
www.allitebooks.com

http://www.allitebooks.org

Mastering SaltStack

Take charge of SaltStack to automate and configure
enterprise-grade environments

Joseph Hall

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering SaltStack

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1130815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-216-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Joseph Hall

Reviewers
Pedro Algarvio

Darrel Clute

JiWei Liu

Hoàng Đình Quân

Peng Yao

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Merwyn Dsouza

Technical Editor
Siddhesh Patil

Copy Editors
Relin Hedly

Sonia Mathur

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Monica Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

This is the Salt book I have been wanting to see for a long time. As the creator of Salt,
I feel that many people don't know about the advanced and powerful capabilities
of the Salt platform. Diving into the parts of Salt less trodden is where the truly
amazing value of Salt comes into play. The more powerful aspects of Salt, such as
how to use the Reactor for dynamic intelligent management, how to use salt-ssh
to manage a wide variety of situations, and how to take Salt to the next level, are
revealed in this book in an easy-to-understand way. I hope that this book will be a
great help in bringing the great power of Salt to more people.

Joseph Hall is likely the best person to write this book. He is not only a close friend,
but has also been involved with the Salt project from the very beginning, including
the early design of the Salt States system. Joseph is the second person to write code
for Salt (apart from me). He was the first engineer hired by SaltStack.

Thomas S. Hatch

Founder and CTO, SaltStack

www.allitebooks.com

http://www.allitebooks.org

About the Author

Joseph Hall has touched just about every area of the modern technology world
from his beginnings as a support technician to being a web programmer, QA
engineer, systems administrator, Linux instructor, and cloud engineer. He is
currently a senior cloud and integrations engineer at SaltStack. Joseph enjoys
working with some of the best minds in the business with his coworkers and
SaltStack's partners. He is also a classically trained chef. Joseph's supreme pleasure
lies in working with what he calls computational gastronomy.

I would like to thank my wife, Nat, for her support when I stayed up
every night to write this book. I would also like to thank Tom Hatch
for writing Salt and having the guts to turn it into the best company
that I've ever worked for. My sincere thanks go out to Colton Meyers
for hooking me up with Packt Publishing. I would also like to thank
the Salt community for being awesome and helping make Salt what it
is today.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Pedro Algarvio was a Sound Technician until May 2015. He likes to keep himself
busy. Therefore, Pedro set out to make computers work for him. In his endeavor to
deepen his knowledge of computers, he started with shell scripting and then moved
on to learn Perl, and finally settled with Python. Pedro was involved with several
open source projects. However, he credits Salt for giving him the opportunity to
learn the most. He joined SaltStack in May 2015 and dedicated his time to improve
the Salt software.

I would like to thank my wife for her continuous friendship, love,
and support throughout. She even supported me when I took
the risk of quitting my job to to pursue a skill, in which I had no
experience. I would also like to thank my twins for allowing me
some spare time to review Joseph's book. Further, I want to thank
the Salt community for teaching me new things everyday. Last but
not least, I would like to thank God.

I love learning new things. SaltStack gave the opportunity to learn
more about Salt, which made me grow as a Python coder and
enthusiast. I would like to thank SaltStack for their continuous belief
and encouragement to the point of inviting me to join the team.

www.allitebooks.com

http://www.allitebooks.org

Darrel Clute is an IT infrastructure architect. Throughout his career, he has
predominately focused on network engineering. Darrel has also spent an equal
amount of time focusing on systems engineering, primarily with Unix-based
systems. Apart from his job, he is also an advocate of the open source software. This
is used in enterprise as well as for individuals. Darrel will never advocate the use of
open source purely for the sake of it.

Outside his core competencies, he also has extensive experience with proprietary
and open source virtualization platforms. His knowledge and experience with IaaS
solutions—such as OpenStack—is constantly increasing as well. Additionally, with his
systems engineering experience, Darrel has been exposed to and has supported various
web and enterprise applications. His most recent exposure has been to PaaS solutions.
This has led him to advocate that a public or private cloud offering is not complete
without coupling IaaS and PaaS solutions designed and deployed in lockstep.

Beyond his core infrastructure, Darrel has recently been developing programing
skills to augment his daily activities. Throughout his career, he has utilized various
languages and utilities to automate infrastructure. Some of Darrel's programming
has been with the use of Bash, net-snmp, sed, awk, and holistically Python.

JiWei Liu graduated in 2011. He is employed as a cloud computing and operation
and maintenance engineer at Gamewave Group Limited (PRC), China's largest
web game provider. It is also the leader of the Chinese web game industry and the
professional provider of interactive entertainment services.

I would like to thank my sweetheart for her help and support in the
process of writing this book.

www.allitebooks.com

http://www.allitebooks.org

Hoàng Đình Quân is a junior system administrator and network infrastructure
engineer. He has extensive experience in designing, deploying, hardening, and
maintaining Linux systems and the network infrastructure for small-and
medium-sized companies.

Peng Yao is an operations engineer with more than 8 years of experience in
infrastructure automation, data visualization, and cloud computing. He is the
founder and coordinator of the China SaltStack user group.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

I would like to dedicate this book to the memory of Tim Hollinger. You were there
with us in the early days of Salt, and you will not be forgotten. How I wish, how
I wish you were here. Shine on, you crazy diamond.

 —Joseph Hall

[i]

Table of Contents
Preface	 xi
Chapter 1: Reviewing a Few Essentials	 1

Executing commands remotely	 1
Master and Minions	 2
Targeting Minions	 2

Glob	 2
Perl Compatible Regular Expression (PCRE)	 2
List	 3
Subnet	 3
Grain	 3
Grain PCRE	 4
Pillar	 4
Compound	 4
Nodegroup	 5

Using module functions	 6
test.ping	 7
test.echo	 7
test.sleep	 7
test.version	 7
pkg.install	 8
pkg.remove	 8
file.replace	 8
Other file functions	 8
Various user and group functions	 8
sys.doc	 9

SLS file trees	 9
SLS files	 9
Tying things together with top files	 10
Organizing the SLS directories	 10

Using States for configuration management	 11
Using include blocks	 11

Table of Contents

[ii]

Ordering with requisites	 12
require	 12
watch	 13
onchanges	 14
onfail	 14
use	 14

prereq	 15
Inverting requisites	 16
Extending SLS files	 16

The basics of Grains, Pillars, and templates	 17
Using Grains for Minion-specific data	 17
Centralizing variables with Pillars	 19
Managing files dynamically with templates	 20
A quick Jinja primer	 21

Summary	 23
Chapter 2: Diving into Salt Internals	 25

Understanding the Salt configuration	 25
Following the configuration tree	 26

Looking inside /etc/salt/	 26
Managing Salt keys	 27
Exploring the SLS directories	 27

Examining the Salt cache	 28
The Master job cache	 28
The Master-side Minion cache	 30
The external file server cache	 31
The Minion-side proc/ directory	 32
External modules	 33

The Renderer	 33
Rendering SLS files	 34
Render pipes	 35
Serving templated files	 35

Understanding the Loader	 36
Dynamic modules	 36
Execution modules	 37
Cloud modules	 38

Plunging into the State compiler	 38
Imperative versus declarative	 39
Requisites	 40
High and Low States	 41
High States	 41
Low States	 44
Enforcing statefulness	 46

name	 46

Table of Contents

[iii]

result	 47
changes	 47
comment	 47

Summary	 48
Chapter 3: Exploring Salt SSH	 49

Grappling with SSH	 49
Remote shells	 49

Using rosters	 50
The flat roster	 51

host	 51
port	 51
user	 52
passwd	 52
sudo	 52
priv	 52
timeout	 53
thin_dir	 53

Other built-in rosters	 53
scan	 53
cache	 54
cloud	 55
ansible	 55

Building dynamic rosters	 56
Using Salt SSH	 56

Using a Saltfile	 57
Salt versus Salt SSH	 58

Architecture	 58
Performance	 59

Understanding the salt-thin agent	 60
Building the thin package	 60

Including extra modules	 61
Deploying the thin package	 62
Executing the thin package	 62

The Salt SSH shim	 63
Preparing for Salt States	 63
Running Salt	 65
Salt's running data	 66

Using the raw SSH mode	 67
Caching SSH connections	 68

Summary	 69
Chapter 4: Managing Tasks Asynchronously	 71

Looking at the event system	 71
Reviewing the basics	 71
The structure of event data	 72

Table of Contents

[iv]

Watching event data	 73
Installing the event listener	 73
Using the event listener	 73
Firing custom data	 75

Namespacing events	 77
Namespacing guidelines	 78

Some common events	 79
salt/auth	 79
salt/key	 79
salt/minion/<minion_id>/start	 79
salt/job/<job_id>/new	 80
salt/job/<job_id>/ret/<minion_id>	 80
salt/presence/present	 80
salt/presence/change	 81

Common cloud events	 81
salt/cloud/<vm_name>/creating	 81
salt/cloud/<vm_name>/requesting	 81
salt/cloud/<vm_name>/querying	 82
salt/cloud/<vm_name>/waiting_for_ssh	 82
salt/cloud/<vm_name>/deploying	 82
salt/cloud/<vm_name>/created	 82
salt/cloud/<vm_name>/destroying	 83
salt/cloud/<vm_name>/destroyed	 83

Salt API events	 83
salt/netapi/<url_path>	 83

Building Reactors	 83
Configuring Reactors	 84
Writing Reactors	 85

Calling execution modules	 85
Calling runner modules	 87
Calling wheel modules	 87

Writing more complex Reactors	 88
Sending out alerts	 88
Using webhooks	 91
Reactors calling Reactors	 93

Using the queue system	 94
Learning how queues work	 94

Adding to the queue	 95
Listing queues	 95
Listing items in a queue	 95
Processing queue items	 95
Deleting items from a queue	 96

Using queues with the Reactor	 97
Spreading out State runs	 97
Dividing tasks among Minions	 98

Summary	 101

Table of Contents

[v]

Chapter 5: Taking Salt Cloud to the Next Level	 103
Examining the Salt Cloud configuration	 103

Global configurations	 104
The provider and profile configuration	 104

Providers	 105
Profiles	 106

Extending configuration blocks	 107
Building custom deploy scripts	 109

Understanding the Salt Bootstrap script	 109
Installing from prebuilt packages	 110
Installing from Git	 112

Looking back at legacy deploy scripts	 113
Writing your own deploy scripts	 113
Passing arguments to scripts	 115
Using file maps	 117

Taking a look at cloud maps	 117
Working with autoscale Reactors	 120

The cloud cache	 120
Using cloud cache events	 122

Setting up a schedule	 123
Catching cloud cache events	 124

Summary	 126
Chapter 6: Using Salt with REST	 127

Looking at Salt's HTTP library	 127
Why a Salt-specific library?	 128
Using the http.query function	 129

GET versus POST	 130
Decoding return data	 132

Using the http.query state	 133
Using http.query with Reactors	 135

Understanding Salt API	 141
What is Salt API?	 141
Setting up Salt API	 141

CherryPy	 141
Tornado	 143
WSGI	 143

Creating SSL certificates	 144
Configuring authentication	 145

The external authentication module	 146
Taking your first steps with Salt API	 147

Issuing one-off commands	 150
Working with webhooks	 151

Security considerations	 152

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

More complex authentication	 154
Summary	 154

Chapter 7: Understanding the RAET Protocol	 155
Comparing RAET and ZeroMQ	 155

Starting with HTTP	 156
SSH, the old favorite	 156
Using ZeroMQ	 157

ZeroMQ and security	 158
The need for RAET	 158

Flow-based programming	 159
The pieces of the puzzle	 159

Black boxes	 160
Shared storage	 160
Concurrent scheduling	 161

Driving with RAET	 162
Configuring RAET	 163
The RAET architecture	 165

The basics	 165
The RAET scheduler	 166
Estates and yards	 167

Summary	 167
Chapter 8: Strategies for Scaling	 169

All about syndication	 169
Different folks, different strokes	 169
No need for micro-managing	 170
Configuring syndication	 171

High availability with multiple Masters	 171
Built-in high availability configuration	 171
Old-school high availability	 172

The round robin DNS	 172
IP-based load balancing	 173

Synchronizing files	 173
Base configuration files	 174
Synchronizing the nonexternal files	 176
Using rsync	 176
Using the event Reactor	 177

Incorporating external data sources	 179
The external job cache	 179

Using Returners on the Minions	 179
Using the Master job cache	 181

External filesystems	 182
GitFS	 182
Other source control backends	 186

Table of Contents

[vii]

SVNFS	 186
HGFS	 188
S3FS	 188
AzureFS	 190

External Pillars	 190
cmd_yaml/cmd_json	 191
git	 191
redis	 192
mysql	 193

Using the Master API	 193
The Salt keys	 194
Configuration	 194
The file and Pillar roots	 194
Using the Wheel Reactor	 194

Testing load in the infrastructure	 195
Using the Minion Swarm	 195

Swarm internals	 196
Summary	 197

Chapter 9: Monitoring with Salt	 199
Monitoring basics	 199

Establishing a baseline	 199
Reading the system vitals in Salt	 200

status.loadavg	 201
status.cpustats	 201
status.meminfo	 202
status.vmstats	 203
disk.usage, status.diskusage	 204
status.w	 204
status.all_status, status.custom	 205

Monitoring with Returners	 207
Deciding on a Returner	 208

Using monitoring states	 208
Defining a monitoring state	 209
Monitoring with web calls	 211

Working with beacons	 213
Monitoring file changes	 213
Beacon intervals	 214

Setting up alerts	 215
Alerting in State files	 215
Alerting from beacons	 215

Watching file changes	 215
Monitoring bad logins	 217

Summary	 218

Table of Contents

[viii]

Chapter 10: Exploring Best Practices	 219
Future-proofing your infrastructure	 219
Setting up your directories	 220

Standard directory locations	 220
<module>.sls versus init.sls	 221
Shallow versus deep	 222
Subdividing further	 223

The SLS efficiency	 223
Includes and extends	 223

Using includes	 224
Using extends	 226

Using templates to simplify SLS files	 227
Working with loops	 227
Decisions, decisions	 229

Using the built-in States	 231
Naming conventions	 234

Generic names	 234
Explicit names	 236

Templates and variables	 236
Nested variables	 236
Referring to variables in templates	 237

Summary	 238
Chapter 11: Troubleshooting Problems	 239

What the…?	 239
Addressing the problem source	 240
Where is the trouble?	 240

The Master to Minion communication	 240
The network and CPU congestion	 241
Checking the Minion load	 242
Querying the Salt job data	 244

Using debug and trace modes	 246
info	 247
warn	 247
error	 247
debug/trace	 247
Running services in debug mode	 248

Using salt-call locally	 252
Working with YAML	 253

YAML basics	 253
dict	 253
list	 253

YAML idiosyncrasies	 255
Spacing	 255

Table of Contents

[ix]

Numbers	 255
Booleans	 256
List items	 257

Troubleshooting YAML	 257
Asking the community for help	 259

The salt-users mailing list	 259
Asking questions	 260

The Salt issue tracker	 261
Researching before posting	 262
Formatting your issues	 263
Requesting features	 264

#salt on IRC	 264
Final community thoughts	 265

Summary	 266
Index	 267

[xi]

Preface
I'm very excited to have been given the chance to put this book together. From an
idea in the brain of Tom Hatch to an award-winning open source project to the
flagship product of an award-winning open source company, I've been given the rare
opportunity to watch Salt grow. Salt has become an incredibly powerful framework,
which I wish I had access to years ago.

Everyday, I learn something new about Salt. This book is a collection of a number
of these things, which is aimed at the advanced user. Don't see it as the last word
on any of the topics it covers. Instead, see it as a guide to using this tool to its fullest
potential on your journey.

As you read through this book, I hope that the ideas and examples in it inspire you
to update and innovate your infrastructure.

What this book covers
Chapter 1, Reviewing a Few Essentials, talks about how to review a few fundamental
concepts to get into the right frame of mind. While many of the concepts should be
familiar to the experienced user, you are likely to find plenty of new information
as well.

Chapter 2, Diving into Salt Internals, jumps into the deeper workings behind Salt.
It discusses the internal configuration, the loader system, renderers, and the
state compiler.

Chapter 3, Exploring Salt SSH, explores how Salt SSH is a powerful tool. It's been
getting a lot of love from the core developers lately. This is possibly the most
complete discussion of Salt SSH.

Chapter 4, Managing Tasks Asynchronously, discusses how one of the most important
concepts behind Salt is asynchronicity. This chapter lays down the fundamentals that
will be referenced throughout the rest of the book.

Preface

[xii]

Chapter 5, Taking Salt Cloud to the Next Level, goes deeper, exposing parts of Salt
Cloud, which turn casual users into experts. No matter how much you've used Salt
Cloud, there's a good chance you've only scratched the surface.

Chapter 6, Using Salt with REST, talks about how it's almost impossible to work with
technology these days without depending on REST services. It uses Salt to tie these
services to your infrastructure with ease.

Chapter 7, Understanding the RAET Protocol, teaches you the concepts behind RAET
and how they impact upon you. RAET is still new, but it's already found its way into
large organizations.

Chapter 8, Strategies for Scaling, talks about how to never assume that your
infrastructure will stay small. It makes you think about how to scale your
infrastructure properly before it's too late.

Chapter 9, Monitoring with Salt, discovers how Salt is a powerful monitoring tool
if you know how to use it. It tells you how to integrate it with existing tools or use
Salt alone.

Chapter 10, Exploring Best Practices, discusses the good and bad ways to use any tool.
It teaches you the good ways to use Salt.

Chapter 11, Troubleshooting Problems, tells you where to look and how to find help
when things go wrong.

What you need for this book
To follow the examples in this book, you should be running at least version 2015.5
of Salt. Only one machine is strictly necessary because both the salt-master and the
salt-minion service can be run together, but Linux is currently required to run the
salt-master service.

The examples in this book are targeted at Ubuntu Linux, except where stated
otherwise.

Who this book is for
This book is ideal for professionals who have been managing groups of servers and
want to learn how to add functionality and expand their toolset. This book explains
some of the more advanced features of Salt. It explores how to use them to bring
additional power to the fundamentals that the professionals have already been using.

Preface

[xiii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This function does little more than the test.ping command."

A block of code is set as follows:

nodegroups:
 webdev: 'I@role:web,G@cluster:dev'
 webqa: 'I@role:web,G@cluster:qa'
 webprod: 'I@role:web,G@cluster:prod'

Any command-line input or output is written as follows:

salt -S 192.168.0.0/24 test.ping

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Click the Join This
Group link and you will be subscribed".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xiv]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Reviewing a Few Essentials
Salt is a very powerful automation framework. Before we delve into the more
advanced topics that this book covers, it may be wise to go back and review a few
essentials. In this chapter, we will cover the following topics:

•	 Using remote execution
•	 Basic SLS file tree structure
•	 Using States for configuration management
•	 Basics of Grains, Pillars, and templates

This book assumes that you already have root access on a device with a common
distribution of Linux installed. The machine used in the examples in this book is
running Ubuntu 14.04, unless stated otherwise. Most examples should run on other
major distributions, such as recent versions of Fedora, RHEL 5/6/7, or Arch Linux.

Executing commands remotely
The underlying architecture of Salt is based on the idea of executing commands
remotely. This is not a new concept; all networking is designed around some aspect
of remote execution. This could be as simple as asking a remote Web server to
display a static Web page, or as complex as using a shell session to interactively issue
commands against a remote server.

Under the hood, Salt is an example of one of the more complex types of remote
execution. But whereas most Internet users are used to interacting with only one
server at a time (so far as they are aware), Salt is designed to allow users to explicitly
target and issue commands to multiple machines directly.

www.allitebooks.com

http://www.allitebooks.org

Reviewing a Few Essentials

[2]

Master and Minions
Salt is based around the idea of a Master, which controls one or more Minions.
Commands are normally issued from the Master to a target group of Minions,
which then execute the tasks specified in the commands and then return any
resulting data back to the Master.

Targeting Minions
The first facet of the salt command is targeting. A target must be specified with
each execution, which matches one or more Minions. By default, the type of target is
a glob, which is the style of pattern matching used by many command shells. Other
types of targeting are also available, by adding a flag. For instance, to target a group
of machines inside a particular subnet, the -S option is used:

salt -S 192.168.0.0/24 test.ping

The following are most of the available target types, along with some basic usage
examples. Not all target types are covered here; Range, for example, extends beyond
the scope of this book. However, the most common types are covered.

Glob
This is the default target type for Salt, so it does not have a command line option.
The Minion ID of one or more Minions can be specified, using shell wildcards
if desired.

When the salt command is issued from most command shells, wildcard characters
must be protected from shell expansion:

salt '*' test.ping

salt * test.ping

When using Salt from an API or from other user interfaces, quoting and escaping
wildcard characters is generally not required.

Perl Compatible Regular Expression (PCRE)
Short Option: -E

Long Option: --pcre

Chapter 1

[3]

When more complex pattern matching is required, a Perl Compatible Regular
Expression (PCRE) can be used. This type of targeting was added to the earliest
versions of Salt, and was meant largely to be used inside shell scripts. However, its
power can still be realized from the command line:

salt -E '^[m|M]in.[e|o|u]n$' test.ping

List
Short Option: -L

Long Option: --list

This option allows multiple Minions to be specified as a comma-separated list. The
items in this list do not use pattern matching such as globbing or regular expressions;
they must be declared explicitly:

salt -L web1,web2,db1,proxy1 test.ping

Subnet
Short Option: -S

Long Option: --ipcidr

Minions may be targeted based on a specific IPv4 or an IPv4 subnet in CIDR
notation:

salt -S 192.168.0.42 test.ping

salt -S 192.168.0.0/16 test.ping

As of Salt version 2015.5, IPv6 addresses cannot be targeted by a specific command
line option. However, there are other ways to target IPv6 addresses. One way is to
use Grain matching.

Grain
Short Version: -G

Long Version: --grain

Salt can target Minions based on individual pieces of information that describe the
machine. This can range from the OS to CPU architecture to custom information
(covered in more detail later in this chapter). Because some network information is
also available as Grains, IP addresses can also be targeted this way.

Reviewing a Few Essentials

[4]

Since Grains are specified as key/value pairs, both the name of the key and the value
must be specified. These are separated by a colon:

salt -G 'os:Ubuntu' test.ping

salt -G 'os_family:Debian' test.ping

Some Grains are returned in a multi-level dictionary. These can be accessed by
separating each key of the dictionary with a colon:

salt -G 'ip_interfaces:eth0:192.168.11.38'

Grains which contain colons may also be specified, though it may look strange. The
following will match the local IPv6 address (::1). Note the number of colons used:

salt -G 'ipv6:::1' test.ping

Grain PCRE
Short Version: (not available)

Long Version: --grain-pcre

Matching by Grains can be powerful, but the ability to match by a more
complex pattern is even more so.

salt --grain-pcre 'os:red(hat|flag)' test.ping

Pillar
Short Option: -I

Long Option: --pillar

It is also possible to match based on Pillar data. Pillars are described in more detail
later in the chapter, but for now we can just think of them as variables that look
like Grains.

salt -I 'my_var:my_val' test.ping

Compound
Short Option: -C

Long Option: --compound

Chapter 1

[5]

Compound targets allow the user to specify multiple target types in a single
command. By default, globs are used, but other target types may be specified by
preceding the target with the corresponding letter followed by the @ sign:

Letter Target
G Grains
E PCRE Minion ID
P PCRE Grains
L List
I Pillar
S Subnet/IP address
R SECO Range

The following command will target the Minions that are running Ubuntu, have the
role Pillar set to web, and are in the 192.168.100.0/24 subnet.

salt -C 'G@os:Ubuntu and I@role:web and S@192.168.100.0/24' test.ping

Boolean grammar may also be used to join target types, including and, or, and
not operators.

salt -C 'min* or *ion' test.ping

salt -C 'web* or *qa,G@os:Arch' test.ping

Nodegroup
Short Option: -N

Long Option: --nodegroup

While node groups are used internally in Salt (all targeting ultimately results in the
creation of an on-the-fly nodegroup), it is much less common to explicitly use them
from the command line. Node groups must be defined as a list of targets (using
compound syntax) in the Salt Master's configuration before they can be used from
the command line. Such a configuration might look like the following:

nodegroups:
 webdev: 'I@role:web,G@cluster:dev'
 webqa: 'I@role:web,G@cluster:qa'
 webprod: 'I@role:web,G@cluster:prod'

Once a nodegroup is defined and the master configuration reloaded, it can be
targeted from Salt:

salt -N webdev test.ping

Reviewing a Few Essentials

[6]

Using module functions
After a target is specified, a function must be declared. The preceding examples all
use the test.ping function but, obviously, other functions are available. Functions
are actually defined in two parts, separated by a period:

<module> . <function>

Inside a Salt command, these follow the target, but precede any arguments that
might be added for the function:

salt <target> <module>.<function> [arguments...]

For instance, the following Salt command will ask all Minions to return the text,
"Hello world":

salt '*' test.echo 'Hello world'

A number of execution modules ship with the core Salt distribution, and it is possible
to add more. Version 2015.5 of Salt ships with over 200 execution modules. Not all
modules are available for every platform; in fact, by design, some modules will only be
available to the user if they are able to detect the required underlying functionality.

For instance, all functions in the test module are necessarily available on all
platforms. These functions are designed to test the basic functionality of Salt and the
availability of Minions. Functions in the Apache module, however, are only available
if the necessary commands are located on the Minion in question.

Execution modules are the basic building blocks of Salt; other modules in Salt use
them for their heavy lifting. Because execution modules are generally designed to
be used from the command line, an argument for a function can usually be passed
as a string. However, some arguments are designed to be used from other parts of
Salt. To use these arguments from the command line, a Python-like data structure is
emulated using a JSON string.

This makes sense, since Salt is traditionally configured using YAML, and all JSON is
syntactically-correct YAML. Be sure to surround the JSON with single quotes on the
command line to avoid shell expansion, and use double quotes inside the string. The
following examples will help.

A list is declared using brackets:

'["item1","item2","item3"]'

A dictionary is declared using braces (that is, curly brackets):

'{"key1":"value1","key2":"value2","key3":"value3"}'

Chapter 1

[7]

A list can include a dictionary, and a dictionary can include a list:

'[{"key1":"value1"},{"key2":"value2"}]'
'{"list1":["item1","item2"],"list2":["item3","item4"]}'

There are a few modules which can be considered core to Salt, and a handful of
functions in each that are widely used.

test.ping
This is the most basic Salt command. Ultimately, it only asks the Minion to return True.
This function is widely used in documentation because of its simplicity, and to check
whether a Minion is responding. Don't worry if a Minion doesn't respond right away;
that doesn't necessarily mean it's down. A number of variables could cause a slower-
than-usual return. However, successive failed attempts may be cause for concern.

test.echo
This function does little more than the test.ping command; it merely asks the
Minion to echo back a string that is passed to it. A number of other functions exist
that perform similar tasks, including test.arg, test.kwarg, test.arg_type, and
test.arg_repr.

test.sleep
A slightly more advanced testing scenario may require a Minion to sleep for a
number of seconds before returning True. This is often used to test or demonstrate
the utilities that make use of the jobs system. The test.rand_sleep function is also
useful for test cases where it is desirable to check the return from a large number of
Minions, with the return process spread out.

test.version
In a large enough infrastructure, a number of Minions are bound to be running
in a different version of Salt than others. When troubleshooting issues specific to
certain versions of Salt, it helps to be able to take a quick look at the Salt version on
each Minion. This is the simplest way to check that. Checking the version of other
packages that are maintained by the system packaging system can be performed
with pkg.version.

Reviewing a Few Essentials

[8]

pkg.install
Every package manager in Salt (as of version 2015.5) supports installing a package.
This function can be as simple as asking for a single package name, or as complex
as passing through a list of packages, each with a specific version. When using an
execution module, you generally do not need to specify more than just a single
package name, but inside the State module (covered later) the advanced functionality
becomes more important.

pkg.remove
This matches the pkg.install function, allowing a certain package to be removed.
Because versions are not so important when removing packages, this function
doesn't get so complex. But it does allow passing a list of packages to be removed
(using the pkgs argument) as a Python list. From the command line, this can be done
using a JSON string.

file.replace
The sed command is one of the oldest members of the Unix administrator's toolkit.
It has been the go-to command largely for tasks that involve editing files in-line,
and performing search and replace tasks. There have been a few attempts over the
years to duplicate the functionality of the sed command. Initially, the file.sed
function simply wrapped the Unix sed command. The file.psed function provided
a Python-based replacement. However, sed is more than just a find/replace tool; it
is a full language that can be problematic when used incorrectly. The file.replace
function was designed from the ground up to provide the find/replace functionality
that most users need, while avoiding the subtle nuances that can be caused by
wrapping sed.

Other file functions
A number of common Unix commands have been added to the file function. The
following functions complement the Unix command set for managing files and their
metadata: file.chown, file.chgrp, file.get_mode, file.set_mode, file.link,
file.symlink, file.rename, file.copy, file.move, file.remove, file.mkdir,
file.makedirs, file.mknod, and a number of others.

Various user and group functions
The Unix toolset for managing users and groups is also available in Salt and includes
user.add, user.delete, user.info, group.add, group.delete, group.info,
user.chuid, user.chgid, user.chshell, user.chhome, user.chgroups, and many,
many more.

Chapter 1

[9]

sys.doc
By design, every public function in every execution module must be self-
documenting. The documentation that appears at the top of the function should
contain a description just long enough to describe the general use of the function,
and must include at least one CLI example demonstrating the usage of that function.

This documentation is available from the Minion using the sys.doc function. Without
any arguments, it will display all the functions available on a particular Minion. Adding
the name of a module will show only the available functions in that module, and
adding the name of a function will show only the documentation for that function, if it
is available. This is an extremely valuable tool, both for providing simple reminders of
how to use a function and for discovering which modules are available.

SLS file trees
There are a few subsystems in Salt that use an SLS file tree. The most common one
of course is /srv/salt/, which is used for Salt States. Right after States are Pillars
(/srv/pillar/), which use a different file format but the same directory structure.
Let's take a moment to talk about how these directories are put together.

SLS files
SLS stands for SaLt State, which was the first type of file inside Salt to use this kind
of file structure. While they can be rendered in a number of different formats, by far
the widest use is the default, YAML. Various templating engines are also available
to help form the YAML (or other data structure) and again, the most popular is the
default, Jinja.

Keep in mind that Salt is all about data. YAML is a serialization format that in
Python, represents a data structure in a dictionary format. When thinking about
how SLS files are designed, remember that they are a key/value pair: each item has
a unique key, which is used to refer to a value. The value can in turn contain a single
item, a list of items, or another set of key/value pairs.

The key to a stanza in an SLS file is called an ID. If no name inside the stanza is
explicitly declared, the ID is copied to the name. Remember that IDs must be globally
unique; duplicate IDs will cause errors.

Reviewing a Few Essentials

[10]

Tying things together with top files
Both the State and the Pillar system use a file called top.sls to pull the SLS files
together and serve them to the appropriate Minions, in the appropriate environments.

Each key in a top.sls file defines an environment. Typically, a base environment
is defined, which includes all the Minions in the infrastructure. Then other
environments are defined that contain only a subset of the Minions. Each
environment includes a list of the SLS files that are to be included. Take the following
top.sls file:

base:
 '*':
 - common
 - vim
qa:
 '*_qa':
 - jenkins
web:
 'web_*':
 - apache2

With this top.sls, three environments have been declared: base, qa, and web. The
base environment will execute the common and vim States across all Minions. The
qa environment will execute the jenkins State across all the Minions whose ID
ends with _qa. The Web environment will execute the apache2 State across all the
Minions whose ID starts with web_.

Organizing the SLS directories
SLS files may be named either as an sls file themselves (that is, apache2.sls) or as
an init.sls file inside a directory with the SLS name (that is, apache2/init.sls).

Note that apache2.sls will be searched for first; if it is
not there, then apache2/init.sls will be used.

SLS files may be hierarchical, and there is no imposed limit on how deep directories
may go. When defining deeper directory structures, each level is appended to the
SLS name with a period (that is, apache2/ssl/init.sls becomes apache2.ssl).
It is considered best practice by developers to keep a directory more shallow; don't
make your users search through your SLS tree to find things.

Chapter 1

[11]

Using States for configuration
management
The files inside the /srv/salt/ directory define the Salt States. This is a
configuration management format that enforces the State that a Minion will be in:
package X needs to be installed, file Y needs to look a certain way, service Z
needs to be enabled and running, and so on. For example:

apache2:
 pkg:
 - installed
 service:
 - running
 file:
 - name: /etc/apache2/apache2.conf

States may be saved in a single SLS file, but it is far better to separate them into
multiple files, in a way that makes sense to you and your organization. SLS files can
use include blocks that pull in other SLS files.

Using include blocks
In a large SLS tree, it often becomes reasonable to have SLS files include other
SLS files. This is done using an include block, which usually appears at the top
of an SLS file:

include:
 - base
 - emacs

In this example, the SLS file in question will replace the include block with the
contents of base.sls (or base/init.sls) and emacs.sls (or emacs/init.sls).
This imposes some important restrictions on the user. Most importantly, the SLS
files that are included may not contain IDs that already exist in the SLS file that
includes them.

It is also important to remember that include itself, being a top-level declaration,
cannot exist twice in the same file. The following is invalid:

include:
 - base
include:
 - emacs

www.allitebooks.com

http://www.allitebooks.org

Reviewing a Few Essentials

[12]

Ordering with requisites
State SLS files are unique among configuration management formats in that they are
both declarative and imperative. They are imperative, as each State will be evaluated
in the order in which it appears in the SLS file. They are also declarative because
States may include requisites that change the order in which they are actually
executed. For instance:

web_service:
 service.running:
 - name: apache2
 - require:
 - pkg: web_package
web_package:
 pkg.installed:
 - name: apache2

If a service is declared, which requires a package that appears after it in the SLS file,
the pkg States will be executed first. However, if no requirements are declared, Salt
will attempt to start the service before installing the package, because its codeblock
appears before the pkg codeblock. The following will require two executions to
complete properly:

web_service:
 service.running:
 - name: apache2
web_package:
 pkg.installed:
 - name: apache2

Requisites point to a list of items elsewhere in the SLS file that affect the behavior of
the State. Each item in the list contains two components: the name of the module and
the ID of the State being referenced.

The following requisites are available inside Salt States and other areas of Salt that
use the State compiler.

require
The require requisite is the most basic; it dictates that the State that it is declared in
is not executed until every item in the list that has been defined for it has executed
successfully. Consider the following example:

apache2:
 pkg:
 - installed

Chapter 1

[13]

 - require
 - file: apache2
 service:
 - running
 - require:
 - pkg: apache2
 file:
 - managed
 - name: /etc/apache2/apache2.conf
 - source: salt://apache2/apache2.conf

In this example, a file will be copied to the Minion first, then a package installed,
then the service started. Obviously, the service cannot be started until the package
that provides it is installed. But Debian-based operating systems such as Ubuntu
automatically start services the moment they're installed, which can be problematic
if the default configuration files aren't correct. This States will ensure that Apache is
properly configured before it is even installed.

watch
In the preceding example, a new Minion will be properly configured the first time.
However, if the configuration file changes, the apache2 service will need to be
restarted. Adding a watch requisite to the service will force that State to perform a
specific action when the State that it is watching reports changes.

apache2:
 ...SNIP...
 service:
 - running
 - require:
 - pkg: apache2
 - watch:
 - file: apache2
 ...SNIP...

The watch requisite is not available for every type of State module. This is because
it performs a specific action, depending on the type of module. For instance, when a
service is triggered with a watch, Salt will attempt to start a service that is stopped.
If it is already running, it will attempt either a service.reload, service.full_
restart, or service.restart, as appropriate.

As of version 2015.5, the following States modules support using the watch requisite:
service, cmd, event, module, mount, supervisord, docker, tomcat, and test.

Reviewing a Few Essentials

[14]

onchanges
The onchanges requisite is similar to watch, except that it does not require any
special support from the State module that is using it. If changes happen, which
should only occur when a State completes successfully, then the list of items
referred to with onchanges will be evaluated.

onfail
In a simple State tree, the onfail requisite is less commonly used. However, a more
advanced State tree, which is written to attempt alerting the user, or to perform auto-
correcting measures, can make use of onfail. When a State is evaluated and fails
to execute correctly, every item listed under onfail will be evaluated. Assuming
that the PagerDuty service is properly configured via Salt and an apache_failure
State has been written to use it, the following State can notify the operations team if
Apache fails to start:

apache2:
 service:
 - running
 - onfail
 - pagerduty: apache_failure

use
It is possible to declare default values in one State and then inherit them into another
State. This typically occurs when one State file has an include statement that refers
to another file.

If an item in the State that is being used has been redeclared, it will be overwritten
with the new value. Otherwise, the item that is being used will appear unchanged.
Requisites will not be inherited with use; only non-requisite options will be
inherited. Therefore, in the following SLS, the mysql_conf State will safely inherit
the user, group, and mode from the apache2_conf State, without also triggering
Apache restarts:

apache2_conf:
 file:
 - managed
 - name: /etc/apache2/apache2.conf
 - user: root
 - group: root
 - mode: 755
 - watch_in:
 - service: apache2

Chapter 1

[15]

mysql_conf:
file:
 - managed
 - name: /etc/mysql/my.cnf
 - use:
 - file: apache2_conf
 - watch_in:
 - service: mysql

prereq
There are some situations in which a State does not need to run, unless another State
is expected to make changes. For example, consider a Web application that makes
use of Apache. When the codebase on a production server changes, Apache should
be turned off, so as to avoid errors with the code that has not yet finished being
installed.

The prereq requisite was designed exactly for this kind of use. When a State makes
use of prereq, Salt will first perform a test run of the State to see if the items referred
to in the prereq are expected to make changes. If so, then Salt will flag the State with
the prereq as needing to execute.

apache2:
 service:
 - running
 - watch:
 - file: codebase
codebase:
 file:
 - recurse
...SNIP...
shutdown_apache:
 service:
 - dead
 - name: apache2
 - prereq:
 - file: codebase

In the preceding example, the shutdown_apache State will only make changes if
the codebase State reports that changes need to be made. If they do, then Apache
will shutdown, and then the codebase State will execute. Once it is finished, it will
trigger the apache2 service State, which will start up Apache again.

Reviewing a Few Essentials

[16]

Inverting requisites
Each of the aforementioned requisites can be used inversely, by adding _in at the
end. For instance, rather than State X requiring State Y, an SLS can be written so that
State X declares that it is required by State Y, as follows:

apache2:
 pkg:
 - installed
 - require_in:
 - service: apache2
 service:
 - running

It may seem silly to add inverses of each of the States but there is in fact a very good
use case for doing so: include blocks.

SLS files cannot use requisites that point to a code that does not exist inside them.
However, using an include block will cause the contents of other SLS files to appear
inside the SLS file. Therefore, generic (but valid) configuration can be defined in one
SLS file, included in another, and modified to be more specific with a use_in requisite.

Extending SLS files
In addition to an include block, State SLS files can also contain an extend block that
modifies SLS files that appear in the include block. Using an extend block is similar
to a use requisite, but there are some important differences.

Whereas a use or use_in requisite will copy defaults to or from another State, the
extend block will only modify the State that has been extended.

cat /srv/generic_apache/init.sls)
apache2_conf:
 file:
 - managed
 - name: /etc/apache2/apache2.conf
 - source: salt://apache2/apache2.conf
(In django_server/init.sls)
include:
- generic_apache
extend:
 apache2_conf:
 - file:
 - source: salt://django/apache2.conf
(In image_server/init.sls)

Chapter 1

[17]

include:
 - generic_apache
extend:
 apache2_conf:
 - file:
 - source: salt://django/apache2.conf

The preceding example makes use of a generic Apache configuration file, which will
be overridden as appropriate for either a Django server or a Web server that is only
serving images.

The basics of Grains, Pillars, and
templates
Grains and Pillars provide a means of allowing user-defined variables to be used in
conjunction with a Minion. Templates can take advantage of those variables to create
files on a Minion that are specific to that Minion.

Before we get into details, let me start off by clarifying a couple of things: Grains
are defined by the Minion which they are specific to, while Pillars are defined on
the Master. Either can be defined statically or dynamically (this book will focus on
static), but Grains are generally used to provide data that is unlikely to change, at
least without restarting the Minion, while Pillars tend to be more dynamic.

Using Grains for Minion-specific data
Grains were originally designed to describe the static components of a Minion, so
that execution modules could detect how to behave appropriately. For instance,
Minions which contain the Debian os_family Grain are likely to use the apt suite of
tools for package management. Minions which contain the RedHat os_family Grain
are likely to use yum for package management.

A number of Grains will automatically be discovered by Salt. Grains such as os, os_
family, saltversion, and pythonversion are likely to be always available. Grains such as
shell, systemd, and ps are not likely to be available on, for instance, Windows Minions.

Grains are loaded when the Minion process starts up, and then cached in memory.
This improves Minion performance, because the salt-minion process doesn't need to
rescan the system for every operation. This is critical to Salt, because it is designed to
execute tasks immediately, and not wait several seconds on each execution.

To discover which Grains are set on a Minion, use the grains.items function:

salt myminion grains.items

Reviewing a Few Essentials

[18]

To look at only a specific Grain, pass its name as an argument to grains.item:

salt myminion grains.item os_family

Custom Grains can be defined as well. Previously, static Grains were defined in the
Minion configuration file (/etc/salt/minion on Linux and some Unix platforms):

grains:
 foo: bar
 baz: qux

However, while this is still possible, it has fallen out of favor. It is now more common
to define static Grains in a file called Grains (/etc/salt/grains on Linux and some
Unix platforms). Using this file has some advantages:

•	 Grains are stored in a central, easy-to-find location
•	 Grains can be modified by the Grains execution module

That second point is important: whereas the Minion configuration file is designed to
accommodate user comments, the Grains file is designed to be rewritten by Salt as
necessary. Hand-editing the Grains file is fine, but don't expect any comments to be
preserved. Other than not including the Grains top-level declaration, the Grains file
looks like the Grains configuration in the Minion file:

foo: bar
baz: qux

To add or modify a Grain in the Grains file, use the grains.setval function:

salt myminion grains.setval mygrain 'This is the content of mygrain'

Grains can contain a number of different types of values. Most Grains contain only
strings, but lists are also possible:

my_items:
 - item1
 - item2

In order to add an item to this list, use the grains.append function:

salt myminion grains.append my_items item3

In order to remove a Grain from the grains file, use the grains.delval function:

salt myminion grains.delval my_items

Chapter 1

[19]

Centralizing variables with Pillars
In most instances, Pillars behave in much the same way as Grains, with one
important difference: they are defined on the Master, typically in a centralized
location. By default, this is the /srv/pillar/ directory on Linux machines. Because
one location contains information for multiple minions, there must be a way to target
that information to the minions. Because of this, SLS files are used.

The top.sls file for Pillars is identical in configuration and function to the top.sls
file for states: first an environment is declared, then a target, then a list of SLS files
that will be applied to that target:

base:
 '*':
 - bash

Pillar SLS files are much simpler than State SLS files, because they serve only as a
static data store. They define key/value pairs, which may also be hierarchical.

skel_dir: /etc/skel/
role: web
web_content:
 images:
 - jpg
 - png
 - gif
scripts:
 - css
 - js

Like State SLS files, Pillar SLS files may also include other Pillar SLS files.

include:
 - users

To view all Pillar data, use the pillar.items function:

salt myminion pillar.items

Take note that, when running this command, by default the Master's configuration
data will appear as a Pillar item called Master. This can cause problems if the Master
configuration includes sensitive data. To disable this output, add the following line
to the Master configuration:

pillar_opts: False

Reviewing a Few Essentials

[20]

This is also a good time to mention that, outside the master configuration data,
Pillars are only viewable to the Minion or Minions to which they are targeted. In
other words, no Minion is allowed to access another Minion's Pillar data, at least by
default. It is possible to allow a Minion to perform Master commands using the Peer
system, but that is outside the scope of this chapter.

Managing files dynamically with templates
Salt is able to use templates, which take advantage of Grains and Pillars, to make the
State system more dynamic. A number of other templating engines are also available,
including (as of version 2015.5) the following:

•	 jinja

•	 mako

•	 wempy

•	 cheetah

•	 genshi

These are made available via Salt's rendering system. The preceding list only
contains Renderers that are typically used as templates to create configuration files
and the like. Other Renderers are available as well, but are designed more to describe
data structures:

•	 yaml
•	 yamlex
•	 json
•	 msgpack
•	 py
•	 pyobjects
•	 pydsl

Finally, the following Renderer can decrypt GPG data stored on the Master, before
passing it through another renderer:

•	 gpg

By default, State SLS files will be sent through the Jinja renderer, and then the yaml
renderer. There are two ways to switch an SLS file to another renderer. First, if only
one SLS file needs to be rendered differently, the first line of the file can contain a
shabang line that specifies the renderer:

#!py

Chapter 1

[21]

The shabang can also specify multiple Renderers, separated by pipes, in the order in
which they are to be used. This is known as a render pipe. To use Mako and JSON
instead of Jinja and YAML, use:

#!mako|json

To change the system default, set the renderer option in the Master configuration file.
The default is:

renderer: yaml_jinja

It is also possible to specify the templating engine to be used on a file that created the
Minion using the file.managed State:

apache2_conf:
 file:
 - managed
 - name: /etc/apache2/apache2.conf
 - source: salt://apache2/apache2.conf
 - template: jinja

A quick Jinja primer
Because Jinja is by far the most commonly-used templating engine in Salt, we will
focus on it here. Jinja is not hard to learn, and a few basics will go a long way.

Variables can be referred to by enclosing them in double-braces. Assuming a Grain is
set called user, the following will access it:

The user {{ grains['user'] }} is referred to here.

Pillars can be accessed in the same way:

The user {{ pillar['user'] }} is referred to here.

However, if the user Pillar or Grain is not set, the template will not render properly.
A safer method is to use the salt built-in to cross-call an execution module:

The user {{ salt['grains.get']('user', 'larry') }} is referred to
here.
The user {{ salt['pillar.get']('user', 'larry') }} is referred to
here.

In both of these examples, if the user has not been set, then larry will be used as
the default.

www.allitebooks.com

http://www.allitebooks.org

Reviewing a Few Essentials

[22]

We can also make our templates more dynamic by having them search through
Grains and Pillars for us. Using the config.get function, Salt will first look inside
the Minion's configuration. If it does not find the requested variable there, it will
check the Grains. Then it will search Pillar. If it can't find it there, it will look inside
the Master configuration. If all else fails, it will use the default provided.

The user {{ salt['config.get']('user', 'larry') }} is referred to
here.

Code blocks are enclosed within braces and percent signs. To set a variable that is
local to a template (that is, not available via config.get), use the set keyword:

{% set myvar = 'My Value' %}

Because Jinja is based on Python, most Python data types are available. For instance,
lists and dictionaries:

{% set mylist = ['apples', 'oranges', 'bananas'] %}
{% set mydict = {'favorite pie': 'key lime', 'favorite cake': 'saccher
torte'} %}

Jinja also offers logic that can help define which parts of a template are used, and
how. Conditionals are performed using if blocks. Consider the following example:

{% if grains['os_family'] == 'Debian' %}
apache2:
{% elif grains['os_family'] == 'RedHat' %}
httpd:
{% endif %}
 pkg:
 - installed
 service:
 - running

The Apache package is called apache2 on Debian-style systems, and httpd on
RedHat-style systems. However, everything else in the State is the same. This
template will auto-detect the type of system that it is on, install the appropriate
package, and start the appropriate service.

Loops can be performed using for blocks, as follows:

{% set berries = ['blue', 'rasp', 'straw'] %}
{% for berry in berries %}
{{ berry }}berry
{% endfor %}

Chapter 1

[23]

Summary
Salt is designed first and foremost for remote execution. Most tasks in Salt are
performed as a type of remote execution. One of the most common types of remote
execution in Salt is configuration management, using States. Minion-specific data can
be declared in Grains and Pillars, and used in State files and templates.

With a basic foundation of Salt behind us, let's move on to the good stuff. In the next
chapter, we will dive into the internals of Salt, and discuss why and how Salt does
what it does.

[25]

Diving into Salt Internals
Now that we have covered the basic concepts, it's time to start looking at how Salt
works under the hood. In this chapter, we will:

•	 Discover how Salt manages configuration files
•	 Look at how the Renderer system works
•	 Discuss how the Loader system handles modules
•	 Explore the State compiler, which drives so much of Salt

With a more comprehensive understanding of the internals of Salt, you will be able
to craft configurations and States that take advantage of the architectural decisions
that inspired the design of Salt.

Understanding the Salt configuration
One of the basic ideas around the Salt configuration is that a configuration
management system should require as little configuration as possible. A concerted
effort has been made by the developers to assign defaults that will apply to as many
deployments as possible, while still allowing users to fine-tune the settings to their
own needs.

If you are just starting with Salt, you may not need to change anything. In fact,
most of the time the Master configuration will be exactly what is needed for a small
installation, while Minions will require almost no changes, if any.

Diving into Salt Internals

[26]

Following the configuration tree
By default, most operating systems (primarily Linux-based) will store the Salt
configuration in the /etc/salt/ directory. Unix distributions will often use the /usr/
local/etc/salt/ directory instead, while Windows uses the C:\salt\ directory.
These locations were chosen in order to follow the design most commonly used by the
operating system in question, while still using a location that was easy to make use of.
For the purpose of this book, we will refer to the /etc/salt/ directory, but you can
go ahead and replace it with the correct directory for your operating system.

There are other paths that Salt makes use of as well. Various caches are typically
stored in /var/cache/salt/, sockets are stored in /var/run/salt/, and State
trees, Pillar trees, and Reactor files are stored in /srv/salt/, /srv/pillar/, and
/srv/reactor/, respectively. However, as we will see later, in Exploring the SLS
directories section, these are not exactly configuration files.

Looking inside /etc/salt/
Inside the /etc/salt/ directory, there will generally be one of two files: Master
and Minion (both will appear if you treat your Master as a Minion). When the
documentation refers to Master configuration, it generally means the /etc/salt/
master file, and of course Minion configuration refers to the /etc/salt/minion file.
All configuration for these two daemons can technically go into their respective file.

However, many users find reasons to break out their configuration into smaller files.
This is often for organizational reasons, but there is a practical reason too: because
Salt can manage itself, it is often easier to have it manage smaller, templated files,
rather than one large, monolithic file.

Because of this, the Master can also include any file with a .conf extension, found
in the /etc/salt/master.d/ directory (and the Minion likewise in the minion.d/
directory). This is in keeping with the numerous other services that also maintain
similar directory structures.

Other subsystems inside Salt also make use of the .d/ directory structure. Notably,
Salt Cloud makes use of a number of these directories. The /etc/salt/cloud, /etc/
salt/cloud.providers, and /etc/salt/cloud.profiles files can also be broken
out into the /etc/salt/cloud.d/, /etc/salt/cloud.providers.d/, and /etc/
salt/cloud.profiles.d/ directories, respectively. Additionally, it is recommended
to store cloud maps in the /etc/salt/cloud.maps.d/ directory.

Chapter 2

[27]

While other configuration formats are available elsewhere in Salt, the format of
all of these core configuration files is YAML (except for cloud maps, which will be
discussed in Chapter 5, Taking Salt Cloud to the Next Level). This is by necessity; Salt
needs a stable starting point from which to configure everything else. Likewise, the
/etc/salt/ directory is hard-coded as the default starting point to find these files,
though that may be overridden using the --config-dir (or -C) option:

salt-master --config-dir=/other/path/to/salt/

Managing Salt keys
Inside the /etc/salt/ directory, there is also a pki/ directory, inside which is a
master/ or minion/ directory (or both). This is where the public and private keys
are stored.

The Minion will only have three files inside the /etc/salt/pki/minion directory:
minion.pem (the Minion's private RSA key), minion.pub (the Minion's public RSA
key), and minion_master.pub (the Master's public RSA key).

The Master will also keep its RSA keys in the /etc/salt/pki/master/ directory:
master.pem and master.pub. However, at least three more directories will also
appear in here. The minions.pre/ directory contains the public RSA keys for
Minions that have contacted the Master but have not yet been accepted. The
minions/ directory contains the public RSA keys for Minions that have been
accepted on the Master. And the minions_rejected/ directory will contain keys for
any Minion that has contacted the Master, but been explicitly rejected.

There is nothing particularly special about these directories. The salt-key command
on the Master is essentially a convenience tool for the user that moves public key
files between directories, as requested. If needed, users can set up their own tools to
manage the keys on their own, just by moving files around.

Exploring the SLS directories
As mentioned, Salt also makes use of other directory trees on the system. The most
important of these are the directories that store SLS files, which are, by default,
located in /srv/.

Of the SLS directories, /srv/salt/ is probably the most important. This directory
stores the State SLS files, and their corresponding top files. It also serves as the
default root directory for Salt's built-in file server. There will typically be a top.
sls file, and several accompanying .sls files and/or directories. The layout of this
directory was covered in more detail in Chapter 1, Reviewing a Few Essentials.

Diving into Salt Internals

[28]

A close second is the /srv/pillar/ directory. This directory maintains a copy of the
static pillar definitions, if used. Like the /srv/salt/ directory, there will typically
be a top.sls file and several accompanying .sls files and directories. But while
the top.sls file matches the format used in /srv/salt/, the accompanying .sls
files are merely collections of key/value pairs. While they can use Salt's Renderer
(discussed later in the The Renderer section), the resulting data does not need to
conform to Salt's State compiler (also discussed later in this chapter, in Plunging into
the State compiler section).

Another directory which will hopefully find its way into your arsenal is the /srv/
reactor/ directory. Unlike the others, there is no top.sls file in here. That is
because the mapping is performed inside the Master configuration instead of the top
system. However, the files in this directory do have a specific format, which will be
discussed in detail in Chapter 4, Managing Tasks Asynchronously.

Examining the Salt cache
Salt also maintains a cache directory, usually at /var/cache/salt/ (again, this may
differ on your operating system). As before, both the Master and the Minion have
their own directory for cache data. The Master cache directory contains more entries
than the Minion cache, so we'll jump into that first.

The Master job cache
Probably the first cache directory that you'll run across in every day use is the jobs/
directory. In a default configuration, this contains all the data that the Master stores
about the jobs that it executes.

This directory uses hashmap-style storage. That means that a piece of identifying
information (in this case, a job ID, or JID), has been processed with a hash algorithm,
and a directory or directory structure has been created using a part or all of the hash.
In this case, a split hash model has been used, where a directory has been created
using the first two characters of the hash, and another directory under it has been
created with the rest of the hash.

The default hash type for Salt is MD5. This can be modified by changing the
hash_type value in the Master configuration:

hash_type: md5

Keep in mind that the hash_type is an important value that should be decided upon
when first setting up a new Salt infrastructure, if MD5 is not the desired value. If
it is changed (say, to SHA1) after an infrastructure has been using another value
for a while, then any part of Salt that has been making use of it must be cleaned up
manually. The rest of this book will assume that MD5 is used.

Chapter 2

[29]

The JID is easy to interpret: it is a date and time stamp. For instance, a job ID of
20141203081456191706 refers to a job that was started on December 3, 2014, at
56 seconds and 191706 milliseconds past 8:14 AM. The MD5 of that JID would be
f716a0e8131ddd6df3ba583fed2c88b7. Therefore, the data that describes that job
would be located at the following path:

/var/cache/salt/master/jobs/f7/16a0e8131ddd6df3ba583fed2c88b7

In that directory, there will be a file called jid. This will of course contain the job ID.
There will also be a series of files with a .p extension. These files are all serialized
by msgpack.

Looking inside msgpack files
If you have checked out a copy of Salt from Git, this data is easy
to view. Inside the test/ directory in Salt's Git tree, there is a file
called packdump.py. This can be used to dump the contents of
the msgpack files to the console.

First, there is a a file called .minions.p (notice the leading dot), which contains a list
of Minions that were targeted by this job. This will look something like so:

[
 "minion1",
 "minion2",
 "minion3"
]

The job itself will be described by a file called .load.p:

{
 "arg": [
 ""
],
 "fun": "test.ping",
 "jid": "20141203081456191706",
 "tgt": "*",
 "tgt_type": "glob",
 "user": "root"
}

Diving into Salt Internals

[30]

There will also be one directory for each Minion that was targeted by that job and that
contains the return information for that job, for that Minion. Inside that directory will
be a file called return.p that contains the return data, serialized by msgpack. Assuming
that the job in question did a simple test.ping, the return will look like the following:

{
 "fun": "test.ping",
 "fun_args": [],
 "id": "minion1",
 "jid": "20141203081456191706",
 "retcode": 0,
 "return": true,
 "success": true
}

The Master-side Minion cache
Once Salt has started issuing jobs, another cache directory will show up, called
minions/. This directory will contain one entry per Minion, with cached data
about that Minion. Inside this directory are two files: data.p and mine.p.

The data.p file contains a copy of the Grains and Pillar data for that Minion.
A (shortened) data.p file may look like the following:

{
 "grains": {
 "biosreleasedate": "01/09/2013",
 "biosversion": "G1ET91WW (2.51)",
 "cpu_model": "Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz",
 "cpuarch": "x86_64",
 "os": "Ubuntu",
 "os_family": "Debian",
 },
 "pillar": {
 "role": "web"
 }
}

The mine.p file contains mine data. This is not covered in detail in this book but, in
short, a Minion can be configured to cache the return data from specific commands,
in the cache directory on the Master, so that other Minions can look it up. For
instance, if the output from test.ping and network.ip_addrs has been configured,
the contents of the mine.p file will look as follows:

{
 "network.ip_addrs": [
 "192.168.2.101"

Chapter 2

[31]

],
 "test.ping": true
}

The external file server cache
In a default installation, Salt will keep its files in the /srv/salt/ directory. However,
an external file server, by definition, maintains an external file store. For instance, the
gitfs external file server keeps its files on a Git server, such as GitHub. However, it
is incredibly inefficient to ask the Salt Master to always serve files directly from the
Git. So, in order to improve efficiency, a copy of the Git tree is stored on the Master.

The contents and layout of this tree will vary among the external file server modules.
For instance, the gitfs module doesn't store a full directory tree as one might see
in a normal Git checkout; it only maintains the information used to create that tree,
using whatever branches are available. Other external file servers, however, may
contain a full copy of the external source, which is updated periodically. The full
path to this cache may look like this:

/var/cache/salt/master/gitfs/

where gitfs is the name of the file server module.

In order to keep track of the file changes, a directory called hash/ will also exist
inside the external file server's cache. Inside hash/, there will be one directory per
environment (that is, base, dev, prod, and so on). Each of those will contain what
looks like a mirror image of the file tree. However, each actual file name will be
appended with .hash.md5 (or the appropriate hash name, if different), and the
contents will be the value of the checksum for that file.

In addition to the file server cache, there will be another directory called file_lists/
that contains one directory per enabled file server. Inside that directory will be one file
per environment, with a .p extension (such as base.p for the base environment). This
file will contain a list of files and directories belonging to that environment's directory
tree. A shortened version might look like this:

{
 "dirs": [
 ".",
 "vim",
 "httpd",
],
 "empty_dirs": [
],
 "files": [

www.allitebooks.com

http://www.allitebooks.org

Diving into Salt Internals

[32]

 "top.sls",
 "vim/init.sls",
 "httpd/httpd.conf",
 "httpd/init.sls",
],
 "links": []
}

This file helps Salt with a quick lookup of the directory structure, without having to
constantly descend into a directory tree.

The Minion-side proc/ directory
The Minion doesn't maintain nearly as many cache directories as the Master, but it
does have a couple. The first of these is the proc/ directory, which maintains the
data for active jobs on the Minion. It is easy to see this in action. From the Master,
issue a sleep command to a Minion:

salt myminion test.sleep 300 --async

This will kick off a process on the Minion which will wait for 300 seconds (5 minutes)
before returning True to the Master. Because the command includes the --async flag,
Salt will immediately return a JID to the user.

While this process is running, log into the Minion and take a look at the /var/
cache/salt/minion/proc/ directory. There should be a file bearing the name
of the JID. The unpacked contents of this file will look like the following:

{'arg': [300],
 'fun': 'test.sleep',
 'jid': '20150323233901672076',
 'pid': 4741,
 'ret': '',
 'tgt': 'myminion',
 'tgt_type': 'glob',
 'user': 'root'}

This file will exist until the job is completed on the Minion. If you'd like, you can see
the corresponding file on the Master. Use the hashutil.md5_digest function to find
the MD5 value of the JID:

salt myminion hashutil.md5_digest 20150323233901672076

Chapter 2

[33]

External modules
The other directory that you are likely to see on the Minion is the extmods/
directory. If custom modules have been synced to the Minion from the Master
(using the _modules, _states, etc. directories on the Master), they will appear here.

This is also easy to see in action. On the Master, create a _modules/ directory
inside /srv/salt/. Inside this directory, create a file called mytest.py, with the
following contents:

def ping():
 return True

Then, from the Master, use the saltutil module to sync your new module to a
Minion:

salt myminion saltutil.sync_modules

After a moment, Salt will report that it has finished:

myminion:
 - modules.mytest

Log into the Minion and look inside /var/cache/salt/minion/extmods/modules/.
There will be two files: mytest.py and mytest.pyc. If you look at the contents of
mytest.py, you will see the custom module that you created on the Master. You will
also be able to execute the mytest.ping function from the Master:

salt myminion mytest.ping
myminion:
 True

The Renderer
While the main Master and Minion configuration files must necessarily be stored
in YAML, other files in Salt can take advantage of the wealth of file formats that the
modern world of technology has to offer. This is because of the rendering system
built into Salt, which can take files of arbitrary formats and render them into a
structure that is usable by Salt.

Diving into Salt Internals

[34]

Rendering SLS files
By default, all SLS files in Salt are rendered twice: first through the Jinja templating
engine, and then through the PyYAML library. This provides some significant
advantages:

•	 Jinja provides a fast, powerful, and easy to understand and use templating
system that follows a Pythonic mindset, comfortable to many administrators.
It is particularly well-suited for managing YAML files.

•	 YAML has a very shallow learning curve, making it easy to learn and
understand. While it does support more complex syntax, such as parenthesis,
brackets, and braces (JSON is technically syntactically-correct YAML), it is
not required.

However, it was immediately apparent, even before any Renderers were written,
that there would be some dissent among users as to which formats were best suited
to their own environments.

•	 A popular alternative to YAML, which was already in common usage in
other software, is JSON. This format is more strict, making it somewhat
harder to read, and even more difficult to write correctly. However, because
JSON is more strict concerning how data is declared, a properly-formatted
JSON file is more accurate than YAML, and easier to parse safely.

•	 Mako was also an early addition to the Salt toolkit. While Jinja adds just
enough functionality to create a dynamic toolkit, Mako is designed to bring
the full power of Python to templates. This is especially popular with a
number of users in the DevOps community, who are known to mix code
with content in a number of innovative ways.

A primary design goal of Salt has always been to provide flexibility, and so the
Renderer system was designed to be pluggable in the same way as the other
components of Salt. While Jinja and YAML have been made the default, either or both
can be replaced and, if necessary, even more Renderers can be brought into the mix.

If your needs include changing the global Renderer from yaml_jinja, you can do so
in the Master configuration file:

renderer: json_mako

However, you should consider very carefully whether this is best. Keep in mind that
community examples, repositories, and formulae are generally kept in YAML, and if
any templating needs to be done, Jinja is usually used. This will affect how you deal
with the community or act as an enterprise customer on any support issues, and may
confuse any experienced Salt users that your company hires.

Chapter 2

[35]

That said, even with a standard base of Jinja + YAML, there are times when using a
different set of Renderers for a small subset of your SLS files is appropriate.

Render pipes
As previously mentioned, SLS files will be rendered using the configured default.
However, it is possible to change how a file is rendered by adding a shebang (also
known as, shabang) line to the top of the file. A file that is to be rendered only as
YAML will begin with the following line:

#!yaml

However, in the Salt world, this is generally impractical. Adding a templating
engine increases the power of an SLS file significantly. In order to use multiple
Renderers in a specific order, add them to the shabang line in the desired order,
separated by pipes:

#!jinja|yaml

This resembles the Unix method of piping smaller programs together, to create
larger, more functional programs. There is no imposed limit on how many Renderers
are piped together:

#!mako|pyobjects|jinja|yaml|json

However, this is pretty unrealistic. You will find that, in general, no more than two
Renderers need to be used. Indeed, too many Renderers will create a complexity that
is unreadable and unmaintainable. Use as many as are needed, and no more.

It is important to note that SLS files will ultimately result in a specific data structure.
The most accurate way to say this in simple terms is that the data generated by
SLS files must be usable by the msgpack serialization package. This is the format
used extensively throughout the various subsystems inside Salt (notably, the cache
system). A more detailed description of the resulting files will be explored later in
the chapter, in Plunging into the State compiler section as we uncover the mysteries of
the State compiler.

Serving templated files
SLS files are not the only files that can take advantage of the Renderer. Any file that is
served from an SLS file may also be rendered through a templating engine. These files
aren't as specific as SLS files, because they do not need to return a specific data format;
they only need to result in the arbitrary file contents that will be served by Salt.

Diving into Salt Internals

[36]

The most common usage of this is with the file.managed State. Adding a template
argument to this State will cause the file to be rendered accordingly:

/etc/httpd/conf/httpd.conf:
file.managed:
- source: salt://httpd/httpd.conf
- template: jinja

Because the templated file will not return data, Renderers that deal exclusively with
data are not available here. But while YAML, JSON, msgpack, and the various Python-
based Renderers are not available, Jinja, Mako, Cheetah, and the like can be used.

Understanding the Loader
The Loader system is at the heart of how Salt works. In a nutshell, Salt is a collection
of modules, tied together with the Loader. Even the transport mechanisms,
which enable communication between and define the Master, Minion, and Syndic
hierarchies make use of modules that are managed by the Loader.

Dynamic modules
Salt's Loader system is a bit unconventional. Traditionally, most software has been
designed to require all components that are supported to be installed. This is not
the case with every package, of course. The Apache Web Server is an example of
one project that supports a number of components that need not all be installed.
Debian-based operating systems manage Apache modules by providing their
modules-available/ and modules-enabled/ directories. RedHat-based systems
take a different approach: all components that are supported by Apache's httpd
package are required to be installed with it.

Making such a demand with Salt is beyond unrealistic. So many packages are
supported with the default installation of Salt, many of which compete with each
other (and some of which compete, in some ways, with Salt itself) that it could be
said that to build such a dependency tree into Salt would effectively turn Salt into its
own operating system.

However, even this is not entirely accurate. Because Salt supports a number of
different Linux distributions, in addition to several Unix flavors and even Windows,
it would be more accurate to say that installing every package that is supported by
Salt would effectively turn Salt into several mutually-exclusive operating systems.
Obviously, this is just not possible.

Chapter 2

[37]

Salt is able to handle this using multiple approaches. First, Grains (covered in Chapter
1, Reviewing a Few Essentials) provide critical information to Salt to help identify
the platform on which it is running. Grains such as os and os_flavor are used
often enough to help Salt know whether to use yum or apt to manage packages, or
systemd or upstart to manage services.

Each module is also able to check other dependencies on the system. The bulk of
Salt's apache module makes use of the apachectl command (or apache2ctl as
appropriate), so its availability is dependent upon whether or not that command
exists on the system.

This set of techniques enables Salt to appropriately detect, as the Minion process
starts, which modules to make available to the user.

A relatively new feature of Salt's Loader system is the ability to load modules on
demand. Modules that support the Lazy Loader functionality will not actually load
until requested by the user. This streamlines the start process for the Minion, and
makes more effective use of the available resources.

Execution modules
It has often been said that most of the heavy lifting in Salt is performed by the
execution modules. This is because Salt was designed originally as a remote
execution system, and most module types that have been added to the loader have
been designed to extend the functionality of remote execution.

For instance, State modules are designed with one purpose in mind: to enforce
the State of a certain aspect of a system. This could be to ensure that a package is
installed, or that a service is running. The State module itself doesn't install the
package or start the service; it calls out to the execution module to do so. A State
module's only job is to add idempotency to an execution module.

One could say that an important differentiator between runner modules and execution
modules is that runners are designed to be used from the Master, while execution
modules are designed to execute remotely on the Minion. However, runners were
actually designed with something more specific in mind. System administrators have
been using shell scripts for decades. From csh in Unix to bash in Linux, and even
batch files in DOS and Windows, this has been the long-running standard.

Runner modules were designed to allow Salt users to apply a scripting language to
remote executions. Because so many early Salt users were also Python users, it was
not generally difficult for them to use Python as their scripting language. As the Salt
user base grew, so too did the number of users who were not fluent in Python, but
the number of other options available for them also grew.

Diving into Salt Internals

[38]

Reactor modules (covered in detail in Chapter 4, Managing Tasks Asynchronously) are
a type of module that can pull together execution modules and runner modules,
and make them available to users with no programming experience. And because
Salt States are actually applied using the State execution module, even States are
available through Reactors.

Cloud modules
Cloud modules are not typically thought of by many people as Salt modules,
perhaps because Salt Cloud (covered extensively in Chapter 5, Taking Salt Cloud to the
Next Level) started as a project separate from Salt, but in fact they have always used
the Loader system. However, they do work a little differently.

Unlike many other modules in Salt, Cloud modules do not make use of execution
modules (although there is an execution module that makes use of the Salt Cloud).
This is in part because Salt Cloud was designed to run on the Salt Master. However,
it does not make use of runner modules either (though again, there is a runner
module that can make use of the Salt Cloud).

Salt Cloud's initial purpose was to create new VMs on various public cloud
providers, and automatically accept their keys on the Salt Master. However, it
quickly grew apparent that users wanted to control as many aspects of their cloud
providers as possible; not just VM creation.

Now Salt Cloud is able to perform any action that is available against a cloud
provider. Some providers support more functionality than others. In some cases,
this is because demand has not been presented, and in other cases because the
appropriate developer has not yet had the resources to make the addition. But often
it is because the features available on the provider itself may be limited. Whatever
the situation, if a feature is available, then it can be added and made available via the
Loader system.

Plunging into the State compiler
Salt was initially designed as a remote execution system that was to be used for
gathering data normally collected by monitoring systems, and storing it for later
analysis. However, as functionality grew, so too did a need to manage the execution
modules that were doing the heavy lifting. Salt States were born from this need and,
before long, the engine that managed them had expanded into other areas of Salt.

Chapter 2

[39]

Imperative versus declarative
A point of contention between various configuration management systems is the
concept of declarative versus imperative configurations. Before we discuss Salt's take
on the matter, let's take a moment to examine the two.

It may be easiest to think of imperative programming like a script: perform Task A
and, when it is finished, perform Task B; once that has finished, perform Task C. This
is what many administrators are used to, especially as it more closely resembles the
shell scripts that have been their lifelines for so many decades. Chef is an example of
a configuration management suite that is imperative in nature.

Declarative definition is a newer concept, and more representative of object
oriented programming. The basic idea is, the user declares which tasks need to
be performed, and the software performs them in whichever order it sees fit.
Generally, dependencies can also be declared that dictate that some tasks are not to
be completed until others are. Puppet is a well-known example of a configuration
management platform that is declarative in nature.

Salt is unique in that it supports both imperative ordering and declarative execution.
If no dependencies are defined then, by default, Salt will attempt to execute States in
the order in which they appear in the SLS files. If a State fails because it requires a task
that appears later, then multiple Salt runs will be required to complete all tasks.

However, if dependencies are defined, States will be handled differently. They will
still be evaluated in the order in which they appear, but dependencies can cause
them to be executed in a different order. Consider the following Salt State:

mysql:
 service:
 - running
 pkg:
 - installed
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf

In the first several versions of Salt that supported States, this would have been
evaluated lexicographically: the file would have been copied into place first, then the
package installed, then the service started, because in the English alphabet, F comes
before P, and P comes before S. Happily, this is also the order that is probably desired.

Diving into Salt Internals

[40]

However, the default ordering system now in Salt is imperative, meaning States will
be evaluated in the order in which they appear. Salt will attempt to start the mysql
service, which will fail because the package is not installed. It will then attempt
to install the mysql package, which will succeed. If this is a Debian-based system,
installation of the package will also cause the service to start, in this case without
the correct configuration file. Lastly, Salt will copy the my.cnf file into place, but
will make no attempt to restart the service to apply the correct changes. A second
State run will report success for all three States (the service is running, the package
is installed, and the file is managed as requested), but a manual restart of the mysql
service will still be required.

Requisites
To accommodate ordering issues caused by such issues, Salt uses requisites. These
will affect the order in which States are evaluated and executed. Consider the
following changes to the above salt State:

mysql:
 service:
 - running
 - require:
 - package: mysql
 - watch:
 - file: mysql
 pkg:
 - installed
 - require:
 - file: mysql
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf

Even though the States have been defined in an order that is not appropriate, they
will still be evaluated and executed correctly.

The following will be the order that will be defined:

1.	 service: mysql.
2.	 pkg: mysql.
3.	 file: mysql.

Chapter 2

[41]

However, the mysql service requires that the mysql package is executed first.
So, before executing the mysql service, it will look ahead and evaluate the mysql
package. But, since the mysql package requires the mysql file to be executed first, it
will jump ahead and evaluate the mysql file. Because the file State does not require
anything else, Salt will execute it. Having completed the list of requirements for the
pkg State, Salt will go back and execute it. And finally, having completed all service
requirements, Salt will go back and execute the service.

Following successful completion of the service State, it will move onto the next State
and see if it has already been executed. It will continue in this fashion until all States
have been evaluated and executed.

It is in this manner that Salt is able to be both imperative (by allowing statements
to be evaluated in the order in which they appear) and declarative (by allowing
statements to be executed based on requisites).

High and Low States
The concept of High State has proven to be one of the most confusing things about
Salt. Users understand that the state.highstate command performs a State run,
but what exactly is a "High State"? And does the presence of a High State mean that
there is a "Low State" as well?

There are two parts of the State system that are in effect. "High" data refers generally
to data as it is seen by the user. "Low" data refers generally to data as it is ingested
and used by Salt.

High States
If you have worked with State files, you have already seen every aspect of this part
of the State system. There are three specific components, each of which builds upon
the one before it:

•	 High data
•	 SLS file
•	 High State

Each individual State represents a piece of high data. If the previous SLS were
broken into individual States they would look like this, respectively (ignoring the
fact that duplicate top-level keys would comprise an invalid YAML file):

mysql:
 service:
 - running

www.allitebooks.com

http://www.allitebooks.org

Diving into Salt Internals

[42]

 - require:
 - pkg: mysql
 - watch:
 - file: mysql

mysql:
 pkg:
 - installed
 - require:
 - file: mysql

mysql:
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf

When combined together, along with other States they form an SLS file:

iptables:
 service:
 - running

mysql:
 service:
 - running
 - require:
 - package: mysql
 - watch:
 - file: mysql
 package:
 - installed
 - require:
 - file: mysql
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf

When these files are tied together using includes, and further glued together for use
inside an environment using a top.sls file, they form a High State.

top.sls
base:
 '*':
 - mysql
mysql.sls

Chapter 2

[43]

include:
 - iptables

mysql:
 service:
 - running
 - require:
 - package: mysql
 - watch:
 - file: mysql
 package:
 - installed
 - require:
 - file: mysql
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf
iptables.sls
iptables:
 service:
 - running

When the state.highstate function is executed, Salt will compile all relevant SLS
inside the top.sls, and any includes, into a single definition, called a High State.
This can be viewed by using the state.show_highstate function:

salt myminion state.show_highstate --out yaml

myminion:
 iptables:
 service:
 - running
 - order: 10000
 __sls__: iptables
 __env__: base
 mysql:
 service:
 - running
 - require:
 - pkg: mysql
 - watch:
 - file: mysql
 - order: 10001
 pkg:

Diving into Salt Internals

[44]

 - installed
 - require:
 - file: mysql
 - order: 10002
 file:
 - managed
 - source: salt://mysql/my.cnf
 - name: /etc/mysql/my.cnf
 - order: 10003
 __sls__: mysql
 __env__: base

Take note of the extra fields that are included in this output. First, an order is
declared. This is something that can be explicitly declared by the user in an SLS
file using either real numbers, or the first or last keywords. All States that are set
to be first will have their order adjusted accordingly. Numerically ordered States
will appear next. Salt will then add 10000 to the last defined number (which is 0 by
default), and add any States that are not explicitly ordered. Finally, any States set to
last will be added.

Salt will also add some variables that it uses internally, to know which environment
(__env__) to execute the State in, and which SLS file (__sls__) the State declaration
came from.

Remember that the order is still no more than a starting point; the actual High State
will be executed based first on requisites, and then on order.

Low States
Once the final High State has been generated, it will be sent to the State compiler.
This will reformat the State data into a format that Salt uses internally to evaluate
each declaration, and feed data into each State module (which will in turn call the
execution modules, as necessary). As with high data, low data can be broken into
individual components:

•	 Low State
•	 Low chunks
•	 State module
•	 Execution module(s)

Chapter 2

[45]

The low data can be viewed using the state.show_lowstate function:

salt myminion state.show_lowstate --out yaml

myminion:
- __env__: base
 __id__: iptables
 __sls__: iptables
 fun: running
 name: iptables
 order: 10000
 state: service
- __env__: base
 __id__: mysql
 __sls__: mysql
 fun: running
 name: mysql
 order: 10001
 require:
 - package: mysql
 state: service
 watch:
 - file: mysql
- __env__: base
 __id__: mysql
 __sls__: mysql
 fun: installed
 name: mysql
 order: 10002
 require:
 - file: mysql
 state: package
- __env__: base
 __id__: mysql
 __sls__: mysql
 fun: managed
 name: /etc/mysql/my.cnf
 order: 10003
 source: salt://mysql/my.cnf
 state: file

Together, all this comprises a Low State. Each individual item is a Low Chunk.
The first Low Chunk on this list looks like this:

- __env__: base
 __id__: iptables
 __sls__: iptables
 fun: running

Diving into Salt Internals

[46]

 name: iptables
 order: 10000
 state: service

Each low chunk maps to a State module (in this case, service) and a function
inside that State module (in this case, running). An ID is also provided at this level
(__id__). Salt will map relationships (that is, requisites) between States using a
combination of State and __id__. If a name has not been declared by the user, then
Salt will automatically use the __id__ as the name.

Once a function inside a State module has been called, it will usually map to one or
more execution modules which actually do the work. Let's take a moment to examine
what goes down when Salt gets to that point.

Enforcing statefulness
While execution modules are somewhat looser in definition, State modules are
necessarily more precise. Certain behaviors can always be expected of a State module:

•	 A State module will always require a name
•	 A State module will always return the following data structures:

°° name
°° result
°° changes
°° comment

In the case of monitoring States (covered in Chapter 9, Monitoring with Salt), a
dictionary called data will also be returned.

name
The name refers to the specific piece of information that is to be managed by the
State module. In the case of a service, it is the service's name, as recognized by that
Minion's service manager (that is, apache2). In the case of a file, it refers to the
full path on the Minion at which the file is to be located (that is, /etc/apache2/
apache2.conf).

When the State results are returned to the user, the name will be used to identify the
State that was evaluated.

Chapter 2

[47]

result
There are only three values that will ever be returned as a result: True, False,
and None.

A State that returns True is declaring that, following its execution, Salt believes that
the resource to be configured is as desired. This may be because the resource was
already properly configured, or because the State module successfully performed
the steps necessary to enforce the desired configuration.

A State that returns False is declaring that, following execution, Salt believes that
despite its attempts, the resource has not been configured as desired.

In a normal State run, no State will ever return None. This value is reserved for
State runs that have been executed in the test mode. This is also known as a dry run.
For example:

salt myminion state.highstate test=True

When a State run happens in the test mode, Salt will not allow changes to occur on
the system. If a resource is already configured as expected, it will still return True.
If Salt detects that changes are required in order to enforce a resource's State, it will
return None to notify the user.

changes
This is a list that will never be populated in the test mode, because it only reflects the
changes that have been applied to the system to bring it into compliance with the
requested configuration. This will only be populated if the result has been returned
as True. The contents of this list are dependent on the State module that
is executed.

comment
Regardless of whether or not changes were made to a system, or whether or not a State
was successful, the comment field should be populated to inform the user of additional
information, in a more human-readable format, that may be helpful to them.

Following any kind of State run, each individual State will return all of these fields.
After all the information, a tally of successes and failures will appear, including a tally
of how many changes were made. A successful State tree will require no more than
one State run. When issues arise, a combination of these fields will be incredibly useful.

Diving into Salt Internals

[48]

Summary
We have discussed how Salt manages its own configuration, as well as the Loader
and Renderer systems. We have also gone into significant details about how the State
system works.

Now that we have a solid understanding of how Salt works under the hood, we can
dive into some of the more powerful components.

Next up, we'll use Salt to take advantage of the system administrator's long-time
friend: SSH.

[49]

Exploring Salt SSH
Salt introduced the powerful concept of using message queues as a communication
transport mechanism. There are times when the old tools just make sense. However,
there's no reason not to give them a kick in the seat of their pants when necessary.
This is why Salt SSH was created. In this chapter, we'll cover the following topics:

•	 Using rosters
•	 Building dynamic rosters
•	 Understanding the salt-thin agent
•	 Using the raw SSH mode

Grappling with SSH
SSH is in fact based on very different concepts than the primary architecture of Salt.
Salt was designed to communicate with large numbers of remote machines at once;
SSH was designed to interact with only one at a time. Let's take a few minutes to
examine some of the differences between Salt and SSH.

Remote shells
Let's take a step back in time to when the Internet wasn't around yet and the
ARPANET was brand new. To accompany this new concept to nationally and
globally-interconnected networks, a series of new protocols were introduced. Telnet,
a communication mechanism to take advantage of them, was also introduced.
Internet protocols were based on telnet, including a remote shell.

Exploring Salt SSH

[50]

As security needs grew, so did the need to secure telnet. SSH was born; eventually,
the OpenSSH project was broadly shipped and supported by a number of Unix-
based platforms. While SSH means Secure Shell, it was in fact designed to secure
tunnel applications that had traditionally communicated with telnet. The default
application was a shell, replacing traditional telnet and its kin, but many, many more
possibilities also existed.

With all of this in mind, it makes sense that developers and administrators would
be so used to their shell-based remote administration tools. SSH offers security, a
reasonably (but not completely) consistent platform between remote systems, and a
familiar environment to work in. It was never designed to handle communications
between multiple machines.

A number of solutions were available to address this situation. SSH password agents
and passwordless SSH keys, along with with the power of shell scripts, comprised
the bulk of the solutions for years. One particular tool called ClusterSSH allowed
multiple login windows to accept input from a single location and relay it across all
connections. Also, before long, the entire remote execution platforms built-in SSH
will be introduced.

Salt SSH was not the first of these. It was released by SaltStack to accommodate the
needs of some of their users, who enjoyed the principles behind the Salt framework
but had a need to use SSH in an automated fashion to manage some of their systems.

Using rosters
Salt was originally designed to operate without the traditional database that many of
its forefathers used to store remote system configuration. As its message bus could
retrieve information directly from remote machines, often faster than a database
lookup, the need for a database was minimalized.

As Minions connect to the Master, and not the other way around, in a traditional
Salt infrastructure, the Master did not even have a need to store the network and
host configuration for the Minions. The game changes when dealing with SSH-based
connections because the Master necessarily connects to its minions via SSH.

Rosters were introduced as a means for Salt SSH to keep track of the host
information. The default roster, which uses flat text files, is enough to get the job
done. More dynamic rosters add vast depths of power.

Chapter 3

[51]

The flat roster
As its name suggests, this roster uses a flat file. This is normally stored as /etc/
salt/roster), but can be changed with the –roster-file option:

salt-ssh --roster-file=/etc/salt/altroster myminion test.ping

At its most basic level, this file needs to contain only two pieces of information:
the name of a Minion and a network address (IP or hostname) through which this
Minion is reached:

(In /etc/salt/roster)

dufresne: 10.0.0.50
adria: 10.0.19.80
achatz: 10.0.200.5
blumenthal: 10.0.19.95

However, more information can be added as required:

(In /etc/salt/roster)

dufresne:
 host: 10.0.200.3
 user: wd50
adria:
 host: 10.0.19.80
 passwd: bulli
achatz:
 host: 10.0.200.5
 priv: /root/alinea.pem
blumenthal:
 host: 10.0.19.95
 sudo: True

As of version 2015.5, the options supported in a flat roster file are:

host
This can be an IP address or a hostname address. It should contain only the address
and no other information, such as protocol, port, and so on.

port
This is normally Port 22, the SSH default. In nonstandard installations, this value can
be changed as appropriate.

Exploring Salt SSH

[52]

user
This will default to the user running the salt-ssh client, which is normally root.
As system administration tasks are often carried out using the root user, this is
generally okay. If the username differs, add this field.

If there is a need to run different tasks as different users on the same machine, it may
be useful to create separate roster entries for each user.

passwd
If using password authentication, then this is the password to use. This is normally
discouraged because this file is plain text and viewable by anyone with appropriate
permissions. If passwords are unavoidable in a roster file, then the read permissions
on the file should be restricted to the very least.

This option can be avoided by specifying the password from the command line with
the --passwd option:

salt-ssh --passwd=verybadpass myminion test.ping

Alternately, Salt SSH can prompt the user for the password, eliminating the need for
a plain text password to ever appear on screen:

salt-ssh --askpass myminion test.ping

This should only be required on the first execution. Salt will ask whether or not it
should set up its own access key for future commands (see the priv option).
If allowed, subsequent commands will just use Salt's own SSH key instead of the
user password.

sudo
In a situation where a privileged command must be performed by an unprivileged
user, the sudo option should be set to True. The default is False. As of version
2015.5, the user specified must be set to not require a password. This can be
accomplished by editing the sudoers file (normally, /etc/sudoers is editable with
the visudo command) and adding the NOPASSWD flag to a user's entry:

heston ALL=(ALL) NOPASSWD: ALL

priv
In a situation where a private key is required to access a Minion, this will specify the
path to a user-defined private key. If no such key is defined, then Salt will create one.
Usually, the default location is /etc/salt/pki/ssh/salt-ssh.rsa.

Chapter 3

[53]

timeout
This is the number of seconds to wait for an SSH connection to be established.
The default is 60.

thin_dir
This is the directory on the target Minion in which Salt's thin agent will be installed.
This agent is discussed in more detail later in the chapter, in the Understanding the
salt-thin agent section.

Other built-in rosters
A number of other rosters ship with Salt, which allows a much more dynamic means
of identifying hosts and their connection parameters. To use a different roster than
the standard flat file, add the --roster option to salt-ssh:

salt-ssh --roster=cloud myminion test.ping

As of version 2015.5, the following rosters also ship with Salt.

scan
This was the first dynamic roster to ship with Salt SSH. It directs the client to attempt
to log in to a range of IP addresses in order to issue the requested command. This
roster is unique in that it does not make use of a Minion ID; the IP address that is
generated in the scan is used, instead.

The following command will scan a small subnet and return True for each IP address
that is able to answer:

salt-ssh --roster=scan 10.0.0.0/24 test.ping

There are some considerations that should be kept in mind when working with the
scan roster. First of all, all the connection information (aside from the IP address)
needs to be the same across all hosts. The exception to this is SSH keys that have
already been established and stored in an SSH key agent, if applicable.

However, there are security concerns with using preexisting SSH keys. Consider a
scenario where you have deployed your public key across your entire infrastructure.
Believing your network to be secure, you assume that any machine that is accessible
via your key belongs to you and can be trusted. However, your key, public as it is,
is acquired by an attacker in your network, who proceeds to set up a bogus Minion
with it. As you issue what you believe to be secure commands using the scan roster,
which may include sensitive data, their Minion is busy collecting this data.

Exploring Salt SSH

[54]

This is not an attack vector unique to Salt SSH. This attack was in use long before
automated SSH tools hit the market; users have been falling prey to it for years.
Rather than using the scan roster to issue sensitive commands, it should be used
only for network discovery.

There are two specific options that can be used with the scan roster. The --scan-ports
option accepts a comma-separated list of ports to attempt to log in to the target minion.
The default is 22. As this may be seen as a form of port scanning in some organizations,
be sure to check your security policy before using this option. The --scan-timeout
option can also specify a time-out for the scanning process. The default is 0.01, which
translates to 10ms.

cache
While Salt was not initially designed to use a database, some optimizations have
since been added that accomplish many of the same goals. In particular, the Grains
for each Minion are cached by default on the Master. As IPv4 addresses are among
the data stored with the Grains, the cache roster takes advantage of it to obtain
IP addresses for Minions that have already been accessed via another transport
mechanism, such as Salt's ZMQ-based transport.

This can be useful when troubleshooting a machine on which the salt-minion client
was previously installed, but is now no longer responding. So long as the IP address
has not changed, the cache roster can look it up with the following command:

salt-ssh --roster cache myminion service.start salt-minion

As of version 2015.5, the limitations for this roster are similar to the scan roster. The
user will default to whichever user is issuing the salt-ssh command. Also, if SSH
keys are not established or specified with --priv, passwords must be supplied with
either --passwd or --askpass.

The cache roster only supports IPv4 addresses. However, it can differentiate between
local (127.0.0.0/8), private (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16),
and public (everything else) addresses. It can also be configured to prefer one
type over another. This is done with the roster_order option in the master
configuration. The default is:

roster_order:
 - public
 - private
 - local

Chapter 3

[55]

cloud
The cloud roster is similar to the cache roster, but there are some differences. As
with Salt, Salt Cloud caches information by default about Minions that it creates. The
difference is that minions created with Salt Cloud don't need to have a connection
established with the Salt Master in order to have their IP address cached; since
the host name was required to run the deploy process in the first place, Salt Cloud
already knows what it is and caches it.

Keep in mind, that if a minion that was created with Salt Cloud reboots, then the
IP address will likely change, unless it is specifically configured not to. However,
issuing a full query (covered in Chapter 5, Taking Salt Cloud to the Next Level) will
refresh this data. Therefore, the cloud roster may be able to obtain the IP information
that is otherwise not accessible to the cache roster.

salt-ssh --roster cloud myminion service.start salt-minion

The cloud roster also has the ability to borrow authentication information (SSH keys,
passwords, and so on) from the provider or profile configuration that was used
to create the Minion. So long as this information has not changed, it should not be
necessary to specify that information again.

Like the cache roster, the cloud roster supports the roster_order option in the
Master configuration with the same defaults.

ansible
A notable SSH automation platform is the Ansible product. This program has seen
widespread adoption (especially among developers) because of its ease of use and
its abundant suite of tools. Many users of Ansible have found a need to use both Salt
and SSH to manage their machines. Other users have decided to switch altogether.

Rather than rosters, Ansible uses inventories to maintain the host information. The
ansible roster allows Salt SSH to natively use Ansible inventories instead of roster
files to obtain the host information.

As a path to an Ansible inventory must be specified, the --roster-file option is
used in conjunction with this roster:

salt-ssh --roster ansible --roster-file /etc/salt/hosts myminion test.
ping

Exploring Salt SSH

[56]

Building dynamic rosters
There is no reason to restrict yourself to the rosters that ship with Salt. As with
Pillars, any external source that can provide the appropriate data can be used. In the
case of rosters, the appropriate data should look like the data that is stored in flat
roster files.

Consider the following entry from a flat roster file:

myminion:
 host: 10.0.11.38
 user: larry
 password: 5700g3z43v4r

If you have a data source that provides this data, then you can plug the data in it. In
fact, if you have a command that outputs this data, for instance in YAML, then you
can easily write a roster that wraps this command.

import yaml
def targets(tgt, tgt_type='glob', **kwargs):
 return yaml.safe_load(__salt__['cmd.run']('cat /etc/salt/roster'))

This is almost identical to the code used in the cmd_yaml external Pillar, but it can
be adapted for use with rosters. Even if you don't know Python, the preceding code
can easily be changed to wrap your own custom commands, even those written in a
different language.

Using Salt SSH
We've spent some time discussing how to configure Minions using rosters. Let's take
a few minutes to discuss some basic usage.

The salt-ssh command is very similar to the salt command in usage. A target is
provided, followed by a module and function, which is optionally followed by any
arguments for the function. Targets can be specified in the same way as with the
salt command, although not as many target types are supported. As of version
2015.5, the following target types are supported by Salt SSH:

•	 Glob (the default)
•	 Perl Compatible Regular Expression (-E or --pcre)
•	 List (-L or --list)
•	 Grain (-G or --grain)
•	 Nodegroup (-N or --nodegroup)
•	 Range (-R or --range)

Chapter 3

[57]

Using a target type is the same as with the salt command:

salt-ssh -G 'os:Ubuntu' test.ping

All the outputters available in the salt command are also available and accessed the
same way. The command to access the outputters is as follows:

salt-ssh myminion grains.items --out json

Other options are unique to Salt SSH. For instance, in order to target by Grain, the
Master needs to have a copy of the Minion's Grain data in its cache. This can be done
using the --refresh flag:

salt-ssh --refresh myminion test.ping

Using a Saltfile
If a number of options are commonly used with Salt SSH, it can become cumbersome
to type all of them. Fortunately, a Saltfile can be used to automate adding these
options. This is a YAML file that can contain any number of options that are
normally passed on the command line. The following is a snippet from the Saltfile:

salt-ssh:
 max_procs: 15
 wipe_ssh: True

This file is normally called Saltfile. If it is present in the current working
directory when the salt-ssh command is issued, it will be used. The salt-ssh
command can also point directly to a Saltfile in another directory, as shown
in the following code:

salt-ssh --saltfile=/etc/salt/Saltfile myminion test.ping

If you have a global Saltfile that you want to use everywhere, you can create
a shortcut that as well with an alias (if your shell supports it):

alias salt-ssh='salt-ssh –saltfile=/etc/salt/Saltfile'

You can also set an environment variable called SALT_SALTFILE:

export SALT_SALTFILE=/etc/salt/Saltfile

The following options and their command-line equivalents are available in a Salt
SSH Saltfile:

•	 raw_shell (-r, --raw, --raw_shell)
•	 roster (--roster)
•	 roster_file (--roster-file)

Exploring Salt SSH

[58]

•	 refresh_cache (--refresh, --refresh-cache)
•	 max_procs (--max-procs)
•	 extra_filerefs (--extra-filerefs)
•	 wipe_ssh (-w, --wipe)
•	 ssh_priv (--priv)
•	 ignore_host_keys (-i, --ignore-host-keys)
•	 ssh_user (--user)
•	 ssh_passwd (--passwd)
•	 ssh_askpass (--askpass)
•	 ssh_key_deploy (--key-deploy)
•	 ssh_scan_ports (--scan-ports)
•	 ssh_scan_timeout (--scan-timeout)

Salt versus Salt SSH
In its default mode, Salt SSH is designed to behave (as far as the user is concerned)
exactly like the salt command. Minions can be targeted just like the salt command,
modules are made available exactly the same way across Minions, arguments are
specified the same way, and output is displayed in exactly the same way. However,
there are some differences.

Architecture
The primary difference between the standard salt command and the salt-
ssh command is how the communication is architected based on the transport
mechanism. The salt command uses a message queue, whereas the salt-ssh
command (of course) uses SSH.

Think of the message queue like a television station. All of your Minions are watching
the television and waiting for instruction. As tasks are issued, they will be broadcast
to the Minions along with information on who should perform them. When a Minion
finishes a task, it will return the result to the master along a similar queue. The
transmission from master to Minions is a one-to-many communication, whereas the
transmission back is a many-to-one communication. In fact, since the Master makes
use of its own group of local workers to receive responses, the transmission back
really is more of a many-to-"not-quite as-many" connection.

Chapter 3

[59]

SSH is more like a telephone line, in that it is designed for a one-to-one
communication. Individual Minions listen for their phone to ring, and when a call
comes in with a task, they can execute it and return a result immediately. The more
Minions required to perform tasks, the more phone calls must be made. The Master
can use local workers to set up multiple concurrent connections, much like a call
center, but each task must still be relayed individually.

Performance
Another difference is performance. Salt SSH is very fast, but it has some overhead,
some of which is consistent with SSH in general. The following actions are
performed in addition to what Salt already does:

•	 Building and deploying the salt-thin agent
•	 Building and deploying the States tarball
•	 Establishing an SSH connection to the target

The last of these will happen with any program that uses SSH under the hood. The
others may or may not happen with other frameworks. In a small infrastructure, this
may be unnoticeable, but in a larger setup it may be problematic.

The salt-thin agent (covered in the next section) is not a problem because it will be
generated in the first connection. Then it will be cached until the version of Salt
changes on the master.

The State tarball (also covered in the next section) will be generated each time a State
run is issued, which does cause some slowdown. However, it will not affect other
execution modules.

Establishing SSH connections may be the biggest overhead. One system can only
maintain so many connections at once. In fact, with a large enough job, Salt SSH will
limit the number of active connections to 25 by default. This can be changed with the
--max-procs flag:

salt-ssh --max-procs 100 '*' test.ping

Exercise caution here. Increasing the maximum number of connections to a number
that is not supported by the available resources can cause other issues outside Salt.

Exploring Salt SSH

[60]

Understanding the salt-thin agent
As it turns out, automating SSH commands is not as simple as it may look at first.
In an environment where every server runs exactly the same version of exactly the
same operating system and exactly the same pieces of software, executing remote
commands can be greatly simplified. However, very few environments meet this
requirement, and Salt was designed to handle multiple environments.

In order to accommodate these disparate configurations, the code that performs the
tasks needs to be able to autodetect pieces of its environment and then execute the
tasks required by the user. In short, a piece of software that behaves exactly like Salt
is necessary. Fortunately, in the Salt environment, that software is already available.

The salt-thin agent was designed to be a lightweight version of Salt that could be
quickly copied to a remote system by Salt SSH in order to perform tasks. It doesn't
ship with Salt (not as such, at least). It is built as needed by Salt SSH, using the Salt
version and modules already installed on the master.

Once salt-thin has been packaged, it can be copied to the target system, where it is
unpacked and then executed. Let's look at the specifics.

Building the thin package
In its default mode, Salt SSH requires the thin package. Raw mode doesn't require
the thin package, but we'll cover this in a bit. However, since the package doesn't
ship with Salt in a form that is usable by Salt SSH, it gets built on demand and
cached for later use.

The thin package contains just a little more than the bare essentials to run Salt. All
the files for this package are collected from various locations on the Master. Most of
these files exist inside the installation directories for Salt itself, but some belong to
other packages that Salt depends on.

Interestingly, not all of Salt's dependencies will be needed. Many of the packages
that Salt normally depends on are not necessary. As the communication will happen
using SSH instead of ZeroMQ, this will not be included. The encryption libraries
that are used to secure this communication transport are also not needed because the
connection is secured by SSH itself.

Chapter 3

[61]

Python will also not be packed in the thin package because a minimum version of
Python must already be installed on the target system. Why not include Python in
the thin package? There are a number of answers, but the most prominent one is
binary compatibility. Python itself is compiled differently across various platforms
with different versions of the gcc compiler. A master running Enterprise Linux
would not be able to control a target running Ubuntu because the version of Python
on the master would not meet the environment requirements on the target. Likewise,
a 64-bit master would not be able to control any 32-bit targets.

Once the files that are necessary are collected, they are bound to a tarball called
salt-thin.tgz. This package will contain only files that do not depend on the
binary compatibility between the Master and Minion. This limits the tarball not only
to scripts, mostly written in Python, but also to shell scripts (specifically the Bourne
shell, also known as sh).

The actual construction of the thin package is performed by the thin runner. If
necessary, for purposes such as testing, the thin package can be generated manually
using this runner:

salt-run thin.generate

The tarball will be saved in the cache directory on the master, usually in the
/var/cache/salt/master/thin/ directory. If the file already exists, you will
want to make sure to tell the runner to overwrite it. The command to overwrite the
file is as follows:

salt-run thin.generate overwrite=True

If you were to unpack the tarball after it was built, you'd find a small file structure
with a handful of files in it. Libraries such as Jinja2 and PyYAML will be there along
with a directory for Salt.

Including extra modules
By default, the thin package will include all the modules that ship with Salt and the
dependencies for the core Salt code. However, it will not include the Python modules
that are required for noncore modules. For instance, if you are using the etcd
execution module, which requires the etcd Python module, you need to be sure
to include it in your thin package, by adding it to the end of the thin.generate
command. The command to carry out this action is as follows:

salt-run thin.generate etcd

Multiple modules can be specified and separated by commas with the following code:

salt-run thin.generate etcd,MySQLdb

Exploring Salt SSH

[62]

Deploying the thin package
After Salt SSH packages this file, it will be copied in the remote system. By default,
it will be placed in the /tmp/ directory in a hidden directory with the name of the
user that will be logged in on the target and a unique ID seeded with the hostname
of the target system.

For instance, on a system whose FQDN is simply dufresne, the directory may be
called /tmp/.root_0338d8__salt/. This directory will be owned by the user that
Salt SSH logged in as (usually root), and the permissions will be set to 0700 so that no
other users can read it.

If you would like to see this directory in action, including the unpacked thin
package, you can do so by executing some introspective Salt commands:

salt-ssh myminion cmd.run 'ls -ls /tmp'

myminion:

 drwxrwxrwt 16 root root 420 Apr 3 16:51 .

 drwxr-xr-x 20 root root 4096 Jul 29 2014 ..

 drwx------ 8 root root 260 Apr 3 16:50 .root_0338d8__salt

salt-ssh myminion cmd.run 'ls -ls /tmp/.root*'

myminon:

 drwx------ 8 root root 280 Apr 3 17:43 .

 drwxrwxrwt 17 root root 440 Apr 3 17:46 ..

 drwxr-xr-x 2 root root 160 Apr 3 16:50 certifi

 drwxr-xr-x 3 root root 880 Apr 3 16:50 jinja2

 drwxr-xr-x 2 root root 220 Apr 3 16:50 markupsafe

 drwxr-xr-x 4 root root 80 Apr 3 16:50 running_data

 drwxr-xr-x 31 root root 1300 Apr 3 16:50 salt

 -rw-r--r-- 1 root root 79 Apr 3 16:50 salt-call

 -rw-r--r-- 1 root root 27591 Dec 13 21:18 six.py

 -rw-r--r-- 1 root root 8 Apr 3 16:50 version

 drwxr-xr-x 2 root root 720 Apr 3 16:50 yaml

Executing the thin package
Now that the thin package is installed on the target, it must be executed. However,
there is more work to be done before Salt is actually executed. Python can live in
different locations depending on the environment, and Salt SSH needs to find where
it is before it can call it.

Chapter 3

[63]

The Salt SSH shim
A shim is a very tiny shell script whose job is to find the Python interpreter on the
target system and then use it to start Salt. It is encoded to a base64 string on the
master, sent to the Minion, decoded, and executed.

There are certain conditions that will affect how the shim is executed. If sudo is
required on the target system, then the necessary commands will be embedded to the
shim. If debug logging is turned on on the Master, then the shim will be executed in
a debug mode, the output of which will be displayed on the master.

The way the shim is run can also vary. If the target system requires a connection with
a tty, then the shim will be copied to the remote system using scp and then piped to
/bin/sh; otherwise, it will be executed directly as one large command over SSH.

Preparing for Salt States
To run an execution command, not much is needed. However, executing Salt States
does require a little more work. This is because even a traditional Minion that runs
salt-call in the local mode requires a local copy of all the necessary files in the
State tree.

When a Salt SSH command is executed using the State system, another tarball called
salt_state.tgz will also need to be created. This file will be placed in the same
hidden thin directory on the target as the salt-thin.tgz package. This tarball
contains a copy of the necessary files from the State tree on the master so that the
salt-call command will have access to everything that it needs for a State run.

The State tarball will also contain a copy of the State data (this is converted to low
chunks) and a copy of any pillar data from the master. These files can also be viewed
with a couple of the following introspective Salt commands:

salt-ssh myminion state.single cmd.run name='tar -tzvf /tmp/.root*/
salt_state.tgz'

myminion:

 ID: tar -tvf /tmp/.root*/salt_state.tgz

 Function: cmd.run

 Result: True

 Comment: Command "tar -tvf /tmp/.root*/salt_state.tgz" run

 Started: 17:53:46.683337

 Duration: 7.335 ms

 Changes:

Exploring Salt SSH

[64]

 pid:

 26843

 retcode:

 0

 stderr:

 stdout:

 -rw-r--r-- root/root 15891 2015-04-03 17:53 pillar.
json

 -rw-r--r-- root/root 128 2015-04-03 17:53
lowstate.json

Summary

Succeeded: 1 (changed=1)

Failed: 0

Total states run: 1

salt-ssh myminion state.single cmd.run name='tar -Ozxvf /tmp/.root*/
salt_state.tgz lowstate.json'

myminion:

 ID: tar -Ozxvf /tmp/.root*/salt_state.tgz lowstate.json

 Function: cmd.run

 Result: True

 Comment: Command "tar -Ozxvf /tmp/.root*/salt_state.tgz lowstate.
json" run

 Started: 17:58:35.972658

 Duration: 10.14 ms

 Changes:

 pid:

 29014

 retcode:

 0

 stderr:

 lowstate.json

 stdout:

 [{"fun": "run", "state": "cmd", "__id__": "tar -Ozxvf
/tmp/.root*/salt_state.tgz lowstate.json", "name": "tar -Ozxvf /tmp/.
root*/salt_state.tgz lowstate.json"}]

Chapter 3

[65]

Summary

Succeeded: 1 (changed=1)

Failed: 0

Total states run: 1

Running Salt
Once the shim has found the Python interpreter and once the salt_state.tgz
tarball is deployed (if necessary), it is finally able to execute Salt. Unlike a traditional
Salt setup, it will not be run as a daemon. Instead, the salt-call command will be
executed in the local mode, just like it would on a minion. The output will then be
collected by the Salt SSH client on the Master, parsed, and sent to the user. We can
see this information by running with a trace log level.

salt-ssh myminion test.ping --log-level trace

...SNIP...

SALT_ARGV: ['/usr/bin/python2.7', '/tmp/.root_0338d8__salt/salt-call',
'--local', '--metadata', '--out', 'json', '-l', 'quiet', '-c', '/tmp/.
root_0338d8__salt', '--', 'test.ping']

_edbc7885e4f9aac9b83b35999b68d015148caf467b78fa39c05f669c0ff89878

[DEBUG] RETCODE localhost: 0

[DEBUG] LazyLoaded nested.output

[TRACE] data = {'myminion': True}

myminion:

 True

It is also possible to take a deeper look at the salt_state.tgz tarball, but it will
require logging in to the Minion for the last command, as shown in the following code:

master# cp /etc/services /srv/salt/

master# salt-ssh myminion state.single file.managed /tmp/services
source=salt://services

myminion:

 ID: /tmp/services

 Function: file.managed

 Result: True

 Comment: File /tmp/services is in the correct state

 Started: 18:18:28.216961

 Duration: 5.656 ms

Exploring Salt SSH

[66]

 Changes:

Summary

Succeeded: 1

Failed: 0

Total states run: 1

minion# tar -tzvf /tmp/.root_0338d8__salt/salt_state.tgz

-rw-r--r-- root/root 15895 2015-04-03 18:18 pillar.json

-rw-r--r-- root/root 118 2015-04-03 18:18 lowstate.json

-rw------- root/root 289283 2015-04-03 18:18 base/services

It will not be possible to view using two sequential state.single commands
over Salt SSH because the second command will generate a new salt_state.tgz
tarball, which will not include the base/services file. In order to obtain a truly
informative view of the target with a single salt-ssh command, a full SLS file with
enough States to perform sufficient introspection on the target will be required.

Salt's running data
One more directory that you may have noticed in the temporary directory is
the running_data/ directory. One design goal is to have Salt SSH remain as
nonintrusive as possible. This means that the directory structure that Salt normally
uses has to live someplace different: the temporary directory. We can take a look at
this structure with another Salt SSH command:

salt-ssh myminion cmd.run 'tree /tmp/.root*/running_data'

myminion:

 /tmp/.root_0338d8__salt/running_data

 |-- etc

 | `-- salt

 | `-- pki

 | `-- minion

 `-- var

 |-- cache

 | `-- salt

 | `-- minion

 | `-- proc

Chapter 3

[67]

 | `-- 20150403195105124306

 `-- log

 `-- salt

 `-- minion

 11 directories, 2 files

As you continue to issue commands against this minion, the directory structure will
continue to grow and look more like a standard Minion directory structure. If you
want Salt to completely remove all its traces when finished, including this directory,
you can use the --wipe or -w flag:

salt-ssh --wipe myminion test.ping

Using the raw SSH mode
Salt SSH is very powerful in its default mode with salt-thin. However, there are some
situations where it makes more sense to issue a raw SSH command. This can be
accomplished using the --raw flag (referred to in its short form as -r from here on
for brevity).

Using the raw mode will bypass all the overhead of creating and deploying the thin
package. Just log in to the target, issue a command, and log out. The following two
commands are functionally identical:

salt-ssh myminion cmd.run date

myminion:

 Fri Apr 3 21:07:43 MDT 2015

salt-ssh -r myminion date

myminion:

 retcode:

 0

 stderr:

 stdout:

 Fri Apr 3 21:07:43 MDT 2015

However, the raw command will execute faster because it has less overhead. It will
also contain more information, such as STDERR, STDOUT, and the exit or return code
from the command that was issued as well.

Exploring Salt SSH

[68]

This can be useful if you wrap Salt SSH with another program that depends on the
output (especially, the return code) of the command on the remote machine. Make
sure to run the command with an outputter that is consistent and easy to parse, such
as JSON:

salt-ssh -r myminion 'ping 256.0.0.0' --out json

{

 "myminion": {

 "retcode": 2,

 "stderr": "ping: unknown host 256.0.0.0\n",

 "stdout": ""

 }

}

In this example, there is no output to examine, but the error message can certainly be
checked. Also, the return code will always be available.

Caching SSH connections
The raw SSH mode makes the execution model of Salt a little clearer. When a
command is executed anywhere in Salt—be it the salt command, salt-call, or
the salt-ssh mode—it will start a job, issue the command, and return the result.
Depending on how it is called, Salt may or may not have a connection already
established, but it will behave (so far as the user is concerned) as if it is creating a
new connection, executing the job, and tearing down the connection.

This is fine in most instances, but there are some notable exceptions. For instance,
configuring a network switch over SSH can be problematic. This is because a number
of switches use the following configuration models:

•	 SSH into the switch
•	 Switch to a privileged user mode
•	 Execute commands that change configuration
•	 Review changes (if necessary)
•	 Commit changes
•	 Exit the privileged user mode
•	 Log out of the switch

Trying to use Salt SSH in the raw mode may make it as far as switching to the
privileged user mode, but then it will log back out, forcing you to start over.

Chapter 3

[69]

If you want to use OpenSSH on your master, you can take advantage of SSH, caching
to maintain a connection to the switch as necessary. This is not something that is
built-in to Salt SSH, but it can be used nonetheless. It is especially useful when
scripting Salt SSH, for instance, in a bash script.

First, use the following command to set up the connection:

ssh -fMN -o "ControlPath /tmp/salt_ssh_ctrl" myminion.com

This will tell SSH to set up a connection in myminion.com, but to do nothing with
it. However, subsequent commands to that machine will automatically use the
connection, which will be cached with a socket stored at /tmp/salt_ssh_ctrl on
the Master.

This trick is useful outside Salt SSH as well, especially if you are regularly issuing
one-off SSH commands against a machine. Even Salt SSH in its default and nonraw
mode will see a slight performance increase because the overhead of establishing and
tearing down each connection disappears.

When you are finished with this host, be sure to tear down the connection, as shown
in the following code:

ssh -O exit -o "ControlPath /tmp/salt_ssh_ctrl" myminion.com

This will disconnect from the target and remove the socket file from the Master.

Summary
Salt SSH is a powerful tool. It can be very comfortable for users in smaller
infrastructures. This tool can also be useful for dealing with devices that allow SSH
connections but are not able to have Python installed or cannot allow software
(such as Salt) to be installed.

Next we will delve into the asynchronous nature of Salt and start to really explore
how Salt can be used as an autonomous management platform.

[71]

Managing Tasks
Asynchronously

Salt is commonly thought of as a configuration management system. This is fine
because Salt does an excellent job at managing various aspects of its Minions.
However, this is only a small part of what Salt can do. One of the biggest departures
is the event system, which forms the basis of an asynchronous execution framework.

In this chapter, we'll spend some time looking at the following topics:

•	 Going through the event system in depth
•	 Understanding the Reactor system
•	 Building more complex Reactors
•	 Using the queue system

Looking at the event system
The event system is one of the oldest components of Salt. Yet, it is now used more
than almost any other part. Most of its usage is internal to Salt, but don't worry,
because there's plenty of functionalities that we can take advantage of as users
and administrators.

Reviewing the basics
Salt is built based on a message queue. Commands that are issued from the Master
generate jobs, which are posted to the queue. Minions watch the queue for anything
that targets them. When a Minion picks up a job, it attempts to perform the work
associated with it. Once it has finished, it posts the return data back to another
queue; this is the one that the Master listens to.

Managing Tasks Asynchronously

[72]

Minions also have the ability to fire information, which is not associated with a job
that was generated on the Master. These pieces of information form the basis of the
event bus.

There are in fact two event buses: one for Minions to communicate with themselves
(but not with other Minions) and one for Minions to communicate with the Master.
The Minion event bus is currently only used internally by Salt. Minions only use
it to fire events to themselves. While it is possible for a user to manually or even
programmatically fire messages along the Minion event bus, there is nothing built-in
to Salt for the user to directly take advantage of it.

The Master event bus is a different story altogether. The ability for a Minion to send
messages to the Master is very powerful, especially with the Reactor system in place
on the Master. However, we'll get to this in just a moment.

The structure of event data
In older versions of Salt, event data was very simple: there was a message and a
short tag. These served as a short description of the message. This changed in version
0.17.0, when both the message and the tag were expanded.

The tag, which was previously limited to 20 characters, now has no imposed limit
on its length. However, there are restrictions on which characters may be used: tags
must be ASCII-safe strings, and no Unicode is allowed.

The message was also expanded and is now often referred to as the event data or
payload. The most notable change involved moving it from a single string to a
dictionary. Depending on which part of Salt fired the event, there are certain pieces
of data that can reasonably be expected to appear. One piece of data that should
always be expected is a timestamp called _stamp. This stamp will look something
similar to the following code:

2015-04-18T17:49:52.443449

Other event data will vary. For instance, when a Minion authenticates with the
Master, an event will be fired with a tag called salt/auth. The payload for this event
will include a timestamp (_stamp), an action (act), the ID of the Minion (id), and the
Minion's public key (pub).

Chapter 4

[73]

Watching event data
It is easier to get a sense of what event data looks like by watching them in real time
as they occur. There is a script in the GitHub repository designed for this purpose,
called eventlisten.py. As this is part of Salt's test suite, it does not ship with any of
the packages for individual distributions. However, it can be downloaded and used
on any system with Salt installed.

Installing the event listener
If you are only interested in using the event listener, it can be downloaded directly
from GitHub at

https://raw.githubusercontent.com/saltstack/salt/develop/tests/
eventlisten.py.

However, there are a number of other tests also available, which may be interesting
to you. Assuming that you have Git installed, you can clone a copy of the repository,
and use the event listener directly from there. For instance:

cd /root

git clone https://github.com/saltstack/salt.git

cd salt/tests

Using the event listener
As the most common usage of the event listener is on a Salt Master with the default
socket location, it will use these settings by default. Just change to the directory that
it resides in, and issue the following command:

python eventlisten.py

Note that because of differing Python versions and command names on different
systems, you may need to change the command to the one that is more appropriate
for Python 2 on your system:

python2 eventlisten.py

If you are listening to the Minion event bus instead of the Master, you need to tell the
event listener what kind of node you are working on (the default is master):

python eventlisten.py -n minion

If you have changed the location of Salt's socket directory, you will need to pass that
in, as shown in the following code:

python eventlisten.py -s /var/run/salt

https://raw.githubusercontent.com/saltstack/salt/develop/tests/eventlisten.py
https://raw.githubusercontent.com/saltstack/salt/develop/tests/eventlisten.py

Managing Tasks Asynchronously

[74]

By default, the event listener assumes that you're using ZeroMQ: the default
transport mechanism for Salt. If you are configured to use RAET instead, you
need to specify it as the transport as follows:

python eventlisten.py –t raet

Once you have started the event listener, it will show you the name of the socket that
it will listen to:

ipc:///var/run/salt/master/master_event_pub.ipc

It will then wait for events to appear on the bus. You can trigger events by issuing
Salt commands. Even a simple test.ping will generate a series of events that
contain the job data, as shown in the following code:

Event fired at Sat Apr 18 12:58:48 2015

Tag: 20150418125848177748
Data:
{'_stamp': '2015-04-18T18:58:48.177999', 'minions': ['cantu']}
Event fired at Sat Apr 18 12:58:48 2015

Tag: salt/job/20150418125848177748/new
Data:
{'_stamp': '2015-04-18T18:58:48.178257',
 'arg': [],
 'fun': 'test.ping',
 'jid': '20150418125848177748',
 'minions': ['cantu'],
 'tgt': 'cantu',
 'tgt_type': 'glob',
 'user': 'sudo_homaro'}
Event fired at Sat Apr 18 12:58:48 2015

Tag: salt/job/20150418125848177748/ret/cantu
Data
{'_stamp': '2015-04-18T18:58:48.227514',
 'cmd': '_return',
 'fun': 'test.ping',
 'fun_args': [],
 'id': 'cantu',
 'jid': '20150418125848177748',
 'retcode': 0,
 'return': True,
 'success': True}

Chapter 4

[75]

In this case, there were three events fired. The first two denoted that a new job
was created with a Job ID of 20150418125848177748. The first was an older
style of the event, while the second was a newer style. The event tagged as salt/
job/20150418125848177748/new contains information about the job and the user
that created it. We can see that it wasn't just created by the root user; it was created
by a user named homaro, who issued the command using sudo. The test.ping
function was sent directly to the cantu Minion (otherwise, the target or tgt would
be "*") and there were no arguments to it.

The last event, tagged as salt/job/20150418125848177748/ret/cantu, contains the
job return data from the Minion. Among other things, we can see the function again,
the arguments for this function, and the return value from the function (True). We
even have an indicator that tells us whether or not the job was completed successfully.

Firing custom data
It is possible to fire custom data from a Minion to the Master with the salt-call
command. Of course, it is also possible to issue a command from the Master,
which tells the Minion to fire a message back, but this is largely only useful for test
purposes, and little more than an advanced test.echo.

To fire a custom event to the Master, both the message and the tag must be supplied
in that order. Doing this from the command line requires that the message be
declared in a YAML-parsable form. As it turns out, empty data is a valid YAML.
Issue the following command from a Minion:

salt-call event.fire_master '' myevent

Take note of the two quotes between fire_master and myevent, which will denote
an empty string. After issuing this command, look at the output in the event listener:

Event fired at Sat Apr 18 13:21:55 2015

Tag: myevent
Data:
{'_stamp': '2015-04-18T19:21:55.604193',
 'cmd': '_minion_event',
 'data': {},
 'id': 'cantu',
 'pretag': None,
 'tag': 'myevent'}
Event fired at Sat Apr 18 13:21:55 2015

Tag: salt/job/20150418132155629018/ret/cantu
Data:

Managing Tasks Asynchronously

[76]

{'_stamp': '2015-04-18T19:21:55.629583',
 'arg': ['', 'myevent'],
 'cmd': '_return',
 'fun': 'event.fire_master',
 'fun_args': ['', 'myevent'],
 'id': 'cantu',
 'jid': '20150418132155629018',
 'retcode': 0,
 'return': True,
 'tgt': 'cantu',
 'tgt_type': 'glob'}

The first is the custom event that was requested by the command that we issued. We
see the myevent tag associated with it and the data (which was empty). To make this
a little more useful, let's add some actual YAML to our command:

salt-call event.fire_master '{""key1"": ""val1""}' myevent

Doesn't look like YAML, does it? As JSON is a syntactically-correct YAML and more
accurate than YAML, it is safest to issue command-line data as a JSON string.

With this event, we sent a dictionary with a single key (key1) and its associated value
(val1). The event listener will show the following data:

Event fired at Sat Apr 18 13:23:28 2015

Tag: myevent
Data:
{'_stamp': '2015-04-18T19:23:28.531952',
 'cmd': '_minion_event',
 'data': {'key1': 'val1'},
 'id': 'cantu',
 'pretag': None,
 'tag': 'myevent'}
Event fired at Sat Apr 18 13:23:28 2015

Tag: salt/job/20150418132328556517/ret/cantu
Data:
{'_stamp': '2015-04-18T19:23:28.557056',
 'arg': ['{""key1"": ""val1""}', 'myevent'],
 'cmd': '_return',
 'fun': 'event.fire_master',
 'fun_args': ['{""key1"": ""val1""}', 'myevent'],
 'id': 'cantu',
 'jid': '20150418132328556517',
 'retcode': 0,

Chapter 4

[77]

 'return': True,
 'tgt': 'cantu',
 'tgt_type': 'glob'}

Once again, we can see the same kind of data as before, but now, we can see that an
actual data structure was returned in the custom event. However, it is still possible to
make this event even more useful.

Namespacing events
Part of the redesign of the event system involved making use of namespaced event
tags. You can see these by looking at the preceding examples. Consider this tag:

salt/job/20150418132328556517/ret/cantu

This tag is delimited by forward slashes. Once split up, we will see the following
components:

•	 salt: This event was fired by Salt itself
•	 job: This event pertains to Salt's job system
•	 20150418132328556517: This is the ID of the job
•	 ret: This event contains the return data from the job
•	 cantu: This specifies the ID of the Minion, which will return the data

Other components of Salt will use a similar convention to tag their events. For
instance, consider the following event from Salt Cloud:

Event fired at Sat Apr 18 13:36:48 2015

Tag: salt/cloud/myminion/creating
Data:
{'_stamp': '2015-04-18T19:36:48.642876',
 'event': 'starting create',
 'name': 'myminion',
 'profile': 'centos65',
 'provider': 'my-ec2-config:ec2'}

The tag for this event can be broken down as follows:

•	 salt: This event was fired by Salt itself
•	 cloud: This event pertains to Salt Cloud
•	 myminion: This specifies the name of the VM that is affected
•	 creating: This denotes what will happen to that VM now

Managing Tasks Asynchronously

[78]

When you create custom events for your own application or infrastructure, it may
be useful to namespace your own event tags in a similar fashion. Perhaps, you have
an internal application in your organization that you call mcgee, which manages a
component that archives the server data. You can make use of a tag similar to the
following code:

mcgee/archive/incremental/myserver/start

To declare that a server called myserver is starting an incremental backup process,
add a tag like:

mcgee/archive/incremental/myserver/finish

This is to declare that the incremental backup has completed.

Namespacing guidelines
Why use slashes to delimit event tags? Most of the examples in this book use Minion
IDs, which contain single words with punctuation. What if a Minion ID contains a
fully-qualified domain name? Consider the following event tag with periods instead
of slashes on a Minion called web01.example.com:

salt.cloud.web01.example.com.creating

Which is part of the tag, and which is part of the Minion ID? We can tell this based
our the existing knowledge of the tag and the Minion, but the ambiguity makes it
very difficult to accurately parse. Using slashes makes it much more obvious:

salt/cloud/web01.example.com/creating

This is why Salt itself uses slashes to delimit tags. Technically, it is entirely up to you
how you namespace your tags, so long as you keep your tags ASCII-safe. However,
you should keep some things in mind:

•	 Tags are like index markers. They should be reasonably unique, and
adequately describe the contents of the payload.

•	 Keep tags as short as possible, but as long as necessary.
•	 Use tags that are both human-readable and machine-parsable.
•	 Forward slashes are standard in Salt; consider whether or not a different

delimiter would be confusing to experienced Salt users.

Chapter 4

[79]

Some common events
There are a handful of events extremely common in Salt. Some are common only
to various subcomponents of Salt. Knowing what these events mean and how they
work can be very helpful when you build Reactors.

salt/auth
Periodically, Minions will reauthenticate with the Master using this event. The
following data is contained in the payload:

•	 act: This specifies the current status of the Minion
•	 id: This denotes the ID of the Minion
•	 pub: This specifies the public RSA key of the Minion
•	 result: This denotes whether or not the request was successful

salt/key
When a Minion's key is accepted or rejected on the Master, this event will be fired.
The following data is contained in the payload:

•	 id: This specifies the ID of the Minion
•	 act: This denotes the new status of the Minion

salt/minion/<minion_id>/start
When a salt-minion process begins, it has some work to do before it is available to
receive commands. Once the process has finished starting up, and is ready to perform
jobs, it will fire this event. You may also see an event called minion_start with the
same payload. The minion_start event is a remnant of the old tag system and is
expected to be removed in a future release. The data contained in the payload is:

•	 cmd: This is another indicator to tell Salt what kind of event this is. In this
case, it will be _minion_event

•	 data: This specifies the human-readable information about when the Minion
was started

•	 id: This denotes the ID of the Minion
•	 pretag: This is used internally by Salt to generate the namespace
•	 tag: This is a copy of the event tag

Managing Tasks Asynchronously

[80]

salt/job/<job_id>/new
When a new job is created, an event will be fired. This contains metadata about the
job. The following data will be contained in the event payload:

•	 arg: This specifies any arguments that were passed to the function.
•	 fun: This indicates the actual function that was called (such as test.ping).
•	 jid: This indicates the Job ID.
•	 minions: This denotes a list of Minions that are affected by this job.
•	 tgt: This specifies the target that was specified for this job (such as *).
•	 tgt_type: This denotes the type of target that was specified (such as glob).
•	 user: This specifies the user that initiated this job. If the user used sudo, then

the username will be prepended with sudo_.

salt/job/<job_id>/ret/<minion_id>
Once a Minion finishes a job, it will fire an event with the return data. The following
data will be contained in the payload:

•	 cmd: This is another indicator to tell Salt what kind of event this is.
In this case, it will be _return.

•	 fun: As with salt/job/<job_id>/new, this indicates the actual function that
was called (such as test.ping).

•	 fun_args: Similar to the preceding args, this specifies any arguments that
were passed to the function.

•	 id: This is the ID which is returning the data.
•	 jid: This specifies the job ID.
•	 retcode: This indicates the return code from the process that was used for

this job.
•	 return: This is all of the return data from this job. Depending on the

function, this could be very short or very long.
•	 success: This indicates whether or not the job is completed successfully.

salt/presence/present
This event will only be used when presence_events is set to True in the Master
configuration. When enabled, this event will periodically be fired with a list of
Minions that are currently connected to the Master. The following data will be
contained in the payload:

•	 present: This specifies the list of s that are currently connected

Chapter 4

[81]

salt/presence/change
This event will only be used when presence_events is set to True in the Master
configuration. When enabled, this event will be fired any time a connects to or
disconnects from the Master. The following data will be contained in the payload:

•	 new: This specifies a list of s that have connected since the last presence event
•	 lost: This denotes a list of s that have disconnected since the last

presence event

Common cloud events
Salt Cloud fires a number of events when you create or destroy machines. Which
events are fired and when is dependent on the cloud provider driver; some even
fire events for other tasks, but there are a few events that are generally found in all
cloud drivers.

Cloud events are unique in a way that they don't necessarily refer to an existing ID;
they refer to a VM name. By design, the VM name in Salt Cloud matches the Minion
ID that is used by the Master. However, some events refer to a VM that is in the
process of creation (and not yet ready to receive commands), whereas others refer
to a VM that is in the process of being destroyed or has just been destroyed.

salt/cloud/<vm_name>/creating
The VM in question is about to be created. At this point, no actual work has been
performed. Every cloud driver is required to use this tag. The following data will
be contained in the payload:

•	 name: This contains the name of the VM to be created
•	 provider: This indicates the name of the provider configuration used
•	 profile: This denotes the name of the profile configuration used

salt/cloud/<vm_name>/requesting
All the information required to create a VM has been gathered, and Salt Cloud is
about to make a request from the cloud provider that a VM be created. The following
data will be contained in the payload:

•	 kwargs: This specifies all the arguments from the provider, profile, and if
used, cloud map, which will be used to generate this request

Managing Tasks Asynchronously

[82]

salt/cloud/<vm_name>/querying
The cloud provider has begun the process of creating a VM and has returned an
ID. which Salt Cloud can use to refer to it. However, it has not yet returned an IP
address that Salt Cloud can use to access the VM. Salt Cloud will now wait for an IP
address to become available. The following data will be contained in the payload:

•	 instance_id: This specifies the ID of the VM to be created, as the cloud
provider knows it. This may not match the actual VM name or the Minion ID

salt/cloud/<vm_name>/waiting_for_ssh
An IP address has been returned for the VM, but it is not necessarily available. Salt
Cloud will now wait for the VM to become available and will be able to respond to
SSH connections. The following data will be contained in the payload:

•	 ip_address: This denotes the hostname or IP address that will be used to
connect to this VM

salt/cloud/<vm_name>/deploying
The VM is now available via SSH (or in the case of a Windows VM, SMB or WinRM).
The deploy script (or the Windows installer) and any accompanying files (such as
public and private keys and the Minion configuration) will now be uploaded. Then,
the deploy script (or the Windows installer) will be executed. The following data will
be contained in the payload:

•	 name: This specifies the name of the VM that has been created.
•	 kwargs: This denotes all the arguments that will be used to deploy Salt on

the target system. This is a very long list, and some of the items (such as the
contents of the deploy script) may also be extremely long.

salt/cloud/<vm_name>/created
The VM has been successfully created. This does not necessarily mean that the
salt-minion process is able to receive connections. It may still be in its starting
phase. There may be firewall issues. Also, something may have caused the deploy
script or the Windows installer to fail. If you are waiting for a Minion to be available,
it is far more reliable to look for the salt/minion/<minion_id>/start tag. Every
cloud driver is required to use the salt/cloud/<vm_name>/created tag. The
following data will be contained in the payload:

•	 name: This specifies the name of the VM that has been created.
•	 provider: This denotes the name of the provider configuration used.

Chapter 4

[83]

•	 provider: This identifies the name of the profile configuration used.
•	 instance_id: This specifies the ID of the VM as it is known by the cloud

provider. This may not be the same as the VM name or the Minion ID.

salt/cloud/<vm_name>/destroying
Salt Cloud is about to make a request that a cloud provider destroy a VM. Every
cloud driver is required to use this tag. The following data will be contained in
the payload:

•	 name: This specifies the name of the VM to be destroyed

salt/cloud/<vm_name>/destroyed
Salt Cloud has finished destroying a VM. Every cloud driver is required to use this
tag. The following data will be contained in the payload:

•	 name: This denotes the name of the VM that was just destroyed.

Salt API events
Salt API is a daemon that ships with Salt, which provides a REST interface to be used
to control Salt instead of the command line. A notable feature of Salt API is its ability
to fire custom events from a webhook. We will cover the configuration of Salt API
later on in this chapter.

salt/netapi/<url_path>
The actual URL path that will be used will depend on how Salt API is configured.
Often, it will contain the word hook-to denote that it is a webhook, followed by a slash,
and an arbitrary command. The following data will be contained in the payload:

•	 data: This denotes any custom data that was POSTed to the Salt API URL

Building Reactors
Now, you have seen what events look like, but what can you do with them? One of
the most powerful features that distinguishes Salt from similar systems is not only its
ability to fire events, but also the ability for the Master to initiate new jobs based on
the information contained in the event.

This Reactor system serves as a platform for users to build systems that are both
asynchronous and autonomous, which can range from simple to very complex.

Managing Tasks Asynchronously

[84]

Configuring Reactors
Reactors are a Master-side process, so none of the configuration needs to happen
directly on any Minions. In fact, as the Reactor system needs to actively listen to an
event bus in order for it to function, it doesn't even make sense to attempt to use it in
a masterless environment based on the salt-call commands.

Before setting up the Master, decide which directory that will contain Reactor files.
By convention, this will be /srv/reactor/, but this is not a hardcore requirement
and is not enforced anywhere in Salt.

Reactors are set up in the Master configuration file. The Reactor block contains a
mapping of tags to look for, each of which will contain a list of SLS files that will be
used when that tag is found. Consider the following Reactor block:

reactor:
 - 'salt/minion/*/start':
 - /srv/reactor/highstate.sls

This is a very simple Reactor that waits for Minions to identify that they have
started and are ready to accept commands. When they do, it responds by calling the
highstate.sls file.

There are a couple of things to note here. First of all, the tag in this example doesn't
contain a Minion ID; it contains a wildcard instead. Event tags are interpreted as
globs by the Reactor system, allowing it to take advantage of namespaced tags, and
perform generalized jobs based on events from specific Minions.

Secondly, both the tag and the SLS file that follow are part of a list. There is no
imposed limit to how many tags may be watched by the Reactor, or how many
SLS files may accompany a tag.

This is important because Reactor is a top-level declaration; you may not have
multiple Reactor blocks on one Master. However, the following single Reactor block
is valid:

reactor:
 - 'salt/minion/<minion_id>/start':
 - /srv/reactor/highstate.sls
 - 'salt/netapi/hook/ec2/autoscale':
 - /srv/reactor/ec2-autoscale.sls
 - 'salt/cloud/*/creating':
 - /srv/reactor/cloud-create-alert-pagerduty.sls
 - /srv/reactor/cloud-create-alert-hipchat.sls

Chapter 4

[85]

This block makes use of internal Salt events as well as two subsystems that ship with
Salt: Salt API and Salt Cloud. We can make reasonable guesses as to what each SLS
does because they were given names that are somewhat human-readable.

However, mapping out relationships between tags and files is only one part of the
equation. Let's see what Reactor SLS files actually look like.

Writing Reactors
As with other parts of Salt, Reactors are written in YAML by default. And as with
other parts of Salt, Reactors can also be written in any other format that is supported
by Salt's renderer system. For the moment, we will focus on Reactors written in
YAML, with a little Jinja templating.

Reactor SLS files resemble State SLS files that contain a block of data, which starts
with an ID, followed by a function and any arguments to the function. The following
is an example of the highstate.sls referenced before:

highstate_run:
 cmd.state.highstate
 - tgt: {{ id }}

The ID for this Reactor block is highstate_run (not to be confused with {{ id }},
which is a piece of Jinja templating that references the Minion ID). The ID for each
Reactor block is entirely arbitrary. Unlike with State SLS files, the ID does not affect any
other items in the block. It does need to be unique, but beyond this, you can consider it
to be a little more than a reference to you as to what the Reactor block will do.

There are three different kinds of Reactors that can be written: those that call
execution modules, those that call runner modules, and those that manage the
Master via wheel modules. The function name for each of these will be preceded
with cmd, runner, and wheel, respectively. For instance, a Reactor that uses cmd.run
to execute an arbitrary command on a Minion would look like:

cmd.cmd.run

First, let's take a look at the Reactors based on execution modules to get a feel of
what Reactors are like. Runner and Wheel Reactors are both simpler, so once you
understand execution runners, the others will be easy.

Calling execution modules
As execution modules form the basis of Salt itself, it is no surprise that these would
be the most common types of Reactors. As Salt States are kicked off using execution
modules, even State runs can be initiated here.

Managing Tasks Asynchronously

[86]

As execution modules are run on Minions, they are targeted as they would be with
the salt command. The target is referred to as tgt. If a target type other than glob
is to be used, it is declared as tgt_type. The target types supported by the Reactor
system are as follows:

•	 glob

•	 pcre

•	 list

•	 grain

•	 grain_pcre

•	 pillar

•	 nodegroup

•	 range

•	 compound

Most execution modules require a list of arguments. In a Reactor, these may be
declared in one of two ways: arg or kwarg.

The arg argument contains a list of arguments to be sent to the function in the order
in which they are expected to appear. This is directly analogous to the concept of
*args in Python.

kilroy:
 cmd.cmd.run:
 - tgt: {{ id }}
 - arg:
 - 'touch /tmp/kilroy_was_here'

The kwarg argument contains a dictionary of argument names, and the associated
values to be sent to the function. The order is not important here because the
arguments are named. This is directly analogous to the concept of **kwargs
in Python.

kilroy:
 cmd.cmd.run:
 - tgt: {{ id }}
 - kwarg:
 cmd: 'touch /tmp/kilroy_was_here'

Chapter 4

[87]

Calling runner modules
As runner modules are executed on the Master, no targeting is necessary. However,
both the arg argument and the kwarg argument are still valid, and behave as they do
with execution modules:

webhook1:
 runner.http.query:
 - arg:
 - http://example.com/path/to/webhook
webhook2:
 runner.http.query:
 - kwarg:
 url: http://example.com/path/to/other/webhook

Calling wheel modules
Wheel modules also do not require targeting because they are designed to manage
the Master itself. By far the most common usage of wheel Reactors is to either accept
or delete Minion keys on the Master.

accept_minion:
 wheel.key.accept:
 - match: {{ data['name'] }}

Exercise extreme caution when using wheel Reactors, especially those which accept
Minion keys. You can tell that the preceding Reactor was not designed to be kicked
off by an event from a Minion. How would the Minion fire an event if it wasn't yet
accepted on the Master? So, instead of including the Jinja code to make use of an ID,
it instead looks inside the payload of the event for a name.

This particular example does not perform any validation on the event to ensure that
it came from a trusted source. When you accept keys via the Reactor system, it may
be more appropriate to render the Reactor SLS in Python, rather than YAML. One
example of a Reactor that uses Python to perform validation is the EC2 Autoscale
Reactor, which can be found at:

https://github.com/saltstack-formulas/ec2-autoscale-reactor

When you write Reactors in Python, try to keep them as simple as possible. Salt will
only process one Reactor at a time, whereas complex Reactors will cause others to
begin to queue up while waiting for their turn.

https://github.com/saltstack-formulas/ec2-autoscale-reactor

Managing Tasks Asynchronously

[88]

Writing more complex Reactors
As the number of modules that ship with Salt is vast, there are an enormous number
of functionalities that can be harnessed in the Reactor system. Let's take a look at a
few use cases and ways of how Reactors can be used with them.

These examples will make use of various parts of Salt that are not covered in this
chapter, but we will try to keep them simple enough to only demonstrate the use
case presented.

Sending out alerts
There are a growing number of modules appearing in Salt designed to send
notifications to others. Some of these, such as the smtp and http execution module,
are based on the longtime standards that the Internet is based on. Others, such as the
pagerduty and hipchat module, were built for commercial services. Some of them
have free components, whereas some require a paid account.

Let's set up a simple monitoring system that checks for disk space on a Minion and
sends out an alert if the specified disk is too full. First, let's set up a monitoring State
to keep an eye on disk space.

Create /srv/salt/monitor/disks.sls with the following content:

root_device_size:
 disk.status:
 - name: /
 - maximum: '90%'
 - onfail_in:
 - event: alert_admins_disk

alert_admins_disk:
 event.send:
 - name: alert/admins/disk

Then, we will map the event tag to the Reactor in the Master configuration as follows:

reactor:
 - alert/admins/disk:
 - /srv/reactor/disk_alert.sls

While we're in the Master configuration file, let's also add the configuration to use
the pagerduty service:

my-pagerduty-account:
 pagerduty.subdomain: mysubdomain
 pagerduty.api_key: 1234567890ABCDEF1234

Chapter 4

[89]

Then, we will create /srv/reactor/disk_alert.sls in order to create an incident
with the pagerduty service:

new_instance_alert:
 runner.pagerduty.create_event:
 - kwarg:
 description: "Low Disk Space: {{ id }}"
 details: "Salt has detected low disk space on {{ id }}"
 service_key: 01234567890ABCDEF0123456789abcde
 profile: my-pagerduty-account

In order to kick off this State and only this State we can issue the following
command:

salt myminion state.sls monitor.disks

If Salt detects that the root device is within the specified parameters, the event will
not be fired, and the Reactor will not be triggered:

local:

 ID: root_device_size
 Function: disk.status
 Name: /
 Result: True
 Comment: Disk in acceptable range
 Started: 18:53:54.675835
 Duration: 6.393 ms
 Changes:

 ID: alert_admins
 Function: event.send
 Name: alert/admins/disk
 Result: True
 Comment: State was not run because onfail req did not change
 Started:
 Duration:
 Changes:

Summary

Succeeded: 2
Failed: 0

Total states run: 2

Managing Tasks Asynchronously

[90]

However, if Salt detects that the root device has grown to more than 90 percent
capacity, we will see a different response:

local:

 ID: root_device_size
 Function: disk.status
 Name: /
 Result: False
 Comment: Disk is above maximum of 90 at 93
 Started: 19:07:06.024935
 Duration: 6.315 ms
 Changes:

 ID: alert_admins
 Function: event.send
 Name: alert/admins/disk
 Result: True
 Comment: Event fired
 Started: 19:07:06.033681
 Duration: 28.329 ms
 Changes:

 data:
 None
 tag:
 alert/admins/disk

Summary

Succeeded: 1 (changed=1)
Failed: 1

Total states run: 2

This is what we will see from the command line, but there will be more going on
under the hood. We can see it fire the alert_admins_disk event. What we won't
see is the disk_alert Reactor getting triggered, which will create an incident in
PagerDuty. At this point, PagerDuty will take over and send alerts to the admins as
configured on that service.

We can automate this process by using the Salt scheduler. In the Minion
configuration, add the following block:

schedule:
 disk_monitoring:
 function: state.sls

Chapter 4

[91]

 seconds: 360
 args:
 - monitor.disks

After making this change, restart the Minion. From the point at which the Minion
starts up again, it will issue the monitor_disks SLS every 5 minutes.

Using webhooks
As mentioned previously, Salt API provides a REST interface that can be used to
accept webhooks on the Master. These web hooks are translated into events, which
are intercepted by the Reactor.

Before we can accept webhooks, we need to configure Salt API. First, edit the Master
configuration to tell Salt API to accept webhooks:

rest_cherrypy:
 port: 8080
 host: 0.0.0.0
 ssl_crt: /etc/pki/tls/certs/localhost.crt
 ssl_key: /etc/pki/tls/certs/localhost.key
 webhook_url: /hook
 webhook_disable_auth: True

Instructions to create the ssl_crt and ssl_key files
can be found in Chapter 6, Using Salt with REST, under the
Creating SSL Certificates section.

Next, we need to map any events that we are expecting to the corresponding SLS
files. Add the following lines to the Master configuration:

reactor:
 - salt/netapi/hook/customevent
 - /srv/reactor/webhook.sls

Let's assume that the Master's hostname is salt-master for our purposes. This
means that the URL for this webhook is:

https://salt-master:8080/hook/customevent

With the Master configured, restart it. Salt API is a separate process from the Master,
so go ahead and start it up too:

systemctl restart salt-master

systemctl start salt-api

Managing Tasks Asynchronously

[92]

We can trigger this event from the command line of another system with cURL:

$ curl https://salt-master:8080/hook/customevent -H 'Accept: application/
json' -d passphrase=soopersekrit

If you're watching the event bus with eventlisten.py, you will see the
following event:

Event fired at Sat Apr 18 20:07:30 2015

Tag: salt/netapi/hook/customevent
Data:
{'_stamp': '2015-04-19T02:07:30.460017',
 'body': '',
 'headers': {'Accept': 'application/json',
 'Content-Length': '23',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Host': 'localhost:8080',
 'Remote-Addr': '127.0.0.1',
 'User-Agent': 'curl/7.41.0'},
 'post': {'passphrase': 'soopersekrit'}}

Note that we've used a passphrase here. HTTPS may protect the data being sent,
but it doesn't protect us from any unauthorized usage. It is still up to the user to
implement their own authentication scheme.

While Reactors are normally written in YAML, we need something that allows you
the logic to actually check the passphrase. Fortunately, Jinja does provide enough
logic to perform this. Create /srv/reactor/webhook.sls, with the following content:

{% set passphrase = data['post'].get('passphrase', '') %}
{% if passphrase == 'soopersekrit' %}
authenticated:
 cmd.cmd.run:
 - tgt: myminion
 - arg:
 - 'touch /tmp/somefile'
{% endif %}

Jinja provides just enough logic for a simple authentication scheme. If something more
advanced is required, it may make sense to write the Reactor in pure Python instead.
The following SLS is the Python version of the preceding YAML and Jinja Reactor:

#!py

def run():
 passphrase = data['post'].get('passphrase', '')
 if passphrase == 'soopersekrit':

Chapter 4

[93]

 return {
 'authenticated': {
 'cmd.cmd.run': [
 { 'tgt': 'dufresne' },
 { 'kwarg': {
 'cmd': 'touch /tmp/somefile'
 }
 }
]
 }
 }

This example shows two different SLS files. These files perform a reasonably simple
reaction to the webhook. Let's get a little more advanced.

Reactors calling Reactors
Let's set up a new set of Reactors. First of all, let's add a couple of new events to the
Reactor block in the Master configuration:

reactor:
 - 'salt/netapi/hook/gondor':
 - '/srv/reactor/gondor.sls'
 - 'salt/netapi/hook/rohan':
 - '/srv/reactor/rohan.sls'

The salt-master service will need to be restarted to pick up the new mapping, but
the salt-api service will not. Go ahead and restart the Master with:

systemctl restart salt-master

Next, create /srv/reactor/gondor.sls with the following content:

ask_rohan_for_help:
 runner.http.query:
 - kwarg:
 url: 'http://localhost:8080/hook/rohan'
 method: POST
 data:
 message: 'Rohan, please help!'

Then, set up /srv/reactor/rohan.sls with the following content:

respond_to_gondor:
 cmd.cmd.run:
 - tgt: gandalf
 - arg:
 - "echo 'Rohan will respond' > /tmp/rohan.txt"

Managing Tasks Asynchronously

[94]

Go ahead and get things rolling. As we have one Reactor calling another via another
webhook, we'll add a slight delay before checking for the response:

curl https://localhost:8080/hook/gondor -H 'Accept: application/json'
-d '{}' ; sleep 3; echo; cat /tmp/rohan.txt

{""success"": true}

Rohan will respond

For the purpose of this example, this set of Reactors will reside on the same Master.
However, there is no reason that the URL and the rohan Reactor couldn't exist on an
entirely different Salt infrastructure altogether.

This example also shows that as Reactors have the ability to call each other, Minions,
Masters, and even entire infrastructures can be configured to communicate with each
other autonomously, using a series of asynchronous events.

Using the queue system
The queue system is another component of Salt with the ability to fire events. This
can be used by the Reactor system. However, before we get ahead of ourselves, let's
go through the basics of using the queue system.

Learning how queues work
At its most basic level, the queue is very simple. Items can be added to the queue and
then processed at a later time in the order in which they were added. Depending on
the queue module being used, items may or may not be required to be unique.

For our examples, we'll use sqlite: the default queue module. This module
should work in any infrastructure because sqlite3 is built in Python. It will also
automatically generate any database files if they don't already exist. Take note that
sqlite is one of the queue modules that requires items to be unique. If you want to
use a different module, just add a backend argument to any of the queue commands.
For instance, to explicitly list queues stored in sqlite, use the following command:

salt-run queue.list_queues backend=sqlite

The queue system is managed by a runner. This means that queue databases will be
accessed only by the Master. However, as you'll see later on, it can still be used to
manage tasks on Minions.

Chapter 4

[95]

Adding to the queue
Before we can do anything with a queue, we need to have some items in it to process.
For now, we'll use a queue called myqueue. The following command will add a single
item to the queue:

salt-run queue.insert myqueue item1

True

It is also possible to add multiple items to the queue at a time, by passing them as a
list. From the command line, we'll do this using a JSON string:

salt-run queue.insert myqueue '["item2", "item3"]'

True

Listing queues
As we're using the sqlite module, if this queue did not exist before we issued the
command, it will be automatically created. The following command will list the
queues that are available:

salt-run queue.list_queues

- myqueue

Listing items in a queue
Now that we have some items in the queue, let's take a quick look at them.
The following command will do just list them:

salt-run queue.list_items myqueue

- item1

- item2

- item3

To get a count of the number of items in a queue, use the following command:

salt-run queue.list_length myqueue

3

Processing queue items
There are two ways to process one or more items in a queue. Simply popping the
queue will remove the first item, and display it on the command line:

salt-run queue.pop myqueue

- item1

Managing Tasks Asynchronously

[96]

Multiple items can also be popped at the same time:

salt-run queue.pop myqueue 2

- item2

- item3

This can be useful for programmatic applications which make use of Salt's queue
system. However, it doesn't help us in the way of providing system automation.
In order to do that, we need to be able to fire events to the Reactor system. The
following command will pop an item off the queue, and fire an event with it:

salt-run queue.process_queue myqueue

None

If you are watching the event bus when this command is issued, you will see an
event that looks like:

Event fired at Sat Apr 18 22:29:18 2015

Tag: salt/queue/myqueue/process
Data:
{'_stamp': '2015-04-19T04:29:18.066287',
 'backend': 'sqlite',
 'items': ['item1'],
 'queue': 'myqueue'}

As with popping items, you can also process multiple queue items at once, and they
will appear within the same event:

Event fired at Sat Apr 18 22:30:22 2015

Tag: salt/queue/myqueue/process
Data:
{'_stamp': '2015-04-19T04:30:22.240045',
 'backend': 'sqlite',
 'items': ['item2', 'item3'],
 'queue': 'myqueue'}

Deleting items from a queue
Before we move on, there's one more function available to us: deleting an item from
the queue, without popping or processing it.

salt-run queue.delete myqueue item1

True

Chapter 4

[97]

It is also possible to delete multiple items at once with the following code:

salt-run queue.delete myqueue '["item2", "item3"]'

True

Using queues with the Reactor
Queues were originally designed to be used with the Reactor system. Minion IDs
were added to a queue, and this queue was processed as appropriate. This can be
useful in environments with large jobs, which may end up consuming resources on
the Master.

Spreading out State runs
Let's take a look at a use case. A Master that will run on hardware that is not
performant enough for its needs may have difficulty serving large files to all of its
Minions. Rather than performing a State run on all Minions at once, it makes sense to
use the queue to spread them out a little.

First, let's get the Reactor set up. The queue system will always use the salt/queue/
myqueue/process tag, so let's go ahead and map this to a Reactor SLS file in the
Master configuration:

reactor:
 - salt/queue/myqueue/process
 - /srv/reactor/salt-queue.sls

Now, we need to set up the Reactor itself. This will not be a complex Reactor; it only
needs to issue the state.highstate command. Create /srv/reactor/salt-queue.
sls with the following content:

{% if data['queue'] == 'needs_highstate' %}
{% for minion in data['items'] %}
highstate_{{ minion }}:
 cmd.state.highstate:
 - tgt: {{ minion }}
{% endfor %}
{% endif %}

We will use Jinja in this example to filter out queues and only loop through the items
that appear in the queue that we want. In this case, the queue that we're looking at
is called needs_highstate. For each Minion ID that is delivered via the event, a
Reactor called highstate_<minion_id> will be created, which issues the state.
highstate command against that individual Minion.

Managing Tasks Asynchronously

[98]

Now that we have our Reactor set up, let's go ahead and set up a schedule that
only kicks off one State run every 5 minutes. In the Master configuration, add the
following code:

schedule:
 highstate_queue:
 function: queue.process_queue
 minutes: 5
 arg:
 - needs_highstate

When you restart the Master, this schedule will pop a Minion ID off the queue every
5 minutes, starting with the Master start time, and perform a State run on it. If there
are no Minions in the queue, it will wait another 5 minutes and try again.

Dividing tasks among Minions
Let's take a look at another use case where a large number of jobs need to be handled
by multiple Minions. In this example, we have two queues. The first queue contains
pieces of data to be posted on a URL as they are received. The second queue contains
a list of Minions that will perform a job. For the sake of simplicity, we'll assume
that the job is able to make use of the data that is posted on the URL, without any
interaction from us. The example job that will be run only requires that a Minion
issue the /usr/local/bin/bigjob command.

First, we need to populate the bigjob queue, which contains data that will be used
by the Minions:

salt-run queue.insert bigjob '["data1", "data2", "data3", "data4"]'

Then, we will populate a workers queue, which contains the names of the Minions
that are available to perform the big jobs:

salt-run queue.insert workers '["dave", "carl", "jorge", "stuart"]'

As before, the Master configuration needs to be able to map between the event data
and the Reactor SLS:

reactor:
 - salt/queue/myqueue/process
 - /srv/reactor/salt-queue.sls

For this example, we'll create a new /srv/reactor/salt-queue.sls file with the
following content:

{% if data['queue'] == 'bigjob' %}
{% for job in data['items'] %}

Chapter 4

[99]

bigdata_{{ job }}:
 runner.http.query:
 - kwarg:
 url: 'http://bigdata.example.com/jobs'
 method: POST
 data:
 job={{ job }}

bigjob_{{ job }}:
 runner.queue.process_queue:
 - arg:
 - workers
{% endfor %}
{% endif %}
{% if data['queue'] == 'workers' %}
{% for minion in data['items'] %}
worker_{{ minion }}:
 cmd.cmd.run:
 - tgt: {{ minion }}
 - arg:
 - '/usr/local/bin/bigjob'
{% endfor %}
{% endif %}

There's a lot going on here, so let's jump in. The first thing that we will do is process
the bigjob queue. Each item in the queue will be POSTed to the http://bigdata.
example.com/jobs URL. It will also trigger the worker queue to process one item
at a time.

The worker queue Reactor is simpler; it pops a Minion ID off the queue and asks it
to execute the /usr/local/bin/bigjob command. Again, we'll assume that this
command knows how to make use of the data that was posted on the URL.

There's a couple of ways to kick off this workflow. One way is to assume that once a
bigjob is finished, it can kick off an event to the Reactor that processes the next item
in the bigjob queue. Let's go ahead and set up a webhook that accomplishes this.
For simplicity, we'll not worry about authentication this time around.

First, map a new webhook to a new Reactor in the Master configuration file
as follows:

reactor:
 - salt/netapi/hook/bigjob
 - /srv/reactor/bigjob.sls

Managing Tasks Asynchronously

[100]

Then, we will create /srv/reactor/bigjob.sls with the following content:

process_bigjob:
 runner.queue.process_queue:
 arg:
 - bigjob

Now, assuming that the hostname for the Master is salt-master, we will issue the
following cURL command:

curl https://salt-master:8080/hook/bigjob -H 'Accept: application/json'
-d '{}'

This will kick off the process by processing one queue item. It could also be called by
the /usr/local/bin/bigjob command after the completion of the job, to notify the
Master that it is finished. Of course, the Minion should also add its name back to the
queue. Let's modify /srv/reactor/bigjob.sls so that it can do this as well:

process_bigjob:
 runner.queue.process_queue:
 arg:
 - bigjob

add_worker:
 runner.queue.insert:
 arg:
 - workers
 - {{ data['minion_id'] }}

We'll also change the cURL command to include the ID of the Minion:

curl http://salt-master:8080/hook/bigjob -H 'Accept: application/json' -d
minion_id=<this_minion_id>

Another option is to use the scheduler to kick off the bigjob on a regular basis:

schedule:
 bigjob_queue:
 function: queue.process_queue
 hours: 1
 arg:
 - bigjob

In this case, be sure to remove the process_bigjob block from /srv/reactor/
bigjob.sls, but leave the add_worker block.

Chapter 4

[101]

Summary
The event system in Salt can be extremely powerful when combined with the
Reactor system. Events can be designed to trigger other events, which can in turn
trigger even more events. This moves Salt from the configuration management and
automation playing fields to a bigger area, where autonomy rules all.

In the next chapter, with a whole new toolset under our belts, we will look at how
Salt Cloud can be further extended to increase the power of our infrastructure.

[103]

Taking Salt Cloud to
the Next Level

To many, Salt Cloud has become a crucial part of the stack of Salt tools. Originally
designed for little more than creating and Salting virtual machines across multiple
cloud hosting providers, its functionalities have grown to become much more. In this
chapter, we'll discuss the following topics:

•	 The basics of configuration
•	 Extending configuration directives
•	 Building custom deploy scripts
•	 Working with cloud maps
•	 Building and using autoscale Reactors

Take note that this chapter discusses how to manage compute nodes or instances,
which generally refer to virtual machines. However, since some cloud hosting
companies also provide cloud resources by creating an entire physical server, or
bare metal instance available to the user, we will refer to them all collectively as
compute instances.

Examining the Salt Cloud configuration
Some of the biggest evidence of how much Salt Cloud has grown resides in its
configuration files. Early versions supported several cloud providers, but only one
account per provider. It quickly became clear that a number of users did in fact make
use of multiple accounts. Let's take a few minutes to look at the basics of how Salt
Cloud configuration files work now.

Taking Salt Cloud to the Next Level

[104]

Global configurations
The basis of the Salt Cloud configuration resides in the main configuration file,
which is normally found at /etc/salt/cloud. This file used to be very central to the
operation of Salt Cloud, but nowadays, there are very few options that can only be
used here. We'll cover these later in Global configurations; for now, we'll focus on the
global aspect of this file.

Salt Cloud has been designed with a top-down configuration mindset.
Configurations defined in each type of the configuration file are available in the next
configuration set, unless overridden. The order of operation is as follows:

1.	 /etc/salt/cloud

2.	 Provider configuration
3.	 Profile configuration
4.	 Cloud maps

Some options are relevant to many cloud providers, while others only pertain to
one. As the configuration is compiled together to create a new compute instance,
a number of options may be made available. These aren't necessary. Don't worry,
because any options that are declared as unusable will be ignored.

Let's go through an example. Let's assume that you manage a number of compute
instances in Amazon's EC2 Cloud and that they span multiple regions. As you'll see
in the next section, each region will be configured as a different cloud provider as far
as Salt Cloud is concerned. However, you have a number of EC2-specific options that
you want to apply to all regions:

cat /etc/salt/cloud

rename_on_destroy: True

delvol_on_destroy: True

These two options are specific to EC2. Every region that is set up as a separate
provider will inherit these options, saving the user having to specify them multiple
times. Simplifying configurations like this will also cut down on errors when broad
changes need to be made, because tedious editing of multiple files and configuration
blocks will be eliminated.

The provider and profile configuration
Before we go into details on how these two types of configuration work, we
should clarify what each one is. You should already be comfortable with these
configurations, so we won't go into the details here.

Chapter 5

[105]

Providers
Provider refer to the compute cloud hosting company, which should be used to create
the new compute instance. A provider configuration block is also used to separate
configuration for multiple regions on the same cloud provider. For example, the
following configuration blocks refer to the same actual hosting company, but within
two different regions:

ec2-east:
 provider: ec2
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 location: us-east-1
ec2-west:
 provider: ec2
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 location: us-west-1

Take note of the provider line in each of these blocks. Inside
the provider configuration blocks, this argument refers to
the driver that will be used to manage compute instances.

Provider configuration is stored in one of two places. For simpler cloud
configuration, it may be most convenient to store it in the /etc/salt/cloud.
providers file. If you use a number of cloud providers or have a need for smaller
configuration files, which are managed by a configuration management suite (such
as Salt), it may be better to break them into a number of files in the /etc/salt/
cloud.providers.d/ directory.

Take note that files inside this directory must have a .conf
extension in order for Salt Cloud to use them.

Taking Salt Cloud to the Next Level

[106]

Profiles
Profile configuration is used to set up configuration blocks. These blocks define a
certain type of compute instance. For instance, an infrastructure may have a number
of web servers that share identical configuration and a number of database servers
that share their own identical configuration, which is likely to be very different from
the web servers' configuration.

A profile configuration block is used to divide the separate configurations for each of
these types of machines. Take, for example, the following two profiles:

azure-centos:
 provider: azure-west
 image: 'OpenLogic-CentOS-65-20150128'
 ssh_username: root
 ssh_password: pass123
 ssh_pubkey: /root/azure.pub
 media_link: 'https://example.blob.core.windows.net/vhds'
 slot: production
 size: Medium
azure-ubuntu:
 provider: azure-west
 image: 'Ubuntu-14_04-LTS-amd64-server-20140724-en-us-30GB'
 ssh_username: larry
 ssh_password: pass123
 ssh_pubkey: /root/azure.pub
 media_link: 'https://example.blob.core.windows.net/vhds'
 slot: production
 size: Medium
 tty: True
 sudo: True

These profiles are almost identical; the differences stem from the operating system.
Many CentOS images default to using root as the default user, whereas the Ubuntu
philosophy prefers to use an unprivileged user as the default. However, since
privileged access is required to be able to install Salt, additional options have been
added in order for Salt Cloud to be able to issue commands as root, using sudo.

Take note of the provider argument in each block. In this case,
it refers to the configuration block defined in the provider
configuration files, as opposed to the name of the driver.

Similar to the provider configuration files, profile configuration may be stored either
in the /etc/salt/cloud.profiles file, or in .conf files in the /etc/salt/cloud.
profiles.d/ directory.

Chapter 5

[107]

Extending configuration blocks
The provider and profile configuration blocks are unique among Salt
configurations, in which they support the extends configuration directive. This
feature allows you to create a generic provider or profile configuration block,
and then use this block as a template for other provider or profile definitions.

For example, take the following profile:

ec2-ubuntu:
 provider: my-ec2
 image: ami-83dee0ea
 size: m3.medium
 ssh_username: ubuntu
 securitygroup: images
 spot_config:
 spot_price: 0.24

This profile takes advantage of the spot instance feature in Amazon's EC2, which
allows you to bid for resources at a potentially lower cost than they would normally
be available at. This profile and its spot price may be a good default for most
compute instances in your organization, but certain compute instances may need to
be a little different.

Let's say you have some Web servers that only serve static images and they don't
need to be as large or as expensive as others. You can create a new profile that
inherits all the properties from this one and then overwrites arguments as needed.

static-image-ec2:
 size: m1.small
 spot_config:
 spot_price: 0.10
 extends: ec2-ubuntu

This profile, once compiled by Salt Cloud, will actually create a new profile that
looks similar to the following code:

static-image-ec2:
 provider: my-ec2
 image: ami-83dee0ea
 size: m1.small
 ssh_username: ubuntu
 securitygroup: images
 spot_config:
 spot_price: 0.10

Taking Salt Cloud to the Next Level

[108]

Now is a good time to point out an important restriction with the extends block.
There are several configuration items that can be declared as lists. For instance,
ssh_username is a common configuration item across multiple providers in the
following example:

ec2-ubuntu:
 provider: my-ec2
 image: ami-83dee0ea
 size: m3.medium
 ssh_username:
 - ubuntu
 - ec2-user
 securitygroup: images

There are two usernames provided. When initially logging in to a compute instance,
Salt Cloud will attempt each of these in order, until a valid username is found.

If this profile was extended to also include the root user, then the entire ssh_
username argument would need to be redeclared. This is because list items will
be overwritten in their entirety. The following profile would only include the root
username in the final configuration:

medium-ubuntu:
 ssh_username:
 - root
 extends: ec2-ubuntu

This profile would contain all the necessary usernames:

medium-ubuntu:
 ssh_username:
 - ubuntu
 - ec2-user
 - root
 extends: ec2-ubuntu

This may seem odd because there are list arguments in SLS files appended together.
For example, the require statement, as shown in the following code:

nginx-service:
 service.running:
 - name: nginx
 - require:
 - pkg: nginx-package
 - pkg: mysql-package

Chapter 5

[109]

However, in the case of SLS files, the order is not actually important. So long as
all the requirements are met, the State will execute. If the requirements need to be
performed in a specific order, then each item will have its own list of requirements
declared, which will determine the order.

In the case of lists in Salt Cloud, the order is often very important, whereas in the case
of ssh_username, each item will be tried in the order in which it is presented. Simply
adding lists together will not necessarily result in the order that is actually desired.

Building custom deploy scripts
One of the most critical parts of Salt Cloud is its ability to not only create compute
instances, but also deploy Salt (or anything else) once compute instances become
available. The vast majority of users will use the Salt Bootstrap script to install Salt,
but there are times when augmenting or replacing this script with your own files
is appropriate.

Understanding the Salt Bootstrap script
This is the default deployment method to install Salt on non-Windows compute
instances with Salt Cloud. By default, it will install only the Salt Minion service. It
also has the capability to install Salt Master and Salt Syndic as desired.

The Salt Bootstrap script has some special considerations, which dictate the way
in which it works. First, it was designed to be run on as many POSIX platforms as
possible, including various flavors of both Unix and Linux. In order to accommodate
each disparate environment, it was written to be compatible with the Bourne shell,
also known as sh.

As it's very rare to find a Unix or Linux distribution that does not support Bourne
shell, the Salt Bootstrap script can run pretty much anywhere (except for Windows).
It uses this portability to automatically detect the operating system that it's running
on, so that it can install the necessary dependencies for Salt, and then Salt itself.

This brings us to another important aspect of Salt Bootstrap. While it will execute
on almost any platform, it does need to be written specifically for a platform in
order to be able to do its job there. As of Bootstrap Version 2015.03.15, the following
platforms are supported:

•	 Amazon Linux 2012.09
•	 Arch Linux
•	 CentOS 5/6

Taking Salt Cloud to the Next Level

[110]

•	 Debian 6.x/7.x (Git installations only)
•	 Debian 8
•	 Fedora 17/18
•	 FreeBSD 9.1/9.2/10
•	 Gentoo
•	 Linaro
•	 Linux Mint 13/14
•	 OpenSUSE 12.x
•	 Oracle Linux 5/6
•	 Red Hat Enterprise 5/6
•	 Scientific Linux 5/6
•	 SmartOS
•	 SUSE Linux Enterprise 11 SP1 – 3
•	 Ubuntu 10.x/11.x/12.x/13.04/13.10
•	 Elementary OS 0.2

You've probably noticed the note above, next to Debian about Git installations next to
Debian. In its normal mode of operation, Salt Bootstrap will install the latest version
of Salt available for that platform, using the prebuilt packages that are available in
that platform's public repositories. Let's first talk about installing from those.

Installing from prebuilt packages
Most people who use Salt Bootstrap will do so from Salt Cloud, Salty Vagrant,
or another similar tool that will automatically place it on the compute node to
be deployed and run it for them. However, it is helpful to know how to run Salt
Bootstrap manually.

A copy is distributed with Salt so that Salt Cloud can make use of it. If you are
running the most recent version of Salt, you probably have the most recent version of
Salt Bootstrap as well. If you want to be sure, you can ask Salt Cloud to update it for
you with the following code:

salt-cloud --update-bootstrap

You can also download the latest stable version manually on the target system. There
are a number of different ways to do this from the command line, depending on the
downloading tool that your operating system has installed:

curl -L https://bootstrap.saltstack.com -o bootstrap-salt.sh

wget -O bootstrap-salt.sh https://bootstrap.saltstack.com

Chapter 5

[111]

python -m urllib "https://bootstrap.saltstack.com" > bootstrap-salt.sh

fetch -o bootstrap-salt.sh https://bootstrap.saltstack.com

Once you have it downloaded, you can simply run it with no arguments to install the
Salt Minion, as shown in the following code:

sh bootstrap-salt.sh

If you would like to install Salt Master as well, add the -M argument:

sh bootstrap-salt.sh -M

To install Salt Syndic, add -S:

sh bootstrap-salt.sh -S

Also, if you want to install the Salt libraries, but not the Salt Minion, add the -N
argument:

sh bootstrap-salt.sh -N

Any of these arguments can be used together as required. When any of the Salt
services are installed, they will be started automatically. If you prefer not to start
them right away, you can add the -X argument:

sh bootstrap-salt.sh -X

This doesn't work everywhere; Debian-based distributions—such as Ubuntu—are
designed to start services automatically as part of the package installation process.
Salt Bootstrap will warn the user about this. However, efforts have been made to
support this argument whenever possible.

Keep in mind that starting a service automatically, which has not yet been
configured properly, can be problematic. By default, Salt Minion will check the DNS
for Salt Master at the Salt hostname. It will also poll the Minion's own hostname, and
use that as the minion's ID. If there is no Master at the salt hostname, or if a number
of Minions have a hostname of localhost, then this will cause problems.

Before you run the Salt Bootstrap script, you can either place configuration files and
keys directly where they need to be or put them in a temporary directory and ask the
Bootstrap script to put them in place for you:

sh bootstrap-salt.sh -c /tmp/.saltbootstrap/

This feature exists so that automated deployment programs, such as Salt Cloud, can
spend as few resources as possible getting the files to the target. A simplified version
of the commands run by Salt Cloud to create and populate this directory are:

(via ssh)# mkdir /tmp/.saltcloud-<randomhash>/

Taking Salt Cloud to the Next Level

[112]

(via ssh)# chmod 700 /tmp/.saltcloud-<randomhash>/

scp minion target:/tmp/.saltcloud-<randomhash>/

scp minion.pem target:/tmp/.saltcloud-<randomhash>/

scp minion.pub target:/tmp/.saltcloud-<randomhash>/

scp bootstrap-salt.sh target:/tmp/.saltcloud-<randomhash>/

Once the directory is populated, Salt Cloud will issue the command to run the
Bootstrap script. After this is finished, Salt Cloud will clean up the temporary
directory on the target and return to the user.

Installing from Git
If you do not wish to use the public repositories for your infrastructure, then you
have two options. One option is to install from Git. Another option is to use a custom
deploy script. We'll get to custom scripts in a moment. Let's talk about installing
from Git first.

To install from Git, you need to pass git <branch> to the end of the Salt Bootstrap
command:

sh bootstrap-salt.sh git develop

By default, this will use SaltStack's own Salt repository on GitHub:

https://github.com/saltstack/salt

If you want to install Salt from a different Git repository, such as your own fork, you
can use the -g argument:

sh bootstrap-salt.sh -g https://github.com/myuser/salt.git git develop

Normally, Salt Bootstrap will use a git:// URL for Salt. If the Git port is blocked,
you will need to use the https:// URL for Git. Instead of manually specifying the
https:// URL, you can use -G to use it automatically, as shown in the following code:

sh bootstrap-salt.sh -G git develop

If you want to install a version of Salt that is different from the version in your
distribution's repositories, using a Git-based installation is often the easiest. SaltStack
uses Git tags to keep track of different major versions of Salt. As of January 2014,
Salt is versioned with the year and the month, and the tags reflect this. To install the
2015.5 branch of Salt, use:

sh bootstrap-salt.sh git 2015.5

https://github.com/saltstack/salt

Chapter 5

[113]

Looking back at legacy deploy scripts
Before the Salt Bootstrap script, there were a number of different scripts used
to deploy Salt. Each operating system had two scripts: one to install from that
distribution's own repositories and one to install from Git. Although, they have
fallen into disuse and are often out of date, they are still included with Salt Cloud.

One of the reasons these scripts still ship is academic; users who are unable to use
Salt Bootstrap for some reason can examine the legacy deploy scripts and modify
them for their own purposes.

There are also some newer deploy scripts that wrap around the Salt Bootstrap script.
These scripts are designed explicitly for user modification: users can add their own
commands before or after the Salt Bootstrap script runs. If you have a lot of work
that needs to be done by the deploy script before Salt starts up and takes over, then a
customized deploy script may be ideal.

Writing your own deploy scripts
In the early days, Salt Cloud was designed to do little more than create a compute
instance, install Salt on it, and autoaccept that Minion's keys on the Master. As the most
complex variable here was which operating system was running on the target, this
script was specified using the os argument. Before long, it became clear that Salt Cloud
needed to support more complexity, so the os argument was changed to script.

Back in those days, custom scripts needed to be added directly to the deploy/
directory of Salt Cloud's source tree. Fortunately, we can now take advantage of a
simpler and more predictable directory: /etc/salt/cloud.deploy.d/.

Scripts in this directory may be referred to with or without the .sh extension, which
is normally associated with Bourne shell scripts. This doesn't mean that the scripts
have to be Bourne scripts, but if no extension is specified and Salt Cloud is unable to
find it, then the .sh extension will be added and Salt Cloud will look again.

The deploy script will generally perform the following tasks:

•	 Place automatically signed keys on the Minion
•	 Place the Minion's configuration file
•	 Install the Salt Minion package for that operating system
•	 Start the salt-minion service

As with most files in Salt, this file can be templated using Salt's Renderer system. By
default, the Jinja templating system will be used, but of course, any other renderers
are also available.

Taking Salt Cloud to the Next Level

[114]

The purpose of using a Renderer for this file is to be able to place keys and other
files on the Minion. Other configuration variables from the provider and profile
configuration blocks will also be merged, if specified.

The following is a very basic script to install Salt on an Ubuntu target:

#!/bin/bash

Install the minion's keys

mkdir -p /etc/salt/pki/minion

echo '{{ vm['priv_key'] }}' > /etc/salt/pki/minion/minion.pem

echo '{{ vm['pub_key'] }}' > /etc/salt/pki/minion/minion.pub

Write the minion's configuration file

cat > /etc/salt/minion <<EOF

{{minion}}

EOF

Set up Ubuntu repositories

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu `lsb_release -sc`
main | tee /etc/apt/sources.list.d/saltstack.list

wget -q -O- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0
x4759FA960E27C0A6" | apt-key add -

apt-get update

Install Salt

apt-get install -y -o DPkg::Options::=--force-confold salt-minion

No need to start services on Ubuntu; it will be done by apt

You can see the template variables for the Minion's private and public keys as {{
vm['priv_key'] }} and {{ vm['pub_key'] }} respectively. You can also see
the Minion's configuration file as {{ minion }}. Any other work that needs to be
performed can be added here as needed.

Of course, the section of this script, which sets up the Ubuntu repositories, can be a
little unwieldy. Also, the Salt Bootstrap script will take care of those for you. Plus,
the keys and configuration file will be uploaded manually by Salt Cloud anyway, so
unless you have a specific reason to put them here, you can skip those steps and have
a greatly simplified file, which is much more multiplatform. The following script is
much shorter, and makes use of a couple more tricks:

#!/bin/sh

wget -O - https://bootstrap.saltstack.com | sudo sh -s -- "$@"

Chapter 5

[115]

This script makes use of the infamous one line installer. It's nice because it
demonstrates how Salt can be installed with a single command, even when extra
work needs to be performed, such as setting up repositories. However, it does have
issues as well.

The biggest issue is with the source. You are trusting an arbitrary URL, which
you have no control over, to provide a script that will be directly piped to the sh
command. This is considered insecure by security professionals and should normally
be avoided. However, since Salt Cloud used to only upload a specific set of files,
custom scripts that wrapped the Bootstrap script had little other choice. Technically,
the following script demonstrates a more secure way to download and use the Salt
Bootstrap script:

#!/bin/bash

wget -O bootstrap-salt.sh https://bootstrap.saltstack.com

sudo sh bootstrap-salt.sh "$@"

However, since this is run as a script anyway, there is no functional difference. It is
much more secure to upload your own copy of the Salt Bootstrap script in addition
to the wrapper. In a moment, we'll discuss how to do that. But, first, let's talk about
the other trick used here: passing arguments to your script.

Passing arguments to scripts
As you have already seen, the Salt Bootstrap script supports a number of arguments.
Also, some of these will be automatically added by Salt Cloud. However, you may
wish to specify some arguments directly. This can be especially important for your
own custom scripts, which support your own arguments.

Salt Cloud allows script arguments to be passed with the script_args argument
anywhere in the Salt Cloud configuration files, which are used for the target Minion,
provider, profile, and so on. The following profile configuration block will not only
install Salt as usual, but also attempt to install Apache Libcloud so that the target
Minion can also be used to run Salt Cloud with a Libcloud-based provider:

gogrid-centos:
 provider: my-gogrid
 size: 512MB
 image: CentOS 6.2 (64-bit) w/ None
 script_args: -L

Taking Salt Cloud to the Next Level

[116]

We've already covered a few arguments earlier in this chapter. In addition to them,
the following arguments are also available:

•	 -v: This specifies the display script version.
•	 -n: This denotes no colours.
•	 -D: This indicates the show debug output.
•	 -k: This specifies the temporary directory that holds the Minion keys that

will preseed the Master.
•	 -s: This refers to the sleep time used when waiting for daemons to start,

restart, and when checking for the services running. The default is
${__DEFAULT_SLEEP}.

•	 -C: This only runs the configuration function. This option automatically
bypasses any installation.

•	 -P: This allows pip-based installations. On some distributions, the required
Salt packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last resort method.

This only works for functions which actually implement
pip-based installations.

•	 -F: This allows copied files to overwrite existing files (config, init.d,
and so on).

•	 -U: If this is set, fully upgrade the system prior to bootstrapping Salt.
•	 -K: If this is set, keep the temporary files in the temporary directories

specified with -c and -k.
•	 -I: If this is set, allow insecure connections when you download any files.

For example, pass --no-check-certificate to wget or --insecure to curl.
•	 -A: This passes the salt-master DNS name or IP and will be stored under

${_SALT_ETC_DIR}/minion.d/99-master-address.conf.
•	 -i: This passes the salt-minion ID and will be stored under

${_SALT_ETC_DIR}/minion_id.
•	 -L: This installs the Apache Libcloud package if possible (required for

salt-cloud).
•	 -p: This specifies extra package to install when you install salt dependencies.

You are limited to one package per -p flag. You're responsible for providing
the proper package name.

•	 -H: This uses the specified http proxy for the installation.
•	 -Z: This enables the external software source for newer ZeroMQ

(only available for RHEL/CentOS/Fedora-based distributions).

Chapter 5

[117]

Using file maps
In the Building custom deploy scripts section, we touched on how to upload your own
custom version of the Salt Bootstrap script. You can in fact upload any number of
files to a Minion before executing the deploy script. However, you may issue only
one command, as explained before, with the script argument, and any arguments are
passed using the script_args argument.

Therefore, if you need to upload and execute a number of scripts, you will need to
create one Master script, which executes them for you. This is the script that will be
specified with the script argument. The other files can be uploaded with a file map.

The file_map variable is a dictionary that can be added to any relevant
configuration file for the Minion. Each key in the dictionary is the name of a local
file that is to be uploaded, and the value is the name of the remote path to which it
should be uploaded. Consider the following cloud profile:

ec2-ubuntu:
 provider: my-ec2
 image: ami-83dee0ea
 size: t2.small
 ssh_username: ubuntu
 securitygroup: default
 script: install.sh
 file_map:
 /srv/salt/scripts/install1.sh: /tmp/install1.sh
 /srv/salt/scripts/install2.py: /tmp/install2.py
 /srv/salt/scripts/custompkg.deb: /tmp/custom-package.deb

This profile will upload a shell script, a Python script, and a package file to the /
tmp/ directory on the minion. It won't necessarily upload them in that order, but
that's okay; the install.sh script (which will be uploaded from /etc/salt/cloud.
deploy.d/ on the system running Salt Cloud) will execute them in the proper order.

Take note of the last file in file_map. If you specify a different
filename on the target system than on the local system, Salt
Cloud will rename it for you when it uploads it.

Taking a look at cloud maps
So far, we have only discussed how to work with compute instances on an individual
level. However, one of the earliest features of Salt Cloud was the concept of a cloud
map file (not to be confused with file_map). Cloud maps allow you to specify a
group of machines to create the group of machines all in one shot.

Taking Salt Cloud to the Next Level

[118]

This can be very useful when managing a small infrastructure or small pieces of a
large infrastructure. Not only can you declare that certain profiles are used to declare
a number of compute instances, but you can also append and override configuration
in those profiles.

Let's say that you have an infrastructure that contains database servers, Web servers,
and load balancers. Each type of server will have its own unique needs, but there
will also be multiple of each type of server. First, let's define the provider:

my-ec2:
 id: FWEHKJ345FSDAFDE34DF
 key: 'fewhgreFRE/FSE+freg3r43FDSDS3334DSFdff4u'
 keyname: mycompany
 private_key: /root/mycompany.pem
 securitygroup: private
 location: us-east-1
 provider: ec2
 rename_on_destroy: True
 delvol_on_destroy: True
 owner: amazon
 minion:
 master: 10.0.0.150
Then, we'll define the profiles as follows:
ec2-load-balancer:
 provider: my-ec2
 size: t2.micro
 image: ami-83dee0ea
 security_group: public
ec2-web:
 provider: my-ec2
 size: t2.small
 image: ami-83dee0ea
 security_group: public
ec2-database:
 provider: my-ec2
 size: m3.xlarge
 image: ami-83dee0ea

Finally, we'll define a map that makes use of each of these profiles, as shown in the
following code:

ec2-database:
 db001:
 grains:
 role: database

Chapter 5

[119]

ec2-load-balancer:
 lb001:
 grains:
 role: load-balancer
 note: primary load-balancer
 lb002:
 grains:
 role: load-balancer
 note: secondary load-balancer
{% set webservers = ('web001', 'web002', 'web003') %}
{% for server in webservers %}
ec2-web:
 {{ server }}:
 grains:
 role: web
{% endfor %}

Three different techniques have been used in this map to define server names.
However, only one database server has been defined: db001. It also has a custom
Grain set, that declares its role to be a database. However, two load balancers
called lb001 and lb002 have been defined. They both have the role grains set to
load-balancer, but they also have a unique value for their note grains.

The last profile: ec2-web defines three different Web servers, but it does so using
Jinja templating. As with other files, cloud map files use Salt's Renderer system,
making templating easy. In this map, there's nothing special about each of the web
servers: they will be identical. So, we just declared a tuple in Jinja with their names
and then looped through each of them to create the final map file, which will look
similar to the following code:

ec2-database:
 db001:
 grains:
 role: database
ec2-load-balancer:
 lb001:
 grains:
 role: load-balancer
 note: primary load-balancer
 lb002:
 grains:
 role: load-balancer
 note: secondary load-balancer
ec2-web:
 web001:

Taking Salt Cloud to the Next Level

[120]

 grains:
 role: web
ec2-web:
 web002:
 grains:
 role: web
ec2-web:
 web003:
 grains:
 role: web

In order to run this map, we will use the -m or --map command-line argument:

salt-cloud -m /etc/salt/cloud.maps.d/mymap.map

By default, Salt Cloud will create these machines serially. In order to create them in
parallel, we will add -P or --parallel:

salt-cloud -P -m /etc/salt/cloud.maps.d/mymap.map

You may have noticed the cloud.maps.d/ directory. This is a directory suggested
by SaltStack, which matches the naming scheme for other Salt Cloud directories.
However, it is not required, and in fact, Salt Cloud will not even look in this
directory unless it is pointed directly to it. If you do not specify an absolute path to a
map file, Salt Cloud will look in the current working directory.

Working with autoscale Reactors
Salt Cloud is powerful on its own, but it can be made even more powerful by tying
it in Salt's own event bus. Some cloud providers are able to actively send updates to
automated systems, such as Salt, which Salt Cloud can act on, but even if they don't,
Salt Cloud is able to poll cloud providers for the information it needs.

The cloud cache
There are in fact two caches kept by Salt Cloud, but one is more of an index than
anything. Both are kept in the cloud/ directory inside Salt's own cache directory.
The normal location for the cloud cache is /var/cache/salt/cloud/.

If you have used Salt Cloud to create a compute instance, then there will be a file in
this directory called index.p. This file, which is in the msgpack format, contains a
list of all the compute instances that have been created by Salt Cloud (minus any that
have been subsequently destroyed by Salt Cloud). There is no configuration variable
to turn this on or off; it will be generated automatically.

Chapter 5

[121]

If you were to open this file with msgpack, you would find the list of compute
instances with a very small amount of information about them, as shown in the
following code:

{
 "testinstance01": {
 "driver": "ec2",
 "id": "testinstance01",
 "profile": "centos65",
 "provider": "my-ec2"
 }
}

This information can be used by various components, such as the cloud roster, for
Salt SSH to quickly determine which provider a compute instance belongs to, and
which profile was used to create it.

However, it is possible to extend the cloud cache to include more information. Be
warned that this may slow the Salt Cloud execution for some providers, but you may
find it worth the extra time. To turn on the full cloud cache, set the following value in
the main cloud configuration file:

update_cachedir: True

With this option turned on, Salt Cloud will make an entry in this directory for every
single compute instance that is queried when either a --full-query is performed
against a cloud provider, or when a show_instance action is performed against a
single compute instance.

Once the cache is updated, a new set of directories will show up under /var/cache/
salt/cloud/. First, there will be a directory called active/. In this directory, there
will be another directory for each driver (ec2, linode, softlayer, and so on) that
has been queried. In each of these directories, there will be another directory for each
user-defined provider configuration block (my-ec2-config, my-linode-config, my-
softlayer-config, and so on). In each of these directories, there will be a msgpack
file with a .p extension for each node that has been queried for that provider. Such a
directory structure will look similar to the following code:

/var/cache/salt/cloud/
├── active
│ ├── ec2
│ │ └── my-ec2
│ │ ├── autoscalemaster.p
│ │ └── basepi-master.p
│ ├── linode
│ │ └── my-linode

Taking Salt Cloud to the Next Level

[122]

│ │ └── techhat-master.p
│ └── softlayer
│ └── my-softlayer
│ ├── cro-master.p
│ └── rallytime-master.p
└── index.p

The content of each file is the output that will be shown for that compute instance
in either a --full-query, or show_instance action. For example, take a look at the
following code:

{
 "amiLaunchIndex": "0",
 "architecture": "x86_64",
...SNIP...
 "tagSet": {
 "item": {
 "key": "Name",
 "value": "techhat-master"
 }
 },
 "virtualizationType": "paravirtual"
}

The contents of these files become especially useful when Salt Cloud is instructed to
fire events when something changes. In order to do this, set the following value in
the main cloud configuration file:

diff_cache_events: True

When this is turned on, Salt Cloud will fire events when --full-query is performed.
If a compute instance is found that was not previously in the cache, an event tagged
salt/cloud/<vm_name>/cache_node_new will be fired. If a compute instance that
previously existed in the cache is no longer there, then an event tagged as salt/
cloud/<vm_name>/cache_node_missing will be fired. Also, if a piece of information
about a compute information has changed (such as its running status), then an event
tagged salt/cloud/<vm_name>/cache_node_diff will be fired.

Using cloud cache events
These cloud cache events can be used in conjunction with autoscaling systems. Many
cloud providers offer their own autoscaling solutions, but do not actively issue
notifications to users when compute instances are either created or destroyed. A
small handful of cloud providers do, which can speed things up dramatically.

Chapter 5

[123]

If you are working with one of the many cloud providers that does not actively send
notifications, do not despair; Salt Cloud can still help. If set on a schedule, it will poll
the cloud provider for you on a regular basis, firing events when it finds any changes.

Setting up a schedule
To use Salt's own scheduler on the Master, add the following code to your Master
configuration file:

schedule:
 cloud_query:
 function: cloud.full_query
 minutes: 10

When this Master configuration is applied, Salt Cloud will perform a full query for
you every 10 minutes, updating the cache.

It is recommended to keep the time value conservative; bear in mind that each time
this is run, it will query the cloud provider directly. If you are using a cloud provider
that meters API calls and you query them too often, you risk getting blocked on a
number of queries.

It may also be useful to set aside a dedicated Minion to perform cloud queries. A
number of infrastructure managers have decided to go this route to keep the load
off the Master. If you feel this is the right move for you, go ahead and install the
necessary Salt Cloud configuration files on your chosen Minion and set the schedule
in the Minion configuration file, which is exactly the same as on the Master:

schedule:
 cloud_query:
 function: cloud.full_query
 minutes: 10

You don't even have to install the Salt Cloud package on the Minion that will
be performing the work. This is because Salt Cloud itself is built-in the core Salt
libraries; the Salt Cloud package provides little more than the salt-cloud command.
However, since there is a cloud execution module (which mirrors the cloud runner
module on the Master), you don't actually need the salt-cloud command to exist
in order to use Salt Cloud. However, you will still need any dependencies (Libcloud,
Azure, and so on) that are required for your cloud provider of choice.

Of course, if your infrastructure uses the cron system instead of Salt's built-in
scheduler, you can still kick off events. However, you will need the salt-cloud
command. Go ahead and set the following record in your crontab:

*/10 * * * * /usr/bin/salt-cloud --full-query

Taking Salt Cloud to the Next Level

[124]

This will also issue a --full-query every 10 minutes, which is based on clock time,
rather than the time that either the salt-master service or the salt-minion service
started up.

Catching cloud cache events
Once you have events set up to fire when the cloud cache changes, you can set up a
Reactor to respond to them. However, before we get into the details of how to set up
the Reactor, let's talk about the workflow that is going on here.

When Salt Cloud is asked to create a compute instance using either a --profile
argument or a --map argument, it will perform the following:

•	 Request that the cloud provider create a compute instance
•	 Wait for an IP address to become available for that compute instance
•	 Wait for SSH/SMB to become available at that IP address
•	 Upload files to that IP address
•	 Execute the deploy script or the Windows installer
•	 Clean up temporary files
•	 Return to the user

Some cloud providers perform more than this, but every cloud provider performs at
least these steps.

When Salt Cloud detects that a new Minion has appeared, we know that the first
of these steps (request a compute instance) has already been performed. We don't
necessarily know that any other steps were performed, but that's okay; each step
naturally leads to the next. All we need to do is tell Salt Cloud to skip step 1 and start
with step 2, using the ID of the compute instance that we provide it with.

Keep in mind that not every cloud provider currently supports
skipping the first step. As of Salt Version 2015.2, the EC2 driver
and all OpenStack-based drivers do support it.

When Salt Cloud finds a new compute instance, it will fire an event that contains all
the information that will be shown for that node using the show_instance function:

Tag: salt/cloud/mynewinstance/cache_node_new
Data:
{'_stamp': '2015-05-03T18:34:40.267845',
 'event': 'new node found',
 'new_data': {'amiLaunchIndex': '0',

Chapter 5

[125]

 'architecture': 'x86_64',
 'id': 'i-deadcafe',
 'instanceId': 'i-deadcafe',
...SNIP...
 'tagSet': {'item': {'key': 'Name', 'value':
'mynewinstance'}},
 'virtualizationType': 'paravirtual'}}

The most important piece of information here is the id field. We'll assume that the
ID of the compute instance is also the name that you'll want to refer to the Minion as
(which is probably true: with a compute instance that was created by an autoscaler).
For simplicity, we'll also assume that you're only working with one provider.

First, let's go ahead and create a map for the Reactor in the Master configuration file:

reactor:
 - salt/cloud/*/cache_node_new:
 - /srv/reactor/new_compute_instance.sls

Then, we'll set up a simple Jinja-based Reactor to kick off a Salt Cloud process
as follows:

cat /srv/reactor/new_compute_instance.sls

new_compute_instance:
 runner.cloud.create:
 instances: {{ data['new_data']['id'] }}
 instance_id: {{ data['new_data']['id'] }}
 provider: my-ec2

Profile configuration is not necessary here because the compute instance has already
been created. However, provider configuration does need to be specified so that Salt
Cloud knows how to access the compute instance and the metadata about it.

However, this information is not necessary when Salt Cloud detects that a compute
instance has disappeared. Salt Cloud doesn't need to do anything by itself, including
destroying the node, because it's already been destroyed. However, the old public
key for that minion should still be cleaned up on the Master. Let's add one more
Reactor. The event that will be generated looks similar to the following code:

Tag: salt/cloud/mymissinginstance/cache_node_missing
Data:
{'_stamp': '2015-05-03T18:57:03.931963',
 'event': 'cached node missing from provider',
 'missing node': 'mymissinginstance'}

Taking Salt Cloud to the Next Level

[126]

First, let's map it out in the Master configuration:

reactor:
 - salt/cloud/*/cache_node_missing:
 - /srv/reactor/missing_compute_instance.sls

Then, we'll set up a Reactor that cleans up the key from the Master using the
Wheel subsystem:

cat /srv/reactor/missing_compute_instance.sls

missing_compute_instance:
 wheel.key.delete:
 - match: {{ data['missing_node'] }}

Now, when Salt Cloud detects that a node is missing, its key will be cleaned up
right away.

Summary
Salt Cloud can be a very powerful tool in the hands of an experienced user. It
has moved from its humble beginnings as a simple tool to create virtual machines,
to a crucial component of many production infrastructures with complex
provisioning needs.

The Salt Cloud configuration can be simple, but it also has the flexibility to be
very complex, if desired. The Salt Bootstrap script is also very powerful, but not
a one-size-fits-all solution. Fortunately, we can replace it when another solution is
better for our needs.

Cloud maps are also very useful for managing infrastructures and bring with them
the power of Salt's Renderer system. Also, when third-party systems manage clouds
for you, it is still possible to bring Salt Cloud into the game using autoscale Reactors.

In the next chapter, we'll take a look at how Salt works with REST interfaces, both as
a client, and as a server.

[127]

Using Salt with REST
We've discussed using Salt not only to manage an infrastructure from within, but
also to grow the infrastructure using Salt Cloud. But what happens when you need
to manage your infrastructure from the outside? Or if you want your infrastructure
to take advantage of external systems? In this chapter, we'll explore how Salt
makes use of REST interfaces, both as a client and as a server. We'll be covering the
following topics here:

•	 Taking advantage of Salt's HTTP library
•	 Setting up Salt API
•	 Communicating as a client or as a server
•	 Parsing data

Looking at Salt's HTTP library
An increasing number of subsystems inside Salt are designed to make use of external
APIs. At the moment, most of these are drivers for Salt Cloud, and most use either
the Apache project's Libcloud library or the SDK maintained by the cloud provider.

But, in recent releases, things have been changing. Salt now has a library designed to
make a generic, Salty HTTP client available to modules, and for direct use by users.
This library is already being used by some compute cloud providers, as well as other
services that provide a REST interface to their users.

Using Salt with REST

[128]

Why a Salt-specific library?
Why go to all this trouble instead of just using an SDK? The biggest reason is
portability. Take for example PagerDuty, which is a powerful service that manages
incident alerting. The original Salt module used a community driver for PagerDuty.
At the time, this driver didn't do much, but it did allow Salt to create alerts, which
was all that was needed.

However, in practical use it was realized that, if a Minion wanted to create an alert
in PagerDuty, they needed to have that community package installed. This would
mean having one more package to maintain on each Minion across the infrastructure
and, with a cluster filled with thousands of nodes, that was just unreasonable.

So Salt said farewell to the community driver, and an entirely new set of Salt
modules was written from scratch using PagerDuty's REST API directly. Now any
server that has Salt installed automatically has access to create alerts in PagerDuty.

This explains why so many modules in Salt skip the SDK and use REST APIs
directly. But why provide a library when so many other fine libraries exist and
do a fine job of providing access to HTTP?

The first reason is that, while these libraries are easy to use when it comes to
connecting to Salt, they aren't really designed to take advantage of the Salt toolset.
Salt provides templating, an event bus, Reactors, and a number of other subsystems
that are very powerful. The Salt HTTP library ties these components together in a
manner that is consistent with Salt's own mannerisms.

But which library to use? There are a number of excellent HTTP libraries available,
each with its own pros and cons. The requests library is easily the most popular,
and even upstream Python documentation recommends it over its own built-in
urllib and urllib2. But due to packaging issues, requests cannot be made a hard
dependency to Salt.

However, Salt does have a hard dependency on the Tornado web library for internal
use with the event bus. And while Tornado is primarily designed to be used as a
Web server, it also has its own HTTP client built in.

The Salt HTTP library allows any of these three libraries to be used: tornado
(the default), requests, and urllib2. In order to set a system-wide default, set the
backend argument in either the Master or the Minion configuration, as appropriate:

backend: tornado
backend: requests
backend: httplib

Chapter 6

[129]

You can also declare, per execution, which backend to use, but let's not get too far
ahead of ourselves. First let's go over the basics about how to use the client.

Using the http.query function
The Salt HTTP client is widely available throughout Salt. Using it as a runner on the
Master is identical to using it as an execution module on a Minion, apart from the
obvious differences between how those two types of modules operate:

salt myminion http.query https://www.google.com/

salt-run http.query https://www.google.com/

We'll use the runner for the rest of the examples in this section, but all the arguments
are identical in usage between the two.

By default, these functions will not return anything; if return data is expected, then you
need to tell the function what kind to return. The following will return a dictionary
containing the HTTP status code and headers, and the content of the result body:

salt-run http.query https://www.google.com/ text=True status=True
headers=True

headers:

 Accept-Ranges:
 none
 Alternate-Protocol:
 443:quic,p=1
 Cache-Control:
 private, max-age=0
 Connection:
 close
 Content-Type:
 text/html; charset=ISO-8859-1
 Date:
 Mon, 04 May 2015 08:24:59 GMT
 Expires:
 -1
 Server:
 gws
 Vary:
 Accept-Encoding
status:
 200
text:
 <!doctype html>...SNIP...

Using Salt with REST

[130]

For simplicity, our examples from here on will not include these arguments, unless
they are explicitly needed for the example in question.

A cookie jar is also available if necessary. To turn it on, set cookies to True:

salt-run http.query https://www.google.com/ cookies=True

By default, this cookie jar will be stored as cookies.txt in the Salt cache directory.
This will normally be /var/cache/salt/cookies.txt. It will also be saved in the
LWP (lib-www-perl) format by default, since this is a text-based file. To change the
location of the cookie jar, and set it to use (old-style) Mozilla cookies instead, use the
cookie_jar and cookie_format arguments:

GET versus POST
By default, requests made with http.query will use the GET method. The GET
arguments can either be added to the URL manually, or passed as params. The
following two arguments are functionally identical:

salt-run http.query http://mydomain.com/?user=larry

salt-run http.query http://mydomain.com/ params='{"user": "larry"}'

However, it is possible to use any other valid HTTP method. POST is the most
common argument to be used after GET, but these techniques are also valid with
PUT, PATCH, and so on:

salt-run http.query http://mydomain.com/ POST data='{}'

If the POST data to be sent is stored inside a file, then that file may be specified
instead:

salt-run http.query http://mydomain.com/ POST data_file=/tmp/post.txt

This is where the Salt HTTP client starts to differ from other clients; if a POST data
file is used, then it may be templated using any of the renderer engines.

For instance, a number of older web APIs are based on XML. Unlike JSON, which
can be easily generated without specialized tools, XML often requires templates to be
used, with data merged in. The Salt HTTP client makes quick work of this. Consider
the following template:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xmime="http://
www.w3.org/2005/05/xmlmime" xmlns:ns="http://schemas.hp.com/SM/7"
xmlns:cmn="http://schemas.hp.com/SM/7/Common">

Chapter 6

[131]

 <soap:Body>
 <ns:DeleteHostRequest>
 <ns:model>
 <ns:keys>
 <ns:VMName type="">{{ minion_id }}</ns:VMName>
 </ns:keys>
 <ns:instance/>
 </ns:model>
 </ns:DeleteHostRequest>
 </soap:Body>
</soap:Envelope>

It looks daunting, doesn't it? This is actually a very small request compared to a
number of XML queries, and the only piece of information that needs to be changed
is the VMName, which has been templatized in Jinja as minion_id. To issue a
request using this file, inserting a minion_id of web099, use:

salt-run http.query http://mydomain.com/ POST data_file=/srv/xml/
delete.xml data_render=True template_dict='{"minion_id": "web099"}

The two important arguments here are data_render, which must be set to True
in order to use the renderer, and template_dict, which contains the variables to
be merged into the template. The default renderer is Jinja, but you can change it by
specifying a data_renderer argument as well.

POST data is not the only data that can make use of Salt's Renderer system. Header
data may be represented as a dictionary, as a properly-formatted list, or as a file that
can be rendered if necessary. To send a header dictionary, use header_dict:

salt-run http.query http://example.com/ header_dict='{"Content-Type":
"application/json"}'

To send a list of headers (making sure that they are already properly formatted), use
header_list:

salt-run http.query http://example.com/ header_list='["Content-Type:
application/json"]'

And to use a file containing all the headers (again, properly formatted), use
header_file:

cat /srv/headers/headers.txt

Content-Type: application/json

salt-run http.query http://example.com/ header_file=/srv/headers/
headers.txt

Using Salt with REST

[132]

If the header_file is templated, set header_render to True, and pass the values
using the template_dict argument as before:

cat /srv/headers/headers.txt

Content-Type: {{ content_type }}

salt-run http.query http://example.com/ header_file=/srv/headers/
headers.txt header_render=True template_dict='{"content_type":
"application/json"}'

As with the POST data templates, if you want to use a different renderer for the
headers, set it with header_renderer.

Decoding return data
Another important aspect of the Salt HTTP client is the ability to automatically
decode data that is received. If decode is set to True, Salt will try to auto-detect
whether the return data is XML or JSON, unless the decode_type is explicitly set
to either xml or json.

salt-run http.query https://api.github.com/ decode=True decode_
type=json

dict:

 authorizations_url:
 https://api.github.com/authorizations
 code_search_url:
 https://api.github.com/search/code?q={query}{&page,per_
page,sort,order}
 current_user_authorizations_html_url:
 https://github.com/settings/connections/applications{/client_
id}
 current_user_repositories_url:
 https://api.github.com/user/repos{?type,page,per_page,sort}
 current_user_url:
 https://api.github.com/user
 emails_url:
 https://api.github.com/user/emails
 emojis_url:
 https://api.github.com/emojis
...SNIP…

Note that, when decode is set to True, the data will be
returned in the dict field, rather than the text field
that is used when text is True.

Chapter 6

[133]

You should also note that, while JSON is perfectly suited to being decoded as a
dictionary, XML is very poorly suited to being translated like that. Salt will do its
best, but any XML attributes will not be decoded. If you are working with XML that
does not decode properly this way, it is best to set decode to False, and use a more
XML-specific program to translate it (or use straight Python).

Now that you've seen the basics of the Salt HTTP client, and some of the more
advanced features that are specific to Salt, let's take a look at how we can use that
functionality with our State files.

Using the http.query state
The http.query state differs slightly from most other states in that it serves not to
actually make changes on the Minion running the state, but to provide assistance to
the operations of a state run. Webhooks can be called to do things such as reporting
on failures or providing status updates.

Take, for example, the following SLS:

code_tree:
 file.recurse:
 - name: /srv/web/code
 - source: salt://code/
 - onfail_in:
 - http: alert_admins

alert_admins:
 http.query:
 - name: http://alerts.example.com/?type=code_deploy_fail

This SLS will attempt to recursively copy a directory to a Minion. In the event of a
failure, it will call a URL that reports to an alerting service that a failure has occurred.

Of course, multiple calls to http.query can be made within a single SLS file. We can
trigger a separate webhook for each of the states if we want:

code_tree:
 file.recurse:
 - name: /srv/web/code
 - source: salt://code/
 - onfail_in:
 - http: alert_admins_code

alert_admins_code:

Using Salt with REST

[134]

 http.query:
 - name: http://alerts.example.com/?type=code_deploy_fail

web_service:
 service.running:
 - name: nginx
 - require:
 - file: code_tree
 - onfail_in:
 - http: alert_admins_web

alert_admins_web:
 http.query
 - name: http://alerts.example.com/?type=web_restart_fail

Or we can just provide status via a webhook, as each state is called:

code_tree:
 file.recurse:
 - name: /srv/web/code
 - source: salt://code/

alert_admins_code:
 http.query:
 - name: http://alerts.example.com/?type=code_deploy_finished
 - require:
 - file: code_tree

web_service:
 service.running:
 - name: nginx
 - require:
 - file: code_tree

alert_admins_web:
 http.query
 - name: http://alerts.example.com/?type=web_restart_finished
 - require:
 - service: web_service

This may be starting to look like a lot of work; why doesn't Salt just have something
built-in that can send updates as each state completes?

Chapter 6

[135]

Using http.query with Reactors
You may recall using http.query in Chapter 4, Managing Tasks Asynchronously,
in conjunction with Reactors. Each time a state completes, an event is fired to the
Master containing the result data for that event. This has an advantage over using
the http.query state, in that the return data from the state will also be available.

Go ahead and fire up the event listener on the Master (as described in Chapter 4,
Managing Tasks Asynchronously), and try out this set of commands:

salt myminion state.single file.touch /root/somedir

local:

 ID: /root/somedir
 Function: file.touch
 Result: True
 Comment: Created empty file /root/somedir
 Started: 02:55:59.237320
 Duration: 0.881 ms
 Changes:

 new:
 /root/somedir
Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
salt myminion state.single file.directory /root/somedir
local:

 ID: /root/somedir
 Function: file.directory
 Result: False
 Comment: Specified location /root/somedir exists and is a file
 Started: 02:56:09.708133
 Duration: 0.787 ms
 Changes:
Summary

Succeeded: 0
Failed: 1

Using Salt with REST

[136]

Total states run: 1
salt myminion state.single file.absent /root/somedir
local:

 ID: /root/somedir
 Function: file.absent
 Result: True
 Comment: Removed file /root/somedir
 Started: 02:56:47.408437
 Duration: 0.837 ms
 Changes:

 removed:
 /root/somedir
Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

salt myminion state.single file.directory /root/somedir

local:

 ID: /root/somedir
 Function: file.directory
 Result: True
 Comment: Directory /root/somedir updated
 Started: 02:56:59.564577
 Duration: 22.386 ms
 Changes:

 /root/somedir:
 New Dir
Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

Chapter 6

[137]

Because one of the states intentionally had an error, you will see three successes
overall and one failure. In the event listener, you will see messages that look like
the following:

Event fired at Sun May 10 02:55:59 2015

Tag: salt/job/20150510025559240942/ret/myminion
Data:
{'_stamp': '2015-05-10T08:55:59.241475',
 'arg': ['file.touch', '/root/somedir'],
 'cmd': '_return',
 'fun': 'state.single',
 'fun_args': ['file.touch', '/root/somedir'],
 'id': 'myminion',
 'jid': '20150510025559240942',
 'out': 'highstate',
 'retcode': 0,
 'return': {'file_|-/root/somedir_|-/root/somedir_|-touch':
 {'__run_num__': 0,
 'changes': {'new': '/root/somedir'},
 'comment': 'Created empty file /root/somedir',
 'duration': 0.881,
 'name': '/root/somedir',
 'result': True,
 'start_time': '02:55:59.237320'}},
 'tgt': 'myminion',
 'tgt_type': 'glob'}
Event fired at Sun May 10 02:56:09 2015

Tag: salt/job/20150510025609711804/ret/myminion
Data:
{'_stamp': '2015-05-10T08:56:09.712309',
 'arg': ['file.directory', '/root/somedir'],
 'cmd': '_return',
 'fun': 'state.single',
 'fun_args': ['file.directory', '/root/somedir'],
 'id': 'myminion',
 'jid': '20150510025609711804',
 'out': 'highstate',
 'retcode': 2,
 'return': {'file_|-/root/somedir_|-/root/somedir_|-directory':
 {'__run_num__': 0,
 'changes': {},

Using Salt with REST

[138]

 'comment': 'Specified location /root/somedir
exists and is a file',
 'duration': 0.787,
 'name': '/root/somedir',
 'result': False,
 'start_time': '02:56:09.708133'}},
 'tgt': 'myminion',
 'tgt_type': 'glob'}
Event fired at Sun May 10 02:56:47 2015

Tag: salt/job/20150510025647412099/ret/myminion
Data:
{'_stamp': '2015-05-10T08:56:47.429361',
 'arg': ['file.absent', '/root/somedir'],
 'cmd': '_return',
 'fun': 'state.single',
 'fun_args': ['file.absent', '/root/somedir'],
 'id': 'myminion',
 'jid': '20150510025647412099',
 'out': 'highstate',
 'retcode': 0,
 'return': {'file_|-/root/somedir_|-/root/somedir_|-absent':
 {'__run_num__': 0,
 'changes': {'removed': '/root/somedir'},
 'comment': 'Removed file /root/somedir',
 'duration': 0.837,
 'name': '/root/somedir',
 'result': True,
 'start_time': '02:56:47.408437'}},
 'tgt': 'myminion',
 'tgt_type': 'glob'}
Event fired at Sun May 10 02:56:59 2015

Tag: salt/job/20150510025659589886/ret/myminion
Data:
{'_stamp': '2015-05-10T08:56:59.590486',
 'arg': ['file.directory', '/root/somedir'],
 'cmd': '_return',
 'fun': 'state.single',
 'fun_args': ['file.directory', '/root/somedir'],
 'id': 'myminion',
 'jid': '20150510025659589886',
 'out': 'highstate',
 'retcode': 0,

Chapter 6

[139]

 'return': {'file_|-/root/somedir_|-/root/somedir_|-directory':
 {'__run_num__': 0,
 'changes': {'/root/somedir': 'New Dir'},
 'comment': 'Directory /root/somedir updated',
 'duration': 22.386,
 'name': '/root/somedir',
 'result': True,
 'start_time': '02:56:59.564577'}},
 'tgt': 'myminion',
 'tgt_type': 'glob'}

You can see the kinds of information we get along the event bus and that we can
make use of in our Reactors. Let's go ahead and set up something that will fire a
webhook every time any State is run. Because we're specifically interested in the
return data, let's start by mapping that out in the Master configuration file. Go ahead;
edit the Master configuration and add the following mapping:

reactor:
 - 'salt/job/*/ret/*'
 - /srv/reactor/state_notify.sls

This will catch any job (the first '*') coming from any Minion (the second '*'). Now
let's set up the Reactor itself:

cat /srv/reactor/state_notify.sls

#!jinja|json
{% if data['fun'].startswith('state.') %}
{"react_to_state":
 {"runner.http.query":
 [
 {
 "url": "http://alerts.example.com/",
 "method": "POST",
 "data": "{{ data }}"
 }
]
 }
}
{% endif %}

We have to be very careful here, since this Reactor is going to analyze any job return
data that appears on the bus. This would be especially critical if we were calling out
to an execution module, which itself would create another return event. So we start
off by making sure we only process the events whose function starts with State (that
is, state.highstate, state.top, state.sls, and so on).

Using Salt with REST

[140]

With that out of the way, this Reactor is actually very simple: call the http.query
runner with the URL http://alerts.example.com/, a POST method, and the
contents of the return data as the POST data.

Notice how we used JSON instead of YAML here. That's because the return data
may contain characters which wouldn't translate properly in YAML. JSON is a more
exacting serialization method, and much less likely to cause syntactical errors.

But let's say that we're only interested in raising an alert when we get an error. Let's
add another condition to our Reactor SLS:

cat /srv/reactor/state_notify.sls

#!jinja|json
{% if data['fun'].startswith('state.') %}
{% set return_key = data['return'].keys()[0] %}
{% set result = data['return'][return_key]['result'] %}
{% if result == False %}
{"react_to_state":
 {"runner.http.query":
 [
 {
 "url": "http://alerts.example.com/isfalse",
 "method": "POST",
 "data": "{{ data }}"
 }
]
 }
}
{% endif %}
{% endif %}

We've left in the check to make sure that we're looking at a State, because we don't
want anything else happening if it's not. Beyond that, we've actually done a couple
of things here. First, we had to find out what the return value of the state was. You
may recall that the return dictionary has a single key in it that looks kind of like this:

file_|-/root/somedir_|-/root/somedir_|-directory

That's going to be pretty much impossible to auto-detect, and in our case, it doesn't
matter anyway. But Jinja still does need to know what that key is, so that it can
access the result inside the return dictionary. So, we pull it out first and assign it to
return_key. Then we use that to access the rest of the dictionary.

Once we know what the result is, we just do a check on its truthiness. Python coders
take note: Jinja requires that our check, even for a boolean, uses == instead of is.

Chapter 6

[141]

Understanding Salt API
We've spent some time looking at how to send requests, but many users would
argue that receiving requests is just as important, if not more so. Let's take a moment
to understand Salt API.

What is Salt API?
Very simply, Salt API is a REST interface wrapped around Salt. But that doesn't tell
the whole story. The salt command is really just a command-line interface for Salt. In
fact, each of the other Salt commands (salt-call, salt-cloud, and so on) are really
just a way to access various parts of Salt from the command line.

Salt API provides a way to access Salt from a different interface: HTTP (or,
preferably, HTTPS). Because web protocols are so ubiquitous, Salt API allows
software, written in any language that has the capability of interacting with web
servers, to take advantage of it.

Setting up Salt API
So far this book has assumed that you have a copy of Salt installed, with both a
Master and a Minion service running. But we're going to take a moment to talk about
setting up Salt API, since it's somewhat less intuitive than the rest of Salt.

Being a REST interface, Salt API acts as a web server over and above Salt. But it
doesn't actually provide the server interface itself. It uses other web frameworks to
provide those services, and then acts as more of a middleman between them and
Salt. The modules that are supported for this are:

•	 CherryPy

•	 Tornado

•	 WSGI

These modules are set up in the Master configuration file. Each has its own set of
configuration parameters and possible dependencies. Let's take a look at each one.

CherryPy
This is a minimalist web framework that is designed to be very Pythonic. Because
it is based around creating web code in the same way that other Python code is
created, it is said to result in code that is much smaller, and more quickly developed.
It has a mature codebase and a number of notable users. It has also been the de-facto
module for Salt API for some time.

Using Salt with REST

[142]

This module does require that the CherryPy package (usually called python-cherrypy)
be installed.

The basic setup for CherryPy doesn't involve much configuration. At a minimum,
you should have:

rest_cherrypy:
 port: 8080
 ssl_crt: /etc/pki/tls/certs/localhost.crt
 ssl_key: /etc/pki/tls/certs/localhost.key

We'll discuss creating certificates in a moment, but first let's talk about configuration
in general. There are a number of configuration parameters available for this module,
but we'll focus on the more common ones here:

•	 port: Required. The port for Salt API to listen on.
•	 host: Normally Salt API listens on all available interfaces (0.0.0.0). If you

are in an an environment where you need to provide services only to one
interface, then provide the IP address (that is, 10.0.0.1) here.

•	 ssl_crt: The path to your SSL certificate. We'll cover this in a moment.
•	 ssl_key: The path to the private key for the SSL certificate. Again, we'll

cover this in a moment.
•	 debug: If you are setting up Salt API for the first time, setting this to True can

be very helpful. But once you are up-and-running, make sure to remove this
option or explicitly set it to False.

•	 disable_ssl: It is highly recommended that the default value of False is used
here. Even when just getting started, self-signed certificates are better than
setting this to True. Why? Because nothing is as permanent as temporary, and at
least self-signed certificates will remind you each time that you need to get a
real set of certificates in place. Don't be complacent for the sake of learning.

•	 root_prefix: Normally, Salt API will serve from the root path of the
server (that is, https://saltapi.example.com/), but if you have several
applications that you're serving from the same host, or you just want to
be more specific, you can change this. The default is /, but you could set it
to /exampleapi, in order to serve REST services from https://saltapi.
example.com/exampleapi, for example.

•	 webhook_url: If you are using Webhooks, they need their own entry point.
By default this is set to /hook, which in our example would serve from
https://saltapi.example.com/hook.

Chapter 6

[143]

•	 webhook_disable_auth: Normally, Salt API requires authentication, but
this is quite commonly not possible with third-party applications that need
to call to Salt API over a webhook. This allows webhooks to not require
authentication. We'll go more in-depth on this in a moment.

Tornado
Tornado is a somewhat newer framework that was written by Facebook. It is also
newer to Salt, but quickly becoming the web framework of choice inside Salt itself.
In fact, it is used so much inside Salt that it is now considered a hard dependency for
Salt, and will be available on all newer installations.

Tornado doesn't have as many configuration options inside Salt API as CherryPy.
The ones that are supported (as defined above in the CherryPy section) are:

•	 port

•	 ssl_crt

•	 ssl_key

•	 debug

•	 disable_ssl

While the Tornado module doesn't support nearly as much functionality as the
CherryPy module just yet, keep an eye on it; it may become the new de-facto
Salt API module.

WSGI
WSGI, or Web Server Gateway Interface, is a Python standard as defined in PEP
333. Direct support for it ships with Python itself, so no external dependencies are
required, but this module is also pretty basic. The only configuration option to worry
about here is:

•	 port

However, this module is useful in that it allows Salt API to be run under any
WSGI-compliant web server, such as Apache with mod_wsgi or Nginx with
FastCGI. Because this module does not provide any sort of SSL-based security, it is
recommended that one of these options is used, with those third-party web servers
being properly configured with the appropriate SSL settings.

Using Salt with REST

[144]

Creating SSL certificates
It is highly advisable to use an SSL certificate for Salt API, even if you currently only
plan to be using it on a local, secured network. You should probably also purchase a
certificate that is signed by a Certificate Authority (CA). When you get to this point,
the CA will provide instructions on how to create one using their system. However,
for now we can get by with a self-signed certificate.

There are a number of guides online for creating self-signed certificates, but finding
one that is easy to understand is somewhat more difficult. The following steps will
generate both an SSL certificate, and the key to use it, on a Linux system.

First, we'll need to generate the key. Don't worry about the password; just enter one
for now, take note of it, and we'll strip it out in a moment.

openssl genrsa -des3 -out server.key 2048

Generating RSA private key, 2048 bit long modulus
................++++++
..++++++
e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying - Enter pass phrase for server.key:

Once you have the key, you need to use it to generate a Certificate Signing Request,
or CSR. This will ask a number of questions about you that are important for a
certificate that is signed by a Certificate Authority. On your internal network, it's
somewhat less important.

openssl req -new -key server.key -out server.csr

Enter pass phrase for server.key:
You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Utah
Locality Name (eg, city) []:Salt Lake City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company,
LLC
Organizational Unit Name (eg, section) []:

Chapter 6

[145]

Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:me@example.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

At this point, we can go ahead and strip the password from the key.

cp server.key server.key.org

openssl rsa -in server.key.org -out server.key

Enter pass phrase for server.key.org:	
writing RSA fkey

And finally, we'll create a self-signed certificate.

openssl x509 -req -days 365 -in server.csr -signkey server.key -out
server.crt

Signature ok
subject=/C=US/ST=Utah/L=Salt Lake City/O=My Company, LLC/
emailAddress=me@example.com
Getting Private key

At this point, you will have four files:

•	 server.crt

•	 server.csr

•	 server.key

•	 server.key.org

Copy server.crt into the path specified for ssl_crt, and server.key into the path
specified for ssl_key.

Configuring authentication
Normally when using Salt, the salt command is accessed from the command line as
the root user, an unprivileged user with sudo access, or as the user that is running
the salt-master daemon. However, it can be configured to allow other users to be
used instead, from other authentication platforms.

Because Salt API is not available from the command line (outside command line
clients such as wget and cURL), it requires external authentication (often referred to
as eauth) to be configured. This is done in the same way as with the other areas of
Salt that support eauth.

Using Salt with REST

[146]

The external authentication module
This is one of the pluggable areas of Salt that does not currently have many modules,
and is not likely to in the near future. Why is that so? That is because so many of the
authentication schemes that could be used here are already supported by Pluggable
Authentication Module (PAM), Linux's Pluggable Authentication Module library.
For instance, even though LDAP is supported, many administrators find it easier
to just use PAM bindings, since the users that they want to authenticate are already
available through PAM's LDAP bindings.

External authentication is set up inside the Master configuration file with a block
called external_auth. The module that is used is then declared, followed by users
to be provided by that module and their permissions. For example:

external_auth:
 pam:
 larry:
 - .*
 - '@runner'
 - '@wheel'
 darrel:
 - test.*
 - '@runner'
 - '@wheel'
 darryl:
 - test.*
 - network.*
 - '@runner'
 - '@wheel'

The larry user has three permissions defined here:

•	 .*: The execution modules that the user has access to. Take note that this is a
regular expression.

•	 @runner: The runner modules that the user has access to (in this case, all
runner modules).

•	 @wheel: The wheel modules that the user has access to (in this case, all
wheel modules).

The darrel and darryl users have slightly more restricted access: both have access
to any of the functions inside the test module, and darryl also has access to any of
the functions inside the network module.

Chapter 6

[147]

Taking your first steps with Salt API
Once you have the proper settings in the Master configuration file, you can start
up Salt API. For now, go ahead and set debug to True, and start up the service in
the foreground:

salt-api

[11/May/2015:00:55:22] ENGINE Listening for SIGHUP.

[11/May/2015:00:55:22] ENGINE Listening for SIGTERM.

[11/May/2015:00:55:22] ENGINE Listening for SIGUSR1.

[11/May/2015:00:55:22] ENGINE Bus STARTING

[11/May/2015:00:55:22] ENGINE Started monitor thread '_TimeoutMonitor'.

[11/May/2015:00:55:22] ENGINE Started monitor thread 'Autoreloader'.

[11/May/2015:00:55:23] ENGINE Serving on http://0.0.0.0:8080

[11/May/2015:00:55:23] ENGINE Bus STARTED

As you issue commands to Salt API, you will see information about them printed to
this console. Because Salt API requires extra headers, and often POST data, we'll use
cURL for our examples.

Before we do anything else, we need to obtain a token to issue commands. We will
need to submit the proper credentials to get this token but, once we have it, we can
use it to confirm our authentication with each request. To get a token, type:

curl -si https://localhost:8080/login \

 -H 'Accept: application/json' \

 -d username='larry' \

 -d password='123pass' \

 -d eauth='pamf'

The -s in this command will tell Salt API to be silent (it shouldn't show any superfluous
messages). The -i will tell Salt API to show the headers that were returned from the
server. We'll use -s in the rest of our examples, but we'll leave out -i.

The -H option allows us to send a specific header to the remote server. Salt API
requires that the application/json header is sent, as we are interested in receiving
responses back in the JSON format.

The -d options are used to send the POST data to the server—in this case, in a set
of key=value pairs. The eauth parameter explicitly specifies which eauth module
to use to authenticate this user. The username and password, of course, refer to the
credentials that will be used with that module.

Using Salt with REST

[148]

This command will return something that looks like the following (the return data
is formatted here for clarity):

HTTP/1.1 200 OK
Content-Length: 196
Access-Control-Expose-Headers: GET, POST
Vary: Accept-Encoding
Server: CherryPy/3.6.0
Allow: GET, HEAD, POST
Access-Control-Allow-Credentials: true
Date: Mon, 11 May 2015 07:12:13 GMT
Access-Control-Allow-Origin: *
X-Auth-Token: 0bbb7e20dfb6093528636202e706ebc4d4c8493c
Content-Type: application/json
Set-Cookie: session_id=0bbb7e20dfb6093528636202e706ebc4d4c8493c;
expires=Mon, 11 May 2015 17:12:13 GMT; Path=/

{"return": [{
 "perms": [".*", "@runner", "@wheel"],
 "start": 1431328333.460601,
 "token": "0bbb7e20dfb6093528636202e706ebc4d4c8493c",
 "expire": 1431371533.460602,
 "user": "larry",
 "eauth": "pam"}]}

In the return body, you'll see a token—in this case,
0bbb7e20dfb6093528636202e706ebc4d4c8493c. You'll need to pass this exact token
in each of your subsequent requests but, since it's pretty long, we'll just use <token>
to represent it in our examples.

Once we have our token, we add it to subsequent requests to the server using the
X-Auth-Token header. For example, to perform a simple test.ping against a
Minion, we will issue the following command:

curl -s localhost:8080/minions -H 'Accept: application/json' -H
'X-Auth-Token: <token>' -d client='local' -d tgt='*' -d fun='test.ping'

{
 "_links": {"jobs": [{"href": "/jobs/20150511024432503750"}]},
 "return": [{
 "jid": "20150511024432503750",
 "minions": ["myminion"]}]}

Note that this command was issued against the /minions URL.
This is used for executing a number of commands—for example,
against an execution module—over Salt API.

Chapter 6

[149]

There are also some extra arguments in the command that we need to look at before
we get to the return data. The first is client='local', which tells Salt API to use
an execution module. The others may look more familiar. The tgt argument sets
the target—in this case, all Minions. The fun argument sets the function that will be
run—test.ping in this case.

As with other components of Salt, we can also specify tgt_type to change the
target type from glob to something else, and add arg and kwarg as needed, to pass
arguments and keyword arguments to Salt.

There are two pieces of return data in the response body. First we see _links, which
contains a reference path that we'll use in a moment. But we also have a return
dictionary which contains a job ID (jid) and a list of Minions that were affected by
this command.

What we did not get was an actual response from the Minions in this command.
Remember that Salt is asynchronous by nature and, while it makes sense for the salt
command to wait a few seconds for the response by default, it doesn't make sense to
force web clients to wait the same amount of time.

In order to retrieve the response data, we'll need to issue another command that
includes the job ID. This command will be performed using a GET method, so be sure
there are no -d options in your command:

curl -s localhost:8080/jobs/20150511024432503750 -H 'Accept:
application/json' -H 'X-Auth-Token: <token>'

{
 "info": [{
 "Function": "test.ping",
 "jid": "20150511024432503750",
 "Target": "*",
 "Target-type": "glob",
 "User": "larry",
 "StartTime": "2015, May 11 02:44:32.503750",
 "Arguments": [],
 "Minions": ["myminion"],
 "Result": {"myminion":
 {"return": true}}}],
 "return": [{
 "myminion": true}]}

This is more like what we expect to see! You can see a breakdown of all the options
used, the success of the command on each Minion, and the return data from the
command on each Minion.

Using Salt with REST

[150]

Note: The /jobs path in the URL requires a job ID to be
passed after it.

Just to make this a little easier to read, let's go ahead and tell Salt API to return
the data in the YAML format. Note how we change the Accept header to
application/x-yaml:

curl -s localhost:8080/jobs/20150511024432503750 -H 'Accept:
application/x-yaml' -H 'X-Auth-Token: <token>'

info:
- Arguments: []
 Function: test.ping
 Minions:
 - myminion
 Result:
 myminion:
 return: true
 StartTime: 2015, May 11 02:44:32.503750
 Target: '*'
 Target-type: glob
 User: larry
 jid: '20150511024432503750'
return:
- myminion: true

Issuing one-off commands
So far, we've only issued commands using a token. We can in fact issue one-off
commands that authenticate on every single call. This is not the normal operation of
Salt API, but it can be helpful in troubleshooting issues with custom modules. It may
also be helpful for working with webhooks, which we will cover in a moment.

In order to issue a one-off command, we will use the /run path in our URL instead of
the /minions path. The rest of the command contains arguments that you're already
familiar with.

curl -s localhost:8080/run -H 'Accept: application/json' -d
username='larry' -d password='123pass' -d eauth='pam' -d client='local'
-d tgt='*' -d fun='test.ping'

{"return": [{"myminion": true}]}

Chapter 6

[151]

Working with webhooks
As mentioned previously, it is possible to use webhooks with Salt API. Webhooks
are designed to be commands that can be issued over HTTP/HTTPS in a single call;
no getting tokens first. This can be problematic from a number of standpoints.

The first roadblock involves services that make use of tokens, or any other
authentication scheme that requires multiple web requests to be made to a server.
Since webhooks need to be able to work in a single shot, using a Salt API token is out
of the question.

As you have seen, Salt API does allow commands to be issued in a single call as
long as all the credentials are passed along. This is okay if the service making the
call allows you to define things such as custom headers and POST data. In some
situations, this is acceptable, but some services do not provide that capability.

That leaves us with unauthenticated web requests. This is also doable inside Salt
API, but the user will have to provide their own authentication mechanism. We'll see
how to do that in a moment.

First, let's go ahead and configure the Salt Master to accept webhooks in the first
place. This functionality will require the CherryPy module, so make sure you're
set up with that. It will also require a webhook_url, as specified earlier in this
chapter, in the CherryPy section. And, for our purposes, we'll go ahead and set
webhook_disable_auth to True.

rest_cherrypy:
 port: 8080
 ssl_crt: /etc/pki/tls/certs/localhost.crt
 ssl_key: /etc/pki/tls/certs/localhost.key
 webhook_url: /hook
 webhook_disable_auth: True

This means that all webhook URLs will have a path of /hook. For example,
https://saltapi.example.com/hook. We have also disabled authentication for
webhooks, because our examples will not need authentication. If you are working
with a service that does support passing custom headers and POST data, go ahead
and leave it out, or explicitly set it to False.

You will not need to restart salt-api explicitly; it will do so on its own when it
detects changes in its configuration.

Using Salt with REST

[152]

Go ahead and fire up the event listener. We'll issue a request to the webhook URL
using cURL:

curl -s localhost:8080/hook -H 'Accept: application/json' -d foo=bar

In the event listener, we'll see the following message:
Event fired at Mon May 11 09:09:09 2015

Tag: salt/netapi/hook
Data:
{'_stamp': '2015-05-11T15:09:09.719958',
 'body': '',
 'headers': {'Accept': 'application/json',
 'Content-Length': '7',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Host': 'localhost:8080',
 'Remote-Addr': '127.0.0.1',
 'User-Agent': 'curl/7.42.0'},
 'post': {'foo': 'bar'}}

There are two items of interest here. First of all, the event was tagged as salt/
netapi/hook. All events fired from Salt API will start with salt/netapi/ and then
contain the path that was used in the web request, including the webhook_url.

The other item is the POST data, which was translated inside Salt to a dictionary.
In this case, the dictionary is very short: there is a key of foo, with a value of bar.

Security considerations
Anyone that can access the Salt API port on your Salt Master will be able to send
messages. There are a couple of simple means of authenticating requests, neither of
which are very secure, but they are important to take a look at.

First, you can authenticate by URL. If a user knows the correct URL to use, they can
send requests. This type of security is known as security through obscurity: it only
remains secure as long as an easily-obtainable piece of information is obscured.

You can also authenticate based on the address of the remote machine that made
the request. This is known as host-based security. Unfortunately, since known proofs
of concept exist to spoof both hostnames and IP addresses, this method is also not
terribly secure.

That leaves us with using the POST data to send secure data. If we're using HTTPS,
then this data will be encrypted already, which mitigates man in the middle attacks.
In such an attack, a user watching the communication between two parties is able to
obtain enough information to imitate one or both of those parties.

Chapter 6

[153]

If you are able to pass custom POST data, this may be enough; just set some secret
data inside the POST, and watch for it on the Salt Master.

Let's go ahead and set up a Reactor that handles this use case. First, we'll configure
Reactor mapping in the Master configuration:

reactor:
 - salt/netapi/hook/sample/url
 - /srv/reactor/webhook_simple_post.sls

Then, after restarting the Master, we'll set up the Reactor SLS itself:

cat /srv/reactor/webhook_simple_post.sls

{% if data['post']['foo'] == 'bar' %}
simple_post_auth:
 cmd.file.touch:
 - tgt: myminion
 - arg:
 - /tmp/simple_post_auth.txt
{% else %}
simple_post_auth_failed:
 cmd.file.touch:
 - tgt: myminion
 - arg:
 - /tmp/simple_post_auth_failed.txt
{% endif %}

This time we've not only triggered a file to be touched if the authentication
succeeded, but also a different file if authentication failed. Go ahead and try it out:

curl -s localhost:8080/hook/sample/url -H 'Accept: application/json' -d
foo=bar

salt myminion cmd.run 'ls -l /tmp/simple_post_auth*'

myminion:
 -rw-r--r-- 1 root root 0 May 11 10:43 /tmp/simple_post_auth.txt
curl -s localhost:8080/hook/sample/url -H 'Accept: application/json'
-d foo=baz
salt myminion cmd.run 'ls -l /tmp/simple_post_auth*'
myminion:
 -rw-r--r-- 1 root root 0 May 11 10:43 /tmp/simple_post_auth.txt
 -rw-r--r-- 1 root root 0 May 11 10:44 /tmp/simple_post_auth_
failed.txt

Using Salt with REST

[154]

More complex authentication
It may be that you're working with something more complex than simply passing
through POST arguments. In this case, you'll probably need something more
powerful than Jinja mixed with YAML. There are three Python renderers that ship
with Salt and, as long as it doesn't take very long, writing a Reactor using one of
them may be appropriate to your needs.

Because the focus of this book is Salt and not Python, we won't go into a lot of detail
here. But we will include a Python version of the above Reactor to get the Python
users among you started.

#!py
def run():
if data.get('post', {}).get('foo', '') == 'bar':
 return {'simple_post_auth': {
 'cmd.file.touch': [
 {'tgt': 'myminion'},
 { 'arg': ['/tmp/simple_post_auth.txt'] }
]
 }
else:
 return {'simple_post_auth_failed': {
 'cmd.file.touch': [
 {'tgt': 'myminion'},
 { 'arg': ['/tmp/simple_post_auth_failed.txt'] }
]
 }

Summary
Salt provides some very powerful capabilities for interacting with the REST
interfaces, both as a client and as a server. When combined with the Reactor system
especially, these capabilities change the scope of autonomous operations from being
local to the internal infrastructure, to being usable with the vast majority of third-
party services available today.

Now that we've spent some time looking at some of the more traditional aspects
of Salt, it's time to get really serious. The next chapter will focus on Salt's new
transmission protocol, Reliable Asynchronous Event Transport (RAET).

[155]

Understanding the
RAET Protocol

You may have heard of SaltStack's new Reliable Asynchronous Event Transport
(RAET) protocol. However, there's a very good chance you haven't heard much
about it. To the average user, RAET may not seem like much. Salt commands haven't
changed, output from the commands hasn't changed, and you certainly don't need
to update your SLS files. In fact, if you've enabled RAET, but haven't changed your
workflow, you probably haven't noticed much of anything, which is by design.

So what's the big deal? In fact, RAET is a very exciting technology that will continue
to grow in the coming years. In this chapter, we'll talk about:

•	 RAET versus ZeroMQ
•	 Understanding flow-based programming
•	 Using estates, roads, and lanes

Hold on tight! This chapter is going to be one wild ride!

Comparing RAET and ZeroMQ
To understand Salt, it really does help to understand what ZeroMQ is and why Salt
was originally based on it. Having a solid foundation of knowledge when it comes to
ZeroMQ will also help in getting a handle on RAET. It will also help to understand
HTTP and why Salt doesn't make use of it.

It's important to understand that, when ZeroMQ came out, there was nothing like it.
There are alternatives now, such as nanomsg, but ZeroMQ was the first and it came
on the scene just in time for Salt.

Understanding the RAET Protocol

[156]

Many of the design principles behind Salt are inspired by previously existing
projects, some of which were in use by Salt's creator at the time of its conception.
However, it was not simply a copy of a bunch of other projects hacked together. If
existing projects did what Salt was designed to do, then Salt would not have been
created. The corollary here is that a number of design principles were used because
what was out there wasn't cutting it.

Starting with HTTP
A very common technology in distributed management systems is HTTP, which
makes sense from a number of points of view. It's ubiquitous and easy to understand
and use. However, its functionality is somewhat limited: you request and are served
a document. Doing so was originally a static process. Features were quickly added to
support dynamic content, but the basic premise still stands.

Security was an afterthought with HTTP and, in the beginning, competing standards
existed to supply it. In the end, HTTPS won out, but the numerous iterations of
SSL, followed by TLS, that have presented themselves only highlight a number of
limitations with the protocol. However, we will focus on HTTP and HTTPS together
as a single concept.

A configuration management system based on HTTP necessarily requires a Web
server to be in the mix. Maintaining a web server for clients opens up innumerable
potential security risks and introduces a lot of overhead, so having clients connect to
a single server instead makes a whole lot more sense.

This means that the web server must be able to handle a lot of load. Also, the
more clients that connect to it, the more concurrent connections it must handle.
For instance, Puppet is barely usable when configured to use WEBrick because
WEBrick wasn't designed to handle much traffic. Switching to Mongrel or Apache
significantly improves the performance of Puppet.

However, no matter how performant a web server is, it is still limited to pull-based
connections. It is not possible to have the server initiate a connection to the client with
only a web server. This is why web-based configuration management systems are
frequently set to check with their Master on a regular basis, such as every 30 minutes.

SSH, the old favorite
Possibly the world's most common means of managing a Unix or Linux server
is SSH. This is because telnet was the king for several decades, whereas SSH is a
secure tunneling mechanism. Its default application is telnet. For a very long time,
SSH-based management was an entirely manual process. However, as popular as it
was, it was only natural that it would eventually acquire automation tools.

Chapter 7

[157]

The earliest of these tools was a simple, shell-based loop to perform one-off
commands. Other tools that could perform SSH-based tasks in parallel or maintain
multiple concurrent SSH windows were introduced and gained popularity. Soon,
entire frameworks were built around the SSH-based management.

However, there are architectural similarities between HTTP and SSH that
demonstrate several limitations of an SSH-based management system. Like HTTP,
a server can accept multiple simultaneous connections. However, a client can only
connect to one server at once. In order to connect to multiple machines in parallel,
multiple clients must also be started at once, and the number of parallel clients is
limited by the resources on the client machine.

Also, like HTTP, an SSH connection requires a server to exist on the other end.
However, it is extremely uncommon for machines that need to be configured to call
home to a central server over SSH. Instead, each machine that is to be configured
over SSH will generally be running an SSH server itself. This carries exactly the
same risks as running an HTTP server on each client; the risk is more if the SSH user
has root access to the machine. This will probably be the case if the goal of the SSH
connection is to configure the machine.

Using ZeroMQ
ZeroMQ was never designed for configuration management. It was designed as a
faster, simpler replacement for the Advanced Message Queuing Protocol (AMQP),
which its author had also designed. However, message queues work well with large
scale environments and tend to be very performant.

Message queues are different from HTTP and SSH because, rather than a single client
initiating a single connection to a single server, multiple clients can subscribe to one
or more servers (message queues) and watch for messages that apply to them. The
connection is very lightweight. As it is persistent, the overhead of successive client/
server handshakes is eliminated.

Let's look at some analogies that demonstrate the architectural differences between
HTTP, SSH, and ZeroMQ. A team of workers is headed by a manager, who will
assign tasks to workers on a regular basis.

With an HTTP-based architecture, each worker will call the manager on the phone
on a regular basis to check for new tasks. If the manager is already busy talking to
other workers when another worker calls in, then the other worker must continue to
try calling until the manager's phone is no longer busy.

Understanding the RAET Protocol

[158]

With an SSH-based architecture, the manager will call each worker when they have a
task to assign. When there are few tasks to be performed, this will result in less work
for everybody involved. It also allows the manager to initiate tasks as soon as they
are received, rather than waiting for the intended recipient to check in.

With a ZeroMQ-based architecture, each worker will watch a TV channel that
broadcasts the tasks as they become available. When a worker sees a task that
applies to them, they perform it and then call the manager with the results. Any
TV executive can tell you that broadcasting messages in this manner is a far more
scalable way to reach an intended audience, especially when the potential audience
is quite large.

Salt actually makes use of two message queues. Port 4505 is the port that workers
subscribe to (or the channel that they watch) to receive messages from their manager.
Port 4506 is a second queue that the manager watches to receive the result data back.

ZeroMQ and security
ZeroMQ did not originally implement any kind of security. This is because it was
meant to be run inside environments that were already secure on their own. Without
the encryption overhead, ZeroMQ was able to achieve significant performance.

However, Salt was not designed to be only run inside secure networks. It was
designed to run on networks where not every user was necessarily trusted. Because
of this, it was crucial that Salt messages be encrypted. Even today, it is not possible
for Salt to communicate on a nonencrypted channel.

However, as ZeroMQ did not have security built-in at that time, a secure layer was
built on top of it—that is, inside Salt. This layer was based on the SSH standard,
which is widely trusted worldwide. SaltStack has never used its own encryption
libraries; it has always made use of other known, vetted libraries, such as PyCrypto.
Although there have been a couple of hiccups in the past with the application
of these libraries, Salt's encryption layer is now regularly audited by third-party
corporations who have a vested interest in it running securely.

The need for RAET
Salt is now used in a number of extremely large clusters. It is not uncommon for
groups of 15,000 servers or more to be running on a single Salt Master. As the scale
of these infrastructures increased, it became evident that a transport was needed that
was designed specifically for the needs of a tool such as Salt.

Chapter 7

[159]

One the other hand, a ZeroMQ bus is similar to having all the workers watch a single
TV channel; RAET is more like having each worker watching their own, dedicated
TV channel, which nobody else can watch.

ZeroMQ, similar to most popular Internet protocols (including HTTP and SSH),
is based on TCP, which is known for its reliability. RAET is based on UDP, which
is known for its unreliability. While TCP is commonly encrypted, UDP is nearly
impossible to encrypt. So, why use it?

The biggest advantage that UDP has is speed. As it doesn't bother with things such
as handshakes and always makes sure that network packets reach their destination,
the ones that do make it tend to be very fast.

RAET itself provides the missing components, such as handshakes and reliability. Also,
rather than using the classic encryption libraries that HTTPS and SSH have traditionally
been based on, RAET uses a type of elliptic curve-based cryptography (ECC) called
Curve25519. This algorithm is considered by many to be the most secure today and is
now the default encryption method for OpenSSH. RAET doesn't manage the encryption
either; it lets a library called libsodium (no relation to SaltStack) handle all the work.

The architecture of RAET is far less known than its older siblings: HTTP, SSH, and
ZeroMQ but, before we get into this, let's cover some of the concepts that RAET was
based on.

Flow-based programming
We've talked about just a few of the differences between RAET and ZeroMQ.
However, to really understand the benefits of RAET and how it affects you, it really
helps to get at least a basic handle on Flow-based programming (FBP), which RAET
was designed on.

The pieces of the puzzle
It may sound a little intimidating, but don't worry. We'll break it into smaller
components first and then show you how these pieces fit together. FBP is based
on three concepts:

•	 Black boxes
•	 Shared storage
•	 Concurrent scheduling

These three types of components fit together to form a framework that can manage
tasks very quickly and efficiently. Let's take a look at them individually.

Understanding the RAET Protocol

[160]

Black boxes
The first puzzle piece is the black box. More accurately, black boxes really are the
puzzle pieces themselves; they are organized by the scheduler and connected with
shared storage.

Most simply, a black box is one thing that does another thing. However, this is
not very specific, so let's go into more detail. A black box is a simple construct that
performs an action. This action can be as complex as necessary, but it's often better to
keep its action simple. There should be a simple interface to start using the black box
and a simple interface to obtain the result of its work.

One everyday example of a black box is a toaster. It has a simple interface, in which
slices of bread are inserted into slots, a timer is set to control how dark the toast is,
and a lever is pressed to warm up the heating coils; this begins the toasting process.
Once the process is complete, the timer runs out, the toast is ejected, and the heating
coils are cooled.

The cook who uses this black box may also employ other black boxes to complete a
larger task. To prepare breakfast, one may employ the toaster black box, a blender
black box as well to create a smoothie, or a frying pan black box, which in turn
makes use of a stove black box. This requires more frequent input from the user.

Shared storage
Shared storage is something that just about every professional programmer and
systems administrator has dealt with in their career: a database. As the name implies,
all the black boxes have access to it in some way.

Going back to our breakfast example, we may refer to the refrigerator as our shared
storage. It stores juice, fruits, eggs, butter, and, with some users, even the bread used
to make the toast.

Chapter 7

[161]

We may even employ a slightly more complex shared storage solution by adding
a pantry storage. You can even refer to it as an archival storage, in which the user
processes jams, jellies, fruits, pickles, and so on in a boiling water canner and then
stores them until they are needed. When they are retrieved from the archive, they are
moved to the refrigerator, where they are accessed more frequently.

Concurrent scheduling
It's nice to have shared storage to keep our food and black boxes to cook our
food, but these items are useless without something or someone to combine their
functionalities The food cannot be cooked until it is moved from storage to black
box and doing so in the right way at the right time is critical to the success of our
breakfast. Simply putting an egg in a frying pan black box without properly opening
it will not result in an edible product; putting the egg in the toaster black box is likely
to cause a fire.

In order to tie these elements together, we need a scheduler. The scheduler will
determine when each process needs to happen and which black boxes get which
pieces of data.

In our breakfast example, the cook is the scheduler. The cook will remove the bread
from the pantry or refrigerator, unpack it from its bag, move it to the toaster, and
start the timer. The cook will also take the eggs out of the refrigerator, unpack them
by cracking them open in the frying pan, and occasionally provide input to properly
cook them.

The cook, as the scheduler, will also decide when it is best to start each action.
A well-tuned scheduler (or a seasoned cook) will be able to use historical data
to help make these decisions.

Understanding the RAET Protocol

[162]

Both the eggs and the toast highlight a couple of important aspects of the kinds of
processing that data centers regularly deal with. There are tools to help with the
processing of the eggs, but it is still largely a manual process. However, once the data
(bread) and parameters (the darkness setting) are given to the toaster, the process of
toasting the bread happens without any further user input.

We've talked about scheduling, but what is concurrency? It's actually best to explain
both parallel processing and concurrent processing because understanding one will
help in understanding the other. It's also important to understand both because they
are so easy to confuse, as the terms are often used interchangeably.

When two or more processes happen literally at the same time, they are happening
in parallel. For instance, when two slices of bread are inserted into the toaster at the
same time, they will be toasted in parallel.

Concurrency looks like two or more processes are happening at the same time, but
in fact, each step of each process will be performed individually and sequentially.
As computers are so fast, and as the work is hidden from the user, concurrent
processing often looks like parallel processing.

Let's go back to our kitchen example. Our cook is making breakfast for his whole
family. He owns a large toaster and is able to process a dozen slices of bread at once.
He also owns a griddle and is able to cook several eggs at once. He also owns a
cutting board and knife, and he plans to add fresh fruits to the breakfast.

The cook starts by turning on the griddle. While it is warming up, he puts bread
in the toaster and turns it on. Then, he pulls a melon out and sets it on the cutting
board. He goes to the griddle and cracks a few eggs in it. Then, he goes back to the
cutting board and slices some of the melon. He goes back to the griddle and flips the
eggs. Then he finishes cutting the melon.

The toast pops up just as he finishes cutting the melon. The eggs are just about
finished as well. He grabs some plates, puts toast on each, uses the spatula to
distribute the eggs between them, and finishes up by distributing the slices of melon
between them.

The breakfast in this example has in fact been prepared both in parallel and
concurrently. The cook concurrently switched between processing the eggs and
processing the melon. He also had the toast processing in parallel by another process.

Driving with RAET
We've talked about the concepts behind RAET, but now it's time to get down to
business. Let's go ahead and enable it; we can then get started.

Chapter 7

[163]

Configuring RAET
Setting up Salt to use RAET is actually not a big deal. In the Master and the Minion
configuration files, set the transport to raet:

transport: raet

As of version 2015.5, this is still set to zeromq by default, but this may change in
future releases.

There are some other changes that come with RAET. As RAET uses a different
encryption scheme, it also has its own set of keys. The Master used to store its
Minions' public keys in the following directories (inside /etc/salt/pki/master/):

•	 minions_pre/: This specifies the Minions that have identified themselves to
the Master, but which the Master has not yet accepted

•	 minions/: This denotes the Minions that have been identified to and
accepted by the Master

•	 minions_rejected/: This specifies the Minions that have identified
themselves to the Master, but with which the Master has explicitly
disallowed communication

Instead, RAET uses the following names for these directories respectively:

•	 pending/

•	 accepted/

•	 rejected

As ZeroMQ-based Salt uses RSA encryption, its keys look similar to the
following code:

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAxL69cuR0Z2lbrAeAq9Ry
pJeBP6lAHL6nUD71cVTxI0OOJC6t2Yb6jzFngvVoPXpCImdBbRFBp6KBG69nmbKu
WXbaeymoDobb5DpYSjGDForfEDvH/f03dj3ovXvf+CEJfir2r/f+IoYeEIdLOVsW
3KmpaHGie9cElitmd6df+gAapG4qdqZ2xzrM1VTaxvP0idmGOtiYOxZx9hj3Xf7J
yE3Xk65CJv5a/xbB+O9or6aEtbLC5tHZ9I7aLaCZ+dO0kDop4HBFjP1ZFe4gJG6d
L25PFOWPLqMmOyeBmCiC+yWIs3Fw9Eu1zH8GhCMonorA1Ih8sr6MmxS9rxmrQ/uA
+HJIaBAvmfjG2CuggkdbAjev2vPDkTgYvqwdeICM3RANH6SV8YdqXtf6lpsAFT/K
LhufO3/bI9s8DfFY7L+9+jf60cGDxkFQKvD0NU+88lscUSPxXDMv0sgy05U1BcyW
cPJy4x9RLwNC1C9EBKPtzvB/fD2carfKm3RDscsqP62V4P1jBfXDE2Jjzd2dC228
gdVTFjhD/c8oDisLrzHzsbd5k1Py8TFEuMlo6y0nDgTxQzCAz9HbpNVlcZOrrvzo
uZncih0nUXiV01rtU29qOUPpz/JhVFz4vYMbxJNsZeb3hwjDGo63WpsGqPKQdJ+t
U/jMDIJXt8mk5dywtho9RLcCAwEAAQ==
-----END PUBLIC KEY-----

Understanding the RAET Protocol

[164]

As RAET-based Salt uses Curve25519, its keys look similar to the following code:

��verify�@616bb1c637cbbd186932ab2d5f8ea6e3d1f380ea07c1ffd8bc407799894b
755f�pub�@fb577ea5be149005450ee6a3f4d18698365bdf674f6779151cb3dea032cc
e972�minion_id�myminion

However, beyond these differences, using Salt with RAET is not different, from a
user perspective, from using it with ZeroMQ.

While the RAET libraries ship with Salt, the dependencies needed
to run it may not, depending on your distribution. For instance,
in Arch Linux, there are two different Salt packages:
salt-zmq

salt-raet

Each pulls its own set of dependencies. As they both provide
many of the same files, they cannot both be installed at once.

Once the Master and Minion(s) are properly configured, Salt should function as
normal. Go ahead and try out a couple of commands:

salt myminion test.ping

myminion:
 True
salt myminion status.loadavg
myminion:

 1-min:
 0.27
 15-min:
 0.73
 5-min:
 0.61
salt myminion status.diskusage /dev/sdc1
myminion:

 /dev/sdc1:

 available:
 8247476224
 total:
 8247476224

Chapter 7

[165]

The RAET architecture
RAET has a slightly different internal architecture from what most people are used
to. On the surface, RAET is just a peer-to-peer connection. Salt uses it in a client/
server model but, outside Salt, it can be used for any machine to talk to any other
machine. However, before we talk about how machines address each other, we
should get some terminology out of the way.

The basics
Hosts on the RAET bus are called estates. Each estate has one or more yards. Estates
are connected to each other via either roads or lanes. Lanes are used to connect
estates on the same physical machine, whereas roads are used to connect estates on
separate physical machines.

On Unix and Linux, lanes are actually an abstraction of Unix Domain Sockets
(UXD), whereas on Windows lanes are an abstraction of mail slots. Also, on all
platforms, roads are an abstraction of a UDP Internet connection.

When one machine needs to send a message to another machine, it needs to package
this message and address it to the recipient. The address needs to contain the name
of the estate and the yard within that estate, which needs to receive the message.

Understanding the RAET Protocol

[166]

Yards are like a process inside the host (but not an actual, full-fledged Unix or
Windows process). A host can have multiple yards, each of which is uniquely
addressable. This introduces an important change internally to Salt.

Traditionally, Salt commands have been treated as one-off actions. When a command
is sent to a Minion, a process will be fired off to execute it. Even if this process were
to stay open indefinitely, there would be no way to guarantee that any subsequent
command will be able to make use of this same process. However, since a process in
RAET must be addressed specifically (as a yard), applications can make continued
use of them.

The RAET scheduler
Like ZeroMQ, RAET is based on the concept of queues, which it calls stacks.
However, the stacks in RAET work a little bit differently from what one may expect.

When the Master issues a command to a Minion in RAET, no work actually happens
right away; the command is placed in the appropriate stack to wait for processing
purposes. RAET's concurrent scheduler will loop through each stack and, as it finds
tasks to be completed, it will process them as appropriate. This gives RAET stacks the
property of being nonblocking. When multiple tasks come in, they are immediately
sent to the appropriate stack and then processed concurrently by the scheduler.

Chapter 7

[167]

Estates and yards
We've already mentioned that hosts are referred to as estates. Let's take a closer look
at the relationships that are going on inside an estate.

An estate contains yards. While estates are connected to each other via a road, yards
are connected to each other via a lane.

We could say that each yard is a process, but that's a little misleading because
individual yards do not correlate directly to individual processes on the operating
system level. Rather than being parallel processes, yards are concurrent threads
managed by the estate.

Think back to our breakfast scenario earlier in the chapter. Our cook is a scheduler;
he manages all of the tasks that need to be done. The appliances that he is cooking
with correlate directly to yards. He flips an egg in one yard, moves to another yard,
and flips another egg. Then, he moves to the next yard and cuts a slice of melon. You
may also recall that our refrigerator is a shared storage mechanism, which each of
the yards has access to and can make use of. Eggs are a type of data that is retrieved
from the shared storage, processed, and, if there are leftovers, it can go back to the
storage device.

Summary
RAET is a very powerful protocol that extends the functionality of Salt in unexpected
ways. We discussed other options for communication management used in other
frameworks. We also looked at why they aren't used in Salt.

Next we'll discuss some of the many techniques that are built-in Salt to handle
large-scale infrastructures and a few techniques that can be added to the mix.

[169]

Strategies for Scaling
Up until now, we've generally covered topics which are relevant to any size of
infrastructure, big or small. But when an infrastructure starts getting really big, there
is an entire class of strategies that must be considered in order to handle the load. In
this chapter we'll cover the following topics:

•	 Building a hierarchy with Syndics
•	 Using multiple Masters
•	 Testing load with minionswarm.py
•	 Using external filesystems
•	 Managing the Master using the Wheel system

All about syndication
In order to understand what syndication is all about in Salt, let's step back a few
years to when an infrastructure's size did not often go beyond a few dozen nodes.
Server management software didn't really need to handle a lot of connections, and
often didn't.

Different folks, different strokes
Puppet was one of the earlier configuration management platforms which really
started addressing scale. Since Puppet uses an HTTP-based methodology, early
documentation discussed the pros and cons, and the various configurations of
different web servers.

As we discussed in the previous chapter, Salt doesn't use HTTP, and so needs to
employ different strategies to address scale. On its own, some users report using
Salt to manage over 10,000 machines. However, not everybody has the kind of beefy
hardware that those users have available for their Masters.

Strategies for Scaling

[170]

The Syndic system was designed for infrastructures where the Master was not
expected to be powerful enough to handle the load from all the Minions that it needs
to communicate with. Rather than using a classic architecture where one Master
communicates directly with all its Minions, the Syndic system allows a Master
to communicate directly with one or more other Masters, in addition to its own
Minions. Each Master in the hierarchy may also communicate directly with one or
more other Masters, in addition to its own Minions. There is no imposed limit to the
depth of such a hierarchy.

While this concept was designed to mitigate the load on the Master, it is now much
more commonly used as an organizational technique. For instance, an organization
may maintain data centers in Houston, New York, London, Dubai, Singapore, Tokyo,
and Sydney. Each data center may have a single Master, which in turn is connected
to another centralized Master.

When dealing with Salt traffic over the Internet, security is going to be a concern.
Limiting Minions to only communicate with a Master in their own data center will
also simplify firewall configuration, as the centralized Master will only need to
worry about accepting connections from a small set of IP addresses. Additionally,
administrators can perform tasks in each data center, by connecting to a single
Master only.

No need for micro-managing
Each Master in a syndicated Salt infrastructure knows only about the Minions and
Masters which directly report to it. Say we have Master A, which has a group of
Minions, plus two syndics called Master B and Master C. Master A is able to issue
commands which are propagated down the line to the Minions belonging to Master
B and Master C, but it doesn't need to store copies of the public keys for those
Minions or even know that they exist.

This is because the Syndic system provides little more than a pass-through
connection. Commands that are published on Master A's bus will be sent to Master
B and Master C, each of which will republish those commands to their own buses.
As return data is received by Master B and Master C, it will be consolidated, and
aggregated back up to Master A.

This also means that Minions that request other resources from their Master,
such as files or Pillar data, will only be able to receive that data from the Master that
they report directly to. A Syndic will not be able obtain data from its own Master to
be served to a Minion that reports to it. Fortunately, this is not a problem if all that
data is provided by an external filesystem or an external Pillar, as discussed later in
this chapter, in Incorporating external data sources.

Chapter 8

[171]

Configuring syndication
Each Master in the infrastructure must, of course, be running the salt-master
daemon. Masters which report to an upper-level Master must also be running the
salt-syndic daemon (which may need to be installed separately, depending on
your operating system).

Each Syndic must also be configured to know which Master they report to. In
the Master configuration on the Syndic, the host or IP address of the Master is
configured as a syndic_master:

syndic_master: 10.0.0.10

If necessary, you can also change the syndic_master_port, which defaults to the
value of the master_port option (4506):

syndic_master_port: 4506

The Master that presides over the Syndic will treat it like any other Minion, meaning
it will need to accept that Syndic's public key, which will show up as a Minion key.
However, it will also need to know that it will be controlling Syndics. To know that it
will be sending orders to other Syndics (which are Masters themselves), the order_
masters option needs to be True in the configuration of the Master at the upper level:

order_masters: True

High availability with multiple Masters
The traditional Salt setup only involves a single Master with multiple Minions.
This is fine for a number of smaller shops, and even some of the bigger ones, but
definitely not for everybody. High availability has become increasingly crucial in the
modern infrastructure, and Salt is a part of that.

Built-in high availability configuration
Salt does have a little built-in configuration to handle multiple Masters, but it's
smaller and simpler than what one might expect. Interestingly, the actual Salt
configuration is all on the Minion; the Masters don't have any configuration inside of
Salt itself. We'll talk about that in a moment.

First, let's talk about Minion configuration. Normally, Minions have a single Master
defined in their configuration file:

master: 10.0.0.10

Strategies for Scaling

[172]

However, a list of Masters may be defined instead:

master:
 - 10.0.0.10
 - 10.0.0.11

There is no imposed limit to how many Masters may be declared for a single Minion.
However, once the list of Masters has changed, the Minion must be restarted in order
to pick up the new configuration.

The Masters themselves do not need to be aware of other Masters in the
infrastructure. However, all Masters should be identical in every way possible. They
must all share the same public/private key pair, and should have a synchronized
copy of the Minions' public keys. Any other files in the /etc/salt/ or /srv/
directories must also be identical.

The process of synchronizing files among the Masters is not currently supported
by Salt; it is up to the administrators to define and implement their own workflow
to accomplish that. However, most of the work can be accomplished using other
subsystems of Salt, as we'll discuss in a moment.

Old-school high availability
Before Salt got the ability to set multiple Masters inside a single Minion, it was still
possible to create a multi-Master setup; it just required a little work outside of Salt.

When a Minion is pointed to a Master, the address used may be either an IP address
(that is, 10.0.0.10) or a DNS-resolvable host name address (that is, saltmaster or
saltmaster.example.com). Techniques to map either type of address to multiple
servers have been around for years, and some even for decades.

The round robin DNS
DNS may be the oldest method for mapping a single address to multiple machines.
It inherently supports several IP addresses to be assigned to one name. When a client
makes a request to a DNS server for an IP address matching the specified hostname,
the DNS server serves a list of IP addresses to the client. The client can choose which
IP address to use, often the first one. When another client makes the same request,
the same list is served, but in a different order.

Chapter 8

[173]

By cycling through a pool of configured addresses, load is effectively spread out across
each server. This technique is known as round robin DNS, and is often referred to as a
poor man's load balancer. It's nowhere near perfect, but it usually does a decent job.

Despite the diminutive nickname, round robin DNS does have its place. More
advanced configurations are still employed by a number of gigantic infrastructures,
which still make use of this style of DNS, combined with more intelligent software
which can analyze current traffic information and patterns before deciding which IP
address is best to give to a client.

IP-based load balancing
One of the original design goals of Salt was for Minions to not have to rely on DNS
in order to reach their Master. This is because, as crucial as DNS is to the modern
Internet, it still has a number of shortcomings, which are inherent to its necessarily
hierarchical nature. Because DNS is based on a series of lookups, which may require
the constant synchronization between several DNS servers just to resolve one
address, there are a lot of gears that may break while a Minion attempts to maintain
contact with its Master.

Fortunately, DNS is not the only way to map a single address to multiple hosts. A
number of open source and commercial load balancers exist which can map one or
more public IP addresses to one or more private IP addresses. Depending on the
solution used, the intelligence used may be as simple as a round robin style, or as
advanced as actually monitoring the load and delivering traffic accordingly.

This is a good time to point out that when we talk about a public IP address, we're
not necessarily talking about an Internet-facing IP address. What we're talking about
is an IP address that is visible to the clients that need to use it. It could be that Master
1 has an address of 10.0.0.11, Master 2 has an address of 10.0.0.12, and that they
share the public address of 10.0.0.10 through the load balancer.

Synchronizing files
Whether you configure Minions to point to multiple Masters, or use a shared address
solution, or some combination of them, there is still the matter of keeping files in
sync among the Masters themselves.

Before we talk about how to keep the files synchronized, let's talk about which files
need to be kept in sync, why, and which of those we actually need to worry about.

Strategies for Scaling

[174]

Base configuration files
Inside the /etc/salt/ directory, there is a base set of files that are necessary for Salt
to even run in the first place. These form the bulk of the files that we'll need to worry
about. These files are as follows:

•	 /etc/salt/master

•	 /etc/salt/master.d/*.conf

The master file, plus any files with a .conf extension in the master.d/ directory,
comprise the Master configuration. None of these files technically need to exist; if
they are absent, then the default Master configuration will be used. However, things
like external Pillars, caches, and filesystems are not configured by default. Because
those things are important to a high-availability setup, it's best to keep this managed.

Fortunately, once these files are dialed in, it's rarely necessary to change them.
However you manage these files, you are unlikely to need anything more than a
manual process, unless you are managing them via some other external process
which requires regular, automatic changes to be made.

•	 /etc/salt/pki/

This is where the keys are stored, both for the Master, and for the Minions. It is very
crucial to keep this directory synchronized among the Masters, so that when a key
is accepted, or even more importantly, removed from one Master, the others know
about it as quickly as possible.

•	 /etc/salt/cloud

•	 /etc/salt/cloud.profiles

•	 /etc/salt/cloud.profiles.d/

•	 /etc/salt/cloud.providers

•	 /etc/salt/cloud.providers.d/

•	 /etc/salt/cloud.maps.d/

•	 /etc/salt/cloud.deploy.d/

All these files and directories belong to Salt Cloud, and their necessity and
management varies with the needs of the organization. Because Salt Cloud is
designed to auto-accept keys on the Master, many organizations choose to use Salt
Cloud only on the Master. However, it is possible to issue commands to Salt Cloud
from a Minion, and a growing number of users have decided to go that route and
handle key management outside of Salt Cloud.

Chapter 8

[175]

If you are not using Salt Cloud at all on a Master, then these files can obviously be
ignored. If you are using it on a Master, keeping these files synchronized is far less
crucial. They will only be utilized when issuing Salt Cloud commands, and unless
Salt Cloud is being called from an autonomous process such as the Reactor, these
files can be manually synchronized as needed.

•	 /var/cache/salt/

This directory is used by a number of different processes inside of Salt, including
the Master, Minion, Salt Cloud, and others. Salt Cloud uses this directory primarily
for increasing performance. However, if diff_cache_events is set to True in
/etc/salt/cloud, and Reactors which make use of those events are configured,
then keeping /var/cache/salt/cloud/ synchronized is as important as keeping
/etc/salt/pki/ synchronized.

The files in /var/cache/salt/master/ are important for those who make use of Salt's
various job-lookup capabilities. If you are using multiple Masters, then these capabilities
are not only used, but crucial. Fortunately, the job cache can be offloaded onto another
server or service, which can be shared by multiple Masters. We'll cover the external job
cache later on in this chapter, in Incorporating external data sources section.

•	 /srv/salt/

•	 /srv/pillar/

•	 /srv/reactor/

How much you use these directories, if at all, depends entirely on your use cases.
However, if you use them, then keeping them synchronized among the Masters is
pretty important.

The good news is that /srv/salt/ can be provided in its entirety by one of Salt's
external file system drivers, and /srv/pillar/ can be provided entirely by one of
Salt's external Pillar drivers. Both are covered in the next section.

The bad news is that /srv/reactor/ does not have a specific Salt driver to handle
it. However, using this location for Reactors is also not required; it was a naming
convention that was recommended because it made sense. These files could just
as easily be stored in, say, /srv/salt/reactor/ if desired, so long as they aren't
referenced by any files used by the State system.

•	 /var/run/salt/

The files in this directory are specific to an individual host and should not be
synchronized.

Strategies for Scaling

[176]

Synchronizing the nonexternal files
As we said, there are some files that can be managed externally, and we'll cover those
in a moment. For now, let's look at the ones that need to be managed outside of Salt.

It's probably fair to say that the bulk of infrastructures have a Minion set up on the
Master. If this is the case, then any file in the /etc/salt/ directory (outside of /etc/
salt/pki/) may be managed by a Salt State, which means that any of these files can
be stored using one of Salt's external filesystem drivers. If your infrastructure meets
this model, then this will greatly simplify the storage and management of those files.

If this model doesn't work for you, then you'll need to look at one of the options that
will be necessary for /etc/salt/pki/ to handle the rest of the files in the /etc/
salt/ directory.

The simplest option, in terms of configuration, may be to mount /etc/salt/ (or just
/etc/salt/pki/) using an external file system outside of Salt, such as NFS or SMB.
However, because this strategy will be subject to network conditions, you may find
yourself in a situation wherein the stability of Salt degrades or disappears because of
a network user or a process that is misbehaving.

Even though it may be more complex to set up, it's far better to maintain local copies
of the files in these directories, and set up a process, be it manual or automatic, to
maintain consistency among all Masters.

Using rsync
A periodic rsync command among the Masters will accomplish much of what is
needed. Setting this up on a regular cron will eventually make the data among the
Masters consistent, which in many cases is good enough. The following cron line will
synchronize files from one Master to another every 5 minutes:

*/5 * * * * rsync -avz /etc/salt/pki/* othermaster:/etc/salt/pki/

Setting up lines similar to this on each Master is one step towards eventual
consistency. However, rsync can be an expensive process to be running on a regular
basis, especially with a large set of files. Worse, mismatches between Masters can
cause keys to show up in multiple directories, putting a Minion in a state where it
is both Accepted and Unaccepted. Fortunately, Salt does give us the ability to be more
intelligent with the files that we copy between the Masters.

Chapter 8

[177]

Using the event Reactor
It is best to only perform work when it needs to be performed, and ideally that work
is performed as soon as possible. Because key management triggers events, we
can use the event listener to let us know when keys have changed, so that we can
propagate those changes as quickly as possible.

If you were to fire up the event listener and accept and delete the keys for a Minion,
you would see events that look like this:

Event fired at Thu Jun 4 17:34:18 2015

Tag: salt/key
Data:
{'_stamp': '2015-06-04T23:34:18.583865',
 'act': 'accept',
 'id': 'testminion',
 'result': True}
Event fired at Thu Jun 4 17:35:50 2015

Tag: salt/key
Data:
{'_stamp': '2015-06-04T23:35:50.853794',
 'act': 'delete',
 'id': 'testminion',
 'result': True}

Chances are that these are the only two events you'll be dealing with for key
management (unless you have an active policy of rejecting keys, which would result
in an act of reject), so we can go ahead and start building Reactors based on them.

First, we'll map the tag to a Reactor file, inside of /etc/salt/master:

reactor:
 - salt/key
 - /srv/reactor/saltkey.sls

Then, we'll create /srv/reactor/saltkey.sls with the following content:

{% set minion = data['id'] %}
{% set pkidir = '/etc/salt/pki/master' %}
{% if data['act'] == 'accept' %}
copy_accepted_key:
 cmd.cmd.run:
 - tgt: master1

Strategies for Scaling

[178]

 - name: scp {{pkidir}}/minions/{{minion}} master2:{{pkidir}}/
minions/

remove_unaccepted_key:
 cmd.file.remove:
 - tgt: master2
 - name: {{pkidir}}/minions_pre/{{minion}}
{% elif data['act'] == 'delete' %}
{% for keydir in ('minions', 'minions_pre', 'minions_rejected') %}
delete_{{keydir}}_key:
 cmd.file.remove:
 - tgt: master2
 - name: {{pkidir}}/{{keydir}}/{{minion}}
{% endfor %}
{% endif %}

Again, we're letting Jinja do a lot of work for us. Let's take a look at what's
happening in the preceding code.

First, we define the ID of the Minion. We get that from the id field inside the
data provided by the event. We could skip this line and just refer to data['id']
throughout the file, but this is a little more readable, and gives us more flexibility if
we decide to change the behavior of that variable later. We've done the same thing
with the PKI directory by defining it as pkidir.

Then we check to see if we're dealing with a key that has been accepted or deleted.
If it is accepted, we have two tasks to perform: copy the key to the minions/
directory on the target Master, and then make sure it is no longer in the
minions_pre/ directory.

It's temping to issue a salt-key command here, but don't do it! First off, the Minion
in question may not have attempted to contact the other Masters yet, and therefore,
there won't be a key to accept in the first place. But more importantly, since every
Master should be configured with this Reactor, using the salt-key command on all
the other Masters would trigger an infinite loop, which would be crippling for all the
Masters, and possibly even the network.

If the key is not being accepted, but being deleted, then we just need to make sure
that it is absent from all the other Masters. There are three directories that it needs
to be absent from, so we use a loop to go through each of them. Order is important
here: we want to make sure that the Minion to be deleted is unable to receive tasks
before removing it from the other two directories.

Chapter 8

[179]

Incorporating external data sources
We've taken care of Salt keys, but we have some other directories that we need to
distribute among the Masters. Let's start with a component that is used every time
you issue a command from the Master to one or more Minions: the job cache.

The external job cache
Before we dive into this component, let's review the Master job cache:

1.	 When a command is issued, a Job ID (JID) is created on the Master.
2.	 Information about that job is stored in the job cache, such as what the

command and its arguments are and which Minions will be affected.
3.	 The job data is posted to the message queue, where the affected Minions pick

it up and perform the requested work.
4.	 When each Minion finishes the task, it sends the return data back to the

Master where it is also stored in the job cache.
5.	 If the salt command is still running, it will pick up the job data and display it

to the user.

In this workflow, the Minion will always return data to the Master, whether or not
the salt command is there to receive it. The Master will always cache it, so that it can
be looked up later.

Using Returners on the Minions
If we introduce a Returner to the equation, then the Minions will send the return
data to an external data source, in addition to sending it to the Master. In this
case, since the Minion is connecting to the data source, the Minion will need to be
configured with the connection options for that data source. For instance, to use
redis, one might add the following to the Minion configuration:

redis.db: saltdb
redis.host: saltdb.example.com
redis.port: 6379

And to use that Returner, specify it when issuing your salt command:

salt '*' disk.usage --return redis

Strategies for Scaling

[180]

Any Returner that ships with Salt can be used in this manner. All that will be sent
to the external database will be the return data for the job. This is useful for the
monitoring-style tasks, where a Minion is constantly being asked for information
about system vitals, such as disk or memory usage. Using an external database to
store that information allows for later analysis of it by another piece of software.

The Master can be configured to ask its Minions to always return data to an external
data store. However, this introduces a couple of changes to the equation. When a
default Returner is configured, all the job data will be sent to it; not just the return
data. Not every Returner is set up to do this. As of version 2015.5, the Returners that
can do this are:

•	 couchbase

•	 couchdb

•	 etcd

•	 influxdb

•	 memcache

•	 mongo

•	 mysql

•	 odbc

•	 pgjsonb (Postgres, with the jsonb data type)
•	 postgres

•	 redis

•	 sqlite3

You may have noticed that only a handful of the many Returners that ship with Salt
are suitable for use in the external job cache. That's because several Returners are
designed to be used with systems that write-only, so far as Salt is concerned. When
job data is sent to the returner for the Slack service for instance, it will be posted
to a chat room, which cannot be queried later by Salt. When job data is sent to the
returner for the Nagios package, it will be used exclusively for monitoring and
alerting purposes.

In order to send job data to an external data source by default, the ext_job_cache
setting must be set in the Master configuration file. This will just be set to the same
name as would normally be passed in using the --return flag:

ext_job_cache: redis

Chapter 8

[181]

When this is set, Minions will be directed to send the data to the external data source
every time. With the Master also configured with the same Returner credentials as
the Minions, the jobs runner will also access the external data store to pick up its data
about jobs.

Many administrators may feel squeamish about storing database credentials
inside the Minion configuration files, where anyone with access to the Minion can
view them, and rightfully so. Returners such redis and etcd can be even more
problematic, as they require no credentials, and therefore allow unfettered access
to everybody.

With some of these Returners, it is possible to mitigate some of these concerns. Many
of the databases available have the ability to restrict the access to read or overwrite
data inside a database, based on the credentials used to access it. However, there is
another way out.

Using the Master job cache
Starting with version 2014.7, Salt has the ability for the Master to store the job return
data in the external data store instead of asking the Minions to do it. Administrators
who are concerned about storing database credentials on Minions can set their mind
at rest in knowing that only the Master has the credentials.

In order to do this, set the master_job_cache option in the Master configuration file
to the same Returner that would be used with ext_job_cache on the Minions:

master_job_cache: redis

Keep in mind that, by default, Minions still have access to the Master configuration
data inside a Pillar called Master. In order to keep this information from the Minions,
the pillar_opts option can be turned off in the Master configuration file:

pillar_opts: False

Keep in mind that the default for this option has changed.
Previous to version 2015.5.0, it was True. As of 2015.5.0, the
default is now False.

When these options are configured across all Masters, the contents of the /var/
cache/salt/ directory that are important to synchronicity will be immediately
(not just eventually) available to all Masters.

Strategies for Scaling

[182]

External filesystems
The next set of files and directories that need to be made available to all Masters
are those found in the /srv/salt/ directory. As it turns out, the option that many
administrators consider to be the best even with a single Master, is also the option
that makes it possible to share this directory structure with all other Masters as well.

GitFS
The first component to offer the option of storing files outside the Master's local
filesystem was the gitfs driver. This option was so immediately popular, that the
entire filesystem model of Salt was refactored in order to allow other drivers to be
added as well.

GitFS was a godsend, because so many organizations anyway prefer keeping
all their code in a software versioning system such as Git, and having Salt access
repositories directly cuts out a lot of work.

As time has passed, a number of features have been added to this driver. So, let's
get through the basics first, and then cover the bonus features.

External filesystems are set up in the Master configuration file, using the
fileserver_backend option. By default, this option is set to roots, which is
the driver which manages files on the Master's local filesystem:

fileserver_backend:
 - roots

To switch over from local storage to Git-based storage, change the roots line
to gitfs:

fileserver_backend:
 - git

Before we get into the rest of the configuration for gitfs, this is a good time to point
out that multiple fileserver backends can be specified, in the order in which they are
to be searched:

fileserver_backend:
 - git
 - roots

When a file is requested, Salt will search through each external fileserver, in the order
in which they are specified, until the requested file is found.

Chapter 8

[183]

Once the fileserver backend is configured, Salt needs to know where to find the
Git repositories.

gitfs_remotes:
 - git://github.com/mycompany/salt.git

This is the most simple configuration, which will set the root of the Git repository to
act as if it were /srv/salt/ on the local filesystem.

The git:// URL is not the only protocol that is supported by GitFS. You can also use
remotes with https://, file://, or ssh:// URL schemes.

As with the fileserver_backend, multiple Git remotes can be specified, and when
a file is requested, Salt will search through each repository in the order in which it
is declared.

Starting with version 2014.7, a number of options have been added which allow
individual configurations to be specified per Git repository. The following options
are available:

•	 base

•	 root

•	 mountpoint

•	 user

•	 password

•	 insecure_auth

•	 pubkey

•	 privkey

•	 passphrase

A number of different backend drivers are available to power GitFS. The base, root,
and mountpoint options are available across all drivers. But all the other options are
only available using the pygit2 driver. To make sure that you are using the pygit2
driver, specify it as the gitfs_provider:

gitfs_provider: pygit2

The purpose of some of these options may not be immediately obvious, so let's go
through them, and see how they are used.

Strategies for Scaling

[184]

base
As you know from configuring Salt States, the default environment in Salt is called
base. Other environments such as dev, qa, prod, and so on are normally configured
in the top.sls file. With GitFS, these environments are configured via tags or
branches instead. Files that are in the prod branch will be served to servers in the
prod environment, and so on.

Rather than forcing users to create a branch or tag called base to serve files, the
base option can be used to specify a different branch. For instance, if you needed to
use files inside the trunk branch inside your base environment, your configuration
might look like the following:

gitfs_remotes:
 - git://git.example.com/myproject.git
- base: trunk

Note that if the base is not specified, the default will be the
Master branch on the repository, whether or not it exists.

root
Normally when Salt serves files from Git, the root of the repository behaves as if it
were /srv/salt/. This may be impractical, depending on the organization of the
repository in question. If the directory tree in your repository is set up in a way that,
say, the code/salt/states/ directory needs to be treated as if it were /srv/salt/,
you can redirect the root to point to that directory:

gitfs_remotes:
 - git://git.example.com/myproject.git
 - base: trunk

mountpoint
Sometimes, you need the opposite of what the root option provides. Perhaps you
want the root of your repository to show up deeper inside the directory tree inside of
Salt. Using a mountpoint will append a virtual path to the beginning of the repository
root. For instance, say your repository has a file called https.conf in its root
directory, and you need it to be served as if it were located at /srv/salt/apache/
files/httpd.conf. Your configuration would look something like the following:

gitfs_remotes:
 - git://git.example.com/myproject.git
 - mountpoint: salt://apache/files

Chapter 8

[185]

user and password
When working with Git repositories using the https:// URL scheme, a username and
password may be required. These are passed using the user and password options:

gitfs_remotes:
 - https://git.example.com/myproject.git
 - user: larry
 - password: 123pass

insecure_auth
By default, Salt will refuse to authenticate against repositories using the http://
URL scheme. In order to force Salt to authenticate using this insecure transfer
method, set insecure_auth to True.

gitfs_remotes:
 - http://git.example.com/myproject.git
 - user: larry
 - password: 123pass
 - insecure_auth: True

pubkey, privkey, and passphrase
Normally, Git repositories which use SSH are configured using a git:// URL
scheme. However, git can be configured to allow access using an SSH-like syntax.
The following two declarations are functionally identical:

https://git@git.example.com/user/myproject.git
git@example.com:user/myproject.git

Using Git over SSH will require authentication, and key-based security is the way to
go. The pubkey and privkey options are used to specify the locations of the public
and private key files respectively.

gitfs_remotes:
 - git://git.example.com/myproject.git
 - pubkey: /root/.ssh/myproject_rsa.pub
 - privkey: /root/.ssh/myproject_rsa

If the private key is protected by a passphrase, it may be specified using the
passphrase option:

gitfs_remotes:
 - git://git.example.com/myproject.git
 - pubkey: /root/.ssh/myproject_rsa.pub
 - privkey: /root/.ssh/myproject_rsa
 - passphrase: 123pass

Strategies for Scaling

[186]

Any of these options may also be specified globally, by prepending it with gitfs_.
When doing this, the options will be applied to all GitFS remotes, but they can be
overridden individually, as seen in the preceding code. For example, to use trunk as
the global branch for the base environment while overriding it and using develop on
the last remote, your configuration might look like the following:

gitfs_base: trunk
gitfs_remotes:
 - git://git.example.com/myproject.git
 - git://git.example.com/yourproject.git
 - git://git.example.com/ourproject.git
 - base: develop

Other source control backends
By far, the most popular fileserver backend is GitFS, and so the maximum time and
most features have been spent on that filesystem. However, it is certainly not the
only player in the game. Both Subversion (SVN) and Mercurial (HG) are available
using the svnfs and hgfs drivers respectively. Both have many of the options that
are available with GitFS, but there are some differences.

SVNFS
In order to use SVNFS, there must be a fileserver backend of svn configured:

fileserver_backend:
 - svn

A URL to the remote SVN repository or repositories must also be configured:

svnfs_remotes:
 - svn://svn.example.com/myproject

The following options may also be added to any of the svnfs_remotes:

•	 root

•	 mountpoint

•	 trunk

•	 branches

•	 tags

As with GitFS, these options may be used globally across all SVN repositories by
prepending svnfs_ to the beginning of them.

Chapter 8

[187]

root and mountpoint
The root and mountpoint options behave as with GitFS, but the other three options
do need some explanation.

trunk
SVN is based on a trunk, which are made from other branches. This option specifies
where that trunk is located, relative to the SVN remote URL in question. The default
is trunk:

svnfs_trunk: trunk

branches
Also, relative to the SVN remote URL is the location of the branches inside the
repository. The default is branches:

svnfs_branches: branches

tags
Once again, SVN tags are also relative to the SVN remote URL. As you might expect,
the default is tags:

svnfs_tags: tags

As with GitFS, environments are mapped to tags and branches. However, with
a repository that contains a large number of either of these, limiting the tags and
branches that are made available to Salt may increase performance.

This can be accomplished using the svnfs_env_whitelist or the svnfs_env_
blacklist options. They both function as one might expect: items which are not
specified in the whitelist are not made available, and items which are specified in the
blacklist are not made available.

Items in either of these lists may be specified as either an entire name or a pattern
specified as either a glob or a regular expression:

svnfs_env_whitelist:
 - oldproject
 - accounting.*
 - 'sales19\d+'

These two options may also be used together. When doing so, the whitelist will be
evaluated first, and then items which match the blacklist will be removed.

Strategies for Scaling

[188]

HGFS
Of course, we would be remiss if we skipped over using Mercurial as a fileserver
backend. In order to use this driver, set hg in the fileserver backends:

fileserver_backend:
 -hg

And then set up Mercurial repositories using the hgfs_remotes option:

hgfs_remotes:
- https://larry@hg.example.com/larry/myproject

As with SVNFS, the following options are available globally:

•	 hgfs_root

•	 hgfs_base

•	 hgfs_mountpoint

•	 hgfs_env_whitelist

•	 hgfs_env_blacklist

Once any of these global options are declared, the root, base and, mountpoint may
be overridden on a per-repo basis:

One more global option is also available, which is specific to HGFS: hgfs_branch_
method. This specifies whether branch or bookmarks, or both, will be used in
conjunction with tags to provide Salt environments. The available settings for this are:

•	 branches

•	 bookmarks

•	 mixed

S3FS
Version control systems are not the only external filesystem drivers that ship with
Salt. After GitFS was introduced, it did not take long for the S3FS driver to be
committed. This driver has proven to be extremely popular with the customers of
Amazon Web Services.

Before we get into the configuration of this driver, take note: it does not provide
version control. When working with text-based files, I'm going to put my foot down
and recommend that they all be checked into some sort of a revision control system.
In any production environment, this provides far more advantages than just using
the Master's local filesystem.

Chapter 8

[189]

However, binary files are impractical to be stored in version control. They make
repositories bulky and slow, and cannot be properly managed as text files can.
This is where using a driver such as S3FS can really be useful.

In order to use this driver, add s3fs to the list of fileserver backends:

fileserver_backend:
 - s3fs

Credentials to connect to S3 must also be provided. Once you have received them
from Amazon, add them to the master configuration file as s3.keyid and s3.key:

s3.keyid: 0123456789ABCDEF0123
s3.key: abcdefghijklmnop/0123456789qrstuvwxyz

There are two ways to set up your S3 buckets to serve files: one environment per
bucket or multiple environments per bucket.

One environment per bucket
The most straightforward way to configure S3FS, and the one that requires the least
amount of thought before the bucket is created in the first place, is to treat each
bucket as its own separate environment. With this model, each environment, and the
bucket (or buckets) which belongs to it, are specified with the s3.buckets option:

s3.buckets:
 base:
 - code
 - design
 prod:
 - prod_code
 - prod_design

Multiple environments per bucket
It may make more sense to keep all your environments together in a single bucket, or
in a group of buckets which are combined together. This requires that the buckets be
set up beforehand to include directories named after the environments. First, list the
bucket or buckets in the s3.buckets list:

s3.buckets:
 - code
 - design

Then, create the buckets (in this case, one called code and one called design). Inside
each bucket, create one directory per environment (in our case, base and prod).
Then, files are placed inside those directories as usual.

Strategies for Scaling

[190]

Were you to abstract your directory tree out into an s3:// URL scheme, our example
would have a file structure that looked as follows:

s3://code/base/<files>
s3://code/prod/<files>
s3://design/base/<files>
s3://design/prod/<files>

AzureFS
Not to be outdone by Amazon, Azure also has a cloud storage solution available,
which can be used as an external filesystem with Salt.

In order to use AzureFS, add azurefs to the list of fileserver backends:

fileserver_backend:
 - azurefs

However, this driver is a little different because of the difference between Azure
storage and S3. First of all, Azure uses storage containers, not buckets; so we'll refer
to them as containers from here on (not to be confused with container systems such
as Docker and CoreOS RKT). Secondly, AzureFS is configured only to allow one
environment per container.

Azure configures access to each container using the name of the storage_account
which the container lives in, and a storage_key which authenticates access to
that container.

azurefs_envs:
 base:
 storage_account: development
 storage_key: 0123456789abcdefABCDEF==

External Pillars
The last component that can be moved into an external service is the Pillar system.
Let's go over the basic configuration first. To use an external Pillar driver, add it to
the ext_pillar list inside the Master configuration:

ext_pillar:
 - cmd_json: /usr/bin/mypillar

There are two components to every Pillar declaration: the name of the module (in
this case, cmd_json) and any arguments that are to be passed to that driver (in this
case, the /usr/bin/mypillar command, which is expected to return Pillar data in
JSON format).

Chapter 8

[191]

There are quite a number of external Pillar modules available—too many to go
through them all. So we'll pick out a few key Pillars, which are likely to be of use in
your organization.

The full list of Pillars that are available can be found online at
http://docs.saltstack.com/en/latest/ref/pillar/
all/index.html.

cmd_yaml/cmd_json
These are not Pillars that are likely to be useful in scaling out to multiple Masters, but
they do effectively demonstrate how the pillar system works.

The argument for both of these modules is a command that returns a dictionary of
data in either the YAML or the JSON format respectively. If this command includes
a %s in it, it will be replaced with the name of the Minion that is requesting the
Pillar data.

For instance, the following code would return data which would be provided to all
of the Minions:

cmd_json: cat /srv/pillar/common.json

This code would search for Pillar data that is specific to the requester:

cmd_json: cat /srv/pillar/minions/%s.json

These modules are good for getting a feel of how the external Pillar system works.
However, to start scaling out, it's time to look at more advanced external Pillars.

git
It should not be surprising that one of the most popular external Pillars makes use
of the Git repositories. However, the configuration of this module is a little different
from the GitFS configuration.

There are two arguments which are required: the branch inside the repository which
is to be used and the URL to the repository. For instance:

ext_pillar:
 - git: master git://git.example.com/myproject.git

Like GitFS, an alternate root may also be specified:

ext_pillar:
 - git: master git://git.example.com/myproject.git root=code

http://docs.saltstack.com/en/latest/ref/pillar/all/index.html
http://docs.saltstack.com/en/latest/ref/pillar/all/index.html

Strategies for Scaling

[192]

In this case, code refers to a directory inside the Git repository called code.

If you want to specify that the branch be mapped to a different environment name,
you can specify both the branch and the environment together, separated by a colon:

ext_pillar:
 - git: master:base git://git.example.com/myproject.git

There are a couple of different ways to expose the branches as their own
environment. If the special __env__ branch is specified, then each branch will
automatically be mapped to a corresponding environment of the same name.

ext_pillar:
 - git: __env__ git://git.example.com/myproject.git

If you don't want to expose all the branches in the repository as their own
environments, it's better to define them all individually, adding a branch to the
environment mappings as appropriate:

ext_pillar:
 - git: master:base git://git.example.com/myproject.git
 - git: dev git://git.example.com/myproject.git
 - git: prod git://git.example.com/myproject.git

redis
The redis module is a natural fit for Pillar data, because it stores data in the same
kind of key/value pair that is used for Pillar data.

If you are already using redis for your external job cache, you can reuse the
connection settings inside the Master configuration:

redis.db: 0
redis.host: 10.0.0.5
redis.port: 6379

Then, configure how the data will be pulled out of redis. Data can be stored in
redis as either a JSON object, or as a string, hash, or list.

If the data is stored as JSON, then the external Pillar declaration will be as follows:

ext_pillar:
 redis: {function: key_json}

Take note that, unlike other examples in this book, this one
is printed exactly as it should appear in your configuration,
character for character.

Chapter 8

[193]

With this type of data, the key of the JSON object is the name of the Minion which
has requested the Pillar data. If no such object exists in the database, an empty
dictionary will be returned.

If the data is stored as a string, hash, or list, then the external Pillar declaration
will be:

ext_pillar:
 redis: {function: key_value}

Again, this is the exact configuration that is to be used. And again, the key that is
used to access the data must match the name of the Minion which has requested it.

mysql
The mysql module may not seem as natural as redis, since SQL isn't normally
thought of as having key/value pairs. But, in fact, nothing could be further from the
truth. SQL is all about key/value pairs; it just happens to refer to the keys as fields,
and it organizes the data as rows.

To use this module, connection details must be set up inside the master
configuration:

mysql:
 user: salt
 pass: 123pass
 db: saltdb

Then, configure the mysql Pillar with a query that can be used to collect the data
from the database:

ext_pillar:
 mysql:
 fromdb:
 query: 'SELECT role FROM minions WHERE id LIKE %s'

Using the Master API
The Master API has a somewhat confusing name for users that are used to traditional
Unix terminology. Because the Master is what steers a Salt infrastructure, the API
that is used to configure it is called the Wheel system. To put it clearly, Salt's Wheel
system bears no relation or resemblance to the wheel group found in many Unix and
Linux distributions.

Strategies for Scaling

[194]

Like most of Salt, the Wheel system is pluggable. However, while a few modules do
exist, most of them will never be used by most end-users. For our purposes, we'll
focus on the ones that are used.

The Salt keys
The part of the Wheel system that is most commonly seen by administrators is key
management. When keys are accepted, rejected, or deleted, that action is usually
performed by the Wheel system. The key module doesn't actually do much: it creates
keys when necessary, moves them between directories as requested, and fires events
along the event bus when doing so.

Configuration
The config module is used to manage the Master configuration files. Again, it does
very little: it can write one or more values to the Master configuration file, and it can
return the contents of that file. Be warned: when this module is used to modify the
Master configuration, any comments that exist in that file will be stripped. If you
take comfort in the presence of friendly comments to help you out, this module is
best avoided.

One important note about this module: while it manages configuration files, it does
not manage the internal Master configuration. Once changes have been made, the
Master must still be restarted in order to apply those changes.

The file and Pillar roots
The file_roots and pillar_roots modules behave in largely the same way, the
only functional difference being the directory that they operate on. Each supports
searching for files, listing environments, and reading and writing the contents of a
file. As the name implies, they are designed to be used with local files, not external
filesystems or external pillars.

Using the Wheel Reactor
So, what good are these modules? Again, the vast majority of commands will use the
key module, though the small set of use cases surrounding the other modules may
meet your needs.

Chapter 8

[195]

While accepting keys on the Master will require some logic that is specific to your
needs, in order to securely accept only keys from the Minions which are considered
trustworthy, deleting keys from the Master is reasonably safe, at least from a security
point of view. While accepting the wrong key may allow rogue Minions into your
infrastructure, deleting the wrong key never will.

A process that is able to detect that a Minion's key should be deleted can be set up
to fire an event which triggers that key's deletion. For now, we'll assume that the
process in question is able to issue a standard Salt command. For instance, a Minion
that has been tasked with keeping watch may issue the following command:

salt-call event.fire_master '{"id": "myminion"}' custom/key/myminion/
delete

On the Master, the tag is mapped to a Reactor file:

reactor:
- custom/key/*/delete
- /srv/reactor/deletekey.sls

And inside the /srv/reactor/deletekey.sls file, the Wheel system is called to
delete the key for the Minion in question:

delete_minion_key:
 wheel.key.delete:
 - match: data['id']

Testing load in the infrastructure
Now that we've talked about the various ways to scale out your infrastructure, you
will probably find it useful to know how to throw tests at your infrastructure to test
its ability to handle the load that will be thrown at it.

Using the Minion Swarm
The Minion Swarm was originally used to test the performance of execution modules
as they were written. But while it is still used for that today, it can also be used to test
the performance of a State tree against a large number of Minions.

The minionswarm.py script does not ship inside any of the
Salt packages, but it can be downloaded from the tests/
directory on Salt's GitHub repository at https://
github.com/saltstack/salt.

https://github.com/saltstack/salt
https://github.com/saltstack/salt

Strategies for Scaling

[196]

The Minion Swarm script is designed to create a user-defined number of Minions,
which can then accept commands from the Master. Keep in mind that this script will
only run on a single host, so it won't help much in testing the Syndic architecture.
However, it will effectively test how well your external file systems and Pillars are
able to interact with each other.

To use the Minion Swarm, copy it into a directory and start it up with Python:

python minionswarm.py

By default, this will create 5 Minion processes. Once they are spun up, standard Salt
commands can be issued against those Minions. If you want to spin up a Master as
well to talk to those Minions, you can do so by specifying the -M option:

python minionswarm.py -M

The first thing you will probably want to do is create more Minions to test with.
The -m option will set the number of Minions that will be created.

python minionswam.py -m 500

Be careful here! Each Minion that is created will leave its own
footprint in memory, and each footprint will be the size of a
regular Minion process. Specifying too many Minions may
overload an underpowered system.

Swarm internals
Obviously, the swarm of Minions that is created cannot be considered viable for
production use; it is for testing purposes only. This should be kept in mind should
you decide to take a look at the various files that are created during this process.

In the /tmp/ directory, a directory whose name starts with mswarm-root will
be created. This directory will contain a pki/ directory with entries for each
Minion. And if you look at the keys for each Minion, you will notice that they
are all identical!

If the need presents itself, it is possible to replace keys for individual Minions
so long as you make sure to keep them in sync with the temporary keys stored by
the Master. But the point of the Minion Swarm is not to test keys or security - it's to
test load!

Chapter 8

[197]

So, go ahead and fire up a few test commands to get a feel of how load testing works
with the Minion Swarm:

salt '*' test.ping

salt '*' network.interfaces

salt '*' disk.usage

And then try testing out a State run, preferably in test mode:

salt '*' state.highstate test=True

If you decide to do a state run without enabling the test mode, it will be best to do so
on an otherwise blank machine that can safely be trashed if the state run gets out of
control. Don't feel bad if you end up having to wipe it and start over several times;
if you're storing all your data in an external filesystem or an external Pillar (both of
which are read-only), you won't have to do much work to get things rolling again.

Summary
In this chapter, we covered the hierarchical and failover configurations of Salt, using
syndication and multiple Masters. We also talked about load testing and offloading
resources from the Master to other servers. We even talked about managing the
Master using the Wheel system.

There are plenty of ways to help your Salt infrastructure scale to meet the demands
of thousands of servers. But once they're up and running, how do you keep an eye
on them? Next up, we'll discuss how we can use Salt to help monitor your systems.

[199]

Monitoring with Salt
Many users are unaware that Salt was not originally intended to be used as a
configuration management system. One of its first uses was to collect and store
information on system vitals, such as memory, CPU, and disk usage. It can still be
used this way today, and in fact, it has quite a bit more functionality now, which can
be useful in monitoring. In this chapter, we'll discuss the following topics:

•	 Using returners to establish a historical baseline
•	 Using monitoring states
•	 Incorporating beacons into your workflow
•	 Setting up alerts

Monitoring basics
There are a number of different monitoring systems available today, some of which
have modules inside Salt to support them. However, different systems provide
different types of monitoring.

Establishing a baseline
Take for example, the classic sysstat monitoring package in Linux. By default, it
collects data on various system vitals every 10 minutes. Over a period of time, analysis
of this data will paint a picture of what the system looks like under normal load. Spikes
or dips are likely to occur from time to time, which may or may not be normal.

Monitoring with Salt

[200]

For instance, after monitoring a web server for a few weeks, it may become evident
that load average gradually increases throughout the morning and in the afternoon,
before spiking for a few hours in the evening and dropping off before midnight.
Depending on the type of website, weekends may experience more traffic than
weekdays. This will manifest itself in tools, such as sysstat. This is how the output
from sysstat looks:

sar

Linux 4.0.5-1-ARCH (dufresne) 06/13/2015 _x86_64_(4 CPU)
02:09:11 PM LINUX RESTART(4 CPU)
02:10:22 PM CPU %user %nice %system %iowait %steal
%idle
02:20:12 PM all 3.37 6.56 1.88 4.44 0.00
83.75
02:30:12 PM all 2.68 5.88 1.51 1.50 0.00
88.43
Average: all 3.02 6.22 1.69 2.96 0.00
86.11

This information will form a standard baseline. Also, when unexpected
abnormalities occur that differ from the baseline, it may be a cause for concern.
This is where alerting comes in, which we'll cover in the Setting up alerts section
later in the chapter.

As wonderful as a tool sysstat is, it doesn't tell the whole story. It reports on a
predefined set of system information, such as load average and IO wait times.
It does not report on which processes are running or how many users are logged in
to the system.

Reading the system vitals in Salt
Most of the earliest modules inside Salt were designed to collect information about
various aspects of the system and return them to the user in a format that has been
parsed and formatted for ease of usability. Much of what is normally associated with
system vitals is inside the status module, but there are others as well. Let's take a
look at a few of them.

Chapter 9

[201]

status.loadavg
This returns load average, using the same information present in the popular top
program that ships with most Unix and Linux distributions. Establishing a baseline
will help you know what specific servers normally look like. In general, so long
as the number reported in the 1-minute average is less than the total number of
processors in the system, the system is considered to be idle.

salt myminion status.loadavg

myminion:

 1-min:
 0.23
 15-min:
 0.52
 5-min:
 0.42

status.cpustats
Much of the information that is stored by sysstat will be contained inside the
return of this function, although it may look a little different. Most Linux monitoring
systems, including Salt, collect information from virtual files in the /proc/ directory.
In this case, the information presented is from the /proc/stat file. The output is
likely to be pretty long, but a shortened version would look like the following code:

salt myminion status.cpustats

myminion:

 btime:
 1434226009
 cpu:

 idle:
 868157
 iowait:
 35603
 irq:
 0
 nice:
 57994
 softirq:
 42
 steal:
 0

Monitoring with Salt

[202]

 system:
 16190
 user:
 28560
 cpu0:
 7575
 cpu1:
 6872
 cpu2:
 8043
 cpu3:
 6069
 ctxt:
 9069187

status.meminfo
Information on memory usage is vital. Most operating systems have various
strategies to cope with running low on memory, but it is far better to not run out in
the first place. This function will give information on the usage of memory and try
to be helpful by also presenting the unit that the information is being presented in. A
shortened version looks similar to the following code:

salt myminion status.meminfo

myminion:

 Active:

 unit:
 kB
 value:
 3837372
 Active(anon):

 unit:
 kB
 value:
 3549304
 Active(file):

 unit:
 kB
 value:
 288068
 AnonHugePages:

Chapter 9

[203]

 unit:
 kB
 value:
 1257472
 AnonPages:

 unit:
 kB
 value:
 3547932

status.vmstats
Just as status.meminfo reports on physical memory, status.vmstats reports on
virtual memory. This is one of the strategies that operating systems use to cope with
running out of physical memory. In Linux, this information is pulled from /proc/
vmstat. This is how a shortened version of the output looks:

salt myminion status.vmstats

myminion:

 nr_active_anon:
 854510
 nr_active_file:
 72671
 nr_alloc_batch:
 4165
 nr_anon_pages:
 854154
 nr_anon_transparent_hugepages:
 641
 nr_bounce:
 0
 nr_dirtied:
 206578
 nr_dirty:
 633
 nr_dirty_background_threshold:
 295696
 nr_dirty_threshold:
 591393

Monitoring with Salt

[204]

disk.usage, status.diskusage
Disk usage is just as critical as memory usage, and in some situations, even more so.
There are two different functions inside Salt to display information. Each behaves
differently based on where they obtain their information from. In Linux, the disk.
usage function obtains its information from the du command, whereas the status.
diskusage function uses information from the /proc/mounts file. The command for
disk usage is as follows:

salt myminion disk.usage

myminion:

 /:

 1K-blocks:
 414569456
 available:
 270870348
 capacity:
 32%
 filesystem:
 /dev/sda4
 used:
 122633484

salt myminion status.diskusage

myminion:

 /:

 available:
 277371793408
 total:
 424519122944

status.w
This strangely-named function should actually look familiar to old school Linux or
Unix users. This calls out to the w command, which reports who is logged in to the
system and what they are doing. The command for status.w is as follows:
salt myminion status.w

myminion:
 |_

 idle:

Chapter 9

[205]

 7:16m
 jcpu:
 25:24
 login:
 07:56
 pcpu:
 0.00s
 tty:
 tty1
 user:
 larry
 what:
 xinit /home/larry/.xinitrc -- /etc/X11/xinit/xserverrc :0
vt1 -auth /tmp/serverauth.t5P7FTvG7q

status.all_status, status.custom
If you've been following along on your own computer and testing out these
commands, you've probably noticed that some of these functions return a lot of
data. If you want a firehose of data, try out the status.all_status function, which
returns everything from the following functions:

•	 status.cpuinfo

•	 status.cpustats

•	 status.diskstats

•	 status.diskusage

•	 status.loadavg

•	 status.meminfo

•	 status.netdev

•	 status.netstats

•	 status.uptime

•	 status.vmstats

•	 status.w

This kind of report is useful because it returns a lot of information in only a single
call. However, chances are that it returns far more information than you actually
want or need.

The status.custom function is designed to cull out the information that isn't
necessary. It returns only what is actually needed. By default, it returns nothing; you
will need to specify the functions and fields from these functions that you want to
run in the Minion configuration.

Monitoring with Salt

[206]

To configure a function, add a line to the Minion configuration, which contains
the name of the function and a list of the fields that you want returned from that
function. The format is:

status.<function>.custom:
 - <item1>
 - <item1>
 - <etc>

Consider the following configuration:

status.cpustats.custom:
 - 'cpu'
 - 'processes'
status.loadavg.custom:
- '1-min'

This will return a custom output that looks like the following code:

salt myminion status.custom

myminion:

 1-min:
 0.27
 cpu:

 idle:
 1929298
 iowait:
 46791
 irq:
 0
 nice:
 129568
 softirq:
 61
 steal:
 0
 system:
 34416
 user:
 57184
 processes:
 3737

Chapter 9

[207]

Monitoring with Returners
As we discussed in the previous chapter, Returners have the ability to store the
job return data from Minions in an external data store. This is ideal for monitoring
situations because the external data store can be used to establish a baseline.

One of the best ways to set up Salt so that it starts to collect data is to use the
Minion's scheduler. For our example, we'll assume that you're using the mysql
Returner. Go ahead and add the following code to your Minion configuration:

schedule:
 loadavg_monitoring:
 function: status.loadavg
 minutes: 10
 returner: mysql
 diskusage_monitoring:
 function: status.diskusage
 minutes: 10
 returner: mysql

Note that both of these have the returner set to mysql. If you are scheduling a lot of
tasks that use the same Returner, you may just want to add a schedule_returner
line instead:

schedule_returner: mysql
schedule:
 loadavg_monitoring:
 function: status.loadavg
 minutes: 10
 diskusage_monitoring:
 function: status.diskusage
 minutes: 10

These configurations will set the Minion to run two monitoring jobs, starting with
when the salt-minion starts up and continuing every 10 minutes thereafter. This
time period was chosen only because it's the default for sysstat. Other monitoring
software uses other intervals, such as every 15 minutes. Before deciding on a time
period based on what you are used to in other software, decide whether or not this is
the most appropriate interval for your needs.

Monitoring with Salt

[208]

Deciding on a Returner
While only a selected set of returners can be used to manage the external job cache,
any Returner can be used to store the job return data. However, not all external
storage mechanisms are created equally. While the job return data will always
come from Salt in exactly the same format, it frequently needs to be massaged into
something different in order to meet the requirements of the other API.

NoSQL style databases are the most natural choice because they generally store
data in exactly the same format as Salt. However, not everybody uses this type of
database, and in fact, some organizations avoid them entirely.

MySQL may feel like a natural choice because it is one of the world's most popular
database servers, especially for beginners. However, its internal data format doesn't
support Salt's data structures. In order to accommodate the requirements of SQL,
most SQL returners convert the job return data to a JSON blob and store it in a single
field. Other fields will also be used to store metadata, but searching through data
structures inside the return is likely to be cumbersome at best.

Then, there are these special case Returners. Some, such as hipchat, slack, and
xmpp, are designed to drop return data in a chat room. The smtp returner will send
one e-mail per job per Minion with the return data. Separate integrations could be
written, which make use of these platforms, but it's definitely not a natural fit.

Lastly, there are Returners designed to dump data directly in a database. This is
designed specifically for monitoring purposes. One such Returner is for a piece of
software called Carbon. This is a component of the Graphite tool, which in turn can be
used to generate graphs from data such as the one that is returned from Salt.

Using monitoring states
Monitoring states are one of the less commonly known pieces of functionality inside
Salt, and that's a shame. While execution modules are superb to build and maintain
a baseline of information about a machine, monitoring states are designed to raise a
notification when a metric falls out of the desired range.

The notification in this case is not the same as an alert. It can be
used to raise alerts, but it is an independent action.

Chapter 9

[209]

As you may recall, there are four pieces of information that will always be returned
from each individual state:

•	 Name
•	 Result
•	 Changes
•	 Comment

Monitoring states differ from standard states in three ways. First of all, they are not
allowed to make changes to the system. Their job is to observe and report. Secondly,
they return a fifth piece of information:

•	 Data

This contains a dictionary of data that was retrieved by the monitoring state. This
could be a metric involving disk usage, a particular CPU load average, or even the
contents of a web page that is being monitored.

The last difference is that when a monitoring state is called, it can be given
parameters that define what is considered acceptable for the data field. If the data
falls within these parameters, or no parameters are given, the result of this state will
be True. However, if parameters are given and they fall outside what is defined to be
acceptable, the result of this state will be False.

As monitoring states are handled during a State run, they can be used to trigger
other states to run. The triggered states may attempt to perform auto-healing or raise
an alert. We'll talk about alerts later on in the chapter; first, let's talk about how to
define a monitoring state.

Defining a monitoring state
Let's take a look at a very simple monitoring state: disk.status. The purpose of
this state is to monitor usage on a specific filesystem. The default outputter does not
show the data output, so let's use the nested outputter instead.

[root@dufresne ~]# salt myminion state.single disk.status / --out nested

myminion:

 disk_|-/_|-/_|-status:

 __run_num__:
 0
 changes:

Monitoring with Salt

[210]

 comment:
 Disk in acceptable range
 data:

 1K-blocks:
 414569456
 available:
 270866984
 capacity:
 32%
 filesystem:
 /dev/sda4
 used:
 122636848
 duration:
 8.604
 name:
 /
 result:
 True
 start_time:
 04:06:56.587517

If a minimum or maximum is defined as a percentage, Salt will check to see whether
the disk usage is inside this range. If it is not, it will return False. Otherwise, it will
return True.

[root@dufresne ~]# salt myminion state.single disk.status / minimum=50
maximum=90 --out nested

myminion:

 disk_|-/_|-/_|-status:

 __run_num__:
 0
 changes:

 comment:
 Disk is below minimum of 50 at 32
 data:

 1K-blocks:
 414569456

Chapter 9

[211]

 available:
 270866960
 capacity:
 32%
 filesystem:
 /dev/sda4
 used:
 122636872
 duration:
 8.96
 name:
 /
 result:
 False
 start_time:
 04:11:45.476257

Monitoring with web calls
The most unique of the monitoring states is probably http.query. Rather than
checking the local system, it makes a web call and then analyzes the return from it.

There are two items that can be checked with the http.query state. A match
pattern may be specified either as a block of plain text or as a regular expression.
For example:

http://example.com/page1.html:
 http.query:
 - match: 'This is page 1'
http://example.com/page2.html:
 http.query:
 - match: 'This is page [two|2]'
 - match_type: pcre

It is also possible to specify a status code. This is expected to be returned from
the page. Normally, this will be 200, but there are reasons to check for others. For
instance, if a page is supposed to be missing, then it is reasonable to check for a 404
error. The code for page not found is as follows:

http://example.com/not_found.html
 http.query:
 - status: 404

Monitoring with Salt

[212]

It is also possible to check for a match pattern and a status code in the same State,
as shown in the following code:

http://example.com/jungle.html:
 http.query:
 - match: 'Welcome to the Jungle'
 - match_type: string
 - status: 200

Any argument that can be used with the http.query execution and runner modules
can also be declared here with two exceptions: the text and status arguments will
always be set to True because these are the items that are being checked, and the
status argument behaves differently in the http.query state.

In order to run a web query (which posts actual data), you would run:

http://example.com/orderpizza.py:
 http.query:
 - text: success
 - status: 200
 - method: POST
 - params:
 toppings: pepperoni
 crust: pan

This is a good time to put in a warning about the http.query state. As it has no
way to check whether the parameters that are given to it are read only on the target
server, it is possible for a bad set of parameters to make changes to the target URL.
It is entirely up to the user to ensure that the parameters given are safe.

However, it is possible to run the http.query state in the test mode. This is another
thing that is unique about this monitoring state. Normally, monitoring states do not
need to check to see whether they are being run in the test mode because they are not
making any changes. However, the http.query state will allow an alternate URL to
be specified, which it will use instead if it detects that it is running in the test mode.

This URL is specified as test_url:

http://prod.example.com/orderpizza.py:
 http.query:
 - text: success
 - status: 200
 - test_url: http://dev.example.com/orderpizza.py
 - method: POST
 - params:
 toppings: pepperoni
 crust: pan

Chapter 9

[213]

Working with beacons
Beacons are a very new feature in Salt, but they've already gained quite a following.
In past versions of Salt, if a third-party process needed to raise an event inside Salt,
it would have to explicitly make a call to Salt to do so. Beacons overcome this by
allowing events to be triggered by third-party processes without having to perform
any work inside that process itself.

As you can imagine, beacons were designed for monitoring, and specifically, for
alerting purposes. While monitoring states are fairly passive, in which they only run
when called explicitly or via the scheduler, beacons are very proactive, in which they
are constantly watching for changes.

Monitoring file changes
Beacons are run on a regular basis on the target Minion. When they pick up
important changes, they will fire an event that describes these changes.

The first beacon that was ever added was for the inotify system. This is built-in
the Linux kernel, starting with version 2.6.13. The inotify system can perform an
operation when certain activity happens to a file or directory. For instance, some
organizations use it to track changes to files across a set of directories and then use
these change notifications to perform incremental backups.

To use this beacon, the python-pyinotify package must be installed on the target
Minion. Once it is installed, let's go ahead and watch a file in the /tmp/ directory
called services. Add this block to the Minion configuration:

beacons:
 inotify:
 /tmp/services:
 mask:
 - modify
 - delete_self

This will watch for /tmp/services to be modified or deleted. This file doesn't exist
yet, but that's okay. We can still set up notifications on it. Go ahead and restart
the Minion, and then start up the event listener on the Master. Run the following
command to put the file in place:

cp /etc/services /tmp

You won't see any events just yet because inotify does not track the creation of a
single file that is being monitored. It can track the creation of a file in a directory that
is being watched, but let's stay focused on just one file at a time.

Monitoring with Salt

[214]

If you issue the preceding command again, it will register a change in inotify:

cp /etc/services /tmp

Go ahead and look at the event listener. You should see an event that looks similar to
the following code:

Event fired at Sat Jun 13 23:02:57 2015

Tag: salt/beacon/myminion/inotify//tmp/services
Data:
{'_stamp': '2015-06-14T05:02:57.257879',
 'data': {'change': 'IN_MODIFY', 'id': 'myminion', 'path': '/tmp/
services'},
 'tag': 'salt/beacon/myminion/inotify//tmp/services'}

You can see a namespacing in the tag: beacon tags start with salt/beacon/,
followed by the Minion ID, then the name of the beacon module, and the item
that is being watched.

Go ahead and delete the file with the following code:

rm /tmp/services

Then, look at the following event listener:

Event fired at Sat Jun 13 23:09:45 2015

Tag: salt/beacon/myminion/inotify//tmp/services
Data:
{'_stamp': '2015-06-14T05:09:45.257790',
 'data': {'change': 'IN_DELETE_SELF',
 'id': 'myminion',
 'path': '/tmp/services'},
 'tag': 'salt/beacon/myminion/inotify//tmp/services'}

The tag hasn't changed, but the data has. In the case of this beacon, we're interested
in what the change item in the data dictionary contains.

Beacon intervals
By default, beacons are run once every second. As a result, they need to be quite
light, and they perform their work as quickly as possible. However, you may not
want the beacons to run this often. Say, for instance, that you're using the load
beacon to keep an eye on the load average for a system. You've decided that you
don't need a check every second, but that every 30 seconds is reasonable.

Chapter 9

[215]

You can change the beacon interval with the interval argument. For our example,
you can configure the load beacon with the following code:

beacons:
 load:
 - 1m:
 - 0.0
 - 2.0
 - interval: 30

This beacon will fire an event if the 1-minute load average ever drops below zero or
goes above 2.0.

Setting up alerts
Now that you've seen various ways to monitor Minions, let's go ahead and set up
some alerts.

Alerting in State files
In Chapter 4, Managing Tasks Asynchronously, we discussed how to use the Reactor
system to file incidents in the PagerDuty service in response to events. Our example
also made use of the disk.status monitoring state.

Keep in mind that any state inside an SLS file can raise an alert;
monitoring states are not alone here.

Alerting from beacons
As beacons are designed to do nothing more than send an event when a certain
threshold is reached, they are perfect for alerting purposes! Let's go ahead and
set up a couple of examples.

Watching file changes
Let's go back to inotify for a moment. Say that you're using the /etc/hosts file to
manage local DNS lookups. You may have some software that manages this file for
you, perhaps automatically adding entries as necessary; you want to be notified via
e-mail when this happens.

Monitoring with Salt

[216]

First off, the Minion needs to be properly configured to send e-mails. The Minion
ID in this example is called smtpminion. Add the appropriate values to your
Minion configuration:

my-smtp-login:
 smtp.server: smtp.example.com
 smtp.tls: True
 smtp.sender: larry@example.com
 smtp.username: larry
 smtp.password: 123pass

Then, add a beacon to keep an eye on this file:

beacons:
 inotify:
 /etc/hosts:
 mask:
 - modify

Go ahead and restart the salt-minion process. Then, we'll need to set up a Reactor
on the Master. Go ahead and add the Reactor mapping with the following code:

reactor:
 - salt/beacon/dufresne/inotify//etc/hosts:
 - /srv/reactor/hosts_changes.sls

Finally, create the /srv/reactor/hosts_changes.sls file with the
following content:

hosts_changed:
 cmd.smtp.send_msg:
 - tgt: smtpminion
 - kwarg:
 recipient: larry@example.com
 message: Hosts File Changed on {{data['id']}}
 subject: Hosts File Changed on {{data['id']}}
 profile: my-smtp-login

Restart the salt-master process. Go ahead and add an entry to your /etc/hosts
file on this minion and check your e-mail.

Chapter 9

[217]

Monitoring bad logins
Most Linux users don't keep a watchful eye on the btmp file, which is unfortunate.
This file keeps track of failed login attempts on the system. On a public-facing
system, this can mean serious trouble. However, in recent years, it has become a
common practice for attackers to make several dozen, or even several hundred,
attempts to log in to a system at once. Using SMTP for alerts is probably a bad idea
because your inbox may get flooded from a single attack run.

So, let's go ahead and set up our alert system to send a Webhook instead, which
reports on bad logins.

If you were to fire up the event listener and then attempt a bad login to the system,
you would see something similar to the following code:

Event fired at Sun Jun 14 00:46:46 2015

Tag: salt/beacon/dufresne/btmp/
Data:
{'_stamp': '2015-06-14T06:46:46.609763',
 'data': {'PID': 1492058112,
 'addr': -971811459,
 'exit_status': 0,
 'hostname': '',
 'id': 'dufresne',
 'inittab': '10',
 'line': 'pts/10',
 'session': 0,
 'time': 592838656,
 'type': 6,
 'user': 'curly'},
 'tag': 'salt/beacon/myminion/btmp/'}

Now that we know what the event looks like, we can set up an alert for it. First, we'll
set up the beacon in the Minion configuration:

beacons:
 btmp: {}

The configuration for this beacon is very simple; as it requires no arguments to tell it
to look at the btmp file, an empty configuration block is used. Go ahead and restart
the salt-minion process.

Monitoring with Salt

[218]

Then, we will set up the Reactor mapping on the Master as follows:

reactor:
 - salt/beacon/dufresne/btmp/
 - /srv/reactor/btmp.sls

Finally, we will create /srv/reactor/btmp.sls with the following content:

btmp_alert:
 runner.http.query:
 - kwarg:
 url: 'http://example.com/alerts.py'
 method: POST
 params:
 id: {{data['id']}}
 user: {{data['user']}}

Summary
Establishing a historical baseline of data is critical to monitoring systems, and Salt
has been using Returners to do this since the beginning. You can also use monitoring
states and beacons to collect data and perform actions based on it.

Salt has a very powerful set of tools to monitor systems in order to establish a
baseline of information and raise alerts when something goes awry.

In the next chapter, we'll take a look at some of the best and worst practices in Salt.

[219]

Exploring Best Practices
Like all tools, Salt is easier to use and gives more consistent results when you use it
right. Referring to a piece of equipment in his kitchen, a chef once told me, I've seen
a number of really ingenious ways to use this tool wrong. This chapter aims to give
guidance to help you use Salt in the best way possible. We'll cover the following topics:

•	 Future-proofing your infrastructure
•	 Establishing a proper directory structure
•	 Creating efficient SLS files
•	 Using intuitive naming conventions
•	 Using effective variables with templates

Future-proofing your infrastructure
One of the most aggravating things about technology is its ability to change before
you can adapt, and in some cases, before you even finish implementing what was
considered new when you started. Future-proofing refers to planning things out
as far in advance as possible. It also refers to working in a way that minimizes
the amount of work that will have to be done in the future to make the current
technology still work.

One of the most famous examples of code that was not future-proofed was the Year
2000 or the Y2K bug. For those who missed it, here's what happened. Developers
needed to store dates. It was already common usage outside computers to store
2-digit years. For example, January 1, 1970 may be stored as 1/1/70. Using a 2-digit
year saved space, which was at a premium at the time.

Unfortunately, far more of the code that used this strategy survived into the future
than was expected. Even worse, even some code written in the 1990s was still
designed to store 2-digit years instead of 4-digit years.

Exploring Best Practices

[220]

It would have been far better to store 4-digit years in the first place. In fact, a date
stored as YYYYMMDD (including zero-padded 2-digit months and days, such as
01) can be considered future-proof for a very long time; they have the added bonus
of being easier to sort chronologically. Storing timestamps in a 24-hour mode (13:00
instead of 1:00 PM) is a similar strategy.

We will come back to future-proofing regularly in this chapter. It's something that
should always be in the back of your mind when you work on any technology.

Setting up your directories
A good directory structure is important in any platform, and Salt is no different. The
default placement of directories inside Salt was very carefully considered in order to
maintain the best balance between the Filesystem Hierarchy Standard (FHS), Linux
Standard Base (LSB), and various nuances between different Linux distributions.

As a user, you have a number of directories to contend with yourself, especially
when planning both your State files and your Pillar files. There's no official standard
inside these directories, but there are some things that you can do to keep your
directory trees in good order.

Standard directory locations
Most Linux distributions place files directly in their appropriate directories.
Configuration files and directories live in /etc/, files whose content is variable
(logs, caches, and so on) belong directly in /var/, and site-specific files that belong
to a network server often go in /srv/(although this can change depending on your
environment). However, many Unix and some Linux distributions prefer to extend
this structure by adding a local/ directory. If you are currently using one of these
operating systems, you're probably already used to its conventions.

One of the design decisions behind Salt was to use as few directories as possible. It's
not reasonable to force users to look all over their system for files, and Salt strives to
be reasonable. Again, some of these locations will differ depending on your platform,
but the locations that Salt normally uses are:

•	 /usr/bin/ : This specifies executables
•	 /usr/lib/python<version>/site-packages/salt/: This denotes the bulk

of Salt code
•	 /etc/salt/: This specifies the configuration and key files
•	 /var/log/salt/: This denotes log files
•	 /var/cache/salt/: This specifies the cache data

Chapter 10

[221]

•	 /var/run/salt/: This denotes Socket files
•	 /srv/salt/: This specifies State files
•	 /srv/pillar/: This specifies Pillar files
•	 /srv/reactor/: This denotes Reactor files

Most of these directories will never even be seen by the average user. They keep
themselves in check when necessary and require no maintenance or modifications
by most administrators.

The files in the /srv/ directories are what most Salt users will look at and modify on
a regular basis. It is possible to change any one of these directories both in and out of
the /srv/ directories, but resist the temptation. Users are used to finding these files
here. Also, moving to a nonstandard location adds an unnecessary layer of confusion
to new hires and consultants working with you.

<module>.sls versus init.sls
Both the /srv/salt/ and /srv/pillar/ directories may include a top.sls file, any
number of other SLS files, directories that contain an init.sls file, and optionally,
other SLS files and directories. Both of these files will refer to a state called Apache:

•	 /srv/salt/apache.sls
•	 /srv/salt/apache/init.sls

While it is perfectly acceptable to use either, consider what may happen further
down the road. Apache is the sort of service that doesn't just get installed and
started; chances are you will be modifying at least one configuration file. Therefore,
it makes more sense to create a directory called apache/ with its own init.sls file
and keep Apache-related files in there.

But what about other services? NTP is often the sort of thing that comes with
perfectly good configuration out of the box. It does not often need modification.
However, it can be modified, and the more mature your infrastructure becomes, the
more likely it is that you will need to customize something.

When that time comes, changing ntp.sls to ntp/init.sls may only take a
couple of extra steps. However, these are steps that can be saved up front. Also,
certain other procedures in your organization may necessitate even more work. For
instance, do you have other software, such as backup or security solutions, which is
expecting files to be in a specific place? Skip <module>.sls and maintain a policy of
segregating states and Pillars into their own directories up front.

Exploring Best Practices

[222]

Shallow versus deep
A number of different organization mindsets can be found in the modern world of
system administration. Some people like to be very specific when they organize data,
creating kingdoms, classes, and phylums, as if they were keeping track of plant and
animal species.

For example, the three most popular text editors in the Linux world are arguably
Vim, Emacs, and Nano. Two popular graphics editors in the open source world are
GIMP and Inkscape. When you manage an infrastructure that includes all of these
programs, it may be tempting to start classifying like a scientist, but this can quickly
get out of hand. Take a look at this directory structure:

/srv/salt/
├── editors
│ ├── graphics
│ │ ├── gimp
│ │ │ └── init.sls
│ │ └── inkscape
│ │ └── init.sls
│ └── text
│ ├── emacs
│ │ └── init.sls
│ ├── nano
│ │ └── init.sls
│ └── vim
│ └── init.sls
└── top.sls

This is somewhat of a deep directory structure. This kind of structure may be
aesthetically pleasing to the obsessively organized, but it adds extra complexity
for others to have to deal with. Finding in which directories files live in takes extra
steps, whereas the classification of some software can be ambiguous. Did the original
maintainer put vim in core_tools/ or dev_tools/?

Let's take a look at a different directory structure:

/srv/salt/
├── emacs
│ └── init.sls
├── gimp
│ └── init.sls
├── inkscape
│ └── init.sls
├── nano
│ └── init.sls

Chapter 10

[223]

├── top.sls
└── vim
 └── init.sls

This is a more shallow directory structure. It's not so shallow that we would resort
to vim.sls, emacs.sls, and so on, but it is shallow enough that states can easily be
found just by looking in the /srv/salt/ directory.

Subdividing further
Descending further into these directories, you will find a number of different
techniques to organize files specific to one package. Some prefer to use a files/
directory, while others just dump all the files for an SLS in one directory.

In most cases, putting all of your files in one directory will be the easiest to work
with. The shallow structure will make them easy to find and modify.

However, if a full directory structure is to be copied to a Minion, it makes absolutely
no sense to remain completely shallow. Move those files to their own directory and use
the file.recurse State to provision them on the Minion. The shallow structure is only
a guideline; it is up to you to decide what makes the most sense for your situation.

The SLS efficiency
When building an SLS tree, the directory structure is only part of the equation. There
are a number of strategies that can be employed in the SLS files, which will increase
their ease of use and maintainability.

Includes and extends
Like a number of modern languages and file formats, SLS files were designed to
take advantage of code reuse. Rather than creating large, monolithic files, states can
be broken down into smaller files, which can be combined together across multiple
environments.

Consider the following partial SLS file:

iptables:
 service:
 - dead
httpd:
 pkg:
 - installed
 service:

Exploring Best Practices

[224]

 - running
/opt/codebase:
 file.recurse:
 - source: salt://codebase/files

Obviously, a production version of this would be far longer, but this short version
fits our needs.

There are three distinct components of this SLS: the firewall, the web server, and
the code base. There is an implied order here: the web server can't serve pages if the
firewall is blocking it, and the code base is useless without the web server to connect
it to users.

The first problem with this SLS is that each component should be broken down
into individual files. This State tree is likely to grow, and other components may
be added, which takes advantage of the firewall configuration or the web server.

The second problem is that managing the firewall by flat out disabling it is neither
extensible nor future-proof. However, we'll talk about that in a moment.

Using includes
Let's go ahead and break this SLS into three separate files:

cat /srv/salt/firewall/init.sls

iptables:
 service:
 - dead

cat /srv/salt/webserver/init.sls

httpd:
 pkg:
 - installed
 service:
 - running

cat /srv/salt/codebase/init.sls

include
 - firewall
 - httpd
/opt/codebase:
 file.recurse:
 - source: salt://codebase/files

Chapter 10

[225]

See the names that we have used for our SLS files. It may be natural for Linux users
to refer to the firewall configuration as iptables, but it's not future-proof. A number
of users have found themselves in situations where they suddenly need to support
new platforms that they did not originally plan for. Mergers or partnerships between
companies and directives from upper levels of management may dictate the use of
other firewalls, such as the pf firewall program in BSD or the Windows firewall system.
Referring to this SLS as firewall will help simplify these changes when necessary.

The same goes for the web server, which is currently set to use httpd: the package
and service name for Apache on certain Linux platforms. But what happens if the
infrastructure switches from a Red Hat-based platform to one based on Debian? Or
if a change is made from Apache to Nginx?

In such cases, using more generic names will simplify further changes to the
infrastructure. Detailed configuration is still possible of course, but it can be
localized to the individual SLS files that it pertains to, instead of affecting the set
of files as a whole.

You may also have noticed that the code base SLS file includes the firewall and the
web server SLS files. Why not have the web server include the firewall and the code
base only include the web server? To answer this, let's expand our code base SLS file:

cat /srv/salt/codebase/init.sls

include
 - firewall
 - httpd
installed_codebase:
 file.recurse:
 - source: salt://codebase/files
 - name: /opt/codebase
codebase-web-config:
 file.managed:
 - source: salt://codebase/apache.conf
 - name: /etc/httpd/conf.d/codebase.conf

Remember that other components may be added later, which make use of the
web server, but which include their own configuration files that are specific to that
web server.

In this case, it's okay that we put Apache in the name of the configuration file. In fact,
it's preferable so that we know that we're not dealing with an Nginx configuration
file. We've referred to the block of code that handles the web server configuration
generically so that if we need to change to Nginx later, we only need to change it
inside this block, and not inside the references to this block.

Exploring Best Practices

[226]

Speaking of generic names, we've also changed the state that handles the code base
itself to have a more generic name; just in case, /opt/codebase/ is changed at a later
point to/srv/codebase/ for example.

Using extends
There's a little more work that we can do in the code base SLS file. Our current
example assumes that no changes need to be made to the default Apache
configuration file; the file that appears in the conf.d/ directory should be enough.

However, this may not in fact be the case. In fact, Apache is historically handled very
differently across various platforms. While Red Hat's Apache automatically includes
/etc/httpd/conf.d/*.conf by default, Arch Linux does not; the httpd.conf file in
that platform does not include a number of the conf files that ship with it by default.
It will need to be updated. Also, with Debian-based Apache installations, the entire
directory structure is different.

We will go ahead and make changes to the SLS files for both the webserver and
the codebase:

cat /srv/salt/webserver/init.sls

httpd:
 pkg:
 - installed
 service:
 - running
 file.managed:
 - source: salt://webserver/httpd.conf
 - name: /etc/httpd/conf/httpd.conf

cat /srv/salt/codebase/init.sls

include
 - firewall
 - httpd
extend:
 httpd:
 file:
 - source: salt://codebase/httpd.conf
installed_codebase:
 file.recurse:
 - source: salt://codebase/files
 - name: /opt/codebase
codebase-web-config:
 file.managed:
 - source: salt://codebase/codebase-apache-vhost.conf
 - name: /etc/httpd/conf.d/codebase.conf

Chapter 10

[227]

We've added a generic configuration file to the web server configuration, which
will automatically be included along with all the other Apache code blocks in the
web server SLS file. However, we are then modifying the source of this file so that it
points to a specific httpd.conf file in the codebase directory.

Using httpd.conf as the filename makes more sense because it's the upstream
name for that file. It is also the name that is used on pretty much every non-Debian
distribution.

However, having both an httpd.conf and an apache.conf file in the same directory
can be confusing. The apache.conf file is likely to contain little more than a
<VirtualHost> directive that is specific to the codebase. We can see now that while
Apache should probably still be in the filename, it would have been more future-
proof to give more information in the filename on the server. Fortunately, as we've
already used generic names for the block that controls this file, we only need to make
two changes: one to the SLS file and one to rename the file itself.

Using templates to simplify SLS files
Using the built-in include and extend blocks is helpful to tie files together, but it
doesn't help much in the files. This is where templates can really shine. We can take
advantage of them to shorten some code blocks or decide whether or not the State
compiler will actually see them in the first place.

Working with loops
There are times when using a loop inside a template can seem helpful. For instance,
managing a group of users, all of which have identical settings and permissions:

{% for user in ('larry', 'curly', 'moe') %}
{{ user }}:
 user.present
{% endfor %}

This Jinja code block will effectively create the following SLS to be sent through the
State compiler:

larry:
 user.present
curly:
 user.present
moe:
 user.present

Exploring Best Practices

[228]

However, while using template loops can save a lot of time and tedium in some
places, there are other places where it's just not appropriate. For instance, take the
following SLS snippet to install CloudStack:

{% for pkg in ('cloudstack-agent', 'cloudstack-management') %}
{{ pkg }}:
 pkg.installed
{% endfor %}

It may look like a quick way to install packages without creating a single block
per package, but Salt already has its own ways to handle this. As each package
(presumably) has identical settings, we can create a single block to include them all:

cloudstack-pkgs:
 pkg.installed:
 - names:
 - cloudstack-agent
 - cloudstack-management

However, the pkg state is special because it supports the State aggregation. With
either of the above code blocks, the Minion's package manager will be called once
per declaration. With a large list of packages, this can quickly grow to be much too
long of a list.

Using pkgs instead of names will cause Salt to aggregate these package names
together and call the Minion's package manager only once to deal with all the
declared packages.

The user State doesn't support this kind of aggregation, but it does support using the
names argument. The following code is a much simpler version of the preceding SLS
for users:

my-users:
 user.present:
 - names:
 - larry
 - curly
 - moe

It may be starting to look like loops have no place inside the SLS files. That's not true.
While the names and pkgs arguments alleviate the need for loops inside a single
State, it may be helpful to use loops to handle repetitive code across multiple states.
Let's modify our user SLS to include a sandbox for each user:

{% for user in ('larry', 'curly', 'moe') %}
{{ user }}:

Chapter 10

[229]

 user.present
/srv/sandbox/{{ user }}:
 directory.present
 - require:
 - user: {{ user }}
{% endfor %}

This block goes beyond just managing users. It creates a directory for each user, but
not until making sure that the user exists first.

There is no functional difference between using names and using a loop to add users;
unlike with packages, the useradd command will be called once per user. However,
without using a template, there is no way to create the kind of dependency between
the two States that we have used before.

Decisions, decisions
There are times when we need our SLS files to make decisions based on certain
aspects of the Minion. In the programming terminology, this is often called branching.

Let's go back to our code base example. At the moment, we are just killing the
firewall in order to open up the web port or ports that we need. However, this is
sloppy at best. It is far better to maintain a firewall with all the ports closed, except
for the ones that are needed.

We'll assume for now that we're working with Red Hat-based Minions, which store
their firewall configuration in the /etc/sysconfig/iptables file. Rather than
shutting down the firewall, we'll take a look at the role of the Minion, as declared in
a Grain, and lay down the appropriate file:

cat /etc/salt/grains

role: webserver

cat /srv/salt/firewall/init.sls

firewall-configuration:
 file.managed:
{% if grains['role'] == 'webserver' %}
 - source: salt://firewall/webserver-iptables
{% else %}
 - source: salt://firewall/webserver-default
{% endif %}
 - name: /etc/sysconfig/iptables

Exploring Best Practices

[230]

Looking at this example, you may be considering that an if/endif block is perhaps
unnecessary; after all, since the value of the role Grain is also used in the filename,
we could perhaps just refer to the variable name there instead:

cat /srv/salt/firewall/init.sls

firewall-configuration:
 file.managed:
 - source: salt://firewall/{{ grains['role'] }}-iptables
 - name: /etc/sysconfig/iptables

However, this is not a future-proof solution. What happens if a Minion does not have
an associated firewall file on the server? Also, what if the role Grain has not been
defined yet for this Minion? Either will cause errors to appear in the State runs on
these Minions.

Rather than ignoring all but those who are explicitly set up, it is better to define what
we can and set defaults for everybody else:

cat /srv/salt/firewall/init.sls

firewall-configuration:
 file.managed:
{% if grains.get('role') == 'webserver' %}
 - source: salt://firewall/webserver-iptables
{% else %}
 - source: salt://firewall/default-iptables
{% endif %}
 - name: /etc/sysconfig/iptables

We can take this one step further and ensure that this State is only executed on
Minions that are actually running Linux and therefore have iptables available:

cat /srv/salt/firewall/init.sls

{% if grains['oscodename'] == 'Linux' %}
firewall-configuration:
 file.managed:
{% if grains.get('role') == 'webserver' %}
 - source: salt://firewall/webserver-iptables
{% else %}
 - source: salt://firewall/default-iptables
{% endif %}
 - name: /etc/sysconfig/iptables
{% endif %}

Chapter 10

[231]

Using the built-in States
In the previous example, we manually laid down files for the iptables
configuration. In order to see what's going on, we'll actually have to view the files
directly. This also makes the files somewhat rigid.

There are a number of configuration file formats that are natively supported in Salt.
When this is the case, it is often easier to manage components of those files directly in
states, rather than create large, monolithic files with less visibility.

iptables is a great example too because like packages, the iptables state supports
aggregation. This means that a number of components throughout the SLS tree
can define their own iptables rules, and when a high state is run, they will all be
aggregated together into a single iptables configuration file.

Let's switch our firewall SLS from laying down monolithic configuration files
to generating the framework of a stateful set of firewall rules, as shown in the
following code:

cat /srv/salt/firewall/init.sls

INPUT:
 iptables.chain_present:
 - table: filter
 - family: ipv4
input_policy:
 iptables.set_policy:
 - chain: INPUT
 - policy: DROP
 - require:
 - iptables: INPUT
icmp_accept:
 iptables.insert:
 - table: filter
 - chain: INPUT
 - jump: ACCEPT
 - proto: icmp
 - position: 1
 - require:
 - iptables: INPUT
lo_accept:
 iptables.insert:
 - table: filter
 - chain: INPUT
 - jump: ACCEPT
 - if: lo

Exploring Best Practices

[232]

 - position: 2
 - require:
 - iptables: icmp_accept
state_tracking:
 iptables.insert:
 - table: filter
 - chain: INPUT
 - jump: ACCEPT
 - match: conntrack
 - ctstate RELATED,ESTABLISHED
 - position: 3
 - require:
 - iptables: lo_accept
default_rule:
 iptables.append:
 - table: filter
 - chain: INPUT
 - jump: REJECT
 - reject-with: icmp-proto-unreachable
 - require:
 - iptables: state_tracking

This is too much to handle, so let's break it down.

As iptables is based on chains, we start off by making sure that the chain that we
need is present. The INPUT chain in the filter table is normally built-in, but it doesn't
hurt to be explicit. The default policy for this chain is ACCEPT, and for our purposes,
we will change it to DROP, meaning that if a network packet does not match any of
the rules, it will simply be ignored.

Then, we will set up a series of rules that make iptables behave in a stateful
manner, which, in this case, is not a Salt term; it refers to iptables' ability to track the
connection state. The rules that we have set up allow all traffic that originates from the
Minion's local network interface and all traffic that uses the ICMP network protocol.

The next rule checks the network packet to see whether it belongs to a connection
that has already been established, or is related to a connection that has already
been established. In either case, it is assumed that the connection has already been
validated and no further checking is required.

The last rule tells iptables to reject any network traffic that has not matched any
rules in the chain. With this current definition, no outside traffic will be allowed to
this Minion.

Chapter 10

[233]

The first three rules need to exist in a specific order, so their position has been
explicitly declared using the iptables.insert state. The last rule needs to appear
at the end of the chain. Since iptables.append does just this, it's perfect here.

However, we still need to open up the firewall ports for the web server. We'll go
ahead and add these rules to the code base SLS because other components in the
State tree, which use the web server, may require different ports:

cat /srv/salt/codebase/init.sls

include
 - firewall
 - httpd
extend:
 httpd:
 file:
 - source: salt://codebase/httpd.conf
installed_codebase:
 file.recurse:
 - source: salt://codebase/files
 - name: /opt/codebase
codebase-web-config:
 file.managed:
 - source: salt://codebase/codebase-apache-vhost.conf
 - name: /etc/httpd/conf.d/codebase.conf
port-80-firewall:
 iptables.insert:
 - table: filter
 - chain: INPUT
 - jump: ACCEPT
 - match: state
 - connstate: NEW
 - dport: 80
 - proto: tcp
 - save: True
 - position: -1
 - require:
 - iptables: default_rule

As before, the codebase SLS requires the firewall state. However, it now explicitly
requires the last rule (the one that rejects unidentified traffic) to be run before it
applies its own rule. This is because of the position that has been specified.

Exploring Best Practices

[234]

Salt's iptables.insert state allows a negative position to be declared. This is not
a feature that has been built-in iptables itself; it's a convenience feature that Salt
added for this exact use case. When a negative number is declared, Salt will start at
the end of the chain and start counting backwards. The last rule is position 0 (which
should be declared with iptables.append, not iptables.insert). The rule before
it is position -1, the rule before that is -2, and so on.

This allows a default rule to be set at the very end of a chain and other rules to be set
before it. The advantage is that users don't need to manually track all of their rules in
their SLS tree and then set the final rules to explicitly happen last.

There is one more trick that the iptables State module has up its sleeve. Recent
versions of iptables are able to check to see whether a rule already exists in a chain,
and if so, do not try to add it again. This allows States to declare iptables rules,
which are both stateful to iptables and Stateful in terms of Salt.

Naming conventions
An important aspect of the SLS organization is a sensible naming structure. As
we have seen, when components are named generically, it is less likely that they
will need to be renamed at a later point. However, when a component is named
explicitly, it is more likely that a user who is unfamiliar with the SLS tree will
understand what it is trying to accomplish.

A good naming convention strives to strike a balance between the oil and water of
generic versus explicit. To borrow from the food and chemistry worlds, a good naming
convention is the emulsifier that binds everything in a recipe or formula together.

Generic names
Before starting out with an SLS tree, let's try to plan out as many of the primal
components as possible. As an example, a modern infrastructure may reasonably
include the following components:

•	 A load balancer
•	 A database server
•	 A web server
•	 A firewall
•	 An application code base
•	 An e-mail server

Chapter 10

[235]

We will start with names that reflect these primal components before moving on to
subprimal components. The code for the same is as follows:

/srv/salt/
├── codebase
│ └── init.sls
├── database
│ └── init.sls
├── email
│ └── init.sls
├── firewall
│ └── init.sls
├── load_balancer
│ └── init.sls
└── webserver
 └── init.sls

Some of these primal components may be broken down into smaller components.
For instance, an organization may include both a web application server and a static
content web server, as shown in the following code:

/srv/salt/
├── app_webserver
│ └── init.sls
├── static_webserver
│ └── init.sls
└── webserver
 └── init.sls

Each of the app_webserver and static_webserver SLS files will include the web
server SLS and make their own additions and modifications to it. You can also make
use of premade formulas on the saltstack-formulas repository on GitHub, as
shown in the following URL:

https://github.com/saltstack-formulas/

If this is the case, then you probably have the web server SLS, which includes one or
more of these as well:

/tmp/salt/
├── apache-formula
│ └── init.sls
├── app_webserver
│ └── init.sls
├── static_webserver
│ └── init.sls
└── webserver
 └── init.sls

https://github.com/saltstack-formulas/

Exploring Best Practices

[236]

Explicit names
With generically named directories, it is important that the files in these directories
are as explicit as possible, but not to the point of being unusable. The following
filename is probably okay:

apache-acorn-vhost.conf

However, this filename is just too much:

apache-project_acorn_codebase-virtualhosts-non_ssl.conf

When naming files like this, try to be reasonably lazy. If a file is in a directory
that implies its purpose, then perhaps this directory name doesn't need to appear
again in the file, unless doing so would add needed clarity. However, if making
a filename slightly more explicit avoids confusion down the road, then it's worth
being explicit now.

Templates and variables
When we're talking about the balance between generic and explicit, we'd better talk
about variable names. A good variable name will also strike this balance and become
an emulsifier between the Minion and the State tree.

Nested variables
Salt allows hierarchical data structures to be used in order to define variables. In a
way, this allows variables to behave like directories, in which these structures may
be either shallow or deep.

However, unlike directory structures, searching through deep variable structures
is not necessarily as painful. When you use flat files to define a structure, it may
actually be easier to read a structure that is deeply nested. Let's turn the ingredients
for a chocolate chip cookie recipe into a set of Salt Grains, as follows:

cookies:
 fats:
 - butter
 sugars:
 - granulated sugar
 - light brown sugar
 wet_ingredients:
 - eggs
 - vanilla extract
 dry_ingredients:
 - flour

Chapter 10

[237]

 - baking soda
 - baking powder
 - salt
 garnish:
 - chocolate chips

Now, imagine these variables as a shallow data structure:

cookies_fats:
 - butter
cookies_sugars:
 - granulated sugar
 - light brown sugar
cookies_wet_ingredients:
 - eggs
 - vanilla extract
cookies_dry_ingredients:
 - flour
 - baking soda
 - baking powder
 - salt (non-iodized)
cookies_garnish:
 - chocolate chips

A data structure that contains even more components can quickly get out of hand
and become cumbersome to declare inside multiple SLS files.

Referring to variables in templates
There are a number of ways to refer to variables in templates, in part because there
are multiple ways to store variables in the first place. In a default installation of Salt,
a Minion may pull variables from:

•	 The Minion configuration
•	 Grains
•	 Pillars
•	 The Master configuration

Old-school Salt users could have stored all of their variables in Grains. Early
adopters of Salt could have started stored variables in Grains before migrating to
Pillars. Also, there are a number of use cases where it is more appropriate to store
a variable in either the Master or Minion configuration.

If you want to ensure that you are looking explicitly for a Grain, it's easy enough to
look in the Grains dictionary in a template:

{{ grains['foo'] }}

Exploring Best Practices

[238]

Using grains.item, you could also make a cross call to the Grains execution module
in a template:

{{ salt['grains.item']('foo') }}

However, it's more reliable to use grains.get, which has the added advantage of
allowing you to supply a default when necessary:

{{ salt['grains.get']('foo', 'bar') }}

The Pillar data may also be called the same way:

{{ salt['pillar.get']('foo', 'bar') }}

The most versatile call to use here is config.get, which will look through each area
where a variable may possibly be stored in this order:

•	 The Minion configuration
•	 Grains
•	 Pillars
•	 The Master configuration

The call, of course, looks like this:

{{ salt['config.get']('foo', 'bar') }}

It's important to note that grains.get, pillar.get, and config.get are the only
calls that allow retrieval of a specific item in a nested dictionary. To get a list of the
wet ingredients from our preceding cookie recipe, we will call:

{{ salt['config.get']('cookies:wet_ingredients', []) }}

The colon (:) is what delimits the layers of the nested dictionary.

Summary
There are two recurring themes that you will find when you explore the best
practices of any project: making future-proof decisions and giving things names that
are as descriptive as they need to be (no more, no less). When these practices are
followed, the results will be easy to read and easy to maintain.

Following best practices is important in creating an environment that is easy to
maintain. In the next chapter, we'll finish up by looking at various techniques to
troubleshoot our Salt infrastructure.

[239]

Troubleshooting Problems
It doesn't matter what software you use, or how useful it is to you, sooner or later
there will be problems. Some of these arise from a simple misunderstanding of the
software, but sooner or later, there will be a problem with the software itself. In this
chapter, we'll talk about some of the tools that are available to users, and discuss
the following:

•	 Properly identifying problems
•	 Using Salt in debug/trace mode
•	 Using salt-call locally
•	 Dealing with YAML idiosyncrasies
•	 Using Salt's mailing list and issue tracker

What the…?
Things go wrong. And you don't always notice when they do, at least not at first.
And when you do, your first response is likely to sound like, "hey, that's weird!"

Before you can really start troubleshooting a problem, it always helps to build some
context around it, so that you know where to look for the solution. It has been said
that Real programmers cook popcorn on the heat of their CPU. They can tell which jobs are
running based on the rate of the popping. You don't need to get so involved as that to
work around problems in Salt, but a little knowledge will go a long way.

Troubleshooting Problems

[240]

Addressing the problem source
A common mistake in any troubleshooting situation is to address the symptoms
when they occur, with little regard to what's actually causing the problem. For
example, if a roof is leaking during a rainstorm, the only step that some people will
take is to leave out containers under the leak to catch the water, and empty them
when they get full. When the sun comes out, far too many people won't bother to
venture up onto the roof, or call a roofing professional, to locate and fix the source
of the leak.

When troubleshooting, addressing symptoms is usually also appropriate, but unless
you're also trying to figure out what is generating the symptoms, they are likely to
keep appearing. Be wary of problems that seem to fix themselves; oftentimes, they
are only lying in wait to spring on you again.

Where is the trouble?
A lot of systems are somewhat easier to troubleshoot because their complexity does
not extend beyond a single computer. Any networked system immediately suffers
from the complexity of troubleshooting multiple machines.

In its original, default operation, Salt always consisted of at least two components:
the Master and a Minion. In the years since its introduction, this is no longer
always the case. A handful of Master-side operations can be performed in the
absence of Minions, and a number of Minion-side operations can be performed
without a Master. In fact, several organizations don't even employ a Master in their
infrastructure; all activities are performed locally by the Minions, orchestrated by
third-party elements.

When a problem occurs in Salt, the first step is often to determine the component in
which the root of that problem lies. Let's take a look at a few examples.

The Master to Minion communication
Let's say that a job is sent from the Master to a Minion, and the Minion doesn't
respond. There are at least two potential places that the problem could be occurring,
starting with the Master and the Minion.

The first thing that many users would do is to send a very simple job to the Minion
and see if it responds. The most simple of jobs is a test.ping, which when
functioning correctly, will return True.

Chapter 11

[241]

If sending a test.ping does indeed return True, then we know several pieces of
information already:

•	 The Master is running
•	 The Minion is running
•	 A network connection exists between the Master and the Minion
•	 The Master is able to communicate with the Minion
•	 The Minion is able to communicate with the Master

This implies that Salt itself, and all its basic components, are functioning properly.
In fact, it strongly implies that the Master itself is functioning normally, and that the
problem likely resides with the Minion.

The network and CPU congestion
Perhaps a test.ping only returns True intermittently. The fact that it does return
True in the first place strongly implies that:

•	 There is a valid connection between the Master and the Minion
•	 Any gateways, firewalls, and switches between the Master and the Minion

are appropriately configured

One or more of the network segments between the Master and the Minion may be
experiencing congestion. This is even more likely if one or more network segments
are across the Internet.

It is also possible that either the Master or the Minion, or both, are experiencing
a high amount of CPU load. Checking the uptime command on the Master will
show its load average across a time lapse of 1 minute, 5 minutes, and 15 minutes.
Checking status.loadavg on a Unix or a Linux Minion will show the same kind
of information.

Interpreting load average can be tricky, since it doesn't reflect the percentage of CPU
use. What's more, interpreting it on a multi-processor system can be deceiving to the
uninitiated, so let's take a quick moment to explain.

The system load average is the average number of processes that are either in a
runnable, or uninterruptable state. A runnable process is one that is either currently
using CPU cycles, or is waiting to do so. An uninterruptable process is one which is
waiting for some sort of I/O access to happen (usually disk).

On a single processor system, a load average of 1 means that the CPU on that system
is busy 100% of the time. Less than 1 means that the CPU has had some idle time,
and more than 1 means that one or more processes are waiting to use the CPU.

Troubleshooting Problems

[242]

On a multi-core or multi-processor system, increment that number for each core or
processor. For instance, on a 2-core system, a value of 2 means that both the CPUs
are busy 100% of the time. On a 4-core system, a value of 4 means that all 4 CPUs
are busy 100% of the time.

Because this load average is reported in 1, 5, and 15 minute increments, we have a
tiny amount of historical data which can be used to tell us whether or not the system
was likely to be busy when the messages were not properly seen by the Master, so
long as we check as quickly as possible.

Checking status.cpuload on a Windows Minion will show a CPU load as a
percentage. This is different from a load average, and should be interpreted
differently. The CPU load in Windows refers to the amount of time that the
processor(s) spends doing work, as opposed to the amount of time that it is idle.

For instance, on a single 2 GHz processor, a CPU load of 50% means that the
processor is performing one billion cycles of work per second. As with Unix and
Linux, adding in multiple cores and processors will affect this percentage, in part
because switching tasks between cores and processors will add to the percentage.

Checking the Minion load
If a Minion is only responding intermittently, it may be more reliable to log into the
Minion manually and troubleshoot. How you log in and check load depends on
whether you're troubleshooting a Unix, Linux, or a Windows Minion.

In Linux, we'll assume that you're logging in via SSH and issuing commands via a
command shell. The standard tool for checking Minion load is top, which shows
which processes are consuming the most resources. By default, it refreshes every 2
seconds, but it can be manually refreshed by hitting the space bar. However, auto-
refreshing can get in the way, and you may want a report that can be analyzed for
longer than 2 seconds, or you may want to save that report. Try this command:

top -b -n1

The -b in this command starts up top in batch mode, which will perform a certain
number of iterations before exiting. The -n1 will set that iteration count to 1,
meaning that a single report will be generated, and then top will exit.

Chapter 11

[243]

The report will look exactly like the standard output from top, except that all
processes will be displayed, since it doesn't have to worry about the screen
real estate.

top - 15:25:08 up 16 days, 15 min, 25 users, load average: 0.15,
0.40, 0.52
Tasks: 273 total, 1 running, 272 sleeping, 0 stopped, 0 zombie
%Cpu(s): 9.2 us, 7.6 sy, 24.1 ni, 58.6 id, 0.6 wa, 0.0 hi, 0.0
si, 0.0 st
GiB Mem : 15.367 total, 2.421 free, 6.789 used, 6.157 buff/
cache
GiB Swap: 8.000 total, 8.000 free, 0.000 used. 6.774 avail
Mem

 PID USER PR NI VIRT RES %CPU %MEM TIME+ S COMMAND
 368 larry 19 -1 339.3m 73.2m 6.7 0.5 145:04.32 S Xorg
 433 larry 20 0 1692.4m 488.3m 6.7 3.1 486:44.41 S chromium
 531 larry 9 -11 668.9m 15.0m 6.7 0.1 1609:12 S
pulseaudio
 563 larry 20 0 3157.3m 695.4m 6.7 4.4 193:55.73 S chromium
 4846 larry 20 0 1585.1m 296.7m 6.7 1.9 361:15.15 S chromium
11791 root 20 0 1011.9m 30.7m 6.7 0.2 166:36.88 S salt-
master
30205 larry 20 0 925.7m 130.9m 6.7 0.8 73:21.05 S chromium
 1 root 20 0 33.7m 4.8m 0.0 0.0 0:20.06 S systemd
 2 root 20 0 0.0m 0.0m 0.0 0.0 0:00.25 S kthreadd
 3 root 20 0 0.0m 0.0m 0.0 0.0 0:39.95 S
ksoftirqd/0
 5 root 0 -20 0.0m 0.0m 0.0 0.0 0:00.00 S
kworker/0:0H
 7 root 20 0 0.0m 0.0m 0.0 0.0 3:41.63 S rcu_
preempt
 8 root 20 0 0.0m 0.0m 0.0 0.0 0:00.10 S rcu_sched
 9 root 20 0 0.0m 0.0m 0.0 0.0 0:00.00 S rcu_bh
 10 root rt 0 0.0m 0.0m 0.0 0.0 0:00.72 S
migration/0
...etc...

Because top performs calculations across all processes, it is able to
generate percentages, as seen above. This information can be invaluable in
troubleshooting load.

Troubleshooting Problems

[244]

In Windows, there are similar tools for troubleshooting the CPU load, though they
are graphical, and therefore do not output text reports like top can in Linux. The
Task Manager can be reached by pressing the Ctrl-Alt-Del key sequence and clicking
Task Manager.

Unlike top in Unix and Linux, the Task Manager will not auto-refresh, so there's no
need to generate a report for longer viewing. The Task Manager will show the CPU
percentage, just like with status.cpuload. However, it will also show application
percentages, like top will.

Querying the Salt job data
Some jobs take longer to complete than others. Assuming that there are no issues
with network and CPU congestion, and that Salt itself is functioning properly, a
test.ping should return immediately, with at least one Minion.

Chapter 11

[245]

With hundreds or thousands of Minions, it may take a little longer to receive the
return from every Minion. Keep in mind that Salt is an asynchronous architecture,
and that when commands are published to Minions, the Minion will always return
when their job finishes, so long as the Minion is functioning properly. The salt
command does listen to the return bus for a few seconds (10 by default), but if any
commands take longer than the timeout, they won't show.

The Salt job system will cache the return data as soon as it receives it, and it is still
queryable later. To see this in action, run the following from the Master:

salt --async myminion test.sleep 60

Executed command with job ID: 20150704100203488893

salt-run jobs.active

20150704100203488893:

 Arguments:
 - 60
 Function:
 test.sleep
 Returned:
 Running:
 |_

 myminion:
 18788
 StartTime:
 2015, Jul 04 10:02:03.488893
 Target:
 myminion
 Target-type:
 glob
 User:
 sudo_larry

salt myminion saltutil.running

myminion:
 |_

 arg:
 - 60
 fun:
 test.sleep

Troubleshooting Problems

[246]

 jid:
 20150704100203488893
 pid:
 19094
 ret:
 tgt:
 myminion
 tgt_type:
 glob
 user:
 sudo_larry

salt myminion saltutil.find_job 20150704100203488893

myminion:

 arg:
 - 60
 fun:
 test.sleep
 jid:
 20150704100203488893
 pid:
 19014
 ret:
 tgt:
 myminion
 tgt_type:
 glob
 user:
 sudo_larry

Once the job has finished running, you can look at the return data with:

salt-un jobs.lookup_jid 20150704100203488893

myminion:
 True

Using debug and trace modes
Every Salt command has the ability to change the amount of information displayed
to the user by changing the log level. The following log levels, and an explanation of
each, are the most commonly used in Salt:

Chapter 11

[247]

info
This is the default log level in every Salt command. It shows information that is
considered helpful to any user, but not part of the return output of the actual
Salt command.

warn
This is the level used when something has gone wrong, but not so horribly wrong
that it causes Salt to die. Often, this level is used to inform users when they are using
Salt in a way that has been deprecated. When this happens, the message will give
you information on the updated usage.

error
In a case wherein something has gone wrong in which Salt is unable to recover from,
Salt will usually exit without completing the task it is working on, and give you any
information that it has.

debug/trace
These modes are normally reserved for administrators and developers to give
information that is only useful when writing code or troubleshooting problems. Both
modes are extremely verbose, but the trace level is the noisiest.

The debug mode may have some information that is useful to end-users, such as
status codes from HTTP calls, or the name of a shell command that was executed.

The trace mode should generally be avoided, unless you are writing code. It contains
information such as full HTTP responses, and the output from shell commands.

To change the log level for the information that is printed to the screen, use -l,
or --log-level:

salt -l debug myminion test.ping

[DEBUG] Reading configuration from /etc/salt/master
[DEBUG] Using cached minion ID from /etc/salt/minion_id: myminion
[DEBUG] Missing configuration file: /root/.saltrc
[DEBUG] Configuration file path: /etc/salt/master
[DEBUG] Reading configuration from /etc/salt/master
[DEBUG] Using cached minion ID from /etc/salt/minion_id: myminion
[DEBUG] Missing configuration file: /root/.saltrc
[DEBUG] MasterEvent PUB socket URI: ipc:///var/run/salt/master/
master_event_pub.ipc

Troubleshooting Problems

[248]

[DEBUG] MasterEvent PULL socket URI: ipc:///var/run/salt/master/
master_event_pull.ipc
[DEBUG] Initializing new AsyncZeroMQReqChannel for ('/etc/salt/pki/
master', 'dufresne_master', 'tcp://127.0.0.1:4506', 'clear')
[DEBUG] LazyLoaded local_cache.get_load
[DEBUG] get_iter_returns for jid 20150704104519952743 sent to
set(['myminion']) will timeout at 10:45:24.975093
[DEBUG] jid 20150704104519952743 return from myminion
[DEBUG] LazyLoaded nested.output
myminion:
 True
[DEBUG] jid 20150704104519952743 found all minions
set(['myminion'])

To change the log level for information that is sent to the log file, use
--log-file-level.

salt --log-file-level debug myminion test.ping

To change the path to the log file to be used, use --log-file:

salt --log-file /tmp/salt.log myminion test.ping

Running services in debug mode
When troubleshooting issues between Master and Minion, it is often helpful to run
both services in the foreground using the debug log level.

Log into the Master, and shut down the salt-master service:

service salt-master stop

Then, start it up in debug mode:

salt-master -l debug

A slew of information will fly past, but eventually you will see a series of lines
interpolated in the output that signify that the Master has its queues up and listening:

[INFO] Worker binding to socket ipc:///var/run/salt/master/
workers.ipc
[DEBUG] MasterEvent PUB socket URI: ipc:///var/run/salt/master/
master_event_pub.ipc
[DEBUG] MasterEvent PULL socket URI: ipc:///var/run/salt/master/
master_event_pull.ipc

Chapter 11

[249]

Once these messages appear, the Master is ready to start receiving data from its
Minions. Log into the problem Minion and shut down the salt-minion service:

service salt-minion stop

Then, start up the Minion in debug mode:

salt-minion -l debug

Again, a slew of information (though not much) will fly past, eventually ending with
the establishment of the Minion's socket files:

[DEBUG] MinionEvent PUB socket URI: ipc:///var/run/salt/minion/
minion_event_0348bb4768_pub.ipc
[DEBUG] MinionEvent PULL socket URI: ipc:///var/run/salt/minion/
minion_event_0348bb4768_pull.ipc

This signifies that the Minion is now connected to the Master, and is watching its
queues for messages for it.

Open up another shell on the Master, and issue a command to the Minion:

salt myminion test.ping

Switch over to the shell running the salt-master process in debug mode, and you
will see another information dump:

[DEBUG] Sending event - data = {'_stamp': '2015-07-
04T17:40:14.817522', 'minions': ['myminion']}
[DEBUG] Sending event - data = {'tgt_type': 'glob', 'jid':
'20150704114014817167', 'tgt': 'myminion', '_stamp': '2015-07-
04T17:40:14.817831', 'user': 'sudo_larry', 'arg': [], 'fun': 'test.
ping', 'minions': ['myminion']}
[DEBUG] Could not LazyLoad local.save_load
[INFO] User sudo_larry Published command test.ping with jid
20150704114014817167
[DEBUG] Published command details {'tgt_type': 'glob', 'jid':
'20150704114014817167', 'tgt': 'myminion', 'ret': 'local', 'user':
'sudo_larry', 'arg': [], 'fun': 'test.ping'}
[DEBUG] LazyLoaded local_cache.prep_jid
[INFO] Got return from myminion for job 20150704114014817167
[DEBUG] Sending event - data = {'fun_args': [], 'jid':
'20150704114014817167', 'return': True, 'retcode': 0, 'success': True,
'cmd': '_return', '_stamp': '2015-07-04T17:40:14.893997', 'fun':
'test.ping', 'id': 'myminion'}

Troubleshooting Problems

[250]

If you switch over to the window running the salt-minion process in debug mode,
you will also see some information about the job:

[INFO] User sudo_larry Executing command test.ping with jid
20150704114014817167
[DEBUG] Command details {'tgt_type': 'glob', 'jid':
'20150704114014817167', 'tgt': 'myminion', 'ret': 'local', 'user':
'sudo_larry', 'arg': [], 'fun': 'test.ping'}
[INFO] Starting a new job with PID 22092
[DEBUG] LazyLoaded test.ping
[INFO] Returning information for job: 20150704114014817167
[DEBUG] Initializing new AsyncZeroMQReqChannel for ('/etc/salt/pki/
minion', 'myminion', 'tcp://127.0.0.1:4506', 'aes')
[DEBUG] Initializing new SAuth for ('/etc/salt/pki/minion',
'myminion', 'tcp://127.0.0.1:4506')
[DEBUG] LazyLoaded local.returner
{'fun_args': [], 'jid': '20150704114014817167', 'return': True,
'retcode': 0, 'success': True, 'fun': 'test.ping', 'id': 'myminion'}

If a process on the Minion that is related to this job has issues, then helpful
information is likely to be shown here. To test this, go ahead and create an execution
module on the Minion with intentionally bad code:

cat /usr/lib/python2.7/site-packages/salt/modules/mytest.py

def badcode():
 die()

Stop the salt-minion process with a Ctrl-C, and start it up again:

salt-minion -l debug

Switch over to the Master shell and run a command that executes the bad code:

salt myminion mytest.badcode

In that shell window, you may see an error message about the bad code:

myminion:
 The minion function caused an exception: Traceback (most recent
call last):
 File "/usr/lib/python2.7/site-packages/salt/minion.py", line
1037, in _thread_return
 return_data = func(*args, **kwargs)
 File "/usr/lib/python2.7/site-packages/salt/modules/mytest.py",
line 2, in badcode
 die()
 NameError: global name 'die' is not defined

Chapter 11

[251]

If you switch over to the salt-minion process, you will see the traceback again:

[INFO] User sudo_larry Executing command mytest.badcode with jid
20150704115054076084
[DEBUG] Command details {'tgt_type': 'glob', 'jid':
'20150704115054076084', 'tgt': 'myminion', 'ret': 'local', 'user':
'sudo_larry', 'arg': [], 'fun': 'mytest.badcode'}
[INFO] Starting a new job with PID 22669
[DEBUG] LazyLoaded mytest.badcode
[WARNING] The minion function caused an exception
Traceback (most recent call last):
 File "/usr/lib/python2.7/site-packages/salt/minion.py", line 1037,
in _thread_return
 return_data = func(*args, **kwargs)
 File "/usr/lib/python2.7/site-packages/salt/modules/mytest.py", line
2, in badcode
 die()
NameError: global name 'die' is not defined
[DEBUG] SaltEvent PUB socket URI: ipc:///var/run/salt/minion/
minion_event_0348bb4768_pub.ipc
[DEBUG] SaltEvent PULL socket URI: ipc:///var/run/salt/minion/
minion_event_0348bb4768_pull.ipc
[DEBUG] Sending event - data = {'message': u'The minion function
caused an exception', 'args': ('The minion function caused an
exception',), '_stamp': '2015-07-04T17:50:54.114916'}
[DEBUG] Handling event "_salt_error\n\n\x83\xa7message\xda\x00'The
minion function caused an exception\xa4args\x91\xda\x00'The minion
function caused an exception\xa6_stamp\xba2015-07-04T17:50:54.114916"
[DEBUG] Forwarding salt error event tag=_salt_error
[DEBUG] Initializing new AsyncZeroMQReqChannel for ('/etc/salt/pki/
minion', 'myminion', 'tcp://127.0.0.1:4506', 'aes')
[DEBUG] Initializing new SAuth for ('/etc/salt/pki/minion',
'dufresne', 'tcp://127.0.0.1:4506')
[INFO] Returning information for job: 20150704115054076084
[DEBUG] Initializing new AsyncZeroMQReqChannel for ('/etc/salt/pki/
minion', 'myminion', 'tcp://127.0.0.1:4506', 'aes')
[DEBUG] Initializing new SAuth for ('/etc/salt/pki/minion',
'myminion', 'tcp://127.0.0.1:4506')
[DEBUG] LazyLoaded local.returner
{'fun_args': [], 'jid': '20150704115054076084', 'return': 'The minion
function caused an exception: Traceback (most recent call last):\n
File "/usr/lib/python2.7/site-packages/salt/minion.py", line 1037,
in _thread_return\n return_data = func(*args, **kwargs)\n File "/
usr/lib/python2.7/site-packages/salt/modules/mytest.py", line 2, in
badcode\n die()\nNameError: global name \'die\' is not defined\n',
'success': False, 'fun': 'mytest.badcode', 'id': 'myminion', 'out':
'nested'}

Troubleshooting Problems

[252]

Using salt-call locally
Very often, it is helpful to issue commands directly on the Minion without involving
the Master, or at least minimizing communication with the Master. The salt-call
command can be used with or without the local mode:

salt-call test.ping

salt-call --local test.ping

The difference between these two commands is that the first will still contact the
Master to ask for data such as Pillar data, files from the Master file server (if needed),
and so on. The second will tell the Minion to behave as if it has no Master, and look
for that information locally. If data has been set up in file_roots or pillar_roots
directly on the Minion, it will be used instead of contacting the Master.

salt-call mytest.badcode

[ERROR] An un-handled exception was caught by salt's global
exception handler:
NameError: global name 'die' is not defined
Traceback (most recent call last):
 File "/usr/bin/salt-call", line 11, in <module>
 salt_call()
 File "/usr/lib/python2.7/site-packages/salt/scripts.py", line 224,
in salt_call
 client.run()
 File "/usr/lib/python2.7/site-packages/salt/cli/call.py", line 50,
in run
 caller.run()
 File "/usr/lib/python2.7/site-packages/salt/cli/caller.py", line
133, in run
 ret = self.call()
 File "/usr/lib/python2.7/site-packages/salt/cli/caller.py", line
196, in call
 ret['return'] = func(*args, **kwargs)
 File "/usr/lib/python2.7/site-packages/salt/modules/mytest.py", line
2, in badcode
 die()

NameError: global name 'die' is not defined

If you issue a command using salt-call on the Minion while running the
salt-minion process in the foreground, you will notice that the foreground
window will not respond to your command.

This is because the salt-call command will fire up its own, single-use salt-minion
process, perform the requested task, and then exit. It will not interact with any other
salt-minion processes that are running.

Chapter 11

[253]

Working with YAML
YAML is a very easy language to work with. It is very easy for humans to read, and
in most cases, it is easy for computers to parse. However, there are little things inside
of YAML that can cause pain to even the most experienced users.

YAML basics
Before we get into troubleshooting YAML, let's go over the basic functionality that
you are likely to use in Salt.

YAML is based on a key/value model that is very common in a number of
programming languages. In Perl and Ruby it's called a hash, in Python it's called a
dictionary (or dict, for short), and in other languages it has other names. Because Salt
is written in Python, we'll henceforth refer to it as a dict.

dict
A dict is a set of keys, each of which has a value. This value may be a number of
things, including a string, a number, a list (or array), another dict, and so on. The
following is a very basic dict, in YAML format:

larry: cheesecake
shemp: chocolate cake
moe: apple pie

The order of the items in a dict is not normally important, and in most cases will be
ignored. Salt is different in that some of its code uses what's called an OrderedDict,
which maintains the order of the keys and their associated values. One of the places
where this is used is in the State compiler, which is designed to evaluate SLS data in
the order in which it appears.

list
A list is just that: a group of items in a specific order. The order will always be
preserved, at least during the phases which read in and parse the data. In YAML,
items in a list are preceded by a dash:

- apples
- oranges
- bananas

Troubleshooting Problems

[254]

In Salt, you will usually not find lists by themselves in YAML. They are usually
the value of a key in a dict. However, a list item may in turn contain a dict, or even
another list.

favorite_desserts:
 larry: cheesecake
 shemp: chocolate cake
 moe: apple pie
fruits:
 - apples
 - oranges
 - bananas
 - berries:
 - nightshade:
 - tomato
 - chile

There are a number of ways to organize these dicts and list in YAML. The most
common in Salt is to use whitespace, as with the preceding data structure. However,
YAML also supports using braces and brackets to organize data.

favorite_desserts: {larry: cheesecake, shemp: chocolate cake, moe:
apple pie}
fruits: [apples, oranges, bananas, berries: [nightshade: [tomato,
chile]]]

Items in YAML may also be quoted, which makes them easier for the compiler to
parse, and in many cases, easier for humans to read:

'favorite_desserts': {'larry': 'cheesecake', 'shemp': 'chocolate
cake', 'moe': 'apple pie'}
'fruits': ['apples', 'oranges', 'bananas', 'berries': ['nightshade':
['tomato', 'chile']]]

Either single quotes (') or double quotes (") may be used. It is often better to use
double quotes, for two reasons. First, it avoids having to escape apostrophes which
are likely to occur in sentences meant for humans. Second, if double quotes are used,
and the entire structure is set up as a properly-formed dict or list, the YAML can also
be read by a JSON intepreter:

{"favorite_desserts": {"shemp": "chocolate cake", "larry":
"cheesecake", "moe": "apple pie"}, "fruits": ["apples", "oranges",
"bananas", {"berries": [{"nightshade": ["tomato", "chile"]}]}]}

This is why all JSON is syntactically-correct YAML; YAML is actually a superset
of JSON.

Chapter 11

[255]

YAML idiosyncrasies
If you decide to store all your YAML data in proper JSON format, then it will always
be correctly parsed by the computer. However, it will be more difficult for humans to
read and modify. This is one reason why YAML is generally preferred for Salt States.

However, there are some nuances in YAML that can trip up even the most
experienced user, especially if they aren't paying enough attention.

Spacing
Without braces and brackets, YAML uses whitespace to determine where blocks of
text begin and end. If a dict contains another dict, then that second dict will contain
spaces at the beginning of each line. Technically, a single space is enough, but Salt
has standardized on two spaces. This is enough to determine where the lines start,
without going overboard.

mydict:
 item1: value1
 item2: value2

If you spend a lot of time writing code, you may have your own preference for
spacing. Some coders use three or four spaces, and some even use as much as eight.

When working with YAML that is meant for Salt, avoid the temptation to use
anything other than two spaces. First, longer pieces of YAML start to look weird with
too many spaces - spend enough time writing YAML and you'll see what I mean.
Second, the Salt community at large tends to follow Salt's 2-space model. Asking
others for help, or hiring experienced Salt users, will become that much more painful
if they have to re-adjust themselves to your style.

Technically, list items belonging to a dict do not generally need to be spaced out:

mylist:
 - one
 - two
 - three

But it is still a better practice to space them anyway. Not only is it easier for humans
to read, but in some situations, it is actually easier for Salt to read as well.

Numbers
YAML is usually able to distinguish between text and numbers. However, there are
some situations where it needs to be forced to do the right thing.

Troubleshooting Problems

[256]

A very common example is file modes in Unix and Linux. For example, a directory
might have a mode of 775, meaning the user and the group which own it have
full (read, write, execute) permissions, while other users have only read and
execute permissions.

This number is in fact a bit-mapped set of digits, stored in octal (base-8). It can also
contain more fields than just the User, Group, and Other fields that were shown
previously. For instance, another bit can be added to the beginning, which specifies
special attributes (SUID, SGID, and Sticky). A mode of 0775 may look identical to
775, but it will enforce that the special bits are not set.

When digits appear in YAML, it is assumed that they are base-10, and that
any leading zeroes are to be stripped. If you need to explicitly set a directory's
permissions to 0775, this will be a problem. In order for Salt to see the correct value,
it must be converted to a string by placing it in quotes ('0775'). The following SLS
data shows an example of this:

/srv/mydata/:
 file.directory:
 - mode: '0775'

Booleans
Boolean values refer to things that are True or False (or None, in Python). These data
are very commonly used throughout Salt, including YAML files. If you are used to
quoting all your values in your YAML, this is likely to trip you up. The following
two keys do not have the same value:

key1: True
key2: 'True'

YAML will convert the second line to a string, which will not evaluate to a boolean
data type like the first one will.

JSON adds an extra element of confusion because it does not support booleans, and
is more strict when it finds unquoted data. The following line is a valid JSON:

{"key": "True"}

While this is not:

{"key": True}

Salt will generally try to do the most appropriate thing based on the information that
it receives. For instance, the State compiler will attempt to properly read booleans as
booleans, even if they are quoted in a way that is inconsistent with what it is expected.

Chapter 11

[257]

List items
A very common mistake in YAML involves spacing with list items. Because each list
item resembles a bullet point, and because word processors don't require spaces after
bullet points, many users often forget to add the required space after a dash for a list
item. The following list is valid YAML:

- one
- two
- three

While this list will not read properly:

-one
-two
-three

Troubleshooting YAML
Writing YAML may seem easy to the experienced user, but it is very easy to trip it
up. Very often, mistakes are easy to see when we are able to see what our YAML will
look like once it is parsed.

An excellent tool that is available is the Online YAML Parser:
http://yaml-online-parser.appspot.com/

This tool will take YAML input from the user, and translate it to either JSON,
Python's pretty print format, or to canonical YAML. If there are errors in the YAML,
an error will instantly be thrown which attempts to inform where the problem lies.

However, this is of no use if you are in an environment that is restricted in its
Internet access such that this site is unavailable. Fortunately, it is possible to perform
a similar test from the command line on a machine with Python installed (such as
any Master or Minion).

Create a file called /tmp/yaml.yml with the following content:

mylist:
 - one
 - two
 - three

Then, use the following one-line command to parse it:

python -c 'import yaml; fh = open("/tmp/yaml.yml", "r"); print(yaml.
safe_load(fh.read()))'

http://yaml-online-parser.appspot.com/

Troubleshooting Problems

[258]

Okay, so there's a fair amount of typing involved. Fortunately, if you are using a
command shell (like bash or zsh) which supports command history, you can just
use your Up arrow key to navigate to the command and issue it again.

Go ahead and modify /tmp/yaml.yml, and remove the leading spaces from one of
the list items:

mylist:
 - one
 - two
- three

Then, issue the python command again:

python2 -c 'import yaml; fh = open("/tmp/yaml.yml", "r"); print(yaml.
safe_load(fh.read()))'

Traceback (most recent call last):
 File "<string>", line 1, in <module>
 File "/usr/lib/python2.7/site-packages/yaml/__init__.py", line 93,
in safe_load
 return load(stream, SafeLoader)
 File "/usr/lib/python2.7/site-packages/yaml/__init__.py", line 71,
in load
 return loader.get_single_data()
 File "/usr/lib/python2.7/site-packages/yaml/constructor.py", line
37, in get_single_data
 node = self.get_single_node()
 File "/usr/lib/python2.7/site-packages/yaml/composer.py", line 36,
in get_single_node
 document = self.compose_document()
 File "/usr/lib/python2.7/site-packages/yaml/composer.py", line 55,
in compose_document
 node = self.compose_node(None, None)
 File "/usr/lib/python2.7/site-packages/yaml/composer.py", line 84,
in compose_node
 node = self.compose_mapping_node(anchor)
 File "/usr/lib/python2.7/site-packages/yaml/composer.py", line 127,
in compose_mapping_node
 while not self.check_event(MappingEndEvent):
 File "/usr/lib/python2.7/site-packages/yaml/parser.py", line 98, in
check_event
 self.current_event = self.state()
 File "/usr/lib/python2.7/site-packages/yaml/parser.py", line 439, in
parse_block_mapping_key
 "expected <block end>, but found %r" % token.id, token.start_mark)
yaml.parser.ParserError: while parsing a block mapping
 in "<string>", line 1, column 1:

Chapter 11

[259]

 mylist:
 ^
expected <block end>, but found '-'
 in "<string>", line 4, column 1:
 - three
 ^

The last couple of lines give some information about where the YAML parser
thinks that the problem might be. It may not be the easiest message in the world to
interpret, but it will tell you if you have poorly-formatted YAML, and where to look
for the problem.

You may be interested to know that JSON content can be parsed using a
similar command:

python2 -c 'import json; fh = open("/tmp/json.json", "r"); print(json.
loads(fh.read()))'

Asking the community for help
Salt boasts of a very large community of very friendly and helpful users. When
you're unable to figure out a problem by yourself, you can try turning to the
community for help.

The salt-users mailing list
There is a very active mailing list for Salt users, hosted on Google Groups. A Google
account is not required to participate in the mailing list itself, but it is required to
participate in the web version.

The web version of the list can be found at
https://groups.google.com/forum/#!forum/salt-users.
If you do not have a Google account and you still wish to subscribe
to the list, visit:
https://groups.google.com/forum/#!forum/salt-
users/join

Fill out the required fields, and a confirmation e-mail will be sent to you. Click the
Join This Group link and you will be subscribed.

If you ever decide to unsubscribe, you can do so from
https://groups.google.com/forum/#!forum/
salt-users/unsubscribe.

https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users/join
https://groups.google.com/forum/#!forum/salt-users/join
https://groups.google.com/forum/#!forum/salt-users/unsubscribe
https://groups.google.com/forum/#!forum/salt-users/unsubscribe

Troubleshooting Problems

[260]

Asking questions
When you have a question about Salt usage, or you're attempting to troubleshoot
a problem, the mailing list is an excellent place to ask. When posting a message,
it is best to be as informative and helpful as possible with your question, without
going overboard.

It will be helpful to know which Salt version you are using, both on your Master
and on any affected Minions (if they differ). This can be obtained from Salt using
the --versions-report flag:

salt --versions-report

Salt Version:
 Salt: 2015.8.0

Dependency Versions:
 Jinja2: 2.7.3
 M2Crypto: 0.22
 Mako: Not Installed
 PyYAML: 3.11
 PyZMQ: 14.6.0
 Python: 2.7.10 (default, May 26 2015, 04:16:29)
 RAET: 0.6.3
 Tornado: 4.2
 ZMQ: 4.1.2
 ioflo: 1.2.1
 libnacl: 1.4.0
 msgpack-pure: Not Installed
 msgpack-python: 0.4.6
 pycrypto: 2.6.1

System Versions:
 dist:
 machine: x86_64
 release: 4.0.5-1-ARCH

If you are asking a question concerning Salt Cloud, be sure to get the --versions-
report from it instead, as it contains additional information that is specific to
Salt Cloud:

salt-cloud --versions-report

Salt Version:
 Salt: 2015.8.0

Chapter 11

[261]

Dependency Versions:
 Apache Libcloud: 0.17.1-dev
...etc…

Other users will frequently ask for this information if you don't provide it, so it's best
to post it with your initial question to save a little time.

When asking your question, try to explain the situation as clearly and simply
as possible. It is extremely common for other users to experience the same sorts
of issues, especially within the same release versions, and there's a good chance
that somebody has already seen your issue, and either has a solution, or is able to
collaborate to find a solution.

Do not be discouraged if you don't receive a response right away. Salt has a very
international user base, and the person who is willing to help you may not live
within your time zone. Weekends and holidays will also play a part in the amount
of time it takes to answer your message.

If you do not hear from anybody for a few days, it is not unreasonable to ask again.
Perhaps somebody saw your message and intended to respond, but got distracted. It's
also possible that the person who can help you didn't see the message the first time.

I have seen a number of messages over the years from users, followed an hour or
two later by an impatient, "Is anybody there?" e-mail. This will not expedite your
message at all, and in fact may keep somebody from answering who otherwise
would have. Be friendly and patient, and you will have much better luck.

The Salt issue tracker
When you encounter a problem that you believe to be an issue with Salt itself, the
issue tracker is the place to go to.

The Salt issue tracker can be found at
https://github.com/saltstack/salt/issues.

The occasional user does post questions in the issue tracker, and they will receive the
same sort of attention that other issues get, but the mailing list is usually the more
appropriate place.

https://github.com/saltstack/salt/issues

Troubleshooting Problems

[262]

When deciding whether a problem is an issue or not, ask yourself if it may be a
problem with your understanding of the usage of Salt, or if it is inconsistent with
how you have been led to believe that Salt should behave. A traceback is almost
always appropriate for the issue tracker. Some examples of tracebacks appear earlier
in this chapter, and here's one again for reference:

Traceback (most recent call last):
 File "/usr/bin/salt-call", line 11, in <module>
 salt_call()
 File "/usr/lib/python2.7/site-packages/salt/scripts.py", line 224,
in salt_call
 client.run()
 File "/usr/lib/python2.7/site-packages/salt/cli/call.py", line 50,
in run
 caller.run()
 File "/usr/lib/python2.7/site-packages/salt/cli/caller.py", line
133, in run
 ret = self.call()
 File "/usr/lib/python2.7/site-packages/salt/cli/caller.py", line
196, in call
 ret['return'] = func(*args, **kwargs)
 File "/usr/lib/python2.7/site-packages/salt/modules/mytest.py", line
2, in badcode
 die()
NameError: global name 'die' is not defined

Note that tracebacks do start with the word traceback, and show
a trail of the pieces of code that were accessed before finding the
line of code which actually raised the error.

Researching before posting
Before posting an issue, it is important to perform a little research first. Duplicate
issues are surprisingly uncommon on Salt's issue tracker, at least in comparison to
others, but they do happen. Use the search button in the issue tracker to see if your
particular issue has already been reported.

GitHub allows you to apply filters to your searches, and knowing how to use them
is also important. They will show up in the issue search box. The default filters
are is:open and is:issue, which means that only issues that are open, and not pull
requests, will be searched.

If searching with the defaults yields no suitable results, try changing is:open to
is:closed, or removing it altogether. There are thousands of closed issues in GitHub,
and your particular issue may already be resolved.

Chapter 11

[263]

If you are unable to find the issue, try putting together a list of steps which can be
used to reproduce the problem, as simply and quickly as possible. If you have access
to virtual machines that can be used to reproduce the issue with a stock version of
Salt, other users will also be much more likely to reproduce the problem.

Formatting your issues
When posting an issue to the issue tracker, it is very helpful to be able to format
certain data in a way that makes it easy to read. GitHub supports a markdown
language which makes it possible to format code appropriately.

You can find documentation on their markdown format at
https://help.github.com/articles/github-
flavored-markdown/.

By far, the most useful formatting trick involves the grave symbol (`), also known
as backticks. On modern US keyboards, this usually shares a key with the tilde (~),
located in the top-left corner of the keyboard.

Placing one or more words between backticks will cause them to be formatted as
code. If you have multiple lines that all need to be formatted as code, you can place
them between two lines, each of which contains three backticks together (```).

https://help.github.com/articles/github-flavored-markdown/
https://help.github.com/articles/github-flavored-markdown/

Troubleshooting Problems

[264]

GitHub contains a preview mode, which can be used to test your formatting before
submitting it to ensure that it looks the way you want it to.

Requesting features
It may be that what you need is not an actual issue, but in fact a piece of functionality
that is not yet supported in Salt. One of the most powerful aspects of Salt is the
willingness of the developers to consider new ideas for adding functionality.

Before requesting a new feature, please do take a moment to think about that feature in
a way that extends beyond your own reach. Are you looking for a feature that is only
useful to you, or is it something that you feel that others can also benefit from? If its
scope is very limited, is it possible to approach it from a more generic point of view?

Once you have established a feature in a way that is potentially usable to a large
audience, do not hesitate to file an issue requesting it. Be sure to state the use case
clearly, and the way in which you feel that it should be addressed. If you are unsure,
it is appropriate to state the use case and ask for ideas.

#salt on IRC
Another venue to check is the #salt channel in Internet Relay Chat (IRC). This
channel is hosted by a service called Freenode. If you already have an IRC client and
know how to configure it, connect it to the irc.freenode.net server, and join the
#salt chat room.

Chapter 11

[265]

If you are unfamiliar with IRC, or don't have a standalone client,
you can try out the chatroom using the web client at
http://webchat.freenode.net/?channels=salt.

The #salt chatroom has several hundred users at any given time, though fortunately
they are not all chatting at once. Many are users such as yourself, asking questions
about Salt usage or looking for help with specific issues. Others are Salt enthusiasts
who periodically check in to see if there is anything that they can help with.

It is useful to know about the netiquette that goes along with IRC rooms. A common
phrase is, "Don't ask to ask; just ask.". This means that if you have a question, don't
start by saying, "Can I ask a question?" The answer is yes. Just ask the question, and
you'll be fine.

When you do ask a question, don't be alarmed or impatient if it is not answered
immediately. Most users are not keeping a constant eye on the chat room, but many
do check in on a fairly regular basis.

Do not log into the chat room, ask a question, and then log out a minute or two later.
Generally, that is not enough time for your question to be appropriately answered. If
you have waited several minutes and seem to be ignored, it may be that nobody who
is able to help is online at the moment. Give it some time. If you are unable to find
the help you need, consider using the mailing list.

Final community thoughts
Remember that whichever avenue you decide to turn to, some SaltStack employees
may respond, but most of the people you talk to are members of the community,
just like you. They have full-time jobs at other companies, and any time they spend
helping is, essentially, volunteer time. When they help out, they do so out of the
kindness of their hearts and not out of any sort of obligation.

With that in mind, please be friendly and helpful as you speak with them. There are
some brilliant minds in the world who have discovered Salt, and who enjoy working
with others on this tool. As you foster relationships with them, do not be surprised
if some of those relationships grow into life-long friendships. And remember that if
you are unfriendly and demanding, you may miss out on those opportunities.

http://webchat.freenode.net/?channels=salt

Troubleshooting Problems

[266]

Summary
There are a number of tools available, both inside of Salt and from external sources,
which can be used when troubleshooting problems. Clearly identifying the
problems, tracking down their source, and asking for help when necessary are all
important when trying to work through difficulties inside of Salt.

Congratulations, you made it to the end! We're very thankful that you have decided
to use this book to help guide you in your journey to master SaltStack, and hope that
it was everything you needed and more.

[267]

Index
A
Advanced Message Queuing Protocol

(AMQP) 157
alerts

in state files 215
setting up 215

alerts, from beacons
about 215
bad logins, monitoring 217, 218
file changes, watching 215, 216

authentication
configuring 145
external authentication modules 146

autoscale Reactors 120
AzureFS 190

B
beacons

file changes, monitoring 213, 214
intervals 214
working with 213

built-in rosters
about 53
ansible 55
cache 54
cloud 55
scan 53

C
cache directory

about 28
external file server cache 31
external modules 33
Master job cache 28, 29

Master-side Minion cache 30
Minion-side proc/ directory 32

Certificate Authority (CA) 144
chatroom

URL 265
CherryPy 141, 142
cloud cache events

about 120-122
catching 124, 125
schedule, setting up 123

cloud events
about 81
salt/cloud/<vm_name>/created 82
salt/cloud/<vm_name>/creating 81
salt/cloud/<vm_name>/deploying 82
salt/cloud/<vm_name>/destroyed 83
salt/cloud/<vm_name>/destroying 83
salt/cloud/<vm_name>/querying 82
salt/cloud/<vm_name>/requesting 81
salt/cloud/<vm_name>/

waiting_for_ssh 82
cloud maps 117-120
Cloud modules 38
commands

executing, remotely 1
Master 2
Minions 2
module functions 6

community
asking, for help 259
Salt issue tracker 261, 262
salt-users mailing list 259
thoughts 265

compound target 5
configuration, Salt

/etc/salt/ directory 26

[268]

about 25
cache directory 28
configuration tree, following 26
Salt keys, managing 27
SLS directories, exploring 27, 28
with States 11

Curve25519 159

D
declarative configuration

versus imperative configuration 39, 40
deploy scripts

arguments, passing to scripts 115, 116
building 109
file maps, using 117
legacy deploy scripts 113
Salt Bootstrap script 109, 110
writing 113-115

directories
<module>.sls, versus init.sls 221
locations 220, 221
setting up 220
shallow, versus deep 222, 223
SLS files, organizing 10
subdivisions 223

dynamic modules 36
dynamic rosters 56

E
EC2 Autoscale Reactor

URL 87
elliptic curve-based cryptography (ECC) 159
event data

custom data, firing 75, 76
event listener, installing 73
event listener, using 73-75
watching 73

event listener
installing 73
URL 73
using 73-75

events
about 71
basics, reviewing 71, 72
data, structure 72
namespacing 77

namespacing, guidelines 78
salt/auth 79
salt/job/<job_id>/new 80
salt/job/<job_id>/ret/<minion_id> 80
salt/key 79
salt/minion/<minion_id>/start 79
salt/presence/change 81
salt/presence/present 80

execution modules
about 37, 38
calling 86

external data sources
about 179
external file systems 182
external job cache 179
external pillars 190

external file server cache 31
external file systems

about 182
GitFS 182, 183
HGFS 188
S3FS 188, 189
source control backends 186
SVNFS 186

external modules 33
external pillars

about 190
cmd_yaml/cmd_json 191
git 191
mysql 193
redis module 192

F
file functions 8
file.replace function 8
files

base configuration files 174, 175
managing, with templates 20
non-external files, synchronizing 176
synchronizing 173
synchronizing, event Reactor used 177, 178
synchronizing, rsync used 176

Filesystem Hierarchy Standard (FHS) 220
flat roster

about 51
host 51

[269]

passwd 52
port 51
priv 52
sudo 52
thin_dir 53
timeout 53
user 52

Flow-based programming (FBP)
about 159
black boxes 160
concurrent scheduling 161, 162
puzzle, pieces 159
shared storage 160, 161

G
GET

vs POST 130-132
GitFS

about 182, 183
base 184
insecure_auth 185
mountpoint 184
passphrase 185, 186
privkey 185, 186
pubkey 185, 186
root 184
user and password 185

glob target 2
Grain PCRE target 4
Grains

about 3, 17
used, for Minion-specific data 17, 18

group function 8

H
HGFS 188
high availability

built-in high availability
configuration 171, 172

files, synchronizing 173
old-school high availability 172
with multiple Masters 171

HTTP 156
http.query function

using 129, 130

http.query state
using 133, 134
using, with reactors 135-140

I
imperative configuration

versus declarative configuration 39, 40
infrastructure

future-proofing 219, 220
init.sls

versus <module>.sls 221
Internet Relay Chat (IRC)

#salt on 264
IP-based load balancing 173
issues

addressing 240
Master to Minion communication 240
Minion load, checking 242-244
network and CPU congestion 241, 242
Salt job data, querying 244-246

J
Jinja

about 21, 34
using 22

JSON 34

L
Linux Standard Base (LSB) 220
list target 3
load

testing, in infrastructure 195
Loader

about 36
Cloud modules 38
dynamic modules 36
execution modules 37, 38

log level
about 246
debug/trace 247, 248
error 247
info 247
services, running in debug mode 248-250
warn 247

LWP (lib-www-perl) format 130

[270]

M
Mako 34
Master API

about 193
config module 194
File roots 194
Pillar roots 194
Salt keys 194
Wheel Reactor, using 194

Master job cache
about 28, 29, 179
Returners, using on Minions 179-181
using 181

Master-side Minion cache 30
Mercurial (HG) 186
Minions

about 2
Grains, using with 17, 18
targeting 2

Minion-side proc/ directory 32
Minion Swarm

about 195, 196
internals 196, 197

module functions
file.replace 8
group function 8
other file functions 8
pkg.install 8
pkg.remove 8
sys.doc 9
test.echo 7
test.ping 7
test.sleep 7
test.version 7
user function 8
using 6

monitoring
baseline, establishing 200
basics 199

monitoring states
defining 209, 210
using 208, 209
with web calls 211, 212

N
naming conventions

about 234
explicit names 236
generic names 234, 235

nodegroup target 5

O
old-school high availability

about 172
IP-based load balancing 173
round robin DNS 172, 173

onchanges requisite 14
one-off commands

issuing 150
onfail requisite 14
Online YAML Parser

URL 257

P
Perl Compatible Regular Expression

(PCRE) 3
Pillars

about 4, 17
URL 191
variables, centralizing 19

pkg.install function 8
pkg.remove function 8
prereq requisite 15
Puppet 156, 169, 170
PyCrypto 158
PyYAML library 34

Q
queue

adding to 95
items, deleting 96
items, listing 95
items, processing 95, 96
listing 95
system 94
using, with Reactor 97
working 94

[271]

queue, using with Reactor
about 97
State runs, spreading out 97, 98
tasks, dividing among minions 98-100

R
RAET

about 155
and ZeroMQ, comparing 155, 156
architecture 165
configuring 163, 164
driving with 162
HTTP, starting with 156
need for 158, 159

RAET, architecture
basics 165
estates and yards 167
scheduler 166

raw SSH mode
about 67
SSH connections, caching 68, 69

Reactors
alerts, sending out 88-90
building 83
calling 93, 94
complex Reactors, writing 88
configuring 84, 85
Webhooks, using 91-93
writing 85

Reactors, writing
about 85
execution modules, calling 85, 86
runner modules, calling 87
wheel modules, calling 87

Reliable Asynchronous Event
Transport. See RAET

remote shells 49, 50
Renderer

about 33
render pipes 35
SLS files, rendering 34
templated files, serving 35

require requisite 12
requisites

about 12
inverting 16

onchanges 14
onfail 14
prereq 15
require 12
use 14
watch 13

Returners
deciding on 208
monitoring with 207

rosters
built-in rosters 53
dynamic rosters 56
flat roster 51
using 50

Round robin DNS 172, 173
runner modules

calling 87

S
S3FS

about 188, 189
multiple environments per bucket 189
one environment per bucket 189

Salt
about 1
configuration 25

Salt API
about 141
setting up 141

Salt API events
about 83
salt/netapi/<url_path> 83

Salt API, setting up
CherryPy 141, 142
first steps 147-150
one-off commands, issuing 150
Tornado 143
WSGI 143

Salt Bootstrap script
about 109, 110
Git, installing from 112
prebuilt packages, installing from 110, 111

salt-call locally
using 252

Salt Cloud configuration
about 103

[272]

blocks, extending 107, 108
global configurations 104
profile configuration 104-106
provider configuration 105

Saltfile
using 57

Salt HTTP library
about 127
GET, vs POST 130-132
http.query function, using 129, 130
http.query state, using 133, 134
http.query, using with Reactors 135-140
return data, decoding 132, 133
Salt-specific library 128

Salt issue tracker
about 261, 262
features, requesting 264
issues, formatting 263, 264
research, before posting 262, 263

Salt job data
querying 244-246

Salt keys
managing 27

Salts GitHub
URL 195

Salt SSH 56
SaltStack

URL 112
saltstack-formulas repository

URL 235
SaLt State. See SLS
salt-thin agent

about 60
thin package 60

salt-users mailing list
about 259
questions, asking 260, 261

Salt, versus Salt SSH
about 58
architecture 58
performance 59

SLS
about 9, 223
built-in states 231-233
directories, exploring 27, 28
extends, using 226, 227

includes and extends 223, 224
includes, using 224, 225

SLS files
about 9
decisions 229, 230
extending 16
loops, working with 227-229
organizing, in directory 10
rendering 34
simplifying, templates used 227
tree 9
tying together, with top.sls file 10

SSH 49, 156, 157
SSL certificates

creating 144, 145
State compiler

high state 41-44
imperative, versus declarative

configurations 39, 40
low state 41-46
plunging into 38
requisites 40, 41
statefulness, enforcing 46
State module 46

State module
changes 47
comment 47
name 46
result 47

States
include blocks, using 11
ordering, with requisites 12
SLS files, extending 16
used, for configuration management 11

subnet target 3
Subversion (SVN) 186
SVNFS

about 186
branches 187
root and mountpoint option 187
tags 187
trunk 187

syndication
about 169
configuring 171
micro-managing 170

sys.doc function 9

[273]

system vitals
about 200
disk.usage 204
status.all_status 205, 206
status.cpustats 201
status.custom 205, 206
status.diskusage 204
status.loadavg 201
status.meminfo 202
status.vmstats 203
status.w 204

T
target types

compound 5
glob 2
Grain 3
Grain PCRE 4
list 3
nodegroup 5
PCRE 3
Pillar 4
subnet 3

templated files
serving 35

templates
about 17, 236
files, managing dynamically 20

test.echo function 7
test.ping function 7
test.sleep function 7
test.version function 7
thin package

about 60, 61
deploying 62
executing 62
extra modules, including 61

thin package, executing
about 62
Salt, running 65, 66
Salt, running data 66
Salt SSH shim 63
Salt States, preparing for 63

top.sls file
using 10

Tornado 143

U
use requisite 14
user function 8

V
variables

about 236
centralizing, with Pillars 19
nested variables 236, 237
referring to, in templates 237, 238

W
watch requisite 13
web calls

monitoring with 211, 212
Webhooks

complex authentication 154
security considerations 152, 153
using 91-93
working with 151, 152

WEBrick 156
wheel modules

calling 87
Wheel Reactor

using 195
WSGI 143

Y
YAML

about 34, 253
basics 253
dict 253
list 253, 254
troubleshooting 257-259

YAML, idiosyncrasies
about 255
booleans 256
list Items 257
numbers 255
spacing 255

[274]

Z
ZeroMQ

and RAET, comparing 155, 156
and security 158
using 157, 158

Thank you for buying
Mastering SaltStack

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning SaltStack
ISBN: 978-1-78439-460-8 Paperback: 174 pages

Learn how to manage your infrastructure by utilizing
the power of SaltStack

1.	 Execute commands and enforce the state of
your entire infrastructure in seconds.

2.	 Make managing your servers as easy as
visualizing the end goal -- let SaltStack do
the heavy lifting through the state system.

3.	 Learn by doing in this step by step guide to
getting started with SaltStack.

Mastering Kali Linux for
Advanced Penetration Testing
ISBN: 978-1-78216-312-1 Paperback: 356 pages

A practical guide to testing your network's security
with Kali Linux, the preferred choice of penetration
testers and hackers

1.	 Conduct realistic and effective security tests
on your network.

2.	 Demonstrate how key data systems are
stealthily exploited, and learn how to identify
attacks against your own systems.

3.	 Use hands-on techniques to take advantage
of Kali Linux, the open source framework
of security tools.

Please check www.PacktPub.com for information on our titles

Kali Linux – Assuring Security by
Penetration Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1.	 Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2.	 Explore the insights and importance of testing
your corporate network systems before the
hackers strike.

3.	 Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

SQL Server 2014 Development
Essentials
ISBN: 978-1-78217-255-0 Paperback: 214 pages

Design, implement, and deliver a successful database
solution with Microsoft SQL Server 2014

1.	 Discover SQL Server 2014's new in-memory
OLTP engine and performance-related
improvements.

2.	 Explore the fundamentals of database planning
and the Server Transact-SQL language syntax.

3.	 Gain hands-on experience with the use of scalar
and table-valued functions, branching, and
more advanced data structures.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Reviewing a Few Essentials
	Executing commands remotely
	Master and Minions
	Targeting Minions
	Glob
	Perl Compatible Regular Expression (PCRE)
	List
	Subnet
	Grain
	Grain PCRE
	Pillar
	Compound
	Nodegroup

	Using module functions
	test.ping
	test.echo
	test.sleep
	test.version
	pkg.install
	pkg.remove
	file.replace
	Other file functions
	Various user and group functions
	sys.doc

	SLS file trees
	SLS files
	Tying things together with top files
	Organizing SLS directories

	Using States for configuration management
	Using include blocks
	Ordering with requisites
	require
	watch
	onchanges
	onfail
	use

	prereq
	Inverting requisites
	Extending SLS Files

	The basics of Grains, Pillars, and templates
	Using Grains for Minion-specific data
	Centralizing variables with Pillars
	Managing files dynamically with templates
	A quick Jinja primer

	Summary

	Chapter 2: Diving into Salt Internals
	Understanding the Salt configuration
	Following the configuration tree
	Looking inside /etc/salt/
	Managing Salt keys
	Exploring the SLS directories

	Examining the Salt cache
	The Master job cache
	The Master-side Minion cache
	The external file server cache
	The Minion-side proc/ directory
	External modules

	The Renderer
	Rendering SLS files
	Render pipes
	Serving templated files

	Understanding the Loader
	Dynamic modules
	Execution modules
	Cloud modules

	Plunging into the State compiler
	Imperative versus declarative
	Requisites
	High and low States
	High states
	Low States
	Enforcing statefulness
	name
	result
	changes
	comment

	Summary

	Chapter 3: Exploring Salt SSH
	Grappling with SSH
	Remote shells

	Using rosters
	The flat roster
	host
	port
	user
	passwd
	sudo
	priv
	timeout
	thin_dir

	Other built-in rosters
	scan
	cache
	cloud
	ansible

	Building dynamic rosters
	Using Salt SSH
	Using a Saltfile

	Salt versus Salt SSH
	Architecture
	Performance

	Understanding the salt-thin agent
	Building the thin package
	Including extra modules

	Deploying the thin package
	Executing the thin package
	The Salt SSH shim
	Preparing for Salt States
	Running Salt
	Salt's running data

	Using the raw SSH mode
	Caching SSH connections

	Summary

	Chapter 4: Managing Tasks Asynchronously
	Looking at the event system
	Reviewing the basics
	The structure of event data
	Watching event data
	Installing the event listener
	Using the event listener
	Firing custom data

	Namespacing events
	Namespacing guidelines

	Some common events
	salt/auth
	salt/key
	salt/minion/<minion_id>/start
	salt/job/<job_id>/new
	salt/job/<job_id>/ret/<minion_id>
	salt/presence/present
	salt/presence/change

	Common cloud events
	salt/cloud/<vm_name>/creating
	salt/cloud/<vm_name>/requesting
	salt/cloud/<vm_name>/querying
	salt/cloud/<vm_name>/waiting_for_ssh
	salt/cloud/<vm_name>/deploying
	salt/cloud/<vm_name>/created
	salt/cloud/<vm_name>/destroying
	salt/cloud/<vm_name>/destroyed

	Salt API events
	salt/netapi/<url_path>

	Building Reactors
	Configuring Reactors
	Writing Reactors
	Calling execution modules
	Calling runner modules
	Calling wheel modules

	Writing more complex Reactors
	Sending out alerts
	Using webhooks
	Reactors calling Reactors

	Using the queue system
	Learning how queues work
	Adding to the queue
	Listing queues
	Listing items in a queue
	Processing queue items
	Deleting items from a queue

	Using queues with the Reactor
	Spreading out State runs
	Dividing tasks among Minions

	Summary

	Chapter 5: Taking Salt Cloud to
the Next Level
	Examining the Salt Cloud configuration
	Global configurations
	Provider and profile configuration
	Providers
	Profiles

	Extending configuration blocks

	Building custom deploy scripts
	Understanding the Salt Bootstrap script
	Installing from prebuilt packages
	Installing from Git

	Looking back to the legacy deploy scripts
	Writing your own deploy scripts
	Passing arguments to scripts
	Using file maps

	Taking a look at cloud maps
	Working with autoscale Reactors
	The cloud cache
	Using cloud cache events
	Setting up a schedule
	Catching cloud cache events

	Summary

	Chapter 6: Using Salt with REST
	Looking at Salt's HTTP library
	Why a Salt-specific library?
	Using the http.query function
	GET versus POST
	Decoding return data

	Using the http.query state
	Using http.query with Reactors

	Understanding Salt API
	What is Salt API?
	Setting up Salt API
	CherryPy
	Tornado
	WSGI

	Creating SSL certificates
	Configuring authentication
	The external authentication modules

	Taking your first steps with Salt API
	Issuing one-off commands

	Working with webhooks
	Security considerations
	More complex authentication

	Summary

	Chapter 7: Understanding the
RAET Protocol
	Comparing RAET and ZeroMQ
	Starting with HTTP
	SSH, the old favorite
	Using ZeroMQ
	ZeroMQ and security

	The need for RAET

	Flow-based programming
	The pieces of the puzzle
	Black boxes
	Shared storage
	Concurrent scheduling

	Driving with RAET
	Configuring RAET
	The RAET architecture
	The basics
	The RAET scheduler
	Estates and yards

	Summary

	Chapter 8: Strategies for Scaling
	All about syndication
	Different folks, different strokes
	No need for micro-managing
	Configuring syndication

	High availability with multiple Masters
	Built-in high availability configuration
	Old-school high availability
	Round robin DNS
	IP-based load balancing

	Synchronizing files
	Base configuration files
	Synchronizing the non-external files
	Using rsync
	Using the event Reactor

	Incorporating external data sources
	The external job cache
	Using Returners on the Minions
	Using the Master job cache

	External file systems
	GitFS
	Other source control backends
	SVNFS
	HGFS
	S3FS
	AzureFS

	External Pillars
	cmd_yaml/cmd_json
	git
	redis
	mysql

	Using the Master API
	The Salt keys
	Configuration
	The file and Pillar roots
	Using the Wheel Reactor

	Testing load in the infrastructure
	Using the Minion Swarm
	Swarm internals

	Summary

	Chapter 9: Monitoring with Salt
	Monitoring basics
	Establishing a baseline
	Reading system vitals in Salt
	status.loadavg
	status.cpustats
	status.meminfo
	status.vmstats
	disk.usage, status.diskusage
	status.w
	status.all_status, status.custom

	Monitoring with Returners
	Deciding on a Returner

	Using monitoring states
	Defining a monitoring state
	Monitoring with web calls

	Working with beacons
	Monitoring file changes
	Beacon intervals

	Setting up alerts
	Alerting in state files
	Alerting from beacons
	Watching file changes
	Monitoring bad logins

	Summary

	Chapter 10: Exploring Best Practices
	Future-proofing your infrastructure
	Setting up your directories
	Standard directory locations
	<module>.sls versus init.sls
	Shallow versus deep
	Subdividing further

	The SLS efficiency
	Includes and extends
	Using includes
	Using extends

	Using templates to simplify SLS files
	Working with loops
	Decisions, decisions

	Using the built-in States

	Naming conventions
	Generic names
	Explicit names

	Templates and variables
	Nested variables
	Referring to variables in templates

	Summary

	Chapter 11: Troubleshooting Problems
	What the…?
	Addressing the problem source
	Where is the trouble?
	Master to Minion communication
	Network and CPU congestion
	Checking Minion load
	Querying Salt job data

	Using the debug and trace modes
	info
	warn
	error
	debug/trace
	Running services in debug mode

	Using salt-call locally
	Working with YAML
	YAML basics
	dict
	list

	YAML idiosyncrasies
	Spacing
	Numbers
	Booleans
	List Items

	Troubleshooting YAML

	Asking the community for help
	The salt-users mailing list
	Asking questions

	The Salt issue tracker
	Research before posting
	Formatting your issues
	Requesting features

	#salt on IRC
	Final community thoughts

	Summary

	Index

