
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Spring MVC 4

Gain expertise in designing real-world web
applications using the Spring MVC framework

Geoffroy Warin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Spring MVC 4

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1080915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-238-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Geoffroy Warin

Reviewers
Raymundo Armendariz

Abu S. Kamruzzaman

Jean-Pol Landrain

Wayne Lund

Commissioning Editor
Julian Ursell

Acquisition Editor
Nadeem Bagban

Content Development Editor
Pooja Nair

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Geoffroy Warin has been programming since he was 10. A firm believer in the
Software Craftsmanship movement and open source initiatives, he is a developer by
choice and conviction. He has been working on the conception of enterprise-level
web applications in Java and JavaScript throughout the course of his career.

At ease with both the backend and frontend, Geoffroy has a strong focus on Clean
Code and testability. He believes that developers should strive for readable code that
delivers constant value to their customers.

Pair programming and mentorship are his primary tools to promote a test-driven
development approach and create great software designs.

He also teaches courses on Java web stacks and is a Groovy and Spring enthusiast.

Lately, he has been part of the reviewing team for Learning Spring Boot and Spring
Boot Cookbook, both by Packt Publishing, which cover the latest major additions to
the Spring ecosystem.

Check out his blog at http://geowarin.github.io and his Twitter account at
https://twitter.com/geowarin for fresh Spring and JavaScript programming tips.

I'd like to thank Laure, my life partner, who approved my late nights
of writing, and my colleagues at Bi-SAM, who have been nothing but
supportive of my project.

www.allitebooks.com

http://geowarin.github.io
https://twitter.com/geowarin
http://www.allitebooks.org

About the Reviewers

Raymundo Armendariz is a software developer with over 10 years of experience
in building software for Java and .NET platforms, but he is currently devoted to
JavaScript.

He is the author of a book based on a JavaScirpt micro-famework.

He has been working for the automotive industry for the most part of his
professional life. He has worked for companies such as Autozone, Alldata,
TRW, and 1A Auto.

He is the author of Getting Started with Backbone Marionette, Packt Publishing,
which can be found at https://www.packtpub.com/web-development/getting-
started-backbone-marionette.

I would like to thank my friends for their help and support.

www.allitebooks.com

https://www.packtpub.com/web-development/getting-started-backbone-marionette
https://www.packtpub.com/web-development/getting-started-backbone-marionette
http://www.allitebooks.org

Abu Kamruzzaman is a web programmer and database analyst at The City
University of New York. For over 10 years, he has developed and maintained
web applications for class grading and registration that can be used by colleges
and universities. Since November 2014, he has been working as a PeopleSoft
development specialist for CUNY's central office. His current project is about
building Data Warehouse for CUNY using OBIEE with the Business Intelligence
team. Before joining the central office, he worked at various CUNY campuses
since 2001. He also teaches graduate and undergraduate IT courses, instructing the
very students who depend on his applications. Since 2001, he has been teaching
courses on J2EE, DBMS, data warehouse, object-oriented programming, web design,
and web programming. He is a faculty member of the Department of Computer
Information Systems at Baruch College's Zicklin School of Business. He has a passion
for education and a great interest in open source technologies, such as Hadoop,
Hive, Pig, NoSQL databases, Java, cloud computing, and mobile app development.
He received his master's degree from Brooklyn College/CUNY and his bachelor's
degree in computer science from Binghamton University/SUNY. His web address is
http://faculty.baruch.cuny.edu/akamruzzaman/.

I want to thank my sweet and beautiful wife, Nicole Woods,
Esq., for her constant patience, support, and encouragement in
everything I do. Thanks to my sweet parents for their blessings and
constant prayers. I would also like to thank the author and the Packt
Publishing team for giving me the opportunity to work on this book.

Jean-Pol Landrain holds a BSc degree in software engineering with an orientation
in network and real-time and distributed computing since 1998. He gradually
became a software architect with more than 17 years of experience in object-oriented
programming, in particular with C++, Java/JEE, various application servers,
operating systems (Windows and Linux), and related technologies.

He works for Agile Partner, an IT consulting company based in Luxembourg,
which is already dedicated to the promotion, education, and application of agile
development methodologies since 2006. Over the last 5 years, he has participated in
the selection and the validation of tools and technologies targeting the development
teams of the European Parliament.

www.allitebooks.com

http://faculty.baruch.cuny.edu/akamruzzaman/
http://www.allitebooks.org

He also collaborated with Packt Publishing to review HornetQ Messaging Developer's
Guide and with Manning Publishing to review Docker in Action, Git in Practice,
ActiveMq in Action, and Spring in Action, First Edition.

First, I would like to thank my wife, Marie Smets, and my 9-year-old
daughter, Phoebe, for their understanding regarding my passion for
technology and the time I dedicate to it. I would also like to thank
my friends and colleagues at Agile Partner because a life dedicated
to technology would be boring without the fun they bring to it.

Unfortunately, I lost my grandfather, André Landrain, and my
grandmother, Hélène Guffens, during the elaboration of this book.
My thoughts go out to them and to those of you who have lost loved
ones. A big thank you goes to the editorial team at Packt Publishing
for their patience with the work that was delayed because of these
personal events, particularly Nidhi Joshi, the project coordinator,
and Geoffroy Warin, the author of this book. They have done
fantastic work together and I have absolutely no doubt that you
will appreciate the quality of this book. You may well have the best
publication so far on Spring MVC in your hands.

Wayne Lund is a PaaS and field engineer for Pivotal. He has over 25 years of
experience in enterprise software development and distributed environments,
majorly specializing in Spring, Enterprise Java, Groovy, and Grails and extending
to systems built with Smalltalk and C++, always with an emphasis on custom
and emerging technologies. His objective is to continue enjoying the next great
generation of technology with PaaS along with the new generations of the Spring
portfolio. This includes an expertise in the Cloud Native applications built with
Spring Boot, Spring Cloud, and Spring XD so as to enable Fast Data, Big Data,
social, and mobile.

He is currently working for Pivotal with the intersection of Cloud, Data, and Agile.
He previously worked for a Fortune 500 health care company and a large global
consulting company for many years.

He has also worked on Learning Spring Application Development, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Setting Up a Spring Web Application in No Time 1

Getting started with Spring Tool Suite 2
Getting started with IntelliJ 8
Getting started with start.Spring.io 9

Getting started with the command line 9
Let's get started 11

The Gradle build 12
Let me see the code! 16

Spring Boot behind the curtains 18
The dispatcher and multipart configuration 19
The view resolver, static resources, and locale configuration 23

Error and encoding configuration 26
Embedded Servlet container (Tomcat) configuration 28

The HTTP port 30
The SSL configuration 30
Other configurations 31

Summary 32
Chapter 2: Mastering the MVC Architecture 33

The MVC architecture 34
MVC critics and best practices 35

Anemic Domain Model 35
Learning from the sources 36

Spring MVC 1-0-1 37
Using Thymeleaf 38

Our first page 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Spring MVC architecture 42
DispatcherServlet 42
Passing data to the view 43

Spring Expression Language 44
Getting data with a request parameter 45

Enough Hello Worlds, let's fetch tweets! 47
Registering your application 47
Setting up Spring Social Twitter 48
Accessing Twitter 49

Java 8 streams and lambdas 51
Material design with WebJars 52

Using layouts 55
Navigation 57

The check point 61
Summary 62

Chapter 3: Handling Forms and Complex URL Mapping 63
The profile page – a form 63
Validation 71

Customize validation messages 73
Custom annotation for validation 77

Internationalization 78
Changing the locale 79
Translating the application text 82
A list in a form 84

Client validation 88
The check point 90
Summary 91

Chapter 4: File Upload and Error Handling 93
Uploading a file 93

Writing an image to the response 98
Managing upload properties 99
Displaying the uploaded picture 102
Handling file upload errors 104

Translating the error messages 108
Placing the profile in a session 109
Custom error pages 112
URL mapping with matrix variables 114
Putting it together 119
The check point 127
Summary 128

Table of Contents

[iii]

Chapter 5: Crafting a RESTful Application 129
What is REST? 129
Richardson's maturity model 130

Level 0 – HTTP 130
Level 1 – Resources 130
Level 2 – HTTP verbs 131
Level 3 – Hypermedia controls 132

API versioning 133
Useful HTTP codes 134
Client is the king 136
Debugging a RESTful API 138

A JSON formatting extension 138
A RESTful client in your browser 138
httpie 138

Customizing the JSON output 139
A user management API 144
Status codes and exception handling 148

Status code with ResponseEntity 149
Status codes with exceptions 151

Documentation with Swagger 155
Generating XML 157
The check point 158
Summary 160

Chapter 6: Securing Your Application 161
Basic authentication 161

Authorized users 163
Authorized URLs 165
Thymeleaf security tags 167

The login form 169
Twitter authentication 174

Setting up social authentication 175
Explanation 178

Distributed sessions 180
SSL 183

Generating a self-signed certificate 183
The easy way 184
The dual way 184
Behind a secured server 186

The check point 186
Summary 187

Table of Contents

[iv]

Chapter 7: Leaving Nothing to Luck – Unit Tests
and Acceptance Tests 189

Why should I test my code? 189
How should I test my code? 190
Test-driven development 192
The unit tests 193

The right tools for the job 194
The acceptance tests 194
Our first unit test 195
Mocks and stubs 199

Mocking with Mockito 199
Stubbing our beans while testing 201
Should I use mocks or stubs? 204

Unit testing REST controllers 204
Testing the authentication 211
Writing acceptance tests 213

The Gradle configuration 213
Our first FluentLenium test 215
Page Objects with FluentLenium 221
Making our tests more Groovy 225
Unit tests with Spock 225
Integration tests with Geb 229
Page Objects with Geb 230

The check point 234
Summary 235

Chapter 8: Optimizing Your Requests 237
A production profile 237
Gzipping 238
Cache control 238
Application cache 240

Cache invalidation 246
Distributed cache 247

Async methods 248
ETags 254
WebSockets 258
The check point 261
Summary 262

Table of Contents

[v]

Chapter 9: Deploying Your Web Application to the Cloud 263
Choosing your host 263

Cloud Foundry 264
OpenShift 264
Heroku 265

Deploying your web application to Pivotal Web Services 265
Installing the Cloud Foundry CLI tools 265
Assembling the application 267
Activating Redis 272

Deploying your web application on Heroku 273
Installing the tools 273
Setting up the application 274

Gradle 275
Procfile 276

A Heroku profile 276
Running your application 277
Activating Redis 279

Improving your application 281
Summary 282

Chapter 10: Beyond Spring Web 283
The Spring ecosystem 283

Core 284
Execution 284
Data 284
Other noteworthy projects 285

The deployment 285
Docker 286

Single Page Applications 287
The players 287
The future 288
Going stateless 289

Summary 289
Index 291

[vii]

Preface
As a web developer, I like to create new things, put them online quickly, and move
on to my next idea.

In a world where all our applications are connected to each other, we need to interact
with social media to promote our products and complex systems, to provide great
value for our users.

Until recently, all this was a distant and complicated world for Java developers. With
the birth of Spring Boot and the democratization of cloud platforms, we can now
create amazing applications and make them available to everyone in record time,
without spending a penny.

In this book, we will build a useful web application from scratch. An application with
a lot of neat features, such as internationalization, form validation, distributed sessions
and caches, social login, multithreaded programming, and many more.

Also, we will test it completely.

By the end of this book, we will have published our little application and made it
available on the Web.

If this sounds like fun to you, let's not waste any more time and get our hands on the
code!

Preface

[viii]

What this book covers
Chapter 1, Setting Up a Spring Web Application in No Time, gets us started with Spring
Boot really quickly. It covers the tools that will make us more productive, such as
Spring Tool Suite and Git. It will also help us to scaffold our application in a snap
and see the magic behind Spring boot.

Chapter 2, Mastering the MVC Architecture, guides us through creating a small
Twitter search engine. It covers the basics of Spring MVC and the principles of web
architecture along the way.

Chapter 3, Handling Forms and Complex URL Mapping, helps you understand how you
can create a user profile form. It covers how to validate our data on the server, as
well as on the client, and make our application available in different languages.

Chapter 4, File Upload and Error Handling, guides you through adding file upload to
your profile form. It demonstrates handling errors properly in a Spring MVC and
displaying custom error pages.

Chapter 5, Crafting a RESTful Application, explains the principles of a RESTful
architecture. It also helps us to create a user management API accessible through
HTTP calls, see which tools can help us design this API, and talks about how we can
document it easily.

Chapter 6, Securing Your Application, guides us through securing our application. It
covers how we can secure our RESTful API with basic HTTP authentication and our
web pages behind a login page. It demonstrates how to enable login via Twitter and
store our session on a Redis server to allow our application to scale.

Chapter 7, Leaving Nothing to Luck – Unit Tests and Acceptance Tests, helps us test our
application. It discusses testing and TDD, and covers how to unit test our controllers
and use modern libraries to design end-to-end tests. It finishes with how Groovy can
improve our productivity and the readability of our tests.

Chapter 8, Optimizing Your Requests, takes us through optimizing our application.
It covers how to use cache-control and Gzipping. This chapter teaches you how to
cache our Twitter search results in-memory and on Redis, and shows you how to
multithread the search. As a bonus, implementing Etags and using WebSockets is
also covered.

Preface

[ix]

Chapter 9, Deploying Your Web Application to the Cloud, guides us through publishing
our application. It shows how the different PaaS solutions can be compared to each
other. Then, it demonstrates how to deploy the application on both Cloud Foundry
and Heroku.

Chapter 10, Beyond Spring Web, discusses the Spring ecosystem in general, what
modern web applications are made of, and where to go from there.

What you need for this book
Although we will build a cutting-edge web application, we do not require you to
install a lot of things.

The application that we will build requires Java 8.

You are not forced to, but you definitely should use Git to version control your project.
It will be needed if you want to deploy your application on Heroku. Moreover, you
will be able to back up your work easily and see the code evolve with the diffs and
history. A couple of resources to get started with Git are provided in the first chapter.

I also recommend that you use a good IDE. We will see how to get started quickly
with Spring Tool Suite (for free) and IntelliJ Idea (you can obtain a one month trial).

If you have a Mac, you should check Homebrew (http://brew.sh). With this
package manager, you can install any tool used in this book.

Who this book is for
This book is perfect for developers who are familiar with the fundamentals of
Spring programming and are eager to expand their web development skills. Prior
knowledge of the Spring framework is recommended.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

http://brew.sh

Preface

[x]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You will find the JAR in the directory build/libs."

A block of code is set as follows:

public class ProfileForm {
 private String twitterHandle;
 private String email;
 private LocalDate birthDate;
 private List<String> tastes = new ArrayList<>();

 // getters and setters
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class ProfileForm {
 private String twitterHandle;
 private String email;
 private LocalDate birthDate;
 private List<String> tastes = new ArrayList<>();

 // getters and setters
}

Any command-line input or output is written as follows:

$ curl https://start.spring.io

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Go to the new project menu and select the Spring Initializr project type ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

You can also download the example code for this book at https://github.com/
Mastering-Spring-MVC-4/mastering-spring-mvc4.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[xii]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Setting Up a Spring Web
Application in No Time

In this chapter, we will get straight to the code and set up a web application, which
we will be working on for the rest of this book.

We will leverage Spring Boot's autoconfiguration capabilities to build an application
with zero boilerplate or configuration files.

I will lay out the big picture regarding how Spring Boot works and how to configure
it. There are four ways to get started with Spring:

• Using Spring Tool Suite to generate the starter code
• Using IntelliJ IDEA 14.1, which now has good support for Spring Boot
• Using Spring's website, http://start.Spring.io, to download a

configurable zip file
• Using the curl command line to http://start.Spring.io and achieving

the same result

We will use Gradle and Java 8 throughout this book, but don't be scared. Even if you
are still working with Maven and a previous version of Java, I bet you will find these
technologies easy to work with.

Many official Spring tutorials have both a Gradle build and a Maven build, so
you will find examples easily if you decide to stick with Maven. Spring 4 is fully
compatible with Java 8, so it would be a shame not to take advantage of lambdas to
simplify our code base.

http://start.Spring.io
http://start.Spring.io

Setting Up a Spring Web Application in No Time

[2]

I will also show you some Git commands. I think it's a good idea to keep track of
your progress and commit when you are in a stable state. It will also make it easier
to compare your work with the source code provided with this book.

As we will deploy our application with Heroku in Chapter 9, Deploying Your Web
Application to the Cloud, I recommend that you start versioning your code with
Git from the very beginning. I will give you some advice on how to get started
with Git later in this chapter.

Getting started with Spring Tool Suite
One of the best ways to get started with Spring and discover the numerous tutorials
and starter projects that the Spring community offers is to download Spring Tool
Suite (STS). STS is a custom version of eclipse designed to work with various Spring
projects, as well as Groovy and Gradle. Even if, like me, you have another IDE
that you would rather work with, I strongly recommend that you give STS a shot
because it gives you the opportunity to explore Spring's vast ecosystem in a matter of
minutes with the "Getting Started" projects.

So, let's visit https://Spring.io/tools/sts/all and download the latest release
of STS. Before we generate our first Spring Boot project we will need to install the
Gradle support for STS. You can find a Manage IDE Extensions button on the
dashboard. You will then need to download the Gradle Support software in the
Language and framework tooling section.

I also recommend installing the Groovy Eclipse plugin along with the Groovy 2.4
compiler, as shown in the following screenshot. These will be needed later in this
book when we set up acceptance tests with geb:

https://Spring.io/tools/sts/all

Chapter 1

[3]

We now have two main options to get started.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
You can also download the example code for this book at https://
github.com/Mastering-Spring-MVC-4/mastering-spring-
mvc4.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4

Setting Up a Spring Web Application in No Time

[4]

The first option is to navigate to File | New | Spring Starter Project, as shown in the
following screenshot. This will give you the same options as http://start.Spring.
io, embedded in your IDE:

You also have access to all the tutorials available on http://spring.io, selecting
in File | New | Import Getting Started Content in the top bar. You will have the
choice of working with either Gradle or Maven, as shown in the following
screenshot:

You can also check out the starter code to follow along with the tutorial,
or get the complete code directly.

http://start.Spring.io
http://start.Spring.io
http://spring.io

Chapter 1

[5]

There is a lot of very interesting content available in the Getting Started Content
and I encourage you to explore it on your own. It will demonstrate the integration of
Spring with various technologies that you might be interested in.

For the moment, we will generate a web project as shown in the preceding image. It
will be a Gradle application, producing a JAR file and using Java 8.

Setting Up a Spring Web Application in No Time

[6]

Here is the configuration we want to use:

Property Value
Name masterSpringMvc
Type Gradle project
Packaging Jar
Java version 1.8
Language Java
Group masterSpringMvc
Artifact masterSpringMvc
Version 0.0.1-SNAPSHOT
Description Be creative!
Package masterSpringMvc

On the second screen you will be asked for the Spring Boot version you want to use
and the the dependencies that should be added to the project.

At the time of writing this, the latest version of Spring boot was 1.2.5. Ensure that
you always check out the latest release.

The latest snapshot version of Spring boot will also be available by the time you
read this. If Spring boot 1.3 isn't released by then, you can probably give it a shot.
One of its big features is the awesome devs tools. Refer to https://spring.io/
blog/2015/06/17/devtools-in-spring-boot-1-3 for more details.

At the bottom the configuration window you will see a number of checkboxes
representing the various boot starter libraries. These are dependencies that can be
appended to your build file. They provide autoconfigurations for various Spring
projects.

We are only interested in Spring MVC for the moment, so we will check only the
Web checkbox.

A JAR for a web application? Some of you might find it odd to package
your web application as a JAR file. While it is still possible to use
WAR files for packaging, it is not always the recommended practice.
By default, Spring boot will create a fat JAR, which will include all the
application's dependencies and provide a convenient way to start a web
server using Java -jar.
Our application will be packaged as a JAR file. If you want to create a war
file, refer to http://spring.io/guides/gs/convert-jar-to-war/.

https://spring.io/blog/2015/06/17/devtools-in-spring-boot-1-3
https://spring.io/blog/2015/06/17/devtools-in-spring-boot-1-3
http://spring.io/guides/gs/convert-jar-to-war/

Chapter 1

[7]

Have you clicked on Finish yet? If you have, you should get the following project
structure:

We can see our main class MasterSpringMvcApplication and its test suite
MasterSpringMvcApplicationTests. There are also two empty folders, static and
templates, where we will put our static web assets (images, styles, and so on) and
obviously our templates (jsp, freemarker, Thymeleaf). The last file is an empty
application.properties file, which is the default Spring boot configuration file. It's a
very handy file and we'll see how Spring boot uses it throughout this chapter.

The build.gradle file, the build file that we will detail in a moment.

If you feel ready to go, run the main method of the application. This will launch a
web server for us.

To do this, go to the main method of the application and navigate to Run as | Spring
Application in the toolbar either by right-clicking on the class or clicking on the
green play button in the toolbar.

Doing so and navigating to http://localhost:8080 will produce an error. Don't
worry, and read on.

I will show you how to generate the same project without STS, and we will come
back to all these files.

Setting Up a Spring Web Application in No Time

[8]

Getting started with IntelliJ
IntelliJ IDEA is a very popular tool among Java developers. For the past few years
I've been very pleased to pay Jetbrains a yearly fee for this awesome editor.

IntelliJ also has a way of creating Spring boot projects very quickly.

Go to the new project menu and select the Spring Initializr project type:

This will give us exactly the same options as STS, so refer to the previous chapter for
the detailed configuration.

You will need to import the Gradle project into IntelliJ. I recommend
generating the Gradle wrapper first (refer to the following Gradle build
section).
If needed, you can reimport the project by opening its build.gradle
file again.

Chapter 1

[9]

Getting started with start.Spring.io
Go to http://start.Spring.io to get started with start.Spring.io. The system
behind this remarkable Bootstrap-like website should be familiar to you! You will see
the following screenshot when you go to the previously mentioned link:

Indeed, the same options available with STS can be found here. Clicking on Generate
Project will download a ZIP file containing our starter project.

Getting started with the command line
For those of you who are addicted to the console, it is possible to curl http://
start.Spring.io. Doing so will display instructions on how to structure your curl
request.

www.allitebooks.com

http://start.Spring.io
http://start.Spring.io
http://start.Spring.io
http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

[10]

For instance, to generate the same project as earlier, you can issue the following
command:

$ curl http://start.Spring.io/starter.tgz \

-d name=masterSpringMvc \

-d dependencies=web \

-d language=java \

-d JavaVersion=1.8 \

-d type=gradle-project \

-d packageName=masterSpringMvc \

-d packaging=jar \

-d baseDir=app | tar -xzvf -

% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left Speed

100 1255 100 1119 100 136 1014 123 0:00:01 0:00:01 --:--:-
- 1015

x app/

x app/src/

x app/src/main/

x app/src/main/Java/

x app/src/main/Java/com/

x app/src/main/Java/com/geowarin/

x app/src/main/resources/

x app/src/main/resources/static/

x app/src/main/resources/templates/

x app/src/test/

x app/src/test/Java/

x app/src/test/Java/com/

x app/src/test/Java/com/geowarin/

x app/build.Gradle

x app/src/main/Java/com/geowarin/AppApplication.Java

x app/src/main/resources/application.properties

x app/src/test/Java/com/geowarin/AppApplicationTests.Java

And viola! You are now ready to get started with Spring without leaving the console,
a dream come true.

Chapter 1

[11]

You might consider creating an alias with the previous command,
it will help you prototype the Spring application very quickly.

Let's get started
Now that our web application is ready, let's take a look at how it is written. Before
going further, we can save our work with Git.

If you don't know anything about Git, I recommend the two following tutorials:

• https://try.github.io, which is a good step-by-step interactive tutorial to
learn the basic Git commands

• http://pcottle.github.io/learnGitBranching, which is an excellent
interactive visualization of the Git tree-like structure that will show you
basic, as well as very advanced, Git capabilities

Installing Git
On windows, install Git bash, which can be found at https://
msysgit.github.io. On Mac, if you use homebrew you should
already have Git. Otherwise, use the command brew install git.
When in doubt, check out the documentation at https://git-scm.
com/book/en/v2/Getting-Started-Installing-Git.

To version our work with Git, type the following commands in a console:

$ cd app

$ git init

With IntelliJ, ignore the generated files: .idea and *.iml. With eclipse you should
commit the .classpath and .settings folder. In any case you should ignore the
.gradle folder and the build folder.

Create a .gitignore file containing the following text:

IntelliJ project files
.idea
*.iml

gradle
.gradle
build

https://try.github.io
http://pcottle.github.io/learnGitBranching
https://msysgit.github.io
https://msysgit.github.io
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Setting Up a Spring Web Application in No Time

[12]

Now, we can add all the other files to Git:

$ git add .

$ git commit -m "Generated with curl start.Spring.io"

[master (root-commit) eded363] Generated with curl start.Spring.io

4 files changed, 75 insertions(+)

create mode 100644 build.Gradle

create mode 100644 src/main/Java/com/geowarin/AppApplication.Java

create mode 100644 src/main/resources/application.properties

create mode 100644 src/test/Java/com/geowarin/AppApplicationTests.Java

The Gradle build
If you are unfamiliar with Gradle, think of it as Maven's successor, a modern build
tool. Like Maven, it uses conventions such as how to structure a Java application.
Our sources will still be found in src/main/java, our webapp in src/main/webapp,
and so on. Not unlike Maven, you can use Gradle plugins to deal with various build
tasks. However, Gradle really shines because it allows you to write your own build
tasks using the Groovy DSL. The default library makes it easy to manipulate files,
declare dependencies between tasks, and execute jobs incrementally.

Installing Gradle
If you're on OS X, you can install Gradle with brew by using brew
install gradle command. On any *NIX system (Mac included),
you can install it with gvm (http://gvmtool.net/). Alternatively,
you can grab the binary distribution at https://Gradle.org/
downloads.

The first good practice when creating an application with Gradle is to generate a
Gradle wrapper. The Gradle wrapper is a small script that you will share along with
your code to ensure that the build will use the same version of Gradle that you used
to build the application.

The command to generate the wrapper is Gradle wrapper:

$ gradle wrapper

:wrapper

BUILD SUCCESSFUL

Total time: 6.699 secs

http://gvmtool.net/
https://Gradle.org/downloads
https://Gradle.org/downloads

Chapter 1

[13]

If we look at the new files created, we can see two scripts and two directories:

$ git status -s

?? .gradle/

?? gradle/

?? gradlew

?? gradlew.bat

The .gradle directory contains the Gradle binaries; you wouldn't want to commit
those to your version control.

We previously ignored this file along with the build directory so that you could
safely git add everything else:

$ git add .

$ git commit -m "Added Gradle wrapper"

The Gradle directory contains information on how to get the binaries. The two other
files are scripts: a batch script for windows (Gradlew.bat) and a shell script for other
systems.

We can also run our application with Gradle instead of executing the application
from the IDE:

$./gradlew bootrun

Issuing this command will run an embedded tomcat server with our application in it!

The log tells us that the server is running on port 8080. Let's check it out:

I can imagine your disappointment. Our application is not ready for the grand public
just yet.

Setting Up a Spring Web Application in No Time

[14]

That being said, the work accomplished by the two files our project is made of is
rather impressive. Let's review them.

The first one is the Gradle build file, build.Gradle:

buildscript {
 ext {
 springBootVersion = '1.2.5.RELEASE'
 }
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")
 classpath("io.spring.gradle:dependency-management-
plugin:0.5.1.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'idea'
apply plugin: 'spring-boot'
apply plugin: 'io.spring.dependency-management'

jar {
 baseName = 'masterSpringMvc'
 version = '0.0.1-SNAPSHOT'
}
sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}

Chapter 1

[15]

eclipse {
 classpath {
 containers.remove('org.eclipse.jdt.launching.JRE_CONTAINER')
 containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.
eclipse.jdt.internal.debug.ui.launcher.StandardVMType/JavaSE-1.8'
 }
}

task wrapper(type: Wrapper) {
 gradleVersion = '2.3'
}

What do we see here?

• A dependency on the Spring Boot plugin distributed on Maven central.
• Our project is a Java project. IDE project files can be generated by Gradle for

IntelliJ or Eclipse.
• The application will generate a JAR file.
• Our project dependencies are hosted on maven central.
• Our classpath includes spring-boot-starter-web in production and

spring-boot-starter-test for testing.
• Some additional configuration for eclipse.
• The version of the Gradle wrapper is 2.3.

The Spring Boot Plugin will generate a fat jar that contains all the dependencies of
the project. To build it, type:

./gradlew build

You will find the JAR in the directory build/libs. This directory will contain two
files, the fat jar called masterSpringMvc-0.0.1-SNAPSHOT.jar and the classic JAR
file that does not include any dependencies, masterSpringMvc-0.0.1-SNAPSHOT.
jar.original.

Runnable jar
One of the main advantages of Spring Boot is embedding everything
the application needs in one easily redistributable JAR file, including
the web server. If you run java jar masterSpringMvc-0.0.1-
SNAPSHOT.jar, tomcat will start on port 8080, just like it did when
you developed it. This is extremely handy for deploying in production
or in the cloud.

Setting Up a Spring Web Application in No Time

[16]

Our main dependency here is spring-boot-starter-web. Spring Boot provides
a good number of starters that will automatically configure some aspects of the
application for us by providing typical dependencies and Spring configuration.

For instance, spring-starter-web will include dependencies of tomcat-
embedded and Spring MVC. It will also run the most commonly used Spring MVC
configuration and provide a dispatcher listening on the "/" root path, error handling
such as the 404 page we saw earlier, and a classical view resolver configuration.

We'll see more on this later. First, let's take a look at the next section.

Let me see the code!
Here is all the code that is needed to run the application. Everything is in a classic
main function, which is a huge advantage because you can run your application in
your IDE like you would for any other program. You can debug it and also benefit
from some class reloading out of the box without a plugin.

This reloading will be available in the debug mode when saving your file in eclipse,
or clicking on Make Project in IntelliJ. This will be possible only if the JVM is able
to switch the new compile version of the class file with the new one; modifying the
static variable or touching configuration files will force you to reload the application.

Our main class looks as follows:

package masterSpringMvc;

import org.Springframework.boot.SpringApplication;
import org.Springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class AppApplication {

 public static void main(String[] args) {
 SpringApplication.run(AppApplication.class, args);
 }
}

Note the @SpringBootApplication annotation. If you look at the code of this
annotation you will see that it actually combines three other annotations: @
Configuration, @EnableAutoConfiguration, and @ComponentScan:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)

Chapter 1

[17]

@Documented
@Inherited
@Configuration
@EnableAutoConfiguration
@ComponentScan
public @interface SpringBootApplication {

 /**
 * Exclude specific auto-configuration classes such that they will
never be applied.
 */
 Class<?>[] exclude() default {};
}

The @Configuration class should be familiar to you if you've already configured
a Spring application with Java code earlier. It indicates that our class will handle
classical aspects of a Spring configuration: declaring beans, for instance.

The @ComponentScan class is also a classic. It will tell Spring where to look to find
our Spring components (services, controllers, and so on). By default, this annotation
will scan every current package and everything under it.

The novelty here is @EnableAutoConfiguration, which will instruct Spring Boot
to do its magic. If you remove it, you will no longer benefit from Spring Boot's
autoconfiguration.

The first step when writing an MVC application with Spring Boot is usually to add
a controller to our code. Add the controller in the controller subpackage so that it is
picked up by the @ComponentScan annotation:

package masterSpringMvc.controller;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

@Controller
public class HelloController {

 @RequestMapping("/")
 @ResponseBody
 public String hello() {
 return "Hello, world!";
 }
}

Setting Up a Spring Web Application in No Time

[18]

This time, if you open your browser and visit http://localhost:8080 you will see
this lovely Hello, world! output:

Spring Boot behind the curtains
If you already set up a Spring MVC application earlier, you may be used
to writing at least a small portion of XML or a handful of Java annotation
configuration classes.

Initialization steps are typically as follows:

1. Initializing the DispatcherServlet of Spring MVC.
2. Setting up an encoding filter to ensure that client requests are encoded

correctly.
3. Setting up a view resolver to tell Spring where to find our views and in

which dialect they are written (jsp, Thymeleaf templates, and so on).
4. Configuring static resources locations (css, js).
5. Configuring supported locales and resource bundles.
6. Configuring a multipart resolver for file uploads to work.
7. Including tomcat or jetty to run our application on a web server.
8. Setting up the error pages (For example 404).

However, Spring Boot handles all that work for us. Because this configuration is
typically up to your application, you can come up with an unlimited amount of
combinations.

Spring boot, in a way, is an opinionated Spring project configurator. It is based on
conventions and will enforce them on your project by default.

Chapter 1

[19]

The dispatcher and multipart configuration
Let's see what happens behind the curtains.

We will use the default Spring Boot configuration file that was created for us
and put it in the debug mode. Add the following line to src/main/resources/
application.properties:

debug=true

Now, if we launch our application again we'll see Spring Boot's autoconfiguration
report. It is divided into two parts: positive matches, which list all
autoconfigurations that are used by our application; and negative matches, which
are Spring Boot autoconfigurations whose requirements weren't met when the
application started:

=========================

AUTO-CONFIGURATION REPORT

=========================

Positive matches:

 DispatcherServletAutoConfiguration

 - @ConditionalOnClass classes found: org.Springframework.web.
servlet.DispatcherServlet (OnClassCondition)

 - found web application StandardServletEnvironment
(OnWebApplicationCondition)

 EmbeddedServletContainerAutoConfiguration

 - found web application StandardServletEnvironment
(OnWebApplicationCondition)

 ErrorMvcAutoConfiguration

 - @ConditionalOnClass classes found: javax.servlet.Servlet,org.
springframework.web.servlet.DispatcherServlet (OnClassCondition)

 - found web application StandardServletEnvironment
(OnWebApplicationCondition)

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

[20]

 HttpEncodingAutoConfiguration

 - @ConditionalOnClass classes found: org.springframework.web.
filter.CharacterEncodingFilter (OnClassCondition)

 - matched (OnPropertyCondition)

<Input trimmed>

Let's take a closer look at DispatcherServletAutoConfiguration:

/**
* {@link EnableAutoConfiguration Auto-configuration} for the Spring
* {@link DispatcherServlet}. Should work for a standalone application
where an embedded
* servlet container is already present and also for a deployable
application using
* {@link SpringBootServletInitializer}.
*
* @author Phillip Webb
* @author Dave Syer
*/
@Order(Ordered.HIGHEST_PRECEDENCE)
@Configuration
@ConditionalOnWebApplication
@ConditionalOnClass(DispatcherServlet.class)
@AutoConfigureAfter(EmbeddedServletContainerAutoConfiguration.class)
public class DispatcherServletAutoConfiguration {

 /*
 * The bean name for a DispatcherServlet that will be mapped to the
root URL "/"
 */
 public static final String DEFAULT_DISPATCHER_SERVLET_BEAN_NAME =
"dispatcherServlet";

 /*
 * The bean name for a ServletRegistrationBean for the
DispatcherServlet "/"
 */
 public static final String DEFAULT_DISPATCHER_SERVLET_
REGISTRATION_BEAN_NAME = "dispatcherServletRegistration";

Chapter 1

[21]

 @Configuration
 @Conditional(DefaultDispatcherServletCondition.class)
 @ConditionalOnClass(ServletRegistration.class)
 protected static class DispatcherServletConfiguration {

 @Autowired
 private ServerProperties server;

 @Autowired(required = false)
 private MultipartConfigElement multipartConfig;

 @Bean(name = DEFAULT_DISPATCHER_SERVLET_BEAN_NAME)
 public DispatcherServlet dispatcherServlet() {
 return new DispatcherServlet();
 }

 @Bean(name = DEFAULT_DISPATCHER_SERVLET_REGISTRATION_BEAN_
NAME)
 public ServletRegistrationBean dispatcherServletRegistration()
{
 ServletRegistrationBean registration = new
ServletRegistrationBean(
 dispatcherServlet(), this.server.
getServletMapping());
 registration.setName(DEFAULT_DISPATCHER_SERVLET_BEAN_
NAME);
 if (this.multipartConfig != null) {
 registration.setMultipartConfig(this.multipartConfig);
 }
 return registration;
 }

 @Bean
 @ConditionalOnBean(MultipartResolver.class)
 @ConditionalOnMissingBean(name = DispatcherServlet.MULTIPART_
RESOLVER_BEAN_NAME)
 public MultipartResolver multipartResolver(MultipartResolver
resolver) {
 // Detect if the user has created a MultipartResolver but
named it incorrectly
 return resolver;
 }

Setting Up a Spring Web Application in No Time

[22]

 }

 @Order(Ordered.LOWEST_PRECEDENCE - 10)
 private static class DefaultDispatcherServletCondition extends
SpringBootCondition {

 @Override
 public ConditionOutcome getMatchOutcome(ConditionContext
context,
 AnnotatedTypeMetadata metadata) {
 ConfigurableListableBeanFactory beanFactory = context.
getBeanFactory();
 ConditionOutcome outcome = checkServlets(beanFactory);
 if (!outcome.isMatch()) {
 return outcome;
 }
 return checkServletRegistrations(beanFactory);
 }

 }
}

This is a typical Spring Boot configuration class:

• It is annotated with @Configuration like any other Spring configuration
class.

• It typically declares its priority level with the @Order annotation. You can see
that DispatcherServletAutoConfiguration needs to be configured first.

• It can also contain hints such as @AutoConfigureAfter or @
AutoConfigureBefore to further refine the order in which configurations
are processed.

• It is enabled under certain conditions. With @ConditionalOnClass(Dispatc
herServlet.class), this particular configuration ensures that our classpath
contains DispatcherServlet, which is a good indication that Spring MVC is
in the classpath and the user certainly wants to bootstrap it.

This file also contains classic bean declarations for the Spring MVC dispatcher
servlet and a multipart resolver. The whole Spring MVC configuration is broken into
multiple files.

Chapter 1

[23]

It is also worth noting that these beans obey certain rules to check whether are active.
The ServletRegistrationBean function will be enabled under the @Conditional
(DefaultDispatcherServletCondition.class) condition, which is a bit complex
but checks whether you already have a dispatcher servlet registered in your own
configuration.

The MultipartResolver function will become active only if the condition @
ConditionalOnMissingBean(name = DispatcherServlet.MULTIPART_RESOLVER_
BEAN_NAME) is met, for example, if we didn't declare it ourselves.

This means Spring boot only gives you a hand in configuring your application
according to common use cases. However, at any point, you can override these
defaults and declare your own configuration.

So, the DispatcherServletAutoConfiguration class explains why we have a
dispatcher servlet and a multipart resolver.

The view resolver, static resources, and locale
configuration
Another very relevant piece of configuration is WebMvcAutoConfiguration.
It declares the view resolver, the locale resolver, and the location of our static
resources. The view resolver is as follows:

@Configuration
@Import(EnableWebMvcConfiguration.class)
@EnableConfigurationProperties({ WebMvcProperties.class,
ResourceProperties.class })
public static class WebMvcAutoConfigurationAdapter extends
WebMvcConfigurerAdapter {

 @Value("${spring.view.prefix:}")
 private String prefix = "";

 @Value("${spring.view.suffix:}")
 private String suffix = "";

 @Bean
 @ConditionalOnMissingBean(InternalResourceViewResolver.class)
 public InternalResourceViewResolver defaultViewResolver() {
 InternalResourceViewResolver resolver = new
InternalResourceViewResolver();
 resolver.setPrefix(this.prefix);
 resolver.setSuffix(this.suffix);
 return resolver;
 }
}

Setting Up a Spring Web Application in No Time

[24]

The view resolver configuration is really typical. What's really interesting here is the
use of configuration properties to allow users to customize it.

What it says is "I will look for two variables in the user's application.properties
called spring.view.prefix and spring.view.suffix". This is a very handy way to
set up the view resolver with only two lines in our configuration.

Keep this in mind for the next chapter. For now, we will just stroll through Spring
Boot's code.

Regarding static resources, this configuration includes the following lines:

private static final String[] CLASSPATH_RESOURCE_LOCATIONS = {
 "classpath:/META-INF/resources/", "classpath:/resources/",
 "classpath:/static/", "classpath:/public/" };

private static final String[] RESOURCE_LOCATIONS;
static {
 RESOURCE_LOCATIONS = new String[CLASSPATH_RESOURCE_LOCATIONS.length
 + SERVLET_RESOURCE_LOCATIONS.length];
 System.arraycopy(SERVLET_RESOURCE_LOCATIONS, 0, RESOURCE_LOCATIONS,
0,
 SERVLET_RESOURCE_LOCATIONS.length);
 System.arraycopy(CLASSPATH_RESOURCE_LOCATIONS, 0, RESOURCE_
LOCATIONS,
 SERVLET_RESOURCE_LOCATIONS.length, CLASSPATH_RESOURCE_LOCATIONS.
length);
}

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {
 if (!this.resourceProperties.isAddMappings()) {
 logger.debug("Default resource handling disabled");
 return;
 }

 Integer cachePeriod = this.resourceProperties.getCachePeriod();
 if (!registry.hasMappingForPattern("/webjars/**")) {
 registry.addResourceHandler("/webjars/**")
 .addResourceLocations("classpath:/META-INF/resources/
webjars/")

Chapter 1

[25]

 .setCachePeriod(cachePeriod);
 }
 if (!registry.hasMappingForPattern("/**")) {
 registry.addResourceHandler("/**")
 .addResourceLocations(RESOURCE_LOCATIONS)
 .setCachePeriod(cachePeriod);
 }
}

The declaration of resource locations is a bit convoluted but we can still understand
two things:

• Any resource accessed with the "webjar" prefix will be resolved inside
the classpath inside the classpath. This will allow us to use prepackaged
JavaScript dependencies from Maven central.

• Our static resources can reside in any of the locations after our classpath
/META-INF/resources/, /resources/, /static/, or /public/.

WebJars are JAR packages of client JavaScript libraries available on
Maven central. They include a Maven project file, which allows for
transitive dependencies and works in all JVM-based applications.
WebJars are an alternative to JavaScript package managers such as bower
or npm. They are great for applications that require just a few JavaScript
libraries. Find the list of available WebJars on www.webjars.org.

There is also a part of this file that is dedicated to locale management:

@Bean
@ConditionalOnMissingBean(LocaleResolver.class)
@ConditionalOnProperty(prefix = "spring.mvc", name = "locale")
public LocaleResolver localeResolver() {
 return new FixedLocaleResolver(
 StringUtils.parseLocaleString(this.mvcProperties.getLocale()));
}

This default locale resolver handles only one locale and allows us to define it via the
spring.mvc.locale configuration property.

www.webjars.org

Setting Up a Spring Web Application in No Time

[26]

Error and encoding configuration
Remember when we first launched our application without adding a controller? We
got a funny Whitelabel Error Page output.

Error handling is a lot trickier than it looks, especially when you don't have a
web.xml configuration file and want your application to be portable across web
servers. The good news is that Spring Boot takes care of that for us! Let's look at
ErrorMvcAutoConfiguration:

ConditionalOnClass({ Servlet.class, DispatcherServlet.class })
@ConditionalOnWebApplication
// Ensure this loads before the main WebMvcAutoConfiguration so that
the error View is
// available
@AutoConfigureBefore(WebMvcAutoConfiguration.class)
@Configuration
public class ErrorMvcAutoConfiguration implements
EmbeddedServletContainerCustomizer,
 Ordered {

 @Value("${error.path:/error}")
 private String errorPath = "/error";

 @Autowired
 private ServerProperties properties;

 @Override
 public int getOrder() {
 return 0;
 }

 @Bean
 @ConditionalOnMissingBean(value = ErrorAttributes.class, search =
SearchStrategy.CURRENT)
 public DefaultErrorAttributes errorAttributes() {
 return new DefaultErrorAttributes();
 }

 @Bean
 @ConditionalOnMissingBean(value = ErrorController.class, search =
SearchStrategy.CURRENT)
 public BasicErrorController basicErrorController(ErrorAttributes
errorAttributes) {
 return new BasicErrorController(errorAttributes);
 }

Chapter 1

[27]

 @Override
 public void customize(ConfigurableEmbeddedServletContainer
container) {
 container.addErrorPages(new ErrorPage(this.properties.
getServletPrefix()
 + this.errorPath));
 }

 @Configuration
 @ConditionalOnProperty(prefix = "error.whitelabel", name =
"enabled", matchIfMissing = true)
 @Conditional(ErrorTemplateMissingCondition.class)
 protected static class WhitelabelErrorViewConfiguration {

 private final SpelView defaultErrorView = new SpelView(
 "<html><body><h1>Whitelabel Error Page</h1>"
 + "<p>This application has no explicit mapping
for /error, so you are seeing this as a fallback.</p>"
 + "<div id='created'>${timestamp}</div>"
 + "<div>There was an unexpected error
(type=${error}, status=${status}).</div>"
 + "<div>${message}</div></body></html>");

 @Bean(name = "error")
 @ConditionalOnMissingBean(name = "error")
 public View defaultErrorView() {
 return this.defaultErrorView;
 }

 // If the user adds @EnableWebMvc then the bean name view
resolver from
 // WebMvcAutoConfiguration disappears, so add it back in to
avoid disappointment.
 @Bean
 @ConditionalOnMissingBean(BeanNameViewResolver.class)
 public BeanNameViewResolver beanNameViewResolver() {
 BeanNameViewResolver resolver = new
BeanNameViewResolver();
 resolver.setOrder(Ordered.LOWEST_PRECEDENCE - 10);
 return resolver;
 }

 }
}

Setting Up a Spring Web Application in No Time

[28]

What does this piece of configuration do?

• It defines a bean, DefaultErrorAttributes, which exposes helpful
error information via special attributes such as the status, error code, and
associated stack trace.

• It defines a BasicErrorController bean, which is an MVC controller in
charge of displaying the error page we've seen.

• It allows us to deactivate Spring Boot whitelabel error page by setting error.
whitelable.enabled to false in our configuration file, application.
properties.

• We can also leverage our templating engine to provide our own error
page. It will be named error.html, for example. This is what the condition
ErrorTemplateMissingCondition checks.

We'll see how to properly handle errors later in this book.

As far as encoding is concerned, the very simple HttpEncodingAutoConfiguration
function will handle it by providing Spring's CharacterEncodingFilter class. It is
possible to override the default encoding ("UTF-8") with spring.http.encoding.
charset and disable this configuration with spring.http.encoding.enabled.

Embedded Servlet container (Tomcat)
configuration
By default, Spring Boot runs and packages our application using the Tomcat
embedded API.

Let's look at EmbeddedServletContainerAutoConfiguration:

@Order(Ordered.HIGHEST_PRECEDENCE)
@Configuration
@ConditionalOnWebApplication
@Import(EmbeddedServletContainerCustomizerBeanPostProcessorRegistrar.
class)
public class EmbeddedServletContainerAutoConfiguration {

 /**
 * Nested configuration for if Tomcat is being used.
 */
 @Configuration
 @ConditionalOnClass({ Servlet.class, Tomcat.class })
 @ConditionalOnMissingBean(value = EmbeddedServletContainerFactory.
class, search = SearchStrategy.CURRENT)

Chapter 1

[29]

 public static class EmbeddedTomcat {

 @Bean
 public TomcatEmbeddedServletContainerFactory
tomcatEmbeddedServletContainerFactory() {
 return new TomcatEmbeddedServletContainerFactory();
 }

 }

 /**
 * Nested configuration if Jetty is being used.
 */
 @Configuration
 @ConditionalOnClass({ Servlet.class, Server.class, Loader.class })
 @ConditionalOnMissingBean(value = EmbeddedServletContainerFactory.
class, search = SearchStrategy.CURRENT)
 public static class EmbeddedJetty {

 @Bean
 public JettyEmbeddedServletContainerFactory
jettyEmbeddedServletContainerFactory() {
 return new JettyEmbeddedServletContainerFactory();
 }

 }

 /**
 * Nested configuration if Undertow is being used.
 */
 @Configuration
 @ConditionalOnClass({ Servlet.class, Undertow.class,
SslClientAuthMode.class })
 @ConditionalOnMissingBean(value = EmbeddedServletContainerFactory.
class, search = SearchStrategy.CURRENT)
 public static class EmbeddedUndertow {

 @Bean
 public UndertowEmbeddedServletContainerFactory
undertowEmbeddedServletContainerFactory() {
 return new UndertowEmbeddedServletContainerFactory();
 }

 }
}

The preceding code is pretty straight forward. This code includes three different
configurations, which will be activated depending on what's available on your
classpath.

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

[30]

You can use Tomcat, tc-server, Jetty, or Undertow with Spring Boot. Your server
can be easily replaced by excluding the spring-boot-starter-tomcat JAR
dependency and replacing it with its Jetty or Undertow equivalent. Please refer to
the documentation if you wish to do so.

All the configuration of our Servlet container (Tomcat) will happen in
TomcatEmbeddedServletContainerFactory. While you should definitely read it
because it provides a very advanced configuration of tomcat embedded (for which
finding documentation can be hard), we will not look at this class directly.

Instead, I will walk you through the different options available to configure your
Servlet Container.

The HTTP port
You can change the default HTTP port by defining a server.port property in
your application.properties file or by defining an environment variable called
SERVER_PORT.

You can disable HTTP by setting this variable to -1 or launch it on a random port by
setting it to 0. This is very handy for testing.

The SSL configuration
Configuring SSL is such a chore, but spring boot has a simple solution. You need
only a handful of properties to secure your server:

server.port = 8443

server.ssl.key-store = classpath:keystore.jks

server.ssl.key-store-password = secret

server.ssl.key-password = another-secret

You will have to generate a keystore file for the above example to work, thought.

We'll have a deeper look at our security options in Chapter 6, Securing Your Application.
Of course, you can customize the TomcatEmbeddedServletContainerFactory
function further by adding your own EmbeddedServletContainerFactory. This
can come in handy if you wish to add multiple connectors, for instance. Refer to
the documentation at http://docs.spring.io/spring-boot/docs/current/
reference/html/howto-embedded-servlet-containers.html#howto-configure-
ssl for more information.

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl

Chapter 1

[31]

Other configurations
You can add classic Java web elements such as Servlet, Filter, and
ServletContextListener by simply declaring them as the @Bean elements in your
configuration.

Out of the box, spring boot also added three other things for us:

• JSON serialization with Jackson in JacksonAutoConfiguration
• Default HttpMessageConverters in

`HttpMessageConvertersAutoConfiguration

• JMX capabilities in JmxAutoConfiguration

We will see a bit more about the jackson configuration in Chapter 5, Crafting a
RESTful Application. About JMX configuration, you can try it out by connecting to
your application with jconsole locally:

Setting Up a Spring Web Application in No Time

[32]

You can add more interesting MBeans by adding org.springframework.
boot:spring-boot-starter-actuator to your classpath. You can even define
your own MBeans and expose them on HTTP using Jolokia. On the other hand,
you can also disable those endpoints by adding spring.jmx.enabled=false to
your configuration.

Refer to http://docs.spring.io/spring-boot/docs/current/
reference/html/production-ready-jmx.html for more details.

Summary
We now have a very humble spring web application with a RESTful JSON "Hello
world" despite having configured nothing ourselves. We have seen what spring boot
does for us, how it does it, and hopefully we've got a good idea of how to override
the default autoconfiguration.

Detailing how spring boot works is the topic of a book all by itself. If you want to dig
deeper, I recommend that you read the excellent book Learning Spring Boot by Greg
Turnquist in the same collection.

We are now ready for the next chapter where our application will reach a new stage by
actually serving web pages, and you will learn more about spring MVC's philosophy.

http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-jmx.html
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-jmx.html

[33]

Mastering the MVC
Architecture

In this chapter, we will discuss the MVC architecture principles and see how Spring
MVC implements those.

We will continue to use the application from the previous chapter and build
something more interesting. Our goal is to design a simple page where users can
search for tweets corresponding to certain criteria and display them to our users.

To achieve this, we will use the Spring Social Twitter project, which is available
at http://projects.spring.io/spring-social-twitter/.

We will see how to make Spring MVC work with a modern template engine,
Thymeleaf, and try to understand the inner mechanics of the framework. We will
route our users through different views, and finally, we will give a stellar look to
our application using WebJars and Materialize (http://materializecss.com).

http://projects.spring.io/spring-social-twitter/
http://materializecss.com

Mastering the MVC Architecture

[34]

The MVC architecture
I expect the meaning of the MVC acronym to be familiar to most. It stands for
Model View Controller, and it is considered to be a very popular way to build a user
interface by decoupling the data and the presentation layers.

The MVC pattern became wildly popular after emerging from the world of Smalltalk
and landing in the Ruby on Rails framework.

The architectural pattern features three layers:

• The Model: This consists of various representations of the data your
application knows about.

• The View: This is made up of several representations of the data that will be
displayed to your users.

• The Controller: This is the part of the application that will handle user
interactions. It's a bridge between the model and the view.

Chapter 2

[35]

The idea behind MVC is to decouple the View from the Model. The model must
be self-contained and ignorant of the UI. This basically allows the same data to be
reused across multiple views. These views are different way to look at the data.
Drill down or using different renderers (HTML, PDF) are good illustrations of this
principle.

The Controller acts as a mediator between the user and the data. Its role is to control
actions available to the end user, as well as routing through the different views of the
application.

MVC critics and best practices
While MVC remains the go-to approach for designing a UI, many criticisms arose
with its prevalence. Most critics are actually pointing a finger at the incorrect use
of the pattern.

Anemic Domain Model
Eric Evans' influential book Domain Driven Design, also abbreviated as DDD, defines
a set of architecture rules leading to a better integration of the business domain
inside the code.

One of the core ideas is to take advantage of the object-oriented paradigms inside
the domain objects. Going against this principle is sometimes referred to as Anemic
Domain Model. A good definition of this problem can be found on Martin Fowler's
blog (http://www.martinfowler.com/bliki/AnemicDomainModel.html).

An Anemic Model typically exhibits the following symptoms:

• The model is constituted from very simple plain old Java objects (POJOs)
with only getters and setters

• All the business logic is handled inside a service layer
• Validation of the model is found outside this model, for instance, in

controllers

This can be a bad practice depending on the complexity of your business domain.
Generally speaking, DDD practices require additional efforts to isolate the domain
from the application logic.

Architecture is always a tradeoff. It is good to note that typical ways of designing a
Spring application can lead to complicated maintenance somewhere along the road.

http://www.martinfowler.com/bliki/AnemicDomainModel.html

Mastering the MVC Architecture

[36]

How to avoid domain anemia is explained here:

• The Service layer is good for application-level abstraction like transaction
handling, not business logic.

• Your domain should always be in a valid state. Leave validation inside the
form objects using validators or JSR-303's validation annotations.

• translate the inputs into meaningful domain objects.
• Think of your data layer in term of repositories with domain queries (refer to

Spring Data Specification, for example)
• Decouple your domain logic from the underlying persistence framework
• Use real objects as much as possible. For instance, manipulate the FirstName

class rather than a string.

There is much more to DDD than these simple rules: Entities, value types,
Ubiquitous Language, Bounded Context, Onion Architecture, and anti corruption
layers. I strongly encourage you to study these principles on your own. As far as we
are concerned, with this book we will try to keep in mind the guidelines listed earlier
as we craft our web application. These concerns will become more familiar to you as
we advance through this book.

Learning from the sources
If you're familiar with Spring, you have probably already landed on Spring's
website, http://spring.io. It is entirely made with Spring and the good news
is that it is open source.

The code name of the project is sagan. It has numerous interesting features:

• A gradle multimodule project
• Security integration
• Github integration
• Elasticsearch integration
• A JavaScript frontend application

The GitHub wiki associated with the project is really detailed and will help you get
started easily with the project.

http://spring.io

Chapter 2

[37]

Visit the following URL if you're interested in the Spring's
architecture of a real world application:

https://github.com/spring-io/sagan

Spring MVC 1-0-1
In spring MVC, the model is a simple map encapsulated in the Model or
ModelAndView classes of Spring MVC. It can come from a database, files, external
services, and so on. It is up to you to define how to fetch the data and put it into the
model. The recommended way of interacting with the data layer is through Spring
Data libraries: Spring Data JPA, Spring Data MongoDB, and so on. There are
a dozen projects related to Spring Data and I encourage you to take a look at
http://projects.spring.io/spring-data.

The controller side of Spring MVC is handled through the use of the @Controller
annotation. In a web application, the controller's role is to respond to HTTP requests.
Classes annotated with the @Controller annotation will be picked up by Spring and
given a chance to handle upcoming requests.

Via the @RequestMapping annotation, Controllers declare handling specific requests
based on their HTTP method (GET or POST methods, for instance) and their URLs.
The Controller then decides to either write content directly in the web response or
route the application to a view and inject properties into that view.

A pure RESTful application would choose the first approach and expose a JSON
or XML representation of the model directly in the HTTP response with the
@ResponseBody annotation. In the case of a web application, this type of architecture
is often associated with a frontend JavaScript framework such as Backbone.js,
AngularJS, or React. In this case, the Spring application would then only handle the
Model layer of the MVC model. We will study this kind of architecture in Chapter 4,
File Upload and Error Handling.

With the second approach, the Model is passed to the View, which is rendered by a
templating engine and then written to the response.

The view is often associated with a templating dialect, which will allow navigation
inside the model. Popular dialects for templating are JSPs, FreeMarker, or Thymeleaf.

Hybrid approaches may take advantage of the templating engine to interact with
some aspects of the application and then delegate the view layer to a frontend
framework.

https://github.com/spring-io/sagan
http://projects.spring.io/spring-data

Mastering the MVC Architecture

[38]

Using Thymeleaf
Thymeleaf is a templating engine that gets particular attention from the Spring
community.

Its success is due mostly to its friendly syntax (it almost looks like HTML) and the
ease with which it can be extended.

Various extensions are available and integrated with Spring Boot:

Support Dependency

Layouts nz.net.ultraq.thymeleaf:thymeleaf-layout-
dialect

HTML5 data-* attributes com.github.mxab.thymeleaf.
extras:thymeleaf-extras-data-attribute

Internet Explorer conditional
comments

org.thymeleaf.extras:thymeleaf-extras-
conditionalcomments

Support for spring security org.thymeleaf.extras:thymeleaf-extras-
springsecurity3

A very good tutorial on Thymeleaf's integration with Spring can be found at http://
www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html.

Without further ado, let's add the spring-boot-starter-thymeleaf dependency to
bootstrap the thymeleaf templating engine:

buildscript {
 ext {
 springBootVersion = '1.2.5.RELEASE'
 }
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")
 classpath("io.spring.gradle:dependency-management-
plugin:0.5.1.RELEASE")
 }
}

http://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html
http://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html

Chapter 2

[39]

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'idea'
apply plugin: 'spring-boot'
apply plugin: 'io.spring.dependency-management'

jar {
 baseName = 'masterSpringMvc'
 version = '0.0.1-SNAPSHOT'
}
sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.springframework.boot:spring-boot-starter-web'
 compile 'org.springframework.boot:spring-boot-starter-thymeleaf'
 testCompile 'org.springframework.boot:spring-boot-starter-test'
}

eclipse {
 classpath {
 containers.remove('org.eclipse.jdt.launching.JRE_CONTAINER')
 containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.
eclipse.jdt.internal.debug.ui.launcher.StandardVMType/JavaSE-1.8'
 }
}

task wrapper(type: Wrapper) {
 gradleVersion = '2.3'
}

www.allitebooks.com

http://www.allitebooks.org

Mastering the MVC Architecture

[40]

Our first page
We will now add the first page to our application. It will be located in src/main/
resources/templates. Let's call the file resultPage.html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
 <meta charset="UTF-8"/>
 <title>Hello thymeleaf</title>
</head>
<body>
 Hello html
</body>
</html>

We can see from the very start that Thymeleaf integrates perfectly with html and its
syntax almost feels natural.

The th:text value is put between pipes. It means that all the values inside the text
will be concatenated.

It might seem a bit awkward at first, but in practice, text will rarely be hardcoded in
our pages; so, Thymeleaf makes an opinionated design decision here.

Thymeleaf has a big advantage for web designers: everything that is dynamic inside
the templates can fall back to a default value in the case where they are opened
without the server running. Resource URLs can be specified relatively and every
markup can contain placeholders. In our previous example, the text "Hello html"
would not be displayed when the view is rendered in the context of our application,
but it will if the file is opened directly with a web browser.

To speed up development, add this property to your application.properties file:

spring.thymeleaf.cache=false

This will disable the view cache and cause templates to reload every time they are
accessed.

Of course, this setting will need to be disabled when we go into production. We will
see that in Chapter 8, Optimizing Your Requests.

Chapter 2

[41]

Reloading the views
With the cache disabled, simply save your view with eclipse or use
the Build > Make Project action in IntelliJ to refresh the views
after a change.

Lastly, we will need to modify our HelloController class. Instead of displaying
plain text, it must now route to our freshly created view. To accomplish this, we will
remove the @ResponseBody annotation. Doing so and still returning a string will
tell Spring MVC to map this string to a view name instead of displaying a particular
model directly in the response.

Here is what our controller now looks like:

@Controller
public class HelloController {

 @RequestMapping("/")
 public String hello() {
 return "resultPage";
 }
}

In this example, the controller will redirect the user to the view name resultPage.
The ViewResolver interface will then associate this name with our page.

Let's launch our application again and go to http://localhost:8080.

You will see the following page:

Mastering the MVC Architecture

[42]

Spring MVC architecture
Let's take a step back from this spectacular new "Hello World" and try to understand
what happened inside our web application. To do this, we will retrace the journey of
the HTTP request our browser sent and the response it got from the server.

DispatcherServlet
The entry point of every Spring web application is the DispatcherServlet. The
following figure illustrates the Dispatcher Servlet architecture:

This is a classical HttpServlet class that dispatches HTTP requests to
HandlerMapping. A HandlerMapping is an association of resources (URLs) and
Controllers.

Chapter 2

[43]

The appropriate methods—those annotated with @RequestMapping annotation—are
then called on the Controller. In this method, the controller sets the model data and
returns the view name to the dispatcher.

The DispatcherServlet will then interrogate the ViewResolver interface to find
the corresponding implementation of the view.

In our case, the ThymeleafAutoConfiguration class has set up the view resolver
for us.

You can see in the ThymeleafProperties class that the default prefix for our views
is classpath:/templates/ the default suffix is .html.

This means that, given the view name resultPage, the view resolver will look in the
templates directory of our classpath, looking for a file called resultPage.html.

In our application our ViewResolver interface is static, but more advanced
implementation can return different results given the request headers or the
user's locale.

The view will finally be rendered and the result written to the response.

Passing data to the view
Our first page is completely static; it does not really take advantage of the power
of Spring MVC. Let's spice things up a little bit. What if the "Hello World" string,
instead of being hardcoded, came from the server?

It would still be a lame "hello world" you say? Yes, but it will open up many more
possibilities. Let's change our resultPage.html file to display a message coming
from the model:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
 <meta charset="UTF-8"/>
 <title>Hello thymeleaf</title>
</head>
<body>
 Hello html
</body>
</html>

Mastering the MVC Architecture

[44]

Then, let's modify our controller so it puts this message inside this model:

@Controller
public class HelloController {

 @RequestMapping("/")
 public String hello(Model model) {
 model.addAttribute("message", "Hello from the controller");
 return "resultPage";
 }
}

I know, the suspense is killing you! Let's see what http://localhost:8080 looks
like.

The first thing to note is that we passed a new argument to the controller's method
and that the DispatcherServlet provided the correct object for us. There are,
in fact, many objects that can be injected into the controller's methods such as
HttpRequest or HttpResponse, the Locale, the TimeZone, and the Principal,
which represent an authenticated user. The full list of such objects is available in the
documentation, which can be found at http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/mvc.html#mvc-ann-arguments.

Spring Expression Language
When using the ${} syntax, you are in fact using Spring Expression Language
(SpEL). There are several variants of EL available in the wild; SpEl is one of the most
powerful variants.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-arguments
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-arguments

Chapter 2

[45]

Here is an overview of its main features:

Feature Syntax Explanation
Accessing a list element list[0]

Accessing a map entry map[key]

Ternary operator condition ? 'yes' :
'no'

Elvis operator person ?: default Returns default if person's
value is null

Safe navigation person?.name Returns null if person or
her name is null

Templating 'Your name is
#{person.name}'

Injects values into a string

Projections ${persons.![name]} Extracts the names of all the
persons and puts them into
a list

Selection persons.?[name ==
'Bob']'

Retrieves the person whose
name is Bob inside a list

Function call person.sayHello()

For complete reference, check the manual at http://docs.spring.
io/spring/docs/current/spring-framework-reference/
html/expressions.html.

The SpEl usage is not limited to views. You can also use it in various places inside
the Spring framework, for instance, when injecting properties inside beans with the
@Value annotation.

Getting data with a request parameter
We are able to display data coming from the server inside the view. However, what
if we wanted to get input from the user? With the HTTP protocol, there are multiple
ways to do this. The simplest way is to pass a query parameter to our URL.

Query parameters
You certainly know query parameters. They are found after
the ? character in a URL. They consist of a list of name and
values separated by the & symbol (Ampersand), for example,
page?var1=value1&var2=value2.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Mastering the MVC Architecture

[46]

We can leverage this technique to ask our user for their name. Let's modify our
HelloController class again:

@Controller
public class HelloController {

 @RequestMapping("/")
 public String hello(@RequestParam("name") String userName, Model
model) {
 model.addAttribute("message", "Hello, " + userName);
 return "resultPage";
 }
}

If we navigate to localhost:8080/?name=Geoffroy, we can see the following:

By default, the request parameter is mandatory. This means that if we were to
navigate to localhost:8080, we would see an error message.

Looking at the @RequestParam code, we can see that in addition to the value
parameter, there are two other attributes possible: required and defaultValue.

Therefore, we can change our code and specify a default value for our parameter or
indicate that it is not required:

@Controller
public class HelloController {

 @RequestMapping("/")
 public String hello(@RequestParam(defaultValue = "world") String
name, Model model) {
 model.addAttribute("message", "Hello, " + name);
 return "resultPage";
 }
}

In Java 8, it is possible not to specify the value parameter. In that
case, the name of the annotated method parameter will be used.

Chapter 2

[47]

Enough Hello Worlds, let's fetch tweets!
All right, the name of the book isn't "Mastering Hello Worlds", after all. With Spring,
interrogating Twitter's API is really easy.

Registering your application
Before you start, you have to register your application in the Twitter developer
console.

Go to https://apps.twitter.com and create a new application.

Give it the name you please. Under the website and Callback URL sections, just
enter http://127.0.0.1:8080. This will allow you to test your application in
development on your local machine.

https://apps.twitter.com

Mastering the MVC Architecture

[48]

Now, navigate to the keys, access the token, and copy the Consumer Key and
the Consumer Secret. We will use this in a moment. Take a look at the following
screenshot:

By default, our application has read only permissions. This will be enough for our
application, but you can tweak it if you wish.

Setting up Spring Social Twitter
We will add the following dependency to our build.gradle file:

compile 'org.springframework.boot:spring-boot-starter-social-twitter'

Spring Social is a set of projects providing access to the public APIs
of various social networks. Out of the box, Spring Boot provides
integration with Twitter, Facebook, and LinkedIn. Spring Social
includes about 30 projects overall, which can be found at http://
projects.spring.io/spring-social/.

Add the following two lines to the application.properties:

spring.social.twitter.appId= <Consumer Key>
spring.social.twitter.appSecret= <Consumer Secret>

These are the keys associated with the application we just created.

http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/

Chapter 2

[49]

You will learn more about OAuth in Chapter 6, Securing Your Application. For now,
we will just use those credentials to issue requests to Twitter's API on behalf of our
application.

Accessing Twitter
We can now use Twitter in our controller. Let's change its name to TweetController
as a variable to reflect its new responsibility in a better manner:

@Controller
public class HelloController {

 @Autowired
 private Twitter twitter;

 @RequestMapping("/")
 public String hello(@RequestParam(defaultValue =
"masterSpringMVC4") String search, Model model) {
 SearchResults searchResults = twitter.searchOperations().
search(search);
 String text = searchResults.getTweets().get(0).getText();
 model.addAttribute("message", text);
 return "resultPage";
 }
}

As you can see, the code searches for tweets matching the request parameter. If it all
goes well, you will see the text of the first one being displayed on your screen:

Of course, if the search doesn't yield any result, our clumsy code will fail with an
ArrayOutOfBoundException. So, do not hesitate to tweet to solve the problem!

What if we wanted to display a list of tweets? Let's modify the resultPage.html file:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
 <meta charset="UTF-8"/>
 <title>Hello twitter</title>

www.allitebooks.com

http://www.allitebooks.org

Mastering the MVC Architecture

[50]

</head>
<body>

 <li th:each="tweet : ${tweets}" th:text="${tweet}">Some
tweet

</body>
</html>

The th:each is a tag defined in Thymeleaf that allows it to iterate over a
collection and assign each value to a variable inside a loop.

We will need to change our controller as well:

@Controller
public class TweetController {

 @Autowired
 private Twitter twitter;

 @RequestMapping("/")
 public String hello(@RequestParam(defaultValue =
"masterSpringMVC4") String search, Model model) {
 SearchResults searchResults = twitter.searchOperations().
search(search);
 List<String> tweets =
 searchResults.getTweets()
 .stream()
 .map(Tweet::getText)
 .collect(Collectors.toList());
 model.addAttribute("tweets", tweets);
 return "resultPage";
 }
}

Note that we are using Java 8 streams to collect only the messages from the tweets.
The Tweet class contains many other attributes such as the sender, the retweet count,
and so on. However, we will keep it simple for now, as shown in the following
screenshot:

Chapter 2

[51]

Java 8 streams and lambdas
You might not be familiar with lambdas yet. In Java 8, every collection gets a default
method stream(), which gives access to functional-style operations.

These operations can be either intermediate operations returning a stream, and thus
allowing chaining, or a terminal operation that returns a value.

The most famous intermediate operations are as follows:

• map: This applies a method to every element of a list and returns the list of
results

• filter: This returns a list of every element matching a predicate
• reduce: This projects a list into a single value using an operation and an

accumulator

Lambdas are shorthand syntax for function expressions. They can be coerced into a
Single Abstract Method, an interface with only one function.

For instance, you can implement the Comparator interface as follows:

Comparator<Integer> c = (e1, e2) -> e1 - e2;

Within lambdas, the return keyword is implicitly its last expression.

The double colon operator we used earlier is a shortcut to get a reference to a
function on a class,

Tweet::getText

Mastering the MVC Architecture

[52]

The preceding is equivalent to the following:

(Tweet t) -> t.getText()

The collect method allows us to call a terminal operation. The Collectors class
is a set of terminal operations that will put results into lists, sets, or maps, allowing
grouping, joining, and so on.

Calling the collect(Collectors.toList()) method will produce a list with every
element within the stream; in our case, the tweet names.

Material design with WebJars
Our application is already great but it seriously leaves something to be desired in
terms of aesthetics. You may have heard of material design. It is Google's take on
flat design.

We will use Materialize (http://materializecss.com), a great looking responsive
CSS and JavaScript library, just like Bootstrap.

http://materializecss.com

Chapter 2

[53]

We talked a bit about WebJars in Chapter 1, Setting Up a Spring Web Application
in No Time; we will now get to use them. Add jQuery and Materialize CSS to our
dependencies:

compile 'org.webjars:materializecss:0.96.0'
compile 'org.webjars:jquery:2.1.4'

The way a WebJar is organized is completely standardized. You will find the JS and
CSS files of any library in /webjars/{lib}/{version}/*.js.

For instance, to add jQuery to our page, the following to a web page:

<script src="/webjars/jquery/2.1.4/jquery.js"></script>

Let's modify our controller so that it gives us a list of all tweet objects instead of
simple text:

package masterSpringMvc.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.SearchResults;
import org.springframework.social.twitter.api.Tweet;
import org.springframework.social.twitter.api.Twitter;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

import java.util.List;

@Controller
public class TweetController {

 @Autowired
 private Twitter twitter;

 @RequestMapping("/")
 public String hello(@RequestParam(defaultValue =
"masterSpringMVC4") String search, Model model) {
 SearchResults searchResults = twitter.searchOperations().
search(search);
 List<Tweet> tweets = searchResults.getTweets();
 model.addAttribute("tweets", tweets);
 model.addAttribute("search", search);
 return "resultPage";
 }
}

Mastering the MVC Architecture

[54]

Let's include materialize CSS in our view:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
 <meta charset="UTF-8"/>
 <title>Hello twitter</title>

 <link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet" media="screen,projection"/>
</head>
<body>
<div class="row">

 <h2 class="indigo-text center" th:text="|Tweet results for
${search}|">Tweets</h2>

 <ul class="collection">
 <li class="collection-item avatar" th:each="tweet :
${tweets}">
 <img th:src="${tweet.user.profileImageUrl}" alt=""
class="circle"/>
 <span class="title" th:text="${tweet.user.
name}">Username
 <p th:text="${tweet.text}">Tweet message</p>

</div>

<script src="/webjars/jquery/2.1.4/jquery.js"></script>
<script src="/webjars/materializecss/0.96.0/js/materialize.js"></
script>
</body>
</html>

The result already looks way better!

Chapter 2

[55]

Using layouts
The last thing we want to do is to put the reusable chunks of our UI into templates.
To do this, we will use the thymeleaf-layout-dialect dependency, which is
included in the spring-boot-starter-thymeleaf dependency of our project.

We will create a new file called default.html in src/main/resources/templates/
layout. It will contain the code we will repeat from page to page:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout">
<head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
 <meta name="viewport" content="width=device-width, initial-
scale=1, maximum-scale=1.0, user-scalable=no"/>
 <title>Default title</title>

 <link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet" media="screen,projection"/>
</head>
<body>

Mastering the MVC Architecture

[56]

<section layout:fragment="content">
 <p>Page content goes here</p>
</section>

<script src="/webjars/jquery/2.1.4/jquery.js"></script>
<script src="/webjars/materializecss/0.96.0/js/materialize.js"></
script>
</body>
</html>

We will now modify the resultPage.html file so it uses the layout, which will
simplify its contents:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Hello twitter</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center" th:text="|Tweet results for
${search}|">Tweets</h2>

 <ul class="collection">
 <li class="collection-item avatar" th:each="tweet :
${tweets}">
 <img th:src="${tweet.user.profileImageUrl}" alt=""
class="circle"/>
 <span class="title" th:text="${tweet.user.
name}">Username

 <p th:text="${tweet.text}">Tweet message</p>

</div>
</body>
</html>

The layout:decorator="layout/default" will indicate where our layout can be
found. We can then inject content into the different layout:fragment sections of the
layout. Note that each template are valid HTML files. You can also override the title
very easily.

Chapter 2

[57]

Navigation
We have a nice little tweet display application, but how are our users supposed to
figure out that they need to supply a "search" request parameter?

It would be nice if we added a little form to our application.

Let's do something like this:

First, we need to modify our TweetController to add a second view to our
application. The search page will be available directly at the root of our application
and the result page when hit enter in the search field:

@Controller
public class TweetController {

 @Autowired
 private Twitter twitter;

 @RequestMapping("/")
 public String home() {
 return "searchPage";
 }

 @RequestMapping("/result")
 public String hello(@RequestParam(defaultValue =
"masterSpringMVC4") String search, Model model) {
 SearchResults searchResults = twitter.searchOperations().
search(search);
 List<Tweet> tweets = searchResults.getTweets();
 model.addAttribute("tweets", tweets);
 model.addAttribute("search", search);
 return "resultPage";
 }
}

Mastering the MVC Architecture

[58]

We will add another page to the templates folder called the searchPage.html file.
It will contain a simple form, which will pass the search term to the result page via
the get method:

<!DOCTYPE html>
<html xmlns:th="http://www.w3.org/1999/xhtml"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Search</title>
</head>
<body>

<div class="row" layout:fragment="content">

 <h4 class="indigo-text center">Please enter a search term</h4>

 <form action="/result" method="get" class="col s12">
 <div class="row center">
 <div class="input-field col s6 offset-s3">
 <i class="mdi-action-search prefix"></i>
 <input id="search" name="search" type="text"
class="validate"/>
 <label for="search">Search</label>
 </div>
 </div>
 </form>
</div>

</body>
</html>

This is very simple HTML and it works perfectly. You can try it now.

What if we wanted to disallow some search result? Let's say we want to display an
error message if the user types in struts.

The best way to achieve this would be to modify the form to post the data. In the
controller, we can then intercept what is posted and implement this business rule
accordingly.

First, we need to change the form in the searchPage, which is as follows:

<form action="/result" method="get" class="col s12">

Chapter 2

[59]

Now, we change the form to this:

<form action="/postSearch" method="post" class="col s12">

We also need to handle this post on the server. Add this method to the
TweetController:

@RequestMapping(value = "/postSearch", method = RequestMethod.POST)
public String postSearch(HttpServletRequest request,
 RedirectAttributes redirectAttributes) {
 String search = request.getParameter("search");
 redirectAttributes.addAttribute("search", search);
 return "redirect:result";
}

There are several novelties here:

• In the request mapping annotation, we specify the HTTP method we want to
handle, that is, POST.

• We inject two attributes directly as method parameters. They are the request
and RedirectAttributes.

• We retrieve the value posted on the request and pass it on to the next view.
• Instead of returning the name of the view, we make a redirection to a URL.

The RedirectAttributes is a Spring model that will be specifically used to
propagate values in a redirect scenario.

Redirect/Forward are classical options in the context of a Java web
application. They both change the view that is displayed on the user's
browser. The difference is that Redirect will send a 302 header that will
trigger navigation inside the browser, whereas Forward will not cause
the URL to change. In Spring MVC, you can use either option simply by
prefixing your method return strings with redirect: or forward:. In
both cases, the string you return will not be resolved to a view like we
saw earlier, but will instead trigger navigation to a specific URL.

The preceding example is a bit contrived, and we will see smarter form handling in
the next chapter. If you put a breakpoint in the postSearch method, you will see
that it will be called right after a post in our form.

So what about the error message?

Mastering the MVC Architecture

[60]

Let's change the postSearch method:

@RequestMapping(value = "/postSearch", method = RequestMethod.POST)
public String postSearch(HttpServletRequest request,
 RedirectAttributes redirectAttributes) {
 String search = request.getParameter("search");
 if (search.toLowerCase().contains("struts")) {
 redirectAttributes.addFlashAttribute("error", "Try
using spring instead!");
 return "redirect:/";
 }
 redirectAttributes.addAttribute("search", search);
 return "redirect:result";
}

If the user's search terms contain "struts", we redirect them to the searchPage and
add a little error message using flash attributes.

These special kinds of attributes live only for the time of a request and will disappear
when the page is refreshed. This is very useful when we use the POST-REDIRECT-GET
pattern, as we just did.

We will need to display this message in the searchPage result:

<!DOCTYPE html>
<html xmlns:th="http://www.w3.org/1999/xhtml"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Search</title>
</head>
<body>

<div class="row" layout:fragment="content">

 <h4 class="indigo-text center">Please enter a search term</h4>

 <div class="col s6 offset-s3">
 <div id="errorMessage" class="card-panel red lighten-2"
th:if="${error}">

 </div>

Chapter 2

[61]

 <form action="/postSearch" method="post" class="col s12">
 <div class="row center">
 <div class="input-field">
 <i class="mdi-action-search prefix"></i>
 <input id="search" name="search" type="text"
class="validate"/>
 <label for="search">Search</label>
 </div>
 </div>
 </form>
 </div>
</div>

</body>
</html>

Now, if users try to search for "struts2" tweets, they will get a useful and appropriate
answer:

The check point
At the end of this chapter, you should have one controller, the TweetController,
handling the search and the untouched generated configuration class,
MasterSpringMvcApplication, in the src/main/java directory:

Mastering the MVC Architecture

[62]

In the src/main/resources directory, you should have one default layout and two
pages using it.

In the application.properties file, we added the Twitter application credentials
as well as a property telling Spring not to cache the templates to ease development:

Summary
In this chapter, you learned what it takes to make a good MVC architecture. We
saw some of the inner workings of Spring MVC and used Spring Social Twitter with
very little configuration. We can now design a beautiful web application, thanks to
WebJars.

In the next chapter, we will ask the user to fill in their profile, so that we can fetch
tweets they might like automatically. This will give you the opportunity to learn
more about forms, formatting, validation, and internationalization.

[63]

Handling Forms and Complex
URL Mapping

Our application, as beautiful as it looks, would benefit from more informations about
our users.

We could as them to provide the topics they are interested in.

In this chapter, we will build a profile page. It will feature server- and client-side
validation and file upload for a profile picture. We will save that information in the
user session and also ensure that our audience is as large as possible by translating
the application into several languages. Finally, we will display a summary of Twitter
activity matching users' tastes.

Sounds good? Let's get started, we have some work to do.

The profile page – a form
Forms are the cornerstones of every web application. They have been the main way
to get user input since the very beginning of the Internet!

Handling Forms and Complex URL Mapping

[64]

Our first task here is to create a profile page like this one:

It will let the user enter some personal information as well as a list of tastes. These
tastes will then be fed to our search engine.

Let's create a new page in templates/profile/profilePage.html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Your profile</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center">Personal info</h2>

 <form th:action="@{/profile}" method="post" class="col m8 s12
offset-m2">

 <div class="row">
 <div class="input-field col s6">
 <input id="twitterHandle" type="text"/>
 <label for="twitterHandle">Last Name</label>
 </div>

Chapter 3

[65]

 <div class="input-field col s6">
 <input id="email" type="text"/>
 <label for="email">Email</label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s6">
 <input id="birthDate" type="text"/>
 <label for="birthDate">Birth Date</label>
 </div>
 </div>
 <div class="row s12">
 <button class="btn waves-effect waves-light" type="submit"
name="save">Submit
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 </form>
</div>
</body>
</html>

Note the @{} syntax that will construct the full path to a resource by prepending the
server context path (in our case, localhost:8080) to its argument.

We will also create the associated controller named ProfileController in the
profile package:

package masterspringmvc4.profile;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class ProfileController {

 @RequestMapping("/profile")
 public String displayProfile() {
 return "profile/profilePage";
 }
}

Now, you can go to http://localhost:8080 and behold a beautiful form that does
nothing. That's because we didn't map any action to the post URL.

Handling Forms and Complex URL Mapping

[66]

Let's create a Data Transfer Object (DTO) in the same package as our controller.
We will name it ProfileForm. Its role will be to map the fields of our web form and
describe validation rules:

package masterSpringMvc.profile;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;

public class ProfileForm {
 private String twitterHandle;
 private String email;
 private LocalDate birthDate;
 private List<String> tastes = new ArrayList<>();

 // getters and setters
}

This is a regular Plain Old Java Object (POJO). Don't forget to generate the getters
and setters, without which our data binding will not work properly. Note that we
have a list of tastes that we will not populate right now but a bit later.

Since we are using Java 8, the birth date of our user will be using the new Java
date-time API (JSR 310). This API is much better than the old java.util.Date API
because it makes strong distinctions between all the nuances of human dates and
uses a fluent API and immutable data structures.

In our example, a LocalDate class is a simple day without time associated to it. It
can be differentiated from the LocalTime class, which represents a time within a day,
the LocalDateTime class, which represents both, or the ZonedDateTime class, which
uses a time zone.

If you wish to learn more about the Java 8 date time API, refer to the
Oracle tutorial available at https://docs.oracle.com/javase/
tutorial/datetime/TOC.html.

Good advice is to always generate the toString method of our data
objects like this form. It is extremely useful for debugging.

https://docs.oracle.com/javase/tutorial/datetime/TOC.html
https://docs.oracle.com/javase/tutorial/datetime/TOC.html

Chapter 3

[67]

To instruct Spring to bind our field to this DTO, we will have to add some metadata
in the profilePage:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Your profile</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center">Personal info</h2>

 <form th:action="@{/profile}" th:object="${profileForm}"
method="post" class="col m8 s12 offset-m2">

 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.twitterHandle}"
id="twitterHandle" type="text"/>
 <label for="twitterHandle">Last Name</label>
 </div>
 <div class="input-field col s6">
 <input th:field="${profileForm.email}" id="email"
type="text"/>
 <label for="email">Email</label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.birthDate}"
id="birthDate" type="text"/>
 <label for="birthDate">Birth Date</label>
 </div>
 </div>
 <div class="row s12">
 <button class="btn waves-effect waves-light" type="submit"
name="save">Submit
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 </form>
</div>
</body>
</html>

Handling Forms and Complex URL Mapping

[68]

You will notice two things:

• The th:object attribute in the form
• The th:field attributes in all the fields

The first one will bind an object by its type to the controller. The second ones will
bind the actual fields to our form bean attributes.

For the th:object field to work, we need to add an argument of the type
ProfileForm to our request mapping methods:

@Controller
public class ProfileController {

 @RequestMapping("/profile")
 public String displayProfile(ProfileForm profileForm) {
 return "profile/profilePage";
 }

 @RequestMapping(value = "/profile", method = RequestMethod.POST)
 public String saveProfile(ProfileForm profileForm) {
 System.out.println("save ok" + profileForm);
 return "redirect:/profile";
 }
}

We also added a mapping for the POST method that will be called when the form
is submitted. At this point, if you try to submit the form with a date (for instance
10/10/1980), it won't work at all and give you an error 400 and no useful logging
information.

Logging in Spring Boot
With Spring Boot, logging configuration is extremely simple. Just add
logging.level.{package} = DEBUG to the application.
properties file, where {package} is the fully qualified name of one of the
classes or a package in your application. You can, of course, replace debug by
any logging level you want. You can also add a classic logging configuration.
Refer to http://docs.spring.io/spring-boot/docs/current/
reference/html/howto-logging.html for more information.

We will need to debug our application a little bit to understand what happened. Add
this line to your file application.properties:

logging.level.org.springframework.web=DEBUG

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html

Chapter 3

[69]

The org.springframework.web package is the base package of Spring MVC. This
will allow us to see debug information generated by Spring web. If you submit the
form again, you will see the following error in the log:

Field error in object 'profileForm' on field 'birthDate':
rejected value [10/10/1980]; codes [typeMismatch.profileForm.
birthDate,typeMismatch.birthDate,typeMismatch.java.time.
LocalDate,typeMismatch]; … nested exception is org.springframework.
core.convert.ConversionFailedException: Failed to convert from type
java.lang.String to type java.time.LocalDate for value '10/10/1980';
nested exception is java.time.format.DateTimeParseException: Text
'10/10/1980' could not be parsed, unparsed text found at index 8]

To understand what's going on, we need to have a look at the
DateTimeFormatterRegistrar class of Spring.

In this class, you will see half a dozen parsers and printers for the JSR 310. They will
all fall back on the short style date format, which is either MM/dd/yy if you live in the
US or dd/MM/yy otherwise.

This will instruct Spring Boot to create a DateFormatter class when our application
starts.

We need to do the same thing in our case and create our own formatter since writing
a year with two digits is a bit akward.

A Formatter in Spring is a class that can both print and parse an object. It will be
used to decode and print a value from and to a String.

We will create a very simple formatter in the date package called
USLocalDateFormatter:

public class USLocalDateFormatter implements Formatter<LocalDate> {
 public static final String US_PATTERN = "MM/dd/yyyy";
 public static final String NORMAL_PATTERN = "dd/MM/yyyy";

 @Override public LocalDate parse(String text, Locale locale)
throws ParseException {
 return LocalDate.parse(text, DateTimeFormatter.
ofPattern(getPattern(locale)));
 }

Handling Forms and Complex URL Mapping

[70]

 @Override public String print(LocalDate object, Locale locale) {
 return DateTimeFormatter.ofPattern(getPattern(locale)).
format(object);
 }

 public static String getPattern(Locale locale) {
 return isUnitedStates(locale) ? US_PATTERN : NORMAL_PATTERN;
 }

 private static boolean isUnitedStates(Locale locale) {
 return Locale.US.getCountry().equals(locale.getCountry());
 }
}

This little class will allow us to parse the date in a more common format (with years
in four digits) according to the user's locale.

Let's create a new class in the config package called WebConfiguration:

package masterSpringMvc.config;

import masterSpringMvc.dates.USLocalDateFormatter;
import org.springframework.context.annotation.Configuration;
import org.springframework.format.FormatterRegistry;
import org.springframework.web.servlet.config.annotation.
WebMvcConfigurerAdapter;

import java.time.LocalDate;

@Configuration
public class WebConfiguration extends WebMvcConfigurerAdapter {

 @Override public void addFormatters(FormatterRegistry registry) {
 registry.addFormatterForFieldType(LocalDate.class, new
USLocalDateFormatter());
 }
}

This class extends the WebMvcConfigurerAdapter, which is a very handy class to
customize the Spring MVC configuration. It provides a lot of common extension
points that you can access by overriding methods such as the addFormatters()
method.

This time, submitting our form won't result in any error except if you don't type the
date with the correct date format.

Chapter 3

[71]

For the moment, it is impossible for the users to see the format in which they are
supposed to enter their birth date, so let's add this information to the form.

In the ProfileController, let's add a dateFormat attribute:

@ModelAttribute("dateFormat")
public String localeFormat(Locale locale) {
 return USLocalDateFormatter.getPattern(locale);
}

The @ModelAttribute annotation will allow us to expose a property to the web
page, exactly like the model.addAttribute() method that we saw in the previous
chapter.

Now, we can use this information in our page by adding a placeholder to our date
field:

<div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.birthDate}" id="birthDate"
type="text" th:placeholder="${dateFormat}"/>
 <label for="birthDate">Birth Date</label>
 </div>
</div>

This information will now be displayed to the user:

Validation
We wouldn't want our user to enter invalid or empty information and that's why we
will need to add some validation logic to our ProfileForm.

package masterspringmvc4.profile;

import org.hibernate.validator.constraints.Email;
import org.hibernate.validator.constraints.NotEmpty;

Handling Forms and Complex URL Mapping

[72]

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Past;
import javax.validation.constraints.Size;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

public class ProfileForm {
 @Size(min = 2)
 private String twitterHandle;

 @Email
 @NotEmpty
 private String email;

 @NotNull
 private Date birthDate;

 @NotEmpty
 private List<String> tastes = new ArrayList<>();
}

As you can see, we added a few validation constraints. These annotations come
from the JSR-303 specification, which specifies bean validation. The most popular
implementation of this specification is hibernate-validator, which is included in
Spring Boot.

You can see that we use annotations coming from the javax.validation.
constraints package (defined in the API) and some coming from the org.
hibernate.validator.constraints package (additional constraints). Both work,
I encourage you to take a look at what is available in those packages in the jars
validation-api and hibernate-validator.

You can also take a look at the constraints available in the hibernate validator in
the documentation at http://docs.jboss.org/hibernate/stable/validator/
reference/en-US/html_single/#section-builtin-constraints.

We will need to add a few more things for validation to work. First, the controller
needs to say that it wants a valid model on form submission. Adding the javax.
validation.Valid annotation to the parameter representing the form does just that:

@RequestMapping(value = "/profile", method = RequestMethod.POST)
public String saveProfile(@Valid ProfileForm profileForm,
BindingResult bindingResult) {
 if (bindingResult.hasErrors()) {

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-builtin-constraints
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-builtin-constraints

Chapter 3

[73]

 return "profile/profilePage";
 }

 System.out.println("save ok" + profileForm);
 return "redirect:/profile";
}

Note that we do not redirect the user if the form contains any errors. This will allow
us to display them on the same web page.

Speaking of which, we need to add a place on the web page where those errors will
be displayed.

Add these lines just at the beginning of the form tag in profilePage.html:

<ul th:if="${#fields.hasErrors('*')}" class="errorlist">
 <li th:each="err : ${#fields.errors('*')}" th:text="${err}">Input
is incorrect

This will iterate through every error found in the form and display them in a list. If
you try to submit an empty form, you will see a bunch of errors:

Note that the @NotEmpty check on the tastes will prevent the form from being
submitted. Indeed, we do not yet have a way to provide them.

Customize validation messages
These error messages are not very useful for our user yet. The first thing we need to
do is to associate them properly to their respective fields. Let's modify profilePage.
html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"

Handling Forms and Complex URL Mapping

[74]

 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Your Profile</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center">Personal info</h2>

 <form th:action="@{/profile}" th:object="${profileForm}"
method="post" class="col m8 s12 offset-m2">

 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.twitterHandle}"
id="twitterHandle" type="text" th:errorclass="invalid"/>
 <label for="twitterHandle">Twitter handle</label>

 <div th:errors="*{twitterHandle}" class="red-
text">Error</div>
 </div>
 <div class="input-field col s6">
 <input th:field="${profileForm.email}" id="email"
type="text" th:errorclass="invalid"/>
 <label for="email">Email</label>

 <div th:errors="*{email}" class="red-text">Error</div>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.birthDate}"
id="birthDate" type="text" th:errorclass="invalid" th:placeholder="${
dateFormat}"/>
 <label for="birthDate">Birth Date</label>

 <div th:errors="*{birthDate}" class="red-text">Error</
div>
 </div>
 </div>
 <div class="row s12">
 <button class="btn indigo waves-effect waves-light"
type="submit" name="save">Submit
 <i class="mdi-content-send right"></i>

Chapter 3

[75]

 </button>
 </div>
 </form>
</div>
</body>
</html>

You will notice that we added a th:errors tag below each field in the form. We also
added a th:errorclass tag to each field. If the field contains an error, the associated
css class will be added to the DOM.

The validation looks much better already:

The next thing we need to do is to customize the error messages to reflect the
business rules of our application in a better way.

Remember that Spring Boot takes care of creating a message source bean for us?
The default location for this message source is in src/main/resources/messages.
properties.

Let's create such a bundle, and add the following text:

Size.profileForm.twitterHandle=Please type in your twitter user name
Email.profileForm.email=Please specify a valid email address
NotEmpty.profileForm.email=Please specify your email address
PastLocalDate.profileForm.birthDate=Please specify a real birth date
NotNull.profileForm.birthDate=Please specify your birth date

typeMismatch.birthDate = Invalid birth date format.

Handling Forms and Complex URL Mapping

[76]

It can be very handy in development to configure the message
source to always reload our bundles. Add the following property to
application.properties:
spring.messages.cache-seconds=0

0 means always reload, whereas -1 means never reload.

The class responsible for resolving the error messages in Spring is
DefaultMessageCodesResolver. In the case of field validation, this class tries to
resolve the following messages in the given order:

• code + "." + object name + "." + field
• code + "." + field
• code + "." + field type
• code

In the preceding rules, the code part can be two things: an annotation type such as
Size or Email, or an exception code such as typeMismatch. Remember when we
got an exception caused by an incorrect date format? The associated error code was
indeed typeMismatch.

With the preceding messages, we chose to be very specific. A good practice is to
define default messages as follows:

Size=the {0} field must be between {2} and {1} characters long
typeMismatch.java.util.Date = Invalid date format.

Note the placeholders; each validation error has a number of arguments associated
with it.

The last way to declare error messages would involve defining the error message
directly in the validation annotations as follows:

@Size(min = 2, message = "Please specify a valid twitter handle")
private String twitterHandle;

However, the downside of this method is that it is not compatible with
internationalization.

Chapter 3

[77]

Custom annotation for validation
For Java dates, there is an annotation called @Past, which ensures that a date is from
the past.

We don't want our user to pretend they are coming from the future, so we need to
validate the birth date. To do this, we will define our own annotation in the date
package:

package masterSpringMvc.date;

import javax.validation.Constraint;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import javax.validation.Payload;
import java.lang.annotation.*;
import java.time.LocalDate;

@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = PastLocalDate.PastValidator.class)
@Documented
public @interface PastLocalDate {
 String message() default "{javax.validation.constraints.Past.
message}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 class PastValidator implements ConstraintValidator<PastLocalDate,
LocalDate> {
 public void initialize(PastLocalDate past) {
 }

 public boolean isValid(LocalDate localDate,
ConstraintValidatorContext context) {
 return localDate == null || localDate.isBefore(LocalDate.
now());
 }
 }
}

Simple isn't it? This code will verify that our date is really from the past.

Handling Forms and Complex URL Mapping

[78]

We can now add it to the birthDate field in the profile form:

@NotNull
@PastLocalDate
private LocalDate birthDate;

Internationalization
Internationalization, frequently abbreviated i18n, is the process of designing an
application that can be translated into various languages.

This generally involves placing translations in properties bundles with their
names suffixed with the target locale, for instance, the messages_en.properties,
messages_en_US.properties, and messages_fr.properties files.

The correct property bundle is resolved by trying the most specific locale first and
then falling back to the less specific ones.

For U.S English, if you try to get a translation from a bundle named x, the application
would first look in the x_en_US.properties file, then the x_en.properties file,
and finally, the x.properties file.

The first thing we will do is translate our error messages into French. To do this, we
will rename our existing messages.properties file to messages_en.properties.

We will also create a second bundle named messages_fr.properties:

Size.profileForm.twitterHandle=Veuillez entrer votre identifiant
Twitter
Email.profileForm.email=Veuillez spécifier une adresse mail valide
NotEmpty.profileForm.email=Veuillez spécifier votre adresse mail
PastLocalDate.profileForm.birthDate=Veuillez donner votre vraie date
de naissance
NotNull.profileForm.birthDate=Veuillez spécifier votre date de
naissance

typeMismatch.birthDate = Date de naissance invalide.

We saw in Chapter 1, Setting Up a Spring Web Application in No Time that by default,
Spring Boot uses a fixed LocaleResolver interface. The LocaleResolver is a simple
interface with two methods:

public interface LocaleResolver {

 Locale resolveLocale(HttpServletRequest request);

Chapter 3

[79]

 void setLocale(HttpServletRequest request, HttpServletResponse
response, Locale locale);
}

Spring provides a bunch of implementations of this interface, such as
FixedLocaleResolver. This local resolver is very simple; we can configure the
application locale via a property and cannot change it once it is defined. To configure
the locale of our application, let's add the following property to our application.
properties file:

spring.mvc.locale=fr

This will add our validation messages in French.

If we take a look at the different LocaleResolver interfaces that are bundled in
Spring MVC, we will see the following:

• FixedLocaleResolver: This fixes the locale defined in configuration. It
cannot be changed once fixed.

• CookieLocaleResolver: This allows the locale to be retrieved and saved in a
cookie.

• AcceptHeaderLocaleResolver: This uses the HTTP header sent by the
user's browser to find the locale.

• SessionLocaleResolver: This finds and stores the locale in an HTTP
session.

These implementations cover a number of use cases, but in a more complex
application one might implement LocaleResolver directly to allow more complex
logic such as fetching the locale from the database and falling back to browser locale,
for instance.

Changing the locale
In our application, the locale is linked to the user. We will save their profile in
session.

We will allow the user to change the language of the site using a small menu. That's
why we will use the SessionLocaleResolver. Let's edit WebConfiguration once
more:

package masterSpringMvc.config;

import masterSpringMvc.date.USLocalDateFormatter;
import org.springframework.context.annotation.Bean;

Handling Forms and Complex URL Mapping

[80]

import org.springframework.context.annotation.Configuration;
import org.springframework.format.FormatterRegistry;
import org.springframework.web.servlet.LocaleResolver;
import org.springframework.web.servlet.config.annotation.
InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.
WebMvcConfigurerAdapter;
import org.springframework.web.servlet.i18n.LocaleChangeInterceptor;
import org.springframework.web.servlet.i18n.SessionLocaleResolver;

import java.time.LocalDate;

@Configuration
public class WebConfiguration extends WebMvcConfigurerAdapter {

 @Override
 public void addFormatters(FormatterRegistry registry) {
 registry.addFormatterForFieldType(LocalDate.class, new
USLocalDateFormatter());
 }

 @Bean
 public LocaleResolver localeResolver() {
 return new SessionLocaleResolver();
 }

 @Bean
 public LocaleChangeInterceptor localeChangeInterceptor() {
 LocaleChangeInterceptor localeChangeInterceptor = new
LocaleChangeInterceptor();
 localeChangeInterceptor.setParamName("lang");
 return localeChangeInterceptor;
 }

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(localeChangeInterceptor());
 }
}

We declared a LocaleChangeInterceptor bean as a Spring MVC interceptor. It will
intercept any request made to Controller and check for the lang query parameter.
For instance, navigating to http://localhost:8080/profile?lang=fr would
cause the locale to change.

Chapter 3

[81]

Spring MVC Interceptors can be compared to Servlet filters in a web
application. Interceptors allow custom preprocessing, skipping the
execution of a handler, and custom post-processing. Filters are more
powerful, for example, they allow for exchanging the request and response
objects that are handed down the chain. Filters are configured in a web.
xml file, while interceptors are declared as beans in the application context.

Now, we can change the locale by entering the correct URL ourselves, but it would
be better to add a navigation bar allowing the user to change the language. We will
modify the default layout (templates/layout/default.html) to add a drop-down
menu:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout">
<head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
 <meta name="viewport" content="width=device-width, initial-
scale=1, maximum-scale=1.0, user-scalable=no"/>
 <title>Default title</title>

 <link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet" media="screen,projection"/>
</head>
<body>

<ul id="lang-dropdown" class="dropdown-content">
 English
 French

<nav>
 <div class="nav-wrapper indigo">
 <ul class="right">
 <a class="dropdown-button" href="#!" data-
activates="lang-dropdown"><i class="mdi-action-language right"></i>
Lang

 </div>
</nav>

<section layout:fragment="content">
 <p>Page content goes here</p>

Handling Forms and Complex URL Mapping

[82]

</section>

<script src="/webjars/jquery/2.1.4/jquery.js"></script>
<script src="/webjars/materializecss/0.96.0/js/materialize.js"></
script>
<script type="text/javascript">
 $(".dropdown-button").dropdown();
</script>
</body>
</html>

This will allow the user to choose between the two supported languages.

Translating the application text
The last thing we need to do in order to have a fully bilingual application is to
translate the titles and labels of our application. To do this, we will edit our web
pages and use the th:text attribute, for instance, in profilePage.html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Your profile</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center" th:text="#{profile.title}">Personal
info</h2>

 <form th:action="@{/profile}" th:object="${profileForm}"
method="post" class="col m8 s12 offset-m2">

Chapter 3

[83]

 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.twitterHandle}"
id="twitterHandle" type="text" th:errorclass="invalid"/>
 <label for="twitterHandle" th:text="#{twitter.
handle}">Twitter handle</label>

 <div th:errors="*{twitterHandle}" class="red-
text">Error</div>
 </div>
 <div class="input-field col s6">
 <input th:field="${profileForm.email}" id="email"
type="text" th:errorclass="invalid"/>
 <label for="email" th:text="#{email}">Email</label>

 <div th:errors="*{email}" class="red-text">Error</div>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s6">
 <input th:field="${profileForm.birthDate}"
id="birthDate" type="text" th:errorclass="invalid"/>
 <label for="birthDate" th:text="#{birthdate}" th:place
holder="${dateFormat}">Birth Date</label>

 <div th:errors="*{birthDate}" class="red-text">Error</
div>
 </div>
 </div>
 <div class="row s12 center">
 <button class="btn indigo waves-effect waves-light"
type="submit" name="save" th:text="#{submit}">Submit
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 </form>
</div>
</body>
</html>

The th:text attribute will replace the contents of a HTML element with an
expression. Here, we use the #{} syntax, which indicates we want to display a
message coming from a property source like messages.properties.

Handling Forms and Complex URL Mapping

[84]

Let's add the corresponding translations to our English bundle:

NotEmpty.profileForm.tastes=Please enter at least one thing
profile.title=Your profile
twitter.handle=Twitter handle
email=Email
birthdate=Birth Date
tastes.legend=What do you like?
remove=Remove
taste.placeholder=Enter a keyword
add.taste=Add taste
submit=Submit

Now to the French ones:

NotEmpty.profileForm.tastes=Veuillez saisir au moins une chose
profile.title=Votre profil
twitter.handle=Pseudo twitter
email=Email
birthdate=Date de naissance
tastes.legend=Quels sont vos goûts ?
remove=Supprimer
taste.placeholder=Entrez un mot-clé
add.taste=Ajouter un centre d'intérêt
submit=Envoyer

Some of the translations are not used yet, but will be used in just a moment. Et voilà!
The French market is ready for the Twitter search flood.

A list in a form
We now want the user to enter a list of "tastes", which are, in fact, a list of keywords
we will use to search tweets.

A button will be displayed, allowing our user to enter a new keyword and add it to a
list. Each item of this list will be an editable input text and will be removable thanks
to a remove button:

Chapter 3

[85]

Handling list data in a form can be a chore with some frameworks. However, with
Spring MVC and Thymeleaf it is relatively straightforward, when you understand
the principle.

Add the following lines in the profilePage.html file right below the row containing
the birth date, and just over the submit button:

<fieldset class="row">
 <legend th:text="#{tastes.legend}">What do you like?</legend>
 <button class="btn teal" type="submit" name="addTaste"
th:text="#{add.taste}">Add taste
 <i class="mdi-content-add left"></i>
 </button>

 <div th:errors="*{tastes}" class="red-text">Error</div>

 <div class="row" th:each="row,rowStat : *{tastes}">
 <div class="col s6">
 <input type="text" th:field="*{tastes[__${rowStat.
index}__]}" th:placeholder="#{taste.placeholder}"/>
 </div>

 <div class="col s6">
 <button class="btn red" type="submit" name="removeTaste"
th:value="${rowStat.index}" th:text="#{remove}">Remove
 <i class="mdi-action-delete right waves-effect"></i>
 </button>
 </div>
 </div>
</fieldset>

Handling Forms and Complex URL Mapping

[86]

The purpose of this snippet is to iterate over the tastes variable of our LoginForm.
This can be achieved with the th:each attribute, which looks a lot like a for…in loop
in java.

Compared to the search result loop we saw earlier, the iteration is stored in two
variables instead of one. The first one will actually contain each row of the data.
The rowStat variable will contain additional information on the current state of the
iteration.

The strangest thing in the new piece of code is:

th:field="*{tastes[__${rowStat.index}__]}"

This is quite a complicated syntax. You could come up with something simpler on
your own, such as:

th:field="*{tastes[rowStat.index]}"

Well, that wouldn't work. The ${rowStat.index} variable, which represents the
current index of the iteration loop, needs to be evaluated before the rest of the
expression. To achieve this, we need to use preprocessing.

The expression surrounded by double underscores will be preprocessed, which
means that it will be processed before the normal processing phase, allowing it to be
evaluated twice.

There are two new submit buttons on our form now. They all have a name. The
global submit button we had earlier is called save. The two new buttons are called
addTaste and removeTaste.

On the controller side, this will allow us to easily discriminate the different actions
coming from our form. Let's add two new actions to our ProfileController:

@Controller
public class ProfileController {

 @ModelAttribute("dateFormat")
 public String localeFormat(Locale locale) {
 return USLocalDateFormatter.getPattern(locale);
 }

 @RequestMapping("/profile")
 public String displayProfile(ProfileForm profileForm) {
 return "profile/profilePage";
 }

Chapter 3

[87]

 @RequestMapping(value = "/profile", params = {"save"}, method =
RequestMethod.POST)
 public String saveProfile(@Valid ProfileForm profileForm,
BindingResult bindingResult) {
 if (bindingResult.hasErrors()) {
 return "profile/profilePage";
 }
 System.out.println("save ok" + profileForm);
 return "redirect:/profile";
 }

 @RequestMapping(value = "/profile", params = {"addTaste"})
 public String addRow(ProfileForm profileForm) {
 profileForm.getTastes().add(null);
 return "profile/profilePage";
 }

 @RequestMapping(value = "/profile", params = {"removeTaste"})
 public String removeRow(ProfileForm profileForm,
HttpServletRequest req) {
 Integer rowId = Integer.valueOf(req.
getParameter("removeTaste"));
 profileForm.getTastes().remove(rowId.intValue());
 return "profile/profilePage";
 }
}

We added a param parameter to each of our post actions to differentiate them. The
one we had previously is now bound to the save parameter.

When we click on a button, its name will automatically be added to the form data
sent by the browser. Note that we specified a particular value with the remove
button: th:value="${rowStat.index}". This attribute will indicate which value
the associated parameter should specifically take. A blank value will be sent if this
attribute is not present. This means that when we click on the remove button, a
removeTaste parameter will be added to the POST request, containing the index of
the row we would like to remove. We can then get it back into the Controller with
the following code:

Integer rowId = Integer.valueOf(req.getParameter("removeTaste"));

The only downside with this method is that the whole form data will be sent every
time we click on the button, even if it is not strictly required. Our form is small
enough, so a tradeoff is acceptable.

That's it! The form is now complete, with the possibility of adding one or more tastes.

Handling Forms and Complex URL Mapping

[88]

Client validation
As a little bonus, client-side validation has become very easy nowadays with the
HTML5 form validation specification. If your target browsers are Internet Explorer
10 and above, adding client-side validation is as easy as specifying the correct input
type instead of just using text.

By adding the client-side validation, we can prevalidate the form and avoid
overloading the server with requests that we know are incorrect. More information
on the client-side validation specification is available at http://caniuse.
com/#search=validation.

We can modify our inputs to enable simple client-side validation. The previous
inputs, as shown in the following code:

<input th:field="${profileForm.twitterHandle}" id="twitterHandle"
type="text" th:errorclass="invalid"/>
<input th:field="${profileForm.email}" id="email" type="text"
th:errorclass="invalid"/>
<input th:field="${profileForm.birthDate}" id="birthDate" type="text"
th:errorclass="invalid"/>
<input type="text" th:field="*{tastes[__${rowStat.index}__]}"
th:placeholder="#{taste.placeholder}"/>

This becomes:

<input th:field="${profileForm.twitterHandle}" id="twitterHandle"
type="text" required="required" th:errorclass="invalid"/>
<input th:field="${profileForm.email}" id="email" type="email"
required="required" th:errorclass="invalid"/>
<input th:field="${profileForm.birthDate}" id="birthDate" type="text"
required="required" th:errorclass="invalid"/>
<input type="text" required="required" th:field="*{tastes[__${rowStat.
index}__]}" th:placeholder="#{taste.placeholder}"/>

With this method, your browser will detect when the form is submitted and validate
each attribute according to its type. The required attribute forces the user to enter
a nonblank value. The email type enforces basic e-mail validation rules on the
corresponding field.

http://caniuse.com/#search=validation
http://caniuse.com/#search=validation

Chapter 3

[89]

Other types of validators also exist. Take a look at http://www.the-art-of-web.
com/html/html5-form-validation.

The downside of this method is that our add taste and remove taste buttons will now
trigger validation. To fix this, we need to include a script at the bottom of the default
layout, right after the jQuery declaration.

However, it would be best to include it only on the profile page. To do this, we can
add a new fragment section in the layout/default.html page, just before the end
of the body tag:

<script type="text/javascript" layout:fragment="script">
</script>

This will allow us to include an additional script on each page if needed.

Now, we can add the following script to our profile page, just before closing the
body tag:

<script layout:fragment="script">
 $('button').bind('click', function(e) {
 if (e.currentTarget.name === 'save') {
 $(e.currentTarget.form).removeAttr('novalidate');
 } else {
 $(e.currentTarget.form).attr('novalidate', 'novalidate');
 }
 });
</script>

Form validation won't be triggered when a novalidate attribute is present on the
form. This little script will dynamically remove the novalidate attribute if the action
of the form is named save if the name of the input is different, the novalidate
attribute will always be added. Validation will thus be triggered only by the save
button.

http://www.the-art-of-web.com/html/html5-form-validation
http://www.the-art-of-web.com/html/html5-form-validation

Handling Forms and Complex URL Mapping

[90]

The check point
Before moving on to the next chapter, let's check whether everything is in the right
place.

In the Java sources, you should have the following:

• A new controller, the ProfileController
• Two new classes related to date: a date formatter and an annotation to

validate LocalDates
• A new WebConfiguration folder to customize Spring MVC's configuration

In the resources, you should have a new template inside the profile directory and
two new bundles:

Chapter 3

[91]

Summary
In this chapter, you learned how to make a complete form. We created a model using
Java 8 dates, and you learned how to format information coming from the user and
display it accordingly.

We ensured that the form was filled with valid information, with validator
annotations, including our own. Also, we prevented obviously incorrect information
from even hitting the server by including some client-side validation very easily.

Finally, we even translated the whole application into English and French, date
formats included!

In the next chapter, we will build a space where the users will be able to upload their
pictures and learn more about error handling in Spring MVC applications.

[93]

File Upload and
Error Handling

In this chapter, we will enable our user to upload a profile picture. We will also see
how to handle errors in Spring MVC.

Uploading a file
We will now make it possible for our user to upload a profile picture. This will be
available from the profile page later on, but for now, we will simplify things and
create a new page in the templates directory under profile/uploadPage.html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Profile Picture Upload</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center">Upload</h2>

 <form th:action="@{/upload}" method="post" enctype="multipart/
form-data" class="col m8 s12 offset-m2">

 <div class="input-field col s6">
 <input type="file" id="file" name="file"/>
 </div>

File Upload and Error Handling

[94]

 <div class="col s6 center">
 <button class="btn indigo waves-effect waves-light"
type="submit" name="save" th:text="#{submit}">Submit
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 </form>
</div>
</body>
</html>

Not much to see besides the enctype attribute on the form. The file will be sent
by the POST method to the upload URL. We will now create the corresponding
controller right beside ProfileController in the profile package:

package masterSpringMvc.profile;

import org.apache.tomcat.util.http.fileupload.IOUtils;
import org.springframework.core.io.FileSystemResource;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.multipart.MultipartFile;

import java.io.*;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

@Controller
public class PictureUploadController {
 public static final Resource PICTURES_DIR = new
FileSystemResource("./pictures");

 @RequestMapping("upload")
 public String uploadPage() {
 return "profile/uploadPage";
 }

 @RequestMapping(value = "/upload", method = RequestMethod.POST)
 public String onUpload(MultipartFile file) throws IOException {
 String filename = file.getOriginalFilename();

Chapter 4

[95]

 File tempFile = File.createTempFile("pic",
getFileExtension(filename), PICTURES_DIR.getFile());

 try (InputStream in = file.getInputStream();
 OutputStream out = new FileOutputStream(tempFile)) {
 IOUtils.copy(in, out);
 }

 return "profile/uploadPage";
 }

 private static String getFileExtension(String name) {
 return name.substring(name.lastIndexOf("."));
 }
}

The first thing this code will do is create a temporary file in the pictures directory,
which can be found inside the project's root folder; so, ensure that it exists. In Java, a
temporary file is just a commodity to obtain a unique file identifier on the filesystem.
It is up to the user to optionally delete it.

Create a pictures directory at the root of the project and add an empty file called
.gitkeep to ensure that you can commit it in Git.

Empty directories in Git
Git is file-based and it is not possible to commit an empty directory. A
common workaround is to commit an empty file, such as .gitkeep,
in a directory to force Git to keep it under version control.

The file uploaded by the user will be injected as a MultipartFile interface in our
controller. This interface provides several methods to get the name of the file, its size,
and its contents.

The method that particularly interests us here is getInputStream(). We will indeed
copy this stream to a fileOutputStream method, thanks to the IOUtils.copy
method. The code to write an input stream to an output stream is pretty boring,
so it's handy to have the Apache Utils in the classpath (it is part of the tomcat-
embedded-core.jar file).

File Upload and Error Handling

[96]

We make heavy use of the pretty cool Spring and Java 7 NIO features:

• The resource class of string is a utility class that represents an abstraction of
resources that can be found in different ways

• The try…with block will automatically close our streams even in the case of
an exception, removing the boilerplate of writing a finally block

With the preceding code, any file uploaded by the user will be copied into the
pictures directory.

There are a handful of properties available in Spring Boot to customize file upload.
Take a look at the MultipartProperties class.

The most interesting ones are:

• multipart.maxFileSize: This defines the maximum file size allowed
for the uploaded files. Trying to upload a bigger one will result in a
MultipartException class. The default value is 1Mb.

• multipart.maxRequestSize: This defines the maximum size of the
multipart request. The default value is 10Mb.

The defaults are good enough for our application. After a few uploads, our picture
directory will look like this:

Wait! Somebody uploaded a ZIP file! I cannot believe it. We better add some checks
in our controller to ensure that the uploaded files are real images:

package masterSpringMvc.profile;

import org.apache.tomcat.util.http.fileupload.IOUtils;
import org.springframework.core.io.FileSystemResource;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.multipart.MultipartFile;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;

Chapter 4

[97]

import java.io.*;

@Controller
public class PictureUploadController {
 public static final Resource PICTURES_DIR = new
FileSystemResource("./pictures");

 @RequestMapping("upload")
 public String uploadPage() {
 return "profile/uploadPage";
 }

 @RequestMapping(value = "/upload", method = RequestMethod.POST)
 public String onUpload(MultipartFile file, RedirectAttributes
redirectAttrs) throws IOException {

 if (file.isEmpty() || !isImage(file)) {
 redirectAttrs.addFlashAttribute("error", "Incorrect file.
Please upload a picture.");
 return "redirect:/upload";
 }

 copyFileToPictures(file);

 return "profile/uploadPage";
 }

 private Resource copyFileToPictures(MultipartFile file) throws
IOException {
 String fileExtension = getFileExtension(file.
getOriginalFilename());
 File tempFile = File.createTempFile("pic", fileExtension,
PICTURES_DIR.getFile());
 try (InputStream in = file.getInputStream();
 OutputStream out = new FileOutputStream(tempFile)) {

 IOUtils.copy(in, out);
 }
 return new FileSystemResource(tempFile);
 }

 private boolean isImage(MultipartFile file) {
 return file.getContentType().startsWith("image");
 }

File Upload and Error Handling

[98]

 private static String getFileExtension(String name) {
 return name.substring(name.lastIndexOf("."));
 }
}

Pretty easy! The getContentType() method returns the Multipurpose Internet Mail
Extensions (MIME) type of the file. It will be image/png, image/jpg, and so on. So
we just have to check if the MIME type starts with "image".

We added an error message to the form so we should add something in our web
page to display it. Place the following code just under the title in the uploadPage:

<div class="col s12 center red-text" th:text="${error}"
th:if="${error}">
 Error during upload
</div>

The next time you try to upload a ZIP file, you will get an error! This is shown in the
following screenshot:

Writing an image to the response
The uploaded images are not served from the static directories. We will need to take
special measures to display them in our web page.

Let's add the following lines to our upload page, just above the form:

<div class="col m8 s12 offset-m2">

</div>

This will try and get the image from our controller. Let's add the corresponding
method to the PictureUploadController class:

@RequestMapping(value = "/uploadedPicture")
public void getUploadedPicture(HttpServletResponse response) throws
IOException {

Chapter 4

[99]

 ClassPathResource classPathResource = new ClassPathResource("/
images/anonymous.png");
 response.setHeader("Content-Type", URLConnection.guessContentTypeF
romName(classPathResource.getFilename()));
 IOUtils.copy(classPathResource.getInputStream(), response.
getOutputStream());
}

This code will write an image found in the src/main/resources/images/
anonymous.png directory directly to the response! How exciting!

If we go to our page again, we will see the following image:

I found the anonymous user image on iconmonstr (http://iconmonstr.
com/user-icon) and downloaded it as a 128 x 128 PNG file.

Managing upload properties
A good thing to do at this point is to allow the configuration of the upload directory
and the path to the anonymous user image through the application.properties
file.

Let's create a PicturesUploadProperties class inside a newly created config
package:

package masterSpringMvc.config;

import org.springframework.boot.context.properties.
ConfigurationProperties;
import org.springframework.core.io.DefaultResourceLoader;
import org.springframework.core.io.Resource;

import java.io.IOException;

http://iconmonstr.com/user-icon
http://iconmonstr.com/user-icon

File Upload and Error Handling

[100]

@ConfigurationProperties(prefix = "upload.pictures")
public class PictureUploadProperties {
 private Resource uploadPath;
 private Resource anonymousPicture;

 public Resource getAnonymousPicture() {
 return anonymousPicture;
 }

 public void setAnonymousPicture(String anonymousPicture) {
 this.anonymousPicture = new DefaultResourceLoader().
getResource(anonymousPicture);
 }

 public Resource getUploadPath() {
 return uploadPath;
 }

 public void setUploadPath(String uploadPath) {
 this.uploadPath = new DefaultResourceLoader().
getResource(uploadPath);
 }
}

In this class, we make use of the Spring Boot ConfigurationProperties. This will
tell Spring Boot to automatically map properties found in the classpath (by default,
in the application.properties file) in a type-safe fashion.

Notice that we defined setters taking 'String's as arguments but are at liberty to let
the getters return any type is the most useful.

We now need to add the PicturesUploadProperties class to our configuration:

@SpringBootApplication
@EnableConfigurationProperties({PictureUploadProperties.class})
public class MasterSpringMvc4Application extends
WebMvcConfigurerAdapter {
 // code omitted
}

We can now add the properties' values inside the application.properties file:

upload.pictures.uploadPath=file:./pictures
upload.pictures.anonymousPicture=classpath:/images/anonymous.png

Chapter 4

[101]

Because we use Spring's DefaultResourceLoader class, we can use prefixes such as
file: or classpath: to specify where our resources can be found.

This would be the equivalent of creating a FileSystemResource class or a
ClassPathResource class.

This approach also has the advantage of documenting the code. We can easily
see that the picture directory will be found in the application root, whereas the
anonymous picture will be found in the classpath.

That's it. We can now use our properties inside our controller. The following are the
relevant parts of the PictureUploadController class:

package masterSpringMvc.profile;

import masterSpringMvc.config.PictureUploadProperties;
import org.apache.tomcat.util.http.fileupload.IOUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.multipart.MultipartFile;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;

import javax.servlet.http.HttpServletResponse;
import java.io.*;
import java.net.URLConnection;

@Controller
public class PictureUploadController {
 private final Resource picturesDir;
 private final Resource anonymousPicture;

 @Autowired
 public PictureUploadController(PictureUploadProperties
uploadProperties) {
 picturesDir = uploadProperties.getUploadPath();
 anonymousPicture = uploadProperties.getAnonymousPicture();
 }

 @RequestMapping(value = "/uploadedPicture")
 public void getUploadedPicture(HttpServletResponse response)
throws IOException {

File Upload and Error Handling

[102]

 response.setHeader("Content-Type", URLConnection.guessContentT
ypeFromName(anonymousPicture.getFilename()));
 IOUtils.copy(anonymousPicture.getInputStream(), response.
getOutputStream());
 }

 private Resource copyFileToPictures(MultipartFile file) throws
IOException {
 String fileExtension = getFileExtension(file.
getOriginalFilename());
 File tempFile = File.createTempFile("pic", fileExtension,
picturesDir.getFile());
 try (InputStream in = file.getInputStream();
 OutputStream out = new FileOutputStream(tempFile)) {

 IOUtils.copy(in, out);
 }
 return new FileSystemResource(tempFile);
 }
// The rest of the code remains the same
}

At this point, if you launch your application again, you will see that the result hasn't
changed. The anonymous picture is still displayed and the pictures uploaded by our
users still end up in the pictures directory at the project root.

Displaying the uploaded picture
It would be nice to display the user's picture now, wouldn't it? To do this, we will
add a model attribute to our PictureUploadController class:

@ModelAttribute("picturePath")
public Resource picturePath() {
 return anonymousPicture;
}

We can now inject it to retrieve its value when we serve the uploaded picture:

@RequestMapping(value = "/uploadedPicture")
public void getUploadedPicture(HttpServletResponse response, @
ModelAttribute("picturePath") Path picturePath) throws IOException {
 response.setHeader("Content-Type", URLConnection.guessContentTypeF
romName(picturePath.toString()));
 Files.copy(picturePath, response.getOutputStream());
}

Chapter 4

[103]

The @ModelAttribute annotation is a handy way to create model attributes with
an annotated method. They can then be injected with the same annotation into
controller methods. With this code, a picturePath parameter will be available in
the model as long as we are not redirected to another page. Its default value is the
anonymous picture we defined in our properties.

We need to update this value when the file is uploaded. Update the onUpload
method:

@RequestMapping(value = "/upload", method = RequestMethod.POST)
public String onUpload(MultipartFile file, RedirectAttributes
redirectAttrs, Model model) throws IOException {

 if (file.isEmpty() || !isImage(file)) {
 redirectAttrs.addFlashAttribute("error", "Incorrect file.
Please upload a picture.");
 return "redirect:/upload";
 }

 Resource picturePath = copyFileToPictures(file);
 model.addAttribute("picturePath", picturePath);

 return "profile/uploadPage";
}

By injecting the model, we can update the picturePath parameter after the upload
is complete.

Now, the problem is that our two methods, onUpload and getUploadedPicture,
will occur in different requests. Unfortunately, the model attributes will be reset
between each.

That's why we will define the picturePath parameter as a session attribute. We can
do this by adding another annotation to our controller class:

@Controller
@SessionAttributes("picturePath")
public class PictureUploadController {
}

File Upload and Error Handling

[104]

Phew! That's a lot of annotations just to handle a simple session attribute. You will
get the following output:

This approach makes code composition really easy. Plus, we didn't use
HttpServletRequest or HttpSession directly. Moreover, our object can be
typed easily.

Handling file upload errors
It must have certainly occurred to my attentive readers that our code is susceptible to
throw two kinds of exceptions:

• IOException: This error is thrown if something bad happens while writing
the file to disk.

• MultipartException: This error is thrown if an error occurs while
uploading the file. For instance, when the maximum file size is exceeded.

This will give us a good opportunity to look at two ways of handling exceptions in
Spring:

• Using the @ExceptionHandler annotation locally in a controller method
• Using a global exception handler defined at the Servlet container level

Let's handle IOException with the @ExceptionHandler annotation inside our
PictureUploadController class by adding the following method:

@ExceptionHandler(IOException.class)
public ModelAndView handleIOException(IOException exception) {
 ModelAndView modelAndView = new ModelAndView("profile/
uploadPage");

Chapter 4

[105]

 modelAndView.addObject("error", exception.getMessage());
 return modelAndView;
}

This is a simple yet powerful approach. This method will be called every time an
IOException is thrown in our controller.

In order to test the exception handler, since making the Java IO code throw an
exception can be tricky, just replace the onUpload method body during the test:

@RequestMapping(value = "/upload", method = RequestMethod.POST)
public String onUpload(MultipartFile file, RedirectAttributes
redirectAttrs, Model model) throws IOException {
 throw new IOException("Some message");
}

After this change, if we try to upload a picture, we will see the error message of this
exception displayed on the upload page:

Now, we will handle the MultipartException. This needs to happen at the Servlet
container level (that is, at the Tomcat level), as this exception is not thrown directly
by our controller.

We will need to add a new EmbeddedServletContainerCustomizer bean to our
configuration. Add this method to the WebConfiguration class:

@Bean
public EmbeddedServletContainerCustomizer containerCustomizer() {
 EmbeddedServletContainerCustomizer

File Upload and Error Handling

[106]

embeddedServletContainerCustomizer = new
EmbeddedServletContainerCustomizer() {
 @Override
 public void customize(ConfigurableEmbeddedServletContainer
container) {
 container.addErrorPages(new ErrorPage(MultipartException.
class, "/uploadError"));
 }
 };
 return embeddedServletContainerCustomizer;
}

This is a little verbose. Note that EmbeddedServletContainerCustomizer is an
interface that contains a single method; it can therefore be replaced by a lambda
expression:

@Bean
public EmbeddedServletContainerCustomizer containerCustomizer() {
 EmbeddedServletContainerCustomizer
embeddedServletContainerCustomizer
 = container -> container.addErrorPages(new
ErrorPage(MultipartException.class, "/uploadError"));
 return embeddedServletContainerCustomizer;
}

So, let's just write the following:

@Bean
public EmbeddedServletContainerCustomizer containerCustomizer() {
 return container -> container.addErrorPages(new
ErrorPage(MultipartException.class, "/uploadError"));
}

This code creates a new error page, which will be called when a
MultipartException happens. It can also be mapped to an HTTP status. The
EmbeddedServletContainerCustomizer interface has many other features that will
allow the customization of the Servlet container in which our application runs. Visit
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-
features-developing-web-applications.html#boot-features-customizing-
embedded-containers for more information.

We now need to handle this uploadError URL in our PictureUploadController
class:

@RequestMapping("uploadError")
public ModelAndView onUploadError(HttpServletRequest request) {
 ModelAndView modelAndView = new ModelAndView("uploadPage");

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-customizing-embedded-containers
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-customizing-embedded-containers
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-customizing-embedded-containers

Chapter 4

[107]

 modelAndView.addObject("error", request.getAttribute(WebUtils.
ERROR_MESSAGE_ATTRIBUTE));
 return modelAndView;
}

The error pages defined in a Servlet environment contain a number of interesting
attributes that will help debug the error:

Attribute Description
javax.servlet.error.status_code This is the HTTP status code of the error.
javax.servlet.error.exception_
type

This is the exception class.

javax.servlet.error.message This is the message of the exception
thrown.

javax.servlet.error.request_uri This is the URI on which the exception
occurred.

javax.servlet.error.exception This is the actual exception.
javax.servlet.error.servlet_name This is the name of the Servlet that caught

the exception.

All these attributes are conveniently accessible on the WebUtils class of Spring Web.

If someone tries to upload too big a file, they will get a very clear error message.

You can now test that the error is handled correctly by uploading a really big file
(> 1Mb) or setting the multipart.maxFileSize property to a lower value: 1kb
for instanceKL:

File Upload and Error Handling

[108]

Translating the error messages
It is really good for a developer to see the exceptions thrown by the application.
However, for our users, they bear little value. We will therefore translate them. In
order to do that, we have to inject our application's MessageSource class into our
controller's constructor:

private final MessageSource messageSource;

@Autowired
public PictureUploadController(PictureUploadProperties
uploadProperties, MessageSource messageSource) {
 picturesDir = uploadProperties.getUploadPath();
 anonymousPicture = uploadProperties.getAnonymousPicture();
 this.messageSource = messageSource;
}

Now, we can retrieve messages from our messages bundle:

@ExceptionHandler(IOException.class)
public ModelAndView handleIOException(Locale locale) {
 ModelAndView modelAndView = new ModelAndView("profile/
uploadPage");
 modelAndView.addObject("error", messageSource.getMessage("upload.
io.exception", null, locale));
 return modelAndView;
}

@RequestMapping("uploadError")
public ModelAndView onUploadError(Locale locale) {
 ModelAndView modelAndView = new ModelAndView("profile/
uploadPage");
 modelAndView.addObject("error", messageSource.getMessage("upload.
file.too.big", null, locale));
 return modelAndView;
}

Here are the English messages:

upload.io.exception=An error occurred while uploading the file. Please
try again.
upload.file.too.big=Your file is too big.

Now, the French ones:

upload.io.exception=Une erreur est survenue lors de l'envoi du
fichier. Veuillez réessayer.
upload.file.too.big=Votre fichier est trop gros.

Chapter 4

[109]

Placing the profile in a session
The next thing we want is the profile to be stored in a session so that it does not get
reset every time we go on the profile page. This can apparently prove tiresome to
some users and we have to address it.

HTTP sessions are a way to store information between requests. HTTP
is a stateless protocol, which means that there is no way to relate two
requests coming from the same user. What most Servlet containers do is
they associate a cookie called JSESSIONID to each user. This cookie will
be transmitted in the request header and will allow you to store arbitrary
objects in a map, an abstraction called HttpSession. Such a session
will typically end when the user closes or switches web browsers or after
a predefined period of inactivity.

We just saw a method to put objects in a session using the @SessionAttributes
annotation. This works well within a controller but makes the data difficult to share
when spread across multiple controllers. We have to rely on a string to resolve the
attribute from its name, which is hard to refactor. For the same reason, we don't want
to manipulate the HttpSession directly. Another argument that will discourage the
direct usage of the session is how difficult it is to unit test the controller that depends
on it.

There is another popular approach when it comes to saving things in a session with
Spring: annotate a bean with @Scope("session").

You will then be able to inject your session bean in your controllers and other Spring
components to either set or retrieve values from it.

Let's create a UserProfileSession class in the profile package:

package masterSpringMvc.profile;

import org.springframework.context.annotation.Scope;
import org.springframework.context.annotation.ScopedProxyMode;
import org.springframework.stereotype.Component;
import java.io.Serializable;
import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;

@Component
@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class UserProfileSession implements Serializable {
 private String twitterHandle;

File Upload and Error Handling

[110]

 private String email;
 private LocalDate birthDate;
 private List<String> tastes = new ArrayList<>();

 public void saveForm(ProfileForm profileForm) {
 this.twitterHandle = profileForm.getTwitterHandle();
 this.email = profileForm.getEmail();
 this.birthDate = profileForm.getBirthDate();
 this.tastes = profileForm.getTastes();
 }

 public ProfileForm toForm() {
 ProfileForm profileForm = new ProfileForm();
 profileForm.setTwitterHandle(twitterHandle);
 profileForm.setEmail(email);
 profileForm.setBirthDate(birthDate);
 profileForm.setTastes(tastes);
 return profileForm;
 }
}

We have conveniently provided a way to convert from and to a ProfileForm object.
This will help us store and retrieve the form data from our ProfileController
constructor. We need to inject our UserProfileSession variable in the controller's
constructor and store it as a field. We also need to expose the ProfileForm as a
model attribute, which will remove the need to inject it in the displayProfile
method. Finally, we can save the profile once it has been validated:

@Controller
public class ProfileController {

 private UserProfileSession userProfileSession;
 @Autowired
 public ProfileController(UserProfileSession userProfileSession) {
 this.userProfileSession = userProfileSession;
 }

 @ModelAttribute
 public ProfileForm getProfileForm() {
 return userProfileSession.toForm();
 }

Chapter 4

[111]

 @RequestMapping(value = "/profile", params = {"save"}, method =
RequestMethod.POST)
 public String saveProfile(@Valid ProfileForm profileForm,
BindingResult bindingResult) {
 if (bindingResult.hasErrors()) {
 return "profile/profilePage";
 }
 userProfileSession.saveForm(profileForm);
 return "redirect:/profile";
 }

 // the rest of the code is unchanged
}

That's all it takes to save data in a session with Spring MVC.

Now, if you complete the profile form and refresh the page, the data will be persisted
between requests.

Just before moving on to the next chapter, I want to detail a couple of concepts we
just used.

The first is the injection by the constructor. The ProfileController constructor
is annotated with @Autowired, which means Spring will resolve the constructor
arguments from the application context before instantiating the bean. The alternative,
which is a little less verbose, would have been to use field injection:

@Controller
public class ProfileController {

 @Autowired
 private UserProfileSession userProfileSession;
}

Constructor injection is arguably better because it makes the unit testing of our
controller easier if we were to move away from the spring-test framework and it
makes the dependencies of our bean somewhat more explicit.

For a detailed discussion on field injection and constructor injection, refer to the
excellent blog post by Oliver Gierke at http://olivergierke.de/2013/11/why-
field-injection-is-evil/.

Another thing that might need clarification is the proxyMode parameter on the Scope
annotation:

@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)

http://olivergierke.de/2013/11/why-field-injection-is-evil/
http://olivergierke.de/2013/11/why-field-injection-is-evil/

File Upload and Error Handling

[112]

There are three proxyMode parameters available with Spring, if we don't count the
default one:

• TARGET_CLASS: This uses a CGI proxy
• INTERFACES: This creates a JDK proxy
• NO: This does not create any proxy

The advantage of a proxy typically comes into play when you inject something into
a long-lived component such as a singleton. Because injection only happens once,
when the bean is created, subsequent calls to the injected bean might not reflect its
actual state.

In our case, a session bean's actual state is stored in the session and not directly on
the bean. This explains why Spring has to create a proxy: it needs to intercept calls to
our bean methods and listen for its mutations. This way, the state of the bean can be
transparently stored and retrieved from the underlying HTTP session.

For a session bean, we are forced to use a proxy mode. The CGI proxy will
instrument your bytecode and work on any class, whereas the JDK approach might
be a bit more lightweight but requires you to implement an interface.

Lastly, we made the UserProfileSession bean implement the Serializable
interface. This is not strictly required because the HTTP sessions can store arbitrary
objects in memory, but making objects that end up in the session serializable really is
a good practice.

Indeed, we might change the way the session is persisted. In fact, we will store the
session in a Redis database in Chapter 8, Optimizing Your Requests, where Redis has to
work with Serializable objects. It's always best to think of the session of a generic
data store. We have to provide a way to write and read objects from this storage
system.

For serialization to work properly on our bean, we also need every one of its field to
be serializable. In our case, strings and dates are serializable so we are good to go.

Custom error pages
Spring Boot lets you define your own error view instead of the Whitelabel error
page that we saw earlier. It must have the name error and its purpose is to handle
all exceptions. The default BasicErrorController class will expose a lot of useful
model attributes that you can display on this page.

Let's create a custom error page in src/main/resources/templates. Let's call it
error.html:

Chapter 4

[113]

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
 <meta charset="UTF-8"/>
 <title th:text="${status}">404</title>

 <link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet"
 media="screen,projection"/>
</head>
<body>
<div class="row">
 <h1 class="indigo-text center" th:text="${error}">Not found</h1>

 <p class="col s12 center" th:text="${message}">
 This page is not available
 </p>
</div>
</body>
</html>

Now, if we navigate to a URL that is not handled by our application, we see our
custom error page:

A more advanced option to handle errors is to define your own implementation
of the ErrorController class, a controller in charge of handling all the exceptions
at a global level. Take a look at the ErrorMvcAutoConfiguration class and the
BasicErrorController class, which is the default implementation.

File Upload and Error Handling

[114]

URL mapping with matrix variables
We are now aware of what our user is interested in. It would be a good idea to
improve our Tweet controller so that it allows searching from a list of keywords.

One interesting way to pass key-value pairs in a URL is to use a matrix variable. It is
pretty similar to request parameters. Consider the following code:

someUrl/param?var1=value1&var2=value2

Instead of the preceding parameter, matrix variables understand this:

someUrl/param;var1=value1;var2=value2

They also allow each parameter to be a list:

someUrl/param;var1=value1,value2;var2=value3,value4

A matrix variable can be mapped to different object types inside a controller:

• Map<String, List<?>>: This handles multiple variables and multiple values
• Map<String, ?>: This handles a case in which each variable has only one

value
• List<?>: This is used if we are interested in a single variable whose name

can be configured

In our case, we want to handle something like this:

http://localhost:8080/search/popular;keywords=scala,java

The first parameter, popular, is the result type known by the Twitter search API. It
can take the following values: mixed, recent, or popular.

The rest of our URL is a list of keywords. We will therefore map them to a simple
List<String> object.

By default, Spring MVC removes every character following a semicolon in a URL.
The first thing we need to do to enable matrix variables in our application is to turn
off this behavior.

Let's add the following code to our WebConfiguration class:

@Override
public void configurePathMatch(PathMatchConfigurer configurer) {
 UrlPathHelper urlPathHelper = new UrlPathHelper();
 urlPathHelper.setRemoveSemicolonContent(false);
 configurer.setUrlPathHelper(urlPathHelper);
}

Chapter 4

[115]

Let's create a new controller in the search package, which we will call
SearchController. Its role is to handle the following request:

package masterSpringMvc.search;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.Tweet;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.MatrixVariable;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;

import java.util.List;

@Controller
public class SearchController {
 private SearchService searchService;
 @Autowired
 public SearchController(SearchService searchService) {
 this.searchService = searchService;
 }

 @RequestMapping("/search/{searchType}")
 public ModelAndView search(@PathVariable String searchType, @
MatrixVariable List<String> keywords) {
 List<Tweet> tweets = searchService.search(searchType,
keywords);
 ModelAndView modelAndView = new ModelAndView("resultPage");
 modelAndView.addObject("tweets", tweets);
 modelAndView.addObject("search", String.join(",", keywords));
 return modelAndView;
 }
}

As you can see, we are able reuse the existing result page to display the tweets. We
also want to delegate the search to another class called SearchService. We will
create this service in the same package as SearchController:

package masterSpringMvc.search;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.Tweet;
import org.springframework.social.twitter.api.Twitter;
import org.springframework.stereotype.Service;

File Upload and Error Handling

[116]

import java.util.List;

@Service
public class SearchService {
 private Twitter twitter;

 @Autowired
 public SearchService(Twitter twitter) {
 this.twitter = twitter;
 }

 public List<Tweet> search(String searchType, List<String>
keywords) {
 return null;
 }
}

Now, we need to implement the search() method.

The search operation accessible on twitter.searchOperations().search(params)
takes searchParameters as an argument for an advanced search. This object
allows us to conduct a search on a dozen of criteria. We are interested in the query,
resultType, and count attributes.

First, we need to create a ResultType constructor with the searchType path
variable. The ResultType is an enum, so we can iterate over its different values and
find one that matches the input, ignoring the case:

private SearchParameters.ResultType getResultType(String searchType) {
 for (SearchParameters.ResultType knownType : SearchParameters.
ResultType.values()) {
 if (knownType.name().equalsIgnoreCase(searchType)) {
 return knownType;
 }
 }
 return SearchParameters.ResultType.RECENT;
}

We can now create a SearchParameters constructor with the following method:

private SearchParameters createSearchParam(String searchType, String
taste) {

 SearchParameters.ResultType resultType =
getResultType(searchType);

Chapter 4

[117]

 SearchParameters searchParameters = new SearchParameters(taste);
 searchParameters.resultType(resultType);
 searchParameters.count(3);
 return searchParameters;
}

Now, creating a list of the SearchParameters constructor is as easy as conducting
a map operation (taking a list of keywords and returning a SearchParameters
constructor for each one):

List<SearchParameters> searches = keywords.stream()
 .map(taste -> createSearchParam(searchType, taste))
 .collect(Collectors.toList());

Now, we want to fetch the tweets for each SearchParameters constructor. You
might think of something like this:

List<Tweet> tweets = searches.stream()
 .map(params -> twitter.searchOperations().search(params))
 .map(searchResults -> searchResults.getTweets())
 .collect(Collectors.toList());

However, if you think about it, this will return a list of tweets. What we want is to
flatten all the tweets to get them as a simple list. It turns out that calling map and then
flattening the result is an operation known as flatMap. So we can write:

List<Tweet> tweets = searches.stream()
 .map(params -> twitter.searchOperations().search(params))
 .flatMap(searchResults -> searchResults.getTweets().stream())
 .collect(Collectors.toList());

The syntax of flatMap function, that takes a stream as a parameter, is a bit difficult
to understand at first. Let me show you the entire code of the SearchService class
so we can take a step back:

package masterSpringMvc.search;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.SearchParameters;
import org.springframework.social.twitter.api.Tweet;
import org.springframework.social.twitter.api.Twitter;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.stream.Collectors;

@Service

File Upload and Error Handling

[118]

public class SearchService {
 private Twitter twitter;

 @Autowired
 public SearchService(Twitter twitter) {
 this.twitter = twitter;
 }

 public List<Tweet> search(String searchType, List<String>
keywords) {
 List<SearchParameters> searches = keywords.stream()
 .map(taste -> createSearchParam(searchType, taste))
 .collect(Collectors.toList());

 List<Tweet> results = searches.stream()
 .map(params -> twitter.searchOperations().
search(params))
 .flatMap(searchResults -> searchResults.getTweets().
stream())
 .collect(Collectors.toList());

 return results;
 }

 private SearchParameters.ResultType getResultType(String
searchType) {
 for (SearchParameters.ResultType knownType : SearchParameters.
ResultType.values()) {
 if (knownType.name().equalsIgnoreCase(searchType)) {
 return knownType;
 }
 }
 return SearchParameters.ResultType.RECENT;
 }

 private SearchParameters createSearchParam(String searchType,
String taste) {
 SearchParameters.ResultType resultType =
getResultType(searchType);
 SearchParameters searchParameters = new
SearchParameters(taste);
 searchParameters.resultType(resultType);
 searchParameters.count(3);
 return searchParameters;
 }
}

Chapter 4

[119]

Now, if we navigate to http://localhost:8080/search/
mixed;keywords=scala,java, we get the expected result. A search for the Scala
keyword and then for Java:

Putting it together
Now that everything works separately, it's time to assemble everything. We will do
this in three steps:

1. Move the upload form to the profile page and remove the old upload page.
2. Change the submit button on the profile page to trigger the taste search

directly.
3. Change the home page of our application. It should display search results

matching our users' tastes right away. If they are unavailable, go to the
profile page.

I encourage you to try to do it on your own. You will run into very manageable
problems along the way but you should know enough to resolve them on your own.
I believe in you.

OK, now that you have done the work (you have, haven't you?), let's take a look at
my solution.

The first step is to remove the old uploadPage title. Don't look back, just do it.

File Upload and Error Handling

[120]

Next, put these lines just below the profilePage title:

<div class="row">

 <div class="col m8 s12 offset-m2">

 </div>

 <div class="col s12 center red-text" th:text="${error}"
th:if="${error}">
 Error during upload
 </div>

 <form th:action="@{/profile}" method="post" enctype="multipart/
form-data" class="col m8 s12 offset-m2">

 <div class="input-field col s6">
 <input type="file" id="file" name="file"/>
 </div>

 <div class="col s6 center">
 <button class="btn indigo waves-effect waves-light"
type="submit" name="upload" th:text="#{upload}">Upload
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 </form>
</div>

It is very similar to the content of the late uploadPage. We just removed the title and
changed the label of the submit button. Add the corresponding translation to the
bundles.

In English:

upload=Upload

In French:

Upload=Envoyer

We also changed the name of the submit button to upload. That will help us identify
this action on the controller side.

Chapter 4

[121]

Now, if we try to upload our picture, it will redirect us to the old upload page. We
need to fix this in the onUpload method of our PictureUploadController class:

@RequestMapping(value = "/profile", params = {"upload"}, method =
RequestMethod.POST)
public String onUpload(@RequestParam MultipartFile file,
RedirectAttributes redirectAttrs) throws IOException {

 if (file.isEmpty() || !isImage(file)) {
 redirectAttrs.addFlashAttribute("error", "Incorrect file.
Please upload a picture.");
 return "redirect:/profile";
 }

 Resource picturePath = copyFileToPictures(file);
 userProfileSession.setPicturePath(picturePath);

 return "redirect:profile";
}

Note that we changed the URL that handles the post. It is now /profile instead of
/upload. Form handling is much simpler when the GET and POST requests have the
same URL, and will save us a lot of trouble especially when dealing with exceptions.
This way, we will not have to redirect the user after an error.

We also removed the model attribute, picturePath. Since we now have a bean
representing our user in a session, UserProfileSession, we decided to add it there.
We added a picturePath attribute to the UserProfileSession class and the
associated getters and setters.

Don't forget to inject the UserProfileSession class and make it available as a field
in our PictureUploadController class.

Remember that all the properties of our session bean must be serializable, unlike
resources. So we need to store it differently. The URL class seems to be a good fit. It
is serializable and it is easy to create a resource from a URL with the UrlResource
class:

@Component
@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class UserProfileSession implements Serializable {
 private URL picturePath;

File Upload and Error Handling

[122]

 public void setPicturePath(Resource picturePath) throws
IOException {
 this.picturePath = picturePath.getURL();
 }

 public Resource getPicturePath() {
 return picturePath == null ? null : new
UrlResource(picturePath);
 }
}

The last thing that I had to do is to make the profileForm available as a model
attribute after an error. This is because the profilePage requires it when it is
rendered.

To sum up, here is the final version of the PictureUploadController class:

package masterSpringMvc.profile;

import masterSpringMvc.config.PictureUploadProperties;
import org.apache.tomcat.util.http.fileupload.IOUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.MessageSource;
import org.springframework.core.io.FileSystemResource;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.multipart.MultipartFile;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;

import javax.servlet.http.HttpServletResponse;
import java.io.*;
import java.net.URLConnection;
import java.util.Locale;

@Controller
public class PictureUploadController {
 private final Resource picturesDir;
 private final Resource anonymousPicture;
 private final MessageSource messageSource;
 private final UserProfileSession userProfileSession;

Chapter 4

[123]

 @Autowired
 public PictureUploadController(PictureUploadProperties
uploadProperties,
 MessageSource messageSource,
 UserProfileSession
userProfileSession) {
 picturesDir = uploadProperties.getUploadPath();
 anonymousPicture = uploadProperties.getAnonymousPicture();
 this.messageSource = messageSource;
 this.userProfileSession = userProfileSession;
 }

 @RequestMapping(value = "/uploadedPicture")
 public void getUploadedPicture(HttpServletResponse response)
throws IOException {
 Resource picturePath = userProfileSession.getPicturePath();
 if (picturePath == null) {
 picturePath = anonymousPicture;
 }
 response.setHeader("Content-Type", URLConnection.guessContentT
ypeFromName(picturePath.getFilename()));
 IOUtils.copy(picturePath.getInputStream(), response.
getOutputStream());
 }

 @RequestMapping(value = "/profile", params = {"upload"}, method =
RequestMethod.POST)
 public String onUpload(@RequestParam MultipartFile file,
RedirectAttributes redirectAttrs) throws IOException {

 if (file.isEmpty() || !isImage(file)) {
 redirectAttrs.addFlashAttribute("error", "Incorrect file.
Please upload a picture.");
 return "redirect:/profile";
 }

 Resource picturePath = copyFileToPictures(file);
 userProfileSession.setPicturePath(picturePath);

 return "redirect:profile";
 }

 private Resource copyFileToPictures(MultipartFile file) throws
IOException {

File Upload and Error Handling

[124]

 String fileExtension = getFileExtension(file.
getOriginalFilename());
 File tempFile = File.createTempFile("pic", fileExtension,
picturesDir.getFile());
 try (InputStream in = file.getInputStream();
 OutputStream out = new FileOutputStream(tempFile)) {

 IOUtils.copy(in, out);
 }
 return new FileSystemResource(tempFile);
 }

 @ExceptionHandler(IOException.class)
 public ModelAndView handleIOException(Locale locale) {
 ModelAndView modelAndView = new ModelAndView("profile/
profilePage");
 modelAndView.addObject("error", messageSource.
getMessage("upload.io.exception", null, locale));
 modelAndView.addObject("profileForm", userProfileSession.
toForm());
 return modelAndView;
 }

 @RequestMapping("uploadError")
 public ModelAndView onUploadError(Locale locale) {
 ModelAndView modelAndView = new ModelAndView("profile/
profilePage");
 modelAndView.addObject("error", messageSource.
getMessage("upload.file.too.big", null, locale));
 modelAndView.addObject("profileForm", userProfileSession.
toForm());
 return modelAndView;
 }

 private boolean isImage(MultipartFile file) {
 return file.getContentType().startsWith("image");
 }

 private static String getFileExtension(String name) {
 return name.substring(name.lastIndexOf("."));
 }
}

Chapter 4

[125]

So, now we can go to the profile page and upload our picture as well as provide
personal information, as shown in the following screenshot:

Now, let's redirect our user to its search after the profile is completed. For this, we
need to modify the saveProfile method in the ProfileController class:

@RequestMapping(value = "/profile", params = {"save"}, method =
RequestMethod.POST)
public String saveProfile(@Valid ProfileForm profileForm,
BindingResult bindingResult) {
 if (bindingResult.hasErrors()) {
 return "profile/profilePage";
 }
 userProfileSession.saveForm(profileForm);
 return "redirect:/search/mixed;keywords=" + String.join(",",
profileForm.getTastes());
}

File Upload and Error Handling

[126]

Now that we are able to search for tweets from our profile, we don't need the
searchPage or TweetController we previously made. Simply delete the
searchPage.html page and the TweetController.

To finish, we can modify our home page so that it redirects us to a search matching
our tastes if we have already completed our profile.

Let's create a new controller in the controller package. It is responsible for redirecting
a user arriving at the root of our website either to their profile if it's incomplete or to
the resultPage if their tastes are available:

package masterSpringMvc.controller;

import masterSpringMvc.profile.UserProfileSession;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

import java.util.List;

@Controller
public class HomeController {
 private UserProfileSession userProfileSession;

 @Autowired
 public HomeController(UserProfileSession userProfileSession) {
 this.userProfileSession = userProfileSession;
 }

 @RequestMapping("/")
 public String home() {
 List<String> tastes = userProfileSession.getTastes();
 if (tastes.isEmpty()) {
 return "redirect:/profile";
 }
 return "redirect:/search/mixed;keywords=" + String.join(",",
tastes);
 }
}

Chapter 4

[127]

The check point
In this chapter, we added two controllers, the PictureUploadController, which
is in charge of writing uploaded files to the disk and handling upload errors, and
the SearchController that can search tweets from a list of keywords with matrix
parameters.

This controller then delegates the search to a new service, SearchService.

We deleted the old TweetController.

We created a session bean, UserProfileSession, to store the information about our
user.

Finally, we added two things to WebConfiguration. We added the error pages for
our Servlet container and support for matrix variables.

File Upload and Error Handling

[128]

On the resources side, we added a picture representing an anonymous user and a
static page to handle errors. We added the file upload to profilePage and got rid
of the old searchPage.

Summary
In this chapter, we discussed file upload and error handling. Uploading a file is not
really complicated. However, a big design decision is what to do with the uploaded
files. We could have stored the images it in a database, but instead we chose to write
it to the disk and save the location of each user's picture in their session.

We saw typical ways to handle exceptions at the controller level and at the servlet
container level. For additional resources on Spring MVC error handling, you can
refer to the blog post at https://spring.io/blog/2013/11/01/exception-
handling-in-spring-mvc.

Our application is looking pretty good already and yet the amount of code we had
to write is very reasonable.

Stay tuned for the next chapter where we will see that Spring MVC is also a powerful
framework to build REST applications.

https://spring.io/blog/2013/11/01/exception-handling-in-spring-mvc
https://spring.io/blog/2013/11/01/exception-handling-in-spring-mvc

[129]

Crafting a RESTful
Application

In this chapter, we will have a look at the main principles of a RESTful architecture.
Then, with the help of very handy tools, we will design a friendly API, leveraging
Jackson's capabilities to serialize our model in JSON.

We will document our application with the appropriate error codes and HTTP verbs
and automatically generate a neat frontend for our application by using Swagger UI.

Finally, we will look at the other forms of serialization and learn more about the
content negotiation mechanism of Spring MVC.

What is REST?
REST (Representational State Transfer) is an architectural style that defines best
practices for creating scalable web services leveraging the capabilities of the HTTP
protocol.

A RESTful web service should naturally exhibit the following properties:

• Client-server: The UI is separated from data storage
• Stateless: Each request contains enough information for the server to operate

without maintaining any state
• Cacheable: The server's responses contain enough information to allow the

clients to make sensible decisions about data storage
• Uniform interface: URIs uniquely identify resources and hyperlinks allow

the API to be discovered
• Layered: Each resource of the API provides a sensible level of detail

Crafting a RESTful Application

[130]

The advantage of such an architecture is that it is simple to maintain and easy
to discover. It also scales well because there is no need to maintain a persistent
connection between the server and the client, which eliminates the need for load
balancing or sticky sessions. Finally, the service is more efficient because the
information is neatly laid out and easy to cache.

Let's see how we can design better APIs incrementally by using Richardson's
maturity model.

Richardson's maturity model
Leonard Richardson is famous for having defined four levels, ranked from 0 to 3,
that describe the level of "RESTfulness" of a web API. Each level requires additional
work and investment in the API but also provides additional benefits.

Level 0 – HTTP
Level 0 is really easy to reach; you just have to make your resource available on a
network through the HTTP protocol. You can use any data representation you find
best suited for your use case (XML, JSON, and so on).

Level 1 – Resources
Most people think of resources when they hear the term REST. A resource is a
unique identifier for an element of our model, a user or a tweet, for instance. With
HTTP, a resource is obviously associated with a unified resource identifier URI,
as shown in this example:

• /users contains the list of all our users
• /user/42 contains a specific user
• /user/42/tweets contains the list of all the tweets associated to this

particular user

Maybe your API could allow access to a particular tweet related to a user with
/user/42/tweet/3 or maybe each tweet is uniquely identified, in which case
you might prefer /tweet/3.

The goal of this level is to deal with the complexity of an application by exposing
multiple specialized resources.

Chapter 5

[131]

There is no rule regarding the type of response that your server can return. You
might want to include only scarce information when you list all the resources with
/users and give more details when a specific resource is requested. Some APIs
even let you list the fields you are interested in before serving them to you.

It really is up to you to define the form of your API, keeping one simple rule in mind:
the principle of least astonishment. Give your users what they expect and your API
will already be in good shape.

Level 2 – HTTP verbs
This level is about using the HTTP verbs to identify possible actions on the resources.
This is a very good way to describe what can be done with your API since the HTTP
verbs are a well-known standard among developers.

The main verbs are listed here:

• GET: This reads data on a particular URI.
• HEAD: This does the same as GET without the response body. This is useful for

getting metadata on a resource (cache information and so on).
• DELETE: This deletes a resource.
• PUT: This updates or creates a resource.
• POST: This updates or creates a resource.
• PATCH: This partially updates a resource.
• OPTIONS: This returns the list of methods that the server supports on a

particular resource.

Most applications that allow Create Read Update Delete (CRUD) operations get by
with only three verbs: GET, DELETE, and POST. The more verbs you implement, the
richer and more semantic your API becomes. It helps third parties to interact with
your service by allowing them to type a few commands and see what happens.

The OPTIONS and HEAD verbs are rarely seen because they work on the metadata level
and are typically not vital to any application.

At first sight, the PUT and POST verbs appear to do the same thing. The main
difference is that the PUT verb is said to be idempotent, which means that sending the
same request multiple times should result in the same server state. The implication
of that rule is essentially that the PUT verb should operate on a given URI and contain
enough information for the request to succeed.

Crafting a RESTful Application

[132]

For instance, a client can use PUT data on /user/42, and the result will be either an
update or a creation, depending on whether the entity existed prior to the request.

On the other hand, POST should be used when you don't exactly know what URI
you should write to. You could send POST to /users without specifying an ID in
the request and expect the user to be created. You could also send POST to the same
/users resource, this time specifying a user ID inside the request entity and expect
the server to update the corresponding user.

As you can see, both of these options work. One frequent use case is to use POST for
creation (because, most of the time, the server should be in charge of the IDs) and to
use PUT to update a resource whose ID is already known.

The server might also allow a resource to be modified partially (without the client
sending the full contents of the resource). It should respond to the PATCH method in
that case.

At this level, I also encourage you to use meaningful HTTP codes when providing
responses. We will see the most common codes in a moment.

Level 3 – Hypermedia controls
Hypermedia controls are also known as Hypertext As The Engine Of Application
State (HATEOAS). Behind this barbarous acronym lies the most important property
of a RESTful service: making it discoverable through the use of hypertext links. This
is essentially the server telling the client what its options are, using the response
headers or the response entity.

For instance, after the creation of a resource with PUT, the server should return a
response with the code 201 CREATED and send a Location header containing the
URI of the created resource.

There is no standard that defines how the link to the other parts of the API should
look. Spring Data REST, a Spring project that allows you to create a RESTful backend
with minimal configuration, typically outputs this:

{

 "_links" : {

 "people" : {

 "href" : "http://localhost:8080/users{?page,size,sort}",

 "templated" : true

 }

 }

}

Chapter 5

[133]

Then, go to /users:

{

 "_links" : {

 "self" : {

 "href" : "http://localhost:8080/users{?page,size,sort}",

 "templated" : true

 },

 "search" : {

 "href" : "http://localhost:8080/users/search"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 0,

 "totalPages" : 0,

 "number" : 0

 }

}

This gives you a good idea of what you can do with the API, doesn't it?

API versioning
If third-party clients use your API, you could consider versioning your API to avoid
breaking changes when you update your application.

Versioning an API is often a matter of making a set of stable resources available
under subdomains. For instance, GitLab maintains three versions of its API. They
are accessible under https://example/api/v3, and so on. Like a lot of architectural
decisions in software, versioning is a tradeoff.

It will require more work to design such an API and identify breaking changes in
the API. Often, the addition of new fields will not be as problematic as removing or
transforming the API entity results or requests.

Most of the time, you will be in charge of both the API and the client, thereby
removing the need for such sophistication.

Crafting a RESTful Application

[134]

See this blog post for a more in-depth discussion about API versioning:
http://www.troyhunt.com/2014/02/your-api-versioning-
is-wrong-which-is.html

Useful HTTP codes
Another important aspect of a good RESTful API is to use HTTP codes in a sensible
way. The HTTP specification defines a lot of standard codes. They should cover
99 percent of what a good API needs to communicate to its users. The following
list contains the most important codes, the ones every API should use and every
developer should know:

Code Meaning Usage
2xx - Success These codes are used when

everything goes well.
200 Everything is okay. The request succeeded.
201 A resource has been created. The successful creation of a

resource. The response should
include a list of locations associated
with the creation.

204 There is no content to
return.

The server has successfully handled
the request but there is no content
to return.

3xx - Redirection These codes are used when
further action is needed
on the client to fulfill the
request.

301 Moved permanently The resource has a changed URI
and its new location is indicated in
the Location header.

304 The resource has not been
modified.

The resource has not changed since
the last time. This response must
include the date, ETag, and cache
information.

http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

Chapter 5

[135]

Code Meaning Usage
4xx - Client error The request was not

successfully performed
because of a mistake made
by the client.

400 Bad request The data sent by the client could not
be understood.

403 Forbidden The request was understood but not
allowed. This can be enriched with
information describing the error.

404 Not found Nothing matches this URI. This can
be used instead of 403 if information
about security shouldn't be
disclosed.

409 Conflict The request conflicts with another
modification. The response should
include information on how to
resolve the conflict.

5xx - Server error An error occurred on the
server side.

500 An internal server error The server unexpectedly failed to
process the request.

For a more detailed list, see http://www.restapitutorial.com/
httpstatuscodes.html.

http://www.restapitutorial.com/httpstatuscodes.html
http://www.restapitutorial.com/httpstatuscodes.html

Crafting a RESTful Application

[136]

Client is the king
We will allow third-party clients to retrieve the search results via a REST API. These
results will be available either in JSON or XML.

We want to handle requests of the /api/search/mixed;keywords=springFramework
form. This is really similar to the search form we already made, except that the request
path begins with api. Every URI found in this namespace should return binary results.

Let's create a new SearchApiController class in the search.api package:

package masterSpringMvc.search.api;

import masterSpringMvc.search.SearchService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.Tweet;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api/search")
public class SearchApiController {
 private SearchService searchService;

 @Autowired
 public SearchApiController(SearchService searchService) {
 this.searchService = searchService;
 }

 @RequestMapping(value = "/{searchType}", method = RequestMethod.
GET)
 public List<Tweet> search(@PathVariable String searchType, @
MatrixVariable List<String> keywords) {
 return searchService.search(searchType, keywords);
 }
}

Chapter 5

[137]

This is quite similar to our previous controller, with three subtle differences:

• The controller class is annotated with a @RequestMapping annotation. This
will be our base address and will prefix every other mapping declared in this
controller.

• We no longer redirect to a view but return a plain object in the search
method.

• The controller is annotated with @RestController instead of @Controller.

The RestController is a shortcut to declare controllers that will return each
response as if it were annotated with the @ResponseBody annotation. It tells Spring
to serialize the return type to the appropriate format, which is JSON by default.

When working with a REST API, a good practice is to always specify the method you
will respond to. It's rather unlikely that a request can be handled the same way for a
GET or a POST method.

If you go to http://localhost:8080/api/search/
mixed;keywords=springFramework, you should get a really large result, as follows:

Indeed, Spring handled the serialization of the whole Tweet class' attributes
automatically, using Jackson.

Crafting a RESTful Application

[138]

Debugging a RESTful API
With your browser, you will only be able to perform GET requests on a specific API.
The good tools will make your developments much simpler. There are lots of tools
to test a RESTful API. I will just list the one I use and love.

A JSON formatting extension
Often, you will just test the GET method and your first reflex will be to copy the
address into your browser to check the result. In that case, you have the possibility
to get more than plain text with extensions such as JSON Formatter for Chrome or
JSONView for Firefox.

A RESTful client in your browser
The browser is the natural tool for dealing with HTTP requests. However, using the
address bar will rarely allow you to test your API in detail.

Postman is an extension for Chrome, and RESTClient is its Firefox counterpart.
They both have similar features, such as creating and sharing collections of queries,
modification of the headers, and handling authentication (basic, digest, and OAuth).
At the time of writing, only RESTClient handles OAuth2.

httpie
httpie is a command line utility à la curl but oriented towards REST querying.
It allows you to type commands such as this:

http PUT httpbin.org/put hello=world

It's a lot friendlier than this ugly version:

curl -i -X PUT httpbin.org/put -H Content-Type:application/json -d
'{"hello": "world"}'

Chapter 5

[139]

Customizing the JSON output
Using our tools we are able to easily see the request generated by our server. It is
huge. By default, Jackson, the JSON serialization library used by Spring Boot, will
serialize everything that is accessible with a getter method.

We would like something lighter, such as this:

{

 "text": "original text",

 "user": "some_dude",

 "profileImageUrl": "url",

 "lang": "en",

 "date": 2015-04-15T20:18:55,

 "retweetCount": 42

}

The easiest way to customize which fields will be serialized is by adding annotations
to our beans. You can either use the @JsonIgnoreProperties annotation at the class
level to ignore a set of properties or add @JsonIgnore on the getters of the properties
you wish to ignore.

In our case, the Tweet class is not one of our own. It is part of Spring Social Twitter,
and we do not have the ability to annotate it.

Using the model classes directly for serialization is rarely a good option. It would tie
your model to your serialization library, which should remain an implementation
detail.

When dealing with unmodifiable code, Jackson provides two options:

• Creating a new class dedicated to serialization.
• Using mixins, which are simple classes that will be linked to your model.

These will be declared in your code and can be annotated with any Jackson
annotation.

Since we only need to perform some simple transformation on the fields of our
model (a lot of hiding and a little renaming), we could opt for the mixins.

Crafting a RESTful Application

[140]

It's a good, non-invasive way to rename and exclude fields on the fly with a simple
class or interface.

Another option to specify subsets of fields used in different parts of the application
is to annotate them with the @JsonView annotation. This won't be covered in this
chapter, but I encourage you to check out this excellent blog post https://spring.
io/blog/2014/12/02/latest-jackson-integration-improvements-in-spring.

We want to be in control of the output of our APIs, so let's just create a new class
called LightTweet that can be constructed from a tweet:

package masterSpringMvc.search;

import org.springframework.social.twitter.api.Tweet;
import org.springframework.social.twitter.api.TwitterProfile;

import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.Date;

public class LightTweet {
 private String profileImageUrl;
 private String user;
 private String text;
 private LocalDateTime date;
 private String lang;
 private Integer retweetCount;

 public LightTweet(String text) {
 this.text = text;
 }

 public static LightTweet ofTweet(Tweet tweet) {
 LightTweet lightTweet = new LightTweet(tweet.getText());
 Date createdAt = tweet.getCreatedAt();
 if (createdAt != null) {
 lightTweet.date = LocalDateTime.ofInstant(createdAt.
toInstant(), ZoneId.systemDefault());
 }
 TwitterProfile tweetUser = tweet.getUser();
 if (tweetUser != null) {
 lightTweet.user = tweetUser.getName();
 lightTweet.profileImageUrl = tweetUser.
getProfileImageUrl();
 }

 https://spring.io/blog/2014/12/02/latest-jackson-integration-improvements-in-spring
 https://spring.io/blog/2014/12/02/latest-jackson-integration-improvements-in-spring

Chapter 5

[141]

 lightTweet.lang = tweet.getLanguageCode();
 lightTweet.retweetCount = tweet.getRetweetCount();
 return lightTweet;
 }

 // don't forget to generate getters
 // They are used by Jackson to serialize objects
}

We now need to make our SearchService class return the LightTweets class
instead of tweets:

 public List<LightTweet> search(String searchType, List<String>
keywords) {
 List<SearchParameters> searches = keywords.stream()
 .map(taste -> createSearchParam(searchType, taste))
 .collect(Collectors.toList());

 List<LightTweet> results = searches.stream()
 .map(params -> twitter.searchOperations().
search(params))
 .flatMap(searchResults -> searchResults.getTweets().
stream())
 .map(LightTweet::ofTweet)
 .collect(Collectors.toList());

 return results;
 }

This will impact the return type of the SearchApiController class as well as
the tweets model attribute in the SearchController class. Make the necessary
modification in those two classes.

We also need to change the code of the resultPage.html file because some
properties changed (we no longer have a nested user property):

<ul class="collection">
 <li class="collection-item avatar" th:each="tweet : ${tweets}">

 Username

 <p th:text="${tweet.text}">Tweet message</p>

Crafting a RESTful Application

[142]

We're almost done. If you restart your application and go to
http://localhost:8080/api/search/mixed;keywords=springFramework,
you'll see that the date format is not the one we expected:

That's because Jackson doesn't have built-in support for JSR-310 dates. Luckily, this
is easy to fix. Simply add the following library to the dependencies in the build.
gradle file:

compile 'com.fasterxml.jackson.datatype:jackson-datatype-jsr310'

This indeed changes the date format, but it now outputs an array instead of a
formatted date.

To change that, we need to understand what the library did. It includes a new
Jackson module called JSR-310 Module. A Jackson module is an extension point to
customize serialization and deserialization. This one will automatically be registered
by Spring Boot at startup in the JacksonAutoConfiguration class, which will create
a default Jackson ObjectMapper method with support for well-known modules.

Chapter 5

[143]

We can see that the former module adds a bunch of serializers and deserializers
for all the new classes defined in JSR-310. This will try to convert every date to an
ISO format, whenever possible. See https://github.com/FasterXML/jackson-
datatype-jsr310.

If we take a closer look at LocalDateTimeSerializer, for instance, we can see that it
actually has two modes and can switch between the two with a serialization feature
called WRITE_DATES_AS_TIMESTAMPS.

To define this property, we need to customize Spring's default object mapper. As
we can gather from looking at the auto configuration, Spring MVC provides a utility
class to create the ObjectMapper method that we can use. Add the following bean to
your WebConfiguration class:

@Bean
@Primary
public ObjectMapper objectMapper(Jackson2ObjectMapperBuilder builder)
{
 ObjectMapper objectMapper = builder.createXmlMapper(false).build();
 objectMapper.configure(SerializationFeature.WRITE_DATES_AS_
TIMESTAMPS, false);
 return objectMapper;
}

This time, we are done and the dates are properly formatted, as you can see here:

https://github.com/FasterXML/jackson-datatype-jsr310
https://github.com/FasterXML/jackson-datatype-jsr310

Crafting a RESTful Application

[144]

A user management API
Our search API is quite good, but let's do something more interesting. Like a lot of
web applications, we will need a user management module to identify our users. For
that, we will create a new user package. In this package, we will add a model class
as follows:

package masterSpringMvc.user;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;

public class User {
 private String twitterHandle;
 private String email;
 private LocalDate birthDate;
 private List<String> tastes = new ArrayList<>();

 // Getters and setters for all fields
}

Since we do not want to use a database just yet, we will create a UserRepository
class in the same package, backed by a simple Map:

package masterSpringMvc.user;

import org.springframework.stereotype.Repository;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

@Repository
public class UserRepository {
 private final Map<String, User> userMap = new
ConcurrentHashMap<>();

 public User save(String email, User user) {
 user.setEmail(email);
 return userMap.put(email, user);
 }

Chapter 5

[145]

 public User save(User user) {
 return save(user.getEmail(), user);
 }

 public User findOne(String email) {
 return userMap.get(email);
 }

 public List<User> findAll() {
 return new ArrayList<>(userMap.values());
 }

 public void delete(String email) {
 userMap.remove(email);
 }

 public boolean exists(String email) {
 return userMap.containsKey(email);
 }
}

Finally, in the user.api package, we will create a very naive controller
implementation:

package masterSpringMvc.user.api;

import masterSpringMvc.user.User;
import masterSpringMvc.user.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api")
public class UserApiController {

 private UserRepository userRepository;

 @Autowired
 public UserApiController(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

Crafting a RESTful Application

[146]

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public List<User> findAll() {
 return userRepository.findAll();
 }

 @RequestMapping(value = "/users", method = RequestMethod.POST)
 public User createUser(@RequestBody User user) {
 return userRepository.save(user);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
PUT)
 public User updateUser(@PathVariable String email, @RequestBody
User user) {
 return userRepository.save(email, user);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
DELETE)
 public void deleteUser(@PathVariable String email) {
 userRepository.delete(email);
 }
}

We implemented all the classic CRUD operations with a RESTful repository by using
the user's e-mail address as a unique identifier.

In this scenario, you will quickly face problems as Spring strips contents found after
a dot. The solution is very similar to what we use to support semicolons in URLs in
the URL mapping with matrix variables section in Chapter 4, File Upload and Error
Handling.

Add the useRegisteredSuffixPatternMatch property that is set to false
in the configurePathMatch() method that we have already defined in the
WebConfiguration class:

@Override
public void configurePathMatch(PathMatchConfigurer configurer) {
 UrlPathHelper urlPathHelper = new UrlPathHelper();
 urlPathHelper.setRemoveSemicolonContent(false);
 configurer.setUrlPathHelper(urlPathHelper);
 configurer.setUseRegisteredSuffixPatternMatch(true);
}

Now that we've got our API, we can start interacting with it.

Chapter 5

[147]

Here are a few sample commands with httpie:

~ $ http get http://localhost:8080/api/users

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Date: Mon, 20 Apr 2015 00:01:08 GMT

Server: Apache-Coyote/1.1

Transfer-Encoding: chunked

[]

~ $ http post http://localhost:8080/api/users email=geo@springmvc.com
birthDate=2011-12-12 tastes:='["spring"]'

HTTP/1.1 200 OK

Content-Length: 0

Date: Mon, 20 Apr 2015 00:02:07 GMT

Server: Apache-Coyote/1.1

~ $ http get http://localhost:8080/api/users

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Date: Mon, 20 Apr 2015 00:02:13 GMT

Server: Apache-Coyote/1.1

Transfer-Encoding: chunked

[

 {

 "birthDate": "2011-12-12",

 "email": "geo@springmvc.com",

 "tastes": [

 "spring"

],

 "twitterHandle": null

 }

Crafting a RESTful Application

[148]

]

~ $ http delete http://localhost:8080/api/user/geo@springmvc.com

HTTP/1.1 200 OK

Content-Length: 0

Date: Mon, 20 Apr 2015 00:02:42 GMT

Server: Apache-Coyote/1.1

~ $ http get http://localhost:8080/api/users

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Date: Mon, 20 Apr 2015 00:02:46 GMT

Server: Apache-Coyote/1.1

Transfer-Encoding: chunked

[]

This is good but not great. Status codes are not yet handled. We will need more
RESTfulness to climb up the Richardson ladder.

Status codes and exception handling
The first thing we want to do is to correctly handle response statuses. By default,
Spring automatically deals with some statuses:

• 500 Server Error: This indicates that an exception occurred while handling
the request.

• 405 Method not Supported: This comes up when you use an incorrect
method on an existing handler.

• 404 Not Found: This comes up when the handler does not exist.
• 400 Bad Request: This indicates that the request body or parameter does

not match the server's expectation.
• 200 OK: It is thrown for any request handled without an error.

Chapter 5

[149]

With Spring MVC, there are two ways to return status codes:

• Returning a ResponseEntity class from a REST controller
• Throwing an exception that will be caught in dedicated handlers

Status code with ResponseEntity
The HTTP protocol specifies that we should return a 201 Created status when we
create a new user. With our API, this can happen with a POST method. We also need
to throw some 404 errors on operation while working on an entity that does not exist.

Spring MVC has a class that associates an HTTP status with a response entity. It is
called ResponseEntity. Let's update our UserApiController class to handle error
codes:

package masterSpringMvc.user.api;

import masterSpringMvc.user.User;
import masterSpringMvc.user.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api")
public class UserApiController {

 private UserRepository userRepository;

 @Autowired
 public UserApiController(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public List<User> findAll() {
 return userRepository.findAll();
 }

Crafting a RESTful Application

[150]

 @RequestMapping(value = "/users", method = RequestMethod.POST)
 public ResponseEntity<User> createUser(@RequestBody User user) {
 HttpStatus status = HttpStatus.OK;
 if (!userRepository.exists(user.getEmail())) {
 status = HttpStatus.CREATED;
 }
 User saved = userRepository.save(user);
 return new ResponseEntity<>(saved, status);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
PUT)
 public ResponseEntity<User> updateUser(@PathVariable String email,
@RequestBody User user) {
 if (!userRepository.exists(user.getEmail())) {
 return new ResponseEntity<>(HttpStatus.NOT_FOUND);
 }
 User saved = userRepository.save(email, user);
 return new ResponseEntity<>(saved, HttpStatus.CREATED);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
DELETE)
 public ResponseEntity<User> deleteUser(@PathVariable String email)
{
 if (!userRepository.exists(email)) {
 return new ResponseEntity<>(HttpStatus.NOT_FOUND);
 }
 userRepository.delete(email);
 return new ResponseEntity<>(HttpStatus.OK);
 }
}

You can see that we evolve towards the first level of RESTfulness but there is a lot of
boilerplate code involved.

Chapter 5

[151]

Status codes with exceptions
Another way to handle errors in our API is to throw exceptions. There are two ways
to map exceptions with Spring MVC:

• Using @ExceptionHandler at the class level, like we did for IOException in
our upload controller in Chapter 4, File Upload and Error Handling

• Using @ControllerAdvice to catch global exceptions thrown by all
controllers or a subset of your controllers

These two options help you make some business-oriented decisions and define a set
of practices within your application.

To associate these handlers with HTTP status codes, we can either inject the response
in the annotated method and use the HttpServletResponse.sendError() method
or just annotate the method with the @ResponseStatus annotation.

We will define our own exception, EntityNotFoundException. Our business
repositories will throw this exception when the entity the user is working on cannot
be found. This will help relieve the API code.

Here is the code for the exception. We can put it in a new package called error:

package masterSpringMvc.error;

public class EntityNotFoundException extends Exception {
 public EntityNotFoundException(String message) {
 super(message);
 }

 public EntityNotFoundException(String message, Throwable cause) {
 super(message, cause);
 }
}

Crafting a RESTful Application

[152]

Our repository will now throw exceptions in various locations. We will also
differentiate between saving and updating a user:

package masterSpringMvc.user;

import masterSpringMvc.error.EntityNotFoundException;
import org.springframework.stereotype.Repository;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

@Repository
public class UserRepository {
 private final Map<String, User> userMap = new
ConcurrentHashMap<>();

 public User update(String email, User user) throws
EntityNotFoundException {
 if (!exists(email)) {
 throw new EntityNotFoundException("User " + email + "
cannot be found");
 }
 user.setEmail(email);
 return userMap.put(email, user);
 }

 public User save(User user) {
 return userMap.put(user.getEmail(), user);
 }

 public User findOne(String email) throws EntityNotFoundException {
 if (!exists(email)) {
 throw new EntityNotFoundException("User " + email + "
cannot be found");
 }
 return userMap.get(email);
 }

 public List<User> findAll() {
 return new ArrayList<>(userMap.values());
 }

Chapter 5

[153]

 public void delete(String email) throws EntityNotFoundException {
 if (!exists(email)) {
 throw new EntityNotFoundException("User " + email + "
cannot be found");
 }
 userMap.remove(email);
 }

 public boolean exists(String email) {
 return userMap.containsKey(email);
 }
}

Our controller becomes simpler since it doesn't have to handle the 404 status. We
now throw the EntityNotFound exception from our controller methods:

package masterSpringMvc.user.api;

import masterSpringMvc.error.EntityNotFoundException;
import masterSpringMvc.user.User;
import masterSpringMvc.user.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api")
public class UserApiController {

 private UserRepository userRepository;

 @Autowired
 public UserApiController(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 @RequestMapping(value = "/users", method = RequestMethod.GET)
 public List<User> findAll() {
 return userRepository.findAll();
 }

Crafting a RESTful Application

[154]

 @RequestMapping(value = "/users", method = RequestMethod.POST)
 public ResponseEntity<User> createUser(@RequestBody User user) {
 HttpStatus status = HttpStatus.OK;
 if (!userRepository.exists(user.getEmail())) {
 status = HttpStatus.CREATED;
 }
 User saved = userRepository.save(user);
 return new ResponseEntity<>(saved, status);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
PUT)
 public ResponseEntity<User> updateUser(@PathVariable String email,
@RequestBody User user) throws EntityNotFoundException {
 User saved = userRepository.update(email, user);
 return new ResponseEntity<>(saved, HttpStatus.CREATED);
 }

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
DELETE)
 public ResponseEntity<User> deleteUser(@PathVariable String email)
throws EntityNotFoundException {
 userRepository.delete(email);
 return new ResponseEntity<>(HttpStatus.OK);
 }
}

If we don't handle this exception, Spring will throw a 500 error by default. To
handle it we will create a small class in the error package, right next to our
EntityNotFoundException class. It will be called EntityNotFoundMapper class and
will be in charge of handling the exception:

package masterSpringMvc.error;

import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseStatus;

@ControllerAdvice
public class EntityNotFoundMapper {

 @ExceptionHandler(EntityNotFoundException.class)
 @ResponseStatus(value = HttpStatus.NOT_FOUND, reason = "Entity
could not be found")

Chapter 5

[155]

 public void handleNotFound() {
 }
}

The @ControllerAdvice annotation allows us to add some behaviors to a set of
controllers by annotating a bean. Those controller advice can handle exceptions
but also declare model attributes with @ModelAttribute or validator policies
with @InitBinder.

With the code we just wrote, we handle all the EntityNotFoundException class
thrown by our controllers in one place and associate it with the 404 status. That way,
we can abstract this notion and ensure that our application will handle it consistently
in all controllers.

We are not going to deal with hyperlinks in our API at our level. Instead, I encourage
you to have a look at Spring HATEOAS and Spring Data REST, which provide very
elegant solutions to make your resources more discoverable.

Documentation with Swagger
Swagger is a really awesome project that will allow you to document and interact
with your API within an HTML5 webpage. The following screenshot illustrates the
API documentation:

Crafting a RESTful Application

[156]

Swagger used to be big (written in Scala) and somewhat complicated to configure
with a Spring setup. Since version 2.0, the library has been rewritten and a really
neat project called spring-fox will allow for easy integration.

spring-fox, formerly known as swagger-springmvc, has been
in existence for more than three years and is still a very active project.

Add the following dependencies to your build file:

compile 'io.springfox:springfox-swagger2:2.1.2'
compile 'io.springfox:springfox-swagger-ui:2.1.2'

The first one will provide an annotation to enable Swagger in your application
as well as an API to describe your resources with annotations. Swagger will then
generate a JSON representation of your API.

The second is a WebJar that contains static resources consuming the generated JSON
through a web client.

The only thing you need to do now is add the @EnableSwagger2 annotation to your
WebConfiguration class:

@Configuration
@EnableSwagger2
public class WebConfiguration extends WebMvcConfigurerAdapter {
 }

The swagger-ui.jar file we just added contains an HTML file in META-INF/
resources.

It will automatically be served by Spring Boot when you go to http://
localhost:8080/swagger-ui.html.

By default, Springfox will scan your whole classpath and show all the request
mappings declared in your application.

Chapter 5

[157]

In our case, we only want to expose the API:

@Bean
public Docket userApi() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .paths(path -> path.startsWith("/api/"))
 .build();
}

Springfox works with groups of Dockets that you have to define as beans in
your configuration classes. They are logical grouping for RESTful resources. An
application can have many of them.

Have a look at the documentation (http://springfox.github.io/springfox) to
see all the different setups available.

Generating XML
RESTful APIs sometimes return responses in different media types (JSON, XML, and
so on). The mechanism responsible for choosing the correct media type is known as
content negotiation in Spring.

By default, in Spring MVC, the ContentNegotiatingViewResolver bean will be in
charge of resolving the correct content according to the content negotiation policies
defined in your application.

You can have a look at ContentNegotiationManagerFactoryBean to see how these
policies are applied within Spring MVC.

Content type can be resolved with the following strategies:

• According to the Accept header sent by the client
• With a parameter such as ?format=json
• With a path extension such as /myResource.json or /myResource.xml

You can customize these strategies in your Spring configuration by overriding the
configureContentNegotiation() method of the WebMvcConfigurerAdapter class.

http://springfox.github.io/springfox

Crafting a RESTful Application

[158]

By default, Spring will use the Accept header and the path extension.

To enable XML serialization with Spring Boot, you can add the following
dependency to your classpath:

compile 'com.fasterxml.jackson.dataformat:jackson-dataformat-xml'

If you explore your API with your browser and go to
http://localhost:8080/api/users, you will see the result as XML, as follows:

That's because your browser doesn't usually request JSON, but XML is second after
HTML. This is shown in the following screenshot:

To get JSON back, you can either go to http://localhost:8080/api/users.json
or send the appropriate Accept header with Postman or httpie.

The check point
In this chapter, we added a search ApiController class. Because the tweets returned
by the Twitter API were not adapted to our usage, we introduced a LightTweet class
to transform them into a friendlier format.

Chapter 5

[159]

We also developed a user API. The User class is the model. The users are stored and
retrieved via the UserRepository class, and the UserApiController class exposes
HTTP endpoints to perform CRUD operations on the users. We also added a generic
exception and a mapper to associate the exception to an HTTP status.

In the configuration, we added a bean that documents our API, thanks to Swagger,
and we customized the serialization of our JSR-310 dates. Our code base should look
like the following:

Crafting a RESTful Application

[160]

Summary
In this chapter, we have seen how to create a RESTful API with Spring MVC. This
kind of backend yields great benefits in terms of performance and maintenance and
can do wonders when coupled with a JavaScript MVC framework such as Backbone,
Angular JS, or React.js.

We saw how to handle errors and exceptions properly and learned how to leverage
the HTTP status to make a better API.

Finally we added automatic documentation with Swagger and added the ability to
produce both XML and JSON.

In the next chapter, we will learn how to secure our application as well as use the
Twitter API to sign our users up.

[161]

Securing Your Application
In this chapter, we'll learn how to secure our web application and also how to cope
with the security challenges of modern, distributed web applications.

This chapter will be broken up into five parts:

• First, we will set up basic HTTP authentication in a few minutes
• Then, we will design a form-based authentication for the web pages, keeping

the basic authentication for the RESTful API
• We will allow the users to sign up via the Twitter OAuth API
• Then, we will leverage Spring Session to make sure our application can scale

using a distributed session mechanism
• Finally, we will configure Tomcat to use a secured connection through SSL

Basic authentication
The simplest possible authentication mechanism is basic authentication (http://
en.wikipedia.org/wiki/Basic_access_authentication). In a nutshell, our
pages will not be available without username and password.

Our server will indicate our resources are secured by sending the 401 Not
Authorized HTTP status code and generate a WWW-Authenticate header.

To successfully pass the security check, the client must send an Authorization
header containing the Basic value followed by a base 64 encoding of the
user:password string. A browser window will prompt the user for a username and
a password, granting them access to the secured pages if authentication is successful.

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication

Securing Your Application

[162]

Let's add Spring Security to our dependencies:

compile 'org.springframework.boot:spring-boot-starter-security'

Relaunch your application and navigate to any URL in your application. You will be
prompted for a username and a password:

If you fail to authenticate, you will see that a 401 error is thrown. The default
username is user. The correct password for authentication will be randomly
generated each time the application launches and will be displayed in the server log:

Using default security password: 13212bb6-8583-4080-b790-103408c93115

By default, Spring Security secures every resource except a handful of classic routes
such as /css/, /js/, /images/, and **/favicon.ico.

If you wish to configure the default credentials, you can add the following properties
to the application.properties file:

security.user.name=admin
security.user.password=secret

Chapter 6

[163]

Authorized users
Having only one user in our application does not allow fine-grained security. If
we wanted more control over the user credentials, we could add the following
SecurityConfiguration class in the config package:

package masterSpringMvc.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.method.
configuration.EnableGlobalMethodSecurity;
import org.springframework.security.config.annotation.web.
configuration.WebSecurityConfigurerAdapter;

@Configuration
@EnableGlobalMethodSecurity(securedEnabled = true)
public class SecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Autowired
 public void configureAuth(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user").password("user").roles("USER").and()
 .withUser("admin").password("admin").roles("USER",
"ADMIN");
 }
}

This snippet will set up an in-memory system containing our application's users
as well as their roles. It will override the security name and password previously
defined in the application's properties.

The @EnableGlobalMethodSecurity annotation will allow us to annotate our
application's method and classes to define their security level.

Securing Your Application

[164]

For example, let's say that only the administrators of our application can access the
user API. In this case, we just have to add the @Secured annotation to our resource to
allow access only to ADMIN roles:

@RestController
@RequestMapping("/api")
@Secured("ROLE_ADMIN")
public class UserApiController {
 // ... code omitted
}

We can easily test that with httpie by using the -a switch to use basic authentication
and the -p=h switch, which will only display the response headers.

Let's try this with a user without the admin profile:

> http GET 'http://localhost:8080/api/users' -a user:user -p=h

HTTP/1.1 403 Forbidden

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Content-Type: application/json;charset=UTF-8

Date: Sat, 23 May 2015 17:40:09 GMT

Expires: 0

Pragma: no-cache

Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID=2D4761C092EDE9A4DB91FA1CAA16C59B; Path=/; HttpOnly

Transfer-Encoding: chunked

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

X-XSS-Protection: 1; mode=block

Now, with the administrator:

> http GET 'http://localhost:8080/api/users' -a admin:admin -p=h

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Content-Type: application/json;charset=UTF-8

Date: Sat, 23 May 2015 17:42:58 GMT

Expires: 0

Pragma: no-cache

Server: Apache-Coyote/1.1

Chapter 6

[165]

Set-Cookie: JSESSIONID=CE7A9BF903A25A7A8BAD7D4C30E59360; Path=/; HttpOnly

Transfer-Encoding: chunked

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

X-XSS-Protection: 1; mode=block

You will also notice that Spring Security automatically added some common security
headers:

• Cache Control: This prevents the user from caching secured resources
• X-XSS-Protection: This tells the browser to block what looks like CSS
• X-Frame-Options: This disallows our site from being embedded in an

IFrame
• X-Content-Type-Options: This prevents browsers from guessing the MIME

types of malicious resources used to forge XSS attacks

A comprehensive list of these headers is available at http://
docs.spring.io/spring-security/site/docs/current/
reference/htmlsingle/#headers.

Authorized URLs
Annotating our controller is very easy but isn't always the most viable option.
Sometimes, we just want total control over our authorization.

Remove the @Secured annotation; we will come up with something better.

Let's see what Spring Security will allow us to do by modifying the
SecurityConfiguration class:

@Configuration
@EnableGlobalMethodSecurity(securedEnabled = true)
public class SecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Autowired
 public void configureAuth(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user").password("user").roles("USER").and()
 .withUser("admin").password("admin").roles("USER",
"ADMIN");

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers

Securing Your Application

[166]

 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {

http
.httpBasic()
.and()
.csrf().disable()
.authorizeRequests()
.antMatchers("/login", "/logout").permitAll()
.antMatchers(HttpMethod.GET, "/api/**").hasRole("USER")
.antMatchers(HttpMethod.POST, "/api/**").hasRole("ADMIN")
.antMatchers(HttpMethod.PUT, "/api/**").hasRole("ADMIN")
.antMatchers(HttpMethod.DELETE, "/api/**").

hasRole("ADMIN")
.anyRequest().authenticated();

 }
}

In the preceding code sample, we configured our application's security policy by
using Spring Security's fluent API.

This API allows us to configure Spring Security globally by invoking methods
associated with different security concerns and chaining with the and() method.

What we just defined is a basic authentication, without CSRF protection. Requests on
/login and /logout will be allowed for all users. GET requests on the API will only
be permitted for users with the USER role, whereas POST, PUT, and DELETE requests
on the API will only be accessible to users with the ADMIN roles. Finally, every
other request will require authentication with any role.

CSRF stands for Cross Site Request Forgery and refers to an attack where a
malicious website would display a form on its website and post the form data on
yours. If the user of your site is not signed out, the POST request would retain the
user cookies and would therefore be authorized.

CSRF protection will generate short-lived tokens that will be posted along with the
form data. We will see how to properly enable it in the next section; for now, let's just
disable it. See http://docs.spring.io/spring-security/site/docs/current/
reference/htmlsingle/#csrf for more details.

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf for more details
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf for more details

Chapter 6

[167]

To learn more about the authorize request API, have a look at
http://docs.spring.io/spring-security/site/docs/
current/reference/htmlsingle/#authorize-requests.

Thymeleaf security tags
Sometimes, you will need to display data coming from the authentication layer, for
example the user's name and roles, or hide and display part of a web page according
to users' authorities. The thymeleaf-extras-springsecurity module will allow us
to do so.

Add the following dependency to your build.gradle file:

compile 'org.thymeleaf.extras:thymeleaf-extras-springsecurity3'

With this library, we can add a little block under our navigation bar in layout/
default.html to display the logged-in user:

<!DOCTYPE html>
<html xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 xmlns:th="http://www.thymeleaf.org"
 xmlns:sec="http://www.thymeleaf.org/thymeleaf-extras-
springsecurity3">
<head>
 <!-- content trimmed -->
</head>
<body>

<!-- content trimmed -->
<nav>
 <div class="nav-wrapper indigo">
 <ul class="right">
 <!-- content trimmed -->

 </div>
</nav>
<div>
 You are logged as <b sec:authentication="name" /> with roles <span
sec:authentication="authorities" />
 -
 <form th:action="@{/logout}" method="post" style="display: inline-
block">

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#authorize-requests
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#authorize-requests

Securing Your Application

[168]

 <input type="submit" value="Sign Out" />
 </form>
 <hr/>
</div>

<section layout:fragment="content">
 <p>Page content goes here</p>
</section>

<!-- content trimmed -->
</body>
</html>

Note the new namespace in the HTML declaration and the sec:authentication
attributes. It allows access to the properties of the org.springframework.
security.core.Authentication object, which represents the user who is currently
logged in, as shown in the following screenshot:

Don't click on the logout link just yet as it doesn't work with basic authentication.
We will get it to work in the next part.

The lib tag also has a handful of other tags, such as the one to check user
authorizations:

<div sec:authorize="hasRole('ROLE_ADMIN')">
 You are an administrator
</div>

Please refer to the documentation available at https://github.com/
thymeleaf/thymeleaf-extras-springsecurity to learn more
about the library.

https://github.com/thymeleaf/thymeleaf-extras-springsecurity
https://github.com/thymeleaf/thymeleaf-extras-springsecurity

Chapter 6

[169]

The login form
Basic authentication is good for our RESTful API, but we would rather have a login
page carefully designed by our team to improve the web experience.

Spring Security allows us to define as many WebSecurityConfigurerAdapter
classes as we need. We will split our SecurityConfiguration class into two parts:

• ApiSecurityConfiguration: This will be configured first. This will secure
the RESTful endpoints with basic authentication.

• WebSecurityConfiguration: This will then configure login form for the rest
of our application.

You can remove or rename SecurityConfiguration and create
ApiSecurityConfiguration instead:

@Configuration
@Order(1)
public class ApiSecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Autowired
 public void configureAuth(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user").password("user").roles("USER").and()
 .withUser("admin").password("admin").roles("USER",
"ADMIN");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .antMatcher("/api/**")
 .httpBasic().and()
 .csrf().disable()
 .authorizeRequests()
 .antMatchers(HttpMethod.GET).hasRole("USER")
 .antMatchers(HttpMethod.POST).hasRole("ADMIN")
 .antMatchers(HttpMethod.PUT).hasRole("ADMIN")
 .antMatchers(HttpMethod.DELETE).hasRole("ADMIN")
 .anyRequest().authenticated();
 }
}

Securing Your Application

[170]

Note the @Order(1) annotation, which will ensure that this configuration is executed
before the other one. Then, create a second configuration for the web, called
WebSecurityConfiguration:

package masterSpringMvc.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.builders.
HttpSecurity;
import org.springframework.security.config.annotation.web.
configuration.WebSecurityConfigurerAdapter;

@Configuration
public class WebSecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .formLogin()
 .defaultSuccessUrl("/profile")
 .and()
 .logout().logoutSuccessUrl("/login")
 .and()
 .authorizeRequests()
 .antMatchers("/webjars/**", "/login").permitAll()
 .anyRequest().authenticated();
 }
}

The result of this code is that anything matching /api/** will be secured with
basic authentication, without CSRF protection. Then, the second configuration will
be loaded. It will secure anything else. Everything in this part of the application
requires the client to be authenticated, except requests on WebJars and on the login
page (this will avoid the redirection loop).

If an unauthenticated user tries to access a protected resource, they will
automatically be redirected to the login page.

By default, the login URL is GET /login. The default login will be posted via a POST
/login request that will contain three values: a user name (username), a password
(password) and a CSRF token (_csrf). If the login is unsuccessful, the user will be
redirected to /login?error. The default logout page is a POST /logout request
with a CSRF token.

Chapter 6

[171]

Now, if you try to navigate on your application, this form will be generated
automatically!

If you are already logged in from a previous attempt, close your browser; this will
clear up the session.

We can now log in and out of our application!

This is lovely but we can do a lot better with very little effort. First, we will define a
login page on /login in the WebSecurityConfiguration class:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .formLogin()
 .loginPage("/login") // <= custom login page
 .defaultSuccessUrl("/profile")
 // the rest of the configuration stays the same
}

This will let us create our own login page. To do that, we will need a very
simple controller to handle the GET login request. You can create one in the
authentication package:

package masterSpringMvc.authentication;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class LoginController {

 @RequestMapping("/login")
 public String authenticate() {

Securing Your Application

[172]

 return "login";
 }
}

This will trigger the display of the login.html page located in the template
directory. Let's create it:

<!DOCTYPE HTML>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head>
 <title>Login</title>
</head>
<body>
<div class="section no-pad-bot" layout:fragment="content">
 <div class="container">

 <h2 class="header center orange-text">Login</h2>

 <div class="row">
 <div id="errorMessage" class="card-panel red lighten-2"
th:if="${param.error}">
 Invalid user name or
password
 </div>

 <form class="col s12" action="/login" method="post">
 <div class="row">
 <div class="input-field col s12">
 <input id="username" name="username"
type="text" class="validate"/>
 <label for="username">Username</label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s12">
 <input id="password" name="password"
type="password" class="validate"/>
 <label for="password">Password</label>
 </div>
 </div>
 <div class="row center">
 <button class="btn waves-effect waves-light"
type="submit" name="action">Submit
 <i class="mdi-content-send right"></i>
 </button>
 </div>
 <input type="hidden" th:name="${_csrf.parameterName}"
th:value="${_csrf.token}"/>

Chapter 6

[173]

 </form>
 </div>
 </div>
</div>
</body>
</html>

Note that we handle the error message and that we post a CSRF token. We also
use the default username and password input names, but those are configurable if
needed. The result looks much better already!

You can see right away that Spring Security assigns anonymous credentials to all
non-authenticated users by default.

We shouldn't show the sign-out button to an anonymous user so we can wrap the
corresponding HTML part in sec:authorize="isAuthenticated()" to display
it to authenticated users only, like so:

<div sec:authorize="isAuthenticated()">
 You are logged as <b sec:authentication="name"/> with roles <span
sec:authentication="authorities"/>
 -

Securing Your Application

[174]

 <form th:action="@{/logout}" method="post" style="display: inline-
block">
 <input type="submit" value="Sign Out"/>
 </form>
 <hr/>
</div>

Twitter authentication
Our application is strongly integrated with Twitter, so it seems logical that we would
allow authentication through Twitter.

Before going further, make sure that you have enabled Twitter sign in on your app
on Twitter (https://apps.twitter.com):

https://apps.twitter.com

Chapter 6

[175]

Setting up social authentication
Spring social enables authentication through an OAuth provider such as Twitter
through a signin/signup scenario. It will intercept a POST request on /signin/
twitter. If the user is not known to the UsersConnectionRepository interface, the
signup endpoint will be called. It will allow us to take the necessary measures to
register the user on our system and maybe ask them for additional details.

Let's get to work. The first thing we need to do is to add the signin/** and /signup
URLs as publicly available resources. Let's modify our WebSecurityConfiguration
class, changing the permitAll line:

.antMatchers("/webjars/**", "/login", "/signin/**", "/signup").
permitAll()

To enable the signin/signup scenario, we also need a SignInAdapter interface, a
simple listener that will be called when an already known user signs in again.

We can create an AuthenticatingSignInAdapter class right next to our
LoginController:

package masterSpringMvc.authentication;

import org.springframework.security.authentication.
UsernamePasswordAuthenticationToken;
import org.springframework.security.core.context.
SecurityContextHolder;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.UserProfile;
import org.springframework.social.connect.web.SignInAdapter;
import org.springframework.stereotype.Component;
import org.springframework.web.context.request.NativeWebRequest;

@Component
public class AuthenticatingSignInAdapter implements SignInAdapter {

 public static void authenticate(Connection<?> connection) {
 UserProfile userProfile = connection.fetchUserProfile();
 String username = userProfile.getUsername();
 UsernamePasswordAuthenticationToken authentication = new Usern
amePasswordAuthenticationToken(username, null, null);
 SecurityContextHolder.getContext().setAuthentication(authenti
cation);
 System.out.println(String.format("User %s %s connected.",
userProfile.getFirstName(), userProfile.getLastName()));

Securing Your Application

[176]

 }

 @Override
 public String signIn(String userId, Connection<?> connection,
NativeWebRequest request) {
 authenticate(connection);
 return null;
 }
}

As you can see, this handler is called at the perfect time to allow user authentication
with Spring Security. We'll come back to that in just a moment. For now, we need to
define our SignupController class in the same package, the one in charge of first-
time visiting users:

package masterSpringMvc.authentication;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.ConnectionFactoryLocator;
import org.springframework.social.connect.UsersConnectionRepository;
import org.springframework.social.connect.web.ProviderSignInUtils;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.context.request.WebRequest;

@Controller
public class SignupController {
 private final ProviderSignInUtils signInUtils;

 @Autowired
 public SignupController(ConnectionFactoryLocat
or connectionFactoryLocator, UsersConnectionRepository
connectionRepository) {
 signInUtils = new ProviderSignInUtils(connectionFactoryLocat
or, connectionRepository);
 }

 @RequestMapping(value = "/signup")
 public String signup(WebRequest request) {
 Connection<?> connection = signInUtils.getConnectionFromSessi
on(request);
 if (connection != null) {
 AuthenticatingSignInAdapter.authenticate(connection);

Chapter 6

[177]

 signInUtils.doPostSignUp(connection.getDisplayName(),
request);
 }
 return "redirect:/profile";
 }
}

First, this controller retrieves the current connection from the session. Then, it
authenticates the user through the same method as before. Lastly, it will trigger the
doPostSignUp event, which will allow Spring Social to store information relative to
our user in the UsersConnectionRepository interface that we mentioned earlier.

The last thing we need to do is add a triumphant "login with twitter" button to our
login page, right below the previous form:

<form th:action="@{/signin/twitter}" method="POST" class="center">
 <div class="row">
 <button class="btn indigo" name="twitterSignin"
type="submit">Connect with Twitter
 <i class="mdi-social-group-add left"></i>
 </button>
 </div>
</form>

Securing Your Application

[178]

When the user clicks on the CONNECT WITH TWITTER button, they will be
redirected to a Twitter sign in page:

Explanation
There isn't much code, but it is a bit tricky to understand all the parts. The first step
to getting what's going on is to have a look at the SocialWebAutoConfiguration
class of Spring Boot.

The SocialAutoConfigurationAdapter class declared in this class contains the
following bean:

@Bean
@ConditionalOnBean(SignInAdapter.class)
@ConditionalOnMissingBean(ProviderSignInController.class)
public ProviderSignInController signInController(
 ConnectionFactoryLocator factoryLocator,
 UsersConnectionRepository usersRepository, SignInAdapter
signInAdapter) {
 ProviderSignInController controller = new
ProviderSignInController(
 factoryLocator, usersRepository, signInAdapter);
 if (!CollectionUtils.isEmpty(this.signInInterceptors)) {

Chapter 6

[179]

 controller.setSignInInterceptors(this.signInInterceptors);
 }
 return controller;
}

The ProviderSignInController class will automatically be set up if one
ProviderSignInController class is detected in our configuration. This controller
is the cornerstone of the sign-in process. Have a look at what it does (I will only
summarize the important parts):

• It will handle the POST /signin/{providerId} from our connect button
• It will redirect the user to the appropriate sign-in URL of our identification

provider
• It will be notified of the OAuth token by a GET /signin/{providerId} from

the identification provider
• It will then handle the sign in
• If the user is not found in the UsersConnectionRepository interface, it will

use a SessionStrategy interface to store the pending login request and will
then redirect to the signupUrl page

• If the user is found, the SignInAdapter interface is called and the user is
redirected to the postSignupUrl page

The two important components of this identification are the
UsersConnectionRepository interface in charge of storing and retrieving users
from some kind of storage and the SessionStrategy interface that will temporarily
store the user connection so it can be retrieved from the SignupController class.

By default, Spring Boot creates an InMemoryUsersConnectionRepository interface
for each authentication provider, which means that our user connection data will be
stored in memory. If we restart the server, the user will become unknown and will
go through the sign-up process again.

The ProviderSignInController class defaults to HttpSessionSessionStrategy,
which will store the connection in the HTTP session. The ProviderSignInUtils
class that we use in our SignupController class also uses this strategy by default. If
we were distributing our application on multiple servers, this would be problematic
because the session would likely not be available on every server.

It is easy enough to override these defaults by providing a custom SessionStrategy
interface to both the ProviderSignInController and ProviderSignInUtils
classes to store data somewhere other than in the HTTP session.

Securing Your Application

[180]

Likewise, we can use another kind of storage for our user connection data by
providing another implementation of the UsersConnectionRepository interface.

Spring Social provides a JdbcUsersConnectionRepository interface that will
automatically save authenticated users in a UserConnection table in your database.
This won't be covered in this book extensively, but you should be able to configure it
easily by adding the following bean to your configuration:

@Bean
@Primary
public UsersConnectionRepository getUsersConnectionRepository(
 DataSource dataSource, ConnectionFactoryLocator
connectionFactoryLocator) {
 return new JdbcUsersConnectionRepository(
 dataSource, connectionFactoryLocator, Encryptors.noOpText());
}

Check out this article http://geowarin.github.io/
spring/2015/08/02/social-login-with-spring.html on
my blog for more details.

Distributed sessions
As we have seen in the preceding section, there are several moments when Spring
Social stores things in the HTTP session. Our user profile is also stored in the
session. This is a classical approach to keeping things in memory as long as a user is
navigating the site.

However, this can prove troublesome if we want to scale our application and
distribute the load to multiple backend servers. We have now entered the cloud era,
and Chapter 8, Optimizing Your Requests will be about deploying our application to
the cloud.

To make our session work in a distributed environment, we have a few options:

• We could use sticky sessions. This will ensure that a specific user will always
be redirected to the same server and keep its session. It requires additional
configuration for the deployment and isn't a particularly elegant approach.

• Refactor our code to put data in a database instead of the session. We can
then load the user's data from the database if we associate it with a cookie or
a token sent by the client with each request.

• Use the Spring Session project to transparently use a distributed database
such as Redis as the underlying session provider.

http://geowarin.github.io/spring/2015/08/02/social-login-with-spring.html
http://geowarin.github.io/spring/2015/08/02/social-login-with-spring.html

Chapter 6

[181]

In this chapter, we will see how to set up the third approach. It is really easy to set
up and provides the amazing benefit that it can be turned off without impacting the
functionality of our application.

The first thing we need to do is to install Redis. To install it on Mac, use the brew
command:

brew install redis

For other platforms, follow the instructions at http://redis.io/download.

You can then start the server by using the following command:

redis-server

Add the following dependencies to your build.gradle file:

compile 'org.springframework.boot:spring-boot-starter-redis'
compile 'org.springframework.session:spring-session:1.0.1.RELEASE'

Create a new configuration file next to application.properties called
application-redis.properties:

spring.redis.host=localhost
spring.redis.port=6379

Spring Boot provides a convenient way of associating configuration files with a
profile. In this case, the application-redis.properties file will only be loaded if
the Redis profile is active.

Then, create a RedisConfig class in the config package:

package masterSpringMvc.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.session.data.redis.config.annotation.web.
http.EnableRedisHttpSession;

@Configuration
@Profile("redis")
@EnableRedisHttpSession
public class RedisConfig {
}

As you can see, this configuration will only be active if the redis profile is on.

http://redis.io/download

Securing Your Application

[182]

We're done! We can now launch our app with the following flag:

-Dspring.profiles.active=redis

You can also generate the JAR with gradlew build and launch it with the following
command:

java -Dserver.port=$PORT -Dspring.profiles.active=redis -jar app.jar

Alternatively, you can launch it with Gradle in Bash, as follows:

SPRING_PROFILES_ACTIVE=redis ./gradlew bootRun

You can also simply set it up as a JVM option in the run configuration of your IDE.

And that's it! You now have a server storing the details of your logged-in users. This
means that we can scale and have multiple servers for our web resources and our
users won't notice. And we didn't have to write any code on our side.

This also means that you will keep your session even if you restart your server.

To see that it works, connect to Redis with the redis-cli command. At the
beginning, it will not contain any keys:

> redis-cli

127.0.0.1:6379> KEYS *

(empty list or set)

Navigate to your app and start putting things in the session:

127.0.0.1:6379> KEYS *

1) "spring:session:expirations:1432487760000"

2) "spring:session:sessions:1768a55b-081a-4673-8535-7449e5729af5"

127.0.0.1:6379> HKEYS spring:session:sessions:1768a55b-081a-4673-8535-
7449e5729af5

1) "sessionAttr:SPRING_SECURITY_CONTEXT"

2) "sessionAttr:org.springframework.security.web.csrf.
HttpSessionCsrfTokenRepository.CSRF_TOKEN"

3) "lastAccessedTime"

4) "maxInactiveInterval"

5) "creationTime"

You can consult the list of available commands at
http://redis.io/commands.

http://redis.io/commands

Chapter 6

[183]

SSL
Secure Sockets Layer (SSL) is a security protocol in which data is encrypted and
sent to a trusted party via a certificate. In this part, I will show you the different ways
to create a secured connection with Spring Boot. The completion of these steps is not
mandatory to start the next chapter. They are included for completeness, so feel free
to skip them if you are in a hurry to deploy your application to the cloud.

In Chapter 9, Deploying Your Web Application to the Cloud, we will see that most cloud
platforms already handle SSL so we don't have to configure it at our end.

Generating a self-signed certificate
Normally, X.509 certificates are delivered by a Certificate Authority. They generally
bill you for the service, so for testing purposes, we can create our own self-signed
keystore file.

The JDK comes with a binary called keytool, which is used to manage certificates.
With it, you can create a keystore and import certificates into an existing keystore.
You can issue the following command inside your project root to create one:

$ keytool -genkey -alias masterspringmvc -keyalg RSA -keystore src/main/
resources/tomcat.keystore

Enter keystore password: password

Re-enter new password: password

What is your first and last name?

 [Unknown]: Master Spring MVC

What is the name of your organizational unit?

 [Unknown]: Packt

What is the name of your organization?

 [Unknown]: Packt

What is the name of your City or Locality?

 [Unknown]: Paris

What is the name of your State or Province?

 [Unknown]: France

What is the two-letter country code for this unit?

 [Unknown]: FR

Is CN=Master Spring MVC, OU=Packt, O=Packt, L=Paris, ST=France, C=FR
correct?

 [no]: yes

Securing Your Application

[184]

Enter key password for <masterspringmvc>

 (RETURN if same as keystore password): password2

Re-enter new password: password2

This will generate a keystore named masterspringmvc with the RSA algorithm and
will store it in a keystore in src/main/resources.

Do not push the keystore to your repository. It can be brute-forced,
which would void the security of your website. You should also
generate keystores with strong, randomly generated passwords.

The easy way
If all you care about is having one secure https channel and no http channel, it is as
easy as it gets:

server.port = 8443

server.ssl.key-store = classpath:tomcat.keystore

server.ssl.key-store-password = password

server.ssl.key-password = password2

Do not push your passwords to your repository. Use the ${} notation
to import environment variables.

The dual way
If you want to have both the http and the https channels available in your
application, you should add this kind of configuration to your application:

@Configuration
public class SslConfig {

 @Bean
 public EmbeddedServletContainerFactory servletContainer() throws
IOException {
 TomcatEmbeddedServletContainerFactory tomcat = new
TomcatEmbeddedServletContainerFactory();

Chapter 6

[185]

 tomcat.addAdditionalTomcatConnectors(createSslConnector());
 return tomcat;
 }

 private Connector createSslConnector() throws IOException {
 Connector connector = new Connector(Http11NioProtocol.class.
getName());
 Http11NioProtocol protocol =
 (Http11NioProtocol) connector.getProtocolHandler();
 connector.setPort(8443);
 connector.setSecure(true);
 connector.setScheme("https");
 protocol.setSSLEnabled(true);
 protocol.setKeyAlias("masterspringmvc");
 protocol.setKeystorePass("password");
 protocol.setKeyPass("password2");
 protocol.setKeystoreFile(new ClassPathResource("tomcat.
keystore").getFile().getAbsolutePath());
 protocol.setSslProtocol("TLS");
 return connector;
 }
}

This will load the previously generated keystore to create an additional channel on
port 8443 in addition to port 8080.

You can use Spring Security to automatically redirect connections from http to
https with the following configuration:

@Configuration
public class WebSecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .requiresChannel().anyRequest().requiresSecure()
 .and()
 /* rest of the configuration */;
 }
}

Securing Your Application

[186]

Behind a secured server
The most convenient way to secure your application with SSL is often to put it behind
an SSL-enabled web server such as Apache or CloudFlare. These will often use de facto
headers to indicate that the connection was previously initiated with SSL.

Spring Boot can understand this protocol if you tell it what the correct headers are in
your application.properties file:

server.tomcat.remote_ip_header=x-forwarded-for

server.tomcat.protocol_header=x-forwarded-proto

See the documentation here for more details at http://docs.
spring.io/spring-boot/docs/current/reference/html/
howto-embedded-servlet-containers.html#howto-use-
tomcat-behind-a-proxy-server.

The check point
In this chapter, we added three pieces of configuration:
ApiSecurityConfiguration, which configures our REST API to use basic HTTP
authentication; WebSecurityConfiguration, which sets up a login form for our
web users to sign in with either an account or with Twitter; and RedisConfig, which
allows our sessions to be stored and retrieved from a Redis server.

In the authentication package, we added a LoginController class that redirects to
our login page, a SignupController class that will be called the first time a user
signs up with Twitter, and an AuthenticatingSignInAdapater class that will be
called on every login with Twitter:

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-tomcat-behind-a-proxy-server
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-tomcat-behind-a-proxy-server
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-tomcat-behind-a-proxy-server
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-tomcat-behind-a-proxy-server

Chapter 6

[187]

Summary
Securing our web application with Spring is really simple. The possibilities are
endless, and advanced configurations such as social sign in are at your fingertips.
Distributing sessions and scaling also take a matter of minutes.

In the next chapter, we will see how to test our application and ensure it never
regresses.

[189]

Leaving Nothing to
Luck – Unit Tests and

Acceptance Tests
In this chapter, we will see why and how our application should be tested. We will
see the differences between unit tests and acceptance tests, and learn how to do both.

This chapter is divided in two parts. In the first part, we will write tests in Java
while studying the different ways of testing. In the second part, which is shorter,
we will write the exact same tests in Groovy, and see how we can improve our code
readability with this awesome language.

If you do everything in this chapter, you will have double tests, so feel free to keep
only the tests that are most readable for you.

Why should I test my code?
Working in the Java world has made a lot of developers aware of the importance
of tests. A good series of tests can catch regressions early and allows us to be more
confident when we ship our product.

A lot of people are now familiar with the notion of continuous integration
(http://www.thoughtworks.com/continuous-integration). This is a practice
where a server is in charge of building the application every time a change is made
on the source control system.

http://www.thoughtworks.com/continuous-integration

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[190]

The build should be as fast as possible and capable of self testing. The main idea of
this practice is to get a fast feedback loop; you should get details about what went
wrong as soon as something in the system breaks.

Why should you care? After all, testing your application is an additional cost;
the time spent designing and maintaining tests will necessarily eat into some
development time.

Actually, the later a bug is found, the costlier it gets. If you think about it, even a bug
found by your QA team begins to cost more than a bug you find on your own. It
forces you to switch back to the context you were in when writing the code: why did
I write this line? What was the underlying business rule of that function?

If you write tests early on and are able to launch them in a few seconds, it will
certainly cost less time to address potential bugs in your code.

Another benefit of tests is that they act as a living documentation of your code. While
writing extensive documentation, and even code comments, can prove ineffective
because they easily become outdated, forming the habit of writing a good test for
limit cases or surprising behaviors will act as a safety net for the future.

What is this line of code for? Have you ever found yourself asking this kind of
question? Well, if you have a good set of unit tests, you can just remove it and see
what breaks! Tests give us an unprecedented confidence in our code and in our
ability to refactor it. Software is very fragile. If you stop caring, it will slowly rot
and die.

Be responsible—don't let your code die!

How should I test my code?
There are different kinds of tests that we can perform on a piece of software, such as
security tests, performances test, and so on. As developers, we will focus on the tests
we can automate and that will help improve our code.

Chapter 7

[191]

The tests fall under two categories: unit tests and acceptance tests. The test
pyramid (http://martinfowler.com/bliki/TestPyramid.html) shows in what
proportions these tests should be written:

At the bottom of the pyramid, you have the unit tests (fast to launch and relatively
easy to maintain), and at the top, UI tests (costlier and slower to execute). Integration
tests sit in the middle: they can be viewed as big unit tests with complex interactions
between units.

The idea of the pyramid is to remind you to put your focus where you have the most
impact and get the best feedback loops.

http://martinfowler.com/bliki/TestPyramid.html

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[192]

Test-driven development
Many developers develop the healthy habit of Test-driven Development (TTD).
This practice, inherited from Extreme Programming (XP), is the process of splitting
each development stage into small steps and then writing a failing test for every
one of them. You make the necessary modifications so that the tests pass again (test
are green). You can then refactor your code as long as the tests remain green. The
following figure illustrates the TDD cycle:

You can iterate until the feature is done with very short feedback loops, with the
insurance of no regressions, and the guarantee that all the code you write will be
tested from the very beginning.

TDD gets its share of criticisms. The most interesting ones are these:

• It takes more time to write the tests than to do the actual implementation
• It can lead to poorly designed applications

The truth of the matter is that it takes time to become a good TDD practitioner. Once
you get the feeling of what should be tested and know your tools well enough, you
won't lose much time at all.

Chapter 7

[193]

It also takes experienced developers to craft an application with a proper design
using TDD (or with any other methodology). Poor design can be a side effect of TDD
if you get trapped in the baby steps mantra and forget to look at the big picture. It
is true that TDD won't magically lead to great application design, so be careful and
remember to take a step back after completing each feature.

From the beginning of the book, we have only had one autogenerated unit test in our
code. This is bad! We didn't follow good practice. This chapter is here to address this
problem.

The unit tests
The lower level tests we can write are called unit tests. They should test a small
portion of code, hence the notion of unit. How you define a unit is up to you; it can
be a class or a bunch of closely related classes. Defining this notion will determine
what will be mocked (replaced with a dummy object). Are you going to replace the
database with a lightweight alternative? Are you going to replace interactions with
external services? Are you going to mock-up closely related objects whose behavior
is not relevant to the context of what's being tested?

My advice here is to keep a balanced approach. Keep your tests clean and fast, and
everything else will follow.

I rarely completely mock the data layer. I tend to use embedded databases for
testing. They provide an easy way to load data while testing.

As a rule, I always mock collaboration with external services for two reasons,
as follows:

• The speed of the tests and the possibility to run the tests without connecting
to the network

• To be able to test error cases while communicating with those services

Additionally, there is a subtle difference between mocking and stubbing. We will try
to use both approaches to see how they relate to each other.

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[194]

The right tools for the job
The first barrier for test novices is the lack of knowledge of the good tools and
libraries for writing relevant and maintainable tests.

I'm going to list a few here. This list is by no means exhaustive, but it contains the
tools we are going to use and that are easily compatible with Spring:

JUnit The most universally adopted Java test runner. Launched by default by
all build tools.

AssertJ A fluent assertion library. It's way easier to use than Hamcrest.
Mockito An easy mocking framework.
DbUnit For mocking and asserting your database content with XML datasets.
Spock An elegant Groovy DSL to write tests with Behaviour Driven

Development (BDD) style (Given/When/Then).

Groovy has a place of choice in my testing toolset. Even if you're not ready yet to
put some Groovy code into production, you can easily use the convenience of the
language in your tests. With Gradle, this is very easy to do, but we will see that in a
few minutes.

The acceptance tests
In the context of a web application, "acceptance test" will often refer to in-browser,
end-to-end testing. In the Java world, Selenium is clearly one of the most reliable and
mature libraries.

In the JavaScript world, we can find other alternatives, such as PhantomJS or
Protractor. PhantomJS is very relevant in our case because there is a web driver
available to run Selenium tests inside of this headless browser, which will improve
launch time and won't require emulating an X Server or launching a separate
Selenium server:

Selenium 2 This provides web drivers to pilot browsers for automated testing.

PhantomJS A headless browser (without GUI). Probably the fastest browser.

FluentLenium A fluent library for piloting Selenium tests.

Geb A Groovy library for piloting Selenium tests.

Chapter 7

[195]

Our first unit test
It is now time to write our first unit test.

We will focus on writing tests at the controller level because we have little
to no business code or service. The key to writing tests for Spring MVC is the
org.springframework.boot:spring-boot-starter-test dependency in
our classpath. It will add a few very useful libraries, such as these:

• hamcrest: This is JUnit's assertion library
• mockito: This is a mocking library
• spring-test: This is the Spring testing library

We will test the redirection to the profile page that is created when the user hasn't
created their profile yet.

We already have an autogenerated test called MasterSpringMvc4ApplicationTests.
It is the most basic kind of test one can write with the Spring test framework: it does
nothing but blow up if the context cannot be loaded:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MasterSpringMvc4Application.
class)
@WebAppConfiguration
public class MasterSpringMvc4ApplicationTests {

 @Test
 public void contextLoads() {
 }
}

We can delete this test and create one that will ensure that a user with no profile
will be redirected to the profile page by default. It will actually test the code of the
HomeController class, so let's call it HomeControllerTest class and put it in the
same package as HomeController, in src/test/java. All IDEs have shortcuts for
creating a JUnit test case from a class. Find out how to do it with yours now!

Here is the test:

package masterSpringMvc.controller;

import masterSpringMvc.MasterSpringMvcApplication;
import org.junit.Before;
import org.junit.Test;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[196]

import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.
MockMvcResultHandlers.print;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MasterSpringMvcApplication.
class)
@WebAppConfiguration
public class HomeControllerTest {
 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 }

 @Test
 public void should_redirect_to_profile() throws Exception {
 this.mockMvc.perform(get("/"))
 .andDo(print())
 .andExpect(status().isFound())
 .andExpect(redirectedUrl("/profile"));
 }
}

We use MockMvc to simulate interactions with a Spring controller without the actual
overhead of a Servlet container.

Chapter 7

[197]

We also use a couple of matchers that Spring provides to assert our result. They
actually implement Hamcrest matchers.

The .andDo(print()) statement will produce a neat debug output for the request and
response of the scenario under test. You can comment it if you find it too verbose.

That's all there is to it! The syntax is a bit tricky at the beginning, but an IDE with
good completion will be able to help you.

Now we want to test whether, if the user has filled in the test part of their profile, we
can redirect them to the correct search. For that, we will need to stub the session with
the MockHttpSession class:

import org.springframework.mock.web.MockHttpSession;
import masterSpringMvc.profile.UserProfileSession;

// put this test below the other one
@Test
public void should_redirect_to_tastes() throws Exception {
 MockHttpSession session = new MockHttpSession();
 UserProfileSession sessionBean = new UserProfileSession();
 sessionBean.setTastes(Arrays.asList("spring", "groovy"));
 session.setAttribute("scopedTarget.userProfileSession",
sessionBean);

 this.mockMvc.perform(get("/").session(session))
 .andExpect(status().isFound())
 .andExpect(redirectedUrl("/search/mixed;keywords=spring,groo
vy"));
}

You will have to add the setTastes() setter to the UserProfileSession bean
for the test to work.

There are a lot of mocking utilities for the Servlet environment in the
org.springframework.mock.web package.

Note that the attribute representing our bean in session is prefixed by scopedTarget.
That's because session beans are proxified by Spring. Therefore, there are actually
two objects in the Spring context, the actual bean that we defined and its proxy that
will end up in the session.

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[198]

The mock session is a neat class, but we can refactor the test with a builder that will
hide implementation details and can be reused later:

@Test
public void should_redirect_to_tastes() throws Exception {

 MockHttpSession session = new SessionBuilder().
userTastes("spring", "groovy").build();
 this.mockMvc.perform(get("/")
 .session(session))
 .andExpect(status().isFound())
 .andExpect(redirectedUrl("/search/mixed;keywords=spring,groo
vy"));
}

The code for the builder is as follows:

public class SessionBuilder {
 private final MockHttpSession session;
 UserProfileSession sessionBean;

 public SessionBuilder() {
 session = new MockHttpSession();
 sessionBean = new UserProfileSession();
 session.setAttribute("scopedTarget.userProfileSession",
sessionBean);
 }

 public SessionBuilder userTastes(String... tastes) {
 sessionBean.setTastes(Arrays.asList(tastes));
 return this;
 }

 public MockHttpSession build() {
 return session;
 }
}

After this refactoring, your test should always pass, of course.

Chapter 7

[199]

Mocks and stubs
If we wanted to test the search request handled by the SearchController class, we
would certainly want to mock SearchService.

There are two ways of doing this: with a mock or with a stub.

Mocking with Mockito
First, we can create a mock object with Mockito:

package masterSpringMvc.search;

import masterSpringMvc.MasterSpringMvcApplication;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;

import java.util.Arrays;

import static org.hamcrest.Matchers.*;
import static org.mockito.Matchers.*;
import static org.mockito.Mockito.*;
import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MasterSpringMvcApplication.
class)
@WebAppConfiguration

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[200]

public class SearchControllerMockTest {
 @Mock
 private SearchService searchService;

 @InjectMocks
 private SearchController searchController;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 MockitoAnnotations.initMocks(this);
 this.mockMvc = MockMvcBuilders
 .standaloneSetup(searchController)
 .setRemoveSemicolonContent(false)
 .build();
 }

 @Test
 public void should_search() throws Exception {

 when(searchService.search(anyString(), anyListOf(String.
class)))
 .thenReturn(Arrays.asList(
 new LightTweet("tweetText")
));

 this.mockMvc.perform(get("/search/mixed;keywords=spring"))
 .andExpect(status().isOk())
 .andExpect(view().name("resultPage"))
 .andExpect(model().attribute("tweets", everyItem(
 hasProperty("text", is("tweetText"))
)));

 verify(searchService, times(1)).search(anyString(),
anyListOf(String.class));
 }
}

You can see that instead of setting up MockMvc with the web application context, we
have created a standalone context. This context will only contain our controller. That
means we have full control over the instantiation and initialization of controllers and
their dependencies. It will allow us to easily inject a mock inside of our controller.

Chapter 7

[201]

The downside is that we have to redeclare pieces of our configuration like the one
saying we don't want to remove URL characters after a semicolon.

We use a couple of Hamcrest matchers to assert the properties that will end up in the
view model.

The mocking approach has its benefits, such as the ability to verify interactions with
the mock and create expectations at runtime.

This will also couple your test with the actual implementation of the object. For
instance, if you changed how a tweet is fetched in the controller, you would likely
break the tests related to this controller because they still try to mock the service we
no longer rely on.

Stubbing our beans while testing
Another approach is to replace the implementation of our SearchService class with
another one in our test.

We were a bit lazy early on and did not define an interface for SearchService.
Always program to an interface and not to an implementation. Behind this proverbial
wisdom lies the most important lesson from the Gang of Four.

One of the benefits of the Inversion of Control is to allow for the easy replacement
of our implementations in tests or in a real system. For this to work, we will have to
modify all the usages SearchService with the new interface. With a good IDE, there
is a refactoring called extract interface that will do just that. This should create
an interface that contains the public method search() of our SearchService class:

public interface TwitterSearch {
 List<LightTweet> search(String searchType, List<String> keywords);
}

Of course, our two controllers, SearchController and SearchApiController, must
now use the interface and not the implementation.

We now have the ability to create a test double for the TwitterSearch class
specially for our test case. For this to work, we will need to declare a new Spring
configuration named StubTwitterSearchConfig that will contain another
implementation for TwitterSearch. I placed it in the search package, next to
SearchControllerMockTest:

package masterSpringMvc.search;

import org.springframework.context.annotation.Bean;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[202]

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;

import java.util.Arrays;

@Configuration
public class StubTwitterSearchConfig {
 @Primary @Bean
 public TwitterSearch twitterSearch() {
 return (searchType, keywords) -> Arrays.asList(
 new LightTweet("tweetText"),
 new LightTweet("secondTweet")
);
 }
}

In this configuration class, we redeclare the TwitterSearch bean with the @Primary
annotation, which will tell Spring to use this implementation on priority if other
implementations are found in the classpath.

Since the TwitterSearch interface contains only one method, we can implement it
with a lambda expression.

Here is the complete test that uses our StubConfiguration class along with our
main configuration with the SpringApplicationConfiguration annotation:

package masterSpringMvc.search;

import masterSpringMvc.MasterSpringMvcApplication;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import static org.hamcrest.Matchers.*;

Chapter 7

[203]

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = {
 MasterSpringMvcApplication.class,
 StubTwitterSearchConfig.class
})
@WebAppConfiguration
public class SearchControllerTest {
 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 }

 @Test
 public void should_search() throws Exception {

 this.mockMvc.perform(get("/search/mixed;keywords=spring"))
 .andExpect(status().isOk())
 .andExpect(view().name("resultPage"))
 .andExpect(model().attribute("tweets", hasSize(2)))
 .andExpect(model().attribute("tweets",
 hasItems(
 hasProperty("text",
is("tweetText")),
 hasProperty("text",
is("secondTweet"))
))
);
 }
}

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[204]

Should I use mocks or stubs?
Both approaches have their own merits. For a detailed explanation,
check out this great essay by Martin Fowler:
http://martinfowler.com/articles/mocksArentStubs.html.

My testing routine is more about writing stubs because I like the idea of testing the
output of my objects more than their inner workings. But that's up to you. Spring
being a dependency injection framework at its core means that you can easily choose
what your favorite approach is.

Unit testing REST controllers
We have just tested a traditional controller redirecting to a view. Testing a REST
controller is very similar in principle, but there are a few subtleties.

Since we are going to test the JSON output of our controller, we need a JSON
assertion library. Add the following dependency to your build.gradle file:

testCompile 'com.jayway.jsonpath:json-path'

Let's write a test for the SearchApiController class, the controller that allows
searching for a tweet and returns results as JSON or XML:

package masterSpringMvc.search.api;

import masterSpringMvc.MasterSpringMvcApplication;
import masterSpringMvc.search.StubTwitterSearchConfig;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

http://martinfowler.com/articles/mocksArentStubs.html

Chapter 7

[205]

import static org.hamcrest.Matchers.*;
import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultHandlers.print;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = {
 MasterSpringMvcApplication.class,
 StubTwitterSearchConfig.class
})
@WebAppConfiguration
public class SearchApiControllerTest {
 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 }

 @Test
 public void should_search() throws Exception {

 this.mockMvc.perform(
 get("/api/search/mixed;keywords=spring")
 .accept(MediaType.APPLICATION_JSON))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(content().contentTypeCompatibleWith(MediaTy
pe.APPLICATION_JSON))
 .andExpect(jsonPath("$", hasSize(2)))
 .andExpect(jsonPath("$[0].text", is("tweetText")))
 .andExpect(jsonPath("$[1].text", is("secondTweet")));
 }
}

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[206]

Note the simple and elegant assertions on the JSON output. Testing our user
controller will require a bit more work.

First, let's add assertj to the classpath; it will help us write cleaner tests:

testCompile 'org.assertj:assertj-core:3.0.0'

Then, to simplify testing, add a reset() method to our UserRepository class
that will help us with the test:

void reset(User... users) {
 userMap.clear();
 for (User user : users) {
 save(user);
 }
}

In real life, we should probably extract an interface and create a stub for testing.
I will leave that as an exercise for you.

Here is the first test that gets the list of users:

package masterSpringMvc.user.api;

import masterSpringMvc.MasterSpringMvcApplication;
import masterSpringMvc.user.User;
import masterSpringMvc.user.UserRepository;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import static org.hamcrest.Matchers.*;
 import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

Chapter 7

[207]

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MasterSpringMvcApplication.
class)
@WebAppConfiguration
public class UserApiControllerTest {

 @Autowired
 private WebApplicationContext wac;

 @Autowired
 private UserRepository userRepository;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 userRepository.reset(new User("bob@spring.io"));
 }

 @Test
 public void should_list_users() throws Exception {
 this.mockMvc.perform(
 get("/api/users")
 .accept(MediaType.APPLICATION_JSON)
)
 .andExpect(status().isOk())
 .andExpect(content().contentTypeCompatibleWith(MediaTy
pe.APPLICATION_JSON))
 .andExpect(jsonPath("$", hasSize(1)))
 .andExpect(jsonPath("$[0].email", is("bob@spring.
io")));
 }
}

For this to work, add a constructor to the User class, taking the e-mail property as a
parameter. Be careful: you also need to have a default constructor for Jackson.

The test is very similar to the previous test with the additional setup of
UserRepository.

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[208]

Let's test the POST method that creates a user now:

import static org.assertj.core.api.Assertions.assertThat;

// Insert this test below the previous one
@Test
public void should_create_new_user() throws Exception {
 User user = new User("john@spring.io");
 this.mockMvc.perform(
 post("/api/users")
 .contentType(MediaType.APPLICATION_JSON)
 .content(JsonUtil.toJson(user))
)
 .andExpect(status().isCreated());

 assertThat(userRepository.findAll())
 .extracting(User::getEmail)
 .containsOnly("bob@spring.io", "john@spring.io");
}

There are two things to be noted. The first one is the use of AssertJ to assert the
content of the repository after the test. You will need the following static import for
that to work:

import static org.assertj.core.api.Assertions.assertThat;

The second is that we use a utility method to convert our object to JSON before
sending it to the controller. For that purpose, I created a simple utility class in the
utils package, as follows:

package masterSpringMvc.utils;

import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;

public class JsonUtil {
 public static byte[] toJson(Object object) throws IOException {
 ObjectMapper mapper = new ObjectMapper();
 mapper.setSerializationInclusion(JsonInclude.Include.NON_
NULL);
 return mapper.writeValueAsBytes(object);
 }
}

Chapter 7

[209]

The tests for the DELETE method are as follows:

@Test
public void should_delete_user() throws Exception {
 this.mockMvc.perform(
 delete("/api/user/bob@spring.io")
 .accept(MediaType.APPLICATION_JSON)
)
 .andExpect(status().isOk());

 assertThat(userRepository.findAll()).hasSize(0);
}

@Test
public void should_return_not_found_when_deleting_unknown_user()
throws Exception {
 this.mockMvc.perform(
 delete("/api/user/non-existing@mail.com")
 .accept(MediaType.APPLICATION_JSON)
)
 .andExpect(status().isNotFound());
}

Finally, here's the test for the PUT method, which updates a user:

@Test
public void put_should_update_existing_user() throws Exception {
 User user = new User("ignored@spring.io");
 this.mockMvc.perform(
 put("/api/user/bob@spring.io")
 .content(JsonUtil.toJson(user))
 .contentType(MediaType.APPLICATION_JSON)
)
 .andExpect(status().isOk());

 assertThat(userRepository.findAll())
 .extracting(User::getEmail)
 .containsOnly("bob@spring.io");
}

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[210]

Whoops! The last test does not pass! By checking the implementation of
UserApiController, we can easily see why:

 @RequestMapping(value = "/user/{email}", method = RequestMethod.
PUT)
 public ResponseEntity<User> updateUser(@PathVariable String email,
@RequestBody User user) throws EntityNotFoundException {
 User saved = userRepository.update(email, user);
 return new ResponseEntity<>(saved, HttpStatus.CREATED);
 }

We returned the wrong status in the controller! Change it to HttpStatus.OK and the
test should be green again.

With Spring, one can easily write controller tests using the same configuration of our
application, but we can just as efficiently override or change some elements in our
testing setup.

Another interesting thing that you will notice while running all the tests is that the
application context is only loaded once, which means that the overhead is actually
very small.

Our application is small too, so we did not make any effort to split our configuration
into reusable chunks. It can be a really good practice not to load the full application
context inside of every test. You can actually split the component scanned into
different units with the @ComponentScan annotation.

This annotation has several attributes that allow you to define filters with
includeFilter and excludeFilter (loading only the controller for instance)
and scan specific packages with the basePackageClasses and basePackages
annotations.

You can also split your configuration into multiple @Configuration classes. A good
example would be splitting the code for the users and for the tweet parts of our
application into two independent parts.

We will now have a look at acceptance tests, which are a very different kind of beast.

Chapter 7

[211]

Testing the authentication
If you wish to set up Spring Security in a MockMvc test, you can write this test next
to our previous test:

package masterSpringMvc.user.api;

import masterSpringMvc.MasterSpringMvcApplication;
import masterSpringMvc.user.User;
import masterSpringMvc.user.UserRepository;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.http.MediaType;
import org.springframework.security.web.FilterChainProxy;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import java.util.Base64;

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.status;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MasterSpringMvcApplication.
class)
@WebAppConfiguration
public class UserApiControllerAuthTest {

 @Autowired
 private FilterChainProxy springSecurityFilter;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[212]

 @Autowired
 private WebApplicationContext wac;

 @Autowired
 private UserRepository userRepository;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
addFilter(springSecurityFilter).build();
 userRepository.reset(new User("bob@spring.io"));
 }

 @Test
 public void unauthenticated_cannot_list_users() throws Exception {
 this.mockMvc.perform(
 get("/api/users")
 .accept(MediaType.APPLICATION_JSON)
)
 .andExpect(status().isUnauthorized());
 }

 @Test
 public void admin_can_list_users() throws Exception {
 this.mockMvc.perform(
 get("/api/users")
 .accept(MediaType.APPLICATION_JSON)
 .header("Authorization", basicAuth("admin",
"admin"))
)
 .andExpect(status().isOk());
 }

 private String basicAuth(String login, String password) {
 byte[] auth = (login + ":" + password).getBytes();
 return "Basic " + Base64.getEncoder().encodeToString(auth);
 }
}

In the preceding example, we added SpringSecurityFilter to our configuration.
This will activate Spring Security checks. To test if the authentication works, we
simply send the correct headers along with the request we would like to perform.

Chapter 7

[213]

The advantage of basic authentication is that it's really straightforward to simulate.
With a more complicated setup, you would have to perform a mock request on the
authentication endpoint.

At the time of writing, Spring Boot is at version 1.2.3 and depends on Spring
Security 3.

In a few weeks, Spring Boot 1.3.0 will be available, it will update Spring Security and
use version 4.

This is good news because Spring Security 4 includes a really easy setup of the
authenticated user with simple annotations. See http://docs.spring.io/spring-
security/site/docs/4.0.x/reference/htmlsingle/#test for more details.

Writing acceptance tests
Unit tests can only cover a subset of the different interactions between the
components of our application. To go a little further, we will need to set up
acceptance tests, tests that will actually boot up the complete application and allow
us to interact with its interface.

The Gradle configuration
The first thing we will want to do when we add integration tests to a project is to put
them in a different location to that of the unit tests.

The reason for this is, essentially, that acceptance tests are slower than unit tests.
They can be part of a different integration job, such as a nightly build, and we
want developers to be able to launch the different kinds of tests easily from their
IDE. To do this with Gradle, we will have to add a new configuration called
integrationTest. For Gradle, a configuration is a group of artifacts and their
dependencies. We already have several configurations in our project: compile,
testCompile, and so on.

You can have a look at the configurations of your project, and much more, by typing
./gradlew properties at the root of your project.

Add a new configuration at the end of build.gradle file:

configurations {
 integrationTestCompile.extendsFrom testCompile
 integrationTestRuntime.extendsFrom testRuntime
}

http://docs.spring.io/spring-security/site/docs/4.0.x/reference/htmlsingle/#test
http://docs.spring.io/spring-security/site/docs/4.0.x/reference/htmlsingle/#test

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[214]

This will allow you to declare dependencies for integrationTestCompile and
integrationTestRuntime. More importantly, by inheriting the test configurations,
we have access to their dependencies.

I do not recommend declaring your integration test dependencies as
integrationTestCompile. It will work as far as Gradle is concerned,
but support inside of IDE is non-existent. What I usually do is declare
my integration test dependencies as testCompile dependencies
instead. This is only a small inconvenience.

Now that we have our new configurations, we must create a sourceSet class
associated with them. A sourceSet class represents a logical group of Java source
and resources. Naturally, they also have to inherit from the test and main classes;
see the following code:

sourceSets {
 integrationTest {
 compileClasspath += main.output + test.output
 runtimeClasspath += main.output + test.output
 }
}

Finally, we need to add a task to run them from our build, as follows:

task integrationTest(type: Test) {
 testClassesDir = sourceSets.integrationTest.output.classesDir
 classpath = sourceSets.integrationTest.runtimeClasspath
 reports.html.destination = file("${reporting.baseDir}/
integrationTests")
}

To run our test, we can type ./gradlew integrationTest. Besides configuring
our classpath and where to find our test classes, we also defined a directory
where the test report will be generated.

This configuration allows us to write our tests in src/integrationTest/java
or src/integrationTest/groovy, which will make it easier to identify them
and run them separately from our unit tests.

By default, they will be generated in build/reports/tests. If we do
not override them, if we launch both tests and integration tests with
gradle clean test integrationTest, they will override each other.

It's also worth mentioning that a young plugin in the Gradle
ecosystem aims to simplify declaring new test configurations, visit
https://plugins.gradle.org/plugin/org.unbroken-dome.test-sets
for detailed information.

https://plugins.gradle.org/plugin/org.unbroken-dome.test-sets

Chapter 7

[215]

Our first FluentLenium test
FluentLenium is an amazing library for piloting Selenium tests. Let's add a few
dependencies to our build script:

testCompile 'org.fluentlenium:fluentlenium-assertj:0.10.3'
testCompile 'com.codeborne:phantomjsdriver:1.2.1'
testCompile 'org.seleniumhq.selenium:selenium-java:2.45.0'

By default, fluentlenium comes with selenium-java. We redeclare it just to
explicitly require the latest version available. We also added a dependency to the
PhantomJS driver, which is not officially supported by Selenium. The problem with
the selenium-java library is that it comes bundled with all the supported web
drivers.

You can see the dependency tree of our project by typing gradle dependencies. At
the bottom, you will see something like this:

+--- org.fluentlenium:fluentlenium-assertj:0.10.3
| +--- org.fluentlenium:fluentlenium-core:0.10.3
| | \--- org.seleniumhq.selenium:selenium-java:2.44.0 -> 2.45.0
| | +--- org.seleniumhq.selenium:selenium-chrome-
driver:2.45.0

| | +--- org.seleniumhq.selenium:selenium-htmlunit-
driver:2.45.0

| | +--- org.seleniumhq.selenium:selenium-firefox-
driver:2.45.0

| | +--- org.seleniumhq.selenium:selenium-ie-driver:2.45.0

| | +--- org.seleniumhq.selenium:selenium-safari-
driver:2.45.0

| | +--- org.webbitserver:webbit:0.4.14 (*)
| | \--- org.seleniumhq.selenium:selenium-leg-rc:2.45.0
| | \--- org.seleniumhq.selenium:selenium-remote-
driver:2.45.0 (*)
| \--- org.assertj:assertj-core:1.6.1 -> 3.0.0

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[216]

Having all those dependencies in the classpath is highly unnecessary since we will
just use the PhantomJS driver. To exclude the dependencies we won't need, we can
add the following part to our buildscript, right before the dependencies declaration:

configurations {
 testCompile {
 exclude module: 'selenium-safari-driver'
 exclude module: 'selenium-ie-driver'
 //exclude module: 'selenium-firefox-driver'
 exclude module: 'selenium-htmlunit-driver'
 exclude module: 'selenium-chrome-driver'
 }
}

We just keep the firefox driver at hand. PhantomJS driver is a headless browser, so
understanding what happens without a GUI can prove tricky. It can be nice to switch
to Firefox to debug a complex test.

With our classpath correctly configured, we can now write our first integration test.
Spring Boot has a very convenient annotation to support this test:

import masterSpringMvc.MasterSpringMvcApplication;
import masterSpringMvc.search.StubTwitterSearchConfig;
import org.fluentlenium.adapter.FluentTest;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.phantomjs.PhantomJSDriver;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.boot.test.WebIntegrationTest;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = {
 MasterSpringMvcApplication.class,
 StubTwitterSearchConfig.class
})
@WebIntegrationTest(randomPort = true)
public class FluentIntegrationTest extends FluentTest {

Chapter 7

[217]

 @Value("${local.server.port}")
 private int serverPort;

 @Override
 public WebDriver getDefaultDriver() {
 return new PhantomJSDriver();
 }

 public String getDefaultBaseUrl() {
 return "http://localhost:" + serverPort;
 }

 @Test
 public void hasPageTitle() {
 goTo("/");
 assertThat(findFirst("h2").getText()).isEqualTo("Login");
 }
}

Note that FluentLenium has a neat API for requesting DOM elements. With AssertJ,
we can then write easy-to read-assertions on the page content.

Have a look at the documentation at
https://github.com/FluentLenium/FluentLenium
for further information.

With the @WebIntegrationTest annotation, Spring will actually create the
embedded Servlet container (Tomcat) and launch our web application on a random
port! We need to retrieve this port number at runtime. This will allow us to provide
a base URL for our tests, a URL that will be the prefix for all the navigation we do in
our tests.

If you try to run the test at this stage, you will see the following error message:

java.lang.IllegalStateException: The path to the driver executable must
be set by the phantomjs.binary.path capability/system property/PATH
variable; for more information, see https://github.com/ariya/phantomjs/
wiki. The latest version can be downloaded from http://phantomjs.org/
download.html

Indeed, PhantomJS needs to be installed on your machine for this to work correctly.
On a Mac, simply use brew install phantomjs. For other platforms, see the
documentation at http://phantomjs.org/download.html.

https://github.com/FluentLenium/FluentLenium
http://phantomjs.org/download.html

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[218]

If you don't want to install a new binary on your machine, replace new
PhantomJSDriver() with new FirefoxDriver(). Your test will be a bit slower,
but you will have a GUI.

Our first test is landing on the profile page, right? We need to find a way to log
in now.

What about faking login with a stub?

Put this class in the test sources (src/test/java):

package masterSpringMvc.auth;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.security.authentication.
UsernamePasswordAuthenticationToken;
import org.springframework.security.core.context.
SecurityContextHolder;
import org.springframework.social.connect.ConnectionFactoryLocator;
import org.springframework.social.connect.UsersConnectionRepository;
import org.springframework.social.connect.web.
ProviderSignInController;
import org.springframework.social.connect.web.SignInAdapter;
import org.springframework.web.context.request.NativeWebRequest;
import org.springframework.web.servlet.view.RedirectView;

@Configuration
public class StubSocialSigninConfig {

 @Bean
 @Primary
 @Autowired
 public ProviderSignInController signInController(ConnectionFactory
Locator factoryLocator,

UsersConnectionRepository usersRepository,
 SignInAdapter
signInAdapter) {
 return new FakeSigninController(factoryLocator,
usersRepository, signInAdapter);
 }

Chapter 7

[219]

 public class FakeSigninController extends ProviderSignInController
{
 public FakeSigninController(ConnectionFactoryLocator
connectionFactoryLocator,
 UsersConnectionRepository
usersConnectionRepository,
 SignInAdapter signInAdapter) {
 super(connectionFactoryLocator, usersConnectionRepository,
signInAdapter);
 }

 @Override
 public RedirectView signIn(String providerId, NativeWebRequest
request) {
 UsernamePasswordAuthenticationToken authentication =
 new UsernamePasswordAuthenticationToken("geowar
in", null, null);
 SecurityContextHolder.getContext().setAuthentication(auth
entication);
 return new RedirectView("/");
 }
 }
}

This will authenticate any user clicking on the Twitter sign in button as geowarin.

We will write a second test that will fill the profile form and assert that the search
result is displayed:

import masterSpringMvc.MasterSpringMvcApplication;
import masterSpringMvc.auth.StubSocialSigninConfig;
import masterSpringMvc.search.StubTwitterSearchConfig;
import org.fluentlenium.adapter.FluentTest;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.phantomjs.PhantomJSDriver;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.boot.test.WebIntegrationTest;
import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;

import static org.assertj.core.api.Assertions.assertThat;
import static org.fluentlenium.core.filter.FilterConstructor.withName;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[220]

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = {
 MasterSpringMvcApplication.class,
 StubTwitterSearchConfig.class,
 StubSocialSigninConfig.class
})
@WebIntegrationTest(randomPort = true)
public class FluentIntegrationTest extends FluentTest {

 @Value("${local.server.port}")
 private int serverPort;

 @Override
 public WebDriver getDefaultDriver() {
 return new PhantomJSDriver();
 }

 public String getDefaultBaseUrl() {
 return "http://localhost:" + serverPort;
 }

 @Test
 public void hasPageTitle() {
 goTo("/");
 assertThat(findFirst("h2").getText()).isEqualTo("Login");
 }

 @Test
 public void should_be_redirected_after_filling_form() {
 goTo("/");
 assertThat(findFirst("h2").getText()).isEqualTo("Login");

 find("button", withName("twitterSignin")).click();
 assertThat(findFirst("h2").getText()).isEqualTo("Your
profile");

 fill("#twitterHandle").with("geowarin");
 fill("#email").with("geowarin@mymail.com");
 fill("#birthDate").with("03/19/1987");

 find("button", withName("addTaste")).click();
 fill("#tastes0").with("spring");

Chapter 7

[221]

 find("button", withName("save")).click();

 takeScreenShot();
 assertThat(findFirst("h2").getText()).isEqualTo("Tweet results
for spring");
 assertThat(findFirst("ul.collection").find("li")).hasSize(2);
 }
}

Note that we can easily ask our web driver to take a screenshot of the current
browser used for testing. This will produce the following output:

Page Objects with FluentLenium
The previous test was a bit messy. We have hardcoded all the selectors in our test.
This can become very risky when we write a lot of tests using the same elements
because whenever we change the page layout, all the tests will break. Moreover, the
test is a little difficult to read.

To fix this, a common practice is to use a page object that will represent a specific
web page in our application. With FluentLenium, page objects must inherit the
FluentPage class.

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[222]

We will create three pages, one for each element of our GUI. The first one will be the
login page with the option to click on the twitterSignin button, the second one will
be the profile page with convenience methods for filling in the profile form, and the
last one will be the result page on which we can assert the results displayed.

Let's create the login page at once. I put all the three pages in a pages package:

package pages;

import org.fluentlenium.core.FluentPage;
import org.fluentlenium.core.domain.FluentWebElement;
import org.openqa.selenium.support.FindBy;

import static org.assertj.core.api.Assertions.assertThat;

public class LoginPage extends FluentPage {
 @FindBy(name = "twitterSignin")
 FluentWebElement signinButton;

 public String getUrl() {
 return "/login";
 }

 public void isAt() {
 assertThat(findFirst("h2").getText()).isEqualTo("Login");
 }

 public void login() {
 signinButton.click();
 }
}

Let's create one page for our profile page:

package pages;

import org.fluentlenium.core.FluentPage;
import org.fluentlenium.core.domain.FluentWebElement;
import org.openqa.selenium.support.FindBy;

import static org.assertj.core.api.Assertions.assertThat;

public class ProfilePage extends FluentPage {
 @FindBy(name = "addTaste")

Chapter 7

[223]

 FluentWebElement addTasteButton;
 @FindBy(name = "save")
 FluentWebElement saveButton;

 public String getUrl() {
 return "/profile";
 }

 public void isAt() {
 assertThat(findFirst("h2").getText()).isEqualTo("Your
profile");
 }

 public void fillInfos(String twitterHandle, String email, String
birthDate) {
 fill("#twitterHandle").with(twitterHandle);
 fill("#email").with(email);
 fill("#birthDate").with(birthDate);
 }

 public void addTaste(String taste) {
 addTasteButton.click();
 fill("#tastes0").with(taste);
 }

 public void saveProfile() {
 saveButton.click();
 }
}

Let's also create another one for the search result page:

package pages;

import com.google.common.base.Joiner;
import org.fluentlenium.core.FluentPage;
import org.fluentlenium.core.domain.FluentWebElement;
import org.openqa.selenium.support.FindBy;

import static org.assertj.core.api.Assertions.assertThat;

public class SearchResultPage extends FluentPage {
 @FindBy(css = "ul.collection")
 FluentWebElement resultList;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[224]

 public void isAt(String... keywords) {
 assertThat(findFirst("h2").getText())
 .isEqualTo("Tweet results for " + Joiner.on(",").
join(keywords));
 }

 public int getNumberOfResults() {
 return resultList.find("li").size();
 }
}

We can now refactor the test using those Page Objects:

@Page
private LoginPage loginPage;
@Page
private ProfilePage profilePage;
@Page
private SearchResultPage searchResultPage;

@Test
public void should_be_redirected_after_filling_form() {
 goTo("/");
 loginPage.isAt();

 loginPage.login();
 profilePage.isAt();

 profilePage.fillInfos("geowarin", "geowarin@mymail.com",
"03/19/1987");
 profilePage.addTaste("spring");

 profilePage.saveProfile();

 takeScreenShot();
 searchResultPage.isAt();
 assertThat(searchResultPage.getNumberOfResults()).isEqualTo(2);
}

Much more readable, isn't it?

Chapter 7

[225]

Making our tests more Groovy
If you don't know Groovy, consider it like a close cousin of Java, without the
verbosity. Groovy is a dynamic language with optional typing. This means that you
can have the guarantees of a type system when it matters and the versatility of duck
typing when you know what you are doing.

With this language, you can write POJOs without getters, setters, equals and
hashcode methods. Everything is handled for you.

Writing == will actually call the equals method. The operators can be overloaded,
which allows a neat syntax with little arrows, such as <<, to write text to a file, for
instance. It also means that you can add integers to BigIntegers and get a correct
result.

The Groovy Development Kit (GDK) also adds several very interesting methods to
classic Java objects. It also considers regular expressions and closures as first-class
citizens.

If you want a solid introduction to Groovy, check out the Groovy style
guide at http://www.groovy-lang.org/style-guide.html.
You can also watch this amazing presentation by Peter Ledbrook at
http://www.infoq.com/presentations/groovy-for-java.

As far as I am concerned, I always try to push Groovy on the testing side of
the application I work on. It really improves the readability of the code and
the productivity of developers.

Unit tests with Spock
To be able to write Groovy tests in our project, we need to use the Groovy plugin
instead of the Java plugin.

Here's what you have in your build script:

apply plugin: 'java'

Change it to the following:

apply plugin: 'groovy'

This modification is perfectly harmless. The Groovy plugin extends the Java plugin,
so the only difference it makes is that it gives the ability to add Groovy source in
src/main/groovy, src/test/groovy and src/integrationTest/groovy.

http://www.groovy-lang.org/style-guide.html
http://www.infoq.com/presentations/groovy-for-java

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[226]

Obviously, we also need to add Groovy to the classpath. We will also add Spock, the
most popular Groovy testing library, via the spock-spring dependency, which will
enable compatibility with Spring:

testCompile 'org.codehaus.groovy:groovy-all:2.4.4:indy'
testCompile 'org.spockframework:spock-spring'

We can now rewrite HomeControllerTest with a different approach. Let's
create a HomeControllerSpec class in src/test/groovy. I added it to
the masterSpringMvc.controller package just like our first instance of
HomeControllerTest:

package masterSpringMvc.controller

import masterSpringMvc.MasterSpringMvcApplication
import masterSpringMvc.search.StubTwitterSearchConfig
import org.springframework.beans.factory.annotation.Autowired
import org.springframework.boot.test.SpringApplicationContextLoader
import org.springframework.test.context.ContextConfiguration
import org.springframework.test.context.web.WebAppConfiguration
import org.springframework.test.web.servlet.MockMvc
import org.springframework.test.web.servlet.setup.MockMvcBuilders
import org.springframework.web.context.WebApplicationContext
import spock.lang.Specification

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

@ContextConfiguration(loader = SpringApplicationContextLoader,
 classes = [MasterSpringMvcApplication,
StubTwitterSearchConfig])
@WebAppConfiguration
class HomeControllerSpec extends Specification {
 @Autowired
 WebApplicationContext wac;

 MockMvc mockMvc;

 def setup() {
 mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 }

Chapter 7

[227]

 def "User is redirected to its profile on his first visit"() {
 when: "I navigate to the home page"
 def response = this.mockMvc.perform(get("/"))

 then: "I am redirected to the profile page"
 response
 .andExpect(status().isFound())
 .andExpect(redirectedUrl("/profile"))
 }
}

Our test instantaneously became more readable with the ability to use strings as
method names and the little BDD DSL (Domain Specific Language) provided by
Spock. This is not directly visible here, but every statement inside of a then block
will implicitly be an assertion.

At the time of writing, because Spock doesn't read meta annotations, the
@SpringApplicationConfiguration annotation cannot be used so we just replaced
it with @ContextConfiguration(loader = SpringApplicationContextLoader),
which is essentially the same thing.

We now have two versions of the same test, one in Java and the other in Groovy.
It is up to you to choose the one that best fits your style of coding and remove
the other one. If you decide to stick with Groovy, you will have to rewrite the
should_redirect_to_tastes() test in Groovy. It should be easy enough.

Spock also has powerful support for mocks. We can rewrite the previous
SearchControllerMockTest class a bit differently:

package masterSpringMvc.search

import masterSpringMvc.MasterSpringMvcApplication
import org.springframework.boot.test.SpringApplicationContextLoader
import org.springframework.test.context.ContextConfiguration
import org.springframework.test.context.web.WebAppConfiguration
import org.springframework.test.web.servlet.setup.MockMvcBuilders
import spock.lang.Specification

import static org.hamcrest.Matchers.*;
import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.*;

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[228]

@ContextConfiguration(loader = SpringApplicationContextLoader,
 classes = [MasterSpringMvcApplication])
@WebAppConfiguration
class SearchControllerMockSpec extends Specification {
 def twitterSearch = Mock(TwitterSearch)
 def searchController = new SearchController(twitterSearch)

 def mockMvc = MockMvcBuilders.standaloneSetup(searchController)
 .setRemoveSemicolonContent(false)
 .build()

 def "searching for the spring keyword should display the search
page"() {
 when: "I search for spring"
 def response = mockMvc.perform(get("/search/
mixed;keywords=spring"))

 then: "The search service is called once"
 1 * twitterSearch.search(_, _) >> [new
LightTweet('tweetText')]

 and: "The result page is shown"
 response
 .andExpect(status().isOk())
 .andExpect(view().name("resultPage"))

 and: "The model contains the result tweets"
 response
 .andExpect(model().attribute("tweets", everyItem(
 hasProperty("text", is("tweetText"))
)))
 }
}

All the verbosity of Mockito is now gone. The then block actually asserts that the
twitterSearch method is called once (1 *) with any parameter (_, _). Like with
mockito, we could have expected specific parameters.

The double arrow >> syntax is used to return an object from the mocked method.
In our case, it's a list containing only one element.

With only a little dependency in our classpath, we have already written more
readable tests, but we're not done yet. We will also refactor our acceptance tests
to use Geb, a Groovy library that pilots Selenium tests.

Chapter 7

[229]

Integration tests with Geb
Geb is the de facto library for writing tests in the Grails framework. Although its
version is 0.12.0, it is very stable and extremely comfortable to work with.

It provides a selector API à la jQuery, which makes tests easy to write, even for
frontend developers. Groovy is also a language that has some JavaScript influences
that will also appeal to them.

Let's add Geb with the support for Spock specifications to our classpath:

testCompile 'org.gebish:geb-spock:0.12.0'

Geb can be configured via a Groovy script found directly at the root of
src/integrationTest/groovy, called GebConfig.groovy:

import org.openqa.selenium.Dimension
import org.openqa.selenium.firefox.FirefoxDriver
import org.openqa.selenium.phantomjs.PhantomJSDriver

reportsDir = new File('./build/geb-reports')
driver = {
 def driver = new FirefoxDriver()
 // def driver = new PhantomJSDriver()
 driver.manage().window().setSize(new Dimension(1024, 768))
 return driver
}

In this configuration, we indicate where Geb will generate its reports and which
driver to use. Reports in Geb are an enhanced version of screenshots, which also
contains the current page in HTML. Their generation can be triggered at any
moment by calling the report function inside a Geb test.

Let's rewrite out first integration test with Geb:

import geb.Configuration
import geb.spock.GebSpec
import masterSpringMvc.MasterSpringMvcApplication
import masterSpringMvc.search.StubTwitterSearchConfig
import org.springframework.beans.factory.annotation.Value
import org.springframework.boot.test.SpringApplicationContextLoader
import org.springframework.boot.test.WebIntegrationTest
import org.springframework.test.context.ContextConfiguration

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[230]

@ContextConfiguration(loader = SpringApplicationContextLoader,
 classes = [MasterSpringMvcApplication,
StubTwitterSearchConfig])
@WebIntegrationTest(randomPort = true)
class IntegrationSpec extends GebSpec {

 @Value('${local.server.port}')
 int port

 Configuration createConf() {
 def configuration = super.createConf()
 configuration.baseUrl = "http://localhost:$port"
 configuration
 }

 def "User is redirected to the login page when not logged"() {
 when: "I navigate to the home page"
 go '/'
// report 'navigation-redirection'

 then: "I am redirected to the profile page"
 $('h2', 0).text() == 'Login'
 }
}

For the moment, it is very similar to FluentLenium. We can already see the $
function, which will allow us to grab a DOM element via its selector. Here, we also
state that we want the first h2 in the page by giving the 0 index.

Page Objects with Geb
Page objects with Geb are a real pleasure to work with. We will create the same page
objects that we did previously so that you can appreciate the differences.

With Geb, the Page Objects must inherit from the geb.Page class. First, let's create
the LoginPage. I suggest avoiding putting it in the same package as the previous
one. I created a package called geb.pages:

package geb.pages

import geb.Page

class LoginPage extends Page {

Chapter 7

[231]

 static url = '/login'
 static at = { $('h2', 0).text() == 'Login' }
 static content = {
 twitterSignin { $('button', name: 'twitterSignin') }
 }

 void loginWithTwitter() {
 twitterSignin.click()
 }
}

Then we can create the ProfilePage:

package geb.pages

import geb.Page

class ProfilePage extends Page {

 static url = '/profile'
 static at = { $('h2', 0).text() == 'Your profile' }
 static content = {
 addTasteButton { $('button', name: 'addTaste') }
 saveButton { $('button', name: 'save') }
 }

 void fillInfos(String twitterHandle, String email, String
birthDate) {
 $("#twitterHandle") << twitterHandle
 $("#email") << email
 $("#birthDate") << birthDate
 }

 void addTaste(String taste) {
 addTasteButton.click()
 $("#tastes0") << taste
 }

 void saveProfile() {
 saveButton.click();
 }
}

This is basically the same page as before. Note the little << to assign values to an
input element. You could also call setText on them.

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[232]

The at method is completely part of the framework, and Geb will automatically
assert those when you navigate to the corresponding page.

Let's create the SearchResultPage:

package geb.pages

import geb.Page

class SearchResultPage extends Page {
 static url = '/search'
 static at = { $('h2', 0).text().startsWith('Tweet results for') }
 static content = {
 resultList { $('ul.collection') }
 results { resultList.find('li') }
 }
}

It's a bit shorter, thanks to the ability to reuse previously defined content for the
results.

With out the Page Object set up, we can write the test as follows:

import geb.Configuration
import geb.pages.LoginPage
import geb.pages.ProfilePage
import geb.pages.SearchResultPage
import geb.spock.GebSpec
import masterSpringMvc.MasterSpringMvcApplication
import masterSpringMvc.auth.StubSocialSigninConfig
import masterSpringMvc.search.StubTwitterSearchConfig
import org.springframework.beans.factory.annotation.Value
import org.springframework.boot.test.SpringApplicationContextLoader
import org.springframework.boot.test.WebIntegrationTest
import org.springframework.test.context.ContextConfiguration

@ContextConfiguration(loader = SpringApplicationContextLoader,
 classes = [MasterSpringMvcApplication,
StubTwitterSearchConfig, StubSocialSigninConfig])
@WebIntegrationTest(randomPort = true)
class IntegrationSpec extends GebSpec {

 @Value('${local.server.port}')
 int port

Chapter 7

[233]

 Configuration createConf() {
 def configuration = super.createConf()
 configuration.baseUrl = "http://localhost:$port"
 configuration
 }

 def "User is redirected to the login page when not logged"() {
 when: "I navigate to the home page"
 go '/'

 then: "I am redirected to the login page"
 $('h2').text() == 'Login'
 }

 def "User is redirected to its profile on his first visit"() {
 when: 'I am connected'
 to LoginPage
 loginWithTwitter()

 and: "I navigate to the home page"
 go '/'

 then: "I am redirected to the profile page"
 $('h2').text() == 'Your profile'
 }

 def "After filling his profile, the user is taken to result
matching his tastes"() {
 given: 'I am connected'
 to LoginPage
 loginWithTwitter()

 and: 'I am on my profile'
 to ProfilePage

 when: 'I fill my profile'
 fillInfos("geowarin", "geowarin@mymail.com", "03/19/1987");
 addTaste("spring")

 and: 'I save it'
 saveProfile()

Leaving Nothing to Luck – Unit Tests and Acceptance Tests

[234]

 then: 'I am taken to the search result page'
 at SearchResultPage
 page.results.size() == 2
 }
}

My, what a beauty! You can certainly write your user stories directly with Geb!

With our simple tests, we only scratched the surface of Geb. There is much more
functionality available, and I encourage you to read the Book of Geb, a very fine piece
of documentation available at http://www.gebish.org/manual/current/.

The check point
In this chapter, we added a bunch of tests in src/test/java. I chose to go with
Groovy, so I deleted the duplicated tests:

In the src/test/groovy directory, I have refactored two tests as follows:

http://www.gebish.org/manual/current/

Chapter 7

[235]

In src/integrationTest/groovy, we have an integration test written with Geb:

Finally, we added an integrationTest task to the Gradle build. Run
gradle clean test and gradle clean integrationTest to make
sure that all your tests pass.

If the build is successful, we are ready for the next chapter.

Summary
In this chapter, we've studied the differences between unit and integration tests.

We saw how testing is a healthy habit that will give us confidence in what we build
and what we ship. It will save us money and spare some headaches in the long run.

Spring works well with classical JUnit tests written in Java, and it has first-class
support for integration tests. But we can also easily use other languages, such as
Groovy, to make the tests more readable and easier to write.

Testing is undeniably one of the strongest points of the Spring framework and one
of the main reasons to use dependency injection in the first place.

Stay tuned for the next chapter, where we will optimize our application so that it is
ready to be deployed in the cloud!

[237]

Optimizing Your Requests
In this chapter, we will be looking at different techniques to improve our
application's performance.

We will implement classical ways of optimizing a web application: cache control
headers, Gzipping, an application cache, and ETags, as well as more reactive stuff,
such as asynchronous method calls and WebSockets.

A production profile
In the previous chapter, we saw how to define an application properties file that will
only be read while launching the application with a specific profile. We will use the
same approach and create an application-prod.properties file in src/main/
resources, right next to the existing application.properties file. This way, we
will be able to configure the production environment with optimized settings.

We will put a few properties in this file to get started. In Chapter 3, Handling
Forms and Complex URL Mapping, we deactivated the Thymeleaf cache and forced
translation bundles to reload on every access.

This is great for developing but is useless and time consuming in production. So let's
fix that:

spring.thymeleaf.cache=true
spring.messages.cache-seconds=-1

A cache period of -1 means caching the bundle forever.

Now, if we launch our application with the "prod" profile, templates and bundles
should be cached forever.

The properties coming from the "prod" profile will indeed overwrite the ones
declared in our application.properties file.

Optimizing Your Requests

[238]

Gzipping
Gzipping is a compression algorithm widely understood by browsers. Your server
will serve compressed responses, which will consume a few more CPU cycles but
will save bandwidth.

The client browser will then be charged for unzipping the resources and displaying
them to the user.

To leverage Tomcat's Gzipping abilities, simply add the following line to the
application-prod.properties file:

server.tomcat.compression=on
server.tomcat.compressableMimeTypes=text/html,text/xml,text/css,text/
plain,\
 application/json,application/xml,application/javascript

This will enable Tomcat's Gzipping compression when serving any file matching the
MIME types specified in the list, and whose length is greater than 2048 bytes. You
can set server.tomcat.compression to force to enforce compression or set it to a
numerical value if you want to change the value for the minimal length of Gzipped
assets.

If you want more control over the compression, say over the level of compression,
or want to exclude user agents from compression, you can use the GzipFilter class
in Jetty by adding the org.eclipse.jetty:jetty-servlets dependency to your
project.

This will automatically trigger the GzipFilterAutoConfiguration class, which can
be configured with a handful of properties prefixed by spring.http.gzip. Have a
look at GzipFilterProperties to understand its level of customization.

Refer to the documentation at http://docs.spring.io/spring-
boot/docs/current/reference/html/howto-embedded-
servlet-containers.html#how-to-enable-http-response-
compression for additional information.

Cache control
Cache control is a set of HTTP headers sent by the server to control how the user's
browser is allowed to cache resources.

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#how-to-enable-http-response-compression
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#how-to-enable-http-response-compression
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#how-to-enable-http-response-compression
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#how-to-enable-http-response-compression

Chapter 8

[239]

In the previous chapter, we have seen that Spring Security automatically disables
caching for secured resources.

If we want to benefit from cache control, we must first disable that feature:

security.headers.cache=false

Cache resources for 3 days
spring.resources.cache-period=259200

Now, launch the application, go to the main page, and check the Chrome developer
console. You will see that our JavaScript files are Gzipped and cached, as marked in
the following screenshot:

If you want more control over your cache, you could add handlers for your own
resources in your configuration:

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {
 // This is just an example
 registry.addResourceHandler("/img/**")
 .addResourceLocations("classpath:/static/images/")
 .setCachePeriod(12);
}

Optimizing Your Requests

[240]

We could also override the Spring Security default settings. If we want to
deactivate the "no cache control" policy for our API, we can change the
ApiSecurityConfiguration class like this:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .antMatcher("/api/**")
// This is just an example – not required in our case
 .headers().cacheControl().disable()
 .httpBasic().and()
 .csrf().disable()
 .authorizeRequests()
 .antMatchers(HttpMethod.GET).hasRole("USER")
 .antMatchers(HttpMethod.POST).hasRole("ADMIN")
 .antMatchers(HttpMethod.PUT).hasRole("ADMIN")
 .antMatchers(HttpMethod.DELETE).hasRole("ADMIN")
 .anyRequest().authenticated();
}

Application cache
Now that our web requests have been compressed and cached, the next step we can
take to reduce server load is to put the results of costly operations in a cache. The
Twitter search takes some time and will consume our application request ratio on the
Twitter API. With Spring, we can easily cache the search and return the same result
each time the search is called with the same parameters.

The first thing that we need to do is activate Spring caching with the @EnableCache
annotation. We also need to create a CacheManager that will resolve our caches. Let's
create a CacheConfiguration class in the config package:

package masterSpringMvc.config;

import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.concurrent.ConcurrentMapCache;
import org.springframework.cache.support.SimpleCacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.Arrays;

Chapter 8

[241]

@Configuration
@EnableCaching
public class CacheConfiguration {

 @Bean
 public CacheManager cacheManager() {
 SimpleCacheManager simpleCacheManager = new
SimpleCacheManager();
 simpleCacheManager.setCaches(Arrays.asList(
 new ConcurrentMapCache("searches")
));
 return simpleCacheManager;
 }
}

In the previous example, we use the simplest possible cache abstraction.
Other implementations are also available, such as EhCacheCacheManager or
GuavaCacheManager, which we will use in a moment.

Now that we have configured our cache, we can use the @Cacheable annotation
on our methods. When we do that, Spring will automatically cache the result of the
method and associate it with the current parameters for retrieval.

Spring needs to create a proxy around beans whose methods are cached. This
typically means that calling a cached method inside of the same bean will not fail to
use Spring's cache.

In our case, in the SearchService class, the part where we call the search operations,
would benefit greatly from caching.

As a preliminary step, it would be good to put the code responsible for creating the
SearchParameters class in a dedicated object called SearchParamsBuilder:

package masterSpringMvc.search;

import org.springframework.social.twitter.api.SearchParameters;

import java.util.List;
import java.util.stream.Collectors;

public class SearchParamsBuilder {

 public static SearchParameters createSearchParam(String
searchType, String taste) {
 SearchParameters.ResultType resultType =
getResultType(searchType);

Optimizing Your Requests

[242]

 SearchParameters searchParameters = new
SearchParameters(taste);
 searchParameters.resultType(resultType);
 searchParameters.count(3);
 return searchParameters;
 }

 private static SearchParameters.ResultType getResultType(String
searchType) {
 for (SearchParameters.ResultType knownType : SearchParameters.
ResultType.values()) {
 if (knownType.name().equalsIgnoreCase(searchType)) {
 return knownType;
 }
 }
 return SearchParameters.ResultType.RECENT;
 }
}

This will help us to create search parameters in our service.

Now we want to create a cache for our search results. We want each call to the
Twitter API to be cached. Spring cache annotations rely on proxies to instrument the
@Cacheable methods. We therefore need a new class with a method annotated with
the @Cacheable annotation.

When you use the Spring abstraction API, you don't know about the underlying
implementation of the cache. Many will require both the return type and the
parameter types of the cached method to be Serializable.

SearchParameters is not Serializable, that's why we will pass both the search type
and the keyword (both strings) in the cached method.

Since we want to put the LightTweets object in cache, we want to make them
Serializable; this will ensure that they can always be written and read from any
cache abstraction:

public class LightTweet implements Serializable {
 // the rest of the code remains unchanged
}

Chapter 8

[243]

Let's create a SearchCache class and put it in the search.cache package:

package masterSpringMvc.search.cache;

import masterSpringMvc.search.LightTweet;
import masterSpringMvc.search.SearchParamsBuilder;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.social.
TwitterProperties;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.social.twitter.api.SearchParameters;
import org.springframework.social.twitter.api.Twitter;
import org.springframework.social.twitter.api.impl.TwitterTemplate;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.stream.Collectors;

@Service
public class SearchCache {
 protected final Log logger = LogFactory.getLog(getClass());
 private Twitter twitter;

 @Autowired
 public SearchCache(TwitterProperties twitterProperties) {
 this.twitter = new TwitterTemplate(twitterProperties.
getAppId(), twitterProperties.getAppSecret());
 }

 @Cacheable("searches")
 public List<LightTweet> fetch(String searchType, String keyword) {
 logger.info("Cache miss for " + keyword);
 SearchParameters searchParam = SearchParamsBuilder.
createSearchParam(searchType, keyword);
 return twitter.searchOperations()
 .search(searchParam)
 .getTweets().stream()
 .map(LightTweet::ofTweet)
 .collect(Collectors.toList());
 }
}

Optimizing Your Requests

[244]

It can't really get simpler than that. We used the @Cacheable annotation to specify
the name of the cache that will be used. Different caches may have different policies.

Note that we manually created a new TwitterTemplate method rather than injecting
it like before. That's because we will have to access the cache from other threads a
little bit later. In Spring Boot's TwitterAutoConfiguration class, the Twitter bean is
bound to the request scope and is therefore not available outside of a Servlet thread.

With those two new objects, the code of our SearchService class simply becomes
this:

package masterSpringMvc.search;

import masterSpringMvc.search.cache.SearchCache;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Profile;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.stream.Collectors;

@Service
@Profile("!async")
public class SearchService implements TwitterSearch {
 private SearchCache searchCache;

 @Autowired
 public SearchService(SearchCache searchCache) {
 this.searchCache = searchCache;
 }

 @Override
 public List<LightTweet> search(String searchType, List<String>
keywords) {
 return keywords.stream()
 .flatMap(keyword -> searchCache.fetch(searchType,
keyword).stream())
 .collect(Collectors.toList());
 }
}

Note that we annotated the service with @Profile("!async"). This means that we
only create this bean if the profile async is not activated.

Chapter 8

[245]

Later, we will create another implementation of the TwitterSearch class to be able
to switch between the two.

Neat! Say we restart our application and try a big request such as the following:

http://localhost:8080/search/mixed;keywords=docker,spring,spring%20
boot,spring%20mvc,groovy,grails

It will take a little time at first, but then our console will display the following log:

2015-08-03 16:04:01.958 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for docker

2015-08-03 16:04:02.437 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for spring

2015-08-03 16:04:02.728 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for spring boot

2015-08-03 16:04:03.098 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for spring mvc

2015-08-03 16:04:03.383 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for groovy

2015-08-03 16:04:03.967 INFO 38259 --- [nio-8080-exec-8] m.search.cache.
SearchCache : Cache miss for grails

After that, if we hit refresh, the result will be displayed immediately and no cache
miss will be seen in the console.

That's it for our cache, but there is much more to the cache API. You can annotate
methods with the following:

• @CachEvict: This will remove an entry from the cache
• @CachePut: This will put the result of a method into a cache without

interfering with the method itself
• @Caching: This regroups the caching annotation
• @CacheConfig: This points to different caching configurations

The @Cacheable annotation can also be configured to cache results on certain
conditions.

For more information on Spring cache, please see the following
documentation:
http://docs.spring.io/spring/docs/current/spring-
framework-reference/html/cache.html

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html

Optimizing Your Requests

[246]

Cache invalidation
Currently, search results will be cached forever. Using the default simple cache
manager doesn't give us a lot of options. There is one more thing that we can do
to improve our application caching. Since we have Guava in our classpath, we can
replace the existing cache manager in the cache configuration with the following code:

package masterSpringMvc.config;

import com.google.common.cache.CacheBuilder;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.guava.GuavaCacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.concurrent.TimeUnit;

@Configuration
@EnableCaching
public class CacheConfiguration {

 @Bean
 public CacheManager cacheManager() {
 GuavaCacheManager cacheManager = new
GuavaCacheManager("searches");
 cacheManager
 .setCacheBuilder(
 CacheBuilder.newBuilder()
 .softValues()
 .expireAfterWrite(10, TimeUnit.
MINUTES)
);
 return cacheManager;
 }
}

This will build a cache expiring after 10 minutes and using soft values, meaning that
the entries will be cleaned up if the JVM runs low on memory.

Try to fiddle around with Guava's cache builder. You can specify a smaller time unit
for your testing, and even specify different cache policies.

Chapter 8

[247]

See the documentation at https://code.google.com/p/guava-
libraries/wiki/CachesExplained.

Distributed cache
We already have a Redis profile. If Redis is available, we could also use it as our
cache provider. It would allow us to distribute the cache across multiple servers.
Let's change the RedisConfig class:

package masterSpringMvc.config;

import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.cache.CacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.context.annotation.Profile;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.
RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.session.data.redis.config.annotation.web.
http.EnableRedisHttpSession;

import java.util.Arrays;

@Configuration
@Profile("redis")
@EnableRedisHttpSession
public class RedisConfig {

 @Bean(name = "objectRedisTemplate")
 public RedisTemplate objectRedisTemplate(RedisConnectionFactory
redisConnectionFactory) {
 RedisTemplate<Object, Object> template = new
RedisTemplate<>();
 template.setConnectionFactory(redisConnectionFactory);
 return template;
 }

https://code.google.com/p/guava-libraries/wiki/CachesExplained
https://code.google.com/p/guava-libraries/wiki/CachesExplained

Optimizing Your Requests

[248]

 @Primary @Bean
 public CacheManager cacheManager(@Qualifier("objectRedisTemplate")
RedisTemplate template) {
 RedisCacheManager cacheManager = new
RedisCacheManager(template);
 cacheManager.setCacheNames(Arrays.asList("searches"));
 cacheManager.setDefaultExpiration(36_000);
 return cacheManager;
 }
}

With this configuration, if we run our application with the "Redis" profile, the Redis
cache manager will be used instead of the one defined in the CacheConfig class since
it is annotated with @Primary.

This will allow the cache to be distributed in case we want to scale on more than
one server. The Redis template is used to serialize the cache return values and
parameters, and will require objects to be Serializable.

Async methods
There is still a bottleneck in our application; when a user searches ten keywords,
each search will be executed sequentially. We could easily improve the speed of
our application by using different threads and launching all the searches at the
same time.

To enable Spring's asynchronous capabilities, one must use the @EnableAsync
annotation. This will transparently execute any method annotated with @Async
using a java.util.concurrent.Executor.

It is possible to customize the default executor used by implementing the
AsyncConfigurer interface. Let's create a new configuration class called
AsyncConfig in the config package:

package masterSpringMvc.config;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.aop.interceptor.
AsyncUncaughtExceptionHandler;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.AsyncConfigurer;
import org.springframework.scheduling.annotation.EnableAsync;

Chapter 8

[249]

import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

@Configuration
@EnableAsync
public class AsyncConfiguration implements AsyncConfigurer {

 protected final Log logger = LogFactory.getLog(getClass());

 @Override
 public Executor getAsyncExecutor() {
 return Executors.newFixedThreadPool(10);
 }

 @Override
 public AsyncUncaughtExceptionHandler
getAsyncUncaughtExceptionHandler() {
 return (ex, method, params) -> logger.error("Uncaught async
error", ex);
 }
}

With this configuration, we ensure that no more than 10 threads will be allocated to
handle our asynchronous tasks in the whole application. This is very important in a
web application where each client has a dedicated thread. The more threads you use
and the longer they block, the fewer client requests you can process.

Let's annotate our search method and make it asynchronous. We will need to make it
return a subtype of Future, a java concurrent class that represents an asynchronous
result.

We will create a new implementation of the TwitterSearch class that will query
the search API in different threads. The implementation is a bit tricky so I'll break it
down into small parts.

First, we need to annotate the method that will query the API with the @Async
annotation to tell Spring to schedule the task using our executor. Again, Spring will
use proxy to do its magic so this method has to be in a different class to the service
calling it. It would also be nice if this component could use our cache. That would
lead us to create this component:

@Component
private static class AsyncSearch {

Optimizing Your Requests

[250]

 protected final Log logger = LogFactory.getLog(getClass());
 private SearchCache searchCache;

 @Autowired
 public AsyncSearch(SearchCache searchCache) {
 this.searchCache = searchCache;
 }

 @Async
 public ListenableFuture<List<LightTweet>> asyncFetch(String
searchType, String keyword) {
 logger.info(Thread.currentThread().getName() + " - Searching
for " + keyword);
 return new AsyncResult<>(searchCache.fetch(searchType,
keyword));
 }
}

Don't create this class yet. Let's see what our service needs first.

The ListenableFuture abstraction allows us to add callbacks after the completion
of the future, either in the case of correct results or if an exception occurs.

The algorithm to wait for a bunch of asynchronous tasks would look like this:

@Override
public List<LightTweet> search(String searchType, List<String>
keywords) {
 CountDownLatch latch = new CountDownLatch(keywords.size());
 List<LightTweet> allTweets = Collections.synchronizedList(new
ArrayList<>());
 keywords
 .stream()
 .forEach(keyword -> asyncFetch(latch, allTweets,
searchType, keyword));

 await(latch);
 return allTweets;
}

If you don't know the CountDownLatch method, it is just a simple blocking counter.

The await() method will wait until the latch reaches 0 to unlock the thread.

Chapter 8

[251]

The asyncFetch method, shown in the preceding code, will attach a callback to each
of our asynFetch methods. The callback will add the results to the allTweets list
and decrement the latch. Once each callback has been called, the method will return
all the tweets.

Got it? Here is the final code:

package masterSpringMvc.search;

import masterSpringMvc.search.cache.SearchCache;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Profile;
import org.springframework.scheduling.annotation.Async;
import org.springframework.scheduling.annotation.AsyncResult;
import org.springframework.social.twitter.api.SearchParameters;
import org.springframework.stereotype.Component;
import org.springframework.stereotype.Service;
import org.springframework.util.concurrent.ListenableFuture;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;

@Service
@Profile("async")
public class ParallelSearchService implements TwitterSearch {
 private final AsyncSearch asyncSearch;

 @Autowired
 public ParallelSearchService(AsyncSearch asyncSearch) {
 this.asyncSearch = asyncSearch;
 }

 @Override
 public List<LightTweet> search(String searchType, List<String>
keywords) {
 CountDownLatch latch = new CountDownLatch(keywords.size());
 List<LightTweet> allTweets = Collections.synchronizedList(new
ArrayList<>());

Optimizing Your Requests

[252]

 keywords
 .stream()
 .forEach(keyword -> asyncFetch(latch, allTweets,
searchType, keyword));

 await(latch);
 return allTweets;
 }

 private void asyncFetch(CountDownLatch latch, List<LightTweet>
allTweets, String searchType, String keyword) {
 asyncSearch.asyncFetch(searchType, keyword)
 .addCallback(
 tweets -> onSuccess(allTweets, latch, tweets),
 ex -> onError(latch, ex));
 }

 private void await(CountDownLatch latch) {
 try {
 latch.await();
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 }

 private static void onSuccess(List<LightTweet> results,
CountDownLatch latch, List<LightTweet> tweets) {
 results.addAll(tweets);
 latch.countDown();
 }

 private static void onError(CountDownLatch latch, Throwable ex) {
 ex.printStackTrace();
 latch.countDown();
 }

 @Component
 private static class AsyncSearch {
 protected final Log logger = LogFactory.getLog(getClass());
 private SearchCache searchCache;

 @Autowired
 public AsyncSearch(SearchCache searchCache) {
 this.searchCache = searchCache;

Chapter 8

[253]

 }

 @Async
 public ListenableFuture<List<LightTweet>> asyncFetch(String
searchType, String keyword) {
 logger.info(Thread.currentThread().getName() + " -
Searching for " + keyword);
 return new AsyncResult<>(searchCache.fetch(searchType,
keyword));
 }
 }
}

Now, to use this implementation, we need to run the application with the async
profile.

We can run it with multiple profiles active at the same time by separating them with
commas, as follows:

--spring.profiles.active=redis,async

If we launch a search on multiple terms, we can see something like this:

pool-1-thread-3 - Searching groovy
pool-1-thread-1 - Searching spring
pool-1-thread-2 - Searching java

This shows that the different searches are done in parallel.

Java 8 actually introduced a new type called CompletableFuture, which is a
much better API to manipulate futures. The main problem with completable futures
is that no executor can work with them without a bit of code. This is outside of
the scope of the article, but you can check my blog for an article on the subject:
http://geowarin.github.io/spring/2015/06/12/completable-futures-with-
spring-async.html.

Disclaimer
The following sections contains a lot of JavaScript. Obviously, I think
you should have a look at the code, especially if JavaScript is not
your favorite language. It is time to learn it. That being said, even if
WebSocket is insanely cool, it is not a requirement. You can safely skip
ahead to the last chapter and deploy your application right now.

http://geowarin.github.io/spring/2015/06/12/completable-futures-with-spring-async.html
http://geowarin.github.io/spring/2015/06/12/completable-futures-with-spring-async.html

Optimizing Your Requests

[254]

ETags
Our Twitter results are neatly cached, so a user refreshing the result page will not
trigger an additional search on the Twitter API. However, the response will be
sent to this user multiple times even if the results do not change, which will waste
bandwidth.

An ETag is a hash of the data of a web response and is sent as a header. The
client can memorize the ETag of a resource and send the last known version
to the server with the If-None-Match header. This allows the server to answer
304 Not Modified if the request does not change in the meantime.

Spring has a special Servlet filter, called ShallowEtagHeaderFilter, to handle
ETags. Simply add it as a bean in the MasterSpringMvc4Application configuration
class:

@Bean
public Filter etagFilter() {
 return new ShallowEtagHeaderFilter();
}

This will automatically generate ETags for your responses as long as the response
has no cache control headers.

Now if we interrogate our RESTful API, we can see that an ETag is sent along with
the server response:

> http GET 'http://localhost:8080/api/search/mixed;keywords=spring' -a
admin:admin

HTTP/1.1 200 OK

Content-Length: 1276

Content-Type: application/json;charset=UTF-8

Date: Mon, 01 Jun 2015 11:29:51 GMT

ETag: "00a66d6dd835b6c7c60638eab976c4dd7"

Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID=662848E4F927EE9A1BA2006686ECFE4C; Path=/; HttpOnly

Now if we request the same resource one more time, specifying the last ETag that we
know of in the If-None-Match headers, the server will automatically respond with a
304 Not Modified status:

> http GET 'http://localhost:8080/api/search/mixed;keywords=spring' If-
None-Match:'"00a66d6dd835b6c7c60638eab976c4dd7"' -a admin:admin

HTTP/1.1 304 Not Modified

Chapter 8

[255]

Date: Mon, 01 Jun 2015 11:34:21 GMT

ETag: "00a66d6dd835b6c7c60638eab976c4dd7"

Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID=CA956010CF268056C241B0674C6C5AB2; Path=/; HttpOnly

Due to the parallel nature of our search, the tweets fetched for different
keywords might arrive in different orders, which will make the ETag
change. If you want this technique to work for multiple searches, please
consider ordering your search results before sending them to the client.

If we want to take advantage of that, we obviously need to rewrite our client code
to handle them. We will see a simple solution to do that with jQuery, using the local
storage of the browser to save the latest query of the user.

First, remove the tweets variable from our model; we won't do the search from the
server anymore. You will have to modify a test or two to reflect this change.

Before going further, let's add lodash to our JavaScript libraries. If you don't know
lodash, let's say it is the Apache Utils of JavaScript. You can add it to your project
dependencies like so:

compile 'org.webjars.bower:lodash:3.9.3'

Add it to the default.html layout, just under the materialize's JavaScript:

<script src="/webjars/lodash/3.9.3/lodash.js"></script>

We will modify the resultPage.html file and leave the part where the tweets
should appear empty:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
 xmlns:layout="http://www.ultraq.net.nz/thymeleaf/layout"
 layout:decorator="layout/default">
<head lang="en">
 <title>Hello twitter</title>
</head>
<body>
<div class="row" layout:fragment="content">

 <h2 class="indigo-text center" th:text="|Tweet results for
${search}|">Tweets</h2>

Optimizing Your Requests

[256]

 <ul id="tweets" class="collection">

</div>
</body>
</html>

Then, we will add a script element at the bottom of the page, just before closing
the body:

<script layout:fragment="script" th:inline="javascript">
 /*<![CDATA[*/
 var baseUrl = /*[[@{/api/search}]]*/ "/";
 var currentLocation = window.location.href;
 var search = currentLocation.substr(currentLocation.
lastIndexOf('/'));
 var url = baseUrl + search;
 /*]]>*/
</script>

The preceding script will just be in charge of constructing the URL for our request.
We will use it by issuing a simple jQuery AJAX call:

$.ajax({
 url: url,
 type: "GET",
 beforeSend: setEtag,
 success: onResponse
});

We will use the beforeSend callback to have a chance to modify the request headers
just before the call is made:

function getLastQuery() {
 return JSON.parse(localStorage.getItem('lastQuery')) || {};
}

function storeQuery(query) {
 localStorage.setItem('lastQuery', JSON.stringify(query));
}

function setEtag(xhr) {
 xhr.setRequestHeader('If-None-Match', getLastQuery().etag)
}

Chapter 8

[257]

As you can see, we can easily read and write from local storage. The gotcha here is
that local storage only works with strings so we have to parse and serialize the query
object to JSON.

We can handle the response by retrieving the content from local storage if the HTTP
status is 304 Not Modified:

function onResponse(tweets, status, xhr) {
 if (xhr.status == 304) {
 console.log('Response has not changed');
 tweets = getLastQuery().tweets
 }

 var etag = xhr.getResponseHeader('Etag');
 storeQuery({tweets: tweets, etag: etag});

 displayTweets(tweets);
}

function displayTweets(tweets) {
 $('#tweets').empty();
 $.each(tweets, function (index, tweet) {
 addTweet(tweet);
 })
}

For the addTweet function that you will see next, I'm using lodash, a very useful
JavaScript utility library, to generate templates. The function to add tweets to the
page can be written as follows:

function addTweet(tweet) {
 var template = _.template('<li class="collection-item avatar">' +
 '' +
 '${tweet.user}' +
 '<p>${tweet.text}</p>' +
 '');

 $('#tweets').append(template({tweet: tweet}));
}

That was a lot of JavaScript! It would make more sense to generalize this pattern in a
Single Page Application using a library such as Backbone.js. Hopefully, though, this
will serve as a simple example of how to implement ETags in your application.

Optimizing Your Requests

[258]

If you try to refresh the search page multiple times, you will see that the contents do
not change and will be displayed immediately:

There are other uses for ETags, such as optimistic locking for transactions (it lets
you know on which version of an object the client is supposed to be working on at
any time). It is also extra work on the server side to hash the data before sending it
across, but it will save bandwidth.

WebSockets
Another kind of optimization we can think about is sending the data to the client
as it becomes available to the server. Since we fetch results of the search in multiple
threads, the data will come in multiple chunks. We could send them bit by bit
instead of waiting for all the results.

Spring has excellent support for WebSockets, which is a protocol that allows clients
to maintain a long-running connection to the server. Data can be pushed in web
sockets on both ends of the connection and consumers will get the data in real-time.

We will use a JavaScript library called SockJS to ensure compatibility with all
browsers. Sockjs will transparently fall back on another strategy if our users have an
outdated browser.

We will also use StompJS to connect to our message broker.

Add the following library to your build:

compile 'org.springframework.boot:spring-boot-starter-websocket'
compile 'org.springframework:spring-messaging'

compile 'org.webjars:sockjs-client:1.0.0'
compile 'org.webjars:stomp-websocket:2.3.3'

Chapter 8

[259]

Add the WebJars to our default Thymeleaf template:

<script src="/webjars/sockjs-client/1.0.0/sockjs.js"></script>
<script src="/webjars/stomp-websocket/2.3.3/stomp.js"></script>

To configure WebSockets in our application, we need to add a bit of configuration as
well:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfiguration extends
AbstractWebSocketMessageBrokerConfigurer {

 @Override
 public void configureMessageBroker(MessageBrokerRegistry config) {
 config.enableSimpleBroker("/topic");
 config.setApplicationDestinationPrefixes("/ws");
 }

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry)
{
 registry.addEndpoint("/twitterSearch").withSockJS();
 }

}

This will configure the different channels available in our application. SockJS clients
will connect to the twitterSearch endpoint and will push data to the server on
/ws/ channel and be able to listen to /topic/ for changes.

This will allow us to inject a SimpMessagingTemplate in a new controller to push
data to the client in the /topic/searchResult channel, as follows:

@Controller
public class SearchSocketController {
 private CachedSearchService searchService;
 private SimpMessagingTemplate webSocket;

 @Autowired
 public SearchSocketController(CachedSearchService searchService,
SimpMessagingTemplate webSocket) {
 this.searchService = searchService;
 this.webSocket = webSocket;
 }

Optimizing Your Requests

[260]

 @MessageMapping("/search")
 public void search(@RequestParam List<String> keywords) throws
Exception {
 Consumer<List<LightTweet>> callback = tweet -> webSocket.
convertAndSend("/topic/searchResults", tweet);
 twitterSearch(SearchParameters.ResultType.POPULAR, keywords,
callback);
 }

 public void twitterSearch(SearchParameters.ResultType resultType,
List<String> keywords, Consumer<List<LightTweet>> callback) {
 keywords.stream()
 .forEach(keyword -> {
 searchService.search(resultType, keyword)
 .addCallback(callback::accept,
Throwable::printStackTrace);
 });
 }
}

In our resultPage, the JavaScript code is really simple:

var currentLocation = window.location.href;
var search = currentLocation.substr(currentLocation.lastIndexOf('=') +
1);

function connect() {
 var socket = new SockJS('/hello');
 stompClient = Stomp.over(socket);
 // stompClient.debug = null;
 stompClient.connect({}, function (frame) {
 console.log('Connected: ' + frame);

 stompClient.subscribe('/topic/searchResults', function (result)
{
 displayTweets(JSON.parse(result.body));
 });

 stompClient.send("/app/search", {}, JSON.stringify(search.
split(',')));
 });
}

Chapter 8

[261]

The displayTweets function remains essentially the same as before:

function displayTweets(tweets) {
 $.each(tweets, function (index, tweet) {
 addTweet(tweet);
 })
}

function addTweet(tweet) {
 var template = _.template('<li class="collection-item avatar">' +
 '' +
 '${tweet.userName}' +
 '<p>${tweet.text}</p>' +
 '');

 $('#tweets').append(template({tweet: tweet}));
}

Here you go! The client will now receive the results of all the searches in the
application-- live!

Before pushing this to production, it will require a little bit more work. Here are
some ideas:

• Create subchannels for clients to privately listen to changes
• Close the channel when a client is done using it
• Add CSS transitions to the new tweets so the user can feel that it's real-time
• Use a real broker, such as RabbitMQ, to allow the backend to scale with

connections

There is much more to WebSocket than just this simple example. Don't forget to have
a look at the documentation at http://docs.spring.io/spring/docs/current/
spring-framework-reference/html/websocket.html for more information.

The check point
In this chapter, we created two new configurations: AsyncConfiguration, which
will allow us to use the @Async annotation to submit tasks to an executor, and
CacheConfiguration, which will create a CacheManager interface and allow us to
use the @Cacheable annotation. Since we can use Redis as a cache manager, we also
amended the RedisConfig class.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html

Optimizing Your Requests

[262]

We created a SearchCache class, which contained a cache of tweets, and
we now have two TwitterSearch implementations to choose from: good
old SearchService, which will fetch each result synchronously, and
ParallelSearchService, which will issue each query in a different thread:

Summary
In this chapter, we have seen two different philosophies relating to performance
improvement. At the beginning, we tried to reduce the bandwidth used by our
clients by caching data and using as few connections to our server as possible.

In the second part, though, we began to do something more advanced by allowing
searches to be run in parallel and each client to remain in sync with a persistent
connection to the server through web sockets. This will allow clients to receive
updates in real time, and our application will feel more reactive but consume more
threads.

I strongly encourage you to polish the result before we move on to the next chapter
and deploy our application for good!

[263]

Deploying Your Web
Application to the Cloud

In this chapter, we'll take a tour of the different cloud providers, understand the
challenges and benefits of a distributed architecture, and see how to deploy your
web application to Pivotal Web Services and to Heroku.

Choosing your host
There are many forms of cloud hosting. For developers, the choice will be mainly
between a Platform as a Service (PaaS) and an Infrastructure as a Service (IaaS).

Using the latest, you will often have a bare metal machine that you can manage
and on which you can install all the services required by your application.

If we leave aside technologies such as Docker (which is absolutely amazing, you
should absolutely give it a try), this is really similar to traditional hosting where
your operation team will have to set up and maintain an environment in which the
application can run.

On the other hand, PaaS makes it easy to deploy your application as you develop
it with a simple push-to-deploy workflow.

The most well known providers are:

• Cloud Foundry backed by Pivotal
• OpenShift by Red Hat
• Heroku acquired by Salesforce in 2010

Each of these three providers come with different pros and cons. I will try to give
you an overview of these.

Deploying Your Web Application to the Cloud

[264]

Cloud Foundry
Backed by Pivotal, the company behind Spring, Pivotal Web Service runs on Cloud
Foundry, an open source PaaS maintained by a foundation, and comes with an
interesting package.

They offer a 60 day free trial and their pricing is a function of the memory allocated
for your instances and the number of instances you own.

Their prices range from $2.70 per month for the smallest (128 Mb) instance to $43.20
per month for the 2 GB instance.

If you want to give it a try, no credit card is required for the free trial. They have
a market place to easily install services, such as Redis or Postgre SQL, with rather
limited free options. They have a good command-line utility to manage your
application from your console. You can either use buildpacks or push a JAR directly
for deployment.

Build packs will try to guess the stack that you are using and build
your application in the most standard way (mvn package for Maven,
./gradlew stage for Gradle, and so on).

Refer to the tutorial available at the following URL to deploy your
application to Cloud Foundry:
http://docs.cloudfoundry.org/buildpacks/java/gsg-
spring.html

OpenShift
OpenShift is maintained by Red Hat and powered by OpenShift Origin, an open
source facility running Docker containers on top of Google's Kubernetes.

It is priced well and offers a lot of freedom, as it is both a PaaS and an IaaS. Its
pricing is based on gears, containers running an application, or a service such as
Jenkins, or a database.

OpenShift has a free plan offering three small gears. Your application must be idle
for 24 hours per month unless you enter your billing information.

Additional or bigger gears are billed at approximately $15 a month for the smallest,
and $72 for the biggest.

http://docs.cloudfoundry.org/buildpacks/java/gsg-spring.html
http://docs.cloudfoundry.org/buildpacks/java/gsg-spring.html

Chapter 9

[265]

To deploy a Spring Boot application on OpenShift, you will have to use the Do It
Yourself cartridge. It is a bit more work than other buildpack-based PaaS but it is
also easier to configure.

Take a look at the blog post for a Spring Boot tutorial with OpenShift, which is
available at http://blog.codeleak.pl/2015/02/openshift-diy-build-spring-
boot.html.

Heroku
Heroku is a well known PaaS with extensive documentation and a code-centric
approach based on build packs. It can connect to a lot of services called add-ons, but
using them requires your billing information.

It is really interesting for a free project and is very fast to get started with. The
downside is that it directly costs more than $25 per month if you want to scale up.
Free instances will go into the sleep mode after 30 minutes of inactivity, which means
free Heroku apps will always take as much as 30 seconds to load.

Heroku has a great administration dashboard and command-line tools. For this
chapter, I chose Heroku because it is very straightforward. The concepts you will
grasp here are applicable to most PaaS.

You can follow most of the chapter and deploy your application without providing
your credit card information as long as you do not use the Redis add-on. You won't
be charged if you select the free plan.

Deploying your web application to
Pivotal Web Services
Follow this section if you want to deploy your application to Pivotal Web Services
(PWS).

Installing the Cloud Foundry CLI tools
The first thing we need to do to create a Cloud Foundry application is to set up an
account on PWS. This is documented at http://docs.run.pivotal.io/starting/.

http://blog.codeleak.pl/2015/02/openshift-diy-build-spring-boot.html
http://blog.codeleak.pl/2015/02/openshift-diy-build-spring-boot.html
http://docs.run.pivotal.io/starting/

Deploying Your Web Application to the Cloud

[266]

You will be asked to create an organization and each new organization will have
a default space (development) created within the organization. As shown in the
following screenshot:

On the left-hand side navigation bar, you will see a link to Tools from which
you download the CLI. It is also available from the developer console. Select the
appropriate package for your operating system:

Chapter 9

[267]

Assembling the application
Our application simply needs to be assembled for deployment.

The good thing with PWS is that you don't have to push your sources to deploy. You
can generate the JAR, push it, and everything will be autodetected.

We can package this for deployment with the following command:

./gradlew assemble

This will create a jar file in the build/libs directory. At this point, you can execute
the following command. The following command targets your deployment to your
space within PWS (run.pivotal.io):

$ cf login -a api.run.pivotal.io -u <account email> -p <password> -o
<organization> -s development

API endpoint: api.run.pivotal.io

Authenticating...

OK

Targeted org <account org>

Targeted space development

API endpoint: https://api.run.pivotal.io (API version: 2.33.0)

User: <account email>

Org: <account organization>

Space: <account space>

Deploying Your Web Application to the Cloud

[268]

Once you have successfully logged in, you can push your jar with the following
command. You will need to come up with an available name:

$ cf push your-app-name -p build/libs/masterSpringMvc-0.0.1-SNAPSHOT.jar

Creating app msmvc4 in org Northwest / space development as wlund@
pivotal.io...

OK

Creating route msmvc4.cfapps.io...

OK

Binding msmvc4.cfapps.io to msmvc4...

OK

Uploading msmvc4...

Uploading app files from: build/libs/masterSpringMvc-0.0.1-SNAPSHOT.jar

Uploading 690.8K, 108 files

Done uploading

OK

Starting app msmvc4 in org <Organization> / space development as <account
email>

-----> Downloaded app package (15M)

-----> Java Buildpack Version: v3.1 | https://github.com/cloudfoundry/
java-buildpack.git#7a538fb

-----> Downloading Open Jdk JRE 1.8.0_51 from https://download.run.
pivotal.io/openjdk/trusty/x86_64/openjdk-1.8.0_51.tar.gz (1.5s)

 Expanding Open Jdk JRE to .java-buildpack/open_jdk_jre (1.4s)

-----> Downloading Open JDK Like Memory Calculator 1.1.1_RELEASE from
https://download.run.pivotal.io/memory-calculator/trusty/x86_64/memory-
calculator-1.1.1_RELEASE (0.1s)

 Memory Settings: -Xmx768M -Xms768M -XX:MaxMetaspaceSize=104857K
-XX:MetaspaceSize=104857K -Xss1M

-----> Downloading Spring Auto Reconfiguration 1.7.0_RELEASE
from https://download.run.pivotal.io/auto-reconfiguration/auto-
reconfiguration-1.7.0_RELEASE.jar (0.0s)

-----> Uploading droplet (59M)

Chapter 9

[269]

0 of 1 instances running, 1 starting

1 of 1 instances running

App started

OK

App msmvc4 was started using this command `CALCULATED_MEMORY=$($PWD/.
java-buildpack/open_jdk_jre/bin/java-buildpack-memory-calculator-1.1.1_
RELEASE -memorySizes=metaspace:64m.. -memoryWeights=heap:75,metaspace:10
,stack:5,native:10 -totMemory=$MEMORY_LIMIT) && SERVER_PORT=$PORT $PWD/.
java-buildpack/open_jdk_jre/bin/java -cp $PWD/.:$PWD/.java-buildpack/
spring_auto_reconfiguration/spring_auto_reconfiguration-1.7.0_RELEASE.
jar -Djava.io.tmpdir=$TMPDIR -XX:OnOutOfMemoryError=$PWD/.java-buildpack/
open_jdk_jre/bin/killjava.sh $CALCULATED_MEMORY org.springframework.boot.
loader.JarLauncher`

Showing health and status for app msmvc4 in org <Organization> / space
development as <Account Email>

OK

requested state: started

instances: 1/1

usage: 1G x 1 instances

urls: msmvc4.cfapps.io

last uploaded: Tue Jul 28 22:04:08 UTC 2015

stack: cflinuxfs2

buildpack: java-buildpack=v3.1-https://github.com/cloudfoundry/java-
buildpack.git#7a538fb java-main open-jdk-like-jre=1.8.0_51 open-jdk-like-
memory-calculator=1.1.1_RELEASE spring-auto-reconfiguration=1.7.0_RELEASE

 state since cpu memory disk
details

#0 running 2015-07-28 03:05:04 PM 0.0% 450.9M of 1G 137M of 1G

There is a lot that the platform is performing on your behalf. It provisions a container
and detects which buildpack is needed, in this case, Java.

Deploying Your Web Application to the Cloud

[270]

It then installs the required JDK and uploads the application we pointed it to. It
creates a route to the application, which it reports to us, and then launches the
application for us.

Now you can view the application on the developer console:

On selecting the highlighted route, the application will be available for use. Visit
http://msmvc4.cfapps.io, then you will see the following screenshot:

http://msmvc4.cfapps.io

Chapter 9

[271]

Bravo!

The only thing that will not work yet is the file upload. However, we will fix that in a
minute.

Deploying Your Web Application to the Cloud

[272]

Activating Redis
In your application services, you can choose between many services. One of them is
Redis Cloud, which has a free plan with 30 MB of storage. Go ahead and select this
plan.

In the form, choose whatever name you fancy and bind the service to your
application. By default, Cloud Foundry will inject some properties in relation to the
service in your environment:

• cloud.services.redis.connection.host

• cloud.services.redis.connection.port

• cloud.services.redis.connection.password

• cloud.services.redis.connection.uri

These properties will always follow the same convention, so it will be easy to keep
track of your services as you add more.

By default, Cloud Foundry launches Spring applications and activates the Cloud
profile.

We can take advantage of this and create an application-cloud.properties file in
src/main/resources, which will be used when our application is running on PWS:

spring.profiles.active=prod,redis

spring.redis.host=${cloud.services.redis.connection.host}
spring.redis.port=${cloud.services.redis.connection.port}
spring.redis.password=${cloud.services.redis.connection.password}

upload.pictures.uploadPath=file:/tmp

This will bind our Redis instance to our application and activate two additional
profiles: prod and redis.

We also changed the path where the uploaded pictures will land. Note that using the
file system on the cloud obeys different rules. Refer to the following link for more
details:

http://docs.run.pivotal.io/devguide/deploy-apps/prepare-to-deploy.
html#filesystem

http://docs.run.pivotal.io/devguide/deploy-apps/prepare-to-deploy.html#filesystem
http://docs.run.pivotal.io/devguide/deploy-apps/prepare-to-deploy.html#filesystem

Chapter 9

[273]

The last thing we need to do is deactivate one Spring Session feature that will not be
available on our hosted instance:

@Bean
@Profile({"cloud", "heroku"})
public static ConfigureRedisAction configureRedisAction() {
 return ConfigureRedisAction.NO_OP;
}

For more information, visit http://docs.spring.io/
spring-session/docs/current/reference/html5/#api-
redisoperationssessionrepository-sessiondestroyedevent.

You will see that this configuration will also be applied on Heroku.

That's it. You can reassemble your web application and push it again. Now, your
sessions and application cache will be stored on Redis!

You may want to explore the marketplace for other available features such as
binding to data or messaging services, scaling the application, and managing the
health of the applications that are beyond the scope of this introduction.

Have fun and enjoy the productivity the platform provides!

Deploying your web application
on Heroku
In this section, we will deploy your application on Heroku for free. We will even use
the free Redis instance available to store our session and cache.

Installing the tools
The first thing we need to do to create a Heroku application is to download the
command-line tools available at https://toolbelt.heroku.com.

On Mac, you can also install it with brew command:

> brew install heroku-toolbelt

http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
https://toolbelt.heroku.com

Deploying Your Web Application to the Cloud

[274]

Create an account on Heroku and use heroku login to link the toolbelt to your
account:

> heroku login

Enter your Heroku credentials.

Email: geowarin@mail.com

Password (typing will be hidden):

Authentication successful.

Then, go to your application root and type heroku create appName --region eu.
Replace appName with a name of your choice. If you don't provide a name, it will be
generated automatically:

> heroku create appname --region eu

Creating appname... done, region is eu

https://appname.herokuapp.com/ | https://git.heroku.com/appname.git

Git remote heroku added

If you have already created an application with the UI, then go to your application
root and simply add the remote heroku git:remote -a yourapp.

What these commands do is add a Git remote called heroku to our Git repository.
The process of deploying on Heroku is just pushing one of your branches to Heroku.
The Git hooks installed on the remote will take care of the rest.

If you type git remote -v command, you should see the heroku version:

> git remote -v

heroku https://git.heroku.com/appname.git (fetch)

heroku https://git.heroku.com/appname.git (push)

origin https://github.com/Mastering-Spring-MVC-4/mastering-spring-
mvc4-code.git (fetch)

origin https://github.com/Mastering-Spring-MVC-4/mastering-spring-
mvc4-code.git (push)

Setting up the application
We need two ingredients to run a Gradle application with Heroku: a task in our
build file called stage and a tiny file that contains the command used to run our
application, called ProcFile.

Chapter 9

[275]

Gradle
The Gradle build pack will automatically try to run the ./gradlew stage command
on the root of your application.

You can get more information on the Gradle build pack at
https://github.com/heroku/heroku-buildpack-gradle.

We do not have a "stage" task yet. Add the following code to your build.gradle
file:

task stage(type: Copy, dependsOn: [clean, build]) {
 from jar.archivePath
 into project.rootDir
 rename {
 'app.jar'
 }
}
stage.mustRunAfter(clean)

clean << {
 project.file('app.jar').delete()
}

This will define a task called stage, which will copy the jar generated by Spring Boot
at the root of the application and call it app.jar.

The jar be much easier to find this way. The stage task depends on the clean task
and the build task, which means that both of them will be executed before the stage
task starts.

By default, Gradle will try to optimize the task dependency graph. So, we must
provide a hint and force the clean task to be run before stage.

Finally, we add a new instruction to the already existing clean task, which is to
delete the generated app.jar file.

Now, if you run ./gradlew stage, it should run the tests and put the packaged app
at the root of the project.

https://github.com/heroku/heroku-buildpack-gradle

Deploying Your Web Application to the Cloud

[276]

Procfile
When Heroku detects a Gradle application, it will automatically run a container with
Java 8 installed. So, we have very little configuration to take care of.

We will need a file containing the shell command used to run our application. Create
a file named Procfile at the root of your application:

web: java -Dserver.port=$PORT -Dspring.profiles.active=heroku,prod
-jar app.jar

There are several things to note here. First, we declare our application as a web
application. We also redefine the port on which our application will run using an
environment variable. This is very important as your app will cohabit with many
others and only one port will be allocated to each one.

Finally, you can see that our application will run using two profiles. The first is the
prod profile, which we created in the previous chapter, to optimize the performance,
and a new heroku profile that we will create in a moment.

A Heroku profile
We do not want to put sensible information, such as our Twitter app keys, into
source control. So, we have to create some properties that will read those from the
application environment:

spring.social.twitter.appId=${twitterAppId}
spring.social.twitter.appSecret=${twitterAppSecret}

For this to work, you have to configure the two environment variables, which we
discussed earlier, on Heroku. You can do this with the toolbelt:

> heroku config:set twitterAppId=appId

Alternatively, you can go to your dashboard and configure the environment in the
settings tab:

Chapter 9

[277]

Visit https://devcenter.heroku.com/articles/config-vars
for more information.

Running your application
It is now time to run our application on Heroku!

If you haven't already done so, commit all your changes to your master branch.
Now, simply push your master branch to the heroku remote with git push heroku
master. This will download all the dependencies and build your application from
scratch, so it can take a little time:

> git push heroku master

Counting objects: 1176, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (513/513), done.

Writing objects: 100% (1176/1176), 645.63 KiB | 0 bytes/s, done.

Total 1176 (delta 485), reused 1176 (delta 485)

remote: Compressing source files... done.

remote: Building source:

remote:

https://devcenter.heroku.com/articles/config-vars

Deploying Your Web Application to the Cloud

[278]

remote: -----> Gradle app detected

remote: -----> Installing OpenJDK 1.8... done

remote: -----> Building Gradle app...

remote: WARNING: The Gradle buildpack is currently in Beta.

remote: -----> executing ./gradlew stage

remote: Downloading https://services.gradle.org/distributions/
gradle-2.3-all.zip

...

remote: :check

remote: :build

remote: :stage

remote:

remote: BUILD SUCCESSFUL

remote:

remote: Total time: 2 mins 36.215 secs

remote: -----> Discovering process types

remote: Procfile declares types -> web

remote:

remote: -----> Compressing... done, 130.1MB

remote: -----> Launching... done, v4

remote: https://appname.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy.... done.

To https://git.heroku.com/appname.git

* [new branch] master -> master

Once the application has been built, it will automatically run. Type heroku logs to
see the latest logs or heroku logs -t to tail them.

Chapter 9

[279]

You can see your application running in the console and if all goes as planned,
you will be able to connect to http://yourapp.herokuapp.com. As shown in the
following screenshot:

We are live! It's time to tell your friends!

Activating Redis
To activate Redis in our application, we can choose between a few alternatives. The
Heroku Redis add-on is the beta version. It is entirely free with 20 MB of storage,
analytics, and logs.

Visit https://elements.heroku.com/addons/heroku-redis
for more details.

http://yourapp.herokuapp.com
https://elements.heroku.com/addons/heroku-redis

Deploying Your Web Application to the Cloud

[280]

At this stage, you will have to provide your credit card details to proceed.

To install the Redis add-on for your application, type the following:

heroku addons:create heroku-redis:test

Now, that we have activated the add-on, an environment variable called REDIS_URL
will be available when our application will be running on Heroku.

You can check that the variable is defined with the heroku config command:

> heroku config

=== masterspringmvc Config Vars

JAVA_OPTS: -Xmx384m -Xss512k -XX:+UseCompressedOops

REDIS_URL: redis://x:xxx@ec2-xxx-xx-xxx-xxx.eu-west-1.compute.
amazonaws.com:6439

Since the RedisConnectionFactory class does not understand URIs, we need to
tweak it a little bit:

@Configuration
@Profile("redis")
@EnableRedisHttpSession
public class RedisConfig {

 @Bean
 @Profile("heroku")
 public RedisConnectionFactory redisConnectionFactory() throws
URISyntaxException {
 JedisConnectionFactory redis = new JedisConnectionFactory();

 String redisUrl = System.getenv("REDIS_URL");
 URI redisUri = new URI(redisUrl);
 redis.setHostName(redisUri.getHost());
 redis.setPort(redisUri.getPort());
 redis.setPassword(redisUri.getUserInfo().split(":", 2)[1]);

 return redis;
 }

 @Bean
 @Profile({"cloud", "heroku"})
 public static ConfigureRedisAction configureRedisAction() {
 return ConfigureRedisAction.NO_OP;
 }
}

Chapter 9

[281]

We now have two Heroku-specific beans in the RedisConfig class. These beans will
only be active if both the redis and heroku profiles are active.

Note that we also deactivated some Spring Session configuration.

Spring Session will normally listen to events associated to destroyed session keys via
the Redis Pub/Sub interface.

It will automatically try to configure the Redis environment to activate listeners on
startup. In a secured environment like ours, adding listeners is not permitted unless
you have an admin access.

These redis listeners are not really important in our case, so we can safely disable this
behavior. For more information, visit http://docs.spring.io/spring-session/
docs/current/reference/html5/#api-redisoperationssessionrepository-
sessiondestroyedevent.

We need to modify our Procfile file so that Heroku runs our application with the
redis profile:

web: java -Dserver.port=$PORT -Dspring.profiles.
active=heroku,redis,prod -jar app.jar

Commit your change and push the code to Heroku.

Improving your application
We have a pretty good application deployed online but it's not uber useful nor
original until you make it so.

Try to make it better and more personal. Once you're proud of your achievement,
tweet your application URL with the #masterspringmvc hashtag on Twitter.

Try to push the best application possible. There is so much that we didn't do. Here
are some ideas:

• Delete users' old pictures to avoid keeping unused pictures
• Use Twitter authentication information to fill the user profile
• Interact with the user's account
• See real-time searches happening on your app with a web socket channel

Let your imagination fly!

My version of the application is deployed on http://masterspringmvc.
herokuapp.com. I will improve some details to make the application a little
more reactive. Try to spot the differences!

http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
http://docs.spring.io/spring-session/docs/current/reference/html5/#api-redisoperationssessionrepository-sessiondestroyedevent
http://masterspringmvc.herokuapp.com
http://masterspringmvc.herokuapp.com

Deploying Your Web Application to the Cloud

[282]

Summary
Deploying our application on a cloud provider is really straightforward as it is a
runnable jar, thanks to Spring Boot. Cloud deployment is very affordable nowadays
and deploying a Java application has become almost too easy.

With sessions backed by Redis, we laid the basics of a scalable application. Indeed,
we can effortlessly add multiple servers behind a load balancer and absorb high
traffic on demand.

The only thing that is not scalable is our WebSocket that will need additional work to
run on top of a message broker, such as Rabbit MQ.

I can certainly remember a time where finding a host running a Tomcat was rare and
pricey. Those days are long gone and the future belongs to web developers, so make
it happen!

In the next chapter, we will see what we can do to make our application even better,
discuss the technologies we haven't covered, talk about the Spring ecosystem in
general, and the challenges of modern web applications.

[283]

Beyond Spring Web
In this chapter, we'll see how far we have come, the problems we've solved, and the
ones left to be addressed.

We will talk about the Spring ecosystem in general, and persistence, deployment,
and Single Page Applications in particular.

The Spring ecosystem
From the Web to data, Spring is a comprehensive ecosystem aiming to resolve
all sorts of problems in a modular way:

Check out the Spring IO platform at https://spring.io/platform.

https://spring.io/platform

Beyond Spring Web

[284]

Core
At the core of the Spring framework, there is obviously a dependency injection
mechanism.

We only scratched the surface of the security features and the great integration
of the framework with Groovy.

Execution
We saw in detail what Spring Boot is about -- bringing simplicity and cohesion to a
vast network of subprojects.

It allows you to focus on what really matters, that is, your business code.

The Spring XD project is also really interesting. Its goal is to provide tools to process,
analyze, and transform or export your data, and has a clear focus on big data. For
more information, visit http://projects.spring.io/spring-xd/.

Data
One of the things we haven't looked at while developing our application is how to
store data in a database. In Pivotal's reference architecture, there is a tier devoted to
both relational data and non-relational (NoSQL) data.

The Spring ecosystem has provided a lot of interesting solutions under the label
spring-data, which can be found at http://projects.spring.io/spring-data/.

We glanced at Spring Data Redis when we built the cache but there is much more to
Spring Data.

The basic concepts are shared among all the Spring Data projects, such as the
template API, which is an abstraction to retrieve and store objects from a persistence
system.

Spring Data JPA (http://projects.spring.io/spring-data-jpa/) and Spring
Data Mongo (http://projects.spring.io/spring-data-mongodb/) are some of
the most well known Spring Data projects. They let you operate on entities through
repositories, simple interfaces that provide facilities to create queries, persisting
objects, and so on.

http://projects.spring.io/spring-xd/
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data-jpa/
http://projects.spring.io/spring-data-mongodb/

Chapter 10

[285]

Petri Kainulainen (http://www.petrikainulainen.net/spring-data-jpa-
tutorial/) has a lot of thorough examples on Spring Data. It does not use
the facilities that Spring Boot provides but you should be able to get started
quite easily with guides, such as the one available at https://spring.io/guides/
gs/accessing-data-jpa/.

Spring Data REST is also a magical project that will semiautomatically expose your
entities through a RESTful API. Visit https://spring.io/guides/gs/accessing-
data-rest/ for a detailed tutorial.

Other noteworthy projects
Spring Integration (http://projects.spring.io/spring-integration) and
Spring Reactor (http://projectreactor.io) are also two of my favorite Spring
projects.

Spring Reactor is the implementation of reactive streams by Pivotal. The idea is to
provide fully nonblocking IO on the server side.

Spring Integration, on the other hand, focuses on Enterprise Integration Patterns and
lets you design channels to load and transform data coming from heterogeneous
systems.

A good, and simple, example of what you can accomplish with channels can be seen
here: http://lmivan.github.io/contest/#_spring_boot_application.

If you have heterogeneous and/or complex subsystems with which your application
has to communicate, it is definitely worth taking a look at.

The last project in the Spring ecosystem we haven't is Spring Batch, a really useful
abstraction for processing high volumes of data for the daily operations of enterprise
systems.

The deployment
Spring Boot provides the ability to run and distribute your Spring application as a
simple JAR and is a wonderful success in that regard.

It is, without a doubt, a step in the right direction, but sometimes your web
application isn't the only thing you want to deploy.

When dealing with a complex system with multiple servers and datasources, the
work of the operation team can become quite a headache.

http://www.petrikainulainen.net/spring-data-jpa-tutorial/
http://www.petrikainulainen.net/spring-data-jpa-tutorial/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-rest/
https://spring.io/guides/gs/accessing-data-rest/
http://projects.spring.io/spring-integration
http://projectreactor.io
http://lmivan.github.io/contest/#_spring_boot_application

Beyond Spring Web

[286]

Docker
Who hasn't heard about Docker? It is the new cool kid in the container world and has
become quite a success, thanks to its vibrant community.

The ideas behind Docker are not new, it leverages LinuX Containers (LXC) and
cgroups to provide a fully isolated environment for applications to run in.

You can find a tutorial on the Spring website that will guide you through your first
steps with Docker at https://spring.io/guides/gs/spring-boot-docker.

Pivotal Cloud Foundry has been using container technology for years in their
container manager called Warden. They recently moved to Garden, an abstraction
that supports not only Linux containers, but also Windows containers.

Garden is part of the latest release of Cloud Foundry (called Diego) that also allows
Docker images as units of deployment.

A developer version of Cloud Foundry has also been released under the name
Lattice, which can be found at https://spring.io/blog/2015/04/06/lattice-
and-spring-cloud-resilient-sub-structure-for-your-cloud-native-
spring-applications.

If you want to test containers without the hassles of the command line, I recommend
that you look at Kitematic. With this, you can run a Jenkins container or a MongoDB
without installing the binaries on your system. Visit https://kitematic.com/ for
more information on Kitematic.

Another tool in the Docker ecosystem that's worth mentioning is Docker Compose. It
allows you to run and link multiple containers with a single configuration file.

Refer to http://java.dzone.com/articles/spring-session-demonstration for
a good example of a Spring Boot application composed of two web servers, a Redis
to store users' sessions, and an Nginx instance to do the load balancing. Of course,
there is much more to learn about Docker Swarm, which will allow you to scale your
application with a simple command, and Docker Machine, which will create Docker
hosts for you on any machine, including Cloud providers.

Google Kurbernetes and Apache Mesos are also great examples of distributed
systems that benefit greatly from Docker containers.

https://spring.io/guides/gs/spring-boot-docker
https://spring.io/blog/2015/04/06/lattice-and-spring-cloud-resilient-sub-structure-for-your-cloud-native-spring-applications
https://spring.io/blog/2015/04/06/lattice-and-spring-cloud-resilient-sub-structure-for-your-cloud-native-spring-applications
https://spring.io/blog/2015/04/06/lattice-and-spring-cloud-resilient-sub-structure-for-your-cloud-native-spring-applications
https://kitematic.com/
http://java.dzone.com/articles/spring-session-demonstration

Chapter 10

[287]

Single Page Applications
Most of today's web applications are written in JavaScript. Java is relegated to
the backend and has the important role of dealing with data and business rules.
However, much of the GUI stuff is now happening on the client side.

There is a good reason for that in terms of responsiveness and user experience, but
those applications add extra complexity.

Developers now have to be fluent in both Java and JavaScript and the number of
frameworks can be a little overwhelming at first.

The players
If you want to dig deeper into JavaScript, I would highly recommend Dave Syer's
tutorial with Spring and AngularJS, which is available at https://spring.io/
guides/tutorials/spring-security-and-angular-js.

Choosing a JavaScript MVC framework can be a little difficult too. AngularJS
has had the favor of the Java community for years but people seem to be
moving away from it. For more information, visit https://gist.github.com/
tdd/5ba48ba5a2a179f2d0fa.

Other alternatives include the following:

• BackboneJS: This is a really simple MVC framework that sits on top of
Underscore and jQuery.

• Ember: This is a comprehensive system that provides more facilities for
interacting with data and more.

• React: This is the newest project from Facebook. It has a new and very
interesting philosophy for dealing with views. Its learning curve is quite
steep, but it is a very interesting system to look at in terms of designing
a GUI framework.

React is my favorite project right now. It lets you focus on the view and its one-way
data flow makes it easy to reason with the state of your application. However, it is
still in version 0.13. This makes it both very interesting, as the vibrant community
always comes up with new solutions and ideas, and somewhat disturbing, as
the road ahead stills seems long even after more than 2 years of open source
development. Visit https://facebook.github.io/react/blog/2014/03/28/the-
road-to-1.0.html for information on "The Road to 1.0".

https://spring.io/guides/tutorials/spring-security-and-angular-js
https://spring.io/guides/tutorials/spring-security-and-angular-js
https://gist.github.com/tdd/5ba48ba5a2a179f2d0fa
https://gist.github.com/tdd/5ba48ba5a2a179f2d0fa
https://facebook.github.io/react/blog/2014/03/28/the-road-to-1.0.html
https://facebook.github.io/react/blog/2014/03/28/the-road-to-1.0.html

Beyond Spring Web

[288]

The future
I see a lot of Java developers ranting about the permissiveness of JavaScript and
having a hard time dealing with the fact that it is not a strongly typed language.

There are other alternatives, such as Typescript (http://www.typescriptlang.org/),
which are really interesting and provide the things that we, Java developers, have
always used to make our lives simpler: interfaces, classes, helpful support in IDE, and
autocompletion.

A lot of people place bets on the next version (2.0) of Angular that will quite
notoriously break everything. I think it's for the best. Their collaboration with
Microsoft's team that makes Typescript is really unique.

Most JEE developers will smile when they hear that one of the big new features of
ECMAScript, that allows the development of this new framework, is decorators,
some kind of annotation mechanism:

To learn about the difference between annotation and decorators, visit
http://blog.thoughtram.io/angular/2015/05/03/the-
difference-between-annotations-and-decorators.html.

JavaScript is evolving quickly and ECMAScript 6 has a lot of interesting features that
makes it a really advanced and sophisticated language. Don't miss the boat; take a
look at https://github.com/lukehoban/es6features before it's too late!

The web component specification is also a game changer. The goal is to provide
reusable UI components, and both the React team and the Angular 2 teams have
plans to interface with it. Google has developed an interesting project on top of web
components called Polymer that is now in version 1.0.

Refer to the article at http://ng-learn.org/2014/12/Polymer/
to learn more about the state of these projects.

http://www.typescriptlang.org/
http://blog.thoughtram.io/angular/2015/05/03/the-difference-between-annotations-and-decorators.html
http://blog.thoughtram.io/angular/2015/05/03/the-difference-between-annotations-and-decorators.html
https://github.com/lukehoban/es6features
http://ng-learn.org/2014/12/Polymer/

Chapter 10

[289]

Going stateless
When dealing with a JavaScript client, relying on session cookies isn't the best
option. Most applications choose to go completely stateless and identify clients with
a token.

If you want to stick with Spring Session, take a look at the
HeaderHttpSessionStrategy class. It has an implementation that sends and
retrieves sessions with an HTTP header. An example of this can be found at
https://drissamri.be/blog/2015/05/21/spring-security-and-spring-
session/.

Summary
The Spring ecosystem is wide and has a lot to offer to modern web application
developers.

It is hard to find a problem that hasn't been addressed by one of the Spring projects.

Time to say good bye! I hope you enjoyed our little journey with Spring MVC and
that it will help you develop with pleasure and create amazing projects, at work
or in your spare time.

https://drissamri.be/blog/2015/05/21/spring-security-and-spring-session/
https://drissamri.be/blog/2015/05/21/spring-security-and-spring-session/

[291]

Index
A
acceptance tests

about 190-194, 213
Gradle, configuration 213, 214
with FluentLenium 215-221
with Groovy 225

Anemic Domain Model
about 35, 36
URL 35

API versioning
about 133
reference link 134

application cache
creating 240-245
distributed cache 247, 248
invalidation 246
reference link 245

async methods
reference link 253
using 248-253

authentication
testing 211, 212

authorized URLs
authenticating 165, 166

authorized users
authenticating 163-165

B
BackboneJS 287
basic authentication

about 161
configuring 162

for authorized URLs 165, 166
for authorized users 163, 164
Thymeleaf security tags, using 167, 168
URL 161

C
cache control

about 238
configuring 239

check point 158
client validation, profile page

enabling 88, 89
reference link 88

Cloud Foundry
about 264
CLI tools, installing 265, 266
URL 264

code testing
acceptance tests 190, 191
benefits 190
unit tests 190, 191

constructor injection
about 111
URL 111

continuous integration
reference link 189

Create Read Update Delete (CRUD) 131
Cross Site Request Forgery (CSRF)

about 166
URL 166

custom error page
creating 112, 113

[292]

D
Data Transfer Object (DTO) 66
deployment

about 285
Docker 286

Dispatcher Servlet
architecture 42, 43

distributed cache
configuring 247, 248

distributed sessions
about 180
setting up 180-182

Docker
about 286
URL 286

documentation
with Swagger 155, 156

Domain Driven Design (DDD) 35

E
embedded Servlet container (Tomcat)

configuration 28, 29
HTTP port, setting 30
other configurations 31, 32
SSL configuration 30

Ember 287
encoding configuration 26-28
error handling 26-28
error messages

translating 108
ETags

about 254
generating 254
using 255-258

exception handling 148

F
file upload

about 93
check point 127
errors, handling 104-107
implementation 119-126
profile picture, uploading 93-98

uploaded images, displaying on
web page 98, 99

uploaded picture, displaying 102-104
upload properties, managing 99-102

FluentLenium
about 215
Page Objects 221-224
URL 217
used, for acceptance tests 215-221

G
Geb

about 229
Page Objects 230-234
reference link 234
used, for integration tests 229, 230

Git
about 95
empty directory 95
installing 11, 12
URL 11
web application, saving 11, 12

Gradle
about 12
configuration 213, 214
installing 12-14
JAR file 15
running 275
URL 275

Groovy
about 225
acceptance tests 225
URL 225

Groovy Development Kit (GDK) 225
Gzipping

about 238
reference link 238

H
HandlerMapping 42
Heroku

about 265
command-line tools, installing 273, 274
Gradle, running 275

[293]

Heroku profile, creating 276, 277
Procfile, running 276
Redis, activating 279-281
web application, deploying 273
web application, executing 277, 278
web application, setting up 274

Heroku Redis add-on
URL 279

host
Cloud Foundry 264
Heroku 265
OpenShift 264, 265
selecting 263

HTTP codes
about 134, 135
URL 135

httpie 138
HTTP port

setting 30
HTTP sessions

about 109
profile, storing 109-112

HTTP verbs
DELETE 131
GET 131
HEAD 131
OPTIONS 131
PATCH 131
POST 131
PUT 131

Hypertext As The Engine Of Application
State (HATEOAS) 132

I
iconmonstr

URL 99
integration tests

with Geb 229, 230
IntelliJ

about 8
project, creating 8

Interceptors 81
internationalization (i18n)

about 78, 79
application text, translating 82-84
data list, handling in form 84-87

locale, modifying 80-82

J
Java 8

date time API, URL 66
lambdas 51
streams 51

JSON output
customizing 139-142

JSR-310 Module
about 142
URL 143

L
lambdas, Java 8 51
layouts

using 55, 56
locale configuration 23-25
login form

designing 169-173

M
material design

with WebJars 52-54
Materialize

URL 33
matrix variables

URL mapping 114-119
mocks

about 199
and stubs, selecting between 204
creating, Mockito used 199-201
reference link 204

Multipurpose Internet Mail Extensions
(MIME) 98

MVC architecture
about 34, 35
Anemic Domain Model 35, 36
best practice 35
Controller 34
critics 35
Model 34
sagan project 36
View 34

[294]

N
navigation

Forward option 59
Redirect option 59
using 57-61

O
OpenShift

about 264
URL 265

P
Page Objects

with FluentLenium 221-224
with Geb 230-234

PhantomJS
URL 217

Pivotal Web Services (PWS)
web application, deploying 265

Plain Old Java Object (POJO) 35, 66
Procfile

running 276
production profile

configuring 237
profile page

about 63
check point 90
client validation, enabling 88, 89
creating 64-71
validation, adding 71-73

Q
query parameters 45

R
React 287
Redis

activating 272, 273, 279-281
URL 181

Representational State Transfer (REST)
about 129
controllers, unit testing 204-210

RESTful API, debugging
about 138
httpie 138
JSON formatting extension 138
RESTful client, in browser 138

RESTful web service, properties
cacheable 129
client-server 129
layered 129
stateless 129
uniform interface 129

Richardson's maturity model
about 130
level 0 - HTTP 130
level 1 - Resources 130
level 2 - HTTP verbs 131, 132
level 3 - Hypermedia controls 132, 133

S
SearchApiController class

creating, in search.api package 136, 137
Secure Sockets Layer. See SSL
security headers

about 165
URL 165

self-signed certificate
generating 183

Single Page Applications
about 287
future enhancements 288
recommendations 287
reference link 289
stateless option 289

Sockjs 258
Spock

used, for unit tests 225-228
Spring

core 284
data 284
ecosystem 283
execution 284
noteworthy projects 285
URL 283

Spring Boot
about 18
configuration 19-22

[295]

initializing 18
locale configuration 23-25
logging in 68
static resources 23-25
URL 68
view resolver 23-25

Spring Data JPA
URL 284

Spring Data Mongo
URL 284

Spring Data REST
URL 285

Spring Expression Language (SpEL)
about 44, 45
data, obtaining with request

parameter 45, 46
URL 45

Springfox
URL 157

Spring Integration
URL 285

Spring MVC
architecture 42
web application 42

Spring MVC 1-0-1
about 37
reference link 37

Spring Reactor
about 285
URL 285

Spring Security 4
reference link 213

Spring Social
about 48
URL 48

Spring Social Twitter project
application, registering 47, 48
creating 47
setting up 48
Twitter, accessing 49, 50
URL 33

Spring Tool Suite (STS)
about 2
Gradle support, downloading 2
Groovy Eclipse plugin, installing 2, 3
project, starting 4-7
URL 2

SSL
about 183
configuration 30
creating 184
creating, behind secured server 186
creating, for http and https

channels 184, 185
reference link 180, 186
self-signed certificate, generating 183

start.Spring.io
about 9
command line 9, 10
project, creating 9
URL 9

static resources
about 23-25
configuration 24, 25

status code
200 OK 148
400 Bad Request 148
404 Not Found 148
405 Method not Supported 148
500 Server Error 148
about 148
with exception 151-155
with ResponseEntity 149, 150

streams, Java 8 51
stubs

about 199
and mocks, selecting between 204
creating, for testing beans 201, 202

Swagger 155

T
test-driven development (TTD) 192
th:each tag 50
Thymeleaf

about 38
page, adding 40
reference link 38, 168
using 38
security tags, using 167, 168

tools
about 194
AssertJ 194
DbUnit 194

[296]

JUnit 194
Mockito 194
Spock 194

Twitter authentication
coding 178-180
setting up 174
social authentication, setting up 175-178
URL 174

Typescript
about 288
URL 288

U
unit tests

about 190-193
REST controllers 204-210
tools 194
with Spock 225-228
writing 195-198

URL mapping
with matrix variables 114-119

user management API 14-148

V
validation, profile page

adding 71-73
custom annotation, defining 77
reference link 72
validation messages, customizing 73-76

validators
reference link 89

view resolver
about 23-25
configuration 24

W
war file

URL 6
web application

assembling 267-271
Cloud Foundry CLI tools,

installing 265, 266
code 16-18
data, displaying 43, 44
deploying, on Heroku 273
deploying, to Pivotal Web Services

(PWS) 265
Dispatcher Servlet 42, 43
executing, on Heroku 277, 278
Gradle, using 12-16
improving 281
Redis, activating 272, 273
saving, in Git 11, 12
setting up, on Heroku 274

WebJars
layouts, using 55, 56
navigation, using 57-61
TweetController, using 61, 62
used, for material design 52-54

WebSocket
about 258
reference link 261
using 258-261

X
XML

generating 157, 158

Thank you for buying
Mastering Spring MVC 4

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Integration Essentials
ISBN: 978-1-78398-916-4 Paperback: 198 pages

Integrate the heterogeneous endpoints of enterprise
applications with Spring Integration for effective
communication

1. Tackle the challenges of enterprise integration
and experience how Spring integration can
transform these challenges into solutions.

2. Develop the skills necessary to apply
integration patterns for heterogeneous
enterprise endpoint communication and select
the best and most suited Spring components.

3. Reuse working code snippets that can be handy
for integration scenarios such as Twitter, e-mail,
FTP, databases, and many others.

Spring Batch Essentials
ISBN: 978-1-78355-337-2 Paperback: 148 pages

Design, develop, and deliver robust batch
applications with the power of the Spring Batch
framework

1. Leverage the POJO-based development
approach to create comprehensive batch
applications.

2. Customize the batch job components with the
flexible XML, Annotations, and Expression
Language-based configuration.

3. Enable high-volume and high-performance
batch jobs through optimization and
partitioning techniques.

Please check www.PacktPub.com for information on our titles

Learning Heroku Postgres
ISBN: 978-1-78217-345-8 Paperback: 164 pages

Efficiently design, implement, and manage a successful
PostgreSQL database with Heroku

1. Manage and optimize your PostgreSQL
database with Heroku Postgres.

2. Secure your database with rollback, followers
and forks functionalities.

3. A step-by-step tutorial with examples to help
you get to grips with proficiency in Heroku
Postgres database.

Learning Spring Boot
ISBN: 978-1-78439-302-1 Paperback: 252 pages

Learn how to use Spring Boot to build apps faster
than ever before

1. Create Spring-powered, production-grade
applications and services with minimal fuss.

2. Support multiple environments with one
artifact, and add production-grade support
with features like custom metrics to track the
number of messages published and consumed.

3. Each chapter introduces a different area that
Spring Boot tackles and explains how to tweak
your apps through different properties.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up a Spring Web Application in No Time
	Getting started with Spring Tool Suite
	Getting started with IntelliJ
	Getting started with start.Spring.io
	Getting started with the command line

	Let's get started
	The Gradle build
	Let me see the code!

	Spring Boot behind the curtains
	The dispatcher and multipart configuration
	The view resolver, static resources, and locale configuration

	Error and encoding configuration
	Embedded Servlet container (Tomcat) configuration
	The HTTP port
	The SSL configuration
	Other configurations

	Summary

	Chapter 2: Mastering the MVC Architecture
	The MVC architecture
	MVC critics and best practices
	Anemic Domain Model
	Learning from the sources

	Spring MVC 1-0-1
	Using Thymeleaf
	Our first page

	Spring MVC architecture
	DispatcherServlet
	Passing data to the view

	Spring Expression Language
	Getting data with a request parameter

	Enough Hello Worlds, let's fetch tweets!
	Registering your application
	Setting up Spring Social Twitter
	Accessing Twitter

	Java 8 streams and lambdas
	Material design with WebJars
	Using layouts
	Navigation

	The check point
	Summary

	Chapter 3: Handling Forms and Complex URL Mapping
	The profile page – a form
	Validation
	Customize validation messages
	Custom annotation for validation

	Internationalization
	Changing the locale
	Translating the application text
	A list in a form

	Client validation
	The check point
	Summary

	Chapter 4: File Upload and
Error Handling
	Uploading a file
	Writing an image to the response
	Managing upload properties
	Displaying the uploaded picture
	Handling file upload errors

	Translating the error messages
	Placing the profile in a session
	Custom error pages
	URL mapping with matrix variables
	Putting it together
	The check point
	Summary

	Chapter 5: Crafting a RESTful Application
	What is REST?
	Richardson's maturity model
	Level 0 – HTTP
	Level 1 – Resources
	Level 2 – HTTP verbs
	Level 3 – Hypermedia controls

	API versioning
	Useful HTTP codes
	Client is the king
	Debugging a RESTful API
	A JSON formatting extension
	A RESTful client in your browser
	httpie

	Customizing the JSON output
	A user management API
	Status codes and exception handling
	Status code with ResponseEntity
	Status codes with exceptions

	Documentation with Swagger
	Generating XML
	The check point
	Summary

	Chapter 6: Securing Your Application
	Basic authentication
	Authorized users
	Authorized URLs
	Thymeleaf security tags

	The login form
	Twitter authentication
	Setting up social authentication
	Explanation

	Distributed sessions
	SSL
	Generating a self-signed certificate
	The easy way
	The dual way
	Behind a secured server

	The check point
	Summary

	Chapter 7: Leaving Nothing to
Luck – Unit Tests and Acceptance Tests
	Why should I test my code?
	How should I test my code?
	Test-driven development
	The unit tests
	The right tools for the job

	The acceptance tests
	Our first unit test
	Mocks and stubs
	Mocking with Mockito
	Stubbing our beans while testing
	Should I use mocks or stubs?

	Unit testing REST controllers
	Testing the authentication
	Writing acceptance tests
	The Gradle configuration
	Our first FluentLenium test
	Page Objects with FluentLenium
	Making our tests more Groovy
	Unit tests with Spock
	Integration tests with Geb
	Page Objects with Geb

	The check point
	Summary

	Chapter 8: Optimizing Your Requests
	A production profile
	Gzipping
	Cache control
	Application cache
	Cache invalidation
	Distributed cache

	Async methods
	ETags
	WebSockets
	The check point
	Summary

	Chapter 9: Deploying Your Web Application to the Cloud
	Choosing your host
	Cloud Foundry
	OpenShift
	Heroku

	Deploying your web application to Pivotal Web Services
	Installing the Cloud Foundry CLI tools
	Assembling the application
	Activating Redis

	Deploying your web application
on Heroku
	Installing the tools
	Setting up the application
	Gradle
	Procfile

	A Heroku profile
	Running your application
	Activating Redis

	Improving your application
	Summary

	Chapter 10: Beyond Spring Web
	The Spring ecosystem
	Core
	Execution
	Data
	Other noteworthy projects

	The deployment
	Docker

	Single Page Applications
	The players
	The future
	Going stateless

	Summary

	Index

