Mastering Spring
MVC 4

Gain expertise in designing real-world web applications using the
Spring MVC framework

PACKT

w.allitebooks.co

http://www.allitebooks.org

Mastering Spring MVC 4

Gain expertise in designing real-world web
applications using the Spring MVC framework

Geoffroy Warin

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Mastering Spring MVC 4

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015
Production reference: 1080915

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-238-7

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Geoffroy Warin

Reviewers
Raymundo Armendariz

Abu S. Kamruzzaman
Jean-Pol Landrain

Wayne Lund

Commissioning Editor
Julian Ursell

Acquisition Editor
Nadeem Bagban

Content Development Editor

Pooja Nair

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Geoffroy Warin has been programming since he was 10. A firm believer in the
Software Craftsmanship movement and open source initiatives, he is a developer by
choice and conviction. He has been working on the conception of enterprise-level
web applications in Java and JavaScript throughout the course of his career.

At ease with both the backend and frontend, Geoffroy has a strong focus on Clean
Code and testability. He believes that developers should strive for readable code that
delivers constant value to their customers.

Pair programming and mentorship are his primary tools to promote a test-driven
development approach and create great software designs.

He also teaches courses on Java web stacks and is a Groovy and Spring enthusiast.

Lately, he has been part of the reviewing team for Learning Spring Boot and Spring
Boot Cookbook, both by Packt Publishing, which cover the latest major additions to
the Spring ecosystem.

Check out his blog at http://geowarin.github. io and his Twitter account at
https://twitter.com/geowarin for fresh Spring and JavaScript programming tips.

I'd like to thank Laure, my life partner, who approved my late nights
of writing, and my colleagues at Bi-SAM, who have been nothing but
supportive of my project.

[vww allitebooks.cond

http://geowarin.github.io
https://twitter.com/geowarin
http://www.allitebooks.org

About the Reviewers

Raymundo Armendariz is a software developer with over 10 years of experience
in building software for Java and .NET platforms, but he is currently devoted to
JavaScript.

He is the author of a book based on a JavaScirpt micro-famework.

He has been working for the automotive industry for the most part of his
professional life. He has worked for companies such as Autozone, Alldata,
TRW, and 1A Auto.

He is the author of Getting Started with Backbone Marionette, Packt Publishing,
which can be found at https://www.packtpub.com/web-development /getting-
started-backbone-marionette.

I would like to thank my friends for their help and support.

[vww allitebooks.cond

https://www.packtpub.com/web-development/getting-started-backbone-marionette
https://www.packtpub.com/web-development/getting-started-backbone-marionette
http://www.allitebooks.org

Abu Kamruzzaman is a web programmer and database analyst at The City
University of New York. For over 10 years, he has developed and maintained

web applications for class grading and registration that can be used by colleges

and universities. Since November 2014, he has been working as a PeopleSoft
development specialist for CUNY's central office. His current project is about
building Data Warehouse for CUNY using OBIEE with the Business Intelligence
team. Before joining the central office, he worked at various CUNY campuses

since 2001. He also teaches graduate and undergraduate IT courses, instructing the
very students who depend on his applications. Since 2001, he has been teaching
courses on J2EE, DBMS, data warehouse, object-oriented programming, web design,
and web programming. He is a faculty member of the Department of Computer
Information Systems at Baruch College's Zicklin School of Business. He has a passion
for education and a great interest in open source technologies, such as Hadoop,
Hive, Pig, NoSQL databases, Java, cloud computing, and mobile app development.
He received his master's degree from Brooklyn College/ CUNY and his bachelor's
degree in computer science from Binghamton University/SUNY. His web address is
http://faculty.baruch.cuny.edu/akamruzzaman/.

I want to thank my sweet and beautiful wife, Nicole Woods,

Esq., for her constant patience, support, and encouragement in
everything I do. Thanks to my sweet parents for their blessings and
constant prayers. I would also like to thank the author and the Packt
Publishing team for giving me the opportunity to work on this book.

Jean-Pol Landrain holds a BSc degree in software engineering with an orientation
in network and real-time and distributed computing since 1998. He gradually
became a software architect with more than 17 years of experience in object-oriented
programming, in particular with C++, Java/JEE, various application servers,
operating systems (Windows and Linux), and related technologies.

He works for Agile Partner, an IT consulting company based in Luxembourg,
which is already dedicated to the promotion, education, and application of agile
development methodologies since 2006. Over the last 5 years, he has participated in
the selection and the validation of tools and technologies targeting the development
teams of the European Parliament.

[vww allitebooks.cond

http://faculty.baruch.cuny.edu/akamruzzaman/
http://www.allitebooks.org

He also collaborated with Packt Publishing to review HornetQ Messaging Developer's
Guide and with Manning Publishing to review Docker in Action, Git in Practice,
ActiveMq in Action, and Spring in Action, First Edition.

First, I would like to thank my wife, Marie Smets, and my 9-year-old
daughter, Phoebe, for their understanding regarding my passion for
technology and the time I dedicate to it. I would also like to thank
my friends and colleagues at Agile Partner because a life dedicated
to technology would be boring without the fun they bring to it.

Unfortunately, I lost my grandfather, André Landrain, and my
grandmother, Hélene Guffens, during the elaboration of this book.
My thoughts go out to them and to those of you who have lost loved
ones. A big thank you goes to the editorial team at Packt Publishing
for their patience with the work that was delayed because of these
personal events, particularly Nidhi Joshi, the project coordinator,
and Geoffroy Warin, the author of this book. They have done
fantastic work together and I have absolutely no doubt that you

will appreciate the quality of this book. You may well have the best
publication so far on Spring MVC in your hands.

Wayne Lund is a PaaS and field engineer for Pivotal. He has over 25 years of
experience in enterprise software development and distributed environments,
majorly specializing in Spring, Enterprise Java, Groovy, and Grails and extending
to systems built with Smalltalk and C++, always with an emphasis on custom
and emerging technologies. His objective is to continue enjoying the next great
generation of technology with PaaS along with the new generations of the Spring
portfolio. This includes an expertise in the Cloud Native applications built with
Spring Boot, Spring Cloud, and Spring XD so as to enable Fast Data, Big Data,
social, and mobile.

He is currently working for Pivotal with the intersection of Cloud, Data, and Agile.
He previously worked for a Fortune 500 health care company and a large global
consulting company for many years.

He has also worked on Learning Spring Application Development, Packt Publishing.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface vii

Chapter 1: Setting Up a Spring Web Application in No Time 1
Getting started with Spring Tool Suite 2
Getting started with IntelliJ 8
Getting started with start.Spring.io 9

Getting started with the command line 9
Let's get started 1"
The Gradle build 12
Let me see the code! 16
Spring Boot behind the curtains 18
The dispatcher and multipart configuration 19
23

26

28

30

30

The view resolver, static resources, and locale configuration
Error and encoding configuration
Embedded Serviet container (Tomcat) configuration

The HTTP port

The SSL configuration

Other configurations 31
Summary 32
Chapter 2: Mastering the MVC Architecture 33
The MVC architecture 34
MVC critics and best practices 35
Anemic Domain Model 35
Learning from the sources 36
Spring MVC 1-0-1 37
Using Thymeleaf 38
Ouir first page 40

[il

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Spring MVC architecture 42
DispatcherServlet 42
Passing data to the view 43

Spring Expression Language 44
Getting data with a request parameter 45

Enough Hello Worlds, let's fetch tweets! 47
Registering your application 47
Setting up Spring Social Twitter 48
Accessing Twitter 49

Java 8 streams and lambdas 51

Material design with WebJars 52
Using layouts 55
Navigation 57

The check point 61

Summary 62

Chapter 3: Handling Forms and Complex URL Mapping 63

The profile page — a form 63

Validation 71
Customize validation messages 73
Custom annotation for validation 77

Internationalization 78
Changing the locale 79
Translating the application text 82
Alistin a form 84

Client validation 88

The check point 90

Summary 91

Chapter 4: File Upload and Error Handling 93

Uploading a file 93
Writing an image to the response 98
Managing upload properties 99
Displaying the uploaded picture 102
Handling file upload errors 104

Translating the error messages 108

Placing the profile in a session 109

Custom error pages 112

URL mapping with matrix variables 114

Putting it together 119

The check point 127

Summary 128

Lii]

Table of Contents

Chapter 5: Crafting a RESTful Application 129
What is REST? 129
Richardson's maturity model 130

Level 0 — HTTP 130
Level 1 — Resources 130
Level 2 — HTTP verbs 131
Level 3 — Hypermedia controls 132
API versioning 133
Useful HTTP codes 134
Client is the king 136
Debugging a RESTful API 138
A JSON formatting extension 138
A RESTful client in your browser 138
httpie 138
Customizing the JSON output 139
A user management API 144
Status codes and exception handling 148
Status code with ResponseEntity 149
Status codes with exceptions 151
Documentation with Swagger 155
Generating XML 157
The check point 158
Summary 160

Chapter 6: Securing Your Application 161

Basic authentication 161
Authorized users 163
Authorized URLs 165
Thymeleaf security tags 167

The login form 169

Twitter authentication 174
Setting up social authentication 175
Explanation 178

Distributed sessions 180

SSL 183
Generating a self-signed certificate 183
The easy way 184
The dual way 184
Behind a secured server 186

The check point 186

Summary 187

[iii]

Table of Contents

Chapter 7: Leaving Nothing to Luck — Unit Tests

and Acceptance Tests 189
Why should | test my code? 189
How should | test my code? 190
Test-driven development 192
The unit tests 193

The right tools for the job 194
The acceptance tests 194
Our first unit test 195
Mocks and stubs 199

Mocking with Mockito 199

Stubbing our beans while testing 201

Should | use mocks or stubs? 204
Unit testing REST controllers 204
Testing the authentication 211
Writing acceptance tests 213

The Gradle configuration 213

Ouir first FluentLenium test 215

Page Obijects with FluentLenium 221

Making our tests more Groovy 225

Unit tests with Spock 225

Integration tests with Geb 229

Page Objects with Geb 230
The check point 234
Summary 235

Chapter 8: Optimizing Your Requests 237
A production profile 237
Gzipping 238
Cache control 238
Application cache 240

Cache invalidation 246
Distributed cache 247
Async methods 248
ETags 254
WebSockets 258
The check point 261

Summary 262

[iv]

Table of Contents

Chapter 9: Deploying Your Web Application to the Cloud 263
Choosing your host 263
Cloud Foundry 264
OpenShift 264
Heroku 265
Deploying your web application to Pivotal Web Services 265
Installing the Cloud Foundry CLI tools 265
Assembling the application 267
Activating Redis 272
Deploying your web application on Heroku 273
Installing the tools 273
Setting up the application 274
Gradle 275
Procfile 276

A Heroku profile 276
Running your application 277
Activating Redis 279
Improving your application 281
Summary 282
Chapter 10: Beyond Spring Web 283
The Spring ecosystem 283
Core 284
Execution 284
Data 284
Other noteworthy projects 285
The deployment 285
Docker 286
Single Page Applications 287
The players 287
The future 288
Going stateless 289
Summary 289
Index 291

[v]

Preface

As a web developer, I like to create new things, put them online quickly, and move
on to my next idea.

In a world where all our applications are connected to each other, we need to interact
with social media to promote our products and complex systems, to provide great
value for our users.

Until recently, all this was a distant and complicated world for Java developers. With
the birth of Spring Boot and the democratization of cloud platforms, we can now
create amazing applications and make them available to everyone in record time,
without spending a penny.

In this book, we will build a useful web application from scratch. An application with
a lot of neat features, such as internationalization, form validation, distributed sessions
and caches, social login, multithreaded programming, and many more.

Also, we will test it completely.

By the end of this book, we will have published our little application and made it
available on the Web.

If this sounds like fun to you, let's not waste any more time and get our hands on the
code!

[vii]

Preface

What this book covers

Chapter 1, Setting Up a Spring Web Application in No Time, gets us started with Spring
Boot really quickly. It covers the tools that will make us more productive, such as
Spring Tool Suite and Git. It will also help us to scaffold our application in a snap
and see the magic behind Spring boot.

Chapter 2, Mastering the MV C Architecture, guides us through creating a small
Twitter search engine. It covers the basics of Spring MVC and the principles of web
architecture along the way.

Chapter 3, Handling Forms and Complex URL Mapping, helps you understand how you
can create a user profile form. It covers how to validate our data on the server, as
well as on the client, and make our application available in different languages.

Chapter 4, File Upload and Error Handling, guides you through adding file upload to
your profile form. It demonstrates handling errors properly in a Spring MVC and
displaying custom error pages.

Chapter 5, Crafting a RESTful Application, explains the principles of a RESTful
architecture. It also helps us to create a user management API accessible through
HTTP calls, see which tools can help us design this API, and talks about how we can
document it easily.

Chapter 6, Securing Your Application, guides us through securing our application. It
covers how we can secure our RESTful API with basic HTTP authentication and our
web pages behind a login page. It demonstrates how to enable login via Twitter and
store our session on a Redis server to allow our application to scale.

Chapter 7, Leaving Nothing to Luck - Unit Tests and Acceptance Tests, helps us test our
application. It discusses testing and TDD, and covers how to unit test our controllers
and use modern libraries to design end-to-end tests. It finishes with how Groovy can
improve our productivity and the readability of our tests.

Chapter 8, Optimizing Your Requests, takes us through optimizing our application.
It covers how to use cache-control and Gzipping. This chapter teaches you how to
cache our Twitter search results in-memory and on Redis, and shows you how to
multithread the search. As a bonus, implementing Etags and using WebSockets is
also covered.

[viii]

Preface

Chapter 9, Deploying Your Web Application to the Cloud, guides us through publishing
our application. It shows how the different PaaS solutions can be compared to each
other. Then, it demonstrates how to deploy the application on both Cloud Foundry
and Heroku.

Chapter 10, Beyond Spring Web, discusses the Spring ecosystem in general, what
modern web applications are made of, and where to go from there.

What you need for this book

Although we will build a cutting-edge web application, we do not require you to
install a lot of things.

The application that we will build requires Java 8.

You are not forced to, but you definitely should use Git to version control your project.
It will be needed if you want to deploy your application on Heroku. Moreover, you
will be able to back up your work easily and see the code evolve with the diffs and
history. A couple of resources to get started with Git are provided in the first chapter.

I also recommend that you use a good IDE. We will see how to get started quickly
with Spring Tool Suite (for free) and Intelli] Idea (you can obtain a one month trial).

If you have a Mac, you should check Homebrew (http://brew.sh). With this
package manager, you can install any tool used in this book.

Who this book is for

This book is perfect for developers who are familiar with the fundamentals of
Spring programming and are eager to expand their web development skills. Prior
knowledge of the Spring framework is recommended.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

[ix]

http://brew.sh

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"You will find the JAR in the directory build/1libs."

A block of code is set as follows:

public class ProfileForm {
private String twitterHandle;
private String email;
private LocalDate birthDate;
private List<String> tastes = new ArrayList<>();

// getters and setters

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class ProfileForm {
private String twitterHandle;
private String email;
private LocalDate birthDate;
private List<String> tastes = new ArrayList<>();

// getters and setters

}
Any command-line input or output is written as follows:

$ curl https://start.spring.io

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Go to the new project menu and select the Spring Initializr project type ".

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

[x]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

You can also download the example code for this book at https://github.com/
Mastering-Spring-MVC-4/mastering-spring-mvc4.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

[xi]

[vww allitebooks.cond

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xii]

Setting Up a Spring Web
Application in No Time

In this chapter, we will get straight to the code and set up a web application, which
we will be working on for the rest of this book.

We will leverage Spring Boot's autoconfiguration capabilities to build an application
with zero boilerplate or configuration files.

I will lay out the big picture regarding how Spring Boot works and how to configure
it. There are four ways to get started with Spring;:

* Using Spring Tool Suite to generate the starter code
* Using Intelli] IDEA 14.1, which now has good support for Spring Boot

* Using Spring's website, http://start.Spring.io, to download a
configurable zip file

* Using the curl command line to http://start.Spring.io and achieving
the same result

We will use Gradle and Java 8 throughout this book, but don't be scared. Even if you
are still working with Maven and a previous version of Java, I bet you will find these
technologies easy to work with.

Many official Spring tutorials have both a Gradle build and a Maven build, so

you will find examples easily if you decide to stick with Maven. Spring 4 is fully
compatible with Java 8, so it would be a shame not to take advantage of lambdas to
simplify our code base.

[11]

http://start.Spring.io
http://start.Spring.io

Setting Up a Spring Web Application in No Time

I will also show you some Git commands. I think it's a good idea to keep track of
your progress and commit when you are in a stable state. It will also make it easier
to compare your work with the source code provided with this book.

As we will deploy our application with Heroku in Chapter 9, Deploying Your Web
Application to the Cloud, I recommend that you start versioning your code with
Git from the very beginning. I will give you some advice on how to get started
with Git later in this chapter.

Getting started with Spring Tool Suite

One of the best ways to get started with Spring and discover the numerous tutorials
and starter projects that the Spring community offers is to download Spring Tool
Suite (STS). STS is a custom version of eclipse designed to work with various Spring
projects, as well as Groovy and Gradle. Even if, like me, you have another IDE

that you would rather work with, I strongly recommend that you give STS a shot
because it gives you the opportunity to explore Spring's vast ecosystem in a matter of
minutes with the "Getting Started" projects.

So, let's visit https://Spring.io/tools/sts/all and download the latest release
of STS. Before we generate our first Spring Boot project we will need to install the
Gradle support for STS. You can find a Manage IDE Extensions button on the
dashboard. You will then need to download the Gradle Support software in the
Language and framework tooling section.

I also recommend installing the Groovy Eclipse plugin along with the Groovy 2.4
compiler, as shown in the following screenshot. These will be needed later in this
book when we set up acceptance tests with geb:

[2]

https://Spring.io/tools/sts/all

Chapter 1

c Dashboard c Spring Extensions £2 =l

Find: Show Installed

Languages and Frameworks
P ing lar and fi installed into STS

b Spring Roo (current production release) by Pivotal Software, Inc., Free, GPLv3 (D
Spring Roo is a next-generation rapid application development tool for Java developers. With Roo you can easily build full Java
applications in minutes.

Language and Framework Tooling
Tooling support for programming languages and frameworks

<. Gradle Support by Pivotal Software, Inc., Free, EFL (D)
Support for importing and working with Gradle praj; in 5TS, aut tic dependency management, executing Gradle tasks.
w Groovy 2.2 Compiler for Groovy-Eclipse by Codehaus.org, Free, EPL/ASL (D)

This feature provides the Groovy 2.2 compiler for Groovy-Eclipse. Once installed, the 2.2 compiler becomes the default for the
workspace. And other compilers ca

ﬁ Groovy 2.3 Compiler for Groovy-Eclipse by Codehaus.org, Free, EPL/ASL (D

This feature provides the Groovy 2.3 compiler for Groovy-Eclipse. Once installed, the 2.3 compiler becomes the default for the
workspace. And other compilers ca

ﬁ Groovy 2.4 Compiler for Groovy-Ecli by Codehaus.org, Free, EPL/ASL (D)

This feature provides the Groovy 2.4 compiler for Groovy-Eclipse. Once installed, the 2.4 compiler becomes the default for the
workspace. And other compilers ca

w Groovy-Eclipse by Codehaus.org, Free, EPL/ASL (@

The purpose of the Groovy-Eclipse plugin is to promote the Groovy platform and ecosystem as a viable and productive
development environment for Java developers.

Find Updates Configure Extensions...

We now have two main options to get started.

Downloading the example code

You can download the example code files for all Packt books you have
A\l purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can also download the example code for this book at https://
github.com/Mastering-Spring-MVC-4/mastering-spring-
mvc4.

[31]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4
https://github.com/Mastering-Spring-MVC-4/mastering-spring-mvc4

Setting Up a Spring Web Application in No Time

The first option is to navigate to File | New | Spring Starter Project, as shown in the
following screenshot. This will give you the same options as http://start.Spring.
io, embedded in your IDE:

eC @
New Spring Starter Project —
E‘”
Name masterSpringMve
Use default location
Location
Type: Gradle Project E Packaging: Jar E
Java Version: 1.8 E Language: Java E
Group masterSpringhvc
Artifact masterSpringMve
Version 0.0.1-SNAPSHOT
Description Master Spring MVC 4 demo applicatien
Package masterSprinngc{
Working sets
Add preject to werking sets
Working sets:
@ ﬁ Cancel

You also have access to all the tutorials available on http://spring.io, selecting
in File | New | Import Getting Started Content in the top bar. You will have the
choice of working with either Gradle or Maven, as shown in the following
screenshot:

You can also check out the starter code to follow along with the tutorial,
=" or get the complete code directly.

[4]

http://start.Spring.io
http://start.Spring.io
http://spring.io

Chapter 1

Import Getting Started Content

Serving Web Content
Spring Boot

Spring Boot Cli And Js
Spring Boot Docker
Spring Cloud And Lattice
Spring Xd

Sts

Sts Cloud Foundry Deployment
Uploading Files
Walidating Ferm Input
Yarn Basic

Yarn Basic Single

Yarn Batch Processing
Yarn Batch Restart

Yarn Testina

uploads.

Build Type

I Maven o Gradle
Code Sets

| initial
Home Page

hitp://spring.ie/guides/gs/uploading-files

@

complete

Uploading Files :: Learn how to build a Spring application that accepts multi-part file

General

Open

There is a lot of very interesting content available in the Getting Started Content
and I encourage you to explore it on your own. It will demonstrate the integration of
Spring with various technologies that you might be interested in.

For the moment, we will generate a web project as shown in the preceding image. It
will be a Gradle application, producing a JAR file and using Java 8.

[51]

Setting Up a Spring Web Application in No Time

Here is the configuration we want to use:

Property Value

Name masterSpringMvc
Type Gradle project
Packaging Jar

Java version 1.8

Language Java

Group masterSpringMvc
Artifact masterSpringMvc
Version 0.0.1-SNAPSHOT
Description Be creative!
Package masterSpringMvc

On the second screen you will be asked for the Spring Boot version you want to use
and the the dependencies that should be added to the project.

At the time of writing this, the latest version of Spring boot was 1.2.5. Ensure that
you always check out the latest release.

The latest snapshot version of Spring boot will also be available by the time you
read this. If Spring boot 1.3 isn't released by then, you can probably give it a shot.
One of its big features is the awesome devs tools. Refer to https://spring.io/
blog/2015/06/17/devtools-in-spring-boot-1-3 for more details.

At the bottom the configuration window you will see a number of checkboxes
representing the various boot starter libraries. These are dependencies that can be
appended to your build file. They provide autoconfigurations for various Spring
projects.

We are only interested in Spring MVC for the moment, so we will check only the
Web checkbox.

A JAR for a web application? Some of you might find it odd to package
your web application as a JAR file. While it is still possible to use
N WAR files for packaging, it is not always the recommended practice.
~ By default, Spring boot will create a fat JAR, which will include all the
Q application's dependencies and provide a convenient way to start a web
server using Java -jar.

Our application will be packaged as a JAR file. If you want to create a war
file, refer to http://spring.io/guides/gs/convert-jar-to-war/.

[6]

https://spring.io/blog/2015/06/17/devtools-in-spring-boot-1-3
https://spring.io/blog/2015/06/17/devtools-in-spring-boot-1-3
http://spring.io/guides/gs/convert-jar-to-war/

Chapter 1

Have you clicked on Finish yet? If you have, you should get the following project
structure:

[% Package Explorer 53 = e [

vz masterSpringMve
¥ (3 src/mainsjava
¥ £ masterSpringhMve
| 4 m MasterSpringMvcApplication.java
¥ [sre/main/resources
fH templates
= static
-~ application.properties
¥ (® srcitest/java
¥ £ masterSpringMve
P m MasterSpringMveApplicationTests.java
F =\ JRE System Library [JavaSE-1.8]
P =, Referenced Libraries
(== build
P (= src
[d] build.gradie
b (= Servers

We can see our main class MasterSpringMvcApplication and its test suite
MasterSpringMvcApplicationTests. There are also two empty folders, static and
templates, where we will put our static web assets (images, styles, and so on) and
obviously our templates (jsp, freemarker, Thymeleaf). The last file is an empty
application.properties file, which is the default Spring boot configuration file. It's a
very handy file and we'll see how Spring boot uses it throughout this chapter.

The build.gradle file, the build file that we will detail in a moment.

If you feel ready to go, run the main method of the application. This will launch a
web server for us.

To do this, go to the main method of the application and navigate to Run as | Spring
Application in the toolbar either by right-clicking on the class or clicking on the
green play button in the toolbar.

Doing so and navigating to http://localhost:8080 will produce an error. Don't
worry, and read on.

I will show you how to generate the same project without STS, and we will come
back to all these files.

[71

Setting Up a Spring Web Application in No Time

Getting started with IntelliJ

Intelli] IDEA is a very popular tool among Java developers. For the past few years
I've been very pleased to pay Jetbrains a yearly fee for this awesome editor.

Intelli] also has a way of creating Spring boot projects very quickly.

Go to the new project menu and select the Spring Initializr project type:

o0 e New Project
Java Project SDK: | [1.8 (java version "1.8.0_45" 2| [New...
ol J2mE
[Clouds Enter/select Initializr Service URL.

& Spring Initializr Service URL: https://start.spring.io
Java FX Make sure your network connection is active before continuing
£ Intelli) Platform Plugin
m Maven
& Gradle
& Groovy
@ Griffon
) Static Web
(2 Node.js and NPM

Empty Project

(?7) | Cancel | Previous [Next |

This will give us exactly the same options as STS, so refer to the previous chapter for
the detailed configuration.

You will need to import the Gradle project into Intelli]. I recommend

\l generating the Gradle wrapper first (refer to the following Gradle build

~Q section).
If needed, you can reimport the project by opening its build.gradle
file again.

[8]

Chapter 1

Getting started with start.Spring.io

Go tohttp://start.Spring.io to get started with start.Spring.io. The system
behind this remarkable Bootstrap-like website should be familiar to you! You will see
the following screenshot when you go to the previously mentioned link:

&« C [start.spring.io o

SPRING INITIALIZR

Bootstrap your application now

Project metadata Project dependencies
Group masterSpringMvc Core Data
Artifact masterSpringMve Security JoBC
AOP JPA
Name masterSpringhMve MongoDB
Redis
Description Master Spring MVC 4 demo project Gemfire
Solr
Package Name masterSpringMve Elasticsearch
Type Gradle Project 4 [l{e] Web
Batch ¥ Web
Packaging Jar
Integration Websocket
Java Version 18 Ms ws
AMOP FRest Repositories
Language Java Mobile
Spring Boot Version 121 Template Engines Social
Freemarker Facebook
Velocity LinkedIn
Groovy Templates Twitter
Thymeleaf
Ops
Actuator
Remote Shell
® Generate Project

Indeed, the same options available with STS can be found here. Clicking on Generate
Project will download a ZIP file containing our starter project.

Getting started with the command line

For those of you who are addicted to the console, it is possible to curl http://
start.Spring.io. Doing so will display instructions on how to structure your curl
request.

[o]

vww allitebooks.conl

http://start.Spring.io
http://start.Spring.io
http://start.Spring.io
http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

For instance, to generate the same project as earlier, you can issue the following
command:

$ curl http://start.Spring.io/starter.tgz \
-d name=masterSpringMvc \

-d dependencies=web \

-d language=java \

-d JavaVersion=1.8 \

-d type=gradle-project \

-d packageName=masterSpringMvc \

-d packaging=jar \

-d baseDir=app | tar -xzvf -

% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left Speed

100 1255 100 1119 100 136 1014 123 0:00:01 0:00:01 --:--:-
- 1015

x app/

x app/src/

x app/src/main/

x app/src/main/Java/

x app/src/main/Java/com/

x app/src/main/Java/com/geowarin/

x app/src/main/resources/

x app/src/main/resources/static/

x app/src/main/resources/templates/

x app/src/test/

x app/src/test/Java/

x app/src/test/Java/com/

x app/src/test/Java/com/geowarin/

x app/build.Gradle

x app/src/main/Java/com/geowarin/AppApplication.Java
x app/src/main/resources/application.properties

x app/src/test/Java/com/geowarin/AppApplicationTests.Java

And viola! You are now ready to get started with Spring without leaving the console,
a dream come true.

[10]

Chapter 1

1
‘\Q You might consider creating an alias with the previous command,

it will help you prototype the Spring application very quickly.

Let's get started

Now that our web application is ready, let's take a look at how it is written. Before
going further, we can save our work with Git.

If you don't know anything about Git, I recommend the two following tutorials:

* https://try.github.io, which is a good step-by-step interactive tutorial to
learn the basic Git commands

* http://pcottle.github.io/learnGitBranching, which is an excellent
interactive visualization of the Git tree-like structure that will show you
basic, as well as very advanced, Git capabilities

Installing Git

\ On windows, install Git bash, which can be found at https://
~ msysgit.github.io. On Mac, if you use homebrew you should
Q already have Git. Otherwise, use the command brew install git.
When in doubt, check out the documentation at https://git-scm.
com/book/en/v2/Getting-Started-Installing-Git.

To version our work with Git, type the following commands in a console:

$ cd app
$ git init

With Intelli], ignore the generated files: . idea and *.iml. With eclipse you should
commit the .classpath and .settings folder. In any case you should ignore the
.gradle folder and the build folder.

Create a .gitignore file containing the following text:

Intellid project files
.idea
*.iml

gradle
.gradle
build

[11]

https://try.github.io
http://pcottle.github.io/learnGitBranching
https://msysgit.github.io
https://msysgit.github.io
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Setting Up a Spring Web Application in No Time

Now, we can add all the other files to Git:

$ git add .

$ git commit -m "Generated with curl start.Spring.io"

[master (root-commit) eded363] Generated with curl start.Spring.io
4 files changed, 75 insertions(+)

create mode 100644 build.Gradle

create mode 100644 src/main/Java/com/geowarin/AppApplication.Java
create mode 100644 src/main/resources/application.properties

create mode 100644 src/test/Java/com/geowarin/AppApplicationTests.Java

The Gradle build

If you are unfamiliar with Gradle, think of it as Maven's successor, a modern build
tool. Like Maven, it uses conventions such as how to structure a Java application.
Our sources will still be found in src/main/java, our webapp in src/main/webapp,
and so on. Not unlike Maven, you can use Gradle plugins to deal with various build
tasks. However, Gradle really shines because it allows you to write your own build
tasks using the Groovy DSL. The default library makes it easy to manipulate files,
declare dependencies between tasks, and execute jobs incrementally.

Installing Gradle
\ If you're on OS X, you can install Gradle with brew by using brew
5 install gradle command. On any *NIX system (Mac included),
Q you can install it with gvm (http://gvmtool .net/). Alternatively,
you can grab the binary distribution at https://Gradle.org/
downloads.

The first good practice when creating an application with Gradle is to generate a
Gradle wrapper. The Gradle wrapper is a small script that you will share along with
your code to ensure that the build will use the same version of Gradle that you used
to build the application.

The command to generate the wrapper is Gradle wrapper:

$ gradle wrapper

:wrapper
BUILD SUCCESSFUL

Total time: 6.699 secs

[12]

http://gvmtool.net/
https://Gradle.org/downloads
https://Gradle.org/downloads

Chapter 1

If we look at the new files created, we can see two scripts and two directories:

$ git status -s
?? .gradle/
?? gradle/
?? gradlew

?? gradlew.bat

The .gradle directory contains the Gradle binaries; you wouldn't want to commit
those to your version control.

We previously ignored this file along with the build directory so that you could
safely git add everything else:

$ git add .
$ git commit -m "Added Gradle wrapper"

The Gradle directory contains information on how to get the binaries. The two other
files are scripts: a batch script for windows (Gradlew.bat) and a shell script for other
systems.

We can also run our application with Gradle instead of executing the application
from the IDE:

$./gradlew bootrun

Issuing this command will run an embedded tomcat server with our application in it!

The log tells us that the server is running on port 8080. Let's check it out:

&« C [localhost:8080

Whitelabel Error Page

This application has no explicit mapping for /error, so you are seeing this as a fallback.

Tue Jan 27 21:43:05 CET 2015
There was an unexpected error (type=Not Found, status=404).
No message available

I can imagine your disappointment. Our application is not ready for the grand public
just yet.

[13]

Setting Up a Spring Web Application in No Time

That being said, the work accomplished by the two files our project is made of is
rather impressive. Let's review them.

The first one is the Gradle build file, build.Gradle:

buildscript {
ext {
springBootVersion = '1.2.5.RELEASE'
}
repositories {
mavenCentral ()
}
dependencies {
classpath ("org.springframework.boot : spring-boot-gradle-
plugin:${springBootVersion}")
classpath("io.spring.gradle:dependency-management -
plugin:0.5.1.RELEASE")

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'spring-boot'

apply plugin: 'io.spring.dependency-management'

jar {
baseName = 'masterSpringMvc'
version = '0.0.1-SNAPSHOT'

}

sourceCompatibility

Il
o

targetCompatibility

repositories {
mavenCentral ()

dependencies {
compile ("org.springframework.boot:spring-boot-starter-web")
testCompile ("org.springframework.boot:spring-boot-starter-test")

[14]

Chapter 1

eclipse {

classpath {
containers.remove ('org.eclipse.jdt.launching.JRE CONTAINER')
containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.

eclipse.jdt.internal.debug.ui.launcher.StandardVvMType/JavaSE-1.8"

}

}

task wrapper (type: Wrapper) {

}

gradleVersion = '2.3"

What do we see here?

A dependency on the Spring Boot plugin distributed on Maven central.

Our project is a Java project. IDE project files can be generated by Gradle for
Intelli] or Eclipse.

The application will generate a JAR file.
Our project dependencies are hosted on maven central.

Our classpath includes spring-boot-starter-web in production and
spring-boot-starter-test for testing.

Some additional configuration for eclipse.

The version of the Gradle wrapper is 2.3.

The Spring Boot Plugin will generate a fat jar that contains all the dependencies of
the project. To build it, type:

./gradlew build

You will find the JAR in the directory build/1ibs. This directory will contain two
files, the fat jar called masterSpringMvc-0.0.1-SNAPSHOT. jar and the classic JAR
file that does not include any dependencies, masterSpringMvc-0.0.1-SNAPSHOT.
jar.original.

Runnable jar

. One of the main advantages of Spring Boot is embedding everything
< the application needs in one easily redistributable JAR file, including
Q the web server. If you run java jar masterSpringMvc-0.0.1-
SNAPSHOT . jar, tomcat will start on port 8080, just like it did when
you developed it. This is extremely handy for deploying in production
or in the cloud.

[15]

Setting Up a Spring Web Application in No Time

Our main dependency here is spring-boot -starter-web. Spring Boot provides
a good number of starters that will automatically configure some aspects of the
application for us by providing typical dependencies and Spring configuration.

For instance, spring-starter-web will include dependencies of tomcat -

embedded and Spring MVC. It will also run the most commonly used Spring MVC
configuration and provide a dispatcher listening on the "/" root path, error handling
such as the 404 page we saw earlier, and a classical view resolver configuration.

We'll see more on this later. First, let's take a look at the next section.

Let me see the code!

Here is all the code that is needed to run the application. Everything is in a classic
main function, which is a huge advantage because you can run your application in
your IDE like you would for any other program. You can debug it and also benefit
from some class reloading out of the box without a plugin.

This reloading will be available in the debug mode when saving your file in eclipse,
or clicking on Make Project in Intelli]. This will be possible only if the JVM is able

to switch the new compile version of the class file with the new one; modifying the
static variable or touching configuration files will force you to reload the application.

Our main class looks as follows:

package masterSpringMvc;

import org.Springframework.boot.SpringApplication;
import org.Springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class AppApplication {

public static void main(String[] args) {
SpringApplication.run (AppApplication.class, args) ;
}
}

Note the @SpringBootApplication annotation. If you look at the code of this
annotation you will see that it actually combines three other annotations: @
Configuration, @EnableAutoConfiguration, and eComponentScan:

@Target (ElementType.TYPE)
@Retention (RetentionPolicy.RUNTIME)

[16]

Chapter 1

@Documented

@Inherited

@Configuration

@EnableAutoConfiguration

@ComponentScan

public @interface SpringBootApplication

/**

* Exclude specific auto-configuration classes such that they will
never be applied.

*/

Class<?>[] exclude() default {};

}

The econfiguration class should be familiar to you if you've already configured
a Spring application with Java code earlier. It indicates that our class will handle
classical aspects of a Spring configuration: declaring beans, for instance.

The @ecomponentScan class is also a classic. It will tell Spring where to look to find
our Spring components (services, controllers, and so on). By default, this annotation
will scan every current package and everything under it.

The novelty here is @EnableAutoConfiguration, which will instruct Spring Boot
to do its magic. If you remove it, you will no longer benefit from Spring Boot's
autoconfiguration.

The first step when writing an MVC application with Spring Boot is usually to add
a controller to our code. Add the controller in the controller subpackage so that it is
picked up by the @componentScan annotation:

package masterSpringMvc.controller;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

@Controller
public class HelloController {

@RequestMapping ("/")

@ResponseBody

public String hello() {
return "Hello, world!";

[17]

Setting Up a Spring Web Application in No Time

This time, if you open your browser and visit http://localhost:8080 you will see
this lovely Hello, world! output:

<« C | [Y localhost:8080

Hello, world!

Spring Boot behind the curtains

If you already set up a Spring MVC application earlier, you may be used
to writing at least a small portion of XML or a handful of Java annotation
configuration classes.

Initialization steps are typically as follows:

1. Initializing the DispatcherServlet of Spring MVC.

2. Setting up an encoding filter to ensure that client requests are encoded
correctly.

3. Setting up a view resolver to tell Spring where to find our views and in
which dialect they are written (jsp, Thymeleaf templates, and so on).

Configuring static resources locations (css, js).
Configuring supported locales and resource bundles.
Configuring a multipart resolver for file uploads to work.

Including tomcat or jetty to run our application on a web server.

® NS G

Setting up the error pages (For example 404).

However, Spring Boot handles all that work for us. Because this configuration is
typically up to your application, you can come up with an unlimited amount of
combinations.

Spring boot, in a way, is an opinionated Spring project configurator. It is based on
conventions and will enforce them on your project by default.

[18]

Chapter 1

The dispatcher and multipart configuration

Let's see what happens behind the curtains.

We will use the default Spring Boot configuration file that was created for us
and put it in the debug mode. Add the following line to src/main/resources/
application.properties

debug=true

Now, if we launch our application again we'll see Spring Boot's autoconfiguration
report. It is divided into two parts: positive matches, which list all
autoconfigurations that are used by our application; and negative matches, which
are Spring Boot autoconfigurations whose requirements weren't met when the
application started:

DispatcherServletAutoConfiguration

- @ConditionalOnClass classes found: org.Springframework.web.
servlet.DispatcherServlet (OnClassCondition)

- found web application StandardServletEnvironment
(OnWebApplicationCondition)

EmbeddedServletContainerAutoConfiguration

- found web application StandardServletEnvironment
(OnWebApplicationCondition)

ErrorMvcAutoConfiguration

- @ConditionalOnClass classes found: javax.servlet.Servlet,org.
springframework.web.servlet.DispatcherServlet (OnClassCondition)

- found web application StandardServletEnvironment
(OnWebApplicationCondition)

[19]

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

HttpEncodingAutoConfiguration

- @ConditionalOnClass classes found: org.springframework.web.
filter.CharacterEncodingFilter (OnClassCondition)

- matched (OnPropertyCondition)

<Input trimmed>
Let's take a closer look at DispatcherServletAutoConfiguration:

/**

* {@link EnableAutoConfiguration Auto-configuration} for the Spring
* {@link DispatcherServlet}. Should work for a standalone application
where an embedded

* gervlet container is already present and also for a deployable
application using

* {@link SpringBootServletInitializer}.

*

* @author Phillip Webb

* @author Dave Syer

*/

@Order (Ordered.HIGHEST PRECEDENCE)

@Configuration

@ConditionalOnWebApplication

@ConditionalOnClass (DispatcherServlet.class)

@AutoConfigureAfter (EmbeddedServletContainerAutoConfiguration.class)
public class DispatcherServletAutoConfiguration {

/*

* The bean name for a DispatcherServlet that will be mapped to the
root URL "/"

*/

public static final String DEFAULT DISPATCHER SERVLET BEAN NAME =
"dispatcherServlet";

/*
* The bean name for a ServletRegistrationBean for the
DispatcherServlet "/"

*/
public static final String DEFAULT DISPATCHER SERVLET
REGISTRATION BEAN NAME = "dispatcherServletRegistration";

[20]

Chapter 1

@Configuration

@Conditional (DefaultDispatcherServletCondition.class)
@ConditionalOnClass (ServletRegistration.class)
protected static class DispatcherServletConfiguration

@Autowired
private ServerProperties server;

@Autowired (required = false)
private MultipartConfigElement multipartConfig;

@Bean (name = DEFAULT DISPATCHER SERVLET BEAN NAME)
public DispatcherServlet dispatcherServlet() {
return new DispatcherServlet () ;

@Bean (name = DEFAULT DISPATCHER SERVLET REGISTRATION BEAN
NAME)

public ServletRegistrationBean dispatcherServletRegistration ()

ServletRegistrationBean registration = new
ServletRegistrationBean (

dispatcherServlet (), this.server.
getServletMapping()) ;

registration.setName (DEFAULT DISPATCHER SERVLET BEAN
NAME) ;

if (this.multipartConfig != null)
registration.setMultipartConfig(this.multipartConfig) ;

}

return registration;

@Bean
@ConditionalOnBean (MultipartResolver.class)

@ConditionalOnMissingBean (name = DispatcherServlet .MULTIPART
RESOLVER BEAN NAME)

public MultipartResolver multipartResolver (MultipartResolver
resolver) {

// Detect if the user has created a MultipartResolver but
named it incorrectly

return resolver;

[21]

Setting Up a Spring Web Application in No Time

}

@Order (Ordered.LOWEST PRECEDENCE - 10)
private static class DefaultDispatcherServletCondition extends
SpringBootCondition {

@Override
public ConditionOutcome getMatchOutcome (ConditionContext

context,
AnnotatedTypeMetadata metadata) {
ConfigurablelListableBeanFactory beanFactory = context.
getBeanFactory () ;
ConditionOutcome outcome = checkServlets (beanFactory) ;
if (loutcome.isMatch())

return outcome;

}

return checkServletRegistrations (beanFactory) ;

}

This is a typical Spring Boot configuration class:

* Itis annotated with eConfiguration like any other Spring configuration
class.

» It typically declares its priority level with the @order annotation. You can see

that DispatcherServletAutoConfiguration needs to be configured first.

e It can also contain hints such as eAutoConfigureAfter or @
AutoConfigureBefore to further refine the order in which configurations
are processed.

e Itis enabled under certain conditions. With @conditionalonClass (Dispatc
herServlet.class), this particular configuration ensures that our classpath
contains DispatcherServlet, which is a good indication that Spring MVC is

in the classpath and the user certainly wants to bootstrap it.

This file also contains classic bean declarations for the Spring MVC dispatcher

servlet and a multipart resolver. The whole Spring MVC configuration is broken into

multiple files.

[22]

Chapter 1

It is also worth noting that these beans obey certain rules to check whether are active.
The ServletRegistrationBean function will be enabled under the @econditional
(DefaultDispatcherServletCondition.class) condition, which is a bit complex
but checks whether you already have a dispatcher servlet registered in your own
configuration.

The MultipartResolver function will become active only if the condition @
ConditionalOnMissingBean (name = DispatcherServlet.MULTIPART RESOLVER

BEAN NAME) is met, for example, if we didn't declare it ourselves.

This means Spring boot only gives you a hand in configuring your application
according to common use cases. However, at any point, you can override these
defaults and declare your own configuration.

So, the DispatcherServletAutoConfiguration class explains why we have a
dispatcher servlet and a multipart resolver.

The view resolver, static resources, and locale
configuration

Another very relevant piece of configuration is WebMvcAutoConfiguration.
It declares the view resolver, the locale resolver, and the location of our static
resources. The view resolver is as follows:

@Configuration

@Import (EnableWebMvcConfiguration.class)
@EnableConfigurationProperties ({ WebMvcProperties.class,
ResourceProperties.class })

public static class WebMvcAutoConfigurationAdapter extends
WebMvcConfigurerAdapter

@Value ("${spring.view.prefix:}")
private String prefix = "";

@value ("${spring.view.suffix:}")
private String suffix = "";

@Bean
@ConditionalOnMissingBean (InternalResourceViewResolver.class)
public InternalResourceViewResolver defaultViewResolver() ({

InternalResourceViewResolver resolver = new
InternalResourceViewResolver () ;

resolver.setPrefix (this.prefix) ;

resolver.setSuffix (this.suffix) ;

return resolver;

}
}

[23]

Setting Up a Spring Web Application in No Time

The view resolver configuration is really typical. What's really interesting here is the
use of configuration properties to allow users to customize it.

What it says is "I will look for two variables in the user's application.properties
called spring.view.prefix and spring.view.suffix". This is a very handy way to
set up the view resolver with only two lines in our configuration.

Keep this in mind for the next chapter. For now, we will just stroll through Spring
Boot's code.

Regarding static resources, this configuration includes the following lines:

private static final String[] CLASSPATH RESOURCE LOCATIONS = {
"classpath:/META-INF/resources/", "classpath:/resources/",
"classpath:/static/", "classpath:/public/" };

private static final String[] RESOURCE_LOCATIONS;
static {
RESOURCE_LOCATIONS = new String[CLASSPATH RESOURCE_LOCATIONS.length
+ SERVLET RESOURCE_LOCATIONS.length] ;
System.arraycopy (SERVLET RESOURCE LOCATIONS, 0, RESOURCE_LOCATIONS,
0,
SERVLET RESOURCE_LOCATIONS.length) ;
System.arraycopy (CLASSPATH RESOURCE LOCATIONS, 0, RESOURCE
LOCATIONS,
SERVLET RESOURCE LOCATIONS.length, CLASSPATH RESOURCE LOCATIONS.
length) ;

}

@Override
public void addResourceHandlers (ResourceHandlerRegistry registry)
if (!this.resourceProperties.isAddMappings()) {
logger.debug ("Default resource handling disabled") ;

return;

Integer cachePeriod = this.resourceProperties.getCachePeriod() ;
if (!registry.hasMappingForPattern ("/webjars/**"))
registry.addResourceHandler (" /webjars/**")
.addResourcelocations ("classpath: /META-INF/resources/
webjars/")

[24]

Chapter 1

.setCachePeriod (cachePeriod) ;
}
if (!registry.hasMappingForPattern ("/**m")) {
registry.addResourceHandler ("/**")
.addResourceLocations (RESOURCE LOCATIONS)
.setCachePeriod (cachePeriod) ;

}

The declaration of resource locations is a bit convoluted but we can still understand
two things:

* Any resource accessed with the "webjar" prefix will be resolved inside
the classpath inside the classpath. This will allow us to use prepackaged
JavaScript dependencies from Maven central.

* Our static resources can reside in any of the locations after our classpath
/META-INF/resources/, /resources/, /static/, or /public/.

Web]Jars are JAR packages of client JavaScript libraries available on
R Maven central. They include a Maven project file, which allows for
~ transitive dependencies and works in all JVM-based applications.
Q Web]Jars are an alternative to JavaScript package managers such as bower
or npm. They are great for applications that require just a few JavaScript
libraries. Find the list of available WebJars on www.webjars.org.

There is also a part of this file that is dedicated to locale management:

@Bean
@ConditionalOnMissingBean (LocaleResolver.class)
@ConditionalOnProperty (prefix = "spring.mvc", name = "locale")
public LocaleResolver localeResolver() {
return new FixedLocaleResolver (
StringUtils.parselLocaleString (this.mvcProperties.getLocale())) ;

}

This default locale resolver handles only one locale and allows us to define it via the
spring.mvc.locale configuration property.

[25]

www.webjars.org

Setting Up a Spring Web Application in No Time

Error and encoding configuration

Remember when we first launched our application without adding a controller? We
got a funny Whitelabel Error Page output.

Error handling is a lot trickier than it looks, especially when you don't have a
web . xml configuration file and want your application to be portable across web
servers. The good news is that Spring Boot takes care of that for us! Let's look at
ErrorMvcAutoConfiguration:

ConditionalOnClass ({ Servlet.class, DispatcherServlet.class })
@ConditionalOnWebApplication
// Ensure this loads before the main WebMvcAutoConfiguration so that
the error View is
// available
@AutoConfigureBefore (WebMvcAutoConfiguration.class)
@Configuration
public class ErrorMvcAutoConfiguration implements
EmbeddedServletContainerCustomizer,

Ordered {

@Value ("${error.path:/error}")
private String errorPath = "/error";

@Autowired
private ServerProperties properties;

@Override
public int getOrder() {
return 0O;

}

@Bean
@ConditionalOnMissingBean (value = ErrorAttributes.class, search
SearchStrategy.CURRENT)
public DefaultErrorAttributes errorAttributes()
return new DefaultErrorAttributes() ;

}

@Bean
@ConditionalOnMissingBean (value = ErrorController.class, search
SearchStrategy.CURRENT)
public BasicErrorController basicErrorController (ErrorAttributes
errorAttributes) {
return new BasicErrorController (errorAttributes) ;

[26]

Chapter 1

@Override
public void customize (ConfigurableEmbeddedServletContainer
container) {
container.addErrorPages (new ErrorPage (this.properties.
getServletPrefix ()
+ this.errorPath)) ;

@Configuration

@ConditionalOnProperty (prefix = "error.whitelabel", name =
"enabled", matchIfMissing = true)

@Conditional (ErrorTemplateMissingCondition.class)

protected static class WhitelabelErrorViewConfiguration

private final SpelView defaultErrorView = new SpelView
"<html><body><hl>Whitelabel Error Page</hl>"

+ "<p>This application has no explicit mapping
for /error, so you are seeing this as a fallback.</p>"

+ "<div id='created's>${timestamp}</div>"

+ "<div>There was an unexpected error
(type=${error}, status=${status}).</divs"

+ "<divs>${message}</div></body></html>") ;

@Bean (name = "error")
@ConditionalOnMissingBean (name
public View defaultErrorView ()

= "error")
return this.defaultErrorView;

// If the user adds @EnableWebMvc then the bean name view
resolver from

// WebMvcAutoConfiguration disappears, so add it back in to
avoid disappointment.
@Bean
@ConditionalOnMissingBean (BeanNameViewResolver.class)
public BeanNameViewResolver beanNameViewResolver ()
BeanNameViewResolver resolver = new
BeanNameViewResolver () ;
resolver.setOrder (Ordered.LOWEST PRECEDENCE - 10) ;
return resolver;

[27]

Setting Up a Spring Web Application in No Time

What does this piece of configuration do?

* It defines a bean, DefaultErrorAttributes, which exposes helpful
error information via special attributes such as the status, error code, and
associated stack trace.

e Jtdefines a BasicErrorController bean, which is an MVC controller in
charge of displaying the error page we've seen.

* Itallows us to deactivate Spring Boot whitelabel error page by setting error.
whitelable.enabled to false in our configuration file, application.
properties.

* We can also leverage our templating engine to provide our own error
page. It will be named error.html, for example. This is what the condition
ErrorTemplateMissingCondition checks.

We'll see how to properly handle errors later in this book.

As far as encoding is concerned, the very simple Ht tpEncodingAutoConfiguration
function will handle it by providing Spring's CharacterEncodingFilter class. It is
possible to override the default encoding ("UTF-8") with spring.http.encoding.
charset and disable this configuration with spring.http.encoding.enabled.

Embedded Servlet container (Tomcat)
configuration

By default, Spring Boot runs and packages our application using the Tomcat
embedded API.

Let's look at EmbeddedServletContainerAutoConfiguration:

@Order (Ordered.HIGHEST PRECEDENCE)

@Configuration

@ConditionalOnWebApplication

@Import (EmbeddedServletContainerCustomizerBeanPostProcessorRegistrar.
class)

public class EmbeddedServletContainerAutoConfiguration {

/**

* Nested configuration for if Tomcat is being used.

*/

@Configuration

@ConditionalOnClass ({ Servlet.class, Tomcat.class })

@ConditionalOnMissingBean (value = EmbeddedServletContainerFactory.
class, search = SearchStrategy.CURRENT)

[28]

Chapter 1

public static class EmbeddedTomcat

@Bean
public TomcatEmbeddedServletContainerFactory

tomcatEmbeddedServletContainerFactory () {
return new TomcatEmbeddedServletContainerFactory () ;

}
}
/**

* Nested configuration if Jetty is being used.

*/

@Configuration

@ConditionalOnClass({ Servlet.class, Server.class, Loader.class H

@ConditionalOnMissingBean (value = EmbeddedServletContainerFactory.

class, search = SearchStrategy.CURRENT)
public static class EmbeddedJetty

@Bean
public JettyEmbeddedServletContainerFactory

jettyEmbeddedServletContainerFactory () {
return new JettyEmbeddedServletContainerFactory () ;

}
}
/**

* Nested configuration if Undertow is being used.

*/

@Configuration

@ConditionalOnClass({ Servlet.class, Undertow.class,

SslClientAuthMode.class })
@ConditionalOnMissingBean (value = EmbeddedServletContainerFactory.

class, search = SearchStrategy.CURRENT)
public static class EmbeddedUndertow {

@Bean
public UndertowEmbeddedServletContainerFactory

undertowEmbeddedServletContainerFactory () {
return new UndertowEmbeddedServletContainerFactory () ;

}
}
}

The preceding code is pretty straight forward. This code includes three different
configurations, which will be activated depending on what's available on your

classpath.

[29]

vww allitebooks.conl

http://www.allitebooks.org

Setting Up a Spring Web Application in No Time

You can use Tomcat, tc-server, Jetty, or Undertow with Spring Boot. Your server
can be easily replaced by excluding the spring-boot-starter-tomcat JAR
dependency and replacing it with its Jetty or Undertow equivalent. Please refer to
the documentation if you wish to do so.

All the configuration of our Servlet container (Tomcat) will happen in
TomcatEmbeddedServletContainerFactory. While you should definitely read it
because it provides a very advanced configuration of tomcat embedded (for which
finding documentation can be hard), we will not look at this class directly.

Instead, I will walk you through the different options available to configure your
Servlet Container.

The HTTP port

You can change the default HTTP port by defining a server.port property in
your application.properties file or by defining an environment variable called
SERVER_PORT.

You can disable HTTP by setting this variable to -1 or launch it on a random port by
setting it to 0. This is very handy for testing.

The SSL configuration

Configuring SSL is such a chore, but spring boot has a simple solution. You need
only a handful of properties to secure your server:

server.port = 8443
server.ssl.key-store = classpath:keystore.jks
server.ssl.key-store-password = secret

server.ssl.key-password = another-secret
You will have to generate a keystore file for the above example to work, thought.

We'll have a deeper look at our security options in Chapter 6, Securing Your Application.
Of course, you can customize the TomcatEmbeddedServletContainerFactory
function further by adding your own EmbeddedServletContainerFactory. This

can come in handy if you wish to add multiple connectors, for instance. Refer to

the documentation at http://docs.spring.io/spring-boot/docs/current/
reference/html/howto-embedded-servlet-containers.html#howto-configure-
ss1 for more information.

[30]

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl

Chapter 1

Other configurations

You can add classic Java web elements such as servlet, Filter, and
ServletContextListener by simply declaring them as the @Bean elements in your
configuration.

Out of the box, spring boot also added three other things for us:

* JSON serialization with Jackson in JacksonAutoConfiguration

¢ Default Ht tpMessageConverters in
“HttpMessageConvertersAutoConfiguration

* JMX capabilities in JmxAutoConfiguration
We will see a bit more about the jackson configuration in Chapter 5, Crafting a

RESTful Application. About JMX configuration, you can try it out by connecting to
your application with jconsole locally:

Connection Window Help
806 pid: 4247 com.intellij.rt.execution.application.AppMain com.geowarin.AppApplication
Memory =~ Threads = Classes VM Summary = MBeans | ==
Time Range: = All v
rHeap Memory Usage r Threads
40 Mb 30
Used
f/—//_/—/_/ ‘R 25
ol 20 Live threads
1 18
15
20 Mb 10
20:20 20:21 20:20 20:21
Used: 35,9 Mb Committed: 106,4 Mb Max: 3,8 Gb ThreadTab.infoLabelFormat
rClasses rCPU Usage
6 000 2,0%
1,5%
1,0%
0,5%
Loaded
« 5106
/—r——r‘{i CPU Usage
5 000 0,0% <« 0,0%
20:20 20:21 20:20 20:21
Loaded: 5 106 Unloaded: 0 Total: 5 106 CPU Usage: 0,0%

[31]

Setting Up a Spring Web Application in No Time

You can add more interesting MBeans by adding org. springframework.

boot : spring-boot-starter-actuator to your classpath. You can even define
your own MBeans and expose them on HTTP using Jolokia. On the other hand,

you can also disable those endpoints by adding spring. jmx.enabled=false to
your configuration.

Refer to http://docs.spring.io/spring-boot/docs/current/
o reference/html /production-ready-jmx.html for more details.

Summary

We now have a very humble spring web application with a RESTful JSON "Hello
world" despite having configured nothing ourselves. We have seen what spring boot
does for us, how it does it, and hopefully we've got a good idea of how to override
the default autoconfiguration.

Detailing how spring boot works is the topic of a book all by itself. If you want to dig
deeper, I recommend that you read the excellent book Learning Spring Boot by Greg
Turnquist in the same collection.

We are now ready for the next chapter where our application will reach a new stage by
actually serving web pages, and you will learn more about spring MVC's philosophy.

[32]

http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-jmx.html
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-jmx.html

Mastering the MVC
Architecture

In this chapter, we will discuss the MVC architecture principles and see how Spring
MVC implements those.

We will continue to use the application from the previous chapter and build
something more interesting. Our goal is to design a simple page where users can
search for tweets corresponding to certain criteria and display them to our users.

To achieve this, we will use the Spring Social Twitter project, which is available
at http://projects.spring.io/spring-social-twitter/.

We will see how to make Spring MVC work with a modern template engine,
Thymeleaf, and try to understand the inner mechanics of the framework. We will
route our users through different views, and finally, we will give a stellar look to
our application using WebJars and Materialize (http://materializecss.com).

[33]

http://projects.spring.io/spring-social-twitter/
http://materializecss.com

Mastering the MVC Architecture

The MVC architecture

I expect the meaning of the MVC acronym to be familiar to most. It stands for
Model View Controller, and it is considered to be a very popular way to build a user
interface by decoupling the data and the presentation layers.

Model
Updates Manipulates
View Controller
Displayed
‘ . ' -
Users

The MVC pattern became wildly popular after emerging from the world of Smalltalk
and landing in the Ruby on Rails framework.

The architectural pattern features three layers:
* The Model: This consists of various representations of the data your
application knows about.

* The View: This is made up of several representations of the data that will be
displayed to your users.

* The Controller: This is the part of the application that will handle user
interactions. It's a bridge between the model and the view.

[34]

Chapter 2

The idea behind MVC is to decouple the View from the Model. The model must
be self-contained and ignorant of the UI. This basically allows the same data to be
reused across multiple views. These views are different way to look at the data.
Drill down or using different renderers (HTML, PDF) are good illustrations of this
principle.

The Controller acts as a mediator between the user and the data. Its role is to control
actions available to the end user, as well as routing through the different views of the
application.

MVC critics and best practices

While MVC remains the go-to approach for designing a Ul, many criticisms arose
with its prevalence. Most critics are actually pointing a finger at the incorrect use
of the pattern.

Anemic Domain Model

Eric Evans' influential book Domain Driven Design, also abbreviated as DDD, defines
a set of architecture rules leading to a better integration of the business domain
inside the code.

One of the core ideas is to take advantage of the object-oriented paradigms inside
the domain objects. Going against this principle is sometimes referred to as Anemic
Domain Model. A good definition of this problem can be found on Martin Fowler's
blog (http ://www.martinfowler.com/bliki/AnemicDomainModel . html).

An Anemic Model typically exhibits the following symptoms:
* The model is constituted from very simple plain old Java objects (POJOs)
with only getters and setters
* All the business logic is handled inside a service layer
e Validation of the model is found outside this model, for instance, in

controllers

This can be a bad practice depending on the complexity of your business domain.
Generally speaking, DDD practices require additional efforts to isolate the domain
from the application logic.

Architecture is always a tradeoff. It is good to note that typical ways of designing a
Spring application can lead to complicated maintenance somewhere along the road.

[35]

http://www.martinfowler.com/bliki/AnemicDomainModel.html

Mastering the MVC Architecture

How to avoid domain anemia is explained here:
* The Service layer is good for application-level abstraction like transaction
handling, not business logic.

* Your domain should always be in a valid state. Leave validation inside the
form objects using validators or JSR-303's validation annotations.

* translate the inputs into meaningful domain objects.

* Think of your data layer in term of repositories with domain queries (refer to
Spring Data Specification, for example)

* Decouple your domain logic from the underlying persistence framework
* Use real objects as much as possible. For instance, manipulate the FirstName
class rather than a string.

There is much more to DDD than these simple rules: Entities, value types,
Ubiquitous Language, Bounded Context, Onion Architecture, and anti corruption
layers. I strongly encourage you to study these principles on your own. As far as we
are concerned, with this book we will try to keep in mind the guidelines listed earlier
as we craft our web application. These concerns will become more familiar to you as
we advance through this book.

Learning from the sources

If you're familiar with Spring, you have probably already landed on Spring's
website, http://spring.io. It is entirely made with Spring and the good news
is that it is open source.

The code name of the project is sagan. It has numerous interesting features:

* A gradle multimodule project

* Security integration

* Github integration

* Elasticsearch integration

* A JavaScript frontend application

The GitHub wiki associated with the project is really detailed and will help you get
started easily with the project.

[36]

http://spring.io

Chapter 2

. Visit the following URL if you're interested in the Spring's
% architecture of a real world application:

i
https://github.com/spring-io/sagan

Spring MVC 1-0-1

In spring MVC, the model is a simple map encapsulated in the Model or
ModelAndView classes of Spring MVC. It can come from a database, files, external
services, and so on. It is up to you to define how to fetch the data and put it into the
model. The recommended way of interacting with the data layer is through Spring
Data libraries: Spring Data JPA, Spring Data MongoDB, and so on. There are

a dozen projects related to Spring Data and I encourage you to take a look at
http://projects.spring.io/spring-data.

The controller side of Spring MVC is handled through the use of the econtroller
annotation. In a web application, the controller's role is to respond to HTTP requests.
Classes annotated with the econtroller annotation will be picked up by Spring and
given a chance to handle upcoming requests.

Via the @RequestMapping annotation, Controllers declare handling specific requests
based on their HTTP method (GET or pOST methods, for instance) and their URLs.
The Controller then decides to either write content directly in the web response or
route the application to a view and inject properties into that view.

A pure RESTful application would choose the first approach and expose a JSON

or XML representation of the model directly in the HTTP response with the
@ResponseBody annotation. In the case of a web application, this type of architecture
is often associated with a frontend JavaScript framework such as Backbone.js,
Angular]S, or React. In this case, the Spring application would then only handle the
Model layer of the MVC model. We will study this kind of architecture in Chapter 4,
File Upload and Error Handling.

With the second approach, the Model is passed to the View, which is rendered by a
templating engine and then written to the response.

The view is often associated with a templating dialect, which will allow navigation
inside the model. Popular dialects for templating are JSPs, FreeMarker, or Thymeleaf.

Hybrid approaches may take advantage of the templating engine to interact with
some aspects of the application and then delegate the view layer to a frontend
framework.

[37]

https://github.com/spring-io/sagan
http://projects.spring.io/spring-data

Mastering the MVC Architecture

Using Thymeleaf

Thymeleaf is a templating engine that gets particular attention from the Spring
community.

Its success is due mostly to its friendly syntax (it almost looks like HTML) and the
ease with which it can be extended.

Various extensions are available and integrated with Spring Boot:

Support Dependency

Layouts nz.net.ultraq.thymeleaf:thymeleaf-layout-
dialect

HTMLS5 data-* attributes com.github.mxab.thymeleaf.

extras:thymeleaf-extras-data-attribute

InkﬂnetExpknercondﬂknml org.thymeleaf.extras:thymeleaf-extras-
comments conditionalcomments

Support for spring security | org.thymeleaf.extras:thymeleaf-extras-
springsecurity3

A very good tutorial on Thymeleaf's integration with Spring can be found at http://
www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html.

Without further ado, let's add the spring-boot-starter-thymeleaf dependency to
bootstrap the thymeleaf templating engine:

buildscript {
ext {
springBootVersion = '1.2.5.RELEASE'
}
repositories {
mavenCentral ()
}
dependencies {
classpath ("org.springframework.boot : spring-boot-gradle-
plugin:${springBootVersion}")
classpath("io.spring.gradle:dependency-management -
plugin:0.5.1.RELEASE")

}

[38]

http://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html
http://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html

Chapter 2

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'spring-boot'

apply plugin: 'io.spring.dependency-management'

jar {
baseName = 'masterSpringMvc'
version = '0.0.1-SNAPSHOT'

}

sourceCompatibility

oo
[
© ©

targetCompatibility

repositories {
mavenCentral ()

dependencies {
compile 'org.springframework.boot:spring-boot-starter-web'
compile 'org.springframework.boot:spring-boot-starter-thymeleaf'
testCompile 'org.springframework.boot:spring-boot-starter-test'

eclipse {
classpath {
containers.remove ('org.eclipse.jdt.launching.JRE CONTAINER')

containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.
eclipse.jdt.internal.debug.ui.launcher.StandardVvMType/JavaSE-1.8"

}

task wrapper (type: Wrapper) {
gradleVersion = '2.3"

[39]

vww allitebooks.conl

http://www.allitebooks.org

Mastering the MVC Architecture

Our first page

We will now add the first page to our application. It will be located in src/main/
resources/templates. Let's call the file resultPage.html:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
<meta charset="UTF-8"/>
<title>Hello thymeleaf</title>
</head>
<body>
Hello html
</body>
</html>

We can see from the very start that Thymeleaf integrates perfectly with html and its
syntax almost feels natural.

The th:text value is put between pipes. It means that all the values inside the text
will be concatenated.

It might seem a bit awkward at first, but in practice, text will rarely be hardcoded in
our pages; so, Thymeleaf makes an opinionated design decision here.

Thymeleaf has a big advantage for web designers: everything that is dynamic inside
the templates can fall back to a default value in the case where they are opened
without the server running. Resource URLs can be specified relatively and every
markup can contain placeholders. In our previous example, the text "Hello html"
would not be displayed when the view is rendered in the context of our application,
but it will if the file is opened directly with a web browser.

To speed up development, add this property to your application.properties file:

spring.thymeleaf.cache=false

This will disable the view cache and cause templates to reload every time they are
accessed.

Of course, this setting will need to be disabled when we go into production. We will
see that in Chapter 8, Optimizing Your Requests.

[40]

Chapter 2

. Reloading the views
\Y

Ny With the cache disabled, simply save your view with eclipse or use
the Build > Make Project action in Intelli] to refresh the views
after a change.

Lastly, we will need to modify our HelloController class. Instead of displaying
plain text, it must now route to our freshly created view. To accomplish this, we will
remove the @ResponseBody annotation. Doing so and still returning a string will
tell Spring MVC to map this string to a view name instead of displaying a particular
model directly in the response.

Here is what our controller now looks like:

@Controller
public class HelloController ({

@RequestMapping ("/")
public String hello() {
return "resultPage";

}
}

In this example, the controller will redirect the user to the view name resultpage.
The viewResolver interface will then associate this name with our page.

Let's launch our application again and go to http://localhost:8080.

You will see the following page:

- _ Hello thymeleaf b ‘ I

&« C [localhost:8080

_+ Docker PN Lightweight Multiplz

Hello thymeleaf

[41]

Mastering the MVC Architecture

Spring MVC architecture

Let's take a step back from this spectacular new "Hello World" and try to understand
what happened inside our web application. To do this, we will retrace the journey of
the HTTP request our browser sent and the response it got from the server.

DispatcherServlet

The entry point of every Spring web application is the Dispatcherservlet. The
following figure illustrates the Dispatcher Servlet architecture:

HTTP Request HTTP Response

Handler Mapping Controller View Resolver View

This is a classical Ht tpservlet class that dispatches HTTP requests to
HandlerMapping. A HandlerMapping is an association of resources (URLs) and
Controllers.

[42]

Chapter 2

The appropriate methods — those annotated with @RequestMapping annotation —are
then called on the Controller. In this method, the controller sets the model data and
returns the view name to the dispatcher.

The DispatcherServlet will then interrogate the viewresolver interface to find
the corresponding implementation of the view.

In our case, the ThymeleafAutoConfiguration class has set up the view resolver
for us.

You can see in the ThymeleafProperties class that the default prefix for our views
is classpath:/templates/ the default suffix is . html.

This means that, given the view name resultPage, the view resolver will look in the
templates directory of our classpath, looking for a file called resultPage.html.

In our application our ViewResolver interface is static, but more advanced
implementation can return different results given the request headers or the
user's locale.

The view will finally be rendered and the result written to the response.

Passing data to the view

Our first page is completely static; it does not really take advantage of the power
of Spring MVC. Let's spice things up a little bit. What if the "Hello World" string,
instead of being hardcoded, came from the server?

It would still be a lame "hello world" you say? Yes, but it will open up many more
possibilities. Let's change our resultPage.html file to display a message coming
from the model:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
<meta charset="UTF-8"/>
<title>Hello thymeleaf</title>
</head>
<body>
Hello html</spans>
</body>
</html>

[43]

Mastering the MVC Architecture

Then, let's modify our controller so it puts this message inside this model:

@Controller
public class HelloController {

@RequestMapping ("/")

public String hello (Model model) {
model.addAttribute ("message", "Hello from the controller");
return "resultPage";

}

I know, the suspense is killing you! Let's see what http://localhost :8080 looks
like.

- C [localhost:8080

Hello from the controller

The first thing to note is that we passed a new argument to the controller's method
and that the DispatchersServlet provided the correct object for us. There are,

in fact, many objects that can be injected into the controller's methods such as
HttpRequest Or HttpResponse, the Locale, the TimeZone, and the Principal,
which represent an authenticated user. The full list of such objects is available in the
documentation, which can be found at http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/mvc.html#mve-ann-arguments.

Spring Expression Language
When using the ${} syntax, you are in fact using Spring Expression Language

(SpEL). There are several variants of EL available in the wild; SpEl is one of the most
powerful variants.

[44]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-arguments
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-arguments

Chapter 2

Here is an overview of its main features:

Feature Syntax Explanation
Accessing a list element list [0]
Accessing a map entry map [key]

Ternary operator

condition ? ‘'yes'
lnol

Elvis operator

person ?: default

Returns default if person's
value is null

Safe navigation

person?.name

Returns null if person or
her name is null

Templating 'Your name is Injects values into a string
#{person.name}"
Projections ${persons. ! [name] } Extracts the names of all the
persons and puts them into
a list
Selection persons.? [name == Retrieves the person whose

lBobl] 1

name is Bob inside a list

Function call

person.sayHello ()

For complete reference, check the manual at http://docs.spring.

io/spring/docs/current/spring-framework-reference/
’ html/expressions.html.

The SpEl usage is not limited to views. You can also use it in various places inside
the Spring framework, for instance, when injecting properties inside beans with the

@Value annotation.

Getting data with a request parameter

We are able to display data coming from the server inside the view. However, what
if we wanted to get input from the user? With the HTTP protocol, there are multiple
ways to do this. The simplest way is to pass a query parameter to our URL.

Query parameters

You certainly know query parameters. They are found after
%ﬁ%‘ the ? character in a URL. They consist of a list of name and
values separated by the & symbol (Ampersand), for example,

page?varl=valuel&var2=value?2.

[45]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Mastering the MVC Architecture

We can leverage this technique to ask our user for their name. Let's modify our
HelloController class again:

@Controller
public class HelloController ({

@RequestMapping ("/")
public String hello (@RequestParam("name") String userName, Model
model) {
model.addAttribute ("message", "Hello, " + userName) ;
return "resultPage";

}

If we navigate to localhost:8080/?name=Geoffroy, we can see the following:

€« C [} localhost:8080/?name=Geoffroy

Hello, Geoffroy

By default, the request parameter is mandatory. This means that if we were to
navigate to localhost :8080, we would see an error message.

Looking at the @RequestParam code, we can see that in addition to the value
parameter, there are two other attributes possible: required and defaultvalue.

Therefore, we can change our code and specify a default value for our parameter or
indicate that it is not required:

@Controller
public class HelloController {

@RequestMapping ("/")

public String hello (@RequestParam(defaultValue = "world") String
name, Model model) ({
model.addAttribute ("message", "Hello, " + name);

return "resultPage";

1
‘\Q In Java 8, it is possible not to specify the value parameter. In that

case, the name of the annotated method parameter will be used.

[46]

Chapter 2

Enough Hello Worlds, let's fetch tweets!

All right, the name of the book isn't "Mastering Hello Worlds", after all. With Spring,
interrogating Twitter's APl is really easy.

Registering your application

Before you start, you have to register your application in the Twitter developer
console.

Go to https://apps.twitter.comand create a new application.

Give it the name you please. Under the website and Callback URL sections, just
enter http://127.0.0.1:8080. This will allow you to test your application in
development on your local machine.

Create an application

Application Details
Name *

MasteringSpringMVG4

Description *

An application to master Spring MVC4

Website *

http://127.0.0.1:8080

Callback URL
http://127.0.0.1:8080

OAuth 1.0a g

[47]

https://apps.twitter.com

Mastering the MVC Architecture

Now, navigate to the keys, access the token, and copy the Consumer Key and
the Consumer Secret. We will use this in a moment. Take a look at the following
screenshot:

Details Settings Keys and Access Tokens Permissions

Application Settings

Consumer Key (AP Key)

Consumer Secret (AP| Secret)

Access Level Read-only (modify app permissions)
Owner geowarin
Owner ID 135249820

By default, our application has read only permissions. This will be enough for our
application, but you can tweak it if you wish.

Setting up Spring Social Twitter
We will add the following dependency to our build.gradle file:
compile 'org.springframework.boot:spring-boot-starter-social-twitter'
Spring Social is a set of projects providing access to the public APIs
+ of various social networks. Out of the box, Spring Boot provides
%j%‘\ integration with Twitter, Facebook, and LinkedIn. Spring Social
’ includes about 30 projects overall, which can be found at http://
projects.spring.io/spring-social/.
Add the following two lines to the application.properties:

spring.social.twitter.appId= <Consumer Key>
spring.social.twitter.appSecret= <Consumer Secret>

These are the keys associated with the application we just created.

[48]

http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/

Chapter 2

You will learn more about OAuth in Chapter 6, Securing Your Application. For now,
we will just use those credentials to issue requests to Twitter's API on behalf of our
application.

Accessing Twitter

We can now use Twitter in our controller. Let's change its name to TweetController
as a variable to reflect its new responsibility in a better manner:

@Controller
public class HelloController {

@Autowired
private Twitter twitter;

@RequestMapping ("/")
public String hello (@RequestParam(defaultvValue =
"masterSpringMvC4") String search, Model model) {

SearchResults searchResults = twitter.searchOperations() .
search (search) ;

String text = searchResults.getTweets () .get(0).getText () ;
model .addAttribute ("message", text);
return "resultPage";

}

As you can see, the code searches for tweets matching the request parameter. If it all
goes well, you will see the text of the first one being displayed on your screen:

« C' [localhost:8080 ool =

Writing chapter 2 of #masterSpringMVC4. In this chapter we will
fetch twitter data. @SpringSocial and @springboot make it so casy!

Of course, if the search doesn't yield any result, our clumsy code will fail with an
ArrayOutOfBoundException. So, do not hesitate to tweet to solve the problem!

What if we wanted to display a list of tweets? Let's modify the resultPage.html file:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">

<meta charset="UTF-8"/>

<title>Hello twitter</title>

[49]

vww allitebooks.conl

http://www.allitebooks.org

Mastering the MVC Architecture

</head>
<body>

<li th:each="tweet : ${tweets}" th:text="${tweet}">Some
tweet</1li>

</body>
</html>

The th:each s a tag defined in Thymeleaf that allows it to iterate over a
= collection and assign each value to a variable inside a loop.

We will need to change our controller as well:

@Controller
public class TweetController {

@Autowired
private Twitter twitter;

@RequestMapping ("/")
public String hello (@RequestParam(defaultvValue =
"masterSpringMvC4") String search, Model model) {

SearchResults searchResults = twitter.searchOperations() .
search (search) ;

List<String> tweets =
searchResults.getTweets ()
.stream()
.map (Tweet: :getText)
.collect(Collectors.tolList());
model.addAttribute ("tweets", tweets);
return "resultPage";

}

Note that we are using Java 8 streams to collect only the messages from the tweets.
The Tweet class contains many other attributes such as the sender, the retweet count,
and so on. However, we will keep it simple for now, as shown in the following
screenshot:

[50]

Chapter 2

[C | [localhost:8080/?search=springMVC o é

Spring MVC Interview Questions with Answers http://t.co/DR7kHoonlP #springmvc #interviewquestion
« TDD with SpringMVC (TH nen: http:/ft.co/6hcuysH47e

TDD with SpringMVC (TH lna): http:/ft.co/DxmNVpD3vV via @ YouTube

We compared #struts2 vs #springmvce - see results; http://t.co/zeDmvHbOvt

RT @PacktPub: The power to create dynamic and powerful web applications at your fingertips - 50% off
#SpringMVC #Bootstrap and more http://. ..

« The power to create dynamic and powerful web applications at your fingertips - 50% off #SpringMVC
#Bootstrap and more http://t.co/WwWUUcu3gv

Java 8 streams and lambdas

You might not be familiar with lambdas yet. In Java 8, every collection gets a default
method stream (), which gives access to functional-style operations.

These operations can be either intermediate operations returning a stream, and thus
allowing chaining, or a terminal operation that returns a value.

The most famous intermediate operations are as follows:

* map: This applies a method to every element of a list and returns the list of
results

e filter: This returns a list of every element matching a predicate

* reduce: This projects a list into a single value using an operation and an
accumulator

Lambdas are shorthand syntax for function expressions. They can be coerced into a
Single Abstract Method, an interface with only one function.

For instance, you can implement the Comparator interface as follows:
Comparator<Integer> c = (el, e2) -> el - e2;
Within lambdas, the return keyword is implicitly its last expression.

The double colon operator we used earlier is a shortcut to get a reference to a
function on a class,

Tweet: :getText

[51]

Mastering the MVC Architecture

The preceding is equivalent to the following:

(Tweet t) -> t.getText ()

The collect method allows us to call a terminal operation. The collectors class
is a set of terminal operations that will put results into lists, sets, or maps, allowing
grouping, joining, and so on.

Calling the collect (Collectors.toList ()) method will produce a list with every
element within the stream; in our case, the tweet names.

Material design with WebJars

Our application is already great but it seriously leaves something to be desired in
terms of aesthetics. You may have heard of material design. It is Google's take on
flat design.

We will use Materialize (http://materializecss.com), a great looking responsive
CSS and JavaScript library, just like Bootstrap.

= LOgO Navbar Link

Starter Template

A modern responsive front-end framework based on Material
Design

¥ = @

Speeds up User Easy to work
development Experience with
Focused

We did most of the heavy We have provided detailed

[52]

http://materializecss.com

Chapter 2

We talked a bit about WebJars in Chapter 1, Setting Up a Spring Web Application
in No Time; we will now get to use them. Add jQuery and Materialize CSS to our
dependencies:

compile 'org.webjars:materializecss:0.96.0'
compile 'org.webjars:jquery:2.1.4"'

The way a WebJar is organized is completely standardized. You will find the JS and
CSS files of any library in /webjars/{1ib}/{version}/*.js

For instance, to add jQuery to our page, the following to a web page:
<script src="/webjars/jquery/2.1.4/jquery.js"></script>

Let's modify our controller so that it gives us a list of all tweet objects instead of
simple text:

package masterSpringMvc.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.social.twitter.api.SearchResults;
import org.springframework.social.twitter.api.Tweet;

import org.springframework.social.twitter.api.Twitter;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

import java.util.List;

@Controller
public class TweetController ({

@Autowired
private Twitter twitter;

@RequestMapping ("/")
public String hello (@RequestParam(defaultValue =
"masterSpringMvC4") String search, Model model) {
SearchResults searchResults = twitter.searchOperations() .
search (search) ;
List<Tweet> tweets = searchResults.getTweets() ;
model .addAttribute ("tweets", tweets) ;
model .addAttribute ("search", search);
return "resultPage";

[53]

Mastering the MVC Architecture

Let's include materialize CSS in our view:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">

<meta charset="UTF-8"/>

<title>Hello twitter</title>

<link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet" media="screen,projection"/>

</head>
<body>
<div class="row">

<h2 class="indigo-text center" th:text="|Tweet results for
${search}|">Tweets</h2>

<ul class="collection">
<1li class="collection-item avatar" th:each="tweet
${tweets}">

<img th:src="${tweet.user.profileImageUrl}" alt=""
class="circle"/>

<span class="title" th:text="${tweet.user.
name}">Username

<p th:text="${tweet.text}">Tweet message</p>
</1li>

</divs>

<script src="/webjars/jquery/2.1.4/jquery.js"></script>

<script src="/webjars/materializecss/0.96.0/js/materialize.js"></
script>

</body>

</html>

The result already looks way better!

[54]

Chapter 2

& C | [} localhost:8080/?search=springhMVC w =

Tweet results for springMVC

| TechWars
We compared #struts2 vs #springmvc - see results: hitp:/it.co/zeDmvHbOyt

SGN

HowToDolnJava
Spring MVG Interview Questions with Answers http:/t.co/DR7kHoonlP #springmve #interviewguestion
&/.,\ TDD with SpringMVC (TH | In): http:/it.co/BhcuysH47e

Using layouts

The last thing we want to do is to put the reusable chunks of our Ul into templates.
To do this, we will use the thymeleaf-layout-dialect dependency, which is
included in the spring-boot-starter-thymeleaf dependency of our project.

We will create a new file called default.html in src/main/resources/templates/
layout. It will contain the code we will repeat from page to page:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout">

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>

<meta name="viewport" content="width=device-width, initial-
scale=1, maximum-scale=1.0, user-scalable=no"/>

<title>Default title</titles

<link href="/webjars/materializecss/0.96.0/css/materialize.css"
type="text/css" rel="stylesheet" media="screen,projection"/>

</head>
<body>

[55]

Mastering the MVC Architecture

<section layout:fragment="content"s>
<p>Page content goes here</p>
</section>

<script src="/webjars/jquery/2.1.4/jquery.js"></script>

<script src="/webjars/materializecss/0.96.0/js/materialize.js"></
scripts>

</body>

</html>

We will now modify the resultpage.html file so it uses the layout, which will
simplify its contents:

<!DOCTYPE htmls>

<html xmlns:th="http://www.thymeleaf.org"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout"
layout :decorator="1ayout/default">

<head lang="en">

<title>Hello twitter</title>

</head>

<body>

<div class="row" layout:fragment="content"s>

<h2 class="indigo-text center" th:text="|Tweet results for
${search}|">Tweets</h2>

<ul class="collection">
<1li class="collection-item avatar" th:each="tweet
${tweets}">
<img th:src="${tweet.user.profilelmageUrl}" alt=""
class="circle"/>
<span class="title" th:text="${tweet.user.
name}">Username

<p th:text="${tweet.text}">Tweet message</p>
</1li>

</div>
</body>
</html>

The layout :decorator="1layout/default" will indicate where our layout can be
found. We can then inject content into the different 1ayout : fragment sections of the
layout. Note that each template are valid HTML files. You can also override the title
very easily.

[56]

Chapter 2

Navigation

We have a nice little tweet display application, but how are our users supposed to
figure out that they need to supply a "search" request parameter?

It would be nice if we added a little form to our application.

Let's do something like this:

« C |9 localhost:8080 e

Please enter a search term

Q

First, we need to modify our TweetController to add a second view to our
application. The search page will be available directly at the root of our application
and the result page when hit enter in the search field:

@Controller
public class TweetController {

@Autowired
private Twitter twitter;

@RequestMapping ("/")
public String home () {
return "searchPage";

@RequestMapping ("/result™")
public String hello (@RequestParam(defaultValue =
"masterSpringMvC4") String search, Model model) {

SearchResults searchResults = twitter.searchOperations() .
search (search) ;
List<Tweet> tweets = searchResults.getTweets() ;

model .addAttribute ("tweets", tweets) ;
model .addAttribute ("search", search) ;
return "resultPage";

[57]

Mastering the MVC Architecture

We will add another page to the templates folder called the searchPage . html file.
It will contain a simple form, which will pass the search term to the result page via
the get method:

<!DOCTYPE html>

<html xmlns:th="http://www.w3.0rg/1999/xhtml"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout"
layout :decorator="1ayout/default">

<head lang="en">

<title>Search</title>
</head>
<body>

<div class="row" layout:fragment="content">
<h4 class="indigo-text center">Please enter a search term</h4>

<form action="/result" method="get" class="col s12">
<div class="row center"s>
<div class="input-field col s6 offset-s3">
<i class="mdi-action-search prefix"></i>

<input id="search" name="search" type="text"
class="validate"/>

<label for="search"sSearch</label>
</div>
</divs>
</form>
</div>

</body>
</html>

This is very simple HTML and it works perfectly. You can try it now.

What if we wanted to disallow some search result? Let's say we want to display an
error message if the user types in struts.

The best way to achieve this would be to modify the form to post the data. In the
controller, we can then intercept what is posted and implement this business rule
accordingly.

First, we need to change the form in the searchpage, which is as follows:

<form action="/result" method="get" class="col sl2">

[58]

Chapter 2

Now, we change the form to this:

<form action="/postSearch" method="post" class="col s12">

We also need to handle this post on the server. Add this method to the
TweetController:

@RequestMapping (value = "/postSearch", method = RequestMethod.POST)
public String postSearch (HttpServletRequest request,
RedirectAttributes redirectAttributes) {
String search = request.getParameter ("search") ;
redirectAttributes.addAttribute ("search", search) ;

return "redirect:result";

There are several novelties here:

* In the request mapping annotation, we specify the HTTP method we want to
handle, that is, POST.

* We inject two attributes directly as method parameters. They are the request
and RedirectAttributes.

* Weretrieve the value posted on the request and pass it on to the next view.

* Instead of returning the name of the view, we make a redirection to a URL.

The rRedirectAttributes is a Spring model that will be specifically used to
propagate values in a redirect scenario.

Redirect/Forward are classical options in the context of a Java web
application. They both change the view that is displayed on the user's
. browser. The difference is that Redirect will send a 302 header that will
% trigger navigation inside the browser, whereas Forward will not cause

" the URL to change. In Spring MVC, you can use either option simply by
prefixing your method return strings with redirect: or forward:. In
both cases, the string you return will not be resolved to a view like we
saw earlier, but will instead trigger navigation to a specific URL.

The preceding example is a bit contrived, and we will see smarter form handling in
the next chapter. If you put a breakpoint in the postsearch method, you will see
that it will be called right after a post in our form.

So what about the error message?

[59]

Mastering the MVC Architecture

Let's change the postSearch method:

@RequestMapping (value = "/postSearch", method = RequestMethod.POST)
public String postSearch (HttpServletRequest request,
RedirectAttributes redirectAttributes) {
String search = request.getParameter ("search") ;
if (search.toLowerCase () .contains ("struts")) {
redirectAttributes.addFlashAttribute ("error", "Try
using spring instead!");
return "redirect:/";
}
redirectAttributes.addAttribute ("search", search) ;
return "redirect:result";

}

If the user's search terms contain "struts", we redirect them to the searchPage and
add a little error message using flash attributes.

These special kinds of attributes live only for the time of a request and will disappear
when the page is refreshed. This is very useful when we use the POST-REDIRECT-GET
pattern, as we just did.

We will need to display this message in the searchpage result:

<!DOCTYPE html>

<html xmlns:th="http://www.w3.0rg/1999/xhtml"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout™"
layout :decorator="1ayout/default">

<head lang="en">

<title>Search</title>
</head>
<body>

<div class="row" layout:fragment="content"s>
<h4 class="indigo-text center">Please enter a search term</h4>

<div class="col s6 offset-s3">
<div id="errorMessage" class="card-panel red lighten-2"
th:if="${error}">

</div>

[60]

Chapter 2

<form action="/postSearch" method="post" class="col sl2">
<div class="row center"s
<div class="input-field">
<i class="mdi-action-search prefix"></i>
<input id="search" name="search" type="text"
class="validate"/>
<label for="search"sSearch</label>

</div>
</div>
</form>
</div>
</div>
</body>
</html>

Now, if users try to search for "struts2" tweets, they will get a useful and appropriate
answer:

Please enter a search term

Q Search

The check point

At the end of this chapter, you should have one controller, the TweetController,
handling the search and the untouched generated configuration class,
MasterSpringMvcApplication, in the src/main/java directory:

v [java
v [E1masterSpringMvc
v [controller
(© & TweetController
@ B MasterSpringMvcApplication

[61]

Mastering the MVC Architecture

In the src/main/resources directory, you should have one default layout and two
pages using it.

In the application.properties file, we added the Twitter application credentials
as well as a property telling Spring not to cache the templates to ease development:

¥ [aZresources
static
v templates
v layout
i| default.html
i| resultPage.html
il searchPage.html

'_@application. properties

Summary

In this chapter, you learned what it takes to make a good MVC architecture. We

saw some of the inner workings of Spring MVC and used Spring Social Twitter with
very little configuration. We can now design a beautiful web application, thanks to
WebJars.

In the next chapter, we will ask the user to fill in their profile, so that we can fetch
tweets they might like automatically. This will give you the opportunity to learn
more about forms, formatting, validation, and internationalization.

[62]

Handling Forms and Complex
URL Mapping

Our application, as beautiful as it looks, would benefit from more informations about
our users.

We could as them to provide the topics they are interested in.

In this chapter, we will build a profile page. It will feature server- and client-side
validation and file upload for a profile picture. We will save that information in the
user session and also ensure that our audience is as large as possible by translating
the application into several languages. Finally, we will display a summary of Twitter
activity matching users' tastes.

Sounds good? Let's get started, we have some work to do.

The profile page — a form
Forms are the cornerstones of every web application. They have been the main way
to get user input since the very beginning of the Internet!

[63]

Handling Forms and Complex URL Mapping

Our first task here is to create a profile page like this one:

Your profile

What do you like?

ADD TASTE

It will let the user enter some personal information as well as a list of tastes. These
tastes will then be fed to our search engine.

Let's create a new page in templates/profile/profilePage.html:

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout"
layout :decorator="1layout/default">

<head lang="en">

<title>Your profile</titles>

</head>

<body>

<div class="row" layout:fragment="content">

<h2 class="indigo-text center"s>Personal info</h2>

<form th:action="@{/profile}" method="post" class="col m8 s12
offset-m2">

<div class="row">
<div class="input-field col s6">
<input id="twitterHandle" type="text"/>
<label for="twitterHandle"s>Last Name</label>

</div>

[64]

Chapter 3

<div class="input-field col s6">
<input id="email" type="text"/>
<label for="email">Email</label>
</div>
</div>
<div class="row">
<div class="input-field col sé6">
<input id="birthDate" type="text"/>
<label for="birthDate"s>Birth Date</labels>
</div>
</div>
<div class="row sl2">
<button class="btn waves-effect waves-light" type="submit"
name="save">Submit
<i class="mdi-content-send right"></i>
</buttons>
</div>
</form>
</div>
</body>
</html>

Note the @{} syntax that will construct the full path to a resource by prepending the
server context path (in our case, localhost:8080) to its argument.

We will also create the associated controller named ProfileController in the
profile package:

package masterspringmvc4d.profile;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class ProfileController {

@RequestMapping (" /profile")
public String displayProfile() {
return "profile/profilePage";

}

Now, you can go to http://localhost:8080 and behold a beautiful form that does
nothing. That's because we didn't map any action to the post URL.

[65]

Handling Forms and Complex URL Mapping

Let's create a Data Transfer Object (DTO) in the same package as our controller.
We will name it ProfileForm. Its role will be to map the fields of our web form and
describe validation rules:

package masterSpringMvc.profile;

import java.time.LocalDate;
import java.util.ArraylList;
import java.util.List;

public class ProfileForm {
private String twitterHandle;
private String email;
private LocalDate birthDate;
private List<Strings> tastes = new ArrayList<>();

// getters and setters

}

This is a regular Plain Old Java Object (POJO). Don't forget to generate the getters
and setters, without which our data binding will not work properly. Note that we
have a list of tastes that we will not populate right now but a bit later.

Since we are using Java 8, the birth date of our user will be using the new Java
date-time API (JSR 310). This API is much better than the old java.util.Date API
because it makes strong distinctions between all the nuances of human dates and
uses a fluent API and immutable data structures.

In our example, a LocalDate class is a simple day without time associated to it. It
can be differentiated from the LocalTime class, which represents a time within a day,
the LocalDateTime class, which represents both, or the ZonedDateTime class, which
uses a time zone.

* If you wish to learn more about the Java 8 date time API, refer to the
% Oracle tutorial available at https://docs.oracle.com/javase/
e tutorial/datetime/TOC.html.

objects like this form. It is extremely useful for debugging.

1
‘Q Good advice is to always generate the toString method of our data

[66]

https://docs.oracle.com/javase/tutorial/datetime/TOC.html
https://docs.oracle.com/javase/tutorial/datetime/TOC.html

Chapter 3

To instruct Spring to bind our field to this DTO, we will have to add some metadata
in the profilePage:

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout"
layout:decorator="1layout/default">

<head lang="en">

<title>Your profile</titles>

</head>

<body>

<div class="row" layout:fragment="content"s>

<h2 class="indigo-text center">Personal info</h2>

<form th:action="@{/profile}" th:object="${profileForm}"
method="post" class="col m8 sl2 offset-m2">

<div class="row">
<div class="input-field col s6">
<input th:field="${profileForm.twitterHandle}"
id="twitterHandle" type="text"/>
<label for="twitterHandle"sLast Name</labels>
</div>
<div class="input-field col s6">
<input th:field="${profileForm.email}" id="email"
type="text"/>
<label for="email">Email</labels>
</div>
</div>
<div class="row">
<div class="input-field col s6">
<input th:field="${profileForm.birthDate}"
id="birthDate" type="text"/>
<label for="birthDate">Birth Date</labels>
</div>
</div>
<div class="row sl2">
<button class="btn waves-effect waves-light" type="submit"
name="save">Submit
<i class="mdi-content-send right"></i>
</buttons>
</div>
</form>
</div>
</body>
</html>

[67]

Handling Forms and Complex URL Mapping

You will notice two things:

e The th:object attribute in the form
e The th:field attributes in all the fields

The first one will bind an object by its type to the controller. The second ones will
bind the actual fields to our form bean attributes.

For the th:object field to work, we need to add an argument of the type
ProfileForm to our request mapping methods:

@Controller
public class ProfileController {

@RequestMapping (" /profile")
public String displayProfile (ProfileForm profileForm) {
return "profile/profilePage";

}

@RequestMapping (value = "/profile", method = RequestMethod.POST)
public String saveProfile (ProfileForm profileForm)
System.out.println("save ok" + profileForm) ;
return "redirect:/profile";

}

We also added a mapping for the PosT method that will be called when the form
is submitted. At this point, if you try to submit the form with a date (for instance

10/10/1980), it won't work at all and give you an error 400 and no useful logging
information.

Logging in Spring Boot
With Spring Boot, logging configuration is extremely simple. Just add
~\l logging.level. {package} = DEBUG to the application.

properties file, where {package} is the fully qualified name of one of the

Q classes or a package in your application. You can, of course, replace debug by
any logging level you want. You can also add a classic logging configuration.
Refer to http://docs.spring.io/spring-boot/docs/current/
reference/html/howto-1logging.html for more information.

We will need to debug our application a little bit to understand what happened. Add
this line to your file application.properties:

logging.level.org.springframework.web=DEBUG

[68]

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html

Chapter 3

The org. springframework.web package is the base package of Spring MVC. This
will allow us to see debug information generated by Spring web. If you submit the
form again, you will see the following error in the log;:

Field error in object 'profileForm' on field 'birthDate':

rejected value [10/10/1980]; codes [typeMismatch.profileForm.
birthDate, typeMismatch.birthDate, typeMismatch. java.time.

LocalDate, typeMismatch] ; .. nested exception is org.springframework.
core.convert.ConversionFailedException: Failed to convert from type
java.lang.String to type java.time.LocalDate for value '10/10/1980';
nested exception is java.time.format.DateTimeParseException: Text
'10/10/1980' could not be parsed, unparsed text found at index 8]

To understand what's going on, we need to have a look at the
DateTimeFormatterRegistrar class of Spring.

In this class, you will see half a dozen parsers and printers for the JSR 310. They will
all fall back on the short style date format, which is either MM/dd/yy if you live in the
US or dd/MM/yy otherwise.

This will instruct Spring Boot to create a DateFormatter class when our application
starts.

We need to do the same thing in our case and create our own formatter since writing
a year with two digits is a bit akward.

A Formatter in Spring is a class that can both print and parse an object. It will be
used to decode and print a value from and to a String.

We will create a very simple formatter in the date package called
USLocalDateFormatter

public class USLocalDateFormatter implements Formatter<LocalDate> {
public static final String US_PATTERN = "MM/dd/yyyy":
public static final String NORMAL PATTERN = "dd/MM/yyyy";

@Override public LocalDate parse(String text, Locale locale)
throws ParseException {
return LocalDate.parse(text, DateTimeFormatter.
ofPattern (getPattern(locale))) ;

}

[69]

Handling Forms and Complex URL Mapping

@Override public String print (LocalDate object, Locale locale) {
return DateTimeFormatter.ofPattern(getPattern(locale)) .
format (object) ;

}

public static String getPattern(Locale locale) {
return isUnitedStates(locale) ? US PATTERN : NORMAL PATTERN;

private static boolean isUnitedStates (Locale locale) {
return Locale.US.getCountry() .equals (locale.getCountry()) ;

}

This little class will allow us to parse the date in a more common format (with years
in four digits) according to the user's locale.

Let's create a new class in the config package called webConfiguration:

package masterSpringMvc.config;

import masterSpringMvc.dates.USLocalDateFormatter;

import org.springframework.context.annotation.Configuration;
import org.springframework.format.FormatterRegistry;

import org.springframework.web.servlet.config.annotation.
WebMvcConfigurerAdapter;

import java.time.LocalDate;

@Configuration
public class WebConfiguration extends WebMvcConfigurerAdapter {

@Override public void addFormatters (FormatterRegistry registry) {
registry.addFormatterForFieldType (LocalDate.class, new
USLocalDateFormatter()) ;

}
}

This class extends the webMvcConfigureraAdapter, which is a very handy class to
customize the Spring MVC configuration. It provides a lot of common extension
points that you can access by overriding methods such as the addFormatters ()
method.

This time, submitting our form won't result in any error except if you don't type the
date with the correct date format.

[70]

Chapter 3

For the moment, it is impossible for the users to see the format in which they are
supposed to enter their birth date, so let's add this information