
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Python for
Data Science

Explore the world of data science through Python and
learn how to make sense of data

Samir Madhavan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Python for Data Science

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1260815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-015-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Samir Madhavan

Reviewers
Sébastien Celles

Robert Dempsey

Maurice HT Ling

Ratanlal Mahanta

Yingssu Tsai

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Arun Nadar

Technical Editor
Chinmay S. Puranik

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Jason Monteiro

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Samir Madhavan has been working in the field of data science since 2010.
He is an industry expert on machine learning and big data. He has also reviewed
R Machine Learning Essentials by Packt Publishing. He was part of the ubiquitous
Aadhar project of the Unique Identification Authority of India, which is in the
process of helping every Indian get a unique number that is similar to a social
security number in the United States. He was also the first employee of Flutura
Decision Sciences and Analytics and is a part of the core team that has helped scale
the number of employees in the company to 50. His company is now recognized
as one of the most promising Internet of Things—Decision Sciences companies
in the world.

I would like to thank my mom, Rajasree Madhavan, and dad,
P Madhavan, for all their support. I would also like to thank
Srikanth Muralidhara, Krishnan Raman, and Derick Jose, who gave
me the opportunity to start my career in the world of data science.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sébastien Celles is a professor of applied physics at Universite de Poitiers (working
in the thermal science department). He has used Python for numerical simulations,
data plotting, data predictions, and various other tasks since the early 2000s. He is a
member of PyData and was granted commit rights to the pandas DataReader project.
He is also involved in several open source projects in the scientific Python ecosystem.

Sebastien is also the author of some Python packages available on PyPi, which are
as follows:

• openweathermap_requests: This is a package used to fetch data from
OpenWeatherMap.org using Requests and Requests-cache and to get pandas
DataFrame with weather history

• pandas_degreedays: This is a package used to calculate degree days
(a measure of heating or cooling) from the pandas time series of temperature

• pandas_confusion: This is a package used to manage confusion matrices, plot
and binarize them, and calculate overall and class statistics

• There are some other packages authored by him, such as pyade,
pandas_datareaders_unofficial, and more

He also has a personal interest in data mining, machine learning techniques,
forecasting, and so on. You can find more information about him at http://www.
celles.net/wiki/Contact or https://www.linkedin.com/in/sebastiencelles.

www.allitebooks.com

http://www.celles.net/wiki/Contact
http://www.celles.net/wiki/Contact
https://www.linkedin.com/in/sebastiencelles
http://www.celles.net/wiki/Contact
http://www.allitebooks.org

Robert Dempsey is a leader and technology professional, specializing in
delivering solutions and products to solve tough business challenges. His experience
of forming and leading agile teams combined with more than 15 years of technology
experience enables him to solve complex problems while always keeping the bottom
line in mind.

Robert founded and built three start-ups in the tech and marketing fields, developed
and sold two online applications, consulted for Fortune 500 and Inc. 500 companies,
and has spoken nationally and internationally on software development and agile
project management.

He's the founder of Data Wranglers DC, a group dedicated to improving the
craft of data wrangling, as well as a board member of Data Community DC.
He is currently the team leader of data operations at ARPC, an econometrics
firm based in Washington, DC.

In addition to spending time with his growing family, Robert geeks out on Raspberry
Pi's, Arduinos, and automating more of his life through hardware and software.

Maurice HT Ling has been programming in Python since 2003. Having completed
his PhD in bioinformatics and BSc (Hons) in molecular and cell biology from The
University of Melbourne, he is currently a research fellow at Nanyang Technological
University, Singapore. He is also an honorary fellow of The University of Melbourne,
Australia. Maurice is the chief editor of Computational and Mathematical Biology
and coeditor of The Python Papers. Recently, he cofounded the first synthetic
biology start-up in Singapore, called AdvanceSyn Pte. Ltd., as the director and chief
technology officer. His research interests lie in life itself, such as biological life and
artificial life, and artificial intelligence, which use computer science and statistics as
tools to understand life and its numerous aspects. In his free time, Maurice likes to
read, enjoy a cup of coffee, write his personal journal, or philosophize on various
aspects of life. His website and LinkedIn profile are http://maurice.vodien.com
and http://www.linkedin.com/in/mauriceling, respectively.

www.allitebooks.com

http://maurice.vodien.com
http://www.allitebooks.org

Ratanlal Mahanta is a senior quantitative analyst. He holds an MSc degree in
computational finance and is currently working at GPSK Investment Group as a
senior quantitative analyst. He has 4 years of experience in quantitative trading and
strategy development for sell-side and risk consultation firms. He is an expert in high
frequency and algorithmic trading.

He has expertise in the following areas:

• Quantitative trading: This includes FX, equities, futures, options, and
engineering on derivatives

• Algorithms: This includes Partial Differential Equations, Stochastic
Differential Equations, Finite Difference Method, Monte-Carlo,
and Machine Learning

• Code: This includes R Programming, C++, Python, MATLAB, HPC, and
scientific computing

• Data analysis: This includes big data analytics (EOD to TBT), Bloomberg,
Quandl, and Quantopian

• Strategies: This includes Vol Arbitrage, Vanilla and Exotic Options Modeling,
trend following, Mean reversion, Co-integration, Monte-Carlo Simulations,
ValueatRisk, Stress Testing, Buy side trading strategies with high Sharpe
ratio, Credit Risk Modeling, and Credit Rating

He has already reviewed Mastering Scientific Computing with R, Mastering R for
Quantitative Finance, and Machine Learning with R Cookbook, all by Packt Publishing.

You can find out more about him at https://twitter.com/mahantaratan.

Yingssu Tsai is a data scientist. She holds degrees from the University of
California, Berkeley, and the University of California, Los Angeles.

www.allitebooks.com

https://twitter.com/mahantaratan
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Raw Data 1

The world of arrays with NumPy 2
Creating an array 2
Mathematical operations 3

Array subtraction 4
Squaring an array 4

A trigonometric function performed on the array 4
Conditional operations 4
Matrix multiplication 5

Indexing and slicing 5
Shape manipulation 6

Empowering data analysis with pandas 7
The data structure of pandas 7

Series 7
DataFrame 8
Panel 9

Inserting and exporting data 10
CSV 11
XLS 11
JSON 12
Database 12

Data cleansing 12
Checking the missing data 13
Filling the missing data 14
String operations 16
Merging data 19

Data operations 20
Aggregation operations 20

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Joins 21
The inner join 22
The left outer join 23
The full outer join 24
The groupby function 24

Summary 25
Chapter 2: Inferential Statistics 27

Various forms of distribution 27
A normal distribution 28

A normal distribution from a binomial distribution 29
A Poisson distribution 33
A Bernoulli distribution 34

A z-score 36
A p-value 40
One-tailed and two-tailed tests 41
Type 1 and Type 2 errors 43
A confidence interval 44
Correlation 48
Z-test vs T-test 51
The F distribution 52
The chi-square distribution 53

Chi-square for the goodness of fit 54
The chi-square test of independence 55
ANOVA 56
Summary 57

Chapter 3: Finding a Needle in a Haystack 59
What is data mining? 60
Presenting an analysis 62
Studying the Titanic 64

Which passenger class has the maximum number of survivors? 65
What is the distribution of survivors based on gender among the
various classes? 68
What is the distribution of nonsurvivors among the various
classes who have family aboard the ship? 71
What was the survival percentage among different age groups? 74

Summary 76
Chapter 4: Making Sense of Data through
Advanced Visualization 77

Controlling the line properties of a chart 78
Using keyword arguments 78
Using the setter methods 79

Table of Contents

[iii]

Using the setp() command 80
Creating multiple plots 80
Playing with text 81
Styling your plots 83
Box plots 85
Heatmaps 88
Scatter plots with histograms 91
A scatter plot matrix 94
Area plots 96
Bubble charts 97
Hexagon bin plots 97
Trellis plots 98
A 3D plot of a surface 103
Summary 106

Chapter 5: Uncovering Machine Learning 107
Different types of machine learning 108

Supervised learning 108
Unsupervised learning 109
Reinforcement learning 110

Decision trees 111
Linear regression 112
Logistic regression 114
The naive Bayes classifier 115
The k-means clustering 117
Hierarchical clustering 118
Summary 119

Chapter 6: Performing Predictions with a Linear Regression 121
Simple linear regression 121
Multiple regression 125
Training and testing a model 132
Summary 138

Chapter 7: Estimating the Likelihood of Events 139
Logistic regression 139

Data preparation 140
Creating training and testing sets 141
Building a model 142
Model evaluation 144
Evaluating a model based on test data 148
Model building and evaluation with SciKit 152

Summary 154

Table of Contents

[iv]

Chapter 8: Generating Recommendations with
Collaborative Filtering 155

Recommendation data 156
User-based collaborative filtering 157

Finding similar users 157
The Euclidean distance score 157
The Pearson correlation score 160
Ranking the users 165
Recommending items 165

Item-based collaborative filtering 167
Summary 172

Chapter 9: Pushing Boundaries with Ensemble Models 173
The census income dataset 174

Exploring the census data 175
Hypothesis 1: People who are older earn more 175
Hypothesis 2: Income bias based on working class 176
Hypothesis 3: People with more education earn more 177
Hypothesis 4: Married people tend to earn more 178
Hypothesis 5: There is a bias in income based on race 180
Hypothesis 6: There is a bias in the income based on occupation 181
Hypothesis 7: Men earn more 182
Hypothesis 8: People who clock in more hours earn more 183
Hypothesis 9: There is a bias in income based on the country of origin 184

Decision trees 186
Random forests 187
Summary 192

Chapter 10: Applying Segmentation with k-means Clustering 193
The k-means algorithm and its working 194

A simple example 194
The k-means clustering with countries 199

Determining the number of clusters 201
Clustering the countries 205
Summary 210

Chapter 11: Analyzing Unstructured Data with Text Mining 211
Preprocessing data 211
Creating a wordcloud 215
Word and sentence tokenization 220
Parts of speech tagging 221
Stemming and lemmatization 223

Stemming 223
Lemmatization 226

Table of Contents

[v]

The Stanford Named Entity Recognizer 227
Performing sentiment analysis on world leaders using Twitter 229
Summary 238

Chapter 12: Leveraging Python in the World of Big Data 239
What is Hadoop? 241

The programming model 241
The MapReduce architecture 242
The Hadoop DFS 242
Hadoop's DFS architecture 243

Python MapReduce 243
The basic word count 243
A sentiment score for each review 246
The overall sentiment score 247
Deploying the MapReduce code on Hadoop 250

File handling with Hadoopy 253
Pig 255
Python with Apache Spark 259

Scoring the sentiment 259
The overall sentiment 261

Summary 263
Index 265

[vii]

Preface
Data science is an exciting new field that is used by various organizations to perform
data-driven decisions. It is a combination of technical knowledge, mathematics, and
business. Data scientists have to wear various hats to work with data and derive
some value out of it. Python is one of the most popular languages among all the
languages used by data scientists. It is a simple language to learn and is used for
purposes, such as web development, scripting, and application development to
name a few.

The ability to perform data science using Python is very powerful as it helps clean
data at a raw level to create advanced machine learning algorithms that predict
customer churns for a retail company. This book explains various concepts of data
science in a structured manner with the application of these concepts on data to
see how to interpret results. The book provides a good base for understanding the
advanced topics of data science and how to apply them in a real-world scenario.

What this book covers
Chapter 1, Getting Started with Raw Data, teaches you the techniques of handling
unorganized data. You'll also learn how to extract data from different sources,
as well as how to clean and manipulate it.

Chapter 2, Inferential Statistics, goes beyond descriptive statistics, where you'll learn
about inferential statistics concepts, such as distributions, different statistical tests,
the errors in statistical tests, and confidence intervals.

Chapter 3, Finding a Needle in a Haystack, explains what data mining is and how it can
be utilized. There is a lot of information in data but finding meaningful information
is an art.

Preface

[viii]

Chapter 4, Making Sense of Data through Advanced Visualization, teaches you how
to create different visualizations of data. Visualization is an integral part of data
science; it helps communicate a pattern or relationship that cannot be seen by
looking at raw data.

Chapter 5, Uncovering Machine Learning, introduces you to the different techniques of
machine learning and how to apply them. Machine learning is the new buzzword in
the industry. It's used in activities, such as Google's driverless cars and predicting the
effectiveness of marketing campaigns.

Chapter 6, Performing Predictions with a Linear Regression, helps you build a simple
regression model followed by multiple regression models along with methods to
test the effectiveness of the models. Linear regression is one of the most popular
techniques used in model building in the industry today.

Chapter 7, Estimating the Likelihood of Events, teaches you how to build a logistic
regression model and the different techniques of evaluating it. With logistic regression,
you'll be able learn how to estimate the likelihood of an event taking place.

Chapter 8, Generating Recommendations with Collaborative Filtering, teaches you to
create a recommendation model and apply it. It is similar to websites, such as
Amazon, which are able to suggest items that you would probably buy on their page.

Chapter 9, Pushing Boundaries with Ensemble Models, familiarizes you with ensemble
techniques, which are used to combine the power of multiple models to enhance
the accuracy of predictions. This is done because sometimes a single model is not
enough to estimate the outcome.

Chapter 10, Applying Segmentation with k-means Clustering, teaches you about k-means
clustering and how to use it. Segmentation is widely used in the industry to group
similar customers together.

Chapter 11, Analyzing Unstructured Data with Text Mining, teaches you to process
unstructured data and make sense of it. There is more unstructured data in the world
than structured data.

Chapter 12, Leveraging Python in the World of Big Data, teaches you to use Hadoop and
Spark with Python to handle data in this chapter. With the ever increasing size of
data, big data technologies have been brought into existence to handle such data.

Preface

[ix]

What you need for this book
The following softwares are required for this book:

• Ubuntu OS, preferably 14.04
• Python 2.7
• The pandas 0.16.2 library
• The NumPy 1.9.2 library
• The SciPy 0.16 library
• IPython 4.0
• The SciKit 0.16.1 module
• The statsmodels 0.6.1 module
• The matplotlib 1.4.3 library
• Apache Hadoop CDH4 (Cloudera Hadoop 4) with MRv1

(MapReduce version 1)
• Apache Spark 1.4.0

Who this book is for
If you are a Python developer who wants to master the world of data science,
then this book is for you. It is assumed that you already have some knowledge
of data science.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The json.load() function loads the data into Python."

Any command-line input or output is written as follows:

$ pig ./BigData/pig_sentiment.pig

Preface

[x]

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

The codes provided in the code bundle are for both IPython notebook and
Python 2.7. In the chapters, Python conventions have been followed.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/0150OS_ColorImage.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com/sites/default/files/downloads/0150OS_ColorImage.pdf.
http://www.packtpub.com/sites/default/files/downloads/0150OS_ColorImage.pdf.
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.allitebooks.org

[1]

Getting Started with
Raw Data

In the world of data science, raw data comes in many forms and sizes. There is a
lot of information that can be extracted from this raw data. To give an example,
Amazon collects click stream data that records each and every click of the user on the
website. This data can be utilized to understand if a user is a price-sensitive customer
or prefer more popularly rated products. You must have noticed recommended
products in Amazon; they are derived using such data.

The first step towards such an analysis would be to parse raw data. The parsing of
the data involves the following steps:

• Extracting data from the source: Data can come in many forms, such as
Excel, CSV, JSON, databases, and so on. Python makes it very easy to read
data from these sources with the help of some useful packages, which will
be covered in this chapter.

• Cleaning the data: Once a sanity check has been done, one needs to clean
the data appropriately so that it can be utilized for analysis. You may have a
dataset about students of a class and details about their height, weight, and
marks. There may also be certain rows with the height or weight missing.
Depending on the analysis being performed, these rows with missing values
can either be ignored or replaced with the average height or weight.

Getting Started with Raw Data

[2]

In this chapter we will cover the following topics:

• Exploring arrays with NumPy
• Handling data with pandas
• Reading and writing data from various formats
• Handling missing data
• Manipulating data

The world of arrays with NumPy
Python, by default, comes with a data structure, such as List, which can be utilized
for array operations, but a Python list on its own is not suitable to perform heavy
mathematical operations, as it is not optimized for it.

NumPy is a wonderful Python package produced by Travis Oliphant, which
has been created fundamentally for scientific computing. It helps handle large
multidimensional arrays and matrices, along with a large library of high-level
mathematical functions to operate on these arrays.

A NumPy array would require much less memory to store the same amount of data
compared to a Python list, which helps in reading and writing from the array in a
faster manner.

Creating an array
A list of numbers can be passed to the following array function to create a NumPy
array object:

>>> import numpy as np

>>> n_array = np.array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]])

Chapter 1

[3]

A NumPy array object has a number of attributes, which help in giving information
about the array. Here are its important attributes:

• ndim: This gives the number of dimensions of the array. The following shows
that the array that we defined had two dimensions:
>>> n_array.ndim

2

n_array has a rank of 2, which is a 2D array.

• shape: This gives the size of each dimension of the array:
>>> n_array.shape

(3, 4)

The first dimension of n_array has a size of 3 and the second dimension has
a size of 4. This can be also visualized as three rows and four columns.

• size: This gives the number of elements:
>>> n_array.size

12

The total number of elements in n_array is 12.

• dtype: This gives the datatype of the elements in the array:
>>> n_array.dtype.name

int64

The number is stored as int64 in n_array.

Mathematical operations
When you have an array of data, you would like to perform certain mathematical
operations on it. We will now discuss a few of the important ones in the following
sections.

Getting Started with Raw Data

[4]

Array subtraction
The following commands subtract the a array from the b array to get the resultant
c array. The subtraction happens element by element:

>>> a = np.array([11, 12, 13, 14])

>>> b = np.array([1, 2, 3, 4])

>>> c = a - b

>>> c

Array[10 10 10 10]

Do note that when you subtract two arrays, they should be of equal dimensions.

Squaring an array
The following command raises each element to the power of 2 to obtain this result:

>>> b**2

[1 4 9 16]

A trigonometric function performed on the array
The following command applies cosine to each of the values in the b array to obtain
the following result:

>>> np.cos(b)

[0.54030231 -0.41614684 -0.9899925 -0.65364362]

Conditional operations
The following command will apply a conditional operation to each of the elements of
the b array, in order to generate the respective Boolean values:

>>> b<2

[True False False False]

Chapter 1

[5]

Matrix multiplication
Two matrices can be multiplied element by element or in a dot product. The
following commands will perform the element-by-element multiplication:

>>> A1 = np.array([[1, 1],

 [0, 1]])

>>> A2 = np.array([[2, 0],

 [3, 4]])

>>> A1 * A2

[[2 0]

[0 4]]

The dot product can be performed with the following command:

>>> np.dot(A1, A2)

[[5 4]

[3 4]]

Indexing and slicing
If you want to select a particular element of an array, it can be achieved using indexes:

>>> n_array[0,1]

1

The preceding command will select the first array and then select the second value in
the array. It can also be seen as an intersection of the first row and the second column
of the matrix.

If a range of values has to be selected on a row, then we can use the following
command:

>>> n_array[0 , 0:3]

[0 1 2]

Getting Started with Raw Data

[6]

The 0:3 value selects the first three values of the first row.

The whole row of values can be selected with the following command:

>>> n_array[0 , :]

[0 1 2 3]

Using the following command, an entire column of values need to be selected:

>>> n_array[: , 1]

[1 5 9]

Shape manipulation
Once the array has been created, we can change the shape of it too. The following
command flattens the array:

>>> n_array.ravel()

[0 1 2 3 4 5 6 7 8 9 10 11]

The following command reshapes the array in to a six rows and two columns format.
Also, note that when reshaping, the new shape should have the same number of
elements as the previous one:

>>> n_array.shape = (6,2)

>>> n_array

[[0 1]

[2 3]

[4 5]

[6 7]

[8 9]

[10 11]]

The array can be transposed too:

>>> n_array.transpose()

[[0 2 4 6 8 10]

[1 3 5 7 9 11]]

Chapter 1

[7]

Empowering data analysis with pandas
The pandas library was developed by Wes McKinny when he was working at
AQR Capital Management. He wanted a tool that was flexible enough to perform
quantitative analysis on financial data. Later, Chang She joined him and helped
develop the package further.

The pandas library is an open source Python library, specially designed for data
analysis. It has been built on NumPy and makes it easy to handle data. NumPy is a
fairly low-level tool that handles matrices really well.

The pandas library brings the richness of R in the world of Python to handle data. It's
has efficient data structures to process data, perform fast joins, and read data from
various sources, to name a few.

The data structure of pandas
The pandas library essentially has three data structures:

1. Series
2. DataFrame
3. Panel

Series
Series is a one-dimensional array, which can hold any type of data, such as integers,
floats, strings, and Python objects too. A series can be created by calling the following:

>>> import pandas as pd

>>> pd.Series(np.random.randn(5))

0 0.733810

1 -1.274658

2 -1.602298

3 0.460944

4 -0.632756

dtype: float64

Getting Started with Raw Data

[8]

The random.randn parameter is part of the NumPy package and it generates random
numbers. The series function creates a pandas series that consists of an index, which
is the first column, and the second column consists of random values. At the bottom
of the output is the datatype of the series.

The index of the series can be customized by calling the following:

>>> pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

a -0.929494

b -0.571423

c -1.197866

d 0.081107

e -0.035091

dtype: float64

A series can be derived from a Python dict too:

>>> d = {'A': 10, 'B': 20, 'C': 30}

>>> pd.Series(d)

A 10

B 20

C 30

dtype: int64

DataFrame
DataFrame is a 2D data structure with columns that can be of different datatypes. It
can be seen as a table. A DataFrame can be formed from the following data structures:

• A NumPy array
• Lists
• Dicts
• Series
• A 2D NumPy array

Chapter 1

[9]

A DataFrame can be created from a dict of series by calling the following commands:

>>> d = {'c1': pd.Series(['A', 'B', 'C']),

 'c2': pd.Series([1, 2., 3., 4.])}

>>> df = pd.DataFrame(d)

>>> df

 c1 c2

0 A 1

1 B 2

2 C 3

3 NaN 4

The DataFrame can be created using a dict of lists too:

>>> d = {'c1': ['A', 'B', 'C', 'D'],

 'c2': [1, 2.0, 3.0, 4.0]}

>>> df = pd.DataFrame(d)

>>> print df

 c1 c2

0 A 1

1 B 2

2 C 3

3 D 4

Panel
A Panel is a data structure that handles 3D data. The following command is an
example of panel data:

>>> d = {'Item1': pd.DataFrame(np.random.randn(4, 3)),

 'Item2': pd.DataFrame(np.random.randn(4, 2))}

>>> pd.Panel(d)

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)

Items axis: Item1 to Item2

Major_axis axis: 0 to 3

Minor_axis axis: 0 to 2

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Raw Data

[10]

The preceding command shows that there are 2 DataFrames represented by two
items. There are four rows represented by four major axes and three columns
represented by three minor axes.

Inserting and exporting data
The data is stored in various forms, such as CSV, TSV, databases, and so on. The
pandas library makes it convenient to read data from these formats or to export to
these formats. We'll use a dataset that contains the weight statistics of the school
students from the U.S..

We'll be using a file with the following structure:

Column Description
LOCATION CODE Unique location code
COUNTY The county the school belongs to
AREA NAME The district the school belongs to
REGION The region the school belongs to
SCHOOL YEARS The school year the data is addressing
NO. OVERWEIGHT The number of overweight students
PCT OVERWEIGHT The percentage of overweight students
NO. OBESE The number of obese students
PCT OBESE The percentage of obese students
NO. OVERWEIGHT OR OBESE The number of students who are overweight or obese

PCT OVERWEIGHT OR OBESE
The percentage of students who are overweight or
obese

GRADE LEVEL Whether they belong to elementary or high school
AREA TYPE The type of area
STREET ADDRESS The address of the school
CITY The city the school belongs to
STATE The state the school belongs to
ZIP CODE The zip code of the school
Location 1 The address with longitude and latitude

Chapter 1

[11]

CSV
To read data from a .csv file, the following read_csv function can be used:

>>> d = pd.read_csv('Data/Student_Weight_Status_Category_
 Reporting_Results__Beginning_2010.csv')

>>> d[0:5]['AREA NAME']

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3 COHOES CITY SCHOOL DISTRICT

4 COHOES CITY SCHOOL DISTRICT

The read_csv function takes the path of the .csv file to input the data. The
command after this prints the first five rows of the Location column in the data.

To write a data to the .csv file, the following to_csv function can be used:

>>> d = {'c1': pd.Series(['A', 'B', 'C']),

 'c2': pd.Series([1, 2., 3., 4.])}

>>> df = pd.DataFrame(d)

>>> df.to_csv('sample_data.csv')

The DataFrame is written to a .csv file by using the to_csv method. The path and
the filename where the file needs to be created should be mentioned.

XLS
In addition to the pandas package, the xlrd package needs to be installed for pandas
to read the data from an Excel file:

>>> d=pd.read_excel('Data/Student_Weight_Status_Category
 _Reporting_Results__Beginning_2010.xls')

The preceding function is similar to the CSV reading command. To write to an Excel
file, the xlwt package needs to be installed:

>>> df.to_excel('sample_data.xls')

Getting Started with Raw Data

[12]

JSON
To read the data from a JSON file, Python's standard json package can be used. The
following commands help in reading the file:

>>> import json

>>> json_data = open('Data/Student_Weight_Status_Category
 _Reporting_Results__Beginning_2010.json')

>>> data = json.load(json_data)

>>> json_data.close()

In the preceding command, the open() function opens a connection to the file. The
json.load() function loads the data into Python. The json_data.close() function
closes the connection to the file.

The pandas library also provides a function to read the JSON file, which can be
accessed using pd.read_json().

Database
To read data from a database, the following function can be used:

>>> pd.read_sql_table(table_name, con)

The preceding command generates a DataFrame. If a table name and an SQLAlchemy
engine are given, they return a DataFrame. This function does not support the DBAPI
connection. The following are the description of the parameters used:

• table_name: This refers to the name of the SQL table in a database
• con: This refers to the SQLAlchemy engine

The following command reads SQL query into a DataFrame:

>>> pd.read_sql_query(sql, con)

The following are the description of the parameters used:

• sql: This refers to the SQL query that is to be executed
• con: This refers to the SQLAlchemy engine

Data cleansing
The data in its raw form generally requires some cleaning so that it can be analyzed
or a dashboard can be created on it. There are many reasons that data might
have issues. For example, the Point of Sale system at a retail shop might have
malfunctioned and inputted some data with missing values. We'll be learning
how to handle such data in the following section.

Chapter 1

[13]

Checking the missing data
Generally, most data will have some missing values. There could be various reasons
for this: the source system which collects the data might not have collected the values
or the values may never have existed. Once you have the data loaded, it is essential
to check the missing elements in the data. Depending on the requirements, the
missing data needs to be handled. It can be handled by removing a row or replacing
a missing value with an alternative value.

In the Student Weight data, to check if the location column has missing value,
the following command can be utilized:

>>> d['Location 1'].isnull()

0 False

1 False

2 False

3 False

4 False

5 False

6 False

The notnull() method will output each row of the value as TRUE or FALSE. If it's
False, then there is a missing value. This data can be aggregated to find the number
of instances of the missing value:

>>> d['Location 1'].isnull().value_counts()

False 3246

True 24

dtype: int64

The preceding command shows that the Location 1 column has 24 instances of
missing values. These missing values can be handled by either removing the rows
with the missing values or replacing it with some values. To remove the rows,
execute the following command:

>>> d = d['Location 1'].dropna()

To remove all the rows with an instance of missing values, use the following command:

>>> d = d.dropna(how='any')

Getting Started with Raw Data

[14]

Filling the missing data
Let's define some DataFrames to work with:

>>> df = pd.DataFrame(np.random.randn(5, 3), index=['a0', 'a10',
 'a20', 'a30', 'a40'],

 columns=['X', 'Y', 'Z'])

>>> df

 X Y Z

a0 -0.854269 0.117540 1.515373

a10 -0.483923 -0.379934 0.484155

a20 -0.038317 0.196770 -0.564176

a30 0.752686 1.329661 -0.056649

a40 -1.383379 0.632615 1.274481

We'll now add some extra row indexes, which will create null values in our DataFrame:

>>> df2 = df2.reindex(['a0', 'a1', 'a10', 'a11', 'a20', 'a21',
 'a30', 'a31', 'a40', 'a41'])

>>> df2

 X Y Z

a0 -1.193371 0.912654 -0.780461

a1 NaN NaN NaN

a10 1.413044 0.615997 0.947334

a11 NaN NaN NaN

a20 1.583516 1.388921 0.458771

a21 NaN NaN NaN

a30 0.479579 1.427625 1.407924

a31 NaN NaN NaN

a40 0.455510 -0.880937 1.375555

a41 NaN NaN NaN

If you want to replace the null values in the df2 DataFrame with a value of zero in
the following case, execute the following command:

>>> df2.fillna(0)

 X Y Z

a0 -1.193371 0.912654 -0.780461

Chapter 1

[15]

a1 0.000000 0.000000 0.000000

a10 1.413044 0.615997 0.947334

a11 0.000000 0.000000 0.000000

a20 1.583516 1.388921 0.458771

a21 0.000000 0.000000 0.000000

a30 0.479579 1.427625 1.407924

a31 0.000000 0.000000 0.000000

a40 0.455510 -0.880937 1.375555

a41 0.000000 0.000000 0.000000

If you want to fill the value with forward propagation, which means that the
value previous to the null value in the column will be used to fill the null value,
the following command can be used:

>>> df2.fillna(method='pad') #filling with forward propagation

 X Y Z

a0 -1.193371 0.912654 -0.780461

a1 -1.193371 0.912654 -0.780461

a10 1.413044 0.615997 0.947334

a11 1.413044 0.615997 0.947334

a20 1.583516 1.388921 0.458771

a21 1.583516 1.388921 0.458771

a30 0.479579 1.427625 1.407924

a31 0.479579 1.427625 1.407924

a40 0.455510 -0.880937 1.375555

a41 0.455510 -0.880937 1.375555

If you want to fill the null values of the column with the column mean, then the
following command can be utilized:

>>> df2.fillna(df2.mean())

 X Y Z

a0 -1.193371 0.912654 -0.780461

a1 0.547655 0.692852 0.681825

a10 1.413044 0.615997 0.947334

a11 0.547655 0.692852 0.681825

a20 1.583516 1.388921 0.458771

Getting Started with Raw Data

[16]

a21 0.547655 0.692852 0.681825

a30 0.479579 1.427625 1.407924

a31 0.547655 0.692852 0.681825

a40 0.455510 -0.880937 1.375555

a41 0.547655 0.692852 0.681825

String operations
Sometimes, you would want to modify the string field column in your data.
The following technique explains some of the string operations:

• Substring: Let's start by choosing the first five rows of the AREA NAME
column in the data as our sample data to modify:
>>> df = pd.read_csv('Data/Student_Weight_Status_Category_
 Reporting_Results__Beginning_2010.csv')

>>> df['AREA NAME'][0:5]

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3 COHOES CITY SCHOOL DISTRICT

4 COHOES CITY SCHOOL DISTRICT

Name: AREA NAME, dtype: object

In order to extract the first word from the Area Name column, we'll use the
extract function as shown in the following command:
>>> df['AREA NAME'][0:5].str.extract('(\w+)')

0 RAVENA

1 RAVENA

2 RAVENA

3 COHOES

4 COHOES

Name: AREA NAME, dtype: object

Chapter 1

[17]

In the preceding command, the str attribute of the series is utilized. The str
class contains an extract method, where a regular expression could be fed
to extract data, which is very powerful. It is also possible to extract a second
word in AREA NAME as a separate column:
>>> df['AREA NAME'][0:5].str.extract('(\w+)\s(\w+)')

 0 1

0 RAVENA COEYMANS

1 RAVENA COEYMANS

2 RAVENA COEYMANS

3 COHOES CITY

4 COHOES CITY

To extract data in different columns, the respective regular expression needs
to be enclosed in separate parentheses.

• Filtering: If we want to filter rows with data on ELEMENTARY school, then the
following command can be used:
>>> df[df['GRADE LEVEL'] == 'ELEMENTARY']

• Uppercase: To convert the area name to uppercase, we'll use the
following command:
>>> df['AREA NAME'][0:5].str.upper()

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3 COHOES CITY SCHOOL DISTRICT

4 COHOES CITY SCHOOL DISTRICT

Name: AREA NAME, dtype: object

Since the data strings are in uppercase already, there won't be any
difference seen.

• Lowercase: To convert Area Name to lowercase, we'll use the
following command:
>>> df['AREA NAME'][0:5].str.lower()

0 ravena coeymans selkirk central school district

1 ravena coeymans selkirk central school district

2 ravena coeymans selkirk central school district

3 cohoes city school district

4 cohoes city school district

Name: AREA NAME, dtype: object

Getting Started with Raw Data

[18]

• Length: To find the length of each element of the Area Name column, we'll
use the following command:
>>> df['AREA NAME'][0:5].str.len()

0 47

1 47

2 47

3 27

4 27

Name: AREA NAME, dtype: int64

• Split: To split Area Name based on a whitespace, we'll use the
following command:
>>> df['AREA NAME'][0:5].str.split(' ')

0 [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

1 [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

2 [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

3 [COHOES, CITY, SCHOOL, DISTRICT]

4 [COHOES, CITY, SCHOOL, DISTRICT]

Name: AREA NAME, dtype: object

• Replace: If we want to replace all the area names ending with DISTRICT to
DIST, then the following command can be used:
>>> df['AREA NAME'][0:5].str.replace('DISTRICT$', 'DIST')

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

3 COHOES CITY SCHOOL DIST

4 COHOES CITY SCHOOL DIST

Name: AREA NAME, dtype: object

The first argument in the replace method is the regular expression used to
identify the portion of the string to replace. The second argument is the value
for it to be replaced with.

Chapter 1

[19]

Merging data
To combine datasets together, the concat function of pandas can be utilized.
Let's take the Area Name and the County columns with its first five rows:

>>> d[['AREA NAME', 'COUNTY']][0:5]

 AREA NAME COUNTY

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

3 COHOES CITY SCHOOL DISTRICT ALBANY

4 COHOES CITY SCHOOL DISTRICT ALBANY

We can divide the data as follows:

>>> p1 = d[['AREA NAME', 'COUNTY']][0:2]

>>> p2 = d[['AREA NAME', 'COUNTY']][2:5]

The first two rows of the data are in p1 and the last three rows are in p2. These pieces
can be combined using the concat() function:

>>> pd.concat([p1,p2])

 AREA NAME COUNTY

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

3 COHOES CITY SCHOOL DISTRICT ALBANY

4 COHOES CITY SCHOOL DISTRICT ALBANY

The combined pieces can be identified by assigning a key:

>>> concatenated = pd.concat([p1,p2], keys = ['p1','p2'])

>>> concatenated

 AREA NAME COUNTY

p1 0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

 1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

p2 2 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

 3 COHOES CITY SCHOOL DISTRICT ALBANY

 4 COHOES CITY SCHOOL DISTRICT ALBANY

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Raw Data

[20]

Using the keys, the pieces can be extracted back from the concatenated data:

>>> concatenated.ix['p1']

 AREA NAME COUNTY

0 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

1 RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT ALBANY

Data operations
Once the missing data is handled, various operations can be performed on the data.

Aggregation operations
There are a number of aggregation operations, such as average, sum, and so on,
which you would like to perform on a numerical field. These are the methods
used to perform it:

• Average: To find out the average number of students in the ELEMENTARY
school who are obese, we'll first filter the ELEMENTARY data with the
following command:
>>> data = d[d['GRADE LEVEL'] == 'ELEMENTARY']

213.41593780369291

Now, we'll find the mean using the following command:
>>> data['NO. OBESE'].mean()

The elementary grade level data is filtered and stored in the data object. The
NO. OBESE column is selected, which contains the number of obese students
and using the mean() method, the average is taken out.

• SUM: To find out the total number of elementary students who are obese
across all the school, use the following command:
>>> data['NO. OBESE'].sum()

219605.0

• MAX: To get the maximum number of students that are obese in an
elementary school, use the following command:
>>> data['NO. OBESE'].max()

48843.0

Chapter 1

[21]

• MIN: To get the minimum number of students that are obese in an
elementary school, use the following command:
>>> data['NO. OBESE'].min()

5.0

• STD: To get the standard deviation of the number of obese students, use the
following command:
>>> data['NO. OBESE'].std()

1690.3831128098113

• COUNT: To count the total number of schools with the ELEMENTARY grade in
the DELAWARE county, use the following command:
>>> data = df[(d['GRADE LEVEL'] == 'ELEMENTARY') &
 (d['COUNTY'] == 'DELAWARE')]

>>> data['COUNTY'].count()

19

The table is filtered for the ELEMENTARY grade and the DELAWARE county.
Notice that the conditions are enclosed in parentheses. This is to ensure that
individual conditions are evaluated and if the parentheses are not provided,
then Python will throw an error.

Joins
SQL-like joins can be performed on the DataFrame using pandas. Let's define
a lookup DataFrame, which assigns levels to each of the grades using the
following command:

>>> grade_lookup = {'GRADE LEVEL': pd.Series(['ELEMENTARY',
 'MIDDLE/HIGH', 'MISC']),

 'LEVEL': pd.Series([1, 2, 3])}

>>> grade_lookup = DataFrame(grade_lookup)

Getting Started with Raw Data

[22]

Let's take the first five rows of the GRADE data column as an example for performing
the joins:

>>> df[['GRADE LEVEL']][0:5]

 GRADE LEVEL

0 DISTRICT TOTAL

1 ELEMENTARY

2 MIDDLE/HIGH

3 DISTRICT TOTAL

4 ELEMENTARY

The inner join
The following image is a sample of an inner join:

An inner join can be performed with the following command:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']),
 on=['GRADE LEVEL'], how='inner')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

 GRADE LEVEL LEVEL

1 ELEMENTARY 1

4 ELEMENTARY 1

2 MIDDLE/HIGH 2

Chapter 1

[23]

The join takes place with the join() method. The first argument takes the
DataFrame on which the lookup takes place. Note that the grade_lookup
DataFrame's index is being set by the set_index() method. This is essential
for a join, as without it, the join method won't know on which column to join
the DataFrame to.

The second argument takes a column of the d DataFrame to join the data. The third
argument defines the join as an inner join.

The left outer join
The following image is a sample of a left outer join:

A left outer join can be performed with the following commands:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']),
on=['GRADE LEVEL'], how='left')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

 GRADE LEVEL LEVEL

0 DISTRICT TOTAL NaN

1 ELEMENTARY 1

2 MIDDLE/HIGH 2

3 DISTRICT TOTAL NaN

4 ELEMENTARY 1

You can notice that DISTRICT TOTAL has missing values for a level column, as the
grade_lookup DataFrame does not have an instance for DISTRICT TOTAL.

Getting Started with Raw Data

[24]

The full outer join
The following image is a sample of a full outer join:

The full outer join can be performed with the following commands:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']),
 on=['GRADE LEVEL'], how='outer')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

 GRADE LEVEL LEVEL

0 DISTRICT TOTAL NaN

3 DISTRICT TOTAL NaN

1 ELEMENTARY 1

4 ELEMENTARY 1

2 MIDDLE/HIGH 2

4 MISC 3

The groupby function
It's easy to do an SQL-like group by operation with pandas. Let's say, if you want to
find the sum of the number of obese students in each of the grades, then you can use
the following command:

>>> df['NO. OBESE'].groupby(d['GRADE LEVEL']).sum()

GRADE LEVEL

Chapter 1

[25]

DISTRICT TOTAL 127101

ELEMENTARY 72880

MIDDLE/HIGH 53089

This command chooses the number of obese students column, then uses the group
by method to group the data-based group level, and finally, the sum method sums
up the number. The same can be achieved by the following function too:

>>> d['NO. OBESE'].groupby(d['GRADE LEVEL']).aggregate(sum)

Here, the aggregate method is utilized. The sum function is passed to obtain the
required results.

It's also possible to obtain multiple kinds of aggregations on the same metric.
This can be achieved by the following command:

>>> df['NO. OBESE'].groupby(d['GRADE LEVEL']).aggregate([sum, mean,
 std])

 sum mean std

GRADE LEVEL

DISTRICT TOTAL 127101 128.384848 158.933263

ELEMENTARY 72880 76.958817 100.289578

MIDDLE/HIGH 53089 59.251116 65.905591

Summary
In this chapter, we got familiarized with the NumPy and pandas packages. We
understood the different datatypes in pandas and how to utilize them. We learned
how to perform data cleansing and manipulation, in which we handled missing values
and performed string operations. This chapter gives us a foundation for data science
and you can dive deeper into NumPy and pandas by clicking on the following links:

• NumPy documentation: http://docs.scipy.org/doc/
• pandas documentation: http://pandas.pydata.org/

In the next chapter, we'll learn about the meaning of inferential statistics and what
they do, and also how to make sense of the different concepts in inferential statistics.

http://docs.scipy.org/doc/
http://pandas.pydata.org/

[27]

Inferential Statistics
Before getting understanding the inferential statistics, let's look at what descriptive
statistics is about.

Descriptive statistics is a term given to data analysis that summarizes data in a
meaningful way such that patterns emerge from it. It is a simple way to describe
data, but it does not help us to reach a conclusion on the hypothesis that we have
made. Let's say you have collected the height of 1,000 people living in Hong Kong.
The mean of their height would be descriptive statistics, but their mean height does
not indicate that it's the average height of whole of Hong Kong. Here, inferential
statistics will help us in determining what the average height of whole of Hong Kong
would be, which is described in depth in this chapter.

Inferential statistics is all about describing the larger picture of the analysis with a
limited set of data and deriving conclusions from it.

In this chapter, we will cover the following topics:

• The different kinds of distributions
• Different statistical tests that can be utilized to test a hypothesis
• How to make inferences about the population of a sample from the data given
• Different kinds of errors that can occur during hypothesis testing
• Defining the confidence interval at which the population mean lies
• The significance of p-value and how it can be utilized to interpret results

Various forms of distribution
There are various kinds of probability distributions, and each distribution shows
the probability of different outcomes for a random experiment. In this section,
we'll explore the various kinds of probability distributions.

Inferential Statistics

[28]

A normal distribution
A normal distribution is the most common and widely used distribution in statistics.
It is also called a "bell curve" and "Gaussian curve" after the mathematician Karl
Friedrich Gauss. A normal distribution occurs commonly in nature. Let's take the
height example we saw previously. If you have data for the height of all the people
of a particular gender in Hong Kong city, and you plot a bar chart where each bar
represents the number of people at this particular height, then the curve that is
obtained will look very similar to the following graph. The numbers in the plot are
the standard deviation numbers from the mean, which is zero. The concept will
become clearer as we proceed through the chapter.

Also, if you take an hourglass and observe the way sand stacks up when the hour
glass is inverted, it forms a normal distribution. This is a good example that shows
how normal distribution exists in nature.

Chapter 2

[29]

Take the following figure: it shows three curves with normal distribution. The curve
A has a standard deviation of 1, curve C has a standard deviation of 2, and curve
B has a standard deviation of 3, which means that the curve B has the maximum
spread of values, whereas curve A has the least spread of values. One more way
of looking at it is if curve B represented the height of people of a country, then this
country has a lot of people with diverse heights, whereas the country with the curve
A distribution will have people whose heights are similar to each other.

A normal distribution from a binomial distribution
Let's take a coin and flip it. The probability of getting a head or a tail is 50%. If you
take the same coin and flip it six times, the probability of getting a head three times
can be computed using the following formula:

()
!()

! !
is the number of successes desired

x n xnP x p q
x n x

and x

−=
−

In the preceding formula, n is the number of times the coin is flipped, p is the
probability of success, and q is (1– p), which is the probability of failure.

www.allitebooks.com

http://www.allitebooks.org

Inferential Statistics

[30]

The SciPy package of Python provides useful functions to perform statistical
computations. You can install it from http://www.scipy.org/. The following
commands helps in plotting the binomial distribution:

>>> from scipy.stats import binom

>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

>>> x = [0, 1, 2, 3, 4, 5, 6]

>>> n, p = 6, 0.5

>>> rv = binom(n, p)

>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,

 label='Probablity')

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

The binom function in the SciPy package helps generate binomial distributions
and the necessary statistics related to it. If you observe the preceding commands,
there are parts of it that are from the matplotlib, which we'll use right now to plot
the binomial distribution. The matplotlib library will be covered in detail in later
chapters. The plt.subplots function helps in generating multiple plots on a screen.
The binom function takes in the number of attempts and the probability of success.
The ax.vlines function is used to plot vertical lines and rv.pmf within it helps in
calculating the probability at various values of x. The ax.legend function adds a
legend to the graph, and finally, plt.show displays the graph. The result is as follows:

http://www.scipy.org/

Chapter 2

[31]

As you can see in the graph, if the coin is flipped six times, then getting three heads
has the maximum probability, whereas getting a single head or five heads has the
least probability.

Now, let's increase the number of attempts and see the distribution:

>>> fig, ax = plt.subplots(1, 1)

>>> x = range(101)

>>> n, p = 100, 0.5

>>> rv = binom(n, p)

>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,

 label='Probablity')

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

Here, we try to flip the coin 100 times and see the distribution:

Inferential Statistics

[32]

When the probability of success is changed to 0.4, this is what you see:

When the probability is 0.6, this is what you see:

Chapter 2

[33]

When you flip the coin 1000 times at 0.5 probability:

As you can see, the binomial distribution has started to resemble a normal distribution.

A Poisson distribution
A Poisson distribution is the probability distribution of independent interval
occurrences in an interval. A binomial distribution is used to determine the
probability of binary occurrences, whereas, a Poisson distribution is used for
count-based distributions. If lambda is the mean occurrence of the events per
interval, then the probability of having a k occurrence within a given interval
is given by the following formula:

() (); Pr
!

kef k X k
k

λλλ
−

= = =

Here, e is the Euler's number, k is the number of occurrences for which the probability
is going to be determined, and lambda is the mean number of occurrences.

Let's understand this with an example. The number of cars that pass through a
bridge in an hour is 20. What would be the probability of 23 cars passing through
the bridge in an hour?

Inferential Statistics

[34]

For this, we'll use the poisson function from SciPy:

>>> from scipy.stats import poisson

>>> rv = poisson(20)

>>> rv.pmf(23)

0.066881473662401172

With the Poisson function, we define the mean value, which is 20 cars. The rv.pmf
function gives the probability, which is around 6%, that 23 cars will pass the bridge.

A Bernoulli distribution
You can perform an experiment with two possible outcomes: success or failure.
Success has a probability of p, and failure has a probability of 1 - p. A random
variable that takes a 1 value in case of a success and 0 in case of failure is called
a Bernoulli distribution. The probability distribution function can be written as:

()
1 for 0

for 1
p n

P n
p n
− =

= =

It can also be written like this:

() ()11 nnP n p p −= −

The distribution function can be written like this:

()
1 for 0
1 for 1
p n

D n
n

− =
= =

Chapter 2

[35]

Following plot shows a Bernoulli distribution:

Voting in an election is a good example of the Bernoulli distribution.

A Bernoulli distribution can be generated using the bernoulli.rvs() function of
the SciPy package. The following function generates a Bernoulli distribution with a
probability of 0.7:

>>> from scipy import stats

>>> stats.bernoulli.rvs(0.7, size=100)

array([1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
 1, 0,

 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
 1, 0,

 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
 0, 0,

 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
 1, 1,

 1, 0, 1, 1, 1, 0, 1, 1])])

If the preceding output is the number of votes for a candidate by people, then the
candidate has 70% of the votes.

Inferential Statistics

[36]

A z-score
A z-score, in simple terms, is a score that expresses the value of a distribution in
standard deviation with respect to the mean. Let's take a look at the following
formula that calculates the z-score:

()z X - /= µ σ

Here, X is the value in the distribution, µ is the mean of the distribution, and σ is the
standard deviation of the distribution

Let's try to understand this concept from the perspective of a school classroom.

A classroom has 60 students in it and they have just got their mathematics
examination score. We simulate the score of these 60 students with a normal
distribution using the following command:

>>> classscore

>>> classscore = np.random.normal(50, 10, 60).round()

[56. 52. 60. 65. 39. 49. 41. 51. 48. 52. 47. 41. 60.
 54. 41.

 46. 37. 50. 50. 55. 47. 53. 38. 42. 42. 57. 40. 45.
 35. 39.

 67. 56. 35. 45. 47. 52. 48. 53. 53. 50. 61. 60. 57.
 53. 56.

 68. 43. 35. 45. 42. 33. 43. 49. 54. 45. 54. 48. 55.
 56. 30.]

The NumPy package has a random module that has a normal function, where 50 is
given as the mean of the distribution, 10 is the standard deviation of the distribution,
and 60 is the number of values to be generated. You can plot the normal distribution
with the following commands:

>>> plt.hist(classscore, 30, normed=True) #Number of breaks is 30

>>> plt.show()

Chapter 2

[37]

The score of each student can be converted to a z-score using the following functions:

>>> stats.zscore(classscore)

[0.86008868 0.38555699 1.33462036 1.92778497 -1.15667098
 0.02965823

 -0.91940514 0.26692407 -0.08897469 0.38555699 -0.20760761 -
 0.91940514

 1.33462036 0.62282284 -0.91940514 -0.32624053 -1.39393683
 0.14829115

 0.14829115 0.74145576 -0.20760761 0.50418992 -1.2753039 -
 0.80077222

 -0.80077222 0.9787216 -1.03803806 -0.44487345 -1.63120267 -
 1.15667098

 2.16505081 0.86008868 -1.63120267 -0.44487345 -0.20760761
 0.38555699

 -0.08897469 0.50418992 0.50418992 0.14829115 1.45325329
 1.33462036

 0.9787216 0.50418992 0.86008868 2.28368373 -0.6821393 -
 1.63120267

 -0.44487345 -0.80077222 -1.86846851 -0.6821393 0.02965823
 0.62282284

 -0.44487345 0.62282284 -0.08897469 0.74145576 0.86008868 -
 2.22436727]

Inferential Statistics

[38]

So, a student with a score of 60 out of 100 has a z-score of 1.334. To make more sense
of the z-score, we'll use the standard normal table.

This table helps in determining the probability of a score.

We would like to know what the probability of getting a score above 60 would be.

The standard normal table can help us in determining the probability of the
occurrence of the score, but we do not have to perform the cumbersome task of
finding the value by looking through the table and finding the probability. This task
is made simple by the cdf function, which is the cumulative distribution function:

>>> prob = 1 - stats.norm.cdf(1.334)

>>> prob

0.091101928265359899

The cdf function gives the probability of getting values up to the z-score of 1.334,
and doing a minus one of it will give us the probability of getting a z-score, which
is above it. In other words, 0.09 is the probability of getting marks above 60.

Let's ask another question, "how many students made it to the top 20% of the class?"

Chapter 2

[39]

Here, we'll have to work backwards to determine the marks at which all the students
above it are in the top 20% of the class:

Now, to get the z-score at which the top 20% score marks, we can use the ppf
function in SciPy:

>>> stats.norm.ppf(0.80)

0.8416212335729143

The z-score for the preceding output that determines whether the top 20% marks are
at 0.84 is as follows:

>>> (0.84 * classscore.std()) + classscore.mean()

55.942594176524267

We multiply the z-score with the standard deviation and then add the result with
the mean of the distribution. This helps in converting the z-score to a value in the
distribution. The 55.83 marks means that students who have marks more than this
are in the top 20% of the distribution.

The z-score is an essential concept in statistics, which is widely used. Now you can
understand that it is basically used in standardizing any distribution so that it can be
compared or inferences can be derived from it.

www.allitebooks.com

http://www.allitebooks.org

Inferential Statistics

[40]

A p-value
A p-value is the probability of rejecting a null-hypothesis when the hypothesis is
proven true. The null hypothesis is a statement that says that there is no difference
between two measures. If the hypothesis is that people who clock in 4 hours of study
everyday score more that 90 marks out of 100. The null hypothesis here would be that
there is no relation between the number of hours clocked in and the marks scored.

If the p-value is equal to or less than the significance level (α), then the null
hypothesis is inconsistent and it needs to be rejected.

Let's understand this concept with an example where the null hypothesis is that it is
common for students to score 68 marks in mathematics.

Let's define the significance level at 5%. If the p-value is less than 5%, then the null
hypothesis is rejected and it is not common to score 68 marks in mathematics.

Let's get the z-score of 68 marks:

>>> zscore = (68 - classscore.mean()) / classscore.std()

>>> zscore

2.283

Chapter 2

[41]

Now, let's get the value:

>>> prob = 1 - stats.norm.cdf(zscore)

>>> prob

0.032835182628040638

So, you can see that the p-value is at 3.2%, which is lower than the significance level.
This means that the null hypothesis can be rejected, and it can be said that it's not
common to get 68 marks in mathematics.

One-tailed and two-tailed tests
The example in the previous section was an instance of a one-tailed test where the null
hypothesis is rejected or accepted based on one direction of the normal distribution.

Inferential Statistics

[42]

In a two-tailed test, both the tails of the null hypothesis are used to test the hypothesis.

In a two-tailed test, when a significance level of 5% is used, then it is distributed
equally in the both directions, that is, 2.5% of it in one direction and 2.5% in the
other direction.

Let's understand this with an example. The mean score of the mathematics exam at a
national level is 60 marks and the standard deviation is 3 marks.

The mean marks of a class are 53. The null hypothesis is that the mean marks of the
class are similar to the national average. Let's test this hypothesis by first getting the
z-score 60:

>>> zscore = (53 - 60) / 3.0

>>> zscore

-2.3333333333333335

The p-value would be:

>>> prob = stats.norm.cdf(zscore)

>>> prob

0.0098153286286453336

Chapter 2

[43]

So, the p-value is 0.98%. The null hypothesis is to be rejected, and the p-value should
be less than 2.5% in either direction of the bell curve. Since the p-value is less than
2.5%, we can reject the null hypothesis and clearly state that the average marks of the
class are significantly different from the national average.

Type 1 and Type 2 errors
Type 1 error is a type of error that occurs when there is a rejection of the null
hypothesis when it is actually true. This kind of error is also called an error
of the first kind and is equivalent to false positives.

Let's understand this concept using an example. There is a new drug that is being
developed and it needs to be tested on whether it is effective in combating diseases.
The null hypothesis is that it is not effective in combating diseases.

The significance level is kept at 5% so that the null hypothesis can be accepted
confidently 95% of the time. However, 5% of the time, we'll accept the rejecttion
of the hypothesis although it had to be accepted, which means that even though
the drug is ineffective, it is assumed to be effective.

The Type 1 error is controlled by controlling the significance level, which is alpha.
Alpha is the highest probability to have a Type 1 error. The lower the alpha, the
lower will be the Type 1 error.

The Type 2 error is the kind of error that occurs when we do not reject a null
hypothesis that is false. This error is also called the error of the second kind
and is equivalent to a false negative.

This kind of error occurs in a drug scenario when the drug is assumed to be
ineffective but is actually it is effective.

Inferential Statistics

[44]

These errors can be controlled one at a time. If one of the errors is lowered, then
the other one increases. It depends on the use case and the problem statement that
the analysis is trying to address, and depending on it, the appropriate error should
reduce. In the case of this drug scenario, typically, a Type 1 error should be lowered
because it is better to ship a drug that is confidently effective.

A confidence interval
A confidence interval is a type of interval statistics for a population parameter. The
confidence interval helps in determining the interval at which the population mean
can be defined.

Let's try to understand this concept by using an example. Let's take the height of
every man in Kenya and determine with 95% confidence interval the average of
height of Kenyan men at a national level.

Let's take 50 men and their height in centimeters:

>>> height_data = np.array([186.0, 180.0, 195.0, 189.0, 191.0,
 177.0, 161.0, 177.0, 192.0, 182.0, 185.0, 192.0,

 173.0, 172.0, 191.0, 184.0, 193.0, 182.0, 190.0, 185.0, 181.0,
 188.0, 179.0, 188.0,

 170.0, 179.0, 180.0, 189.0, 188.0, 185.0, 170.0, 197.0, 187.0,
 182.0, 173.0, 179.0,

 184.0, 177.0, 190.0, 174.0, 203.0, 206.0, 173.0, 169.0, 178.0,
 201.0, 198.0, 166.0,

 171.0, 180.0])

Chapter 2

[45]

Plotting the distribution, it has a normal distribution:

>>> plt.hist(height_data, 30, normed=True)

>>> plt.show()

The mean of the distribution is as follows:

>>> height_data.mean()

183.24000000000001

So, the average height of a man from the sample is 183.4 cm.

To determine the confidence interval, we'll now define the standard error of the mean.

The standard error of the mean is the deviation of the sample mean from the
population mean. It is defined using the following formula:

SEx
s
n

=

Here, s is the standard deviation of the sample, and n is the number of elements of
the sample.

Inferential Statistics

[46]

This can be calculated using the sem() function of the SciPy package:

>>> stats.sem(height_data)

1.3787187190005252

So, there is a standard error of the mean of 1.38 cm. The lower and upper limit of the
confidence interval can be determined by using the following formula:

Upper/Lower limit = mean(height) + / - sigma * SEmean(x)

For lower limit:

183.24 + (1.96 * 1.38) = 185.94

For upper limit:

183.24 - (1.96*1.38) = 180.53

A 1.96 standard deviation covers 95% of area in the normal distribution.

We can confidently say that the population mean lies between 180.53 cm and 185.94
cm of height.

Chapter 2

[47]

Let's assume we take a sample of 50 people, record their height, and then repeat
this process 30 times. We can then plot the averages of each sample and observe
the distribution.

The commands that simulated the preceding plot is as follows:

>>> average_height = []

>>> for i in xrange(30):

>>> sample50 = np.random.normal(183, 10, 50).round()

>>> average_height.append(sample50.mean())

>>> plt.hist(average_height, 20, normed=True)

>>> plt.show()

You can observe that the mean ranges from 180 to 187 cm when we simulated the
average height of 50 sample men, which was taken 30 times.

Let's see what happens when we sample 1000 men and repeat the process 30 times:

>>> average_height = []

>>> for i in xrange(30):

>>> sample1000 = np.random.normal(183, 10, 1000).round()

Inferential Statistics

[48]

>>> average_height.append(sample1000.mean())

>>> plt.hist(average_height, 10, normed=True)

>>> plt.show()

As you can see, the height varies from 182.4 cm and to 183.4 cm. What does
this mean?

It means that as the sample size increases, the standard error of the mean decreases,
which also means that the confidence interval becomes narrower, and we can tell
with certainty the interval that the population mean would lie on.

Correlation
In statistics, correlation defines the similarity between two random variables.
The most commonly used correlation is the Pearson correlation and it is defined
by the following:

() ()()
,

cov , X Y
X Y

X Y X Y

E X YX Y µ µ
ρ

σ σ σ σ
− − = =

Chapter 2

[49]

The preceding formula defines the Pearson correlation as the covariance between
X and Y, which is divided by the standard deviation of X and Y, or it can also
be defined as the expected mean of the sum of multiplied difference of random
variables with respect to the mean divided by the standard deviation of X and Y.
Let's understand this with an example. Let's take the mileage and horsepower of
various cars and see if there is a relation between the two. This can be achieved using
the pearsonr function in the SciPy package:

>>> mpg = [21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,
 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4,

 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26.0, 30.4, 15.8,
 19.7, 15.0, 21.4]

>>> hp = [110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180,
 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245,

 175, 66, 91, 113, 264, 175, 335, 109]

>>> stats.pearsonr(mpg,hp)

(-0.77616837182658638, 1.7878352541210661e-07)

The first value of the output gives the correlation between the horsepower and the
mileage and the second value gives the p-value.

So, the first value tells us that it is highly negatively correlated and the p-value tells
us that there is significant correlation between them:

>>> plt.scatter(mpg, hp)

>>> plt.show()

www.allitebooks.com

http://www.allitebooks.org

Inferential Statistics

[50]

From the plot, we can see that as the mpg increases, the horsepower decreases.

Let's look into another correlation called the Spearman correlation. The Spearman
correlation applies to the rank order of the values and so it provides a monotonic
relation between the two distributions. It is useful for ordinal data (data that has an
order, such as movie ratings or grades in class) and is not affected by outliers.

Let's get the Spearman correlation between the miles per gallon and horsepower.
This can be achieved using the spearmanr() function in the SciPy package:

>>> stats.spearmanr(mpg,hp)

(-0.89466464574996252, 5.085969430924539e-12)

We can see that the Spearman correlation is -0.89 and the p-value is significant.

Let's do an experiment in which we introduce a few outlier values in the data and see
how the Pearson and Spearman correlation gets affected:

>>> mpg = [21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,
 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4,

 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26.0, 30.4, 15.8,
 19.7, 15.0, 21.4, 120, 3]

>>> hp = [110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180,
 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245,

 175, 66, 91, 113, 264, 175, 335, 109, 30, 600]

>>> plt.scatter(mpg, hp)

>>> plt.show()

Chapter 2

[51]

From the plot, you can clearly make out the outlier values. Lets see how the
correlations get affected for both the Pearson and Spearman correlation

The following commands show you the Pearson correlation:

>>> stats.pearsonr(mpg, hp)

>>> (-0.47415304891435484, 0.0046122167947348462)

Here is the Spearman correlation:

>>> stats.spearmanr(mpg, hp)

>>> (-0.91222184337265655, 6.0551681657984803e-14)

We can clearly see that the Pearson correlation has been drastically affected due to
the outliers, which are from a correlation of 0.89 to 0.47.

The Spearman correlation did not get affected much as it is based on the order rather
than the actual value in the data.

Z-test vs T-test
We have already done a few Z-tests before where we validated our null hypothesis.

A T-distribution is similar to a Z-distribution—it is centered at zero and has a basic
bell shape, but its shorter and flatter around the center than the Z-distribution.

The T-distributions' standard deviation is usually proportionally larger than the Z,
because of which you see the fatter tails on each side.

Inferential Statistics

[52]

The t distribution is usually used to analyze the population when the sample is small.

The Z-test is used to compare the population mean against a sample or compare the
population mean of two distributions with a sample size greater than 30. An example
of a Z-test would be comparing the heights of men from different ethnicity groups.

The T-test is used to compare the population mean against a sample, or compare the
population mean of two distributions with a sample size less than 30, and when you
don't know the population's standard deviation.

Let's do a T-test on two classes that are given a mathematics test and have 10
students in each class:

>>> class1_score = np.array([45.0, 40.0, 49.0, 52.0, 54.0, 64.0,
 36.0, 41.0, 42.0, 34.0])

>>> class2_score = np.array([75.0, 85.0, 53.0, 70.0, 72.0, 93.0,
 61.0, 65.0, 65.0, 72.0])

To perform the T-test, we can use the ttest_ind() function in the SciPy package:

>>> stats.ttest_ind(class1_score,class2_score)

(array(-5.458195056848407), 3.4820722850153292e-05)

The first value in the output is the calculated t-statistics, whereas the second value is
the p-value and p-value shows that the two distributions are not identical.

The F distribution
The F distribution is also known as Snedecor's F distribution or the Fisher–Snedecor
distribution.

An f statistic is given by the following formula:

2 2 2 2
1 1 2 2/ / /f s s = σ σ

Here, s1 is the standard deviation of a sample 1 with an n1 size, s2 is the standard
deviation of a sample 2, where the size n2σ1 is the population standard deviation
of a sample 1σ2 is the population standard deviation of a sample 12.

Chapter 2

[53]

The distribution of all the possible values of f statistics is called F distribution. The d1
and d2 represent the degrees of freedom in the following chart:

The chi-square distribution
The chi-square statistics are defined by the following formula:

()2 2 2X = n -1 *s / σ

Here, n is the size of the sample, s is the standard deviation of the sample, and σ is
the standard deviation of the population.

If we repeatedly take samples and define the chi-square statistics, then we can
form a chi-square distribution, which is defined by the following probability
density function:

()()v/2-12 X2/2
0Y=Y X e−∗ ∗

Here, Y0 is a constant that depends on the number of degrees of freedom, Χ2 is the
chi-square statistic, v = n - 1 is the number of degrees of freedom, and e is a constant
equal to the base of the natural logarithm system.

Inferential Statistics

[54]

Y0 is defined so that the area under the chi-square curve is equal to one.

Chi-square for the goodness of fit
The Chi-square test can be used to test whether the observed data differs
significantly from the expected data. Let's take the example of a dice. The dice
is rolled 36 times and the probability that each face should turn upwards is 1/6.
So, the expected distribution is as follows:

Expected Frequency Outcome
6 1
6 2
6 3
6 4
6 5
6 6

>>> expected = np.array([6,6,6,6,6,6])

Chapter 2

[55]

The observed distribution is as follows:

Observed Frequency Outcome
7 1
5 2
3 3
9 4
6 5
6 6

>>> observed = observed = np.array([7, 5, 3, 9, 6, 6])

The null hypothesis in the chi-square test is that the observed value is similar to the
expected value.

The chi-square can be performed using the chisquare function in the SciPy package:

>>> stats.chisquare(observed,expected)

(3.333333333333333, 0.64874235866759344)

The first value is the chi-square value and the second value is the p-value, which
is very high. This means that the null hypothesis is valid and the observed value is
similar to the expected value.

The chi-square test of independence
The chi-square test of independence is a statistical test used to determine whether
two categorical variables are independent of each other or not.

Let's take the following example to see whether there is a preference for a book based
on the gender of people reading it:

Flavour
Total Biography Suspense Romance Gender
280 60 120 100 Men
640 90 200 350 Women
920 150 320 450

Inferential Statistics

[56]

The Chi-Square test of independence can be performed using the chi2_contingency
function in the SciPy package:

>>> men_women = np.array([[100, 120, 60],[350, 200, 90]])

>>> stats.chi2_contingency(men_women)

(28.362103174603167, 6.9382117170577439e-07, 2, array([[
 136.95652174, 97.39130435, 45.65217391],

 [313.04347826, 222.60869565, 104.34782609]]))

The first value is the chi-square value:

The second value is the p-value, which is very small, and means that there is an
association between the gender of people and the genre of the book they read. The
third value is the degrees of freedom. The fourth value, which is an array, is the
expected frequencies.

ANOVA
Analysis of Variance (ANOVA) is a statistical method used to test differences
between two or more means.

This test basically compares the means between groups and determines whether any
of these means are significantly different from each other:

0 1 2 3: kH µ µ µ µ= = = =�

ANOVA is a test that can tell you which group is significantly different from each
other. Let's take the height of men who are from three different countries and see
if their heights are significantly different from others:

>>> country1 = np.array([176., 179., 180., 188., 187., 184., 171.,
 201., 172.,

 181., 192., 187., 178., 178., 180., 199., 185., 176.,

 207., 177., 160., 174., 176., 192., 189., 187., 183.,

 180., 181., 200., 190., 187., 175., 179., 181., 183.,

 171., 181., 190., 186., 185., 188., 201., 192., 188.,

 181., 172., 191., 201., 170., 170., 192., 185., 167.,

 178., 179., 167., 183., 200., 185.])

>>> country2 = np.array([177., 165., 175., 172., 179., 192., 169.,
 185., 187.,

Chapter 2

[57]

 167., 162., 165., 188., 194., 187., 175., 163., 178.,

 197., 172., 175., 185., 176., 171., 172., 186., 168.,

 178., 191., 192., 175., 189., 178., 181., 170., 182.,

 166., 189., 196., 192., 189., 171., 185., 198., 181.,

 167., 184., 179., 178., 193., 179., 177., 181., 174.,

 171., 184., 156., 180., 181., 187.])

>>> country3 = np.array([191., 190., 191., 185., 190., 184.,
 173., 175., 200.,

 190., 191., 184., 167., 194., 195., 174., 171., 191.,

 174., 177., 182., 184., 176., 180., 181., 186., 179.,

 176., 186., 176., 184., 194., 179., 171., 174., 174.,

 182., 198., 180., 178., 200., 200., 174., 202., 176.,

 180., 163., 159., 194., 192., 163., 194., 183., 190.,

 186., 178., 182., 174., 178., 182.])

To perform the one-way ANOVA, we can use the f_oneway() function of the
SciPy package:

>>> stats.f_oneway(country1,country2,country3)

(2.9852039682631375, 0.053079678812747652)

The first value of the output gives the F-value and the second value gives the p-value.
Since the p-value is greater than 5% by a small margin, we can tell that the mean of the
heights in the three countries is not significantly different from each other.

Summary
In this chapter, you learned about the various probability distributions. You also
learned about how to use z-score, p-value, Type 1, and Type 2 errors. You gained
an insight into the Z-test and T-test followed by the chi-square distribution and saw
how it can be used to test a hypothesis.

In the next chapter, you'll learn about data mining and how to execute it.

[59]

Finding a Needle
in a Haystack

Analyzing a dataset to find patterns is an art as much as it is a science. There can
be a lot of metrics associated with a dataset and you would like to find the needle
in this haystack. For us, a needle is the insight that we look for within data that we
weren't aware of earlier. Here, insight could refer to important information about
people who buy milk of a particular brand and also buy cereals of another brand,
for instance. The retail store can then stack the products near each other.

Whenever you try to analyze a dataset, you should have a detailed understanding of
it and also of the domain that it is associated with. If it's a simple dataset that can be
understood very easily, then the analysis can be performed directly, but if the dataset
relates to the sensor data of a turbine, then domain understanding of how turbines
work and what is critical to their functioning will add richness to your analysis.

The understanding of a domain is like the North Star: it helps you navigate
your analysis.

Finding a Needle in a Haystack

[60]

In this chapter, you'll learn the following topics:

• How to structure your analysis for data mining
• How to present your analysis
• How to perform data mining on a Titanic survivors dataset

What is data mining?
Data mining is the process of exploring data and finding patterns in it using machine
learning, statistics, and database systems. The end goal of data mining is to derive
useful information from data, which can be utilized to increase revenue, reduce
costs, or even save lives through some of its applications.

When you have a dataset that needs to be mined, it is not feasible to use all the
data-mining techniques that are available on every column field of the data to
derive insights. This will be a cumbersome task and will take a long time to
derive any useful insights.

To speed up the process of mining data, knowledge of domains is a great help. With
this knowledge, one can understand what the data represents and how to analyze it
to gain insights.

Chapter 3

[61]

The best way to start data mining is to derive themes on which the data needs to
be mined. If you have the sales data of a Fast Moving Consumer Goods (FMCG)
company, then themes could be as follows:

• Brand behavior
• Outlet behavior
• Growth of products
• Seasonal effect on products

The themes help by giving a direction to explore data and finding patterns in it.

Once you have the themes, you need to put questions under them to streamline
the analysis:

• Brand behavior: The following are the questions used to streamline
the analysis:

 ° Which are the top brands?
 ° Which brands have the maximum coverage?
 ° Which brands are cannibalizing the sales of the other brands?

• Outlet behavior: The following are the questions used to streamline
the analysis:

 ° What percentage of outlets takes up 80% of revenue?
 ° What kind of outlets have the highest number of sales?
 ° What kind of outlets sell primarily premium products?

• Growth of products: The following are the questions used to streamline
the analysis:

 ° Which are the fastest growing brands in terms of sale?
 ° Which are the fastest growing brands in terms of volume?
 ° Which brand's growth has flattened out?

• Seasonal effect of the products: The following are the questions used to
streamline the analysis:

 ° How many brands are seasonal?
 ° What is the difference in terms of sales during seasonal and

nonseasonal periods?
 ° Which holiday brings in the maximum amount of sales for a

particular brand?

Finding a Needle in a Haystack

[62]

The preceding questions under these themes give pinpointed directions to find
patterns and perform an analysis that gives some quality results.

The process of exploring data can be summarized by the following flow chart:

Presenting an analysis
After performing the analysis, you would need to present some observations.
The most commonly used medium for doing this is through Microsoft PowerPoint
presentations. The result of your analysis could be a construct in the form of a chart
or table. When presenting these constructs, there is certain information that should
be added to your slides. This is one of the most common templates used:

Chapter 3

[63]

Here are the different sections of the preceding image:

• Question: The topmost part of the template should describe the problem
statement that the particular analysis is trying to address.

• Observation: Here, the observations from the construct are listed in a vertical
column. Sometimes, the observations can be marked over the construct using
arrow marks or dialog boxes.

• Key Takeaway: Toward the bottom of the image, you can describe what is
concluded from the chart.

Finding a Needle in a Haystack

[64]

Studying the Titanic
To perform the data analysis, we'll be using the Titanic dataset from Kaggle.

This dataset is simple to understand and does not require any domain understanding
to derive insights.

This dataset contains the details of each passenger on the Titanic and also whether
they survived or not.

The following are the field descriptions:

Field Descriptions
survival Survival(0 = No, 1 = Yes)
pclass Passenger class(1 = 1st, 2 = 2nd, 3 = 3rd)
name Name of the passenger
sex Gender of the passenger
age Age of the passenger
sibsp Number of siblings/spouses aboard
parch Number of parents/children aboard
ticket Ticket number
fare Passenger fare
cabin Cabin
embarked Port of embarkation

(C = Cherbourg, Q = Queenstown, S = Southampton)

Since the data is quite simple to understand, we'll keep the survival analysis as
the main theme that can be used for the analysis of the data. We'll attach questions
to these themes.

These are the questions that we'll answer:

• Which passenger class has the maximum number of survivors?
• What is the distribution, based on gender, of the survivors among the

different classes?
• What is the distribution of the nonsurvivors among classes that have

relatives aboard the ship?
• What is the survival percentage among different age groups?

Chapter 3

[65]

Which passenger class has the maximum
number of survivors?
To answer this question, we'll construct a simple bar plot of the number of survivors
and the percentage of survivors in each class, respectively. You can do this using the
following command:

>>> import pandas as pd

>>> import pylab as plt

>>> import numpy as np

>>> df = pd.read_csv('Data/titanic data.csv')

>>> df['Pclass'].isnull().value_counts()

>>> False 891

>>> dtype: int64

>>> df['Survived'].isnull().value_counts()

>>> False 891

>>> dtype: int64

>>> #Passengers survived in each class

>>> survivors = df.groupby('Pclass')['Survived'].agg(sum)

>>> #Total Passengers in each class

>>> total_passengers = df.groupby('Pclass')['PassengerId'].count()

>>> survivor_percentage = survivors / total_passengers

>>> #Plotting the Total number of survivors

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(survivors.index.values.tolist(),
 survivors, color='blue', width=0.5)

>>> ax.set_ylabel('No. of survivors')

>>> ax.set_title('Total number of survivors based on class')

>>> xTickMarks = survivors.index.values.tolist()

>>> ax.set_xticks(survivors.index.values.tolist())

Finding a Needle in a Haystack

[66]

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

>>> #Plotting the percentage of survivors in each class

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(survivor_percentage.index.values.tolist(),
 survivor_percentage, color='blue', width=0.5)

>>> ax.set_ylabel('Survivor Percentage')

>>> ax.set_title('Percentage of survivors based on class')

>>> xTickMarks = survivors.index.values.tolist()

>>> ax.set_xticks(survivors.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

Chapter 3

[67]

In the preceding code, we performed a preliminary check for null values on the
fields that are utilized. After this, we calculated the number of survivors and the
percentage of survivors in each class. Then, we plotted two bar charts for the total
number of survivors and the percentage of survivors.

These are our observations:

• The maximum number of survivors are in the first and third class, respectively
• With respect to the total number of passengers in each class, first class has the

maximum survivors at around 61%
• With respect to the total number of passengers in each class, third class has

the minimum number of survivors at around 25%

This is our key takeaway:

• There was clearly a preference toward saving those from the first class as the
ship was drowning. It also had the maximum percentage of survivors

Finding a Needle in a Haystack

[68]

What is the distribution of survivors based on
gender among the various classes?
To answer this question, we'll use the following code to plot a side-by-side bar chart
to compare the survival rate and percentage among men and women with respect to
the class they were in.

>>> #Checking for any null values

>>> df['Sex'].isnull().value_counts()

>>> False 891

>>> dtype: int64

>>> # Male Passengers survived in each class

>>> male_survivors = df[df['Sex'] == 'male']
 .groupby('Pclass')['Survived'].agg(sum)

>>> #Total Male Passengers in each class

>>> male_total_passengers = df[df['Sex'] == 'male']
 .groupby('Pclass')['PassengerId'].count()

>>> male_survivor_percentage = male_survivors / male_total_passengers

>>> # Female Passengers survived in each class

>>> female_survivors = df[df['Sex'] == 'female']
 .groupby('Pclass')['Survived'].agg(sum)

>>> #Total Female Passengers in each class

>>> female_total_passengers = df[df['Sex'] == 'female']
 .groupby('Pclass')['PassengerId'].count()

>>> female_survivor_percentage = female_survivors /
 female_total_passengers

>>> #Plotting the total passengers who survived based on Gender

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> index = np.arange(male_survivors.count())

>>> bar_width = 0.35

>>> rect1 = ax.bar(index, male_survivors, bar_width, color='blue',
 label='Men')

>>> rect2 = ax.bar(index + bar_width, female_survivors, bar_width,
 color='y', label='Women')

Chapter 3

[69]

>>> ax.set_ylabel('Survivor Numbers')

>>> ax.set_title('Male and Female survivors based on class')

>>> xTickMarks = male_survivors.index.values.tolist()

>>> ax.set_xticks(index + bar_width)

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.legend()

>>> plt.tight_layout()

>>> plt.show()

>>> #Plotting the percentage of passengers who survived based on Gender

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> index = np.arange(male_survivor_percentage.count())

>>> bar_width = 0.35

>>> rect1 = ax.bar(index, male_survivor_percentage, bar_width,
 color='blue', label='Men')

>>> rect2 = ax.bar(index + bar_width, female_survivor_percentage,
 bar_width, color='y', label='Women')

>>> ax.set_ylabel('Survivor Percentage')

Finding a Needle in a Haystack

[70]

>>> ax.set_title('Percentage Male and Female of
 survivors based on class')

>>> xTickMarks = male_survivor_percentage.index.values.tolist()

>>> ax.set_xticks(index + bar_width)

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.legend()

>>> plt.tight_layout()

>>> plt.show()

In the preceding code, the number of male and female survivors is calculated and
then a side-by-side bar plot is plotted. After this, the percentage of male and female
survivors with respect to the total number of males and females in their respective
classes are taken and then plotted.

Chapter 3

[71]

These are our observations:

• The majority of survivors are females in all the classes
• More than 90% of female passengers in first and second class survived
• The percentage of male passengers who survived in first and third class,

respectively, are comparable

This is our key takeaway:

• Female passengers were given preference for lifeboats and the majority
were saved.

What is the distribution of nonsurvivors
among the various classes who have family
aboard the ship?
To answer this question, we'll use the following code to plot bar charts again using
the total number of nonsurvivors in each class who each had family aboard, and the
percentage with respect to the total number of passengers:

>>> #Checking for the null values

>>> df['SibSp'].isnull().value_counts()

>>> False 891

>>> dtype: int64

>>> #Checking for the null values

>>> df['Parch'].isnull().value_counts()

>>> False 891

>>> dtype: int64

>>> #Total number of non-survivors in each class

>>> non_survivors = df[(df['SibSp'] > 0) | (df['Parch'] > 0) &
 (df['Survived'] == 0)].groupby('Pclass')['Survived'].agg('count')

>>> #Total passengers in each class

>>> total_passengers = df.groupby('Pclass')['PassengerId'].count()

>>> non_survivor_percentage = non_survivors / total_passengers

>>> #Total number of non survivors with family based on class

>>> fig = plt.figure()

Finding a Needle in a Haystack

[72]

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(non_survivors.index.values.tolist(), non_survivors,
 color='blue', width=0.5)

>>> ax.set_ylabel('No. of non survivors')

>>> ax.set_title('Total number of non survivors with
 family based on class')

>>> xTickMarks = non_survivors.index.values.tolist()

>>> ax.set_xticks(non_survivors.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

>>> #Plot of percentage of non survivors with family based on class

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(non_survivor_percentage.index.values.tolist(),
 non_survivor_percentage, color='blue', width=0.5)

>>> ax.set_ylabel('Non Survivor Percentage')

Chapter 3

[73]

>>> ax.set_title('Percentage of non survivors with
 family based on class')

>>> xTickMarks = non_survivor_percentage.index.values.tolist()

>>> ax.set_xticks(non_survivor_percentage.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

The code here is pretty similar to the code used in the previous questions. Here,
we can get the number of the nonsurvivors who have a family and then perform
the usual bar plots.

These are our observations:

• There are lot of nonsurvivors in the third class
• Second class has the least number of nonsurvivors with relatives
• With respect to the total number of passengers, the first class, who had

relatives aboard, has the maximum nonsurvivor percentage and the
third class has the least

Finding a Needle in a Haystack

[74]

This is our key takeaway:

• Even though third class has the highest number of nonsurvivors with
relatives aboard, it primarily had passengers who did not have relatives
on the ship, whereas in first class, most of the people had relatives aboard
the ship

What was the survival percentage among
different age groups?
For this question, we'll use the following code to plot pie charts to compare the
proportion of survivors in terms of number and percentage with respect to the
different age groups:

>>> #Checking for null values

>>> df['Age'].isnull().value_counts()

>>> False 714

>>> True 177

>>> dtype: int64

>>> #Defining the age binning interval

>>> age_bin = [0, 18, 25, 40, 60, 100]

>>> #Creating the bins

>>> df['AgeBin'] = pd.cut(df.Age, bins=age_bin)

>>> #Removing the null rows

>>> d_temp = df[np.isfinite(df['Age'])] # removing all na instances

>>> #Number of survivors based on Age bin

>>> survivors = d_temp.groupby('AgeBin')['Survived'].agg(sum)

>>> #Total passengers in each bin

>>> total_passengers = d_temp.groupby('AgeBin')['Survived'].agg('count')

>>> #Plotting the pie chart of total passengers in each bin

>>> plt.pie(total_passengers,
 labels=total_passengers.index.values.tolist(),
 autopct='%1.1f%%', shadow=True, startangle=90)

>>> plt.title('Total Passengers in different age groups')

>>> plt.show()

Chapter 3

[75]

>>> #Plotting the pie chart of percentage passengers in each bin

>>> plt.pie(survivors, labels=survivors.index.values.tolist(),

 autopct='%1.1f%%', shadow=True, startangle=90)

>>> plt.title('Survivors in different age groups')

>>> plt.show()

Finding a Needle in a Haystack

[76]

In the code, we defined the bin with the age_bin variable and then added a column
called AgeBin, where bin values are filled using the cut function. After this, we
filtered out all the rows with the age set as null. After this, we created two pie charts:
one for the total number of passengers in each age group and another for the number
of survivors in each age group.

These are our observations:

• The 25-40 age group has the maximum number of passengers, and 0-18 has
the second highest number of passengers

• Among the people who survived, the 18-25 age group has the second highest
number of survivors

• The 60-100 age group has a lower proportion among the survivors
This is our key takeaway:

• The 25-40 age group had the maximum number of survivors compared to
any other age group, and people who were old were either not lucky enough
or made way for the younger people to the lifeboats.

Summary
In this chapter, we learned the meaning of data mining. We learned the importance
of domain knowledge in performing analysis and how to perform data mining in
a systematic manner. We also learned how to present the results of data mining.
Toward the end, we took an example and performed a few analyses to extract
useful information.

In the next chapter, you'll learn about how to create visualizations on data and where
to apply different kinds of visualizations.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The codes provided in the code bundle are for both IPython notebook
and Python 2.7. In the chapters, Python conventions have been followed.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

[77]

Making Sense of Data
through Advanced

Visualization
Visualization is a very integral part of data science. It helps in communicating a
pattern or a relationship that cannot be seen by looking at raw data. It's easier for a
person to remember a picture and recollect it as compared to lines of text. This holds
true for data too.

In this chapter, we'll cover the following topics:

• Controlling the properties of a plot
• Combining multiple plots
• Styling your plots
• Creating various advanced visualizations

Making Sense of Data through Advanced Visualization

[78]

Controlling the line properties of a chart
There are many properties of a line that can be set, such as the color, dashes, and
several others. There are essentially three ways of doing this. Let's take a simple
line chart as an example:

>>> plt.plot([1,2,3,4], [1,4,9,16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

Using keyword arguments
We can use arguments within the plot function to set the property of the line:

>>> import numpy as np

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import pandas.tools.rplot as rplot

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16], linewidth=4.0) # increasing
 # the line width

>>> plt.show()

Chapter 4

[79]

After the preceding code is executed we'll get the following output:

Using the setter methods
The plot function returns the list of line objects, for example line1, line2 =
plot(x1,y1,x2,y2). Using the line setter method of line objects we can define
the property that needs to be set:

>>> line, = plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> line.set_linestyle('--') # Setting dashed lines

>>> plt.show()

After the preceding code is executed we'll get the following output:

Making Sense of Data through Advanced Visualization

[80]

You can view the acceptable line style at http://matplotlib.org/api/lines_api.
html.

Using the setp() command
The setp() command can be used to set multiple properties of a line:

>>> line, = plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.setp(line, color='r', linewidth=2.0) # setting the color
 # and width of the line

>>> plt.show()

After the preceding code is executed we'll get the following output:

Creating multiple plots
One very useful feature of matplotlib is that it makes it easy to plot multiple plots,
which can be compared to each other:

>>> p1 = np.arange(0.0, 30.0, 0.1)

>>> plt.subplot(211)

http://matplotlib.org/api/lines_api.html
http://matplotlib.org/api/lines_api.html

Chapter 4

[81]

>>> plt.plot(p1, np.sin(p1)/p1, 'b--')

>>> plt.subplot(212)

>>> plt.plot(p1, np.cos(p1), 'r--')

>>> plt.show()

In the preceding code, we use a subplot function is used to plot multiple plots that
need to be compared. A subplot with a value of 211 means that there will be two
rows, one column, and one figure:

Playing with text
Adding text to your chart can be done by using a simple matplotlib function.
You only have to use the text() command to add it to the chart:

>>> # Playing with text

>>> n = np.random.random_sample((5,))

>>> plt.bar(np.arange(len(n)), n)

>>> plt.xlabel('Indices')

>>> plt.ylabel('Value')

Making Sense of Data through Advanced Visualization

[82]

>>> plt.text(1, .7, r'$\mu=' + str(np.round(np.mean(n), 2)) + ' $')

>>> plt.show()

In the preceding code, the text() command is used to add text within the plot:

The first parameter takes the x axis value and the second parameter takes the y axis
value. The third parameter is the text that needs to be added to the plot. The latex
expression has been used to plot the mu mean within the plot.

A certain section of the chart can be annotated by using the annotate command. The
annotate command will take the text, the position of the section of plot that needs to
be pointed at, and the position of the text:

>>> ax = plt.subplot(111)

>>> t = np.arange(0.0, 5.0, 0.01)

>>> s = np.cos(2*np.pi*t)

>>> line, = plt.plot(t, s, lw=2)

>>> plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),

 arrowprops=dict(facecolor='black', shrink=0.05),

)

>>> plt.ylim(-2,2)

>>> plt.show()

Chapter 4

[83]

After the preceding code is executed we'll get the following output:

Styling your plots
The style package within the matplotlib library makes it easier to change the style of
the plots that are being plotted. It is very easy to change to the famous ggplot style
of the R language or use the Nate Silver's website http://fivethirtyeight.com/
for fivethirtyeight style. The following example shows the plotting of a simple
line chart with the ggplot style:

>>> plt.style.use('ggplot')

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

http://fivethirtyeight.com/

Making Sense of Data through Advanced Visualization

[84]

In the preceding code, plt.style.use() is used to set the style of the plot. It is a
global set, so after it is executed, all the plots that follow will have the same style.

The following code gives the popular fivethirtyeight style, which is Nate Silver's
website on data journalism, where his team write articles on various topics by
applying data science:

>>> plt.style.use('fivethirtyeight')

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

Sometimes, you just want a specific block of code to have a particular style and the
rest of the plots in the code to have the default style. This can be achieved using
the plt.style.context function and the style can be specified within it. Once the
following code is executed, only the plot that is specified within it is plotted with the
given style:

>>> with plt.style.context(('dark_background')):

 plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

Chapter 4

[85]

After the preceding code is executed we'll get the following output:

Box plots
A box plot is a very good plot to understand the spread, median, and outliers of data:

The various parts of the preceding figure are explained as follows:

• Q3: This is the 75th percentile value of the data. It's also called the upper hinge.
• Q1: This is the 25th percentile value of the data. It's also called the lower hinge.
• Box: This is also called a step. It's the difference between the upper hinge and

the lower hinge.

Making Sense of Data through Advanced Visualization

[86]

• Median: This is the midpoint of the data.
• Max: This is the upper inner fence. It is 1.5 times the step above Q3.
• Min: This is the lower inner fence. It is 1.5 times the step below Q1.

Any value that is greater than Max or lesser than Min is called an outlier, which is
also known as a flier.

The following code will create some data, and by using the boxplot function we'll
create box plots:

>>> ## Creating some data

>>> np.random.seed(10)

>>> box_data_1 = np.random.normal(100, 10, 200)

>>> box_data_2 = np.random.normal(80, 30, 200)

>>> box_data_3 = np.random.normal(90, 20, 200)

>>> ## Combining the different data in a list

>>> data_to_plot = [box_data_1, box_data_2, box_data_3]

>>> # Create the boxplot

>>> bp = plt.boxplot(data_to_plot)

After the preceding code is executed we'll get the following output:

Chapter 4

[87]

The bp variable in the boxplot function is a Python dictionary with key values such
as boxes, whiskers, fliers, caps, and median. The values in the keys represent the
different components of the box plot and their properties. The properties can be
accessed and altered appropriately to style the box plot to your liking. The following
code gives you an example of how to style your boxplot:

>>> ## add patch_artist=True option to ax.boxplot()

>>> ## to get fill color

>>> bp = plt.boxplot(data_to_plot, patch_artist=True)

>>> ## change outline color, fill color and linewidth of the boxes

>>> for box in bp['boxes']:

 # change outline color

 box.set(color='#7570b3', linewidth=2)

 # change fill color

 box.set(facecolor = '#1b9e77')

>>> ## change color and linewidth of the whiskers

>>> for whisker in bp['whiskers']:

 whisker.set(color='#7570b3', linewidth=2)

>>> ## change color and linewidth of the caps

>>> for cap in bp['caps']:

 cap.set(color='#7570b3', linewidth=2)

>>> ## change color and linewidth of the medians

>>> for median in bp['medians']:

 median.set(color='#b2df8a', linewidth=2)

>>> ## change the style of fliers and their fill

>>> for flier in bp['fliers']:

 flier.set(marker='o', color='#e7298a', alpha=0.5)

Making Sense of Data through Advanced Visualization

[88]

In the preceding code, we take the key values of boxplots and set their properties in
terms of color, line width, and face color. Similarly, we perform the same task for the
other components, such as whiskers, caps, medians, and fliers.

Heatmaps
A heatmap is a graphical representation where individual values of a matrix are
represented as colors. A heatmap is very useful in visualizing the concentration of
values between two dimensions of a matrix. This helps in finding patterns and gives
a perspective of depth.

Let's start off by creating a basic heatmap between two dimensions. We'll create
a 10 x 6 matrix of random values and visualize it as a heatmap:

>>> # Generate Data

>>> data = np.random.rand(10,6)

>>> rows = list('ZYXWVUTSRQ') #Ylabel

>>> columns = list('ABCDEF') #Xlabel

>>> #Basic Heat Map plot

>>> plt.pcolor(data)

>>> plt.show()

Chapter 4

[89]

After the preceding code is executed we'll get the following output:

In the preceding code, we used the pcolor() function to create the heatmap colors.
We'll now add labels to the heatmap:

>>> # Add Row/Column Labels

>>> plt.pcolor(data)

>>> plt.xticks(np.arange(0,6)+0.5,columns)

>>> plt.yticks(np.arange(0,10)+0.5,rows)

>>> plt.show()

After the preceding code is executed we'll get the following output:

Making Sense of Data through Advanced Visualization

[90]

We'll now adjust the color of the heatmap to make it more visually representative.
This will help us to understand the data:

>>> # Change color map

>>> plt.pcolor(data,cmap=plt.cm.Reds,edgecolors='k')

>>> plt.xticks(np.arange(0,6)+0.5,columns)

>>> plt.yticks(np.arange(0,10)+0.5,rows)

>>> plt.show()

After the preceding code is executed we'll get the following output:

In some instances, there might be a huge number of values that need to be plotted
on the heatmap. This can be done by binning the values first and then using the
following code to plot it:

>>> # Generate some test data

>>> x = np.random.randn(8873)

>>> y = np.random.randn(8873)

>>> heatmap, xedges, yedges = np.histogram2d(x, y, bins=50)

>>> extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

>>> plt.imshow(heatmap, extent=extent)

>>> plt.show()

Chapter 4

[91]

After the preceding code is executed we'll get the following output:

In the preceding code, the histogram2d function helped in binning the the 2D
values. Post this, we feed the values to the heatmap to get the preceding plot. Since
we used the randn(), the values generated were random normally distributed
numbers, which means that the concentration of numbers will be more toward the
mean. This can be seen in the preceding plot, which shows the center to be red and
the exterior area to be blue.

Scatter plots with histograms
We can combine a simple scatter plot with histograms for each axis. These kinds of
plots help us see the distribution of the values of each axis.

Let's generate some randomly distributed data for the two axes:

>>> from matplotlib.ticker import NullFormatter

>>> # the random data

>>> x = np.random.randn(1000)

>>> y = np.random.randn(1000)

A NullFormatter object is created, which will be used for eliminating the x and y
labels of the histograms:

>>> nullfmt = NullFormatter() # no labels

Making Sense of Data through Advanced Visualization

[92]

The following code defines the size, height, and width of the scatter and
histogram plots:

>>> # definitions for the axes

>>> left, width = 0.1, 0.65

>>> bottom, height = 0.1, 0.65

>>> bottom_h = left_h = left+width+0.02

>>> rect_scatter = [left, bottom, width, height]

>>> rect_histx = [left, bottom_h, width, 0.2]

>>> rect_histy = [left_h, bottom, 0.2, height]

Once the size and height are defined, the axes are plotted for the scatter plot as well
as both the histograms:

>>> # start with a rectangular Figure

>>> plt.figure(1, figsize=(8,8))

>>> axScatter = plt.axes(rect_scatter)

>>> axHistx = plt.axes(rect_histx)

>>> axHisty = plt.axes(rect_histy)

The histograms' x and y axis labels are eliminated by using the set_major_
formatter method, and by assigning the NullFormatter object to it, the scatter
plot is plotted:

>>> # no labels

>>> axHistx.xaxis.set_major_formatter(nullfmt)

>>> axHisty.yaxis.set_major_formatter(nullfmt)

>>> # the scatter plot:

>>> axScatter.scatter(x, y)

The limits of the x and y axes are computed using the following code, where the max
of the x and y values are taken. The max value is then divided by the bin, then one
is added to it before it is again multiplied with the bin value. This is done so there is
some space ahead of the max value:

>>> # now determine nice limits by hand:

>>> binwidth = 0.25

>>> xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))])

>>> lim = (int(xymax/binwidth) + 1) * binwidth

Chapter 4

[93]

The limit value that is calculated is then assigned to the set_xlim method of the
axScatter object:

>>> axScatter.set_xlim((-lim, lim))

>>> axScatter.set_ylim((-lim, lim))

The bins variable creates a list of interval values, which will be used with
the histograms:

>>> bins = np.arange(-lim, lim + binwidth, binwidth)

The histograms are plotted and the one that is horizontal is set using the
orientation parameter:

>>> axHistx.hist(x, bins=bins)

>>> axHisty.hist(y, bins=bins, orientation='horizontal')

The limit value of the scatter plot is fetched and then assigned to the limit methods of
the histogram:

>>> axHistx.set_xlim(axScatter.get_xlim())

>>> axHisty.set_ylim(axScatter.get_ylim())

>>> plt.show()

After the preceding code is executed we'll get the following output:

Making Sense of Data through Advanced Visualization

[94]

A scatter plot matrix
A scatter plot matrix can be formed for a collection of variables where each of
the variables will be plotted against each other. The following code generates a
DataFrame df, which consists of four columns with normally distributed random
values and column names named from a to d:

>>> df = pd.DataFrame(np.random.randn(1000, 4),
 columns=['a', 'b', 'c', 'd'])

>>> spm = pd.tools.plotting.scatter_matrix(df, alpha=0.2,
 figsize=(6, 6), diagonal='hist')

After the preceding code is executed we'll get the following output:

Chapter 4

[95]

The scatter_matrix() function helps in plotting the preceding figure. It takes in
the data frame object and the required parameters that are defined to customize the
plot. You would have observed that the diagonal graph is defined as a histogram,
which means that in the section of the plot matrix where the variable is against itself,
a histogram is plotted.

Instead of the histogram, we can also use the kernel density estimation for
the diagonal:

>>> spm = pd.tools.plotting.scatter_matrix(df, alpha=0.2,
 figsize=(6, 6), diagonal='kde')

After the preceding code is executed we'll get the following output:

The kernel density estimation is a nonparametric way of estimating the probability
density function of a random variable. It basically helps in understanding whether
the data is normally distributed and the side toward which it is skewed.

Making Sense of Data through Advanced Visualization

[96]

Area plots
An area plot is useful for comparing the values of different factors across a range. The
area plot can be stacked in nature, where the areas of the different factors are stacked
on top of each other. The following code gives an example of a stacked area plot:

>>> df = pd.DataFrame(np.random.rand(10, 4),
 columns=['p', 'q', 'r', 's'])

>>> df.plot(kind='area');

After the preceding code is executed we'll get the following output:

To remove the stack of area plot, you can use the following code:

>>> df.plot(kind='area', stacked=False);

After the preceding code is executed we'll get the following output:

Chapter 4

[97]

Bubble charts
A bubble chart is basically a scatter plot with an additional dimension. The
additional dimension helps in setting the size of the bubble, which means that the
greater the size of the bubble, the larger the value that represents the bubble. This
kind of a chart helps in analyzing the data of three dimensions.

The following code creates a sample data of three variables and this data is then
fed to the plot() method where its kind is mentioned as a scatter and s is the
size of the bubble:

>>> plt.style.use('ggplot')

>>> df = pd.DataFrame(np.random.rand(50, 3), columns=['a', 'b', 'c'])

>>> df.plot(kind='scatter', x='a', y='b', s=df['c']*400);

After the preceding code is executed we'll get the following output:

Hexagon bin plots
A hexagon bin plot can be created using the DataFrame.plot() function and kind
= 'hexbin'. This kind of plot is really useful if your scatter plot is too dense to
interpret. It helps in binning the spatial area of the chart and the intensity of the color
that a hexagon can be interpreted as points being more concentrated in this area.

Making Sense of Data through Advanced Visualization

[98]

The following code helps in plotting the hexagon bin plot, and the structure of the
code is similar to the previously discussed plots:

>>> df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])

>>> df['b'] = df['b'] + np.arange(1000)

>>> df.plot(kind='hexbin', x='a', y='b', gridsize=25)

After the preceding code is executed we'll get the following output:

Trellis plots
A Trellis plot is a layout of smaller charts in a grid with consistent scales. Each
smaller chart represents an item in a category, named conditions. The data displayed
on each smaller chart is conditional for the items in the category.

Trellis plots are useful for finding structures and patterns in complex data. The grid
layout looks similar to a garden trellis, hence the name Trellis plots.

Chapter 4

[99]

The following code helps in plotting a trellis chart where for each combination of sex
and smoker/nonsmoker:

>>> tips_data = pd.read_csv('Data/tips.csv')

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomHistogram())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

In the preceding code, rplot.RPlot takes the tips_data object. Also, the x and y
axis values are defined. After this, the Trellis grid is defined based on the smoker
and sex. In the end, we use GeomHistogram() to plot a histogram.

Making Sense of Data through Advanced Visualization

[100]

To change the Trellis plot to a kernel density estimate, we can use the following code:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomDensity())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

Chapter 4

[101]

We could also have a scatter plot with a poly fit line on it:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomScatter())

>>> plot.add(rplot.GeomPolyFit(degree=2))

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

The code is similar to the previous example. The only difference is that
GeomScatter() and GeomPolyFit are used to get the fit line on the plot.

Making Sense of Data through Advanced Visualization

[102]

The scatter plot can be combined with a 2D kernel density plot by using the
following code:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomScatter())

>>> plot.add(rplot.GeomDensity2D())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

Chapter 4

[103]

A 3D plot of a surface
We'll now plot a 3D plot, where the Sin function is plotted against the sum of the
square values of the two axes:

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> X = np.arange(-4, 4, 0.25)

>>> Y = np.arange(-4, 4, 0.25)

>>> X, Y = np.meshgrid(X, Y)

>>> R = np.sqrt(X**2 + Y**2)

>>> Z = np.sin(R)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:

Making Sense of Data through Advanced Visualization

[104]

In the preceding code, we defined the x and y axes with values ranging from -4 to 4.
We created a coordinate matrix with meshgrid(), then squared the values of x and y,
and finally, summed them up. This was then fed to the plot_surface function. The
rstride and cstride parameters in simple terms help in sizing the cell on the surface.

Let's adjust the view using view_int. The following is the view at 0 degree elevation
and 0 degree angle:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=0., azim=0)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:

Chapter 4

[105]

The following is the view at 50 degrees elevation:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=50., azim=0)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:

Making Sense of Data through Advanced Visualization

[106]

The following is the view at 50 degrees elevation and 30 degrees angle:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=50., azim=30)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:

Summary
In this chapter, you learned how to use the various properties of a chart. You
also learned how to combine multiple charts and style them. There were multiple
advanced visualizations that you have gained knowledge of through this chapter.

In the next chapter, we will understand what machine learning is and also explore a
few machine learning techniques.

[107]

Uncovering Machine
Learning

Machine learning is a technique to teach programs that use data, to generate
algorithms instead of explicitly programming an algorithm from scratch.

It is a field of computer science that originates from the research into artificial
intelligence. It is closely associated to statistics and mathematical optimization, which
give methods, theories, and application domains to the field. Machine learning is used
in various computing tasks where programming explicitly rule-based algorithms is
infeasible. Example applications include; e-mail spam filters, search engines, language
translation, and computer visions. Machine learning can be sometimes confused with
data mining, although it focuses mainly on exploratory data analysis.

Here are some of the terminologies that will be used in this chapter henceforth:

• Features: This refers to distinctive traits that help define the outcome
• Samples: A sample is an item to process. It could be a document, image,

audio, or a CSV file
• Feature vector: This refers to numerical features, such as an n-dimensional

vector, that represents some object
• Feature extraction: This refers to the processing of a feature vector where data

is transformed from a high-dimensional space to a lower-dimensional space
• Training set: This refers to a set of data that discovers potentially

predictive relationships
• Testing set: This refers to a set of data that tests out predications

Uncovering Machine Learning

[108]

Different types of machine learning
Machine learning is divided into mainly three types depending on the nature of the
learning target or the feedback available to the learning system:

1. Supervised learning: The computer is presented with a given set of inputs
and their respective outputs. The goal of the program is to learn from the
inputs in order to reproduce the outputs.

2. Unsupervised learning: There is no target variable in the case of
unsupervised learning. The computer is left on its own to find patterns
within the data.

3. Reinforcement learning: A program has to interact with its environment in a
dynamic manner, such as a driving a car.

Supervised learning
As described earlier, a supervised learning algorithm studies the training data and
generates a function, which can be used for predicting new instances.

Machine
Learning
Algorithm

Predictive
Model

Feature
Vectors

Feature
Vector

Supervised Learning Model
Training

Text,
Documents,

Images,
etc

New Text,
Document,
Image, etc.

Expected
Label

Labels

As you can see from the preceding diagram, there is training data, which the
machine learning model will learn from.

Chapter 5

[109]

Let's assume that the training data is a set of text that represents different news
articles. These news articles can be related to sports, international, national, and
various other categories of news. These categories will act us as our labels. From
this training data, we'll derive feature vectors where each word could be a vector or
certain vectors could be derived from the text. For example, the number of instances
of the word "Football" could be a vector, or the number of instances of the word
"Prime Minister" could be a vector as well.

These feature vectors and labels are fed to the Machine Learning Algorithm, which
learns from the data. Once the model is trained, it is then used on the new data
where the features are again extracted and then inputted to the model, which
generates the target data.

Here are few examples of supervised machine learning algorithms, which will
be introduced in this chapter, and some of them will be explained in detail in the
following chapters:

1. Decision tree
2. Linear regression
3. Logistic regression
4. The naive Bayes classifier

Unsupervised learning
As described earlier, unsupervised learning tries to find hidden structures in
unlabeled data. As you can see in the following diagram, there is no label that
is inputted to the algorithm:

Machine
Learning
Algorithm

Predictive
Model

Feature
Vectors

Feature
Vector

Unsupervised Learning Model
Training

Text,
Documents,

Images,
etc

New Text,
Document,
Image, etc.

Likelihood
or Cluster ID

or Better
Representation

Uncovering Machine Learning

[110]

Let's take the example of images that will act as our training and input datasets. The
images contain the faces of a human being, horses, and insects. From these images,
features are extracted, which will help identify the group that the images belong to.
These features are then inputted to the unsupervised machine learning algorithm.
The algorithm will find patterns within the data and help in bucketing these images
to the respective group.

This same algorithm can then be used for new images and helps in bucketing the
images into the required buckets.

Here are a few examples of unsupervised machine learning algorithms, which
will be introduced in this chapter, and some of it will be covered in detail in the
following chapters:

1. The k-means clustering
2. Hierarchical clustering

Reinforcement learning
In reinforcement learning, the data to be inputted is provided as a stimulus to the
model from the environment to which the machine learning model must respond
and react. Feedback is provided not like a teaching process as in the case of
supervised learning, but as punishments and rewards in the environment.

Agent

State

Reward

Action

Environment

The actions taken by the agent results in it learning from its outcome, instead of
being explicitly taught, and the action it selects is based on its past experience and
also by the fresh choices made by it, which basically means it is learning from trial
and error. The agent receives the reinforcement signal in the form of a numerical
reward that encodes the success and the agent seeks to teach itself to take actions
that will increase the accumulated reward over time.

Chapter 5

[111]

Reinforcement learning is used heavily in robotics and not much in data science. The
following are the algorithms that come under reinforcement learning:

1. Temporal difference learning
2. Q learning

Decision trees
A simple predictive model maps the outcomes of an item to the input data. It is a
popular predictive modeling technique, which is used commonly in the industry:

Decision tree models are basically of two types:

• Classification trees: These refer to dependent variables that take a finite value.
In these tree structures, branches represent the rules of the features that lead to
the class labels, and leaves represent the class labels of the outcome.

• Regression trees: When dependent variables takes continuous values, then
they're called regression trees.

Let's take an example. The following data represents whether you should play tennis
or not, based on the overall outlook of weather, humidity, and wind intensity:

OutlookHumidityWindPlay
SunnyHighLowNo

RainNormalHighNo

OvercastHighLowYes

RainNormalWeakYes

SunnyNormalLowYes

OvercastNormalLowYes

SunnyNormalHighYes

If you take this data, use Play as the target variable, and the remaining as the
independent variable, then you'll get a decision tree model that will have the
following structure as the rules.

Uncovering Machine Learning

[112]

So, when new data comes in, it will traverse this tree to come to this conclusion,
which will be the outcome:

No NoYes

Yes

Yes

Humidity Wind

High Normal High Weak

Sunny Rain Overcast

Outlook

Decision trees are the simplest of the predictive models and here are a few of
their advantages:

1. It's easy to communicate and visualize decision trees.
2. It is possible to find odd patterns. Suppose you are trying to find the voting

pattern between two parties for an election and you have data on the
education, income, sex, and age. You might observe a pattern where highly
educated people have a very low income and vote for a particular party.

3. Decision trees make minimal assumptions on the data.

Here are the disadvantages of a decision tree:

1. There is a high classification error rate, while the training set is small in
comparison to the number of classes.

2. There is an exponential growth in computing when the data and the number of
dependent variables increase in size.

3. There is a need for discrete data for a particular construction algorithm.

Linear regression
Linear regression is an approach in modeling that helps model the scalar linear
relationship between a scalar dependent variable, Y, and an independent variable,
X, which can be one or more in value:

y X εβ= +

Chapter 5

[113]

Let's try to understand this using an example. The following table shows the list of
height and weight of students in a class:

Weight (pounds)Height (inches)
12550
13558
14563
14468
17070
16579
17184
16675
16065

If we run this through a simple linear regression function, which will be covered
in a later chapter, with the weight as a dependent variable, y, and the independent
variable, x, which is the height, we get the following equation:

y = 1.405405405 x + 57.87687688

If you plot the preceding equation as a line with 57.88 as the intercept and the slope
of the line being 1.4 on top of a scatter plot with Weight in the y axis and Height in
the x axis, then the following plot is obtained:

Uncovering Machine Learning

[114]

In this example, the regression algorithm tries to create the preceding equation,
which has the least error when predicting the weight of the student. This was an
example of a simple linear regression. In Chapter 6, Performing Predictions with a
Linear Regression, we'll dwell on the concept of linear regression further with
multiple variables.

Logistic regression
Logistic regression is another supervised learning technique, which is basically
a probabilistic classification model. It is mainly used in predicting a binary
predictor, such as whether a customer is going to churn or if a credit card
transaction is fraudulent.

Logistic regression uses logistics. A logistic function is a very useful function
that can take any value from a negative infinity to a positive infinity, and output
values from 0 to 1. Hence, it is interpretable as a probability. The following is the
logistic function that generates predicted values from 0 to 1 based on the dependent
x variable:

() ()0 1

1
1 xF x
e β β− +

=
+

Here, x will be the independent variable and F(x) will be the dependent variable.

Chapter 5

[115]

If you try to plot the logistic function from a negative infinity to a positive infinity,
then you'll get the following S shaped graph:

Logistic regression can be applied in the following scenarios:

1. Deriving a propensity score for a customer in a retail store of buying a new
product that has been launched.

2. The likelihood of a transformer failing using the sensor data associated
with it.

3. The likelihood of a user clicking on an ad that is shown on a website based
on their behavior.

Logistic regression has many more applications, and it will be covered in the
following chapters in greater detail with examples.

The naive Bayes classifier
The naive Bayes classifier is a simple probabilistic classifier, which is based on
the Bayes theorem. The assumption made is that there is strong interdependence
between the features, because of which it is called naive. The following is the
Bayes theorem:

() () ()
()

|
|

P B A P A
P A B

P B
=

Uncovering Machine Learning

[116]

Here in the preceding formula, A and B are events, P(A) and P(B) are the
probabilities of A and B and are interdependent of each other. P(A|B) is the
probability of A, given that B is True, which is a conditional probability. P(B|A) is
the probability of B, given that A is True. The naive Bayes formula is as follows:

() () () () ()1 2 / . . . | k k nP A B P A B P A B P A B P A B= ∩ ∩ + ∩ + + ∩

Let's try solving this equation to understand the naive Bayes formula with the
following example:

Stacy has her engagement tomorrow in Austin at an outdoor ceremony. In the
past few years, Austin has had only six rainy days in a year. Unfortunately, there
has been rain forecast for tomorrow by the weatherman. 80% of the time, the
weatherman accurately forecasts the rain. However, he incorrectly forecasts the
weather 20% of the time when it does not rain. Determine the probability that it
will rain on the day of Stacy's engagement. The following are some events based on
which the probability can be calculated:

• AI: This event states that it rains on Stacy's engagement
• A2: This event states that it does not rain on Stacy's engagement
• B: This event states that the weatherman predicts rain

The following are the probabilities based on the preceding events:

• P(AI) = 6/365 = 0.016438: This means that it rains six days out of the year
• P(AII) = 359/365 = 0.98356: This means that it does not rain 359 days out of

the year
• P(B | AI) = 0.8: This means that 80% of the time, it rains as predicted by the

weatherman
• P(B | AII) = 0.2: This means that 20% of the time, it does not rain as

predicted by the weatherman

The following formula helps us in calculating the naive Bayes probability:

P(AI | B) = P(AI)P(B | AI)/ (P(AI) P(B | AI) + P(AII) P(B | AII))

P(AI | B) = (0.0164 * 0.8) / (0.0164*0.8 + 0.9834 * 0.2)

P(AI | B) = 0.065

So, the preceding calculation says that even though the weatherman predicted rain,
there is only a 6.5% chance that it will actually rain according to the Bayes theorem

Chapter 5

[117]

The naive Bayes is used heavily in e-mail filtering. It takes the instance of each word
in an e-mail and computes the probability whether the e-mail is spam is not. The
naive Bayes model learns from the previous history of e-mails and marks mails as
spam, which helps it come to a conclusion on whether an e-mail is spam or not.

The k-means clustering
The k-means clustering is an unsupervised learning technique that helps in
partitioning data of n observations into K buckets of similar observations.

The clustering algorithm is called so because it operates by computing the mean of
the features which refer to the dependent variables based on which we cluster things,
such as segmenting of customers based on an average transaction amount and the
average number of products purchased in a quarter of a year. This mean value
then becomes the center of a cluster. The number K refers to the number of clusters,
that is, the technique consisting of computing a K number of means, leading to the
clustering of the data around these k-means.

How do we choose this K? If we have some idea of what we are looking for or how
many clusters we expect or want, then we set K to be this number before we start the
engines and let the algorithm compute along.

Uncovering Machine Learning

[118]

If we don't know how many there are, then our exploration will take a little longer
and involve some trial and error, say, as we try K=3, 4, and 5 until we see that the
clusters are making some sense to us in our domain.

() ()2

1 1

icc

i j
i j

J V x v
= =

= −∑∑

Here, ||xi -vj|| is the Euclidean distance between xi and vj, ci is in the ith cluster, the
number of data points, c is the number of cluster centers.

The k-means clustering is widely used in computer visions, market segmentations,
astronomy, geostatistics, and agriculture.

The k-means clustering will be covered in much more detail and with real-life
examples in a later chapter.

Hierarchical clustering
Hierarchical clustering is an unsupervised learning technique where a hierarchy of
clusters is built out of observations.

This clustering groups data at various levels of a cluster tree or dendrogram. It is
not a single set of clusters, but a hierarchy of multiple levels where clusters at a
particular level are joined as clusters on the next level. This allows you to decide the
level of clustering that is most suitable.

Chapter 5

[119]

The hierarchical clusters essentially are of two types:

• Agglomerative hierarchical clustering: This is a bottom-up method where
each observation starts in its own cluster and two other clusters as they go
up a hierarchy

• Divisive hierarchical clustering: This is a top-down approach where
observations start off in a single cluster and then they are split into two
as they go down a hierarchy

The following image shows Agglomerative and Divisive hierarchical clustering:

Agglomerative

Divisive

p, q, r, s, t

r, s, t

s, t

p, q

p q r s t

Hierarchical clustering will be explained in more detail in later chapters.

Summary
In this chapter, you understood the meaning of machine learning and its different
types. You were introduced to commonly used machine learning algorithms as well.

In the next chapter, you'll learn how to create linear regression models.

[121]

Performing Predictions with a
Linear Regression

Linear regression analysis is the most widely used of all statistical techniques: it
is the study of linear, additive relationships between variables. It's widely used in
various industries to create models, which will help in a business. For example, in
the retail industry, there are various factors affecting the sale of a product. These
factors could be the price, promotions, or seasonal factors, to name a few. A linear
regression model helps in understanding the influence of each of these factors on
the sales of a product as well as to calculate the baseline sales, which is basically the
number of sales of this product in the event that there were no external factors, such
as price, promotions, and so on.

In the preceding chapter, you were introduced to linear regression along with an
example of a simple linear regression. In this chapter, you'll learn how to create
the following:

• A simple linear regression model
• A multiple linear regression model

Simple linear regression
A simple linear regression has a single variable, and it can be described using the
following formula:

y= A + Bx

Here, y is the dependent variable, x is the independent variable, A is the intercept
(where x is to the power of zero) and B is the co-efficient

Performing Predictions with a Linear Regression

[122]

The dataset that we'll be using contains the height (cm) and weight (kg) of a sample
of men.

The following code ingests the data and creates a simple scatter plot in order to
understand the distribution of the weight versus the height:

>>> import numpy as np

>>> import pandas as pd

>>> from scipy import stats

>>> import matplotlib.pyplot as plt

>>> sl_data = pd.read_csv('Data/Mens_height_weight.csv')

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(sl_data['Height'],sl_data['Weight'])

>>> ax.set_xlabel('Height')

>>> ax.set_ylabel('Weight')

>>> plt.show()

The following is the output of the preceding code:

From the plot, you can see that there is a linear relationship between the weight and
height of the individual.

Let's see how the variables are correlated to each other as follows:

>>> sl_data.corr()

Chapter 6

[123]

The preceding code helps in generating the following correlation matrix:

We can clearly see that the height and weight are clearly correlated to each other
based on a Pearson correlation value coefficient of 0. 94. A Pearson correlation ranges
from -1 to +1, so when the number is more positive, the relation between the two
variables is much stronger if they increase or decrease together. If the correlation
value is negative, then the relation between the two variables is strong, but is in the
opposite direction.

Let's generate a linear regression model with the weight as the dependent variable
and x as the independent variable:

>>># Create linear regression object

>>> lm = linear_model.LinearRegression()

>>># Train the model using the training sets

>>> lm.fit(sl_data.Height[:,np.newaxis], sl_data.Weight)

>>> print 'Intercept is ' + str(lm.intercept_) + '\n'

Intercept is -99.2772096063

>>> print 'Coefficient value of the height is ' + str(lm.coef_) + '\n'

Coefficient value of the height is [1.00092142]

>>> print pd.DataFrame(zip(sl_data.columns,lm.coef_),
 columns = ['features', 'estimatedCoefficients'])

Performing Predictions with a Linear Regression

[124]

This is the output of preceding code:

In the preceding code, we use linear_model.LinearRegression() to create a linear
regression object, lm. We then use the fit() method of lm to define the dependent
and independent variable, where in our case, the weight is the dependent variable
and the height is the independent variable.

To get the intercept value, we use lm.intercept_, and to get the coefficient, we use
the lm.coef.

The last line of the code helps in creating a DataFrame of the independent variable
and its corresponding coefficients. This will be useful when we explore multiple
regression in detail.

We'll now plot the scatter chart again with a trend line:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(sl_data.Height,sl_data.Weight)

>>> ax.plot(sl_data.Height,lm.predict(sl_data.Height[:, np.newaxis]),

 color = 'red')

>>> ax.set_xlabel('Height')

>>> ax.set_ylabel('Weight')

>>> plt.show()

Here is the output of the preceding code:

Chapter 6

[125]

Multiple regression
Multiple linear regression occurs when more than one independent variable is used
to predict a dependent variable:

1 1 2 2 n nY a b x b x b x′ = + + + +……

Where, Y is the dependent variable, a is the intercept, b1 and b2 are the coefficients,
and x1 and x2 are the independent variables

Also, note that squaring the dependent variable still makes it linear, but if the
coefficient is squared, then it is nonlinear.

To build the multiple linear regression model, we'll utilize the NBA's basketball data
to predict the average points scored per game

The following are the column descriptions of the data:

• height: This refers to the height in feet
• weight: This refers to the weight in pounds
• success_field_goals: This refers to the percentage of successful field goals

(out of 100 that were attempted)
• success_free_throws: This refers tot the percentage of successful free

throws (out of 100 that were attempted)
• avg_points_scored: This refers to the average points scored per game

The following code ingests this data and then we use the descibe() method of the
DataFrame to get the univariate metrics on each of the fields:

>>> b_data = pd.read_csv('Data/basketball.csv')

>>> b_data.describe()

Performing Predictions with a Linear Regression

[126]

Here is the output of the preceding code:

From the preceding table, we get an understanding of the data. The following
observations can be made:

1. The average height of a basketball player is around 6.5 feet.
2. The shortest player is 5.7 feet.
3. The tallest player is 7.7 feet (Shaquille O'Neal stands at 7.1 feet).
4. The player with the least weight is at 105 pounds, which is quite obscure.
5. The heaviest player is 263 pounds.
6. The best field goal percentage for a player is 60%.
7. The worst field goal percentage for a player is 29%.
8. The average field goal attempt for a player is 45 %, but from the small

standard deviation, we can see that a majority of the players have a field goal
percentage between 40 and 50%.

9. Among free throws, there is a player who misses 3/4th of the time.
10. The best free throw player has a 90% success rate.
11. Most of the players have a success percentage for free throws of around

70 to 80%.
12. The highest score scored per game by a player is 27.
13. The least scored is 3.
14. On an average, the players score 12 points.

Chapter 6

[127]

Let's see the correlation between the variables:

>>> b_data.corr()

The following is the output of the preceding code:

From the preceding table, we can see the following:

1. There is a high correlation between height and weight.
2. There is a weak positive correlation between successful field goals in terms of

height and weight.
3. The average points scored seem to have the maximum correlation with

success_field_goals, but they're not highly correlated.

Let's see the distribution of each of the independent variables with respect to the
dependent variable:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(b_data.height, b_data.avg_points_scored)

>>> ax.set_xlabel('height')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()

Performing Predictions with a Linear Regression

[128]

Here is the output of the preceding code:

In the preceding scatter plot, we can see that there is no clear pattern between the
average points scored and the height. The distribution looks quite random.

Let's look at the distribution between average points scored and the weight:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(b_data.weight, b_data.avg_points_scored)

>>> ax.set_xlabel('weight')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()

Chapter 6

[129]

Here is the output of the preceding code:

We can see that 105 pounds seems like an outlier and also has a relatively lower
average point score. We can also see that the players who are almost 240 pounds
have the maximum variations in terms of score, so a hypothesis can be made that the
taller and heavier players have a greater score, while the shorter and heavier players
have a lower score.

Now, let's look at the distribution between successful field goals and the average
points scored:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(b_data.success_field_goals, b_data.avg_points_scored)

>>> ax.set_xlabel('success_field_goals')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()

Performing Predictions with a Linear Regression

[130]

Here is the output of the preceding code:

The success_field_goals variable has some linear relationship with the average
points scored, but the distribution is still quite scattered.

Let's finally look at the distribution between successful free throws and the average
points scored per game:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(b_data.success_free_throws, b_data.avg_points_scored)

>>> x.set_xlabel('success_free_throws')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()

Chapter 6

[131]

Here is the output of the preceding code:

We can see that there is a player whose free throws are quite bad, but the average
points scored seem to be close to average as compared to other players, which means
that he would be better at half field goals or he would make a lot of attempts to score.
The overall distribution here is also quite scattered.

From the preceding analysis of the correlation and distribution, we can see that there
are no clear-cut patterns between the average points scored and the independent
variables. It can be expected that the model that will be built with the existing data
won't be highly accurate.

Performing Predictions with a Linear Regression

[132]

Training and testing a model
Let's take the data and divide it into training and test sets:

>>> from sklearn import linear_model,cross_validation,

 feature_selection,preprocessing

>>> import statsmodels.formula.api as sm

>>> from statsmodels.tools.eval_measures import mse

>>> from statsmodels.tools.tools import add_constant

>>> from sklearn.metrics import mean_squared_error

>>> X = b_data.values.copy()

>>> X_train, X_valid, y_train, y_valid =

 cross_validation.train_test_split(X[:, :-1],
 X[:, -1],

 train_size=0.80)

We first convert the data frame into an array structure using values.copy() of
b_data. We then use the train_test_split function of cross_validation from
SciKit to divide the data into training and test set for 80% of the data.

We'll learn how to build the linear regression models using the following packages:

• The statsmodels module
• The SciKit package

Even pandas provides an Ordinary Least Square (OLS) regression, which you can
experiment with after you've completed this chapter. The ordinary least square is a
method to estimate unknown coefficients and intercepts for a regression equation.
We'll start off the with the statsmodels package. The statsmodels is a Python module
that allows users to explore data, estimate statistical models, and perform statistical
tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and
result statistics is available for different types of data and each estimator:

>>> result = sm.OLS(y_train, add_constant(X_train)).fit()

>>> result.summary()

Chapter 6

[133]

The OLS function helps in creating the linear regression object with a dependent
and independent variable. The fit() method helps in fitting the model. Note that
there is a add_constant() function, which is used to calculate the intercept while
creating the model. By default, the OLS() function won't calculate the intercept, and
it has to be explicitly mentioned with the the help of the add_constant function. The
following image shows the summary of the regression model that we trained earlier,
which shows the various metrics associated with the model:

The preceding summary gives quite a lot of information about the model. The main
parameter to look for is the r square value, which tells you how much of the variance
of the dependent variable is captured by the model. It ranges from 0 to 1, and the p
value tells us if the model is significant.

From the preceding output, we can see that the R-square value is 0.265, which isn't
great. We can see that the model shows x3 as the most significant variable, which is
the success_field_goals variable. As a rule of thumb, any p value of a variable less
than 0.05 can be considered significant.

Performing Predictions with a Linear Regression

[134]

Let's recreate the model with only the successful field goals variable and see how the
model performs:

>>> result_alternate = sm.OLS(y_train,

 add_constant(X_train[:,2])).fit()

>>> result_alternate.summary()

We can see that the variable has become less significant, and the r square value has
become really low. The preceding model can be iterated multiple times with the
different combination of variables till the best model is arrived at.

Let's apply both the models on the test data and see how the mean squared error
between the actual and the predicted value is. The model that gives the least mean
squared error is a good model:

>>> ypred = result.predict(add_constant(X_valid))

>>> print mse(ypred,y_valid)

35.208

Chapter 6

[135]

In the following code, we use the predict function of the regression model object to
predict the given test dataset:

>>> ypred_alternate = result_alternate.predict(add_constant(X_valid[:,
2]))

>>> print mse(ypred_alternate,y_valid)

26.3

We can see that the second model has a lower mean squared error as compared to
the first one.

Let's also plot the predicted versus actual plot for both the models:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(y_valid, ypred)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:

Performing Predictions with a Linear Regression

[136]

Now, let's plot the scatter for the alternate model:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(y_valid, ypred_alternate)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:

This clearly shows that our models are not good enough since the predictions are
quite random.

To make a highly accurate model, we need some more variables, which have an
influence on the average points that are scored.

The preceding model was constructed using the statsmodels package. We'll now
build a model using SciKit.

The following code creates a Linear Regression object and then fits it with dependent
and independent variables:

Create linear regression object

>>> lm = linear_model.LinearRegression()

Train the model using the training sets

Chapter 6

[137]

>>> lm.fit(X_train, y_train)

>>> print 'Intercept is %f' % lm.intercept_)

Intercept is 15.5129271596

>>> pd.DataFrame(zip(b_data.columns,lm.coef_), columns = ['features',
 'estimatedCoefficients'])

Here is the output of the preceding code:

The coefficient and intercepts are similar to the model that was built using the
statsmodels package.

To calculate the r square in SciKit, the cross-validation module of the SciKit package
is utilized:

>>> cross_validation.cross_val_score(lm, X_train,
 y_train, scoring='r2')

array([-0.3043391 , -0.42402161, 0.26890649])

Multiple runs of the cross-validation takes place and, by default, it is 3 due to which
you can see three values in the preceding output. The highest value is of relevance
and you can see that it is similar to the one we built with the statsmodels.

Let's see how the mean squared error is calculated:

>>> ypred = lm.predict(X_valid)

>>> mean_squared_error(ypred,y_valid)

35.208

We used the mean_squared_error function of the SciKit package here.

Performing Predictions with a Linear Regression

[138]

Finally, the actual versus the predicted plot will be same as the first model plot
of statsmodels:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(y_valid, ypred)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:

Summary
In this chapter, we learned how to create a simple linear regression model followed
by multiple regressions, where there was an initial inspection analysis done on
the data in order to understand it. We then created regression models using the
statsmodels and SciKit package.

In the next chapter, we'll learn how to perform the probability scoring of an event
that takes place using logistic regression.

[139]

Estimating the
Likelihood of Events

Logistic regression is a type of regression analysis that helps in estimating the
likelihood of an event to occur based on some given parameters. It is used as a
classification technique with a binary outcome. The probabilities describing the
possible outcomes of a single trial are modeled, as a function of the explanatory
(predictor) variables, using a logistic function.

You have been already introduced to Logisitc regression in Chapter 5, Uncovering
Machine Learning. In this chapter, you'll learn to:

• Build a logistic regression model with statsmodels
• Build a logistic regression model with SciKit
• Evaluate and test the model

Logistic regression
We'll use the Titanic dataset, which was utilized in Chapter 3, Finding a Needle in
a Haystack, to help us build the logistic regression model. Since we have already
explored the data, we won't be performing any exploratory data analysis as we
already have a context for this data.

This is a recap of the field descriptions of the Titanic dataset:

• Survival: This refers to the survival of the passengers (0 = No and 1 = Yes)
• Pclass: This refers to the passenger class (1 = 1st, 2 = 2nd, and 3 = 3rd)
• Name: This refers to the names of the passengers
• Sex: This refers to the gender of the passengers

http://en.wikipedia.org/wiki/Logistic_function

Estimating the Likelihood of Events

[140]

• Age: This refers to the age of the passengers
• Sibsp: This refers to the number of siblings/spouses aboard
• Parch: This refers to the number of parents/children aboard
• Ticket: This refers to the ticket number
• Fare: This refers to the passenger fares
• Cabin: This refers to the cabin
• Embarked: This refers to the port of embarkation (C = Cherbourg,

Q = Queenstown, and S = Southampton)

Data preparation
Let's start off by reading the data:

>>> df = pd.read_csv('Data/titanic data.csv')

Let's clean the data a bit by taking care of columns that have lots of missing values:

>>> df.count(0)

We can see that the Ticket and Cabin columns won't add much value to the
model building process as the Ticket column is basically a unique identifier
for each passenger and the Cabin column is mostly empty. Also, we'll remove
the rows with the missing values.

We'll remove these two columns from our DataFrame:

>>> # Applying axis as 1 to remove the columns with the following labels

>>> df = df.drop(['Ticket','Cabin','Name'], axis=1)

>>> # Remove missing values

>>> df = df.dropna()

Chapter 7

[141]

Creating training and testing sets
In the preceding code, we removed the Ticket, Cabin, and Name columns, followed
by the missing values.

We'll use a Python package called Patsy, which helps in describing statistical models.
It helps in defining a dependent and independent variable formula that is similar to
R. The variable that is defined left of '~' is the dependent variable, and the variable
that is defined to right of it are the independent variables. The variables enclosed
within C() are treated as categorical variables.

Now, we'll create the training and test sets from the data:

>>> formula = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp + C(Embarked)
 + Parch'

>>> # create a results dictionary to hold our regression results for easy
>>> # analysis later

>>> df_train = df.iloc[0: 600, :]

>>> df_test = df.iloc[600: , :]

>>> #Splitting the data into dependent and independent variables

>>> y_train,x_train = dmatrices(formula, data=df_train,
 return_type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=df_test,
 return_type='dataframe')

In the preceding code, we define the equation in the formula variables where
survived is the dependent variable and the ones to the right of it are the independent
variables. After this, we take the first 600 rows as the training set and the remaining
rows in the df DataFrame as the test set.

Finally, we use the dmatrices of the Patsy package, which takes in the formula
and input a DataFrame to create a DataFrame. This is ready to be inputted to the
modeling functions of statsmodels and SciKit.

Estimating the Likelihood of Events

[142]

Building a model
We'll use the statsmodels package to build a model:

>>> # instantiate our model

>>> model = sm.Logit(y_train,x_train)

>>> res = model.fit()

>>> res.summary()

Here is the output of the preceding code:

We can see that the Maximum Likelihood Estimation has been used to predict the
coefficients. The pseudo r square is similar to the r square of linear regression, which
is used to measure the goodness of it. A pseudo r square value between 0.2 and 0.4
is considered good that we have got a value of 0.33.

Chapter 7

[143]

From the preceding table, we can see that the port of embarkation and number of
parents/children are significant predictors as their p-values are higher than 0.05.

We'll rebuild the model by using predictors, such as class, age, sex and number
of siblings:

>>> formula = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp '

>>> y_train,x_train = dmatrices(formula, data=df_train, return_
type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=df_test, return_
type='dataframe')

>>> # instantiate our model

>>> model = sm.Logit(y_train,x_train)

>>> res = model.fit()

>>> res.summary()

We can see that all the predictors are significant in the preceding model.

Estimating the Likelihood of Events

[144]

Model evaluation
Now, let's see the distribution of the predictions on the training data with the
following code:

>>> kde_res = KDEUnivariate(res.predict())

>>> kde_res.fit()

>>> plt.plot(kde_res.support,kde_res.density)

>>> plt.fill_between(kde_res.support,kde_res.density, alpha=0.2)

>>> plt.title("Distribution of our Predictions")

In the preceding code, we use the kernel density estimation to find the probability
density of the predicted values. This helps us to understand which areas of the
predicted probability are denser.

From the preceding plot, we can see that the density is higher near the probabilities
of 0 and 1, which is a good sign and shows that the model is able to predict some
patterns from the data given. It also shows that the density is the highest near
0, which means that a lot of people did not survive. This proves the analysis we
performed in Chapter 3, Finding a Needle in a Haystack.

Chapter 7

[145]

Let's see the prediction distribution based on the male gender:

>>> plt.scatter(res.predict(),x_train['C(Sex)[T.male]'] , alpha=0.2)

>>> plt.grid(b=True, which='major', axis='x')

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Male Gender")

>>> plt.title("The Change of Survival Probability by Gender being Male")

In the preceding code, we created a scatter plot between the predicted probability of
survival and a flag indicating that the passengers are male.

We can see that the model prediction shows that if the passenger is male, then
the chances of survival are lower compared to females. This was also shown in
our analysis in Chapter 3, Finding a Needle in a Haystack, where it was seen that
females had a higher survival rate.

Estimating the Likelihood of Events

[146]

Now, let's see the distribution of the prediction based on the lower class of
the passengers:

>>> plt.scatter(res.predict(),x_train['C(Pclass)[T.3]'] , alpha=0.2)

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Class Bool") # Boolean class to show if its 3rd class

>>> plt.grid(b=True, which='major', axis='x')

>>> plt.title("The Change of Survival Probability by Lower

 Class which is 3rd class")

We can see that the lower class passengers have a lower probability of survival as the
probability is more concentrated toward 0 when compared to the other classes.

Chapter 7

[147]

Let's see the distribution of the probability with respect to the age of the passengers:

>>> plt.scatter(res.predict(),x_train.Age , alpha=0.2)

>>> plt.grid(True, linewidth=0.15)

>>> plt.title("The Change of Survival Probability by Age")

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Age")

If you observe the preceding plot, it can be seen that as the age of the passenger
increases, the probability leans toward the left-hand side of the graph, which shows
that elderly people have a lower probability of survival.

Estimating the Likelihood of Events

[148]

Let's see the distribution of the probability with respect to the number of
siblings/spouses:

>>> plt.scatter(res.predict(),x_train.SibSp , alpha=0.2)

>>> plt.grid(True, linewidth=0.15)

>>> plt.title("The Change of Survival Probability by Number of

 siblings/spouses")

>>> plt.xlabel("Predicted chance of survival")

>>> ylabel("No. of Siblings/Spouses")

From the preceding graph, the only pattern we can see is that passengers with four
to five siblings/spouses had a lower probability of survival. For the remaining
passengers, there is a more or less random distribution.

Evaluating a model based on test data
Let's predict by using the model on the test data and also show the performance of
the model through precision and recall by maintaining a threshold of 0.7:

>>> y_pred = res.predict(x_test)

>>> y_pred_flag = y_pred > 0.7

>>> print pd.crosstab(y_test.Survived

 ,y_pred_flag

Chapter 7

[149]

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test,y_pred_flag)

In the preceding code, we get the predicted probability on the test data followed
by assigning True or False for an event based on the threshold of 0.7. We use the
crosstab function of pandas, which helps in displaying the frequency distribution
between two variables. We'll use this to get the crosstab between the actual and
predicted values, and then we will use the classification_report function of
SciKit to get the precision and recall values:

The following image shows the precision and recall on the test data:

We can see that all the nonsurvivors have been predicted correctly, but the model is
able to predict only half of the survivors correctly based on the 0.7 threshold. Note
that the precision and recall values will vary with the threshold that is used.

Let's understand what precision and recall mean.

• Precision: Precision tells you that among all the predictions of class 0 or class
1, how many of them have been correctly predicted. So, in the preceding
case, 76% of the prediction of nonsurvivors is correct and 100% of the
prediction of those who have survived is correct.

• Recall: Recall tells you that out of the actual instances, how many of them have
been predicted correctly. So, in the preceding case, all the people who did not
survive have been predicted correctly with an accuracy of 100%, but of all the
people who survived, only 53% of them have been predicted correctly.

Estimating the Likelihood of Events

[150]

Let's plot the Receiver Operating Characteristic (ROC) curve, which will be
explained as follows:

>>> # Compute ROC curve and area the curve

>>> fpr, tpr, thresholds = roc_curve(y_test, y_pred)

>>> roc_auc = auc(fpr, tpr)

>>> print "Area under the ROC curve : %f" % roc_auc

Area under the ROC curve : 0.879934

The area under the curve is 0.87, which is a good value. In the preceding code, we
use the roc_curve function to get the False and True Positive rates, respectively,
which are defined as follows:

The False Positive rate is FP
FP TN+

 which is also called fallout, and the True Positive

rate is ()/ /TPR TP P TP TP FN= = + which is also called sensitivity.

Here are some of our observations:

• False Positive (FP): This is a positive prediction, which is actually wrong.
So, in the preceding crosstab, 0 is False Positive

• True Positive (TP): This is a positive prediction, which is actually right.
So, in the preceding crosstab, 24 is True Positive

• True Negative (TN): This is a negative prediction, which is actually right.
So, in the above crosstab, 67 is True Negative

• False Negative (FN): This is a negative prediction, which is actually wrong.
So, in the preceding cross tab, 21 is False Negative

So, a False Positive rate tells us that among all the people who did not survive, what
percentage have been predicted as survived. The True Positive rate tells us that
among all the people who survived, what percentage of them have been predicted as
survived. Ideally, False Positive rates should be low and True Positive rates should
be high.

The roc_curve function is created by taking the TPR and FPR at different threshold
values and then plotting them against each other.

The roc_curve function gives the False and True Positive rates at different
thresholds, and this will be utilized to plot the ROC curve:

>>> # Plot ROC curve

>>> plt.clf()

Chapter 7

[151]

>>> plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)

>>> plt.plot([0, 1], [0, 1], 'k--')

>>> plt.xlim([0.0, 1.0])

>>> plt.ylim([0.0, 1.0])

>>> plt.xlabel('False Positive Rate')

>>> plt.ylabel('True Positive Rate')

>>> plt.title('Receiver operating characteristic example')

>>> plt.legend(loc="lower right")

>>> plt.show()

Accuracy is measured by the area under the ROC curve. An area of 1 represents a
perfect test; an area of 0.5 represents that the model is as good as a random guess.
A rough guide to classify the accuracy of a diagnostic test is the traditional academic
point system as follows:

Range Category
0.90-1 This refers to excellent (A)
0.80-0.90 This refers to good (B)
0.70-0.80 This refers to fair (C)
0.60-0.70 This refers to poor (D)
0.50-0.60 This refers to fail (F)

Estimating the Likelihood of Events

[152]

The dotted line in the preceding graph has an AUC of 0.50, which is not good. Our
model gives us an AUC of 0.88, which is really good and is the blue line on the graph.

Model building and evaluation with SciKit
Let's build the same model shown earlier by using SciKit:

>>> # instantiate a logistic regression model, and fit with X and y

>>> model = LogisticRegression()

>>> model = model.fit(x_train, y_train.Survived)

In the preceding code, we create an object of the LogisticRegression method and
then fit the model using our training data:

>>> # examine the coefficients

>>> pd.DataFrame(zip(x_train.columns, np.transpose(model.coef_)))

The first column contains our dependent variable name and the second column
contains the coefficient values. We can see that the coefficients of our predictor
are similar but not same as the model built using the statsmodels package.

Let's see how our precision and recall are performing:

>>> y_pred = model.predict_proba(x_test)

>>> y_pred_flag = y_pred[:,1] > 0.7

>>> print pd.crosstab(y_test.Survived

 ,y_pred_flag

Chapter 7

[153]

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test,y_pred_flag)

The following shows the precision and recall on the test data:

We can see that there is a slight difference in performance compared to the previous
model that we created. There are two instances of positive predictions that have
shifted to negative predictions.

Let's compute the ROC and area under the curve:

>>> # Compute ROC curve and area the curve

>>> fpr, tpr, thresholds = roc_curve(y_test, y_pred[:,1])

>>> roc_auc = auc(fpr, tpr)

>>> print "Area under the ROC curve : %f" % roc_auc

Area under the ROC curve :0.878275

It's nearly the same but slightly less than the AUC of the previous model.

Let's plot the ROC curve, which will be almost identical to the previous model:

>>> # Plot ROC curve

>>> plt.clf()

>>> plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)

>>> plt.plot([0, 1], [0, 1], 'k--')

Estimating the Likelihood of Events

[154]

>>> plt.xlim([0.0, 1.0])

>>> plt.ylim([0.0, 1.0])

>>> plt.xlabel('False Positive Rate')

>>> plt.ylabel('True Positive Rate')

>>> plt.title('Receiver operating characteristic example')

>>> plt.legend(loc="lower right")

>>> plt.show()

Summary
In this chapter, you learned the purpose of logistic regression. You learned how
to build a logistic regression model using statsmodels and SciKit, and then how
to evaluate the model and see whether it's a good model or not.

In the next chapter, you'll learn how to generate recommendations, such as the
ones you see on http://www.amazon.com/, where you'll be recommended new
items based on your purchase history. Similar items can also be shown to you
based on the product that you are currently browsing.

http://www.amazon.com/

[155]

Generating
Recommendations with

Collaborative Filtering
Collaborative filtering is the process of filtering for information or patterns using
techniques including collaboration among multiple agents, viewpoints, data sources,
and so on. Collaborative filtering methods have been applied to many different
kinds of data, including sensing and monitoring data, such as mineral exploration,
environmental sensing over large areas or multiple sensors; financial data, such as
financial service institutions that integrate many financial sources; or in electronic
commerce and web applications where the focus is on user data and so on.

The basic principle behind the collaborative filtering approach is that it tries to find
people who are similar to each other by looking at their tastes. Let's say if a person
primarily likes action movies, then it will try to find a person who has seen similar
kinds of movies and it will try to recommend the one that hasn't been seen by the
first person, but seen by the second person.

We'll be focusing on the following types of collaborative filtering in this chapter:

• User-based collaborative filtering
• Item-based collaborative filtering

Generating Recommendations with Collaborative Filtering

[156]

Recommendation data
We will use a set of users who have given ratings to the movies of their choice. The
following is a dictionary object containing the different users in the form of keys and
their values in the form of a dictionary of movies, with each movie's value being the
rating given by a user:

movie_user_preferences={'Jill': {'Avenger: Age of Ultron': 7.0,

 'Django Unchained': 6.5,

 'Gone Girl': 9.0,

 'Kill the Messenger': 8.0},

'Julia': {'Avenger: Age of Ultron': 10.0,

 'Django Unchained': 6.0,

 'Gone Girl': 6.5,

 'Kill the Messenger': 6.0,

 'Zoolander': 6.5},

'Max': {'Avenger: Age of Ultron': 7.0,

 'Django Unchained': 7.0,

 'Gone Girl': 10.0,

 'Horrible Bosses 2': 6.0,

 'Kill the Messenger': 5.0,

 'Zoolander': 10.0},

'Robert': {'Avenger: Age of Ultron': 8.0,

 'Django Unchained': 7.0,

 'Horrible Bosses 2': 5.0,

 'Kill the Messenger': 9.0,

 'Zoolander': 9.0},

'Sam': {'Avenger: Age of Ultron': 10.0,

 'Django Unchained': 7.5,

 'Gone Girl': 6.0,

 'Horrible Bosses 2': 3.0,

 'Kill the Messenger': 5.5,

 'Zoolander': 7.0},

'Toby': {'Avenger: Age of Ultron': 8.5,

 'Django Unchained': 9.0,

 'Zoolander': 2.0},

'William': {'Avenger: Age of Ultron': 6.0,

Chapter 8

[157]

 'Django Unchained': 8.0,

 'Gone Girl': 7.0,

 'Horrible Bosses 2': 4.0,

 'Kill the Messenger': 6.5,

 'Zoolander': 4.0}}

movie_user_preferences['William']['Gone Girl']

7.0

User-based collaborative filtering
Let's start to build a user-based collaborative filter by finding users who are similar
to each other.

Finding similar users
When you have data about what people like, you need a way to determine the
similarity between different users. The similarity between different users is determined
by comparing each user with every other user and computing a similarity score. This
similarity score can be computed using the Pearson correlation, the Euclidean distance,
the Manhattan distance, and so on.

The Euclidean distance score
The Euclidean distance is the minimum distance between two points in space. Let's
try to understand this by plotting the users who have watched Django Unchained
and Avengers.

We'll create a DataFrame that contains the user, django, and avenger columns,
where django and avenger contain the ratings given by the user:

>>> data = []

>>> for i in movie_user_preferences.keys():

 try:

 data.append((i

 ,movie_user_preferences[i]['Django Unchained']

 ,movie_user_preferences[i]['Avenger: Age of Ultron']))

 except:

Generating Recommendations with Collaborative Filtering

[158]

 pass

>>> df = pd.DataFrame(data = data, columns = ['user', 'django',
 'avenger'])

>>> df

Using the preceding DataFrame, we'll plot the different users by keeping Django as
the y axis and Avengers as the x axis:

>>> plt.scatter(df.django, df.avenger)

>>> plt.xlabel('Django')

>>> plt.ylabel('Avengers')

>>> for i,txt in enumerate(df.user):

 plt.annotate(txt, (df.django[i],df.avenger[i]))

>>> plt.show()

Chapter 8

[159]

We can see that Jill and Toby are quite far away from each other, whereas Robert
and Max are quite close to each other. Let's compute the Euclidean distance between
the two:

>>> #Euclidean distance between Jill and Toby rating

>>> sqrt(pow(8.5-7,2)+pow(9-6.5,2))

2.9154759474226504

>>> #Euclidean distance between Robert and Max rating

>>> sqrt(pow(8-7,2)+pow(7-7,2))

1.0

We can see that the further the users are away from each other, the higher the
Euclidean distance. As seen in the preceding code, the smaller the Euclidean
distance, the greater is the similarity. We'll divide the Euclidean distance by 1
so that we get a metric that represents a greater similarity for a higher number.
We'll also add 1 in the denominator to avoid getting ZeroDivisionError.

>>> #Similarity Score based on Euclidean distance between Jill and Toby

>>> 1/(1 + sqrt(pow(8.5-7,2)+pow(9-6.5,2)))

0.2553967929896867

>>> #Similarity Score based on Euclidean distance between Robert and Max

>>> 1/(1 + sqrt(pow(8-7,2)+pow(7-7,2)))

0.5

Let's create a function that calculates the similarity score based on the Euclidean
distance between two users where all the movies that they watched are taken into
consideration, apart from the two movies that we mentioned earlier:

>>> # Returns a distance-based similarity score for person1 and person2

>>> def sim_distance(prefs,person1,person2):

 # Get the list of shared_items

 si={}

 for item in prefs[person1]:

 if item in prefs[person2]:

Generating Recommendations with Collaborative Filtering

[160]

 si[item]=1

 # if they have no ratings in common, return 0

 if len(si)==0: return 0

 # Add up the squares of all the differences

 sum_of_squares=sum([pow(prefs[person1][item] -
 prefs[person2][item],2)

 for item in prefs[person1] if item in prefs[person2]])

 return 1/(1+sum_of_squares)

Let's apply the preceding function to calculate the similarity score between Sam
and Toby:

>>> sim_distance(movie_user_preferences,'Sam','Toby')

0.03278688524590164

The Pearson correlation score
We have already studied what the Pearson correlation is in Chapter 2, Inferential
Statistics. The Euclidean distance is how far apart the users are from each other,
whereas the Pearson correlation takes into account the association between two
people. We'll use the Pearson correlation to compute the similarity score between
two users.

Chapter 8

[161]

Let's see how Sam and Toby are correlated to each other:

>>> def create_movie_user_df(input_data, user1, user2):

 data = []

 for movie in input_data[user1].keys():

 if movie in input_data[user2].keys():

 try:

 data.append((movie

 ,input_data[user1][movie]

 ,input_data[user2][movie]))

 except:

 pass

 return pd.DataFrame(data = data, columns = ['movie', user1,
 user2])

>>> df = create_movie_user_df(movie_user_preferences, 'Sam', 'William')

>>> df

Generating Recommendations with Collaborative Filtering

[162]

Once we have created the preceding DataFrame, we will plot the scatter plot as we
did earlier:

>>> plt.scatter(df.Sam, df.William)

>>> plt.xlabel('Sam')

>>> plt.ylabel('William')

>>> for i,txt in enumerate(df.movie):

 plt.annotate(txt, (df.Sam[i],df.William[i]))

>>> plt.show()

Let's compute the Pearson correlation between Sam and William:

>>> pearsonr(df.Sam,df.William)

(0.37067401970178415, 0.46945413268410929)

Let's see the scatter plot of correlation between Sam and Julia:

>>> df = create_movie_user_df(movie_user_preferences, 'Sam', 'Julia')

>>> df

>>> plt.scatter(df.Sam, df.Julia)

>>> plt.xlabel('Sam')

>>> plt.ylabel('Julia')

Chapter 8

[163]

>>> for i,txt in enumerate(df.movie):

 plt.annotate(txt, (df.Sam[i],df.Julia[i]))

>>> plt.show()

Let's compute the Pearson correlation between Sam and Julia:

>>> pearsonr(df.Sam,df.Julia)

(0.88285183326025096, 0.047277507003439537)

We can see that Sam and Julia are very similar to each other as the correlation value
of 0.88 is close to 1.

We'll now create a function that takes in the data and calculates the Pearson
correlation between the two users:

>>> # Returns the Pearson correlation coefficient for p1 and p2

>>> def sim_pearson(prefs,p1,p2):

 # Get the list of mutually rated items

 si={}

 for item in prefs[p1]:

 if item in prefs[p2]: si[item]=1

 # Find the number of elements

Generating Recommendations with Collaborative Filtering

[164]

 n=len(si)

 # if they are no ratings in common, return 0

 if n==0: return 0

 # Add up all the preferences

 sum1=sum([prefs[p1][it] for it in si])

 sum2=sum([prefs[p2][it] for it in si])

 # Sum up the squares

 sum1Sq=sum([pow(prefs[p1][it],2) for it in si])

 sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

 # Sum up the products

 pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

 # Calculate Pearson score

 num=pSum-(sum1*sum2/n)

 den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))

 if den==0: return 0

 r=num/den

 return r

Let's compute the Pearson correlation between Sam and Julia by using the
preceding function and verify if it's computing correctly:

>>> sim_pearson(movie_user_preferences,'Sam','Julia')

0.8828518332602507

Chapter 8

[165]

Ranking the users
Once we have the methods of computing the similarity between users, we then
proceed to rank them based on the similarity between particular users. I would
like to know the people who are most similar to me. We can achieve this with the
following code:

>>> def top_matches(prefs,person,n=5,similarity=sim_pearson):

 scores=[(similarity(prefs,person,other),other)

 for other in prefs if other!=person]

 # Sort the list so the highest scores appear at the top

 scores.sort()

 scores.reverse()

 return scores[0:n]

Let's see the top three people who are similar to Sam:

>>> top_matches(movie_user_preferences,'Toby',

 n = 3, similarity = sim_distance)

[(0.10526315789473684, 'Jill'),

(0.08163265306122448, 'William'),

(0.03278688524590164, 'Sam')]

Recommending items
Once you know who is similar to you, you would now like to know the movies that
are recommended for you. The following image shows how to compute a score for
the movies so that we can find out what the most recommended movie is:

Generating Recommendations with Collaborative Filtering

[166]

We multiply the similarity score by the movie ratings of each user. We then sum up
this new score and then divide it by the applicable similarity score. In summary, we
are taking the weighted average based on the similarity score.

From the preceding output, we can see that Gone Girl has a very good score in terms
of being recommended, and this is then followed by Kill the Messenger.

We'll now create a function that will generate recommendations for a user by
encompassing the preceding logic:

>>> # Gets recommendations for a person by using a weighted average

>>> # of every other user's rankings

>>> def get_recommendations(prefs,person,similarity=sim_pearson):

 totals={}

 simSums={}

 for other in prefs:

 # don't compare me to myself

 if other==person: continue

 sim=similarity(prefs,person,other)

 # ignore scores of zero or lower

 if sim<=0: continue

 for item in prefs[other]:

 # only score movies I haven't seen yet

 if item not in prefs[person] or prefs[person][item]==0:

 # Similarity * Score

 totals.setdefault(item,0)

 totals[item]+=prefs[other][item]*sim

 # Sum of similarities

 simSums.setdefault(item,0)

 simSums[item]+=sim

 # Create the normalized list

 rankings=[(total/simSums[item],item) for item,total in
 totals.items()]

 # Return the sorted list

Chapter 8

[167]

 rankings.sort()

 rankings.reverse()

 return rankings

Let's get the recommendation by using the preceding function:

>>> get_recommendations(movie_user_preferences,'Toby')

[(6.587965809121004, 'Gone Girl'),

(6.087965809121004, 'Kill the Messenger'),

(3.608127720528246, 'Horrible Bosses 2')]

>>> getRecommendations(movie_user_preferences,'Toby',
 similarity = sim_distance)

[(7.773043918833565, 'Gone Girl'),

(6.976295282563891, 'Kill the Messenger'),

(4.093380589669568, 'Horrible Bosses 2')]

We have now created a user-based collaborative filter.

Item-based collaborative filtering
User-based collaborative filtering finds the similarities between users, and then using
these similarities between users, a recommendation is made.

Item-based collaborative filtering finds the similarities between items. This is then
used to find new recommendations for a user.

To begin with item-based collaborative filtering, we'll first have to invert our dataset
by putting the movies in the first layer, followed by the users in the second layer:

>>> def transform_prefs(prefs):

 result={}

 for person in prefs:

 for item in prefs[person]:

 result.setdefault(item,{})

 # Flip item and person

Generating Recommendations with Collaborative Filtering

[168]

 result[item][person]=prefs[person][item]

 return result

{'Avenger: Age of Ultron': {'Jill': 7.0,
 'Julia': 10.0,

 'Max': 7.0,

 'Robert': 8.0,

 'Sam': 10.0,

 'Toby': 8.5,

 'William': 6.0},

'Django Unchained': {'Jill': 6.5,

 'Julia': 6.0,

 'Max': 7.0,

 'Robert': 7.0,

 'Sam': 7.5,

 'Toby': 9.0,

 'William': 8.0},

'Gone Girl': {'Jill': 9.0,

 'Julia': 6.5,

 'Max': 10.0,

 'Sam': 6.0,

 'William': 7.0},

'Horrible Bosses 2': {'Max': 6.0, 'Robert': 5.0, 'Sam': 3.0,
 'William': 4.0},

'Kill the Messenger': {'Jill': 8.0,

 'Julia': 6.0,

 'Max': 5.0,

 'Robert': 9.0,

 'Sam': 5.5,

 'William': 6.5},

'Zoolander': {'Julia': 6.5,

 'Max': 10.0,

 'Robert': 9.0,

 'Sam': 7.0,

 'Toby': 2.0,

 'William': 4.0}}

Chapter 8

[169]

Now, we would like to find similar movies for each of the movies:

>>> def calculate_similar_items(prefs,n=10):

 # Create a dictionary of items showing which other items they

 # are most similar to.

 result={}

 # Invert the preference matrix to be item-centric

 itemPrefs=transform_prefs(prefs)

 c=0

 for item in itemPrefs:

 # Status updates for large datasets

 c+=1

 if c%100==0: print "%d / %d" % (c,len(itemPrefs))

 # Find the most similar items to this one

 scores=top_matches(itemPrefs, item, n=n,
 similarity=sim_distance)

 result[item]=scores

 return result

>>> itemsim=calculate_similar_items(movie_user_preferences)

>>> itemsim

{'Avenger: Age of Ultron': [(0.034782608695652174, 'Django
 Unchained'),

 (0.023121387283236993, 'Gone Girl'),

 (0.022988505747126436, 'Kill the Messenger'),

 (0.015625, 'Horrible Bosses 2'),

 (0.012738853503184714, 'Zoolander')],

'Django Unchained': [(0.05714285714285714, 'Kill the Messenger'),

 (0.05063291139240506, 'Gone Girl'),

 (0.034782608695652174, 'Avenger: Age of Ultron'),

 (0.023668639053254437, 'Horrible Bosses 2'),

 (0.012578616352201259, 'Zoolander')],

'Gone Girl': [(0.09090909090909091, 'Zoolander'),

 (0.05063291139240506, 'Django Unchained'),

 (0.036036036036036036, 'Kill the Messenger'),

Generating Recommendations with Collaborative Filtering

[170]

 (0.02857142857142857, 'Horrible Bosses 2'),

 (0.023121387283236993, 'Avenger: Age of Ultron')],

'Horrible Bosses 2': [(0.03278688524590164, 'Kill the Messenger'),

 (0.02857142857142857, 'Gone Girl'),

 (0.023668639053254437, 'Django Unchained'),

 (0.02040816326530612, 'Zoolander'),

 (0.015625, 'Avenger: Age of Ultron')],

'Kill the Messenger': [(0.05714285714285714, 'Django Unchained'),

 (0.036036036036036036, 'Gone Girl'),

 (0.03278688524590164, 'Horrible Bosses 2'),

 (0.02877697841726619, 'Zoolander'),

 (0.022988505747126436, 'Avenger: Age of Ultron')],

'Zoolander': [(0.09090909090909091, 'Gone Girl'),

 (0.02877697841726619, 'Kill the Messenger'),

 (0.02040816326530612, 'Horrible Bosses 2'),

 (0.012738853503184714, 'Avenger: Age of Ultron'),

 (0.012578616352201259, 'Django Unchained')]}

Once we have similarities between all the movies, we would like to generate the
recommendations for a user.

The following table shows the movies seen by Toby under the Movie column and
the rating given by Toby. The Movie column contains movies similar to the ones
seen by Toby. The columns with R as a prefix are the products of the rating and
similarity score.

Finally, we normalize the values by summing the R prefixed column, then dividing it
by the sum of the similarity score of the Movie column.

The following table shows Kill The Messenger as the most recommended movie:

Chapter 8

[171]

We would now like to generate the recommendations by encompassing the
preceding logic:

>>> def get_recommendedItems(prefs,itemMatch,user):

 userRatings=prefs[user]

 scores={}

 totalSim={}

 # Loop over items rated by this user

 for (item,rating) in userRatings.items():

 # Loop over items similar to this one

 for (similarity,item2) in itemMatch[item]:

 # Ignore if this user has already rated this item

 if item2 in userRatings: continue

 # Weighted sum of rating times similarity

 scores.setdefault(item2,0)

 scores[item2]+=similarity*rating

 # Sum of all the similarities

 totalSim.setdefault(item2,0)

 totalSim[item2]+=similarity

 # Divide each total score by total weighting to get an average

 rankings=[(score/totalSim[item],item) for
 item,score in scores.items()]

 # Return the rankings from highest to lowest

 rankings.sort()

 rankings.reverse()

 return rankings

 # Divide each total score by total weighting to get an average

Generating Recommendations with Collaborative Filtering

[172]

 rankings=[(score/totalSim[item],item) for
 item,score in scores.items()]

 # Return the rankings from highest to lowest

 rankings.sort()

 rankings.reverse()

 return rankings

Let's generate recommendations for Toby, using the item-based recommender:

>>> get_recommendedItems(movie_user_preferences, itemsim,'Toby')

[(7.044841200971884, 'Kill the Messenger'),

(6.476296577225752, 'Horrible Bosses 2'),

(5.0651585538275095, 'Gone Girl')]

Summary
In this chapter, you learned how to perform user-based and item-based collaborative
filtering. You also learned some of the metrics that can be used to compute the
similarity between users as well as items, and how to apply this similarity to
generate recommendations for end users.

The next chapter will cover different ensemble models that basically combine
multiple models to increase the performance of predictions.

[173]

Pushing Boundaries with
Ensemble Models

Ensemble modeling is a process where two or more models are generated and then
their results are combined. In this chapter, we'll cover a random forest, which is a
nonparametric modeling technique where multiple decision trees are created during
training time, and then the result of these decision trees are averaged to give the
required output. It's called a random forest because many decision trees are created
during training time on randomly selected features.

An analogy of this would be to try to guess the number of pebbles in a glass jar.
There are groups of people who try to guess the number of pebbles in the jar.
Individually, each person would be very wrong in guessing the number of pebbles
in the glass jar, but when you average each of their guesses, the resulting averaged
guess would be pretty close to the actual number of pebbles in the jar.

In this chapter, you'll learn how to:

• Work with census data on US earnings and explore this data
• Make decision trees to predict if a person is earning more than $50K
• Make random forest models and get improved data performance

Pushing Boundaries with Ensemble Models

[174]

The census income dataset
The following table is a census dataset on income created by the University of
California, Irvine:

Columns Description
age This refers to the age of a person
work class This refers to the type of employment a person is involved in
education This refers to the education level of a person
marital_
status This refers to whether a person is married or not
occupation This refers to the type of jobs a person is involved in
relationship This refers to the type of relationship of the person
race This refers to the ethnicity of a person
gender This refers to the gender of a person
hours_per_
week This refers to the average hours worked per week
native_
country This refers to the country of origin
greater_
than_50k

This refers to the flag that indicates whether a person is earning more
than $50K in a year

Let's load this data:

>>> data = pd.read_csv('./Data/census.csv')

Let's check the fill rate of the data:

>>> data.count(0)/data.shape[0] * 100

age 100.000000

workclass 94.361179

education 100.000000

education_num 100.000000

marital_status 100.000000

occupation 94.339681

relationship 100.000000

race 100.000000

gender 100.000000

capital_gain 100.000000

capital_loss 100.000000

Chapter 9

[175]

hours_per_week 100.000000

native_country 98.209459

greater_than_50k 100.000000

dtype: float64

We can see that the columns have a good fill rate. We'll remove the rows that have
empty values and also remove the education_num column as it contains the same
information, such as education and its unique codes:

>>> data = data.dropna(how='any')

>>> del data['education_num']

Exploring the census data
Let's explore the census data and understand the patterns with the data before
building the model.

Hypothesis 1: People who are older earn more
We'll create a histogram of people who earn more than $50K:

>>> hist_above_50 = plt.hist(data[data.greater_than_50k ==
 1].age.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Age distribution of Above 50K earners')

>>> plt.xlabel('Age')

>>> plt.ylabel('Frequency')

Here is the histogram for the preceding code:

Pushing Boundaries with Ensemble Models

[176]

Now, we'll plot a histogram of the age of the people who earn less than $50K a year,
using this code:

>>> hist_below_50 = plt.hist(data[data.greater_than_50k ==
 0].age.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Age distribution of below 50K earners')

>>> plt.xlabel('Age')

>>> plt.ylabel('Frequency)

We can see that people who earn above $50K are mostly aged between their
late 30s and mid 50s, whereas people who earn less than $50K are primarily
aged between 20 and 30.

Hypothesis 2: Income bias based on working class
Let's see what the distribution of people earning more than $50K between different
working class groups is. We'll see the percentage of earners who earn more than
$50K in each of the groups, using the following code:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('workclass').workclass.count()

 , data[data.greater_than_50k == 0]
 .groupby('workclass').workclass.count()], axis=1)

>>> dist_data.columns = ['wk_class_gt50','wk_class_lt50']

>>> dist_data_final = dist_data.wk_class_gt50 /
 (dist_data.wk_class_lt50 +
 dist_data.wk_class_gt50)

>>> dist_data_final.sort(ascending=False)

Chapter 9

[177]

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r',
 y='Percentage')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,
 fontsize=8, ha='right')

>>> ax.set_xlabel('Working Class')

>>> ax.set_ylabel('Percentage of People')

We see that people who are self-employed and have a company have got the
maximum share of people who earn more than $50K. The second most well-off
group in terms of earning are federal government employees.

Hypothesis 3: People with more education earn
more
Education is an important field. It should be related to the level of earning power of
an individual:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('education').education.count()

 , data[data.greater_than_50k ==
 0].groupby('education').education.count()],
 axis=1)

Pushing Boundaries with Ensemble Models

[178]

>>> dist_data.columns = ['education_gt50','education_lt50']

>>> dist_data_final = dist_data.education_gt50 /
 (dist_data.education_gt50 +
 dist_data.education_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index,
 rotation=30, fontsize=8, ha='right')

>>> ax.set_xlabel('Education Level')

>>> ax.set_ylabel('Percentage of People')

We can see that the more the person is educated, the greater the number of people in
their group who earn more than $50K.

Hypothesis 4: Married people tend to earn more
Let's see how distribution is based on marital status:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('marital_status').marital_status.count()

 , data[data.greater_than_50k == 0]
 .groupby('marital_status')
 .marital_status.count()],
 axis=1)

Chapter 9

[179]

>>> dist_data.columns = ['marital_status_gt50','marital_status_lt50']

>>> dist_data_final = dist_data.marital_status_gt50 /
 (dist_data.marital_status_gt50+dist_data.marital_status_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,
 fontsize=8, ha='right')

>>> ax.set_xlabel('Marital Status')

>>> ax.set_ylabel('Percentage of People')

We can see that people who are married earn better as compared to people who
are single.

Pushing Boundaries with Ensemble Models

[180]

Hypothesis 5: There is a bias in income based on
race
Let's see how earning power is based on the race of the person:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('race').race.count()

 , data[data.greater_than_50k ==
 0].groupby('race').race.count()], axis=1)

>>> dist_data.columns = ['race_gt50','race_lt50']

>>> dist_data_final = dist_data.race_gt50 / (dist_data.race_gt50 +
 dist_data.race_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,
 fontsize=8, ha='right')

>>> ax.set_xlabel('Race')

>>> ax.set_ylabel('Percentage of People')

Asian Pacific people and Whites have the highest earning power.

Chapter 9

[181]

Hypothesis 6: There is a bias in the income based
on occupation
Let's see how earning power is based on the occupation of a person:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('occupation').occupation.count()

 , data[data.greater_than_50k == 0]
 .groupby('occupation').occupation.count()],
 axis=1)

>>> dist_data.columns = ['occupation_gt50','occupation_lt50']

>>> dist_data_final = dist_data.occupation_gt50 /
 (dist_data.occupation_gt50 +
 dist_data.occupation_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,
 fontsize=8, ha='right')

>>> ax.set_xlabel('Occupation')

>>> ax.set_ylabel('Percentage of People')

We can see that people who are in specialized or managerial positions earn more.

Pushing Boundaries with Ensemble Models

[182]

Hypothesis 7: Men earn more
Let's see how earning power is based on gender:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('gender').gender.count()

 , data[data.greater_than_50k == 0]
 .groupby('gender').gender.count()], axis=1)

>>> dist_data.columns = ['gender_gt50','gender_lt50']

>>> dist_data_final = dist_data.gender_gt50 /
 (dist_data.gender_gt50 + dist_data.gender_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,
 fontsize=8, ha='right')

>>> ax.set_xlabel('Gender')

>>> ax.set_ylabel('Percentage of People')

It's no surprise to see that males have a higher earning power as compared to
females. It will be good to see the two bars at an equal level sometime in the future.

Chapter 9

[183]

Hypothesis 8: People who clock in more hours earn
more
Let's see the distribution of people who earn above $50K based on their working
hours per week:

>>> hist_above_50 = plt.hist(data[data.greater_than_50k == 1]
 .hours_per_week.values, 10, facecolor='green',
 alpha=0.5)

>>> plt.title('Hours per week distribution of Above 50K earners')

Pushing Boundaries with Ensemble Models

[184]

Now, let's see the distribution of the earners below $50K based on their working
hours per week:

>>> hist_below_50 = plt.hist(data[data.greater_than_50k ==
 0].hours_per_week.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Hours per week distribution of Below 50K earners')

We can see that people who earn more than $50K and less than this have an average
of 40 working hours per week, but it can be seen that people who earn above $50K
have a higher number of people who work more than 40 hours.

Hypothesis 9: There is a bias in income based on
the country of origin
Let's see how earning power is based on a person's country of origin:

>>> plt.figure(figsize=(10,5))

>>> dist_data = pd.concat([data[data.greater_than_50k == 1]
 .groupby('native_country').native_country.count()

 , data[data.greater_than_50k == 0]
 .groupby('native_country').native_country
 .count()], axis=1)

>>> dist_data.columns = ['native_country_gt50','native_country_lt50']

Chapter 9

[185]

>>> dist_data_final = dist_data.native_country_gt50 /
 (dist_data.native_country_gt50 +
 dist_data.native_country_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=40,
 fontsize=8, ha='right')

>>> ax.set_xlabel(Country)

>>> ax.set_ylabel('Percentage of People')

We can see that Taiwanese, French, Iranians, and Indians are the most well-earning
people among different counties.

Pushing Boundaries with Ensemble Models

[186]

Decision trees
To understand decision tree-based models, let's try to imagine that Google wants
to recruit people for a software development job. Based on the employees that they
already have and the ones they have rejected previously, we can determine whether
an applicant was from an Ivy League college or not and what the Grade Point
Average (GPA) of the applicant was.

The decision tree will split the applicants into Ivy League and non-Ivy League
groups. The Ivy League group will then be split into high GPA and low GPA so that
people with a high GPA are likely to be tagged highly and the ones with a low GPA
are likely to get recruited.

Applicants who have a high GPA and belong to non-Ivy League colleges have a
slightly better chance of getting recruited as compared to those who have a low
GPA and belong to non-Ivy League colleges.

The preceding explanation is what a decision tree does in simple terms.

Let's create a decision tree on the basis of our data to predict what the likelihood of a
person earning more than $50K is going to be:

>>> data_test = pd.read_csv('./Data/census_test.csv')

>>> data_test = data_test.dropna(how='any')

>>> formula = 'greater_than_50k ~ age + workclass + education +
 marital_status + occupation + race + gender +
 hours_per_week + native_country '

>>> y_train,x_train = dmatrices(formula, data=data,
 return_type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=data_test,
 return_type='dataframe')

>>> clf = tree.DecisionTreeClassifier()

>>> clf = clf.fit(x_train, y_train)

Let's see how the model performs:

>>> from sklearn.metrics import classification_report

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

 ,y_pred

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

Chapter 9

[187]

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We can see that the people who don't earn more than $50K can be predicted well as
there is a precision of 85% and a recall of 87%. People who earn more than $50K can
only be predicted with a precision of 56% and a recall of 52%

Note that the order of the dependent variables given in the formula will change
these values slightly. You can experiment to see whether changing the order
of the variables will improve their precision/recall.

Random forests
We have learned how to create a decision tree but, at times, decision tree models
don't hold up well when there are many variables and a large dataset. This is
where ensemble models, such as random forest, come to rescue.

A random forest basically creates many decision trees on the dataset and then
averages out the results. If you see a singing competition, such as American Idol, or
a sporting competition, such as the Olympics, there are multiple judges. The reason
for having multiple judges is to eliminate bias and give fair results, and this is what a
random forest tries to achieve.

A decision tree can change drastically if the data changes slightly and it can easily
overfit the data.

Pushing Boundaries with Ensemble Models

[188]

Let's try to create a random forest model and see how its precision/recall is
compared to the decision tree that we just created:

>>> import sklearn.ensemble as sk

>>> clf = sk.RandomForestClassifier(n_estimators=100)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

After building the model, let's cross-validate the model on the test data:

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

 ,y_pred

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We can see that we have improved the precision and recall for the people who don't
earn more than $50K, as well as for the people who do.

Chapter 9

[189]

Let's try to do some fine-tuning to achieve better performance for the model by using
the min_samples_split parameter and setting it to 5. This parameter tells us that
the minimum number of samples required to create a split is 5:

>>> clf = sk.RandomForestClassifier(n_estimators=100,
 oob_score=True,min_samples_split=5)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

 ,y_pred

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We increased the recall of 0% to 90%, 1% to 56%, and the precision of 1% to 65%.

Pushing Boundaries with Ensemble Models

[190]

We'll fine-tune the model further by increasing the minimum number of leaves to 2
by using the min_leaf parameter. The meaning of this parameter indicates that the
minimum number of nodes to be created are 2:

>>> clf = sk.RandomForestClassifier(n_estimators=100,
 oob_score=True,min_samples_split=5, min_samples_leaf= 2)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

 ,y_pred

 ,rownames = ['Actual']

 ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We have further significantly increased the recall of 0% to 92% and the precision of
1% to 70%. This model performs decently.

Chapter 9

[191]

Let's see the importance of the variables that are contributing to the prediction.
We'll use the feature importance attribute of the clf object, and using this, we'll plot
important features, such as dependent variables that are sorted by their importance:

>>> model_ranks = pd.Series(clf.feature_importances_,
 index=x_train.columns, name='Importance')
 .sort(ascending=False, inplace=False)

>>> model_ranks.index.name = 'Features'

>>> top_features = model_ranks.iloc[:31].sort(ascending=True,
 inplace=False)

>>> plt.figure(figsize=(15,7))

>>> ax = top_features.plot(kind='barh')

>>> _ = ax.set_title("Variable Ranking")

>>> _ = ax.set_xlabel('Performance')

>>> _ = ax.set_yticklabels(top_features.index, fontsize=8)

We can see that those people who are married to a civilian spouse are very good
indicators of whether a particular group of people earn more than $50K or not. This
is followed by the age of a person, and finally, the number of hours a week a person
works. Also, people who aren't married are good indicators of predicting the group
of people who earn less than $50K.

Pushing Boundaries with Ensemble Models

[192]

Summary
In this chapter, we explored the patterns in the census data and then understood
how a decision tree was constructed and also built a decision tree model on the
data given. You then learned the concept of ensemble models with the help of a
random forest and improved the performance of prediction by using the random
forest model.

In the next chapter, you'll learn clustering, which is basically grouping elements
together that are similar to each other. We will use the k-means cluster for this.

[193]

Applying Segmentation with
k-means Clustering

Clustering comes under unsupervised learning and helps in segmenting an instance
into groups in such a way that instances in the group have similar characteristics.
Amazon might want to understand who their high-value, medium-value and
low-value users are. In the simplest form, we can determine this by bucketing the
total transaction amount of each user into three buckets. The high value customers
will come under the top 20 percentile bucket, the medium value will come under
the 20th to 80th percentile bucket, and the bottom 20 percentile will contain the
low-value customers. Amazon will know who their high value customers are
through this and ensure that they are taken care of in case of scenarios, such as
payment failures for transactions. Here, we've used a single variable, such as the
transaction amount, and we've manually bucketed the data.

We require an algorithm that can take multiple variables and helps us in bucketing
instances. The k-means is one of the most popular algorithms to perform clustering
as it is the easiest machine learning algorithm to understand under clustering. Also,
segmentation is the process of dividing customers into groups, and clustering is the
technique that helps in finding the similarities in a group and help assign customers
to a particular group.

In this chapter, you'll learn the following topics:

• Determining the ideal number of clusters through the k-means technique
• Clustering with the k-means algorithm

Applying Segmentation with k-means Clustering

[194]

The k-means algorithm and its working
The k-means clustering algorithm operates by computing the average of features,
such as the variables that we use for clustering. For example, segmenting customers
based on the average transaction amount and the average number of products
purchased in a quarter of a year. This mean then becomes the center of a cluster. The
K number is the number of clusters, that is, the technique consists of computing a K
number of means that lead to the clustering of data around these k-means.

How do we choose this K? If we have some idea of what we are looking for or how
many clusters we expect or want, then we can set K to be this number before we start
the engines and let the algorithm compute along.

If we don't know how many clusters there are, then our exploration will take a little
longer and involve some trial and error, say, as we try K=3,4, and 5.

The k-means algorithm is iterative. It starts by choosing K points at random from the
data and uses these as cluster centers just to get started. Then, at each iterative step,
this algorithm decides which row values are closest to the cluster center and assigns
K points to them.

Once this is done, we have a new arrangement of points. Thus, the center or mean of
the clusters is computed again as it may have changed. When does it not shift? When
we have stable clusters, and we have iterated till we get no benefit from iterating
further, then this is our result.

There are conditions under which k-means do not converge, that is, there are
no stable clusters, but we won't get into that here. You can read further about
the convergence of k-means at http://webdocs.cs.ualberta.ca/~nray1/
CMPUT466_551/kmeans_convergence.pdf.

A simple example
Let's look at a simple example before getting into k-means clustering. We'll use a
dataset of t-shirt sizes with the following columns:

• Size: This refers to the size of a t-shirt
• Height: This refers to the height of a person
• Weight: This refers to the weight of a person

http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf
http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf

Chapter 10

[195]

Let's look at the data:

>>> import numpy as np

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> #Reading the data from the file

>>> df = pd.read_csv('./Data/tshirt_sizes.csv')

>>> print df[:10]

 Height Weight Size

0 150 54 S

1 150 55 S

2 151 55 S

3 151 47 S

4 152 58 S

5 155 53 S

6 155 59 S

7 157 60 S

8 157 56 S

9 157 55 S

We'll plot a scatter plot of the height and weight of people and group it on the basis
of t-shirt sizes using the following code:

>>> d_color = {

 "S": "b",

 "M": "r",

 "L": "g",

 }

>>> fig, ax = plt.subplots()

>>> for size in ["S", "M", "L"]:

 color = d_color[size]

 df[df.Size == size].plot(kind='scatter', x='Height', y='Weight',
 label=size, ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper left")

Applying Segmentation with k-means Clustering

[196]

After the preceding code is executed we'll get the following output:

You can see that people who have sizes, such as small, are short in height and they
weigh less and are blue in color. Similarly, for the other t-shirt sizes, the height and
weight of people are grouped together around each other.

In the preceding case, we had labels for the t-shirt sizes. However, if we don't have
t-shirt sizes with us but have the height and weight of the individual instead and we
want to estimate the sizes based on height and weight, then this is where a k-means
algorithm helps us:

>>> from math import sqrt

>>> from scipy.stats.stats import pearsonr

>>> from sklearn.cluster import KMeans

>>> from scipy.cluster.vq import kmeans,vq

>>> from scipy.spatial.distance import cdist

>>> km = KMeans(3,init='k-means++', random_state=3425) # initialize

>>> km.fit(df[['Height','Weight']])

>>> df['SizePredict'] = km.predict(df[['Height','Weight']])

>>> df.groupby(['Size','SizePredict']).Size.count()

>>> print pd.crosstab(df.Size

Chapter 10

[197]

 ,df.SizePredict

 ,rownames = ['Size']

 ,colnames = ['SizePredict'])

SizePredict 0 1 2

Size

L 13 0 1

M 0 6 14

S 0 15 0

We have assumed three clusters in the k-means algorithm based on the t-shirt sizes
that we know (later on we'll discuss how to determine the number of clusters), and
then we input the height and weight in the k-means algorithm. Post this, we predict
buckets and assign these buckets to the SizePredict variable. We then look at
the confusion matrix between the actual and the predicted values to see where the
predicted bucket belongs. We can see that 0 bucket belongs to the L shirt size, 1 to S
and 2 to M. We'll now map the buckets back to the t-shirt sizes and plot the scatter plot:

>>> c_map = {

 2: "M",

 1: "S",

 0: "L",

 }

>>> df['SizePredict'] = df['SizePredict'].map(c_map)

>>> df['SizePredict'][:10]

0 S

1 S

2 S

3 S

4 S

5 S

6 S

7 S

8 S

9 S

Name: SizePredict, dtype: object

Applying Segmentation with k-means Clustering

[198]

We'll now plot the scatter plot:

>>> fig, ax = plt.subplots()

>>> for size in ["S", "M", "L"]:

 color = d_color[size]

 df[df.SizePredict == size].plot(kind='scatter', x='Height',
 y='Weight', label=size, ax=ax,
 color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper left")

After the preceding code is executed we'll get the following output:

We can see from the plot that the k-means algorithm was able to bucket people into
appropriate buckets where the shirt sizes can be used to identify a bucket as unique.

Chapter 10

[199]

The k-means clustering with countries
We have UN data on different countries of the world with regard to education of
people to Gross Domestic Product. We'll use this data to bucket the countries based
on their development. Here are the descriptions of the columns:

Here is a screenshot of the data:

Applying Segmentation with k-means Clustering

[200]

Lets see the data type of each column:

>>> df = pd.read_csv('./Data/UN.csv')

>>> # print the raw column information plus summary header

>>> print('----')

>>> # look at the types of each column explicitly

>>> [(col, type(df[col][0])) for col in df.columns] [(x, type(df[x][0]))
 for x in df.columns]

 [('country', str),

 ('region', str),

 ('tfr', numpy.float64),

 ('contraception', numpy.float64),

 ('educationMale', numpy.float64),

 ('educationFemale', numpy.float64),

 ('lifeMale', numpy.float64),

 ('lifeFemale', numpy.float64),

 ('infantMortality', numpy.float64),

 ('GDPperCapita', numpy.float64),

 ('economicActivityMale', numpy.float64),

 ('economicActivityFemale', numpy.float64),

 ('illiteracyMale', numpy.float64),

 ('illiteracyFemale', numpy.float64)]

Let's check the fill rate of the columns, which is basically the percentage of rows and
columns that have values:

>>> print('Percentage of the values complete in the columns')

>>> s_col_fill = df.count(0)/df.shape[0] * 100

>>> s_col_fill

country 100.000000

region 100.000000

tfr 95.169082

contraception 69.565217

educationMale 36.714976

educationFemale 36.714976

lifeMale 94.685990

lifeFemale 94.685990

infantMortality 97.101449

Chapter 10

[201]

GDPperCapita 95.169082

economicActivityMale 79.710145

economicActivityFemale 79.710145

illiteracyMale 77.294686

illiteracyFemale 77.294686

dtype: float64

We can see that the education column does not have a good fill rate followed by the
contraception column.

The columns with a good fill rate are life expectancy of lifeMale and lifeFemale,
infantMortality and GDPperCapita. With these columns, we'll remove only a few
countries, whereas if we include other columns, we'll remove a lot of countries.

There should be a clustering influence based on the life expectancy of males and
females and the infant mortality rate based on the GDP of a country. This is because
a higher GDP is better for the economy of the country, and a country with a good
economy is presumed to have a good life expectancy and low infant mortality rate:

>>> df = df[['lifeMale', 'lifeFemale', 'infantMortality',
 'GDPperCapita']]

>>> df = df.dropna(how='any')

Determining the number of clusters
Before applying the k-means algorithm, we would like to estimate the ideal number
of clusters to the group called countries:

>>> K = range(1,10)

>>> # scipy.cluster.vq.kmeans

>>> KM = [kmeans(df.values,k) for k in K] # apply kmeans 1 to 10

>>> KM[:3]

[(array([[63.52606383, 68.30904255, 44.30851064,
 5890.59574468]]), 6534.9809626620172),
(array([[6.12227273e+01, 6.57779221e+01, 5.23831169e+01,
 2.19273377e+03], [7.39588235e+01, 7.97735294e+01,
 7.73529412e+00, 2.26397353e+04]]), 2707.2294867471232),
(array([[7.43050000e+01, 8.02350000e+01, 6.60000000e+00,
 2.76644500e+04], [6.02309353e+01, 6.46640288e+01,
 5.61007194e+01, 1.47384173e+03], [7.18862069e+01,
 7.75551724e+01, 1.37931034e+01, 1.20441034e+04]]),
 1874.0284870915732)]

Applying Segmentation with k-means Clustering

[202]

In the preceding code, we define a number of clusters from 1 to 10. Using the SciPy
library's k-mean function, we compute centroids and the distortion between these
centroids and observed values associated to the distortion that is computed between
the centroid and the observed values of the cluster:

>>> euclidean_centroid = [cdist(df.values, centroid, 'euclidean') for
 (centroid,var) in k_clusters]

>>> print '-----with 1 cluster------'

>>> print euclidean_centroid[0][:5]

-----with 1 cluster------

[[3044.71049474]

 [5027.61602297]

 [4359.59802141]

 [5536.23755972]

 [2164.54439528]]

>>> print '-----with 2 cluster------'

>>> print euclidean_centroid[1][:5]

-----with 2 cluster------

[[19792.32574968 663.5918709]

 [21776.75039319 1329.9326654]

 [21108.76955936 661.83208396]

 [22285.08003662 1839.28608809]

 [14584.74322443 5862.36131557]]

We take the centroids in each of the group of clusters and compute the euclidean
distance from all the points in space to the centroids of the cluster using the dist
function in SciPy.

You can see that the first cluster has only one column since it has only one cluster in
it, and the second cluster has two columns as it has two clusters in it:

>>> dist = [np.min(D,axis=1) for D in D_k]

>>> print '-----with 1st cluster------'

>>> print dist[0][:5]

>>> print '-----with 2nd cluster------'

>>> print dist[1][:5]

-----with 1st cluster------

Chapter 10

[203]

[3044.71049474

5027.61602297

4359.59802141

5536.23755972

2164.54439528]

-----with 2nd cluster------

[663.5918709

1329.9326654

661.83208396

1839.28608809

5862.36131557]

As we have the distance of each of the observed points from the different centroids,
we can find the minimum distance of each observed point from the closest centroid.

You can see in the preceding code that the first and second clusters contain a single
value, which is the distance from the centroid.

We'll now compute the average of the sum of the square of the distance:

>>> avgWithinSS = [sum(d)/df.values.shape[0] for d in dist]

>>> avgWithinSS

[6534.9809626620136,

 2790.2101193300132,

 1890.9166153060164,

 1438.7793254224125,

 1120.3902815703975,

 903.15438285732,

 740.45942949866003,

 645.91915410445336,

 604.37878538964185]

Each of the values in the array is the average sum of the square that has one cluster
to a group of ten clusters.

Applying Segmentation with k-means Clustering

[204]

We'll now plot the elbow curve (this is the point at which a curve starts flattening
out) for the k-means clustering using this data:

>>> #Choosing the cluster number

>>> kIdx = 2

>>> # plot elbow curve

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> ax.plot(K, avgWithinSS, 'b*-')

>>> ax.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=12,

 markeredgewidth=2, markeredgecolor='r', markerfacecolor='None')

>>> plt.grid(True)

>>> plt.xlabel('Number of clusters')

>>> plt.ylabel('Average within-cluster sum of squares')

>>> tt = plt.title('Elbow for K-Means clustering')

Chapter 10

[205]

After the preceding code is executed we'll get the following output:

By looking at the curve, we can see that there is big jump from one cluster to the
other, and then a significant jump from cluster 2 to cluster 3. There is a slight jump
from cluster 3 to cluster 4, and then the jump to the subsequent number of clusters is
very small. Let's fix the elbow point at cluster 3 and create three clusters to segment
the countries.

Clustering the countries
We'll now apply the k-means algorithm to cluster the countries together:

>>> km = KMeans(3, init='k-means++', random_state = 3425) # initialize

>>> km.fit(df.values)

>>> df['countrySegment'] = km.predict(df.values)

>>> df[:5]

Applying Segmentation with k-means Clustering

[206]

After the preceding code is executed we'll get the following output:

Let's find the average GDP per capita for each country segment:

>>> df.groupby('countrySegment').GDPperCapita.mean()

>>> countrySegment

0 13800.586207

1 1624.538462

2 29681.625000

Name: GDPperCapita, dtype: float64

We can see that cluster 2 has the highest average GDP per capita and we can assume
that this includes developed countries. Cluster 0 has the second highest GDP, we
can assume this includes developing countries, and finally, cluster 1 has a very low
average GDP per capita. We can assume this includes developed nations:

>>> clust_map = {

 0:'Developing',

 1:'Under Developed',

 2:'Developed'

 }

>>> df.countrySegment = df.countrySegment.map(clust_map)

>>> df[:10]

Chapter 10

[207]

After the preceding code is executed we'll get the following output:

Let's see the GDP versus infant mortality rate of the countries for each of the clusters:

>>> d_color = {

 'Developing':'y',

 'Under Developed':'r',

 'Developed':'g'

 }

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

 color = d_color[clust]

 df[df.countrySegment == clust].plot(kind='scatter',
 x='GDPperCapita', y='infantMortality', label=clust,
 ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper right")

Applying Segmentation with k-means Clustering

[208]

After the preceding code is executed we'll get the following output:

We can see from the preceding graph that when the GDP is low, the
infantMortality rate is really high, and as the GDP increases, the
InfantMortality rate decreases.

We can also clearly see that the countries in green are the underdeveloped nations,
the one in dark blue are the developing nations, and the ones in red are the
developed nations.

Let's see the life expectancy of males with respect to the GDP:

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

 color = d_color[clust]

 df[df.countrySegment == clust].plot(kind='scatter',
 x='GDPperCapita', y='lifeMale', label=clust,
 ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="lower right")

Chapter 10

[209]

After the preceding code is executed we'll get the following output:

We can see that the life expectancy of males also increases with the GDP for the
different kinds of nations.

Now, for the life expectancy of females with regard to the GDP, we'll use this code:

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

 color = d_color[clust]

 df[df.countrySegment == clust].plot(kind='scatter',
 x='GDPperCapita', y='lifeFemale',
 label=clust, ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="lower right")

Applying Segmentation with k-means Clustering

[210]

After the preceding code is executed we'll get the following output:

There is a similar trend for females too.

Summary
In this chapter, you were made to understand the concept of clustering and learned
an unsupervised learning technique called the k-means technique. You also learned
how to determine the number of clusters before segmenting data using k-means, and
finally, you saw the results of this using the k-means clustering.

In the next chapter, you'll learn how to explore unstructured data and use text
mining techniques on unstructured data.

[211]

Analyzing Unstructured Data
with Text Mining

There is a lot of unstructured data out there, such as news articles, customer
feedbacks, Twitter tweets and so on, that contains information and needs to be
analyzed. Text mining is a data mining technique that helps us to perform an
analysis of this unstructured data.

In this chapter, we'll learn the following:

• Preprocessing data
• Plotting a wordcloud from data
• Word and sentence tokenization
• Tagging parts of speech
• Stemming and lemmatization
• Applying Stanford Named Entity Recognizer

Preprocessing data
We'll use the reviews of Mad Max: Fury Road from the online portals of BBC, Forbes,
Guardian, and Movie Pilot.

We'll extensively use the Natural Language Toolkit (NLTK) package of Python
in this chapter for text mining. You can install it with the help of instructions at
http://www.nltk.org/install.html

http://www.nltk.org/install.html

Analyzing Unstructured Data with Text Mining

[212]

We'll be performing the following actions on data:

• Removing punctuation
• Removing numbers
• Converting text to lowercase
• Removing the most common words in the English language, called stop

words, such as be, the, on, and so on.

Let's start by loading the data first:

>>> data = {}

>>> #data['bbc'] =

>>> data['bbc'] = open('./Data/madmax_review/bbc.txt','r').read()

>>> data['forbes'] =
 open('./Data/madmax_review/forbes.txt','r').read()

>>> data['guardian'] =
 open('./Data/madmax_review/guardian.txt','r').read()

>>> data['moviepilot'] =
 open('./Data/madmax_review/moviepilot.txt','r').read()

>>> # We'll convert the text to lower case

>>> #Conversion to lower case

>>> for k in data.keys():

>>> data[k] = data[k].lower()

>>> print data['bbc'][:800]

Chapter 11

[213]

Now, we'll remove the punctuation from the text as we'll be analyzing the frequency
of each word:

>>> #Removing punctuation

>>> for k in data.keys():

 data[k] = re.sub(r'[-./?!,":;()\']',' ',data[k])

>>> print data['bbc'][:800]

We'll remove the numbers from the text:

>>> #Removing number

>>> for k in data.keys():

 data[k] = re.sub('[-|0-9]',' ',data[k])

>>> print data['bbc'][:800]

Analyzing Unstructured Data with Text Mining

[214]

We'll need to download and install the stopwords package for nltk, which can be
done using the following command:

>>> import nltk

>>> nltk.download_gui()

You'll get the following GUI from which you can install the stopwords:

Post this, we'll remove commonly occurring stop words, such as ours, yours, that,
this, and so on:

>>> #Removing stopwords

>>> for k in data.keys():

 data[k] = data[k].split()

>>> stopwords_list = stopwords.words('english')

>>> stopwords_list = stopwords_list +
 ['mad','max','film','fury','miller','road']

>>> for k in data.keys():

Chapter 11

[215]

 data[k] = [w for w in data[k] if not w in stopwords_list]

>>> print data['bbc'][:80]

['creator', 'blockbuster', 'franchise', 'decides', 'dust',
'decades', 'later', 'results', 'well', 'results', 'phantom',
'menace', 'prometheus', 'indiana', 'jones', 'kingdom', 'crystal',
'skull', 'legacy', 'tarnishing', 'messes', 'fans', 'try',
'forget', 'first', 'made', 'george', 'years', 'belated', 'reboot',
'missing', 'original', 'star', 'mel', 'gibson', 'director',
'spent', 'intervening', 'years', 'children', 'fare', 'happy',
'feet', 'babe', 'pig', 'city', 'might', 'assume', 'would', 'join',
'phantom', 'menace', 'scrapheap', 'reserved', 'unloved',
'revivals', 'yet', 'somehow', 'explosive', 'new', 'barrage',
'action', 'eccentricity', 'isn', 'faithful', 'continuation',
'series', 'also', 'exhilarating', 'high', 'point', 'made',
'trilogy', 'three', 'decades', 'ago', 'seems', 'revving',
'benefit', 'uninitiated']

Creating a wordcloud
A worldcloud is a collage of words and those words that are bigger in size have a
high frequency.

You can download wordcloud with the following command if you use Ubuntu:

$ pip install git+git://github.com/amueller/word_cloud.git

You can follow the instructions to do this by referring to https://github.com/
amueller/word_cloud.

https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud

Analyzing Unstructured Data with Text Mining

[216]

Let's plot the wordcloud for the BBC by using the following code:

>>> wordcloud = WordCloud(width = 1000, height = 500)
.generate(' '.join(data['bbc']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

From the preceding wordcloud, we can make out that there are mentions about
the long duration between the 80s Mad Max and the current Mad Max. The article
talks about Mel Gibson, the cars, and the villain Immortan Joe as these are the most
frequently occurring keywords. There is also an emphasis on different aspects of the
movie given by the one keyword.

Chapter 11

[217]

Now, let's see how the wordcloud looks like for Forbes by using this code:

>>> wordcloud = WordCloud(width = 1000, height = 500)
 .generate(' '.join(data['forbes']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

Forbes talks more about the female characters.

Analyzing Unstructured Data with Text Mining

[218]

This is what the wordcloud for The Guardian looks like:

>>> wordcloud = WordCloud(width = 1000, height = 500)
 .generate(' '.join(data['guardian']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

Chapter 11

[219]

The Guardian lays an emphasis on women and water. If you have seen the movie,
then you'll understand that The Guardian emphasizes the female characters and the
lack of water in their wasteland.

Finally, this is what the word cloud looks like for moviepilot:

>>> wordcloud = WordCloud(width = 1000, height = 500)
 .generate(' '.join(data['moviepilot']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

The http://moviepilot.com/ emphasizes the character of Immortan Joe, the
characters in general, and the war boys shown in the film.

http://moviepilot.com/

Analyzing Unstructured Data with Text Mining

[220]

Word and sentence tokenization
We have dealt with word tokenization previously, but we can perform this using
NLTK as well as sentence tokenization, which is quite tricky, as the English language
has period symbols for abbreviations and other purposes. Thankfully, the sentence
tokenizer is a instance of PunktSentenceTokenizer from the tokenize.punkt
module of nltk, which helps in tokenizing sentences.

Let's look at word tokenization using this code:

>>> #Loading the forbes data

>>> data = open('./Data/madmax_review/forbes.txt','r').read()

>>> word_data = nltk.word_tokenize(data)

>>> word_data[:15]

['Pundits',

 'and',

 'critics',

 'like',

 'to',

 'blame',

 'the',

 'twin',

 'successes',

 'of',

 'Jaws',

 'and',

 'Star',

 'Wars',

 'for']

Chapter 11

[221]

Now, let's perform the sentence tokenization of the Forbes article:

>>> sent_tokenize(data)[:5]

['Pundits and critics like to blame the twin successes of Jaws and
Star Wars for turning Hollywood into something of a blockbuster
factory.', "We can debate the merits of said accusation, but for
me it comes down to one simple factor: If every would-be
blockbuster, or even most would-be blockbusters were as good as
Jaws and/or Star Wars, I imagine most of us wouldn't be
complaining nearly as much.", "That brings us to George Miller's
Mad Max: Fury Road.", "It is a revamp/reboot/sequel for a 30-year
old franchise, directed by the original helmer who hasn't been
culturally relevant in decades, featuring a new and somewhat
flavor-of-the-month actor, and seemingly only existing because of
the fact that the property is vaguely known and thus has a token
amount of built-in awareness.", "If you think that sounds like
the kind of thing I complain about rather regularly, you'd be
correct."]

You can see that each of the sentences is an element of the list after sentence
tokenization has been performed.

Parts of speech tagging
Parts of speech tagging is one of the important tasks of text analysis. It helps tag each
word based on the context of a sentence or the role that a word plays in a sentence.

Let's see how to perform part of speech tagging using nltk:

>>> pos_word_data = nltk.pos_tag(word_data)

>>> pos_word_data[: 10]

[('Pundits', 'NNS'),

 ('and', 'CC'),

 ('critics', 'NNS'),

 ('like', 'IN'),

 ('to', 'TO'),

 ('blame', 'VB'),

 ('the', 'DT'),

 ('twin', 'NN'),

 ('successes', 'NNS'),

 ('of', 'IN')]

Analyzing Unstructured Data with Text Mining

[222]

You can see tags, such as NNS, CC, IN , TO, DT, and NN. Let's see what they mean using
this code:

>>> nltk.help.upenn_tagset('NNS')

NNS: noun, common, plural
 undergraduates scotches bric-a-brac products bodyguards facets
 coasts divestitures storehouses designs clubs fragrances
 averages subjectivists apprehensions muses factory-jobs

>>> nltk.help.upenn_tagset('NN')

NN: noun, common, singular or mass
 common-carrier cabbage knuckle-duster Casino afghan shed
 thermostat investment slide humour falloff slick wind hyena
 override subhumanity machinist

>>> nltk.help.upenn_tagset('IN')

IN: preposition or conjunction, subordinating
 astride among uppon whether out inside pro despite on by
 throughout below within for towards near behind atop around if
 like until below next into if beside

>>> nltk.help.upenn_tagset('TO')

TO: "to" as preposition or infinitive marker

 to

>>> nltk.help.upenn_tagset('DT')

DT: determiner
 all an another any both del each either every half la many
 much nary neither no some such that the them these this those

>>> nltk.help.upenn_tagset('CC')

CC: conjunction, coordinating
 & 'n and both but either et for less minus neither nor or plus
 so therefore times v. versus vs. whether yet

Chapter 11

[223]

You can get more information about the tags used in the preceding code at https://
www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

You can see words used in the preceding code are tagged well. This tagging can help
us create heuristics over data and then extract information out of it. For example, we
can take out all the nouns in our article and analyze the theme of the article.

Stemming and lemmatization
Text documents can contain words in different forms, such as play, playing, and
played. They are similar and they have a common root.

Stemming and lemmatization are techniques that are used to find these common
roots. Finding the roots will help us count, play, playing, and played as a single
entity as all the words talk about play.

Stemming is more of a crude form of arriving at the root of a word; so, in the case
of the preceding example, playing would be reduced to play. Lemmatization brings
into context words, such as worse and bad, that can have a common bad root.

Stemming
Stemming is a process of reducing a word to its root form. The root form is not a
word by itself, but words can be formed by adding the right suffix to it.

If you take fish, fishes, and fishing, they all can be stemmed to fishing. Also,
study, studying, and studies can be stemmed to study, which is not a part of
the English language.

There are various types of stemming algorithms, such as Porter, Lancaster, Snowball,
and so on.

Porter is the most commonly used stemmer. It is also one of the gentlest stemmers
and is computationally intensive with regard to algorithms.

The Snowball algorithm is regarded as an improvement over Porter. Porter himself,
in fact, admits that the Snowball algorithm is better than his algorithm.

Lancaster is a more aggressive stemming algorithm. Porter and Snowball stemming
is understandable by readers, but Lancaster isn't, as it makes words more obscure.
Lancaster is considered to be the fastest algorithm among the three and it will work
very well with a large set of words, but if you are looking for something more
distinctive, then Lancaster is not for you.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Analyzing Unstructured Data with Text Mining

[224]

Let's try out the Porter Stemming Algorithm using this code:

>>> from nltk.stem.porter import PorterStemmer

>>> porter_stemmer = PorterStemmer()

>>> for w in word_data[:20]:

 print "Actual: %s Stem: %s" % (w,porter_stemmer.stem(w))

Actual: Pundits Stem: Pundit

Actual: and Stem: and

Actual: critics Stem: critic

Actual: like Stem: like

Actual: to Stem: to

Actual: blame Stem: blame

Actual: the Stem: the

Actual: twin Stem: twin

Actual: successes Stem: success

Actual: of Stem: of

Actual: Jaws Stem: Jaw

Actual: and Stem: and

Actual: Star Stem: Star

Actual: Wars Stem: War

Actual: for Stem: for

Actual: turning Stem: turn

Actual: Hollywood Stem: Hollywood

Actual: into Stem: into

Actual: something Stem: someth

Actual: of Stem: of

Let's try out the Lancaster Algorithm using this code:

>>> from nltk.stem.lancaster import LancasterStemmer

>>> lancaster_stemmer = LancasterStemmer()

>>> for w in word_data[:20]:

Chapter 11

[225]

 print "Actual: %s Stem: %s" % (w,lancaster_stemmer.stem(w))

Actual: Pundits Stem: pundit

Actual: and Stem: and

Actual: critics Stem: crit

Actual: like Stem: lik

Actual: to Stem: to

Actual: blame Stem: blam

Actual: the Stem: the

Actual: twin Stem: twin

Actual: successes Stem: success

Actual: of Stem: of

Actual: Jaws Stem: jaw

Actual: and Stem: and

Actual: Star Stem: star

Actual: Wars Stem: war

Actual: for Stem: for

Actual: turning Stem: turn

Actual: Hollywood Stem: hollywood

Actual: into Stem: into

Actual: something Stem: someth

Actual: of Stem: of

Now, let's try out the Snowball Algorithm using this code:

>>> from nltk.stem.snowball import SnowballStemmer

>>> snowball_stemmer = SnowballStemmer("english")

>>> for w in word_data[:20]:

 print "Actual: %s Stem: %s" % (w,snowball_stemmer.stem(w))

Actual: Pundits Stem: pundit

Actual: and Stem: and

Actual: critics Stem: critic

Actual: like Stem: like

Actual: to Stem: to

Analyzing Unstructured Data with Text Mining

[226]

Actual: blame Stem: blame

Actual: the Stem: the

Actual: twin Stem: twin

Actual: successes Stem: success

Actual: of Stem: of

Actual: Jaws Stem: jaw

Actual: and Stem: and

Actual: Star Stem: star

Actual: Wars Stem: war

Actual: for Stem: for

Actual: turning Stem: turn

Actual: Hollywood Stem: hollywood

Actual: into Stem: into

Actual: something Stem: someth

Actual: of Stem: of

Lemmatization
Lemmatization is similar to stemming but unlike stemming, it brings in a context of
the word.

A lemmatization-based algorithm will match a train to the word locomotive, but a
stemming algorithm won't be able to do this. A lemmatization algorithm makes use
of a dictionary to link up words.

The WordNet is a lexical database for English by Princeton, and we'll use their
lemmatization techniques:

Actual: Pundits Lemma: Pundits

Actual: and Lemma: and

Actual: critics Lemma: critic

Actual: like Lemma: like

Actual: to Lemma: to

Actual: blame Lemma: blame

Actual: the Lemma: the

Actual: twin Lemma: twin

Chapter 11

[227]

Actual: successes Lemma: success

Actual: of Lemma: of

Actual: Jaws Lemma: Jaws

Actual: and Lemma: and

Actual: Star Lemma: Star

Actual: Wars Lemma: Wars

Actual: for Lemma: for

Actual: turning Lemma: turning

Actual: Hollywood Lemma: Hollywood

Actual: into Lemma: into

Actual: something Lemma: something

Actual: of Lemma: of

Actual: a Lemma: a

Actual: blockbuster Lemma: blockbuster

Actual: factory Lemma: factory

Actual: . Lemma: .

Actual: We Lemma: We

Actual: can Lemma: can

Actual: debate Lemma: debate

Actual: the Lemma: the

Actual: merits Lemma: merit

Actual: of Lemma: of

The Stanford Named Entity Recognizer
The Named Entity Recognizer is a task that classifies the elements of a sentence into
categories, such as person, organization, location, and so on. Stanford Named Entity
Recognizer is one of the most popular out there and can be found at http://nlp.
stanford.edu/.

The Stanford Named Entity Recognizer can be downloaded at http://nlp.
stanford.edu/software/stanford-ner-2014-06-16.zip.

http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip

Analyzing Unstructured Data with Text Mining

[228]

The following code shows the Stanford Named Entity Recognizer in action:

>>> from nltk.tag.stanford import NERTagger.

>>> st = NERTagger('./lib/stanford-ner
 /classifiers/english.all.3class.distsim.crf.ser.gz',
 './lib/stanford-ner/stanford-ner.jar')

>>> st.tag('''Barrack Obama is the president of the United States of
 America . His father is from Kenya and Mother from United
 States of America.

 He has two daughters with his wife. He has strong
 opposition in Congress due to Republicans'''.split())

[[(u'Barrack', u'PERSON'),

 (u'Obama', u'PERSON'),

 (u'is', u'O'),

 (u'the', u'O'),

 (u'president', u'O'),

 (u'of', u'O'),

 (u'the', u'O'),

 (u'United', u'LOCATION'),

 (u'States', u'LOCATION'),

 (u'of', u'LOCATION'),

 (u'America', u'LOCATION'),

 (u'.', u'O')],

 [(u'His', u'O'),

 (u'father', u'O'),

 (u'is', u'O'),

 (u'from', u'O'),

 (u'Kenya', u'LOCATION'),

 (u'and', u'O'),

 (u'Mother', u'O'),

 (u'from', u'O'),

 (u'United', u'LOCATION'),

 (u'States', u'LOCATION'),

 (u'of', u'O'),

Chapter 11

[229]

 (u'America.', u'O'),

 (u'He', u'O'),

 (u'has', u'O'),

 (u'two', u'O'),

 (u'daughters', u'O'),

 (u'with', u'O'),

 (u'his', u'O'),

 (u'wife.', u'O'),

 (u'He', u'O'),

 (u'has', u'O'),

 (u'strong', u'O'),

 (u'opposition', u'O'),

 (u'in', u'O'),

 (u'Congress', u'ORGANIZATION'),

 (u'due', u'O'),

 (u'to', u'O'),

 (u'Republicans', u'O')]]

You can see that the Stanford Named Entity Tagger does a pretty good job of tagging
a PERSON, LOCATION, and ORGANIZATION.

Performing sentiment analysis on world
leaders using Twitter
Before we start analyzing tweets, we'll need to install the Twython package of
Python, which helps interact with the Twitter API to get tweets from Twitter.
This can be downloaded from https://github.com/ryanmcgrath/twython.

https://github.com/ryanmcgrath/twython

Analyzing Unstructured Data with Text Mining

[230]

Also, you need to get the consumer key and consumer secret key from
https://apps.twitter.com/app/new.

https://apps.twitter.com/app/new

Chapter 11

[231]

Once you have details about your app, you'll get the consumer key and consumer
secret key:

After this, go to the Key and Access Tokens tab to generate your access token:

Analyzing Unstructured Data with Text Mining

[232]

Once you have the required keys, we'll add the details to the following code:

#Please provide your keys here

TWITTER_APP_KEY = 'XXXXXXXXXXXXXXXXXXXXX'

TWITTER_APP_KEY_SECRET = 'XXXXXXXXXXXXXXXXXXXXX'

TWITTER_ACCESS_TOKEN = 'XXXXXXXXXXXXXXXXXXXXX' TWITTER_ACCESS_TOKEN_
SECRET = 'XXXXXXXXXXXXXXXXXXXXX'

t = Twython(app_key=TWITTER_APP_KEY,

 app_secret=TWITTER_APP_KEY_SECRET,

 oauth_token=TWITTER_ACCESS_TOKEN,

 oauth_token_secret=TWITTER_ACCESS_TOKEN_SECRET)

def get_tweets(twython_object, query, n):

 count = 0

 result_generator = twython_object.cursor(twython_object.search,
 q = query)

 result_set = []

 for r in result_generator:

 result_set.append(r['text'])

 count += 1

 if count == n: break

 return result_set

Now, we have access to the tweets and can fetch them.

We'll analyze the sentiment of tweets from Obama, Putin, Modi, Xi Jin Ping, and
David Cameron. Here are a few assumptions that we'll be making for our analysis:

1. The tweets are in English.
2. We set a limit of a maximum of 500 tweets.

You can load the tweets from the following JSON file:

>>> with open('./Data/politician_tweets.json', 'w') as fp:

>>> tweets=json.load(fp)

Chapter 11

[233]

You can fetch fresh tweets of these politicians:

>>> tweets = {}

>>> max_tweets = 500

>>> tweets['obama'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())
 for tweet in get_tweets(t,'#obama', max_tweets)]

>>> tweets['putin'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())
 for tweet in get_tweets(t,'#putin', max_tweets)]

>>> tweets['modi'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())
 for tweet in get_tweets(t,'#modi', max_tweets)]

>>> tweets['xijinping'] = [re.sub(r'[-.#/?!,":;()\']','
 ',tweet.lower()) for tweet in
 get_tweets(t,'#xijinping', max_tweets)]

>>> tweets['davidcameron'] = [re.sub(r'[-.#/?!,":;()\']','
 ',tweet.lower()) for tweet in
 get_tweets(t,'#davidcameron', max_tweets)]

Now, let's define a function to score the sentiments of the tweets. We have a
positive and negative word list from Hu and Liu's lexicon at http://www.cs.uic.
edu/~liub/FBS/sentiment-analysis.html.

This will be used to compare the tweets and give them a score. Every positive word
that matches will be given a +1 point and every negative score that is matched will
be given a -1 point:

>>> positive_words = open('./Data/positive-words.txt')
 .read().split('\n')

>>> negative_words = open('./Data/negative-words.txt')
 .read().split('\n')

>>> def sentiment_score(text, pos_list, neg_list):

 positive_score = 0

 negative_score = 0

 for w in text.split(' '):

 if w in pos_list: positive_score+=1

 if w in neg_list: negative_score+=1

 return positive_score - negative_score

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

Analyzing Unstructured Data with Text Mining

[234]

Let's now score the sentiments of each tweet in the list:

>>> tweets_sentiment = {}

>>> tweets_sentiment['obama'] = [
 sentiment_score(tweet,positive_words,negative_words)
 for tweet in tweets['obama']]

>>> tweets_sentiment['putin'] = [
 sentiment_score(tweet,positive_words,negative_words)
 for tweet in tweets['putin']]

>>> tweets_sentiment['modi'] = [
 sentiment_score(tweet,positive_words,negative_words)
 for tweet in tweets['modi']]

>>> tweets_sentiment['xijinping'] = [
 sentiment_score(tweet,positive_words,negative_words)
 for tweet in tweets['xijinping']]

>>> tweets_sentiment['davidcameron'] = [
 sentiment_score(tweet,positive_words,negative_words)
 for tweet in tweets['davidcameron']]

We have defined dict and called tweets_sentiment where we have scored the
sentiments of each of the tweets for the politicians.

Now, as we have the sentiment score for each of the politicians, we'll now analyze
the sentiments for each politician.

Let's see how people feel about Obama:

>>> obama = plt.hist(tweets_sentiment['obama'], 5,
 facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

Chapter 11

[235]

After the preceding code is executed we'll get the following output:

We mostly see neutral tweets about Obama.

Let's see the tweets for Putin:

>>> putin = plt.hist(tweets_sentiment['putin'], 5,
 facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:

Analyzing Unstructured Data with Text Mining

[236]

Most tweets are neutral with a slight negativity.

Let's see the tweets for Modi:

>>> modi = plt.hist(tweets_sentiment['modi'], 5,
 facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:

Most tweets are neutral for Modi with a slight positivity.

Let's see the tweets for Xi Jin Ping:

>>> xijinping = plt.hist(tweets_sentiment['xijinping'], 5,
 facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

Chapter 11

[237]

After the preceding code is executed we'll get the following output:

So, the tweets for Xi Jin Ping are mostly negative:

>>> davidcameron = plt.hist(tweets_sentiment['davidcameron'], 5,
 facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:

The tweets for David Cameron are more toward positive in nature.

Analyzing Unstructured Data with Text Mining

[238]

Summary
In this chapter, you learned how to clean unstructured text data and then plotted a
wordcloud out of this data. You learned how to tokenize words and sentences using
NLTK. You learned how to perform parts of speech tagging and also the concepts
of stemming and lemmatization. You were introduced to Named Entity Recognition
and learned how to apply it using Stanford NER. Finally, you learned how to fetch
tweets using the Twitter API and then perform sentiment analysis on it.

In the next chapter, you'll learn how to use Python in the world of big data.

[239]

Leveraging Python in the
World of Big Data

We are generating more and more data day by day. We have generated more data
this century than in the previous century and we are currently only 15 years into this
century. big data is the new buzz word and everyone is talking about it. It brings
new possibilities. Google Translate is able to translate any language, thanks to big
data. We are able to decode our human genome due to it. We can predict the failure
of a turbine and do the required maintenance on it because of big data.

There are three Vs of big data and they are defined as follows:

• Volume: This defines the size of the data. Facebook has petabytes of data on
its users.

• Velocity: This is the rate at which data is generated.
• Variety: Data is not only in a tabular form. We can get data from text, images,

and sound. Data comes in the form of JSON, XML, and other types as well.

Leveraging Python in the World of Big Data

[240]

Let's take a look at the following screenshot:

In this chapter, we'll learn how to use Python in the world of big data by doing
the following:

• Understanding Hadoop
• Writing a MapReduce program in Python
• Using a Hadoop library

Chapter 12

[241]

What is Hadoop?
According to the Apache Hadoop's website, Hadoop stores data in a distributed
manner and helps in computing it. It has been designed to scale easily to any number
of machines with the help of computing power and storage. Hadoop was created
by Doug Cutting and Mike Cafarella in the year 2005. It was named after Doug
Cutting's son's toy elephant.

The programming model
Hadoop is a programming paradigm that takes a large distributed computation
as a sequence of distributed operations on large datasets of key-value pairs. The
MapReduce framework makes use of a cluster of machines and executes MapReduce
jobs across these machines. There are two phases in MapReduce—a mapping phase
and a reduce phase. The input data to MapReduce is key value pairs of data.

During the mapping phase, Hadoop splits the data into smaller pieces, which is
then fed to the mappers. These mappers are distributed across machines within
the cluster. Each mapper takes the input key-value pairs and generates intermediate
key-value pairs by invoking a user-defined function within them.

After the mapper phase, Hadoop sorts the intermediate dataset by key and
generates a set of key-value tuples so that all the values belonging to a particular
key are together.

Leveraging Python in the World of Big Data

[242]

During the reduce phase, the reducer takes in the intermediate key-value pair and
invokes a user-defined function, which then generates a output key-value pair.
Hadoop distributes the reducers across the machines and assigns a set of key-value
pairs to each of the reducers.

Data processing through MapReduce

The MapReduce architecture
MapReduce has a master-slave architecture, where the master is the JobTracker and
TaskTracker is the slave. When a MapReduce program is submitted to Hadoop, the
JobTracker assigns the mapping/reducing task to the TaskTracker and it takes of the
task over executing the program.

The Hadoop DFS
Hadoop's distributed filesystem has been designed to store very large datasets in
a distributed manner. It has been inspired by the Google File system, which is a
proprietary distributed filesystem designed by Google. The data in HDFS is stored in
a sequence of blocks, and all blocks are of the same size except for the last block. The
block sizes are configurable in Hadoop.

Chapter 12

[243]

Hadoop's DFS architecture
It also has a master/slave architecture where NameNode is the master machine
and DataNode is the slave machine. The actual data is stored in the data node. The
NameNode keeps a tab on where certain kinds of data is stored and whether it has
the required replication. It also helps in managing a filesystem by creating, deleting,
and moving directories and files in the filesystem.

Python MapReduce
Hadoop can be downloaded and installed from https://hadoop.apache.org/.
We'll be using the Hadoop streaming API to execute our Python MapReduce
program in Hadoop. The Hadoop Streaming API helps in using any program that
has a standard input and output as a MapReduce program.

We'll be writing three MapReduce programs using Python, they are as follows:

• A basic word count
• Getting the sentiment Score of each review
• Getting the overall sentiment score from all the reviews

The basic word count
We'll start with the word count MapReduce. Save the following code in a
word_mapper.py file:

import sys

for l in sys.stdin:

 # Trailing and Leading white space is removed

 l = l.strip()

 # words in the line is split

 word_tokens = l.split()

 # Key Value pair is outputted

 for w in word_tokens:

 print '%s\t%s' % (w, 1)

In the preceding mapper code, each line of the file is stripped of the leading and
trailing white spaces. The line is then divided into tokens of words and then these
tokens of words are outputted as a key value pair of 1.

https://hadoop.apache.org/

Leveraging Python in the World of Big Data

[244]

Save the following code in a word_reducer.py file:

from operator import itemgetter

import sys

current_word_token = None

counter = 0

word = None

STDIN Input

for l in sys.stdin:

 # Trailing and Leading white space is removed

 l = l.strip()

 # input from the mapper is parsed

 word_token, counter = l.split('\t', 1)

 # count is converted to int

 try:

 counter = int(counter)

 except ValueError:

 # if count is not a number then ignore the line

 continue

 #Since Hadoop sorts the mapper output by key, the following

 # if else statement works

 if current_word_token == word_token:

 current_counter += counter

 else:

 if current_word_token:

 print '%s\t%s' % (current_word_token, current_counter)

 current_counter = counter

 current_word_token = word_token

The last word is outputed

Chapter 12

[245]

if current_word_token == word_token:

 print '%s\t%s' % (current_word_token, current_counter)

In the preceding code, we use the current_word_token parameter to keep track
of the current word that is being counted. In the for loop, we use the word_token
parameter and a counter to get the value out of the key-value pair. We then
convert the counter to an int type.

In the if/else statement, if the word_token value is same as the previous instance,
which is current_word_token, then we keep counting else statement's value. If it's
a new word that has come as the output, then we output the word and its count. The
last if statement is to output the last word.

We can check out if the mapper is working fine by using the following command:

$ echo 'dolly dolly max max jack tim max' | ./BigData/word_mapper.py

The output of the preceding command is shown as follows:

dolly1

dolly1

max1

max1

jack1

tim1

max1

Now, we can check if the reducer is also working fine by piping the reducer to the
sorted list of the mapper output:

$ echo "dolly dolly max max jack tim max" | ./BigData/word_mapper.py
| sort -k1,1 | ./BigData/word_reducer.py

The output of the preceding command is shown as follows:

dolly2

jack1

max3

tim1

Now, let's try to apply the same code on a local file containing the summary
of mobydick:

$ cat ./Data/mobydick_summary.txt | ./BigData/word_mapper.py | sort
 -k1,1 | ./BigData/word_reducer.py

Leveraging Python in the World of Big Data

[246]

The output of the preceding command is shown as follows:

a28

A2

abilities1

aboard3

about2

A sentiment score for each review
We had written a program in the preceding chapter to calculate the sentiment score.
We'll extend this to write a MapReduce program to determine the sentiment score
for each review. Write the following code in the senti_mapper.py file:

import sys

import re

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

 positive_score = 0

 negative_score = 0

 for w in text.split(''):

 if w in pos_list: positive_score+=1

 if w in neg_list: negative_score+=1

 return positive_score - negative_score

for l in sys.stdin:

 # Trailing and Leading white space is removed

 l = l.strip()

 #Convert to lower case

 l = l.lower()

 #Getting the sentiment score

Chapter 12

[247]

 score = sentiment_score(l, positive_words, negative_words)

 # Key Value pair is outputted

 print '%s\t%s' % (l, score)

In the preceding code, we used the sentiment_score function from the preceding
chapter. For each line, we strip the leading and trailing white spaces and then get
the sentiment score for a review. Finally, we output a sentence and the score.

For this program, we don't require a reducer as we can calculate the sentiment in the
mapper itself and we just have to output the sentiment score.

Let's test whether the mapper is working fine locally with a file containing the
reviews for Jurassic World:

$ cat ./Data/jurassic_world_review.txt | ./BigData/senti_mapper.py

there is plenty here to divert, but little to leave you enraptored.
such is the fate of the sequel: bigger. louder. fewer teeth.0

if you limit your expectations for jurassic world to "more teeth," it
will deliver on that promise. if you dare to hope for anything more-
relatable characters, narrative coherence-you'll only set yourself up
for disappointment.-1

there's a problem when the most complex character in a film is the
dinosaur-2

not so much another bloated sequel as it is the fruition of dreams
deferred in the previous films. too bad the genre dictates that those
dreams are once again destined for disaster.-2

We can see that our program is able to calculate the sentiment score well.

The overall sentiment score
To calculate the overall sentiment score, we would require the reducer and we'll use
the same mapper but with slight modifications.

Here is the mapper code that we'll use stored in the overall_senti_mapper.py file:

import sys

import hashlib

positive_words = open('./Data/positive-words.txt').
read().split('\n')

Leveraging Python in the World of Big Data

[248]

negative_words = open('./Data/negative-words.txt').
read().split('\n')

def sentiment_score(text, pos_list, neg_list):

 positive_score = 0

 negative_score = 0

 for w in text.split(''):

 if w in pos_list: positive_score+=1

 if w in neg_list: negative_score+=1

 return positive_score - negative_score

for l in sys.stdin:

 # Trailing and Leading white space is removed

 l = l.strip()

 #Convert to lower case

 l = l.lower()

 #Getting the sentiment score

 score = sentiment_score(l, positive_words, negative_words)

 #Hashing the review to use it as a string

 hash_object = hashlib.md5(l)

 # Key Value pair is outputted

 print '%s\t%s' % (hash_object.hexdigest(), score)

This mapper code is similar to the previous mapper code, but here we use the MD5
hash library to review and then to get the output as the key.

Here is the reducer code that is utilized to determine the overall sentiments score of
the movie. Store the following code in the overall_senti_reducer.py file:

from operator import itemgetter

import sys

total_score = 0

STDIN Input

for l in sys.stdin:

 # input from the mapper is parsed

Chapter 12

[249]

 key, score = l.split('\t', 1)

 # count is converted to int

 try:

 score = int(score)

 except ValueError:

 # if score is not a number then ignore the line

 continue

 #Updating the total score

 total_score += score

print '%s' % (total_score,)

In the preceding code, we strip the value containing the score and we then keep
adding to the total_score variable. Finally, we output the total_score variable,
which shows the sentiment of the movie.

Let's locally test the overall sentiment on Jurassic World, which is a good movie,
and then test the sentiment for the movie, Unfinished Business, which was critically
deemed poor:

$ cat ./Data/jurassic_world_review.txt |
 ./BigData/overall_senti_mapper.py | sort -k1,1 |
 ./BigData/overall_senti_reducer.py

19

$ cat ./Data/unfinished_business_review.txt |
 ./BigData/overall_senti_mapper.py | sort -k1,1 |
 ./BigData/overall_senti_reducer.py

-8

We can see that our code is working well and we also see that Jurassic World has a
more positive score, which means that people have liked it a lot. On the contrary,
Unfinished Business has a negative value, which shows that people haven't liked
it much.

Leveraging Python in the World of Big Data

[250]

Deploying the MapReduce code on Hadoop
We'll create a directory for data on Moby Dick, Jurassic World, and Unfinished
Business in the HDFS tmp folder:

$ Hadoop fs -mkdir /tmp/moby_dick

$ Hadoop fs -mkdir /tmp/jurassic_world

$ Hadoop fs -mkdir /tmp/unfinished_business

Let's check if the folders are created:

$ Hadoop fs -ls /tmp/

Found 6 items

drwxrwxrwx - mapred Hadoop 0 2014-11-14 15:42 /tmp/
Hadoop-mapred

drwxr-xr-x - samzer Hadoop 0 2015-06-18 18:31
/tmp/jurassic_world

drwxrwxrwx - hdfs Hadoop 0 2014-11-14 15:41 /tmp/mapred

drwxr-xr-x - samzer Hadoop 0 2015-06-18 18:31
/tmp/moby_dick

drwxr-xr-x - samzer Hadoop 0 2015-06-16 18:17
/tmp/temp635459726

drwxr-xr-x - samzer Hadoop 0 2015-06-18 18:31
/tmp/unfinished_business

Once the folders are created, let's copy the data files to the respective folders.

$ Hadoop fs -copyFromLocal ./Data/mobydick_summary.txt /tmp/moby_dick

$ Hadoop fs -copyFromLocal ./Data/jurassic_world_review.txt
/tmp/jurassic_world

$ Hadoop fs -copyFromLocal ./Data/unfinished_business_review.txt
/tmp/unfinished_business

Let's verify that the file is copied:

$ Hadoop fs -ls /tmp/moby_dick

$ Hadoop fs -ls /tmp/jurassic_world

$ Hadoop fs -ls /tmp/unfinished_business

Found 1 items

-rw-r--r-- 3 samzer Hadoop 5973 2015-06-18 18:34
/tmp/moby_dick/mobydick_summary.txt

Found 1 items

Chapter 12

[251]

-rw-r--r-- 3 samzer Hadoop 3185 2015-06-18 18:34
/tmp/jurassic_world/jurassic_world_review.txt

Found 1 items

-rw-r--r-- 3 samzer Hadoop 2294 2015-06-18 18:34
/tmp/unfinished_business/unfinished_business_review.txt

We can see that files have been copied successfully.

With the following command, we'll execute our mapper and reducer's script in
Hadoop. In this command, we define the mapper, reducer, input, and output file
locations, and then use Hadoop streaming to execute our scripts.

Let's execute the word count program first:

$ Hadoop jar /usr/lib/Hadoop-0.20-mapreduce/contrib/streaming/Hadoop-
streaming.jar -file ./BigData/word_mapper.py -mapper word_mapper.py
-file ./BigData/word_reducer.py -reducer word_reducer.py -input
/tmp/moby_dick/* -output /tmp/moby_output

Let's verify that the word count MapReduce program is working successfully:

$ Hadoop fs -cat /tmp/moby_output/*

The output of the preceding command is shown as follows:

(Queequeg1

A2

Africa1

Africa,1

After1

Ahab13

Ahab,1

Ahab's6

All1

American1

As1

At1

Bedford,1

Bildad1

Bildad,1

Boomer,2

Captain1

Christmas1

Leveraging Python in the World of Big Data

[252]

Day1

Delight,1

Dick6

Dick,2

The program is working as intended. Now, we'll deploy the program that calculates
the sentiment score for each of the reviews. Note that we can add the positive and
negative dictionary files to the Hadoop streaming:

$ Hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-
streaming.jar -file ./BigData/word_mapper.py -mapper word_mapper.py
-file ./BigData/word_reducer.py -reducer word_reducer.py -input
/tmp/moby_dick/* -output /tmp/moby_output

In the preceding code, we use the Hadoop command with the Hadoop streaming
JAR file and then define the mapper and reducer files, and finally, the input and
output directories in Hadoop.

Let's check the sentiments score of the movies review:

$ Hadoop fs -cat /tmp/jurassic_output/*

The output of the preceding command is shown as follows:

"jurassic world," like its predecessors, fills up the screen with
roaring, slathering, earth-shaking dinosaurs, then fills in mere
humans around the edges. it's a formula that works as well in 2015
as it did in 1993.3

a perfectly fine movie and entertaining enough to keep you watching until
the closing credits.4

an angry movie with a tragic moral ... meta-adoration and
criticism ends with a genetically modified dinosaur fighting off
waves of dinosaurs.-3

if you limit your expectations for jurassic world to "more teeth,"
it will deliver on that promise. if you dare to hope for anything
more-relatable characters, narrative coherence-you'll only set
yourself up for disappointment.-1

This program is also working as intended. Now, we'll try out the overall sentiment of
a movie:

$ Hadoop jar /usr/lib/Hadoop-0.20-mapreduce/contrib/streaming/Hadoop-
streaming.jar -file ./BigData/overall_senti_mapper.py -mapper

Let's verify the result:

$ Hadoop fs -cat /tmp/unfinished_business_output/*

Chapter 12

[253]

The output of the preceding command is shown as follows:

-8

We can see that the overall sentiment score comes out correctly from MapReduce.
Here is a screenshot of the JobTracker status page:

The preceding image shows a portal where the jobs submitted to the JobTracker
can be viewed and the status can be seen. This can be seen on port 50070 of the
master system.

From the preceding image, we can see that a job is running, and the status above the
image shows that the job has been completed successfully.

File handling with Hadoopy
Hadoopy is a library in Python, which provides an API to interact with Hadoop
to manage files and perform MapReduce on it. Hadoopy can be downloaded from
http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy.

Let's try to put a few files in Hadoop through Hadoopy in a directory created within
HDFS, called data:

$ Hadoop fs -mkdir data

http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy

Leveraging Python in the World of Big Data

[254]

Here is the code that puts the data into HDFS:

importHadoopy

import os

hdfs_path = ''

def read_local_dir(local_path):

 for fn in os.listdir(local_path):

 path = os.path.join(local_path, fn)

 if os.path.isfile(path):

 yield path

def main():

 local_path = './BigData/dummy_data'

 for file in read_local_dir(local_path):

 Hadoopy.put(file, 'data')

 print"The file %s has been put into hdfs"% (file,)

if __name__ =='__main__':

 main()

The file ./BigData/dummy_data/test9 has been put into hdfs

The file ./BigData/dummy_data/test7 has been put into hdfs

The file ./BigData/dummy_data/test1 has been put into hdfs

The file ./BigData/dummy_data/test8 has been put into hdfs

The file ./BigData/dummy_data/test6 has been put into hdfs

The file ./BigData/dummy_data/test5 has been put into hdfs

The file ./BigData/dummy_data/test3 has been put into hdfs

The file ./BigData/dummy_data/test4 has been put into hdfs

The file ./BigData/dummy_data/test2 has been put into hdfs

In the preceding code, we list all the files in a directory and then put each of the files
into Hadoop using the put() method of Hadoopy.

Let's check if all the files have been put into HDFS:

$ Hadoop fs -ls data

Chapter 12

[255]

The output of the preceding command is shown as follows:

Found 9 items

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test1

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test2

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test3

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test4

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test5

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test6

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test7

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test8

-rw-r--r-- 3 samzer Hadoop 0 2015-06-23 00:19 data/test9

So, we have successfully been able to put files into HDFS.

Pig
Pig is a platform that has a very expressive language to perform data
transformations and querying. The code that is written in Pig is done in a scripting
manner and this gets compiled to MapReduce programs, which execute on Hadoop.
The following image is the logo of Pig Latin:

The Pig logo

Leveraging Python in the World of Big Data

[256]

Pig helps in reducing the complexity of raw-level MapReduce programs, and enables
the user to perform fast transformations.

Pig Latin is the textual language that can be learned from http://pig.apache.org/
docs/r0.7.0/piglatin_ref2.html.

We'll be covering how to perform the top 10 most occurring words with Pig, and
then we'll see how you can create a function in Python that can be used in Pig.

Let's start with the word count. Here is the Pig Latin code, which you can save in
thepig_wordcount.py file:

data = load '/tmp/moby_dick/';

word_token = foreach data generate
flatten(TOKENIZE((chararray)$0)) as word;

group_word_token = group word_token by word;

count_word_token = foreach group_word_token generate
COUNT(word_token) as cnt, group;

sort_word_token = ORDER count_word_token by cnt DESC;

top10_word_count = LIMIT sort_word_token 10;

DUMP top10_word_count;

In the preceding code, we can load the summary of Moby Dick, which is then
tokenized line by line and is basically split into individual elements. The flatten
function converts a collection of individual word tokens in a line to a row-by-row
form. We then group by the words and then take a count of the words for each word.
Finally, we sort the count of words in a descending order and then we limit the count
of the words to the first 10 rows to get the top 10 most occurring words.

Let's execute the preceding pig script:

$ pig ./BigData/pig_wordcount.pig

The output of the preceding command is shown as follows:

(83,the)

(36,and)

(28,a)

(25,of)

(24,to)

(15,his)

(14,Ahab)

http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html

Chapter 12

[257]

(14,Moby)

(14,is)

(14,in)

We are able to get our top 10 words. Let's now create a user-defined function with
Python, which will be used in Pig.

We'll define two user-defined functions to score positive and negative sentiments of
a sentence.

The following code is the UDF used to score the positive sentiment and it's available
in the positive_sentiment.py file:

positive_words = ['a+', 'abound', 'abounds', 'abundance',
'abundant', 'accessable', 'accessible', 'acclaim', 'acclaimed',
'acclamation', 'acco$]

@outputSchema("pnum:int")

def sentiment_score(text):

 positive_score = 0

 for w in text.split(''):

 if w in positive_words: positive_score+=1

 return positive_score

In the preceding code, we define the positive word list, which is used by the
sentiment_score() function. The function checks for the positive words in a sentence
and finally outputs their total count. There is an outputSchema() decorator that is
used to tell Pig what type of data is being outputted, which in our case is int.

Here is the code to score the negative sentiment and it's available in the
negative_sentiment.py file. The code is almost similar to the positive sentiment:

negative_words = ['2-faced', '2-faces', 'abnormal', 'abolish',
'abominable', 'abominably', 'abominate', 'abomination', 'abort',
'aborted', 'ab$....]

@outputSchema("nnum:int")

def sentiment_score(text):

 negative_score = 0

 for w in text.split(''):

 if w in negative_words: negative_score-=1

 return negative_score

Leveraging Python in the World of Big Data

[258]

The following code is used by Pig to score the sentiments of the Jurassic World
reviews and its available in the pig_sentiment.pig file:

register 'positive_sentiment.py' using
org.apache.pig.scripting.jython.JythonScriptEngine as positive;

register 'negative_sentiment.py' using
org.apache.pig.scripting.jython.JythonScriptEngine as negative;

data = load '/tmp/jurassic_world/*';

feedback_sentiments = foreach data generate LOWER((chararray)$0)
as feedback, positive.sentiment_score(LOWER((chararray)$0)) as
psenti,

negative.sentiment_score(LOWER((chararray)$0)) as nsenti;

average_sentiments = foreach feedback,feedback_sentiments generate
psenti + nsenti;

dump average_sentiments;

In the preceding Pig script, we first register the Python UDF scripts using the
register command and give them an appropriate name. We then load our Jurassic
World review. We then convert our reviews to lowercase and score the positive
and negative sentiments of a review. Finally, we add the score to get the overall
sentiments of a review.

Let's execute the Pig script and see the results:

$ pig ./BigData/pig_sentiment.pig

The output of the preceding command is shown as follows:

(there is plenty here to divert, but little to leave you enraptored.
such is the fate of the sequel: bigger. louder. fewer teeth.,0)

(if you limit your expectations for jurassic world to "more teeth,
" it will deliver on that promise. if you dare to hope for anything
more-relatable characters, narrative coherence-you'll only set
yourself up for disappointment.,-1)

(there's a problem when the most complex character in a film is the
dinosaur,-2)

(not so much another bloated sequel as it is the fruition of dreams
deferred in the previous films. too bad the genre dictates that those
dreams are once again destined for disaster.,-2)

Chapter 12

[259]

(a perfectly fine movie and entertaining enough to keep you watching
until the closing credits.,4)

(this fourth installment of the jurassic park film series shows some
wear and tear, but there is still some gas left in the tank. time is
spent to set up the next film in the series. they will keep making
more of these until we stop watching.,0)

We have successfully scored the sentiments of the Jurassic World review using the
Python UDF in Pig.

Python with Apache Spark
Apache Spark is a computing framework that works on top of HDFS and provides
an alternative way of computing that is similar to MapReduce. It was developed by
AmpLab of UC Berkeley. Spark does its computation mostly in the memory because
of which, it is much faster than MapReduce, and is well suited for machine learning
as it's able to handle iterative workloads really well.

Spark uses the programming abstraction of RDDs (Resilient Distributed Datasets)
in which data is logically distributed into partitions, and transformations can be
performed on top of this data.

Python is one of the languages that is used to interact with Apache Spark, and we'll
create a program to perform the sentiment scoring for each review of Jurassic Park as
well as the overall sentiment.

You can install Apache Spark by following the instructions at https://spark.
apache.org/docs/1.0.1/spark-standalone.html.

Scoring the sentiment
Here is the Python code to score the sentiment:

from __future__ import print_function

import sys

from operator import add

https://spark.apache.org/docs/1.0.1/spark-standalone.html
https://spark.apache.org/docs/1.0.1/spark-standalone.html

Leveraging Python in the World of Big Data

[260]

from pyspark import SparkContext

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

 positive_score = 0

 negative_score = 0

 for w in text.split(''):

 if w in pos_list: positive_score+=1

 if w in neg_list: negative_score+=1

 return positive_score - negative_score

if __name__ == "__main__":

 if len(sys.argv) != 2:

 print("Usage: sentiment <file>", file=sys.stderr)

 exit(-1)

 sc = SparkContext(appName="PythonSentiment")

 lines = sc.textFile(sys.argv[1], 1)

 scores = lines.map(lambda x: (x, sentiment_score(x.lower(),
 positive_words, negative_words)))

 output = scores.collect()

 for (key, score) in output:

 print("%s: %i" % (key, score))

 sc.stop()

In the preceding code, we define our standard sentiment_score() function, which
we'll be reusing. The if statement checks whether the Python script and the text file
is given. The sc variable is a Spark Context object with the PythonSentiment app
name. The filename in the argument is passed into Spark through the textFile()
method of the sc variable. In the map() function of Spark, we define a lambda
function, where each line of the text file is passed, and then we obtain the line and its
respective sentiment score. The output variable gets the result, and finally, we print
the result on the screen.

Chapter 12

[261]

Let's score the sentiment of each of the reviews of Jurassic World. Replace the
<hostname> with your hostname, this should suffice:

$ ~/spark-1.3.0-bin-cdh4/bin/spark-submit --master
spark://<hostname>:7077 ./BigData/spark_sentiment.py
hdfs://localhost:8020/tmp/jurassic_world/*

We'll get the following output for the preceding command:

There is plenty here to divert but little to leave you enraptured. Such
is the fate of the sequel: Bigger, Louder, Fewer teeth: 0

If you limit your expectations for Jurassic World to more teeth, it will
deliver on this promise. If you dare to hope for anything more—relatable
characters or narrative coherence—you'll only set yourself up for
disappointment:-1

We can see that our Spark program was able to score the sentiment for each of the
reviews. The number in the end of the output of the sentiment score shows that if the
review has been positive or negative, the higher the number of the sentiment score—
the better the review and the more negative the number of the sentiment score—the
more negative the review has been.

We use the Spark Submit command with the following parameters:

• A master node of the Spark system
• A Python script containing the transformation commands
• An argument to the Python script

The overall sentiment
Here is a Spark program to score the overall sentiment of all the reviews:

from __future__ import print_function

import sys

from operator import add

from pyspark import SparkContext

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

 positive_score = 0

 negative_score = 0

Leveraging Python in the World of Big Data

[262]

 for w in text.split(''):

 if w in pos_list: positive_score+=1

 if w in neg_list: negative_score+=1

 return positive_score - negative_score

if __name__ =="__main__":

 if len(sys.argv) != 2:

 print("Usage: Overall Sentiment <file>", file=sys.stderr)

 exit(-1)

 sc = SparkContext(appName="PythonOverallSentiment")

 lines = sc.textFile(sys.argv[1], 1)

 scores = lines.map(lambda x: ("Total",
 sentiment_score(x.lower(), positive_words, negative_words)))\

 .reduceByKey(add)

 output = scores.collect()

 for (key, score) in output:

 print("%s: %i"% (key, score))

 sc.stop()

In the preceding code, we have added a reduceByKey() method, which reduces the
value by adding the output values, and we have also defined the key as Total, so
that all the scores are reduced based on a single key.

Let's try out the preceding code to get the overall sentiment of Jurassic World.
Replace the <hostname> with your hostname, this should suffice:

$ ~/spark-1.3.0-bin-cdh4/bin/spark-submit --master
spark://<hostname>:7077 ./BigData/spark_overall_sentiment.py
hdfs://localhost:8020/tmp/jurassic_world/*

The output of the preceding command is shown as follows:

Total: 19

We can see that Spark has given an overall sentiment score of 19.

Chapter 12

[263]

The applications that get executed on Spark can be viewed in the browser on the
8080 port of the Spark master. Here is a screenshot of it:

We can see that the number of nodes of Spark, applications that are getting executed
currently, and the applications that have been executed.

Summary
In this chapter, you were introduced to big data, learned about how the Hadoop
software works, and the architecture associated with it. You then learned how to
create a mapper and a reducer for a MapReduce program, how to test it locally, and
then put it into Hadoop and deploy it. You were then introduced to the Hadoopy
library and using this library, you were able to put files into Hadoop. You also
learned about Pig and how to create a user-defined function with it. Finally, you
learned about Apache Spark, which is an alternative to MapReduce and how to use it
to perform distributed computing.

With this chapter, we have come to an end in our journey, and you should be in a
state to perform data science tasks with Python. From here on, you can participate
in Kaggle Competitions at https://www.kaggle.com/ to improve your data science
skills with real-world problems. This will fine-tune your skills and help understand
how to solve analytical problems.

Also, you can sign up for the Andrew NG course on Machine Learning at
https://www.coursera.org/learn/machine-learning to understand the
nuances behind machine learning algorithms.

https://www.kaggle.com/
https://www.coursera.org/learn/machine-learning

[265]

Index
Symbol
3D plot

plotting 103-106

A
agglomerative hierarchical clustering 119
aggregation operations

about 20, 21
average 20
COUNT 21
MAX 20
MIN 21
STD 21
SUM 20

Analysis of Variance (ANOVA) 56, 57
Apache Spark

about 259
installing, URL 259
overall sentiment 261, 262
Python with 259
sentiment, scoring 259-261

area plot
about 96
example 96

array
conditional operations 4
creating 2, 3
indexing 5, 6
matrix multiplication 5
slicing 5, 6
squaring 4
subtraction 4
trigonometric function 4
with NumPy 2

B
Bernoulli distribution 34, 35
big data, Vs

variety 239
velocity 239
volume 239

box plot
about 85-87
example 87, 88

bubble chart 97

C
census income dataset

about 174
earning bias, working class based 176, 177
earning power, education based 177
earning power, gender based 182
earning power, marital

status based 178, 179
earning power, native

countries based 184, 185
earning power, occupation based 181
earning power, productive

hours based 183, 184
earning power, race based 180
exploring 175
people histogram, creating 175, 176

chart
line properties, controlling 78
text, adding 81, 82

chi-square distribution 53, 54
chi-square test

for goodness 54, 55
of independence 55, 56

[266]

classification trees 111
clustering 193
collaborative filtering

about 155
item-based 167
user-based 157

conditional operations 4
confidence interval 44-48
consumer key

URL 230
correlation 48-51
CSV 11

D
data

exporting 10
extracting, from source 1
importing 10
inserting 10
preprocessing 211-214
reading, from database 12

data cleansing
about 12
data, merging 19
missing data, checking 13
missing data, filling 14, 15
string operation 16, 17, 18

DataFrame 8
data mining

about 60, 61
analysis, presenting 62, 63

data operations
aggregation operations 20, 21
joins 21

decision trees
about 111, 112, 186, 187
classification trees 111
regression trees 111

descriptive statistics 27
distribution

Bernoulli distribution 34, 35
forms 27
normal distribution 28, 29

normal distribution, from binomial
distribution 29-33

Poisson distribution 33, 34
divisive hierarchical clustering 119

E
elbow curve 204
ensemble modeling 173
Euclidean distance score 157-159

F
Fast Moving Consumer Goods (FMCG) 61
F distribution 52, 53
full outer join 24

G
groupby function 24, 25

H
Hadoop

about 241
DFS 242
DFS, architecture 243
MapReduce, architecture 242
programming model 241, 242
URL 243

Hadoopy
URL 253
used, for handling file 253, 254

heatmap
about 88
creating 88-91

hexagon bin plot 97
hierarchical clustering

about 118
agglomerative hierarchical clustering 119
divisive hierarchical clustering 119

histograms
combining, with scatter plot 91-93

[267]

I
inner join 22, 23
item-based collaborative filtering 167, 170

J
joins

about 21
full outer join 24
groupby function 24, 25
inner join 22, 23
left outer join 23

JSON 12

K
Kaggle

URL 263
keyword arguments

used, for controlling chart
line properties 78

k-means clustering
about 117, 118, 194
example 194-198
URL 194

k-means clustering, with countries
about 199-201
applying 205-210
number of clusters, determining 201-205

L
left outer join 23
lemmatization 223, 226
linear regression

about 112, 114, 121
model, building with SciKit package 132
model, building, with statsmodels

module 132
multiple linear regression 125-131
simple linear regression 121-124

line properties, chart
controlling 78
controlling, with keyword arguments 78
controlling, with setp() command 80
controlling, with setter methods 79, 80

logistic regression
about 114, 115, 139, 140
data, preparing 140
model, building 142, 143, 152, 153
model, evaluating 144-148
model evaluating, test data based 148-152
model, evaluating with SciKit 152, 153
sets, testing 141
training, creating 141

M
machine learning, types

about 108
reinforcement learning 108
supervised learning 108
unsupervised learning 108

MapReduce
about 242
code, deploying on Hadoop 250-253
overall sentiment score 247-249
Python used 243
sentiment score, for review 246, 247
word count 243-245

mathematical operations 3
matrix multiplication 5
model

testing 132-137
training 132-137

multiple linear regression
about 125
example 125-131

multiple plots
creating 80

N
naive Bayes classifier 115, 116
Natural Language Toolkit (NLTK)

URL 211
normal distribution

about 28, 29
from binomial distribution 29-33

null hypothesis 40
NumPy

array 2
documentation URL 25

[268]

O
one-tailed tests 41, 42
Ordinary Least Square

Regression (OLS) 132

P
pandas, data structure

about 7
DataFrame 8
documentation, URL 25
library 7
panel 9
series 7

panel 9
parts of speech tagging 221-223
Pearson correlation score 160-164
Pig 255-259
Pig Latin

URL 256
plots

styling 83, 84
Poisson distribution 33, 34
P-value 40, 41

R
random forest 173, 187-191
RDDs (Resilient Distributed Datasets) 259
recommendation data 156
regression trees 111
reinforcement learning 110

S
scatter plot

with histograms 91-93
scatter plot matrix 94, 95
SciKit package

used, for building linear
regression model 132

SciPy package
URL 30

sentence tokenization
about 220, 221
PunktSentenceTokenizer 220

sentiment
analysis, on world leaders 229-235
URL 233

series 7
setp() command

used, for controlling line properties
of chart 80

setter methods
used, for controlling line properties

of chart 79, 80
shape

manipulating 6
simple linear regression

about 121
example 122-124

Stanford Named Entity Recognizer
about 227
URL 227-229

statsmodels module
about 132
used, for building linear

regression model 132
stemming 223, 224
string operation

filtering 17
length 18
lowercase 17
replace 18
split 18
substring 16
uppercase 17

supervised learning 108, 109

T
tags

URL 223
terminologies

feature extraction 107
features 107
feature vector 107
samples 107
testing set 107
training set 107

text
adding, to chart 81, 82

[269]

Titanic survivors dataset
about 64
nonsurvivors distributions,

determining 71-73
passenger class survivors,

determining 65-67
survival percentage, searching among age

groups 74-76
survivors distributions, determining based

on gender 68-71
Trellis plot

about 98-101
example 101

trigonometric function
on array 4

T-test
versus Z-test 51, 52

two-tailed tests
about 41, 42

Twython package
URL 229

Type 1 error 43
Type 2 error 43

U
unsupervised learning 109, 110
user-based collaborative filtering

about 157
Euclidean distance score 157-159
items, recommending 165-167
Pearson correlation score 160-164
similar users, finding 157
users, ranking 165

W
wordcloud

creating 215-219
URL 215

word tokenization 220

X
XLS 11

Z
z-score 36-39
Z-test

versus T-test 51, 52

Thank you for buying
Mastering Python for Data Science

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Data Science Essentials
ISBN: 978-1-78528-042-9 Paperback: 258 pages

Become an efficient data science practitioner by
thoroughly understanding the key concepts of Python

1. Quickly get familiar with data science
using Python.

2. Save tons of time through this reference
book with all the essential tools illustrated
and explained.

3. Create effective data science projects and avoid
common pitfalls with the help of examples and
hints dictated by experience.

R for Data Science
ISBN: 978-1-78439-086-0 Paperback: 364 pages

Learn and explore the fundamentals of data science
with R

1. Familiarize yourself with R programming
packages and learn how to utilize them
effectively.

2. Learn how to detect different types of data
mining sequences.

3. A step-by-step guide to understanding R scripts
and the ramifications of your changes.

Please check www.PacktPub.com for information on our titles

Practical Data Science Cookbook
ISBN: 978-1-78398-024-6 Paperback: 396 pages

89 hands-on recipes to help you complete real-world
data science projects in R and Python

1. Learn about the data science pipeline and use it
to acquire, clean, analyze, and visualize data.

2. Understand critical concepts in data science in
the context of multiple projects.

3. Expand your numerical programming skills
through step-by-step code examples and
learn more about the robust features of R
and Python.

Practical Data Analysis
ISBN: 978-1-78328-099-5 Paperback: 360 pages

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

1. Explore how to analyze your data in various
innovative ways and turn them into insight.

2. Learn to use the D3.js visualization tool for
exploratory data analysis.

3. Understand how to work with graphs and
social data analysis.

4. Discover how to perform advanced query
techniques and run MapReduce on MongoDB.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Raw Data
	The world of arrays with NumPy
	Creating an array
	Mathematical operations
	Array subtraction

	Squaring an array
	A trigonometric function performed on the array
	Conditional operations
	Matrix multiplication

	Indexing and slicing
	Shape manipulation

	Empowering data analysis with pandas
	The data structure of pandas
	Series
	DataFrame
	Panel

	Inserting and exporting data
	CSV
	XLS
	JSON
	Database

	Data cleansing
	Checking the missing data
	Filling the missing data
	String operations
	Merging data

	Data operations
	Aggregation operations
	Joins
	The inner join
	The left outer join
	The full outer join
	The groupby function

	Summary

	Chapter 2: Inferential Statistics
	Various forms of distribution
	A normal distribution
	A normal distribution from a binomial distribution

	A Poisson distribution
	A Bernoulli distribution

	A z-score
	A p-value
	One-tailed and two-tailed tests
	Type 1 and Type 2 errors
	A confidence interval
	Correlation
	Z-test vs T-test
	The F distribution
	The chi-square distribution
	Chi-square for the goodness of fit

	The chi-square test of independence
	ANOVA
	Summary

	Chapter 3: Finding a Needle
in a Haystack
	What is data mining?
	Presenting an analysis
	Studying the Titanic
	Which passenger class has the maximum number of survivors?
	What is the distribution of survivors based on gender among the various classes?
	What is the distribution of nonsurvivors among the various classes who have family aboard the ship?
	What was the survival percentage among different age groups?

	Summary

	Chapter 4: Making Sense of Data through Advanced Visualization
	Controlling the line properties of a chart
	Using keyword arguments
	Using the setter methods
	Using the setp() command

	Creating multiple plots
	Playing with text
	Styling your plots
	Box plots
	Heatmaps
	Scatter plots with histograms
	A scatter plot matrix
	Area plots
	Bubble charts
	Hexagon bin plots
	Trellis plots
	A 3D plot of a surface
	Summary

	Chapter 5: Uncovering Machine Learning
	Different types of machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Decision trees
	Linear regression
	Logistic regression
	The naive Bayes classifier
	The k-means clustering
	Hierarchical clustering
	Summary

	Chapter 6: Performing Predictions with a Linear Regression
	Simple linear regression
	Multiple regression
	Training and testing a model
	Summary

	Chapter 7: Estimating the
Likelihood of Events
	Logistic regression
	Data preparation
	Creating training and testing sets
	Building a model
	Model evaluation
	Evaluating a model based on test data
	Model building and evaluation with SciKit

	Summary

	Chapter 8: Generating Recommendations with Collaborative Filtering
	Recommendation data
	User-based collaborative filtering
	Finding similar users
	The Euclidean distance score
	The Pearson correlation score
	Ranking the users
	Recommending items

	Item-based collaborative filtering
	Summary

	Chapter 9: Pushing Boundaries with Ensemble Models
	The census income dataset
	Exploring the census data
	Hypothesis 1: People who are older earn more
	Hypothesis 2: Income bias based on working class
	Hypothesis 3: People with more education earn more
	Hypothesis 4: Married people tend to earn more
	Hypothesis 5: There is a bias in income based on race
	Hypothesis 6: There is a bias in the income based on occupation
	Hypothesis 7: Men earn more
	Hypothesis 8: People who clock in more hours earn more
	Hypothesis 9: There is a bias in income based on the country of origin

	Decision trees
	Random forests
	Summary

	Chapter 10: Applying Segmentation with k-means Clustering
	The k-means algorithm and its working
	A simple example

	The k-means clustering with countries
	Determining the number of clusters

	Clustering the countries
	Summary

	Chapter 11: Analyzing Unstructured Data with Text Mining
	Preprocessing data
	Creating a wordcloud
	Word and sentence tokenization
	Parts of speech tagging
	Stemming and lemmatization
	Stemming
	Lemmatization

	The Stanford Named Entity Recognizer
	Performing sentiment analysis on world leaders using Twitter
	Summary

	Chapter 12: Leveraging Python in the World of Big Data
	What is Hadoop?
	The programming model
	The MapReduce architecture
	The Hadoop DFS
	Hadoop's DFS architecture

	Python MapReduce
	The basic word count
	A sentiment score for each review
	The overall sentiment score
	Deploying the MapReduce code on Hadoop

	File handling with Hadoopy
	Pig
	Python with Apache Spark
	Scoring the sentiment
	The overall sentiment

	Summary

	Index

