 2 feature, the language allows for the following syntax:

def myFunction( (a,b) ):
  return a + b
args = (1,2)
print myFunction(args)

However, the preceding code is not even correctly parsed by Cython. This particular 
feature is flagged as probably "not fixable" in the future of Cython, since Python 3.x 
has removed it as well.

Note that the Cython team is expecting to fix most of the limitations 
mentioned earlier by the time they release version 1.0.

Stack frames
Currently, Cython is generating fake tracebacks as part of its exception propagation 
mechanics. They're not filling in locals and co_code values. In order to do this 
properly, they would have to generate the stack frames on function call time, 
incurring in a potential performance penalty. So, it is unclear whether they  
will fix this in the future or not.
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How to choose the right option
Up to this point, we've gone over two different alternatives to radically optimize our 
code. However, how do we know which one is the right one? Or even better, which 
one is the best one?

The answer to both those questions is the same: there is no single best or right one. 
Whether one of the options is better or worse depends entirely on one or more  
of these aspects:

• The actual use case you're trying to optimize
• The familiarity of the developer with either Python or C
• The importance of readability of your optimized code
• The amount of time at hand to perform the optimization

When to go with Cython
Here are the situations when you should go with Cython:

• You're familiar with C code: It's not like you'll be coding in C, but you 
will be using principles that are common to C, such as static types, and 
C libraries, such as math.h. So, being familiar with the language and its 
internals will definitely be helpful.

• Losing Python's readability is not a problem: The code you'll write for 
Cython is not fully Python, so part of its readability will be lost.

• Full support of the Python language is needed: Even though Cython is not 
Python, it is more an extension than a subset of the language. So, if you need 
full compatibility with the language, Cython might be the right choice.
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When to go with PyPy
Here are the situations when you should go with PyPy:

• You're not dealing with an execute once script: PyPy's JIT optimization 
is great if your script is a long running program, with loops that can be 
optimized, but if instead, the script you're trying to improve will run once 
and be done, then PyPy is actually slower than the original CPython.

• Full support of third-party libraries is not required: Even though PyPy 
is compatible with Python 2.7.x, it is not fully compatible with its external 
libraries, especially if they're C libraries. So, depending on your code, PyPy 
might not really be an option.

• You need your code to be compatible with CPython: If you need your 
code to run for both implementations (PyPy and CPython), then the Cython 
alternative is completely out of the question. PyPy becomes the only option.

Summary
In this chapter, we have covered two alternatives to the standard Python 
implementation. One is PyPy, which consists of a version of Python and is 
implemented in RPython. It has a JIT compiler in charge of optimizing the code 
during execution time. The other one is Cython, which is basically a transpiler of 
Python code into C code. We saw how each of them worked, how to install them, 
and how our code needed to be changed in order to gain benefits from using them.

Finally, we went over a few points on how and when to choose one over the other.

In the next chapter, we'll focus on a very specific use case for Python: number 
crunching. The topic is very common in the Python community, since the language 
is very often used for scientific purposes. We'll cover three options that will help us 
write code faster: Numba, Parakeet, and pandas.





[ 183 ]

Lightning Fast Number 
Crunching with Numba, 

Parakeet, and pandas
Number crunching is a topic specific to the programming world. However, given 
that Python is so often used for scientific research and data science problems, 
number crunching ends up being a very common topic in the Python world.

That being said, we could just as easily implement our algorithms using the 
information from the earlier six chapters, and we would most likely end up with pretty 
fast and performant code. Again, that information is meant to be for generic use cases. 
There will always be something to say about optimizing for a particular case.

In this chapter, we'll cover three options that will help us write faster and more 
optimized code focused on scientific problems. For each one, we'll go over the  
basic installation instructions. We will also look at some code samples showing  
the benefits of each option.

The tools we'll review in this chapter are as follows:

• Numba: This is a module that allows you to write high-performance 
functions in pure Python by generating optimized machine code.

• Parakeet: This is a runtime compiler for scientific operations written in a 
subset of Python. It is ideal for expressing numerical computations.

• pandas: This is a library that provides a set of high-performance data 
structures and analysis tools.
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Numba
Numba (http://numba.pydata.org/) is a module that allows you to indicate  
(via decorators) to the Python interpreter which functions should be translated into 
machine code. Numba thus provides equivalent performance to C or Cython without 
the need to either use a different interpreter or actually code in C.

The module will generate optimized machine code just by requiring it. It can even be 
compiled to run on either CPU or GPU hardware.

Here is a very basic example taken from their official site, showing how to use it. 
We'll go into more detail in a bit:

from numba import jit
from numpy import arange

# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is 
called.
@jit
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

a = arange(9).reshape(3,3)
print(sum2d(a))

Note that even though the promise of Numba sounds impressive, the library is 
meant to optimize operations on arrays. It is considerably tied to NumPy (which 
we'll review shortly). So, not every function will be optimizable by it, and using it 
might even hurt performance.

http://numba.pydata.org/
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For instance, let's take a look at a similar example, one that doesn't use NumPy and 
accomplishes a similar task:

from numba import jit
from numpy import arange

# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is 
called.
@jit
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

a = arange(9).reshape(3,3)
print(sum2d(a))

The preceding code has the following execution times, depending on whether we 
keep the @jit line or not:

• With the @jit line on: 0.3 seconds
• Without the @jit line: 0.1 seconds

Installation
There are actually two ways to install Numba: you can either use the conda package 
manager from Anaconda, or you can just clone the GitHub repo and compile it.

If you're going for the conda approach, you can install the command-line tool 
called miniconda (which can be downloaded from http://conda.pydata.org/
miniconda.html). After installing it, you can just use the following command:

$ conda install numba

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
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The following screenshot shows the output from this command. The command lists 
all packages that will be installed or updated, specifically numpy and llvmlite, 
which are direct dependencies from Numba:

If, on the other hand, you want to use the source code, you could clone the repo by 
using this command:

$ git clone git://github.com/numba/numba.git

You'll need to have numpy and llvmlite installed as well. After that, you can use the 
following command:

$ python setup.py build_ext –inplace
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Note that the preceding command will succeed even if you 
don't have the requirements installed. However, you won't 
be able to use Numba unless you install them.

In order to check whether your installation was successful, you can do a simple 
check from the Python REPL:

>>> import numba
>>> numba.__version__
'0.18.2'

Using Numba
Now that you have managed to install Numba, let's take a look at what we can do 
with it. The main features provided by this module are as follows:

• On-the-fly code generation
• Native code generation for both CPU and GPU hardware
• Integration with Python's scientific software, thanks to the Numpy dependency

Numba's code generation
When it comes to code generation, the main feature of Numba is its @jit decorator. 
Using it, you can mark a function for optimization under Numba's JIT compiler.

We already talked about the benefits of having a JIT compiler in the previous 
chapter, so we won't go into the details here. Instead, let's see how to use the 
decorator for our benefit.

There are several ways to use this decorator. The default one, which is also the 
recommended way, is the one we already showed earlier:

Lazy compilation

The following code will cause Numba to generate the optimized code once the 
function is called. It'll try to infer the types of its attributes and the return type  
of the function:

from numba import jit

@jit
def sum2(a,b):
  return a + b
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If you call the same function with different types, then different code paths will be 
generated and optimized.

Eager compilation
On the other hand, if you happen to know the types that your function will receive 
(and optionally, return), you could pass those to the @jit decorator. Then, only that 
specific case would be optimized.

The following code shows the added code needed to pass in the function signature:

from numba import jit, int32

@jit(int32(int32, int32))
def sum2(a,b):
  return a + b

Here are the most common types that are used to specify function signatures:

• void: These are used as the return type for functions not returning anything
• intp and uintp: These are pointer-sized integers, signed and unsigned 

respectively
• intc and uintc: These are the C equivalent to the int and unsigned int types
• int8, int16, int32, and int64: These are the fix-width integers of the 

corresponding bit width (for the unsigned version, just add u as a prefix,  
for instance, uint8)

• float32 and float64: These are single and double-precision  
floating-point numbers

• complex64 and complex128: These represent single and double-precision 
complex numbers

• Arrays can also be declared by indexing any of the numeric types, for 
example, float32[:] for a one-dimensional floating-point number array  
and int32[:,:] for a two-dimensional integer array

Other configuration settings
Apart from eager compilation, there are two more options we can pass onto the  
@jit decorator. These options will help us force Numba's optimization. They are 
described here.



Chapter 7

[ 189 ]

No GIL
Whenever our code is optimized using native types (rather than using Python  
types), the GIL (which we discussed in Chapter 6, Generic Optimization Options)  
is no longer necessary.

We have a way of disabling the GIL in such cases. We can pass the nogil=True 
attribute to the decorator. This way, we can run Python code (or Numba code) 
concurrently with other threads.

That being said, remember that if you don't have the GIL limitation, then you will 
have to deal with the common problems of multithreaded systems (consistency, 
synchronization, race conditions, and so on).

NoPython mode
This option will let us set the compilation mode of Numba. By default, it will try to 
jump between modes. It will try to decide the best mode possible depending on the 
code of the optimized function.

There are two modes that are available. On one hand, there is object mode. It 
generates code capable of handling all Python objects and uses the C API to perform 
operations on those objects. On the other hand, the nopython mode generates much 
faster code by avoiding the calls to the C API. The only problem with it is that only a 
subset of functions and methods are available to be used.

The object mode will not generate faster code unless Numba can take advantage 
of loop-jitting (which means that a loop can be extracted and compiled in nopython 
mode).

What we can do is force Numba to go into nopython mode and raise an error if such 
a thing is not possible. This can be done using these lines of code:

@jit(nopython=True)
def add2(a, b):
  return a + b

The issue with the nopython mode is that it has certain restrictions, apart from the 
limited subset of Python it supports:

• The native types used for all values inside the function have to be capable of 
being inferred

• No new memory can be allocated inside the function

As an added extra, for loop-jitting to take place, the to-be-optimized loops can't have 
a return statement inside. Otherwise, they won't be eligible for optimization.
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So, let's now look at an example of how this will look for our code:

def sum(x, y):
    array = np.arange(x * y).reshape(x, y)
    sum = 0
    for i in range(x):
        for j in range(y):
            sum += array[i, j]
    return sum

The preceding example is taken from the Numba site. It shows a function that is 
eligible for loop-jitting, also called loop-lifting. To make sure it works as expected, 
we can use the Python REPL as follows:

Alternatively, we can also call the inspect_types method directly from our 
code. The benefit of the latter is that we'll also have access to the source code of 
our functions. This is a great advantage when trying to match Numba-generated 
instructions to lines of code.

The preceding output is useful to understand the behind-the-scenes action that goes 
on when we optimize our code with Numba. More specifically, we can understand 
how it infers the types, whether there is any automatic optimization going on, and 
basically, how many instructions each Python line is translated into.
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Let's take a look at the output we would get from calling the inspect_types method 
from within our code (which is considerably more detailed than using the REPL):

Note that the following code is a reduced version of the entire 
output. If you want to study it completely, you need to run the 
command on your computer.

sum_auto_jitting (int64, int64)
---------------------------------------------------------------------
-----------
# File: auto-jitting.py
# --- LINE 6 --- 

@jit

# --- LINE 7 --- 

def sum_auto_jitting(x, y):

    # --- LINE 8 --- 
    # label 0
    #   x = arg(0, name=x)  :: pyobject
    #   y = arg(1, name=y)  :: pyobject
    #   $0.1 = global(np: <module 'numpy' from '/home/fernando/
miniconda/lib/python2.7/site-packages/numpy/__init__.pyc'>)  :: 
pyobject
    #   $0.2 = getattr(attr=arange, value=$0.1)  :: pyobject
    #   del $0.1
    #   $0.5 = x * y  :: pyobject
    #   $0.6 = call $0.2($0.5, )  :: pyobject
    #   del $0.5
    #   del $0.2
    #   $0.7 = getattr(attr=reshape, value=$0.6)  :: pyobject
    #   del $0.6
    #   $0.10 = call $0.7(x, y, )  :: pyobject
    #   del $0.7
    #   array = $0.10  :: pyobject
    #   del $0.10

    array = np.arange(x * y).reshape(x, y)

    # --- LINE 9 --- 
    #   $const0.11 = const(int, 0)  :: pyobject
    #   sum = $const0.11  :: pyobject



Lightning Fast Number Crunching with Numba, Parakeet, and pandas

[ 192 ]

    #   del $const0.11

    sum = 0

    # --- LINE 10 --- 
    #   jump 40.1
    # label 40.1
    #   $const40.1.1 = const(LiftedLoop, LiftedLoop(<function  
    sum_auto_jitting at 0x7ff5f94756e0>))  :: XXX Lifted Loop XXX
    #   $40.1.6 = call $const40.1.1(y, x, sum, array, )  :: XXX  
    Lifted Loop XXX
    #   del y
...
 
    #   jump 103
    for i in range(x):
        # --- LINE 11 --- 
        for j in range(y):
            # --- LINE 12 --- 
            sum += array[i, j]
    # --- LINE 13 --- 
    # label 103
    #   $103.2 = cast(value=sum.1)  :: pyobject
    #   del sum.1
    #   return $103.2
    return sum
# The function contains lifted loops
# Loop at line 10
# Has 1 overloads
# File: auto-jitting.py
# --- LINE 6 --- 

@jit
# --- LINE 7 --- 
def sum_auto_jitting(x, y):
    # --- LINE 8 --- 
    array = np.arange(x * y).reshape(x, y)
    # --- LINE 9 --- 
    sum = 0
    # --- LINE 10 --- 
    # label 37
    #   y = arg(0, name=y)  :: int64
    #   x = arg(1, name=x)  :: int64
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    #   sum = arg(2, name=sum)  :: int64
    #   array = arg(3, name=array)  :: array(int64, 2d, C)
    #   $37.1 = global(range: <built-in function range>)  :: range
    #   $37.3 = call $37.1(x, )  :: (int64,) -> range_state64
    #   del x
    #   del $37.1
    #   $37.4 = getiter(value=$37.3)  :: range_iter64
    #   del $37.3
    #   $phi50.1 = $37.4  :: range_iter64
    #   del $37.4
    #   jump 50
    # label 50
    #   $50.2 = iternext(value=$phi50.1)  :: pair<int64, bool>
    #   $50.3 = pair_first(value=$50.2)  :: int64
    #   $50.4 = pair_second(value=$50.2)  :: bool
    #   del $50.2
    #   $phi53.1 = $50.3  :: int64
    #   del $50.3
    #   branch $50.4, 53, 102
    # label 53
    #   i = $phi53.1  :: int64
    #   del $phi53.1

    for i in range(x):

        # --- LINE 11 --- 
        #   jump 56
        # label 56
 
...
        #   j = $phi72.1  :: int64
        #   del $phi72.1

        for j in range(y):

            # --- LINE 12 --- 
            #   $72.6 = build_tuple(items=[Var(i, auto-jitting.py  
            (10)), Var(j, auto-jitting.py (11))])  :: (int64 x 2)
            #   del j
            #   $72.7 = getitem(index=$72.6, value=array)  ::  
            int64
         
...
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            #   return $103.3

            sum += array[i, j]

    # --- LINE 13 --- 

    return sum

In order to understand the preceding output, notice how every commented block 
starts with the line number of the original source code. It then follows with the 
instructions generated by that line, and finally, you'll see the uncommented Python 
line you wrote.

Notice the LiftedLoop line. In this line, you can see the automatic optimization 
done by Numba. Also, notice the type inferred by Numba at the end of most lines. 
Whenever you see a pyobject property, it means that it is not using a native type. 
Instead, it is using a generic object that wraps all Python types.

Running your code on the GPU
As it's been already mentioned, Numba provides support to run our code on 
both CPU and GPU hardware. This, in practice, would allow us to improve the 
performance of certain computations by running them in an environment better 
suited for parallel computation than the CPU.

More specifically, Numba supports CUDA programming (http://www.nvidia.
com/object/cuda_home_new.html) by translating a subset of Python functions  
into CUDA kernels and devices following the CUDA execution model.

CUDA is a parallel computing platform and programming model invented by 
Nvidia. It enables considerable speed boosts by harnessing the power of GPUs.

GPU programming is a topic that could most likely fill an entire book, so we won't 
go into details here. Instead, we'll just mention that Numba possesses this capability 
and that it can be achieved using the @cuda.jit decorator. For full documentation 
on this subject, refer to the official documents at http://numba.pydata.org/
numba-doc/0.18.2/cuda/index.html.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
 http://numba.pydata.org/numba-doc/0.18.2/cuda/index.html
 http://numba.pydata.org/numba-doc/0.18.2/cuda/index.html
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The pandas tool
The second tool that we'll discuss in this chapter is called pandas (http://pandas.
pydata.org/). It is an open source library that provides high-performance,  
easy-to-use data structures, and data-analysis tools for Python.

This tool was invented back in 2008 by developer Wes McKinney while needing a 
performant solution to perform quantitative analysis on financial data. The library 
has become one of the most popular and active projects in the Python community.

One thing to note regarding the performance of code written using pandas is that 
parts of its critical code paths were written using Cython (we covered Cython in 
Chapter 6, Generic Optimization Options).

Installing pandas
Given the popularity of pandas, there are many ways to install it onto your system.  
It all depends on the type of setup you have.

The recommended way is to directly install the Anaconda Python distribution 
(docs.continuum.io/anaconda/), which comes packed with pandas and the  
rest of the SciPy stack (such as NumPy, Matplotlib, and so on). This way, by the  
time you're done, you'd have installed over 100 packages and downloaded several 
100 megabytes of data during the process.

If, on the other hand, you don't want to deal with the full Anaconda distribution,  
you could use miniconda (which we already covered earlier when discussing 
Numba's installation). With this approach, you can use the conda package  
manager by following these steps:

1. Create a new environment in which you can install a new version of Python 
using this line of code:
$ conda create -n my_new_environment python 

2. Enable that environment:
$ source activate my_new_environment

3. Finally, install pandas:
$ conda install  pandas

Additionally, pandas can be installed using the pip command-line tool (probably, 
the easiest and most compatible way of doing it) using this line of code:

$ pip install pandas

http://pandas.pydata.org/
http://pandas.pydata.org/
docs.continuum.io/anaconda/
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Finally, one more option could be installing it using your OS's package manager, 
given that the package is available:

Distribution Repo link Installation method
Debian packages.debian.org/search?

keywords=pandas&searchon=na
mes&suite=all&section=all

$ sudo apt-get 
install python-
pandas

Ubuntu http://packages.ubuntu.com/
search?keywords=pandas&sea
rchon=names&suite=all&sect
ion=all

$ sudo apt-get 
install python-
pandas

OpenSUSE and Fedora http://software.opensuse.
org/package/python-
pandas?search_term=pandas

$ zypper in python-
pandas

If the preceding options fail and you choose to install pandas from source, you can 
get the instructions from their website at http://pandas.pydata.org/pandas-
docs/stable/install.html.

Using pandas for data analysis
In the world of big data and data analytics, having the right tools for the job means 
having the upper hand (of course, this is just one side of the story; the other one is 
knowing how to use them). For data analysis and, more specifically, for ad hoc tasks 
and data cleanup processes, one would normally use a programming language.  
A programming language would provide considerably more flexibility than a 
standard tool.

That being said, there are two languages that lead this particular performance race: R 
and Python. In the case of Python, this might come as a bit of a shock for some, since 
we've been showing nothing but evidence that Python by itself is not fast enough 
when it comes to number crunching. This is why libraries such as pandas are created.

It provides tools designed to ease and simplify the task commonly known as "data 
wrangling", such as:

• The ability to load big data files into memory and stream out
• Simple integration with matplotlib (http://matplotlib.org/), which 

enables it to create interactive plots with very few lines of code
• Simple syntax to deal with missing data, dropping fields, and so on

packages.debian.org/search?keywords=pandas&searchon=names&suite=all&section=all
packages.debian.org/search?keywords=pandas&searchon=names&suite=all&section=all
packages.debian.org/search?keywords=pandas&searchon=names&suite=all&section=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all&section=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all&section=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all&section=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all&section=all
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://software.opensuse.org/package/python-pandas?search_term=pandas
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://matplotlib.org/
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Let's now look at a very simple and quick example of how using pandas can benefit 
the performance of your code as well as improve the syntax of your programs. The 
following code grabs a CSV file, with a portion of the export (a 500 MB file) from 
the 311 service requests from 2010 to present taken from the NYC OpenData site 
(https://data.cityofnewyork.us/Social-Services/311-Service-Requests-
from-2010-to-Present/erm2-nwe9).

It then tries to simply calculate the number of records per zip code using both plain 
Python and pandas code:

import pandas as pd 
import time
import csv
import collections

SOURCE_FILE = './311.csv'

def readCSV(fname):
  with open(fname, 'rb') as csvfile:
    reader = csv.DictReader(csvfile)
    lines = [line for line in reader]
    return lines

def process(fname):
  content = readCSV(fname)
  incidents_by_zipcode = collections.defaultdict(int)
  for record in content:
    incidents_by_zipcode[toFloat(record['Incident Zip'])] += 1
  return sorted(incidents_by_zipcode.items(), reverse=True,  
  key=lambda a: int(a[1]))[:10]

def toFloat(number):
  try:
    return int(float(number))
  except:
    return 0

def process_pandas(fname):
  df = pd.read_csv(fname, dtype={'Incident Zip': str, 'Landmark':  
  str, 'Vehicle Type': str, 'Ferry Direction': str})

  df['Incident Zip'] = df['Incident Zip'].apply(toFloat)
  column_names =  list(df.columns.values)
  column_names.remove("Incident Zip")

https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
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  column_names.remove("Unique Key")
  return df.drop(column_names, axis=1).groupby(['Incident Zip'],  
  sort=False).count().sort('Unique Key', ascending=False).head(10)

init = time.clock()
total = process(SOURCE_FILE)
endtime = time.clock() - init
for item in total:
  print "%s\t%s" % (item[0], item[1])

print "(Pure Python) time: %s" % (endtime)

init = time.clock()
total = process_pandas(SOURCE_FILE)
endtime = time.clock() - init
print total
print "(Pandas) time: %s" % (endtime)

The process function is very simple. It has only five lines of code. It loads the file, 
does a bit of processing (mainly manual grouping and counting), and finally, it 
sorts the results and returns the first 10 of them. As an added bonus, we use the 
defaultdict data type, which we mentioned a few chapters ago as a possible 
performance improvement in these cases.

On the other side, the process_pandas function does essentially the same thing, 
only with pandas. We have some more lines of code, but they are quite simple to 
understand. They're clearly "data-wrangling oriented", as you can see that there are 
no loops declared. We can even access the columns by name automatically and apply 
functions over those groups of records without having to manually iterate over them.
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The following screenshot shows the output of the preceding code:

As you can see, there is a 3-second improvement on the performance of our algorithm 
when we simply reimplement it in pandas. Let's now dig a bit deeper into the API of 
pandas in order to get even better numbers. There are two major improvements we 
can make to our code, and they're both related to the read_csv method, which uses a 
lot of parameters. Two of these parameters are of real interest to us:

• usecols: This will only return the columns we want, effectively helping us 
deal with only 2 columns out of the 40+ our dataset has. This will also help 
us get rid of the logic that we have to drop the columns before returning  
the results.

• converters: This allows us to auto-convert data with a function, instead of 
calling the apply method, as we will do now.

Our new function looks like this:

def process_pandas(fname):
  df = pd.read_csv(fname, usecols=['Incident Zip', 'Unique Key'],  
  converters={'Incident Zip': toFloat}, dtype={'Incident Zip':  
  str})
  return df.groupby(['Incident Zip'],  
  sort=False).count().sort('Unique Key', ascending=False).head(10)
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That's right. Only two lines of code! The reader will do all the work for us. Then, we 
need to simply group, count, and sort. Now, check out how this looks compared to 
our previous results:

That's a 10-second improvement on the performance of our algorithm and 
considerably less code to deal with, otherwise known as a "win-win" situation.

An added bonus to our code is that it scales. The pandas-based function can deal 
with a 5.9 GB file in just 30 seconds with no changes. On the other hand, our pure 
Python code won't even load that file in that time, let alone process it if we don't 
have enough resources.

Parakeet
This one is the most specific tool yet to deal with numbers in Python. It is very specific 
because it only supports a very narrow subset of the resulting combination of Python 
and NumPy. So, if you're dealing with anything outside that universe, this might not 
be an option for you, but if you can fit your solution into it, then keep on reading.
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To be more specific about the limited universe that Parakeet supports (normally 
useful only to express numerical computations), here is a short list:

• Types supported by Python are numbers, tuples, slices, and NumPy's arrays
• Parakeet follows the upcasting rule, that is, whenever two values of different 

types try to reach the same variable, they'll be upcast into a unifying one. For 
instance, the Python expression 1.0 if b else false would translate to 
1.0 if b else 0.0, but when automatic casting isn't possible, such as 1.0 
if b else (1,2), then an uncatchable exception (see next point) will be 
raised during compilation time.

• Catching or even raising exceptions isn't possible in Parakeet; neither are 
break and continue statements. This is because Parakeet represents programs 
using structured SSA (http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.45.4503).

• Array broadcasting (a feature of NumPy) is partially implemented by 
inserting explicit map operators based on the types of array arguments. This 
is a limited implementation because it can't really handle an expansion of 
dimensions (such as broadcasting 8 x 2 x 3 and 7 x 2 arrays).

• There is only a small subset of the built-in functions of Python and NumPy 
that have been implemented. The complete list can be seen at https://
github.com/iskandr/parakeet/blob/master/parakeet/mappings.py.

• List comprehension expressions are treated as array comprehensions.

Installing Parakeet
The installation of Parakeet is simple enough. There are no hard-to-get requirements 
if you want to go with the pip route. Simply type the following command:

$ pip install parakeet

And you're done!

If, on the other hand, you want to directly try the source code approach, you would 
need some other packages installed beforehand. Here is a list of these packages:

• Python 2.7
• dsltools (https://github.com/iskandr/dsltools)
• nose for running the tests (https://nose.readthedocs.org/en/latest/)
• NumPy (http://www.scipy.org/install.html)
• appDirs (https://pypi.python.org/pypi/appdirs/)
• gcc 4.4+ for the OpenMP back-end, which is the default one

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4503
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4503
https://github.com/iskandr/parakeet/blob/master/parakeet/mappings.py
https://github.com/iskandr/parakeet/blob/master/parakeet/mappings.py
https://github.com/iskandr/dsltools
https://nose.readthedocs.org/en/latest/
http://www.scipy.org/install.html
https://pypi.python.org/pypi/appdirs/
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If you're on a Windows box, you would have better luck if it's a 32-bit 
machine. Otherwise, you might be out of luck since there is no official 
documentation on the subject.
If you are a OS X user you'll probably want to install a more up-to-date 
version of the C compiler using HomeBrew, since either clang or the 
installed version of gcc might not be updated enough.

After the prerequisites are met, simply download the code from: https://github.
com/iskandr/parakeet and run the following command (from within the code's 
folder):

$ python setup.py install

How does Parakeet work?
Instead of going deep into the details about the theory behind Parakeet, let's simply 
see how to use it to optimize our code. This will help you get a feel of the module 
without having to chew through all the documentation.

The main construct of this library is a decorator that you can apply to your functions, 
so Parakeet can take control and optimize your code if possible.

For our simple test, let's take one of the example functions presented on Parakeet's 
website and run a simple test against a 4000 * 4000 random floating-point list. The 
code will run the same function in both an optimized way using Parakeet, and in an 
unoptimized way. Then, it will measure the time each one takes to process the exact 
same input:

from parakeet import jit
import random
import numpy as np
import time

@jit 
def allpairs_dist_prkt(X,Y):
  def dist(x,y):
    return np.sum( (x-y)**2 )
  return np.array([[dist(x,y) for y in Y] for x in X])

def allpairs_dist_py(X,Y):
  def dist(x,y):
    return np.sum( (x-y)**2 )

https://github.com/iskandr/parakeet
https://github.com/iskandr/parakeet
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  return np.array([[dist(x,y) for y in Y] for x in X])

input_a =  [ random.random()  for x in range(0, 4000)] 
input_b =  [ random.random()  for x in range(0, 4000)] 

print "----------------------------------------------"
init = time.clock()
allpairs_dist_py(input_a, input_b)
end = time.clock()
print "Total time pure python: %s" % (end - init)
print 
init = time.clock()
allpairs_dist_prkt(input_a, input_b)
end = time.clock()
print "Total time parakeet: %s" % (end – init)
print "----------------------------------------------"

In an i7 processor, with 8 GB of RAM, this is the performance we get:

The preceding screenshot shows the amazing performance boost we get in this 
particular function (which complies with the required subset of Python supported  
by Parakeet).

Simply put, the decorated function is being used as a template from which several 
type-specialized functions are created, one for each input type (in our case, we only 
need one). It is these new functions that get optimized in several different ways by 
Parakeet before getting translated into native code.

Note that even though the performance gain is amazing, Parakeet only 
supports a very limited version of Python, so it is not really meant to be 
a general purpose optimizer (quite the opposite actually).
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Summary
In this chapter, we covered three alternatives to data processing with Python. We 
covered specific use cases (but with amazing benefits), such as Parakeet, and others 
more generic ones, such as pandas and Numba. For all three of them, we covered 
the basics: description, installation, and an example. There is a lot more to discover 
for each one, depending on your specific needs. However, the information provided 
here should be enough to start you in the right direction.

For the next and final chapter, we'll cover a practical example of a script in need of 
optimization. We'll try to apply everything (or as much as makes sense) that we've 
covered so far in the book.
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Putting It All into Practice
Welcome to the last chapter of the book. If you've made it this far, you've gone over 
several optimization techniques, both specific to the Python programming language 
and generic ones applicable to other similar technologies.

You've also read about tools for profiling and visualizing those results. We also 
delved into one specific use case for Python, which is number crunching for scientific 
purposes. You learned about the tools that allow you to optimize the performance of 
your code.

In this final chapter, we'll go over one practical use case that covers all the technologies 
we covered in the earlier chapters (remember that some of the tools we've seen are 
alternatives, so using all of them is not really a good plan). We will write an initial 
version of the code, measure its performance, and then go through the optimization 
process to finally rewrite the code and measure the performance again.

The problem to solve
Before we even start thinking about writing the initial version of our code, we need 
to understand the problem we're trying to solve.

Given the scope of the book, a full-blown application might be too big an 
undertaking, so we'll focus on a small task. It'll give us better control over what we 
want to do, and we won't run the risk of having too many things to optimize at the 
same time.
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To keep things interesting, we'll split the problem into the following two parts:

• Part 1: This will take care of finding the data we want to process. It won't just 
be a dataset we download from some given URL. Instead, we'll scrape it from 
the Web.

• Part 2: This will focus on processing the data obtained after solving the first 
part of the problem. In this step, we may perform the most CPU-intensive 
computations and calculate some statistics from the data gathered.

In both cases, we'll create an initial version of the code that solves the problem 
without taking performance into account. Afterwards, we'll analyze each solution 
individually and try to improve them as much as we can.

Getting data from the Web
The site we'll scrape is Science Fiction & Fantasy (http://scifi.stackexchange.
com/). The site is dedicated to answering questions about sci-fi and fantasy topics.  
It is much like StackOverflow but meant for sci-fi and fantasy geeks.

To be more specific, we'll want to scrape the list of latest questions. For each 
question, we'll get the page with the question's text and all the available answers. 
After all the scraping and parsing is done, we'll save the relevant information in  
the JSON format for easier postprocessing.

Remember that we'll deal with HTML pages. However, we don't want that. We want 
to strip away all HTML code and save only the following items:

• The question's title
• The question's author
• The question's body (the actual text of the question)
• The body of the answers (if there are any)
• The answer's author

With this information, we'll be able to do some interesting postprocessing and get 
some relevant statistics (more on that in a minute).

http://scifi.stackexchange.com/
http://scifi.stackexchange.com/
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Here is a quick example of how the output of this script should look:

{
  "questions": [
    {
      "title": "Ending of John Carpenter's The Thing",
      "body": "In the ending of John Carpenter's classic 1982 sci- 
      fi horror film The Thing, is ...",
      "author": "JMFB",
      "answers": [
        {
          "body": "This is the million dollar question, ...  
          Unfortunately, he is notoriously ... ",
           "author": "Richard",
        },
        {
          "body": "Not to point out what may seem obvious,  
          but Childs isn't breathing. Note the total absence of ",
          "author": "user42"
          }
      ]
    },
    {
      "title": "Was it ever revealed what pedaling the bicycles in  
      the second episode was doing?",
      "body": "I'm going to assume they were probably some sort of  
      turbine...electricity...something, but I'd prefer to know  
      for sure.",
       "author": "bartz",
      "answers": [
        {
          "body": "The Wikipedia synopsis states: most citizens  
          make a living pedaling exercise bikes all day in order  
          to generate power for their environment",
          "author": "Jack Nimble"
        }
      ]
    }
  ]
}

This script will take care of saving all the information into one single JSON file, 
which will be predefined inside its code.
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We'll try to keep the initial version of both scripts simple. This means using the least 
amount of modules. In this case, the main list of modules will be as follows:

• Beautiful Soup (http://www.crummy.com/software/BeautifulSoup/): 
This is used to parse the HTML files, mainly because it provides a full 
parsing API, automatic encoding detection (which, if you've being in this 
business long enough, you've probably come to hate) and the ability to use 
selectors to traverse the parsed tree.

• Requests (http://docs.python-requests.org/en/latest/): This is used 
to make HTTP requests. Although Python already provides the required 
modules for this, this module simplifies the API and provides a more 
Pythonic way of handling this task.

You can install both modules using the pip command-line tool:

$ pip  install requests  beautifulsoup4

The following screenshot shows an example of the pages we'll be scraping and 
parsing in order to get the data:

http://www.crummy.com/software/BeautifulSoup/
http://docs.python-requests.org/en/latest/
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Postprocessing the data
The second script will take care of reading the JSON-encoded file and getting some 
stats out of it. Since we want to make it interesting, we won't limit ourselves to just 
counting the number of questions per user (although we will get this stat as well). 
We'll also calculate the following elements:

• Top ten users with most questions
• Top ten users with most answers
• Most common topics asked about
• The shortest answer
• Top ten most common phrases
• Top ten most answered questions

Since this book's main topic is performance and not Natural Language Processing 
(NLP), we will not delve into the details of the small amount of NLP that this script 
will have. Instead, we'll just limit ourselves to improving the performance based on 
what we've seen so far about Python.

The only non-built-in module we'll use in the first version of this script is NLTK 
(http://www.nltk.org) to handle all the NLP functionalities.

The initial code base
Let's now list all of the code that we'll optimize in future, based on the  
earlier description.

The first of the following points is quite simple: a single file script that takes care of 
scraping and saving in JSON format like we discussed earlier. The flow is simple, 
and the order is as follows:

1. It will query the list of questions page by page.
2. For each page, it will gather the question's links.
3. Then, for each link, it will gather the information listed from the  

previous points.
4. It will move on to the next page and start over again.
5. It will finally save all of the data into a JSON file.

http://www.nltk.org
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The code is as follows:

from bs4 import BeautifulSoup
import requests
import json

SO_URL = "http://scifi.stackexchange.com"
QUESTION_LIST_URL = SO_URL + "/questions"
MAX_PAGE_COUNT = 20

global_results = []
initial_page = 1 #first page is page 1

def get_author_name(body):
  link_name = body.select(".user-details a")
  if len(link_name) == 0:
    text_name = body.select(".user-details")
    return text_name[0].text if len(text_name) > 0 else 'N/A'
  else:
    return link_name[0].text

def get_question_answers(body):
  answers = body.select(".answer")
  a_data = []
  if len(answers) == 0:
    return a_data

  for a in answers:
    data = {
      'body': a.select(".post-text")[0].get_text(),
      'author': get_author_name(a)
    }
    a_data.append(data)
  return a_data

def get_question_data ( url ):
  print "Getting data from question page: %s " % (url)
  resp = requests.get(url)
  if resp.status_code != 200:
    print "Error while trying to scrape url: %s" % (url)
    return
  body_soup = BeautifulSoup(resp.text)
  #define the output dict that will be turned into a JSON structue
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  q_data = {
    'title': body_soup.select('#question-header .question- 
    hyperlink')[0].text,
    'body': body_soup.select('#question .post- 
    text')[0].get_text(),
    'author': get_author_name(body_soup.select(".post- 
    signature.owner")[0]),
    'answers': get_question_answers(body_soup)
  }
  return q_data

def get_questions_page ( page_num, partial_results ):
  print "====================================================="
  print " Getting list of questions for page %s" % (page_num)
  print "====================================================="

  url = QUESTION_LIST_URL + "?sort=newest&page=" + str(page_num)
  resp = requests.get(url)
  if resp.status_code != 200:
    print "Error while trying to scrape url: %s" % (url)
    return
  body = resp.text
  main_soup = BeautifulSoup(body)

  #get the urls for each question
  questions = main_soup.select('.question-summary .question- 
  hyperlink')
  urls = [ SO_URL + x['href'] for x in questions]
  for url in urls:
    q_data = get_question_data(url)
    partial_results.append(q_data)
  if page_num < MAX_PAGE_COUNT:
    get_questions_page(page_num + 1, partial_results)

get_questions_page(initial_page, global_results)
with open('scrapping-results.json', 'w') as outfile:
  json.dump(global_results, outfile, indent=4)

print '----------------------------------------------------'
print 'Results saved'
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By looking at the preceding code, you'll notice that we kept our promise. Right now, 
we're only using the proposed external modules, plus the JSON module, which 
comes built-in with Python.

The second script, on the other hand, is split into two, mainly for organizational 
purposes:

• analyzer.py: This file contains the main code. It takes care of loading the 
JSON file into a dict structure and performs a series of calculations.

• visualizer.py: This file simply contains a set of functions used to visualize 
the different results from the analyzer.

Let's now take a look at the code in both these files. The first set of functions will be 
the utility functions used to sanitize the data, load it into memory, and so on:

#analyzer.py
import operator
import string
import nltk
from nltk.util import ngrams
import json
import re
import visualizer

SOURCE_FILE = './scrapping-results.json'

# Load the json file and return the resulting dict
def load_json_data(file):
  with open(file) as input_file:
    return json.load(input_file)

def analyze_data(d):
  return {
    'shortest_answer': get_shortest_answer(d),
    'most_active_users': get_most_active_users(d, 10),
    'most_active_topics': get_most_active_topics(d, 10),
    'most_helpful_user': get_most_helpful_user(d, 10),
    'most_answered_questions': get_most_answered_questions(d, 10),
    'most_common_phrases':  get_most_common_phrases(d, 10, 4),
  }

# Creates a single, lower cased string from the bodies of all 
questions
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def flatten_questions_body(data):
  body = []
  for q in data:
    body.append(q['body'])
  return '. '.join(body)

# Creates a single, lower cased string from the titles of all 
questions
def flatten_questions_titles(data):
  body = []
  pattern = re.compile('(\[|\])')
  for q in data:
    lowered = string.lower(q['title'])
    filtered = re.sub(pattern, ' ', lowered)
    body.append(filtered)
  return '. '.join(body)

The following set of functions are the ones that actually performs the counting of data 
and gets the statistics we want by analyzing the JSON in different ways:

# Returns the top "limit" users with the most questions asked
def get_most_active_users(data, limit):
  names = {}
  for q in data:
    if q['author'] not in names:
      names[q['author']] = 1
    else:
      names[q['author']] += 1
  return sorted(names.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

def get_node_content(node):
  return ' '.join([x[0] for x in node])

# Tries to extract the most common topics from the question's titles
def get_most_active_topics(data, limit):
  body = flatten_questions_titles(data)
  sentences = nltk.sent_tokenize(body)
  sentences = [nltk.word_tokenize(sent) for sent in sentences]
  sentences = [nltk.pos_tag(sent) for sent in sentences]
  grammar = "NP: {<JJ>?<NN.*>}"
  cp = nltk.RegexpParser(grammar)
  results = {}
  for sent in sentences:
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    parsed = cp.parse(sent)
    trees = parsed.subtrees(filter=lambda x: x.label() == 'NP')
    for t in trees:
      key = get_node_content(t)
      if key in results:
        results[key] += 1
      else:
        results[key] = 1
  return sorted(results.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

# Returns the user that has the most answers
def get_most_helpful_user(data, limit):
  helpful_users = {}
  for q in data:
    for a in q['answers']:
      if a['author'] not in helpful_users:
        helpful_users[a['author']] = 1
      else:
        helpful_users[a['author']] += 1

  return sorted(helpful_users.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

# returns the top "limit" questions with the most amount of answers
def get_most_answered_questions(d, limit):
  questions = {}

  for q in d:
    questions[q['title']] = len(q['answers'])
  return sorted(questions.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

# Finds a list of the most common phrases of 'length' length
def get_most_common_phrases(d, limit, length):
  body = flatten_questions_body(d)
  phrases = {}
  for sentence in nltk.sent_tokenize(body):
    words = nltk.word_tokenize(sentence)
    for phrase in ngrams(words, length):
      if all(word not in string.punctuation for word in phrase):
        key = ' '.join(phrase)
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        if key in phrases:
          phrases[key] += 1
        else:
         phrases[key] = 1

  return sorted(phrases.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

# Finds the answer with the least amount of characters
def get_shortest_answer(d):
  
  shortest_answer = {
    'body': '',
    'length': -1
  }
  for q in d:
    for a in q['answers']:
      if len(a['body']) < shortest_answer['length'] or  
      shortest_answer['length'] == -1:
        shortest_answer = {
          'question': q['body'],
          'body': a['body'],
          'length': len(a['body'])
        }
  return shortest_answer

The following code shows how to use the functions declared earlier and display their 
results. It all boils down to three steps:

1. It loads the JSON into memory.
2. It processes the data and saves the results into a dictionary.
3. It goes over that dictionary to display the results.

The preceding steps are performed in the following code:

data_dict = load_json_data(SOURCE_FILE)

results = analyze_data(data_dict)

print "=== ( Shortest Answer ) === "
visualizer.displayShortestAnswer(results['shortest_answer'])

print "=== ( Most Active Users ) === "
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visualizer.displayMostActiveUsers(results['most_active_users'])

print "=== ( Most Active Topics ) === "
visualizer.displayMostActiveTopics(results['most_active_topics'])

print "=== ( Most Helpful Users ) === "
visualizer.displayMostHelpfulUser(results['most_helpful_user'])

print "=== ( Most Answered Questions ) === "
visualizer.displayMostAnsweredQuestions(results['most_answered_
questions'])

print "=== ( Most Common Phrases ) === "
visualizer.displayMostCommonPhrases(results['most_common_phrases'])

The code in the following file is merely used to format the output in a human-friendly 
way:

#visualizer.py
def displayShortestAnswer(data):
  print "A: %s" % (data['body'])
  print "Q: %s" % (data['question'])
  print "Length: %s characters" % (data['length'])

def displayMostActiveUsers(data):
  index = 1
  for u in data:
    print "%s - %s (%s)" % (index, u[0], u[1])
    index += 1

def displayMostActiveTopics(data):
  index = 1
  for u in data:
    print "%s - %s (%s)" % (index, u[0], u[1])
    index += 1

def displayMostHelpfulUser(data):
  index = 1
  for u in data:
    print "%s - %s (%s)" % (index, u[0], u[1])
    index += 1

def displayMostAnsweredQuestions(data):
  index = 1
  for u in data:
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    print "%s - %s (%s)" % (index, u[0], u[1])
    index += 1

def displayMostCommonPhrases(data):
  index = 1
  for u in data:
    print "%s - %s (%s)" % (index, u[0], u[1])
    index += 1

Analyzing the code
Analyzing the code will be done in two steps, just like we've being doing so far. 
For each project, we'll profile the code, get the numbers, consider our optimization 
alternatives, and then refactor and measure the code's performance again.

As the process described earlier can lead to several iterations of 
profiling—refactoring—profiling again, we'll limit the steps to the final 
results. However, keep in mind that this process is long and takes time.

Scraper
To start off the optimization process, let's first get some measurements so that we can 
compare our changes with them.

An easy-to-get number is the total time spent during the program's execution  
(in our example, and to keep things simple, we're limiting the total number of  
pages to query to 20).

Simply using the time command-line tool, we can get that number:

$ time python scraper.py

The following screenshot shows that we have 7 minutes and 30 seconds to scrape 
and parse the 20 pages of questions, which translate into a 3 MB JSON file:
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The scraper script is essentially an IO-bound loop that pulls data from the Internet 
with a minimum amount of processing. So, the first and most logical optimization 
we can spot here is the lack of parallelization of the requests. Since our code is  
not really CPU-bound, we can safely use the multithreading module (refer to  
Chapter 5, Multithreading versus Multiprocessing) and get an interesting speed  
boost with minimum effort.

Just to clarify what we're going to be doing, the following diagram shows the current 
status of the scraper script:

HTML parsing
and other operations

I/O Operation
(HTTP requests)

I/O I/O I/O I/O

We're spending most of our running time on I/O operations, more specifically on the 
HTTP requests we're doing to get the list of questions and each question's page.

As we've seen earlier, I/O operations can be parallelized easily using the 
multithreading module. So, we will transform our script so it resembles  
as shown in the following diagram:

Concurrent HTTP requests

ThreadManager
(Shared data)

I/O I/O I/O I/O

I/O I/O I/O I/O

Thread #1

Thread #2
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Now, let's look at the actual optimized code. We'll first look at the ThreadManager 
class, which will take care of centralizing the configuration of the threads as well as 
the status of the entire parallel process:

from bs4 import BeautifulSoup
import requests
import json
import threading

SO_URL = "http://scifi.stackexchange.com"
QUESTION_LIST_URL = SO_URL + "/questions"
MAX_PAGE_COUNT = 20

class ThreadManager:
  instance = None
  final_results = []
  threads_done = 0
  totalConnections = 4 #Number of parallel threads working, will  
  affect the total amount of pages per thread

  @staticmethod
  def notify_connection_end( partial_results ):
    print "==== Thread is done! ====="
    ThreadManager.threads_done += 1
    ThreadManager.final_results += partial_results
    if ThreadManager.threads_done ==  
    ThreadManager.totalConnections:
      print "==== Saving data to file! ===="
      with open('scrapping-results-optimized.json', 'w') as  
      outfile:
        json.dump(ThreadManager.final_results, outfile, indent=4)

The following functions take care of scraping the information from a page using 
BeatifulSoup, either by getting the lists of pages or getting the actual information 
for each question:

def get_author_name(body):
  link_name = body.select(".user-details a")
  if len(link_name) == 0:
    text_name = body.select(".user-details")
    return text_name[0].text if len(text_name) > 0 else 'N/A'
  else:
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    return link_name[0].text

def get_question_answers(body):
  answers = body.select(".answer")
  a_data = []
  if len(answers) == 0:
    return a_data

  for a in answers:
    data = {
      'body': a.select(".post-text")[0].get_text(),
      'author': get_author_name(a)
    }
    a_data.append(data)
  return a_data

def get_question_data ( url ):
  print "Getting data from question page: %s " % (url)
  resp = requests.get(url)
  if resp.status_code != 200:
    print "Error while trying to scrape url: %s" % (url)
    return
  body_soup = BeautifulSoup(resp.text)
  #define the output dict that will be turned into a JSON structue
  q_data = {
    'title': body_soup.select('#question-header .question- 
    hyperlink')[0].text,
    'body': body_soup.select('#question .post- 
    text')[0].get_text(),
    'author': get_author_name(body_soup.select(".post- 
    signature.owner")[0]),
    'answers': get_question_answers(body_soup)
  }
  return q_data

def get_questions_page ( page_num, end_page, partial_results  ):
  print "====================================================="
  print " Getting list of questions for page %s" % (page_num)
  print "====================================================="

  url = QUESTION_LIST_URL + "?sort=newest&page=" + str(page_num)
  resp = requests.get(url)
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  if resp.status_code != 200:
    print "Error while trying to scrape url: %s" % (url)
  else:
    body = resp.text
    main_soup = BeautifulSoup(body)

    #get the urls for each question
    questions = main_soup.select('.question-summary .question- 
    hyperlink')
    urls = [ SO_URL + x['href'] for x in questions]
    for url in urls:
      q_data = get_question_data(url)
     partial_results.append(q_data)
  if page_num + 1 < end_page:
    get_questions_page(page_num + 1,  end_page, partial_results)
  else:
    ThreadManager.notify_connection_end(partial_results)
pages_per_connection = MAX_PAGE_COUNT / ThreadManager.totalConnections
for i in range(ThreadManager.totalConnections):
  init_page = i * pages_per_connection
  end_page = init_page + pages_per_connection
  t = threading.Thread(target=get_questions_page,
           args=(init_page, end_page, [],  ),
           name='connection-%s' % (i))
  t.start()

The highlighted code in the preceding snippet shows the main change done to the 
initial script. Instead of starting at page 1 and moving forward one by one, we're 
starting a preconfigured number of threads (using the threading.Thread class 
directly) that will call our get_question_page function in parallel. All we had  
to do was pass in that function as the target of each new thread.

After that, we also needed a way to centralize the configuration parameters and the 
temporary results from each thread. For that, we created the ThreadManager class.

With this change, we go from the 7 minutes mark all the way down to 2 minutes  
13 seconds, as shown in the following screenshot:

Tweaking the number of threads, for instance, might lead to even better numbers, 
but the main improvement is already there.
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Analyzer
The code for the analyzer script is different compared to the scraper. Instead of 
having a heavy I/O-bound script, we have the opposite: a CPU-bound one. It does 
very little I/O, mainly to read the input file and output the results. So, we will focus 
on measuring in more detail.

Let's first get some basic measurements so that we know where we stand:

The preceding screenshot shows the output of the time command-line utility. 
So now that we have a base number to work with, we know we need to get the 
execution time lower than 3.5 seconds.

The first approach would be to use cProfile and start getting some numbers  
from the inside of our code. This should help us get a general overview of our 
program to start understanding where our pain points are. The output looks  
like the following screenshot:
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There are two areas of interest in the preceding screenshot:

• On the left-hand side, we can see the functions and how much time they 
consume. Pay attention to how most of the list is composed of external 
functions, mainly from the nltk module (the first two are just consumers of 
the others below, so they don't really matter).

• On the right-hand side, the Callee Map looks way too complex to interpret it 
(quite apart from the fact that again, most of the functions listed there aren't 
from our code, but from the libraries we're using).

With that being said, it looks like improving our code directly is not going to be a 
simple task. Instead, we might want to go on another route: since we're doing a lot of 
counting, we might benefit from typed code. So, let's try our hand at using Cython.

An initial analysis using the Cython command-line utility shows that most of our 
code can't directly be translated into C, as shown in the following screenshot:
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The preceding screenshot shows a portion of the analysis of our code. We can clearly 
see the darker lines filling most of the screen, showing that most of our code can't be 
directly translated into C. Sadly, this is because we're dealing with a complex object 
in most of our functions, so there isn't much we can do about it.

Still, simply by compiling our code with Cython, we get much better results. So, 
let's take a look at how we need to modify the source so that we can compile it with 
Cython. The first file is basically the same as the original analyzer with the changes 
highlighted in the code and minus the actual function calls, as we're now turning it 
into an external library:

#analyzer_cython.pyx
import operator
import string
import nltk
from nltk.util import ngrams
import json
import re

SOURCE_FILE = './scrapping-results.json'

# Returns the top "limit" users with the most questions asked
def get_most_active_users(data, int limit ):
  names = {}
  for q in data:
    if q['author'] not in names:
      names[q['author']] = 1
    else:
      names[q['author']] += 1
  return sorted(names.items(), reverse=True, key=operator.
itemgetter(1))[:limit]

def get_node_content(node):
  return ' '.join([x[0] for x in node])

# Tries to extract the most common topics from the question's titles

def get_most_active_topics(data, int limit ):
  body = flatten_questions_titles(data)
  sentences = nltk.sent_tokenize(body)
  sentences = [nltk.word_tokenize(sent) for sent in sentences]
  sentences = [nltk.pos_tag(sent) for sent in sentences]
  grammar = "NP: {<JJ>?<NN.*>}"
  cp = nltk.RegexpParser(grammar)
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  results = {}
  for sent in sentences:
    parsed = cp.parse(sent)
    trees = parsed.subtrees(filter=lambda x: x.label() == 'NP')
    for t in trees:
      key = get_node_content(t)
      if key in results:
        results[key] += 1
      else:
        results[key] = 1
  return sorted(results.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

# Returns the user that has the most answers

def get_most_helpful_user(data, int limit ):
  helpful_users = {}
  for q in data:
    for a in q['answers']:
      if a['author'] not in helpful_users:
        helpful_users[a['author']] = 1
      else:
        helpful_users[a['author']] += 1

  return sorted(helpful_users.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

# returns the top "limit" questions with the most amount of answers

def get_most_answered_questions(d, int limit ):
  questions = {}

  for q in d:
    questions[q['title']] = len(q['answers'])
  return sorted(questions.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

# Creates a single, lower cased string from the bodies of all 
questions
def flatten_questions_body(data):
  body = []
  for q in data:
    body.append(q['body'])
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  return '. '.join(body)

# Creates a single, lower cased string from the titles of all 
questions
def flatten_questions_titles(data):
  body = []
  pattern = re.compile('(\[|\])')
  for q in data:
    lowered = string.lower(q['title'])
    filtered = re.sub(pattern, ' ', lowered)
    body.append(filtered)
  return '. '.join(body)

# Finds a list of the most common phrases of 'length' length

def get_most_common_phrases(d, int limit , int length ):
  body = flatten_questions_body(d)
  phrases = {}
  for sentence in nltk.sent_tokenize(body):
    words = nltk.word_tokenize(sentence)
    for phrase in ngrams(words, length):
      if all(word not in string.punctuation for word in phrase):
        key = ' '.join(phrase)
        if key in phrases:
          phrases[key] += 1
        else:
          phrases[key] = 1

  return sorted(phrases.items(), reverse=True,  
  key=operator.itemgetter(1))[:limit]

# Finds the answer with the least amount of characters
def get_shortest_answer(d):

  cdef int shortest_length = 0;

  shortest_answer = {
    'body': '',
    'length': -1
  }
  for q in d:
    for a in q['answers']:
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      if len(a['body']) < shortest_length or shortest_length == 0:
        shortest_length = len(a['body'])
        shortest_answer = {
          'question': q['body'],
          'body': a['body'],
          'length': shortest_length
        }
  return shortest_answer

# Load the json file and return the resulting dict
def load_json_data(file):
  with open(file) as input_file:
    return json.load(input_file)

def analyze_data(d):
  return {
    'shortest_answer': get_shortest_answer(d),
    'most_active_users': get_most_active_users(d, 10),
    'most_active_topics': get_most_active_topics(d, 10),
    'most_helpful_user': get_most_helpful_user(d, 10),
    'most_answered_questions': get_most_answered_questions(d, 10),
    'most_common_phrases':  get_most_common_phrases(d, 10, 4),
  }

The following file is the one that takes care of setting everything up for  
Cython to compile our code, we've seen this code before (refer to Chapter 6,  
Generic Optimization Options):

#analyzer-setup.py
from distutils.core import setup
from Cython.Build import cythonize

setup(
  name = 'Analyzer app',
  ext_modules = cythonize("analyzer_cython.pyx"),
)



Putting It All into Practice

[ 228 ]

The last file is the one that uses our new external library by importing the compiled 
module. The file calls on the load_json_data and analyze_data methods and, 
finally, uses the visualizer module to format the output:

#analyzer-use-cython.py
import analyzer_cython as analyzer
import visualizer

data_dict = analyzer.load_json_data(analyzer.SOURCE_FILE)

results = analyzer.analyze_data(data_dict)

print "=== ( Shortest Answer ) === "
visualizer.displayShortestAnswer(results['shortest_answer'])

print "=== ( Most Active Users ) === "
visualizer.displayMostActiveUsers(results['most_active_users'])

print "=== ( Most Active Topics ) === "
visualizer.displayMostActiveTopics(results['most_active_topics'])

print "=== ( Most Helpful Users ) === "
visualizer.displayMostHelpfulUser(results['most_helpful_user'])

print "=== ( Most Answered Questions ) === "
visualizer.displayMostAnsweredQuestions(results['most_answered_
questions'])

print "=== ( Most Common Phrases ) === "
visualizer.displayMostCommonPhrases(results['most_common_phrases'])

The preceding code can be compiled using the following line:

$ python analyzer-setup.py build_ext –inplace
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Then, by running the analyzer-use-cython.py script, we will get the following 
execution time:

The time went down from 3.5 to 1.3 seconds. This is quite an improvement from 
simply reorganizing of our code and compiling it using Cython, like we saw in 
Chapter 6, Generic Optimization Options. This simple compilation can produce  
great results.

The code can be further broken down and rewritten to remove most of the need for 
complex structures, thus allowing us to declare the primitive types for all variables. 
We could even try to remove nltk and use some NLP library written in C, such as 
OpenNLP (http://opennlp.sourceforge.net/projects.html).

Summary
You've reached the end of the chapter and, with it, the end of this book. The examples 
provided in this last chapter are meant to show how a random piece of code can be 
analyzed and improved using the techniques shown in the previous chapters.

As not all techniques are compatible with each other, not all of them were applicable 
here. However, we were able to see how some of them work, more specifically, 
multithreading, profiling with cProfile and kcachegrind, and finally, compilation 
with Cython.

Thank you for reading and, hopefully, enjoying the book!

http://opennlp.sourceforge.net/projects.html
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