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Preface
Data science is an exciting new field that is used by various organizations to perform 
data-driven decisions. It is a combination of technical knowledge, mathematics, and 
business. Data scientists have to wear various hats to work with data and derive 
some value out of it. Python is one of the most popular languages among all the 
languages used by data scientists. It is a simple language to learn and is used for 
purposes, such as web development, scripting, and application development to 
name a few.

The ability to perform data science using Python is very powerful as it helps clean 
data at a raw level to create advanced machine learning algorithms that predict 
customer churns for a retail company. This book explains various concepts of data 
science in a structured manner with the application of these concepts on data to 
see how to interpret results. The book provides a good base for understanding the 
advanced topics of data science and how to apply them in a real-world scenario.

What this book covers
Chapter 1, Getting Started with Raw Data, teaches you the techniques of handling 
unorganized data. You'll also learn how to extract data from different sources,  
as well as how to clean and manipulate it.

Chapter 2, Inferential Statistics, goes beyond descriptive statistics, where you'll learn 
about inferential statistics concepts, such as distributions, different statistical tests, 
the errors in statistical tests, and confidence intervals.

Chapter 3, Finding a Needle in a Haystack, explains what data mining is and how it can 
be utilized. There is a lot of information in data but finding meaningful information 
is an art.
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Chapter 4, Making Sense of Data through Advanced Visualization, teaches you how  
to create different visualizations of data. Visualization is an  integral part of data 
science; it helps communicate a pattern or relationship that cannot be seen by 
looking at raw data.

Chapter 5, Uncovering Machine Learning, introduces you to the different techniques of 
machine learning and how to apply them. Machine learning is the new buzzword in 
the industry. It's used in activities, such as Google's driverless cars and predicting the 
effectiveness of marketing campaigns.

Chapter 6, Performing Predictions with a Linear Regression, helps you build a simple 
regression model followed by multiple regression models along with methods to 
test the effectiveness of the models. Linear regression is one of the most popular 
techniques used in model building in the industry today.

Chapter 7, Estimating the Likelihood of Events, teaches you how to build a logistic 
regression model and the different techniques of evaluating it. With logistic regression, 
you'll be able learn how to estimate the likelihood of an event taking place.

Chapter 8, Generating Recommendations with Collaborative Filtering, teaches you to 
create a recommendation model and apply it. It is similar to websites, such as 
Amazon, which are able to suggest items that you would probably buy on their page.

Chapter 9, Pushing Boundaries with Ensemble Models, familiarizes you with ensemble 
techniques, which are used to combine the power of multiple models to enhance 
the accuracy of predictions. This is done because sometimes a single model is not 
enough to estimate the outcome.

Chapter 10, Applying Segmentation with k-means Clustering, teaches you about k-means 
clustering and how to use it. Segmentation is widely used in the industry to group 
similar customers together.

Chapter 11, Analyzing Unstructured Data with Text Mining, teaches you to process 
unstructured data and make sense of it. There is more unstructured data in the world 
than structured data.

Chapter 12, Leveraging Python in the World of Big Data, teaches you to use Hadoop and 
Spark with Python to handle data in this chapter. With the ever increasing size of 
data, big data technologies have been brought into existence to handle such data.



Preface

[ ix ]

What you need for this book
The following softwares are required for this book:

• Ubuntu OS, preferably 14.04
• Python 2.7
• The pandas 0.16.2 library
• The NumPy 1.9.2 library
• The SciPy 0.16 library
• IPython 4.0
• The SciKit 0.16.1 module
• The statsmodels 0.6.1 module
• The matplotlib 1.4.3 library
• Apache Hadoop CDH4 (Cloudera Hadoop 4) with MRv1  

(MapReduce version 1)
• Apache Spark 1.4.0

Who this book is for
If you are a Python developer who wants to master the world of data science,  
then this book is for you. It is assumed that you already have some knowledge  
of data science.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The json.load() function loads the data into Python."

Any command-line input or output is written as follows:

$ pig ./BigData/pig_sentiment.pig
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New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

The codes provided in the code bundle are for both IPython notebook and  
Python 2.7. In the chapters, Python conventions have been followed.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/0150OS_ColorImage.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.allitebooks.com
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Getting Started with  
Raw Data

In the world of data science, raw data comes in many forms and sizes. There is a 
lot of information that can be extracted from this raw data. To give an example, 
Amazon collects click stream data that records each and every click of the user on the 
website. This data can be utilized to understand if a user is a price-sensitive customer 
or prefer more popularly rated products. You must have noticed recommended 
products in Amazon; they are derived using such data.

The first step towards such an analysis would be to parse raw data. The parsing of 
the data involves the following steps:

• Extracting data from the source: Data can come in many forms, such as 
Excel, CSV, JSON, databases, and so on. Python makes it very easy to read 
data from these sources with the help of some useful packages, which will  
be covered in this chapter.

• Cleaning the data: Once a sanity check has been done, one needs to clean 
the data appropriately so that it can be utilized for analysis. You may have a 
dataset about students of a class and details about their height, weight, and 
marks. There may also be certain rows with the height or weight missing. 
Depending on the analysis being performed, these rows with missing values 
can either be ignored or replaced with the average height or weight.
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In this chapter we will cover the following topics:

• Exploring arrays with NumPy
• Handling data with pandas
• Reading and writing data from various formats
• Handling missing data
• Manipulating data

The world of arrays with NumPy
Python, by default, comes with a data structure, such as List, which can be utilized 
for array operations, but a Python list on its own is not suitable to perform heavy 
mathematical operations, as it is not optimized for it.

NumPy is a wonderful Python package produced by Travis Oliphant, which 
has been created fundamentally for scientific computing. It helps handle large 
multidimensional arrays and matrices, along with a large library of high-level 
mathematical functions to operate on these arrays.

A NumPy array would require much less memory to store the same amount of data 
compared to a Python list, which helps in reading and writing from the array in a 
faster manner.

Creating an array
A list of numbers can be passed to the following array function to create a NumPy 
array object:

>>> import numpy as np

>>> n_array = np.array([[0, 1, 2, 3],

                 [4, 5, 6, 7],

                 [8, 9, 10, 11]])
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A NumPy array object has a number of attributes, which help in giving information 
about the array. Here are its important attributes:

• ndim: This gives the number of dimensions of the array. The following shows 
that the array that we defined had two dimensions:
>>> n_array.ndim

2

n_array has a rank of 2, which is a 2D array.

• shape: This gives the size of each dimension of the array:
>>> n_array.shape

(3, 4)

The first dimension of n_array has a size of 3 and the second dimension has 
a size of 4. This can be also visualized as three rows and four columns.

• size: This gives the number of elements:
>>> n_array.size

12

The total number of elements in n_array is 12.

• dtype: This gives the datatype of the elements in the array:
>>> n_array.dtype.name

int64

The number is stored as int64 in n_array.

Mathematical operations
When you have an array of data, you would like to perform certain mathematical 
operations on it. We will now discuss a few of the important ones in the following 
sections.



Getting Started with Raw Data

[ 4 ]

Array subtraction
The following commands subtract the a array from the b array to get the resultant  
c array. The subtraction happens element by element:

>>> a = np.array( [11, 12, 13, 14])

>>> b = np.array( [ 1, 2, 3, 4])

>>> c = a - b

>>> c

Array[10 10 10 10]

Do note that when you subtract two arrays, they should be of equal dimensions.

Squaring an array
The following command raises each element to the power of 2 to obtain this result:

>>> b**2

[1  4  9 16]

A trigonometric function performed on the array
The following command applies cosine to each of the values in the b array to obtain 
the following result:

>>> np.cos(b)

[ 0.54030231 -0.41614684 -0.9899925  -0.65364362]

Conditional operations
The following command will apply a conditional operation to each of the elements of 
the b array, in order to generate the respective Boolean values:

>>> b<2

[ True False False False]
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Matrix multiplication
Two matrices can be multiplied element by element or in a dot product. The 
following commands will perform the element-by-element multiplication:

>>> A1 = np.array([[1, 1],

            [0, 1]])

>>> A2 = np.array([[2, 0],

            [3, 4]])

>>> A1 * A2

[[2 0]

[0 4]]

The dot product can be performed with the following command:

>>> np.dot(A1, A2)

[[5 4]

[3 4]]

Indexing and slicing
If you want to select a particular element of an array, it can be achieved using indexes:

>>> n_array[0,1]

1

The preceding command will select the first array and then select the second value in 
the array. It can also be seen as an intersection of the first row and the second column 
of the matrix.

If a range of values has to be selected on a row, then we can use the following 
command:

>>> n_array[ 0 , 0:3 ]

[0 1 2]
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The 0:3 value selects the first three values of the first row.

The whole row of values can be selected with the following command:

>>> n_array[ 0 , : ]

[0 1 2 3]

Using the following command, an entire column of values need to be selected:

>>> n_array[ : , 1 ]

[1 5 9]

Shape manipulation
Once the array has been created, we can change the shape of it too. The following 
command flattens the array:

>>> n_array.ravel()

[ 0  1  2  3  4  5  6  7  8  9 10 11]

The following command reshapes the array in to a six rows and two columns format. 
Also, note that when reshaping, the new shape should have the same number of 
elements as the previous one:

>>> n_array.shape = (6,2)

>>> n_array

[[ 0  1]

[ 2  3]

[ 4  5]

[ 6  7]

[ 8  9]

[10 11]]

The array can be transposed too:

>>> n_array.transpose()

[[ 0  2  4  6  8 10]

[ 1  3  5  7  9 11]]
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Empowering data analysis with pandas
The pandas library was developed by Wes McKinny when he was working at 
AQR Capital Management. He wanted a tool that was flexible enough to perform 
quantitative analysis on financial data. Later, Chang She joined him and helped 
develop the package further.

The pandas library is an open source Python library, specially designed for data 
analysis. It has been built on NumPy and makes it easy to handle data. NumPy is a 
fairly low-level tool that handles matrices really well.

The pandas library brings the richness of R in the world of Python to handle data. It's 
has efficient data structures to process data, perform fast joins, and read data from 
various sources, to name a few.

The data structure of pandas
The pandas library essentially has three data structures:

1. Series
2. DataFrame
3. Panel

Series
Series is a one-dimensional array, which can hold any type of data, such as integers, 
floats, strings, and Python objects too. A series can be created by calling the following:

>>> import pandas as pd

>>> pd.Series(np.random.randn(5))

0    0.733810

1   -1.274658

2   -1.602298

3    0.460944

4   -0.632756

dtype: float64
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The random.randn parameter is part of the NumPy package and it generates random 
numbers. The series function creates a pandas series that consists of an index, which 
is the first column, and the second column consists of random values. At the bottom 
of the output is the datatype of the series.

The index of the series can be customized by calling the following:

>>> pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

a   -0.929494

b   -0.571423

c   -1.197866

d    0.081107

e   -0.035091

dtype: float64

A series can be derived from a Python dict too:

>>> d = {'A': 10, 'B': 20, 'C': 30}

>>> pd.Series(d)

A    10

B    20

C    30

dtype: int64

DataFrame
DataFrame is a 2D data structure with columns that can be of different datatypes. It 
can be seen as a table. A DataFrame can be formed from the following data structures:

• A NumPy array
• Lists
• Dicts
• Series
• A 2D NumPy array
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A DataFrame can be created from a dict of series by calling the following commands:

>>> d = {'c1': pd.Series(['A', 'B', 'C']),

        'c2': pd.Series([1, 2., 3., 4.])}

>>> df = pd.DataFrame(d)

>>> df

   c1  c2

0    A   1

1    B   2

2    C   3

3  NaN   4

The DataFrame can be created using a dict of lists too:

>>> d = {'c1': ['A', 'B', 'C', 'D'],

    'c2': [1, 2.0, 3.0, 4.0]}

>>> df = pd.DataFrame(d)

>>> print df

 c1  c2

0  A   1

1  B   2

2  C   3

3  D   4

Panel
A Panel is a data structure that handles 3D data. The following command is an 
example of panel data:

>>> d = {'Item1': pd.DataFrame(np.random.randn(4, 3)),

    'Item2': pd.DataFrame(np.random.randn(4, 2))}

>>> pd.Panel(d)

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)

Items axis: Item1 to Item2

Major_axis axis: 0 to 3

Minor_axis axis: 0 to 2

www.allitebooks.com
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The preceding command shows that there are 2 DataFrames represented by two 
items. There are four rows represented by four major axes and three columns 
represented by three minor axes.

Inserting and exporting data
The data is stored in various forms, such as CSV, TSV, databases, and so on. The 
pandas library makes it convenient to read data from these formats or to export to 
these formats. We'll use a dataset that contains the weight statistics of the school 
students from the U.S..

We'll be using a file with the following structure:

Column Description
LOCATION CODE Unique location code 
COUNTY The county the school belongs to
AREA NAME The district the school belongs to
REGION The region the school belongs to
SCHOOL YEARS The school year the data is addressing
NO. OVERWEIGHT The number of overweight students 
PCT OVERWEIGHT The percentage of overweight students 
NO. OBESE The number of obese students 
PCT OBESE The percentage of obese students 
NO. OVERWEIGHT OR OBESE The number of students who are overweight or obese

PCT OVERWEIGHT OR OBESE
The percentage of students who are overweight or 
obese

GRADE LEVEL Whether they belong to elementary or high school
AREA TYPE The type of area
STREET ADDRESS The address of the school
CITY The city the school belongs to
STATE The state the school belongs to
ZIP CODE The zip code of the school
Location 1 The address with longitude and latitude
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CSV
To read data from a .csv file, the following read_csv function can be used:

>>> d = pd.read_csv('Data/Student_Weight_Status_Category_ 
          Reporting_Results__Beginning_2010.csv')

>>> d[0:5]['AREA NAME']

0    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3                        COHOES CITY SCHOOL DISTRICT

4                        COHOES CITY SCHOOL DISTRICT

The read_csv function takes the path of the .csv file to input the data. The 
command after this prints the first five rows of the Location column in the data.

To write a data to the .csv file, the following to_csv function can be used:

>>> d = {'c1': pd.Series(['A', 'B', 'C']),

    'c2': pd.Series([1, 2., 3., 4.])}

>>> df = pd.DataFrame(d)

>>> df.to_csv('sample_data.csv')

The DataFrame is written to a .csv file by using the to_csv method. The path and 
the filename where the file needs to be created should be mentioned.

XLS
In addition to the pandas package, the xlrd package needs to be installed for pandas 
to read the data from an Excel file:

>>> d=pd.read_excel('Data/Student_Weight_Status_Category 
        _Reporting_Results__Beginning_2010.xls')

The preceding function is similar to the CSV reading command. To write to an Excel 
file, the xlwt package needs to be installed:

>>> df.to_excel('sample_data.xls')
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JSON
To read the data from a JSON file, Python's standard json package can be used. The 
following commands help in reading the file:

>>> import json

>>> json_data = open('Data/Student_Weight_Status_Category 
        _Reporting_Results__Beginning_2010.json')

>>> data = json.load(json_data)

>>> json_data.close()

In the preceding command, the open() function opens a connection to the file. The 
json.load() function loads the data into Python. The json_data.close() function 
closes the connection to the file.

The pandas library also provides a function to read the JSON file, which can be 
accessed using pd.read_json().

Database
To read data from a database, the following function can be used:

>>> pd.read_sql_table(table_name, con)

The preceding command generates a DataFrame. If a table name and an SQLAlchemy 
engine are given, they return a DataFrame. This function does not support the DBAPI 
connection. The following are the description of the parameters used:

• table_name: This refers to the name of the SQL table in a database
• con: This refers to the SQLAlchemy engine

The following command reads SQL query into a DataFrame:

>>> pd.read_sql_query(sql, con)

The following are the description of the parameters used:

• sql: This refers to the SQL query that is to be executed
• con: This refers to the SQLAlchemy engine

Data cleansing
The data in its raw form generally requires some cleaning so that it can be analyzed 
or a dashboard can be created on it. There are many reasons that data might 
have issues. For example, the Point of Sale system at a retail shop might have 
malfunctioned and inputted some data with missing values. We'll be learning  
how to handle such data in the following section.
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Checking the missing data
Generally, most data will have some missing values. There could be various reasons 
for this: the source system which collects the data might not have collected the values 
or the values may never have existed. Once you have the data loaded, it is essential 
to check the missing elements in the data. Depending on the requirements, the 
missing data needs to be handled. It can be handled by removing a row or replacing 
a missing value with an alternative value.

In the Student Weight data, to check if the location column has missing value,  
the following command can be utilized:

>>> d['Location 1'].isnull()

0       False

1       False

2       False

3       False

4       False

5       False

6       False

The notnull() method will output each row of the value as TRUE or FALSE. If it's 
False, then there is a missing value. This data can be aggregated to find the number 
of instances of the missing value:

>>> d['Location 1'].isnull().value_counts()

False    3246

True       24

dtype: int64

The preceding command shows that the Location 1 column has 24 instances of 
missing values. These missing values can be handled by either removing the rows 
with the missing values or replacing it with some values. To remove the rows, 
execute the following command:

>>> d = d['Location 1'].dropna()

To remove all the rows with an instance of missing values, use the following command:

>>> d = d.dropna(how='any')
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Filling the missing data
Let's define some DataFrames to work with:

>>> df = pd.DataFrame(np.random.randn(5, 3), index=['a0', 'a10',  
                  'a20', 'a30', 'a40'],

                  columns=['X', 'Y', 'Z'])

>>> df

            X         Y         Z

a0  -0.854269  0.117540  1.515373

a10 -0.483923 -0.379934  0.484155

a20 -0.038317  0.196770 -0.564176

a30  0.752686  1.329661 -0.056649

a40 -1.383379  0.632615  1.274481

We'll now add some extra row indexes, which will create null values in our DataFrame:

>>> df2 = df2.reindex(['a0', 'a1', 'a10', 'a11', 'a20', 'a21',  
              'a30', 'a31', 'a40', 'a41'])

>>> df2

            X         Y         Z

a0  -1.193371  0.912654 -0.780461

a1        NaN       NaN       NaN

a10  1.413044  0.615997  0.947334

a11       NaN       NaN       NaN

a20  1.583516  1.388921  0.458771

a21       NaN       NaN       NaN

a30  0.479579  1.427625  1.407924

a31       NaN       NaN       NaN

a40  0.455510 -0.880937  1.375555

a41       NaN       NaN       NaN

If you want to replace the null values in the df2 DataFrame with a value of zero in 
the following case, execute the following command:

>>> df2.fillna(0)

            X         Y         Z

a0  -1.193371  0.912654 -0.780461
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a1   0.000000  0.000000  0.000000

a10  1.413044  0.615997  0.947334

a11  0.000000  0.000000  0.000000

a20  1.583516  1.388921  0.458771

a21  0.000000  0.000000  0.000000

a30  0.479579  1.427625  1.407924

a31  0.000000  0.000000  0.000000

a40  0.455510 -0.880937  1.375555

a41  0.000000  0.000000  0.000000

If you want to fill the value with forward propagation, which means that the  
value previous to the null value in the column will be used to fill the null value,  
the following command can be used:

>>> df2.fillna(method='pad') #filling with forward propagation

            X         Y         Z

a0  -1.193371  0.912654 -0.780461

a1  -1.193371  0.912654 -0.780461

a10  1.413044  0.615997  0.947334

a11  1.413044  0.615997  0.947334

a20  1.583516  1.388921  0.458771

a21  1.583516  1.388921  0.458771

a30  0.479579  1.427625  1.407924

a31  0.479579  1.427625  1.407924

a40  0.455510 -0.880937  1.375555

a41  0.455510 -0.880937  1.375555

If you want to fill the null values of the column with the column mean, then the 
following command can be utilized:

>>> df2.fillna(df2.mean())

            X         Y         Z

a0  -1.193371  0.912654 -0.780461

a1   0.547655  0.692852  0.681825

a10  1.413044  0.615997  0.947334

a11  0.547655  0.692852  0.681825

a20  1.583516  1.388921  0.458771
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a21  0.547655  0.692852  0.681825

a30  0.479579  1.427625  1.407924

a31  0.547655  0.692852  0.681825

a40  0.455510 -0.880937  1.375555

a41  0.547655  0.692852  0.681825

String operations
Sometimes, you would want to modify the string field column in your data.  
The following technique explains some of the string operations:

• Substring: Let's start by choosing the first five rows of the AREA NAME 
column in the data as our sample data to modify:
>>> df = pd.read_csv('Data/Student_Weight_Status_Category_ 
        Reporting_Results__Beginning_2010.csv')

>>> df['AREA NAME'][0:5]

0    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3                        COHOES CITY SCHOOL DISTRICT

4                        COHOES CITY SCHOOL DISTRICT

Name: AREA NAME, dtype: object

In order to extract the first word from the Area Name column, we'll use the 
extract function as shown in the following command:
>>> df['AREA NAME'][0:5].str.extract('(\w+)')

0    RAVENA

1    RAVENA

2    RAVENA

3    COHOES

4    COHOES

Name: AREA NAME, dtype: object
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In the preceding command, the str attribute of the series is utilized. The str 
class contains an extract method, where a regular expression could be fed 
to extract data, which is very powerful. It is also possible to extract a second 
word in AREA NAME as a separate column:
>>> df['AREA NAME'][0:5].str.extract('(\w+)\s(\w+)')

        0         1

0  RAVENA  COEYMANS

1  RAVENA  COEYMANS

2  RAVENA  COEYMANS

3  COHOES      CITY

4  COHOES      CITY

To extract data in different columns, the respective regular expression needs 
to be enclosed in separate parentheses.

• Filtering: If we want to filter rows with data on ELEMENTARY school, then the 
following command can be used:
>>> df[df['GRADE LEVEL'] == 'ELEMENTARY']

• Uppercase: To convert the area name to uppercase, we'll use the  
following command:
>>> df['AREA NAME'][0:5].str.upper()

0    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

1    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

2    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT

3                        COHOES CITY SCHOOL DISTRICT

4                        COHOES CITY SCHOOL DISTRICT

Name: AREA NAME, dtype: object

Since the data strings are in uppercase already, there won't be any  
difference seen.

• Lowercase: To convert Area Name to lowercase, we'll use the  
following command:
>>> df['AREA NAME'][0:5].str.lower()

0    ravena coeymans selkirk central school district

1    ravena coeymans selkirk central school district

2    ravena coeymans selkirk central school district

3                        cohoes city school district

4                        cohoes city school district

Name: AREA NAME, dtype: object
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• Length: To find the length of each element of the Area Name column, we'll 
use the following command:
>>> df['AREA NAME'][0:5].str.len()

0    47

1    47

2    47

3    27

4    27

Name: AREA NAME, dtype: int64

• Split: To split Area Name based on a whitespace, we'll use the  
following command:
>>> df['AREA NAME'][0:5].str.split(' ')

0    [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

1    [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

2    [RAVENA, COEYMANS, SELKIRK, CENTRAL, SCHOOL, D...

3                     [COHOES, CITY, SCHOOL, DISTRICT]

4                     [COHOES, CITY, SCHOOL, DISTRICT]

Name: AREA NAME, dtype: object

• Replace: If we want to replace all the area names ending with DISTRICT to 
DIST, then the following command can be used:
>>> df['AREA NAME'][0:5].str.replace('DISTRICT$', 'DIST')

0    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

1    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

2    RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DIST

3                        COHOES CITY SCHOOL DIST

4                        COHOES CITY SCHOOL DIST

Name: AREA NAME, dtype: object

The first argument in the replace method is the regular expression used to 
identify the portion of the string to replace. The second argument is the value 
for it to be replaced with.
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Merging data
To combine datasets together, the concat function of pandas can be utilized.  
Let's take the Area Name and the County columns with its first five rows:

>>> d[['AREA NAME', 'COUNTY']][0:5]

                                 AREA NAME            COUNTY

0  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

1  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

2  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

3                      COHOES CITY SCHOOL DISTRICT    ALBANY

4                      COHOES CITY SCHOOL DISTRICT    ALBANY

We can divide the data as follows:

>>> p1 = d[['AREA NAME', 'COUNTY']][0:2]

>>> p2 = d[['AREA NAME', 'COUNTY']][2:5]

The first two rows of the data are in p1 and the last three rows are in p2. These pieces 
can be combined using the concat() function:

>>> pd.concat([p1,p2])

                                 AREA NAME            COUNTY

0  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

1  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

2  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

3                      COHOES CITY SCHOOL DISTRICT    ALBANY

4                      COHOES CITY SCHOOL DISTRICT    ALBANY

The combined pieces can be identified by assigning a key:

>>> concatenated = pd.concat([p1,p2], keys = ['p1','p2'])

>>> concatenated

                     AREA NAME           COUNTY

p1 0  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT      ALBANY

    1  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT     ALBANY

p2 2  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT      ALBANY

    3                      COHOES CITY SCHOOL DISTRICT    ALBANY

    4                      COHOES CITY SCHOOL DISTRICT    ALBANY

www.allitebooks.com
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Using the keys, the pieces can be extracted back from the concatenated data:

>>> concatenated.ix['p1']

                                        AREA NAME     COUNTY

0  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

1  RAVENA COEYMANS SELKIRK CENTRAL SCHOOL DISTRICT    ALBANY

Data operations
Once the missing data is handled, various operations can be performed on the data.

Aggregation operations
There are a number of aggregation operations, such as average, sum, and so on, 
which you would like to perform on a numerical field. These are the methods  
used to perform it:

• Average: To find out the average number of students in the ELEMENTARY 
school who are obese, we'll first filter the ELEMENTARY data with the 
following command:
>>> data = d[d['GRADE LEVEL'] == 'ELEMENTARY']

213.41593780369291

Now, we'll find the mean using the following command:
>>> data['NO. OBESE'].mean()

The elementary grade level data is filtered and stored in the data object. The 
NO. OBESE column is selected, which contains the number of obese students 
and using the mean() method, the average is taken out.

• SUM: To find out the total number of elementary students who are obese 
across all the school, use the following command:
>>> data['NO. OBESE'].sum()

219605.0

• MAX: To get the maximum number of students that are obese in an 
elementary school, use the following command:
>>> data['NO. OBESE'].max()

48843.0
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• MIN: To get the minimum number of students that are obese in an 
elementary school, use the following command:
>>> data['NO. OBESE'].min()

5.0

• STD: To get the standard deviation of the number of obese students, use the 
following command:
>>> data['NO. OBESE'].std()

1690.3831128098113

• COUNT: To count the total number of schools with the ELEMENTARY grade in 
the DELAWARE county, use the following command:
>>> data = df[(d['GRADE LEVEL'] == 'ELEMENTARY') &  
          (d['COUNTY'] == 'DELAWARE')]

>>> data['COUNTY'].count()

19

The table is filtered for the ELEMENTARY grade and the DELAWARE county. 
Notice that the conditions are enclosed in parentheses. This is to ensure that 
individual conditions are evaluated and if the parentheses are not provided, 
then Python will throw an error.

Joins
SQL-like joins can be performed on the DataFrame using pandas. Let's define  
a lookup DataFrame, which assigns levels to each of the grades using the  
following command:

>>> grade_lookup = {'GRADE LEVEL': pd.Series(['ELEMENTARY',  
               'MIDDLE/HIGH', 'MISC']),

               'LEVEL': pd.Series([1, 2, 3])}

>>> grade_lookup = DataFrame(grade_lookup)
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Let's take the first five rows of the GRADE data column as an example for performing 
the joins:

>>> df[['GRADE LEVEL']][0:5]

     GRADE LEVEL

0  DISTRICT TOTAL

1      ELEMENTARY

2     MIDDLE/HIGH

3  DISTRICT TOTAL

4      ELEMENTARY

The inner join
The following image is a sample of an inner join:

An inner join can be performed with the following command:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']),  
          on=['GRADE LEVEL'], how='inner')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

  GRADE LEVEL  LEVEL

1   ELEMENTARY      1

4   ELEMENTARY      1

2  MIDDLE/HIGH      2
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The join takes place with the join() method. The first argument takes the 
DataFrame on which the lookup takes place. Note that the grade_lookup 
DataFrame's index is being set by the set_index() method. This is essential  
for a join, as without it, the join method won't know on which column to join  
the DataFrame to.

The second argument takes a column of the d DataFrame to join the data. The third 
argument defines the join as an inner join.

The left outer join
The following image is a sample of a left outer join:

A left outer join can be performed with the following commands:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']), 
on=['GRADE LEVEL'], how='left')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

      GRADE LEVEL  LEVEL

0  DISTRICT TOTAL    NaN

1      ELEMENTARY      1

2     MIDDLE/HIGH      2

3  DISTRICT TOTAL    NaN

4      ELEMENTARY      1

You can notice that DISTRICT TOTAL has missing values for a level column, as the 
grade_lookup DataFrame does not have an instance for DISTRICT TOTAL.
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The full outer join
The following image is a sample of a full outer join:

The full outer join can be performed with the following commands:

>>> d_sub = df[0:5].join(grade_lookup.set_index(['GRADE LEVEL']),  
            on=['GRADE LEVEL'], how='outer')

>>> d_sub[['GRADE LEVEL', 'LEVEL']]

     GRADE LEVEL  LEVEL

0  DISTRICT TOTAL    NaN

3  DISTRICT TOTAL    NaN

1      ELEMENTARY      1

4      ELEMENTARY      1

2     MIDDLE/HIGH      2

4            MISC      3

The groupby function
It's easy to do an SQL-like group by operation with pandas. Let's say, if you want to 
find the sum of the number of obese students in each of the grades, then you can use 
the following command:

>>> df['NO. OBESE'].groupby(d['GRADE LEVEL']).sum()

GRADE LEVEL
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DISTRICT TOTAL    127101

ELEMENTARY         72880

MIDDLE/HIGH        53089

This command chooses the number of obese students column, then uses the group 
by method to group the data-based group level, and finally, the sum method sums 
up the number. The same can be achieved by the following function too:

>>> d['NO. OBESE'].groupby(d['GRADE LEVEL']).aggregate(sum)

Here, the aggregate method is utilized. The sum function is passed to obtain the 
required results.

It's also possible to obtain multiple kinds of aggregations on the same metric.  
This can be achieved by the following command:

>>> df['NO. OBESE'].groupby(d['GRADE LEVEL']).aggregate([sum, mean,  
        std])

                  sum        mean         std

GRADE LEVEL                                   

DISTRICT TOTAL  127101  128.384848  158.933263

ELEMENTARY       72880   76.958817  100.289578

MIDDLE/HIGH      53089   59.251116   65.905591

Summary
In this chapter, we got familiarized with the NumPy and pandas packages. We 
understood the different datatypes in pandas and how to utilize them. We learned 
how to perform data cleansing and manipulation, in which we handled missing values 
and performed string operations. This chapter gives us a foundation for data science 
and you can dive deeper into NumPy and pandas by clicking on the following links:

• NumPy documentation: http://docs.scipy.org/doc/
• pandas documentation: http://pandas.pydata.org/

In the next chapter, we'll learn about the meaning of inferential statistics and what 
they do, and also how to make sense of the different concepts in inferential statistics.

http://docs.scipy.org/doc/
http://pandas.pydata.org/
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Inferential Statistics
Before getting understanding the inferential statistics, let's look at what descriptive 
statistics is about.

Descriptive statistics is a term given to data analysis that summarizes data in a 
meaningful way such that patterns emerge from it. It is a simple way to describe 
data, but it does not help us to reach a conclusion on the hypothesis that we have 
made. Let's say you have collected the height of 1,000 people living in Hong Kong. 
The mean of their height would be descriptive statistics, but their mean height does 
not indicate that it's the average height of whole of Hong Kong. Here, inferential 
statistics will help us in determining what the average height of whole of Hong Kong 
would be, which is described in depth in this chapter.

Inferential statistics is all about describing the larger picture of the analysis with a 
limited set of data and deriving conclusions from it.

In this chapter, we will cover the following topics:

• The different kinds of distributions
• Different statistical tests that can be utilized to test a hypothesis
• How to make inferences about the population of a sample from the data given
• Different kinds of errors that can occur during hypothesis testing
• Defining the confidence interval at which the population mean lies
• The significance of p-value and how it can be utilized to interpret results

Various forms of distribution
There are various kinds of probability distributions, and each distribution shows  
the probability of different outcomes for a random experiment. In this section,  
we'll explore the various kinds of probability distributions.



Inferential Statistics

[ 28 ]

A normal distribution
A normal distribution is the most common and widely used distribution in statistics. 
It is also called a "bell curve" and "Gaussian curve" after the mathematician Karl 
Friedrich Gauss. A normal distribution occurs commonly in nature. Let's take the 
height example we saw previously. If you have data for the height of all the people 
of a particular gender in Hong Kong city, and you plot a bar chart where each bar 
represents the number of people at this particular height, then the curve that is 
obtained will look very similar to the following graph. The numbers in the plot are 
the standard deviation numbers from the mean, which is zero. The concept will 
become clearer as we proceed through the chapter.

Also, if you take an hourglass and observe the way sand stacks up when the hour 
glass is inverted, it forms a normal distribution. This is a good example that shows 
how normal distribution exists in nature.
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Take the following figure: it shows three curves with normal distribution. The curve 
A has a standard deviation of 1, curve C has a standard deviation of 2, and curve 
B has a standard deviation of 3, which means that the curve B has the maximum 
spread of values, whereas curve A has the least spread of values. One more way 
of looking at it is if curve B represented the height of people of a country, then this 
country has a lot of people with diverse heights, whereas the country with the curve 
A distribution will have people whose heights are similar to each other.

A normal distribution from a binomial distribution
Let's take a coin and flip it. The probability of getting a head or a tail is 50%. If you 
take the same coin and flip it six times, the probability of getting a head three times 
can be computed using the following formula:

( )
!( )

! !
is the number of successes desired

x n xnP x p q
x n x

and x

−=
−

In the preceding formula, n is the number of times the coin is flipped, p is the 
probability of success, and q is (1– p), which is the probability of failure.
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The SciPy package of Python provides useful functions to perform statistical 
computations. You can install it from http://www.scipy.org/. The following 
commands helps in plotting the binomial distribution:

>>> from scipy.stats import binom

>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

>>> x = [0, 1, 2, 3, 4, 5, 6]

>>> n, p = 6, 0.5

>>> rv = binom(n, p)

>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,

          label='Probablity')

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

The binom function in the SciPy package helps generate binomial distributions 
and the necessary statistics related to it. If you observe the preceding commands, 
there are parts of it that are from the matplotlib, which we'll use right now to plot 
the binomial distribution. The matplotlib library will be covered in detail in later 
chapters. The plt.subplots function helps in generating multiple plots on a screen. 
The binom function takes in the number of attempts and the probability of success. 
The ax.vlines function is used to plot vertical lines and rv.pmf within it helps in 
calculating the probability at various values of x. The ax.legend function adds a 
legend to the graph, and finally, plt.show displays the graph. The result is as follows:

http://www.scipy.org/
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As you can see in the graph, if the coin is flipped six times, then getting three heads 
has the maximum probability, whereas getting a single head or five heads has the 
least probability.

Now, let's increase the number of attempts and see the distribution:

>>> fig, ax = plt.subplots(1, 1)

>>> x = range(101)

>>> n, p = 100, 0.5

>>> rv = binom(n, p)

>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,

          label='Probablity')

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

Here, we try to flip the coin 100 times and see the distribution:
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When the probability of success is changed to 0.4, this is what you see:

When the probability is 0.6, this is what you see:
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When you flip the coin 1000 times at 0.5 probability:

As you can see, the binomial distribution has started to resemble a normal distribution.

A Poisson distribution
A Poisson distribution is the probability distribution of independent interval 
occurrences in an interval. A binomial distribution is used to determine the 
probability of binary occurrences, whereas, a Poisson distribution is used for  
count-based distributions. If lambda is the mean occurrence of the events per 
interval, then the probability of having a k occurrence within a given interval  
is given by the following formula:

( ) ( ); Pr
!

kef k X k
k

λλλ
−

= = =

Here, e is the Euler's number, k is the number of occurrences for which the probability 
is going to be determined, and lambda is the mean number of occurrences.

Let's understand this with an example. The number of cars that pass through a 
bridge in an hour is 20. What would be the probability of 23 cars passing through  
the bridge in an hour?
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For this, we'll use the poisson function from SciPy:

>>> from scipy.stats import poisson

>>> rv = poisson(20)

>>> rv.pmf(23)

0.066881473662401172

With the Poisson function, we define the mean value, which is 20 cars. The rv.pmf 
function gives the probability, which is around 6%, that 23 cars will pass the bridge.

A Bernoulli distribution
You can perform an experiment with two possible outcomes: success or failure. 
Success has a probability of p, and failure has a probability of 1 - p. A random 
variable that takes a 1 value in case of a success and 0 in case of failure is called  
a Bernoulli distribution. The probability distribution function can be written as:

( )
1 for 0

for 1
p n

P n
p n
− =

=  =

It can also be written like this:

( ) ( )11 nnP n p p −= −

The distribution function can be written like this:

( )
1 for 0
1 for 1
p n

D n
n

− =
=  =
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Following plot shows a Bernoulli distribution:

Voting in an election is a good example of the Bernoulli distribution.

A Bernoulli distribution can be generated using the bernoulli.rvs() function of 
the SciPy package. The following function generates a Bernoulli distribution with a 
probability of 0.7:

>>> from scipy import stats

>>> stats.bernoulli.rvs(0.7, size=100)

array([1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,  
         1, 0,

       1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,  
         1, 0,

       1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,  
         0, 0,

       1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,  
         1, 1,

       1, 0, 1, 1, 1, 0, 1, 1])])

If the preceding output is the number of votes for a candidate by people, then the 
candidate has 70% of the votes.
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A z-score
A z-score, in simple terms, is a score that expresses the value of a distribution in 
standard deviation with respect to the mean. Let's take a look at the following 
formula that calculates the z-score:

( )z X - /= µ σ

Here, X is the value in the distribution, µ is the mean of the distribution, and σ is the 
standard deviation of the distribution

Let's try to understand this concept from the perspective of a school classroom.

A classroom has 60 students in it and they have just got their mathematics 
examination score. We simulate the score of these 60 students with a normal 
distribution using the following command:

>>> classscore

>>> classscore = np.random.normal(50, 10, 60).round()

[ 56.  52.  60.  65.  39.  49.  41.  51.  48.  52.  47.  41.  60.   
    54.  41.

  46.  37.  50.  50.  55.  47.  53.  38.  42.  42.  57.  40.  45.   
    35.  39.

  67.  56.  35.  45.  47.  52.  48.  53.  53.  50.  61.  60.  57.   
    53.  56.

  68.  43.  35.  45.  42.  33.  43.  49.  54.  45.  54.  48.  55.   
    56.  30.]

The NumPy package has a random module that has a normal function, where 50 is 
given as the mean of the distribution, 10 is the standard deviation of the distribution, 
and 60 is the number of values to be generated. You can plot the normal distribution 
with the following commands:

>>> plt.hist(classscore, 30, normed=True) #Number of breaks is 30

>>> plt.show()
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The score of each student can be converted to a z-score using the following functions:

>>> stats.zscore(classscore)

[ 0.86008868  0.38555699  1.33462036  1.92778497 -1.15667098   
  0.02965823

 -0.91940514  0.26692407 -0.08897469  0.38555699 -0.20760761 - 
  0.91940514

  1.33462036  0.62282284 -0.91940514 -0.32624053 -1.39393683   
  0.14829115

  0.14829115  0.74145576 -0.20760761  0.50418992 -1.2753039  - 
  0.80077222

 -0.80077222  0.9787216  -1.03803806 -0.44487345 -1.63120267 - 
  1.15667098

  2.16505081  0.86008868 -1.63120267 -0.44487345 -0.20760761   
  0.38555699

 -0.08897469  0.50418992  0.50418992  0.14829115  1.45325329   
  1.33462036

  0.9787216   0.50418992  0.86008868  2.28368373 -0.6821393  - 
  1.63120267

 -0.44487345 -0.80077222 -1.86846851 -0.6821393   0.02965823   
  0.62282284

 -0.44487345  0.62282284 -0.08897469  0.74145576  0.86008868 - 
  2.22436727]



Inferential Statistics

[ 38 ]

So, a student with a score of 60 out of 100 has a z-score of 1.334. To make more sense 
of the z-score, we'll use the standard normal table.

This table helps in determining the probability of a score.

We would like to know what the probability of getting a score above 60 would be.

The standard normal table can help us in determining the probability of the 
occurrence of the score, but we do not have to perform the cumbersome task of 
finding the value by looking through the table and finding the probability. This task 
is made simple by the cdf function, which is the cumulative distribution function:

>>> prob = 1 - stats.norm.cdf(1.334)

>>> prob

0.091101928265359899

The cdf function gives the probability of getting values up to the z-score of 1.334, 
and doing a minus one of it will give us the probability of getting a z-score, which  
is above it. In other words, 0.09 is the probability of getting marks above 60.

Let's ask another question, "how many students made it to the top 20% of the class?"
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Here, we'll have to work backwards to determine the marks at which all the students 
above it are in the top 20% of the class:

Now, to get the z-score at which the top 20% score marks, we can use the ppf 
function in SciPy:

>>> stats.norm.ppf(0.80)

0.8416212335729143

The z-score for the preceding output that determines whether the top 20% marks are 
at 0.84 is as follows:

>>> (0.84 * classscore.std()) + classscore.mean()

55.942594176524267

We multiply the z-score with the standard deviation and then add the result with 
the mean of the distribution. This helps in converting the z-score to a value in the 
distribution. The 55.83 marks means that students who have marks more than this 
are in the top 20% of the distribution.

The z-score is an essential concept in statistics, which is widely used. Now you can 
understand that it is basically used in standardizing any distribution so that it can be 
compared or inferences can be derived from it.
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A p-value
A p-value is the probability of rejecting a null-hypothesis when the hypothesis is 
proven true. The null hypothesis is a statement that says that there is no difference 
between two measures. If the hypothesis is that people who clock in 4 hours of study 
everyday score more that 90 marks out of 100. The null hypothesis here would be that 
there is no relation between the number of hours clocked in and the marks scored.

If the p-value is equal to or less than the significance level (α), then the null 
hypothesis is inconsistent and it needs to be rejected.

Let's understand this concept with an example where the null hypothesis is that it is 
common for students to score 68 marks in mathematics.

Let's define the significance level at 5%. If the p-value is less than 5%, then the null 
hypothesis is rejected and it is not common to score 68 marks in mathematics.

Let's get the z-score of 68 marks:

>>> zscore = ( 68 - classscore.mean() ) / classscore.std()

>>> zscore

2.283
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Now, let's get the value:

>>> prob = 1 - stats.norm.cdf(zscore)

>>> prob

0.032835182628040638

So, you can see that the p-value is at 3.2%, which is lower than the significance level. 
This means that the null hypothesis can be rejected, and it can be said that it's not 
common to get 68 marks in mathematics.

One-tailed and two-tailed tests
The example in the previous section was an instance of a one-tailed test where the null 
hypothesis is rejected or accepted based on one direction of the normal distribution.
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In a two-tailed test, both the tails of the null hypothesis are used to test the hypothesis.

In a two-tailed test, when a significance level of 5% is used, then it is distributed 
equally in the both directions, that is, 2.5% of it in one direction and 2.5% in the  
other direction.

Let's understand this with an example. The mean score of the mathematics exam at a 
national level is 60 marks and the standard deviation is 3 marks.

The mean marks of a class are 53. The null hypothesis is that the mean marks of the 
class are similar to the national average. Let's test this hypothesis by first getting the 
z-score 60:

>>> zscore = ( 53 - 60 ) / 3.0

>>> zscore

-2.3333333333333335

The p-value would be:

>>> prob = stats.norm.cdf(zscore)

>>> prob

0.0098153286286453336
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So, the p-value is 0.98%. The null hypothesis is to be rejected, and the p-value should 
be less than 2.5% in either direction of the bell curve. Since the p-value is less than 
2.5%, we can reject the null hypothesis and clearly state that the average marks of the 
class are significantly different from the national average.

Type 1 and Type 2 errors
Type 1 error is a type of error that occurs when there is a rejection of the null 
hypothesis when it is actually true. This kind of error is also called an error  
of the first kind and is equivalent to false positives.

Let's understand this concept using an example. There is a new drug that is being 
developed and it needs to be tested on whether it is effective in combating diseases. 
The null hypothesis is that it is not effective in combating diseases.

The significance level is kept at 5% so that the null hypothesis can be accepted 
confidently 95% of the time. However, 5% of the time, we'll accept the rejecttion  
of the hypothesis although it had to be accepted, which means that even though  
the drug is ineffective, it is assumed to be effective.

The Type 1 error is controlled by controlling the significance level, which is alpha. 
Alpha is the highest probability to have a Type 1 error. The lower the alpha, the 
lower will be the Type 1 error.

The Type 2 error is the kind of error that occurs when we do not reject a null 
hypothesis that is false. This error is also called the error of the second kind  
and is equivalent to a false negative.

This kind of error occurs in a drug scenario when the drug is assumed to be 
ineffective but is actually it is effective.
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These errors can be controlled one at a time. If one of the errors is lowered, then 
the other one increases. It depends on the use case and the problem statement that 
the analysis is trying to address, and depending on it, the appropriate error should 
reduce. In the case of this drug scenario, typically, a Type 1 error should be lowered 
because it is better to ship a drug that is confidently effective.

A confidence interval
A confidence interval is a type of interval statistics for a population parameter. The 
confidence interval helps in determining the interval at which the population mean 
can be defined.

Let's try to understand this concept by using an example. Let's take the height of 
every man in Kenya and determine with 95% confidence interval the average of 
height of Kenyan men at a national level.

Let's take 50 men and their height in centimeters:

>>> height_data = np.array([ 186.0, 180.0, 195.0, 189.0, 191.0,  
    177.0, 161.0, 177.0, 192.0, 182.0, 185.0, 192.0,

  173.0, 172.0, 191.0, 184.0, 193.0, 182.0, 190.0, 185.0, 181.0,  
    188.0, 179.0, 188.0,

  170.0, 179.0, 180.0, 189.0, 188.0, 185.0, 170.0, 197.0, 187.0,  
    182.0, 173.0, 179.0,

  184.0, 177.0, 190.0, 174.0, 203.0, 206.0, 173.0, 169.0, 178.0,  
    201.0, 198.0, 166.0,

  171.0, 180.0])
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Plotting the distribution, it has a normal distribution:

>>> plt.hist(height_data, 30, normed=True)

>>> plt.show()

The mean of the distribution is as follows:

>>> height_data.mean()

183.24000000000001

So, the average height of a man from the sample is 183.4 cm.

To determine the confidence interval, we'll now define the standard error of the mean.

The standard error of the mean is the deviation of the sample mean from the 
population mean. It is defined using the following formula:

SEx
s
n

=

Here, s is the standard deviation of the sample, and n is the number of elements of 
the sample.
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This can be calculated using the sem() function of the SciPy package:

>>> stats.sem(height_data)

1.3787187190005252

So, there is a standard error of the mean of 1.38 cm. The lower and upper limit of the 
confidence interval can be determined by using the following formula:

Upper/Lower limit = mean(height) + / - sigma * SEmean(x)

For lower limit:

183.24 + (1.96 * 1.38) = 185.94

For upper limit:

183.24 - (1.96*1.38) = 180.53

A 1.96 standard deviation covers 95% of area in the normal distribution.

We can confidently say that the population mean lies between 180.53 cm and 185.94 
cm of height.
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Let's assume we take a sample of 50 people, record their height, and then repeat  
this process 30 times. We can then plot the averages of each sample and observe  
the distribution.

The commands that simulated the preceding plot is as follows:

>>> average_height = []

>>> for i in xrange(30):

>>>    sample50 = np.random.normal(183, 10, 50).round()

>>>    average_height.append(sample50.mean())

>>> plt.hist(average_height, 20, normed=True)

>>> plt.show()

You can observe that the mean ranges from 180 to 187 cm when we simulated the 
average height of 50 sample men, which was taken 30 times.

Let's see what happens when we sample 1000 men and repeat the process 30 times:

>>> average_height = []

>>> for i in xrange(30):

>>>    sample1000 = np.random.normal(183, 10, 1000).round()
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>>>    average_height.append(sample1000.mean())

>>> plt.hist(average_height, 10, normed=True)

>>> plt.show()

As you can see, the height varies from 182.4 cm and to 183.4 cm. What does  
this mean?

It means that as the sample size increases, the standard error of the mean decreases, 
which also means that the confidence interval becomes narrower, and we can tell 
with certainty the interval that the population mean would lie on.

Correlation
In statistics, correlation defines the similarity between two random variables.  
The most commonly used correlation is the Pearson correlation and it is defined  
by the following:

( ) ( )( )
,

cov , X Y
X Y

X Y X Y

E X YX Y µ µ
ρ

σ σ σ σ
− −  = =



Chapter 2

[ 49 ]

The preceding formula defines the Pearson correlation as the covariance between 
X and Y, which is divided by the standard deviation of X and Y, or it can also 
be defined as the expected mean of the sum of multiplied difference of random 
variables with respect to the mean divided by the standard deviation of X and Y. 
Let's understand this with an example. Let's take the mileage and horsepower of 
various cars and see if there is a relation between the two. This can be achieved using 
the pearsonr function in the SciPy package:

>>> mpg = [21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,  
       19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4,

       33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26.0, 30.4, 15.8,  
       19.7, 15.0, 21.4]

>>> hp = [110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180,  
      180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245,

      175, 66, 91, 113, 264, 175, 335, 109]

>>> stats.pearsonr(mpg,hp)

(-0.77616837182658638, 1.7878352541210661e-07)

The first value of the output gives the correlation between the horsepower and the 
mileage and the second value gives the p-value.

So, the first value tells us that it is highly negatively correlated and the p-value tells 
us that there is significant correlation between them:

>>> plt.scatter(mpg, hp)

>>> plt.show()
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From the plot, we can see that as the mpg increases, the horsepower decreases.

Let's look into another correlation called the Spearman correlation. The Spearman 
correlation applies to the rank order of the values and so it provides a monotonic 
relation between the two distributions. It is useful for ordinal data (data that has an 
order, such as movie ratings or grades in class) and is not affected by outliers.

Let's get the Spearman correlation between the miles per gallon and horsepower. 
This can be achieved using the spearmanr() function in the SciPy package:

>>> stats.spearmanr(mpg,hp)

(-0.89466464574996252, 5.085969430924539e-12)

We can see that the Spearman correlation is -0.89 and the p-value is significant.

Let's do an experiment in which we introduce a few outlier values in the data and see 
how the Pearson and Spearman correlation gets affected:

>>> mpg = [21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,  
       19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4,

       33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26.0, 30.4, 15.8,  
       19.7, 15.0, 21.4, 120, 3]

>>> hp = [110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180,  
      180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245,

      175, 66, 91, 113, 264, 175, 335, 109, 30, 600]

>>> plt.scatter(mpg, hp)

>>> plt.show()
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From the plot, you can clearly make out the outlier values. Lets see how the 
correlations get affected for both the Pearson and Spearman correlation

The following commands show you the Pearson correlation:

>>> stats.pearsonr(mpg, hp)

>>> (-0.47415304891435484, 0.0046122167947348462)

Here is the Spearman correlation:

>>> stats.spearmanr(mpg, hp)

>>> (-0.91222184337265655, 6.0551681657984803e-14)

We can clearly see that the Pearson correlation has been drastically affected due to 
the outliers, which are from a correlation of 0.89 to 0.47.

The Spearman correlation did not get affected much as it is based on the order rather 
than the actual value in the data.

Z-test vs T-test
We have already done a few Z-tests before where we validated our null hypothesis.

A T-distribution is similar to a Z-distribution—it is centered at zero and has a basic 
bell shape, but its shorter and flatter around the center than the Z-distribution.

The T-distributions' standard deviation is usually proportionally larger than the Z, 
because of which you see the fatter tails on each side.
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The t distribution is usually used to analyze the population when the sample is small.

The Z-test is used to compare the population mean against a sample or compare the 
population mean of two distributions with a sample size greater than 30. An example 
of a Z-test would be comparing the heights of men from different ethnicity groups.

The T-test is used to compare the population mean against a sample, or compare the 
population mean of two distributions with a sample size less than 30, and when you 
don't know the population's standard deviation.

Let's do a T-test on two classes that are given a mathematics test and have 10 
students in each class:

>>> class1_score = np.array([45.0, 40.0, 49.0, 52.0, 54.0, 64.0,  
                    36.0, 41.0, 42.0, 34.0])

>>> class2_score = np.array([75.0, 85.0, 53.0, 70.0, 72.0, 93.0,  
                    61.0, 65.0, 65.0, 72.0])

To perform the T-test, we can use the ttest_ind() function in the SciPy package:

>>> stats.ttest_ind(class1_score,class2_score)

(array(-5.458195056848407), 3.4820722850153292e-05)

The first value in the output is the calculated t-statistics, whereas the second value is 
the p-value and p-value shows that the two distributions are not identical.

The F distribution
The F distribution is also known as Snedecor's F distribution or the Fisher–Snedecor 
distribution.

An f statistic is given by the following formula:

2 2 2 2
1 1 2 2/ / /f s s   = σ σ   

Here, s1 is the standard deviation of a sample 1 with an n1 size, s2 is the standard 
deviation of a sample 2, where the size n2σ1 is the population standard deviation  
of a sample 1σ2 is the population standard deviation of a sample 12.
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The distribution of all the possible values of f statistics is called F distribution. The d1 
and d2 represent the degrees of freedom in the following chart:

 

The chi-square distribution
The chi-square statistics are defined by the following formula:

( )2 2 2X = n -1 *s /  σ 

Here, n is the size of the sample, s is the standard deviation of the sample, and σ is 
the standard deviation of the population.

If we repeatedly take samples and define the chi-square statistics, then we can  
form a chi-square distribution, which is defined by the following probability  
density function:

( )( )v/2-12 X2/2
0Y=Y X e−∗ ∗

Here, Y0 is a constant that depends on the number of degrees of freedom, Χ2 is the 
chi-square statistic, v = n - 1 is the number of degrees of freedom, and e is a constant 
equal to the base of the natural logarithm system.
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Y0 is defined so that the area under the chi-square curve is equal to one.

Chi-square for the goodness of fit
The Chi-square test can be used to test whether the observed data differs 
significantly from the expected data. Let's take the example of a dice. The dice  
is rolled 36 times and the probability that each face should turn upwards is 1/6.  
So, the expected distribution is as follows:

Expected Frequency Outcome
6 1
6 2
6 3
6 4
6 5
6 6

>>> expected = np.array([6,6,6,6,6,6])
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The observed distribution is as follows:

Observed Frequency Outcome
7 1
5 2
3 3
9 4
6 5
6 6

>>> observed = observed = np.array([7, 5, 3, 9, 6, 6])

The null hypothesis in the chi-square test is that the observed value is similar to the 
expected value.

The chi-square can be performed using the chisquare function in the SciPy package:

>>> stats.chisquare(observed,expected)

(3.333333333333333, 0.64874235866759344)

The first value is the chi-square value and the second value is the p-value, which 
is very high. This means that the null hypothesis is valid and the observed value is 
similar to the expected value.

The chi-square test of independence
The chi-square test of independence is a statistical test used to determine whether 
two categorical variables are independent of each other or not.

Let's take the following example to see whether there is a preference for a book based 
on the gender of people reading it:

Flavour
Total Biography Suspense Romance Gender
280 60 120 100 Men
640 90 200 350 Women
920 150 320 450
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The Chi-Square test of independence can be performed using the chi2_contingency 
function in the SciPy package:

>>> men_women = np.array([[100, 120, 60],[350, 200, 90]])

>>> stats.chi2_contingency(men_women)

(28.362103174603167, 6.9382117170577439e-07, 2, array([[  
       136.95652174,   97.39130435,   45.65217391],

       [ 313.04347826,  222.60869565,  104.34782609]]))

The first value is the chi-square value:

The second value is the p-value, which is very small, and means that there is an 
association between the gender of people and the genre of the book they read. The 
third value is the degrees of freedom. The fourth value, which is an array, is the 
expected frequencies.

ANOVA
Analysis of Variance (ANOVA) is a statistical method used to test differences 
between two or more means.

This test basically compares the means between groups and determines whether any 
of these means are significantly different from each other:

0 1 2 3: kH µ µ µ µ= = = =�

ANOVA is a test that can tell you which group is significantly different from each 
other. Let's take the height of men who are from three different countries and see  
if their heights are significantly different from others:

>>> country1 = np.array([ 176.,  179.,  180.,  188.,  187.,  184.,  171.,   
        201.,  172.,

        181.,  192.,  187.,  178.,  178.,  180.,  199.,  185.,  176.,

        207.,  177.,  160.,  174.,  176.,  192.,  189.,  187.,  183.,

        180.,  181.,  200.,  190.,  187.,  175.,  179.,  181.,  183.,

        171.,  181.,  190.,  186.,  185.,  188.,  201.,  192.,  188.,

        181.,  172.,  191.,  201.,  170.,  170.,  192.,  185.,  167.,

        178.,  179.,  167.,  183.,  200.,  185.])

>>> country2 = np.array([ 177.,  165.,  175.,  172.,  179.,  192.,  169.,   
                      185.,  187.,
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        167.,  162.,  165.,  188.,  194.,  187.,  175.,  163.,  178.,

        197.,  172.,  175.,  185.,  176.,  171.,  172.,  186.,  168.,

        178.,  191.,  192.,  175.,  189.,  178.,  181.,  170.,  182.,

        166.,  189.,  196.,  192.,  189.,  171.,  185.,  198.,  181.,

        167.,  184.,  179.,  178.,  193.,  179.,  177.,  181.,  174.,

        171.,  184.,  156.,  180.,  181.,  187.])

>>> country3 = np.array([ 191.,  190.,  191.,  185.,  190.,  184.,   
        173.,  175.,  200.,

        190.,  191.,  184.,  167.,  194.,  195.,  174.,  171.,  191.,

        174.,  177.,  182.,  184.,  176.,  180.,  181.,  186.,  179.,

        176.,  186.,  176.,  184.,  194.,  179.,  171.,  174.,  174.,

        182.,  198.,  180.,  178.,  200.,  200.,  174.,  202.,  176.,

        180.,  163.,  159.,  194.,  192.,  163.,  194.,  183.,  190.,

        186.,  178.,  182.,  174.,  178.,  182.])

To perform the one-way ANOVA, we can use the f_oneway() function of the  
SciPy package:

>>> stats.f_oneway(country1,country2,country3)

(2.9852039682631375, 0.053079678812747652)

The first value of the output gives the F-value and the second value gives the p-value. 
Since the p-value is greater than 5% by a small margin, we can tell that the mean of the 
heights in the three countries is not significantly different from each other.

Summary
In this chapter, you learned about the various probability distributions. You also 
learned about how to use z-score, p-value, Type 1, and Type 2 errors. You gained 
an insight into the Z-test and T-test followed by the chi-square distribution and saw 
how it can be used to test a hypothesis.

In the next chapter, you'll learn about data mining and how to execute it.
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Finding a Needle  
in a Haystack

Analyzing a dataset to find patterns is an art as much as it is a science. There can  
be a lot of metrics associated with a dataset and you would like to find the needle 
in this haystack. For us, a needle is the insight that we look for within data that we 
weren't aware of earlier. Here, insight could refer to important information about 
people who buy milk of a particular brand and also buy cereals of another brand,  
for instance. The retail store can then stack the products near each other.

Whenever you try to analyze a dataset, you should have a detailed understanding of 
it and also of the domain that it is associated with. If it's a simple dataset that can be 
understood very easily, then the analysis can be performed directly, but if the dataset 
relates to the sensor data of a turbine, then domain understanding of how turbines 
work and what is critical to their functioning will add richness to your analysis.

The understanding of a domain is like the North Star: it helps you navigate  
your analysis.
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In this chapter, you'll learn the following topics:

• How to structure your analysis for data mining
• How to present your analysis
• How to perform data mining on a Titanic survivors dataset

What is data mining?
Data mining is the process of exploring data and finding patterns in it using machine 
learning, statistics, and database systems. The end goal of data mining is to derive 
useful information from data, which can be utilized to increase revenue, reduce 
costs, or even save lives through some of its applications.

When you have a dataset that needs to be mined, it is not feasible to use all the  
data-mining techniques that are available on every column field of the data to  
derive insights. This will be a cumbersome task and will take a long time to  
derive any useful insights.

To speed up the process of mining data, knowledge of domains is a great help. With 
this knowledge, one can understand what the data represents and how to analyze it 
to gain insights.
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The best way to start data mining is to derive themes on which the data needs to 
be mined. If you have the sales data of a Fast Moving Consumer Goods (FMCG) 
company, then themes could be as follows:

• Brand behavior
• Outlet behavior
• Growth of products
• Seasonal effect on products

The themes help by giving a direction to explore data and finding patterns in it.

Once you have the themes, you need to put questions under them to streamline  
the analysis:

• Brand behavior: The following are the questions used to streamline  
the analysis:

 ° Which are the top brands?
 ° Which brands have the maximum coverage?
 ° Which brands are cannibalizing the sales of the other brands?

• Outlet behavior: The following are the questions used to streamline  
the analysis:

 ° What percentage of outlets takes up 80% of revenue?
 ° What kind of outlets have the highest number of sales?
 ° What kind of outlets sell primarily premium products?

• Growth of products: The following are the questions used to streamline  
the analysis:

 ° Which are the fastest growing brands in terms of sale?
 ° Which are the fastest growing brands in terms of volume?
 ° Which brand's growth has flattened out?

• Seasonal effect of the products: The following are the questions used to 
streamline the analysis:

 ° How many brands are seasonal?
 ° What is the difference in terms of sales during seasonal and 

nonseasonal periods?
 ° Which holiday brings in the maximum amount of sales for a  

particular brand?
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The preceding questions under these themes give pinpointed directions to find 
patterns and perform an analysis that gives some quality results.

The process of exploring data can be summarized by the following flow chart:

Presenting an analysis
After performing the analysis, you would need to present some observations.  
The most commonly used medium for doing this is through Microsoft PowerPoint 
presentations. The result of your analysis could be a construct in the form of a chart 
or table. When presenting these constructs, there is certain information that should 
be added to your slides. This is one of the most common templates used:



Chapter 3

[ 63 ]

Here are the different sections of the preceding image:

• Question: The topmost part of the template should describe the problem 
statement that the particular analysis is trying to address.

• Observation: Here, the observations from the construct are listed in a vertical 
column. Sometimes, the observations can be marked over the construct using 
arrow marks or dialog boxes.

• Key Takeaway: Toward the bottom of the image, you can describe what is 
concluded from the chart.
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Studying the Titanic
To perform the data analysis, we'll be using the Titanic dataset from Kaggle.

This dataset is simple to understand and does not require any domain understanding 
to derive insights.

This dataset contains the details of each passenger on the Titanic and also whether 
they survived or not.

The following are the field descriptions:

Field Descriptions
survival Survival(0 = No, 1 = Yes)
pclass Passenger class(1 = 1st, 2 = 2nd, 3 = 3rd)
name Name of the passenger
sex Gender of the passenger
age Age of the passenger
sibsp Number of siblings/spouses aboard
parch Number of parents/children aboard
ticket Ticket number
fare Passenger fare
cabin Cabin
embarked Port of embarkation

(C = Cherbourg, Q = Queenstown, S = Southampton)

Since the data is quite simple to understand, we'll keep the survival analysis as  
the main theme that can be used for the analysis of the data. We'll attach questions  
to these themes.

These are the questions that we'll answer:

• Which passenger class has the maximum number of survivors?
• What is the distribution, based on gender, of the survivors among the  

different classes?
• What is the distribution of the nonsurvivors among classes that have 

relatives aboard the ship?
• What is the survival percentage among different age groups?
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Which passenger class has the maximum 
number of survivors?
To answer this question, we'll construct a simple bar plot of the number of survivors 
and the percentage of survivors in each class, respectively. You can do this using the 
following command:

>>> import pandas as pd

>>> import pylab as plt

>>> import numpy as np

>>> df = pd.read_csv('Data/titanic data.csv')

>>> df['Pclass'].isnull().value_counts()

>>> False    891

>>> dtype: int64

>>> df['Survived'].isnull().value_counts()

>>> False    891

>>> dtype: int64

>>> #Passengers survived in each class

>>> survivors = df.groupby('Pclass')['Survived'].agg(sum)

>>> #Total Passengers in each class

>>> total_passengers = df.groupby('Pclass')['PassengerId'].count()

>>> survivor_percentage = survivors / total_passengers

>>> #Plotting the Total number of survivors

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(survivors.index.values.tolist(),  
          survivors, color='blue', width=0.5)

>>> ax.set_ylabel('No. of survivors')

>>> ax.set_title('Total number of survivors based on class')

>>> xTickMarks = survivors.index.values.tolist()

>>> ax.set_xticks(survivors.index.values.tolist())
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>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

>>> #Plotting the percentage of survivors in each class

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(survivor_percentage.index.values.tolist(),  
          survivor_percentage, color='blue', width=0.5)

>>> ax.set_ylabel('Survivor Percentage')

>>> ax.set_title('Percentage of survivors based on class')

>>> xTickMarks = survivors.index.values.tolist()

>>> ax.set_xticks(survivors.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()



Chapter 3

[ 67 ]

In the preceding code, we performed a preliminary check for null values on the 
fields that are utilized. After this, we calculated the number of survivors and the 
percentage of survivors in each class. Then, we plotted two bar charts for the total 
number of survivors and the percentage of survivors.

These are our observations:

• The maximum number of survivors are in the first and third class, respectively
• With respect to the total number of passengers in each class, first class has the 

maximum survivors at around 61%
• With respect to the total number of passengers in each class, third class has 

the minimum number of survivors at around 25%

This is our key takeaway:

• There was clearly a preference toward saving those from the first class as the 
ship was drowning. It also had the maximum percentage of survivors
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What is the distribution of survivors based on 
gender among the various classes?
To answer this question, we'll use the following code to plot a side-by-side bar chart 
to compare the survival rate and percentage among men and women with respect to 
the class they were in.

>>> #Checking for any null values

>>> df['Sex'].isnull().value_counts()

>>> False    891

>>> dtype: int64

>>> # Male Passengers survived in each class

>>> male_survivors = df[df['Sex'] == 'male'] 
                   .groupby('Pclass')['Survived'].agg(sum)

>>> #Total Male Passengers in each class

>>> male_total_passengers = df[df['Sex'] == 'male'] 
                          .groupby('Pclass')['PassengerId'].count()

>>> male_survivor_percentage = male_survivors / male_total_passengers

>>> # Female Passengers survived in each class

>>> female_survivors = df[df['Sex'] == 'female'] 
                     .groupby('Pclass')['Survived'].agg(sum)

>>> #Total Female Passengers in each class

>>> female_total_passengers = df[df['Sex'] == 'female'] 
                            .groupby('Pclass')['PassengerId'].count()

>>> female_survivor_percentage = female_survivors /  
                                 female_total_passengers

>>> #Plotting the total passengers who survived based on Gender

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> index = np.arange(male_survivors.count())

>>> bar_width = 0.35

>>> rect1 = ax.bar(index, male_survivors, bar_width, color='blue',  
     label='Men')

>>> rect2 = ax.bar(index + bar_width, female_survivors, bar_width,  
     color='y', label='Women')
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>>> ax.set_ylabel('Survivor Numbers')

>>> ax.set_title('Male and Female survivors based on class')

>>> xTickMarks = male_survivors.index.values.tolist()

>>> ax.set_xticks(index + bar_width)

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.legend()

>>> plt.tight_layout()

>>> plt.show()

>>> #Plotting the percentage of passengers who survived based on Gender

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> index = np.arange(male_survivor_percentage.count())

>>> bar_width = 0.35

>>> rect1 = ax.bar(index, male_survivor_percentage, bar_width,  
     color='blue', label='Men')

>>> rect2 = ax.bar(index + bar_width, female_survivor_percentage,  
     bar_width, color='y', label='Women')

>>> ax.set_ylabel('Survivor Percentage')
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>>> ax.set_title('Percentage Male and Female of  
     survivors based on class')

>>> xTickMarks = male_survivor_percentage.index.values.tolist()

>>> ax.set_xticks(index + bar_width)

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.legend()

>>> plt.tight_layout()

>>> plt.show()

In the preceding code, the number of male and female survivors is calculated and 
then a side-by-side bar plot is plotted. After this, the percentage of male and female 
survivors with respect to the total number of males and females in their respective 
classes are taken and then plotted.
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These are our observations:

• The majority of survivors are females in all the classes
• More than 90% of female passengers in first and second class survived
• The percentage of male passengers who survived in first and third class, 

respectively, are comparable

This is our key takeaway:

• Female passengers were given preference for lifeboats and the majority  
were saved.

What is the distribution of nonsurvivors 
among the various classes who have family 
aboard the ship?
To answer this question, we'll use the following code to plot bar charts again using 
the total number of nonsurvivors in each class who each had family aboard, and the 
percentage with respect to the total number of passengers:

>>> #Checking for the null values

>>> df['SibSp'].isnull().value_counts()

>>> False    891

>>> dtype: int64

>>> #Checking for the null values

>>> df['Parch'].isnull().value_counts()

>>> False    891

>>> dtype: int64

>>> #Total number of non-survivors in each class

>>> non_survivors = df[(df['SibSp'] > 0) | (df['Parch'] > 0) &  
       (df['Survived'] == 0)].groupby('Pclass')['Survived'].agg('count')

>>> #Total passengers in each class

>>> total_passengers = df.groupby('Pclass')['PassengerId'].count()

>>> non_survivor_percentage = non_survivors / total_passengers

>>> #Total number of non survivors with family based on class

>>> fig = plt.figure()
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>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(non_survivors.index.values.tolist(), non_survivors,  
       color='blue', width=0.5)

>>> ax.set_ylabel('No. of non survivors')

>>> ax.set_title('Total number of non survivors with  
                   family based on class')

>>> xTickMarks = non_survivors.index.values.tolist()

>>> ax.set_xticks(non_survivors.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

>>> #Plot of percentage of non survivors with family based on class

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> rect = ax.bar(non_survivor_percentage.index.values.tolist(),  
     non_survivor_percentage, color='blue', width=0.5)

>>> ax.set_ylabel('Non Survivor Percentage')
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>>> ax.set_title('Percentage of non survivors with  
                 family based on class')

>>> xTickMarks = non_survivor_percentage.index.values.tolist()

>>> ax.set_xticks(non_survivor_percentage.index.values.tolist())

>>> xtickNames = ax.set_xticklabels(xTickMarks)

>>> plt.setp(xtickNames, fontsize=20)

>>> plt.show()

The code here is pretty similar to the code used in the previous questions. Here,  
we can get the number of the nonsurvivors who have a family and then perform  
the usual bar plots.

These are our observations:

• There are lot of nonsurvivors in the third class
• Second class has the least number of nonsurvivors with relatives
• With respect to the total number of passengers, the first class, who had 

relatives aboard, has the maximum nonsurvivor percentage and the  
third class has the least
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This is our key takeaway:

• Even though third class has the highest number of nonsurvivors with 
relatives aboard, it primarily had passengers who did not have relatives  
on the ship, whereas in first class, most of the people had relatives aboard  
the ship

What was the survival percentage among 
different age groups?
For this question, we'll use the following code to plot pie charts to compare the 
proportion of survivors in terms of number and percentage with respect to the 
different age groups:

>>> #Checking for null values

>>> df['Age'].isnull().value_counts()

>>> False    714

>>> True     177

>>> dtype: int64

>>> #Defining the age binning interval

>>> age_bin = [0, 18, 25, 40, 60, 100]

>>> #Creating the bins

>>> df['AgeBin'] = pd.cut(df.Age, bins=age_bin)

>>> #Removing the null rows

>>> d_temp = df[np.isfinite(df['Age'])]  # removing all na instances

>>> #Number of survivors based on Age bin

>>> survivors = d_temp.groupby('AgeBin')['Survived'].agg(sum)

>>> #Total passengers in each bin

>>> total_passengers = d_temp.groupby('AgeBin')['Survived'].agg('count')

>>> #Plotting the pie chart of total passengers in each bin

>>> plt.pie(total_passengers,  
     labels=total_passengers.index.values.tolist(), 
     autopct='%1.1f%%', shadow=True, startangle=90)

>>> plt.title('Total Passengers in different age groups')

>>> plt.show()
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>>> #Plotting the pie chart of percentage passengers in each bin

>>> plt.pie(survivors, labels=survivors.index.values.tolist(),

     autopct='%1.1f%%', shadow=True, startangle=90)

>>> plt.title('Survivors in different age groups')

>>> plt.show()
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In the code, we defined the bin with the age_bin variable and then added a column 
called AgeBin, where bin values are filled using the cut function. After this, we 
filtered out all the rows with the age set as null. After this, we created two pie charts: 
one for the total number of passengers in each age group and another for the number 
of survivors in each age group.

These are our observations:

• The 25-40 age group has the maximum number of passengers, and 0-18 has 
the second highest number of passengers

• Among the people who survived, the 18-25 age group has the second highest 
number of survivors

• The 60-100 age group has a lower proportion among the survivors
This is our key takeaway:

• The 25-40 age group had the maximum number of survivors compared to 
any other age group, and people who were old were either not lucky enough 
or made way for the younger people to the lifeboats.

Summary
In this chapter, we learned the meaning of data mining. We learned the importance 
of domain knowledge in performing analysis and how to perform data mining in 
a systematic manner. We also learned how to present the results of data mining. 
Toward the end, we took an example and performed a few analyses to extract  
useful information.

In the next chapter, you'll learn about how to create visualizations on data and where 
to apply different kinds of visualizations.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The codes provided in the code bundle are for both IPython notebook 
and Python 2.7. In the chapters, Python conventions have been followed.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Making Sense of Data 
through Advanced 

Visualization
Visualization is a very integral part of data science. It helps in communicating a 
pattern or a relationship that cannot be seen by looking at raw data. It's easier for a 
person to remember a picture and recollect it as compared to lines of text. This holds 
true for data too.

In this chapter, we'll cover the following topics:

• Controlling the properties of a plot
• Combining multiple plots
• Styling your plots
• Creating various advanced visualizations
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Controlling the line properties of a chart
There are many properties of a line that can be set, such as the color, dashes, and 
several others. There are essentially three ways of doing this. Let's take a simple  
line chart as an example:

>>> plt.plot([1,2,3,4], [1,4,9,16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

Using keyword arguments
We can use arguments within the plot function to set the property of the line:

>>> import numpy as np

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import pandas.tools.rplot as rplot

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16], linewidth=4.0)  # increasing  
         # the line width

>>> plt.show()
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After the preceding code is executed we'll get the following output:

Using the setter methods
The plot function returns the list of line objects, for example line1, line2 = 
plot(x1,y1,x2,y2). Using the line setter method of line objects we can define  
the property that needs to be set:

>>> line, = plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> line.set_linestyle('--') # Setting dashed lines

>>> plt.show()

After the preceding code is executed we'll get the following output:
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You can view the acceptable line style at http://matplotlib.org/api/lines_api.
html.

Using the setp() command
The setp() command can be used to set multiple properties of a line:

>>> line, = plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.setp(line, color='r', linewidth=2.0)  # setting the color  
         # and width of the line

>>> plt.show()

After the preceding code is executed we'll get the following output:

Creating multiple plots
One very useful feature of matplotlib is that it makes it easy to plot multiple plots, 
which can be compared to each other:

>>> p1 = np.arange(0.0, 30.0, 0.1)

>>> plt.subplot(211)

http://matplotlib.org/api/lines_api.html
http://matplotlib.org/api/lines_api.html
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>>> plt.plot(p1, np.sin(p1)/p1, 'b--')

>>> plt.subplot(212)

>>> plt.plot(p1, np.cos(p1), 'r--')

>>> plt.show()

In the preceding code, we use a subplot function is used to plot multiple plots that 
need to be compared. A subplot with a value of 211 means that there will be two 
rows, one column, and one figure:

Playing with text
Adding text to your chart can be done by using a simple matplotlib function.  
You only have to use the text() command to add it to the chart:

>>> # Playing with text

>>> n = np.random.random_sample((5,))

>>> plt.bar(np.arange(len(n)), n)

>>> plt.xlabel('Indices')

>>> plt.ylabel('Value')
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>>> plt.text(1, .7, r'$\mu=' + str(np.round(np.mean(n), 2)) + ' $')

>>> plt.show()

In the preceding code, the text() command is used to add text within the plot:

The first parameter takes the x axis value and the second parameter takes the y axis 
value. The third parameter is the text that needs to be added to the plot. The latex 
expression has been used to plot the mu mean within the plot.

A certain section of the chart can be annotated by using the annotate command. The 
annotate command will take the text, the position of the section of plot that needs to 
be pointed at, and the position of the text:

>>> ax = plt.subplot(111)

>>> t = np.arange(0.0, 5.0, 0.01)

>>> s = np.cos(2*np.pi*t)

>>> line, = plt.plot(t, s, lw=2)

>>> plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),

             arrowprops=dict(facecolor='black', shrink=0.05),

             )

>>> plt.ylim(-2,2)

>>> plt.show()
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After the preceding code is executed we'll get the following output:

Styling your plots
The style package within the matplotlib library makes it easier to change the style of 
the plots that are being plotted. It is very easy to change to the famous ggplot style 
of the R language or use the Nate Silver's website http://fivethirtyeight.com/ 
for fivethirtyeight style. The following example shows the plotting of a simple 
line chart with the ggplot style:

>>> plt.style.use('ggplot')

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

http://fivethirtyeight.com/


Making Sense of Data through Advanced Visualization

[ 84 ]

In the preceding code, plt.style.use() is used to set the style of the plot. It is a 
global set, so after it is executed, all the plots that follow will have the same style.

The following code gives the popular fivethirtyeight style, which is Nate Silver's 
website on data journalism, where his team write articles on various topics by 
applying data science:

>>> plt.style.use('fivethirtyeight')

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

Sometimes, you just want a specific block of code to have a particular style and the 
rest of the plots in the code to have the default style. This can be achieved using 
the plt.style.context function and the style can be specified within it. Once the 
following code is executed, only the plot that is specified within it is plotted with the 
given style:

>>> with plt.style.context(('dark_background')):

        plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()
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After the preceding code is executed we'll get the following output:

Box plots
A box plot is a very good plot to understand the spread, median, and outliers of data:

The various parts of the preceding figure are explained as follows:

• Q3: This is the 75th percentile value of the data. It's also called the upper hinge.
• Q1: This is the 25th percentile value of the data. It's also called the lower hinge.
• Box: This is also called a step. It's the difference between the upper hinge and 

the lower hinge.
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• Median: This is the midpoint of the data.
• Max: This is the upper inner fence. It is 1.5 times the step above Q3.
• Min: This is the lower inner fence. It is 1.5 times the step below Q1.

Any value that is greater than Max or lesser than Min is called an outlier, which is 
also known as a flier.

The following code will create some data, and by using the boxplot function we'll 
create box plots:

>>> ## Creating some data

>>> np.random.seed(10)

>>> box_data_1 = np.random.normal(100, 10, 200)

>>> box_data_2 = np.random.normal(80, 30, 200)

>>> box_data_3 = np.random.normal(90, 20, 200)

>>> ## Combining the different data in a list

>>> data_to_plot = [box_data_1, box_data_2, box_data_3]

>>> # Create the boxplot

>>> bp = plt.boxplot(data_to_plot)

After the preceding code is executed we'll get the following output:



Chapter 4

[ 87 ]

The bp variable in the boxplot function is a Python dictionary with key values such 
as boxes, whiskers, fliers, caps, and median. The values in the keys represent the 
different components of the box plot and their properties. The properties can be 
accessed and altered appropriately to style the box plot to your liking. The following 
code gives you an example of how to style your boxplot:

>>> ## add patch_artist=True option to ax.boxplot() 

>>> ## to get fill color

>>> bp = plt.boxplot(data_to_plot, patch_artist=True)

>>> ## change outline color, fill color and linewidth of the boxes

>>> for box in bp['boxes']:

       # change outline color

       box.set( color='#7570b3', linewidth=2)

       # change fill color

       box.set( facecolor = '#1b9e77' )

>>> ## change color and linewidth of the whiskers

>>> for whisker in bp['whiskers']:

       whisker.set(color='#7570b3', linewidth=2)

>>> ## change color and linewidth of the caps

>>> for cap in bp['caps']:

        cap.set(color='#7570b3', linewidth=2)

>>> ## change color and linewidth of the medians

>>> for median in bp['medians']:

       median.set(color='#b2df8a', linewidth=2)

>>> ## change the style of fliers and their fill

>>> for flier in bp['fliers']:

       flier.set(marker='o', color='#e7298a', alpha=0.5)
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In the preceding code, we take the key values of boxplots and set their properties in 
terms of color, line width, and face color. Similarly, we perform the same task for the 
other components, such as whiskers, caps, medians, and fliers.

Heatmaps
A heatmap is a graphical representation where individual values of a matrix are 
represented as colors. A heatmap is very useful in visualizing the concentration of 
values between two dimensions of a matrix. This helps in finding patterns and gives 
a perspective of depth. 

Let's start off by creating a basic heatmap between two dimensions. We'll create  
a 10 x 6 matrix of random values and visualize it as a heatmap:

>>> # Generate Data

>>> data = np.random.rand(10,6)

>>> rows = list('ZYXWVUTSRQ')  #Ylabel

>>> columns = list('ABCDEF')  #Xlabel

>>> #Basic Heat Map plot

>>> plt.pcolor(data)

>>> plt.show()
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After the preceding code is executed we'll get the following output:

In the preceding code, we used the pcolor() function to create the heatmap colors. 
We'll now add labels to the heatmap:

>>> # Add Row/Column Labels

>>> plt.pcolor(data)

>>> plt.xticks(np.arange(0,6)+0.5,columns)

>>> plt.yticks(np.arange(0,10)+0.5,rows)

>>> plt.show()

After the preceding code is executed we'll get the following output:
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We'll now adjust the color of the heatmap to make it more visually representative. 
This will help us to understand the data:

>>> # Change color map

>>> plt.pcolor(data,cmap=plt.cm.Reds,edgecolors='k')

>>> plt.xticks(np.arange(0,6)+0.5,columns)

>>> plt.yticks(np.arange(0,10)+0.5,rows)

>>> plt.show()

After the preceding code is executed we'll get the following output:

In some instances, there might be a huge number of values that need to be plotted 
on the heatmap. This can be done by binning the values first and then using the 
following code to plot it:

>>> # Generate some test data

>>> x = np.random.randn(8873)

>>> y = np.random.randn(8873)

>>> heatmap, xedges, yedges = np.histogram2d(x, y, bins=50)

>>> extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

>>> plt.imshow(heatmap, extent=extent)

>>> plt.show()
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After the preceding code is executed we'll get the following output:

In the preceding code, the histogram2d function helped in binning the the 2D 
values. Post this, we feed the values to the heatmap to get the preceding plot. Since 
we used the randn(), the values generated were random normally distributed 
numbers, which means that the concentration of numbers will be more toward the 
mean. This can be seen in the preceding plot, which shows the center to be red and 
the exterior area to be blue. 

Scatter plots with histograms
We can combine a simple scatter plot with histograms for each axis. These kinds of 
plots help us see the distribution of the values of each axis.

Let's generate some randomly distributed data for the two axes:

>>> from matplotlib.ticker import NullFormatter

>>> # the random data

>>> x = np.random.randn(1000)

>>> y = np.random.randn(1000)

A NullFormatter object is created, which will be used for eliminating the x and y 
labels of the histograms:

>>> nullfmt   = NullFormatter()         # no labels
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The following code defines the size, height, and width of the scatter and  
histogram plots:

>>> # definitions for the axes

>>> left, width = 0.1, 0.65

>>> bottom, height = 0.1, 0.65

>>> bottom_h = left_h = left+width+0.02

>>> rect_scatter = [left, bottom, width, height]

>>> rect_histx = [left, bottom_h, width, 0.2]

>>> rect_histy = [left_h, bottom, 0.2, height]

Once the size and height are defined, the axes are plotted for the scatter plot as well 
as both the histograms:

>>> # start with a rectangular Figure

>>> plt.figure(1, figsize=(8,8))

>>> axScatter = plt.axes(rect_scatter)

>>> axHistx = plt.axes(rect_histx)

>>> axHisty = plt.axes(rect_histy)

The histograms' x and y axis labels are eliminated by using the set_major_
formatter method, and by assigning the NullFormatter object to it, the scatter  
plot is plotted:

>>> # no labels

>>> axHistx.xaxis.set_major_formatter(nullfmt)

>>> axHisty.yaxis.set_major_formatter(nullfmt)

>>> # the scatter plot:

>>> axScatter.scatter(x, y)

The limits of the x and y axes are computed using the following code, where the max 
of the x and y values are taken. The max value is then divided by the bin, then one 
is added to it before it is again multiplied with the bin value. This is done so there is 
some space ahead of the max value:

>>> # now determine nice limits by hand:

>>> binwidth = 0.25

>>> xymax = np.max( [np.max(np.fabs(x)), np.max(np.fabs(y))] )

>>> lim = ( int(xymax/binwidth) + 1) * binwidth
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The limit value that is calculated is then assigned to the set_xlim method of the 
axScatter object:

>>> axScatter.set_xlim( (-lim, lim) )

>>> axScatter.set_ylim( (-lim, lim) )

The bins variable creates a list of interval values, which will be used with  
the histograms:

>>> bins = np.arange(-lim, lim + binwidth, binwidth)

The histograms are plotted and the one that is horizontal is set using the  
orientation parameter:

>>> axHistx.hist(x, bins=bins)

>>> axHisty.hist(y, bins=bins, orientation='horizontal')

The limit value of the scatter plot is fetched and then assigned to the limit methods of 
the histogram:

>>> axHistx.set_xlim( axScatter.get_xlim() )

>>> axHisty.set_ylim( axScatter.get_ylim() )

>>> plt.show()

After the preceding code is executed we'll get the following output:
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A scatter plot matrix
A scatter plot matrix can be formed for a collection of variables where each of 
the variables will be plotted against each other. The following code generates a 
DataFrame df, which consists of four columns with normally distributed random 
values and column names named from a to d:

>>> df = pd.DataFrame(np.random.randn(1000, 4),  
         columns=['a', 'b', 'c', 'd'])

>>> spm = pd.tools.plotting.scatter_matrix(df, alpha=0.2,  
        figsize=(6, 6), diagonal='hist')

After the preceding code is executed we'll get the following output:
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The scatter_matrix() function helps in plotting the preceding figure. It takes in 
the data frame object and the required parameters that are defined to customize the 
plot. You would have observed that the diagonal graph is defined as a histogram, 
which means that in the section of the plot matrix where the variable is against itself, 
a histogram is plotted.

Instead of the histogram, we can also use the kernel density estimation for  
the diagonal:

>>> spm = pd.tools.plotting.scatter_matrix(df, alpha=0.2,  
         figsize=(6, 6), diagonal='kde')

After the preceding code is executed we'll get the following output:

The kernel density estimation is a nonparametric way of estimating the probability 
density function of a random variable. It basically helps in understanding whether 
the data is normally distributed and the side toward which it is skewed.
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Area plots
An area plot is useful for comparing the values of different factors across a range. The 
area plot can be stacked in nature, where the areas of the different factors are stacked 
on top of each other. The following code gives an example of a stacked area plot:

>>> df = pd.DataFrame(np.random.rand(10, 4),  
        columns=['p', 'q', 'r', 's'])

>>> df.plot(kind='area');

After the preceding code is executed we'll get the following output:

To remove the stack of area plot, you can use the following code:

>>> df.plot(kind='area', stacked=False);

After the preceding code is executed we'll get the following output:
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Bubble charts
A bubble chart is basically a scatter plot with an additional dimension. The 
additional dimension helps in setting the size of the bubble, which means that the 
greater the size of the bubble, the larger the value that represents the bubble. This 
kind of a chart helps in analyzing the data of three dimensions.

The following code creates a sample data of three variables and this data is then  
fed to the plot() method where its kind is mentioned as a scatter and s is the  
size of the bubble:

>>> plt.style.use('ggplot')

>>> df = pd.DataFrame(np.random.rand(50, 3), columns=['a', 'b', 'c'])

>>> df.plot(kind='scatter', x='a', y='b', s=df['c']*400);

After the preceding code is executed we'll get the following output:

Hexagon bin plots
A hexagon bin plot can be created using the DataFrame.plot() function and kind 
= 'hexbin'. This kind of plot is really useful if your scatter plot is too dense to 
interpret. It helps in binning the spatial area of the chart and the intensity of the color 
that a hexagon can be interpreted as points being more concentrated in this area.
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The following code helps in plotting the hexagon bin plot, and the structure of the 
code is similar to the previously discussed plots:

>>> df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])

>>> df['b'] = df['b'] + np.arange(1000)

>>> df.plot(kind='hexbin', x='a', y='b', gridsize=25)

After the preceding code is executed we'll get the following output:

Trellis plots
A Trellis plot is a layout of smaller charts in a grid with consistent scales. Each 
smaller chart represents an item in a category, named conditions. The data displayed 
on each smaller chart is conditional for the items in the category.

Trellis plots are useful for finding structures and patterns in complex data. The grid 
layout looks similar to a garden trellis, hence the name Trellis plots.
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The following code helps in plotting a trellis chart where for each combination of sex 
and smoker/nonsmoker:

>>> tips_data = pd.read_csv('Data/tips.csv')

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomHistogram())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

In the preceding code, rplot.RPlot takes the tips_data object. Also, the x and y 
axis values are defined. After this, the Trellis grid is defined based on the smoker  
and sex. In the end, we use GeomHistogram() to plot a histogram.
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To change the Trellis plot to a kernel density estimate, we can use the following code:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomDensity())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:
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We could also have a scatter plot with a poly fit line on it:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomScatter())

>>> plot.add(rplot.GeomPolyFit(degree=2))

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

The code is similar to the previous example. The only difference is that 
GeomScatter() and GeomPolyFit are used to get the fit line on the plot.
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The scatter plot can be combined with a 2D kernel density plot by using the  
following code:

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomScatter())

>>> plot.add(rplot.GeomDensity2D())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:
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A 3D plot of a surface
We'll now plot a 3D plot, where the Sin function is plotted against the sum of the 
square values of the two axes:

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> X = np.arange(-4, 4, 0.25)

>>> Y = np.arange(-4, 4, 0.25)

>>> X, Y = np.meshgrid(X, Y)

>>> R = np.sqrt(X**2 + Y**2)

>>> Z = np.sin(R)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:
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In the preceding code, we defined the x and y axes with values ranging from -4 to 4. 
We created a coordinate matrix with meshgrid(), then squared the values of x and y, 
and finally, summed them up. This was then fed to the plot_surface function. The 
rstride and cstride parameters in simple terms help in sizing the cell on the surface.

Let's adjust the view using view_int. The following is the view at 0 degree elevation 
and 0 degree angle:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=0., azim=0)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:
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The following is the view at 50 degrees elevation:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=50., azim=0)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:



Making Sense of Data through Advanced Visualization

[ 106 ]

The following is the view at 50 degrees elevation and 30 degrees angle:

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.view_init(elev=50., azim=30)

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

After the preceding code is executed we'll get the following output:

Summary
In this chapter, you learned how to use the various properties of a chart. You  
also learned how to combine multiple charts and style them. There were multiple 
advanced visualizations that you have gained knowledge of through this chapter.

In the next chapter, we will understand what machine learning is and also explore a 
few machine learning techniques.
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Uncovering Machine 
Learning

Machine learning is a technique to teach programs that use data, to generate 
algorithms instead of explicitly programming an algorithm from scratch.

It is a field of computer science that originates from the research into artificial 
intelligence. It is closely associated to statistics and mathematical optimization, which 
give methods, theories, and application domains to the field. Machine learning is used 
in various computing tasks where programming explicitly rule-based algorithms is 
infeasible. Example applications include; e-mail spam filters, search engines, language 
translation, and computer visions. Machine learning can be sometimes confused with 
data mining, although it focuses mainly on exploratory data analysis.

Here are some of the terminologies that will be used in this chapter henceforth:

• Features: This refers to distinctive traits that help define the outcome
• Samples: A sample is an item to process. It could be a document, image, 

audio, or a CSV file
• Feature vector: This refers to numerical features, such as an n-dimensional 

vector, that represents some object
• Feature extraction: This refers to the processing of a feature vector where data 

is transformed from a high-dimensional space to a lower-dimensional space
• Training set: This refers to a set of data that discovers potentially  

predictive relationships
• Testing set: This refers to a set of data that tests out predications
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Different types of machine learning
Machine learning is divided into mainly three types depending on the nature of the 
learning target or the feedback available to the learning system:

1. Supervised learning: The computer is presented with a given set of inputs 
and their respective outputs. The goal of the program is to learn from the 
inputs in order to reproduce the outputs.

2. Unsupervised learning: There is no target variable in the case of 
unsupervised learning. The computer is left on its own to find patterns 
within the data.

3. Reinforcement learning: A program has to interact with its environment in a 
dynamic manner, such as a driving a car.

Supervised learning
As described earlier, a supervised learning algorithm studies the training data and 
generates a function, which can be used for predicting new instances.

Machine
Learning
Algorithm

Predictive
Model

Feature
Vectors

Feature
Vector

Supervised Learning Model
Training

Text,
Documents,

Images,
etc

New Text,
Document,
Image, etc.

Expected
Label

Labels

As you can see from the preceding diagram, there is training data, which the 
machine learning model will learn from.
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Let's assume that the training data is a set of text that represents different news 
articles. These news articles can be related to sports, international, national, and 
various other categories of news. These categories will act us as our labels. From 
this training data, we'll derive feature vectors where each word could be a vector or 
certain vectors could be derived from the text. For example, the number of instances 
of the word "Football" could be a vector, or the number of instances of the word 
"Prime Minister" could be a vector as well.

These feature vectors and labels are fed to the Machine Learning Algorithm, which 
learns from the data. Once the model is trained, it is then used on the new data 
where the features are again extracted and then inputted to the model, which 
generates the target data.

Here are few examples of supervised machine learning algorithms, which will 
be introduced in this chapter, and some of them will be explained in detail in the 
following chapters:

1. Decision tree
2. Linear regression
3. Logistic regression
4. The naive Bayes classifier

Unsupervised learning
As described earlier, unsupervised learning tries to find hidden structures in 
unlabeled data. As you can see in the following diagram, there is no label that  
is inputted to the algorithm:
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Let's take the example of images that will act as our training and input datasets. The 
images contain the faces of a human being, horses, and insects. From these images, 
features are extracted, which will help identify the group that the images belong to. 
These features are then inputted to the unsupervised machine learning algorithm. 
The algorithm will find patterns within the data and help in bucketing these images 
to the respective group.

This same algorithm can then be used for new images and helps in bucketing the 
images into the required buckets.

Here are a few examples of unsupervised machine learning algorithms, which  
will be introduced in this chapter, and some of it will be covered in detail in the 
following chapters:

1. The k-means clustering
2. Hierarchical clustering

Reinforcement learning
In reinforcement learning, the data to be inputted is provided as a stimulus to the 
model from the environment to which the machine learning model must respond 
and react. Feedback is provided not like a teaching process as in the case of 
supervised learning, but as punishments and rewards in the environment.

Agent

State

Reward

Action

Environment

The actions taken by the agent results in it learning from its outcome, instead of 
being explicitly taught, and the action it selects is based on its past experience and 
also by the fresh choices made by it, which basically means it is learning from trial 
and error. The agent receives the reinforcement signal in the form of a numerical 
reward that encodes the success and the agent seeks to teach itself to take actions  
that will increase the accumulated reward over time.
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Reinforcement learning is used heavily in robotics and not much in data science. The 
following are the algorithms that come under reinforcement learning:

1. Temporal difference learning
2. Q learning

Decision trees
A simple predictive model maps the outcomes of an item to the input data. It is a 
popular predictive modeling technique, which is used commonly in the industry:

Decision tree models are basically of two types:

• Classification trees: These refer to dependent variables that take a finite value. 
In these tree structures, branches represent the rules of the features that lead to 
the class labels, and leaves represent the class labels of the outcome.

• Regression trees: When dependent variables takes continuous values, then 
they're called regression trees.

Let's take an example. The following data represents whether you should play tennis 
or not, based on the overall outlook of weather, humidity, and wind intensity:

OutlookHumidityWindPlay
SunnyHighLowNo

RainNormalHighNo

OvercastHighLowYes

RainNormalWeakYes

SunnyNormalLowYes

OvercastNormalLowYes

SunnyNormalHighYes

If you take this data, use Play as the target variable, and the remaining as the 
independent variable, then you'll get a decision tree model that will have the 
following structure as the rules.
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So, when new data comes in, it will traverse this tree to come to this conclusion, 
which will be the outcome:

No NoYes

Yes

Yes

Humidity Wind

High Normal High Weak

Sunny Rain Overcast

Outlook

Decision trees are the simplest of the predictive models and here are a few of  
their advantages:

1. It's easy to communicate and visualize decision trees.
2. It is possible to find odd patterns. Suppose you are trying to find the voting 

pattern between two parties for an election and you have data on the 
education, income, sex, and age. You might observe a pattern where highly 
educated people have a very low income and vote for a particular party.

3. Decision trees make minimal assumptions on the data.

Here are the disadvantages of a decision tree:

1. There is a high classification error rate, while the training set is small in 
comparison to the number of classes.

2. There is an exponential growth in computing when the data and the number of 
dependent variables increase in size.

3. There is a need for discrete data for a particular construction algorithm.

Linear regression
Linear regression is an approach in modeling that helps model the scalar linear 
relationship between a scalar dependent variable, Y, and an independent variable,  
X, which can be one or more in value:

y X εβ= +
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Let's try to understand this using an example. The following table shows the list of 
height and weight of students in a class:

Weight (pounds)Height (inches)
12550
13558
14563
14468
17070
16579
17184
16675
16065

If we run this through a simple linear regression function, which will be covered 
in a later chapter, with the weight as a dependent variable, y, and the independent 
variable, x, which is the height, we get the following equation:

y = 1.405405405 x + 57.87687688

If you plot the preceding equation as a line with 57.88 as the intercept and the slope 
of the line being 1.4 on top of a scatter plot with Weight in the y axis and Height in 
the x axis, then the following plot is obtained:
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In this example, the regression algorithm tries to create the preceding equation, 
which has the least error when predicting the weight of the student. This was an 
example of a simple linear regression. In Chapter 6, Performing Predictions with a  
Linear Regression, we'll dwell on the concept of linear regression further with  
multiple variables.

Logistic regression
Logistic regression is another supervised learning technique, which is basically  
a probabilistic classification model. It is mainly used in predicting a binary  
predictor, such as whether a customer is going to churn or if a credit card  
transaction is fraudulent.

Logistic regression uses logistics. A logistic function is a very useful function  
that can take any value from a negative infinity to a positive infinity, and output 
values from 0 to 1. Hence, it is interpretable as a probability. The following is the 
logistic function that generates predicted values from 0 to 1 based on the dependent 
x variable:

( ) ( )0 1

1
1 xF x
e β β− +

=
+

Here, x will be the independent variable and F(x) will be the dependent variable.
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If you try to plot the logistic function from a negative infinity to a positive infinity, 
then you'll get the following S shaped graph:

Logistic regression can be applied in the following scenarios:

1. Deriving a propensity score for a customer in a retail store of buying a new 
product that has been launched.

2. The likelihood of a transformer failing using the sensor data associated  
with it.

3. The likelihood of a user clicking on an ad that is shown on a website based 
on their behavior.

Logistic regression has many more applications, and it will be covered in the 
following chapters in greater detail with examples.

The naive Bayes classifier
The naive Bayes classifier is a simple probabilistic classifier, which is based on  
the Bayes theorem. The assumption made is that there is strong interdependence 
between the features, because of which it is called naive. The following is the  
Bayes theorem:

( ) ( ) ( )
( )

|
|

P B A P A
P A B

P B
=
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Here in the preceding formula, A and B are events, P(A) and P(B) are the 
probabilities of A and B and are interdependent of each other. P(A|B) is the 
probability of A, given that B is True, which is a conditional probability. P(B|A) is 
the probability of B, given that A is True. The naive Bayes formula is as follows:

( ) ( ) ( ) ( ) ( )1 2       /           . . .    |  k k nP A B P A B P A B P A B P A B= ∩ ∩ + ∩ + + ∩

Let's try solving this equation to understand the naive Bayes formula with the 
following example:

Stacy has her engagement tomorrow in Austin at an outdoor ceremony. In the 
past few years, Austin has had only six rainy days in a year. Unfortunately, there 
has been rain forecast for tomorrow by the weatherman. 80% of the time, the 
weatherman accurately forecasts the rain. However, he incorrectly forecasts the 
weather 20% of the time when it does not rain. Determine the probability that it 
will rain on the day of Stacy's engagement. The following are some events based on 
which the probability can be calculated:

• AI: This event states that it rains on Stacy's engagement
• A2: This event states that it does not rain on Stacy's engagement
• B: This event states that the weatherman predicts rain

The following are the probabilities based on the preceding events:

• P(AI) = 6/365 = 0.016438: This means that it rains six days out of the year
• P(AII) = 359/365 = 0.98356: This means that it does not rain 359 days out of 

the year
• P( B | AI ) = 0.8: This means that 80% of the time, it rains as predicted by the 

weatherman
• P( B | AII) = 0.2: This means that 20% of the time, it does not rain as 

predicted by the weatherman

The following formula helps us in calculating the naive Bayes probability:

P( AI | B ) = P(AI)P(B | AI)/ (P( AI ) P( B | AI) + P(AII) P( B | AII) )

P( AI | B) = (0.0164 * 0.8) / ( 0.0164*0.8 + 0.9834 * 0.2)

P(AI | B) = 0.065

So, the preceding calculation says that even though the weatherman predicted rain, 
there is only a 6.5% chance that it will actually rain according to the Bayes theorem



Chapter 5

[ 117 ]

The naive Bayes is used heavily in e-mail filtering. It takes the instance of each word 
in an e-mail and computes the probability whether the e-mail is spam is not. The 
naive Bayes model learns from the previous history of e-mails and marks mails as 
spam, which helps it come to a conclusion on whether an e-mail is spam or not.

The k-means clustering
The k-means clustering is an unsupervised learning technique that helps in 
partitioning data of n observations into K buckets of similar observations.

The clustering algorithm is called so because it operates by computing the mean of 
the features which refer to the dependent variables based on which we cluster things, 
such as segmenting of customers based on an average transaction amount and the 
average number of products purchased in a quarter of a year. This mean value 
then becomes the center of a cluster. The number K refers to the number of clusters, 
that is, the technique consisting of computing a K number of means, leading to the 
clustering of the data around these k-means.

How do we choose this K? If we have some idea of what we are looking for or how 
many clusters we expect or want, then we set K to be this number before we start the 
engines and let the algorithm compute along.
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If we don't know how many there are, then our exploration will take a little longer 
and involve some trial and error, say, as we try K=3, 4, and 5 until we see that the 
clusters are making some sense to us in our domain.

( ) ( )2

1 1

icc

i j
i j

J V x v
= =

= −∑∑

Here, ||xi -vj|| is the Euclidean distance between xi and vj, ci is in the ith cluster, the 
number of data points, c is the number of cluster centers.

The k-means clustering is widely used in computer visions, market segmentations, 
astronomy, geostatistics, and agriculture.

The k-means clustering will be covered in much more detail and with real-life 
examples in a later chapter.

Hierarchical clustering
Hierarchical clustering is an unsupervised learning technique where a hierarchy of 
clusters is built out of observations.

This clustering groups data at various levels of a cluster tree or dendrogram. It is 
not a single set of clusters, but a hierarchy of multiple levels where clusters at a 
particular level are joined as clusters on the next level. This allows you to decide the 
level of clustering that is most suitable.
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The hierarchical clusters essentially are of two types:

• Agglomerative hierarchical clustering: This is a bottom-up method where 
each observation starts in its own cluster and two other clusters as they go  
up a hierarchy

• Divisive hierarchical clustering: This is a top-down approach where 
observations start off in a single cluster and then they are split into two  
as they go down a hierarchy

The following image shows Agglomerative and Divisive hierarchical clustering:

Agglomerative

Divisive

p, q, r, s, t

r, s, t

s, t

p, q

p q r s t

Hierarchical clustering will be explained in more detail in later chapters.

Summary
In this chapter, you understood the meaning of machine learning and its different 
types. You were introduced to commonly used machine learning algorithms as well.

In the next chapter, you'll learn how to create linear regression models.
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Performing Predictions with a 
Linear Regression

Linear regression analysis is the most widely used of all statistical techniques: it 
is the study of linear, additive relationships between variables. It's widely used in 
various industries to create models, which will help in a business. For example, in 
the retail industry, there are various factors affecting the sale of a product. These 
factors could be the price, promotions, or seasonal factors, to name a few. A linear 
regression model helps in understanding the influence of each of these factors on 
the sales of a product as well as to calculate the baseline sales, which is basically the 
number of sales of this product in the event that there were no external factors, such 
as price, promotions, and so on.

In the preceding chapter, you were introduced to linear regression along with an 
example of a simple linear regression. In this chapter, you'll learn how to create  
the following:

• A simple linear regression model
• A multiple linear regression model

Simple linear regression
A simple linear regression has a single variable, and it can be described using the 
following formula:

y= A + Bx

Here, y is the dependent variable, x is the independent variable, A is the intercept 
(where x is to the power of zero) and B is the co-efficient
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The dataset that we'll be using contains the height (cm) and weight (kg) of a sample 
of men.

The following code ingests the data and creates a simple scatter plot in order to 
understand the distribution of the weight versus the height:

>>> import numpy as np

>>> import pandas as pd

>>> from scipy import stats

>>> import matplotlib.pyplot as plt

>>> sl_data = pd.read_csv('Data/Mens_height_weight.csv')

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(sl_data['Height'],sl_data['Weight'])

>>> ax.set_xlabel('Height')

>>> ax.set_ylabel('Weight')

>>> plt.show()

The following is the output of the preceding code:

From the plot, you can see that there is a linear relationship between the weight and 
height of the individual.

Let's see how the variables are correlated to each other as follows:

>>> sl_data.corr()
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The preceding code helps in generating the following correlation matrix:

We can clearly see that the height and weight are clearly correlated to each other 
based on a Pearson correlation value coefficient of 0. 94. A Pearson correlation ranges 
from -1 to +1, so when the number is more positive, the relation between the two 
variables is much stronger if they increase or decrease together. If the correlation 
value is negative, then the relation between the two variables is strong, but is in the 
opposite direction.

Let's generate a linear regression model with the weight as the dependent variable 
and x as the independent variable:

>>># Create linear regression object

>>> lm = linear_model.LinearRegression()

>>># Train the model using the training sets

>>> lm.fit(sl_data.Height[:,np.newaxis], sl_data.Weight)

>>> print 'Intercept is ' + str(lm.intercept_) + '\n'

Intercept is -99.2772096063 

>>> print 'Coefficient value of the height is ' + str(lm.coef_) + '\n'

Coefficient value of the height is [ 1.00092142]

>>> print pd.DataFrame(zip(sl_data.columns,lm.coef_),  
         columns = ['features', 'estimatedCoefficients'])
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This is the output of preceding code:

In the preceding code, we use linear_model.LinearRegression() to create a linear 
regression object, lm. We then use the fit() method of lm to define the dependent 
and independent variable, where in our case, the weight is the dependent variable 
and the height is the independent variable.

To get the intercept value, we use lm.intercept_, and to get the coefficient, we use 
the lm.coef.

The last line of the code helps in creating a DataFrame of the independent variable 
and its corresponding coefficients. This will be useful when we explore multiple 
regression in detail.

We'll now plot the scatter chart again with a trend line:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(sl_data.Height,sl_data.Weight)

>>> ax.plot(sl_data.Height,lm.predict(sl_data.Height[:, np.newaxis]), 

                   color = 'red')

>>> ax.set_xlabel('Height')

>>> ax.set_ylabel('Weight')

>>> plt.show()

Here is the output of the preceding code:
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Multiple regression
Multiple linear regression occurs when more than one independent variable is used 
to predict a dependent variable:

1 1 2 2 n nY a b x b x b x′ = + + + +……

Where, Y is the dependent variable, a is the intercept, b1 and b2 are the coefficients, 
and x1 and x2 are the independent variables

Also, note that squaring the dependent variable still makes it linear, but if the 
coefficient is squared, then it is nonlinear.

To build the multiple linear regression model, we'll utilize the NBA's basketball data 
to predict the average points scored per game

The following are the column descriptions of the data:

• height: This refers to the height in feet
• weight: This refers to the weight in pounds
• success_field_goals: This refers to the percentage of successful field goals 

(out of 100 that were attempted)
• success_free_throws: This refers tot the percentage of successful free 

throws (out of 100 that were attempted)
• avg_points_scored: This refers to the average points scored per game

The following code ingests this data and then we use the descibe() method of the 
DataFrame to get the univariate metrics on each of the fields:

>>> b_data = pd.read_csv('Data/basketball.csv')

>>> b_data.describe()
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Here is the output of the preceding code:

From the preceding table, we get an understanding of the data. The following 
observations can be made:

1. The average height of a basketball player is around 6.5 feet.
2. The shortest player is 5.7 feet.
3. The tallest player is 7.7 feet (Shaquille O'Neal stands at 7.1 feet).
4. The player with the least weight is at 105 pounds, which is quite obscure.
5. The heaviest player is 263 pounds.
6. The best field goal percentage for a player is 60%.
7. The worst field goal percentage for a player is 29%.
8. The average field goal attempt for a player is 45 %, but from the small 

standard deviation, we can see that a majority of the players have a field goal 
percentage between 40 and 50%.

9. Among free throws, there is a player who misses 3/4th of the time.
10. The best free throw player has a 90% success rate.
11. Most of the players have a success percentage for free throws of around  

70 to 80%.
12. The highest score scored per game by a player is 27.
13. The least scored is 3.
14. On an average, the players score 12 points.
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Let's see the correlation between the variables:

>>> b_data.corr()

The following is the output of the preceding code:

From the preceding table, we can see the following:

1. There is a high correlation between height and weight.
2. There is a weak positive correlation between successful field goals in terms of 

height and weight.
3. The average points scored seem to have the maximum correlation with 

success_field_goals, but they're not highly correlated.

Let's see the distribution of each of the independent variables with respect to the 
dependent variable:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(b_data.height, b_data.avg_points_scored)

>>> ax.set_xlabel('height')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()
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Here is the output of the preceding code:

In the preceding scatter plot, we can see that there is no clear pattern between the 
average points scored and the height. The distribution looks quite random.

Let's look at the distribution between average points scored and the weight:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(b_data.weight, b_data.avg_points_scored)

>>> ax.set_xlabel('weight')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()
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Here is the output of the preceding code:

We can see that 105 pounds seems like an outlier and also has a relatively lower 
average point score. We can also see that the players who are almost 240 pounds 
have the maximum variations in terms of score, so a hypothesis can be made that the 
taller and heavier players have a greater score, while the shorter and heavier players 
have a lower score.

Now, let's look at the distribution between successful field goals and the average 
points scored:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(b_data.success_field_goals, b_data.avg_points_scored)

>>> ax.set_xlabel('success_field_goals')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()
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Here is the output of the preceding code:

The success_field_goals variable has some linear relationship with the average 
points scored, but the distribution is still quite scattered.

Let's finally look at the distribution between successful free throws and the average 
points scored per game:

>>> fig, ax = plt.subplots(1, 1)

>>> ax.scatter(b_data.success_free_throws, b_data.avg_points_scored)

>>> x.set_xlabel('success_free_throws')

>>> ax.set_ylabel('Average points scored per game')

>>> plt.show()
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Here is the output of the preceding code:

We can see that there is a player whose free throws are quite bad, but the average 
points scored seem to be close to average as compared to other players, which means 
that he would be better at half field goals or he would make a lot of attempts to score. 
The overall distribution here is also quite scattered.

From the preceding analysis of the correlation and distribution, we can see that there 
are no clear-cut patterns between the average points scored and the independent 
variables. It can be expected that the model that will be built with the existing data 
won't be highly accurate.
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Training and testing a model
Let's take the data and divide it into training and test sets:

>>> from sklearn import linear_model,cross_validation, 

                   feature_selection,preprocessing

>>> import statsmodels.formula.api as sm

>>> from statsmodels.tools.eval_measures import mse

>>> from statsmodels.tools.tools import add_constant

>>> from sklearn.metrics import mean_squared_error

>>> X = b_data.values.copy() 

>>> X_train, X_valid, y_train, y_valid = 

                     cross_validation.train_test_split( X[:, :-1],  
                                                        X[:, -1], 

                     train_size=0.80)

We first convert the data frame into an array structure using values.copy() of 
b_data. We then use the train_test_split function of cross_validation from 
SciKit to divide the data into training and test set for 80% of the data.

We'll learn how to build the linear regression models using the following packages:

• The statsmodels module
• The SciKit package

Even pandas provides an Ordinary Least Square (OLS) regression, which you can 
experiment with after you've completed this chapter. The ordinary least square is a 
method to estimate unknown coefficients and intercepts for a regression equation. 
We'll start off the with the statsmodels package. The statsmodels is a Python module 
that allows users to explore data, estimate statistical models, and perform statistical 
tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and 
result statistics is available for different types of data and each estimator:

>>> result = sm.OLS( y_train, add_constant(X_train) ).fit()

>>> result.summary()



Chapter 6

[ 133 ]

The OLS function helps in creating the linear regression object with a dependent 
and independent variable. The fit() method helps in fitting the model. Note that 
there is a add_constant() function, which is used to calculate the intercept while 
creating the model. By default, the OLS() function won't calculate the intercept, and 
it has to be explicitly mentioned with the the help of the add_constant function. The 
following image shows the summary of the regression model that we trained earlier, 
which shows the various metrics associated with the model:

The preceding summary gives quite a lot of information about the model. The main 
parameter to look for is the r square value, which tells you how much of the variance 
of the dependent variable is captured by the model. It ranges from 0 to 1, and the p 
value tells us if the model is significant.

From the preceding output, we can see that the R-square value is 0.265, which isn't 
great. We can see that the model shows x3 as the most significant variable, which is 
the success_field_goals variable. As a rule of thumb, any p value of a variable less 
than 0.05 can be considered significant.
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Let's recreate the model with only the successful field goals variable and see how the 
model performs:

>>> result_alternate = sm.OLS( y_train, 

                   add_constant(X_train[:,2]) ).fit()

>>> result_alternate.summary()

We can see that the variable has become less significant, and the r square value has 
become really low. The preceding model can be iterated multiple times with the 
different combination of variables till the best model is arrived at.

Let's apply both the models on the test data and see how the mean squared error 
between the actual and the predicted value is. The model that gives the least mean 
squared error is a good model:

>>> ypred = result.predict(add_constant(X_valid))

>>> print mse(ypred,y_valid)

35.208
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In the following code, we use the predict function of the regression model object to 
predict the given test dataset:

>>> ypred_alternate = result_alternate.predict(add_constant(X_valid[:, 
2]))

>>> print mse(ypred_alternate,y_valid)

26.3

We can see that the second model has a lower mean squared error as compared to 
the first one.

Let's also plot the predicted versus actual plot for both the models:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(y_valid, ypred)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:
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Now, let's plot the scatter for the alternate model:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(y_valid, ypred_alternate)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:

This clearly shows that our models are not good enough since the predictions are 
quite random.

To make a highly accurate model, we need some more variables, which have an 
influence on the average points that are scored.

The preceding model was constructed using the statsmodels package. We'll now 
build a model using SciKit.

The following code creates a Linear Regression object and then fits it with dependent 
and independent variables:

# Create linear regression object

>>> lm = linear_model.LinearRegression()

# Train the model using the training sets
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>>> lm.fit(X_train, y_train)

>>> print 'Intercept is %f' % lm.intercept_) 

Intercept is 15.5129271596

>>> pd.DataFrame(zip(b_data.columns,lm.coef_), columns = ['features',  
           'estimatedCoefficients'])

Here is the output of the preceding code:

The coefficient and intercepts are similar to the model that was built using the 
statsmodels package.

To calculate the r square in SciKit, the cross-validation module of the SciKit package 
is utilized:

>>> cross_validation.cross_val_score(lm, X_train,  
            y_train, scoring='r2')

array([-0.3043391 , -0.42402161,  0.26890649])

Multiple runs of the cross-validation takes place and, by default, it is 3 due to which 
you can see three values in the preceding output. The highest value is of relevance 
and you can see that it is similar to the one we built with the statsmodels.

Let's see how the mean squared error is calculated:

>>> ypred = lm.predict(X_valid)

>>> mean_squared_error(ypred,y_valid)

35.208

We used the mean_squared_error function of the SciKit package here.
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Finally, the actual versus the predicted plot will be same as the first model plot  
of statsmodels:

>>> fig, ax = plt.subplots(1, 1) 

>>> ax.scatter(y_valid, ypred)

>>> ax.set_xlabel('Actual')

>>> ax.set_ylabel('Predicted')

>>> plt.show()

Here is the output for the preceding code:

Summary
In this chapter, we learned how to create a simple linear regression model followed 
by multiple regressions, where there was an initial inspection analysis done on 
the data in order to understand it. We then created regression models using the 
statsmodels and SciKit package.

In the next chapter, we'll learn how to perform the probability scoring of an event 
that takes place using logistic regression.
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Estimating the  
Likelihood of Events

Logistic regression is a type of regression analysis that helps in estimating the 
likelihood of an event to occur based on some given parameters. It is used as a 
classification technique with a binary outcome. The probabilities describing the 
possible outcomes of a single trial are modeled, as a function of the explanatory 
(predictor) variables, using a logistic function.

You have been already introduced to Logisitc regression in Chapter 5, Uncovering 
Machine Learning. In this chapter, you'll learn to:

• Build a logistic regression model with statsmodels
• Build a logistic regression model with SciKit
• Evaluate and test the model

Logistic regression
We'll use the Titanic dataset, which was utilized in Chapter 3, Finding a Needle in 
a Haystack, to help us build the logistic regression model. Since we have already 
explored the data, we won't be performing any exploratory data analysis as we 
already have a context for this data.

This is a recap of the field descriptions of the Titanic dataset:

• Survival: This refers to the survival of the passengers (0 = No and 1 = Yes)
• Pclass: This refers to the passenger class (1 = 1st, 2 = 2nd, and 3 = 3rd)
• Name: This refers to the names of the passengers
• Sex: This refers to the gender of the passengers

http://en.wikipedia.org/wiki/Logistic_function
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• Age: This refers to the age of the passengers
• Sibsp: This refers to the number of siblings/spouses aboard
• Parch: This refers to the number of parents/children aboard
• Ticket: This refers to the ticket number
• Fare: This refers to the passenger fares
• Cabin: This refers to the cabin
• Embarked: This refers to the port of embarkation (C = Cherbourg,  

Q = Queenstown, and S = Southampton)

Data preparation
Let's start off by reading the data:

>>> df = pd.read_csv('Data/titanic data.csv')

Let's clean the data a bit by taking care of columns that have lots of missing values:

>>> df.count(0)

We can see that the Ticket and Cabin columns won't add much value to the  
model building process as the Ticket column is basically a unique identifier  
for each passenger and the Cabin column is mostly empty. Also, we'll remove  
the rows with the missing values.

We'll remove these two columns from our DataFrame:

>>> # Applying axis as 1 to remove the  columns with the following labels

>>> df = df.drop(['Ticket','Cabin','Name'], axis=1)

>>> # Remove missing values

>>> df = df.dropna()
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Creating training and testing sets
In the preceding code, we removed the Ticket, Cabin, and Name columns, followed 
by the missing values.

We'll use a Python package called Patsy, which helps in describing statistical models. 
It helps in defining a dependent and independent variable formula that is similar to 
R. The variable that is defined left of '~' is the dependent variable, and the variable 
that is defined to right of it are the independent variables. The variables enclosed 
within C() are treated as categorical variables.

Now, we'll create the training and test sets from the data:

>>> formula = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp  + C(Embarked)  
           +  Parch' 

>>> # create a results dictionary to hold our regression results for easy  
>>> # analysis later

>>> df_train = df.iloc[ 0: 600, : ]

>>> df_test = df.iloc[ 600: , : ]

>>> #Splitting the data into dependent and independent variables

>>> y_train,x_train = dmatrices(formula, data=df_train,  
                                 return_type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=df_test,  
                                 return_type='dataframe')

In the preceding code, we define the equation in the formula variables where 
survived is the dependent variable and the ones to the right of it are the independent 
variables. After this, we take the first 600 rows as the training set and the remaining 
rows in the df DataFrame as the test set.

Finally, we use the dmatrices of the Patsy package, which takes in the formula 
and input a DataFrame to create a DataFrame. This is ready to be inputted to the 
modeling functions of statsmodels and SciKit.
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Building a model
We'll use the statsmodels package to build a model:

>>> # instantiate our model

>>> model = sm.Logit(y_train,x_train)

>>> res = model.fit()

>>> res.summary()

Here is the output of the preceding code:

We can see that the Maximum Likelihood Estimation has been used to predict the 
coefficients. The pseudo r square is similar to the r square of linear regression, which 
is used to measure the goodness of it. A pseudo r square value between 0.2 and 0.4 
is considered good that we have got a value of 0.33.
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From the preceding table, we can see that the port of embarkation and number of 
parents/children are significant predictors as their p-values are higher than 0.05.

We'll rebuild the model by using predictors, such as class, age, sex and number  
of siblings:

>>> formula = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp ' 

>>> y_train,x_train = dmatrices(formula, data=df_train, return_
type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=df_test, return_
type='dataframe')

>>> # instantiate our model

>>> model = sm.Logit(y_train,x_train)

>>> res = model.fit()

>>> res.summary()

We can see that all the predictors are significant in the preceding model.
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Model evaluation
Now, let's see the distribution of the predictions on the training data with the  
following code:

>>> kde_res = KDEUnivariate(res.predict())

>>> kde_res.fit()

>>> plt.plot(kde_res.support,kde_res.density)

>>> plt.fill_between(kde_res.support,kde_res.density, alpha=0.2)

>>> plt.title("Distribution of our Predictions")

In the preceding code, we use the kernel density estimation to find the probability 
density of the predicted values. This helps us to understand which areas of the 
predicted probability are denser.

From the preceding plot, we can see that the density is higher near the probabilities 
of 0 and 1, which is a good sign and shows that the model is able to predict some 
patterns from the data given. It also shows that the density is the highest near 
0, which means that a lot of people did not survive. This proves the analysis we 
performed in Chapter 3, Finding a Needle in a Haystack.
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Let's see the prediction distribution based on the male gender:

>>> plt.scatter(res.predict(),x_train['C(Sex)[T.male]'] , alpha=0.2)

>>> plt.grid(b=True, which='major', axis='x')

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Male Gender")

>>> plt.title("The Change of Survival Probability by Gender being Male")

In the preceding code, we created a scatter plot between the predicted probability of 
survival and a flag indicating that the passengers are male.

We can see that the model prediction shows that if the passenger is  male, then  
the chances of survival are lower compared to females. This was also shown in  
our analysis in Chapter 3, Finding a Needle in a Haystack, where it was seen that 
females had a higher survival rate.
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Now, let's see the distribution of the prediction based on the lower class of  
the passengers:

>>> plt.scatter(res.predict(),x_train['C(Pclass)[T.3]'] , alpha=0.2)

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Class Bool") # Boolean class to show if its 3rd class

>>> plt.grid(b=True, which='major', axis='x')

>>> plt.title("The Change of Survival Probability by Lower 

                       Class which is 3rd class")

We can see that the lower class passengers have a lower probability of survival as the 
probability is more concentrated toward 0 when compared to the other classes.
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Let's see the distribution of the probability with respect to the age of the passengers:

>>> plt.scatter(res.predict(),x_train.Age , alpha=0.2)

>>> plt.grid(True, linewidth=0.15)

>>> plt.title("The Change of Survival Probability by Age")

>>> plt.xlabel("Predicted chance of survival")

>>> plt.ylabel("Age")

If you observe the preceding plot, it can be seen that as the age of the passenger 
increases, the probability leans toward the left-hand side of the graph, which shows 
that elderly people have a lower probability of survival.
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Let's see the distribution of the probability with respect to the number of  
siblings/spouses:

>>> plt.scatter(res.predict(),x_train.SibSp , alpha=0.2)

>>> plt.grid(True, linewidth=0.15)

>>> plt.title("The Change of Survival Probability by Number of 

                     siblings/spouses")

>>> plt.xlabel("Predicted chance of survival")

>>> ylabel("No. of Siblings/Spouses")

From the preceding graph, the only pattern we can see is that passengers with four 
to five siblings/spouses had a lower probability of survival. For the remaining 
passengers, there is a more or less random distribution.

Evaluating a model based on test data
Let's predict by using the model on the test data and also show the performance of 
the model through precision and recall by maintaining a threshold of 0.7:

>>> y_pred = res.predict(x_test)

>>> y_pred_flag = y_pred > 0.7

>>> print pd.crosstab(y_test.Survived

                      ,y_pred_flag



Chapter 7

[ 149 ]

                     ,rownames = ['Actual']

                     ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test,y_pred_flag)

In the preceding code, we get the predicted probability on the test data followed 
by assigning True or False for an event based on the threshold of 0.7. We use the 
crosstab function of pandas, which helps in displaying the frequency distribution 
between two variables. We'll use this to get the crosstab between the actual and 
predicted values, and then we will use the classification_report function of 
SciKit to get the precision and recall values:

The following image shows the precision and recall on the test data:

We can see that all the nonsurvivors have been predicted correctly, but the model is 
able to predict only half of the survivors correctly based on the 0.7 threshold. Note 
that the precision and recall values will vary with the threshold that is used.

Let's understand what precision and recall mean.

• Precision: Precision tells you that among all the predictions of class 0 or class 
1, how many of them have been correctly predicted. So, in the preceding 
case, 76% of the prediction of nonsurvivors is correct and 100% of the 
prediction of those who have survived is correct.

• Recall: Recall tells you that out of the actual instances, how many of them have 
been predicted correctly. So, in the preceding case, all the people who did not 
survive have been predicted correctly with an accuracy of 100%, but of all the 
people who survived, only 53% of them have been predicted correctly.
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Let's plot the Receiver Operating Characteristic (ROC) curve, which will be 
explained as follows:

>>> # Compute ROC curve and area the curve

>>> fpr, tpr, thresholds = roc_curve(y_test, y_pred)

>>> roc_auc = auc(fpr, tpr)

>>> print "Area under the ROC curve : %f" % roc_auc

Area under the ROC curve : 0.879934

The area under the curve is 0.87, which is a good value. In the preceding code, we 
use the roc_curve function to get the False and True Positive rates, respectively, 
which are defined as follows:

The False Positive rate is FP
FP TN+

 which is also called fallout, and the True Positive 

rate is ( )/ /TPR TP P TP TP FN= = +  which is also called sensitivity.

Here are some of our observations:

• False Positive (FP): This is a positive prediction, which is actually wrong. 
So, in the preceding crosstab, 0 is False Positive

• True Positive (TP): This is a positive prediction, which is actually right.  
So, in the preceding crosstab, 24 is True Positive

• True Negative (TN): This is a negative prediction, which is actually right.  
So, in the above crosstab, 67 is True Negative

• False Negative (FN): This is a negative prediction, which is actually wrong. 
So, in the preceding cross tab, 21 is False Negative

So, a False Positive rate tells us that among all the people who did not survive, what 
percentage have been predicted as survived. The True Positive rate tells us that 
among all the people who survived, what percentage of them have been predicted as 
survived. Ideally, False Positive rates should be low and True Positive rates should 
be high.

The roc_curve function is created by taking the TPR and FPR at different threshold 
values and then plotting them against each other.

The roc_curve function gives the False and True Positive rates at different 
thresholds, and this will be utilized to plot the ROC curve:

>>> # Plot ROC curve

>>> plt.clf()
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>>> plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)

>>> plt.plot([0, 1], [0, 1], 'k--')

>>> plt.xlim([0.0, 1.0])

>>> plt.ylim([0.0, 1.0])

>>> plt.xlabel('False Positive Rate')

>>> plt.ylabel('True Positive Rate')

>>> plt.title('Receiver operating characteristic example')

>>> plt.legend(loc="lower right")

>>> plt.show()

Accuracy is measured by the area under the ROC curve. An area of 1 represents a 
perfect test; an area of 0.5 represents that the model is as good as a random guess. 
A rough guide to classify the accuracy of a diagnostic test is the traditional academic 
point system as follows:

Range Category
0.90-1 This refers to excellent (A)
0.80-0.90 This refers to good (B)
0.70-0.80 This refers to fair (C)
0.60-0.70 This refers to poor (D)
0.50-0.60 This refers to fail (F)
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The dotted line in the preceding graph has an AUC of 0.50, which is not good. Our 
model gives us an AUC of 0.88, which is really good and is the blue line on the graph.

Model building and evaluation with SciKit
Let's build the same model shown earlier by using SciKit:

>>> # instantiate a logistic regression model, and fit with X and y

>>> model = LogisticRegression()

>>> model = model.fit(x_train, y_train.Survived)

In the preceding code, we create an object of the LogisticRegression method and 
then fit the model using our training data:

>>> # examine the coefficients

>>> pd.DataFrame(zip(x_train.columns, np.transpose(model.coef_)))

The first column contains our dependent variable name and the second column 
contains the coefficient values. We can see that the coefficients of our predictor  
are similar but not same as the model built using the statsmodels package.

Let's see how our precision and recall are performing:

>>> y_pred = model.predict_proba(x_test)

>>> y_pred_flag = y_pred[:,1] > 0.7

>>> print pd.crosstab(y_test.Survived

                     ,y_pred_flag
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                     ,rownames = ['Actual']

                     ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test,y_pred_flag)

The following shows the precision and recall on the test data:

We can see that there is a slight difference in performance compared to the previous 
model that we created. There are two instances of positive predictions that have 
shifted to negative predictions.

Let's compute the ROC and area under the curve:

>>> # Compute ROC curve and area the curve

>>> fpr, tpr, thresholds = roc_curve(y_test, y_pred[:,1])

>>> roc_auc = auc(fpr, tpr)

>>> print "Area under the ROC curve : %f" % roc_auc

Area under the ROC curve :0.878275

It's nearly the same but slightly less than the AUC of the previous model.

Let's plot the ROC curve, which will be almost identical to the previous model:

>>> # Plot ROC curve

>>> plt.clf()

>>> plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)

>>> plt.plot([0, 1], [0, 1], 'k--')
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>>> plt.xlim([0.0, 1.0])

>>> plt.ylim([0.0, 1.0])

>>> plt.xlabel('False Positive Rate')

>>> plt.ylabel('True Positive Rate')

>>> plt.title('Receiver operating characteristic example')

>>> plt.legend(loc="lower right")

>>> plt.show()

Summary
In this chapter, you learned the purpose of logistic regression. You learned how  
to build a logistic regression model using statsmodels and SciKit, and then how  
to evaluate the model and see whether it's a good model or not.

In the next chapter, you'll learn how to generate recommendations, such as the  
ones you see on http://www.amazon.com/, where you'll be recommended new 
items based on your purchase history. Similar items can also be shown to you  
based on the product that you are currently browsing.

http://www.amazon.com/
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Generating 
Recommendations with 

Collaborative Filtering
Collaborative filtering is the process of filtering for information or patterns using 
techniques including collaboration among multiple agents, viewpoints, data sources, 
and so on. Collaborative filtering methods have been applied to many different 
kinds of data, including sensing and monitoring data, such as mineral exploration, 
environmental sensing over large areas or multiple sensors; financial data, such as 
financial service institutions that integrate many financial sources; or in electronic 
commerce and web applications where the focus is on user data and so on.

The basic principle behind the collaborative filtering approach is that it tries to find 
people who are similar to each other by looking at their tastes. Let's say if a person 
primarily likes action movies, then it will try to find a person who has seen similar 
kinds of movies and it will try to recommend the one that hasn't been seen by the 
first person, but seen by the second person.

We'll be focusing on the following types of collaborative filtering in this chapter:

• User-based collaborative filtering
• Item-based collaborative filtering
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Recommendation data
We will use a set of users who have given ratings to the movies of their choice. The 
following is a dictionary object containing the different users in the form of keys and 
their values in the form of a dictionary of movies, with each movie's value being the 
rating given by a user:

movie_user_preferences={'Jill': {'Avenger: Age of Ultron': 7.0,

 'Django Unchained': 6.5,

 'Gone Girl': 9.0,

 'Kill the Messenger': 8.0},

'Julia': {'Avenger: Age of Ultron': 10.0,

 'Django Unchained': 6.0,

 'Gone Girl': 6.5,

 'Kill the Messenger': 6.0,

 'Zoolander': 6.5},

'Max': {'Avenger: Age of Ultron': 7.0,

 'Django Unchained': 7.0,

 'Gone Girl': 10.0,

 'Horrible Bosses 2': 6.0,

 'Kill the Messenger': 5.0,

 'Zoolander': 10.0},

'Robert': {'Avenger: Age of Ultron': 8.0,

 'Django Unchained': 7.0,

 'Horrible Bosses 2': 5.0,

 'Kill the Messenger': 9.0,

 'Zoolander': 9.0},

'Sam': {'Avenger: Age of Ultron': 10.0,

 'Django Unchained': 7.5,

 'Gone Girl': 6.0,

 'Horrible Bosses 2': 3.0,

 'Kill the Messenger': 5.5,

 'Zoolander': 7.0},

'Toby': {'Avenger: Age of Ultron': 8.5,

 'Django Unchained': 9.0,

 'Zoolander': 2.0},

'William': {'Avenger: Age of Ultron': 6.0,



Chapter 8

[ 157 ]

 'Django Unchained': 8.0,

 'Gone Girl': 7.0,

 'Horrible Bosses 2': 4.0,

 'Kill the Messenger': 6.5,

 'Zoolander': 4.0}}

movie_user_preferences['William']['Gone Girl']

7.0

User-based collaborative filtering
Let's start to build a user-based collaborative filter by finding users who are similar 
to each other.

Finding similar users
When you have data about what people like, you need a way to determine the 
similarity between different users. The similarity between different users is determined 
by comparing each user with every other user and computing a similarity score. This 
similarity score can be computed using the Pearson correlation, the Euclidean distance, 
the Manhattan distance, and so on.

The Euclidean distance score
The Euclidean distance is the minimum distance between two points in space. Let's 
try to understand this by plotting the users who have watched Django Unchained 
and Avengers.

We'll create a DataFrame that contains the user, django, and avenger columns, 
where django and avenger contain the ratings given by the user:

>>> data = []

>>> for i in movie_user_preferences.keys():

      try:

          data.append( (i

          ,movie_user_preferences[i]['Django Unchained']

          ,movie_user_preferences[i]['Avenger: Age of Ultron']) )

      except:
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           pass

       

   

>>> df = pd.DataFrame(data = data, columns = ['user', 'django',  
                       'avenger'])

>>> df

Using the preceding DataFrame, we'll plot the different users by keeping Django as 
the y axis and Avengers as the x axis:

>>> plt.scatter(df.django, df.avenger)

>>> plt.xlabel('Django')

>>> plt.ylabel('Avengers')

>>> for i,txt in enumerate(df.user):

       plt.annotate(txt, (df.django[i],df.avenger[i]))

>>> plt.show()
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We can see that Jill and Toby are quite far away from each other, whereas Robert 
and Max are quite close to each other. Let's compute the Euclidean distance between  
the two:

>>> #Euclidean distance between Jill and Toby rating

>>> sqrt(pow(8.5-7,2)+pow(9-6.5,2))

2.9154759474226504

>>> #Euclidean distance between Robert and Max rating

>>> sqrt(pow(8-7,2)+pow(7-7,2))

1.0

We can see that the further the users are away from each other, the higher the 
Euclidean distance. As seen in the preceding code, the smaller the Euclidean 
distance, the greater is the similarity. We'll divide the Euclidean distance by 1  
so that we get a metric that represents a greater similarity for a higher number.  
We'll also add 1 in the denominator to avoid getting ZeroDivisionError.

>>> #Similarity Score based on Euclidean distance between Jill and Toby

>>> 1/(1 + sqrt(pow(8.5-7,2)+pow(9-6.5,2)) )

0.2553967929896867

>>> #Similarity Score based on Euclidean distance between Robert and Max

>>> 1/(1 + sqrt(pow(8-7,2)+pow(7-7,2)) )

0.5

Let's create a function that calculates the similarity score based on the Euclidean 
distance between two users where all the movies that they watched are taken into 
consideration, apart from the two movies that we mentioned earlier:

>>> # Returns a distance-based similarity score for person1 and person2

>>> def sim_distance(prefs,person1,person2):

      # Get the list of shared_items

      si={}

      for item in prefs[person1]:

          if item in prefs[person2]:
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              si[item]=1

           

      # if they have no ratings in common, return 0

      if len(si)==0: return 0

   

      # Add up the squares of all the differences

      sum_of_squares=sum([pow(prefs[person1][item] -  
                           prefs[person2][item],2)

      for item in prefs[person1] if item in prefs[person2]])

   

      return 1/(1+sum_of_squares)

Let's apply the preceding function to calculate the similarity score between Sam  
and Toby:

>>> sim_distance(movie_user_preferences,'Sam','Toby')

0.03278688524590164

The Pearson correlation score
We have already studied what the Pearson correlation is in Chapter 2, Inferential 
Statistics. The Euclidean distance is how far apart the users are from each other, 
whereas the Pearson correlation takes into account the association between two 
people. We'll use the Pearson correlation to compute the similarity score between 
two users.
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Let's see how Sam and Toby are correlated to each other:

>>> def create_movie_user_df(input_data, user1, user2):

      data = []

      for movie in input_data[user1].keys():

          if movie in input_data[user2].keys():

              try:

                  data.append( (movie

                  ,input_data[user1][movie]

                  ,input_data[user2][movie]) )

              except:

                  pass

              

          

      return pd.DataFrame(data = data, columns = ['movie', user1,  
                            user2])

>>> df = create_movie_user_df(movie_user_preferences, 'Sam', 'William')

>>> df
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Once we have created the preceding DataFrame, we will plot the scatter plot as we 
did earlier:

>>> plt.scatter(df.Sam, df.William)

>>> plt.xlabel('Sam')

>>> plt.ylabel('William')

>>> for i,txt in enumerate(df.movie):

      plt.annotate(txt, (df.Sam[i],df.William[i]))

>>> plt.show()

Let's compute the Pearson correlation between Sam and William:

>>> pearsonr(df.Sam,df.William)

(0.37067401970178415, 0.46945413268410929)

Let's see the scatter plot of correlation between Sam and Julia:

>>> df = create_movie_user_df(movie_user_preferences, 'Sam', 'Julia')

>>> df

>>> plt.scatter(df.Sam, df.Julia)

>>> plt.xlabel('Sam')

>>> plt.ylabel('Julia')
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>>> for i,txt in enumerate(df.movie):

      plt.annotate(txt, (df.Sam[i],df.Julia[i]))

>>> plt.show()

Let's compute the Pearson correlation between Sam and Julia:

>>> pearsonr(df.Sam,df.Julia)

(0.88285183326025096, 0.047277507003439537)

We can see that Sam and Julia are very similar to each other as the correlation value 
of 0.88 is close to 1.

We'll now create a function that takes in the data and calculates the Pearson 
correlation between the two users:

>>> # Returns the Pearson correlation coefficient for p1 and p2

>>> def sim_pearson(prefs,p1,p2):

      # Get the list of mutually rated items

      si={}

      for item in prefs[p1]:

          if item in prefs[p2]: si[item]=1

           

      # Find the number of elements
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      n=len(si)

   

      # if they are no ratings in common, return 0

      if n==0: return 0

   

      # Add up all the preferences

      sum1=sum([prefs[p1][it] for it in si])

      sum2=sum([prefs[p2][it] for it in si])

   

      # Sum up the squares

      sum1Sq=sum([pow(prefs[p1][it],2) for it in si])

      sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

   

      # Sum up the products

      pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

   

      # Calculate Pearson score

      num=pSum-(sum1*sum2/n)

      den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))

      if den==0: return 0

   

      r=num/den

   

      return r

Let's compute the Pearson correlation between Sam and Julia by using the 
preceding function and verify if it's computing correctly:

>>> sim_pearson(movie_user_preferences,'Sam','Julia')

0.8828518332602507
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Ranking the users
Once we have the methods of computing the similarity between users, we then 
proceed to rank them based on the similarity between particular users. I would 
like to know the people who are most similar to me. We can achieve this with the 
following code:

>>> def top_matches(prefs,person,n=5,similarity=sim_pearson):

      scores=[(similarity(prefs,person,other),other)

          for other in prefs if other!=person]

   

      # Sort the list so the highest scores appear at the top

      scores.sort( )

      scores.reverse( )

      return scores[0:n]

Let's see the top three people who are similar to Sam:

>>> top_matches(movie_user_preferences,'Toby', 

                        n = 3, similarity = sim_distance)

[(0.10526315789473684, 'Jill'),

(0.08163265306122448, 'William'),

(0.03278688524590164, 'Sam')]

Recommending items
Once you know who is similar to you, you would now like to know the movies that 
are recommended for you. The following image shows how to compute a score for 
the movies so that we can find out what the most recommended movie is:
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We multiply the similarity score by the movie ratings of each user. We then sum up 
this new score and then divide it by the applicable similarity score. In summary, we 
are taking the weighted average based on the similarity score.

From the preceding output, we can see that Gone Girl has a very good score in terms 
of being recommended, and this is then followed by Kill the Messenger.

We'll now create a function that will generate recommendations for a user by 
encompassing the preceding logic:

>>> # Gets recommendations for a person by using a weighted average

>>> # of every other user's rankings

>>> def get_recommendations(prefs,person,similarity=sim_pearson):

      totals={}

      simSums={}

      for other in prefs:

          # don't compare me to myself

          if other==person: continue

          sim=similarity(prefs,person,other)

       

          # ignore scores of zero or lower

          if sim<=0: continue

          for item in prefs[other]:

           

              # only score movies I haven't seen yet

              if item not in prefs[person] or prefs[person][item]==0:

                  # Similarity * Score

                  totals.setdefault(item,0)

                  totals[item]+=prefs[other][item]*sim

                  # Sum of similarities

                  simSums.setdefault(item,0)

                  simSums[item]+=sim

               

      # Create the normalized list

      rankings=[(total/simSums[item],item) for item,total in  
                 totals.items( )]

   

      # Return the sorted list
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      rankings.sort( )

      rankings.reverse( )

      return rankings

Let's get the recommendation by using the preceding function:

>>> get_recommendations(movie_user_preferences,'Toby')

[(6.587965809121004, 'Gone Girl'),

(6.087965809121004, 'Kill the Messenger'),

(3.608127720528246, 'Horrible Bosses 2')]

>>> getRecommendations(movie_user_preferences,'Toby',  
                        similarity = sim_distance)

[(7.773043918833565, 'Gone Girl'),

(6.976295282563891, 'Kill the Messenger'),

(4.093380589669568, 'Horrible Bosses 2')]

We have now created a user-based collaborative filter.

Item-based collaborative filtering
User-based collaborative filtering finds the similarities between users, and then using 
these similarities between users, a recommendation is made.

Item-based collaborative filtering finds the similarities between items. This is then 
used to find new recommendations for a user.

To begin with item-based collaborative filtering, we'll first have to invert our dataset 
by putting the movies in the first layer, followed by the users in the second layer:

>>> def transform_prefs(prefs):

       result={}

       for person in prefs:

           for item in prefs[person]:

               result.setdefault(item,{})

            

               # Flip item and person



Generating Recommendations with Collaborative Filtering

[ 168 ]

               result[item][person]=prefs[person][item]

       return result

{'Avenger: Age of Ultron': {'Jill': 7.0, 
 'Julia': 10.0,

 'Max': 7.0,

 'Robert': 8.0,

 'Sam': 10.0,

 'Toby': 8.5,

 'William': 6.0},

'Django Unchained': {'Jill': 6.5,

 'Julia': 6.0,

 'Max': 7.0,

 'Robert': 7.0,

 'Sam': 7.5,

 'Toby': 9.0,

 'William': 8.0},

'Gone Girl': {'Jill': 9.0,

 'Julia': 6.5,

 'Max': 10.0,

 'Sam': 6.0,

 'William': 7.0},

'Horrible Bosses 2': {'Max': 6.0, 'Robert': 5.0, 'Sam': 3.0,  
    'William': 4.0},

'Kill the Messenger': {'Jill': 8.0,

 'Julia': 6.0,

 'Max': 5.0,

 'Robert': 9.0,

 'Sam': 5.5,

 'William': 6.5},

'Zoolander': {'Julia': 6.5,

 'Max': 10.0,

 'Robert': 9.0,

 'Sam': 7.0,

 'Toby': 2.0,

 'William': 4.0}}
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Now, we would like to find similar movies for each of the movies:

>>> def calculate_similar_items(prefs,n=10):

       # Create a dictionary of items showing which other items they

       # are most similar to.

       result={}

    

       # Invert the preference matrix to be item-centric

       itemPrefs=transform_prefs(prefs)

       c=0

       for item in itemPrefs:

           # Status updates for large datasets

           c+=1

           if c%100==0: print "%d / %d" % (c,len(itemPrefs))

           # Find the most similar items to this one

           scores=top_matches(itemPrefs, item, n=n,  
                    similarity=sim_distance)

           result[item]=scores

       return result

>>> itemsim=calculate_similar_items(movie_user_preferences)

>>> itemsim

{'Avenger: Age of Ultron': [(0.034782608695652174, 'Django  
  Unchained'),

 (0.023121387283236993, 'Gone Girl'),

 (0.022988505747126436, 'Kill the Messenger'),

 (0.015625, 'Horrible Bosses 2'),

 (0.012738853503184714, 'Zoolander')],

'Django Unchained': [(0.05714285714285714, 'Kill the Messenger'),

 (0.05063291139240506, 'Gone Girl'),

 (0.034782608695652174, 'Avenger: Age of Ultron'),

 (0.023668639053254437, 'Horrible Bosses 2'),

 (0.012578616352201259, 'Zoolander')],

'Gone Girl': [(0.09090909090909091, 'Zoolander'),

 (0.05063291139240506, 'Django Unchained'),

 (0.036036036036036036, 'Kill the Messenger'),
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 (0.02857142857142857, 'Horrible Bosses 2'),

 (0.023121387283236993, 'Avenger: Age of Ultron')],

'Horrible Bosses 2': [(0.03278688524590164, 'Kill the Messenger'),

 (0.02857142857142857, 'Gone Girl'),

 (0.023668639053254437, 'Django Unchained'),

 (0.02040816326530612, 'Zoolander'),

 (0.015625, 'Avenger: Age of Ultron')],

'Kill the Messenger': [(0.05714285714285714, 'Django Unchained'),

 (0.036036036036036036, 'Gone Girl'),

 (0.03278688524590164, 'Horrible Bosses 2'),

 (0.02877697841726619, 'Zoolander'),

 (0.022988505747126436, 'Avenger: Age of Ultron')],

'Zoolander': [(0.09090909090909091, 'Gone Girl'),

 (0.02877697841726619, 'Kill the Messenger'),

 (0.02040816326530612, 'Horrible Bosses 2'),

 (0.012738853503184714, 'Avenger: Age of Ultron'),

 (0.012578616352201259, 'Django Unchained')]}

Once we have similarities between all the movies, we would like to generate the 
recommendations for a user.

The following table shows the movies seen by Toby under the Movie column and  
the rating given by Toby. The Movie column contains movies similar to the ones  
seen by Toby. The columns with R as a prefix are the products of the rating and 
similarity score.

Finally, we normalize the values by summing the R prefixed column, then dividing it 
by the sum of the similarity score of the Movie column.

The following table shows Kill The Messenger as the most recommended movie:
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We would now like to generate the recommendations by encompassing the 
preceding logic:

>>> def get_recommendedItems(prefs,itemMatch,user):

       userRatings=prefs[user]

       scores={}

       totalSim={}

    

       # Loop over items rated by this user

       for (item,rating) in userRatings.items( ):

        

           # Loop over items similar to this one

           for (similarity,item2) in itemMatch[item]:

            

               # Ignore if this user has already rated this item

               if item2 in userRatings: continue

                

               # Weighted sum of rating times similarity

               scores.setdefault(item2,0)

               scores[item2]+=similarity*rating

            

               # Sum of all the similarities

               totalSim.setdefault(item2,0)

               totalSim[item2]+=similarity

            

       # Divide each total score by total weighting to get an average

       rankings=[(score/totalSim[item],item) for  
                  item,score in scores.items( )]

    

       # Return the rankings from highest to lowest

       rankings.sort( )

       rankings.reverse( )

       return rankings           

      # Divide each total score by total weighting to get an average
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      rankings=[(score/totalSim[item],item) for  
                  item,score in scores.items( )]

   

      # Return the rankings from highest to lowest

      rankings.sort( )

      rankings.reverse( )

      return rankings

Let's generate recommendations for Toby, using the item-based recommender:

>>> get_recommendedItems(movie_user_preferences, itemsim,'Toby')

[(7.044841200971884, 'Kill the Messenger'),

(6.476296577225752, 'Horrible Bosses 2'),

(5.0651585538275095, 'Gone Girl')]

Summary
In this chapter, you learned how to perform user-based and item-based collaborative 
filtering. You also learned some of the metrics that can be used to compute the 
similarity between users as well as items, and how to apply this similarity to 
generate recommendations for end users.

The next chapter will cover different ensemble models that basically combine 
multiple models to increase the performance of predictions.
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Pushing Boundaries with 
Ensemble Models

Ensemble modeling is a process where two or more models are generated and then 
their results are combined. In this chapter, we'll cover a random forest, which is a 
nonparametric modeling technique where multiple decision trees are created during 
training time, and then the result of these decision trees are averaged to give the 
required output. It's called a random forest because many decision trees are created 
during training time on randomly selected features.

An analogy of this would be to try to guess the number of pebbles in a glass jar. 
There are groups of people who try to guess the number of pebbles in the jar. 
Individually, each person would be very wrong in guessing the number of pebbles 
in the glass jar, but when you average each of their guesses, the resulting averaged 
guess would be pretty close to the actual number of pebbles in the jar.

In this chapter, you'll learn how to:

• Work with census data on US earnings and explore this data
• Make decision trees to predict if a person is earning more than $50K
• Make random forest models and get improved data performance
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The census income dataset
The following table is a census dataset on income created by the University of 
California, Irvine:

Columns Description
age This refers to the age of a person
work class This refers to the type of employment a person is involved in
education This refers to the education level of a person
marital_
status This refers to whether a person is married or not
occupation This refers to the type of jobs a person is involved in
relationship This refers to the type of relationship of the person
race This refers to the ethnicity of a person
gender This refers to the gender of a person
hours_per_
week This refers to the average hours worked per week
native_
country This refers to the country of origin
greater_
than_50k

This refers to the flag that indicates whether a person is earning more 
than $50K in a year

Let's load this data:

>>> data = pd.read_csv('./Data/census.csv')

Let's check the fill rate of the data:

>>> data.count(0)/data.shape[0] * 100

age                 100.000000

workclass            94.361179

education           100.000000

education_num       100.000000

marital_status      100.000000

occupation           94.339681

relationship        100.000000

race                100.000000

gender              100.000000

capital_gain        100.000000

capital_loss        100.000000
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hours_per_week      100.000000

native_country       98.209459

greater_than_50k    100.000000

dtype: float64

We can see that the columns have a good fill rate. We'll remove the rows that have 
empty values and also remove the education_num column as it contains the same 
information, such as education and its unique codes:

>>> data = data.dropna(how='any')

>>> del data['education_num']

Exploring the census data
Let's explore the census data and understand the patterns with the data before 
building the model.

Hypothesis 1: People who are older earn more
We'll create a histogram of people who earn more than $50K:

>>> hist_above_50 = plt.hist(data[data.greater_than_50k ==  
                     1].age.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Age distribution of Above 50K earners')

>>> plt.xlabel('Age')

>>> plt.ylabel('Frequency')

Here is the histogram for the preceding code:
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Now, we'll plot a histogram of the age of the people who earn less than $50K a year, 
using this code:

>>> hist_below_50 = plt.hist(data[data.greater_than_50k ==  
                    0].age.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Age distribution of below 50K earners')

>>> plt.xlabel('Age')

>>> plt.ylabel('Frequency)

We can see that people who earn above $50K are mostly aged between their  
late 30s and mid 50s, whereas people who earn less than $50K are primarily  
aged between 20 and 30.

Hypothesis 2: Income bias based on working class
Let's see what the distribution of people earning more than $50K between different 
working class groups is. We'll see the percentage of earners who earn more than 
$50K in each of the groups, using the following code:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
               .groupby('workclass').workclass.count()

                , data[data.greater_than_50k == 0] 
                    .groupby('workclass').workclass.count()], axis=1)

>>> dist_data.columns = ['wk_class_gt50','wk_class_lt50']

>>> dist_data_final = dist_data.wk_class_gt50 /  
                      (dist_data.wk_class_lt50 +  
                      dist_data.wk_class_gt50 )

>>> dist_data_final.sort(ascending=False)
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>>> ax = dist_data_final.plot(kind = 'bar', color = 'r',  
                               y='Percentage')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,  
                       fontsize=8, ha='right')

>>> ax.set_xlabel('Working Class')

>>> ax.set_ylabel('Percentage of People')

We see that people who are self-employed and have a company have got the 
maximum share of people who earn more than $50K. The second most well-off 
group in terms of earning are federal government employees.

Hypothesis 3: People with more education earn 
more
Education is an important field. It should be related to the level of earning power of 
an individual:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
               .groupby('education').education.count()

               , data[data.greater_than_50k ==  
                   0].groupby('education').education.count()],  
                   axis=1)
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>>> dist_data.columns = ['education_gt50','education_lt50']

>>> dist_data_final = dist_data.education_gt50 /  
                  (dist_data.education_gt50 +  
                  dist_data.education_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index,  
                      rotation=30, fontsize=8, ha='right')

>>> ax.set_xlabel('Education Level')

>>> ax.set_ylabel('Percentage of People')

We can see that the more the person is educated, the greater the number of people in 
their group who earn more than $50K.

Hypothesis 4: Married people tend to earn more
Let's see how distribution is based on marital status:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
               .groupby('marital_status').marital_status.count()

                , data[data.greater_than_50k == 0] 
                    .groupby('marital_status') 
                    .marital_status.count()],  
                    axis=1)
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>>> dist_data.columns = ['marital_status_gt50','marital_status_lt50']

>>> dist_data_final = dist_data.marital_status_gt50 /  
       (dist_data.marital_status_gt50+dist_data.marital_status_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,  
               fontsize=8, ha='right')

>>> ax.set_xlabel('Marital Status')

>>> ax.set_ylabel('Percentage of People')

We can see that people who are married earn better as compared to people who  
are single.
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Hypothesis 5: There is a bias in income based on 
race
Let's see how earning power is based on the race of the person:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
                 .groupby('race').race.count()

                  , data[data.greater_than_50k ==  
                    0].groupby('race').race.count()], axis=1)

>>> dist_data.columns = ['race_gt50','race_lt50']

>>> dist_data_final = dist_data.race_gt50 / (dist_data.race_gt50 +  
                       dist_data.race_lt50 )

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,  
                         fontsize=8, ha='right')

>>> ax.set_xlabel('Race')

>>> ax.set_ylabel('Percentage of People')

Asian Pacific people and Whites have the highest earning power.
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Hypothesis 6: There is a bias in the income based 
on occupation
Let's see how earning power is based on the occupation of a person:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
                 .groupby('occupation').occupation.count()

                 , data[data.greater_than_50k == 0] 
                     .groupby('occupation').occupation.count()],  
                      axis=1)

>>> dist_data.columns = ['occupation_gt50','occupation_lt50']

>>> dist_data_final = dist_data.occupation_gt50 /  
                       (dist_data.occupation_gt50 +  
                        dist_data.occupation_lt50 )

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,  
                        fontsize=8, ha='right')

>>> ax.set_xlabel('Occupation')

>>> ax.set_ylabel('Percentage of People')

We can see that people who are in specialized or managerial positions earn more.
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Hypothesis 7: Men earn more
Let's see how earning power is based on gender:

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
                 .groupby('gender').gender.count()

                  , data[data.greater_than_50k == 0] 
                      .groupby('gender').gender.count()], axis=1)

>>> dist_data.columns = ['gender_gt50','gender_lt50']

>>> dist_data_final = dist_data.gender_gt50 /  
                      (dist_data.gender_gt50 + dist_data.gender_lt50)

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=30,  
                        fontsize=8, ha='right')

>>> ax.set_xlabel('Gender')

>>> ax.set_ylabel('Percentage of People')

It's no surprise to see that males have a higher earning power as compared to 
females. It will be good to see the two bars at an equal level sometime in the future.
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Hypothesis 8: People who clock in more hours earn 
more
Let's see the distribution of people who earn above $50K based on their working 
hours per week:

>>> hist_above_50 = plt.hist(data[data.greater_than_50k == 1] 
                     .hours_per_week.values, 10, facecolor='green',  
                     alpha=0.5)

>>> plt.title('Hours per week distribution of Above 50K earners')
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Now, let's see the distribution of the earners below $50K based on their working 
hours per week:

>>> hist_below_50 = plt.hist(data[data.greater_than_50k ==  
        0].hours_per_week.values, 10, facecolor='green', alpha=0.5)

>>> plt.title('Hours per week distribution of Below 50K earners')

We can see that people who earn more than $50K and less than this have an average 
of 40 working hours per week, but it can be seen that people who earn above $50K 
have a higher number of people who work more than 40 hours.

Hypothesis 9: There is a bias in income based on 
the country of origin
Let's see how earning power is based on a person's country of origin:

>>> plt.figure(figsize=(10,5))

>>> dist_data = pd.concat([data[data.greater_than_50k == 1] 
                 .groupby('native_country').native_country.count()

                 , data[data.greater_than_50k == 0] 
                   .groupby('native_country').native_country 
                   .count()], axis=1)

>>> dist_data.columns = ['native_country_gt50','native_country_lt50']
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>>> dist_data_final = dist_data.native_country_gt50 /  
                       (dist_data.native_country_gt50 +  
                          dist_data.native_country_lt50 )

>>> dist_data_final.sort(ascending = False)

>>> ax = dist_data_final.plot(kind = 'bar', color = 'r')

>>> ax.set_xticklabels(dist_data_final.index, rotation=40,  
                        fontsize=8, ha='right')

>>> ax.set_xlabel(Country)

>>> ax.set_ylabel('Percentage of People')

We can see that Taiwanese, French, Iranians, and Indians are the most well-earning 
people among different counties.
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Decision trees
To understand decision tree-based models, let's try to imagine that Google wants 
to recruit people for a software development job. Based on the employees that they 
already have and the ones they have rejected previously, we can determine whether 
an applicant was from an Ivy League college or not and what the Grade Point 
Average (GPA) of the applicant was.

The decision tree will split the applicants into Ivy League and non-Ivy League 
groups. The Ivy League group will then be split into high GPA and low GPA so that 
people with a high GPA are likely to be tagged highly and the ones with a low GPA 
are likely to get recruited.

Applicants who have a high GPA and belong to non-Ivy League colleges have a 
slightly better chance of getting recruited as compared to those who have a low  
GPA and belong to non-Ivy League colleges.

The preceding explanation is what a decision tree does in simple terms.

Let's create a decision tree on the basis of our data to predict what the likelihood of a 
person earning more than $50K is going to be:

>>> data_test = pd.read_csv('./Data/census_test.csv')

>>> data_test = data_test.dropna(how='any')

>>> formula = 'greater_than_50k ~  age + workclass + education +  
                marital_status + occupation + race + gender +  
                hours_per_week + native_country '

>>> y_train,x_train = dmatrices(formula, data=data,  
                                 return_type='dataframe')

>>> y_test,x_test = dmatrices(formula, data=data_test,  
                               return_type='dataframe')

>>> clf = tree.DecisionTreeClassifier()

>>> clf = clf.fit(x_train, y_train)

Let's see how the model performs:

>>> from sklearn.metrics import classification_report

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

                     ,y_pred

                     ,rownames = ['Actual']

                      ,colnames = ['Predicted'])
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>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We can see that the people who don't earn more than $50K can be predicted well as 
there is a precision of 85% and a recall of 87%. People who earn more than $50K can 
only be predicted with a precision of 56% and a recall of 52%

Note that the order of the dependent variables given in the formula will change  
these values slightly. You can experiment to  see whether changing the order  
of the variables will improve their precision/recall.

Random forests
We have learned how to create a decision tree but, at times, decision tree models 
don't hold up well when there are many variables and a large dataset. This is  
where ensemble models, such as random forest, come to rescue.

A random forest basically creates many decision trees on the dataset and then 
averages out the results. If you see a singing competition, such as American Idol, or 
a sporting competition, such as the Olympics, there are multiple judges. The reason 
for having multiple judges is to eliminate bias and give fair results, and this is what a 
random forest tries to achieve.

A decision tree can change drastically if the data changes slightly and it can easily 
overfit the data.
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Let's try to create a random forest model and see how its precision/recall is 
compared to the decision tree that we just created:

>>> import sklearn.ensemble as sk

>>> clf = sk.RandomForestClassifier(n_estimators=100)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

After building the model, let's cross-validate the model on the test data:

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

                     ,y_pred

                     ,rownames = ['Actual']

                     ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We can see that we have improved the precision and recall for the people who don't 
earn more than $50K, as well as for the people who do.
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Let's try to do some fine-tuning to achieve better performance for the model by using 
the min_samples_split parameter and setting it to 5. This parameter tells us that 
the minimum number of samples required to create a split is 5:

>>> clf = sk.RandomForestClassifier(n_estimators=100,  
          oob_score=True,min_samples_split=5)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

                     ,y_pred

                     ,rownames = ['Actual']

                     ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We increased the recall of 0% to 90%, 1% to 56%, and the precision of 1% to 65%.
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We'll fine-tune the model further by increasing the minimum number of leaves to 2 
by using the min_leaf parameter. The meaning of this parameter indicates that the 
minimum number of nodes to be created are 2:

>>> clf = sk.RandomForestClassifier(n_estimators=100,  
         oob_score=True,min_samples_split=5, min_samples_leaf= 2)

>>> clf = clf.fit(x_train, y_train.greater_than_50k)

>>> y_pred = clf.predict(x_test)

>>> print pd.crosstab(y_test.greater_than_50k

                     ,y_pred

                     ,rownames = ['Actual']

                     ,colnames = ['Predicted'])

>>> print '\n \n'

>>> print classification_report(y_test.greater_than_50k,y_pred)

We have further significantly increased the recall of 0% to 92% and the precision of 
1% to 70%. This model performs decently.
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Let's see the importance of the variables that are contributing to the prediction. 
We'll use the feature importance attribute of the clf object, and using this, we'll plot 
important features, such as dependent variables that are sorted by their importance:

>>> model_ranks = pd.Series(clf.feature_importances_,  
                   index=x_train.columns, name='Importance') 
                   .sort(ascending=False, inplace=False)

>>> model_ranks.index.name = 'Features'

>>> top_features = model_ranks.iloc[:31].sort(ascending=True,  
                   inplace=False)

>>> plt.figure(figsize=(15,7))

>>> ax = top_features.plot(kind='barh')

>>> _ = ax.set_title("Variable Ranking")

>>> _ = ax.set_xlabel('Performance')

>>> _ = ax.set_yticklabels(top_features.index, fontsize=8)

We can see that those people who are married to a civilian spouse are very good 
indicators of whether a particular group of people earn more than $50K or not. This 
is followed by the age of a person, and finally, the number of hours a week a person 
works. Also, people who aren't married are good indicators of predicting the group 
of people who earn less than $50K.
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Summary
In this chapter, we explored the patterns in the census data and then understood 
how a decision tree was constructed and also built a decision tree model on the  
data given. You then learned the concept of ensemble models with the help of a 
random forest and improved the performance of prediction by using the random 
forest model.

In the next chapter, you'll learn clustering, which is basically grouping elements 
together that are similar to each other. We will use the k-means cluster for this.
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Applying Segmentation with 
k-means Clustering

Clustering comes under unsupervised learning and helps in segmenting an instance 
into groups in such a way that instances in the group have similar characteristics. 
Amazon might want to understand who their high-value, medium-value and  
low-value users are. In the simplest form, we can determine this by bucketing the 
total transaction amount of each user into three buckets. The high value customers 
will come under the top 20 percentile bucket, the medium value will come under  
the 20th to 80th percentile bucket, and the bottom 20 percentile will contain the  
low-value customers. Amazon will know who their high value customers are 
through this and ensure that they are taken care of in case of scenarios, such as 
payment failures for transactions. Here, we've used a single variable, such as the 
transaction amount, and we've manually bucketed the data.

We require an algorithm that can take multiple variables and helps us in bucketing 
instances. The k-means is one of the most popular algorithms to perform clustering 
as it is the easiest machine learning algorithm to understand under clustering. Also, 
segmentation is the process of dividing customers into groups, and clustering is the 
technique that helps in finding the similarities in a group and help assign customers 
to a particular group.

In this chapter, you'll learn the following topics:

• Determining the ideal number of clusters through the k-means technique
• Clustering with the k-means algorithm
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The k-means algorithm and its working
The k-means clustering algorithm operates by computing the average of features, 
such as the variables that we use for clustering. For example, segmenting customers 
based on the average transaction amount and the average number of products 
purchased in a quarter of a year. This mean then becomes the center of a cluster. The 
K number is the number of clusters, that is, the technique consists of computing a K 
number of means that lead to the clustering of data around these k-means.

How do we choose this K? If we have some idea of what we are looking for or how 
many clusters we expect or want, then we can set K to be this number before we start 
the engines and let the algorithm compute along.

If we don't know how many clusters there are, then our exploration will take a little 
longer and involve some trial and error, say, as we try K=3,4, and 5.

The k-means algorithm is iterative. It starts by choosing K points at random from the 
data and uses these as cluster centers just to get started. Then, at each iterative step,  
this algorithm decides which row values are closest to the cluster center and assigns 
K points to them.

Once this is done, we have a new arrangement of points. Thus, the center or mean of 
the clusters is computed again as it may have changed. When does it not shift? When 
we have stable clusters, and we have iterated till we get no benefit from iterating 
further, then this is our result.

There are conditions under which k-means do not converge, that is, there are 
no stable clusters, but we won't get into that here. You can read further about 
the convergence of k-means at http://webdocs.cs.ualberta.ca/~nray1/
CMPUT466_551/kmeans_convergence.pdf.

A simple example
Let's look at a simple example before getting into k-means clustering. We'll use a 
dataset of t-shirt sizes with the following columns:

• Size: This refers to the size of a t-shirt
• Height: This refers to the height of a person
• Weight: This refers to the weight of a person

http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf
http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf
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Let's look at the data:

>>> import numpy as np

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> #Reading the data from the file

>>> df = pd.read_csv('./Data/tshirt_sizes.csv')

>>> print df[:10]

   Height  Weight Size

0     150      54    S

1     150      55    S

2     151      55    S

3     151      47    S

4     152      58    S

5     155      53    S

6     155      59    S

7     157      60    S

8     157      56    S

9     157      55    S

We'll plot a scatter plot of the height and weight of people and group it on the basis 
of t-shirt sizes using the following code:

>>> d_color = {

       "S": "b",

       "M": "r",

       "L": "g",

   }

>>> fig, ax = plt.subplots()

>>> for size in ["S", "M", "L"]:

       color = d_color[size]

       df[df.Size == size].plot(kind='scatter', x='Height', y='Weight',  
                                  label=size, ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper left")



Applying Segmentation with k-means Clustering

[ 196 ]

After the preceding code is executed we'll get the following output:

You can see that people who have sizes, such as small, are short in height and they 
weigh less and are blue in color. Similarly, for the other t-shirt sizes, the height and 
weight of people are grouped together around each other.

In the preceding case, we had labels for the t-shirt sizes. However, if we don't have 
t-shirt sizes with us but have the height and weight of the individual instead and we 
want to estimate the sizes based on height and weight, then this is where a k-means 
algorithm helps us:

>>> from math import sqrt

>>> from scipy.stats.stats import pearsonr  

>>> from sklearn.cluster import KMeans 

>>> from scipy.cluster.vq import kmeans,vq

>>> from scipy.spatial.distance import cdist

>>> km = KMeans(3,init='k-means++', random_state=3425) # initialize

>>> km.fit(df[['Height','Weight']])

>>> df['SizePredict'] = km.predict(df[['Height','Weight']])

>>> df.groupby(['Size','SizePredict']).Size.count()

>>> print pd.crosstab(df.Size
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                  ,df.SizePredict

                  ,rownames = ['Size']

                  ,colnames = ['SizePredict'])

SizePredict   0   1   2

Size                   

L            13   0   1

M             0   6  14

S             0  15   0

We have assumed three clusters in the k-means algorithm based on the t-shirt sizes 
that we know (later on we'll discuss how to determine the number of clusters), and 
then we input the height and weight in the k-means algorithm. Post this, we predict 
buckets and assign these buckets to the SizePredict variable. We then look at 
the confusion matrix between the actual and the predicted values to see where the 
predicted bucket belongs. We can see that 0 bucket belongs to the L shirt size, 1 to S 
and 2 to M. We'll now map the buckets back to the t-shirt sizes and plot the scatter plot:

>>> c_map = {

       2: "M",

       1: "S",

       0: "L",

   }

>>> df['SizePredict'] = df['SizePredict'].map(c_map)

>>> df['SizePredict'][:10]

0    S

1    S

2    S

3    S

4    S

5    S

6    S

7    S

8    S

9    S

Name: SizePredict, dtype: object
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We'll now plot the scatter plot:

>>> fig, ax = plt.subplots()

>>> for size in ["S", "M", "L"]:

       color = d_color[size]

       df[df.SizePredict == size].plot(kind='scatter', x='Height',  
                                         y='Weight', label=size, ax=ax,  
                                         color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper left")

After the preceding code is executed we'll get the following output:

We can see from the plot that the k-means algorithm was able to bucket people into 
appropriate buckets where the shirt sizes can be used to identify a bucket as unique.
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The k-means clustering with countries
We have UN data on different countries of the world with regard to education of 
people to Gross Domestic Product. We'll use this data to bucket the countries based 
on their development. Here are the descriptions of the columns:

Here is a screenshot of the data:
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Lets see the data type of each column:

>>> df = pd.read_csv('./Data/UN.csv')

>>> # print the raw column information plus summary header

>>> print('----')

>>> # look at the types of each column explicitly

>>> [(col, type(df[col][0])) for col in df.columns] [(x, type(df[x][0]))  
   for x in df.columns] 

       [('country', str),

       ('region', str),

       ('tfr', numpy.float64),

       ('contraception', numpy.float64),

       ('educationMale', numpy.float64),

       ('educationFemale', numpy.float64),

       ('lifeMale', numpy.float64),

       ('lifeFemale', numpy.float64),

       ('infantMortality', numpy.float64),

       ('GDPperCapita', numpy.float64),

       ('economicActivityMale', numpy.float64),

       ('economicActivityFemale', numpy.float64),

       ('illiteracyMale', numpy.float64),

       ('illiteracyFemale', numpy.float64)]

Let's check the fill rate of the columns, which is basically the percentage of rows and 
columns that have values:

>>> print('Percentage of the values complete in the columns')

>>> s_col_fill = df.count(0)/df.shape[0] * 100

>>> s_col_fill

country                   100.000000

region                    100.000000

tfr                        95.169082

contraception              69.565217

educationMale              36.714976

educationFemale            36.714976

lifeMale                   94.685990

lifeFemale                 94.685990

infantMortality            97.101449
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GDPperCapita               95.169082

economicActivityMale       79.710145

economicActivityFemale     79.710145

illiteracyMale             77.294686

illiteracyFemale           77.294686

dtype: float64

We can see that the education column does not have a good fill rate followed by the 
contraception column.

The columns with a good fill rate are life expectancy of lifeMale and lifeFemale, 
infantMortality and GDPperCapita. With these columns, we'll remove only a few 
countries, whereas if we include other columns, we'll remove a lot of countries.

There should be a clustering influence based on the life expectancy of males and 
females and the infant mortality rate based on the GDP of a country. This is because 
a higher GDP is better for the economy of the country, and a country with a good 
economy is presumed to have a good life expectancy and low infant mortality rate:

>>> df = df[['lifeMale', 'lifeFemale', 'infantMortality',  
              'GDPperCapita']]

>>> df = df.dropna(how='any')

Determining the number of clusters
Before applying the k-means algorithm, we would like to estimate the ideal number 
of clusters to the group called countries:

>>> K = range(1,10)

>>> # scipy.cluster.vq.kmeans

>>> KM = [kmeans(df.values,k) for k in K] # apply kmeans 1 to 10

>>> KM[:3]

[(array([[   63.52606383,    68.30904255,    44.30851064,   
          5890.59574468]]),    6534.9809626620172),   
(array([[  6.12227273e+01,   6.57779221e+01,   5.23831169e+01,   
          2.19273377e+03],    [  7.39588235e+01,   7.97735294e+01,   
  7.73529412e+00,    2.26397353e+04]]),    2707.2294867471232),  
(array([[  7.43050000e+01,   8.02350000e+01,   6.60000000e+00, 
          2.76644500e+04],    [  6.02309353e+01,   6.46640288e+01,   
  5.61007194e+01,    1.47384173e+03],     [  7.18862069e+01,   
  7.75551724e+01,   1.37931034e+01,    1.20441034e+04]]), 
  1874.0284870915732)]
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In the preceding code, we define a number of clusters from 1 to 10. Using the SciPy 
library's k-mean function, we compute centroids and the distortion between these 
centroids and observed values associated to the distortion that is computed between 
the centroid and the observed values of the cluster:

>>> euclidean_centroid = [cdist(df.values, centroid, 'euclidean') for  
      (centroid,var) in k_clusters]

>>> print '-----with 1 cluster------'

>>> print euclidean_centroid[0][:5]

-----with 1 cluster------

[[ 3044.71049474]

 [ 5027.61602297]

 [ 4359.59802141]

 [ 5536.23755972]

 [ 2164.54439528]]

>>> print '-----with 2 cluster------'

>>> print euclidean_centroid[1][:5]

-----with 2 cluster------

[[ 19792.32574968    663.5918709 ]

 [ 21776.75039319   1329.9326654 ]

 [ 21108.76955936    661.83208396]

 [ 22285.08003662   1839.28608809]

 [ 14584.74322443   5862.36131557]]

We take the centroids in each of the group of clusters and compute the euclidean 
distance from all the points in space to the centroids of the cluster using the dist 
function in SciPy.

You can see that the first cluster has only one column since it has only one cluster in 
it, and the second cluster has two columns as it has two clusters in it:

>>> dist = [np.min(D,axis=1) for D in D_k]

>>> print '-----with 1st cluster------'

>>> print dist[0][:5]

>>> print '-----with 2nd cluster------'

>>> print dist[1][:5]

-----with 1st cluster------
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[ 3044.71049474  

5027.61602297  

4359.59802141  

5536.23755972  

2164.54439528]

-----with 2nd cluster------

[  663.5918709   

1329.9326654    

661.83208396  

1839.28608809  

5862.36131557]

As we have the distance of each of the observed points from the different centroids, 
we can find the minimum distance of each observed point from the closest centroid.

You can see in the preceding code that the first and second clusters contain a single 
value, which is the distance from the centroid.

We'll now compute the average of the sum of the square of the distance:

>>> avgWithinSS = [sum(d)/df.values.shape[0] for d in dist]

>>> avgWithinSS

[6534.9809626620136,

 2790.2101193300132,

 1890.9166153060164,

 1438.7793254224125,

 1120.3902815703975,

 903.15438285732,

 740.45942949866003,

 645.91915410445336,

 604.37878538964185]

Each of the values in the array is the average sum of the square that has one cluster 
to a group of ten clusters.
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We'll now plot the elbow curve (this is the point at which a curve starts flattening 
out) for the k-means clustering using this data:

>>> #Choosing the cluster number

>>> kIdx = 2

>>> # plot elbow curve

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> ax.plot(K, avgWithinSS, 'b*-')

>>> ax.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=12, 

      markeredgewidth=2, markeredgecolor='r', markerfacecolor='None')

>>> plt.grid(True)

>>> plt.xlabel('Number of clusters')

>>> plt.ylabel('Average within-cluster sum of squares')

>>> tt = plt.title('Elbow for K-Means clustering')
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After the preceding code is executed we'll get the following output:

By looking at the curve, we can see that there is big jump from one cluster to the 
other, and then a significant jump from cluster 2 to cluster 3. There is a slight jump 
from cluster 3 to cluster 4, and then the jump to the subsequent number of clusters is 
very small. Let's fix the elbow point at cluster 3 and create three clusters to segment 
the countries.

Clustering the countries
We'll now apply the k-means algorithm to cluster the countries together:

>>> km = KMeans(3, init='k-means++', random_state = 3425) # initialize

>>> km.fit(df.values)

>>> df['countrySegment'] = km.predict(df.values)

>>> df[:5]



Applying Segmentation with k-means Clustering

[ 206 ]

After the preceding code is executed we'll get the following output:

Let's find the average GDP per capita for each country segment:

>>> df.groupby('countrySegment').GDPperCapita.mean()

>>> countrySegment

0    13800.586207

1     1624.538462

2    29681.625000

Name: GDPperCapita, dtype: float64

We can see that cluster 2 has the highest average GDP per capita and we can assume 
that this includes developed countries. Cluster 0 has the second highest GDP, we 
can assume this includes developing countries, and finally, cluster 1 has a very low 
average GDP per capita. We can assume this includes developed nations:

>>> clust_map = {

       0:'Developing',

       1:'Under Developed',

       2:'Developed'

   }

>>> df.countrySegment = df.countrySegment.map(clust_map)

>>> df[:10]
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After the preceding code is executed we'll get the following output:

Let's see the GDP versus infant mortality rate of the countries for each of the clusters:

>>> d_color = {

       'Developing':'y',

       'Under Developed':'r',

       'Developed':'g'

   }

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

       color = d_color[clust]

       df[df.countrySegment == clust].plot(kind='scatter',  
            x='GDPperCapita', y='infantMortality', label=clust,  
            ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="upper right")
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After the preceding code is executed we'll get the following output:

We can see from the preceding graph that when the GDP is low, the 
infantMortality rate is really high, and as the GDP increases, the 
InfantMortality rate decreases.

We can also clearly see that the countries in green are the underdeveloped nations, 
the one in dark blue are the developing nations, and the ones in red are the 
developed nations.

Let's see the life expectancy of males with respect to the GDP:

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

       color = d_color[clust]

       df[df.countrySegment == clust].plot(kind='scatter',  
                    x='GDPperCapita', y='lifeMale', label=clust,  
                    ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="lower right")



Chapter 10

[ 209 ]

After the preceding code is executed we'll get the following output:

We can see that the life expectancy of males also increases with the GDP for the 
different kinds of nations.

Now, for the life expectancy of females with regard to the GDP, we'll use this code:

>>> fig, ax = plt.subplots()

>>> for clust in clust_map.values():

       color = d_color[clust]

       df[df.countrySegment == clust].plot(kind='scatter',  
                                 x='GDPperCapita', y='lifeFemale',  
                                 label=clust, ax=ax, color=color)

>>> handles, labels = ax.get_legend_handles_labels()

>>> _ = ax.legend(handles, labels, loc="lower right")
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After the preceding code is executed we'll get the following output:

There is a similar trend for females too.

Summary
In this chapter, you were made to understand the concept of clustering and learned 
an unsupervised learning technique called the k-means technique. You also learned 
how to determine the number of clusters before segmenting data using k-means, and 
finally, you saw the results of this using the k-means clustering.

In the next chapter, you'll learn how to explore unstructured data and use text 
mining techniques on unstructured data.
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Analyzing Unstructured Data 
with Text Mining

There is a lot of unstructured data out there, such as news articles, customer 
feedbacks, Twitter tweets and so on, that contains information and needs to be 
analyzed. Text mining is a data mining technique that helps us to perform an 
analysis of this unstructured data.

In this chapter, we'll learn the following:

• Preprocessing data
• Plotting a wordcloud from data
• Word and sentence tokenization
• Tagging parts of speech
• Stemming and lemmatization
• Applying Stanford Named Entity Recognizer

Preprocessing data
We'll use the reviews of Mad Max: Fury Road from the online portals of BBC, Forbes, 
Guardian, and Movie Pilot.

We'll extensively use the Natural Language Toolkit (NLTK) package of Python 
in this chapter for text mining. You can install it with the help of instructions at 
http://www.nltk.org/install.html

http://www.nltk.org/install.html 
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We'll be performing the following actions on data:

• Removing punctuation
• Removing numbers
• Converting text to lowercase
• Removing the most common words in the English language, called stop 

words, such as be, the, on, and so on.

Let's start by loading the data first:

>>> data = {}

>>> #data['bbc'] =

>>> data['bbc'] = open('./Data/madmax_review/bbc.txt','r').read()

>>> data['forbes'] =  
               open('./Data/madmax_review/forbes.txt','r').read()

>>> data['guardian'] =  
               open('./Data/madmax_review/guardian.txt','r').read()

>>> data['moviepilot'] =  
               open('./Data/madmax_review/moviepilot.txt','r').read()

>>> # We'll convert the text to lower case

>>> #Conversion to lower case

>>> for k in data.keys():

>>>    data[k] = data[k].lower()

>>> print data['bbc'][:800]
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Now, we'll remove the punctuation from the text as we'll be analyzing the frequency 
of each word:

>>> #Removing punctuation

>>> for k in data.keys():

       data[k] = re.sub(r'[-./?!,":;()\']',' ',data[k]) 

>>> print data['bbc'][:800]

We'll remove the numbers from the text:

>>> #Removing number

>>> for k in data.keys():

       data[k] = re.sub('[-|0-9]',' ',data[k])

    

>>> print data['bbc'][:800]
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We'll need to download and install the stopwords package for nltk, which can be 
done using the following command:

>>> import nltk

>>> nltk.download_gui()

You'll get the following GUI from which you can install the stopwords:

Post this, we'll remove commonly occurring stop words, such as ours, yours, that, 
this, and so on:

>>> #Removing stopwords

>>> for k in data.keys():

       data[k] = data[k].split()

>>> stopwords_list = stopwords.words('english')

>>> stopwords_list = stopwords_list +  
                      ['mad','max','film','fury','miller','road']

>>> for k in data.keys():
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       data[k] = [ w for w in data[k] if not w in stopwords_list ]

    

>>> print data['bbc'][:80]

['creator', 'blockbuster', 'franchise', 'decides', 'dust',  
'decades', 'later', 'results', 'well', 'results', 'phantom',  
'menace', 'prometheus', 'indiana', 'jones', 'kingdom', 'crystal',  
'skull', 'legacy', 'tarnishing', 'messes', 'fans', 'try',  
'forget', 'first', 'made', 'george', 'years', 'belated', 'reboot',  
'missing', 'original', 'star', 'mel', 'gibson', 'director',  
'spent', 'intervening', 'years', 'children', 'fare', 'happy',  
'feet', 'babe', 'pig', 'city', 'might', 'assume', 'would', 'join',  
'phantom', 'menace', 'scrapheap', 'reserved', 'unloved',  
'revivals', 'yet', 'somehow', 'explosive', 'new', 'barrage',  
'action', 'eccentricity', 'isn', 'faithful', 'continuation',  
'series', 'also', 'exhilarating', 'high', 'point', 'made',  
'trilogy', 'three', 'decades', 'ago', 'seems', 'revving',  
'benefit', 'uninitiated']

Creating a wordcloud
A worldcloud is a collage of words and those words that are bigger in size have a 
high frequency.

You can download wordcloud with the following command if you use Ubuntu:

$ pip install git+git://github.com/amueller/word_cloud.git

You can follow the instructions to do this by referring to https://github.com/
amueller/word_cloud.

https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
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Let's plot the wordcloud for the BBC by using the following code:

>>> wordcloud = WordCloud(width = 1000, height = 500) 
.generate(' '.join(data['bbc']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

From the preceding wordcloud, we can make out that there are mentions about 
the long duration between the 80s Mad Max and the current Mad Max. The article 
talks about Mel Gibson, the cars, and the villain Immortan Joe as these are the most 
frequently occurring keywords. There is also an emphasis on different aspects of the 
movie given by the one keyword.
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Now, let's see how the wordcloud looks like for Forbes by using this code:

>>> wordcloud = WordCloud(width = 1000, height = 500) 
                           .generate(' '.join(data['forbes']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

Forbes talks more about the female characters.
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This is what the wordcloud for The Guardian looks like:

>>> wordcloud = WordCloud(width = 1000, height = 500) 
                           .generate(' '.join(data['guardian']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()
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The Guardian lays an emphasis on women and water. If you have seen the movie, 
then you'll understand that The Guardian emphasizes the female characters and the 
lack of water in their wasteland.

Finally, this is what the word cloud looks like for moviepilot:

>>> wordcloud = WordCloud(width = 1000, height = 500) 
                           .generate(' '.join(data['moviepilot']))

>>> plt.figure(figsize=(15,8))

>>> plt.imshow(wordcloud)

>>> plt.axis("off")

>>> plt.show()

The http://moviepilot.com/ emphasizes the character of Immortan Joe, the 
characters in general, and the war boys shown in the film.

http://moviepilot.com/
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Word and sentence tokenization
We have dealt with word tokenization previously, but we can perform this using 
NLTK as well as sentence tokenization, which is quite tricky, as the English language 
has period symbols for abbreviations and other purposes. Thankfully, the sentence 
tokenizer is a instance of PunktSentenceTokenizer from the tokenize.punkt 
module of nltk, which helps in tokenizing sentences.

Let's look at word tokenization using this code:

>>> #Loading the forbes data

>>> data = open('./Data/madmax_review/forbes.txt','r').read()

>>> word_data = nltk.word_tokenize(data)

>>> word_data[:15]

['Pundits',

 'and',

 'critics',

 'like',

 'to',

 'blame',

 'the',

 'twin',

 'successes',

 'of',

 'Jaws',

 'and',

 'Star',

 'Wars',

 'for']
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Now, let's perform the sentence tokenization of the Forbes article:

>>> sent_tokenize(data)[:5]

['Pundits and critics like to blame the twin successes of Jaws and  
Star Wars for turning Hollywood into something of a blockbuster  
factory.', "We can debate the merits of said accusation, but for  
me it comes down to one simple factor: If every would-be  
blockbuster, or even most would-be blockbusters were as good as  
Jaws and/or Star Wars, I imagine most of us wouldn't be  
complaining nearly as much.", "That brings us to George Miller's  
Mad Max: Fury Road.", "It is a revamp/reboot/sequel for a 30-year  
old franchise, directed by the original helmer who hasn't been  
culturally relevant in decades, featuring a new and somewhat  
flavor-of-the-month actor, and seemingly only existing because of  
the fact that the property is vaguely known and thus has a token  
amount of built-in awareness.", "If  you think that sounds like  
the kind of thing I complain about rather regularly, you'd be  
correct."]

You can see that each of the sentences is an element of the list after sentence 
tokenization has been performed.

Parts of speech tagging
Parts of speech tagging is one of the important tasks of text analysis. It helps tag each 
word based on the context of a sentence or the role that a word plays in a sentence.

Let's see how to perform part of speech tagging using nltk:

>>> pos_word_data = nltk.pos_tag(word_data)

>>> pos_word_data[ : 10]

[('Pundits', 'NNS'),

 ('and', 'CC'),

 ('critics', 'NNS'),

 ('like', 'IN'),

 ('to', 'TO'),

 ('blame', 'VB'),

 ('the', 'DT'),

 ('twin', 'NN'),

 ('successes', 'NNS'),

 ('of', 'IN')]
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You can see tags, such as NNS, CC, IN , TO, DT, and NN. Let's see what they mean using 
this code:

>>> nltk.help.upenn_tagset('NNS')

NNS: noun, common, plural  
    undergraduates scotches bric-a-brac products bodyguards facets  
    coasts divestitures storehouses designs clubs fragrances  
    averages subjectivists apprehensions muses factory-jobs

>>> nltk.help.upenn_tagset('NN')

NN: noun, common, singular or mass  
    common-carrier cabbage knuckle-duster Casino afghan shed  
    thermostat investment slide humour falloff slick wind hyena  
    override subhumanity machinist

>>> nltk.help.upenn_tagset('IN')

IN: preposition or conjunction, subordinating  
    astride among uppon whether out inside pro despite on by  
    throughout below within for towards near behind atop around if  
    like until below next into if beside

>>> nltk.help.upenn_tagset('TO')

TO: "to" as preposition or infinitive marker

    to

>>> nltk.help.upenn_tagset('DT')

DT: determiner 
    all an another any both del each either every half la many  
    much nary neither no some such that the them these this those

>>> nltk.help.upenn_tagset('CC')

CC: conjunction, coordinating 
    & 'n and both but either et for less minus neither nor or plus  
    so therefore times v. versus vs. whether yet
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You can get more information about the tags used in the preceding code at https://
www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

You can see words used in the preceding code are tagged well. This tagging can help 
us create heuristics over data and then extract information out of it. For example, we 
can take out all the nouns in our article and analyze the theme of the article.

Stemming and lemmatization
Text documents can contain words in different forms, such as play, playing, and 
played. They are similar and they have a common root.

Stemming and lemmatization are techniques that are used to find these common 
roots. Finding the roots will help us count, play, playing, and played as a single 
entity as all the words talk about play.

Stemming is more of a crude form of arriving at the root of a word; so, in the case 
of the preceding example, playing would be reduced to play. Lemmatization brings 
into context words, such as worse and bad, that can have a common bad root.

Stemming
Stemming is a process of reducing a word to its root form. The root form is not a 
word by itself, but words can be formed by adding the right suffix to it.

If you take fish, fishes, and fishing, they all can be stemmed to fishing. Also,  
study, studying, and studies can be stemmed to study, which is not a part of  
the English language.

There are various types of stemming algorithms, such as Porter, Lancaster, Snowball, 
and so on.

Porter is the most commonly used stemmer. It is also one of the gentlest stemmers 
and is computationally intensive with regard to algorithms.

The Snowball algorithm is regarded as an improvement over Porter. Porter himself, 
in fact, admits that the Snowball algorithm is better than his algorithm.

Lancaster is a more aggressive stemming algorithm. Porter and Snowball stemming 
is understandable by readers, but Lancaster isn't, as it makes words more obscure. 
Lancaster is considered to be the fastest algorithm among the three and it will work 
very well with a large set of words, but if you are looking for something more 
distinctive, then Lancaster is not for you.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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Let's try out the Porter Stemming Algorithm using this code:

>>> from nltk.stem.porter import PorterStemmer

>>> porter_stemmer = PorterStemmer()

>>> for w in word_data[:20]:

       print "Actual: %s  Stem: %s"  % (w,porter_stemmer.stem(w))

Actual: Pundits  Stem: Pundit

Actual: and  Stem: and

Actual: critics  Stem: critic

Actual: like  Stem: like

Actual: to  Stem: to

Actual: blame  Stem: blame

Actual: the  Stem: the

Actual: twin  Stem: twin

Actual: successes  Stem: success

Actual: of  Stem: of

Actual: Jaws  Stem: Jaw

Actual: and  Stem: and

Actual: Star  Stem: Star

Actual: Wars  Stem: War

Actual: for  Stem: for

Actual: turning  Stem: turn

Actual: Hollywood  Stem: Hollywood

Actual: into  Stem: into

Actual: something  Stem: someth

Actual: of  Stem: of

Let's try out the Lancaster Algorithm using this code:

>>> from nltk.stem.lancaster import LancasterStemmer

>>> lancaster_stemmer = LancasterStemmer()

>>> for w in word_data[:20]:
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       print "Actual: %s  Stem: %s"  % (w,lancaster_stemmer.stem(w))

Actual: Pundits  Stem: pundit

Actual: and  Stem: and

Actual: critics  Stem: crit

Actual: like  Stem: lik

Actual: to  Stem: to

Actual: blame  Stem: blam

Actual: the  Stem: the

Actual: twin  Stem: twin

Actual: successes  Stem: success

Actual: of  Stem: of

Actual: Jaws  Stem: jaw

Actual: and  Stem: and

Actual: Star  Stem: star

Actual: Wars  Stem: war

Actual: for  Stem: for

Actual: turning  Stem: turn

Actual: Hollywood  Stem: hollywood

Actual: into  Stem: into

Actual: something  Stem: someth

Actual: of  Stem: of

Now, let's try out the Snowball Algorithm using this code:

>>> from nltk.stem.snowball import SnowballStemmer

>>> snowball_stemmer = SnowballStemmer("english")

>>> for w in word_data[:20]:

       print "Actual: %s  Stem: %s"  % (w,snowball_stemmer.stem(w))

Actual: Pundits  Stem: pundit

Actual: and  Stem: and

Actual: critics  Stem: critic

Actual: like  Stem: like

Actual: to  Stem: to
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Actual: blame  Stem: blame

Actual: the  Stem: the

Actual: twin  Stem: twin

Actual: successes  Stem: success

Actual: of  Stem: of

Actual: Jaws  Stem: jaw

Actual: and  Stem: and

Actual: Star  Stem: star

Actual: Wars  Stem: war

Actual: for  Stem: for

Actual: turning  Stem: turn

Actual: Hollywood  Stem: hollywood

Actual: into  Stem: into

Actual: something  Stem: someth

Actual: of  Stem: of

Lemmatization
Lemmatization is similar to stemming but unlike stemming, it brings in a context of 
the word.

A lemmatization-based algorithm will match a train to the word locomotive, but a 
stemming algorithm won't be able to do this. A lemmatization algorithm makes use 
of a dictionary to link up words.

The WordNet is a lexical database for English by Princeton, and we'll use their 
lemmatization techniques:

Actual: Pundits  Lemma: Pundits

Actual: and  Lemma: and

Actual: critics  Lemma: critic

Actual: like  Lemma: like

Actual: to  Lemma: to

Actual: blame  Lemma: blame

Actual: the  Lemma: the

Actual: twin  Lemma: twin



Chapter 11

[ 227 ]

Actual: successes  Lemma: success

Actual: of  Lemma: of

Actual: Jaws  Lemma: Jaws

Actual: and  Lemma: and

Actual: Star  Lemma: Star

Actual: Wars  Lemma: Wars

Actual: for  Lemma: for

Actual: turning  Lemma: turning

Actual: Hollywood  Lemma: Hollywood

Actual: into  Lemma: into

Actual: something  Lemma: something

Actual: of  Lemma: of

Actual: a  Lemma: a

Actual: blockbuster  Lemma: blockbuster

Actual: factory  Lemma: factory

Actual: .  Lemma: .

Actual: We  Lemma: We

Actual: can  Lemma: can

Actual: debate  Lemma: debate

Actual: the  Lemma: the

Actual: merits  Lemma: merit

Actual: of  Lemma: of

The Stanford Named Entity Recognizer
The Named Entity Recognizer is a task that classifies the elements of a sentence into 
categories, such as person, organization, location, and so on. Stanford Named Entity 
Recognizer is one of the most popular out there and can be found at http://nlp.
stanford.edu/.

The Stanford Named Entity Recognizer can be downloaded at http://nlp.
stanford.edu/software/stanford-ner-2014-06-16.zip.

http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip
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The following code shows the Stanford Named Entity Recognizer in action:

>>> from nltk.tag.stanford import NERTagger.

>>> st = NERTagger('./lib/stanford-ner 
         /classifiers/english.all.3class.distsim.crf.ser.gz',  
         './lib/stanford-ner/stanford-ner.jar')

>>> st.tag('''Barrack Obama is the president of the United States of  
           America . His father is from Kenya and Mother from United  
           States of America. 

           He has two daughters with his wife. He has strong  
           opposition in Congress due to Republicans'''.split()) 

[[(u'Barrack', u'PERSON'),

  (u'Obama', u'PERSON'),

  (u'is', u'O'),

  (u'the', u'O'),

  (u'president', u'O'),

  (u'of', u'O'),

  (u'the', u'O'),

  (u'United', u'LOCATION'),

  (u'States', u'LOCATION'),

  (u'of', u'LOCATION'),

  (u'America', u'LOCATION'),

  (u'.', u'O')],

 [(u'His', u'O'),

  (u'father', u'O'),

  (u'is', u'O'),

  (u'from', u'O'),

  (u'Kenya', u'LOCATION'),

  (u'and', u'O'),

  (u'Mother', u'O'),

  (u'from', u'O'),

  (u'United', u'LOCATION'),

  (u'States', u'LOCATION'),

  (u'of', u'O'),
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  (u'America.', u'O'),

  (u'He', u'O'),

  (u'has', u'O'),

  (u'two', u'O'),

  (u'daughters', u'O'),

  (u'with', u'O'),

  (u'his', u'O'),

  (u'wife.', u'O'),

  (u'He', u'O'),

  (u'has', u'O'),

  (u'strong', u'O'),

  (u'opposition', u'O'),

  (u'in', u'O'),

  (u'Congress', u'ORGANIZATION'),

  (u'due', u'O'),

  (u'to', u'O'),

  (u'Republicans', u'O')]]

You can see that the Stanford Named Entity Tagger does a pretty good job of tagging 
a PERSON, LOCATION, and ORGANIZATION.

Performing sentiment analysis on world 
leaders using Twitter
Before we start analyzing tweets, we'll need to install the Twython package of 
Python, which helps interact with the Twitter API to get tweets from Twitter.  
This can be downloaded from https://github.com/ryanmcgrath/twython.

https://github.com/ryanmcgrath/twython
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Also, you need to get the consumer key and consumer secret key from  
https://apps.twitter.com/app/new.

https://apps.twitter.com/app/new
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Once you have details about your app, you'll get the consumer key and consumer 
secret key:

After this, go to the Key and Access Tokens tab to generate your access token:
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Once you have the required keys, we'll add the details to the following code:

#Please provide your keys here

TWITTER_APP_KEY = 'XXXXXXXXXXXXXXXXXXXXX' 

TWITTER_APP_KEY_SECRET = 'XXXXXXXXXXXXXXXXXXXXX'  

TWITTER_ACCESS_TOKEN = 'XXXXXXXXXXXXXXXXXXXXX' TWITTER_ACCESS_TOKEN_
SECRET = 'XXXXXXXXXXXXXXXXXXXXX' 

t = Twython(app_key=TWITTER_APP_KEY, 

           app_secret=TWITTER_APP_KEY_SECRET, 

           oauth_token=TWITTER_ACCESS_TOKEN, 

           oauth_token_secret=TWITTER_ACCESS_TOKEN_SECRET)

def get_tweets(twython_object, query, n):

   count = 0

   result_generator = twython_object.cursor(twython_object.search,  
                                              q = query)

   result_set = []

   for r in result_generator:

       result_set.append(r['text'])

       count += 1

       if count == n: break

   

   return result_set

Now, we have access to the tweets and can fetch them.

We'll analyze the sentiment of tweets from Obama, Putin, Modi, Xi Jin Ping, and 
David Cameron. Here are a few assumptions that we'll be making for our analysis:

1. The tweets are in English.
2. We set a limit of a maximum of 500 tweets.

You can load the tweets from the following JSON file:

>>> with open('./Data/politician_tweets.json', 'w') as fp:

>>> tweets=json.load(fp)
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You can fetch fresh tweets of these politicians:

>>> tweets = {}

>>> max_tweets = 500

>>> tweets['obama'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())  
                   for tweet in get_tweets(t,'#obama', max_tweets )]

>>> tweets['putin'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())  
                   for tweet in get_tweets(t,'#putin', max_tweets )]

>>> tweets['modi'] = [re.sub(r'[-.#/?!,":;()\']',' ',tweet.lower())  
                   for tweet in get_tweets(t,'#modi', max_tweets )]

>>> tweets['xijinping'] = [re.sub(r'[-.#/?!,":;()\']','  
                   ',tweet.lower()) for tweet in  
                   get_tweets(t,'#xijinping', max_tweets )]

>>> tweets['davidcameron'] = [re.sub(r'[-.#/?!,":;()\']','  
                   ',tweet.lower()) for tweet in  
                   get_tweets(t,'#davidcameron', max_tweets )]

Now, let's define a function to score the sentiments of the tweets. We have a 
positive and negative word list from Hu and Liu's lexicon at http://www.cs.uic.
edu/~liub/FBS/sentiment-analysis.html.

This will be used to compare the tweets and give them a score. Every positive word 
that matches will be given a +1 point and every negative score that is matched will 
be given a -1 point:

>>> positive_words = open('./Data/positive-words.txt') 
                     .read().split('\n')

>>> negative_words = open('./Data/negative-words.txt') 
                     .read().split('\n')

>>> def sentiment_score(text, pos_list, neg_list):

      positive_score = 0

      negative_score = 0

   

      for w in text.split(' '):

          if w in pos_list: positive_score+=1

          if w in neg_list: negative_score+=1

           

      return positive_score - negative_score

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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Let's now score the sentiments of each tweet in the list:

>>> tweets_sentiment = {}

>>> tweets_sentiment['obama'] = [  
                 sentiment_score(tweet,positive_words,negative_words)  
                 for tweet in  tweets['obama'] ]

>>> tweets_sentiment['putin'] = [  
                 sentiment_score(tweet,positive_words,negative_words)  
                 for tweet in tweets['putin'] ]

>>> tweets_sentiment['modi'] = [  
                 sentiment_score(tweet,positive_words,negative_words)  
                 for tweet in tweets['modi'] ]

>>> tweets_sentiment['xijinping'] = [  
                 sentiment_score(tweet,positive_words,negative_words)  
                 for tweet in tweets['xijinping'] ]

>>> tweets_sentiment['davidcameron'] = [  
                 sentiment_score(tweet,positive_words,negative_words)  
                 for tweet in tweets['davidcameron'] ]

We have defined dict and called tweets_sentiment where we have scored the 
sentiments of each of the tweets for the politicians.

Now, as we have the sentiment score for each of the politicians, we'll now analyze 
the sentiments for each politician.

Let's see how people feel about Obama:

>>> obama = plt.hist(tweets_sentiment['obama'], 5,  
                    facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])
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After the preceding code is executed we'll get the following output:

We mostly see neutral tweets about Obama.

Let's see the tweets for Putin:

>>> putin = plt.hist(tweets_sentiment['putin'], 5,  
                    facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:
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Most tweets are neutral with a slight negativity.

Let's see the tweets for Modi:

>>> modi = plt.hist(tweets_sentiment['modi'], 5,  
                   facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:

Most tweets are neutral for Modi with a slight positivity.

Let's see the tweets for Xi Jin Ping:

>>> xijinping = plt.hist(tweets_sentiment['xijinping'], 5,  
                        facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])



Chapter 11

[ 237 ]

After the preceding code is executed we'll get the following output:

So, the tweets for Xi Jin Ping are mostly negative:

>>> davidcameron = plt.hist(tweets_sentiment['davidcameron'], 5,  
                             facecolor='green', alpha=0.5)

>>> plt.xlabel('Sentiment Score')

>>> _=plt.xlim([-4,4])

After the preceding code is executed we'll get the following output:

The tweets for David Cameron are more toward positive in nature.



Analyzing Unstructured Data with Text Mining

[ 238 ]

Summary
In this chapter, you learned how to clean unstructured text data and then plotted a 
wordcloud out of this data. You learned how to tokenize words and sentences using 
NLTK. You learned how to perform parts of speech tagging and also the concepts 
of stemming and lemmatization. You were introduced to Named Entity Recognition 
and learned how to apply it using Stanford NER. Finally, you learned how to fetch 
tweets using the Twitter API and then perform sentiment analysis on it.

In the next chapter, you'll learn how to use Python in the world of big data.
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Leveraging Python in the 
World of Big Data

We are generating more and more data day by day. We have generated more data 
this century than in the previous century and we are currently only 15 years into this 
century. big data is the new buzz word and everyone is talking about it. It brings 
new possibilities. Google Translate is able to translate any language, thanks to big 
data. We are able to decode our human genome due to it. We can predict the failure 
of a turbine and do the required maintenance on it because of big data.

There are three Vs of big data and they are defined as follows:

• Volume: This defines the size of the data. Facebook has petabytes of data on 
its users.

• Velocity: This is the rate at which data is generated.
• Variety: Data is not only in a tabular form. We can get data from text, images, 

and sound. Data comes in the form of JSON, XML, and other types as well.
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Let's take a look at the following screenshot:

In this chapter, we'll learn how to use Python in the world of big data by doing  
the following:

• Understanding Hadoop
• Writing a MapReduce program in Python
• Using a Hadoop library
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What is Hadoop?
According to the Apache Hadoop's website, Hadoop stores data in a distributed 
manner and helps in computing it. It has been designed to scale easily to any number 
of machines with the help of computing power and storage. Hadoop was created 
by Doug Cutting and Mike Cafarella in the year 2005. It was named after Doug 
Cutting's son's toy elephant.

The programming model
Hadoop is a programming paradigm that takes a large distributed computation 
as a sequence of distributed operations on large datasets of key-value pairs. The 
MapReduce framework makes use of a cluster of machines and executes MapReduce 
jobs across these machines. There are two phases in MapReduce—a mapping phase 
and a reduce phase. The input data to MapReduce is key value pairs of data.

During the mapping phase, Hadoop splits the data into smaller pieces, which is  
then fed to the mappers. These mappers are distributed across machines within  
the cluster. Each mapper takes the input key-value pairs and generates intermediate 
key-value pairs by invoking a user-defined function within them.

After the mapper phase, Hadoop sorts the intermediate dataset by key and  
generates a set of key-value tuples so that all the values belonging to a particular  
key are together.
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During the reduce phase, the reducer takes in the intermediate key-value pair and 
invokes a user-defined function, which then generates a output key-value pair. 
Hadoop distributes the reducers across the machines and assigns a set of key-value 
pairs to each of the reducers.

Data processing through MapReduce

The MapReduce architecture
MapReduce has a master-slave architecture, where the master is the JobTracker and 
TaskTracker is the slave. When a MapReduce program is submitted to Hadoop, the 
JobTracker assigns the mapping/reducing task to the TaskTracker and it takes of the 
task over executing the program.

The Hadoop DFS
Hadoop's distributed filesystem has been designed to store very large datasets in 
a distributed manner. It has been inspired by the Google File system, which is a 
proprietary distributed filesystem designed by Google. The data in HDFS is stored in 
a sequence of blocks, and all blocks are of the same size except for the last block. The 
block sizes are configurable in Hadoop.
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Hadoop's DFS architecture
It also has a master/slave architecture where NameNode is the master machine 
and DataNode is the slave machine. The actual data is stored in the data node. The 
NameNode keeps a tab on where certain kinds of data is stored and whether it has 
the required replication. It also helps in managing a filesystem by creating, deleting, 
and moving directories and files in the filesystem.

Python MapReduce
Hadoop can be downloaded and installed from https://hadoop.apache.org/. 
We'll be using the Hadoop streaming API to execute our Python MapReduce 
program in Hadoop. The Hadoop Streaming API helps in using any program that 
has a standard input and output as a MapReduce program.

We'll be writing three MapReduce programs using Python, they are as follows:

• A basic word count
• Getting the sentiment Score of each review
• Getting the overall sentiment score from all the reviews

The basic word count
We'll start with the word count MapReduce. Save the following code in a  
word_mapper.py file:

import sys

for l in sys.stdin:

    # Trailing and Leading white space is removed

    l = l.strip()

    # words in the line is split

    word_tokens = l.split()

  # Key Value pair is outputted

  for w in word_tokens:

    print '%s\t%s' % (w, 1)

In the preceding mapper code, each line of the file is stripped of the leading and 
trailing white spaces. The line is then divided into tokens of words and then these 
tokens of words are outputted as a key value pair of 1.

https://hadoop.apache.org/
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Save the following code in a word_reducer.py file:

from operator import itemgetter

import sys

current_word_token = None

counter = 0

word = None

# STDIN Input

for l in sys.stdin:

  # Trailing and Leading white space is removed

  l = l.strip()

  # input from the mapper is parsed

  word_token, counter = l.split('\t', 1)

  # count is converted to int

  try:

    counter = int(counter)

    except ValueError:

      # if count is not a number then ignore the line

      continue

  #Since Hadoop sorts the mapper output by key, the following

  # if else statement works

  if current_word_token == word_token:

    current_counter += counter

  else:

    if current_word_token:

      print '%s\t%s' % (current_word_token, current_counter)

      current_counter = counter

      current_word_token = word_token

# The last word is outputed
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if current_word_token == word_token:

  print '%s\t%s' % (current_word_token, current_counter)

In the preceding code, we use the current_word_token parameter to keep track 
of the current word that is being counted. In the for loop, we use the word_token 
parameter and a counter to get the value out of the key-value pair. We then  
convert the counter to an int type.

In the if/else statement, if the word_token value is same as the previous instance, 
which is current_word_token, then we keep counting else statement's value. If it's 
a new word that has come as the output, then we output the word and its count. The 
last if statement is to output the last word.

We can check out if the mapper is working fine by using the following command:

$ echo 'dolly dolly max max jack tim max' | ./BigData/word_mapper.py

The output of the preceding command is shown as follows:

dolly1

dolly1

max1

max1

jack1

tim1

max1

Now, we can check if the reducer is also working fine by piping the reducer to the 
sorted list of the mapper output:

$ echo "dolly dolly max max jack tim max" | ./BigData/word_mapper.py  
| sort -k1,1 | ./BigData/word_reducer.py

The output of the preceding command is shown as follows:

dolly2

jack1

max3

tim1

Now, let's try to apply the same code on a local file containing the summary  
of mobydick:

$ cat ./Data/mobydick_summary.txt | ./BigData/word_mapper.py | sort  
  -k1,1  | ./BigData/word_reducer.py
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The output of the preceding command is shown as follows:

a28

A2

abilities1

aboard3

about2

A sentiment score for each review
We had written a program in the preceding chapter to calculate the sentiment score. 
We'll extend this to write a MapReduce program to determine the sentiment score 
for each review. Write the following code in the senti_mapper.py file:

import sys

import re

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

  positive_score = 0

  negative_score = 0

  for w in text.split(''):

    if w in pos_list: positive_score+=1

    if w in neg_list: negative_score+=1

  return positive_score - negative_score

for l in sys.stdin:

  # Trailing and Leading white space is removed

  l = l.strip()

  #Convert to lower case

  l = l.lower()

  #Getting the sentiment score
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  score = sentiment_score(l, positive_words, negative_words)

  # Key Value pair is outputted

  print '%s\t%s' % (l, score)

In the preceding code, we used the sentiment_score function from the preceding 
chapter. For each line, we strip the leading and trailing white spaces and then get  
the sentiment score for a review. Finally, we output a sentence and the score.

For this program, we don't require a reducer as we can calculate the sentiment in the 
mapper itself and we just have to output the sentiment score.

Let's test whether the mapper is working fine locally with a file containing the 
reviews for Jurassic World:

$ cat ./Data/jurassic_world_review.txt | ./BigData/senti_mapper.py

there is plenty here to divert, but little to leave you enraptored.  
such is the fate of the sequel: bigger. louder. fewer teeth.0

if you limit your expectations for jurassic world to "more teeth," it  
will deliver on that promise. if you dare to hope for anything more- 
relatable characters, narrative coherence-you'll only set yourself up  
for disappointment.-1

there's a problem when the most complex character in a film is the  
dinosaur-2

not so much another bloated sequel as it is the fruition of dreams  
deferred in the previous films. too bad the genre dictates that those  
dreams are once again destined for disaster.-2

We can see that our program is able to calculate the sentiment score well.

The overall sentiment score
To calculate the overall sentiment score, we would require the reducer and we'll use 
the same mapper but with slight modifications.

Here is the mapper code that we'll use stored in the overall_senti_mapper.py file:

import sys

import hashlib

positive_words = open('./Data/positive-words.txt'). 
read().split('\n')
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negative_words = open('./Data/negative-words.txt'). 
read().split('\n')

def sentiment_score(text, pos_list, neg_list):

  positive_score = 0

  negative_score = 0

  for w in text.split(''):

    if w in pos_list: positive_score+=1

    if w in neg_list: negative_score+=1

  return positive_score - negative_score

for l in sys.stdin:

  # Trailing and Leading white space is removed

  l = l.strip()

  #Convert to lower case

  l = l.lower()

  #Getting the sentiment score

  score = sentiment_score(l, positive_words, negative_words)

  #Hashing the review to use it as a string

  hash_object = hashlib.md5(l)

  # Key Value pair is outputted

  print '%s\t%s' % (hash_object.hexdigest(), score)

This mapper code is similar to the previous mapper code, but here we use the MD5 
hash library to review and then to get the output as the key.

Here is the reducer code that is utilized to determine the overall sentiments score of 
the movie. Store the following code in the overall_senti_reducer.py file:

from operator import itemgetter

import sys

total_score = 0

# STDIN Input

for l in sys.stdin:

  # input from the mapper is parsed
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  key, score = l.split('\t', 1)

  # count is converted to int

  try:

    score = int(score)

  except ValueError:

    # if score is not a number then ignore the line

    continue

  #Updating the total score  

  total_score += score

print '%s' % (total_score,)

In the preceding code, we strip the value containing the score and we then keep 
adding to the total_score variable. Finally, we output the total_score variable, 
which shows the sentiment of the movie.

Let's locally test the overall sentiment on Jurassic World, which is a good movie, 
and then test the sentiment for the movie, Unfinished Business, which was critically 
deemed poor:

$ cat ./Data/jurassic_world_review.txt |  
    ./BigData/overall_senti_mapper.py | sort -k1,1 |  
    ./BigData/overall_senti_reducer.py

19

$ cat ./Data/unfinished_business_review.txt |  
    ./BigData/overall_senti_mapper.py | sort -k1,1 |  
    ./BigData/overall_senti_reducer.py

-8

We can see that our code is working well and we also see that Jurassic World has a 
more positive score, which means that people have liked it a lot. On the contrary, 
Unfinished Business has a negative value, which shows that people haven't liked  
it much.
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Deploying the MapReduce code on Hadoop
We'll create a directory for data on Moby Dick, Jurassic World, and Unfinished 
Business in the HDFS tmp folder:

$ Hadoop fs -mkdir /tmp/moby_dick

$ Hadoop fs -mkdir /tmp/jurassic_world

$ Hadoop fs -mkdir /tmp/unfinished_business

Let's check if the folders are created:

$ Hadoop fs -ls /tmp/

Found 6 items

drwxrwxrwx   - mapred Hadoop          0 2014-11-14 15:42 /tmp/ 
Hadoop-mapred

drwxr-xr-x   - samzer Hadoop          0 2015-06-18 18:31  
/tmp/jurassic_world

drwxrwxrwx   - hdfs   Hadoop          0 2014-11-14 15:41 /tmp/mapred

drwxr-xr-x   - samzer Hadoop          0 2015-06-18 18:31  
/tmp/moby_dick

drwxr-xr-x   - samzer Hadoop          0 2015-06-16 18:17  
/tmp/temp635459726

drwxr-xr-x   - samzer Hadoop          0 2015-06-18 18:31  
/tmp/unfinished_business

Once the folders are created, let's copy the data files to the respective folders.

$ Hadoop fs -copyFromLocal ./Data/mobydick_summary.txt /tmp/moby_dick

$ Hadoop fs -copyFromLocal ./Data/jurassic_world_review.txt  
/tmp/jurassic_world

$ Hadoop fs -copyFromLocal ./Data/unfinished_business_review.txt  
/tmp/unfinished_business

Let's verify that the file is copied:

$ Hadoop fs -ls /tmp/moby_dick

$ Hadoop fs -ls /tmp/jurassic_world

$ Hadoop fs -ls /tmp/unfinished_business

Found 1 items

-rw-r--r--   3 samzer Hadoop       5973 2015-06-18 18:34  
/tmp/moby_dick/mobydick_summary.txt

Found 1 items
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-rw-r--r--   3 samzer Hadoop       3185 2015-06-18 18:34  
/tmp/jurassic_world/jurassic_world_review.txt

Found 1 items

-rw-r--r--   3 samzer Hadoop       2294 2015-06-18 18:34  
/tmp/unfinished_business/unfinished_business_review.txt

We can see that files have been copied successfully.

With the following command, we'll execute our mapper and reducer's script in 
Hadoop. In this command, we define the mapper, reducer, input, and output file 
locations, and then use Hadoop streaming to execute our scripts.

Let's execute the word count program first:

$ Hadoop jar /usr/lib/Hadoop-0.20-mapreduce/contrib/streaming/Hadoop- 
*streaming*.jar -file ./BigData/word_mapper.py -mapper word_mapper.py  
-file ./BigData/word_reducer.py -reducer word_reducer.py -input  
/tmp/moby_dick/* -output /tmp/moby_output

Let's verify that the word count MapReduce program is working successfully:

$ Hadoop fs -cat /tmp/moby_output/*

The output of the preceding command is shown as follows:

(Queequeg1

A2

Africa1

Africa,1

After1

Ahab13

Ahab,1

Ahab's6

All1

American1

As1

At1

Bedford,1

Bildad1

Bildad,1

Boomer,2

Captain1

Christmas1
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Day1

Delight,1

Dick6

Dick,2

The program is working as intended. Now, we'll deploy the program that calculates 
the sentiment score for each of the reviews. Note that we can add the positive and 
negative dictionary files to the Hadoop streaming:

$ Hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop- 
*streaming*.jar -file ./BigData/word_mapper.py -mapper word_mapper.py  
-file ./BigData/word_reducer.py -reducer word_reducer.py -input  
/tmp/moby_dick/* -output /tmp/moby_output

In the preceding code, we use the Hadoop command with the Hadoop streaming 
JAR file and then define the mapper and reducer files, and finally, the input and 
output directories in Hadoop.

Let's check the sentiments score of the movies review:

$ Hadoop fs -cat /tmp/jurassic_output/*

The output of the preceding command is shown as follows:

"jurassic world," like its predecessors, fills up the screen with  
roaring, slathering, earth-shaking dinosaurs, then fills in mere  
humans around the edges. it's a formula that works as well in 2015  
as it did in 1993.3

a perfectly fine movie and entertaining enough to keep you watching until 
the closing credits.4

an angry movie with a tragic moral ... meta-adoration and  
criticism ends with a genetically modified dinosaur fighting off  
waves of dinosaurs.-3

if you limit your expectations for jurassic world to "more teeth,"  
it will deliver on that promise. if you dare to hope for anything  
more-relatable characters, narrative coherence-you'll only set  
yourself up for disappointment.-1

This program is also working as intended. Now, we'll try out the overall sentiment of 
a movie:

$ Hadoop jar /usr/lib/Hadoop-0.20-mapreduce/contrib/streaming/Hadoop- 
*streaming*.jar -file ./BigData/overall_senti_mapper.py -mapper

Let's verify the result:

$ Hadoop fs -cat /tmp/unfinished_business_output/*
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The output of the preceding command is shown as follows:

-8

We can see that the overall sentiment score comes out correctly from MapReduce. 
Here is a screenshot of the JobTracker status page:

The preceding image shows a portal where the jobs submitted to the JobTracker  
can be viewed and the status can be seen. This can be seen on port 50070 of the 
master system.

From the preceding image, we can see that a job is running, and the status above the 
image shows that the job has been completed successfully.

File handling with Hadoopy
Hadoopy is a library in Python, which provides an API to interact with Hadoop 
to manage files and perform MapReduce on it. Hadoopy can be downloaded from 
http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy.

Let's try to put a few files in Hadoop through Hadoopy in a directory created within 
HDFS, called data:

$ Hadoop fs -mkdir data

http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy
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Here is the code that puts the data into HDFS:

importHadoopy

import os

hdfs_path = ''

def read_local_dir(local_path):

  for fn in os.listdir(local_path):

    path = os.path.join(local_path, fn)

    if os.path.isfile(path):

      yield path

def main():

  local_path = './BigData/dummy_data'

  for file in  read_local_dir(local_path):

    Hadoopy.put(file, 'data')

    print"The file %s has been put into hdfs"% (file,)

if __name__ =='__main__':

  main()

The file ./BigData/dummy_data/test9 has been put into hdfs

The file ./BigData/dummy_data/test7 has been put into hdfs

The file ./BigData/dummy_data/test1 has been put into hdfs

The file ./BigData/dummy_data/test8 has been put into hdfs

The file ./BigData/dummy_data/test6 has been put into hdfs

The file ./BigData/dummy_data/test5 has been put into hdfs

The file ./BigData/dummy_data/test3 has been put into hdfs

The file ./BigData/dummy_data/test4 has been put into hdfs

The file ./BigData/dummy_data/test2 has been put into hdfs

In the preceding code, we list all the files in a directory and then put each of the files 
into Hadoop using the put() method of Hadoopy.

Let's check if all the files have been put into HDFS:

$ Hadoop fs -ls data
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The output of the preceding command is shown as follows:

Found 9 items

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test1

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test2

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test3

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test4

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test5

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test6

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test7

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test8

-rw-r--r--   3 samzer Hadoop          0 2015-06-23 00:19 data/test9

So, we have successfully been able to put files into HDFS.

Pig
Pig is a platform that has a very expressive language to perform data 
transformations and querying. The code that is written in Pig is done in a scripting 
manner and this gets compiled to MapReduce programs, which execute on Hadoop. 
The following image is the logo of Pig Latin:

The Pig logo
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Pig helps in reducing the complexity of raw-level MapReduce programs, and enables 
the user to perform fast transformations.

Pig Latin is the textual language that can be learned from http://pig.apache.org/
docs/r0.7.0/piglatin_ref2.html.

We'll be covering how to perform the top 10 most occurring words with Pig, and 
then we'll see how you can create a function in Python that can be used in Pig.

Let's start with the word count. Here is the Pig Latin code, which you can save in 
thepig_wordcount.py file:

data = load '/tmp/moby_dick/';

word_token = foreach data generate  
flatten(TOKENIZE((chararray)$0)) as word;

group_word_token = group word_token by word;

count_word_token = foreach group_word_token generate  
COUNT(word_token) as cnt, group;

sort_word_token = ORDER count_word_token by cnt DESC;

top10_word_count = LIMIT sort_word_token 10;

DUMP top10_word_count;

In the preceding code, we can load the summary of Moby Dick, which is then 
tokenized line by line and is basically split into individual elements. The flatten 
function converts a collection of individual word tokens in a line to a row-by-row 
form. We then group by the words and then take a count of the words for each word. 
Finally, we sort the count of words in a descending order and then we limit the count 
of the words to the first 10 rows to get the top 10 most occurring words.

Let's execute the preceding pig script:

$ pig ./BigData/pig_wordcount.pig

The output of the preceding command is shown as follows:

(83,the)

(36,and)

(28,a)

(25,of)

(24,to)

(15,his)

(14,Ahab)

http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
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(14,Moby)

(14,is)

(14,in)

We are able to get our top 10 words. Let's now create a user-defined function with 
Python, which will be used in Pig.

We'll define two user-defined functions to score positive and negative sentiments of 
a sentence.

The following code is the UDF used to score the positive sentiment and it's available 
in the positive_sentiment.py file:

positive_words = [ 'a+', 'abound', 'abounds', 'abundance',  
'abundant', 'accessable', 'accessible', 'acclaim', 'acclaimed',  
'acclamation', 'acco$ ]

@outputSchema("pnum:int")

def sentiment_score(text):

  positive_score = 0

  for w in text.split(''):

    if w in positive_words: positive_score+=1

  return positive_score

In the preceding code, we define the positive word list, which is used by the 
sentiment_score() function. The function checks for the positive words in a sentence 
and finally outputs their total count. There is an outputSchema() decorator that is 
used to tell Pig what type of data is being outputted, which in our case is int.

Here is the code to score the negative sentiment and it's available in the  
negative_sentiment.py file. The code is almost similar to the positive sentiment:

negative_words = ['2-faced', '2-faces', 'abnormal', 'abolish',  
'abominable', 'abominably', 'abominate', 'abomination', 'abort',  
'aborted', 'ab$....]

@outputSchema("nnum:int")

def sentiment_score(text):

  negative_score = 0

  for w in text.split(''):

    if w in negative_words: negative_score-=1

  return  negative_score
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The following code is used by Pig to score the sentiments of the Jurassic World 
reviews and its available in the pig_sentiment.pig file:

register 'positive_sentiment.py' using  
org.apache.pig.scripting.jython.JythonScriptEngine as positive;

register 'negative_sentiment.py' using  
org.apache.pig.scripting.jython.JythonScriptEngine as negative;

data = load '/tmp/jurassic_world/*';

feedback_sentiments = foreach data generate LOWER((chararray)$0)  
as feedback, positive.sentiment_score(LOWER((chararray)$0)) as  
psenti,

negative.sentiment_score(LOWER((chararray)$0)) as nsenti;

average_sentiments = foreach feedback,feedback_sentiments generate  
psenti + nsenti;

dump average_sentiments;

In the preceding Pig script, we first register the Python UDF scripts using the 
register command and give them an appropriate name. We then load our Jurassic 
World review. We then convert our reviews to lowercase and score the positive 
and negative sentiments of a review. Finally, we add the score to get the overall 
sentiments of a review.

Let's execute the Pig script and see the results:

$ pig ./BigData/pig_sentiment.pig

The output of the preceding command is shown as follows:

(there is plenty here to divert, but little to leave you enraptored.  
such is the fate of the sequel: bigger. louder. fewer teeth.,0)

(if you limit your expectations for jurassic world to "more teeth, 
" it will deliver on that promise. if you dare to hope for anything  
more-relatable characters, narrative coherence-you'll only set  
yourself up for disappointment.,-1)

(there's a problem when the most complex character in a film is the  
dinosaur,-2)

(not so much another bloated sequel as it is the fruition of dreams  
deferred in the previous films. too bad the genre dictates that those  
dreams are once again destined for disaster.,-2)
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(a perfectly fine movie and entertaining enough to keep you watching  
until the closing credits.,4)

(this fourth installment of the jurassic park film series shows some  
wear and tear, but there is still some gas left in the tank. time is  
spent to set up the next film in the series. they will keep making  
more of these until we stop watching.,0)

We have successfully scored the sentiments of the Jurassic World review using the 
Python UDF in Pig.

Python with Apache Spark
Apache Spark is a computing framework that works on top of HDFS and provides 
an alternative way of computing that is similar to MapReduce. It was developed by 
AmpLab of UC Berkeley. Spark does its computation mostly in the memory because 
of which, it is much faster than MapReduce, and is well suited for machine learning 
as it's able to handle iterative workloads really well.

Spark uses the programming abstraction of RDDs (Resilient Distributed Datasets) 
in which data is logically distributed into partitions, and transformations can be 
performed on top of this data.

Python is one of the languages that is used to interact with Apache Spark, and we'll 
create a program to perform the sentiment scoring for each review of Jurassic Park as 
well as the overall sentiment.

You can install Apache Spark by following the instructions at https://spark.
apache.org/docs/1.0.1/spark-standalone.html.

Scoring the sentiment
Here is the Python code to score the sentiment:

from __future__ import print_function

import sys

from operator import add

https://spark.apache.org/docs/1.0.1/spark-standalone.html
https://spark.apache.org/docs/1.0.1/spark-standalone.html
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from pyspark import SparkContext

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

  positive_score = 0

  negative_score = 0

  for w in text.split(''):

    if w in pos_list: positive_score+=1

    if w in neg_list: negative_score+=1

  return positive_score - negative_score

if __name__ == "__main__":

  if len(sys.argv) != 2:

    print("Usage: sentiment <file>", file=sys.stderr)

    exit(-1)

  sc = SparkContext(appName="PythonSentiment")

  lines = sc.textFile(sys.argv[1], 1)

  scores = lines.map(lambda x: (x, sentiment_score(x.lower(),  
  positive_words, negative_words)))

  output = scores.collect()

  for (key, score) in output:

    print("%s: %i" % (key, score))

  sc.stop()

In the preceding code, we define our standard sentiment_score() function, which 
we'll be reusing. The if statement checks whether the Python script and the text file 
is given. The sc variable is a Spark Context object with the PythonSentiment app 
name. The filename in the argument is passed into Spark through the textFile() 
method of the sc variable. In the map() function of Spark, we define a lambda 
function, where each line of the text file is passed, and then we obtain the line and its 
respective sentiment score. The output variable gets the result, and finally, we print 
the result on the screen.



Chapter 12

[ 261 ]

Let's score the sentiment of each of the reviews of Jurassic World. Replace the 
<hostname> with your hostname, this should suffice:

$ ~/spark-1.3.0-bin-cdh4/bin/spark-submit --master 
spark://<hostname>:7077 ./BigData/spark_sentiment.py  
hdfs://localhost:8020/tmp/jurassic_world/*

We'll get the following output for the preceding command:

There is plenty here to divert but little to leave you enraptured. Such 
is the fate of the sequel: Bigger, Louder, Fewer teeth: 0

If you limit your expectations for Jurassic World to more teeth, it will 
deliver on this promise. If you dare to hope for anything more—relatable 
characters or narrative coherence—you'll only set yourself up for 
disappointment:-1

We can see that our Spark program was able to score the sentiment for each of the 
reviews. The number in the end of the output of the sentiment score shows that if the 
review has been positive or negative, the higher the number of the sentiment score—
the better the review and the more negative the number of the sentiment score—the 
more negative the review has been.

We use the Spark Submit command with the following parameters:

• A master node of the Spark system
• A Python script containing the transformation commands
• An argument to the Python script

The overall sentiment
Here is a Spark program to score the overall sentiment of all the reviews:

from __future__ import print_function

import sys

from operator import add

from pyspark import SparkContext

positive_words = open('positive-words.txt').read().split('\n')

negative_words = open('negative-words.txt').read().split('\n')

def sentiment_score(text, pos_list, neg_list):

  positive_score = 0

  negative_score = 0



Leveraging Python in the World of Big Data

[ 262 ]

  for w in text.split(''):

    if w in pos_list: positive_score+=1

    if w in neg_list: negative_score+=1

  return positive_score - negative_score

if __name__ =="__main__":

  if len(sys.argv) != 2:

    print("Usage: Overall Sentiment <file>", file=sys.stderr)

    exit(-1)

  sc = SparkContext(appName="PythonOverallSentiment")

  lines = sc.textFile(sys.argv[1], 1)

  scores = lines.map(lambda x: ("Total",  
  sentiment_score(x.lower(), positive_words, negative_words)))\

  .reduceByKey(add)

  output = scores.collect()

  for (key, score) in output:

    print("%s: %i"% (key, score))

  sc.stop()

In the preceding code, we have added a reduceByKey() method, which reduces the 
value by adding the output values, and we have also defined the key as Total, so 
that all the scores are reduced based on a single key.

Let's try out the preceding code to get the overall sentiment of Jurassic World. 
Replace the <hostname> with your hostname, this should suffice:

$ ~/spark-1.3.0-bin-cdh4/bin/spark-submit --master  
spark://<hostname>:7077 ./BigData/spark_overall_sentiment.py  
hdfs://localhost:8020/tmp/jurassic_world/*

The output of the preceding command is shown as follows:

Total: 19

We can see that Spark has given an overall sentiment score of 19.
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The applications that get executed on Spark can be viewed in the browser on the 
8080 port of the Spark master. Here is a screenshot of it:

We can see that the number of nodes of Spark, applications that are getting executed 
currently, and the applications that have been executed.

Summary
In this chapter, you were introduced to big data, learned about how the Hadoop 
software works, and the architecture associated with it. You then learned how to 
create a mapper and a reducer for a MapReduce program, how to test it locally, and 
then put it into Hadoop and deploy it. You were then introduced to the Hadoopy 
library and using this library, you were able to put files into Hadoop. You also 
learned about Pig and how to create a user-defined function with it. Finally, you 
learned about Apache Spark, which is an alternative to MapReduce and how to use it 
to perform distributed computing.

With this chapter, we have come to an end in our journey, and you should be in a 
state to perform data science tasks with Python. From here on, you can participate 
in Kaggle Competitions at https://www.kaggle.com/ to improve your data science 
skills with real-world problems. This will fine-tune your skills and help understand 
how to solve analytical problems.

Also, you can sign up for the Andrew NG course on Machine Learning at  
https://www.coursera.org/learn/machine-learning to understand the  
nuances behind machine learning algorithms.

https://www.kaggle.com/
https://www.coursera.org/learn/machine-learning
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3D plot

plotting  103-106

A
agglomerative hierarchical clustering  119
aggregation operations

about  20, 21
average  20
COUNT  21
MAX  20
MIN  21
STD  21
SUM  20

Analysis of Variance (ANOVA)  56, 57
Apache Spark

about  259
installing, URL  259
overall sentiment  261, 262
Python with  259
sentiment, scoring  259-261

area plot
about  96
example  96

array
conditional operations  4
creating  2, 3
indexing  5, 6
matrix multiplication  5
slicing  5, 6
squaring  4
subtraction  4
trigonometric function  4
with NumPy  2

B
Bernoulli distribution  34, 35
big data, Vs

variety  239
velocity  239
volume  239

box plot
about  85-87
example  87, 88

bubble chart  97

C
census income dataset

about  174
earning bias, working class based  176, 177
earning power, education based  177
earning power, gender based  182
earning power, marital  

status based  178, 179
earning power, native  

countries based  184, 185
earning power, occupation based  181
earning power, productive  

hours based  183, 184
earning power, race based  180
exploring  175
people histogram, creating  175, 176

chart
line properties, controlling  78
text, adding  81, 82

chi-square distribution  53, 54
chi-square test

for goodness  54, 55
of independence  55, 56
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classification trees  111
clustering  193
collaborative filtering

about  155
item-based  167
user-based  157

conditional operations  4
confidence interval  44-48
consumer key

URL  230
correlation  48-51
CSV  11

D
data

exporting  10
extracting, from source  1
importing  10
inserting  10
preprocessing  211-214
reading, from database  12

data cleansing
about  12
data, merging  19
missing data, checking  13
missing data, filling  14, 15
string operation  16, 17, 18

DataFrame  8
data mining

about  60, 61
analysis, presenting  62, 63

data operations
aggregation operations  20, 21
joins  21

decision trees
about  111, 112, 186, 187
classification trees  111
regression trees  111

descriptive statistics  27
distribution

Bernoulli distribution  34, 35
forms  27
normal distribution  28, 29

normal distribution, from binomial 
distribution  29-33

Poisson distribution  33, 34
divisive hierarchical clustering  119

E
elbow curve  204
ensemble modeling  173
Euclidean distance score  157-159

F
Fast Moving Consumer Goods (FMCG)   61
F distribution  52, 53
full outer join  24

G
groupby function  24, 25

H
Hadoop

about  241
DFS  242
DFS, architecture  243
MapReduce, architecture  242
programming model  241, 242
URL  243

Hadoopy
URL  253
used, for handling file  253, 254

heatmap
about  88
creating  88-91

hexagon bin plot  97
hierarchical clustering

about  118
agglomerative hierarchical clustering  119
divisive hierarchical clustering  119

histograms
combining, with scatter plot  91-93
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I
inner join  22, 23
item-based collaborative filtering  167, 170

J
joins

about  21
full outer join  24
groupby function  24, 25
inner join  22, 23
left outer join  23

JSON  12

K
Kaggle

URL  263
keyword arguments

used, for controlling chart  
line properties  78

k-means clustering
about  117, 118, 194
example  194-198
URL  194

k-means clustering, with countries
about  199-201
applying  205-210
number of clusters, determining  201-205

L
left outer join  23
lemmatization  223, 226
linear regression

about  112, 114, 121
model, building with SciKit package  132
model, building, with statsmodels  

module  132
multiple linear regression  125-131
simple linear regression  121-124

line properties, chart
controlling  78
controlling, with keyword arguments  78
controlling, with setp() command  80
controlling, with setter methods  79, 80

logistic regression
about  114, 115, 139, 140
data, preparing  140
model, building  142, 143, 152, 153
model, evaluating  144-148
model evaluating, test data based  148-152
model, evaluating with SciKit  152, 153
sets, testing  141
training, creating  141

M
machine learning, types

about  108
reinforcement learning  108
supervised learning  108
unsupervised learning  108

MapReduce
about  242
code, deploying on Hadoop  250-253
overall sentiment score  247-249
Python used  243
sentiment score, for review  246, 247
word count  243-245

mathematical operations  3
matrix multiplication  5
model

testing  132-137
training  132-137

multiple linear regression
about  125
example  125-131

multiple plots
creating  80

N
naive Bayes classifier  115, 116
Natural Language Toolkit (NLTK)

URL  211
normal distribution

about  28, 29
from binomial distribution  29-33

null hypothesis  40
NumPy

array  2
documentation  URL  25
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O
one-tailed tests  41, 42
Ordinary Least Square  

Regression (OLS)  132

P
pandas, data structure

about  7
DataFrame  8
documentation, URL  25
library  7
panel  9
series  7

panel  9
parts of speech tagging  221-223
Pearson correlation score  160-164
Pig  255-259
Pig Latin

URL  256
plots

styling  83, 84
Poisson distribution  33, 34
P-value  40, 41

R
random forest  173, 187-191
RDDs (Resilient Distributed Datasets)  259
recommendation data  156
regression trees  111
reinforcement learning  110

S
scatter plot

with histograms  91-93
scatter plot matrix  94, 95
SciKit package

used, for building linear  
regression model  132

SciPy package
URL  30

sentence tokenization
about  220, 221
PunktSentenceTokenizer  220

sentiment
analysis, on world leaders  229-235
URL  233

series  7
setp() command

used, for controlling line properties  
of chart  80

setter methods
used, for controlling line properties  

of chart  79, 80
shape

manipulating  6
simple linear regression

about  121
example  122-124

Stanford Named Entity Recognizer
about  227
URL  227-229

statsmodels module
about  132
used, for building linear  

regression model  132
stemming  223, 224
string operation

filtering  17
length  18
lowercase  17
replace  18
split  18
substring  16
uppercase  17

supervised learning  108, 109

T
tags

URL  223
terminologies

feature extraction  107
features  107
feature vector  107
samples  107
testing set  107
training set  107

text
adding, to chart  81, 82
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Titanic survivors dataset
about  64
nonsurvivors distributions,  

determining  71-73
passenger class survivors,  

determining  65-67
survival percentage, searching among age 

groups  74-76
survivors distributions, determining based 

on gender  68-71
Trellis plot

about  98-101
example  101

trigonometric function
on array  4

T-test
versus Z-test  51, 52

two-tailed tests
about  41, 42

Twython package
URL  229

Type 1 error  43
Type 2 error  43

U
unsupervised learning  109, 110
user-based collaborative filtering

about  157
Euclidean distance score  157-159
items, recommending  165-167
Pearson correlation score  160-164
similar users, finding  157
users, ranking  165

W
wordcloud

creating  215-219
URL  215

word tokenization  220

X
XLS  11

Z
z-score  36-39
Z-test

versus T-test  51, 52
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