
www.allitebooks.com

http://www.allitebooks.org

Mastering TypeScript

Build enterprise-ready, industrial strength web
applications using TypeScript and leading
JavaScript frameworks

Nathan Rozentals

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering TypeScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1170415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-966-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Nathan Rozentals

Reviewers
Guy Fergusson

Remo H. Jansen

Andrea Martinelli

Basarat Ali Syed

Commissioning Editor
Edward Bowkett

Acquisition Editor
Shaon Basu

Content Development Editor
Kirti Patil

Technical Editor
Tanmayee Patil

Copy Editors
Jasmine Nadar

Vikrant Phadke

Project Coordinator
Nidhi Joshi

Proofreaders
Simran Bhogal

Safis Editing

Ameesha Green

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nathan Rozentals has been writing commercial software for over 24 years.
Starting with mainframe COBOL, then moving on to C, followed by C++ and Java,
and finally settling on C# and ASP.NET. He has been working with and writing
blogs about the TypeScript language, since its release towards the end of 2012.
In TypeScript, he found a language through which he could bring all of the
object-oriented design patterns and unit testing practices that he had learned
over the years, through a variety of languages, to JavaScript.

Nathan currently works in the Health Industry, bringing touch-screen interfaces to
medical systems; thereby enabling Bring Your Own Device (BYOD) solutions for
clinicians and hospital staff. He is passionate about code quality, unit testing, and
Continuous Integration (CI) and has helped many large teams implement CI, across
many different software projects, in many different languages.

When he is not coding, Nathan loves windsurfing and playing soccer; he is also an
avid Liverpool FC supporter. You can find Nathan's blog at http://blorkfish.
wordpress.com.

www.allitebooks.com

http://blorkfish.wordpress.com
http://blorkfish.wordpress.com
http://www.allitebooks.org

Acknowledgement

I would like to thank my partner, Kathy, for her unconditional love and incredible
support over the years. You are simply the best and keep getting better. I am so
privileged to have you in my corner. To Matt, thanks for all the laughs, mate;
you are a great guy and have so much to give.

To Ayron and Dayna, I always look forward to hearing from you and finding out
about your many exploits. You are constantly in my thoughts and remember that
I will always be there for you. To Mum, Rach, Tash, and Tam, thanks for keeping
it real guys; there have been times when each of your individual talents has shone
through and given me such strength.

To the team at Health (Guy, Dave, Mike, Jeremy, Hardik, Steph, Paul, Marietta,
Chris, Wayne, Omar, Hieu, Jes, and yes, even you Kevin), thanks for the many
intense debates on all things concerned with software development, architecture,
testing, and delivery—we were truly an elite team.

Finally, to Dad, you have always been the voice of reason, the best listener, and
by far, the wisest man I have ever known. I am so proud of you, proud all that you
have done, in awe of all that you have achieved, and thankful for all that you have
taught us.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Guy Fergusson wrote his first program on the legendary Texas TI-99/4A in the
early eighties. After a successful career in the Royal Australian Air Force during the
nineties, he returned to programming in the first decade of the twenty-first century.
He has found a new passion in developing responsive web applications using the
latest .NET technologies. He was force-fed TypeScript by Nathan Rozentals, and
now he wouldn't touch JavaScript without it. He believes there's a future for the Go
language and hacks at it in his spare time.

Remo H. Jansen is a web development engineer, open source contributor,
entrepreneur, technology lover, gamer, and Internet enthusiast. He is originally from
Seville, Spain, but he currently lives in Dublin, Ireland, where he has a full-time job
in the funds industry.

Remo has been working on large-scale JavaScript applications for the last few years,
from flight booking engines to investment and portfolio management solutions.
He loves exploring the possibilities of the Web, learning about new and exciting
technologies, and joining knowledge-sharing events such as meets, conferences,
and hackathons.

Remo has recently started working as an author on an upcoming book on TypeScript
by Packt Publishing.

If you wish to contact him, you will be able to do so at www.remojansen.com.

www.allitebooks.com

http://www.remojansen.com/
http://www.allitebooks.org

Andrea Martinelli is a passionate software developer who is currently working
on shaman.io, a tool that automatically detects and extracts structured data from
the web.

In the past, he has worked on Songr, a music player and aggregator. His interests
span across web data extraction, semantic web, code performance and statically
typed languages. He is a proficient C# developer and has been interested in
TypeScript since its initial announcement. Andrea graduated from the University
of Trento in computer science and then studied at the Technical University of
Denmark, he is now dedicating more time on the shaman.io project, while
moving across Europe.

Basarat Ali Syed (BAS) is a senior developer and the go-to guy for frontend
at Picnic Software (http://picnicsoftware.com/) in Melbourne, Australia. He
studied master of computing at the Australian National University and graduated
with high distinction in all courses. He is a familiar face at developer meets and
conferences in Australia, and he has been a speaker at events such as ALT.NET, DDD
Melbourne, MelbJS, and Node.js meets among others. He is deeply passionate about
web technologies. He is a known member of the TypeScript community and works
on the DefinitelyTyped team (https://github.com/DefinitelyTyped). In his spare
time, he enjoys bodybuilding and cycling and maintains a YouTube channel for
helping fellow developers (http://youtube.com/basaratali).

He is the author of Beginning Node.js, Apress, and a reviewer of TypeScript Essentials,
Packt Publishing.

You can easily find him on http://twitter/basarat, http://github/basarat
and simply www.basarat.com.

I would like to thank my family Hasnain, Babar, Baqar, Taskeen and
my lovely wife Sana.

www.allitebooks.com

http://shaman.io
http://picnicsoftware.com/
https://github.com/DefinitelyTyped
http://youtube.com/basaratali
http://twitter/basarat
http://github/basarat
http://www.basarat.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: TypeScript – Tools and Framework Options 1

What is TypeScript? 3
EcmaScript 3
The benefits of TypeScript 4

Compiling 4
Strong Typing 5
Type definitions for popular JavaScript libraries 6
Encapsulation 8
Public and private accessors 10

TypeScript IDEs 12
Visual Studio 2013 12

Creating a Visual Studio Project 13
Default project settings 14
Debugging in Visual Studio 15

WebStorm 17
Creating a WebStorm project 18
Default files 18
Running the web page in Chrome 22
Debugging in Chrome 23

Brackets 24
Installing Brackets 24
Creating a Brackets project 26
Using Brackets live preview 27
Creating a TypeScript file 28
Compiling our TypeScript 30
Using Grunt 30
Debugging in Chrome 33

Summary 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Types, Variables and Function Techniques 35
Basic types 36

JavaScript is not strongly typed 36
TypeScript is strongly typed 37
Type syntax 37
Inferred typing 39
Duck-typing 40
Arrays 41
The any type 42
Explicit casting 42
Enums 43

Const enums 46
Functions 47

Anonymous functions 48
Optional parameters 49
Default parameters 50
The arguments variable 51
Function callbacks 53
Function signatures 54
Function callbacks and scope 56
Function overloads 59
Union types 60

Type guards 61
Type aliases 61

Summary 62
Chapter 3: Interfaces, Classes and Generics 63

Interfaces 64
Classes 65

Class constructors 66
Class functions 67
Interface function definitions 70

Inheritance 71
Interface inheritance 71
Class inheritance 72
Function and constructor overloading with super 73
JavaScript closures 75

The Factory Design Pattern 77
Business requirements 77
What the Factory Design Pattern does 77

Table of Contents

[iii]

The IPerson interface and the Person base class 78
Specialist classes 79
The Factory class 79

Using the Factory class 80
Class modifiers 82

Constructor access modifiers 83
Class property accessors 84
Static functions 85
Static properties 86

Generics 87
Generic syntax 87
Instantiating generic classes 88
Using the type T 90
Constraining the type of T 92
Generic interfaces 94
Creating new objects within generics 95

Runtime type checking 96
Reflection 98
Checking an object for a function 101
Interface checking with generics 102

Summary 105
Chapter 4: Writing and Using Declaration Files 107

Global variables 108
Using JavaScript code blocks in HTML 110

Structured data 111
Writing your own declaration file 112

The module keyword 115
Interfaces 117
Function overrides 120
Rounding out our definition file 122

Module merging 122
Declaration Syntax Reference 123

Function overrides 123
Nested namespaces 124
Classes 124
Class namespaces 125
Class constructor overloads 125
Class properties 126
Class functions 126

Table of Contents

[iv]

Static properties and functions 126
Global functions 127
Function signatures 127
Optional properties 128
Merging functions and modules 128

Summary 129
Chapter 5: Third Party Libraries 131

Downloading definition files 132
Using NuGet 134

Using the Extension Manager 134
Installing declaration files 135
Using the Package Manager Console 136

Installing packages 136
Searching for package names 136
Installing a specific version 136

Using TypeScript Definition Manager 137
Querying for packages 137
Using wildcards 138
Installing definition files 138

Using third party libraries 138
Choosing a JavaScript framework 138

Backbone 139
Using inheritance with Backbone 140
Using interfaces 142
Using generic syntax 143
Using ECMAScript 5 143
Backbone TypeScript compatibility 144

Angular 144
Angular classes and $scope 146
Angular TypeScript compatibility 148

Inheritance – Angular versus Backbone 149
Angular 2.0 150

ExtJs 150
Creating classes in ExtJs 150
Using type casting 152
ExtJs specific TypeScript compiler 153

Summary 154

Table of Contents

[v]

Chapter 6: Test Driven Development 155
Test Driven Development 156
Unit, integration and acceptance tests 157

Unit tests 157
Integration tests 157
Acceptance tests 158

Using continuous integration 158
Benefits of continuous integration 159
Selecting a build server 160

Team Foundation Server 160
Jenkins 160
TeamCity 161

Unit testing frameworks 161
Jasmine 161

A simple Jasmine test 162
Jasmine SpecRunner.html file 163
Matchers 165
Test startup and teardown 166
Data-driven tests 167
Using spies 168
Using spies as fakes 170
Asynchronous tests 171
Using the done() function 173
Jasmine fixtures 174
DOM events 175

Jasmine runners 176
Testem 177
Karma 178
Protractor 180

Using Selenium 180
Integration tests 182

Simulating integration tests 182
Detailed test results 185
Logging test results 186
Finding page elements 190
Working with page elements in Jasmine 192

Summary 195

Table of Contents

[vi]

Chapter 7: Modularization 197
CommonJs 198

Setting up Node in Visual Studio 198
Creating a Node module 200
Using a Node module 201
Chaining asynchronous functions 202

Using AMD 206
Backbone 207
Models, collections and views 207
Creating a model 208
The require.config file 210
Fixing Require config errors 213
Using Backbone.Collections 215
Backbone views 219
Using the Text plugin 221
Rendering a collection 223
Creating an application 226
Using jQuery plugins 229

Summary 233
Chapter 8: Object-oriented Programming with TypeScript 235

Program to an interface 236
SOLID principles 236

Single Responsibility 236
Open Closed 237
Liskov Substitution 237
Interface Segregation 237
Dependency Inversion 237

Building a Service Locator 238
The problem space 238
Creating a Service 240

Dependency Resolution 243
Service Location 243
Dependency Injection 243
Service Location versus Dependency Injection 244

A Service Locator 245
Named interfaces 246
Registering classes against named interfaces 247

Table of Contents

[vii]

Using the Service Locator 250
Testability 254

The Domain Events Pattern 255
Problem space 256
Message and Handler Interfaces 257
Multiple Event Handlers 259
Firing an event 262
Registering an Event handler for an Event 264
Displaying error notifications 267

Summary 269
Chapter 9: Let's Get Our Hands Dirty 271

Marionette 271
Bootstrap 272
Board Sales 272
Page layout 272

Installing Bootstrap 273
Using Bootstrap 274

Data structure 277
Data interfaces 278
Integration tests 282
Traversing a collection 284

Finding manufacturer names 286
Finding board types 287

Filtering a Collection 288
Marionette application, regions and layouts 290

Loading the main collection 294
Marionette views 297

The ManufacturerCollectionView class 298
The ManufacturerView class 300
The BoardView class 300
The BoardSizeView class 302
Filtering using the IFilterProvider interface 304
The FilterCollection class 305

Filtering views 308
DOM events in Marionette 310

Triggering a Detail view event 312
Rendering the BoardDetailView 313

Table of Contents

[viii]

The State Design Pattern 315
Problem space 315
State class diagram 317

Concrete State classes 318
The Mediator class 320

Moving to a new State 323
Implementing the IMediatorFunctions interface 326
Triggering State changes 328

Summary 330
Index 331

[ix]

Preface
The TypeScript language and compiler has been a huge success story since its release
in late 2012. It has quickly carved out a solid footprint in the JavaScript development
community, and continues to go from strength to strength. Many large-scale
JavaScript projects, including projects by Adobe, Mozilla, and Asana, have made
the decision to switch their code base from JavaScript to TypeScript. Recently, the
Microsoft and Google teams announced that Angular 2.0 will be developed with
TypeScript, thereby merging the AtScript and TypeScript languages into one.

This large-scale industry adoption of TypeScript shows the value of the language,
the flexibility of the compiler, and the productivity gains that can be realized with
its rich development toolset. On top of this industry support, the ECMAScript 6
standard is getting closer and closer to publication, and TypeScript provides a way
to use features of this standard in our applications today.

Writing JavaScript single page applications in TypeScript has been made even more
appealing with the large collection of declaration files that have been built by the
TypeScript community. These declaration files seamlessly integrate a large range
of existing JavaScript frameworks into the TypeScript development environment,
bringing with it increased productivity, early error detection, and advanced
IntelliSense features.

This book is a guide for both experienced TypeScript developers, as well as those
who are just beginning their TypeScript journey. With a focus on Test Driven
Development, detailed information on integration with many popular JavaScript
libraries, and an in-depth look at TypeScript's features, this book will help you with
your exploration of the next step in JavaScript development.

Preface

[x]

What this book covers
Chapter 1, TypeScript – Tools and Framework Options, sets the scene for beginning
TypeScript development, by firstly looking at the various benefits of using
TypeScript, and then discussing how to set up a development environment.

Chapter 2, Types, Variables and Function Techniques, introduces the reader to the
TypeScript language, starting with basic types and type inferences, and then
moving on to discusses variables and functions.

Chapter 3, Interfaces, Classes and Generics, builds on the work from the previous
chapter, and introduces the object-oriented concepts of interfaces, classes, and
inheritance. It then introduces the reader to the syntax and usage of generics
within TypeScript.

Chapter 4, Writing and Using Declaration Files, walks the reader through building a
declaration file for an existing body of JavaScript code, and then lists some of the
most common syntax used when writing declaration files. This syntax is designed
to be a quick reference guide to declaration file syntax, or a cheat sheet.

Chapter 5, Third Party Libraries, shows the reader how to use declaration files from
the DefinitelyTyped repository within the development environment. It then moves
on to show the reader how to write TypeScript that is compatible with three popular
JavaScript frameworks—Backbone, Angular, and ExtJs.

Chapter 6, Test Driven Development, starts with a discussion on what Test Driven
Development is, and then guides the reader through the process of creating various
types of unit tests using the Jasmine library, including data-driven and asynchronous
tests. The chapter finishes with a discussion on integration testing, test reporting, and
using continuous integration build servers.

Chapter 7, Modularization, looks at the two types of module generation that the
TypeScript compiler uses: CommonJS and AMD. This chapter shows the reader how
to build a CommonJS module for use with Node, and then discusses building AMD
modules with Require, Backbone, AMD plugins, and jQuery plugins.

Chapter 8, Object-oriented Programming with TypeScript, discusses advanced object-
oriented design patterns, including the Service Location Design Pattern, Dependency
Injection, and the Domain Events Design Pattern. The reader is taken through the
concepts and ideas of each pattern, and then shown how one might implement these
patterns using TypeScript.

Preface

[xi]

Chapter 9, Let's Get Our Hands Dirty, builds a single-page application using
TypeScript and Marionette from the ground up. This chapter starts with a discussion
on page layout and transition, using an HTML-only version of the application. It
then moves on to discuss, build and test the underlying data models and Marionette
views that will be used within the application. Finally, the State and Mediator Design
Pattern is implemented to manage page transitions and graphical elements.

What you need for this book
You will need the TypeScript compiler and an editor of some sort. The TypeScript
compiler is available as a Node.js plugin or a Windows executable; therefore, it will
run on any operating system. Chapter 1, TypeScript – Tools and Framework Options
describes the setup of a development environment.

Who this book is for
Whether you are a JavaScript developer wanting to learn TypeScript, or an
experienced TypeScript developer wanting to take your skills to the next level,
this book is for you. From basic to advanced language constructs, Test Driven
Development, and object-oriented techniques, you will learn how to get the most
out of the TypeScript language and compiler. This book will show you how to
incorporate strong typing, object-orientation, and design best practices into your
JavaScript applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This GruntFile.js is necessary to setup all of the Grunt tasks."

A block of code is set as follows:

class MyClass {
 add(x, y) {
 return x + y;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

class MyClass {
 add(x, y) {
 return x + y;
 }
}

Any command-line input or output is written as follows:

tsc app.ts

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "After
selecting a Name and browsing for a directory, clicking on OK will generate a
TypeScript project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xiii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have purchased.
If you purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Downloading the color images of
this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/B03967_9665OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

TypeScript – Tools and
Framework Options

JavaScript is a truly ubiquitous language. Just about every website that you visit in
the modern world will have some sort of JavaScript component embedded in it, in
order to make the site more responsive, more readable, or more attractive to use.
Think about the most impressive website that you have visited over the past few
months. Was it visually appealing? Did it have some sort of clever presentation?
Did it engage you as a user, by giving you a completely new way of discovering
car-insurance, or image-sharing, or news articles?

This is the power of JavaScript. JavaScript is the icing on the cake of the internet
experience, that makes millions of people around the world go "wow. That's cool".
And it generates revenue. Two websites may offer the same product, at the same
price, but the one that engages the client – and makes them enjoy the web experience
– is the site that will attract the most followers and be the most successful. If this
website can also be seamlessly reproduced on desktops, mobiles or tablets, then the
target audience – and the target revenue – can be increased exponentially.

On the flip-side, though, JavaScript is also responsible for the annoying side of the
Internet. Those annoying advertisements, where you have to wait for 5 seconds
before clicking on the skip button. Or websites that do not quite work on older
browsers, or don't render correctly on tablets and mobile phones. It can be argued
that many websites would be better off without JavaScript.

TypeScript – Tools and Framework Options

[2]

An engaging web experience can also make the difference in corporate web
applications. A clunky, difficult to use, and slow web application will turn otherwise
keen corporate users completely against your application. Remember that your
typical corporate user is comparing their work experience to their daily web
experience – of well designed, responsive, intuitive interfaces. After all, they are
generally users of the most popular websites out there, and come to expect the same
responsiveness at work.

Most of this enhanced user experience comes from the effective use of JavaScript.
Asynchronous JavaScript requests allow your web page to render content to the user
faster – while waiting for backend processes to do the heavy, time consuming data
crunching tasks.

The JavaScript language is not a difficult language to learn, but it does present
challenges when writing large, complex programs. Being an interpreted language,
JavaScript has no compilation step, and so is executed on the fly. For programmers
that are used to writing code in a more formal environment – using compilers, strong
typing and well established programming patterns – JavaScript can be a completely
foreign environment.

TypeScript bridges this gap. It is a strongly typed, object-oriented, compiled
language that allows you as a programmer, to re-use the concepts and ideas of
well-established object-oriented languages – in JavaScript. The TypeScript compiler
generates JavaScript that adheres to these strongly typed, object-oriented principles –
but at the same time is just pure JavaScript. As such, it will run successfully wherever
JavaScript can run – in the browser, on the server, or on modern mobile devices.

This chapter is divided into two main sections. The first section is a quick overview
of some of the benefits that TypeScript brings to the JavaScript development
experience. The second section of this chapter deals with setting up a TypeScript
development environment.

If you are an experienced TypeScript programmer, and you already have a
development environment set up, then you might want to skip this chapter. If you
have never worked with TypeScript before, and have picked up this book because
you want to understand what TypeScript can do for you, then read on.

We will cover the following topics in this chapter:

• The benefits of TypeScript
 ° Compilation
 ° Strong Typing
 ° Integration with popular JavaScript libraries

Chapter 1

[3]

 ° Encapsulation
 ° Private and public member variables

• Setting up a development environment

 ° Visual Studio
 ° WebStorm
 ° Brackets and Grunt

What is TypeScript?
TypeScript is both a language and a set of tools to generate JavaScript. It was
designed by Anders Hejlsberg at Microsoft (the designer of C#), as an open-source
project, to help developers write enterprise scale JavaScript. JavaScript has become
widely adopted by programmers around the world – as it can run in any browser on
any operating system. With the creation of Node, JavaScript can now also run on the
server, desktop or mobile.

TypeScript generates JavaScript – it's as simple as that. Instead of requiring a
completely new runtime environment, TypeScript generated JavaScript can re-use
all of the existing JavaScript tools, frameworks, and wealth of libraries that are
available for JavaScript. The TypeScript language and compiler, however, brings the
development of JavaScript closer to a more traditional object-oriented experience.

EcmaScript
JavaScript as a language has been around for a long time, and is also governed
by a language feature standard. The language defined in this standard is called
ECMAScript, and each browser must deliver functions and features that conform
to this standard. The definition of this standard helped the growth of JavaScript
and the web in general, and allowed websites to render correctly on many different
browsers on many different operating systems. The ECMAScript standard was
published in 1999 and is known as ECMA-262, third edition.

With the popularity of the language, and the explosive growth of internet
applications, the ECMAScript standard needed to be revised and updated. This
process resulted in a draft specification for ECMAScript, called the fourth edition.
Unfortunately, this draft suggested a complete overhaul of the language, and was
not well received. Eventually, leaders from Yahoo, Google and Microsoft tabled an
alternate proposal which they called ECMAScript 3.1. This proposal was numbered
3.1, as it was a smaller feature set of the third edition, and sat "between" edition 3
and 4 of the standard.

TypeScript – Tools and Framework Options

[4]

This proposal was eventually adopted as the fifth edition of the standard, and was
called ECMAScript 5. The ECMAScript fourth edition was never published, but it
was decided to merge the best features of both the fourth edition and the 3.1 feature
set – into a sixth edition named ECMAScript Harmony.

The TypeScript compiler has a parameter that can be modified to target different
versions of the ECMAScript standard. TypeScript currently supports ECMAScript
3, ECMAScript 5 and ECMAScript 6. When the compiler runs over your TypeScript,
it will generate compile errors if the code you are attempting to compile is not valid
for that particular standard. The team at Microsoft has also committed to follow the
ECMAScript standards in any new versions of the TypeScript compiler, so as and
when new editions are adopted, the TypeScript language and compiler will follow suit.

An understanding of the finer details of what is included in each release of the
ECMAScript standard is outside of the scope of this book, but it is important to
know that there are differences. Some browser versions do not support ES5 (IE8 is
an example), but most do. When selecting a version of ECMAScript to target for your
projects, you will need to consider which browser versions you will be supporting.

The benefits of TypeScript
To give you a flavor of the benefits of TypeScript (and this is by no means the
full list), let's take a very quick look at some of the things that TypeScript brings
to the table:

• A compilation step
• Strong or static typing
• Type definitions for popular JavaScript libraries
• Encapsulation
• Private and public member variable decorators

Compiling
One of the most frustrating things about JavaScript development is the lack of a
compilation step. JavaScript is an interpreted language, and therefore needs to be
run in order to test that it is valid. Every JavaScript developer will tell horror stories
of hours spent trying to find bugs in their code, only to find that they have missed a
stray closing brace { , or a simple comma , - or even a double quote " where there
should have been a single quote '. Even worse, the real headaches arrive when you
misspell a property name, or unwittingly re-assign a global variable.

Chapter 1

[5]

TypeScript will compile your code, and generate compilation errors where it finds
these sort of syntax errors. This is obviously very useful, and can help to highlight
errors before the JavaScript is run. In large projects, programmers will often need
to do large code merges – and with today's tools doing automatic merges – it is
surprising how often the compiler will pick up these types of errors.

While tools to do this sort of syntax checking – like JSLint – have been around for
years, it is obviously beneficial to have these tools integrated into your IDE. Using
TypeScript in a continuous integration environment will also fail a build completely
when compilation errors are found – further protecting your programmers against
these types of bugs.

Strong Typing
JavaScript is not strongly typed. It is a language that is very dynamic, as it allows
objects to change their properties and behavior on the fly. As an example of this,
consider the following code:

var test = "this is a string";
test = 1;
test = function(a, b) {
 return a + b;
}

On the first line of this code snippet, the variable test is bound to a string.
It is then assigned a number, and finally is redefined to be a function that expects
two parameters. Traditional object oriented languages, however, will not allow the
type of a variable to change – hence they are called strongly typed languages.

While all of the preceding code is valid JavaScript - and could be justified - it is
quite easy to see how this could cause runtime errors during execution. Imagine
that you were responsible for writing a library function to add two numbers, and
then another developer inadvertently re-assigned your function to instead subtract
these numbers.

These types of errors may be easy to spot in a few lines of code, but it becomes
increasingly difficult to find and fix these as your code base, and your development
team grows.

Another feature of strong typing is that the IDE you are working in can understand
what type of variable you are working with, and can bring better autocomplete or
Intellisense options to the fore.

TypeScript – Tools and Framework Options

[6]

TypeScript's "syntactic sugar"
TypeScript introduces a very simple syntax to check the type of an object at compile
time. This syntax has been referred to as "syntactic sugar", or more formally, type
annotations. Consider the following TypeScript code:

var test: string = "this is a string";
test = 1;
test = function(a, b) { return a + b; }

Note on the first line of this code snippet, we have introduced a colon : and a string
keyword between our variable and it's assignment. This type annotation syntax
means that we are setting the type of our variable to be of type string, and that
any code that does not use it as a string will generate a compile error. Running the
preceding code through the TypeScript compiler will generate two errors:

error TS2011: Build: Cannot convert 'number' to 'string'.

error TS2011: Build: Cannot convert '(a: any, b: any) => any' to
'string'.

The first error is fairly obvious. We have specified that the variable test is a string,
and therefore attempting to assign a number to it will generate a compile error.
The second error is similar to the first, and is in essence saying that we cannot
assign a function to a string.

In this way, the TypeScript compiler introduces strong, or static typing to
your JavaScript code, giving you all of the benefits of a strongly typed language.
TypeScript is therefore described as a "superset" of JavaScript. We will explore
typing in more detail in the next chapter.

Type definitions for popular JavaScript libraries
As we have seen, TypeScript has the ability to "annotate" JavaScript, and bring strong
typing to the JavaScript development experience. But how do we strongly type
existing JavaScript libraries? The answer is surprisingly simple: by creating a definition
file. TypeScript uses files with a .d.ts extension as a sort of "header" file, similar to
languages such as C++, to superimpose strongly typing on existing JavaScript libraries.
These definition files hold information that describes each available function and
variable of the library, along with their associated type annotations.

Chapter 1

[7]

Let's take a quick look at what a definition would look like. As an example, consider
a function from the popular Jasmine unit testing framework called describe:

var describe = function(description, specDefinitions) {
 return jasmine.getEnv().describe(description, specDefinitions);
};

This function has two parameters, description and specDefinitions. Just reading
this JavaScript, however, does not tell us what sort of parameters these are meant to
be. Is the specDefinitions argument a string, or an array of strings, a function or
something else? In order to figure this out, we would need to have a look through
the Jasmine documentation found at http://jasmine.github.io/2.0/
introduction.html. This documentation provides us with a helpful sample
of how to use this function:

describe("A suite", function () {
 it("contains spec with an expectation", function () {
 expect(true).toBe(true);
 });
});

From the documentation, then, we can easily see that the first parameter is a string,
and the second parameter is a function. There is nothing in the JavaScript language,
however, that forces us to conform to this API. As mentioned before, we could easily
call this function with two numbers – or inadvertently switch the parameters around,
sending a function first, and a string second. We will obviously start getting runtime
errors if we do this, but TypeScript – using a definition file – can generate compile
time errors before we even attempt to run this code.

Let's take a look at a piece of the jasmine.d.ts definition file:

declare function describe(
 description: string, specDefinitions: () => void
): void;

This is the TypeScript definition for the describe function. Firstly, declare
function describe tells us that we can use a function called describe, but that the
implementation of this function will be provided at runtime.

Clearly, the description parameter is strongly typed to be of type string, and the
specDefinitions parameter is strongly typed to be a function that returns void.
TypeScript uses the double braces () syntax to declare functions, and the fat arrow
syntax to show the return type of the function. So () => void is a function that does
not return anything. Finally, the describe function itself will return void.

www.allitebooks.com

http://jasmine.github.io/2.0/introduction.html
http://www.allitebooks.org

TypeScript – Tools and Framework Options

[8]

If our code were to try and pass in a function as the first parameter, and a string as
the second parameter (clearly breaking the definition of this function) as shown in
the following example:

describe(() => { /* function body */}, "description");

The TypeScript compiler will immediately generate the following errors:

error TS2082: Build: Supplied parameters do not match any signature of
call target: Could not apply type "string" to argument 1 which is of type
() => void

This error is telling us that we are attempting to call the describe function with
invalid parameters. We will look at definition files in more detail in later chapters,
but this example clearly shows that TypeScript will generate errors if we attempt to
use external JavaScript libraries incorrectly.

Definitely Typed
Soon after TypeScript was released, Boris Yankov started a GitHub repository to
house definition files, at DefinitelyTyped (https://github.com/borisyankov/
DefinitelyTyped). This repository has now become the first port of call for
integrating external libraries into TypeScript, and currently holds definitions
for over 500 JavaScript Libraries.

Encapsulation
One of the fundamental principles of object-oriented programming is
encapsulation: The ability to define data, as well as a set of functions that can
operate on that data, into a single component. Most programming languages
have the concept of a class for this purpose – providing a way to define a template
for data and related functions.

Let's first take a look at a simple TypeScript class definition:

class MyClass {
 add(x, y) {
 return x + y;
 }
}

var classInstance = new MyClass();
console.log(classInstance.add(1, 2));

This code is pretty simple to read and understand. We have created a class,
named MyClass, with a single function named add. To use this class, we simply
create an instance of it, and call the add function with two arguments.

https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped

Chapter 1

[9]

JavaScript, unfortunately, does not have a class keyword, but instead uses
functions to reproduce the functionality of classes. Encapsulation through classes is
accomplished by either using the prototype pattern, or by using the closure pattern.
Understanding prototypes and the closure pattern, and using them correctly, is
considered a fundamental skill when writing enterprise-scale JavaScript.

A closure is essentially a function that refers to independent variables. This means
that variables defined within a closure function 'remember' the environment in
which they were created. This provides JavaScript with a way to define local
variables, and provide encapsulation. Writing the MyClass definition in the
preceding code, using a closure in JavaScript would look something like this:

var MyClass = (function () {
 // the self-invoking function is the
 // environment that will be remembered
 // by the closure
 function MyClass() {
 // MyClass is the inner function,
 // the closure
 MyClass.prototype.add = function (x, y) {
 return x + y;
 };
 return MyClass;
})();
var classInstance = new MyClass();
console.log("result : " + classInstance.add(1, 2));

We start with a variable called MyClass, and assign it to a function that is executed
immediately – note the })(); syntax near the bottom of the code snippet. This
syntax is a common way to write JavaScript in order to avoid leaking variables into
the global namespace. We then define a new function named MyClass, and return
this new function to the outer calling function. We then use the prototype keyword
to inject a new function into the MyClass definition. This function is named add and
takes two parameters, returning their sum.

The last two lines of the code show how to use this closure in JavaScript. Create an
instance of the closure type, and then execute the add function. Running this in the
browser will log result: 3 to the console, as expected.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

TypeScript – Tools and Framework Options

[10]

Looking at the JavaScript code versus the TypeScript code, we can easily see how
simple TypeScript looks, compared to the equivalent JavaScript. Remember how we
mentioned that JavaScript programmers can easily misplace a brace {, or a bracket
(? Take a look at the last line in the closure definition: })(); Getting one of these
brackets or braces wrong can take hours of debugging to find.

TypeScript classes generate closures
The JavaScript closure as shown in the preceding code snippet, is actually the output
of the TypeScript class definition. So TypeScript actually generates closures for you.

Adding the concept of classes to the JavaScript language has
been talked about for years, and is currently a part of the
ECMAScript sixth Edition (Harmony) standard – but this is
still a work in progress. Microsoft has committed to follow the
ECMAScript standard in the TypeScript compiler, as and when
these standards are published.

Public and private accessors
A further object-oriented principle that is used in encapsulation is the concept of data
hiding – the ability to have public and private variables. Private variables are meant
to be hidden to the user of a particular class – as these variables should only be used
by the class itself. Inadvertently exposing these variables outside of a class can easily
cause runtime errors.

Unfortunately, JavaScript does not have a native way of declaring variables
private. While this functionality can be emulated using closures, a lot of JavaScript
programmers simply use the underscore character _ to denote a private variable. At
runtime though, if you know the name of a private variable – you can easily assign a
value to it. Consider the following JavaScript code:

var MyClass = (function() {
 function MyClass() {
 this._count = 0;
 }
 MyClass.prototype.countUp = function() {
 this._count ++;
 }
 MyClass.prototype.getCountUp = function() {
 return this._count;
 }

Chapter 1

[11]

 return MyClass;
}());

var test = new MyClass();
test._count = 17;
console.log("countUp : " + test.getCountUp());

The MyClass variable is actually a closure – with a constructor function, a countUp
function and a getCountUp function. The variable _count is supposed to be a private
member variable, one that is used only within the scope of the closure. Using the
underscore naming convention gives the user of this class some indication that the
variable is private, but JavaScript will still allow you to manipulate the variable
_count. Take a look at the second last line of the code snippet. We are explicitly
setting the value of the supposed private variable _count to 17 – which is allowed by
JavaScript, but not desired by the original creator of the class. The output of this code
would be countUp: 17.

TypeScript, however, introduces the public and private keywords that can be used
on class member variables. Trying to access a class member variable that has been
marked as private will generate a compile time error. As an example of this, the
JavaScript code above can be written in TypeScript as follows:

class MyClass {
 private _count: number;
 constructor() {
 this._count = 0;
 }
 countUp() {
 this._count++;
 }
 getCount() {
 return this._count;
 }
}

var classInstance = new MyClass();
console.log(classInstance._count);

On the second line of our code snippet, we have declared a private member
variable named _count. Again, we have a constructor, a countUp and a getCount
function. If we compile this TypeScript code, the compiler will generate an error:

error TS2107: Build: 'MyClass._count' is inaccessible.

TypeScript – Tools and Framework Options

[12]

This error is generated because we are trying to access the private variable _count in
the last line of the code.

The TypeScript compiler, therefore, is helping us to adhere to public and private
accessors – by generating a compile error when we inadvertently break this rule.

Remember, though, that these accessors are a compile-time feature
only, and will not affect the generated JavaScript. You will need to
bear this in mind if you are writing JavaScript libraries that will be
consumed by third parties. The TypeScript compiler will also still
generate the JavaScript output file, even if there are compile errors.

TypeScript IDEs
The purpose of this section is to get you up and running with a TypeScript
environment so that you can edit, compile, run and debug your TypeScript code.
TypeScript has been released as open-source, and includes both a Windows variant,
and a Node variant. This means that the compiler will run on Windows, Linux, OS X,
and any other operating system that supports Node.

On Windows environments, we can either install Visual Studio – which will register
the tsc.exe (TypeScript Compiler) in our C:\Program Files directory, or we can
use Node. On Linux and OS X environments, we will need to use Node. Either way,
firing up a command prompt and typing tsc –v should display the current version
of the compiler that we are using. Which at the time of writing, is version 1.4.2.0.

In this section, we will be looking at the following IDEs:

• Visual Studio 2013
• WebStorm
• Brackets

Visual Studio 2013
First up, let's look at Microsoft's Visual Studio 2013. This is Microsoft's primary
IDE, and comes in a variety of pricing combinations. At the top end is Ultimate,
then Premium, then Professional, and finally Express. Ultimate, Premium and
Professional all require paid licenses which range (at the time of writing) from
$13,000 through to $1,199. The good news is that Microsoft has recently announced a
Community Edition, which can be used in non-enterprise environments for both free
and non-paid products. The TypeScript compiler is included in all of these editions.

Chapter 1

[13]

Visual Studio can be downloaded as either a web-installer, or an .ISO CD image. Note
that the web installer will require an internet connection during installation, as it
downloads the required packages during the installation step. Visual Studio will also
require Internet Explorer 10 or later, but will prompt you during installation, if you
have not upgraded your browser as yet. If you are using the .ISO installer, just bear in
mind that you may be required to download and install additional operating system
patches if you have not updated your system with Windows Update in a while.

Creating a Visual Studio Project
Once Visual Studio is installed, fire it up and create a new project (File | New
Project). Under the Templates section on the left hand side, you will see a TypeScript
option. When this option is selected, you will be able to use a project template named
Html Application with TypeScript. Enter a name and location for your project, and
then click OK to generate a TypeScript project:

Visual Studio – selecting the TypeScript project type

TypeScript – Tools and Framework Options

[14]

This is not the only project template that works with TypeScript.
Any of the ASP.NET project types support TypeScript out of the
box. If you are planning to use the Web API to provide RESTful
data controllers, then you may consider creating an MVC Web
Application from the start. Then, by simply including a TypeScript
file, and specifying a .ts file extension within the project, Visual
Studio will automatically start compiling your TypeScript files as
part of the new project.

Default project settings
Once a new TypeScript project is created, notice that the project template generates a
few files for us automatically:

• app.css

• app.ts

• index.html

• web.config

If we were to compile and then run this project now, we would have a complete,
running TypeScript application right off the bat:

Visual Studio index.html running in Internet Explorer

Chapter 1

[15]

Let's take a quick look at the generated index.html file and what it contains:

<!DOCTYPE html>

<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>TypeScript HTML App</title>
 <link rel="stylesheet" href="app.css" type="text/css" />
 <script src="app.js"></script>
</head>
<body>
 <h1>TypeScript HTML App</h1>

 <div id="content"></div>
</body>
</html>

This is a very simple HTML file, which includes the app.css style sheet, as well as a
JavaScript file named app.js. This app.js file is the JavaScript file that is generated
from app.ts TypeScript file, when the project is compiled.

The app.js file is not included in the Solution Explorer – only the
app.ts TypeScript file is included. This is by design. If you wish to
see the generated JavaScript file, simply click on the Show All Files
button in the Solution Explorer toolbar.

Debugging in Visual Studio
One of the best features of Visual Studio is that it is truly an integrated environment.
Debugging TypeScript in Visual Studio is exactly the same as debugging C# – or any
other language in Visual Studio – and includes the usual Immediate, Locals, Watch
and Call stack windows.

To debug TypeScript in Visual Studio, simply put a breakpoint on the line you wish
to break on in your TypeScript file (Move your mouse into the breakpoint area next
to the source code line, and click). In the image below, we have placed a breakpoint
within the window.onload function.

TypeScript – Tools and Framework Options

[16]

To start debugging, simply hit F5.

Visual Studio TypeScript editor with a breakpoint set in the code

When the source code line is highlighted in yellow, simply hover your mouse over
any of the variables in your source, or use the Immediate, Watch, Locals or Call
stack windows.

Visual Studio only supports debugging in Internet Explorer. If
you have multiple browsers installed on your machine, make
sure that you select Internet Explorer in your Debug toolbar, as
shown in the following screenshot:

Chapter 1

[17]

Visual Studio debug toolbar showing browser options

WebStorm
WebStorm is a popular IDE by JetBrains (http://www.jetbrains.com/webstorm/),
and will run on Windows, Mac OS X and Linux. Prices range from $49 for a single
developer to $99 for a commercial license. JetBrains also offers a 30 day trial version.

WebStorm has a couple of great features, including live-edit and code suggestions,
or Intellisense. The live-edit feature allows you to keep a browser window open,
which WebStorm will automatically update based on changes to CSS, HTML and
JavaScript as you type it. Code suggestions – which are also available with another
popular JetBrains product named Resharper – will highlight code that you have
written, and suggest better ways of implementing it. WebStorm also has a large
number of project templates. These templates will automatically download and
include the relevant JavaScript or CSS files needed by the template, such as Twitter
Bootstrap, or HTML5 boilerplate.

Setting up WebStorm is as simple as downloading the package from the website,
and running the installer.

www.allitebooks.com

http://www.jetbrains.com/webstorm/
http://www.allitebooks.org

TypeScript – Tools and Framework Options

[18]

Creating a WebStorm project
To create a new WebStorm project, simply fire it up, and hit File | New Project.
Select a Name, Location and Project type. For this project, we have chosen Twitter
Bootstrap as the project type, as shown in the following screenshot:

WebStorm Create New Project dialog box

WebStorm will then ask you to select the version of Twitter Boostrap that you intend
developing for. In this example, we have chosen version v3.2.0.

WebStorm Select Twitter Boostrap version dialog box

Default files
WebStorm has conveniently created a css, fonts and js directory as part of the new
project – and downloaded and included the relevant CSS, font files and JavaScript
files for us, in order to start building a new Bootstrap based website. Note that it has
not created an index.html file for us, nor has it created any TypeScript files – as
Visual Studio did. After a while working with TypeScript, most developers will
delete these generic files anyway. So lets create an index.html file.

Simply click on File | New, select HTML file, enter index as a name, and click OK.

Chapter 1

[19]

Next, let's create a TypeScript file in a similar manner. We will call this file app (or
app.ts), to be the same as in the Visual Studio default project example. As we click
inside the new app.ts file, WebStorm will pop up a green bar at the top of our edit
window, with a suggestion reading File watcher 'TypeScript' is available for this
file, as shown in the following screenshot:

WebStorm editing a TypeScript file for the first time showing the File Watcher bar

A WebStorm "file watcher" is a background process that will execute as soon as you
have saved the file. This is equivalent to Visual Studio's Compile on save TypeScript
option. As WebStorm suggests, now would be a good time to activate this file
watcher for TypeScript. Click on the Add watcher link in the green bar, and fill in
the details on the next screen.

We can leave the defaults on the next screen as they are for the time being, except for
the Program setting:

TypeScript – Tools and Framework Options

[20]

If you are running on Windows, and already have Visual Studio installed, then this
should be set to the full path of the tsc.exe executable, i.e. C:\Program Files
(x86)\Microsoft SDKs\TypeScript\1.0\tsc.exe, as shown in the following
screenshot:

If you are running on a non-windows box, or have installed TypeScript via Node,
then this would just be set to tsc, with no path.

WebStorm new file watcher options screen

Now that we have a file watcher created for our TypeScript files, lets create a
simple TypeScript class, which will modify the innerText of an HTML div. While
you are typing, you will notice WebStorm's autocompletion or Intellisense feature
helping you with available keywords, parameters, naming conventions and a host
of other language specific information. This is one of the most powerful features of
WebStorm, and is similar to the enhanced Intellisense seen in JetBrain's Resharper
tool for Visual Studio. Go ahead and type the following TypeScript code, during
which you will get a good feeling of WebStorm's available autocompletion.

Chapter 1

[21]

class MyClass {
 public render(divId: string, text: string) {
 var el: HTMLElement = document.getElementById(divId);
 el.innerText = text;
 }
}

window.onload = () => {
 var myClass = new MyClass();
 myClass.render("content", "Hello World");
}

We start off with the MyClass class definition, which simply has a function called
render. This render function takes a DOM element name, and a text string as
parameters. It then simply finds the DOM element, and sets the innerText property.
Note the use of strong typing on the variable el – we have explicitly typed this to be
of the HTMLElement type.

We are also assigning a function to the window.onload event, which will execute
once the page has been loaded, similar to the Visual Studio sample. Within this
function, we are simply creating an instance of MyClass, and calling the render
function with two string arguments.

If you have any errors in your TypeScript file, these will automatically show
up in the output window, giving you instant feedback while you type. With this
TypeScript file created, we can now include it in our index.html file, and try
some debugging.

Open the index.html file, and add a script tag to include the app.js JavaScript
file, along with a div with an id of "content". Just as we saw with TypeScript
editing, you will find that WebStorm has powerful Intellisense features when
editing HTML as well.

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title></title>
 <script src="app.js" type="application/javascript"></script>
</head>
<body>
 <h2>Index.html</h2>
 <div id="content"></div>
</body>
</html>

TypeScript – Tools and Framework Options

[22]

There are a couple of points to note in the preceding code. We are including a
script tag for the app.js JavaScript file, as this is the output file that the TypeScript
compiler will generate. We have also created an HTML <div> with an id of content
that the instance of the MyClass class will use to render our text.

Running the web page in Chrome
When viewing or editing HTML files in WebStorm, you will notice a small set of
browser icons popping up on the top right corner of the editing window. Clicking on
any one of the icons will launch your current HTML page using the selected browser.

WebStorm editing an HTML file showing the popup browser launching icons

Chapter 1

[23]

Debugging in Chrome
As we saw in Visual Studio, debugging in WebStorm is simply a matter of marking
a breakpoint, and then hitting Alt + F5. WebStorm uses a Chrome Plugin to enable
debugging in Chrome. If you do not have this plugin installed, WebStorm will
prompt you the first time you start debugging, to download and enable the JetBrains
IDE Support Chrome Plugin. With this plugin enabled, WebStorm has a very
powerful set of tools to inspect JavaScript code, add watchers, view the console and
many more, right inside the IDE.

WebStorm debugging session showing debugger panels

TypeScript – Tools and Framework Options

[24]

Brackets
The last IDE that we will look at in this chapter is not really an IDE for TypeScript,
it is more of an IDE for web designers that has TypeScript editing capability.
Brackets is an open-source code editor, and is really good at helping design and
style webpages. Similar to WebStorm, it has a live editing mode where you can see
changes to HTML or CSS on the running web page as you type. In our development
teams, Brackets has become a very popular editor for rapid prototyping of HTML
web pages and CSS styling.

There are a couple of reasons to include Brackets in this chapter. Firstly,
it is completely open-source and therefore completely free – and it runs on
Windows, Linux and Mac OS X. Secondly, using a Brackets environment shows
what a bare-bones TypeScript environment would look like, with just a text editor
and the command line. Lastly, Brackets shows that the syntax highlighting and
code-completion capability of open-source projects can be just as good – if not faster
than commercial IDEs.

Installing Brackets
Brackets can be downloaded with the preferred installers from http://brackets.
io. Once installed, we will need to install some extensions. Brackets has a really slick
and simple extension manager, which is easy to use, and which allows us to easily
find and install available extensions. Any time an update to either Brackets, or one of
your installed extensions is available, Brackets will automatically notify you.

To install an extension, fire up Brackets, and either click on File | Extension
Manager, or click on the lego-block icon on the right-hand side vertical sidebar.

To start with, we will need to install the TypeScript extension. In the search bar, type
brackets typescript, and install the Brackets TypeScript extension from Francois
de Campredon.

http://brackets.io
http://brackets.io
http://brackets.io

Chapter 1

[25]

As can be seen from the following screenshot, each extension has a More info…
link – which will take you to the extension home page.

Brackets Extension manager interface

As well as the Brackets TypeScript extension, another useful extension is Code
Folding by Patrick Oladimeji. This will allow you to collapse or expand sections
of code in any file that you are editing.

Another great time-saver is Emmet by Sergey Chikujonok. Emmet (previously
known as Zen Coding) uses a CSS-like short-hand, instead of traditional code
snippets, to generate HTML. In this section, we will quickly show how Emmet
can be used to generate HTML, just as a teaser. So go ahead and install the
Emmet extension.

TypeScript – Tools and Framework Options

[26]

Creating a Brackets project
Brackets does not have the concept of a project per se, but instead just works off
a root folder. Create a directory on your filesystem, and then open that folder in
Brackets: File | Open Folder.

Let's now create a simple HTML page using Brackets. Select File | New, or Ctrl + N.
With a blank file in front of us, we will use Emmet to generate our HTML. Type in
the following Emmet string:

html>head+body>h3{index.html}+div#content

Now hit Ctrl + Alt + Enter, or from the File menu, select Emmet | Expand
Abbreviation.

Voila! Emmet has generated the following HTML code in a millisecond - not bad for
one line of source code:

<html>
<head></head>
<body>
 <h3>index.html</h3>
 <div id="content"></div>
</body>
</html>

Hit Ctrl + S to save the file, and enter index.html.

Only once we have saved a file, does Brackets start to do syntax
highlighting based on the file extension. This is true of any Brackets
file, so once you have created a file – TypeScript, CSS or HTML, save
it to disk as soon as you can.

Back to Emmet.

Emmet uses the > character to create a child, and the + character to denote a
sibling. If you specify curly braces { } next to an element, this will be used as
the text content.

Chapter 1

[27]

The Emmet string that we entered previously basically said: "create an html tag with
a child head tag. Then create another child tag of html named body, create a child
h3 tag with the text "index.html", and then create a sibling div tag as a child of
body with the id of content." Definitely head over to http://emmet.io for further
documentation, and remember to keep the cheat-sheet handy (http://docs.emmet.
io/cheat-sheet), when you are learning Emmet string shortcuts.

Now lets finish off our index.html with an app.js script to load our TypeScript
generated JavaScript file. Move your cursor in-between the <head></head> tags,
and type another Emmet string:

script:src

Now hit Ctrl + Alt + Enter, to have Emmet generate a <script src=""></script>
tag, and conveniently place your cursor between the quotes ready for you to simply
fill in the blanks. Now type the JavaScript filename, app.js.

Your completed index.html file should now look as follows:

<html>
<head>
 <script src="app.js"></script>
</head>
<body>
 <h3>index.html</h3>
 <div id="content"></div>
</body>
</html>

This is all we need for our sample HTML page.

Using Brackets live preview
Within Brackets, click on the live preview icon on the far right of the
screen – it's the electric zig zag one – just above the lego-block packages icon.
This will launch Chrome and render our index.html in live preview mode.
Just to show how Brackets can be used for live preview, keep this Chrome window
visible, and navigate back to Brackets. You should be able to see both windows at
the same time.

www.allitebooks.com

http://emmet.io
http://docs.emmet.io/cheat-sheet
http://docs.emmet.io/cheat-sheet
http://www.allitebooks.org

TypeScript – Tools and Framework Options

[28]

Now edit the index.html file, and type the following Emmet shorthand under
your <div id="content"></div> element:

ul>li.item$*5

Again, hit Ctrl + Alt + Enter, and note how the generated and tags
(5 of them) are automatically displayed in your Chrome browser. As you move your
caret up or down in the source code, notice how the blue outline in Chrome shows
the element in the web page.

Brackets running Chrome in live preview mode, showing highlighted elements

We won't be needing these tags for our application, so simply Ctrl + Z,
Ctrl + Z to undo our changes, or delete the tags.

Creating a TypeScript file
To create our very simple TypeScript application, hit Ctrl + N (new file), Ctrl + S
(save file) and use app.ts as your file name. Start typing the following code, and
notice how Brackets also does autocompletion, or Intellisense on the fly, similar to
Visual Studio and WebStorm:

class MyClass {
 render(elementId: string, text: string) {
 var el: HTMLElement = document.getElementById(elementId);
 el.innerHTML = text;
 }
}

Chapter 1

[29]

window.onload = () => {
 var myClass = new MyClass();
 myClass.render("content", "Hello world!");
}

This is the same code that we used previously, and simply creates a TypeScript
class named MyClass that has a single render function. This render function
gets a DOM element, and modifies it's innerHTML property. The window.onload
function creates an instance of this class, then calls the render function with the
appropriate parameters.

If you save the file by hitting Ctrl + S at any stage, Brackets will invoke the
TypeScript language engine to verify our TypeScript, and render any errors in the
bottom window pane. In the following screenshot, we can clearly see that we are
missing a closing brace }.

Brackets editing a TypeScript file and showing compile errors

Brackets will not invoke the TypeScript compiler to generate an app.js file – it just parses
the TypeScript code at this stage, and highlights any errors. Double-clicking on the error in
the TypeScript Problem pane will jump to the line in question.

TypeScript – Tools and Framework Options

[30]

Compiling our TypeScript
Before we are able to run our application, we will need to compile the app.ts file
into an app.js file by invoking the TypeScript compiler. Open up a Command
Prompt, change to your source directory, and simply type:

tsc app.ts

This command will invoke the tsc command line compiler, and create an app.js
file from our app.ts file.

Now that we have an app.js file in this directory, we can invoke the live preview
button again, and now see that our TypeScript application has indeed rendered the
Hello world! text as the innerHTML of the content div:

Brackets live preview running our TypeScript application

Using Grunt
Obviously, it is going to be very tedious to have to switch to the Command Prompt
and manually compile each TypeScript file every time we have made a change.
Grunt is an automated task runner (http://gruntjs.com) that can automate many
tedious compile, build, and testing tasks. In this section, we will use Grunt to watch
TypeScript files, and invoke the tsc compiler when a file is saved. This is very
similar to WebStorm's file watch functionality that we used earlier.

http://gruntjs.com

Chapter 1

[31]

Grunt runs in a Node environment. Node is an open-source, cross platform runtime
environment, whose programs are written in JavaScript. To run Grunt, we will
therefore need to install Node. Installers for Windows, Linux and OS X can be
found from the Node website (http://nodejs.org/). Once Node is installed,
we can use npm (Node package manager) to install Grunt and the Grunt command
line interface.

Grunt needs to be installed as an npm dependency of your project. It cannot be
installed globally, the way most npm packages can. In order to do this, we will need
to create a packages.json file in the root project. Open up a Command Prompt, and
navigate to the root directory of your Brackets project. Then simply type:

npm init

And follow the prompts. You can pretty much leave all of the options as their
default, and always go back to edit the packages.json file that is created from this
step, should you need to tweak any changes. With the package initialization step
complete, we can now install Grunt as follows:

npm install grunt –save-dev

The -save-dev option will install a local version of Grunt in the project directory.
This is done so that multiple projects on your machine can use different versions
of Grunt. We will also need the grunt-typescript package, as well as the grunt-
contrib-watch package. These can be installed with the following npm commands:

Npm install grunt-typescript –save-dev

Npm install grunt-contrib-watch –save-dev.

Lastly, we will need a GruntFile.js as the entry point for Grunt. Using Brackets,
create a new file, save it as GruntFile.js, and enter the following JavaScript. Note
that we are creating a JavaScript file here, not a TypeScript file. You can find a copy
of this file in the sample source code that accompanies this chapter.

module.exports = function (grunt) {
 grunt.loadNpmTasks('grunt-typescript');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 typescript: {
 base: {
 src: ['**/*.ts'],
 options: {
 module: 'commonjs',
 target: 'es5',

http://nodejs.org/

TypeScript – Tools and Framework Options

[32]

 sourceMap: true
 }
 }
 },
 watch: {
 files: '**/*.ts',
 tasks: ['typescript']
 }
 });

 //grunt.registerTask('default', ['typescript']);
 grunt.registerTask('default', ['watch']);
}

This GruntFile.js is necessary to setup all of the Grunt tasks. It is a simple
function that Grunt uses to initialize the Grunt environment, and specify the Grunt
commands. The first two lines of the function are loading grunt-typescript and
grunt-contrib-watch tasks, and then runs the grunt.initConfig function with a
configuration section. This configuration section has a pkg property, a typescript
property and a watch property. The pkg property is set by reading the package.
json file that we created earlier as part of the npm init step.

The typescript property has a base property, in which we are specifying that the
source should be '**/*.ts' – in other words, all .ts files in any subdirectory. We
are also specifying some TypeScript options – using 'commonjs' modules instead of
'amd' modules, and generating sourcemaps.

The watch property has two sub-properties. The files property specifies to watch
for any .ts files in our source tree, and the tasks array specifies that we should kick
off the TypeScript command once a file has been changed. Finally we call grunt.
registerTask, specifying that the default task is to watch for file changes. Grunt
will run in the background watching for saved files, and if found, will execute the
TypeScript task.

We can now run Grunt from the command line. Make sure that you are in the
Brackets project base directory, and fire up Grunt:

Grunt

Chapter 1

[33]

Open up your app.ts file, make a small change (add a space or something), and then
hit Ctrl + S to save. Now check back on the output from the Grunt command line.
You should see something like this:

>> File "app.ts" changed.

Running "typescript:base" (typescript) task

2 files created. js: 1 file, map: 1 file, declaration: 0 files (861ms)

Done, without errors.

Completed in 1.665s at Fri Oct 10 2014 11:24:47 GMT+0800 (W. Australia
Standard Time) - Waiting...

This command line output is confirmation that the Grunt watch task has identified
app.ts has having changed, run the TypeScript task, created two files, and is now
waiting for the next file to change. Flicking back to Brackets, we should now see the
app.js file created by Grunt in the Brackets file pane.

Debugging in Chrome
Since Brackets is just being used as an editor, we will need to debug our applications
using the standard Chrome development tools. One option that we specified in our
GruntFile.js for TypeScript was to turn on sourcemaps (options { sourceMap
: true }). With this option, Chrome – and other browsers – can map the running
JavaScript back to the source TypeScript file. This means that you can set the
debugger breakpoints in your TypeScript file, and walk through your TypeScript file
while debugging.

To debug our sample app, firstly get the index.html page running in Live Preview
mode, and hit F12 to bring up the development tools. Chrome has a number of tools
available for developers, including Network, Console, and Elements to inspect the
DOM. Click on the Sources tab and hit Ctrl + P to open a file. Scroll down to app.ts,
and hit Enter. Put a breakpoint on line 9 (var myClass = new MyClass()),
and then re-load the page.

TypeScript – Tools and Framework Options

[34]

Chrome should pause the page in debugger mode as follows:

Brackets debugging TypeScript using Chrome development tools.

You can now use all of the Chrome debugging tools to your heart's content.

Summary
In this chapter we have had a quick look at what TypeScript is, and what benefits it
can bring to the JavaScript development experience. We also looked at setting up a
development environment using two popular commercial IDEs, and one open-source
development environment. Now that we have a development environment setup, we
can start looking at the TypeScript language itself in a bit more detail. We will start
with types, move on to variables, and then discuss functions in the next chapter.

[35]

Types, Variables and
Function Techniques

TypeScript introduces strong typing to JavaScript through a simple syntax, referred
to by Anders Hejlsberg as "syntactic sugar".

This chapter is an introduction to the syntax used in the TypeScript language to
apply strong typing to JavaScript. It is intended for readers that have not used
TypeScript before, and covers the transition from standard JavaScript to TypeScript.
If you already have experience with TypeScript, and have a good understanding of
the topics listed below, then by all means have a quick read through, or skip to the
next chapter.

We will cover the following topics in this chapter:

• Basic types and type syntax: strings, numbers, and booleans
• Inferred typing and duck-typing
• Arrays and enums
• The any type and explicit casting
• Functions and anonymous functions
• Optional and default function parameters
• Argument arrays
• Function callbacks and function signatures
• Function scoping rules and overloads

Types, Variables and Function Techniques

[36]

Basic types
JavaScript variables can hold a number of data types, including numbers, strings,
arrays, objects, functions, and more. The type of an object in JavaScript is determined
by its assignment – so if a variable has been assigned a string value, then it will be of
type string. This can, however, introduce a number of problems in our code.

JavaScript is not strongly typed
As we saw in Chapter 1, TypeScript – Tools and Framework Options, JavaScript objects
and variables can be changed or reassigned on the fly. As an example of this,
consider the following JavaScript code:

var myString = "test";
var myNumber = 1;
var myBoolean = true;

We start by defining three variables, named myString, myNumber and myBoolean.
The myString variable is set to a string value of "test", and as such will be of type
string. Similarly, myNumber is set to the value of 1, and is therefore of type number,
and myBoolean is set to true, making it of type boolean. Now let's start assigning
these variables to each other, as follows:

myString = myNumber;
myBoolean = myString;
myNumber = myBoolean;

We start by setting the value of myString to the value of myNumber (which is the
numeric value of 1). We then set the value of myBoolean to the value of myString,
(which would now be the numeric value of 1). Finally, we set the value of myNumber
to the value of myBoolean. What is happening here, is that even though we started
out with three different types of variables—a string, a number, and a boolean—we
are able to reassign any of these variables to one of the other types. We can assign a
number to a string, a string to boolean, or a boolean to a number.

While this type of assignment in JavaScript is legal, it shows that the JavaScript
language is not strongly typed. This can lead to unwanted behaviour in our code.
Parts of our code may be relying on the fact that a particular variable is holding a
string, and if we inadvertently assign a number to this variable, our code may start
to break in unexpected ways.

Chapter 2

[37]

TypeScript is strongly typed
TypeScript, on the other hand, is a strongly typed language. Once you have declared
a variable to be of type string, you can only assign string values to it. All further
code that uses this variable must treat it as though it has a type of string. This helps
to ensure that code that we write will behave as expected. While strong typing may
not seem to be of any use with simple strings and numbers—it certainly does become
important when we apply the same rules to objects, groups of objects, function
definitions and classes. If you have written a function that expects a string as the first
parameter and a number as the second, you cannot be blamed, if someone calls your
function with a boolean as the first parameter and something else as the second.

JavaScript programmers have always relied heavily on documentation to understand
how to call functions, and the order and type of the correct function parameters.
But what if we could take all of this documentation and include it within the IDE?
Then, as we write our code, our compiler could point out to us—automatically—that
we were using objects and functions in the wrong way. Surely this would make us
more efficient, more productive programmers, allowing us to generating code with
fewer errors?

TypeScript does exactly that. It introduces a very simple syntax to define the type
of a variable or a function parameter to ensure that we are using these objects,
variables, and functions in the correct manner. If we break any of these rules, the
TypeScript compiler will automatically generate errors, pointing us to the lines of
code that are in error.

This is how TypeScript got its name. It is JavaScript with strong typing - hence
TypeScript. Let's take a look at this very simple language syntax that enables the
"Type" in TypeScript.

Type syntax
The TypeScript syntax for declaring the type of a variable is to include a colon (:),
after the variable name, and then indicate its type. Consider the following
TypeScript code:

var myString : string = "test";
var myNumber: number = 1;
var myBoolean : boolean = true;

www.allitebooks.com

http://www.allitebooks.org

Types, Variables and Function Techniques

[38]

This code snippet is the TypeScript equivalent of our preceding JavaScript code, and
shows an example of the TypeScript syntax for declaring a type for the myString
variable. By including a colon and then the keyword string (: string), we are
telling the compiler that the myString variable is of type string. Similarly, the
myNumber variable is of type number, and the myBoolean variable is of type boolean.
TypeScript has introduced the string, number and boolean keywords
for each of these basic JavaScript types.

If we attempt to assign a value to a variable that is not of the same type, the TypeScript
compiler will generate a compile-time error. Given the variables declared in the
preceding code, the following TypeScript code will generate some compile errors:

myString = myNumber;
myBoolean = myString;
myNumber = myBoolean;

TypeScript build errors when assigning incorrect types

The TypeScript compiler is generating compile errors, because we are attempting to
mix these basic types. The first error is generated by the compiler because we cannot
assign a number value to a variable of type string. Similarly, the second compile
error indicates that we cannot assign a string value to a variable of type boolean.
Again, the third error is generated because we cannot assign a boolean value to a
variable of type number.

Chapter 2

[39]

The strong typing syntax that the TypeScript language introduces, means that we
need to ensure that the types on the left-hand side of an assignment operator (=)
are the same as the types on the right-hand side of the assignment operator.

To fix the preceding TypeScript code, and remove the compile errors, we would
need to do something similar to the following:

myString = myNumber.toString();
myBoolean = (myString === "test");
if (myBoolean) {
 myNumber = 1;
}

Our first line of code has been changed to call the .toString() function on the
myNumber variable (which is of type number), in order to return a value that is of
type string. This line of code, then, does not generate a compile error because
both sides of the equal sign are of the same type.

Our second line of code has also been changed so that the right hand side of the
assignment operator returns the result of a comparison, myString === "test",
which will return a value of type boolean. The compiler will therefore allow this
code, because both sides of the assignment resolve to a value of type boolean.

The last line of our code snippet has been changed to only assign the value 1 (which
is of type number) to the myNumber variable, if the value of the myBoolean variable
is true.

Anders Hejlsberg describes this feature as "syntactic sugar". With a little sugar on
top of comparable JavaScript code, TypeScript has enabled our code to conform to
strong typing rules. Whenever you break these strong typing rules, the compiler
will generate errors for your offending code.

Inferred typing
TypeScript also uses a technique called inferred typing, in cases where you do not
explicitly specify the type of your variable. In other words, TypeScript will find the
first usage of a variable within your code, figure out what type the variable is first
initialized to, and then assume the same type for this variable in the rest of your
code block. As an example of this, consider the following code:

var myString = "this is a string";
var myNumber = 1;
myNumber = myString;

Types, Variables and Function Techniques

[40]

We start by declaring a variable named myString, and assign a string value to it.
TypeScript identifies that this variable has been assigned a value of type string,
and will, therefore, infer any further usages of this variable to be of type string. Our
second variable, named myNumber has a number assigned to it. Again, TypeScript is
inferring the type of this variable to be of type number. If we then attempt to assign
the myString variable (of type string) to the myNumber variable (of type number) in
the last line of code, TypeScript will generate a familiar error message:

error TS2011: Build: Cannot convert 'string' to 'number'

This error is generated because of TypeScript's inferred typing rules.

Duck-typing
TypeScript also uses a method called duck-typing for more complex variable types.
Duck-typing means that if it looks like a duck, and quacks like a duck, then it
probably is a duck. Consider the following TypeScript code:

var complexType = { name: "myName", id: 1 };
complexType = { id: 2, name: "anotherName" };

We start with a variable named complexType that has been assigned a simple
JavaScript object with a name and id property. On our second line of code, we can
see that we are re-assigning the value of this complexType variable to another object
that also has an id and a name property. The compiler will use duck-typing in this
instance to figure out whether this assignment is valid. In other words, if an object
has the same set of properties as another object, then they are considered to be of
the same type.

To further illustrate this point, let's see how the compiler reacts if we attempt to assign
an object to our complexType variable that does not conform to this duck-typing:

var complexType = { name: "myName", id: 1 };
complexType = { id: 2 };
complexType = { name: "anotherName" };
complexType = { address: "address" };

The first line of this code snippet defines our complexType variable, and assigns to
it an object that contains both an id and name property. From this point, TypeScript
will use this inferred type on any value we attempt to assign to the complexType
variable. On our second line of code, we are attempting to assign a value that has an
id property but not the name property. On the third line of code, we again attempt
to assign a value that has a name property, but does not have an id property. On the
last line of our code snippet, we have completely missed the mark. Compiling this
code will generate the following errors:

Chapter 2

[41]

error TS2012: Build: Cannot convert '{ id: number; }' to '{ name: string;
id: number; }':

error TS2012: Build: Cannot convert '{ name: string; }' to '{ name:
string; id: number; }':

error TS2012: Build: Cannot convert '{ address: string; }' to '{ name:
string; id: number; }':

As we can see from the error messages, TypeScript is using duck-typing to ensure
type safety. In each message, the compiler gives us clues as to what is wrong with the
offending code – by explicitly stating what it is expecting. The complexType variable
has both an id and a name property. To assign a value to the complexType variable,
then, this value will need to have both an id and a name property. Working through
each of these errors, TypeScript is explicitly stating what is wrong with each line
of code.

Note that the following code will not generate any error messages:

var complexType = { name: "myName", id: 1 };
complexType = { name: "name", id: 2, address: "address" };

Again, our first line of code defines the complexType variable, as we have seen
previously, with an id and a name property. Now, look at the second line of this
example. The object we are using actually has three properties: name, id, and address.
Even though we have added a new address property, the compiler will only check
to see if our new object has both an id and a name. Because our new object has these
properties, and will therefore match the original type of the variable, TypeScript will
allow this assignment through duck-typing.

Inferred typing and duck-typing are powerful features of the TypeScript
language – bringing strong typing to our code, without the need to use explicit
typing, that is, a colon : and then the type specifier syntax.

Arrays
Besides the base JavaScript types of string, number, and boolean, TypeScript has two
other data types: Arrays and enums. Let's look at the syntax for defining arrays.

An array is simply marked with the [] notation, similar to JavaScript, and each array
can be strongly typed to hold a specific type as seen in the code below:

var arrayOfNumbers: number[] = [1, 2, 3];
arrayOfNumbers = [3, 4, 5];
arrayOfNumbers = ["one", "two", "three"];

Types, Variables and Function Techniques

[42]

On the first line of this code snippet, we are defining an array named arrayOfNumbers,
and further specify that each element of this array must be of type number. The second
line then reassigns this array to hold some different numerical values.

The last line of this snippet, however, will generate the following error message:

error TS2012: Build: Cannot convert 'string[]' to 'number[]':

This error message is warning us that the variable arrayOfNumbers is strongly
typed to only accept values of type number. Our code tries to assign an array of
strings to this array of numbers, and is therefore, generating a compile error.

The any type
All this type checking is well and good, but JavaScript is flexible enough to allow
variables to be mixed and matched. The following code snippet is actually valid
JavaScript code:

var item1 = { id: 1, name: "item 1" };
item1 = { id: 2 };

Our first line of code assigns an object with an id property and a name property to
the variable item1. The second line then re-assigns this variable to an object that has
an id property but not a name property. Unfortunately, as we have seen previously,
TypeScript will generate a compile time error for the preceding code:

error TS2012: Build: Cannot convert '{ id: number; }' to '{ id: number;
name: string; }'

TypeScript introduces the any type for such occasions. Specifying that an object
has a type of any in essence relaxes the compiler's strict type checking. The
following code shows how to use the any type:

var item1 : any = { id: 1, name: "item 1" };
item1 = { id: 2 };

Note how our first line of code has changed. We specify the type of the variable
item1 to be of type : any so that our code will compile without errors. Without the
type specifier of : any, the second line of code, would normally generate an error.

Explicit casting
As with any strongly typed language, there comes a time where you need to
explicitly specify the type of an object. This concept will be expanded upon more
thoroughly in the next chapter, but it is worthwhile to make a quick note of explicit
casting here. An object can be cast to the type of another by using the < > syntax.

Chapter 2

[43]

This is not a cast in the strictest sense of the word; it is more of
an assertion that is used at runtime by the TypeScript compiler.
Any explicit casting that you use will be compiled away in the
resultant JavaScript and will not affect the code at runtime.

Let's modify our previous code snippet to use explicit casting:

var item1 = <any>{ id: 1, name: "item 1" };
item1 = { id: 2 };

Note that on the first line of this snippet, we have now replaced the : any type
specifier on the left hand side of the assignment, with an explicit cast of <any> on
the right hand side. This snippet of code is telling the compiler to explicitly cast, or
to explicitly treat the { id: 1, name: "item 1" } object on the right-hand side
as a type of any. So the item1 variable, therefore, also has the type of any (due to
TypeScript's inferred typing rules). This then allows us to assign an object with
only the { id: 2 } property to the variable item1 on the second line of code. This
technique of using the < > syntax on the right hand side of an assignment, is called
explicit casting.

While the any type is a necessary feature of the TypeScript language – its usage should
really be limited as much as possible. It is a language shortcut that is necessary to
ensure compatibility with JavaScript, but over-use of the any type will quickly lead to
coding errors that will be difficult to find. Rather than using the type any, try to figure
out the correct type of the object you are using, and then use this type instead. We use
an acronym within our programming teams: S.F.I.A.T. (pronounced sviat or sveat).
Simply Find an Interface for the Any Type. While this may sound silly – it brings
home the point that the any type should always be replaced with an interface – so
simply find it. An interface is a way of defining custom types in TypeScript, and
we will cover interfaces in the next chapter. Just remember that by actively trying
to define what an object's type should be, we are building strongly typed code,
and therefore protecting ourselves from future coding errors and bugs.

Enums
Enums are a special type that has been borrowed from other languages such as C#,
and provide a solution to the problem of special numbers. An enum associates a
human-readable name for a specific number. Consider the following code:

enum DoorState {
 Open,
 Closed,
 Ajar
}

Types, Variables and Function Techniques

[44]

In this code snippet, we have defined an enum called DoorState to represent the state
of a door. Valid values for this door state are Open, Closed, or Ajar. Under the hood
(in the generated JavaScript), TypeScript will assign a numeric value to each of these
human-readable enum values. In this example, the DoorState.Open enum value
will equate to a numeric value of 0. Likewise, the enum value DoorState.Closed
will be equate to the numeric value of 1, and the DoorState.Ajar enum value will
equate to 2. Let's have a quick look at how we would use these enum values:

window.onload = () => {
 var myDoor = DoorState.Open;
 console.log("My door state is " + myDoor.toString());
};

The first line within the window.onload function creates a variable named myDoor,
and sets its value to DoorState.Open. The second line simply logs the value of
myDoor to the console. The output of this console.log function would be:

My door state is 0

This clearly shows that the TypeScript compiler has substituted the enum value of
DoorState.Open with the numeric value 0. Now let's use this enum in a slightly
different way:

window.onload = () => {
 var openDoor = DoorState["Closed"];
 console.log("My door state is " + openDoor.toString());
};

This code snippet uses a string value of "Closed" to lookup the enum type, and assign
the resulting enum value to the openDoor variable. The output of this code would be:

My door state is 1

This sample clearly shows that the enum value of DoorState.Closed is the same
as the enum value of DoorState["Closed"], because both variants resolve to the
numeric value of 1. Finally, let's have a look at what happens when we reference an
enum using an array type syntax:

window.onload = () => {
 var ajarDoor = DoorState[2];
 console.log("My door state is " + ajarDoor.toString());
};

Chapter 2

[45]

Here, we assign the variable openDoor to an enum value based on the 2nd index
value of the DoorState enum. The output of this code, though, is surprising:

My door state is Ajar

You may have been expecting the output to be simply 2, but here we are getting the
string "Ajar" – which is a string representation of our original enum name. This
is actually a neat little trick – allowing us to access a string representation of our
enum value. The reason that this is possible is down to the JavaScript that has been
generated by the TypeScript compiler. Let's have a look, then, at the closure that the
TypeScript compiler has generated:

var DoorState;
(function (DoorState) {
 DoorState[DoorState["Open"] = 0] = "Open";
 DoorState[DoorState["Closed"] = 1] = "Closed";
 DoorState[DoorState["Ajar"] = 2] = "Ajar";
})(DoorState || (DoorState = {}));

This strange looking syntax is building an object that has a specific internal structure.
It is this internal structure that allows us to use this enum in the various ways
that we have just explored. If we interrogate this structure while debugging our
JavaScript, we will see the internal structure of the DoorState object is as follows:

DoorState
{...}
 [prototype]: {...}
 [0]: "Open"
 [1]: "Closed"
 [2]: "Ajar"
 [prototype]: []
 Ajar: 2
 Closed: 1
 Open: 0

The DoorState object has a property called "0", which has a string value of "Open".
Unfortunately, in JavaScript the number 0 is not a valid property name, so we cannot
access this property by simply using DoorState.0. Instead, we must access this
property using either DoorState[0] or DoorState["0"]. The DoorState object
also has a property named Open, which is set to the numeric value 0. The word
Open IS a valid property name in JavaScript, so we can access this property using
DoorState["Open"], or simply DoorState.Open, which equate to the same property
in JavaScript.

Types, Variables and Function Techniques

[46]

While the underlying JavaScript can be a little confusing, all we need to remember
about enums is that they are a handy way of defining an easily remembered,
human-readable name to a special number. Using human-readable enums, instead
of just scattering various special numbers around in our code, also makes the intent
of the code clearer. Using an application wide value named DoorState.Open or
DoorState.Closed is far simpler than remembering to set a value to 0 for Open, 1
for Closed, and 3 for ajar. As well as making our code more readable, and more
maintainable, using enums also protects our code base whenever these special
numeric values change – because they are all defined in one place.

One last note on enums – we can set the numeric value manually, if needs be:

enum DoorState {
 Open = 3,
 Closed = 7,
 Ajar = 10
}

Here, we have overridden the default values of the enum to set DoorState.Open to
3, DoorState.Closed to 7, and DoorState.Ajar to 10.

Const enums
With the release of TypeScript 1.4, we are also able to define const enums as follows:

const enum DoorStateConst {
 Open,
 Closed,
 Ajar
}

var myState = DoorStateConst.Open;

These types of enums have been introduced largely for performance reasons,
and the resultant JavaScript will not contain the full closure definition for the
DoorStateConst enum as we saw previously. Let's have a quick look at the
JavaScript that is generated from this DoorStateConst enum:

var myState = 0 /* Open */;

Note how we do not have a full JavaScript closure for the DoorStateConstenum at
all. The compiler has simply resolved the DoorStateConst.Open enum to its internal
value of 0, and removed the const enum definition entirely.

Chapter 2

[47]

With const enums, we therefore cannot reference the internal string value of an
enum, as we did in our previous code sample. Consider the following example:

// generates an error
console.log(DoorStateConst[0]);
// valid usage
console.log(DoorStateConst["Open"]);

The first console.log statement will now generate a compile time error – as we
do not have the full closure available with the property of [0] for our const enum.
The second usage of this const enum is valid, however, and will generate the
following JavaScript:

console.log(0 /* "Open" */);

When using const enums, just keep in mind that the compiler will strip away all
enum definitions and simply substitute the numeric value of the enum directly
into our JavaScript code.

Functions
JavaScript defines functions using the function keyword, a set of braces, and then
a set of curly braces. A typical JavaScript function would be written as follows:

function addNumbers(a, b) {
 return a + b;
}

var result = addNumbers(1, 2);
var result2 = addNumbers("1", "2");

This code snippet is fairly self-explanatory; we have defined a function named
addNumbers that takes two variables and returns their sum. We then invoke this
function, passing in the values of 1 and 2. The value of the variable result would
then be 1 + 2, which is 3. Now have a look at the last line of code. Here, we are
invoking the addNumbers function, passing in two strings as arguments, instead of
numbers. The value of the variable result2 would then be a string, "12". This string
value seems like it may not be the desired result, as the name of the function
is addNumbers.

www.allitebooks.com

http://www.allitebooks.org

Types, Variables and Function Techniques

[48]

Copying the preceding code into a TypeScript file would not generate any errors,
but let's insert some type rules to the preceding JavaScript to make it more robust:

function addNumbers(a: number, b: number): number {
 return a + b;
};

var result = addNumbers(1, 2);
var result2 = addNumbers("1", "2");

In this TypeScript code, we have added a :number type to both of the parameters
of the addNumbers function (a and b), and we have also added a :number type just
after the () braces. Placing a type descriptor here means that the return type of the
function itself is strongly typed to return a value of type number. In TypeScript, the
last line of code, however, will cause a compilation error:

error TS2082: Build: Supplied parameters do not match any signature of
call target:

This error message is generated because we have explicitly stated that the function
should accept only numbers for both of the arguments a and b, but in our offending
code, we are passing two strings. The TypeScript compiler, therefore, cannot match the
signature of a function named addNumbers that accepts two arguments of type string.

Anonymous functions
The JavaScript language also has the concept of anonymous functions. These are
functions that are defined on the fly and don't specify a function name. Consider
the following JavaScript code:

var addVar = function(a, b) {
 return a + b;
};

var result = addVar(1, 2);

This code snippet defines a function that has no name and adds two values.
Because the function does not have a name, it is known as an anonymous function.
This anonymous function is then assigned to a variable named addVar. The addVar
variable, then, can then be invoked as a function with two parameters, and the
return value will be the result of executing the anonymous function. In this case,
the variable result will have a value of 3.

Chapter 2

[49]

Let's now rewrite the preceding JavaScript function in TypeScript, and add some
type syntax, in order to ensure that the function only accepts two arguments of
type number, and returns a value of type number:

var addVar = function(a: number, b: number): number {
 return a + b;
}

var result = addVar(1, 2);
var result2 = addVar("1", "2");

In this code snippet, we have created an anonymous function that accepts only
arguments of type number for the parameters a and b, and also returns a value of
type number. The types for both the a and b parameters, as well as the return type
of the function, are now using the :number syntax. This is another example of the
simple "syntactic sugar" that TypeScript injects into the language. If we compile
this code, TypeScript will reject the code on the last line, where we try to call our
anonymous function with two string parameters:

error TS2082: Build: Supplied parameters do not match any signature of
call target:

Optional parameters
When we call a JavaScript function that has is expecting parameters, and we do not
supply these parameters, then the value of the parameter within the function will
be undefined. As an example of this, consider the following JavaScript code:

var concatStrings = function(a, b, c) {
 return a + b + c;
}

console.log(concatStrings("a", "b", "c"));
console.log(concatStrings("a", "b"));

Here, we have defined a function called concatStrings that takes three parameters,
a, b, and c, and simply returns the sum of these values. If we call this function with
all three parameters, as seen in the second last line of this snipped, we will end
up with the string "abc" logged to the console. If, however, we only supply two
parameters, as seen in the last line of this snippet, the string "abundefined" will
be logged to the console. Again, if we call a function and do not supply a parameter,
then this parameter, c in our case, will be simply undefined.

Types, Variables and Function Techniques

[50]

TypeScript introduces the question mark ? syntax to indicate optional parameters.
Consider the following TypeScript function definition:

var concatStrings = function(a: string, b: string, c?: string) {
 return a + b + c;
}

console.log(concatStrings("a", "b", "c"));
console.log(concatStrings("a", "b"));
console.log(concatStrings("a"));

This is a strongly typed version of the original concatStrings JavaScript function
that we were using previously. Note the addition of the ? character in the syntax for
the third parameter: c?: string. This indicates that the third parameter is optional,
and therefore, all of the preceding code will compile cleanly, except for the last line.
The last line will generate an error:

error TS2081: Build: Supplied parameters do not match any signature of
call target.

This error is generated because we are attempting to call the concatStrings
function with only a single parameter. Our function definition, though, requires
at least two parameters, with only the third parameter being optional.

The optional parameters must be the last parameters in the function
definition. You can have as many optional parameters as you want, as
long as non-optional parameters precede the optional parameters.

Default parameters
A subtle variant on the optional parameter function definition, allows us to specify
the default value of a parameter if it is not passed in as an argument from the calling
code. Let's modify our preceding function definition to use an optional parameter:

var concatStrings = function(a: string, b: string, c: string = "c") {
 return a + b + c;
}

console.log(concatStrings("a", "b", "c"));
console.log(concatStrings("a", "b"));

Chapter 2

[51]

This function definition has now dropped the ? optional parameter syntax, but
instead has assigned a value of "c" to the last parameter: c:string = "c". By using
default parameters, if we do not supply a value for the final parameter named c,
the concatStrings function will substitute the default value of "c" instead. The
argument c, therefore, will not be undefined. The output of the last two lines of
code will both be "abc".

Note that using the default parameter syntax will automatically
make the parameter optional.

The arguments variable
The JavaScript language allows a function to be called with a variable number
of arguments. Every JavaScript function has access to a special variable, named
arguments, that can be used to retrieve all arguments that have been passed into
the function. As an example of this, consider the following JavaScript code:

function testParams() {
 if (arguments.length > 0) {
 for (var i = 0; i < arguments.length; i++) {
 console.log("Argument " + i + " = " + arguments[i]);
 }
 }
}

testParams(1, 2, 3, 4);
testParams("first argument");

In this code snippet, we have defined a function name testParams that does not
have any named parameters. Note, though, that we can use the special variable,
named arguments, to test whether the function was called with any arguments. In
our sample, we can simply loop through the arguments array, and log the value of
each argument to the console, by using an array indexer : arguments[i]. The output
of the console.log calls are as follows:

Argument 0 = 1

Argument 1 = 2

Argument 2 = 3

Argument 3 = 4

Argument 0 = first argument

Types, Variables and Function Techniques

[52]

So, how do we express a variable number of function parameters in TypeScript? The
answer is to use what are called rest parameters, or the three dots (…) syntax. Here is
the equivalent testParams function, expressed in TypeScript:

function testParams(...argArray: number[]) {
 if (argArray.length > 0) {
 for (var i = 0; i < argArray.length; i++) {
 console.log("argArray " + i + " = " + argArray[i]);
 console.log("arguments " + i + " = " + arguments[i]);
 }
 }

}

testParams(1);
testParams(1, 2, 3, 4);
testParams("one", "two");

Note the use of the …argArray: number[] syntax for our testParams function. This
syntax is telling the TypeScript compiler that the function can accept any number of
arguments. This means that our usages of this function, i.e. calling the function with
either testParams(1) or testParams(1,2,3,4), will both compile correctly. In this
version of the testParams function, we have added two console.log lines, just to
show that the arguments array can be accessed by either the named rest parameter,
argArray[i], or through the normal JavaScript array, arguments[i].

The last line in this sample will, however, generate a compile error, as we have
defined the rest parameter to only accept numbers, and we are attempting to call
the function with strings.

The the subtle difference between using argArray and arguments
is the inferred type of the argument. Since we have explicitly specified
that argArray is of type number, TypeScript will treat any item of the
argArray array as a number. However, the internal arguments array
does not have an inferred type, and so will be treated as the any type.

We can also combine normal parameters along with rest parameters in a function
definition, as long as the rest parameters are the last to be defined in the parameter
list, as follows:

function testParamsTs2(arg1: string,
 arg2: number, ...ArgArray: number[]) {
}

Chapter 2

[53]

Here, we have two normal parameters named arg1 and arg2 and then an argArray
rest parameter. Mistakenly placing the rest parameter at the beginning of the
parameter list will generate a compile error.

Function callbacks
One of the most powerful features of JavaScript–and in fact the technology that Node
was built on–is the concept of callback functions. A callback function is a function
that is passed into another function. Remember that JavaScript is not strongly typed,
so a variable can also be a function. This is best illustrated by having a look at some
JavaScript code:

function myCallBack(text) {
 console.log("inside myCallback " + text);
}

function callingFunction(initialText, callback) {
 console.log("inside CallingFunction");
 callback(initialText);
}

callingFunction("myText", myCallBack);

Here, we have a function named myCallBack that takes a parameter and logs its
value to the console. We then define a function named callingFunction that
takes two parameters: initialText and callback. The first line of this funciton
simply logs "inside CallingFunction" to the console. The second line of the
callingFunction is the interesting bit. It assumes that the callback argument
is in fact a function, and invokes it. It also passes the initialText variable to the
callback function. If we run this code, we will get two messages logged to the
console, as follows:

inside CallingFunction

inside myCallback myText

But what happens if we do not pass a function as a callback? There is nothing in the
preceding code that signals to us that the second parameter of callingFunction
must be a function. If we inadvertently called the callingFunction function with
a string, instead of a function as the second parameter, as follows:

callingFunction("myText", "this is not a function");

We would get a JavaScript runtime error:

0x800a138a - JavaScript runtime error: Function expected

Types, Variables and Function Techniques

[54]

Defensive minded programmers, however, would first check whether the callback
parameter was in fact a function before invoking it, as follows:

function callingFunction(initialText, callback) {
 console.log("inside CallingFunction");
 if (typeof callback === "function") {
 callback(initialText);
 } else {
 console.log(callback + " is not a function");
 }
}

callingFunction("myText", "this is not a function");

Note the third line of this code snippet, where we check the type of the callback
variable before invoking it. If it is not a function, we then log a message to the
console. On the last line of this snippet, we are executing the callingFunction,
but this time passing a string as the second parameter.

The output of the code snippet would be:

inside CallingFunction

this is not a function is not a function

When using function callbacks, then, JavaScript programmers need to do two things;
firstly, understand which parameters are in fact callbacks and secondly, code around
the invalid use of callback functions.

Function signatures
The TypeScript "syntactic sugar" that enforces strong typing, is not only intended for
variables and types, but for function signatures as well. What if we could document
our JavaScript callback functions in code, and then warn users of our code when they
are passing the wrong type of parameter to our functions ?

TypeScript does this through function signatures. A function signature introduces a
fat arrow syntax, () =>, to define what the function should look like. Let's re-write
the preceding JavaScript sample in TypeScript:

function myCallBack(text: string) {
 console.log("inside myCallback " + text);
}

Chapter 2

[55]

function callingFunction(initialText: string,
 callback: (text: string) => void)
{
 callback(initialText);
}

callingFunction("myText", myCallBack);
callingFunction("myText", "this is not a function");

Our first function definition, myCallBack now strongly types the text parameter
to be of type string. Our callingFunction function has two parameters;
initialText, which is of type string, and callback, which now has the new
function signature syntax. Let's look at this function signature more closely:

callback: (text: string) => void

What this function definition is saying, is that the callback argument is typed (by
the : syntax) to be a function, using the fat arrow syntax () =>. Additionally, this
function takes a parameter named text that is of type string. To the right of the
fat arrow syntax, we can see a new TypeScript basic type, called void. Void is a
keyword to denote that a function does not return a value.

So, the callingFunction function will only accept, as its second argument, a
function that takes a single string parameter and returns nothing. Compiling the
preceding code will correctly highlight an error in the last line of the code snippet,
where we passing a string as the second parameter, instead of a callback function:

error TS2082: Build: Supplied parameters do not match any signature of
call target:
Type '(text: string) => void' requires a call signature, but type
'String' lacks one

Given the preceding function signature for the callback function, the following
code would also generate compile time errors:

function myCallBackNumber(arg1: number) {
 console.log("arg1 = " + arg1);
}

callingFunction("myText", myCallBackNumber);

Here, we are defining a function named myCallBackNumber, that takes a number
as its only parameter. When we attempt to compile this code, we will get an error
message indicating that the callback parameter, which is our myCallBackNumber
function, also does not have the correct function signature:

Call signatures of types 'typeof myCallBackNumber' and '(text: string) =>
void' are incompatible.

Types, Variables and Function Techniques

[56]

The function signature of myCallBackNumber would actually be (arg1:number) =>
void, instead of the required (text: string) => void, hence the error.

In function signatures, the parameter name (arg1 or text) does not
need to be the same. Only the number of parameters, their types, and
the return type of the function need to be the same.

This is a very powerful feature of TypeScript — defining in code what the
signatures of functions should be, and warning users when they do not call a
function with the correct parameters. As we saw in our introduction to TypeScript,
this is most significant when we are working with third-party libraries. Before we are
able to use third-party functions, classes, or objects in TypeScript, we need to define
what their function signatures are. These function definitions are put into a special
type of TypeScript file, called a declaration file, and saved with a .d.ts extension.
We will take an in-depth look at declaration files in Chapter 4, Writing and Using
Declaration Files.

Function callbacks and scope
JavaScript uses lexical scoping rules to define the valid scope of a variable.
This means that the value of a variable is defined by its location within the source
code. Nested functions have access to variables that are defined in their parent
scope. As an example of this, consider the following TypeScript code:

function testScope() {
 var testVariable = "myTestVariable";
 function print() {
 console.log(testVariable);
 }
}

console.log(testVariable);

This code snippet defines a function named testScope. The variable testVariable
is defined within this function. The print function is a child function of testScope,
so it has access to the testVariable variable. The last line of the code, however, will
generate a compile error, because it is attempting to use the variable testVariable,
which is lexically scoped to be valid only inside the body of the testScope function:

error TS2095: Build: Could not find symbol 'testVariable'.

Simple, right? A nested function has access to variables depending on its location
within the source code. This is all well and good, but in large JavaScript projects, there
are many different files and many areas of the code are designed to be re-usable.

Chapter 2

[57]

Let's take a look at how these scoping rules can become a problem. For this sample,
we will use a typical callback scenario—using jQuery to execute an asynchronous
call to fetch some data. Consider the following TypeScript code:

var testVariable = "testValue";

function getData() {
 var testVariable_2 = "testValue_2";
 $.ajax(
 {
 url: "/sample_json.json",
 success: (data, status, jqXhr) => {
 console.log("success : testVariable is "
 + testVariable);
 console.log("success : testVariable_2 is"
 + testVariable_2);
 },
 error: (message, status, stack) => {
 alert("error " + message);
 }
 }
);
}

getData();

In this code snippet, we are defining a variable named testVariable and setting its
value. We then define a function called getData. The getData function sets another
variable called testVariable_2, and then calls the jQuery $.ajax function. The
$.ajax function is configured with three properties: url, success, and error. The
url property is a simple string that points to a sample_json.json file in our project
directory. The success property is an anonymous function callback, that simply logs
the values of testVariable and testVariable_2 to the console. Finally, the error
property is also an anonymous function callback, that simply pops up an alert.

This code runs as expected, and the success function will log the following results to
the console:

success : testVariable is :testValue

success : testVariable_2 is :testValue_2

Types, Variables and Function Techniques

[58]

So far so good. Now, let's assume that we are trying to refactor the preceding code,
as we are doing quite a few similar $.ajax calls, and want to reuse the success
callback function elsewhere. We can easily switch out this anonymous function,
and create a named function for our success callback, as follows:

var testVariable = "testValue";

function getData() {
 var testVariable_2 = "testValue_2";
 $.ajax(
 {
 url: "/sample_json.json",
 success: successCallback,
 error: (message, status, stack) => {
 alert("error " + message);
 }
 }
);
}

function successCallback(data, status, jqXhr) {
 console.log("success : testVariable is :" + testVariable);
 console.log("success : testVariable_2 is :" + testVariable_2);
}

getData();

In this sample, we have created a new function named successCallback with the
same parameters as our previous anonymous function. We have also modified the
$.ajax call to simply pass this function in, as a callback function for the success
property: success: successCallback. If we were to compile this code now,
TypeScript would generate an error, as follows:

error TS2095: Build: Could not find symbol ''testVariable_2''.

Since we have changed the lexical scope of our code, by creating a named
function, the new successCallback function no longer has access the variable
testVariable_2.

It is fairly easy to spot this sort of error in a trivial example, but in
larger projects, and when using third-party libraries, these sorts
of errors become more difficult to track down. It is, therefore,
worth mentioning that when using callback functions, we need to
understand this lexical scope. If your code expects a property to have
a value, and it does not have one after a callback, then remember to
have a look at the context of the calling code.

Chapter 2

[59]

Function overloads
As JavaScript is a dynamic language, we can often call the same function with
different argument types. Consider the following JavaScript code:

function add(x, y) {
 return x + y;
}

console.log("add(1,1)=" + add(1,1));
console.log("add(''1'',''1'')=" + add("1", "1"));
console.log("add(true,false)=" + add(true, false));

Here, we are defining a simple add function that returns the sum of its two parameters,
x and y. The last three lines of this code snippet simply log the result of the add
function with different types: two numbers, two strings, and two boolean values.
If we run this code, we will see the following output:

add(1,1)=2

add('1','1')=11

add(true,false)=1

TypeScript introduces a specific syntax to indicate multiple function signatures
for the same function. If we were to replicate the preceding code in TypeScript,
we would need to use the function overload syntax:

function add(arg1: string, arg2: string): string;
function add(arg1: number, arg2: number): number;
function add(arg1: boolean, arg2: boolean): boolean;
function add(arg1: any, arg2: any): any {
 return arg1 + arg2;
}

console.log("add(1,1)=" + add(1, 1));
console.log("add(''1'',''1'')=" + add("1", "1"));
console.log("add(true,false)=" + add(true, false));

The first line of this code snippet specifies a function overload signature for the add
function that accepts two strings and returns a string. The second line specifies
another function overload that uses numbers, and the third line uses booleans. The
fourth line contains the actual body of the function and uses the type specifier of any.
The last three lines of this snippet show how we would use these function signatures,
and are similar to the JavaScript code that we have been using previously.

Types, Variables and Function Techniques

[60]

There are three points of interest in the preceding code snippet. Firstly, none of the
function signatures on the first three lines of the snippet actually have a function
body. Secondly, the final function definition uses the type specifier of any and
eventually includes the function body. The function overload syntax must follow
this structure, and the final function signature, that includes the body of the function
must use the any type specifier, as anything else will generate compile-time errors.

The third point to note, is that we are limiting the add function, by using these
function overload signatures, to only accept two parameters that are of the same
type. If we were to try and mix our types; for example, if we call the function with
a boolean and a string, as follows:

console.log("add(true,''1'')", add(true, "1"));

TypeScript would generate compile errors:

error TS2082: Build: Supplied parameters do not match any signature of
call target:

error TS2087: Build: Could not select overload for ''call'' expression.

This seems to contradict our final function definition though. In the original TypeScript
sample, we had a function signature that accepted (arg1: any, arg2: any); so,
in theory, this should be called when we try to add a boolean and a number. The
TypeScript syntax for function overloads, however, does not allow this. Remember
that the function overload syntax must include the use of the any type for the function
body, as all overloads eventually call this function body. However, the inclusion of the
function overloads above the function body indicates to the compiler that these are the
only signatures that should be available to the calling code.

Union types
With the release of TypeScript 1.4, we now have the ability to combine one or two
types using the pipe symbol (|) to denote a Union Type. We can, therefore, rewrite
our add function overrides in the previous code snippet as follows:

function addWithUnion(
 arg1: string | number | boolean,
 arg2: string | number | boolean
): string | number | boolean
 {
 if (typeof arg1 === "string") {
 // arg1 is treated as a string here
 return arg1 + "is a string";
 }

Chapter 2

[61]

 if (typeof arg1 === "number") {
 // arg1 is treated as a number here
 return arg1 + 10;
 }
 if (typeof arg1 === "boolean") {
 // arg1 is treated as a boolean here
 return arg1 && false;
 }
}

This function, named addWithUnion has two arguments, arg1 and arg2. These
arguments are are now using the union type syntax to specify that these arguments
can be either string, number, or boolean. Notice too that our return type for the
function is again using union types, meaning that the function will return one of
these types as well.

Type guards
Within the body of the addWithUnion function in the preceding code snippet, we
check whether the type of the arg1 argument is a string, with the statement typeof
arg1 === "string". This is known as a type guard and means that the type of arg1
will be treated as a string within the if statement block. Within the body of the
next if statement, the type of arg1 will be treated as a number, allowing us to add
10 to its value, and in the body of the last if statement, the type will be treated as a
boolean by the compiler.

Type aliases
We are also able to define an alias for a type, a union type, or a function definition.
Type aliases are denoted by using the type keyword. We can, therefore, write our
preceding add function as follows:

type StringNumberOrBoolean = string | number | boolean;

function addWithAliases(
 arg1: StringNumberOrBoolean,
 arg2: StringNumberOrBoolean
): StringNumberOrBoolean {

}

Here, we have defined a type alias named StringNumberOrBoolean that is a type
union of the string, number, and boolean types.

Types, Variables and Function Techniques

[62]

Type aliases can also be used for function signatures as follows:

type CallbackWithString = (string) => void;

function usingCallback(callback: CallbackWithString) {
 callback("this is a string");
}

Here, we have defined a type alias named CallbackWithString that is a function
that takes a single string parameter and returns a void. Our usingCallback
function accepts this type alias within the function signature as the type for the
callback argument.

Summary
In this chapter, we have discussed TypeScript's basic types, variables, and function
techniques. We saw how TypeScript introduces "syntactic sugar" on top of normal
JavaScript code, to ensure strongly typed variables and function signatures. We also
saw how TypeScript uses duck-typing and explicit casting, and finished up with a
discussion on TypeScript functions, function signatures, and overloading. In the
next chapter, we will build on this knowledge and see how TypeScript extends
these strongly typed rules into interfaces, classes and generics.

[63]

Interfaces, Classes
and Generics

We have already seen how TypeScript uses basic types, inferred types, and
function signatures to bring a strongly typed development experience to JavaScript.
TypeScript also introduces three concepts borrowed from other object-oriented
languages: interfaces, classes and generics. In this chapter, we will look at these
object-oriented concepts, how they are used in TypeScript, and what benefits they
bring to JavaScript programmers.

The first section of this chapter is intended for readers that are using TypeScript for
the first time, and covers interfaces, classes and inheritance from the ground up. The
second section of this chapter builds on this knowledge, and shows how to create and
use the Factory Design Pattern. The third section of this chapter deals with generics.

If you have experience with TypeScript, are actively using interfaces and classes,
understand inheritance, and are comfortable with the lexical scoping rules as
applied to the this parameter, then you may be more interested in the later
sections on the Factory Design Pattern, or generics.

This chapter will cover the following topics:

• Interfaces
• Classes
• Inheritance
• Closures
• The Factory Design Pattern
• Class modifiers, static functions and properties
• Generics
• Runtime type checking

Interfaces, Classes and Generics

[64]

Interfaces
An interface provides us with a mechanism to define what properties and methods
an object must implement. If an object adheres to an interface, it is said that the
object implements the interface. TypeScript will generate compile errors earlier in
our code if an object does not implement an interface properly. The interface is also
another way of defining a custom type, and gives us, among other things, an early
indication—at the time we are constructing an object—that the object does not have
the properties and methods that we require.

Consider the following TypeScript code:

interface IComplexType {
 id: number;
 name: string;
}

var complexType : IComplexType =
 { id: 1, name: "firstObject" };
var complexType_2: IComplexType =
 { id: 2, description: "myDescription"};

if (complexType == complexType_2) {
 console.log("types are equal");
}

We start with an interface named IComplexType that has an id and a name property.
The id property is strongly typed to be of type number, and the name property is
of type string. We then create a variable named complexType, and use the : type
syntax to indicate that this variable is of type IComplexType. The next variable,
named complexType_2, also strongly types this variable to be of type IComplexType.
We then compare the complexType and complexType_2 variables, and log a message
to the console if these objects are the same. This code, however, will generate a
compile error:

error TS2012: Build: Cannot convert
'{ id: number; description: string; }' to 'IComplexType':

This compile error tells us that the complexType_2 variable must conform to the
IComplexType interface. The complexType_2 variable has an id property, but it does
not have a name property. To fix this error, and to ensure that the variable implements
the IComplexType interface, we simply need to add a name property, as follows:

var complexType_2: IComplexType = {
 id: 2,
 name: "secondObject",
 description: "myDescription"
};

Chapter 3

[65]

Even though we have an extra description property, the IComplexType interface
only mentions the id and name properties—so as long as we have those, the object
is said to be implementing the IComplexType interface.

Interfaces are a compile-time language feature of TypeScript, and the compiler does
not generate any JavaScript code from interfaces that you include in your TypeScript
projects. Interfaces are only used by the compiler for type checking during the
compilation step.

In this book, we will be sticking to a simple naming convention
for interfaces, and that is to prefix the interface name with the
letter I. Using this naming scheme helps when dealing with large
projects where code is spread across multiple files. Seeing anything
prefixed with I in your code helps you distinguish it as an interface
immediately. You can, however, call your interfaces anything.

Classes
A class is a definition of an object, what data it holds, and what operations it can
perform. Classes and interfaces form a cornerstone of the principles of object-oriented
programming, and often work together in design patterns. A design pattern is a simple
programming structure that has been proven to be the best way of tackling a specific
programming task. More on design patterns later.

Let's recreate our previous code sample using classes:

interface IComplexType {
 id: number;
 name: string;
 print(): string;
}
class ComplexType implements IComplexType {
 id: number;
 name: string;
 print(): string {
 return "id:" + this.id + " name:" + this.name;
 }
}

var complexType: ComplexType = new ComplexType();
complexType.id = 1;
complexType.name = "complexType";

Interfaces, Classes and Generics

[66]

var complexType_2: ComplexType = new ComplexType();
complexType_2.id = 2;
complexType_2.name = "complexType_2";

window.onload = () => {
 console.log(complexType.print());
 console.log(complexType_2.print());
}

Firstly, we have our interface definition (IComplexType), which has an id and a name
property, as well as a print function. We then define a class named ComplexType
that implements the IComplexType interface. In other words, the class definition for
ComplexType must match the IComplexType interface definition. Note that the class
definition does not create a variable—it simply defines the structure of the class.
We then create a variable named complexType, and then assign to this variable a
new instance of the ComplexType class. This line is said to be creating an instance
of the class. Once we have an instance of the class, we can set the values of the class
properties. The last section of the code simply calls the print function of each class
inside a window.onload function. The output of this code is as follows:

id:1 name:complexType

id:2 name:complexType_2

Class constructors
Classes can accept parameters during their initial construction. If we look at the
previous code sample, our calls to create an instance of a ComplexType class, and
then set its properties, can be streamlined into a single line of code:

var complexType = new ComplexType(1, "complexType");

This version of the code is passing the id and name properties as parts of the class
constructor. Our class definition, however, will need to include a new function,
named constructor, in order to accept this syntax. Our updated class definition
would then become:

class ComplexType implements IComplexType {
 id: number;
 name: string;
 constructor(idArg: number, nameArg: string) {
 this.id = idArg;
 this.name = nameArg;
 }

Chapter 3

[67]

 print(): string {
 return "id:" + this.id + " name:" + this.name;
 }
}

Note the constructor function. It is a normal function definition, but uses the
constructor keyword and accepts an idArg, and nameArg as parameters. These
arguments are strongly typed to be of type number and string respectively. The
internal id property of the ComplexType class is then assigned the idArg parameter
value. Note the syntax used to reference the id property: this.id. Classes use the
same this syntax that objects do to access internal properties. If we attempt to use
an internal class property without using the this keyword, TypeScript will generate
compile errors.

Class functions
All functions within a class adhere to the syntax and rules that we covered in the
previous chapter on functions. As a refresher of these rules, all class functions can:

• Be strongly typed
• Use the any keyword to relax strong typing
• Have optional parameters
• Have default parameters
• Use argument arrays, or the rest parameter syntax
• Allow function callbacks and specify the function callback signature
• Allow function overloads

Let's modify our ComplexType class definition, and include an example of each
of these rules:

class ComplexType implements IComplexType {
 id: number;
 name: string;
 constructor(idArg: number, nameArg: string);
 constructor(idArg: string, nameArg: string);
 constructor(idArg: any, nameArg: any) {
 this.id = idArg;
 this.name = nameArg;
 }
 print(): string {
 return "id:" + this.id + " name:" + this.name;
 }

Interfaces, Classes and Generics

[68]

 usingTheAnyKeyword(arg1: any): any {
 this.id = arg1;
 }
 usingOptionalParameters(optionalArg1?: number) {
 if (optionalArg1) {
 this.id = optionalArg1;
 }
 }
 usingDefaultParameters(defaultArg1: number = 0) {
 this.id = defaultArg1;
 }
 usingRestSyntax(...argArray: number []) {
 if (argArray.length > 0) {
 this.id = argArray[0];
 }
 }
 usingFunctionCallbacks(callback: (id: number) => string) {
 callback(this.id);
 }

}

The first thing to note is the constructor function. Our class definition is using
function overloading for the constructor function, allowing the class to be
constructed using either a number and a string, or two strings. The following code
shows how we would use each of these constructor definitions:

var complexType: ComplexType = new ComplexType(1, "complexType");
var complexType_2: ComplexType = new ComplexType("1", "1");
var complexType_3: ComplexType = new ComplexType(true, true);

The complexType variable uses the number, string variant of the constructor
function, and the complexType_2 variable uses the string,string variant. The
complexType_3 variable will generate a compile error, as we are not allowing a
constructor to use a boolean,boolean variant. You may argue, however, that the
last constructor function specifies an any,any variant, and this should allow for our
boolean,boolean usage. Just remember that when using constructor overloads, the
actual constructor implementation must use types that are compatible with any variant
of the constructor overloads. Our constructor implementation, then, must use an
any,any variant. Because we are using constructor overloads, however, this any,any
variant is hidden by the compiler in favor of our overloaded signatures.

Chapter 3

[69]

The following code samples show how we would use the rest of the functions that
we have defined for this class. Let's start with the usingTheAnyKeyword function:

complexType.usingTheAnyKeyword(true);
complexType.usingTheAnyKeyword({id: 1, name: "test"});

The first call in this sample is using a boolean value to call the usingTheAnyKeyword
function, and the second is using an arbitrary object. Both of these function
calls are valid, as the parameter arg1 is defined with the any type. Next, the
usingOptionalParameters function:

complexType.usingOptionalParameters(1);
complexType.usingOptionalParameters();

Here, we are calling the usingOptionalParameters function firstly with a
single argument, and then without any arguments. Again, these calls are
valid, as the optionalArg1 argument is marked as optional. Now for the
usingDefaultParameters function:

complexType.usingDefaultParameters(2);
complexType.usingDefaultParameters();

Both of these calls to the usingDefaultParameters function are valid. The first call
will override the default value of 0, and the second call—without an argument—will
use the default value of 0. Next up is the usingRestSyntax function:

complexType.usingRestSyntax(1, 2, 3);
complexType.usingRestSyntax(1, 2, 3, 4, 5);

Our rest function, usingRestSyntax, can be called with any number of arguments,
as we are using the rest parameter syntax to hold these arguments in an array. Both
of these calls are valid. Finally, let's look at the usingFunctionCallbacks function:

function myCallbackFunction(id: number): string {
 return id.toString();
}
complexType.usingFunctionCallbacks(myCallbackFunction);

This snippet shows the definition of a function named myCallbackFunction.
It matches the callback signature required by the usingFunctionCallbacks
function, allowing us to pass in the myCallbackFunction as a parameter to the
usingFunctionCallbacks function.

Note that if you face any difficulty understanding these various function signatures,
then please re-view the relevant sections in Chapter 2, Types, Variables, and Function
Techniques, regarding functions, where each of these concepts is explained in detail.

Interfaces, Classes and Generics

[70]

Interface function definitions
Interfaces, like classes, follow the same rules when dealing with functions. To update
our IComplexType interface definition to match the ComplexType class definition,
we need to write a function definition for each of the new functions, as follows:

interface IComplexType {
 id: number;
 name: string;
 print(): string;
 usingTheAnyKeyword(arg1: any): any;
 usingOptionalParameters(optionalArg1?: number);
 usingDefaultParameters(defaultArg1?: number);
 usingRestSyntax(...argArray: number []);
 usingFunctionCallbacks(callback: (id: number) => string);
}

Lines 1 to 4 form our existing interface definition, and include the id and name
properties and the print function we have been using until now. Line 5 shows
how to define a function signature for the usingTheAnyKeyword function. It looks
surprisingly like our actual class function, but does not have a function body. Line
6 shows how to use an optional parameter for the usingOptionalParameters
function. Line 7, however, is slightly different from our class definition of the
usingDefaultParameters function. Remember that an interface defines the shape
of our class or object, and therefore cannot contain variables or values. We have
therefore defined the defaultArg1 parameter as optional, and left the assignment
of the default value up to the class implementation itself. Line 8 shows the definition
of the usingRestSyntax function that contains the rest parameter syntax, and line
9 shows the definition of the usingFunctionCallbacks function, with a callback
function signature. They are pretty much identical to the class function signatures.

The only thing missing from this interface is the signature for the constructor
function. TypeScript will generate an error if we include a constructor signature
in an interface. Suppose we were to include a definition for the constructor
function in the IComplexType interface:

interface IComplexType {

 constructor(arg1: any, arg2: any);

}

Chapter 3

[71]

The TypeScript compiler would then generate an error:

Types of property 'constructor' of types 'ComplexType' and 'IComplexType'
are incompatible

This error show us that when we use a constructor function, the return type of the
constructor is implicitly typed by the TypeScript compiler. Therefore, the return type
of the IComplexType constructor would be IComplexType, and the return type of
the ComplexType constructor would be ComplexType. Even though the ComplexType
function implements the IComplexType interface, they are actually two different
types—and therefore the constructor signatures will always be incompatible—
hence the compile error.

Inheritance
Inheritance is another paradigm that is one of the cornerstones of object-oriented
programming. Inheritance means that an object uses another object as its base type,
thereby "inheriting" all of the base object's characteristics, including both properties
and functions. Both interfaces and classes can use inheritance. An interface or class
that is "inherited" from is known as the base interface, or base class, and the interface
or class that does the inheritance is known as the derived interface, or derived class.
TypeScript implements inheritance using the extends keyword.

Interface inheritance
As an example of interface inheritance, consider the following TypeScript code:

interface IBase {
 id: number;
}

interface IDerivedFromBase extends IBase {
 name: string;
}

class DerivedClass implements IDerivedFromBase {
 id: number;
 name: string;
}

Interfaces, Classes and Generics

[72]

We start with an interface called IBase that defines an id property, of type number.
Our second interface definition, IDerivedFromBase, extends (or inherits) from
IBase, and therefore automatically includes the id property. The IDerivedFromBase
interface then defines a name property, of type string. As the IDerivedFromBase
interface inherits from IBase, it therefore actually has two properties: id and name.
The class definition for DerivedClass implements this IDerivedFromBase interface,
and therefore must include both the id and name properties—in order to successfully
implement all of the properties of the IDerivedFromBase interface. Although we
have only shown properties in this example, the same rules apply for functions.

Class inheritance
Classes can also use inheritance in the same manner as interfaces. Using our
definitions of the IBase and IDerivedFromBase interfaces, the following code
shows an example of class inheritance:

class BaseClass implements IBase {
 id : number;
}

class DerivedFromBaseClass
 extends BaseClass
 implements IDerivedFromBase
{
 name: string;
}

The first class, named BaseClass, implements the IBase interface, and as such,
is only required to define a property of id, of type number. The second class,
DerivedFromBaseClass, inherits from the BaseClass class (using the extends
keyword), but also implements the IDerivedFromBase interface. As BaseClass
already defines the id property required in the IDerivedFromBase interface, the
only other property that the DerivedFromBaseClass class needs to implement is
the name property. We therefore only need to include the definition of the name
property in the DerivedFromBaseClass class.

Chapter 3

[73]

Function and constructor overloading with
super
When using inheritance, it is often necessary to create a base class with a defined
constructor. Then, in the constructor for any derived class, we will need to call
through to the base class constructor and pass through these parameters. This is
called constructor overloading. In other words, the constructor of a derived class
overloads, or "supersedes", the constructor of the base class. TypeScript includes
the super keyword to enable calling a base class's function with the same name.
This is best explained with the following code snippet:

class BaseClassWithConstructor {
 private _id: number;
 constructor(id: number) {
 this._id = id;
 }
}

class DerivedClassWithConstructor extends BaseClassWithConstructor {
 private _name: string;
 constructor(id: number, name: string) {
 this._name = name;
 super(id);
 }
}

In this code snippet, we define a class named BaseClassWithConstructor that
holds a private _id property. This class has a constructor function that requires
an id argument. Our second class, named DerivedClassWithConstructor,
inherits from, or extends, the BaseClassWithConstructor class. The constructor of
DerivedClassWithConstructor takes an id argument and a name argument, but it
needs to pass the id argument through to the base class. This is where the super call
comes in. The super keyword calls the function in the base class that has the same
name as the function in the derived class. The last line of the constructor function for
DerivedClassWithConstructor shows the call using the super keyword, passing
the id argument it received through to the base class constructor.

Interfaces, Classes and Generics

[74]

This technique is called function overloading. In other words, the derived class
has a function name that is the same name as that of a base class function, and it
"overloads" this function definition. We can use this technique on any function in
a class—not only on constructors. Consider the following code snippet:

class BaseClassWithConstructor {
 private _id: number;
 constructor(id: number) {
 this._id = id;
 }
 getProperties(): string {
 return "_id:" + this._id;
 }
}

class DerivedClassWithConstructor extends BaseClassWithConstructor {
 private _name: string;
 constructor(id: number, name: string) {
 this._name = name;
 super(id);
 }
 getProperties(): string {
 return "_name:" + this._name + "," + super.getProperties();
 }
}

The BaseClassWithConstructor class now has a function named getProperties,
which just returns a string representation of the properties of the class. Our
DerivedClassWithConstructor class, however, also includes a function called
getProperties. This function is a function override of the getProperties base class
function. In order to call through to the base class function, we need to include the
super keyword, as shown in the call to super.getProperties().

Here is an example usage of the preceding code:

window.onload = () => {
 var myDerivedClass = new DerivedClassWithConstructor(1, "name");
 console.log(
 myDerivedClass.getProperties()
);
}

Chapter 3

[75]

This code creates a variable named myDerivedClass and passes in the required
arguments of id and name. We then simply log the result of the call to the
getProperties function to the console. This code snippet will result in the
following console output:

_name:name,_id:1

The results show that the getProperties function of the myDerivedClass variable
will call through to the base class getProperties function, as expected.

JavaScript closures
Before we continue with this chapter, let's take a quick look at how TypeScript
implements classes in the generated JavaScript through a technique called closures.
As we mentioned in Chapter 1, TypeScript – Tools and Framework Options, a closure is
a function that refers to independent variables. These variables essentially remember
the environment in which they were created. Consider the following JavaScript code:

function TestClosure(value) {
 this._value = value;
 function printValue() {
 console.log(this._value);
 }
 return printValue;
}

var myClosure = TestClosure(12);
myClosure();

Here, we have a function named TestClosure that takes a single parameter,
named value. The body of the function first assigns the value argument to an
internal property named this._value, and then defines an inner function named
printValue, that logs the value of the this._value property to the console. The
interesting bit is the last line in the TestClosure function—we are returning the
printValue function.

Now take a look at the last two lines of the code snippet. We create a variable
named myClosure and assign to it the result of calling the TestClosure function.
Note that because we are returning the printValue function from inside the
TestClosure function, this essentially also makes the myClosure variable a
function. When we execute this function on the last line of the snippet, it will
execute the inner printValue function, but remember the initial value of 12 that
was used when creating the myClosure variable. The output of the last line of the
code will log the value of 12 to the console.

Interfaces, Classes and Generics

[76]

This is the essential nature of closures. A closure is a special kind of object that
combines a function with the initial environment in which it was created. In our
preceding sample, since we stored whatever was passed in via the value argument
into a local variable named this._value, JavaScript remembers the environment
in which the closure was created, in other words, whatever was assigned to the
this._value property at the time of creation will be remembered, and can be
reused later.

With this in mind, let's take a look at the JavaScript that is generated by the TypeScript
compiler for the BaseClassWithConstructor class we were just working with:

var BaseClassWithConstructor = (function () {
 function BaseClassWithConstructor(id) {
 this._id = id;
 }
 BaseClassWithConstructor.prototype.getProperties = function () {
 return "_id:" + this._id;
 };
 return BaseClassWithConstructor;
})();

Our closure starts with function () { on the first line, and ends with } on
the last line. This closure first defines a function to be used as a constructor :
BaseClassWithConstructor(id). Bear in mind that when a JavaScript object is
constructed, it inherits, or copies the prototype property of the original object
into the new instance. In our sample, then, any object that is created using the
BaseClassWithConstructor function will inherit the getProperties function as
well – as it is part of the prototype property. Also, because the functions that are
defined on the prototype property are also within the closure, they will remember
the original execution environment, and variable values.

This closure is then surrounded with an opening bracket, (, on the first line, and a
closing bracket,), on the last line—defining what is known as a JavaScript function
expression. This function expression is then immediately executed by the last two
braces, ();. This technique of immediately executing a function is known as an
Immediately Invoked Function Expression (IIFE). Our IIFE above is then assigned
to a variable named BaseClassWithConstructor, making it a first-class JavaScript
object, and one that can be created with the new keyword. This is how TypeScript
implements classes in JavaScript.

The implementation of the underlying JavaScript code that TypeScript uses for
class definitions is actually a well-known JavaScript pattern—known as the module
pattern. It uses closures to capture an execution environment, and also provides a
way to expose a public API for classes, as seen by the use of the prototype property.

Chapter 3

[77]

The good news is that an in-depth knowledge of closures, how to write them, and
how to use the module pattern for defining classes—will all be taken care of by the
TypeScript compiler—allowing us to focus on object-oriented principles without
having to write JavaScript closures using this sort of boilerplate code.

The Factory Design Pattern
To illustrate how we can use interfaces and classes in a large TypeScript project,
we will have a quick look at a very well-known object-oriented design pattern—the
Factory Design Pattern.

Business requirements
As an example, let's assume that our business analyst gives us the following
requirements:

You are required to categorize people, given their date of birth, and indicate with
a true or false flag whether they are of a legal age to sign a contract. A person is
deemed to be an infant if they are less than 2 years old. Infants cannot sign contracts.
A person is deemed to be a child if they are less than 18 years old. Children cannot
sign contracts either. A person is deemed to be an adult if they are more than 18
years of age, and only adults can sign contracts.

What the Factory Design Pattern does
The Factory Design Pattern uses a Factory class to return an instance of one of
several possible classes based on the information provided to it.

The essence of this pattern is to place the decision-making logic for what type of
class to create, in a separate class—the Factory class. The Factory class will then
return one of several classes that are all subtle variations of each other, and which
will do slightly different things based on their specialty. In order for our logic to
work, any code that consumes one of these classes must have a common contract
(or list of properties and methods) that all the variations of a class implement.
This is the perfect scenario for an interface.

Interfaces, Classes and Generics

[78]

To implement our required business functionality, we will create an Infant class,
a Child class, and an Adult class. The Infant and Child classes will return false
when asked whether they can sign contracts, and the Adult class will return true.

The IPerson interface and the Person base class
According to our requirements, the class instance that is returned by the Factory
must be able to do two things: print the category of the person in the required
format, and tell us whether they can sign contracts or not. For completeness, we
will include a third function that prints the date of birth. Let's define an interface to
satisfy this requirement:

interface IPerson {
 getPersonCategory(): string;
 canSignContracts(): boolean;
 getDateOfBirth(): string;
}

Our IPerson interface has a getPersonCategory method that will return
a string representation of their category: either "Infant", "Child", or "Adult".
The canSignContracts method will return either true or false, and the
getDateOfBirth method will simply return a printable version of their date of birth.
To simplify our code, we will create a base class called Person that implements this
interface, and will handle the common data and functions of all types of Person:
storing and returning the date of birth. Our base class is defined as follows:

class Person {
 _dateOfBirth: Date
 constructor(dateOfBirth: Date) {
 this._dateOfBirth = dateOfBirth;
 }
 getDateOfBirth(): string {
 return this._dateOfBirth.toDateString();
 }
}

This Person class definition is the base class for each of our specialist types of person.
As each one of our specialist classes will require a getDateOfBirth function, we can
extract this common code into a base class. The constructor function requires a date,
which is stored in the internal variable _dateOfBirth, and the getDateOfBirth
function returns this _dateOfBirth converted into a string.

Chapter 3

[79]

Specialist classes
Now for the three types of specialist classes:

class Infant extends Person implements IPerson {
 getPersonCategory(): string {
 return "Infant";
 }
 canSignContracts() { return false; }
}

class Child extends Person implements IPerson {
 getPersonCategory(): string {
 return "Child";
 }
 canSignContracts() { return false; }
}

class Adult extends Person implements IPerson
{
 getPersonCategory(): string {
 return "Adult";
 }
 canSignContracts() { return true; }
}

All of the classes in this snippet use inheritance to extend the Person class. Our
Infant, Child, and Adult classes do not specify a constructor method, but instead
inherit this constructor from their base class, Person. Each class implements the
IPerson interface, and must therefore provide implementations of all three functions
required by the IPerson interface definition. The getDateOfBirth function is
defined in the Person base class, however, so each of these derived classes only
needs to implement the getPersonCategory and canSignContracts functions
to be valid. We can see that our Infant and Child classes return false for
canSignContracts, and our Adult class returns true.

The Factory class
Now, let's move on to the Factory class itself. This class is responsible for holding all
of the logic required to make decisions, and returns an instance of either an Infant,
Child, or Adult class:

class PersonFactory {
 getPerson(dateOfBirth: Date): IPerson {
 var dateNow = new Date();

Interfaces, Classes and Generics

[80]

 var dateTwoYearsAgo = new Date(dateNow.getFullYear()-2,
 dateNow.getMonth(), dateNow.getDay());
 var dateEighteenYearsAgo = new Date(dateNow.getFullYear()-18,
 dateNow.getMonth(), dateNow.getDay());

 if (dateOfBirth >= dateTwoYearsAgo) {
 return new Infant(dateOfBirth);
 }
 if (dateOfBirth >= dateEighteenYearsAgo) {
 return new Child(dateOfBirth);
 }
 return new Adult(dateOfBirth);
 }
}

The PersonFactory class has only one function, getPerson, which returns an object
of type IPerson. This function creates a variable named dateNow, that is set to the
current date. This dateNow variable is then used to calculate two more variables,
dateTwoYearsAgo, and dateEighteenYearsAgo. The decision logic then takes
over, comparing the incoming dateOfBirth variable against these dates. This logic
satisfies our requirements, and returns a new instance of either a new Infant, Child,
or Adult class based on their date of birth.

Using the Factory class
To illustrate how to use this PersonFactory class, we will use the following code,
wrapped in a window.onload function so that we can run it inside a browser:

window.onload = () => {
 var personFactory = new PersonFactory();

 var personArray: IPerson[] = new Array();
 personArray.push(personFactory.getPerson(
 new Date(2014, 09, 29))); // infant
 personArray.push(personFactory.getPerson(
 new Date(2000, 09, 29))); // child
 personArray.push(personFactory.getPerson(
 new Date(1950, 09, 29))); // adult

 for (var i = 0; i < personArray.length; i++) {
 console.log(" A person with a birth date of :"
 + personArray[i].getDateOfBirth()
 + " is categorised as : "

Chapter 3

[81]

 + personArray[i].getPersonCategory()
 + " and can sign : "
 + personArray[i].canSignContracts());
 }
}

In line 2, we start with the creation of a variable, personFactory, to hold a new
instance of the PersonFactory class. Line 4 creates a new array, named personArray,
that is strongly typed to only hold objects that implement the IPerson interface.
Lines 5 to 7 then add values to this array, by using the getPerson function of the
PersonFactory class, passing in the date of birth. Note that the PersonFactory
class will make all the decisions regarding which type of object to return, based on
the date of birth we are passing in.

Line 8 starts a for loop to loop through the personArray array, and lines 9 to 14
use the interface definition of IPerson to call the relevant functions for printing.
The output of this code is as follows:

We have satisfied our business requirements, and implemented a very common
design pattern at the same time. If you find yourself repeating the same sort of
logic in many places, trying to figure out whether an object falls under one or more
categories, then chances are that you can refactor your code to use the Factory Design
Pattern - and avoid repeating the same decision-making logic all over your code.

Interfaces, Classes and Generics

[82]

Class modifiers
As we discussed briefly in the opening chapter, TypeScript introduces the public
and private access modifiers to mark variables and functions as either public
or private. Traditionally, JavaScript programmers have used a simple naming
convention of prefixing variables with an underscore (_) to indicate that they are
private variables. This naming convention, however, does not stop anyone from
actually modifying such variables inadvertently.

Let's take a look at a TypeScript code sample to illustrate this point:

class ClassWithModifiers {
 private _id: number;
 private _name: string;
 constructor(id: number, name: string) {
 this._id = id;
 this._name = name;
 }
 modifyId(id: number) {
 this._id = id;
 this.updateNameFromId();
 }
 private updateNameFromId() {
 this._name = this._id.toString() + "_name";
 }
}

var myClass = new ClassWithModifiers(1, "name");
myClass.modifyId(2);
myClass._id = 2;
myClass.updateNameFromId();

We start with a class named ClassWithModifiers, which has two properties, _id
and _name. We have marked these properties with the private keyword to protect
them from being modified by mistake. Our constructor takes an incoming id and
name parameter, and assigns the values to the internal, private properties of _id
and _name respectively. The next function that we define is called modifyId, which
will allow us to update the internal _id variable with a new value. The modifyId
function then calls an internal function named updateNameFromId. This function has
been marked as private, and therefore calls to it are only allowed within the body of
the class definition. The updateNameFromId function simply uses the new _id value
to set the private _name value.

Chapter 3

[83]

The last four lines of code show us how we would use this class. The first line creates a
variable named myClass, and assigns it to a new instance of the ClassWithModifiers
class. The second line is legal, and calls the modifyId function. The third and fourth
lines, however, will generate compile time errors:

error TS2107: Build: 'ClassWithModifiers._id' is inaccessible.

error TS2107: Build: 'ClassWithModifiers.updateNameFromId' is
inaccessible.

The TypeScript compiler warns us that both the _id property and
updateNameFromId function are inaccessible—in other words,
private—and are not designed to be used outside the class definition.

Class functions are public by default. Not specifying an access
modifier of private for either properties or functions will cause
their access level to default to public.

Constructor access modifiers
TypeScript also introduces a shorthand version of the previous constructor function,
allowing you to specify parameters with access modifiers directly in the constructor.
This is best described in code:

class ClassWithAutomaticProperties {
 constructor(public id: number, private name: string) {
 }
 print(): void {
 console.log("id:" + this.id + " name:" + this.name);
 }
}

var myAutoClass = new ClassWithAutomaticProperties(1, "name");
myAutoClass.id = 2;
myAutoClass.name = "test";

This code snippet defines a class named ClassWithAutomaticProperties. The
constructor function uses two arguments - an id of type number, and a name of
type string. Notice, however, the access modifiers of public for id and private
for name. This shorthand automatically creates a public id property on the
ClassWithAutomaticProperties class, and a private name property.

Interfaces, Classes and Generics

[84]

The print function on line 4 uses these automatic properties in the console.log
function. We are referring to this.id and this.name in the console.log function,
just as in our previous code samples.

This shorthand syntax is available only within the constructor
function.

We can see on line 9 that we have created a variable named myAutoClass and
assigned a new instance of the ClassWithAutomaticProperties class to it. Once
this class is instantiated, it automatically has two properties: an id property of type
number, which is public; and a name property of type string, which is private.
Compiling the previous code, however, will produce a TypeScript compile error:

error TS2107: Build: 'ClassWithAutomaticProperties.name' is inaccessible.

This error is telling us that the automatic property name is declared as private, and
it is therefore unavailable to code outside the class itself.

While this shorthand technique of creating automatic member
variables is available, I believe that it makes the code more difficult
to read. Personally, I prefer the more verbose class definitions that do
not use this shorthand technique. With a list of properties at the top
of the class, it becomes immediately visible to someone reading the
code what variables this class uses, and whether they are public or
private. Using the constructor's automatic property syntax hides
these parameters somewhat, forcing developers to sometimes reread
the code to understand it. Whichever syntax you choose, however,
try to make it a coding standard, and use the same syntax throughout
your code base.

Class property accessors
ECMAScript 5 introduces the concept of property accessors. This allows a pair of get
and set functions (with the same function name) to be seen by the calling code as
simple properties. This concept is best understood with some simple code samples:

class SimpleClass {
 public id: number;
}

var mySimpleClass = new SimpleClass();
mySimpleClass.id = 1;

Chapter 3

[85]

Here, we have a class named SimpleClass, and it has a single public id property.
When we create an instance of this class, we can directly modify this id property.
Now let's use the ECMAScript 5 get and set functions to accomplish the same result:

class SimpleClassWithAccessors {
 private _id: number;
 get id() {
 return this._id;
 }
 set id(value: number) {
 this._id = value;
 }
}

var mySimpleAccClass = new SimpleClassWithAccessors();
mySimpleClass.id = 1;
console.log("id has the value of " + mySimpleClass.id);

This class has a private _id property and two functions, both called id. The first
of these functions is prefixed by the get keyword and simply returns the value of
the internal _id property. The second of these functions is prefixed with the set
keyword and accepts a value parameter. The internal _id property is then set to
this value parameter.

At the bottom of the class definition, we create a variable, named
mySimpleAccClass, which is an instance of the SimpleClassWithAccessors class.
Anyone using an instance of this class will not see two separate functions named
get and set. They will simply see an id property. When we assign a value to this
property, the ECMAScript 5 runtime will call the set id(value) function, and
when we retrieve this property, the runtime will call the get id() function.

Some browsers do not support ECMAScript 5 (such as Internet Explorer
8), and will cause a JavaScript runtime error when this code is run.

Static functions
Static functions are functions that can be called on a class without having to create an
instance of the class first. These functions are almost global in their nature, but must
be called by prefixing the function name with the class name. Consider the following
TypeScript code:

class ClassWithFunction {
 printOne() {

Interfaces, Classes and Generics

[86]

 console.log("1");
 }
}

var myClassWithFunction = new ClassWithFunction();
myClassWithFunction.printOne();

We start with a simple class, named ClassWithFunction, which has a single function,
printOne. The printOne function does not really do anything useful, other than
logging the string "1" to the console. In order to use this function, though, we need to
first create an instance of the class, assign it to a variable, and then call the function.

With static functions, however, we can call functions or properties directly:

class StaticClass {
 static printTwo() {
 console.log("2");
 }
}

StaticClass.printTwo();

The class definition of StaticClass includes a single function, named printTwo,
that is marked as static. As we can see from the last line of the code, we can call
this function without "newing" up an instance of the StaticClass class. We can just
call the function directly, as long as we prefix it with the class name.

Both functions and properties of a class can be marked as static.

Static properties
Static properties come in handy when dealing with so-called "magic strings"
throughout your code base. If you are relying on a string to contain a particular
value in various parts of your code, then the time has come to replace this "magic
string" with a static property. In the Factory Design Pattern that we discussed earlier,
we created specialist Person objects that returned either "Infant", "Child" or "Adult"
as a string value. If we were writing code later on that checked whether the string
returned was equal to "Infant" or "Child", we could inadvertently break our logic if
we misspelled "Infant" as "Infent":

if (value === "Infant") {
 // do something with an infant.
}

Chapter 3

[87]

The following is an example of static properties that we could use instead of those
"magic strings":

class PersonType {
 static INFANT: string = "Infant";
 static CHILD: string = "Child";
 static ADULT: string = "Adult";
}

Then, in our code base, instead of checking values against the string "Infant",
we compare them against the static property:

if (value === PersonType.INFANT) {
 // do something with an infant.
}

This code is not relying on a "magic string" anymore. The string "Infant" is
now recorded in a single place. As long as all code uses the static property
PersonType.Infant, it will be more stable and resistant to change.

Generics
Generics are a way of writing code that will deal with any type of object but still
maintain the object type integrity. So far, we have used interfaces, classes and
TypeScript's basic types to ensure strongly typed (and less error-prone) code in our
samples. But what happens if a block of code needs to work with any type of object?

As an example, suppose we wanted to write some code that could iterate over
an array of objects and return a concatenation of their values. So, given a list of
numbers, say [1,2,3], it should return the string "1,2,3". Or, given a list of strings,
say ["first","second","third"], return a string "first,second,third". We
could write some code that accepted values of type any, but this might introduce
bugs in our code – remember S.F.I.A.T.? We want to ensure that all elements of the
array are of the same type. This is where generics come in to play.

Generic syntax
Let's write a class called Concatenator that will work with any type of object, but
still ensure that type integrity is kept in place. All JavaScript objects have a toString
function, which is called whenever a string is needed by the runtime, so let's use this
toString function to create a generic class that outputs all values held within an array.

Interfaces, Classes and Generics

[88]

A generic implementation of this Concatenator class is as follows:

class Concatenator< T > {
 concatenateArray(inputArray: Array< T >): string {
 var returnString = "";

 for (var i = 0; i < inputArray.length; i++) {
 if (i > 0)
 returnString += ",";
 returnString += inputArray[i].toString();
 }
 return returnString;
 }
}

The first thing we notice is the syntax of the class declaration, Concatenator < T >.
This < T > syntax is the syntax used to indicate a generic type, and the name used
for this generic type in the rest of our code is T. The concatenateArray function
also uses this generic type syntax, Array < T >. This indicates that the inputArray
argument must be an array of the type that was originally used to construct an
instance of this class.

Instantiating generic classes
To use an instance of this generic class, we need to construct the class and tell the
compiler via the < > syntax what the actual type of T is. We can use any type for the
type of T in this generic syntax, including base JavaScript types, TypeScript classes,
or even TypeScript interfaces:

var stringConcatenator = new Concatenator<string>();
var numberConcatenator = new Concatenator<number>();
var personConcatenator = new Concatenator<IPerson>();

Notice the syntax that we have used to instantiate the Concatenator class. In our
first sample, we create an instance of the Concatenator generic class, and specify
that it should substitute the generic type, T, with the type string in every place
where T is being used within the code. Similarly, the second example creates an
instance of the Concatenator class, and specifies that the type number should be
used wherever the code encounters the generic type T. Our last sample shows the
use of the IPerson interface for the generic type T.

Chapter 3

[89]

If we use this simple substitution principle, then for the stringConcatenator
instance (which uses strings), the inputArray argument must be of type
Array<string>. Similarly, the numberConcatenator instance of this generic
class uses numbers, and so the inputArray argument must be an array of
numbers. To test this theory, let's generate an array of strings and an array of
numbers, and see what the compiler says if we try to break this rule:

var stringArray: string[] = ["first", "second", "third"];
var numberArray: number[] = [1, 2, 3];
var stringResult = stringConcatenator.concatenateArray(stringArray);
var numberResult = numberConcatenator.concatenateArray(numberArray);
var stringResult2 = stringConcatenator.concatenateArray(numberArray);
var numberResult2 = numberConcatenator.concatenateArray(stringArray);

Our first two lines define our stringArray and numberArray variables to
hold the relevant arrays. We then pass in the stringArray variable to the
stringConcatenator function—no problems there. On our next line, we pass
the numberArray to the numberConcatenator—still okay.

Our problems, however, start when we attempt to pass an array of numbers to the
stringConcatenator, which has been configured to only use strings. Again, if we
attempt to pass an array of strings to the numberConcatenator, which has been
configured to allow only numbers, TypeScript will generate errors as follows:

Types of property 'pop' of types 'string[]' and 'number[]' are
incompatible.

Types of property 'pop' of types 'number[]' and 'string[]' are
incompatible.

The pop property is the first nonmatching property between a string[] and a
number[], so clearly, we are attempting to pass an array of numbers where we
should have used strings, and vice versa. Again, the compiler warns us that we are
not using the code correctly, and forces us to resolve these issues before continuing.

These constraints on generics are a compile-time-only feature of
TypeScript. If we look at the generated JavaScript, we will not see
any reams of code that jumps through hoops to ensure that these
rules are carried through into the resultant JavaScript. All of these
type constraints and generic syntax are simply compiled away.
In the case of generics, the generated JavaScript is actually a very
simplified version of our code, with no type constraints in sight.

Interfaces, Classes and Generics

[90]

Using the type T
When we use generics, it is important to note that all of the code within the
definition of a generic class or a generic function must respect the properties
of T as if it were any type of object. Let's take a closer look at the implementation
of the concatenateArray function in this light:

class Concatenator< T > {
 concatenateArray(inputArray: Array< T >): string {
 var returnString = "";

 for (var i = 0; i < inputArray.length; i++) {
 if (i > 0)
 returnString += ",";
 returnString += inputArray[i].toString();
 }
 return returnString;
 }
}

The concatenateArray function strongly types the inputArray argument so that
it should be of type Array <T> . This means that any code that uses the inputArray
argument can use only those functions and properties that are common to all arrays,
no matter what type the array holds. In this code sample, we used inputArray in
two places.

Firstly, in our for loop, note where we have used the inputArray.length property.
All arrays have a length property to indicate how many items the array has, so
using inputArray.length will work on any array, no matter what type of object
the array holds. Secondly, we reference an object within the array when we use the
inputArray[i] syntax. This reference actually returns a single object of type T.
Remember that whenever we use T in our code, we must use only those functions
and properties that are common to any object of type T. Luckily for us, we are using
only the toString function, and all JavaScript objects, no matter what type they are,
have a valid toString function. So this generic code block will compile cleanly.

Lets test this type T theory by creating a class of our own to pass into the
Concatenator class:

class MyClass {
 private _name: string;
 constructor(arg1: number) {

Chapter 3

[91]

 this._name = arg1 + "_MyClass";
 }
}
var myArray: MyClass[] = [new MyClass(1), new MyClass(2),
 new MyClass(3)];
var myArrayConcatentator = new Concatenator<MyClass>();
var myArrayResult = myArrayConcatentator.concatenateArray(myArray);
console.log(myArrayResult);

This sample starts with a class, named MyClass, that has a constructor accepting
a number. It then assigns an internal variable called _name to a value of arg1 ,
concatenated with the "_MyClass" string. Next, we create an array called myArray,
and construct some instances of MyClass within this array. We then create an
instance of the Concatenator class, specifying that this generic instance will only
work with objects that are of type MyClass. We then call the concatenateArray
function and store the result in a variable named myArrayResult. Finally, we
print the result on the console. Running this code in the browser will produce the
following output:

[object Object],[object Object],[object Object]

Hmmm, not quite what we were expecting! This strange output is because the string
representation of an object - that is not one of the basic JavaScript types - resolves
to [object type]. Any custom object that you write may need to override the
toString function to provide human-readable output. We can fix this code quite
easily by providing an override of the toString function within our class, as follows:

class MyClass {
 private _name: string;
 constructor(arg1: number) {
 this._name = arg1 + "_MyClass";
 }
 toString(): string {
 return this._name;
 }
}

In the code above, we have replaced the default toString function that all JavaScript
objects inherit, with our own implementation. Within this function, we simply
returned the value of the _name private variable. Running this sample now
produces the expected result:

1_MyClass,2_MyClass,3_MyClass

Interfaces, Classes and Generics

[92]

Constraining the type of T
When using generics, it is sometimes desirable to constrain the type of T to be only a
specific type, or subset of types. In these cases, we don't want our generic code to be
available for any type of object, we only want it to be available for a specific subset of
objects. TypeScript uses inheritance to accomplish this with generics. As an example,
let's refactor our earlier Factory Design Pattern code to use a generic PersonPrinter
class, that is specifically designed to work with classes that implement the
IPerson interface:

class PersonPrinter< T extends IPerson> {
 print(arg: T) {
 console.log("Person born on "
 + arg.getDateOfBirth()
 + " is a "
 + arg.getPersonCategory()
 + " and is " +
 this.getPermissionString(arg)
 + "allowed to sign."
);
 }
 getPermissionString(arg: T) {
 if (arg.canSignContracts())
 return "";
 return "NOT ";
 }
}

In this code snippet, we define a class called PersonPrinter, that uses the generic
syntax. Note that the T generic type has been derived from the IPerson interface, as
indicated by the extends keyword in < T extents IPerson >. This indicates
that any usage of the type T will substitute the interface IPerson, and can therefore,
only allow functions or properties that are defined in the IPerson interface to be
used wherever T is used. The print function accepts an argument named arg, which
is of type T. Using our rules of generics, we know that any usage of the variable arg
is only allowed to use available functions from the IPerson interface.

The print function builds up a string to log to the console, and only uses
functions that are defined in the IPerson interface. These include the functions
getDateOfBirth and getPersonCategory. In order to generate a grammatically
correct sentence, we have introduced another function called getPermissionString
that accepts an argument of type T, or the IPerson interface. This function simply
uses the canSignContracts() function of the IPerson interface to return either
a blank string or the string "NOT ".

Chapter 3

[93]

To illustrate the usage of this class, consider the following code:

window.onload = () => {
 var personFactory = new PersonFactory();
 var personPrinter = new PersonPrinter<IPerson>();

 var child = personFactory.getPerson(new Date(2010, 0, 21));
 var adult = personFactory.getPerson(new Date(1969, 0, 21));
 var infant = personFactory.getPerson(new Date(2014, 0, 21));

 console.log(personPrinter.print(adult));
 console.log(personPrinter.print(child));
 console.log(personPrinter.print(infant));
}

First, we create a new instance of the PersonFactory class. We then create an
instance of the generic PersonPrinter class, and set the type of the argument T
to be of type IPerson. This means that any class that is passed into the instance
of PersonPrinter must implement the IPerson interface. We know from our
previous examples that the PersonFactory will return an instance of either an
Infant, Child, or Adult class, and each of these classes implement the IPerson
interface. We know therefore, that any class returned by the PersonFactory will be
accepted by the personPrinter generic class instance.

Next, we instantiate variables named child, adult, and infant, and rely on the
PersonFactory to return us the correct class based on their date of birth. The last
three lines of this sample simply log to the console the sentence that is generated
by the personPrinter generic class instance.

The output of this code is as we expected:

Generics PersonFactory output

Interfaces, Classes and Generics

[94]

Generic interfaces
We can also use interfaces with the generic type syntax. For our PersonPrinter
class, the matching interface definition would be:

interface IPersonPrinter<T extends IPerson> {
 print(arg: T) : void;
 getPermissionString(arg: T): string;
}

This interface looks identical to our class definition, the only difference being that
the print and the getPermissionString functions do not have an implementation.
We have kept the generic type syntax using < T >, and further specified that
the type T must implement the IPerson interface. To use this interface with the
PersonPrinter class, we modify the class definition, as follows:

class PersonPrinter<T extends IPerson> implements IPersonPrinter<T> {

}

This syntax seems pretty straightforward. As we have seen before, we use the
implements keyword following the class definition, and then use the interface
name. Note, however, that we pass the type T into the interface definition of
IPersonPrinter as a generic type IPersonPrinter<T>. This satisfies the
IPersonPrinter generic interface definition.

An interface that defines our generic classes further protects our code from being
modified inadvertently. As an example of this, suppose that we tried to redefine the
class definition of PersonPrinter so that T is not constrained to be of type IPerson:

class PersonPrinter<T> implements IPersonPrinter<T> {

}

Here, we have removed the constraint on the type T for the PersonPrinter class.
TypeScript will automatically generate an error:

Type 'T' does not satisfy the constraint 'IPerson' for type parameter 'T
extends IPerson'.

This error points us to our erroneous class definition; the type T, as used in the code
(PersonPrinter<T>), must use a type T that extends from IPerson.

Chapter 3

[95]

Creating new objects within generics
From time to time, generic classes may need to create an object of the type that is
passed in as the generic type T. Consider the following code:

class FirstClass {
 id: number;
}

class SecondClass {
 name: string;
}

class GenericCreator< T > {
 create(): T {
 return new T();
 }
}

var creator1 = new GenericCreator<FirstClass>();
var firstClass: FirstClass = creator1.create();

var creator2 = new GenericCreator<SecondClass>();
var secondClass : SecondClass = creator2.create();

Here, we have two class definitions, FirstClass and SecondClass. FirstClass
just has a public id property, and SecondClass has a public name property. We then
have a generic class that accepts a type T and has a single function, named create.
This create function attempts to create a new instance of the type T.

The last four lines of the sample show us how we would like to use this generic class.
The creator1 variable creates a new instance of the GenericCreator class using
the correct syntax for creating variables of type FirstClass. The creator2 variable
is a new instance of the GenericCreator class, but this time is using SecondClass.
Unfortunately, the preceding code will generate a TypeScript compile error:

error TS2095: Build: Could not find symbol 'T'.

According to the TypeScript documentation, in order to enable a generic class to
create objects of type T, we need to refer to type T by its constructor function.
We also need to pass in the class definition as an argument. The create function
will need to be rewritten as follows:

class GenericCreator< T > {
 create(arg1: { new(): T }) : T {
 return new arg1();
 }
}

Interfaces, Classes and Generics

[96]

Let's break this create function down into its component parts. First, we pass an
argument, named arg1. This argument is then defined to be of type { new(): T }.
This is the little trick that allows us to refer to T by its constructor function. We
are defining a new anonymous type that overloads the new() function and returns
a type T. This means that the arg1 argument is a function that is strongly typed to
have a single constructor that returns a type T. The implementation of this function
simply returns a new instance of the arg1 variable. Using this syntax removes the
compile error that we encountered before.

This change, however, means that we must pass the class definition to the create
function, as follows:

var creator1 = new GenericCreator<FirstClass>();
var firstClass: FirstClass = creator1.create(FirstClass);

var creator2 = new GenericCreator<SecondClass>();
var secondClass : SecondClass = creator2.create(SecondClass);

Note the change in usage of the create function on lines 2 and 5. We are now
required to pass in the class definition for our type of T: create(FirstClass)
and create(SecondClass) as our first argument. Try running this code in your
browser and see what happens. The generic class will, in fact, create new objects
of types FirstClass and SecondClass, as we expected.

Runtime type checking
Although the TypeScript compiler generates compilation errors for incorrectly typed
code, this type checking is compiled away in the generated JavaScript. This means
that the JavaScript runtime engine knows nothing about TypeScript interfaces or
generics. So how can we tell at runtime whether a class implements an interface?

JavaScript has some functions that we can use when dealing with objects, that
will tell us what type an object is, or if one object is an instance of another. For
type information, we can use the JavaScript typeof keyword, and for instance
information, we can use instanceof. Let's have a look at what these functions
return, given some simple TypeScript classes, and see if we can use these to tell
whether a class implements an interface.

Chapter 3

[97]

First, a simple base class:

class TcBaseClass {
 id: number;
 constructor(idArg: number) {
 this.id = idArg;
 }
}

This TcBaseClass class has an id property, and a constructor that sets this
property based on the argument passed to it.

Then, a class that is derived from TcBaseClass:

class TcDerivedClass extends TcBaseClass {
 name: string;
 constructor(idArg: number, nameArg: string) {
 super(idArg);
 this.name = name;
 }
 print() {
 console.log(this.id + " " + this.name);
 }
}

This TcDerivedClass class derives (or extends) from the TcBase class, and adds a
name property and a print function. The constructor of this derived class must call the
constructor of the base class, passing in the idArg argument via the super function.

Now, let's construct a variable named base that is a new instance of TcBaseClass,
and then construct a variable named derived that is a new instance of
TcDerivedClass, as follows:

var base = new TcBaseClass(1);
var derived = new TcDerivedClass(2, "second");

Now for some tests; let's see what the typeof function returns for each of these classes:

console.log("typeof base: " + typeof base);
console.log("typeof derived: " + typeof derived);

This code will return:

typeof base: object

typeof derived: object

Interfaces, Classes and Generics

[98]

This tells us that the JavaScript runtime engine sees an instance of a class as an object.

Let's now switch over to the instanceof keyword, and use it to check whether an
object is derived from another:

console.log("base instance of TcBaseClass : " +
 (base instanceof TcBaseClass));
console.log("derived instance of TcBaseClass: " +
 (derived instanceof TcBaseClass));

This code will return:

base instance of TcBaseClass : true

derived instance of TcBaseClass: true

So far so good. Now let's have a look at what the typeof keyword returns when we
use it on a class's properties:

console.log("typeof base.id: " + typeof base.id);
console.log("typeof derived.name: " + typeof derived.name);
console.log("typeof derived.print: " + typeof derived.print);

This code will return:

 typeof base.id: number

 typeof derived.name: string

 typeof derived.print: function

As we can see, the JavaScript runtime correctly identifies the id property of our base
type as a number, the name property as a string, and the print property as a function.

So how can we tell at runtime what the type of an object is? The simple answer is
that we can't easily tell. We can only tell whether an object is an instance of another
object, or if a property is one of the basic JavaScript types. If we were trying to us
the instanceof function to implement a type checking algorithm, we would need
to check the incoming object against every known type in our object tree, which is
certainly not ideal. We also can't use instanceof to check whether a class implements
an interface, as TypeScript interfaces are compiled away.

Reflection
Other statically typed languages allow the runtime engine to query an object,
determine what type the object is, and also query what interfaces an object
implements. This process is called reflection.

Chapter 3

[99]

As we have seen, using the typeof or instanceof JavaScript functions, we can
glean some information from the runtime about an object. On top of these abilities,
we could also use the getPrototypeOf function to return some information
about the class constructor. The getPrototypeOf function returns a string,
so we could then parse this string to determine the class name. Unfortunately,
the implementation of the getPrototypeOf function returns slightly different
strings, depending on what browser is being used. It is also only implemented in
ECMAScript 5.1 and above, which again, may introduce problems when running
on older browsers or mobile browsers.

Another JavaScript function we could use to find runtime information about an
object is the hasOwnProperty function. This has been a part of JavaScript since
ECMAScript 3, and so is compatible with just about every browser, both desktop
and mobile. The hasOwnProperty function will return true or false, indicating
whether an object has the property that you are looking for.

The TypeScript compiler helps us program JavaScript in an object-oriented way
using interfaces, but these interfaces are "compiled away", and do not appear in
the generated JavaScript. As an example of this, let's have a look at the following
TypeScript code:

interface IBasicObject {
 id: number;
 name: string;
 print(): void;
}

class BasicObject implements IBasicObject {
 id: number;
 name: string;
 constructor(idArg: number, nameArg: string) {
 this.id = idArg;
 this.name = nameArg;
 }
 print() {
 console.log("id:" + this.id + ", name" + this.name);
 }
}

Interfaces, Classes and Generics

[100]

This is a simple example of defining an interface and implementing it in a class.
The IBasicObject interface has an id of type number, a name of type string, and
a print function. The class definition BasicObject implements all the required
properties and parameters. Now let's have a look at the compiled JavaScript
that TypeScript generates:

var BasicObject = (function () {
 function BasicObject(idArg, nameArg) {
 this.id = idArg;
 this.name = nameArg;
 }
 BasicObject.prototype.print = function () {
 console.log("id:" + this.id + ", name" + this.name);
 };
 return BasicObject;
})();

The TypeScript compiler has not included any JavaScript for the IBasicObject
interface. All we have here is a closure pattern for the BasicObject class definition.
The IBasicObject interface, although used by the TypeScript compiler, does not
exist in the generated JavaScript. Hence, we say that it has been "compiled away".

This therefore presents us with a few problems when implementing reflection-like
capabilities within JavaScript:

• We cannot tell at runtime whether an object implements a TypeScript
interface because TypeScript interfaces are compiled away

• We cannot loop through an object's properties using the
getOwnPropertyNames function on older ECMAScript 3 browsers

• We cannot use the getPrototypeOf function on older ECMAScript 3
browsers to determine a class name

• The implementation of the getPrototypeOf function is not consistent
across browsers

• We cannot use the instanceof keyword to determine a class type without
comparing it with known types

Chapter 3

[101]

Checking an object for a function
So how do we tell at runtime whether an object implements an interface?

In their book, Pro JavaScript Design Patterns (http://jsdesignpatterns.com/),
Ross Harmes and Dustin Diaz discuss this quandary, and come up with a rather
simple solution. We can invoke a function on an object using a string which contains
the function name, and then check whether the result is valid, or undefined. In their
book, they build a utility function using this principle, to check at runtime whether
an object has a set of defined properties and methods. These defined properties and
methods are kept within the JavaScript code as simple string arrays. These string
arrays therefore act as object "metadata" for our code that we can then pass through
to a function checking utility.

Their FunctionChecker utility class can be written in TypeScript as follows:

class FunctionChecker {
 static implementsFunction(
 objectToCheck: any, functionName: string): boolean
 {
 return (objectToCheck[functionName] != undefined &&
 typeof objectToCheck[functionName] == 'function');
 }
}

This FunctionChecker class has a single static function, named implementsFunction,
that will return either true or false. The implementsFunction function takes an
argument named objectToCheck and a string named functionName. Note that the
type of objectToCheck is specifically set to any. This is one of the rare circumstances
where the use of the any type is actually the correct TypeScript type.

Within the implementsFunction function, we use a special kind of JavaScript syntax
that reads the function itself from the object, using the [] syntax on an instance
of the object, and referencing it by name : objectToCheck[functionName]. If the
object we are interrogating has this attribute, then invoking it will return something
other than undefined. We can then use the typeof keyword to check the type of the
attribute. If the typeof instance returns "function", then we know that this
object implements this function. Let's have a look at some quick usages:

var myClass = new BasicObject(1, "name");
var isValidFunction = FunctionChecker.implementsFunction(
 myClass, "print");
console.log("myClass implements the print() function :"
 + isValidFunction);

http://jsdesignpatterns.com/

Interfaces, Classes and Generics

[102]

isValidFunction = FunctionChecker.implementsFunction(
 myClass, "alert");
console.log("myClass implements the alert() function :"
 + isValidFunction);

Line 1, simply creates an instance of the BasicObject class, and assigns it to the
myClass variable. Line 2 then invokes our implementsFunction function, passing
in the instance of the class and the string "print". Line 3 logs the result to the console.
Line 4 and 5 repeat the process, but check whether the myClass instance implements
the function "alert". The results of this code would be the following:

myClass implements the print() function :true

myClass implements the alert() function :false

This implementsFunction function allows us to interrogate an object and check
whether it has a specific function by name. Extending this concept slightly, brings
us to a simple way of carrying out runtime type checking. All we need is a list of
functions (or properties) that a JavaScript object should implement. This list of
functions (or properties) can be described as class "metadata".

Interface checking with generics
This technique that Ross and Dustin describe, of holding "metadata" information
about interfaces, is easily implemented in TypeScript. If we define classes that hold
this "metadata" for each of our interfaces, we can then use them to check objects at
runtime. Let's put together an interface that holds an array of method names to
check an object against, as well as a list of property names.

interface IInterfaceChecker {
 methodNames?: string[];
 propertyNames?: string[];
}

This IInterfaceChecker interface is very simple—an optional array of methodNames,
and an optional array of propertyNames. Now let's implement this interface
to describe the necessary properties and methods of the TypeScript IBasicObject
interface:

class IIBasicObject implements IInterfaceChecker {
 methodNames: string[] = ["print"];
 propertyNames: string[] = ["id", "name"];
}

Chapter 3

[103]

We start off with a class definition that implements the IInterfaceChecker
interface. This class has been named IIBasicObject, with a double I prefix
in the class name. This is a simple naming convention that indicates that the
IIBasicObject class holds "metadata" for the IBasicObject interface that we
defined earlier. The methodNames array specifies that this interface must implement
the print method, and the propertyNames array specifies that this interface
also includes an id and a name property.

This method of defining metadata for an object is a very simple solution to our
problem, and is both browser agnostic and ECMAScript version agnostic. While
this may require us to keep "metadata" objects in sync with TypeScript interfaces,
we now have what we need in order to check whether an object implements a
defined interface.

We can also use what we know about generics to implement an InterfaceChecker
class that uses these object "metadata" classes:

class InterfaceChecker<T extends IInterfaceChecker> {
 implementsInterface(
 classToCheck: any,
 t: { new (): T; }
): boolean
 {
 var targetInterface = new t();
 var i, len: number;
 for (i = 0, len = targetInterface.methodNames.length;
 i < len; i++) {
 var method: string = targetInterface.methodNames[i];
 if (!classToCheck[method] ||
 typeof classToCheck[method] !== 'function') {
 console.log("Function :" + method + " not found");
 return false;
 }
 }
 for (i = 0, len = targetInterface.propertyNames.length;
 i < len; i++) {
 var property: string = targetInterface.propertyNames[i];
 if (!classToCheck[property] ||
 typeof classToCheck[property] == 'function') {
 console.log("Property :" + property + " not found");
 return false;
 }
 }

Interfaces, Classes and Generics

[104]

 return true;
 }
}
var myClass = new BasicObject(1, "name");
var interfaceChecker = new InterfaceChecker();

var isValid = interfaceChecker.implementsInterface(myClass,
 IIBasicObject);

console.log("myClass implements the IIBasicObject interface :"
 + isValid);

We start off with a generic class, named InterfaceChecker, that accepts any
object T that implements the IInterfaceChecker class. Again, the definition of the
IInterface class is just an array of methodNames and an array of propertyNames.
This class only has a single function named implementsInterface that returns a
boolean—true if the class implements all properties and methods, and false if it does
not. The first parameter, classToCheck, is the class instance that we are interrogating
against the interface "metadata". Our second parameter uses the generic syntax that
we discussed earlier to be able to create a new instance of the type T— which in this
case is any type that implements the IInterfaceChecker interface.

The body of the code is an extension of the FunctionChecker class that we
discussed earlier. We first need to create an instance of the type T, which is assigned
to the variable targetInterface. We then simply loop through all the strings in
the methodNames array, and check whether our classToCheck object implements
these functions.

We then repeat this process, checking the given strings in the propertyNames array.

The last lines of this code sample show us how we would use this
InterfaceChecker class. First, we create an instance of BasicObject and assign it
to the variable myClass. We then create an instance of the InterfaceChecker class
and assign it to the variable interfaceChecker.

The second last line of this snippet calls the implementsInterface function, passing
in the myClass instance, and IIBasicObject. Note that we are not passing in an
instance of the IIBasicObject class, we are just passing in the class definition.
Our generic code will create an internal instance of the IIBasicObject class.

The last line of this code simply logs a true or false message to the console.
The output of this line would be:

myClass implements the IIBasicObject interface :true

Chapter 3

[105]

Let's now run the code with an invalid object:

var noPrintFunction = { id: 1, name: "name" };
isValid = interfaceChecker.implementsInterface(
 noPrintFunction, IIBasicObject);
console.log("noPrintFunction implements the
 IIBasicObject interface:" + isValid);

The variable noPrintFunction has both an id and a name property, but it does
not implement a print function. The output of this code would be:

Function :print not found

noPrintFunction implements the IIBasicObject interface :false

We now have a way of determining at runtime whether or not an object implements
a defined interface. This technique can be used on external JavaScript libraries that
you do not control—or even in larger teams where the API for a particular library is
agreed in principle, before the libraries are written. In these cases, once a new version
of the library is delivered, the consumers can quickly and easily ensure that the API
conforms to the design specification.

Interfaces are used in a number of design patterns, and even though we can implement
these patterns using TypeScript, we may want to further solidify our code by
doing runtime checking of an object's interface. This technique also opens up the
possibility of writing an Inversion of Control (IOC) container in TypeScript, or an
implementation of the Domain Events Pattern. We will explore these two design
patterns in more detail in Chapter 8, Object-oriented Programming with TypeScript.

Summary
In this chapter, we explored the object-oriented concepts of interfaces, classes and
generics. We discussed both interface inheritance and class inheritance, and used
our knowledge on interfaces, classes and inheritance to create a Factory Design
Pattern implementation in TypeScript. We then moved on to generics and their
syntax, generic interfaces and generic constructor functions. We finished the chapter
off with a discussion on reflection, and implemented a TypeScript version of an
InterfaceChecker pattern using generics. In the next chapter, we will look at
the mechanism that TypeScript uses to integrate with existing JavaScript
libraries—definition files.

[107]

Writing and Using
Declaration Files

One of the most appealing facets of JavaScript development is the myriad of external
JavaScript libraries that have already been published, such as jQuery, Knockout, and
Underscore. The TypeScript designers knew that introducing "syntactic sugar" to the
TypeScript language would bring a range of benefits to the developer experience.
These benefits include IDE features such as Intellisense, as well as detailed compile
time error messages. We have already seen how to use this syntax for most of the
TypeScript language features such as classes, interfaces, and generics, but how
do we apply this "sugar" to existing JavaScript libraries? The answer is relatively
simple—declaration files.

A declaration file is a special type of file used by the TypeScript compiler. It is
marked with a .d.ts extension, and is then used by the TypeScript compiler within
the compilation step. Declaration files are similar to header files used in other
languages; they simply describe the syntax and structure of available functions and
properties, but do not provide an implementation. Declaration files, therefore, do
not actually generate any JavaScript code. They are there simply used to provide
TypeScript compatibility with external libraries, or to fill in the gaps for JavaScript
code that TypeScript does not know about. In order to use any external JavaScript
library within TypeScript, you will need a declaration file.

In this chapter, we will explore declaration files, show the reasoning behind them, and
build one based on some existing JavaScript code. If you are familiar with declaration
files and how to use them, then you may be interested in the Declaration Syntax
Reference section. This section is designed as a quick reference guide to the module
definition syntax. Since writing declaration files is a rather small part of TypeScript
development, we do not write them very often. The Declaration Syntax Reference section
shows sample declaration file syntax for the equivalent JavaScript syntax.

Writing and Using Declaration Files

[108]

Global variables
Most modern websites use some sort of server engine to generate the HTML for their
web pages. If you are familiar with the Microsoft stack of technologies, then you would
know that ASP.NET MVC is a very popular server-side engine, used to generate
HTML pages based on master pages, partial pages, and MVC views. If you are a Node
developer, then you may be using one of the popular Node packages to help you
construct web pages through templates, such as Jade or Embedded JavaScript (EJS).

Within these templating engines, you may sometimes need to set JavaScript
properties on the HTML page as a result of your backend logic. As an example,
let's assume that you keep a list of contact e-mail addresses on your backend
database, and then surface these to your frontend HTML page through a JavaScript
global variable named CONTACT_EMAIL_ARRAY. Your rendered HTML page would
then include a <script> tag that contains this global variable and contact e-mail
addresses. You may have some JavaScript that reads this array, and then renders
the values in a footer. The following HTML sample shows what a generated script
within an HTML page may end up looking like:

<body>
 <script type="text/javascript">
 var CONTACT_EMAIL_ARRAY = [
 "help@site.com",
 "contactus@site.com",
 "webmaster@site.com"
];
 </script>
</body>

This HTML has a script block and within this script block, some JavaScript.
The JavaScript is simply a variable named CONTACT_EMAIL_ARRAY that contains
some strings. Let's assume that we wanted to write some TypeScript that can read
this global variable. Consider the following TypeScript code:

class GlobalLogger {
 static logGlobalsToConsole() {
 for (var i = 0; i < CONTACT_EMAIL_ARRAY.length; i++) {
 console.log("found contact : " + CONTACT_EMAIL_ARRAY[i]);
 }
 }
}

window.onload = () => {
 GlobalLogger.logGlobalsToConsole();
}

Chapter 4

[109]

This code creates a class named GlobalLogger with a single static function named
logGlobalsToConsole. The function simply iterates through the CONTACT_EMAIL_
ARRAY global variable, and logs the items in the array to the console.

If we compile this TypeScript code, we will generate the following errors:

error TS2095: Build: Could not find symbol 'CONTACT_EMAIL_ARRAY'.

This error indicates that the TypeScript compiler does not know anything about the
variable named CONTACT_EMAIL_ARRAY. It does not even know that it is an array. As
this piece of JavaScript is outside any TypeScript code, we will need to treat it in the
same way as "external" JavaScript.

To solve our compilation problem, and make this CONTACT_EMAIL_ARRAY variable
visible to TypeScript, we will need to use a declaration file. Let's create a file named
globals.d.ts and include the following TypeScript declaration within it:

declare var CONTACT_EMAIL_ARRAY: string [];

The first thing to notice is that we are using a new TypeScript keyword: declare.
The declare keyword tells the TypeScript compiler that we want to define the type
of something, but that the implementation of this object (or variable or function) will
be resolved at runtime. We have declared a variable named CONTACT_EMAIL_ARRAY
that is typed to be an array of strings. This declare keyword does two things for us:
it allows the use of the variable CONTACT_EMAIL_ARRAY within TypeScript code, and
it also strongly types this variable to be an array of strings.

The 1.0 version and upwards of the TypeScript compiler will scan
our source code directory for .d.ts files and automatically include
them in the compilation step. In previous versions, it was necessary
to include a comment as a reference to these files, but this reference
comment line is no longer necessary.

With this globals.d.ts file in place, our code compiles correctly. If we now run this
in a browser, the output will be as follows:

found contact : help@site.com

found contact : contactus@site.com

found contact : webmaster@site.com

So, by using a declaration file named globals.d.ts, we have been able to describe
the structure of an "external" JavaScript variable to the TypeScript compiler. This
JavaScript variable is defined outside any of our TypeScript code, yet we are still able
to work with the definition of this variable within TypeScript.

Writing and Using Declaration Files

[110]

This is what declaration files are used for. We are basically telling the TypeScript
compiler to use the definitions found within a declaration file within the compilation
step, and that the actual variables themselves will only be available at runtime.

Definition files also bring Intellisense or code completion functionality
to our IDE for external JavaScript libraries and code.

Using JavaScript code blocks in HTML
The samples we have just seen are an example of tight coupling between the
generated HTML content (that contains JavaScript code in script blocks) on your
web page, and the actual running JavaScript. You may argue, however, that this is a
design flaw. If the web page needed an array of contact e-mails, then the JavaScript
application should simply send an AJAX request to the server for the same
information in JSON format. While this is a very valid argument, there are cases
where including content in the rendered HTML is actually faster.

There used to be a time where the Internet seemed to be capable of sending and
receiving vast amounts of information in the blink of an eye. Bandwidth and speed
on the Internet were growing exponentially, and desktops were getting larger
amounts of RAM and faster and faster processors. As developers during this stage
of the Internet highway, we stopped thinking about how much RAM a typical user
had on their machine. We also stopped thinking about how much data we were
sending across the wire. This was because Internet speeds were so fast and browser
processing speed was seemingly limitless.

Yeah, and then along came the mobile phone –and it felt like we were back in the
1990s -with incredibly slow Internet connections, tiny screen resolutions, limited
processing power, very little RAM (and popular arcade gaming experiences like
Elevator Action, found at https://archive.org/details/Elevator_Action_1985_
Sega_Taito_JP_en. The point of this story is that as modern web developers, we
still need to be mindful of browsers that run on mobile phones. These browsers are
sometimes running on very limited Internet connections, meaning that we must
carefully measure the size of our JavasScript libraries, JSON data, and HTML pages,
to ensure that our applications are fast and usable, even on mobile browsers.

https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en

Chapter 4

[111]

This technique of including JavaScript variables or smaller static JSON data within
the rendered HTML page often provides us with the fastest way to render a screen
on an older browser, or in the modern age, a mobile phone. Many popular sites use
this technique to quickly render the general structure of the page (header, side panels,
footers, and so on) before the main content is delivered through asynchronous JSON
requests. This technique works well because it renders the page faster and gives the
user faster feedback.

Structured data
Let's enhance this simple array of contact e-mails with a little more relevant data.
For each of these e-mail addresses, we now want to include some text that we will
render within the footer of our page, along with the e-mail addresses. Consider the
following HTML code with a global variable that uses a JSON structure:

<script type="text/javascript">
 var CONTACT_DATA = [
 { DisplayText: "Help", Email: "help@site.com" },
 { DisplayText: "Contact Us", Email: "contactus@site.com" },
 { DisplayText: "Web Master", Email: "webmaster@site.com" }
];
</script>

Here, we have defined a global variable named CONTACT_DATA that is an array of
JSON objects. Each JSON object has a property named DisplayText and a property
named Email. As we have done before, we will now need to include a definition of
this variable in our globals.d.ts declaration file:

interface IContactData {
 DisplayText: string;
 Email: string;
}

declare var CONTACT_DATA: IContactData[];

We start with an interface definition named IContactData to represent the
properties of an individual item in the CONTACT_DATA array. Each item has a
DisplayText property that is of the type string, as well as an Email property which
is also of type string. Our IContactData interface, therefore, matches the original
object properties of a single item in the JSON array. We then declare a variable
named CONTACT_DATA and set its type to be an array of the IContactData interfaces.

Writing and Using Declaration Files

[112]

This allows us to work with the CONTACT_DATA variable within TypeScript.
Let's now create a class to process this data, as follows:

class ContactLogger {
 static logContactData() {
 for (var i = 0; i < CONTACT_DATA.length; i++) {
 var contactDataItem: IContactData = CONTACT_DATA[i];
 console.log("Contact Text : "
 + contactDataItem.DisplayText
 + " Email : " + contactDataItem.Email
);
 }
 }
}

window.onload = () => {
 ContactLogger.logContactData();
}

The class ContactLogger has a single static method named logContactData.
Within this method, we loop through all of the items in the CONTACT_DATA array,
using the length property that is inherent in all JavaScript arrays. We then create a
variable named contactDataItem that is strongly typed to be of type IContactData,
and assign the value of the current array item to it. Being of type IContactData,
the contactDataItem will now have two properties, DisplayText and Email.
We simply log these values to the console. The output of this code would be:

Contact Text : Help Email : help@site.com

Contact Text : Contact Us Email : contactus@site.com

Contact Text : Web Master Email : webmaster@site.com

Writing your own declaration file
In any development team, there will come a time when you will need to either
bug-fix, or enhance a body of code that has already been written in JavaScript.
If you are in this situation, then you would want to try and write new areas of
code in TypeScript, and integrate them with your existing body of JavaScript.
To do so, however, you will need to write your own declaration files for any
existing JavaScript that you need to reuse. This may seem like a daunting and
time-consuming task, but when you are faced with this situation, just remember
to take small steps, and define small sections of code at a time. You will be surprised
at how simple it really is.

Chapter 4

[113]

In this section, let's assume that you need to integrate an existing helper class—
one that is reused across many projects, is well-tested, and is a development team
standard. This class has been implemented as a JavaScript closure as follows:

ErrorHelper = (function() {
 return {
 containsErrors: function (response) {
 if (!response || !response.responseText)
 return false;

 var errorValue = response.responseText;

 if (String(errorValue.failure) == "true"
 || Boolean(errorValue.failure)) {
 return true;
 }
 return false;
 },
 trace: function (msg) {
 var traceMessage = msg;
 if (msg.responseText) {
 traceMessage = msg.responseText.errorMessage;
 }
 console.log("[" + new Date().toLocaleDateString()
 + "] " + traceMessage);
 }
 }
})();

This JavaScript code snippet defines a JavaScript object named ErrorHelper
that has two methods. The containsErrors method takes an object named
response as an argument, and tests to see whether it has a property called
responseText. If it does, it then checks to see whether the responseText
property itself has a property named failure. If this failure property is a string
containing the text "true", or if the failure property is a boolean with the value
true, then this function returns true; in other words, we are evaluating the
response.responseText.failure property. The ErrorHelper closure also has a
function called trace that can be called with a string, or a response object similar to
what the containsErrors function is expecting.

Writing and Using Declaration Files

[114]

Unfortunately, this ErrorHelper function is missing a key piece of documentation.
What is the structure of the object being passed into these two methods, and what
properties does it have? Without some form of documentation, we are forced to
reverse engineer the code to determine what the structure of the response object
looks like. If we can find some sample usages of the ErrorHelper class, this may
help us to guess this structure. As an example of how this ErrorHelper is used,
consider the following JavaScript code:

 var failureMessage = {
 responseText: {
 "failure": true,
 "errorMessage": "Unhandled Exception"
 }
 };
 var failureMessageString = {
 responseText: {
 "failure": "true",
 "errorMessage": "Unhandled Exception"
 }
 };
 var successMessage = { responseText: { "failure": false } };

 if (ErrorHelper.containsErrors(failureMessage))
 ErrorHelper.trace(failureMessage);
 if (ErrorHelper.containsErrors(failureMessageString))
 ErrorHelper.trace(failureMessageString);
 if (!ErrorHelper.containsErrors(successMessage))
 ErrorHelper.trace("success");

Here, we start with a variable named failureMessage that has a single property
reponseText. The responseText property in turn has two child properties:
failure and errorMessage. Our next variable failureMessageString has the
same structure, but defines the responseText.failure property to be a string,
instead of a boolean value. Finally, our successMessage object just defines
the responseText.failure property to be false, but it does not have an
errorMessage property.

In JavaScript JSON format, property names are required to have
quotes around them, whereas in JavaScript these optional. Therefore,
the structure {"failure" : true} is syntactically equivalent to the
structure {failure : true}.

Chapter 4

[115]

The last couple of lines of the preceding code snippet show how the ErrorHelper
closure is used. All we need to do is call the ErrorHelper.containsErrors method
with our variable, and if the result is true, log the message to the console via the
ErrorHelper.trace function. Our output would be as follows:

ErrorHelper console output

The module keyword
To test this JavaScript ErrorHelper closure using TypeScript, we will need
an HTML page that includes both the ErrorHelper.js file, and a TypeScript
generated JavaScript file. Assuming that our TypeScript file is called
ErrorHelperTypeScript.ts, our HTML page would then be as follows:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>specify.
 <title></title>
 <script src="ErrorHelper.js"></script>
 <script src="ErrorHelperTypeScript.js"></script>
</head>
<body>

</body>
</html>

Writing and Using Declaration Files

[116]

This HTML is very simple, and includes both the existing ErrorHelper.js
JavaScript file, as well as the TypeScript generated ErrorHelperTypeScript.js file.

Within the ErrorHelperTypeScript.ts file, let's use the ErrorHelper as follows:

window.onload = () => {
 var failureMessage = {
 responseText: { "failure": true,
 "errorMessage": "Unhandled Exception" }
 };

 if (ErrorHelper.containsErrors(failureMessage))
 ErrorHelper.trace(failureMessage);

 }

This code snippet shows a stripped down version of our original JavaScript
sample. In fact, we can just copy and paste the original JavaScript code into
our TypeScript file. We first create a failureMessage object with the correct
properties, and then simply call the ErrorHelper.containsErrors method,
and the ErrorHelper.trace method. If we were to compile our TypeScript
file at this stage, we would receive the following error:

error TS2095: Build: Could not find symbol 'ErrorHelper'.

This error is indicating that there is no valid TypeScript type named ErrorHelper,
even though we have the full source of ErrorHelper in our JavaScript file.
TypeScript by default, will look through all the TypeScript files in our project to find
class definitions, but it will not parse JavaScript files. We will need a new TypeScript
definition file in order to correctly compile this code.

This definition file is not included in the HTML file at all; it is only used
by the TypeScript compiler and does not generate any JavaScript.

Without a set of helpful documentation on our ErrorHelper class, we will need to
reverse-engineer a TypeScript definition purely by reading the source code. This is
obviously not an ideal situation, and is not recommended, but at this stage, it is all
we can do. In these situations, the best starting point is simply to look at the usage
samples and work our way up from there.

Chapter 4

[117]

Looking at the usage of the ErrorHelper closure in JavaScript, there are two key
pieces that should be included in our declaration file. The first is a set of function
definitions for the containsErrors and trace functions. The second is a set of
interfaces to describe the structure of the response object that the ErrorHelper
closure relies upon. Let's start with the function definitions, and create a new
TypeScript file named ErrorHelper.d.ts with the following code:

declare module ErrorHelper {
 function containsErrors(response);
 function trace(message);
}

This declaration file starts with the declare keyword that we have seen before,
but then uses a new TypeScript keyword: module. The module keyword must be
followed by a module name, which in this case is ErrorHelper. This module name
must match the closure name from the original JavaScript that we are describing.
In all of our usages of the ErrorHelper, we have always pre-fixed the functions
containsErrors and trace with the closure name ErrorHelper itself. This module
name is also known as a namespace. If we had another class named AjaxHelper that
also included a containsErrors function, we would be able to distinguish between
the AjaxHelper.containsErrors and the ErrorHelper.containsErrors functions
by using these namespaces, or module names.

The second line of the preceding code snippet indicates that we are defining a
function called containsErrors that takes one parameter. The third line of this
module declaration indicates that we are defining another function named trace
that takes one parameter. With this definition in place, our TypeScript code sample
will compile correctly.

Interfaces
Although we have correctly defined the two functions that are available to users
of the ErrorHelper closure, we are missing the second piece of information
about the functions available on the ErrorHelper closure—the structure of the
response argument. We are not strongly typing the arguments for either of the
containsErrors or trace functions. At this stage, our TypeScript code can pass
anything into these two functions because it does not have a definition for the
response or message arguments. We know, however, that both these functions
query these arguments for a specific structure. If we pass in an object that does not
conform to this structure, then our JavaScript code will cause runtime errors.

Writing and Using Declaration Files

[118]

To solve this problem and to make our code more stable, let's define an interface for
these parameters:

interface IResponse {
 responseText: IFailureMessage;
}

interface IFailureMessage {
 failure: boolean;
 errorMessage: string;
}

We start with an interface named IResponse that has a single property of
responseText—the same name as the original JSON object. This responseText
property is strongly typed to be of type IFailureMessage. The IFailureMessage
interface is strongly typed to have two properties: failure, which is a boolean,
and errorMessage, which is of type string. These interfaces correctly describe the
proper structure of the response argument for the containsErrors function. We
can now modify our original declaration for the containsErrors function to use this
interface on the response argument as follows:

declare module ErrorHelper {
 function containsErrors(response: IResponse);
 function trace(message);
}

The function definition for containsErrors now strongly types the response
argument to be of type IResponse, which we defined earlier. This modification to
the definition file will now force any further usage of the containsErrors function
to send in a valid argument that conforms to the IResponse structure. Let's write
some intentionally incorrect TypeScript code and see what happens:

var anotherFailure : IResponse = { responseText: { success: true } };

if (ErrorHelper.containsErrors(anotherFailure))
 ErrorHelper.trace(anotherFailure);

Chapter 4

[119]

We start by creating a variable named anotherFailure and specify its type to be of
type IResponse. Even though we are using a definition file to define this interface,
the rules that are applied by the TypeScript compiler, are no different to what we
have seen before. The first line in this code snippet will generate the following error:

Compile errors for an incorrect responseText object

As can be seen from this fairly verbose but informative error message, the structure
of the anotherFailure variable is causing all the errors. Even though we have
correctly referenced the responseText property of IResponse, the responseText
property is strongly typed to be of type IFailureMessage, which requires both a
failure property and an errorMessage property; hence the error.

We can fix these errors by including the required properties of failure and
errorMessage within the variable anotherFailure:

var anotherFailure: IResponse = {
 responseText: {
 failure: false, errorMessage: "", success: true
 }
 };

Writing and Using Declaration Files

[120]

Our TypeScript now compiles correctly. The variable anotherFailure now has all
of the required properties in order to use the ErrorHelper functions correctly. By
creating a strongly typed declaration file for the existing ErrorHelper class, we can
ensure that any further TypeScript usage of the existing ErrorHelper JavaScript
closure will not generate runtime errors.

Function overrides
We are not quite finished with the declaration file for the ErrorHelper just yet.
If we take a look at the original JavaScript usage of the ErrorHelper, we will
notice that the containsErrors function also allows for the failure property of
responseText to be a string:

var failureMessageString = {
 responseText: {
 "failure": "true",
 "errorMessage": "Error Message" }
};

if (ErrorHelper.containsErrors(failureMessageString))
 ErrorHelper.trace(failureMessage);

If we compile this code now, we will get the following compile error:

Compile errors for multiple definitions of responseText

Chapter 4

[121]

In the preceding definition of the variable failureMessageString, the type of the
"failure" property is "true", which is of type string , and not true, which is of
type boolean. In order to allow for this variant on the original IFailureMessage
interface, we will need to modify our declaration file. Firstly, we will need two new
interfaces that specify the failure property to be of type string:

interface IResponseString {
 responseText: IFailureMessageString;
}

interface IFailureMessageString {
 failure: string;
 errorMessage: string;
}

The IResponseString interface is almost identical to the IResponse interface,
except that it uses the IFailureMessageString type for the property responseText.
This IFailureMessageString interface is also almost identical to the original
IFailureMessage interface, except that the failure property is of type string.
We will now need to modify our declaration file to allow both call signatures on the
containsErrors function:

declare module ErrorHelper {
 function containsErrors(response: IResponse);
 function containsErrors(response: IResponseString);
 function trace(message);
}

As with interface and class definitions, modules also allow for function overrides.
The module ErrorHelper now has one function definition for containsErrors that
uses the original IResponse interface, and a second function definition that uses the
new IReponseString interface. This new version of the module definition will allow
both variants of the failure message structure to compile correctly.

We can also take advantage of union types in this example, and simplify our
previous declaration for the containsErrors function to a single definition:

declare module ErrorHelper {
 function containsErrors(response: IResponse | IResponseString);
 function trace(message: string);
}

Writing and Using Declaration Files

[122]

Rounding out our definition file
We can now focus our attention on the trace function. The trace function can
accept both versions of the IResponse interface, or it can simply accept a string.
Let's update the definition file for the trace function signatures:

declare module ErrorHelper {
 function containsErrors(response: IResponse | IResponseString);
 function trace(message: string | IResponse | IResponseString);
}

Here, we have updated the trace function to allow three different variants of the
message type—a normal string, an IResponse type, or an IResponseString type.

This completes our definition file for the ErrorHelper JavaScript class.

Module merging
As we now know, the TypeScript compiler will automatically search through all
the .d.ts files in your project to pick up declaration files. If these declaration files
contain the same module name, the TypeScript compiler will merge these two
declaration files and use a combined version of the module declarations.

If we have a file named MergedModule1.d.ts that contains the following definition:

declare module MergedModule {
 function functionA();
}

And a second file named MergedModule2.d.ts that contains the following definition:

declare module MergedModule {
 function functionB();
}

The TypeScript compiler will merge these two modules as if they were a
single definition:

declare module MergedModule {
 function functionA();
 function functionB();
}

Chapter 4

[123]

This will allow both functionA and functionB to be valid functions of the same
MergedModule namespace and allow the following usage:

MergedModule.functionA();
MergedModule.functionB();

Modules can also merge with interfaces, classes, and enums. Classes,
however, cannot merge with other classes, variables, or interfaces.

Declaration Syntax Reference
When creating declaration files and using the module keyword, there are a number
of rules that can be used to mix and match definitions. We have covered one of them
already—function overrides. As a TypeScript programmer, you will generally only
write module definitions every now and then, and on occasion, need to add a new
definition to an existing declaration file.

This section, therefore, is designed to be a quick reference guide to this declaration
file syntax, or a cheat-sheet. Each section contains a description of the module
definition rule, a JavaScript syntax snippet, and then the equivalent TypeScript
declaration file syntax.

To use this reference section, simply match the JavaScript that you are trying to
emulate from the JavaScript syntax section, and then write your declaration file
with the equivalent definition syntax. We will start with the function overrides
syntax as an example:

Function overrides
Declaration files can include multiple definitions for the same function. If the same
JavaScript function can be called with different types, you will need to declare a
function override for each variant of the function.

The JavaScript syntax
trace("trace a string");
trace(true);
trace(1);
trace({ id: 1, name: "test" });

Writing and Using Declaration Files

[124]

The declaration file syntax
declare function trace(arg: string | number | boolean);
declare function trace(arg: { id: number; name: string });

Each function definition must have a unique function signature.

Nested namespaces
Module definitions can contain nested module definitions, which then translate
to nested namespaces. If your JavaScript uses namespaces, then you will need to
define nested module declarations to match the JavaScript namespaces.

The JavaScript syntax
FirstNamespace.SecondNamespace.ThirdNamespace.log("test");

The declaration file syntax
declare module FirstNamespace {
 module SecondNamespace {
 module ThirdNamespace {
 function log(msg: string);
 }
 }
}

Classes
Class definitions are allowed within module definitions. If your JavaScript uses
classes, or the new operator, then the new-able classes will need to be defined in
your declaration file.

The JavaScript syntax
var myClass = new MyClass();

The declaration file syntax
declare class MyClass {
}

Chapter 4

[125]

Class namespaces
Class definitions are allowed within nested module definitions. If your JavaScript
classes have a preceding namespace, you will need to declare nested modules
to match the namespaces first, and then you can declare classes within the
correct namespace.

The JavaScript syntax
var myNestedClass = new OuterName.InnerName.NestedClass();

The declaration file syntax
declare module OuterName {
 module InnerName {
 class NestedClass {}
 }
}

Class constructor overloads
Class definitions can contain constructor overloads. If your JavaScript classes can be
constructed using different types, or with multiple parameters, you will need to list
each of these variants in your declaration file as constructor overloads.

The JavaScript syntax
var myClass = new MyClass();
var myClass2 = new MyClass(1, "test");

The declaration file syntax
declare class MyClass {
 constructor(id: number, name: string);
 constructor();
}

Writing and Using Declaration Files

[126]

Class properties
Classes can contain properties. You will need to list each property of your class
within your class declaration.

The JavaScript syntax
var classWithProperty = new ClassWithProperty();
classWithProperty.id = 1;

The declaration file syntax
declare class ClassWithProperty {
 id: number;
}

Class functions
Classes can contain functions. You will need to list each function of your JavaScript
class within your class declaration, in order for the TypeScript compiler to accept
calls to these functions.

The JavaScript syntax
var classWithFunction = new ClassWithFunction();
classWithFunction.functionToRun();

The declaration file syntax
declare class ClassWithFunction {
 functionToRun(): void;
}

Functions or properties that are considered as private do not need to
be exposed via the declaration file, and can simply be omitted.

Static properties and functions
Class methods and properties can be static. If your JavaScript functions or properties
can be called without needing an instance of an object to work with, then these
properties or functions will need to be marked as static.

Chapter 4

[127]

The JavaScript syntax
StaticClass.staticId = 1;
StaticClass.staticFunction();

The declaration file syntax
declare class StaticClass {
 static staticId: number;
 static staticFunction();
}

Global functions
Functions that do not have a namespace prefix can be declared in the global
namespace. If your JavaScript defines global functions, these will need to be
declared without a namespace.

The JavaScript syntax
globalLogError("test");

The declaration file syntax
declare function globalLogError(msg: string);

Function signatures
A function can use a function signature as a parameter. JavaScript functions that
use callback functions or anonymous functions, will need to be declared with the
correct function signature.

The JavaScript syntax
describe("test", function () {
 console.log("inside the test function");
});

The declaration file syntax
declare function describe(name: string, functionDef: () => void);

Writing and Using Declaration Files

[128]

Optional properties
Classes or functions can contain optional properties. Where JavaScript object
parameters are not mandatory, these will need to be marked as optional properties
in the declaration.

The JavaScript syntax
var classWithOpt = new ClassWithOptionals();
var classWithOpt1 = new ClassWithOptionals({ id: 1 });
var classWithOpt2 = new ClassWithOptionals({ name: "first" });
var classWithOpt3 = new ClassWithOptionals({ id: 2, name: "second"
});

The declaration file syntax
interface IOptionalProperties {
 id?: number;
 name?: string;
}

declare class ClassWithOptionals {
 constructor(options?: IOptionalProperties);
}

Merging functions and modules
A function definition with a specific name can be merged with a module
definition of the same name. This means that if your JavaScript function can be
called with parameters and also has properties, then you will need to merge a
function with a module.

The JavaScript syntax
fnWithProperty(1);
fnWithProperty.name = "name";

The declaration file syntax
declare function fnWithProperty(id: number);
declare module fnWithProperty {
 var name: string;
}

Chapter 4

[129]

Summary
In this chapter, we have outlined what you need to know in order to write and use
your own declaration files. We discussed JavaScript global variables in rendered
HTML and how to access them in TypeScript. We then moved on to a small
JavaScript helper function and wrote our own declaration file for this JavaScript.
We finished off the chapter by listing a few module definition rules, highlighting the
required JavaScript syntax, and showing what the equivalent TypeScript declaration
syntax would be. In the next chapter, we will look at how to use existing third-party
JavaScript libraries, and how to import existing declaration files for these libraries
into your TypeScript projects.

[131]

Third Party Libraries
Our TypeScript development environment would not amount to much if we were
not able to re-use the myriad of existing JavaScript libraries, frameworks and general
goodness. As we have seen, however, in order to use a particular third party library
with TypeScript, we will first need a matching definition file.

Soon after TypeScript was released, Boris Yankov set up a github repository to house
TypeScript definition files for third party JavaScript libraries. This repository, named
DefinitelyTyped (https://github.com/borisyankov/DefinitelyTyped) quickly
became very popular, and is currently the place to go for high-quality definition
files. DefinitelyTyped currently has over 700 definition files, built up over time from
hundreds of contributors from all over the world. If we were to measure the success
of TypeScript within the JavaScript community, then the DefinitelyTyped repository
would be a good indication of how well TypeScript has been adopted. Before you
go ahead and try to write your own definition files, check the DefinitelyTyped
repository to see if there is one already available.

In this chapter, we will have a closer look at using these definition files, and cover the
following topics:

• Downloading definition files
• Using NuGet within Visual Studio
• Using TypeScript Definition manager (TSD)
• Choosing a JavaScript Framework
• Using TypeScript with Backbone
• Using TypeScript with Angular
• Using TypeScript with ExtJs

https://github.com/borisyankov/DefinitelyTyped

Third Party Libraries

[132]

Downloading definition files
The simplest method of including a definition file within your TypeScript project is
to download the matching .d.ts file from DefinitelyTyped. This is a simple matter
of finding the relevant file, and downloading the raw content. Let's assume that we
wanted to start using jQuery within our project. We have found and downloaded the
jQuery JavaScript library (v2.1.1), and included the relevant files within our project,
under a directory named lib. To download the declaration file, simply browse to
the jquery directory on DefinitelyTyped (https://github.com/borisyankov/
DefinitelyTyped/tree/master/jquery), and then click on the jquery.d.ts file.
This will open up a GitHub page with an editor view of the file. On the menu bar
of this editor view, click on the Raw button. This will download the jquery.d.ts
file, and allow you to save it within your project directory structure. Create a new
directory under the lib folder called typings, and save the jquery.d.ts file there.

Your project file should look something like this:

Visual Studio project structure with a downloaded jquery.d.ts file

https://github.com/borisyankov/DefinitelyTyped/tree/master/jquery
https://github.com/borisyankov/DefinitelyTyped/tree/master/jquery

Chapter 5

[133]

We can now modify our index.html file to include the jquery JavaScript file, and
begin writing TypeScript code that targets the jQuery library. Our index.html file
will need to be modified as follows:

<!DOCTYPE html>

<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>TypeScript HTML App</title>
 <link rel="stylesheet" href="app.css" type="text/css" />
 <script src="/lib/jquery-2.1.1.min.js"></script>
 <script src="app.js"></script>
</head>
<body>
 <h1>TypeScript HTML App</h1>

 <div id="content"></div>
</body>
</html>

The first <script> tag of this index.html file now includes a link to jquery-
2.1.1.min.js, and the second <script> tag includes a link to the TypeScript
generated app.js. Open up the app.ts TypeScript file, delete the exiting source,
and replace it with the following jQuery code:

$(document).ready(() => {
 $("#content").html("<h1>Hello World !</h1>");
});

This snippet starts by defining an anonymous function to execute on the jQuery
event of document.ready. The document.ready function is similar to the window.
onload function we have been using previously, and will execute once jQuery has
initialized. The second line of this snippet simply gets a handle to the DOM element
named content using jQuery selector syntax, and then calls the html function to set
its HTML value.

The jquery.d.ts file that we downloaded is providing us with the relevant module
declarations that we need in order to compile jQuery within TypeScript.

Third Party Libraries

[134]

Using NuGet
NuGet is a popular package management platform that will download required
external libraries, and automatically include them in within your Visual Studio or
WebMatrix project. It can be used for external libraries that are packaged as DLLs –
such as StructureMap – or it can be used for JavaScript libraries and declaration files.
NuGet is also available as a command-line utility.

Using the Extension Manager
To use the NuGet package manager dialog within Visual Studio, select the
Tools option on the main toolbar, then select NuGet Package Manager, and finally
select Manage NuGet Packages for Solution. This brings up the NuGet package
manager dialog. On the left-hand side of the dialog, click on Online. The NuGet
dialog will then query the NuGet website and show a list of available packages.
At the top right of the screen is a search box. Click within the search box, and type
jquery to show all packages available within NuGet for jQuery, as shown in the
following screenshot:

NuGet Package manager dialog with results from a query on jQuery

Chapter 5

[135]

Each package will have an Install button highlighted when you select the package
in the search results panel. When a package is selected, the right-hand pane will
show more details about the NuGet package in question. Note that the project details
panel also shows the Version of the package that you are about to install. Clicking on
the Install button will download relevant files – as well as any dependencies – and
include them automatically within your project.

The installation directory that NuGet uses for JavaScript files is in
fact called Scripts – and not the lib directory that we created
earlier. NuGet uses the Scripts directory as a standard, so any
packages that contain JavaScript will install the relevant JavaScript
files into the Scripts directory.

Installing declaration files
You will find that most declaration files that are found on the DefinitelyTyped
GitHub repository have a corresponding NuGet package. These packages are named
<library>.TypeScript.DefinitelyTyped, as a standard naming convention.
If we type jquery typescript into the search box, we will see a list of these
DefinitelyTyped packages returned. The NuGet package we are looking for is named
jquery.TypeScript.DefinitelyTyped, created by Jason Jarret, and is, at the time of
writing, at version 1.4.0.

The DefinitelyTyped packages have their own internal version
number, and these version numbers do not necessarily match the
version of the JavaScript library that you are using. For example, the
jQuery package is at version 2.1.1, but the corresponding TypeScript
definition package shows a version number of 1.4.0.

Installing the jQuery.TypeScript.DefinitelyTyped package will create a typings
directory under the Scripts directory, and then include the jquery.d.ts definition
file. This directory naming standard has been adopted by the various NuGet
package authors.

Third Party Libraries

[136]

Using the Package Manager Console
Visual Studio also has a command-line version of the NuGet package manager
available as a console application, and is also integrated into Visual Studio. Clicking
on Tools, then NuGet Package Manager, and finally on Package Manager Console,
will bring up a new Visual Studio window, and initialize the NuGet command line
interface. The command line version of NuGet has a number of features that are
not included in the GUI version. Type get-help NuGet to see the list of top-level
command line arguments that are available.

Installing packages
To install a NuGet package from the console command line, simply type install-
package <packageName>. As an example, to install the jquery.TypeScript.
DefinitelyTyped package, simply type:

Install-Package jquery.TypeScript.DefinitelyTyped

This command will connect to the NuGet server, and download and install the
package into your project.

On the toolbar of the Package Manager Console window are two
dropdown lists, Package Source and Default Project. If your Visual
Studio solution has multiple projects, you will need to select the
correct project for NuGet to install the package into from the Default
Project dropdown.

Searching for package names
Searching for package names from the command line is accomplished with the Get-
Package –ListAvailable command. This command takes a –Filter parameter
which acts as the search criteria. As an example, to find available packages that
include the definitelytyped search string, run the following command:

Get-Package –ListAvailable –Filter definitelytyped

Installing a specific version
There are some JavaScript libraries that are not compatible with jQuery version
2.x, and will require a version of jQuery that is in the 1.x range. To install a specific
version of a NuGet package, we will need to specify the -Version parameter from
the command line. To install the jquery v1.11.1 package, as an example, run the
following from the command line:

Install-Package jQuery –Version 1.11.1

Chapter 5

[137]

NuGet will either upgrade or downgrade the version of the package
you are installing, if it finds another version already installed within
your project. In the preceding example, we had already installed the
latest version of jQuery (2.1.1) within our project, so NuGet will first
remove jQuery 2.1.1 before installing jQuery 1.11.1.

Using TypeScript Definition Manager
If you are using Node as your TypeScript development environment, then you may
consider using the TypeScript Definition Manager for DefinitelyTyped (TSD at
http://definitelytyped.org/tsd/). TSD offers similar functionality to the NuGet
Package Manager, but is specifically geared towards TypeScript definitions that are
part of the DefinitelyTyped GitHub repository.

To install TSD, use npm as follows:

npm install tsd@next –g

This will install tsd prerelease v0.6.x.

At the time of writing, you will need v0.6.x and up in order to use
the install keyword from the command line. If you simply type
npm install tsd –g, then npm will install v0.5.x, which
does not include the install keyword.

Querying for packages
TSD allows for querying the package repository using the query keyword. To search
for the jquery definition files, type the following:

tsd query jquery

The preceding command will search the DefinitelyTyped repository for any
definition files named jquery.d.ts. Since there is only one, the results returned
from the search would be:

Jquery / jquery

http://definitelytyped.org/tsd/

Third Party Libraries

[138]

Using wildcards
TSD also allows for the use of the asterisk * as a wildcard. To search for
DefinitelyTyped declaration files that start with jquery, type the following:

tsd query jquery.*

This tsd command will search through the repository, and return results for
declaration files that start with jQuery.

Installing definition files
To install a definition file, use the install keyword as follows:

tsd install jquery

This command will download the jquery.d.ts file into the following directory:

\typings\jquery\jquery.d.ts

TSD will create the \typings directory based on the
current directory where tsd was run, so make sure that
you navigate to the same base directory in your project
whenever you use TSD from the command line.

Using third party libraries
In this section of the chapter, we will begin to explore some of the more popular
third party JavaScript libraries, their declaration files, and how to write compatible
TypeScript for each of these frameworks. We will compare Backbone, Angular, and
ExtJs, which are all frameworks for building rich client-side JavaScript applications.
During our discussion, we will see that some frameworks are highly compliant with
the TypeScript language and its features, some are partially compliant, and some
have very low compliance.

Choosing a JavaScript framework
Choosing a JavaScript framework or library to develop Single Page Applications
is a difficult and sometimes daunting task. It seems that there is a new framework
appearing every other month, promising more and more functionality for less and
less code.

Chapter 5

[139]

To help developers compare these frameworks, and make an informed choice, Addy
Osmani wrote an excellent article, named Journey Through the JavaScript MVC Jungle.
(http://www.smashingmagazine.com/2012/07/27/journey-through-the-
javascript-mvc-jungle/).

In essence, his advice is simple – it's a personal choice – so try some frameworks out,
and see what best fits your needs, your programming mindset, and your existing
skill set. The TodoMVC project (http://todomvc.com), which Addy started, does
an excellent job of implementing the same application in a number of MV* JavaScript
frameworks. This really is a reference site for digging into a fully working application,
and comparing for yourself the coding techniques and styles of different frameworks.

Again, depending on the JavaScript library that you are using within TypeScript,
you may need to write your TypeScript code in a specific way. Bear this in mind
when choosing a framework – if it is difficult to use with TypeScript, then you may
be better off looking at another framework with better integration. If it is easy and
natural to work with the framework in TypeScript, then your productivity and
overall development experience will be much better.

In this section, we will look at some of the popular JavaScript libraries, along with
their declaration files, and see how to write compatible TypeScript. The key thing
to remember is that TypeScript generates JavaScript – so if you are battling to use
a third party library, then crack open the generated JavaScript and see what the
JavaScript code looks like that TypeScript is emitting. If the generated JavaScript
matches the JavaScript code samples in the library's documentation, then you are
on the right track. If not, then you may need to modify your TypeScript until the
compiled JavaScript starts matching up with the samples.

When trying to write TypeScript code for a third party JavaScript framework –
particularly if you are working off the JavaScript documentation – your initial foray
may just be one of trial and error. Along the way, you may find that you need to
write your TypeScript in a specific way in order to match this particular third party
library. The rest of this chapter shows how three different libraries require different
ways of writing TypeScript.

Backbone
Backbone is a popular JavaScript library that gives structure to web applications
by providing models, collections and views, amongst other things. Backbone has
been around since 2010, and has gained a very large following, with a wealth of
commercial websites using the framework. According to Infoworld.com, Backbone
has over 1,600 Backbone related projects on GitHub that rate over 3 stars – meaning
that it has a vast ecosystem of extensions and related libraries.

http://www.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://www.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://todomvc.com
Infoworld.com

Third Party Libraries

[140]

Let's take a quick look at Backbone written in TypeScript.

To follow along with the code in your own project, you will need to
install the following NuGet packages: backbone.js (currently at
v1.1.2), and backbone.TypeScript.DefinitelyTyped (currently
at version 1.2.3).

Using inheritance with Backbone
From the Backbone documentation, we find an example of creating a
Backbone.Model in JavaScript as follows:

var Note = Backbone.Model.extend(
 {
 initialize: function() {
 alert("Note Model JavaScript initialize");
 },
 author: function () { },
 coordinates: function () { },
 allowedToEdit: function(account) {
 return true;
 }
 }
);

This code shows a typical usage of Backbone in JavaScript. We start by creating
a variable named Note that extends (or derives from) Backbone.Model. This can
be seen with the Backbone.Model.extend syntax. The Backbone extend function
uses JavaScript object notation to define an object within the outer curly braces
{ … }. In the preceding code, this object has four functions: initialize, author,
coordinates and allowedToEdit.

According to the Backbone documentation, the initialize function will be called
once a new instance of this class is created. In our preceding sample, the initialize
function simply creates an alert to indicate that the function was called. The author
and coordinates functions are blank at this stage, with only the allowedToEdit
function actually doing something: return true.

If we were to simply copy and paste the above JavaScript into a TypeScript file, we
would generate the following compile error:

Build: 'Backbone.Model.extend' is inaccessible.

Chapter 5

[141]

When working with a third party library, and a definition file from DefinitelyTyped,
our first port of call should be to see if the definition file may be in error. After
all, the JavaScript documentation says that we should be able to use the extend
method as shown, so why is this definition file causing an error? If we open up the
backbone.d.ts file, and then search to find the definition of the class Model, we will
find the cause of the compilation error:

class Model extends ModelBase {

 /**
 * Do not use, prefer TypeScript's extend functionality.
 **/
 private static extend(

 properties: any, classProperties?: any): any;

This declaration file snippet shows some of the definition of the Backbone Model
class. Here, we can see that the extend function is defined as private static, and
as such, it will not be available outside the Model class itself. This, however, seems
contradictory to the JavaScript sample that we saw in the documentation. In the
preceding comment on the extend function definition, we find the key to using
Backbone in TypeScript: prefer TypeScript's extend functionality.

This comment indicates that the declaration file for Backbone is built around
TypeScript's extends keyword – thereby allowing us to use natural TypeScript
inheritance syntax to create Backbone objects. The TypeScript equivalent to this code,
therefore, must use the extends TypeScript keyword to derive a class from the base
class Backbone.Model, as follows:

class Note extends Backbone.Model {
 initialize() {
 alert("Note model Typescript initialize");
 }
 author() { }
 coordinates() { }
 allowedToEdit(account) {
 return true;
 }
}

We are now creating a class definition named Note that extends the Backbone.
Model base class. This class then has the functions initialize, author,
coordinates and allowedToEdit, similar to the previous JavaScript version. Our
Backbone sample will now compile and run correctly.

Third Party Libraries

[142]

With either of these versions, we can create an instance of the Note object by
including the following script within an HTML page:

<script type="text/javascript">
 $(document).ready(function () {
 var note = new Note();
 });
</script>

This JavaScript sample simply waits for the jQuery document.ready event to be
fired, and then creates an instance of the Note class. As documented earlier, the
initialize function will be called when an instance of the class is constructed,
so we would see an alert box appear when we run this in a browser.

All of Backbone's core objects are designed with inheritance in mind. This means
that creating new Backbone collections, views and routers will use the same extends
syntax in TypeScript. Backbone, therefore, is a very good fit for TypeScript, because
we can use natural TypeScript syntax for inheritance to create new Backbone objects.

Using interfaces
As Backbone allows us to use TypeScript inheritance to create objects, we can just as
easily use TypeScript interfaces with any of our Backbone objects as well. Extracting
an interface for the Note class above would be as follows:

interface INoteInterface {
 initialize();
 author();
 coordinates();
 allowedToEdit(account: string);
}

We can now update our Note class definition to implement this interface as follows:

class Note extends Backbone.Model implements INoteInterface {
 // existing code
}

Our class definition now implements the INoteInterface TypeScript interface. This
simple change protects our code from being modified inadvertently, and also opens
up the ability to work with core Backbone objects in standard object-oriented design
patterns. We could, if we needed to, apply the Factory Pattern described in Chapter 3,
Interfaces, Classes and Generics, to return a particular type of Backbone Model – or any
other Backbone object for that matter.

Chapter 5

[143]

Using generic syntax
The declaration file for Backbone has also added generic syntax to some class
definitions. This brings with it further strong typing benefits when writing
TypeScript code for Backbone. Backbone collections (surprise, surprise) house
a collection of Backbone models, allowing us to define collections in TypeScript
as follows:

class NoteCollection extends Backbone.Collection<Note> {
 model = Note;
 //model: Note; // generates compile error
 //model: { new (): Note }; // ok
}

Here, we have a NoteCollection that derives from, or extends a
Backbone.Collection, but also uses generic syntax to constrain the collection
to handle only objects of type Note. This means that any of the standard collection
functions such as at() or pluck() will be strongly typed to return Note models,
further enhancing our type safety and Intellisense.

Note the syntax used to assign a type to the internal model property of the collection
class on the second line. We cannot use the standard TypeScript syntax model:
Note, as this causes a compile time error. We need to assign the model property to a
the class definition, as seen with the model=Note syntax, or we can use the { new():
Note } syntax as seen on the last line.

Using ECMAScript 5
Backbone also allows us to use ECMAScript 5 capabilities to define getters and
setters for Backbone.Model classes, as follows:

interface ISimpleModel {
 Name: string;
 Id: number;
}
class SimpleModel extends Backbone.Model implements ISimpleModel {
 get Name() {
 return this.get('Name');
 }
 set Name(value: string) {
 this.set('Name', value);
 }

Third Party Libraries

[144]

 get Id() {
 return this.get('Id');
 }
 set Id(value: number) {
 this.set('Id', value);
 }
}

In this snippet, we have defined an interface with two properties, named
ISimpleModel. We then define a SimpleModel class that derives from Backbone.
Model, and also implements the ISimpleModel interface. We then have ES 5 getters
and setters for our Name and Id properties. Backbone uses class attributes to store
model values, so our getters and setters simply call the underlying get and set
methods of Backbone.Model.

Backbone TypeScript compatibility
As we have seen, Backbone allows us to use all of TypeScript's language features
within our code. We can use classes, interfaces, inheritance, generics and even
ECMAScript 5 properties. All of our classes also derive from base Backbone objects.
This makes Backbone a highly compatible library for building web applications with
TypeScript. We will explore more of the Backbone framework in later chapters.

Angular
AngularJs (or just Angular) is also a very popular JavaScript framework, and is
maintained by Google. Angular takes a completely different approach to building
JavaScript SPA's, introducing an HTML syntax that the running Angular application
understands. This provides the application with two-way data binding capabilities,
which automatically synchronizes models, views and the HTML page. Angular also
provides a mechanism for Dependency Injection (DI), and uses services to provide
data to your views and models.

Let's take a look at a sample from the Angular Tutorial, found in step 2, where we
start to build a controller named PhoneListCtrl. The example provided in the
tutorial shows the following JavaScript:

var phonecatApp = angular.module('phonecatApp', []);
phonecatApp.controller('PhoneListCtrl', function ($scope)
{
 $scope.phones = [
 {'name': 'Nexus S',
 'snippet': 'Fast just got faster with Nexus S.'},

Chapter 5

[145]

 {'name': 'Motorola XOOM™ with Wi-Fi',
 'snippet': 'The Next, Next Generation tablet.'},
 {'name': 'MOTOROLA XOOM™',
 'snippet': 'The Next, Next Generation tablet.'}
];
});

This code snippet is typical of Angular JavaScript syntax. We start by creating
a variable named phonecatApp, and register this as an Angular module by calling
the module function on the angular global instance. The first argument to the
module function is a global name for the Angular module, and the empty array is
a place-holder for other modules that will be injected via Angular's Dependency
Injection routines.

We then call the controller function on the newly created phonecatApp variable
with two arguments. The first argument is the global name of the controller, and
the second argument is a function that accepts a specially named Angular variable
named $scope. Within this function, the code sets the phones object of the $scope
variable to be an array of JSON objects, each with a name and snippet property.

If we continue reading through the tutorial, we find a unit test that shows how the
PhoneListCtrl controller is used:

describe('PhoneListCtrl', function(){
 it('should create "phones" model with 3 phones', function() {
 var scope = {},
 ctrl = new PhoneListCtrl(scope);

 expect(scope.phones.length).toBe(3);
 });

});

The first two lines of this code snippet use a global function called describe,
and within this function another function called it. These two functions are part
of a unit testing framework named Jasmine. We will cover unit testing in our next
chapter, but for the time being, lets' focus on the rest of the code.

We declare a variable named scope to be an empty JavaScript object, and
then a variable named ctrl that uses the new keyword to create an instance
of our PhoneListCtrl class. The new PhoneListCtrl(scope) syntax shows
that Angular is using the definition of the controller just like we would use a
normal class in TypeScript.

Third Party Libraries

[146]

Building the same object in TypeScript would allow us to use TypeScript classes,
as follows:

var phonecatApp = angular.module('phonecatApp', []);

class PhoneListCtrl {
 constructor($scope) {
 $scope.phones = [
 { 'name': 'Nexus S',
 'snippet': 'Fast just got faster' },
 { 'name': 'Motorola',
 'snippet': 'Next generation tablet' },
 { 'name': 'Motorola Xoom',
 'snippet': 'Next, next generation tablet' }
];
 }
};

Our first line is the same as in our previous JavaScript sample. We then, however,
use the TypeScript class syntax to create a class named PhoneListCtrl. By creating
a TypeScript class, we can now use this class as shown in our Jasmine test code:
ctrl = new PhoneListCtrl(scope). The constructor function of our
PhoneListCtrl class now acts as the anonymous function seen in the
original JavaScript sample:

phonecatApp.controller('PhoneListCtrl', function ($scope) {
 // this function is replaced by the constructor
}

Angular classes and $scope
Let's expand our PhoneListCtrl class a little further, and have a look at what it
would look like when completed:

class PhoneListCtrl {
 myScope: IScope;
 constructor($scope, $http: ng.IHttpService, Phone) {
 this.myScope = $scope;
 this.myScope.phones = Phone.query();
 $scope.orderProp = 'age';
 _.bindAll(this, 'GetPhonesSuccess');
 }
 GetPhonesSuccess(data: any) {
 this.myScope.phones = data;
 }
};

Chapter 5

[147]

The first thing to note in this class, is that we are defining a variable named myScope,
and storing the $scope argument that is passed in via the constructor, into this
internal variable. This is again because of JavaScript's lexical scoping rules. Note
the call to _.bindAll at the end of the constructor. This Underscore utility function
will ensure that whenever the GetPhonesSuccess function is called, it will use the
variable this in the context of the class instance, and not in the context of the calling
code. We will discuss the usage of _.bindAll in detail in a later chapter.

The GetPhonesSuccess function uses the this.myScope variable within its
implementation. This is why we needed to store the initial $scope argument in an
internal variable.

Another thing we notice from this code, is that the myScope variable is typed to an
interface named IScope, which will need to be defined as follows:

interface IScope {
 phones: IPhone[];
}
interface IPhone {
 age: number;
 id: string;
 imageUrl: string;
 name: string;
 snippet: string;
};

This IScope interface just contains an array of objects of type IPhone (pardon the
unfortunate name of this interface – it can hold Android phones as well).

What this means is that we don't have a standard interface or TypeScript type
to use when dealing with $scope objects. By its nature, the $scope argument will
change its type depending on when and where the Angular runtime calls it, hence
our need to define an IScope interface, and strongly type the myScope variable to
this interface.

Another interesting thing to note on the constructor function of the PhoneListCtrl
class is the type of the $http argument. It is set to be of type ng.IHttpService.
This IHttpService interface is found in the declaration file for Angular. In order to
use TypeScript with Angular variables such as $scope or $http, we need to find the
matching interface within our declaration file, before we can use any of the Angular
functions available on these variables.

Third Party Libraries

[148]

The last point to note in this constructor code is the final argument, named Phone.
It does not have a TypeScript type assigned to it, and so automatically becomes
of type any. Let's take a quick look at the implementation of this Phone service,
which is as follows:

var phonecatServices =
 angular.module('phonecatServices', ['ngResource']);

phonecatServices.factory('Phone',
 [
 '$resource', ($resource) => {
 return $resource('phones/:phoneId.json', {}, {
 query: {
 method: 'GET',
 params: {
 phoneId: 'phones'
 },
 isArray: true
 }
 });
 }
]
);

The first line of this code snippet again creates a global variable named
phonecatServices, using the angular.module global function. We then call the
factory function available on the phonecatServices variable, in order to define
our Phone resource. This factory function uses a string named 'Phone' to define
the Phone resource, and then uses Angular's dependency injection syntax to inject
a $resource object. Looking through this code, we can see that we cannot easily
create standard TypeScript classes for Angular to use here. Nor can we use standard
TypeScript interfaces or inheritance on this Angular service.

Angular TypeScript compatibility
When writing Angular code with TypeScript, we are able to use classes in certain
instances, but must rely on the underlying Angular functions such as module and
factory to define our objects in other cases. Also, when using standard Angular
services, such as $http or $resource, we will need to specify the matching
declaration file interface in order to use these services. We can therefore describe the
Angular library as having medium compatibility with TypeScript.

Chapter 5

[149]

Inheritance – Angular versus Backbone
Inheritance is a very powerful feature of object-oriented programming, and is also
a fundamental concept when using JavaScript frameworks. Using a Backbone
controller or an Angular controller within each framework relies on certain
characteristics, or functions being available. We have seen, however, that each
framework implements inheritance in a different way.

As JavaScript does not have the concept of inheritance, each framework needs
to find a way to implement it, so that the framework can allow us to extend base
classes and their functionality. In Backbone, this inheritance implementation is
via the extend function of each Backbone object. As we have seen, the TypeScript
extends keyword follows a similar implementation to Backbone, allowing the
framework and language to dovetail each other.

Angular, on the other hand, uses its own implementation of inheritance,
and defines functions on the angular global namespace to create classes
(that is angular.module). We can also sometimes use the instance of an application
(that is <appName>.controller) to create modules or controllers. We have found,
though, that Angular uses controllers in a very similar way to TypeScript classes,
and we can therefore simply create standard TypeScript classes that will work within
an Angular application.

So far, we have only skimmed the surface of both the Angular TypeScript syntax and
the Backbone TypeScript syntax. The point of this exercise was to try and understand
how TypeScript can be used within each of these two third party frameworks.

Be sure to visit http://todomvc.com, and have a look at the full source-code for
the Todo application written in TypeScript for both Angular and Backbone. They
can be found on the Compile-to-JS tab in the example section. These running code
samples, combined with the documentation on each of these sites, will prove to be
an invaluable resource when trying to write TypeScript syntax with an external third
party library such as Angular or Backbone.

http://todomvc.com

Third Party Libraries

[150]

Angular 2.0
The Microsoft TypeScript team and the Google Angular team have just completed
a months long partnership, and have announced that the upcoming release of
Angular, named Angular 2.0, will be built using TypeScript. Originally, Angular 2.0
was going to use a new language named AtScript for Angular development. During
the collaboration work between the Microsoft and Google teams, however, the
features of AtScript that were needed for Angular 2.0 development have now been
implemented within TypeScript. This means that the Angular 2.0 library will be
classed as highly compatible with TypeScript, once the Angular 2.0 library, and the
1.5 edition of the TypeScript compiler are available.

ExtJs
ExtJs is a popular JavaScript library that has a wide variety of widgets, grids, graphing
components, layout components and more. With release 4.0, ExtJs incorporated a
model, view, controller style of application architecture into their libraries. Although
it is free for open-source development, ExtJs requires a license for commercial use. It is
popular with development teams that are building web-enabled desktop replacements,
as its look and feel is comparable to normal desktop applications. ExtJs, by default,
ensures that each application or component will look and feel exactly the same, no
matter which browser it is run in, and it requires little or no need for CSS or HTML.

The ExtJs team, however, has not released an official TypeScript declaration file
for ExtJs, despite much community pressure. Thankfully, the wider JavaScript
community has come to the rescue, beginning with Mike Aubury. He wrote a
small utility program to generate declaration files from the ExtJs documentation
(https://github.com/zz9pa/extjsTypescript).

Whether this work influenced the current version of the ExtJs definitions on
DefinitelyTyped or not, remains to be seen, but the original definitions from Mike
Aubury and the current version from brian428 on DefinitelyTyped are very similar.

Creating classes in ExtJs
ExtJs is a JavaScript library that does things in its own way. If we were to categorize
Backbone, Angular and ExtJs, we might say that Backbone is a highly compliant
TypeScript library. In other words, the language features of classes and inheritance
within TypeScript are highly compliant with Backbone.

https://github.com/zz9pa/extjsTypescript

Chapter 5

[151]

Angular in this case would be a partially compliant library, with some elements of
Angular objects complying with the TypeScript language features. ExtJs, on the other
hand, would be a minimally compliant library, with little or no TypeScript language
features applicable to the library.

Let's take a look at a sample ExtJs 4.0 application written in TypeScript. Consider the
following code:

Ext.application(
 {
 name: 'SampleApp',
 appFolder: '/code/sample',
 controllers: ['SampleController'],
 launch: () => {

 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 xtype: 'panel',
 title: 'Sample App',
 html: 'This is a Sample Viewport'
 }]
 });

 }

 }
);

We start by creating an ExtJs application by calling the application function on
the Ext global instance. The application function then uses a JavaScript object,
enclosed within the first and last curly braces { } to define properties and functions.
This ExtJs application sets the name property to be SampleApp, the appFolder
property to be /code/sample, and the controllers property to be an array with a
single entry: 'SampleController'.

We then define a launch property, which is an anonymous function. This launch
function then uses the create function on the global Ext instance to create a class.
The create function uses the "Ext.container.Viewport" name to create an
instance of the Ext.container.Viewport class, which has the properties layout
and items. The layout property can only contain one of a specific set of values, for
example 'fit', 'auto' or 'table'. The items array contains further ExtJs specific
objects, which are created depending on what their xtype property suggests.

Third Party Libraries

[152]

ExtJs is one of those libraries that is not intuitive. As a programmer, you will need
to have one browser window open with the library documentation at all times, and
use it to figure out what each property means for each type of available class. It also
has a lot of magic strings – in the preceding sample, the Ext.create function would
fail if we miss-typed the 'Ext.container.Viewport' string, or simply forgot to
capitalize it in the right places. To ExtJs, 'viewport' is different to 'ViewPort'.
Remember that one of our solutions to magic strings within TypeScript is to use
enums. Unfortunately, the current version of the ExtJs declaration file does not have
a set of enums for these class types.

Using type casting
We can, however, use the TypeScript language feature of type casting to help with
writing ExtJs code. If we know what type of ExtJs object we are trying to create, we
can cast the JavaScript object to this type, and then use TypeScript to check whether
the properties we are using are correct for that type of ExtJs object. To help with this
concept, let's just take the outer definition of the Ext.application into account.
Stripped of the inner code, the call to the application function on the Ext global
object would be reduced to this:

Ext.application(
 {
 // properties of an Ext.application
 // are set within this JavaScript
 // object block
 }
);

Using the TypeScript declaration files, type casting, and a healthy dose of ExtJs
documentation, we know that the inner JavaScript object should be of type
Ext.app.IApplication, and we can therefore cast this object as follows:

Ext.application(
 <Ext.app.IApplication> {
 // this JavaScript block is strongly
 // type to be of Ext.app.IApplication
 }
);

Chapter 5

[153]

The second line of this code snippet now uses the TypeScript type casting
syntax, to cast the JavaScript object between the curly braces { } to a type of
Ext.app.IApplication. This gives us strong type checking, and Intellisense,
as shown in the following screenshot:

Visual Studio intellisense for an ExtJs configuration block

In a similar manner, these explicit type casts can be used on any JavaScript object
that is being used to create ExtJs classes. The declaration file for ExtJs currently
on DefinitelyTyped uses the same names for its object definitions as the ExtJs
documentation uses, so finding the correct type should be rather simple.

The preceding technique of using explicit type casting is just about the only language
feature of TypeScript that we can use with the ExtJs library – but this still highlights
how strong typing of objects can assist us in our development experience, making
our code more robust and resistant to errors.

ExtJs specific TypeScript compiler
If you are using ExtJs on a regular basis, then you may want to take a look at the work
done by Gareth Smith, Fabio Parra dos Santos and their team at https://github.
com/fabioparra/TypeScript. This project is a fork of the TypeScript compiler
that will emit ExtJs classes from standard TypeScript classes. Using this version of
the compiler turns the tables on normal ExtJs development, allowing for natural
TypeScript class syntax, the use of inheritance via the extends keyword, as well as
natural module naming, without the need for magic strings. The work done by this
team shows that because the TypeScript compiler is open-source, it can be extended
and modified to emit JavaScript in a specific way, or to target a specific library. Hats off
to Gareth, Fabio and their team for their ground-breaking work in this area.

https://github.com/fabioparra/TypeScript
https://github.com/fabioparra/TypeScript

Third Party Libraries

[154]

Summary
In this chapter, we have had a look at third party JavaScript libraries and how they
can be used within a TypeScript application. We started by looking at the various
ways of including community released versions of TypeScript declaration files
within our projects, from downloading the raw files, to using package managers like
NuGet and TSD. We then looked at three types of third party libraries, and discussed
how to integrate these libraries with TypeScript. We explored Backbone, which can
be categorized as a highly compliant third party library, Angular, which is a partially
compliant library, and ExtJs which is a minimally compliant library. We saw how
various features of the TypeScript language can co-exist with these libraries, and
showed what TypeScript equivalent code would look like in each of these cases.
In the next chapter, we will look at Test Driven Development, and explore some of
the libraries that are available for unit testing, integration testing, and automated
acceptance testing.

[155]

Test Driven Development
Over the past few years, the popularity of the Model View Controller (MVC),
Model View Presenter (MVP), and Model View ViewModel (MVVM) patterns
has given rise to a range of third-party JavaScript libraries, each implementing their
own version of these patterns. Backbone, for example, could be described as an MVP
implementation, where the view acts as a presenter. ExtJS 4 introduced an MVC
pattern to their framework, and Angular could be described as more of an MVVM
framework. When discussing this group of patterns together, they have been described
by some as Model View Whatever (MVW), or Model View Something (MV*).

Some of the benefits of this MV* style of writing applications include modularity
and separation of concerns. This MV* style of building applications also brings with
it a huge advantage—the ability to write testable JavaScript. Using MV* allows us
to unit test, integration test, and function test almost all of our beautifully hand-
crafted JavaScript. This means that we can test our rendering functions to ensure
that DOM elements are correctly shown on the page. We can also simulate button
clicks, drop-down selections, and animations. We can also extend these tests to page
transitions, including login pages and home pages. By building a large set of tests for
our application, we will gain confidence that our code works as expected, and it will
allow us to refactor our code at any time.

In this chapter, we will look at Test Driven Development in relation to TypeScript.
We will discuss some of the more popular testing frameworks, write some unit tests,
and then discuss test runners and continuous integration techniques.

Test Driven Development

[156]

Test Driven Development
Test Driven Development (TDD) is a development process, or a development
paradigm, that starts with tests and drives the momentum of a piece of production
code through these tests. Test Driven Development means asking the question
"how do I know that I have solved the problem?" instead of just "how do I solve
the problem?"

The basic steps of a test driven approach are the following:

• Write a test that fails
• Run the test to ensure that it fails
• Write the code to make the test pass
• Run the test to see that it passes
• Run all tests to see that the new code does not break any others
• Repeat the process

Using Test Driven Development practices is really a mindset. Some developers
follow this approach and write tests first, while others write their code first and their
tests afterwards. Then there are some that don't write tests at all. If you fall into the
last category, then hopefully, the techniques you learn in this chapter will help you
to get started in the right direction.

There are so many excuses out there for not writing unit tests. Some typical excuses
include phrases like "the test framework was not in our original quote", or "it will
add 20 percent to the development time", or "the tests are outdated so we don't run
them anymore". The truth is, though, that in this day and age, we cannot afford not
to write tests. Applications grow in size and complexity, and requirements change
over time. An application that has a good suite of tests can be modified far more
quickly, and will be much more resilient to future requirement changes than one
that does not have tests. This is when the real cost savings of unit testing become
apparent. By writing unit tests for your application, you are future-proofing it, and
ensuring that any change to the code base does not break existing functionality.

TDD in the JavaScript space adds another layer to our code coverage. Quite often,
development teams will write tests that target only the server-side logic of an
application. As an example, in the Visual Studio space, these tests are often written to
only target the MVC framework of controllers, views, and underlying business logic.
It has always been fairly difficult to test the client-side logic of an application—in
other words, the actual rendered HTML and user-based interactions.

Chapter 6

[157]

JavaScript testing frameworks provide us with tools to fill this gap. We can now start
to unit test our rendered HTML, as well as simulate user interactions such as filling
in forms and clicking on buttons. This extra layer of testing, combined with server-
side testing, means that we have a way to unit testing each layer of our application—
from server-side business logic, through server-side page rendering, right through to
rendering and user interactions. The ability to unit test frontend user interactions is
one of the greatest strengths of any JavaScript MV* framework. In fact, it could even
influence the architectural decisions you make when choosing a technology stack.

Unit, integration and acceptance tests
Automated tests can be broken up into three general areas, or types of tests—unit
tests, integration tests, and acceptance tests. We can also describe these tests as either
black box or white box tests. White box tests are tests where the internal logic or
structure of the code under test is known to the tester. Black box tests, on the other
hand, are tests where the internal design and or logic are not known to the tester.

Unit tests
A unit test is typically a white box test where all of the external interfaces to a
block of code are mocked or stubbed out. If we are testing some code that does an
asynchronous call to load a block of JSON for example, unit testing this code would
require mocking out the returned JSON. This technique ensures that the object under
test is always given a known set of data. When new requirements come along, this
known set of data can grow and expand, of course. Objects under test should be
designed to interact with interfaces so that those interfaces can be easily mocked or
stubbed out in a unit test scenario.

Integration tests
Integration tests are another form of white box tests that allow the object under
test to run in an environment close to how it would in real code. In our preceding
example, where some code does an asynchronous call to load a block of JSON, an
integration test would need to actually call the Representational State Transfer
(REST) services that generate the JSON. If this REST service relied upon data from
a database, then the integration test would need data in the database that matched
the integration test scenario. If we were to describe a unit test as having a boundary
around the object under test, then an integration test is simply an expansion of this
boundary to include dependent objects or services.

Test Driven Development

[158]

Building automated integration tests for your applications will improve the quality
of your application immensely. Consider the case in the scenario that we have been
using—where a block of code calls a REST service for some JSON data. Someone
could easily change the structure of the JSON data that the REST service returns.
Our unit tests will still pass, as they are not actually calling the REST server-side
code, but our application will be broken because the returned JSON is not what
we are expecting.

Without integration tests, these types of errors will only be picked up in later stages
of manual testing. Thinking about integration tests, implementing specific data sets
for integration tests, and building them into your test suite will eliminate these sorts
of bugs early.

Acceptance tests
Acceptance tests are black box tests, and are generally scenario-based. They may
incorporate multiple user screens or user interactions in order to pass. These tests
are also generally carried out by the testing team, as it may require logging in to
the application, searching for a particular set of data, updating the data, and so on.
With some planning, we can also automate parts of these acceptance tests into an
integration suite, as we have the ability in JavaScript to find and click buttons, insert
data into required fields, or select drop-down items. The more acceptance tests a
project has, the more robust it will be.

In the Test Driven Development methodology, every bug that is picked
up by a manual testing team must result in the creation of new unit,
integration, or acceptance tests. This methodology will help to ensure
that once a bug is found and fixed, it never reappears again.

Using continuous integration
When writing unit tests for any application, it quickly becomes important to set
up a build server and run your tests as part of each source control check in. When
your development team grows beyond a single developer, using a Continuous
Integration (CI) build server becomes imperative. This build server will ensure
that any code committed to the source control server passes all known unit tests,
integration tests, and automated acceptance tests. The build server is also responsible
for labeling a build and generating any deployment artifacts that need to be used
during deployment.

Chapter 6

[159]

The basic steps of a build server would be as follows:

• Check out the latest version of the source code, and increase the
build number

• Compile the application on the build server
• Run any server-side unit tests
• Package the application for deployment
• Deploy the package to a build environment
• Run any server-side integration tests
• Run any JavaScript unit, integration, and acceptance tests
• Mark the change set and build number as passed or failed
• If the build failed, notify those responsible for breaking it

The build server should fail if any one of the preceding steps fail.

Benefits of continuous integration
Using a build server to run through the preceding steps brings huge benefits to any
development team. Firstly, the application is compiled on the build server—which
means that any tools or external libraries used, will need to be installed on the build
server. This gives your development team the opportunity to document exactly
what software needs to be installed on a new machine in order to compile or run
your application.

Secondly, a standard set of server-side unit tests can be run before the packaging step
is attempted. In a Visual Studio project, these would be C# unit tests built with any
of the popular .NET testing frameworks, such as MSTest, NUnit, or xUnit.

Next, the entire application's packaging step is run. Let's assume for a moment that a
developer has included a new JavaScript library within the project, but forgotten to
add it to the Visual Studio solution. In this case, all of the tests will run on their local
computer, but will break the build because of a missing library file. If we were to
deploy the site at this stage, running the application would result in a 404 error – file
not found. By running a packaging step, these sort of errors are quickly found.

Test Driven Development

[160]

Once a successful packaging step has been completed, the build server should
deploy the site to a specially marked build environment. This build environment is
only used for CI builds, and must therefore have its own database instances, web
service references, and so on, set up specifically for CI builds. Again, actually doing
a deployment to a target environment tests the deployment artifacts, as well as the
deployment process. By setting up a build environment for automated package
deployment, your team is again able to document the requirements and process
for deployment.

At this stage, we have a full instance of our website up and running on an isolated
build environment. We can then easily target specific web pages that will run our
JavaScript tests, and also run integration or automated acceptance tests—directly on
the full version of the website. In this way, we can write tests that target the real-life
website REST services, without having to mock out these integration points. So in
effect, we are testing the application from the ground up. Obviously, we may need
to ensure that our build environment has a specific set of data that can be used for
integration testing, or a way of generating the required data sets that our integration
tests will need.

Selecting a build server
There are a number of continuous integration build servers out there, including
TeamCity, Jenkins, and Team Foundation Server (TFS).

Team Foundation Server
TFS needs a specific configuration on its build agents to be able to run instances
of a web browser. With larger projects, actually running the JavaScript tests
within a specific browser makes sense, and soon becomes a required step. You
may need to support more than one browser, and want to run your tests within
Firefox, Chrome, IE, Safari, or others. TFS also uses Windows Workflow Foundation
(WF) to configure build steps, which takes a fair amount of experience and
knowledge to modify.

Jenkins
Jenkins is an open source, free-to-use CI build server. It has wide community usage,
and many plugins. Installation and configuration of Jenkins is fairly straightforward,
and Jenkins will allow processes to run browser instances, making it compatible with
browser-based JavaScript unit tests. Jenkins build steps are command-line-based,
and it sometimes takes a little nous to configure build steps correctly.

Chapter 6

[161]

TeamCity
A very popular, and very powerful, build server that is free to set up is TeamCity.
TeamCity allows free installation if you have a small number of developers (< 20),
and a small number of projects (< 20). A full commercial license is only around
$1,500.00, which makes it affordable for most organizations. Configuring build
steps in TeamCity is much easier than in Jenkins or TFS, as it uses a wizard style of
configuration depending on the type of build step you are creating. TeamCity also
has a rich set of functionality around unit tests, with the ability to show graphs per
unit test, and is therefore considered best of breed for build servers.

Unit testing frameworks
There are many JavaScript unit testing frameworks available, and also a few that
have been written in TypeScript. Two of the most popular JavaScript frameworks
are Jasmine (http://jasmine.github.io/) and QUnit (http://qunitjs.com/). If
you are writing Node TypeScript code, then you might want to have a look at mocha
(https://github.com/mochajs/mocha/wiki).

Two of the TypeScript-based testing frameworks are MaxUnit (https://github.
com/KnowledgeLakegithub/MaxUnit) and tsUnit (https://github.com/Steve-
Fenton/tsUnit). Unfortunately, both MaxUnit and tsUnit are newcomers in this
space, and therefore may not have the features that are inherent in the older, more
popular frameworks. MaxUnit, for example, did not have any documentation at the
time of writing, and tsUnit does not have a test reporting framework compatible
with CI build servers. Over time, these TypeScript frameworks may grow, but seeing
how easy it is to work with third-party libraries and use DefinitelyTyped declaration
files, writing unit tests for either QUnit or Jasmine becomes a very simple process.

For the rest of this chapter, we will be using Jasmine 2.0 as our testing framework.

Jasmine
For this section of the chapter, we will create a new Visual Studio project that is
based on the MVC framework project type. For now, we can just use the empty
MVC template.

Jasmine can be installed into our new TypeScript project with the following two
NuGet packages:

Install-Package JasmineTest

Install-Package jasmine.TypeScript.DefinitelyTyped

http://jasmine.github.io/
http://qunitjs.com/
https://github.com/mochajs/mocha/wiki
https://github.com/KnowledgeLakegithub/MaxUnit
https://github.com/KnowledgeLakegithub/MaxUnit
https://github.com/Steve-Fenton/tsUnit
https://github.com/Steve-Fenton/tsUnit

Test Driven Development

[162]

With these two packages in place, we have the required JavaScript libraries and
TypeScript definition files in place to begin writing Jasmine tests.

The default installation from NuGet for JasmineTest uses the
ASP.NET MVC framework, and creates a JasmineController
in the Controllers directory. If you are not using the MVC
framework, or are installing this package in a Node environment,
then this JasmineController should be deleted, as it will cause
compilation errors. Later in this chapter, we will show how to run
integration tests against this JasmineController, so it's best to
leave it in place for the time being.

A simple Jasmine test
Jasmine uses a simple format for writing tests. Consider the following
TypeScript code:

describe("tests/01_SimpleJasmineTests.ts ", () => {
 it("should fail", () => {
 var undefinedValue;
 expect(undefinedValue).toBeDefined();
 });
});

This snippet starts with a Jasmine function called describe, which takes two
arguments. The first argument is the name of the test suite, and the second is an
anonymous function that contains our test suite. The next line uses the Jasmine
function named it, which also takes two arguments. The first argument is the test
name, and the second argument is an anonymous function that contains our test; in
other words, whatever is within the it anonymous function is our actual test. This
test starts by defining a variable, named undefinedValue, but does not actually
set its value. Next, we use the Jasmine function expect. Just by reading the code of
this expect statement, we can quickly understand what the unit test is doing. It is
expecting that the value of the undefinedValue variable should be defined, that is,
not undefined.

Chapter 6

[163]

The expect function takes a single argument, and returns a Jasmine matcher. We can
then call any of the Jasmine matcher functions to assess the value passed into expect
against the matcher function. The expect keyword is similar to the Assert keyword
in other testing libraries. The format of the expect statements are human-readable,
making Jasmine expectations relatively simple to understand.

Jasmine SpecRunner.html file
In order to run this test, we will need an HTML page that includes all the relevant
Jasmine third-party libraries, as well as our test JavaScript file. We can create a
SpecRunner.html file with the following HTML within it:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jasmine Spec Runner</title>
 <link rel="shortcut icon" type="image/png"
 href="/Content/jasmine/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css"
 href="/Content/jasmine/jasmine.css">
 <script type="text/javascript"
 src="/Scripts/jasmine/jasmine.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine/jasmine-html.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine/boot.js"></script>
 <script type="text/javascript"
 src="/tests/01_SimpleJasmineTests.js"></script>

 </head>
<body>

</body>
</html>

This HTML page is simply including the required Jasmine files, jasmine.css,
jasmine.js, jasmine-html.js, and boot.js. The last line includes the compiled
JavaScript file from our TypeScript test file.

Test Driven Development

[164]

If we set this page as our startup page within Visual Studio and run it, we should see
one failing unit test:

SpecRunner.html page showing Jasmine output

Excellent! We are following the test-driven development process by firstly creating
a failing unit test. The results are exactly what we expect. Our variable named
undefinedVariable has not yet had a value assigned to it, and therefore will be
undefined. If we follow the next step of the TDD process, we should write the code
that makes the test pass. Updating our test as follows will ensure that the test will pass:

describe("tests/01_SimpleJasmineTests.ts ", () => {
 it("value that has been assigned should be defined", () => {
 var undefinedValue = "test";
 expect(undefinedValue).toBeDefined();
 });
});

Note that we have updated our test name to describe what the test is trying to
accomplish. To make the test pass, we are simply assigning the value "test"
to our undefinedValue variable. Running the SpecRunner.html page now
will show a passing test.

Chapter 6

[165]

Matchers
Jasmine has a wide range of matchers that can be used within tests, and also allows
us to write and include custom matchers. The syntax of Jasmine matchers is pretty
self-explanatory, as can be seen from the following TypeScript code:

 var undefValue;
 expect(undefValue).not.toBeDefined();

Here, we are using the .not. matcher syntax to check that the variable undefValue
is indeed undefined.

 var definedValue = 2;
 expect(definedValue).not.toBe(null);

This expect statement uses the not.toBe matcher to ensure that the definedValue
variable is not null.

 expect(definedValue).toBe(2);

Here, we are using the .toBe matcher to check that the definedValue is in fact a
number with the value of two.

 expect(definedValue.toString()).toEqual("2");

This expect statement is using the toEqual matcher to ensure that the toString
function will return the string value of "2".

 var trueValue = true;
 expect(trueValue).toBeTruthy();
 expect(trueValue).not.toBeFalsy();

Here, we are testing for boolean values, using the toBeTruthy and
toBeFalsy matchers.

 var stringValue = "this is a string";
 expect(stringValue).toContain("is");
 expect(stringValue).not.toContain("test");

Finally, we can also use the toContain matcher to parse a string, and test
whether it contains another string—or use the .not. matcher with toContain
for the reverse test.

Be sure to head over to the Jasmine website for a full list of matchers, as well as
details on writing your own custom matchers.

Test Driven Development

[166]

Test startup and teardown
As in other testing frameworks, Jasmine provides a mechanism to define functions
that will run before and after each test, or as a test startup and teardown mechanism.
In Jasmine, the beforeEach and afterEach functions act as test startup and
teardown functions, as can be seen from the following TypeScript code:

describe("beforeEach and afterEach tests", () => {
 var myString;

 beforeEach(() => {
 myString = "this is a test string";
 });
 afterEach(() => {
 expect(myString).toBeUndefined();
 });

 it("should find then clear the myString variable", () => {
 expect(myString).toEqual("this is a test string");
 myString = undefined;
 });

});

In this test, we define a variable named myString, at the start of the anonymous
function. As we know from JavaScript lexical scoping rules, this myString variable
will then be available for use within each of the following beforeEach, afterEach,
and it functions. Within the beforeEach function, this variable is set to a string
value. Within the afterEach function, the variable is tested to see that it has been
reset to undefined. Our expectation within our test checks is that this variable
has been set via the beforeEach function. At the end of our test, we then reset
the variable to be undefined. Note that the afterEach function is also calling an
expect—in this case to ensure that the test has reset the variable back to undefined.

The Jasmine 2.1 version introduces a second version of setup and
teardown, called beforeAll and afterAll. At the time of writing this
book, though, the versions of both the jasmine.js and jasmine.d.ts
files available from NuGet had not been updated to v2.1.

Chapter 6

[167]

Data-driven tests
To show how extensible the Jasmine testing library is, JP Castro wrote a very
short but powerful utility to provide data-driven tests within Jasmine. His blog
on this topic can be found here (http://blog.jphpsf.com/2012/08/30/drying-
up-your-javascript-jasmine-tests/), and the GitHub repository can be found
here (https://github.com/jphpsf/jasmine-data-provider). This simple
extension allows us to write intuitive Jasmine tests that take a parameter as part of
each test, as follows:

describe("data driven tests", () => {
 using<string>("valid values", [
 "first string",
 "second string",
 "third string"
], (value) => {
 it("should contain string (" + value + ")", () => {
 expect(value).toContain("string");
 });
 });
});

Here, we are wrapping our it test function within another function called using.
This using function takes three parameters: a string description of the value set,
an array of values, and a function definition. This last function definition uses the
variable value, and will invoke our test using this value. Note also in the call to our
test, we are changing the test name on the fly, to include the value parameter that is
passed in. This is necessary in order for each test to have a unique test name.

The preceding solution just needs JP Castro's Jasmine extension, shown in the
following JavaScript code:

function using(name, values, func) {
 for (var i = 0, count = values.length; i < count; i++) {
 if (Object.prototype.toString.call(values[i])
 !== '[object Array]')
 {
 values[i] = [values[i]];
 }
 func.apply(this, values[i]);
 }
}

http://blog.jphpsf.com/2012/08/30/drying-up-your-javascript-jasmine-tests/
http://blog.jphpsf.com/2012/08/30/drying-up-your-javascript-jasmine-tests/
https://github.com/jphpsf/jasmine-data-provider

Test Driven Development

[168]

This is a very simple function named using, that takes the three parameters that we
mentioned earlier. The function does a simple loop through the array values, and
passes in each array value to our test.

The last item that we will need is a TypeScript definition file for the preceding using
function. This is a very simple function declaration as follows:

declare function using<T>(
 name: string,
 values : T [],
 func : (T) => void
);

This TypeScript declaration uses the generic syntax <T> to ensure that the same type
is used for both the second and third arguments. With this declaration in place, and
the JavaScript using function, our code will compile correctly, and the tests will run
through once for each value in the data array:

data driven tests

should contain string (first string)

should contain string (second string)

should contain string (third string)

Using spies
Jasmine also has a very powerful feature that allows your tests to see if a
particular function was called, and what parameters it was called with. It can
also be used to create mocks and stubs. All of this functionality is rolled into
what Jasmine calls spies.

Consider the following test:

class MySpiedClass {
 testFunction(arg1: string) {
 console.log(arg1);
 }
}
describe("simple spy", () => {
 it("should register a function call", () => {
 var classInstance = new MySpiedClass();
 spyOn(classInstance, 'testFunction');

 classInstance.testFunction("test");

Chapter 6

[169]

 expect(classInstance.testFunction).toHaveBeenCalled();
 });
});

We start with a simple class named MySpiedClass, that has a single function
testFunction. This function takes a single argument, and logs the argument
to the console.

Our test starts by creating a new instance of the MySpiedClass, and assigns it to
a variable named classIntance. We then create a Jasmine spy on the function
testFunction of the classInstance variable. Once we have a spy created, we
can call the function. Our expectation then checks whether the function was called.
This is the essence of a spy. Jasmine will "watch" the testFunction function of the
instance of MySpiedClass to see whether or not it was called.

Jasmine spies, by default, block the call to the underlying function.
In other words, they replace the function you are trying to call with a
Jasmine delegate. If you need to spy on a function, but still need the
body of the function to execute, you must specify this behavior using
the .and.callThrough() fluent syntax.

While this is a very trivial example, spies become very powerful in a number of
different testing scenarios. Classes or functions that take callback parameters, for
example, would need a spy to ensure that the callback function was in fact invoked.

Let's see how we can test that a callback function was invoked correctly. Consider
the following TypeScript code:

class CallbackClass {
 doCallBack(id: number, callback: (result: string) => void) {
 var callbackValue = "id:" + id.toString();
 callback(callbackValue);
 }
}

class DoCallBack {
 logValue(value: string) {
 console.log(value);
 }
}

In this code snippet, we define a class named CallbackClass that has a single
function doCallback. This doCallback function takes an id argument of type
number, and also a callback function. The callback function takes a string
as an argument, and returns void.

Test Driven Development

[170]

The second class that we have defined has a single function named logValue.
This function signature matches the callback function signature required on the
doCallback function. Using Jasmine spies, we can test the logic of the doCallBack
function. This logic creates a string based on the id argument that was passed in,
and then invokes the callback function with this string. Our test will need to ensure
that this string is formatted correctly. Our Jasmine test, then, for this can be written
as follows:

describe("using callback spies", () => {
 it("should execute callback with the correct string value", () =>
 {
 var doCallback = new DoCallBack();
 var classUnderTest = new CallbackClass();

 spyOn(doCallback, 'logValue');
 classUnderTest.doCallBack(1, doCallback.logValue);

 expect(callbackSpy.logValue).toHaveBeenCalled();
 expect(callbackSpy.logValue).toHaveBeenCalledWith("id:1");

 });
});

This test code firstly creates an instance of the class CallbackClass, and also an
instance of the class DoCallBack. We then create a spy on the logValue function
of the DoCallBack class. We then call the doCallback function, passing in a value
of 1 as the first argument, and the logValue function as the second argument. Our
expect statements on the last two lines check that the callback function logValue
was actually called, and also what parameters it was called with.

Using spies as fakes
Another benefit of Jasmine spies is that they can act as fakes. In other words, instead
of calling a real function, the call is delegated to the Jasmine spy. Jasmine also
allows spies to return values—which can be useful when generating small mocking
frameworks. Consider the following tests:

Class ClassToFake {
 getValue(): number {
 return 2;
 }
}

Chapter 6

[171]

describe("using fakes", () => {
 it("calls fake instead of real function", () => {
 var classToFake = new ClassToFake();
 spyOn(classToFake, 'getValue')
 .and.callFake(() => { return 5; }
);
 expect(classToFake.getValue()).toBe(5);
 });
});

We start with a class named ClassToFake that has a single function getValue,
which returns 2. Our test then creates an instance of this class. We then call the
Jasmine spyOn function to create a spy on the getValue function, and then use the
.and.callFake syntax to attach an anonymous function as a fake function. This
fake function will return 5 instead of the original getValue function that would
have returned 2. The test then checks to see that when we call the getValue function
on the ClassToFake instance, Jasmine will substitute our new fake function for the
original getValue function, and return 5 instead of 2.

There are a number of variants of the Jasmine fake syntax, including methods to
throw errors, or return values—again, please consult the Jasmine documentation for
a full list of its faking capabilities.

Asynchronous tests
The asynchronous nature of JavaScript—made popular by AJAX and jQuery has
always been one of the drawcards of the language, and is the principle architecture
behind Node based applications. Let's have a quick look at an asynchronous class,
and then describe how we should go about testing it. Consider the following
TypeScript code:

class MockAsyncClass {
 executeSlowFunction(success: (value: string) => void) {
 setTimeout(() => {
 success("success");
 }, 1000);
 }
}

Test Driven Development

[172]

The MockAsyncClass has a single function named executeSlowFunction, which
takes a function callback named success. Within the executeSlowFunction code,
we are simulating an asynchronous call by using the setTimeout function, and
only calling the success callback after 1000 milliseconds (1 second). This behavior
is simulating a standard AJAX call (which would use both a success and an error
callback), which could take a number of seconds to return—depending on the speed
of the backend server, or the size of the data packet.

Our test for this executeSlowFunction may look as follows:

describe("asynchronous tests", () => {
 it("failing test", () => {

 var mockAsync = new MockAsyncClass();
 var returnedValue;
 mockAsync.executeSlowFunction((value: string) => {
 returnedValue = value;
 });
 expect(returnedValue).toEqual("success");
 });

});

Firstly, we instantiate an instance of the MockAsyncClass, and define a variable
named returnedValue. We then call the executeSlowFunction with an anonymous
function for the success callback function. This anonymous function sets the value
of returnedValue to whatever value was passed in from the MockAsyncClass. Our
expectation is that the returnedValue should equal "success". If we run this test
now, however, our test will fail with the following error message:

Expected undefined to equal 'success'.

What is happening here, is that because the executeSlowFunction is asynchronous,
JavaScript will not wait until the callback function is called, before executing
the next line of code. This means that the expectation is being called before
the executeSlowFunction has had a chance to call our anonymous callback
function (setting the value of returnedValue). If you put a breakpoint on the
expect(returnValue).toEqual("success") line, and another breakpoint on
the returnedValue = value line, you will see that the expect line is called first,
and the returnedValue line is only called after a second. This timing issue is
what is causing this test to fail. We need to somehow have our test wait until the
executeSlowFunction has invoked the callback, before we execute our expectations.

Chapter 6

[173]

Using the done() function
Jasmine version 2.0 has introduced a new syntax to help us with these sort of
asynchronous tests. In any beforeEach, afterEach, or it function, we pass an
argument named done, which is a function, and then invoke it at the end of our
asynchronous code. Consider the following test:

describe("asynch tests with done", () => {
 var returnedValue;

 beforeEach((done) => {
 returnedValue = "no_return_value";
 var mockAsync = new MockAsyncClass();
 mockAsync.executeSlowFunction((value: string) => {
 returnedValue = value;
 done();
 });
 });

 it("should return success after 1 second", (done) => {
 expect(returnedValue).toEqual("success");
 done();
 });
});

Firstly, we have moved the returnedValue variable outside of our test,
and have included a beforeEach function to run before our actual test. This
beforeEach function firstly resets the value of returnValue, and then sets up the
MockAsyncClass instance. Finally it calls the executeSlowFunction on this instance.

Note how the beforeEach function takes a parameter named done, and then calls
this done function after the returnedValue = value line has been called. Notice
too, that the second parameter to the it function now also takes a done parameter,
and invokes this done function when the test is finished.

From the Jasmine documentation: The spec will not start until the
done function is invoked in the call to beforeEach, and the spec
will not complete until the done function is called. By default,
Jasmine will wait for 5 seconds before causing a timeout failure.
This can be overridden using the jasmine.DEFAULT_TIMEOUT_
INTERVAL variable.

Test Driven Development

[174]

Jasmine fixtures
Many times, our code is responsible for either reading in, or in most cases
manipulating DOM elements from JavaScript. This means that any running code
that relies on a DOM element could fail, if the underlying HTML does not contain
the correct element or group of elements. Another Jasmine extension library named
jasmine-jquery allows us to inject HTML elements into the DOM before our tests
execute, and will remove them from the DOM after the test is run.

At the time of writing this book, this library was not available on NuGet, so we will
need to download the jasmine-jquery.js file the old-fashioned way, and include it
in our project. The TypeScript definition file is, however, available on NuGet:

Install-package Jasmine-jquery.TypeScript.DefinitelyTyped

We will need to also update the .html file to include both jquery.js
and jasmine-jquery.js files in the header script section.

Let's have a look at a test that injects DOM elements by using the jasmine-jquery
library. Firstly, a class that manipulates a specific DOM element:

Class ModifyDomElement {
 setHtml() {
 var elem = $("#my_div");
 elem.html("<p>Hello world</p>");
 }
}

This ModifyDomElement class has a single function, named setHtml that is using
jQuery to find a DOM element with the id of my_div. The HTML of this div is then
set to a simple "Hello world" paragraph. Now for our Jasmine test:

describe("fixture tests", () => {
 it("modifies dom element", () => {
 setFixtures("<div id='my_div'></div>");
 var modifyDom = new ModifyDomElement();
 modifyDom.setHtml();
 var modifiedElement = $("#my_div");
 expect(modifiedElement.length).toBeGreaterThan(0);
 expect(modifiedElement.html()).toContain("Hello");
 });
});

Chapter 6

[175]

The test starts by calling the jasmine-jquery function setFixtures. This
function will inject the HTML provided as the first string argument directly into
the DOM. We then create an instance of the ModifyDomElement class, and call the
setHtml function to modify the my_div element. We are then setting the variable
modifiedElement to the result of a jQuery search in the DOM. If jQuery has found
the element, then its length property will be > 0, and we can then check to see if, in
fact, the HTML was modified.

The fixture methods provided by jasmine-jquery also allow
loading raw HTML files off disk, instead of having to write out
lengthy string representations of HTML. This is also particularly
useful if your MV* framework uses HTML file snippets. The
jasmine-jquery library also has utilities for loading JSON from
disk, and purpose build matchers that work with jQuery. Be sure to
check out the documentation at (https://github.com/velesin/
jasmine-jquery).

DOM events
The jasmine-jquery library also adds some Jasmine spies to help with DOM events.
If we were creating a button, either within TypeScript code or within HTML, we can
ensure that our code correctly responds to DOM events such as click. Consider the
following code and test:

Function handle_my_click_div_clicked() {
 // do nothing at this time
}
describe("click event tests", () => {
 it("spies on click event element", () => {
 setFixtures("<div id='my_click_div' "
 +"onclick='handle_my_click_div_clicked'>Click Here</div>");

 var clickEventSpy = spyOnEvent("#my_click_div", "click");

 $('#my_click_div').click();
 expect(clickEventSpy).toHaveBeenTriggered();
 });
});

https://github.com/velesin/jasmine-jquery
https://github.com/velesin/jasmine-jquery

Test Driven Development

[176]

Firstly, we are defining a dummy function named handle_my_click_div_clicked,
which is used within the fixture HTML. Having a closer look at the HTML used in
the setFixtures function call, we are creating a button with an id of my_click_div,
and an onclick DOM event that will call our dummy function. We then create
a spy on this click event for the my_click_div div, and on the next line actually
invoke the click event. Our expectation is using the jasmine-jquery matcher
toHaveBeenTriggered to test whether the onclick handler was invoked.

jQuery and DOM manipulation provide us with a way of filling in forms,
clicking on Submit, Cancel, OK buttons, and generally simulating user
interaction with our application. We can easily write full acceptance or
user acceptance tests within Jasmine using these techniques—further
solidifying our application against errors and change.

Jasmine runners
There are a number of ways to run Jasmine tests outside of an actual web page, as
we have been doing up until this point. Bear in mind, though, that Visual Studio
does not support debugging TypeScript outside of directly running a web page with
Internet Explorer. In these cases, you would need to revert to the existing developer
tools available within your target browser.

Most test runners rely on a simple static HTML page to contain all tests, and will
fire up a small instance of a web server in order to serve this HTML page to the test
runner. Some test runners use a configuration file for this purpose, and construct a
testing environment without the need for HTML at all. This may be all well and good
for unit tests—where the integration points of your code are mocked or stubbed—
but this approach does not work well for integration or acceptance tests.

Many real-world web applications, for example, run through some server-side
business logic to generate HTML for each web request. Authentication logic, for
example, may redirect the user to a login page, and then use a forms-based auth
cookie on subsequent page requests or RESTful data requests. In these circumstances,
running a simple HTML page outside of the actual web application will not work.
You need to run your tests within a page that is actually hosted along with the rest
of the web application. Also, if you are trying to add a JavaScript test suite to an
existing web project, this logic may not be easy to set aside.

For these reasons, we have focused on using a standard HTML page within our web
application to run our tests. In an MVC application, for example, we would set up
a Jasmine controller, with a Run function that returned a SpecRunner.cshtml view
page. In fact, the default installation of the NuGet package JasmineTest will set up
these controllers and views as standard templates for us on installation.

Chapter 6

[177]

Testem
Testem is a Node based command-line utility that will continuously run test suites
against connected browsers when it detects that JavaScript files have been modified.
Testem is useful for very quick feedback on a number of browsers, and also has a
continuous integration flag that can be used on build servers. Testem is suitable for
unit testing. More info can be found at the GitHub repository (https://github.
com/airportyh/testem).

Testem can be installed via Node with the following command:

Npm install –g testem

To run testem, simply navigate to the root folder of your test suite in a
command-line window, and type testem. Testem will fire up, start a web server,
and invite you to connect to it via a browser. In following the screenshots, Testem
was running at http://localhost:7357. You can connect a number of different
browsers to this URL—and Testem will run the specs it finds against each browser.
By default, Testem will search the current directory for JavaScript files that contain
tests, build an HTML page containing these tests and execute them. If you already
have an HTML page that has your tests included, then this page can be specified to
Testem via a testem.yml config file as follows:

{
 "test_page":"tests/01_SpecRunner.html"
}

This HTML page will also need to include the testem.js file to enable communication
with the Testem server.

Testem output showing three connected browsers

https://github.com/airportyh/testem
https://github.com/airportyh/testem

Test Driven Development

[178]

Testem has a number of powerful configuration options that can be specified in the
configuration file. Be sure to head over to the GitHub repository for more information.

Note that Testem will not work with ASP.NET MVC controller routes—making it
unsuitable for integration testing on ASP.NET MVC sites. If you are using an MVC
controller and view to generate your test suite, such that the URL to your running
test page is /Jasmine/Run, for example—Testem will not work.

Karma
Karma is a test runner built by the Angular team, and features heavily in the Angular
tutorials. It is a unit testing framework only, and the Angular team recommends
end-to-end or integration tests to be built and run via Protractor. Karma, like Testem,
runs its own instance of a web server in order to serve pages and artifacts required
by the test suite, and has a large set of configuration options. It can also be used for
unit tests that do not target Angular. To install Karma to work with Jasmine 2.0, we
will need to install a few packages using npm:

Npm install karma-jasmine@2_0 –save-dev

Npm install jasmine-core –save-dev

Npm install karma-chrome-launcher

Npm install karma-jasmine-jquery

To run Karma, we will firstly need a config file. By convention, this is generally
called karma.conf.js. A sample karma config file is as follows:

module.exports = function (config) {
 config.set({
 basePath: '../../',
 files: [
 'Scripts/underscore.js',
 'Scripts/jquery-1.8.0.js',
 'Scripts/jasmine-jquery/jasmine-jquery.js',
 'Scripts/jasmine-data-provider/SpecHelper.js',
 'tests/*.js'
],
 autoWatch: true,
 frameworks: ['jasmine'],
 browsers: ['Chrome'],
 plugins: [
 'karma-chrome-launcher',

Chapter 6

[179]

 'karma-jasmine'
],

 junitReporter: {
 outputFile: 'test_out/unit.xml',
 suite: 'unit'
 }
 });
};

All config to Karma must be passed in via the module.exports and config.set
convention, as seen in the first two lines. The basePath parameter specifies what
the root path is of the web project, and is relevant to the directory that the karma.
config.js file resides in. The files array contains list of files to be included in
the generated HTML file, and can use the ***.js matching algorithms to load
an entire directory and sub-directory of JavaScript files. The autoWatch parameter
keeps karma running in the background, watching files for changes, in a similar
manner to Testem. Karma also allows for a variety of browsers to be specified—each
with their own launcher plugins. Finally, the junitReporter is being used in this
example to report tests back to a Jenkins CI server. Once this config file is in place,
simply run karma start as follows:

karma start <path to karma.config.js>.

Karma output from a simple test

Test Driven Development

[180]

Protractor
Protractor is a Node based test runner that tackles end-to-end testing. It was
originally designed for Angular apps, but can be used with any website. Unlike
Testem and Karma, Protractor is able to browse to a specific page and then interact
with the page from JavaScript—making it suitable for integration testing. It can check
metadata properties such as the page title, or fill in forms and click on buttons, and
allow the backend server to redirect to different pages. Protractor documentation can
be found here (https://github.com/angular/protractor), and can be installed
with npm:

Npm install –g protractor

We will get to running Protractor a little later, but first, let's discuss the engine that
Protractor uses in order to automate web pages.

Using Selenium
Selenium is a driver for web browsers. It allows programmatic remote control of web
browsers, and can be used to create automated tests in Java, C#, Python, Ruby, PHP,
Perl, and even JavaScript. Protractor uses Selenium under the covers to control web
browser instances. To install the Selenium server for use with Protractor, run the
following command:

Webdriver-manager update

To start the Selenium server, run the following command:

Webdriver-manager start

If all goes well, Selenium will report that the server has started, and will detail the
address of the Selenium server. Check your output for a line similar to the following:

RemoteWebDriver instances should connect to: http://127.0.0.1:4444/wd/hub

You will need Java to be installed on your machine in order to run the
Selenium server, as the webdriver-manager script uses Java to start the
Selenium server.

https://github.com/angular/protractor

Chapter 6

[181]

Once the server is running, we will need a configuration file for Protractor
(named protractor.conf.js) that includes some settings. At this stage,
all we need is the following:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['*.js']
}

These protractor settings simply set the seleniumAddress to the address of the
Selenium server, as reported earlier. We also have a specs property, which is set
to look for any .js file within the same directory as the protractor.conf.js, and
treat them as test specs.

Now for the simplest of tests:

describe("simple protractor test", () => {
 it("should navigate to a page and find a title", () => {
 browser.driver.get('http://localhost:64227/Jasmine/Run');
 expect(browser.driver.getTitle()).toContain("Jasmine");
 });
});

Our test starts by opening the page at /Jasmine/Run. Note that this is an ASP.NET
MVC path that uses the default Jasmine controller, and returns Views/Jasmine/
SpecRunner.cshtml. This controller and view was included with the Jasmine NuGet
package that we installed earlier. Make sure that you can navigate to this page in
your browser before trying to execute the Protractor tests.

Running Protractor with the configuration file will now execute our previous test:

protractor .\tests\protractor\protractor.conf.js

And will produce the desired result:

Using the selenium server at http://localhost:4444/wd/hub.

Finished in 1.606 seconds

1 test, 1 assertion, 0 failures

Test Driven Development

[182]

There are two things that must be running here in order for this test
to work:
The Selenium server must be running in a command prompt, such
that localhost:4444/wd/hub is a valid address, and does not
return 404 errors
The developer ASP.NET website must be up and running so that
localhost:64277/Jasmine/Run hits our Visual Studio Jasmine
controller, and renders an HTML page

Integration tests
Let's assume that we are conducting integration tests in a test page that is rendered
using ASP.NET MVC routes. We want to use the standard MVC controller, action,
view method of generating an HTML page, as we may need to execute some server-
side logic to setup pre-requisites before the integration tests can start.

Note that in a real-world application, it is often necessary to run server-side logic or
use server-side HTML rendering for integration tests. For instance, most applications
will require some sort of authentication before allowing calls to REST services via
JavaScript. Implementing an [Authorize] attribute to your RESTful API controllers
is the logical solution. Unfortunately, calling any of these REST controllers from a
normal HTML page will return 401 (Unauthorized) errors. One way around this is
to use an MVC controller to serve the test HTML page, and then to set up a dummy
forms authentication ticket in the server-side code. Once this is in place, any calls to
RESTful services from this page will already be authenticated with a dummy user
profile. This technique can also be used to run integration tests where users have
different roles and different permissions based on their authentication credentials.

Simulating integration tests
To simulate this sort of integration test page, let's reuse the JasmineController that
was installed with the Jasmine NuGet package. As mentioned earlier, an integration
test will need to hit the backend server-side logic (in this case the Jasmine MVC
controller), and then render a server-side-generated HTML page to the browser (in
this case the SpecRunner.cshtml view). This simulation means that we are relying
on the server-side MVC framework to resolve the /Jasmine/Run URL, generate an
HTML page on the fly, and return this generated HTML page to the browser.

Chapter 6

[183]

This SpecRunner.cshtml file (the MVC template for generating the HTML)
is very simple:

{
 Layout = null;
}
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Jasmine Spec Runner</title>

 <link rel="shortcut icon" type="image/png"
 href="/Content/jasmine/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css"
 href="/Content/jasmine/jasmine.css">
 <script type="text/javascript"
 src="/Scripts/jasmine/jasmine.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine/jasmine-html.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine/boot.js"></script>

 <!—include source files here... -->
 <script type="text/javascript"
 src="/Scripts/jasmine-samples/SpecHelper.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine-samples/PlayerSpec.js"></script>

 <!—include spec files here... -->
 <script type="text/javascript"
 src="/Scripts/jasmine-samples/Player.js"></script>
 <script type="text/javascript"
 src="/Scripts/jasmine-samples/Song.js"></script>
</head>

<body>
</body>
</html>

Test Driven Development

[184]

This ASP.NET MVC view page is using Razor syntax, and is not based on a master
page—as the Layout parameter at the top of the file is set to null. The page includes
a number of links in the head element, including jasmine.css, jasmine.js,
jasmine-html.js, and boot.js. These are the required Jasmine files that we have
seen before. After this, we have just included the SpecHelper.js, PlayerSpec.js,
Player.js, and Song.js files from the jasmine-samples directory. Running this
page by navigating to the /Jasmine/Run URL will run the sample tests included
with Jasmine:

Output of the default/Jasmine/Run web page

Our simulated integration test page in this sample just runs a couple of standard
Jasmine tests. Using a server-side generated HTML page now allows us to use
dummy authentication, if needed. With dummy authentication in place, we can
start to write Jasmine tests to target secure RESTful data services.

In our next chapter, we will have a look at building and testing some Backbone
models and collections, and will work through further examples of integration
tests that actually request data from the server. For the time being, though, we have
a sample page that is generated server-side, and that can be used as the base for
further integration tests.

Chapter 6

[185]

Test pages like these should never be packaged in User Acceptance
Testing (UAT) or release configurations. In ASP.NET, we can simply
use a compiler directive such as the #if DEBUG … #endif around our
controller classes to exclude them from any other build configuration.

Detailed test results
So we now have the beginnings of an integration test page that shows us the results
of our Jasmine test run. This HTML page is good for a quick overview, but we would
now like some more detailed information on each test so that we can report back to
our build server; how long each test took, and its success / fail state.

For these reporting purposes, Jasmine includes the ability to use custom test
reporters, over and above the standard HtmlReporter that is the Jasmine default.
The GitHub project, jasmine-reporters (https://github.com/larrymyers/
jasmine-reporters), has a number of prebuilt test reporters that cater for the most
popular build servers. Unfortunately, this project does not have a corresponding
NuGet package, so we will need to install the .js files within our project manually.

An alternative method of managing JavaScript libraries is the Bower
package manager. Bower is a Node based command-line utility
that is similar to NuGet, but deals only with JavaScript libraries and
frameworks.

Let's now modify our HTML page to include the TeamCity reporter. Firstly, modify
the SpecRunner.cshtml file to include a script tag for the teamcity_reporter.js
file as follows:

<script type="text/javascript"
 src="/Scripts/jasmine-reporters/teamcity_reporter.js">
</script>

Next, we need to create a simple script within the body tag to register this reporter
with Jasmine:

<script type="application/javascript">
 window.tcapi = new jasmineReporters.TeamCityReporter({});
 jasmine.getEnv().addReporter(window.tcapi);
</script>

https://github.com/larrymyers/jasmine-reporters
https://github.com/larrymyers/jasmine-reporters

Test Driven Development

[186]

This script simply creates an instance of the TeamCityReporter class, and assigns
it to a variable named tcapi on the window object. The second line of this script
adds this reporter to the Jasmine environment. Running our page now will produce
TeamCity results logged to the console:

Jasmine output with TeamCity messages logged to the console

Logging test results
We now need to access this output, and find a way to report it back to the Protractor
instance. Unfortunately, accessing the console's log through Selenium will only
report critical errors, so the preceding TeamCity reporter output will be unavailable.
A quick look around the teamcity_reporter.js code reveals that all console.log
output messages use the tclog function to build a string, and then call console.log
with this string. As we have an instance of our TeamCityReporter available to us,
we can easily store these logged messages into an array, and then read through them
once the test suite has finished running. Some quick modifications to the JavaScript
file teamcity_reporter.js are as follows.

Chapter 6

[187]

Just under the constructor function for the TeamCityReporter class, create an array:

exportObject.TeamCityReporter = function (args) {

 self.logItems = new Array();
}

Now we can modify the tclog function to return the string that is it building:

Function tclog(message, attrs) {

 log(str); // call to console.log
 return str; // return the string to the calling function
}

Then, each call to tclog can push the returned string to this array:

self.jasmineStarted = function (summary) {

 self.logItems.push(
 tclog("progressStart 'Running Jasmine Tests'"));
};

Now that the TeamCityReporter has a logItems array, we will need some
method of finding out when the test suite has finished, and we can then loop
through the array of logItems, and attach them to the DOM. Once it is in the
DOM, our Protractor instance can use Selenium to read these values and report
back to the command line.

Let's build a small class named JasmineApiListener that accepts an instance of
the TeamCityReporter class to do all this work for us:

class JasmineApiListener {
 private _outputComplete: boolean;
 private _tcReporter: jasmine.ITeamCityReporter;

 constructor(tcreporter: jasmine.ITeamCityReporter) {
 this._outputComplete = false;

 this._tcReporter = tcreporter;
 var self = this;

 window.setInterval(() => {

Test Driven Development

[188]

 if (self._tcReporter.finished &&
 !self._outputComplete) {
 var logItems = self._tcReporter.logItems;
 var resultNode = document.getElementById(
 'teamCityReporterLog');
 resultNode.setAttribute('class',
 'teamCityReporterLog');
 for (var I = 0; I < logItems.length; i++) {
 var resultItemNode =
 document.createElement('div');
 resultItemNode.setAttribute('class', 'logentry');
 var textNode =
 document.createTextNode(logItems[i]);
 resultItemNode.appendChild(textNode);
 resultNode.appendChild(resultItemNode);

 }
 self._outputComplete = true;

 var doneFlag = document.getElementById(
 'teamCityResultsDone');
 var doneText = document.createTextNode("done");
 doneFlag.appendChild(doneText);
 }

 }, 3000);
 }

}

Our JasmineApiListener class has two private variables. The _outputComplete
variable is a boolean flag indicating that the test suite has completed, and that the
results have been written to the DOM. The _tcReporter variable holds an instance
of the TeamCityReporter class, which is passed through in the constructor. The
constructor simply sets the flag _outputComplete to false, creates a variable
named self, and sets up a simple timer on a three-second interval.

Chapter 6

[189]

The self variable is a necessary scoping step in order to access
the correct instance of this inside the anonymous function that is
passed to setInterval.

The body of our anonymous function is where all the goodness takes place. Firstly,
we are checking the _tcReporter.finished property on the TeamCityReporter
instance to tell whether or not the suite has completed. If it has, and we have not
yet appended our results to the DOM (!self._outputComplete), then we can
access the logItems array and create DOM elements for each of these entries. These
elements are attached as <div class="logentry">…</div> elements, as children of
the parent <div id="teamCityReporterLog"> element.

Note that the preceding code is using the native document.getElementById and
appendChild syntax for DOM manipulation, and not a jQuery-style syntax to avoid
having a dependency on jQuery.

We can now modify the script within the SpecRunner.cshtml view as follows:

<script type="application/javascript">
 window.tcapi = new jasmineReporters.TeamCityReporter({});
 jasmine.getEnv().addReporter(window.tcapi);
 var jasmineApiListener = new JasmineApiListener(window.tcapi);
</script>

<div id="teamCityResultsDone"></div>
<div id="teamCityReporterLog"></div>

The first script is the updated version of what we have been using previously,
which now creates an instance of our JasmineApiListener class, and passes the
instance of the TeamCityReporter class within the constructor. We have also
added two <div> tags. The first one, teamCityResultsDone, is a flag to indicate
that we have completed writing the TeamCity results to the DOM, and the second
teamCityReporterLog is the parent div to hold all of the child logentry elements.

Test Driven Development

[190]

If we fire up this page now, we should see our tests run through, and then three
seconds later, the DOM will be updated with the results that we have read from
the TeamCityReporter array, as shown in the following screenshot:

Jasmine output being logged to the DOM

Now that we have a way of logging the results of our tests to the DOM, we can
update our Protractor based Selenium tests to relate these results to our build server.

Finding page elements
As mentioned previously, Protractor can be used to run integration tests,
as well as automated acceptance tests. A Protractor test can browse to a login page,
find the login username textbox, send a value such as "testuser1" to this textbox,
and then repeat the process for a password. The same test code can then be used to
click on the Login button, which will submit the form to our server login controller.
Our test can then ensure that the server responds with the correct redirect to our
main page. This main page may contain multiple buttons, grids, images, side panels
and navigation elements. Ideally, we would want to write acceptance tests for each
of these page elements.

Protractor uses locators to find these elements within our DOM. These elements can
be found by their CSS selectors, by id, or, if using Angular, by model or binding.
Building the correct strings for use in these selectors can sometimes be difficult.

Chapter 6

[191]

Selenium provides us with a useful Firefox extension to help when writing Selenium
based tests - the Selenium IDE (http://docs.seleniumhq.org/projects/ide/).
With this extension installed within Firefox, we can use the IDE to help find elements
on the page.

As an example of how to use this extension, let's continue with our work on the
Jasmine reporter that we have writing, and find the teamCityResultsDone DOM
element that we have been using to flag a completed test suite. The code and process
we use to find this DOM element is the same code and process that we would use
to find other page elements on a login page, for example, or any other page that we
were driving through Selenium.

If we fire up our /Jasmine/Run page using Firefox, we can now click on the
Selenium IDE button on the top right of the browser to launch the Selenium IDE.
This IDE uses commands to record interactions against a web page, and shows this
list of commands in the main window. Right-click on the command window, and
select Insert new command. In the command name text box give the new command
a name—something like find done element. Once a command has a name, the two
buttons next to the target input box become enabled, and we can click on Select. We
can then drag our mouse over the web page, and click on the text done at the top of
the page. Notice how the command has automatically filled in the Target element in
the Selenium IDE. The Target input box has now become a drop-down list, and we
can use this list to show the Selenium selector syntax for our teamCityResultsDone
div, as shown in the following screenshot:

FireFox Selenium IDE

http://docs.seleniumhq.org/projects/ide/

Test Driven Development

[192]

Working with page elements in Jasmine
Now that we know how to find an HTML page element using the Selenium IDE,
we can start writing Selenium commands to query the page elements of our Jasmine
tests. Remember that there are two elements we need to find.

Firstly, we need to find the teamCityResultsDone div, and wait for the text of
this element to be updated. This div is only updated when our Jasmine test suite is
complete, and our tests results have been included in the DOM. Once our test suite
has been flagged as complete, we then need to loop through each of the logentry
divs that are child elements of the teamCityReporterLog div. These logentry
divs will contain the detailed results each of our tests.

The changes needed in our protractor tests are as follows:

describe("team city reporter suite", () => {
 it("should find test results", () => {
 browser.driver.get('http://localhost:64227/Jasmine/Run');

 expect(browser.driver.getTitle()).toContain("Jasmine");

 var element = browser.driver.findElement(
 { id: "teamCityResultsDone" });

 browser.driver.wait(() => {
 return element.getText().then((value) => {
 return value.length > 0;
 });
 }, 60000, "failed to complete in 60 s");
 });

 afterEach(() => {
 browser.driver.findElements(
 by.css("#teamCityReporterLog > div.logentry")
).then((elements) => {
 for (var i = 0; i < elements.length; i++) {
 elements[i].getText().then((textValue) => {
 console.log(textValue);
 });
 }
 });
 });
});

Chapter 6

[193]

Our test begins by browsing to the /Jasmine/Run page, and expects this page title to
contain "Jasmine", as we have seen previously. We are then using the findElement
function from Selenium to find an element on the page. This function is passed a
JavaScript object with the id set to teamCityResultsDone—and is using the select
syntax that we saw earlier in the Selenium IDE.

We are then calling the wait function to wait for the text of the
teamCityResultsDone element to be updated (that is, its length is > 0), and set a
60-second timeout for this wait function. Remember that our JasmineApiListener
code will set the text value of this div to "done" when we have finished updating the
DOM, which will effectively then trigger the wait function.

We are then using the afterEach function to loop through the logentry divs.
Instead of finding the parent element, we are now using the findElements Selenium
function to find multiple elements on the page.

Note the Selenium selector syntax that we are using for these divs:
by.css("#teamCityReporterLog > div.logentry"). This by.css function is
using CSS selector syntax to find our elements, and the input string corresponds to
the CSS selector that the Selenium IDE shows. We can therefore use the Selenium
IDE to help us find the correct CSS selector syntax.

Selenium uses a fluent syntax for most of its API functions. The call to the
findElements, therefore, is followed by a .then function, which will pass
the elements it has found in an array to the anonymous function. We use this
anonymous function with the .then((elements) => { .. }) syntax. Within this
function, we are looping through each element of the elements array, and calling the
.getText Selenium function. Again, this getText function provides a fluent syntax,
which allows us to write another anonymous function to use the text value returned,
as seen in the line elements[i].getText().then((textValue) => { … });.
This function is simply logging the textValue to the protractor console.

Test Driven Development

[194]

Running our Protractor test will now report our test results to the command line
as follows:

Protractor logging test results to the console

Mission accomplished. We are now using Protractor to browse to a server-generated
HTML page that runs a set of Jasmine tests. We are then using Selenium to find
elements on the page, waiting for DOM updates, and then loop through an array of
elements in order to log our Jasmine test results to the protractor console.

These Selenium functions, such as browser.driver.get, findElements, and wait
are all part of the rich set of functionality that Selenium provides to work with DOM
elements. Be sure to head over to the Selenium documentation for more information.

We now have a mechanism to fire up an integration test page, run a Jasmine test
suite, report these test results to the DOM, and then read these results and log them
to the Protractor console. It is then a simple matter to set up a build step within a
TeamCity build server to execute protractor, and record these test results during
the build process.

Chapter 6

[195]

Summary
In this chapter, we have explored Test Driven Development from the ground up.
We have discussed the theory of TDD, explored the differences between unit,
integration, and acceptance tests, and had a look at what a CI build server process
would look like. We then explored Jasmine as a testing framework, learned how to
write tests, use expectations and matchers, and also explored Jasmine extensions to
help with data-driven tests and DOM manipulation through fixtures. Finally, we had
a look at test runners, and built a Protractor based test framework to drive web pages
through Selenium, and report the results back to a build server. In the next chapter,
we will explore the TypeScript module syntax, in order to use both CommonJS and
AMD JavaScript modules.

[197]

Modularization
Modularization is a popular technique used in modern programming languages that
allows programs to be built from a series of smaller programs, or modules. Writing
programs that use modules encourages programmers to write code that conforms to
the design principle called "Separation of Concerns". In other words, each module
focuses on doing one thing, and has a clearly defined interface. If we then consume
this module by focusing on the interface, we can easily replace this interface with
something else, without breaking our code. We will focus more on "Separation of
Concerns" and other object-oriented design patterns in the next chapter.

JavaScript, in itself, does not have a concept of modules, but it is proposed for the
upcoming ECMAScript 6 standard. Popular frameworks and libraries such as Node
and Require have built module-loading capabilities into their frameworks. These
frameworks, however, use slightly different syntax. Node uses the CommonJS
syntax for module loading, whereas Require uses the Asynchronous Module
Loading (AMD) syntax. The TypeScript compiler has an option to turn on module
compilation, and then switch between these two syntax styles.

In this chapter, we will look at the syntax of both module styles, and how the
TypeScript compiler implements them. We will take a look at how to use modules
when writing code for both Node and Require. We will also have a cursory look
at Backbone, and how to write an application using a Model, View and Controller.
Each of these Backbone components will be built as loadable modules.

Modularization

[198]

CommonJs
The most prevalent usage of the CommonJs syntax for writing modules is when
writing server-side code. It has been argued that browser-based CommonJs syntax
simply cannot be done without a lot of overhead, but there are some libraries out
there such as Curl (https://github.com/cujojs/curl) that allow this syntax.
In this section, we will, however, focus on Node application development.

Setting up Node in Visual Studio
Using Node within Visual Studio has been made a breeze by the Node tools for
Visual Studio plugin (https://nodejstools.codeplex.com). This toolset has also
been updated to use TypeScript as a default editor, bringing the full TypeScript
development experience to Node. Once the extension has been installed, we can
create a new blank Node application, as shown in the following screenshot:

Creating a blank Node application with the Node toolset

This project template will create a server.ts TypeScript file, and include the
node.d.ts declaration file automatically for us. If we compile and run this default
implementation by simply hitting F5, the project template will automatically start
up a new console to run our Node server, start the server instance, and open a
browser to connect to this instance. If all goes well at this stage, your browser
will simply say Hello World.

https://github.com/cujojs/curl
https://nodejstools.codeplex.com

Chapter 7

[199]

Let's take a look at the server.ts TypeScript file that is creating an instance of our
Node server:

import _http = require('http');
var port = process.env.port || 1337
http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World\n');
}).listen(port);

The first line of this code snippet uses the CommonJs module syntax to tell our Node
server that it must import the library named 'http'.

This line has two key parts. To explain these key parts, let's start at the right-hand
side of the = sign and work our way towards the left. The require function takes
a single parameter, and is used to tell the application that there is a library named
'http' out there. The require function also tells the application that it needs this
library to be made available to it, in order to continue functioning. As require is
a key part of the syntax of modules in TypeScript, it has been given the keyword
status and will be highlighted in blue, just like other keywords such as var, string,
and function. If the application cannot find this 'http' library, then Node will
immediately throw an exception.

The left-hand side of the = sign uses the import keyword, which is also a
fundamental concept in module syntax. The import statement tells the application to
attach the library that has been loaded via the require function, require('http'),
into a namespace called _http. Whatever functions or objects that the 'http' library
has made public will be available to the program via the _http namespace.

If we jump to the third line very quickly, we can see that we invoke a function
called createServer that is defined in the 'http' module, and call it via the
_http namespace. hence _http.createServer().

The default server.ts file that is generated by the blank Node
project template is very slightly different than our preceding code
sample. It names the import http, which matches the library name
'http', as follows:

import http = require('http');

This is a common naming standard for Node. You can, of course,
name your import namespaces whatever you like, but it does help to
have the namespace match the imported library's name, to help with
the readability of the code.

Modularization

[200]

The second line of our code snippet simply sets up the variable named port to either
be the value of the global variable process.env.port, or a default value of 1337.
This port number is used on the very last line, and uses fluent syntax to call the
listen function on the returned value of the http.createServer function.

Our createServer function has two variables named req and res. If we use
our mouse to hover over the req variable, we can see that it is of type _http.
ServerRequest. Similarly, the res variable is of type _http.ServerResponse.
These two variables are our HTTP request and response streams. In the body of
the code, we are invoking the writeHead function on the HTTP response to set the
content-type, and then we are invoking the end function on the HTTP response to
write the text 'Hello World\n' to the browser.

With these couple of lines of code, we have created a running node HTTP server
that serves up a simple web page with the text "Hello World".

Note that if you have a keen eye for TypeScript syntax, you will notice that this file
uses JavaScript syntax and not TypeScript syntax for our createServer function.
This is most probably due to the recent upgrade of the Node toolset from JavaScript
to TypeScript. The call to createServer can also be written using TypeScript fat
arrow syntax as follows:

_http.createServer((req, res) => { .. }

Creating a Node module
To create a Node module, we simply need to create another TypeScript file to house
our module code. Let's create a file named ServerMain.ts, and move the code that
writes to the HTTP response into this module as follows:

import http = require('http');
export function processRequest(
 req: http.ServerRequest,
 res: http.ServerResponse): void
{
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World\n');
}

Our ServerMain module starts with the import of the 'http' module into the
http namespace. This is necessary to allow us to use the ServerRequest and
ServerResponse types that are part of this library.

Chapter 7

[201]

The keyword export is now used to indicate what functions will be made available
to users of this module. As we can see, we have exported a function named
processRequest that takes two parameters, req and res. This function will be used
as a replacement for the anonymous function (req, res) => { … } that we were
using in the server.ts file previously.

Note that as good TypeScript coders, we have also strongly typed the req and res
variables to be of type http.ServerRequest, and of type http.ServerResponse
respectively. This will enable Intellisense within our IDE, and also adheres to two
principles of strong typing (S.F.I.A.T and self-describing functions).

Before we modify the server.ts file to use our new module, let's crack open the
generated JavaScript file and take a closer look at the CommonJs syntax in a little
more detail:

function processRequest(req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World\n');
}
exports.processRequest = processRequest;

The first part of this JavaScript is simple enough—we have a function named
processRequest. The last line, however, attaches this function to a property on the
exports global variable. This exports global variable is how CommonJs publishes
modules to the outside world. Any function, class, or property that needs to be
exposed to the outside world must be attached to the exports global variable. The
TypeScript compiler will generate this line of code for us whenever we use the
exports keyword in a TypeScript file.

Using a Node module
Now that we have our module in place, we can modify our server.ts file to use this
module as follows:

import http = require('http');
import ServerMain = require('./ServerMain');
var port = process.env.port || 1337;
http.createServer(ServerMain.processRequest).listen(port);

The first line stays the same, but the second line uses the same import and require
syntax to now import our './ServerMain' module into the ServerMain namespace.

Modularization

[202]

The syntax that we use to name this module points to a local file
module, and therefore uses a relative file path to the module file. This
relative path will resolve to the ServerMain.js file that TypeScript
has generated. Creating a global Node module with the name
'ServerMain', which would be globally available—similar to the
'http' module—is outside the scope of this discussion.

Our call to the http.createServer function now passes in our processRequest
function as an argument. We have changed from an anonymous function using the
fat arrow syntax, to a named function from the ServerMain module. We have also
started to adhere to our "Separation of Concerns" design pattern. The server.ts file
starts the server on a specific port, and the ServerMain.ts file now houses the code
used to process a single request.

Chaining asynchronous functions
When writing Node code, it is necessary to take a careful note of the asynchronous
nature of all Node programming, as well as JavaScript's lexical scoping rules. Luckily,
the TypeScript compiler will generate errors if we break any of these rules. As an
example of this, let's update our ServerMain module to read in a file from disk, and
serve up the contents of this file, instead of our Hello world text, as follows:

import fs = require("fs");
export function processRequestReadFromFileAnonymous(
 req: http.ServerRequest, res: http.ServerResponse)
{
 fs.readFile('server.js', 'utf8', (err, data) => {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 if (err)
 res.write("could not open file for reading");
 else {
 res.write(data);
 res.end();
 }
 });
}

Chapter 7

[203]

To read files from disk, we will need to use the Node global module named "fs",
or filesystem, which is imported on the first line of the code. We then expose a new
function named processRequestReadFromFileAnonymous that again uses the req
and res parameters. Within this function, we then use the fs.readFile function to
read a file from disk using three arguments. The first argument is the name of the
file to be read in, the second argument is the file type, and the third argument is a
callback function that Node will call, once the file has been read from disk.

The body of this anonymous function is similar to what we have seen previously, but
it also checks the err argument to see whether there was an error while loading the
file. If there was no error, the function simply writes the file to the response stream.

In real-world applications, the logic inside of the main
processRequestReadFromFileAnonymous function could become quite complex
(besides the name), and may involve more than a single step to read a hardcoded
filename from disk. Let's move this anonymous function into a private function, and
see what happens. Our first pass at refactoring this code may be something similar to
the following:

export function processRequestReadFromFileError(
 req: http.ServerRequest, res: http.ServerResponse)
{
 fs.readFile('server.js', 'utf8', writeFileToStreamError);
}
function writeFileToStreamError(err, data) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 if (err)
 res.write("could not open file for reading");
 else {
 res.write(data);
 res.end();
 }
}

Here, we have modified the fs.readFile function call, and replaced the anonymous
callback function with a named function—writeFileToStreamError. This change,
however, will immediately generate a compilation error:

Cannot find name 'res'.

Modularization

[204]

This compilation error is caused by the lexical scoping rules of JavaScript. The
function writeFileToStreamError is trying to use the res parameter of the parent
function. However, as soon as we moved this function outside the lexical scope of
the parent, the variable res is no longer in scope – and will therefore be undefined.
To fix this error, we need to ensure that the lexical scope of the res argument is
maintained within our code structure, and we need to pass the value of the res
argument down to our writeFileToStream function, as follows:

export function processRequestReadFromFileChained(
 req: http.ServerRequest, res: http.ServerResponse)
{
 fs.readFile('server.js', 'utf8', (err, data) => {
 writeFileToStream(err, data, res);
 });
}
function writeFileToStream(
 err: ErrnoException, data: any,
 res: http.ServerResponse): void
{
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 if (err)
 res.write("could not open file for reading");
 else {
 res.write(data);
 res.end();
 }
}

Note that in the call to fs.readFile on the third line in the preceding code,
we have reverted back to our anonymous syntax, and passed on the value of
the parent res argument down to our new function writeFileToStream. This
modification of our code now correctly adheres to the lexical scoping rules of
JavaScript. Another side-effect is that we have clearly defined what variables the
writeFileToStream function needs, in order to work. It needs the err and data
variables from the fs.readFile callback, but it also needs the res variable from
the original HTTP request.

We have not exported the writeFileToStream function; it is purely
an internal function for use within our module.

Chapter 7

[205]

We can now modify our server.ts file to use our new chained function:

http.createServer(ServerMain.processRequestReadFromFileChained)
 .listen(port);

Running the application now will show the world what our server.js file contains:

The Node application serving the contents of a file on disk

Note that because we are using modules, we have been able to write three
different versions of the processRequest function, each with a slight twist.
However, our modifications to the server.ts file that launches the server have
been very simple. We have just replaced the function that the server calls, in order to
effectively run three different versions of our application. Again, this complies with
the "Separation of Concerns" design principle. The server.ts code is simply used
to start the Node server on a specific port, and should not be concerned with how
each request is processed. Our code within ServerMain.ts is responsible simply
for processing a request.

This concludes our section on writing Node applications within TypeScript.
As we have seen, the TypeScript developer experience brings with it a compilation
step, which will quickly trap lexical scoping rules and many other issues within
our code. Final score, TypeScript: 1, buggy code: 0!

Modularization

[206]

Using AMD
AMD stands for Asynchronous Module Definition, and as the name suggests, loads
modules asynchronously. This means that when an HTML page is loaded, requests
to fetch the JavaScript module files happen at the same time. This allows our page to
load faster, as we are requesting smaller amounts of JavaScript simultaneously.

AMD module loading is typically used in browser applications, and works together
with third-party libraries that provide a script-loading capability. One of the most
popular script and module loaders currently available is Require. In this section, we
will look at how to use the AMD module-loading syntax, and how to implement
Require in a browser-based application.

To begin with, let's create a simple TypeScript-based solution, using the "Html
application with TypeScript" Visual Studio template. If you are not using Visual
Studio, then simply create a new project or base source directory, and set up your
environment for TypeScript compilation. To use AMD compilation, we will need to
set our TypeScript project properties in order to compile to the AMD module syntax.

Using NuGet, we will then install the following packages:

• RequireJS

• Requirejs.TypeScript.DefinitelyTyped

• jQuery

• jquery.TypeScript.DefinitelyTyped

• JasmineTest

• Jasmine.TypeScript.DefinitelyTyped

We will also base our application on Backbone, so we will therefore need the
following NuGet packages:

• Backbone.js

• Backbone.TypeScript.DefinitelyTyped

The Backbone installation will also install Underscore, and the
Backbone.TypeScript.DefinitelyTyped package will also
install underscore.TypeScript.DefinitelyTyped.

Chapter 7

[207]

Backbone
Backbone provides a very minimalistic framework for writing rich client-side
JavaScript applications. It uses the MVC pattern to abstract our logic away from
direct DOM manipulation. Backbone provides a core set of functionality that is
broken up into models, collections, and views, as well as some utility classes to help
with events and routing. The library itself is incredibly small, with the minimized
.js file under 20 KB in size. Its only dependency is Underscore, which is a utility
library, again under 16 KB in size. Backbone is a very popular library, has a huge
number of extensions, and is relatively easy to learn and implement.

Models, collections and views
At the core of Backbone lies the model. A model is a class that has a set of properties,
and represents an item of information that will be treated as a unit. You could
think of a model as a single row of data in a database table, or as an object to hold a
particular type of information. Model objects are typically very simple, with a few
getters and setters for each of their properties, and possibly a url: property for use
with RESTful services. Arrays of models are held within a collection. A collection
could be thought of as all the rows of data in a database table, or a logical group
of models, each of the same type. Models can contain other models, and can also
contain collections, so we are free to mix and match and combine collections and
models at will.

Models, therefore, are used to define the structure of the data that our application
uses. Backbone provides a simple url: property for both models and collections,
which is used to synchronize Backbone models with RESTful services. Backbone will
take care of generating create, read, update, and delete AJAX calls to our services via
this url: property.

Once a model or collection has been created, it is then passed to a view. A Backbone
view is responsible for combining the properties of a model with an HTML template.
Templates are made up of normal HTML, but have a special syntax to allow the
properties of a model to be injected into this HTML. Once this HTML template has
been combined with a model, the view can render the resultant HTML to the page.

Backbone does not really have the concept of a controller, as found in the classic
MVC definition, but we can use normal TypeScript classes to accomplish the
same functionality.

Modularization

[208]

Creating a model
Let's dive right into Backbone, and start with the definition of a model. In this
sample, we will work with the concept of a contact—that simply has a Name and
EmailAddress property—as shown in the following code.

Note that this ContactModel.ts file is located under the /tscode/app/models
directory:

interface IContactModel {
 Name: string;
 EmailAddress: string;
}
export class ContactModel extends Backbone.Model
 implements IContactModel
{
 get Name() {
 return this.get('Name');
 }
 set Name(val: string) {
 this.set('Name', val);
 }
 get EmailAddress() {
 return this.get('EmailAddress');
 }
 set EmailAddress(val: string) {
 this.set('EmailAddress', val);
 }
}

We start with the definition of an interface named IContactModel, which has our
Name and EmailAddress properties, both of which are strings.

Next, we create a class named ContactModel that derives from, or extends, the
base Backbone.Model class. Note that we are using the export keyword before our
class definition, to indicate to the TypeScript compiler that we are creating a module
that can be imported elsewhere. The export keyword and usage is exactly the
same as what we have seen previously when we used the CommonJS syntax. Our
ContactModel class implements the IContactModel interface, and also uses ES5 get
and set syntax to define the Name and EmailAddress properties.

Chapter 7

[209]

The implementation of each of these properties calls the
Backbone this.get('<propertyname>') or this.
set('<propertyname>', value) functions. Backbone stores
model properties as object attributes, and uses these get and set
functions internally to interact with model properties – hence the
syntax used previously.

Let's follow TDD practices, and write a set of unit tests to make sure that we can
create an instance of our ContactModel correctly. For this test, we will create a
ContactModelTests.ts file under the /tscode/tests/models directory, as follows:

import cm = require("../../app/models/ContactModel");
describe('/tests/models/ContactModelTests', () => {
 var contactModel: cm.ContactModel;
 beforeEach(() => {
 contactModel = new cm.ContactModel(
 { Name: 'testName',
 EmailAddress: 'testEmailAddress'
 });
 });
 it('should set the Name property', () => {
 expect(contactModel.Name).toBe('testName');
 });
 it('should set the Name attribute', () => {
 expect(contactModel.get('Name')).toBe('testName');
 });
});

The first line of this test uses the import <namespace> = require('<filename>')
syntax that we have seen previously, to import the ContactModel module that
we exported earlier. You will notice that the file name uses a relative path, which
drops down two directories ("../../") before specifying the "app/models/
ContactModel" path. This is because AMD module compilation uses paths that
are relative to the current file. As our test code is in the /tscode/tests/models
directory, this relative path must point to the correct directory that contains the
ContactModel.ts TypeScript file.

Our test defines a variable named contactModel that is strongly typed to be of type
cm.ContactModel. Again, we are using the prefix from the import statement as a
namespace in order to reference the exported ContactModel class. Our beforeEach
function then creates an instance of the ContactModel class, passing a JavaScript
object with the Name and EmailAddress properties into the constructor.

Modularization

[210]

We are using JSON syntax in the constructor of our ContactModel
class. This syntax closely matches the data that a RESTful service
would return, and is, therefore, a handy way of constructing classes
and assigning properties in a single constructor call.

Our first test is checking whether the contactModel.Name ES5 syntax works
correctly, and will return the text 'testName'. The second test is almost the same
but uses the .get('Name') internal Backbone attribute syntax in order to ensure
that our TypeScript class and the Backbone class are working as expected.

The require.config file
Now that we have defined a Backbone.Model, and have a written a Jasmine test
for it, we will need to run this test in a browser to verify our results. Generally, we
would create an HTML page, and then include the <script> tags for each of our
JavaScript files in the header section. This is where AMD steps in. We no longer need
to specify every JavaScript file in our HTML. All we need to do is include a single
<script> tag for Require (which is our module loader), which will then co-ordinate
the loading of all the files that we need automatically.

To do this, let's create a SpecRunner.html file in the /tests directory as follows:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>AMD SpecRunner</title>
 <link rel="stylesheet"
 type="text/css"
 href="/Scripts/jasmine/jasmine.css">
 <script
 data-main="/tscode/tests/TestConfig"
 type="text/javascript"
 src="/Scripts/require.js">
 </script>
</head>
<body>
</body>
</html>

Chapter 7

[211]

This is a very simple HTML file. The line to note here, though, is the <script> tag
that loads /Scripts/require.js. This script tag has a data-main attribute, which is
set to "/tscode/tests/TestConfig". The data-main attribute is passed to Require,
and it tells Require where to start looking for our JavaScript files. In the preceding
code, Require will look for a file named /tscode/tests/TestConfig.js.

We will build this /tscode/tests/TestConfig.ts file as follows:

require.config(
 {
 baseUrl: "../../",
 paths: {
 'jasmine': '/Scripts/jasmine/jasmine',
 'jasmine-html': '/Scripts/jasmine/jasmine-html',
 'jasmine-boot': '/Scripts/jasmine/boot',
 'underscore' : '/Scripts/underscore',
 'backbone': '/Scripts/backbone',
 'jquery': '/Scripts/jquery-2.1.1',
 },
 shim: {
 underscore: {
 exports: '_'
 },
 backbone : {
 deps: ['underscore'],
 exports: 'Backbone'
 },
 'jasmine' : {
 exports: 'window.jasmineRequire'
 },
 'jasmine-html': {
 deps : ['jasmine'],
 exports: 'window.jasmineRequire'
 },
 'jasmine-boot': {
 deps : ['jasmine-html', 'backbone'],
 exports: 'window.jasmineRequire'
 }
 }
 }
);

Modularization

[212]

var specs = [
 'tscode/tests/models/ContactModelTests'
];

require(['jasmine-boot'], (jb) => {
 require(specs, () => {
 (<any>window).onload();
 });
});

We start with a call to the require.config function, and pass it a JavaScript object
which has three properties: baseUrl, paths, and shim. The baseUrl property tells
Require what base directory to use when it is looking for JavaScript files. In the
sample application, our TestConfig.ts file is in the /tscode/tests directory,
so our base directory would be /.

The paths property specifies the full path to our JavaScript files, and each entry is
given a name. In the previous example, the script /Scripts/jasmine/jasmine.js
is named 'jasmine', and can be referred to as 'jasmine' throughout the rest of
the script.

Require will automatically append .js to each of these entries, so any
entry in the paths property should NOT include .js in the file's entry.

The shim property tells Require a few more details about each entry in the paths
property. Take a look at the shim entry for backbone. It has a deps property that
specifies what the dependencies for Backbone are. Backbone has a dependency on
Underscore, so Underscore must be loaded before Backbone.

The exports property tells Require to append the library to the namespace that
is specified as the exports' value. In our preceding sample, therefore, any call to
Underscore must prepend an _ to any function call in the Underscore library.
As an example, _.bindAll calls the bindAll function of Underscore.

Dependencies specified in the shim section of require.config are recursive.
If we take a look at the shim for 'jasmine-boot', we can see that it is dependent
on 'jasmine-html', which in turn is dependent on 'jasmine'. Require will ensure
that all these scripts are loaded in the correct order, before running code that needs
'jasmine-boot'.

Chapter 7

[213]

Let's next take a look at the bottom of the file where we call the require function.
This call takes two parameters: an array of files that need to be loaded, and a callback
function to call once the load step has been completed. This callback function
has a corresponding parameter for each of the file entries in our array. So, in the
previous example, 'jasmine-boot' will be made available to our function via the
corresponding parameter jb. We will see more examples of this a bit later.

Calls to the require function, each with its array of files that need to be loaded,
and the corresponding callback parameters, can be nested. In our sample, we have
nested a second call to the require function inside our initial call, but this time we
have passed in the specs array and omitted the callback parameters. This specs
array currently contains just our ContactModelTests file. Our nested anonymous
function just calls the window.onload function, which will trigger Jasmine to run
all of our tests.

The call to window.onload() has a slightly strange syntax.
We are using an explicit cast to cast the window variable to a type
of <any> before calling the onload() function. This is because the
TypeScript compiler is expecting an Event parameter to be passed
to the onload() function. We do not have an event parameter,
and need to ensure that the generated JavaScript is in the correct
syntax – hence the cast to <any>.

If all goes well, we can now fire up our browser and call the SpecRunner.html page
at /tscode/tests/SpecRunner.html.

Fixing Require config errors
Quite often, when developing AMD applications with Require, we can start to get
unexpected behaviour, strange error messages, or simply blank pages. These strange
results are generally caused by the configuration for Require, either in the paths,
shim, or deps properties. Fixing these AMD errors can be quite frustrating at first,
but generally, they are caused by one of two things—incorrect dependencies or
file-not-found errors.

To fix these errors, we will need to open the debugging tools within the browser that
we are using—which for most browsers, is achieved by simply hitting F12.

Modularization

[214]

Incorrect dependencies
Some AMD errors are caused by incorrect dependencies in our require.
config. These errors can be found by checking the console output in the browser.
Dependency errors would generate browser errors similar to the following:

ReferenceError: jasmineRequire is not defined

ReferenceError: Backbone is not defined

This type of error might mean that the AMD loader has loaded Backbone, for
example, before loading Underscore. So, whenever Backbone tries to use an
underscore function, we get a not defined error, as shown in the preceding output.
The fix for this type of error is to update the deps property of the library that is
causing the error. Make sure that all prerequisite libraries have been named in the
deps property, and the errors should go away. If they do not, then the error may be
caused by the next type of AMD error, a file-not-found error.

404 errors
File-not-found, or 404 errors are generally indicated by console output similar to the
following:

Error: Script error for: jquery

http://requirejs.org/docs/errors.html#scripterror

Error: Load timeout for modules: jasmine-boot

http://requires.org/docs/errors.html#timeout

To find out which file is causing the preceding error, switch to the network tab in
your debugger tools and refresh the page. Look for 404 (file-not-found) errors,
as shown in the following screenshot:

Firefox network tab with 404 errors

Chapter 7

[215]

In this screenshot, we can see that the call to jquery.js is generating a 404 error, as
our file is actually named /Scripts/jquery-2.1.1.js. These sorts of errors can be
fixed by adding an entry to the paths parameter in require.config so that any call
to jquery.js is replaced by a call to jquery-2.1.1.js.

Require has a good set of documentation for common AMD errors
(http://requirejs.org/docs/errors.html) as well as advanced
API usages, including circular references (http://requirejs.org/
docs/api.html#circular), so be sure to check the site for more
information on possible AMD errors.

Using Backbone.Collections
Now that we have a ContactModel working and tested, we can build a Backbone.
Collection to house a group of ContactModel instances. Since we are using AMD,
we can create a new ContactCollection.ts file and add the following code:

import cm = require("./ContactModel")
export class ContactCollection
 extends Backbone.Collection<cm.ContactModel> {
 model = cm.ContactModel;
 url = "/tscode/tests/contacts.json";
}

Creating a Backbone.Collection is relatively straightforward. Firstly, we import
the ContactModel, as we have seen previously, and assign it to the cm namespace.
We then create a class named ContactCollection that extends from Backbone.
Collection, and uses the generic type cm.ContactModel. This ContactCollection
has two properties: model and url. The model property tells Backbone what model
class to use internally, and the url property points to a server-side RESTful URL.
Backbone will generate the correct POST, GET, DELETE, and UPDATE HTTP
protocols for server-side RESTful calls when we synchronize our data with the
server. In the preceding sample, we are simply returning a hardcoded JSON file, as
we will only be using HTTP GETs.

If we open the resultant JavaScript file that TypeScript generates, we will see that the
compiler has modified our file quite a bit:

var __extends = this.__extends || function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;

http://requirejs.org/docs/errors.html
http://requirejs.org/docs/api.html#circular
http://requirejs.org/docs/api.html#circular

Modularization

[216]

 d.prototype = new __();
};
define(["require", "exports", "./ContactModel"], function
 (require, exports, cm) {
 var ContactCollection = (function (_super) {
 __extends(ContactCollection, _super);
 function ContactCollection() {
 _super.apply(this, arguments);
 this.model = cm.ContactModel;
 this.url = "/tscode/tests/contacts.json";
 }
 return ContactCollection;
 })(Backbone.Collection);
 exports.ContactCollection = ContactCollection;
});
//# sourceMappingURL=ContactCollection.js.map

The first six lines of the file starting with var __extends, are simply TypeScript's
implementation of inheritance in JavaScript, and we will not concern ourselves too
much with it.

The lines to note start with the define function. TypeScript has wrapped our class
definition within an outer call to define. This define function call now has three
parameters: require, exports, and ./ContactModel. The syntax and usage of
this function are exactly the same as the call to the require function that we wrote
ourselves in the TestConfig.ts file.

The first parameter is an array of files to import, and the second parameter is a
callback function to call once these files have been loaded. Again, each element in
our first array has a corresponding argument in our callback parameters. TypeScript
will automatically add the "require" and "exports" parameters for us, and then
include any file that we specified using the import keyword. When TypeScript
compiles our files using the AMD syntax, it will automatically generate this style of
JavaScript to be compatible with AMD loaders such as Require.

Let's now write a couple of unit tests for our ContactCollection:

import cc = require("../../app/models/ContactCollection");
import cm = require("../../app/models/ContactModel");
describe("/tests/models/ContactCollectionTests", () => {
 it("should create a collection", () => {
 var contactCollection = new cc.ContactCollection(
 [

Chapter 7

[217]

 new cm.ContactModel(
 { Name: 'testName1', EmailAddress: 'testEmail1' }),
 new cm.ContactModel(
 { Name: 'testName2', EmailAddress: 'testEmail2' })
]);
 expect(contactCollection.length).toBe(2);
 });
});

This test starts with an import statement for both the ContactCollection,
as well as the ContactModel, as we will be using both within this test. It then
simply creates a new ContactCollection and passes in an array of two new
ContactModels. This test highlights how to create a new ContactCollection,
and populate it programmatically.

Let 's now write a test to load the collection via the url property:

describe("contact json tests", () => {
 var collection: cc.ContactCollection;
 it("should load collection from url", () => {
 collection = new cc.ContactCollection();
 collection.fetch({ async: false });
 expect(collection.length).toBe(4);
 });
});

This test creates a new ContactCollection and then calls the fetch function.

We have passed an async flag set to false to force Backbone to use
a synchronous call to the server. In other words, the JavaScript will
pause until the fetch is complete before moving onto the next line.
We could have written this test using the asynchronous done syntax
of Jasmine, but for smaller tests, passing this async flag makes the
code a little easier to read.

As mentioned previously, the fetch function will use the url parameter to issue a
GET HTTP request to the provided URL, which in this case is simply loading the
contacts.json file. The contents of this file are as follows:

[
 { "Name": "Mr Test Contact",
 "EmailAddress": "mr_test_contact@test.com" },
 { "Name": "Mrs Test Contact",

Modularization

[218]

 "EmailAddress": "mrs_test_contact@test.com" },
 { "Name": "Ms Test Contact",
 "EmailAddress": "ms_test_contact@test.com" },
 { "Name": "Dr Test Contact",
 "EmailAddress": "dr_test_contact@test.com" }
]

This file uses simple JSON syntax to define four contacts, each with a Name and
EmailAddress property. Let's write a few integration tests to ensure that the
fetch function, using this JSON, actually creates a ContactCollection correctly:

describe("contact json model tests", () => {
 var collection: cc.ContactCollection;
 beforeEach(() => {
 collection = new cc.ContactCollection();
 collection.fetch({ async: false });
 });
 it("ContactModel at 0 should have attribute called Name", () => {
 var contactModel = collection.at(0);
 expect(contactModel.get('Name')).toBe('Mr Test Contact');
 });
 it("ContactModel at 0 should have property called Name", () => {
 var contactModel : cm.ContactModel = collection.at(0);
 expect(contactModel.Name).toBe('Mr Test Contact');
 });
});

In this test code, we are using the beforeEach function to populate our collection
variable with an instance of the ContactCollection class, and are then calling the
fetch function, again with the {async: false} flag. Our first test then uses the
Backbone at function to retrieve the first model held within the collection at index 0.
We then check the 'Name' attribute of the returned model, using Backbone's internal
get function. The second test is using the ES5 syntax of our ContactModel class, just
to test whether Backbone is in fact storing an instance of our ContactModel class in
its collection.

To include these tests in our test suite, we now simply need to modify the
TestConfig.ts file and add an entry to our specs array as follows:

var specs = [
 'tscode/tests/models/ContactModelTests',
 'tscode/tests/models/ContactCollectionTests'
];

Chapter 7

[219]

Backbone views
Now that we have a ContactCollection to house our ContactModels, let's create
a Backbone.View that will render this collection to the DOM. In order to do this, we
will actually create two views: one view for each item in the collection, and one view
for the collection itself. Remember that Backbone views combine a Backbone.Model
with a template in order to render the model's properties into the DOM.

We will start with the view to render a single collection item (in this case a single
ContactModel), called ContactItemView:

import cm = require("../models/ContactModel");
export class ContactItemView extends Backbone.View<cm.ContactModel> {
 template: (properties?: any) => string;
 constructor(options?: any) {
 this.className = "contact-item-view";
 this.template = _.template(
 '<p><%= Name %> (<%= EmailAddress %>)</p>');
 super(options);
 }
 render(): ContactItemView {
 this.$el.html(this.template(this.model.attributes));
 return this;
 }
}

This code snippet starts with an import of the ContactModel class that we have
attached to the cm namespace. We then create a class named ContactItemView
that extends from Backbone.View. Similar to the generic syntax that we used
for our collection, this view class also uses the ContactModel as the type for its
generic instance. Finally, we export this class to make it available to our code as
an AMD module.

The ContactItemView class has a public property named template that is a
function that returns a string. This function takes the model's properties as an input
argument. The template function is assigned in the second line of the constructor,
to be the result of the call to Underscore's _.template(…) function. If we take a
closer look at the string used in this template function, we will see that it is an HTML
string that uses the <%= propertyName %> syntax, to inject the Backbone model's
properties into the HTML. We have also specified that the DOM className should
be set to "contact-item-view". Finally, we call the base class constructor with the
options argument that was passed into the constructor.

Modularization

[220]

So, what have we done here? We have created a Backbone.View class, specified its
className, and set the template that the view should use to render its model to the
DOM. The last piece of code that we need is the render function itself. This render
function does a couple of things in just one line. Firstly, each Backbone view has a
$el property that holds the DOM element. We then call the html function on this
element in order to set it's HTML, and pass in the result of a call to the template
function. By convention, the render function always returns this, to enable a calling
class to use fluent syntax after calling the render function.

There are a number of template engines that can be used with
Backbone—such as Handlebars (http://handlebarsjs.
com/) and Moustache (https://github.com/janl/
mustache.js/) to name a few. In this sample, we will just
stick to the Underscore template engine.

Now that we have a Backbone.View defined, we can write a simple test for it:

import cm = require("../../app/models/ContactModel");
import ccv = require("../../app/views/ContactItemView");
describe("/tscode/tests/views/ContactItemViewTests", () => {
 it("should generate html from template and model", () => {
 var contactModel = new cm.ContactModel(
 { Name: 'testName', EmailAddress: 'testEmailAddress' });

 var contactItemView = new ccv.ContactItemView(
 { model: contactModel });
 var html = contactItemView.render().$el.html();

 expect(html).toBe('<p>testName (testEmailAddress)</p>');
 });
});

This code snippet starts with the imports for both ContactModel and
ContactItemView. There is only one test in this suite, and it is fairly simple. Firstly,
we create an instance of a ContactModel, setting the Name and EmailAddress
properties in the constructor. We then create an instance of the ContactItemView
class, and pass the model we just created as a constructor argument. Note the
syntax that we are using in the constructor: { model: contactModel }. Backbone
views can be constructed in a few different ways, and the properties that we set
on construction – in this case the model property – are passed down to the base
Backbone classes, via the super() function call in our constructor.

http://handlebarsjs.com/
http://handlebarsjs.com/
https://github.com/janl/mustache.js/
https://github.com/janl/mustache.js/

Chapter 7

[221]

Our test then calls the render function on the contactItemView instance. Note
here that we are then referencing the $el property of the view directly, and calling
the html function – as if it were a jQuery DOM element. This is the reason why all
render functions should return this.

Our test then checks that the result of the render function generates the HTML that
we expect, based on the template, and our model properties.

Using the Text plugin
Having hardcoded HTML within our view, however, will make our code difficult
to maintain. To help with this conundrum, we will use a Require plugin called Text.
Text uses normal require syntax, just with a 'text!" prefix to load files from the site
for use in our code. To install this plugin via NuGet, simply type:

Install-package RequireJS.Text

To use Text, we will first need to list text in our require.config paths property
as follows:

paths: {
 // existing code
 'text': '/Scripts/text'
},

We can then modify our call to require in our TestConfig.ts as follows:

var CONTACT_ITEM_SNIPPET = "";
require(
 ['jasmine-boot',
 'text!/tscode/app/views/ContactItemView.html'],
 (jb, contactItemSnippet) => {
 CONTACT_ITEM_SNIPPET = contactItemSnippet;
 require(specs, () => {
 (<any>window).onload();
 });
 });

In this code snippet, we create a global variable named CONTACT_ITEM_SNIPPET
to hold our snippet, and then we include the HTML file that we need to load using
the 'text!<path to html>' syntax in our call to require. Again, each item in
the array we use for the require function call has a corresponding variable in our
anonymous function.

Modularization

[222]

In this way, Require will load the text found at /tscode/app/views/
ContactItemView.html, and pass it to our function via the contactItemSnippet
argument as a string. We can then set the global variable CONTACT_ITEM_SNIPPET
to this value. Before we can run this code, however, we will need to modify our
ContactItemView to use this variable:

constructor(options?: any) {
 this.className = "contact-item-view";
 this.events = <any>{ 'click': this.onClicked };
 this.template = _.template(CONTACT_ITEM_SNIPPET);

 super(options);
}

The changed line in the preceding code is the call invoke the _.template function
using the value of the global variable CONTACT_ITEM_SNIPPET, instead of a hard
coded HTML string.

The last thing we need is to create the ContactItemView.html file itself, as follows:

<div class="contact-outer-div">
 <div class="contact-name-div">
 <%= Name %>
 </div>
 <div class="email-address-div">
 (<%= EmailAddress %>)
 </div>
</div>

This HTML file uses the same <%= propertyName %> syntax that we have seen
before, but we are now able to easily expand our HTML to include outer divs,
and give each property its own CSS classes for some styling later on.

Running our tests now, however, will break our ContactItemViewTests – because
the HTML we are using has been changed. Let's fix this broken test now:

//expect(html).toBe('<p>testName (testEmailAddress)</p>');
expect(html).toContain('testName');
expect(html).toContain('testEmailAddress');

We have commented the offending line, and are using the .toContain matcher to
ensure that our HTML has been injected correctly with the model properties, instead
of looking for an exact match for the html string value.

Chapter 7

[223]

Rendering a collection
Now that we have a view to render individual Contact items, we need another
view to render the entire ContactCollection. To do this, we simply create a new
Backbone.View for our collection, and then create a new ContactItemView instance
for each item in the collection as follows:

import cm = require("../models/ContactModel");
import civ = require("./ContactItemView");
export class ContactCollectionView extends
 Backbone.View<Backbone.Model> {
 constructor(options?: any) {
 super(options);
 _.bindAll(this, 'renderChildItem');
 }

 render(): ContactCollectionView {
 this.collection.each(this.renderChildItem);
 return this;
 }
 renderChildItem(element: Backbone.Model, index: number) {
 var itemView = new civ.ContactItemView({ model: element });
 this.$el.append(itemView.render().$el);
 }
}

We start this code snippet with our imports for the ContactModel and
ContactItemView modules. We then create a ContactCollectionView that extends
Backbone.View, this time using a base Backbone.Model for the generic syntax. Our
constructor simply passes any options that it receives down to the base view
class through the super function call. We then call an Underscore function named
bindAll. The Underscore bindAll function is a utility function that binds the scope
of this to the correct context, when used in a class function. Let's explore the code a
little to make this clearer.

The render function will be called by the user of the ContactCollectionView,
and simply calls the renderChildItem function for each model that it has in its
collection. this.collection.each takes a single parameter, which is a callback
function to be called for each model in the collection. We could have written this
code as follows:

render(): ContactCollectionView {
 this.collection.each(
 (element: Backbone.Model, index: number) => {
// include rendering code within this anonymous function
 }
);
 return this;
}

Modularization

[224]

This version of the same code uses an anonymous function within the each function.
In our previous code snippet, however, we have written the renderChildItem as
a class function, instead of using an anonymous function. Because of JavaScript's
lexical scoping rules, this slight change means that the this property would now
refer to the function itself, and not the class instance. By using _.bindAll(this,
'renderChildItem'), we have bound the variable this to be the class instance
for all calls to renderChildItem. We can then use the this variable within the
renderChildItem function, and this.$el will be correctly scoped to the instance
of the class ContactCollectionView.

Now for a couple of tests on this ContactCollectionView class:

import cc = require("../../app/models/ContactCollection");
import cm = require("../../app/models/ContactModel");
import ccv = require("../../app/views/ContactCollectionView");
describe("/ts/views/ContactCollectionViewTests", () => {
 var contactCollection: cc.ContactCollection;
 beforeAll(() => {
 contactCollection = new cc.ContactCollection([
 new cm.ContactModel(
 { Name: 'testName1', EmailAddress: 'testEmail1' }),
 new cm.ContactModel(
 { Name: 'testName2', EmailAddress: 'testEmail2' })
]);
 });

 it("should create a collection property on the view", () => {
 var contactCollectionView = new ccv.ContactCollectionView({
 collection: contactCollection
 });
 expect(contactCollectionView.collection.length).toBe(2);
 });
});

In this code snippet, the import and beforeAll functions should be pretty easy
to decipher, so let's focus on the body of the actual test. Firstly, we are creating a
ContactCollectionView instance, and passing in this contactCollection instance
via the { collection: contactCollection} property in the constructor. Backbone
views that work with a single item use the { model: <modelName> } property, and
views that work with collections use the { collection: <collectionInstance> }
property. Our first test simply checks to see that the internal collection property
does actually contain a collection whose length should be 2.

Chapter 7

[225]

We can now write a test to check that the renderChildItem function is called when
we call the render function on our ContactCollectionView as follows:

it("should call render on child items", () => {
 var contactCollectionView = new ccv.ContactCollectionView({
 collection: contactCollection
 });
 spyOn(contactCollectionView, 'renderChildItem');
 contactCollectionView.render();

 expect(contactCollectionView.renderChildItem).toHaveBeenCalled();
});

This test creates a view as we have seen previously, and then creates a spy on the
renderChildItem function. To trigger this function to be called, we call the render
function on our view instance. Finally, we just check that our spy has been called.

Next, we can write a quick test to see if the HTML generated by the render function
contains properties from our collection's models:

it("should generate html from child items", () => {
 var contactCollectionView = new ccv.ContactCollectionView({
 collection: contactCollection
 });
 var renderedHtml = contactCollectionView.render().$el.html();
 expect(renderedHtml).toContain("testName1");
 expect(renderedHtml).toContain("testName2");

});

This test is very similar to our ContactItemView rendering tests, but instead uses the
ContactCollectionView render function.

Modularization

[226]

Creating an application
With the two Backbone views in place, we can now build a simple class to
coordinate the loading of our collection, and the rendering of the full collection
to the DOM:

import cc = require("tscode/app/models/ContactCollection");
import cm = require("tscode/app/models/ContactModel");
import civ = require("tscode/app/views/ContactItemView");
import ccv = require("tscode/app/views/ContactCollectionView");
export class ContactViewApp {
 run() {
 var contactCollection = new cc.ContactCollection();
 contactCollection.fetch(
 {
 success: this.contactCollectionLoaded,
 error: this.contactCollectionError
 });
 }

 contactCollectionLoaded(model, response, options) {
 var contactCollectionView = new ccv.ContactCollectionView(
 {
 collection: model
 });
 $("#mainContent").append(
 contactCollectionView.render().$el);
 }
 contactCollectionError(model, response, options) {
 alert(model);
 }
}

Our code starts with imports for each of our various modules. We then create a class
definition named ContactViewApp, and within this class, a method named run. This
run method simply creates a new ContactCollection, and calls fetch to trigger
Backbone to load the collection. This call to fetch then defines a success and error
callback, each set to their relevant functions within the class.

When the ContactCollection fetch returns successfully, Backbone will invoke
the contactCollectionLoaded function. Within this function, we simply create a
ContactCollectionView, and then use jQuery to append the HTML returned via
the render function to the DOM element "#mainContent".

Chapter 7

[227]

We can now create a web page to put everything together. The contents of our
HTML page would now read as follows:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Contacts View</title>
 <link rel="stylesheet" type="text/css"
 href="/css/app.css">
 <script data-main="/tscode/app/AppConfig"
 type="text/javascript"
 src="/Scripts/require.js"></script>

</head>
<body>
 <div id="mainContent"></div>
</body>
</html>

This page is very similar to the page we were using previously for running our
tests. We have included an app.css link to allow for some styling, and we then call
Require with a new config file, named /tscode/app/AppConfig. We also have a
div within the body tag, with an id of mainContent, which will house the rendered
HTML from our ContactViewApp. Now we need to create our AppConfig.ts file for
Require to use, as follows:

require.config(
 {
 baseUrl: "../../",
 paths: {
 'underscore': '/Scripts/underscore',
 'backbone': '/Scripts/backbone',
 'jquery': '/Scripts/jquery-2.1.1',
 'ContactViewApp': '/tscode/app/ContactViewApp',
 'text': '/Scripts/text'
 },
 shim: {
 underscore: {
 exports: '_'
 },
 backbone: {
 deps: ['underscore'],
 exports: 'Backbone'
 }
 ,ContactViewApp: {
 deps: ['backbone']
 }
 }
 }

Modularization

[228]

);

var CONTACT_ITEM_SNIPPET = "";

require([
 'ContactViewApp',
 'text!/tscode/app/views/ContactItemView.html'
], (app, contactItemSnippet) => {

 CONTACT_ITEM_SNIPPET = contactItemSnippet;
 var appInstance = new app.ContactViewApp();
 appInstance.run();
});

The first thing to note in this code snippet, is that we have now included a paths
reference to our ContactViewApp. The corresponding shim entry for ContactViewApp
specifies that it has a dependency on backbone. Again, we have a global variable
named CONTACT_ITEM_SNIPPET, and we then call the require function to load our
ContactViewApp class, as well as the HTML snippet. Note too, that we are able to
reference our ContactViewApp via the app argument in our anonymous function, and
the HTML via the contactItemSnippet argument. To run the app, we simply create
an instance of the ContactViewApp class, and call the run method.

We should now be able to see the results of all of our hard work:

The Backbone app running with Require.js

Chapter 7

[229]

Using jQuery plugins
To finish off our app, let's use a jQuery plugin called flip (http://lab.smashup.it/
flip/) that triggers an animation to rotate, or flip, the outer div of an item when it
is clicked. Flip is typical of a range of jQuery plugins that can be applied to elements
of our application. Before we can trigger a Flip animation, however, we will need to
respond to a click event from the user within the ContactItemView as follows:

import cm = require("../models/ContactModel");

export class ContactItemView extends Backbone.View<cm.ContactModel> {
 template: (properties?: any) => string;
 constructor(options?: any) {
 this.className = "contact-item-view";
 this.events = <any>{ 'click': this.onClicked };
 this.template = _.template(CONTACT_ITEM_SNIPPET);
 super(options);
 }

 render(): ContactItemView {
 this.$el.html(this.template(this.model.attributes));
 return this;
 }

 onClicked() {
 alert('clicked : ' + this.model.Name);
 }
}

In this code snippet, we have now added an onClicked function to our
ContactItemView class that simply pops up an alert. Note how we are able to
reference the model property of the view class, in order to read properties from the
underlying Backbone.Model that this class instance was created with. Within the
constructor, we have also set this.events to a JavaScript object that has a single
property: 'click'.

http://lab.smashup.it/flip/
http://lab.smashup.it/flip/

Modularization

[230]

The 'click' property is set to our onClicked function, and will be invoked
when the ContactItemView DOM element receives a user's click event. With this
in place, whenever we click on a rendered element in our page, we will receive an
alert popup:

Alert popup on click event showing Model properties

We can now turn our attention to using the Flip jQuery plugin. Flip relies on jQuery
as well as jQueryUI, so we will need to install jQueryUI from NuGet as follows:

Install-package jQuery.UI.Combined

Flip itself does not have a NuGet package, so will need to download it, and included
it in our project the old-fashioned way. There is also no DefinitelyTyped definition
for Flip, so we will need to include one in our project as follows:

interface IFlipOptions {
 direction: string;
 onBefore?: () => void;
 onAnimation?: () => void;
 onEnd?: () => void;
 speed?: number;
 color?: string;
 content?: string;
}

Chapter 7

[231]

interface JQuery {
 flip(input: IFlipOptions): JQuery;
 revertFlip();
}

This declaration file for the Flip plugin is very simply generated from the
documentation on the website. As Flip is a jQuery plugin, it is available on any
jQuery object that is reference by the $() notation. Because of this, we must extend
the JQuery type definition with our own – hence we create the jQuery interface with
our two new functions: flip and revertFlip. The input to Flip has been defined as
the IFlipOptions interface, as built from the website documentation.

To load this library within Require, we modify our call to require.config as follows:

require.config(
 {
 baseUrl: "../../",
 paths: {
 'underscore': '/Scripts/underscore',
 'backbone': '/Scripts/backbone',
 'jquery': '/Scripts/jquery-2.1.1',
 'ContactViewApp': '/tscode/app/ContactViewApp',
 'text': '/Scripts/text',
 'jqueryui': '/Scripts/jquery-ui-1.11.2',
 'jqueryflip' : '/Scripts/jquery.flip'
 },
 shim: {
 underscore: {
 exports: '_'
 },
 backbone: {
 deps: ['underscore'],
 exports: 'Backbone'
 }
 ,jqueryui: {
 deps: ['jquery']
 }
 ,jqueryflip: {
 deps: ['jqueryui'],
 exports: '$'
 }
 ,ContactViewApp: {
 deps: ['backbone'
 , 'jqueryflip'
]
 }
 }
 }
);

Modularization

[232]

Here, we have added two entries to our paths object: jqueryui, and jqueryflip.
We have then added corresponding shim entries and specified the relevant
dependencies. The line to note here, is the exports property on jqueryflip. We
have specified that it must export to the $ symbol. This is the default jQuery selector
symbol, and all jQuery plugins must export to the $ symbol, in order to be defined
correctly when using Require. Our final change to the code is to use the flip
function on the click event of ContactItemView as follows:

onClicked() {
 this.$el.flip({
 direction: 'tb',
 speed : 200
 });
}

Here we are referencing the $el element within the Backbone.View, which is a
shorthand syntax for the jQuery selector. We are then calling the flip function,
and specifying a top-to-bottom flip, to last 200 milliseconds. Running our page now,
and clicking on a contact element will now trigger a flip animation:

Flip.js in action flipping a div element

Chapter 7

[233]

Summary
In this chapter we have had a look at using modules – both CommonJs and
AMD. We explored CommonJS modules as used within Node applications,
and discussed the creation and usage of these modules with TypeScript. We then
moved on to browser-based modules, and explored the use of AMD compilation
in regards to Require. We built a very simple Backbone based application,
complete with Jasmine unit tests, and then had a look at using the Text plugin
with Require. We also incorporated a third-party jQuery plugin called Flip to
provide some animation on our user interface. In our next chapter, we will tackle
some object-oriented programming principles, and have a look at dependency
injection and domain events.

[235]

Object-oriented Programming
with TypeScript

In 1995, the Gang of Four (GoF), published a book named Design Patterns: Elements
of Reusable Object-Oriented Software. In it, the authors, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, describe a number of classic software design
patterns. These patterns present simple and elegant solutions to common software
problems. If you have never heard of design patterns such as the Factory pattern,
Composite pattern, Observer pattern, or Singleton pattern, then going through this
GoF book is highly recommended.

The Design patterns presented by the GoF have been reproduced in many different
programming languages, including Java and C#. Mark Torok has even ported these
patterns to TypeScript, and his GitHub repository can be found at https://github.
com/torokmark/design_patterns_in_typescript. We have already explored
one of these patterns, the Factory Design Pattern, in Chapter 3, Interfaces, Classes
and Generics, and Mark's work provides a quick and simple reference implementation
of all of the GoF patterns in TypeScript.

Simon Timms has also published a book called Mastering JavaScript Design Patterns,
Packt Publishing (https://www.packtpub.com/application-development/
mastering-javascript-design-patterns), which walks the reader through
each of these patterns, when to use them, and how to use them.

In this chapter, we will not cover the standard GoF design patterns, but instead
take a look at two other popular design patterns and how they can be implemented
in TypeScript. We will discuss Dependency Injection using a Service Locator
Pattern, and then see how these techniques can be used to build a Domain
Event Pattern implementation.

https://github.com/torokmark/design_patterns_in_typescript
https://github.com/torokmark/design_patterns_in_typescript
https://www.packtpub.com/application-development/mastering-javascript-design-patterns
https://www.packtpub.com/application-development/mastering-javascript-design-patterns

Object-oriented Programming with TypeScript

[236]

Program to an interface
One of the primary notions that the GoF adhere to, is the idea that programmers
should "program to an interface, and not an implementation". This means that
programs are built using interfaces as the defined interaction between objects.
By programming to an interface, client objects are unaware of the internal logic
of their dependent objects, and are much more resilient to change.

The TypeScript language brings with it the interface keyword, allowing us
to write object-oriented code against interfaces in a much easier way than with
standard JavaScript. Remember, though, that interfaces are a TypeScript concept
only, and are compiled away in the generated JavaScript.

Note that many other languages have the concept of being able to interrogate
an object to see which interfaces they implement, a process called reflection.

SOLID principles
An extension of the "program to an interface" principle, is what has been coined
as SOLID design principles, based on the ideas of Robert Martin. This is an
acronym for five different programming principles, and deserves a mention
whenever object-oriented programming is discussed. Each of the letters in the
word SOLID relate to an object-oriented principle, as follows:

• S: Single Responsibility
• O: Open Closed
• L: Liskov Substitution
• I: Interface Segregation
• D: Dependency Inversion

Single Responsibility
The idea behind the Single Responsibility principle is that an object should have just
a single responsibility, or a single reason to exist. In other words, do one thing and
do it well. We have seen examples of this principle in the previous chapter, in our
work with Backbone. A Backbone model class is used to represent a single model.
A Backbone collection class is used to represent a collection of these models, and a
Backbone view class is used to render models or collections.

Chapter 8

[237]

Open Closed
The idea behind the Open Closed principle states that an object should be open
to extension, but closed for modification. In other words, once an interface has
been designed for a class, changes that occur over time to this interface, should be
implemented through inheritance, and not by modifying the interface directly.

Note that if you are writing libraries that are consumed by third-parties via an API,
then this principle is essential. Changes to an API should only be made through a
new, versioned release, and should not break the existing API or interface.

Liskov Substitution
The Liskov Substitution principle states that if one object is derived from another, then
these objects can be substituted for each other without breaking functionality. While
this principle seems fairly easy to implement, it can get pretty hairy when dealing with
subtyping rules that relate to more complex types, such as lists of objects or actions
on objects—which are most often found in code that works with generics. In these
instances, the concept of variance is introduced, and objects can be either covariant,
contravariant, or invariant. We will not discuss the finer points of variance here, but
keep this principle in mind when writing libraries or code using generics.

Interface Segregation
The idea behind the Interface Segregation principle is that many interfaces are
better than one general-purpose interface. If we tie this principle in with the Single
Responsibility principle, we will start to look at our interfaces as smaller pieces of
the puzzle, which will be put together to create broader application functionality.

Dependency Inversion
The Dependency Inversion principle states that we should depend on abstractions
(or interfaces) rather than instances of concrete objects. Again, this is the same
principle as "program to an interface, and not an implementation".

Object-oriented Programming with TypeScript

[238]

Building a Service Locator
The idea of the Service Location Pattern is that some areas of an application can be
broken down into services. Each service should adhere to our SOLID design principles,
and provide a small external interface that acts as a service API. Each service used
by an application is then registered with a service locator. When a specific piece of
information or functionality is required by the application, it can query this service
locator to find the correct service, based on the service interface.

The problem space
In the previous chapter, we explored Backbone, where our application was broken
down into models, collections, and views. Outside of these elements, we also had an
application class to coordinate the loading of data via a collection, and the rendering
of this collection using a view. Once our application classes were built, the last piece
of the puzzle was putting together the require.config object, in order to coordinate
the loading of our AMD modules, any HTML that we needed in our application, and
our jQuery plugins.

If we have a look at a visual representation of which aspect of the application loaded
which files, we come up with something that looks as follows:

Application object dependency tree

Chapter 8

[239]

We start at the top with an HTML page named ContactViewApp.html, which is the
main entry page for our application, and which will be served up to the web browser.
This HTML page then loads the Require library, which in turn loads our AppConfig.ts
file containing the require.config section. This require.config section then
instructs Require to load various scripts from the /Scripts/ directory, as well as a
snippet of HTML via the Text plugin. Once all files have been loaded by Require, the
last portion of the AppConfig.ts file then loads the ContactViewApp.ts, which in
turn loads our ContactCollection.ts and ContactCollectionView.ts files. These
last two files then instruct Require to load the module files named ContactModel.ts
and ContactItemView.ts respectively.

If we take a closer look at this hierarchy, it is quite feasible to imagine that in a large
application, we would have a large amount of collections, models, views, and item
views. It may be that we are loading collections of collections, and views containing
sub-views that contain further sub-views. Each of these views will require some
HTML to be loaded via the Text plugin, in order to use our template mechanism.

Let's take a closer look at how we loaded and used an HTML snippet in our
previous example:

Dependency tree with usage of global variable

In this diagram, we can see that we loaded an HTML snippet via the Text plugin,
within the AppConfig.ts file, and then stored it into a global variable named
CONTACT_ITEM_SNIPPET. The only code that used this global variable was the
ContactItemView class itself.

Object-oriented Programming with TypeScript

[240]

Using a global variable breaks our Dependency Inversion principle, in that we are
programming to a concrete instance of a global variable, instead of an interface. This
global variable can also be inadvertently changed by any running code, which may
cause our views to stop functioning. Another problem that we faced when running
our test suite, was that changing the original HTML template broke some of our unit
tests. While we were able to modify the tests slightly in order to pass, this broken test
highlighted that we had broken the Open Closed principle somewhere along the line.

Creating a Service
We will solve the problem of using a global variable to store HTML snippets in
two parts.

Firstly, let's define a service to replace our global variables—a SnippetService.
This service will have a very simple interface, and will be only responsible for
two things: storing an HTML snippet and retrieving an HTML snippet.

Secondly, we need a mechanism to get hold of this SnippetService, both at the
point in our code where we store the snippet (in AppConfig.ts), and also at the
point where we use the snippet (in ContactItemView.ts). We will use a Service
Locator at both of these touch-points a bit later, but for now, let's flesh out a design
for our snippet service.

Introducing a SnippetService changes our dependency diagram as follows:

Dependency tree using a service to store HTML snippets

Chapter 8

[241]

We can see that we have now abstracted away the use of our global variable. We still
have a global area to store these HTML snippets, i.e. the Snippet Storage area, but we
are now programming against an interface—that the SnippetService provides—
and not against a concrete implementation. Our application is now guarded against
any changes to the internal storage of these HTML snippets. As an example, we
may decide to change our implementation from using HTML files, to storing HTML
snippets in a database. In this case, only the internals of the SnippetService would
need to be modified, and our code could carry on without needing to be changed.

Obviously, we will need some sort of key to allow us to store more than one snippet,
but should the SnippetService be responsible for defining this key or not? Think
Single Responsibility. Is the SnippetService really responsible for managing the keys
that relate to the snippets? In other words, does it need to add or remove these keys?
Not really. A smaller enum class would prove quite useful here, and favors numerous
smaller interfaces over one general-purpose interface – think Interface Segregation.

With these things in mind, we can define the interface for our SnippetService
as follows:

enum SnippetKey {
 CONTACT_ITEM_SNIPPET,
 OTHER_SNIPPET,
}

interface ISnippetService {
 storeSnippet(key: SnippetKey, value: string): void;
 retrieveSnippet(key: SnippetKey): string;
}

Firstly, we define an enum named SnippetKey to store all the keys to be used by the
SnippetService. Secondly, we define the interface for the actual SnippetService,
named ISnippetService, which has two functions. The first function will be a method
to store a snippet, and is named storeSnippet. This function has two arguments,
the first being a SnippetKey enum value, and the second argument is, of course, the
HTML snippet itself. Similarly, the second function, named retrieveSnippet uses a
single SnippetKey argument to retrieve the HTML snippet.

Object-oriented Programming with TypeScript

[242]

Now that we have defined an interface, we can create the structure of our
SnippetService class:

class SnippetService implements ISnippetService {
 public storeSnippet(key: SnippetKey, value: string) {
 }
 public retrieveSnippet(key: SnippetKey) {
 return "";
 }
}

Here, we have a class named SnippetService that implements our ISnippetService
interface. We have created the two methods defined in the interface, but have not yet
provided an implementation. We will use this opportunity to follow TDD principles
and write a failing unit test before writing the code that makes the tests pass. Our unit
test is as follows:

describe("/tscode/tests/services/SnippetServiceTests.ts", () => {
 it("should store a snippet", () => {
 var snippetService = new SnippetService();
 snippetService.storeSnippet(
 SnippetKey.CONTACT_ITEM_SNIPPET, "contact_snippet");
 expect(
 snippetService.retrieveSnippet(
 SnippetKey.CONTACT_ITEM_SNIPPET)
).toBe("contact_snippet");
 });
});

In this test, we simply create an instance of the SnippetService, store a snippet with
the key of SnippetKey.CONTACT_ITEM_SNIPPET, and then call retrieveSnippet
with the same key, verifying the string value returned. Bear in mind that this is a
simulated test, and in the real application, the storeSnippet call will occur during
application initialization, and the retrieveSnippet call will occur at a later stage.

Let's now flesh out the SnippetService so that the tests pass:

class SnippetService implements ISnippetService {
 private snippetArray: string[] = new Array();
 public storeSnippet(key: SnippetKey, value: string) {
 this.snippetArray[key] = value;
 }
 public retrieveSnippet(key: SnippetKey) {
 if (!this.snippetArray[key]) {
 throw new Error(
 "SnippetService no snippet with key :" + key);
 }
 return this.snippetArray[key];
 }
}

Chapter 8

[243]

Our SnippetService class now has an internal array of strings named snippetArray,
marked as private, which will hold our HTML snippet values. Our storeSnippet
and retrieveSnippet functions are now simply storing or retrieving values from this
array. With this code in place, our test will now pass and our simple SnippetService
is complete.

Dependency Resolution
Thus far, we have refactored our code to be dependent on an interface instead of
a concrete object. This is all well and good, but begs the question: "how do we get
hold of an interface?" – or more correctly – "how do we get hold of the concrete
class that is currently implementing this interface?". This is the essential question that
Dependency Injectors seek to answer.

There are a number of different ways in which a class can get hold of another class
that implements an interface.

Service Location
If the class itself requests a concrete object based on an interface, then this process
is called "Service Location". In other words, the class is using a registry or helper to
locate the service it requires. You could also describe this technique as "dependency
requesting". A central registry holds a lookup table with all registered classes against
their respective interfaces. When the interface is requested, the Service locator simply
looks up what class instance is stored against the interface in its table, and returns
the object from its registry.

Dependency Injection
If the act of creating an instance of a class can be handed over to some sort of
framework, then this framework can work out what interfaces a class needs, and
"inject" these dependencies during class instantiation. This injection of dependencies
is also called assembly. In this case, an assembler class or framework would
need to be able to query an object to find out what interfaces it is dependent
on. Unfortunately, we do not have this ability in JavaScript or TypeScript, as all
interfaces are compiled away. So, we cannot use TypeScript interfaces by themselves
to implement dependency injection. If we were to implement dependency injection
in TypeScript or JavaScript, we would need some sort of naming convention to flag
to the assembler framework that we need a concrete object to replace an interface.

Object-oriented Programming with TypeScript

[244]

Dependency Injection is also referred to as Inversion of Control—as we are handing
over control of creation of our classes, and the resolution of their dependencies—to
a third party. By the time we receive an instance of our class, all of the services or
dependencies have been "magically" filled in.

Service Location versus Dependency
Injection
The ideas around the Service Location pattern were first introduced by Martin
Fowler around 2004, in a blog titled Inversion of Control Containers and the Dependency
Injection pattern (http://martinfowler.com/articles/injection.html).
However, in his book, Dependency Injection in .NET, Mark Seeman argues that
the Service Location pattern is in fact an anti-pattern.

Mark's take on Martin's original ideas are that it is too easy to introduce runtime errors,
or to misunderstand the usage of a particular class, when Service Location is used.
This is because figuring out what services a class uses, means reading through the
entire class. He argues that a better way of using Dependency Injection, is to list all
dependencies in the constructor function of a class, and let the service locator resolve
each dependency, during class constructon. Most of Mark's examples seem to revolve
around building and using APIs, where internals of a particular class cannot simply
be read from the code, and using a class without knowing what services it depends
on, can easily cause runtime errors.

While his ideas do certainly hold true, the solutions to this problem are all
relevant to the .NET language—which has a key language feature that is
unavailable in JavaScript— called Reflection. Reflection is the ability of a program—at
runtime—to interrogate an object for information about itself, such as what properties
it has, and what interfaces it implements or expects. Even though TypeScript provides
the interface keyword, and does compile-time checking on these interfaces, all
interfaces are compiled away in the resultant JavaScript.

This provides us with a serious problem. If a class is dependent on an interface,
we cannot use this interface at runtime to look up the concrete implementation
for the interface—because at runtime, this interface simply does not exist.

http://martinfowler.com/articles/injection.html

Chapter 8

[245]

Angular uses a naming convention (a $ prefix) to provide dependency injection
capabilities. This has been rather successful, although there are caveats and some
work-arounds when using minification routines. Angular 2.0 also solves this
problem by providing a custom syntax to denote places where dependencies need
to be injected. Other JavaScript frameworks—such as ExtJs—provide a mechanism
to create objects by using a global creation routine, which then allows the framework
to inject dependencies. This ExtJs technique, unfortunately, is not very compatible
with the TypeScript language syntax (see Chapter 5, Third Party Libraries where we
discuss ExtJs).

Also, if we are not using Angular, Angular 2.0, ExtJs, or any other framework, then
Dependency Injection is just slightly out of reach in standard JavaScript. Service
Location, on the other hand, can be accomplished, and combined with TypeScript
interfaces, can bring us all of the benefits of dependency resolution and therefore,
modular programming.

We can also make a compromise in order to incorporate the ideas that Mark
suggests—and limit our Service Location to object constructors. When writing
libraries that use Service Location, we would need to clearly document what
dependencies a particular class has—and how they need to be registered. Even
popular .NET Dependency injection frameworks such as StructureMap still allow
for Service Location techniques—although they are being deprecated.

For the purposes of this book, then, let's explore how to write a simple Service
Locator and use it in our code to build a more modular application, and leave
the argument about pattern versus anti-pattern to those languages that have
the features to implement Dependency Injection naturally.

A Service Locator
Let's get back to the crux of our problem: given an interface, how do we obtain
a concrete implementation of a class that is currently implementing it?

In Chapter 3, Interfaces, Classes and Generics, we wrote a generic class named
InterfaceChecker that did a runtime evaluation of a class, to check whether
it implemented a specific set of methods and properties. The basic idea behind
this InterfaceChecker was that if we provided a metadata class that listed the
expected properties and methods of an interface, we could then interrogate a
class at runtime against this metadata. If the class had all of the required
properties and methods, then it was said to implement the interface.

Object-oriented Programming with TypeScript

[246]

So, we now have a mechanism—at runtime—to ensure that a class implements
an interface: not a TypeScript interface, mind you, but a metadata-defined interface.
If we extend this idea, and give each of our metadata interfaces a unique name,
we have the concept of a "named interface". As long as these interface names are
unique across our application, we now have a mechanism to query a class—at
runtime—and see whether it implements a named interface.

If a class implements a named interface, we can then use a registry to store an instance
of this class against its named interface. Any other code that needs an instance of
a class that is implementing this named interface, simply has to query the registry,
supply the interface name, and the registry will be able to return the class instance.

As long as we ensure that our TypeScript interfaces match the named interface
definitions, we are all good to go.

Named interfaces
Back in Chapter 3, Interfaces, Classes and Generics, we wrote an interface named
IInterfaceChecker that we could use as a standard template for our metadata.
Let's update this interface and give it a required className property—so that we can
use it as a named interface:

interface IInterfaceChecker {
 methodNames?: string[];
 propertyNames?: string[];
 className: string;
}

We still have the optional arrays of methodNames and propertyNames, but now
every class that implements this interface will also require a className property.

So, given the following TypeScript interface:

interface IHasIdProperty {
 id: number;
}

Our named interface metadata class to match this TypeScript interface would look
like this:

class IIHasIdProperty implements IInterfaceChecker {
 propertyNames: string[] = ["id"];
 className: string = "IIHasIdProperty";
}

Chapter 8

[247]

This IHasIdProperty interface has a single property named id, which is of type
number. We then create a class named IIHasIdProperty to act as a named interface
definition. This class implements our updated IInterfaceChecker interface and
must, therefore, provide a className property. The propertyNames property has
a single array entry named id, and will be used by our InterfaceChecker class to
match against the id property of our TypeScript interface.

Note the naming convention of this class—it is the same name as the interface but
adds an extra I. This double I convention will help us to tie the TypeScript interface
named IHasIdProperty with its IIHasIdProperty metadata named interface class.

We can now create a normal TypeScript class that implements the IHasIdProperty
TypeScript interface as follows:

class PropertyOne implements IHasIdProperty {
 id = 1;
}

We now have all of the pieces in place to start building a Service Locator:

• A TypeScript interface named IHasIdProperty. This will provide
compile-time type checking against a class implementing this interface.

• A named interface or metadata class called IIHasIdProperty. This will
provide runtime type checking against a class, and it also has a unique name.

• A class that implements the TypeScript interface IHasIdProperty. This
class will pass the runtime type checks, and an instance of this class can
be registered with our Service Locator.

Registering classes against named interfaces
With these metadata classes in place, we can now create a central repository to act
as a Service Locator. This class has static functions for registering classes, as well as
resolving interfaces:

class TypeScriptTinyIoC {
 static registeredClasses: any[] = new Array();
 public static register(
 targetObject: any,
 targetInterface: { new (): IInterfaceChecker; }): void {
 }

 public static resolve(
 targetInterface: { new (): IInterfaceChecker; }): any {
 }

Object-oriented Programming with TypeScript

[248]

 public static clearAll() {}
}

This class, named TypeScriptTinyIoC, has a single static property named
registeredClasses, which is an array of type any. This array is essentially our
registry. As we do not know what type of class we are going to store in this array,
the use of the any type in this instance is correct.

This class then provides two primary static functions, named register and resolve.
The register function takes a targetObject as its first parameter, and then a class
definition of a named interface—i.e. a class derived from IInterfaceChecker. Note
the syntax of the targetInterface argument—it is the same as the generic syntax
that we used in Chapter 3, Interfaces, Classes and Generics, to denote a class definition.

It is actually easier to understand these function signatures if we take a look at an
example of their usage, so let's write a quick test:

it("should resolve instance of IIProperty to PropertyOne", () => {
 var propertyInstance = new PropertyOne();
 TypeScriptTinyIoC.register(propertyInstance, IIHasIdProperty);

 var iProperty: IHasIdProperty =
 TypeScriptTinyIoC.resolve(IIHasIdProperty);
 expect(iProperty.id).toBe(1);
});

This test first creates an instance of the PropertyOne class, which implements the
IHasIdProperty interface. This class is the one that we would like to register. The
test then calls the register function of TypeScriptTinyIoC with two parameters.
The first parameter is the class instance itself, and the second parameter is the class
definition for the associated named interface—IIHasIdProperty. We have seen this
type of syntax before, when we discussed creating instances of classes using generics,
but its signature is also available on nongeneric functions.

Without using the targetInterface: { new (): IInterfaceChecker; }
signature, we would have to call this function as follows:

TypeScriptTinyIoC.register(propertyOneInstance,
 new IIHasIdProperty());

But with this signature in place, we can defer the creation of the IIHasIdProperty
named interface class to the register function—and drop the new syntax as follows:

TypeScriptTinyIoC.register(propertyOneInstance, IIHasIdProperty);

Chapter 8

[249]

Our test then calls the resolve function on TypeScriptTinyIoC, and again passes
the class definition of our named interface as the lookup key. Finally, we check
whether the class that is returned is in fact an instance of the PropertyOne class that
we registered initially.

At this stage, our test will fail dramatically, so let's flesh out the TypeScriptTinyIoC
class, starting with the register function:

public static register(
 targetObject: any,
 targetInterface: { new (): IInterfaceChecker; })
{
 var interfaceChecker = new InterfaceChecker();
 var targetClassName = new targetInterface();
 if (interfaceChecker.implementsInterface(
 targetObject, targetInterface)) {
 this.registeredClasses[targetObject.className]
 = targetObject;
 } else {
 throw new Error(
 "TypeScriptTinyIoC cannot register instance of "
 + targetClassName.className);
 }
}

This register function firstly creates an instance of the InterfaceChecker
class, and then creates an instance of the class definition passed in, through
the targetInterface argument. This targetInterface is the named interface
or metadata class. We then call the implementsInterface function
of interfaceChecker to ensure that the targetObject implements the interface
described by targetInterface. If it passes this check, we then add it to our internal
array named registeredClasses, using the className property as a key.

Again, using our InterfaceChecker gives us runtime type checking—so that we
can be sure that any class we are registering does in fact implement the correct
named interface.

Now we can flesh out the resolve function as follows:

public static resolve(
 targetInterface: { new (): IInterfaceChecker; })
{
 var targetClassName = new targetInterface();

Object-oriented Programming with TypeScript

[250]

 if (this.registeredClasses[targetClassName.className]) {
 return this.registeredClasses[targetClassName.className];
 } else {
 throw new Error(
 "TypeScriptTinyIoC cannot find instance of "
 + targetClassName.className);
 }
}

This resolve function only has one parameter—the definition of our named
interface. Again, we are using the new–able syntax that we have seen previously.
This function simply creates an instance of the targetInterface class, and then
uses the className property as the key into the registeredClasses array. If an
entry is found, we simply return it; otherwise, we throw an error.

The final function on our TypeScriptTinyIoC class is the clearAll function, and it
is used primarily in testing to clear out our registered classes array:

public static clearAll() {
 this.registeredClasses = new Array();
}

Our service locator is now complete.

Using the Service Locator
Let's now update our dependency tree to see how the TypeScriptTinyIoC service
locator would be used:

Dependency diagram with a service locator pattern

Chapter 8

[251]

Our AppConfig.ts code will now create an instance of the SnippetService, and
register it with TypeScriptTinyIoC using a named interface—IISnippetService.
Our ContactItemView constructor will then be updated to resolve an instance of
the IISnippetService named interface from the registry. In this way, we are now
programming to an interface—the IISnippetService interface. We use this named
interface when we register our service with the service locator, and again when we
resolve the service later on. Our ContactItemView, then, is asking the service locator
to give us the current object that is implementing the IISnippetService interface.

To implement this change, we will firstly need a named interface to match the
ISnippetService TypeScript interface. As a refresher, our ISnippetService
was defined as follows:

interface ISnippetService {
 storeSnippet(key: SnippetKey, value: string): void;
 retrieveSnippet(key: SnippetKey): string;
}

Using our naming rules, our named interface definition would be called
IISnippetService as follows:

class IISnippetService implements IInterfaceChecker {
 methodNames: string[] = ["storeSnippet", "retrieveSnippet"];
 className: string = "IISnippetService";
}

Note how the methodNames array contains two entries that match our TypeScript
interface. By convention, we have also specified a className property, so that we can
use this class as a named interface. Using the name of the class (IISnippetService) as
the className property will also ensure a unique name, as TypeScript will not allow
multiple class definitions with the same name.

Let's now focus on our test suite. Remember that our TestConfig.ts file is almost
identical to our AppConfig.ts file, but starts the Jasmine test suite instead of running
our app. We will modify this TestConfig.ts file to include our SnippetService
and TypeScriptTinyIoC as follows.

require.config(
 {
 // existing code
 paths: {
 // existing code

Object-oriented Programming with TypeScript

[252]

 'tinyioc': '/tscode/app/TypeScriptTinyIoC',
 'snippetservice': '/tscode/app/services/SnippetService'
 },
 shim: {
 // existing code
 }
 }
);

require(
 ['jasmine-boot', 'tinyioc', 'snippetservice',
 'text!/tscode/app/views/ContactItemView.html'],
 (jb, tinyioc, snippetservice, contactItemSnippet) => {
 var snippetService = new SnippetService();
 snippetService.storeSnippet(
 SnippetKey.CONTACT_ITEM_SNIPPET,
 contactItemSnippet);
 TypeScriptTinyIoC.register(
 snippetService, IISnippetService);
 require(specs, () => {
 (<any>window).onload();
 });
 }
);

Firstly, we have included an entry for tinyioc and snippetservice in our paths
property, to ensure that Require will load our files from the specified directory.
We then update the call to the require function to include both the tinyioc and
snippetservice in both of the arguments. Our anonymous function then creates
a new instance of the SnippetService and stores the snippet that is loaded
by Text, using the CONTACT_ITEM_SNIPPET key. We then register the instance
of this SnippetService with TypeScriptTinyIoC using the named interface
IISnippetService. If we run our test suite now, we should get a few failing tests:

Chapter 8

[253]

Unit test failures

This failure is caused because the ContactItemView still references the CONTACT_
ITEM_SNIPPET global variable. Let's now modify this view's constructor as follows:

constructor(options?: any) {
 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 var contactItemSnippet = snippetService.retrieveSnippet(
 SnippetKey.CONTACT_ITEM_SNIPPET);

 this.className = "contact-item-view";
 this.events = <any>{ 'click': this.onClicked };
 this.template = _.template(contactItemSnippet);

 super(options);
}

Object-oriented Programming with TypeScript

[254]

The first line of the constructor calls the TypeScriptTinyIoC.resolve function
with the definition of the named interface, IISnippetService. The result of this
call is stored in the snippetService variable, which is strongly typed to the
ISnippetService interface. This is the essence of the service locator pattern: we are
programming to an interface (ISnippetService) and also locating this interface via
our service locator. Once we have an instance of the class providing the interface, we
can simply call retrieveSnippet with the required key to load our template.

Now that we have updated and fixed our tests, we will just need to modify our
AppConfig.ts file in the same way that we modified the TestConfig.ts file.

Testability
Now that we are programming against a defined interface, we can start to test our
code in different ways. In a test, we can now substitute the actual SnippetService
for another service that throws an error when we call retrieveSnippet. For this
test, lets create a class named SnippetServiceRetrieveThrows as follows:

class SnippetServiceRetrieveThrows implements ISnippetService {
 storeSnippet(key: SnippetKey, value: string) {}

 retrieveSnippet(key: SnippetKey) {
 throw new Error("Error in retrieveSnippet");
 }
}

This class can be registered against the IISnippetService named interface,
as it correctly implements the TypeScript interface ISnippetService. The
retrieveSnippet function, however, simply throws an error.

Our tests, then, can easily register this version of the service, and then create
a ContactItemView class instance in order to see what happens, should the
call to the retrieveSnippet function fail. Note that we have not modified our
ContactItemView class in any way—we are simply registering a different class
against the IISnippetService named interface. Our test, in this case, would be
as follows:

beforeAll(() => {
 var errorService = new SnippetServiceRetrieveThrows();
 TypeScriptTinyIoC.register(errorService, IISnippetService);
});

it("should handle an error on constructor", () => {
 var contactModel = new cm.ContactModel(

Chapter 8

[255]

 { Name: 'testName', EmailAddress: 'testEmailAddress' });

 var contactItemView = new ccv.ContactItemView(
 { model: contactModel });
 var html = contactItemView.render().$el.html();
 expect(html).toContain('error');

});

In this test, we are registering our throwing version of the SnippetService
in our beforeAll function, and then testing the rendering capability of the
ContactItemView. Running this test will cause an error to be thrown when the
ContactItemView calls retrieveSnippet. To enable this test to pass, we need to
update the ContactItemView to handle an error gracefully:

var contactItemSnippet = "";
var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
try {
 contactItemSnippet = snippetService.retrieveSnippet(
 SnippetKey.CONTACT_ITEM_SNIPPET);
} catch (err) {
 contactItemSnippet =
 "There was an error loading CONTACT_ITEM_SNIPPET";
}

Here, we have simply surrounded the call to retrieveSnippet with a try catch
block. If an error occurs, we are then modifying the snippet to be a standard error
message. By putting a test like this in place, we are further solidifying our code to
be able to handle various errors.

So what have we accomplished thus far? We have built a service to provide HTML
snippets, and we have built a Service Locator that can register an instance of this
service for use throughout our code. By registering different variations of this service
during testing, we can also further bug-proof our code by simulating common errors,
and testing our components under these circumstances.

The Domain Events Pattern
Most JavaScript frameworks have the concept of an event bus. An event bus is
simply a method of publishing events to a global bus, so that other parts of your
application that are subscribed to these events will receive a message, and be able
to react to them. The use of an event-based architecture helps to decouple our
applications, making them resilient to change and easier to test.

Object-oriented Programming with TypeScript

[256]

A Domain Event is an event that happens specific to our application domain.
Something like "when an error occurs, log it to the console", or "when a menu button
is clicked, change the sub-menu panel to reflect this option". A Domain Event can be
raised anywhere in your code. Any class can register an event handler against this
event, and will then be notified when this event is raised. There can be many event
handlers for a single Domain Event.

Martin Fowler first blogged about the concept of a Domain Event in 2005 in a blog
found at http://martinfowler.com/eaaDev/DomainEvent.html. Udi Dahan then
showed how to implement a simple domain event pattern in C# in another blog
found at http://www.udidahan.com/2009/06/14/domain-events-salvation/.
Mike Hadlow also blogged about Separation of Concerns with Domain Events,
and this blog can be found at http://mikehadlow.blogspot.com.au/2010/09/
separation-of-concerns-with-domain.html.

Mike argues that a piece of code that raises an event should not be concerned with
what happens after that—we should have separate handlers to handle these events—
which are not coupled to anything actually raising the events.

While there are a number of JavaScript libraries that handle events—Postal for
example—most of these libraries send strings or simple JavaScript objects as the
message packet. There is no way of ensuring that the sender of the message is filling
in all of the properties that the handler of the message is expecting. In other words,
these messages are not strongly typed—and could easily cause runtime errors—by
trying to fit a "square peg" message into a "round hole" event handler.

In this section, we will build a strongly typed Domain Event message bus, and
show how both sides—the event raiser and the event handler—can ensure that the
event that is raised has all of the properties that are expected in the event handler.
We will also show how to ensure that the event handlers are written correctly—and
registered correctly —so that events are delivered in a strongly typed manner.

Problem space
Let's assume that we have the following business requirement: "If an error occurs,
show the user an error message in a notification pop up. This pop up should show
for two seconds and then fade away, allowing the user to continue working."

In our current application, there are a number of places where errors could
occur—when loading JSON through the ContactCollection, for instance—or when
rendering a ContactItemView. These errors could occur quite deep down in our class
hierarchy. In order to achieve our stated requirements, we will need to handle these
errors at the ContactViewApp level. Consider the following diagram:

http://martinfowler.com/eaaDev/DomainEvent.html
http://www.udidahan.com/2009/06/14/domain-events-salvation/
http://mikehadlow.blogspot.com.au/2010/09/separation-of-concerns-with-domain.html
http://mikehadlow.blogspot.com.au/2010/09/separation-of-concerns-with-domain.html

Chapter 8

[257]

Dependency tree with domain event handlers and event raisers.

Our ContactViewApp will register an event handler with TypeScriptTinyIoC,
specifying which event type it is interested in. When an event of this type is raised
by any one of our modules, our message bus will direct the message to the correct
handler, or group of handlers. In the preceding diagram, the ContactCollection
and the ContactItemView classes are shown to be raising an ErrorEvent via
TypeScriptTinyIoC.

Message and Handler Interfaces
There are two key sets of information that we need in order to register and raise
strongly typed messages. The first is an interface describing the message itself, which
is paired with its named interface. The second is an interface describing the message
handler function, again which is paired with its named interface. Our TypeScript
interface gives us compile-time checking of messages and handlers, and our named
interfaces (implementing IInterfaceChecker) give us runtime type checking of
messages and handlers.

Object-oriented Programming with TypeScript

[258]

First up, the interfaces for our message are as follows:

interface IErrorEvent {
 Message: string;
 Description: string;
}

export class IIErrorEvent implements IInterfaceChecker {
 propertyNames: string [] = ["Message", "Description"];
 className: string = "IIErrorEvent";
}

We start with the TypeScript interface IErrorEvent. This interface has two properties,
Message and Description, which are both strings. We then create our IIErrorEvent
class, which is an instance of our named interface – again with the propertyNames
array matching our TypeScript interface property names. The className property is
also set to be the name of the class, IIErrorEvent, to ensure uniqueness.

The interfaces for our event handlers are then as follows:

interface IErrorEvent_Handler {
 handle_ErrorEvent(event: IErrorEvent);
}

export class IIErrorEvent_Handler implements IInterfaceChecker {
 methodNames: string[] = ["handle_ErrorEvent"];
 className: string = "IIErrorEvent_Handler";
}

The TypeScript interface IErrorEvent_Handler contains a single method, named
handle_ErrorEvent. This handler method has a single parameter, event, which is
again strongly typed to be our event interface, IErrorEvent. We then construct a
named interface called IIErrorEvent_Handler, and match the TypeScript interface
through the methodNames array. Again, we provide a unique className property
for this named interface.

With these two interfaces and named interfaces in place, we can now create the
actual ErrorEvent class as follows:

export class ErrorEvent implements IErrorEvent {
 Message: string;
 Description: string;
 constructor(message: string, description: string) {
 this.Message = message;
 this.Description = description;
 }
}

Chapter 8

[259]

The class definition for ErrorEvent implements the IErrorEvent interface, thereby
making it compatible with our event handler. Note the constructor of this class. We
are forcing users of this class to provide both a message and description parameter
in the constructor – thereby using TypeScript compile-time checking to ensure that
we construct this class correctly, no matter where it is used.

We can then create a class that implements the IErrorEvent_Handler interface,
which will receive the event itself. As a quick example, consider the following class:

class EventHandlerTests_ErrorHandler
 implements IErrorEvent_Handler {
 handle_ErrorEvent(event: IErrorEvent) {
 }
}

This class implements the IErrorEvent_Handler TypeScript interface, and therefore
the compiler will force the class to define a handle_ErrorEvent function with the
correct signature, in order to receive messages.

Multiple Event Handlers
To be able to register multiple events, and have multiple event handlers per
event, we will need an array of events, each of which will, in turn, hold an array
of handlers as follows:

Class structure for registering multiple event handlers per event.

Object-oriented Programming with TypeScript

[260]

Our TypeScriptTinyIoC class will have an array called events, which uses the
name of the event as its key. This name will be drawn from our named interface
for the event – again because TypeScript interfaces are compiled away. To help
with managing multiple event handlers per event, we will create a new class called
EventHandlerList that will facilitate the registration of multiple event handlers. An
instance of this EventHandlerList class will be stored in our events array for each
named event that we have registered.

Let's start with this list of event handlers, and implement our EventHandlerList
class. At this stage, all we need is an internal array to store handlers, named
eventHandlers, along with a registerHandler function as follows:

class EventHandlerList {
 eventHandlers: any[] = new Array();
 registerHandler(handler: any,
 interfaceType: { new (): IInterfaceChecker }) {
 }
}

The registerHandler function is again using the { new(): IInterfaceChecker }
syntax for the interfaceType argument, thereby allowing us to use a type name for
this function call. A quick unit test is as follows:

import iee = require("../app/events/ErrorEvent");

class EventHandlerTests_ErrorHandler
 implements iee.IErrorEvent_Handler {
 handle_ErrorEvent(event: iee.IErrorEvent) {
 }
}

describe("/tests//EventHandlerTests.ts", () => {

 var testHandler: EventHandlerTests_ErrorHandler;
 beforeEach(() => {
 testHandler = new EventHandlerTests_ErrorHandler();
 });

 it("should register an event Handler", () => {
 var eventHandlerList = new EventHandlerList();
 eventHandlerList.registerHandler(testHandler,
 iee.IIErrorEvent_Handler);

 expect(eventHandlerList.eventHandlers.length).toBe(1);
 });
});

Chapter 8

[261]

We start this test with an import statement for our event classes, and then a class
named EventHandlerTests_ErrorHandler. This class will be used as a registered
event handler just for this test suite. The class implements the iee.IErrorEvent_
Handler and, as such, will generate a compile error if we do not have a handle_
ErrorEvent function that accepts an IErrorEvent as its only parameter. Just by
using TypeScript interfaces, we have already ensured that this class has the correct
function name and function signature to accept ErrorEvent messages.

Our test then starts by declaring a variable named testHandler to store an instance
of our EventHandlerTests_ErrorHandler class. The beforeEach function will create
this instance, and assign it to our testHandler variable. The test itself then creates an
instance of the EventHandlerList class, calls the registerHandler, and then expects
the length of the internal eventHandlers property to be the value of one.

Note again the syntax of the call to registerHandler. We are passing in our
testHandler instance as the first argument, and then specifying the named interface
IIErrorEvent_Handler class type. As we saw with the service locator pattern, we are
again using the same class name syntax for our named interface, instead of having to
call new().

Let's now fill in the code to make the test pass:

class EventHandlerList {
 eventHandlers: any[] = new Array();
 registerHandler(handler: any,
 interfaceType: { new (): IInterfaceChecker }) {

 var interfaceChecker = new InterfaceChecker();
 if (interfaceChecker.implementsInterface(
 handler, interfaceType)) {
 this.eventHandlers.push(handler);
 } else {
 var interfaceExpected = new interfaceType();
 throw new Error(
 "EventHandlerList cannot register handler of "
 + interfaceExpected.className);
 }
 }
}

Our registerHandler function firstly creates an instance of the InterfaceChecker
class, and then calls implementsInterface to make sure, at runtime, that the
handler object that is passed in does indeed have all of the method names defined
by our named interface. If the implementsInterface function returns true, we
can simply push this handler onto our internal array.

Object-oriented Programming with TypeScript

[262]

If the handler does not implement the named interface, we throw an error. For
completeness, this error contains the className property of the named interface,
so we first have to new up an instance of this named interface class, before we can
extract the className property.

Let's now create a test that will deliberately fail our implementsInterface check
and ensure that an error is in fact thrown:

class No_ErrorHandler {
}

it("should throw an error with the correct className", () => {
 var eventHandlerList = new EventHandlerList();
 expect(() => {
 eventHandlerList.registerHandler(new No_ErrorHandler(),
 iee.IIErrorEvent_Handler);
 }).toThrow(new Error(
 "EventHandlerList cannot register handler of
 IIErrorEvent_Handler"
));
});

We start with the class definition of the No_ErrorHandler class that obviously
does not implement our named interface. Our test then sets up the EventHandlerList
class, and calls the registerHandler function, using a new instance of the No_
ErrorHandler class, and our IIErrorEvent_Handler named interface. We are then
expecting a specific error message— one that should include the name of our named
interface, IIErrorEvent_Handler.

Firing an event
We can now turn our attention to raising an event. To do this, we will need to know
what the actual function name of the event handler is. We will make a slight change
to our EventHandlerList, and pass in the event name to the constructor as follows:

class EventHandlerList {
 handleEventMethod: string;
 constructor(handleEventMethodName: string) {
 this.handleEventMethod = handleEventMethodName;

Chapter 8

[263]

 }

 raiseEvent(event: any) {
 }
}

Our constructor is now expecting a handleEventMethodName as a required
parameter, and we are storing this in a property named handleEventMethod.
Remember that all of the handlers that are registered with an instance of this class
are responding to the same event – and as such will all have the same method
name – enforced by the TypeScript compiler. We have also defined a raiseEvent
function, and since we do not know what event this class will be handling, the event
is of type any.

Now, we can create a unit test that will fail, as the raiseEvent function is not
actually doing anything as yet. Before we do this, lets update our test handler class,
EventHandlerTests_ErrorHandler, to store the last event fired in a property that
we can access later:

class EventHandlerTests_ErrorHandler
 implements iee.IErrorEvent_Handler {
 LastEventFired: iee.IErrorEvent;
 handle_ErrorEvent(event: iee.IErrorEvent) {
 this.LastEventFired = event;
 }
}

We have updated this class definition with a property named LastEventFired, and
set this property inside the handle_ErrorEvent function. With this change in place,
when an event is fired, we can interrogate the LastEventFired property to see what
event was fired last. Let's now write a test that calls the raiseEvent method:

it("should fire an event", () => {
 var eventHandlerList = new
 EventHandlerList('handle_ErrorEvent');
 eventHandlerList.registerHandler(testHandler,
 iee.IIErrorEvent_Handler);
 eventHandlerList.raiseEvent(
 new iee.ErrorEvent("test", "test"));
 expect(testHandler.LastEventFired.Message).toBe("test");
});

Object-oriented Programming with TypeScript

[264]

We start with a variable named eventHandlerList that holds an instance of our
EventHandlerList class, and pass in the name of the function to be called via
the constructor. We then call registerHandler with this testHandler instance.
Now, we can call the raiseEvent function, passing in a new ErrorEvent. As
the constructor of our ErrorEvent class requires two parameters, we have just
passed in "test" for each of these arguments. Finally, we are expecting that
the LastEventFired property of our event handler to be set correctly. Running
our test at this stage will fail, so let's implement the raiseEvent method on our
EventHandlerList class as follows:

raiseEvent(event: any) {
 var i, len = 0;
 for (i = 0, len = this.eventHandlers.length; i < len; i++) {
 var handler = this.eventHandlers[i];
 handler[this.handleEventMethod](event);
 }
}

The implementation of this raiseEvent function is relatively simple. We just
iterate through our eventHandlers array, and then get a reference to each of the
event handlers using an index. The line to note here is how we execute the handler
function: handler[this.handleEventMethod](event). This takes advantage
of JavaScript's ability to calling a function using a string value that matches the
function's name. In our tests, this would be equivalent to handler['handle_
ErrorEvent'](event), which in JavaScript is equivalent to handler.handle_
ErrorEvent(event)—an actual call to the handler function. With this JavaScript
magic in place, our events are being fired, and our unit tests run through correctly.

Registering an Event handler for an Event
Now that we have a working, tested class to manage multiple event handlers
responding to a specific event, we can turn our attention back to the
TypeScriptTinyIoC class.

As we did for our Service Locator pattern, we will need to register an instance of
an object to handle a specific event. The method signature for registering our event
handler will look like this:

public static registerHandler(
 handler: any,
 handlerInterface: { new (): IInterfaceChecker },
 eventInterface: { new (): IInterfaceChecker }) {
}

Chapter 8

[265]

This registerHandler function takes three arguments. The first is the instance of
the object implementing the handler. The second argument is the named interface
class for our handler—so that we can check this class at runtime to ensure that it
implements the handler interface. The third argument is the named interface for
the event itself. This register function is also what binds an event to its handler.

Before we put together a unit test, we will need another static function to raise
an event:

static raiseEvent(event: any,
 eventInterface: { new (): IInterfaceChecker }) {
}

This raiseEvent function on the TypeScriptTinyIoC class will call the raiseEvent
function on the EventHandlerList class instance for this event. We will also do an
interfaceChecker test here, in order to ensure that the event being raised matches
our named interface class for the event—before we actually raise the event.

Now for our unit test:

it("should register an event handler with
TypeScriptTinyIoC and fire an event", () => {
 TypeScriptTinyIoC.registerHandler(testHandler,
 iee.IIErrorEvent_Handler, iee.IIErrorEvent);
 TypeScriptTinyIoC.raiseEvent(
 new iee.ErrorEvent("test", "test"),
 iee.IIErrorEvent);
 expect(testHandler.LastEventFired.Message).toBe("test");
});

This test is very similar to the test that we wrote for our EventHandlerList
class, except we are calling the registerHandler and raiseEvent methods on
the TypeScriptTinyIoC class, instead of a specific EventHandlerList. With this
failing test in place, we can now fill out the registerHandler and raiseEvent
functions as follows:

static events: EventHandlerList[] = new Array<EventHandlerList>();
public static registerHandler(
 handler: any,
 handlerInterface: { new (): IInterfaceChecker },
 eventInterface: { new (): IInterfaceChecker }) {

 var eventInterfaceInstance = new eventInterface();
 var handlerInterfaceInstance = new handlerInterface();

 var handlerList =

Object-oriented Programming with TypeScript

[266]

 this.events[eventInterfaceInstance.className];
 if (handlerList) {
 handlerList.registerHandler(handler, handlerInterface);
 } else {
 handlerList = new EventHandlerList(
 handlerInterfaceInstance.methodNames[0]);
 handlerList.registerHandler(handler, handlerInterface);
 this.events[eventInterfaceInstance.className] =
 handlerList;
 }
}

Firstly, we have added a static property called events, which is an array of
EventHandlerList instances. We will add to this array using the className of
our named event interface as a key. Our registerHandler function firstly creates
instances of both named interface classes that are passed in via the handlerInterface
and eventInterface arguments. We are then checking to see whether our internal
array already has an EventHandlerList instance for this event, keyed via the
className property of our named event interface. If we have an entry already, we
can simply call the registerHandler function on the existing EventHandlerList
instance. If this event has not been registered, we simply create a new instance of
an EventHandlerList class, call registerHandler, and then add this entry to our
internal array.

Note how we figured out what the actual name of the event handler function call
is. We are simply using the first method name found in our method names array:
handlerInterfaceInstance.methodNames[0], which will return a string. In our
samples, this would return the 'handle_ErrorEvent' string, which is the method
name that we will need to invoke when invoking handler functions for an event.

Next, we can focus on the raiseEvent function:

static raiseEvent(event: any,
 eventInterface: { new (): IInterfaceChecker }) {

 var eventChecker = new InterfaceChecker();
 if (eventChecker.implementsInterface(event, eventInterface)) {
 var eventInterfaceInstance = new eventInterface();
 var handlerList =
 this.events[eventInterfaceInstance.className];
 if (handlerList) {
 handlerList.raiseEvent(event);
 }
 }

}

Chapter 8

[267]

This function first creates an instance of an InterfaceChecker class, and then
ensures that the event being raised conforms to the named interface that we provide
as the second parameter. Again, this is a runtime type check to ensure that the event
we are attempting to raise is in fact of the correct type. If the event is valid, we fetch
the instance of the EventHandlerList class that is registered for this event, and then
call its raiseEvent function.

Our strongly typed Domain Event mechanism is now complete. We are using both
compile-time TypeScript interface checking, and runtime type checking in two ways.
Firstly, when registering a handler, we do an interface check, and then when we fire
an event, we do another interface check. This means that both sides—registering and
firing—of events are strongly typed, both at compile time and also at runtime.

Displaying error notifications
Now that we have our TypeScriptTinyIoC event mechanism in place, we can focus
on solving the business problem of showing error notifications when errors occur.
Notify is a jQuery plugin that suits our needs perfectly (http://notifyjs.com/).
We could install the JavaScript library from NuGet (Install the jQuery.notify
package), but the default version of this package relies on another package named
Bootstrap for its styling. Notify, however, also provides an option on their website to
download a custom notify.js script that has all of these styles built-in to the library.
We will use this custom version, as our project is not using the Bootstrap package.

The definition file for Notify can be downloaded from DefinitelyTyped (https://
github.com/borisyankov/DefinitelyTyped/tree/master/notify). At the time
of writing, however, there seems to be two versions of the Notify library, one named
Notify and the other named Notify.js. Use the Notify version as it seems to be more
up to date.

To simulate an error, let's tag onto the ContactItemView onClicked function,
where we are currently executing a flip, and raise a dummy error whenever
someone clicks on one of our contact links:

onClicked() {
 this.$el.flip({
 direction: 'tb',
 speed : 200
 });
 var errorEvent = new iee.ErrorEvent(
 "Dummy error message", this.model.Name);
 TypeScriptTinyIoC.raiseEvent(errorEvent, iee.IIErrorEvent);
}

http://notifyjs.com/
https://github.com/borisyankov/DefinitelyTyped/tree/master/notify
https://github.com/borisyankov/DefinitelyTyped/tree/master/notify

Object-oriented Programming with TypeScript

[268]

After our call to flip, we are simply creating an instance of the ErrorEvent class,
with its two required parameters. We then call the raiseEvent function on
TypeScriptTinyIoC with this errorEvent instance, and the named interface for
the type of event that we are raising. It's as simple as that.

Now, we can modify our ContactViewApp to register a handler for this event as
follows:

import iee = require("tscode/app/events/ErrorEvent");

export class ContactViewApp implements iee.IErrorEvent_Handler {
 constructor() {
 TypeScriptTinyIoC.registerHandler(this,
 iee.IIErrorEvent_Handler, iee.IIErrorEvent);
 }
 run() {

 }

 contactCollectionLoaded(model, response, options) {

 }
 contactCollectionError(model, response, options) {

 }
 handle_ErrorEvent(event: iee.IErrorEvent) {
 $.notify("Error : " + event.Message
 + "\n" + event.Description);
 }
}

Here, have made a few changes to our ContactViewApp class. Firstly, we implement
the IErrorEvent_Handler TypeScript interface, which will force us to include the
handle_ErrorEvent function within our class. We have also defined a constructor,
and within this, we are registering the class instance as a handler using our two
named interfaces: IIErrorEvent_Handler, and IIErrorEvent.

Within the handle_ErrorEvent function, we are calling $.notify—the Notify jQuery
plugin. Note that the type of the event argument passed into the handle_ErrorEvent
function, is of type IErrorEvent. This means that we can safely use any properties
or methods of the IErrorEvent interface within our event handler function, as
we have already ensured, during event raising, that this event implements the
interface correctly.

Chapter 8

[269]

Our call to Notify is just using a message that is built up from our ErrorEvent. The
following screenshot shows the results of this Notify call:

Screenshot of application showing an error notification

The implementation of this Service Locator pattern and the strongly
typed Domain Events pattern that we have worked through in
this chapter are available on the GitHub project typescript-tiny-ioc
(https://github.com/blorkfish/typescript-tiny-ioc).
This project has further code samples as well as a full suite of unit tests
for both AMD and normal JavaScript usage.

Summary
In this chapter, we had a look at object-oriented programming, beginning with the
SOLID Design principles. We then reviewed the application that we had built in
Chapter 7, Modularization, with regards to these principles. We discussed various
methods of Dependency Injection, and then built a mechanism that is based on
our InterfaceChecker from Chapter 3, Interfaces, Classes and Generics, to obtain an
instance of a named interface. We used this principle to build a Service Locator and
then extended this principle to build a strongly typed event bus for the Domain Event
pattern. Finally, we incorporated Notify into our application for simple notifications
in response to these error events. In our next and final chapter, we will put all of the
principles we have learned so far into practice, and build an application from the
ground up.

https://github.com/blorkfish/typescript-tiny-ioc

[271]

Let's Get Our Hands Dirty
In this chapter, we will look at building a TypeScript single-page web application from
the ground up. We will start with a discussion on what the site should look like, how
we want our page transitions to flow, and then move on to expore the capabilities of
the Bootstrap framework, and discuss a pure HTML version of our site. Our focus
will then switch to the data structures that we will need for our application, and what
Backbone models and colllections we need to represent this data. Along the way, we
will write a set of unit and integration tests for these models and collections.

Once we have data to work with, we will then use the Marionette framework to
build views in order to render our application to the DOM. We will then show
how to break up our pure HTML version of the site into smaller portions of HTML
snippets, and then integrate these snippets with our Marionette views. Finally, we
will tie the application together using events, and explore the State and Mediator
Design Pattern to help us manage complex page transitions and DOM elements.

Marionette
Marionette is an extension of the Backbone library, and introduces a number of
enhancements to the framework, in order to reduce boilerplate Backbone code,
and make working with DOM elements and HTML fragments easier. Marionette
also introduces the concept of layouts and regions to help with managing logical
portions of HTML within a large web page. A Marionette layout is a type of controller
that manages several regions, and a Marionette region is an object that manages
a particular HTML portion of our page. As an example, we could have a region
for the header panel, one for a side-bar panel, and another for a footer area. This
allows us to break up our application into logical areas, and then tie them together
through messaging.

Let's Get Our Hands Dirty

[272]

Bootstrap
We will also be using Bootstrap to help with our page layout. Bootstrap is a popular
mobile-first framework for rendering HTML elements across a number of different
platforms. Bootstrap styling and customization is a topic big enough for its own
book, so we won't be exploring the ins and outs of the various Bootstrap options.
If you are keen on learning more, then be sure to read the excellent book by David
Cochran and Ian Whitley called Boostrap Site Blueprints, Packt Publishing (https://
www.packtpub.com/web-development/bootstrap-site-blueprints).

Board Sales
Our application will be a rather simple one, called Board Sales, and will list a range
of windsurfing boards on the main page, using a summary view, or board list
view. Clicking on any one of these boards will transition the page to show detailed
information on the selected board. On the left-hand side of the screen, there will be
a simple panel to allow the user to filter the main board list via manufacturer, or
board type.

Modern windsurfing boards come in a range of sizes, and are measured by volume.
Smaller volume boards are generally used for wave sailing, and larger volume boards
are used for racing, or slalom. Those in-between can be categorized as freestyle
boards, and are used for performing acrobatic tricks on flat water. Another important
element of any board is the range of sails that the board is designed for. In very strong
winds, smaller sails are used to allow the windsurfer to control the power generated
by the wind, and in lighter winds, larger sails are used to generate more power. Our
summary view will include a quick reference to the volume measurements for each
board, and our detail view will show all the various board measurements and a
compatible list of sail ranges.

Page layout
With this application, we will use the power of JavaScript to provide a left-to-right
panel-style page layout. We will use some Bootstrap transitions to slide panels in
from the left, or from the right, in order to provide the user with a slightly different
browsing experience. Let's take a look at what this will look like conceptually:

https://www.packtpub.com/web-development/bootstrap-site-blueprints
https://www.packtpub.com/web-development/bootstrap-site-blueprints

Chapter 9

[273]

A conceptual view of page transitions for Board Sales

The viewing panel will be our main page, with a header panel, a board listing
panel, and a footer panel. Hidden from view on the left-hand side will be the filter
panel, with a button on the top-left of the main panel to show or hide this filter
panel. The filter panel will slide in from the left when needed, and slide back to the
left when hidden. Similarly, the board detail panel will slide in from the right when
a board is clicked, and will slide back to the right when the back button is clicked,
revealing the board listing panel.

When the site is viewed on a desktop device, the filter panel on the left will be shown
by default, but when the site is viewed on a tablet device—with a smaller screen—then
the filter panel will be hidden by default, in order to save on screen real estate.

Installing Bootstrap
Bootstrap is a collection of CSS styles and JavaScript functions that aid in building
responsive websites rather simply and easily. The responsive nature of Boostrap
means that pages will resize elements automatically, to allow rendering on the smaller
screen sizes of mobile phones, as well as larger screens used on tablets and desktops.
By using Bootstrap, we gain the additional benefit of being able to target mobile users
and desktop users with very little change to our HTML or CSS style sheets.

Let's Get Our Hands Dirty

[274]

Bootstrap can be installed with a NuGet package, along with the corresponding
TypeScript definitions as follows:

Install-package bootstrap

Install-package bootstrap.TypeScript.DefinitelyTyped

Once Bootstrap has been installed, we can start building a sample web page that is
purely written in HTML using Bootstrap. Building a demo page in this way helps us
to figure out what Bootstrap elements we will use, and allows us to modify our CSS
styles and structure our HTML correctly, before we start to build our application.
This is where the Brackets editor really comes into its own. By using the live preview
functionality of the editor, we can edit our HTML and CSS in one IDE, and have
instant visual feedback in the preview pane. Working on sample HTML in this way
is both a rewarding and fun experience, not to mention a massive time-saver.

Using Bootstrap
Our page will use a couple of Bootstrap elements for the main page regions, as
follows:

1. A Navbar component to render the header panel.
2. A Footer component to render the footer panel.
3. A Carousel component to slide from the board list view to the board

detail view.
4. An Accordion component to render the filtering options in the left-hand

side panel.
5. Row and Column components to control the HTML layout of boards in

our board list view, as well as in the board detail view.
6. Table CSS elements to render tables.

In this chapter, we will not go into detail about how to build HTML pages with
Bootstrap. We will instead start with a working version that you can find in the sample
code under the directory /tscode/tests/brackets/TestBootstrap.html.

Chapter 9

[275]

Our Bootstrap elements are as follows:

At the top of our page is the navbar element, which has been given a navbar-
inverse style to render it with a black background. The carousel panel 1 element
is the first carousel panel, and contains the left-hand side filter panel, as well as the
board list and the show / hide panel button. The filter options on the left-hand side
panel use the Bootstrap accordion component. Finally, our footer is styled to be a
"sticky footer", meaning that it will always show on the page.

When we click on any one of the boards in the board list, our carousel component
will slide the carousel panel over to the left, and slide in the board detail view from
the right.

Let's Get Our Hands Dirty

[276]

Our board detail panel is as follows:

Again, we have the standard header and footer regions, but this time, we are viewing
carousel panel 2. This panel has a back button on the top left-hand side, and shows
the detailed information on the selected board.

You will notice when you run this test page, that there are four links in the footer
region named next, prev, show, and hide. These buttons are used to test the cycling
of the carousel panels, and the show / hide functionality for the left hand-side panel.

Bootstrap is ideal for building quick mock-ups of a working version of the site. This
version can easily be taken to customers, or to project meetings for demo purposes.
Showing a customer a demo mockup of a site will give you invaluable feedback on the
overall site's flow and design. Ideally, this sort of work should be done by a senior web
designer, or someone with equal skill set—who specializes in CSS styling.

We will be reusing and reworking this HTML later on when we start to build
Marionette views. It is a good idea, however, to keep these demo HTML pages
within your project, so that you can test their look and feel on different browsers
and devices, all the while tweaking your HTML layout and CSS styles.

Chapter 9

[277]

Data structure
In a real-world application, data for websites would be stored and retrieved from
a database of some sort. To use the data within a JavaScript web page, these data
structures would be serialized to JSON format. Marionette uses standard Backbone
models and collections for loading and serializing data structures. For the purpose of
this sample application, our data structure will look like this:

Class diagram of ManufacturerCollection and related Backbone models

The source of our data is the ManufacturerCollection, which will have
a url property to load data from our site. This ManufacturerCollection
holds a collection of ManufacturerModels, that are available via the models
property. The ManufacturerCollection also implements two interfaces:
IManufacturerCollection and IFilterProvider. We will discuss these two
interfaces later on.

The properties of the ManufacturerModel will be used to render a single
manufacturer's name and logo to the DOM. Each ManufacturerModel also
has an array named boards, which holds an array of BoardModels.

Each BoardModel has properties that are necessary for rendering, as well as an array
named board_types, which holds an array of BoardType classes. A BoardType is a
simple string, and will hold a value of either "Wave", "Freestyle", or "Slalom".

Let's Get Our Hands Dirty

[278]

Each BoardModel will also have an array of sizes, holding a BoardSize class,
containing detailed information on the available sizes.

As an example, the JSON data structure that is used to serialize the preceding object
structure, would be as follows:

{
"manufacturer": "JP Australia",
"manufacturer_logo": "jp_australia_logo.png",
"logo_class" : "",
"boards": [
 {
 "name": "Radical Quad",
 "board_types": [{ "board_type": "Wave" }],

 "description": "Radical Wave Board",
 "image": "jp_windsurf_radicalquad_ov.png",
 "long_description": "long desc goes here",
 "sizes": [
 { "volume": 68, "length": 227,
 "width": 53, "sail_min": "< 5.0", "sail_max": "< 5.2" }
]
 }]
}

In our sample application, a full JSON dataset can be found at /tscode/tests/
boards.json.

Data interfaces
In order to use this JSON data structure within TypeScript, we will need to define a
set of interfaces to describe the above data structure, as follows:

export interface IBoardType {
 board_type: string;
}
export interface IBoardSize {
 volume: number;
 length: number;
 width: number;
 sail_min: string;
 sail_max: string;
}

Chapter 9

[279]

export interface IBoardModel {
 name: string;
 board_types: IBoardType[];
 description: string;
 image: string;
 long_description: string;
 sizes: IBoardSize[];
}
export interface IManufacturerModel {
 manufacturer: string;
 manufacturer_logo: string;
 logo_class: string;
 boards: IBoardModel[];
}

These interfaces simply match the model properties in the previous diagram, and
we can then build the corresponding Backbone.Model classes that implement these
interfaces. Note that for brevity, we have not listed each individual property of each
model here, so be sure to refer to the accompanying source code for a full listing.
Our Backbone models are as follows:

export class BoardType extends Backbone.Model
 implements IBoardType {
 get board_type() { return this.get('board_type'); }
 set board_type(val: string) { this.set('board_type', val); }
}
export class BoardSize extends Backbone.Model
 implements IBoardSize {
 get volume() { return this.get('volume');}
 set volume(val: number) { this.set('volume', val); }
 // more properties
}
export class BoardModel extends Backbone.Model implements IBoardModel
{
 get name() { return this.get('name'); }
 set name(val: string) { this.set('name', val); }
 // more properties
 get sizes() { return this.get('sizes'); }
 set sizes(val: IBoardSize[]) { this.set('sizes', val); }
}
export class ManufacturerModel extends Backbone.Model implements
 IManufacturerModel {
 get manufacturer() { return this.get('manufacturer'); }

Let's Get Our Hands Dirty

[280]

 set manufacturer(val: string) { this.set('manufacturer', val); }
 // more properties
 get boards() { return this.get('boards'); }
 set boards(val: IBoardModel[]) { this.set('boards', val); }
}

Each class extends Backbone.Model, and implements one of the interfaces that we
have defined earlier. There is not much to these classes, except for defining a get
and set method for each property, and using the correct property type.

At this stage, our models are in place, and we can write a few unit tests, just to
make sure that we can create our models correctly:

it("should build a BoardType", () => {
 var boardType = new bm.BoardType(
 { board_type: "testBoardType" });
 expect(boardType.board_type).toBe("testBoardType");
});

We start with a simple test that creates a BoardType model, and then test that the
board_type property has been set correctly. Similarly, we can create a test for the
BoardSize model:

describe("BoardSize tests", () => {
 var boardSize: bm.IBoardSize;
 beforeAll(() => {
 boardSize = new bm.BoardSize(
 { "volume": 74, "length": 227,
 "width": 55, "sail_min": "4.0", "sail_max": "5.2" });
 });
 it("should build a board size object",() => {
 expect(boardSize.volume).toBe(74);
 });
});

This test is also just creating an instance of the BoardSize model, but it is using the
beforeAll Jasmine method. For brevity, we are only showing one test, which checks
the volume property, but in a real-world application we would test each of the
BoardSize properties. Finally, we can write a test of the BoardModel as follows:

describe("BoardModel tests",() => {
 var board: bm.IBoardModel;
 beforeAll(() => {
 board = new bm.BoardModel({

Chapter 9

[281]

 "name": "Thruster Quad",
 "board_types": [{ "board_type": "Wave" }],
 "description": "Allround Wave Board",
 "image": "windsurf_thrusterquad_ov.png",
 "long_description":
 "Shaper Werner Gnigler and pro riders Robby Swift",
 "sizes": [
 { "volume": 73, "length": 228, "width": 55.5,
 "sail_min": "4.0", "sail_max": "5.2" }
]
 });
 });

 it("should find name property",() => {
 expect(board.name).toBe("Thruster Quad");
 });
 it("should find sizes[0].volume property",() => {
 expect(board.sizes[0].volume).toBe(73);
 });
 it("should find sizes[0].sail_max property",() => {
 expect(board.sizes[0].sail_max).toBe("5.2");
 });
 it("should find board_types[0].sail_max property",() => {
 expect(board.board_types[0].board_type).toBe("Wave");
 });
});

Again, we are creating a BoardModel instance in our beforeAll function, and
then testing that the properties are set correctly. Note the tests near the bottom of
this code snippet: we are checking whether the sizes property and board_types
properties have been built correctly, and that they are in fact arrays that can be
referenced with [] array notation.

In the accompanying source code, you will find further tests for these models,
as well as tests for the ManufacturerModel.

Note how each model is constructed with a simple cut-and-paste
of sections of the original JSON sample. When Backbone models
are hydrated through RESTful services, these services are simply
returning JSON—and our tests are, therefore, matching what
Backbone itself would be doing.

Let's Get Our Hands Dirty

[282]

Integration tests
At this stage, you may wonder why we are writing these sort of tests, as they might
seem trivial, and are just checking whether certain properties have been constructed
correctly. In real-world applications, models change quite frequently, especially in the
beginning stages of a project. It is quite common to have one developer, or a portion
of the team, who are responsible for the backend databases and server-side code that
deliver JSON to the frontend. Another another team may be responsible for working
on the frontend JavaScript code. By writing tests like these, you are clearly defining
what your data structures should look like, and what properties you are expecting in
your models. If a change is made server side that modifies a data structure, your team
will be able to quickly identify where the cause of the problem lies.

Another reason to write property-based tests is that Backbone, Marionette, and
just about any other JavaScript library will use these property names to render
HTML to the frontend. If you have a template that is expecting a property called
manufacturer_logo, and you change this property name to logo_image, then
your rendering code will break. These errors are quite often difficult to track down
at runtime. Following the Test Driven Development mantra of "fail early, and fail
loudly", our model property tests will quickly highlight these potential errors, should
they occur.

Once a series of property-based tests are in place, we can now focus on an integration
test that will actually call the server-side code. This will ensure that our RESTful
services are working correctly, and that the JSON data structure that our site is
generating matches the JSON data structure that our Backbone models expect.
Again, if two separate teams are responsible for client-side and server-side code,
this sort of integration test will ensure that the data exchange is consistent.

We will be loading our data for this application through a Backbone.Collection
class, and this collection will need to load multiple manufacturers. To this end, we
can now build a ManufacturerCollection class as follows:

Chapter 9

[283]

export class ManufacturerCollection
 extends Backbone.Collection<ManufacturerModel>
{
 model = ManufacturerModel;
 url = "/tscode/boards.json";
}

This is a very simple Backbone.Collection class, which just sets the model property
to our ManufacturerModel, and the url property to /tscode/boards.json. As our
sample application does not have a backend database or REST services, so we will just
load our JSON from disk at this stage. Note that even though we are using a static
JSON file in this test, Backbone will still issue an HTTP request back to our server in
order to load this file, meaning that any test of this ManufacturerCollection is, in
fact, an integration test. We can now write some integration tests to ensure that this
model can be loaded correctly from the url property, as follows:

describe("ManufacturerCollection tests", () => {
 var manufacturers: bm.ManufacturerCollection;

 beforeAll(() => {
 manufacturers = new bm.ManufacturerCollection();
 manufacturers.fetch({ async: false });
 });

 it("should load 3 manufacturers", () => {
 expect(manufacturers.length).toBe(3);
 });

 it("should find manufacturers.at(2)",() => {
 expect(manufacturers.at(2).manufacturer)
 .toBe("Starboard");
 });
}

Let's Get Our Hands Dirty

[284]

We are again using the Jasmine beforeAll syntax to set up our
ManufacturerCollection instance, and then calling fetch({ async: false })
to wait for the collection to be loaded. We then have two tests, one to check that
we are loading three manufacturers into our collection, and another to check the
Manufacturer model at index 2.

Traversing a collection
Now that we have a full ManufacturerCollection loaded, we can turn our attention
to processing the data that it contains. We will need to search this collection to find
two things: a list of manufacturers, and a list of board types. These two lists will be
used by our filtering panel on the left-hand side panel. In a real-world application,
these two lists may be provided by server-side code, returning simple JSON data
structures to represent these two lists. In our sample application, however, we will
show how to traverse the main manufacturer Backbone collection that we have
already loaded. The filtering data structure is as follows:

FilterCollection class diagram with related Backbone models

Rather than listing the full implementation of Backbone models shown in the
preceding diagram, we will take a look at the TypeScript interfaces instead. Our
interfaces for these filtering models are as follows:

export enum FilterType {
 Manufacturer,
 BoardType,
 None

Chapter 9

[285]

}
export interface IFilterValue {
 filterValue: string;
}
export interface IFilterModel {
 filterType: FilterType;
 filterName: string;
 filterValues: IFilterValue[];
}

We start with a FilterType enum, which we will use to define each of the types of
filters we have available. We can filter our board list by either manufacturer name,
board type, or clear all filters by using the None filter type.

The IFilterValue interface simply holds a string value that will be used for
filtering. When we are filtering by board type, this string value would be one of
"Wave", "Freestyle", or "Slalom", and when we are filtering by manufacturer, this
string value will be the name of the manufacturer.

The IFilterModel interface will hold the FilterType, a name for the filter,
and array of filterValues.

We will create a Backbone model for each of these interfaces, meaning that we will
end up with two Backbone models, named FilterValue (which implements the
IFilterValue interface), and FilterModel (which implements the IFilterModel
interface). To house a collection of FilterModel instances, we will also create a
Backbone collection named FilterCollection. This collection has a single method
named buildFilterCollection, which will use an IFilterProvider interface
to build its internal array of FilterModels. This IFilterProvider interface is
as follows:

export interface IFilterProvider {
 findManufacturerNames(): bm.IManufacturerName[];
 findBoardTypes(): string[]
}

Our IFilterProvider interface has two functions. The findManufacturerNames
function will return a list of manufacturer names (and their associated logos), and
the findBoardTypes function will return a list of strings of all board types. This
information is all that is needed to build up our FilterCollection internal
data structures.

All of the values needed to populate this FilterCollection will come from
data that is already contained within our ManufacturerCollection. The
ManufacturerCollection will, therefore, need to implement this
IFilterProvider interface.

Let's Get Our Hands Dirty

[286]

Finding manufacturer names
Let's continue working within our test suite to flesh out the functionality of the
findManufacturerNames function that the ManufacturerCollection will need
to implement, as part of the IFilterProvider interface. This function returns an
array of type IManufacturerName, which is defined as follows:

export interface IManufacturerName {
 manufacturer: string;
 manufacturer_logo: string;
}

We can now build a test using this interface:

it("should return manufacturer names ",() => {
 var results: bm.IManufacturerName[] =
 manufacturers.findManufacturerNames();
 expect(results.length).toBe(3);
 expect(results[0].manufacturer).toBe("JP Australia");
});

This test is reusing the manufacturers variable that we set up in our previous
test suite. It then calls the findManufacturerNames function, and expects the
results to be an array of three manufacturer names, i.e. "JP Australia", "RRD",
and "Starboard".

Now, we can update the actual ManufacturerCollection class, in order to provide
an implementation of the findManufacturerNames function:

public findManufacturerNames(): IManufacturerName[] {
 var items = _(this.models).map((iterator) => {
 return {
 'manufacturer': iterator.manufacturer,
 'manufacturer_logo': iterator.manufacturer_logo
 };
 });
 return items;
}

In this function, we are using the Underscore utility function named map to loop
through our collection. Each Backbone collection class has an internal array named
models. The map function will loop through this models property, and call the
anonymous function for each item in the collection, passing the current model into
our anonymous function via the iterator argument. Our code then builds a JSON
object with the required properties of the IManufacturer interface.

Chapter 9

[287]

The TypeScript compiler will generate errors if the returned object
does not conform to the IManufacturer name interface.

Finding board types
We can now focus on the second function of the IFilterProvider interface, named
findBoardTypes that the ManufacturerCollection will need to implement. Here is
the unit test:

it("should find board types ",() => {
 var results: string[] = manufacturers.findBoardTypes();
 expect(results.length).toBe(3);
 expect(results).toContain("Wave");
 expect(results).toContain("Freestyle");
 expect(results).toContain("Slalom");
});

This test calls the findBoardTypes function, which will return an array of strings.
We are expecting the returned array to contain three strings: "Wave", "Freestyle",
and "Slalom".

The corresponding function in our ManufacturerCollection class is then
implemented as follows:

public findBoardTypes(): string[] {
 var boardTypes = new Array<string>();
 _(this.models).each((manufacturer) => {
 _(manufacturer.boards).each((board) => {
 _(board.board_types).each((boardType) => {
 if (! _.contains(
 boardTypes, boardType.board_type)) {
 boardTypes.push(boardType.board_type);
 }
 });
 });
 });
 return boardTypes;
}

Let's Get Our Hands Dirty

[288]

The implementation of the findBoardTypes function starts by creating a new string
array named boardTypes, which will hold our results. We then use the Underscore
each function to loop through each manufacturer. The Underscore each function is
similar to the map function, and will iterate through each item in our collection. We
then loop through each board in the manufacturer's arsenal, and through each board
type listed per board. Finally, we are testing to see whether the board type collection
contains an item already, using the underscore _.contains function. If it does not
already have the board type in the array, we push the board_type string into our
boardTypes array.

The Underscore library has numerous utility functions available for
searching, manipulating, and modifying arrays and collections—so be
sure to consult the documentation to find suitable functions for use in
your code. These functions are not limited to Backbone collections only,
and can be used on any type of array.

This completes our work on the IFilterProvider interface, and its implementation
within the ManufacturerCollection class.

Filtering a Collection
When a user clicks on a filter option on the left-hand side panel, we will need
to apply the selected filter to the data contained within our manufacturer
collection. In order to do this, we will need to implement two functions,
named filterByManufacturer, and filterByBoardType within the
ManufacturerCollection class. Let's start with a test to filter our collection
by manufacturer name:

it("should filter by manufacturer name ",() => {
 var results = manufacturers.filterByManufacturer("RRD");
 expect(results.length).toBe(1);
});

This test calls the filterByManufacturer function, expecting only a single
manufacturer to be returned. With this test in place, we can create the real
filterByManufacturer function on the ManufacturerCollection as follows:

public filterByManufacturer(manufacturer_name: string) {
 return _(this.models).filter((item) => {
 return item.manufacturer === manufacturer_name;
 });
}

Here, we are using the Underscore function named filter to apply a filter to
our collection.

Chapter 9

[289]

The second filtering function is by board type, and is a little more complicated.
We will need to loop through each manufacturer in our collection, then through
each board, and then through each board type. If we find a match for the board
type, we will flag this board to be included in the result set. Before we tackle the
filterByBoardType function, let's write a test:

it("should only return Slalom boards ",() => {
 var results = manufacturers.filterByBoardType("Slalom");
 expect(results.length).toBe(2);
 _(results).each((manufacturer) => {
 _(manufacturer.boards).each((board) => {
 expect(_(board.board_types).some((boardType) => {
 return boardType.board_type == 'Slalom';
 })).toBeTruthy();

 });
 });
});

Our test calls the filterByBoardType function, using the string "Slalom" as a filter.
Remember that this function will return a collection of ManufacturerModel objects
at the top level, with the boards array within each of these objects filtered by board
type. Our test then loops through each manufacturer, and each board in the result
set, and then uses the Underscore function called some to test whether the
board_types array has the correct board type.

Our code to implement this function on the ManufacturerCollection is also a little
tricky, as follows:

public filterByBoardType(board_type: string) {
 var manufWithBoard = new Array();
 _(this.models).each((manuf) => {
 var hasBoardtype = false;
 var boardMatches = new Array();
 _(manuf.boards).each((board) => {
 var match = _(board.board_types).some((item) => {
 return item.board_type == board_type;
 });
 if (match) {
 boardMatches.push(new BoardModel(board));
 hasBoardtype = true;
 }
 });

 if (hasBoardtype) {

Let's Get Our Hands Dirty

[290]

 var manufFiltered = new ManufacturerModel(manuf);
 manufFiltered.set('boards', boardMatches);
 manufWithBoard.push(manufFiltered);
 }
 });
 return manufWithBoard;
}

Our ManufacturerCollection class instance holds the entire collection that was
loaded via the JSON file from the site. In order to keep this data for repeated filters,
we will need to construct a new ManufacturerModel array to return from this
function – so that we do not to modify the underlying "global" data. Once we have
constructed this new array, we can then loop through each manufacturer. If we find
a board matching the required filter, we will set a flag named hasBoardType to true,
to indicate that this manufacturer must be added to our filtered array.

Each manufacturer in this filtered array will also need to list only the board
types that match our filter criteria, so we will need another array—called
boardMatches—to hold these matching boards. Our code will then loop
through each board, and check whether it has the required board_type. If so,
we will add it to the boardMatches array and set the hasBoardType flag to true.

Once we have looped through each board for a manufacturer, we can check the
hasBoardType flag. If our manufacturer has this board type, we will construct a
new ManufacturerModel, and then set the boards property on this model to our
in-memory array of the matching boards.

Our work with the underlying Backbone collections and models is now complete.
We have also written a set of unit and integration tests to ensure that we can load
our collection from the site, build our filtering lists from this collection, and then
apply a particular filter to this data.

Marionette application, regions and
layouts
We can now focus our attention on building the application itself. In Marionette,
this is achieved by creating a class that derives from Marionette.Application,
as follows:

export class BoardSalesApp extends Marionette.Application {
 viewLayout: pvl.PageViewLayout;
 constructor(options?: any) {
 if (!options)

Chapter 9

[291]

 options = {};
 super();
 this.viewLayout = new pvl.PageViewLayout();
 }
 onStart() {
 this.viewLayout.render();
 }
}

Here, we have defined a class named BoardSalesApp that derives from the
Marionette.Application class, and will serve as the starting point for our
application. Our constructor function is fairly simple, and creates a new instance of the
PageViewLayout class, which we will discuss shortly. The only other function in our
application is the onStart function, which renders our PageViewLayout to the screen.
This onStart function will be triggered by Marionette when the application starts.

Our PageLayoutView class is as follows:

export class PageViewLayout extends
 Marionette.LayoutView<Backbone.Model> {
 constructor(options?: any) {
 if (!options)
 options = {};
 options.el = '#page_wrapper';
 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 options.template = snippetService.retrieveSnippet(
 SnippetKey.PAGE_VIEW_LAYOUT_SNIPPET);
 super(options);
 }
}

This class extends from Marionette.LayoutView, and does two important things.
Firstly, it sets a number of properties on the options object, and then calls the base
class constructor via the super function, passing in this options object. One of the
properties of this options object is named el, and contains the name of the DOM
element that this view will render into. In this code snippet, this el property is set to
the DOM element '#page_wrapper'. Without this el property set, we will just get a
blank screen when we try to render the view to the DOM.

The second important step in our constructor is to load a snippet from the
SnippetService. This snippet is then used to set the template property on
the options object. Marionette, similar to Backbone, loads a template, and then
combines the underlying model properties with the view template, in order to
generate the HTML that will be rendered to the DOM.

Let's Get Our Hands Dirty

[292]

At this stage, in order to run our BoardSalesApp, and have it render the
PageViewLayout to the DOM, we will need two things. The first is a DOM
element in our index.html page with an id="page_wrapper", to match our
options.el property, and the second is our PAGE_VIEW_LAYOUT_SNIPPET.

Our index.html page is as follows:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>BoardSales</title>
 <link rel="stylesheet" href="/Content/bootstrap.css" />
 <link rel="stylesheet" type="text/css"
 href="/Content/app.css">
 <script type="text/javascript"
 src="/Scripts/head-1.0.3.js"></script>
 <script data-main="/tscode/app/AppConfig"
 type="text/javascript"
 src="/Scripts/require.js"></script>
</head>
<body>
 <div id="page_wrapper">

 </div>
 <footer class="footer footer_style">
 <div class="container">
 <p class="text-muted"><small>Footer</small></p>
 </div>

 </footer>
</body>
</html>

This page includes the bootstrap.css and app.css style sheets, as well as a call to
Require, with the data-main attribute set to a Require config file named /tscode/
app/AppConfig. The body of the index.html page just includes the DOM element
with id="page_wrapper", and a footer. This is a very stripped-down version of the
demo HTML page that we built earlier.

We have also included a script named head-1.0.3.js, which can
be installed via the NuGet package HeadJS. This script interrogates
our browser to find out whether it is running on a mobile or desktop
device, what browser we are using, and even what the current screen
size is. We will use the output of head.js later in our application.

Chapter 9

[293]

We will now need to create an HTML snippet for the PageViewLayout. This file is
called PageViewLayout.html, and resides in the /tscode/app/views directory, so
it can be easily found when we are working with the PageViewLayout.ts file. Take
a look at the sample code for a full listing of this HTML file, which includes
the following relevant sections:

<div id="page_wrapper">
 <div id="main_panel_div">
 <div class="carousel-inner" >
 <div id="carousel_panel_1" >
 <div id="content_panel_left" >
 <!--filter panel goes here-->
 </div>
 <div id="content_panel_main">
 <div id="manufacturer_collection">
 <!--board list goes here-->
 </div>
 </div>
 </div>
 <div id="carousel_panel_2">
 <!--board detail panel goes here-->
 </div>
 </div>
 </div>
</div>

Our PageViewSnippet.html file contains the major elements of our page. We
have the main_panel_div that serves as the middle panel of our application,
with a carousel-inner div that contains our two carousel panel divs, named
carousel_panel_1 and carousel_panel_2. Within these carousel panels, we
will be rendering the filter panel, board list panel and board detail panel.

We now need to put together our AppConfig.ts file that Require will load, and set
up the SnippetService to load the PageViewLayout.html snippet. In the interests
of brevity, we have not listed the full require.config here, and have excluded the
paths and shims section. We will just focus on the call to Require as follows:

require([
 'BoardSalesApp', 'tinyioc', 'snippetservice'
 ,'text!/tscode/app/views/PageViewLayout.html'],
 (app, tinyioc, snippetservice, pageViewLayoutSnippet) => {

 var snippetService = new SnippetService();
 snippetService.storeSnippet(
 SnippetKey.PAGE_VIEW_LAYOUT_SNIPPET,

Let's Get Our Hands Dirty

[294]

 pageViewLayoutSnippet);
 TypeScriptTinyIoC.register(snippetService, IISnippetService);

 var boardSalesApp = new app.BoardSalesApp();
 boardSalesApp.start();

 });

Here, we included the BoardSalesApp, tinyioc, and snippetservice, as well
as our PageViewLayout.html snippet in the call to require. We then set up the
SnippetService, store the pageViewLayoutSnippet against the correct key, and
register the SnippetService with our service locator. To start our Marionette
application, we create a new instance of the BoardSalesApp, and call start. Once
the start method is called, our BoardSalesApp.onStart method will be fired
by Marionette, which will then render the PageViewLayout class.

Loading the main collection
In this application, we will be loading our ManufacturerCollection only once,
and then reusing this "global" collection for filtering purposes. Let's now update
our BoardSalesApp to include this "global" collection, and load it on application
startup. Again, refer to the sample code for a full listing:

export class BoardSalesApp extends Marionette.Application {
 viewLayout: pvl.PageViewLayout;
 _manufCollection: bm.ManufacturerCollection;

 constructor(options?: any) {
 if (!options)
 options = {};
 super();
 _.bindAll(this, 'CollectionLoaded');
 _.bindAll(this, 'CollectionLoadError');
 this.viewLayout = new pvl.PageViewLayout();
 }

 onStart() {
 this.viewLayout.render();
 this._manufCollection = new bm.ManufacturerCollection();
 TypeScriptTinyIoC.register(this._manufCollection,
 bm.IIManufacturerCollection);
 this._manufCollection.fetch({
 success: this.CollectionLoaded,
 error: this.CollectionLoadError });

Chapter 9

[295]

 }

 CollectionLoaded() {
 TypeScriptTinyIoC.raiseEvent(
 new ev.NotifyEvent(
 ev.EventType.ManufacturerDataLoaded),
 ev.IINotifyEvent);
 }

 CollectionLoadError(err) {
 TypeScriptTinyIoC.raiseEvent(
 new ev.ErrorEvent(err), ev.IIErrorEvent);
 }
}

We have updated our BoardSalesApp to store an instance of the
ManufacturerCollection class in the private variable named _manufCollection.
Our onStart function has been updated to instantiate this collection, after the
call to viewLayout.render. Note the next call to TypeScriptTinyIoC. We
are registering this._manufCollection as a service that will implement the
IIManufacturerCollection named interface. We then call the Backbone fetch
function on the collection, with a success and error callback. Both the success
callback and error callback simply raise an event.

By registering our instance of the ManufacturerCollection class against the
named interface IIManufacturerCollection, any of our classes that need access
to the main collection can simply request the instance of this class from our service
locator. These named interfaces are as follows:

export interface IManufacturerCollection {
 models: ManufacturerModel[];
}
export class IIManufacturerCollection implements IInterfaceChecker {
 propertyNames = ['models'];
 className = 'IIManufacturerCollection';
}

We will also need to modify our ManufacturerCollection class to implement the
IManufacturerCollection interface as follows:

export class ManufacturerCollection extends
 Backbone.Collection<ManufacturerModel>
 implements IManufacturerCollection
{
 // existing code
}

Let's Get Our Hands Dirty

[296]

Let's now have a look at the events that will be fired from our success and error
callbacks. In the success function callback, we are raising an event of type
INotifyEvent. Note that we are just listing the interface definitions here—for the
corresponding IInterfaceChecker classes and event classes, please refer to the
accompanying source code:

export enum EventType {
 ManufacturerDataLoaded,
 ErrorEvent
}
export interface INotifyEvent {
 eventType: EventType;
}
export interface INotifyEvent_Handler {
 handle_NotifyEvent(event: INotifyEvent): void;
}

Here, we have defined an EventType enum to hold an event type, and then defined
an INotifyEvent interface that just holds a property named eventType. We have
also defined the corresponsing INotifyEvent_Handler interface that any handler
will need to implement.

Our error event will use inheritance to derive from these interfaces as follows:

export interface IErrorEvent extends INotifyEvent {
 errorMessage: string;
}
export interface IErrorEvent_Handler {
 handle_ErrorEvent(event: IErrorEvent);
}

Here, we are are deriving the IErrorEvent interface from INotifyEvent, thereby
reusing the EventType enum and properties from the base interface.

We can now respond to these events in our PageViewLayout class:

export class PageViewLayout extends
 Marionette.LayoutView<Backbone.Model>
 implements ev.INotifyEvent_Handler
{

 private _manufacturerView: mv.ManufacturerCollectionView;

 constructor(options?: any) {
 // exising code
 _.bindAll(this, 'handle_NotifyEvent');
 TypeScriptTinyIoC.registerHandler(
 this, ev.IINotifyEvent_Handler, ev.IINotifyEvent);
 }
 handle_NotifyEvent(event: ev.INotifyEvent) {

Chapter 9

[297]

 if (event.eventType == ev.EventType.ManufacturerDataLoaded)
 {
 this._manufacturerView =
 new mv.ManufacturerCollectionView();
 this._manufacturerView.render();
 }
 }
}

We have implemented the INotifyEvent_Handler interface, and registered with
TypeScriptTinyIoC for the IINotifyEvent. Our handle_NotifyEvent class will
check that the event type is a ManufacturerDataLoaded event, and then create an
instance of the ManufacturerCollectionView class and render it to the DOM.

Marionette views
Marionette provides a number of different view classes for us to use, based on
what type of object we need to render to the DOM. Any class that needs to render a
Backbone.Collection can use a CollectionView, and any class that needs to render
a single item in this collection can use an ItemView. Marionette also provides a hybrid
of these two views called a CompositeView. If we take a look at our demo application,
we will be able to break up our screen into a number of logical views, as follows:

Board list view with Marionette view overlay

Let's Get Our Hands Dirty

[298]

The identification of what views we need to build are pretty closely related to the
data structure that we have in place for our Backbone collections and models. This
relationship is clearly seen when we superimpose the preceding views on top of our
class diagram for our ManufacturerCollection:

Model class diagram with corresponding Marionette Views

The ManufacturerCollectionView class
We start with a ManufacturerCollectionView, which is a view that renders the
whole ManufacturerCollection. We will also need a ManufacturerView to render
a particular ManufacturerModel, and then a BoardView to render each board in a
manufacturer's arsenal. Each board has an internal array of BoardSize objects, so
we will create a BoardSizeView to render these items.

Lets start building these views, starting with the ManufacturerCollectionView:

export class ManufacturerCollectionView
 extends Marionette.CollectionView<bm.ManufacturerModel> {
 constructor(options?: any) {
 if (!options)
 options = {};

Chapter 9

[299]

 options.el = '#manufacturer_collection';
 options.className = "row board_row";

 super(options);
 this.childView = ManufacturerView;

 var manufColl: bm.IManufacturerCollection =
 TypeScriptTinyIoC.resolve(bm.IIManufacturerCollection);
 if (!options.collection) {
 this.collection =
 <Backbone.Collection<bm.ManufacturerModel>> manufColl;
 } else {
 this.collection = options.collection;
 }
 }
}

This class extends from Marionette.CollectionView, and specifies our
ManufacturerModel as the generic type for the class. Our constructor sets the el
property of the options object to be "#manufacturer_collection". As we saw
with our PageLayoutView, Marionette will use this property to render the entire
collection into the DOM. We have also set a className property in our options.
Marionette will use the className property to append a class="…" attribute to
the outer DOM element. This will apply the CSS styles of row and board_row to
the manufacturer_collection element in the rendered HTML. Once we have
constructed our options correctly, we call super(options) to pass these options
to the base class constructor.

The childView property of a CollectionView instructs Marionette to create an
instance of the class we specify for each element that it finds in the collection. We
have set this childView property to be ManfuacturerView, so Marionette will
construct a new ManufacturerView for each element in the collection.

Finally, in our constructor, we are using our service locator pattern to look up an
instance of our ManufacturerCollection service, and then we set the internal
this.collection property to the returned object. Once we have defined a
childView class name, and set the this.collection property, Marionette will
automatically create instances of our child views, and render them to the DOM.

Note that we don't need an HTML template or snippet for a CollectionView.
This is because we are deferring the rendering of an individual item to the
childView classes.

Let's Get Our Hands Dirty

[300]

The ManufacturerView class
Our childView class, ManufacturerView, is as follows:

export class ManufacturerView
 extends Marionette.CompositeView<Backbone.Model> {
 constructor(options?: any) {
 if (!options)
 options = {};
 options.template = _.template('<div></div>');
 super(options);
 this.collection = new Backbone.Collection(
 this.model.get('boards')
);
 this.childView = BoardView;
 this.childViewOptions = {
 parentIcon: this.model.get('manufacturer_logo')
 };
 }
}

In this instance, we are deriving our view from Marionette.CompositeView, and
using a standard Backbone.Model for the generic type. Because we have multiple
manufacturers in our board list view, we don't really need to render anything
specific for each manufacturer. Therefore, our template is a simple <div></div>.

The important part of this view is to set up a new Backbone.Collection for
our boards array, and then set a childView class to render each board in the
collection. Our childView property is set to BoardView, and we are also setting a
childViewOptions property that will be sent through to each BoardView instance.
Remember that each BoardView shows the manufacturer logo, but this logo image is
held at the manufacturer level. Therefore, we need to pass this information down to
each BoardView that is created. Marionette allows us to use the childViewOptions
property to pass any extra properties down to the child view. Here, we have
defined a parentIcon property as part of this childViewOptions object, in
to order pass down the manufacturer logo to each instance of a child BoardView
class. This parentIcon property will then be available to the child view via the
options parameter.

The BoardView class
Our BoardView class is also a CompositeView as follows:

export class BoardView
 extends Marionette.CompositeView<bm.BoardModel> {

Chapter 9

[301]

 constructor(options?: any) {
 if (!options)
 options = {};
 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 options.template = _.template(
 snippetService.retrieveSnippet(
 SnippetKey.BOARD_VIEW_SNIPPET)
);
 super(options);

 this.model.set('parentIcon', options.parentIcon);

 this.collection =
 <any>(new Backbone.Collection(
 this.model.get('sizes')));
 this.childView = BoardSizeView;
 this.childViewContainer = 'tbody';

 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 this.childViewOptions = {
 template: _.template(
 snippetService.retrieveSnippet(
 SnippetKey.BOARD_SIZE_MINI_VIEW_SNIPPET)
)
 };

 }

}

This BoardView constructor does a couple of things. Firstly, it retrieves the snippet
named BOARD_VIEW_SNIPPET to use as its own template. It then sets an internal
model property named parentIcon to store the parentIcon property that was passed
in via the options parameter from the parent view. We then create a new Backbone.
Collection for the sizes array, and set the childView property to BoardSizeView.
The childViewContainer property tells Marionette that there is a <tbody></tbody>
HTML div within our snippet that it should use to render any childView into. Finally,
we retrieve another snippet named BOARD_SIZE_MINI_VIEW_SNIPPET, and pass this
snippet through to the childView as a template property.

Let's Get Our Hands Dirty

[302]

Instead of each BoardSizeView class resolving its own HTML snippet, we have
moved control of which snippet to use up in the class hierarchy, to the parent of
the BoardSizeView. This allows us to reuse the BoardSizeView class within this
summary view, as well as in the BoardDetailView, which we will discuss later.
As the internal data models are identical for the summary size view and the detail
size view, all that will need to change is our HTML template. We therefore pass this
template down into the BoardSizeView using the childViewOption properties, as
we have seen previously.

The BoardSizeView class
Our BoardSizeView class could not be simpler, and is as follows:

export class BoardSizeView
 extends Marionette.ItemView<bm.BoardSize> {
 constructor(options?: any) {
 if (!options)
 options = {};
 super(options);
 }
}

This class is simply an ItemView, which is using the BoardSize model as the generic
type. We don't have any custom code within this class, but we are simply using it
as a named childView in our preceding BoardView class.

Let's take a look now at the HTML snippets that we will need for each of these views.
First up is our BoardViewSnippet.html. Again, you can find the full snippet in the
accompanying source code. The general structure of the BoardViewSnippet.html is
as follows:

<div class="col-sm-4 board_panel">
 <div class="board_inner_panel">
 <div class="row board_title_row">
 <!- -some divs just for styling here -->
 <%= name %>
 <!- -some divs just for styling here -->
 <%= description %>
 <img src="/Content/images/<%= parentIcon %>" />
 </div>
 <div class="row board_details_row">
 <a >
 <img src="/Content/images/<%= image %>" />

Chapter 9

[303]

 <!- -some divs just for styling here -->
 Sizes:
 <table>
 <tbody></tbody>
 </table>
 </div>
 </div>
</div>

In this snippet, we have included the <%= name %>, <%= description %>, <%=
parentIcon %> and <%= image %> syntax as placeholders for our model
properties. Near the bottom of the snippet, we have created a table with an
empty <tbody></tbody> tag. This tag corresponds to the childViewContainer
property that we used in our BoardView class, and Marionette will render each
BoardSizeView item into this <tbody> tag.

Our BoardSizeMiniViewSnippet.html is as follows:

<tr>
 <td> </td>
 <td><%= volume %> L</td>
</tr>

Here, we are only interested in the <%= volume %> property of the BoardSize
model. With these view classes and two snippets in place, our board list view is
complete. All we need to do is to load these snippets up in our require.config
block, and store the appropriate snippets on our SnippetService instance:

require([
 'BoardSalesApp', 'tinyioc', 'snippetservice'
 , 'text!/tscode/app/views/PageViewLayout.html'
 , 'text!/tscode/app/views/BoardViewSnippet.html'
 , 'text!/tscode/app/views/BoardSizeMiniViewSnippet.html'
],(app, tinyioc, snippetservice, pageViewLayoutSnippet
 , boardViewSnippet, bsMiniViewSnippet) => {

 var snippetService = new SnippetService();
 snippetService.storeSnippet(
 SnippetKey.PAGE_VIEW_LAYOUT_SNIPPET,
 pageViewLayoutSnippet);
 snippetService.storeSnippet(
 SnippetKey.BOARD_VIEW_SNIPPET, boardViewSnippet);
 snippetService.storeSnippet(
 SnippetKey.BOARD_SIZE_MINI_VIEW_SNIPPET,

Let's Get Our Hands Dirty

[304]

 bsMiniViewSnippet);

 var boardSalesApp = new app.BoardSalesApp();
 boardSalesApp.start();

 });

Filtering using the IFilterProvider interface
When we put together the ManufacturerCollection class, we wrote two functions
to query the data structure, and return a list of manufacturers and board types.
These two functions were called findManufacturerNames and findBoardTypes
respectively. Our new FilterCollection class will need to call these methods to
retrieve the filter values from our "global" dataset.

We could implement this functionality in two ways. One way would be
to get a reference to the global ManufacturerCollection instance via the
IIManufacturerCollection named interface. This option, however, would mean
that the code for the FilterCollection would need to understand the code for the
ManufacturerCollection. A better way of implementing this functionality would
be to get a reference to an IFilterProvider interface. This interface would then just
expose the two methods that we need to build our list of filters. Let's take this second
approach, and define a named interface as follows:

export interface IFilterProvider {
 findManufacturerNames(): bm.IManufacturerName[];
 findBoardTypes(): string[]
}
export class IIFilterProvider implements IInterfaceChecker {
 methodNames = ['findManufacturerNames', 'findBoardTypes'];
 className = 'IIFilterProvider';
}

We can then simply modify the existing ManufacturerCollection to implement
this interface (which it already does):

export class ManufacturerCollection extends
 Backbone.Collection<ManufacturerModel>
 implements IManufacturerCollection, fm.IFilterProvider
{
 // existing code
}

Chapter 9

[305]

We can now register the ManufacturerCollection with TypeScriptTinyIoC
against the IIFilterProvider named interface in our BoardSalesApp.onStart
method, as follows:

onStart() {
 this.viewLayout.render();
 this._manufCollection = new bm.ManufacturerCollection();
 TypeScriptTinyIoC.register(this._manufCollection,
 bm.IIManufacturerCollection);
 TypeScriptTinyIoC.register(this._manufCollection,
 fm.IIFilterProvider);
 this._manufCollection.fetch({
 success: this.CollectionLoaded,
 error: this.CollectionLoadError });
}

Our ManufacturerCollection is now registered to provide both the
IIManfacturerCollection named interface, as well as the IIFilterProvider
named interface.

The FilterCollection class
Our FilterCollection can then resolve the IIFilterProvider interface in its
constructor, as follows:

export class FilterCollection extends Backbone.Collection<FilterModel>
{
 model = FilterModel;

 private _filterProvider: IFilterProvider;
 constructor(options?: any) {
 super(options);
 try {
 this._filterProvider =
 TypeScriptTinyIoC.resolve(IIFilterProvider);
 } catch (err) {
 console.log(err);
 }
 }
}

Let's Get Our Hands Dirty

[306]

Here, we are storing the class that is returned by the call to TypeScriptTinyIoC
in a private variable named _filterProvider. By defining these interfaces for
a FilterProvider, we can now unit test our FilterCollection with a mock
FilterProvider as follows:

class MockFilterProvider implements fm.IFilterProvider {
 findManufacturerNames(): bm.IManufacturerName[] {
 return [
 { manufacturer: 'testManuf1',
 manufacturer_logo: 'testLogo1'},
 { manufacturer: 'testManuf2',
 manufacturer_logo: 'testLogo2' }
];
 }
 findBoardTypes(): string[] {
 return ['boardType1', 'boardType2', 'boardType3'];
 }
}
describe('/tscode/tests/models/FilterModelTests',() => {
 beforeAll(() => {
 var mockFilterProvider = new MockFilterProvider();
 TypeScriptTinyIoC.register(
 mockFilterProvider, fm.IIFilterProvider);
 });
});

In the setup for our tests, we are creating a MockFilterProvider that implements
our IFilterProvider interface, and we have registered it for the purposes of our
tests. By using a mock provider, we also know exactly what data to expect within
our tests. Our actual tests will be as follows:

describe("FilterCollection tests",() => {
 var filterCollection: fm.FilterCollection;
 beforeAll(() => {
 filterCollection = new fm.FilterCollection();
 filterCollection.buildFilterCollection();
 });

 it("should have two manufacturers", () => {
 var manufFilter = filterCollection.at(0);

Chapter 9

[307]

 expect(manufFilter.filterType)
 .toBe(fm.FilterType.Manufacturer);
 expect(manufFilter.filterValues[0].filterValue)
 .toContain('testManuf1');
 });

 it("should have two board types",() => {
 var manufFilter = filterCollection.at(1);
 expect(manufFilter.filterType)
 .toBe(fm.FilterType.BoardType);
 expect(manufFilter.filterValues[0].filterValue)
 .toContain('boardType1');
 });
});

These tests start by creating an instance of the FilterCollectionClass, and then
call the buildFilterCollection function. We then test that the collection has a
FilterType.Manufacturer at index 0, along with expected values. With these
failing tests in place, we can flesh out the buildFilterCollection function:

buildFilterCollection() {
 // build Manufacturer filter.
 var manufFilter = new FilterModel({
 filterType: FilterType.Manufacturer,
 filterName: "Manufacturer"
 });
 var manufArray = new Array<FilterValue>();
 if (this._filterProvider) {
 _(this._filterProvider.findManufacturerNames())
 .each((manuf) => {
 manufArray.push(new FilterValue(
 { filterValue: manuf.manufacturer }));
 });
 manufFilter.filterValues = manufArray;
 }
 this.push(manufFilter);
 // build Board filter.
 var boardFilter = new FilterModel({
 filterType: FilterType.BoardType,
 filterName: "Board Type"
 });

Let's Get Our Hands Dirty

[308]

 var boardTypeArray = new Array<FilterValue>();
 if (this._filterProvider) {
 _(this._filterProvider.findBoardTypes()).each((boardType) =>
 {
 boardTypeArray.push(new FilterValue(
 { filterValue: boardType }));
 });
 boardFilter.filterValues = boardTypeArray;
 }
 this.push(boardFilter);
 // build All filter to clear filters.
 var noFilter = new FilterModel({
 filterType: FilterType.None,
 filterName: "All"
 });
 var noTypeArray = new Array<FilterValue>();
 noTypeArray.push(new FilterValue({ filterValue: "Show All" }));
 noFilter.filterValues = noTypeArray;
 this.push(noFilter);
}

Our buildFilterCollection function is creating three instances of a
FilterModel. The first instance, named manufFilter has its filterType set to
FilterType.Manufacturer, and uses the _filterProvider.findManufacterNames
function to build up the values for this FilterModel. The manufFilter instance
is then added to the internal collection via the call this.push(manufFilter).
The second and third FilterModel instances have their filterType set to
FilterType.BoardType and FilterType.None respectively.

Filtering views
Again, the relationship between the Marionette views that we need to implement,
and the underlying Backbone collections and models that we have, is easy to
visualize when we superimpose the views on top of our Backbone models as follows:

Chapter 9

[309]

Filtering class diagram showing related Marionette views

The first view, named FilterCollectionView, will be derived from CollectionView,
and will be tied to our top-level FilterCollection. The second view, named
FilterModelView will be a CompositeView, and will render each FilterType
to its own accordion header. The third and final view will be an ItemView for
each of the filter options, and is named FilterItemView.

Building these Marionette views is a very similar process to what we have done
with the previous manufacturer and board views. For this reason, we will not go
into detail here on the implementation of each view. Be sure to refer to the sample
code included with this chapter for full listings of these views and their relevant
HTML snippets.

Now that we have our filters rendering on the left-hand side panel, we will need
to be able to respond to a click event on the FilterItemView, and trigger the
actual filtering code.

Let's Get Our Hands Dirty

[310]

DOM events in Marionette
Marionette provides a simple syntax for trapping DOM events. Any view has an
internal property named events, which will bind DOM events to our Marionette
views. Our FilterItemView, then, can be updated to respond to DOM events
as follows:

export class FilterItemView
 extends Marionette.ItemView<fm.FilterValue> {
 private _filterType: number;
 constructor(options?: any) {
 if (!options)
 options = {};
 options.tagName = "li";
 options.template =
 _.template('<a><%= filterValue %>');

 options.events = { click: 'filterClicked' };
 this._filterType = options.filterType;
 super(options);
 _.bindAll(this, 'filterClicked');

 }
 filterClicked() {
 TypeScriptTinyIoC.raiseEvent(
 new bae.FilterEvent(
 this.model.get('filterValue'),
 this._filterType),
 bae.IIFilterEvent);
 }
}

We have added an events property to our options object, and registered a handler
function for the click DOM event. Whenever someone clicks on a FilterItemView,
Marionette will invoke the filterClicked function. We have also added a call
to _.bindAll for this event, to ensure that the this variable is scoped to the class
instance whenever the filterClicked function is called.

Remember that each instance of this FilterItemView has a corresponding
FilterValue model available to it via the internal model property. So, within
our filterClicked function, we are simply raising a new FilterEvent, using
properties from the internal model variable.

Chapter 9

[311]

Our event definition interfaces are as follows—again, please refer to the sample
code for the matching IInterfaceChecker definitions:

export interface IFilterEvent {
 filterType: fm.FilterType;
 filterName: string;
}
export interface IFilterEvent_Handler {
 handle_FilterEvent(event: IFilterEvent);
}

We can now register handlers for these filter events elsewhere in our code. The
logical place to put this event handler is on the PageViewLayout itself, as this class
is responsible for rendering the board list. We will define our handle_FilterEvent
function on the PageViewLayout as follows:

handle_FilterEvent(event: ev.IFilterEvent) {

 var mainCollection: bm.ManufacturerCollection =
 TypeScriptTinyIoC.resolve(bm.IIManufacturerCollection);
 var filteredCollection;
 if (event.filterType == fm.FilterType.BoardType)
 filteredCollection = new bm.ManufacturerCollection(
 mainCollection.filterByBoardType(event.filterName));
 else if (event.filterType == fm.FilterType.Manufacturer)
 filteredCollection = new bm.ManufacturerCollection(
 mainCollection.filterByManufacturer(
 event.filterName));
 else if (event.filterType == fm.FilterType.None)
 filteredCollection = mainCollection;

 this._manufacturerView.collection = filteredCollection;
 this._manufacturerView.render();
}

This function starts by obtaining a reference to our "global" registered
ManufacturerCollection. We then define a variable named filteredCollection
to hold our filtered version of the main ManufacturerCollection. Based on
the FilterType within the event itself, we call either filterByBoardType, or
filterByManufacturer. If the event type is FilterType.None, we simply set the
filteredCollection to the mainCollection, effectively clearing all filters.

The last part of this function sets the internal collection property of our main
view (this._manufacturerView) to the resultant filteredCollection, and
then calls render.

Let's Get Our Hands Dirty

[312]

Our application is now responding to a click event on the FilterItemView, raising
an event, and re-rendering the ManufacturerView, in order to apply the selected
filter to our data for rendering.

Triggering a Detail view event
We have another click event, however, that we need to respond to. When a user
clicks on a particular board, we need to fire an event that will slide the panels over,
and show the board detail view.

Before we move onto the board detail view and how it is rendered, let's first hook
up a click event on the BoardView class. To do so, we just need to specify a click
event handler on the options.events parameters on the BoardView class, similar
to our previous click event handler. We will also need to create an onClicked
function, as follows:

export class BoardView
 extends Marionette.CompositeView<bm.BoardModel> {
 constructor(options?: any) {
 // existing code
 options.events = {
 "click": this.onClicked,
 };

 super(options);

 // existing code
 _.bindAll(this, 'onClicked');
 }

 onClicked() {
 this.$el.find('.board_inner_panel').flip({
 direction: 'lr',
 speed: 100,
 onEnd: () => {
 TypeScriptTinyIoC.raiseEvent(
 new bae.BoardSelectedEvent(this.model),
 bae.IIBoardSelectedEvent);
 }
 });
 }
}

Chapter 9

[313]

The changes to this class are fairly minimal, we just set the events property on our
options correctly, issue a call to _.bindAll, as we did in our FilterItem code, and
then write an onClicked function. This onClicked function issues a call to flip as
we saw in Chapter 7, Modularization, and then raises a new BoardSelectedEvent.
Our BoardSelectedEvent interface and handler interfaces are as follows—again,
please refer to the sample code for the matching IInterfaceChecker definitions:

export interface IBoardSelectEvent {
 selectedBoard: bm.BoardModel;
}
export interface IBoardSelectedEvent_Handler {
 handle_BoardSelectedEvent(event: IBoardSelectEvent);
}

The BoardSelectedEvent simply contains the entire BoardModel itself, in the
selectedBoard property. With these event interfaces and clases in place, we can
now register for a BoardSelectedEvent anywhere in our code.

Rendering the BoardDetailView
In this application, the logical place for handling this BoardSelectedEvent would
be in the PageViewLayout, as it is responsible for cycling the carousel panels, and
rendering the BoardDetailView. Let's update this class as follows:

export class PageViewLayout extends
 Marionette.LayoutView<Backbone.Model>
 implements ev.INotifyEvent_Handler,
 ev.IBoardSelectedEvent_Handler,
 ev.IFilterEvent_Handler
{
 // existing code
 constructor(options?: any) {
 // existing code
 _.bindAll(this, 'handle_NotifyEvent');
 _.bindAll(this, 'handle_BoardSelectedEvent');
 TypeScriptTinyIoC.registerHandler(this,
 ev.IINotifyEvent_Handler, ev.IINotifyEvent);
 TypeScriptTinyIoC.registerHandler(this,
 ev.IIBoardSelectedEvent_Handler,
 ev.IIBoardSelectedEvent);
 }
 handle_BoardSelectedEvent(event: ev.IBoardSelectEvent) {
 var boardDetailView = new bdv.BoardDetailView(

Let's Get Our Hands Dirty

[314]

 { model: event.selectedBoard });
 boardDetailView.render();
 }
}

Here, we have upated our PageViewLayout class to implement the
IBoardSelectedEvent_Hander interface, and registered it with TypeScriptTinyIoC.
We are responding to the BoardSelectedEvent by creating a new BoardDetailView
class, using the full BoardModel included in the event, and then calling render. Our
BoardDetailView class is as follows:

export class BoardDetailView
 extends Marionette.CompositeView<bm.BoardSize> {
 constructor(options?: any) {
 if (!options)
 options = {};

 options.el = "#board_detail_view";
 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 options.template = _.template(
 snippetService.retrieveSnippet(
 SnippetKey.BOARD_DETAIL_VIEW_SNIPPET));

 super(options);

 this.collection = <any>(
 new Backbone.Collection(this.model.get('sizes')));
 this.childView = mv.BoardSizeView;
 this.childViewContainer = 'tbody';

 var snippetService: ISnippetService =
 TypeScriptTinyIoC.resolve(IISnippetService);
 this.childViewOptions = {
 template: _.template(
 snippetService.retrieveSnippet(
 SnippetKey.BOARD_SIZE_VIEW_SNIPPET)),
 tagName: 'tr'
 };
 }

}

Chapter 9

[315]

The BoardDetailView class is very similar to our BoardView, but it uses the
"#board_detail_view" element for the options.el property—which is our
corresponding DOM element. Our snippet has the BOARD_DETAIL_VIEW_SNIPPET
key. We then create a Backbone.Collection out of the sizes property, and set
the childView to the BoardSize view class template, in the same way that we did
earlier for the BoardView.

Our childViewContainer, however, now targets the <tbody></tbody> tag to
render children into. We are also passing the template from the BOARD_SIZE_VIEW_
SNIPPET to the child BoardSize view, and setting the tagName to 'tr'. Remember
how we moved the configuration of the child BoardSize views up one level in our
BoardView? Well, we are doing the same thing here.

Please refer to the sample code for a full listing of the BoardDetailViewSnippet.
html, and the BoardSizeViewSnippet.html.

The State Design Pattern
Our last task for this application is to control the various screen elements as users
interact with our application. As a user navigates the application, we need to move
from carousel panel 1 to carousel panel 2, and update screen elements, such as
showing and hiding the left-hand side filter panel. In a large web application, there
may be many screen elements, many different transitions, and things such as pop
ups or masks that say "loading…" while our application fetches data from backend
services. Keeping track of all of these elements becomes a difficult and time-consuming
task, often leaving large swathes of if-else or switch statements in many different areas
of our code, leading to a lot of direct DOM manipulation spaghetti.

The State Design Pattern is a design pattern that can simplify our application code,
so that code that manipulates these various DOM elements can reside in one place.
The State Design Pattern defines a set of states that the application could be in, and
provides an easy mechanism to transition between these states, control visual screen
elements, and handle animations.

Problem space
As an example of what we are trying to achieve, consider the following
business rules:

• When a user first logs into the BoardSales application on a desktop,
the left-hand filter panel should be visible.

• If the user is using a mobile device, the left-hand filter panel should not be
visible when a user first logs in. This is done to save on screen real estate.

Let's Get Our Hands Dirty

[316]

• If the filter panel is visible, then the expand icon should switch to a left-hand
arrow (<) to allow the user to hide it.

• If the filter panel is not visible, then the expand icon should be a right-hand
arrow (>) to allow the user to show it.

• If a user expands the filter panel, and then switches to a board detail view
and back again, then the filter panel should remain expanded.

• If a user hides the filter panel, and then switches to a board detail view and
back again, then the filter panel should remain hidden.

On top of these business rules, we have an outstanding bug that has been reported for
users on a Firefox browser (you can test this behavior using the demo HTML page):

When clicking on a board in the board list view, with the filter panel open, the
carousel panel does not behave correctly. The carousel first cycles across to the board
detail view, and then closes the filter panel. This transition is inconsistent with other
browsers, where the filter panel is cycled along with the board list at the same time.

This bug therefore adds another business requirement to our list:

• For users on a Firefox browser, please hide the filter panel first, before
cycling the carousel to the board detail view.

The State Design Pattern uses a set of very similar classes, each representing a
particular application state. Each of these state classes are derived from the same
base class. When we want our application to change to a different state, we simply
switch to the object that represents the state that we are interested in.

For example, our application really has only three states. We have a state where the
board list and filter panels are both visible. We have another state where only the
board list is visible, and our third state is where the board detail panel is visible.
Depending on which state we are in, we should be either on carousel_panel_1, or
on carousel_panel_2. Also, the icon that is used in conjunction with the filter panel
needs to swich from a left-hand chevron < to a right-hand chevron >, depending on
the application state.

The State Design Pattern also has the concept of a Mediator class, which will keep
track of the current state, and contain the logic of how to switch between each of
these states.

Chapter 9

[317]

State class diagram
Consider the following class diagram for the State and Mediator Design Pattern:

State and Mediator pattern class diagram

We start with an enum named StateType that lists our three application states, and
second enum named PanelType to indicate which carousel panel each of these states
are on. We then define an interface named IState that each of these states must
implement. To hold properties common to each state, we have also defined a base
State class, from which all states will derive. Our implementation of these enums,
the IState interface, and the base State class as follows:

export enum StateType {
 BoardListOnly,
 BoardListWithFilter,
 BoardDetail,
}

Let's Get Our Hands Dirty

[318]

export enum PanelType { Initial, Secondary }
export interface IState {
 getPanelType(): PanelType;
 getStateType(): StateType;
 getShowFilterClass(): string;
 isFilterPanelVisible(): boolean;
}
export class State {
 private _mediator: sm.Mediator;
 constructor(mediator: sm.Mediator) {
 this._mediator = mediator;
 }
}

Our StateType enum has defined each state that we will be using. Our application,
therefore, is either in BoardListOnly state, BoardListWithFilter state, or
BoardDetail state. Our second enum, named PanelType, is used to indicate which of
the carousel panels we are currently on, either the Initial panel (carousel_panel_1),
or the Secondary panel (carousel_panel_2).

We then define an IState interface that all state objects must implement. This interface
allows us to query each state, and determine four important pieces of information. The
getPanelType function tells us what panel we should be currently viewing, and the
getStateType function returns the StateType enum value. The getShowFilterClass
function will return a string that is used to apply a CSS class to the show / hide
filter button, and the isFilterPanelVisible function returns a boolean to indicate
whether or not the filter panel is visible.

Each state needs a reference to the Mediator class, so we have created a base State
class with a constructor function, from which each of our State objects can be
derived from.

Concrete State classes
Let's now create concrete classes for each of these states. The first state that our
application can be in, is when we are viewing the board list, and the filter panel
is hidden:

export class BoardListOnlyState
 extends ss.State
 implements ss.IState {
 constructor(mediator: sm.Mediator) {
 super(mediator);
 }

Chapter 9

[319]

 getPanelType(): ss.PanelType {
 return ss.PanelType.Initial;
 }
 getShowFilterClass() {
 return "glyphicon-chevron-right";
 }
 isFilterPanelVisible(): boolean {
 return false;
 }
 getStateType(): ss.StateType {
 return ss.StateType.BoardListOnly;
 }
}

Our BoardListOnlyState class extends the State class that we defined earlier, and
implements the IState interface. In this BoardListOnly state, we should be on the
Initial carousel panel, the class to be used for the show / hide filter panel button
should be a glyphicon-chevron-right [>], and the left-hand side filter panel
should NOT be visible.

The next state that our application could be in, is when the board list is showing,
and we also have the filter panel visible:

export class BoardListWithFilterPanelState
 extends ss.State
 implements ss.IState {
 constructor(mediator: sm.Mediator) {
 super(mediator);
 }
 getPanelType(): ss.PanelType {
 return ss.PanelType.Initial;
 }
 getShowFilterClass() {
 return "glyphicon-chevron-left";
 }
 isFilterPanelVisible(): boolean {
 return true;
 }
 getStateType(): ss.StateType {
 return ss.StateType.BoardListWithFilter;
 }
}

Let's Get Our Hands Dirty

[320]

In the BoardListWithFilterPanel state, our carousel panel is again the Initial
panel, but our class for the show / hide filter panel button is now a glyphicon-
chevron-left (<). Our filter panel is also visible.

The last state we need to define for our application, is when we have cycled over to
carousel_panel_2, and are viewing the board detail screen:

export class DetailPanelState
 extends ss.State
 implements ss.IState {
 constructor(mediator: sm.Mediator) {
 super(mediator);
 }
 getPanelType(): ss.PanelType {
 return ss.PanelType.Secondary;
 }
 getShowFilterClass() {
 return "";
 }
 isFilterPanelVisible(): boolean {
 return false;
 }
 getStateType(): ss.StateType {
 return ss.StateType.BoardDetail;
 }
}

In the DetailPanel state, we are on the Secondary carousel panel, we do not need
a class for the show / hide filter panel button (as the panel has moved off the screen),
and the filter panel itself is NOT visible.

Note that in the sample application source code, you will find a series of unit tests
that will test each of these properties. For the purposes of brevity, we will not list
them here.

The Mediator class
In object-oriented patterns, a Mediator is used to encapsulate the logic of how a set
of objects interacts. In our case, we have a set of states that define what visual
elements should be shown. There is also a need to define how these various
elements transition according to the movement between these states.

Chapter 9

[321]

We will, therefore, define a Mediator class to encapsulate all of this transition logic,
and co-ordinate the changes to our visual elements, based on movements between
states. In order for our Mediator class to interact with the UI, we will define a set of
four functions that must be implemented by any class using this Mediator:

export interface IMediatorFunctions {
 showLeftPanel();
 hideLeftPanel();
 cyclePanels(forwardOrNext: string);
 showFilterButtonChangeClass(
 fromClass: string, toClass: string
);
}

Our IMediatorFunctions interface has four functions. The showLeftPanel function
will show our filter panel. The hideLeftPanel function will hide the filter panel. The
cyclePanels function will be invoked with either a 'prev' string, or a 'next' string
to cycle the carousel panel from carousel_panel_1 to carousel_panel_2. The
showFilterButtonChangeClass will be invoked with two arguments—a fromClass
string that is a CSS class, and a toClass string that is another CSS class. This function
will just remove the fromClass CSS class from the DOM element, and then add the
toClass CSS class to the DOM element. In this way, we can change the icon used for
our show / hide filter button from a chevron-right (>) to a chevron-left (<).

We can now look at the internal logic of the Mediator class itself, starting with a set
of private variables and the constructor:

export class Mediator {
 private _currentState: ss.IState;
 private _currentMainPanelState: ss.IState;
 private _pageViewLayout: IMediatorFunctions;
 private _isMobile: boolean;

 private _mainPanelState: as.BoardListOnlyState;
 private _detailPanelState: as.DetailPanelState;
 private _filterPanelState: as.BoardListWithFilterPanelState;

 constructor(pageViewLayout: IMediatorFunctions,
 isMobile: boolean) {
 this._pageViewLayout = pageViewLayout;
 this._isMobile = isMobile;

 this._mainPanelState = new as.BoardListOnlyState(this);

Let's Get Our Hands Dirty

[322]

 this._detailPanelState = new as.DetailPanelState(this);
 this._filterPanelState =
 new as.BoardListWithFilterPanelState(this);

 if (this._isMobile)
 this._currentState = this._mainPanelState;
 else
 this._currentState = this._filterPanelState;
 this._currentMainPanelState = this._currentState;
 }
}

Our Mediator class has a number of private variables. The _currentState variable
is used to hold an instance of one of our State classes, and represents the current
state of the UI. This _currentState variable can hold any one of our three states.
The _currentMainPanelState variable again holds one of our State classes, but
represents the current state of the main panel. This _currentMainPanelState will
only hold either a BoardListOnlyState, or a BoardListWithFilterPanelState.

The _pageViewLayout variable will hold an instance of the class that implements our
IMediatorFunctions interface, and we will apply state changes to the UI through
this variable. For those of you familiar with the MVP pattern, the Mediator class is
acting as a Presenter, and the _pageViewLayout variable is acting as the View.

The _isMobile variable just holds a boolean value indicating whether or not we are
on a mobile device. We will set this variable a little later.

We then have three private variables that will hold instances of our three states—
BoardListOnlyState, DetailPanelState, and BoardListWithFilterPanelState.

Our constructor simply sets up these private variables, and then instantiates an
instance of each of our state classes, assigning them to the correct internal variable.

Note the code near the bottom of the constructor. This is the implementation of one
of our business rules. If the application is being viewed on a mobile device, then the
filter panel should NOT be visible by default. We are, therefore, setting the value
of the _currentState variable to one of the initial states, based on our isMobile
flag. To round out our constructor function, we also set the initial value of the
_currentMainPanelState variable to the _currentState.

Our next Mediator function, getNextState, simply returns one of our private State
variables, using a StateType enum as input:

private getNextState(stateType: ss.StateType): ss.IState {
 var nextState: ss.IState;
 switch (stateType) {

Chapter 9

[323]

 case ss.StateType.BoardDetail:
 nextState = this._detailPanelState;
 break;
 case ss.StateType.BoardListOnly:
 nextState = this._mainPanelState;
 break;
 case ss.StateType.BoardListWithFilter:
 nextState = this._filterPanelState;
 }
 return nextState;
}

This is essentially a mini factory method, and will return the correct internal State
object, based on the value of the StateType argument.

Moving to a new State
The main body of logic that controls how the UI needs to be updated, based on the
movement between states, is implemented in the moveToState function, as follows:

public moveToState(stateType: ss.StateType) {
 var previousState = this._currentState;
 var nextState = this.getNextState(stateType);

 if (previousState.getPanelType() == ss.PanelType.Initial &&
 nextState.getPanelType() == ss.PanelType.Secondary) {
 this._pageViewLayout.hideLeftPanel();
 this._pageViewLayout.cyclePanels('next');
 }

 if (previousState.getPanelType() == ss.PanelType.Secondary &&
 nextState.getPanelType() == ss.PanelType.Initial) {
 this._pageViewLayout.cyclePanels('prev');
 }

 this._pageViewLayout.showFilterButtonChangeClass(
 previousState.getShowFilterClass(),
 nextState.getShowFilterClass()
);

 if (nextState.isFilterPanelVisible())
 this._pageViewLayout.showLeftPanel();
 else

Let's Get Our Hands Dirty

[324]

 this._pageViewLayout.hideLeftPanel();

 this._currentState = nextState;
 if (this._currentState.getStateType() ==
 ss.StateType.BoardListOnly
 || this._currentState.getStateType() ==
 ss.StateType.BoardListWithFilter)
 this._currentMainPanelState = this._currentState;
}

This function will be called whenever we want to move from one state to another.
The first thing this function does, is to set up two variables: previousState and
nextState. The previousState variable is actually our current state object, and
the nextState variable is a State object for the state that we are moving to.

We can now compare the previousState variable with the nextState variable
and make some decisions.

The logic for our first if statement goes something like this: if we are moving from
an Initial panel type to a Secondary panel, then call the relevant functions on the
UI to hide the left panel, and initiate a carousel cycle to 'next'. This logic will fix
the Firefox bug that we were notified of earlier.

The logic for our second if statement is the opposite of the first one: if we are
moving from a Secondary panel to an Initial panel, then initiate a carousel
cycle with 'prev'.

The next step in our logic applies the class for the show / hide filter button to the
UI, by calling the showFilterButtonChangeClass function on the UI, passing
in the CSS class name from the previousState, and the CSS class name from the
nextState as arguments. Remember that this will remove the CSS class from
previousState, and then add the CSS class from nextState to the show / hide
filter button CSS.

Our next logical step checks whether the filter panel should be shown or hidden,
and calls the corresponding function on our _pageViewLayout.

As we are now done with our state change logic, and can set the value of
the _currentState variable to now hold our nextState.

The last piece of logic just checks to see whether we are currently in BoardListOnly
or BoardListWithFilter state, and if so, stores the current state in the
_currentMainPanelState variable. This logic will form part of the business rules
that we have been given, to ensure that when we switch from our main panel to
our detail panel and back again, the status of the filter panel is maintained correctly.

Chapter 9

[325]

We have two more functions in our Mediator class to discuss, which are as follows:

public showHideFilterButtonClicked() {
 switch (this._currentState.getStateType()) {
 case ss.StateType.BoardListWithFilter:
 this.moveToState(ss.StateType.BoardListOnly);
 break;
 case ss.StateType.BoardListOnly:
 this.moveToState(ss.StateType.BoardListWithFilter);
 break;
 }
}

public getCurrentMainPanelState(): ss.IState {
 return this._currentMainPanelState;
}

The first function, called showHideFilterButtonClicked is actually the function
that will need to be called when we click on the show / hide filter button in our
application. Depending on whether the filter panel is open or closed, the behavior
of this button will be slightly different. The only object that knows what to do,
depending on what state the application is in, is the Mediator class itself. So, we
are deferring the decision-making on what to do when the button is clicked, to the
Mediator class.

The implementation of the showHideFilterButtonClicked function just checks
what our current state is, and then calls a moveToState with the correct nextState
as the parameter.

When you are building a large-scale application, there may be many
different buttons or screen elements that change slightly depending on
what state your application is in. Deferring the decision-making logic to
a Mediator class provides a simple and elegant way of managing all of
your screen elements. This business logic is captured in one place, and
can also be tested thoroughly. Be sure to check the sample code for a
full suite of tests surrounding the Mediator class.

Our final function, getCurrentMainPanelState, simply returns the last known
state of our main panel, and will be used to implement the business logic for
remembering whether the filter panel is open or closed.

Let's Get Our Hands Dirty

[326]

Implementing the IMediatorFunctions
interface
When the Mediator class needs to trigger changes to the UI, it calls functions on
the IMediatorFunctions interface, as we have seen previously. Our application,
therefore, must implement this IMediatorFunctions interface somewhere. As
the PageViewLayout class holds references to each of the UI elements we need to
change, the logical place to implement this interface is on the PageViewLayout
class itself, as follows:

export class PageViewLayout extends
 Marionette.LayoutView<Backbone.Model>
 implements ev.INotifyEvent_Handler,
 ev.IBoardSelectedEvent_Handler,
 ev.IFilterEvent_Handler,
 sm.IMediatorFunctions
{
 private _mediator: sm.Mediator;
 constructor(options?: any) {
 // existing code
 options.events = {
 "click #show_filter_button":
 this.showHideFilterButtonClicked
 };
 // existing code
 var isMobile = $('html').hasClass('mobile');
 this._mediator = new sm.Mediator(this, isMobile);
 // existing code
 }
 // existing functions
 showLeftPanel() {
 $('#content_panel_left')
 .removeClass('sidebar_panel_push_to_left');
 $('#content_panel_main')
 .removeClass('main_panel_push_to_left');
 }
 hideLeftPanel() {
 $('#content_panel_left')
 .addClass('sidebar_panel_push_to_left');
 $('#content_panel_main')
 .addClass('main_panel_push_to_left');
 }
 cyclePanels(forwardOrNext: string) {

Chapter 9

[327]

 $('#carousel-main-container').carousel(forwardOrNext);
 }
 showFilterButtonChangeClass(
 fromClass: string, toClass: string) {
 $('#show_filter_button')
 .removeClass(fromClass).addClass(toClass);
 }
 showHideFilterButtonClicked() {
 this._mediator.showHideFilterButtonClicked();
 }
 // existing functions
}

We have updated our PageViewLayout class to implement all of the functions
in the IMediatorFunctions interface. We have also included a private variable
named _mediator to hold an instance of the Mediator class, and set this up in
our constructor.

As with our other views that need to respond to click events, we have
set up an options.events object to tie a DOM click event on the
#show_filter_button DOM element (which is our show / hide button),
to the showHideFilterButtonClicked function.

We are using jQuery to check whether the main HTML element in
our page has a class named mobile. This class will be set by the
head.js utility script that we included in our index.html page at
the beginning of this chapter. In this way, we are able to determine
whether our application is being used on a mobile or desktop device.

The showLeftPanel and hideLeftPanel functions just include the jQuery snippets
to apply or remove the relevant classes, in order to slide the filter panel in or out.

The cyclePanels function calls our Bootstrap carousel function with either a 'next'
or 'prev' parameter, as we did in our demo HTML page.

The showFilterButtonChangeClass simply removes the fromClass CSS style
from our show_filter_button DOM element, and then adds the new toClass
CSS style. Removing and adding these CSS classes will switch the button displayed
from a left chevron (<) to a right chevron (>), or vica versa.

When a user clicks on the #show_filter_button DOM element, our
showHideFilterButtonClicked method will be invoked. As discussed earlier,
we are forwarding this call to the Mediator instance, so that the Mediator logic
can make the decision as to what to do when the button is clicked.

Let's Get Our Hands Dirty

[328]

Triggering State changes
To finish off our State and Mediator Design Pattern, we will now just need to call the
Mediator functions in the right places, in order to trigger the logic to move to
a different state.

The first place we call the moveToState function is in our handle_NotifyEvent,
when our ManufacturerDataLoaded event is triggered. This event only ever
occurs once in our application, and that is after the ManufacturerCollection
has been successfully loaded. We already have an event handler for this in our
PageViewLayout class, so let's update this function as follows:

handle_NotifyEvent(event: ev.INotifyEvent) {
 if (event.eventType == ev.EventType.ManufacturerDataLoaded) {
 // existing code
 this._manufacturerView =
 new mv.ManufacturerCollectionView();
 this._manufacturerView.render();

 this._mediator.moveToState(
 this._mediator
 .getCurrentMainPanelState().getStateType()
);
 }
 if (event.eventType == ev.EventType.BoardDetailBackClicked) {
 this._mediator.moveToState(
 this._mediator.getCurrentMainPanelState()
 .getStateType()
);
 }
}

Our first if statement checks for the ManufacturerDataLoaded event type, and
then creates a new ManufacturerCollectionView and calls its render function,
as we have seen previously. We then call the moveToState function, passing in the
Mediator's currentMainPanelState as an argument. Remember how we set the
initial main panel state in the Mediator's constructor, based on whether or not the
browser was on a mobile device? This call to moveToState will use that initial state
as a parameter, essentially starting the application in the correct state.

Our second if statement will trigger a moveToState when the user is in the
BoardDetail screen, and clicks on the back button on the header panel. This logic
again uses the currentMainPanelState to restore our board list to the correct state,
according to our business rules.

Chapter 9

[329]

The other function within the PageLayoutView that will trigger a call to
moveToState, is our handler for a BoardSelectedEvent:

handle_BoardSelectedEvent(event: ev.IBoardSelectEvent) {
 var boardDetailView = new bdv.BoardDetailView(
 { model: event.selectedBoard });
 boardDetailView.render();

 this._mediator.moveToState(ss.StateType.BoardDetail);
}

Whenever a user clicks on a board in the board list, a BoardSelectedEvent is
triggered, and we render the BoardDetailView. This BoardDetailView, however,
is on the second carousel panel, so we will need to move to the BoardDetail state
as part of this event handler.

Lastly, we will need to trigger the moveToState function when the user is in a
BoardDetailView, and clicks on the back button. To implement this, we will need
to raise a NotifyEvent, with the eventType set to BoardDetailBackClicked, from
our BoardDetailView, as follows:

export class BoardDetailView
 extends Marionette.CompositeView<bm.BoardSize> {
 constructor(options?: any) {
 // existing code
 options.events = {
 "click #prev_button": this.onPrev
 };
 super(options);
 // existing code
 }

 onPrev() {
 TypeScriptTinyIoC.raiseEvent(
 new
 bae.NotifyEvent(bae.EventType.BoardDetailBackClicked),
 bae.IINotifyEvent);
 }
}

Here, we have tied the onPrev function to the DOM click event on the #prev_button
element. Once a click is triggered, we simply need to raise a new NotifyEvent, with
the eventType set to BoardDetailBackClicked, in order to trigger a moveToState
function call.

With our State and Mediator Design Pattern classes in place, our sample application
is now complete.

Let's Get Our Hands Dirty

[330]

Summary
In this chapter, we built a full TypeScript single-page application from the ground
up. We started with an initial idea of how the application would be designed, and
how we wanted the pages to transition. We then built a pure HTML demo page
using out-of-the-box Bootstrap elements, and sprinkled a little JavaScript magic
to create a full demo page. We applied various styles to the HTML, previewed it
in Brackets, and tweaked the look and feel until we were happy.

Our next major step was to understand, and work with, the data structures that
we would need within our application. We wrote Jasmine unit tests and integration
tests to solidify our Backbone models and collections, and wrote the filtering
functions that we needed.

We then built up a set of Marionette views, and split up our demo HTML into
snippets for each of these views to use. We tied the views to our collections and
models, and used interfaces to work with data providers. Our application then
started to come together by working with real server-side data.

Finally, we discussed page transition strategies, and implemented a State and
Mediator Design Pattern to implement our required business logic.

Hopefully, you have enjoyed the journey of building an application from the
ground up—from concept to visualization, and then through implementation
and testing. We have finally arrived at an industrial strength, enterprise ready,
TypeScript single-page Marionette application.

[331]

Index
A
acceptance tests

about 158
versus integration tests 158
versus unit tests 158

AMD
about 197
application, rendering 226-228
Backbone 207
Backbone.Collections, using 215-218
Backbone views 219, 220
collection, rendering 223, 224
collections 207
jQuery plugins, using 229-232
model, creating 208, 209
models 207
Require config errors, fixing 213
require.config file 210-213
Text plugin, using 221, 222
using 206
views 207

Angular
$scope argument 147, 148
about 144
classes 146-148
inheritance 149
TypeScript compatibility 148

Angular 2.0 150
anonymous function 48, 49
any type 42
arrays 41
assembly 243
asynchronous functions

chaining 202-205
Asynchronous Module Loading. See AMD

B
Backbone

about 139, 207
ECMAScript 5, using 143
generic syntax, using 143
inheritance, using 140, 141
interfaces, using 142
TypeScript compatibility 144
views 219, 220

basic types
syntax 37
TypeScript 37

black box tests 157
Board Sales 272
Bootstrap

about 272
carousel panel 1 element 275
carousel panel 2 276
elements 274, 275
filter options 275
installing 273
show / hide panel button 275
using 274, 275

Bower package manager 185
Brackets

about 24
debugging, in Chrome 33
Grunt, using 30-32
installing 24, 25
live preview, using 27, 28
npm (Node package manager) 31
project, creating 26, 27
TypeScript, compiling 30
TypeScript file, creating 28, 29
URL 24

[332]

build server, selecting
Jenkins 160
TeamCity 161
Team Foundation Server (TFS) 160

C
callback function 53, 54
CI

about 158
benefits 159
build server, selecting 160
using 159

class
about 65
constructor overloads 125
constructors 66
creating, in Angular 146-148
creating, in ExtJs 150, 152
declaration file syntax 125
functions 67-69, 126
interface function definitions 70, 71
JavaScript syntax 124
namespaces 125
optional properties 128
properties 126

class constructor overloads
about 125
declaration file syntax 125
JavaScript syntax 125

class modifiers
about 82
class property accessors 84
constructor access modifiers 83, 84
static functions 85
static properties 86, 87

class namespaces
about 125
declaration file syntax 125
JavaScript syntax 125

closures
generating, with TypeScript class 10

collection
about 207
board types, finding 287, 288

manufacturer names, finding 286
rendering 223, 224
traversing 284, 285

CommonJs
about 198
asynchronous functions, chaining 202-205
Node module, creating 200, 201
Node module, using 201
Node, setting up in Visual Studio 198-200

config errors, Require
404 errors 214, 215
fixing 213
incorrect dependencies 214

constructor function 67
Continuous Integration. See CI
Curl

URL 198

D
data structure

about 277, 278
collection, filtering 288-290
collection, traversing 284
data interfaces 278-281
integration tests 282, 283

data types, TypeScript
arrays 41
enum 41, 44

declaration file
about 107
function overrides 120, 121
installing 135
interfaces 117-119
module keyword 115-117
rounding out 122
syntax reference 123
writing 112-114

declaration syntax reference
about 123
class constructor overloads 125
classes 124
class functions 126
class namespaces 125
class properties 126

[333]

function overrides 123
function signatures 127
functions, merging with module

definition 128
global functions 127
nested namespaces 124
optional properties 128
static functions 126
static properties 126

default parameters 50, 51
definition files

downloading 132, 133
installing 138

DefinitlyTyped repository
about 8, 131
URL 8, 131

Dependency Injection (DI)
about 144, 243
versus Service Location 244, 245

Dependency Inversion principle 237
Dependency resolution

about 243
Dependency Injection 243
Service Location 243

design pattern 65, 66
Domain Event Pattern

about 255, 256
error notifications, displaying 267-269
event, firing 262, 263
event handler, registering 264-267
handler interface 257-259
message interface 257-259
multiple event handlers 259-262
problem space 256
reference link 256

DOM events, Marionette
about 310, 311
BoardDetailView, rendering 313-315
Detail view event, triggering 312, 313

done() function
using 173

duck-typing method 40, 41

E
ECMAScript 3, 4
ECMAScript 5

using, with Backbone 143
Embedded JavaScript (EJS) 108
encapsulation 8-10
enum

about 43-46
const enums 46

error notifications
displaying 267-269

event
event handler, registering 264-267
firing 262, 263

explicit casting 42, 43
Extension Manager

using 134, 135
ExtJs

about 150
classes, creating 150-152
type casting, using 152, 153
TypeScript compiler 153
URL, for documentation 150

F
Factory class

about 79, 80
using 80, 81

Factory Design Pattern
about 63, 77
business requirements 77
Factory class 79, 80
Factory class, using 80
IPerson interface 78
Person base class 78
returned objects 79
tasks 77, 78

function definition
merging, with module definition 128

function overrides
about 123
declaration file syntax 124
JavaScript syntax 124

[334]

functions
about 47
anonymous functions 48
arguments variable 51-53
callbacks 53-58
default parameters 50, 51
optional parameters 49, 50
overloads 59, 60
scope 56-58
signatures 54, 55
union types 60, 61

function signatures
about 54, 55, 127
declaration file syntax 127
JavaScript syntax 127

G
Gang of Four (GoF) 235
generics

about 87
classes, instantiating 88, 89
interfaces 94, 95
syntax 87, 88
type T, constraining 92
type T, using 90, 91
used, for checking interface 102-105

generic syntax
using, with Backbone 143

getProperties function 74
global functions

declaration file syntax 127
JavaScript syntax 127

global variables 108, 109
Grunt

about 30
URL 30

H
Handlebars

URL 220
handler interface 257-259
HTML

JavaScript code blocks, using 110

I
IMediatorFunctions interface

implementing 326, 327
Immediately Invoked Function

Expression (IIFE) 76
inferred typing 39
inheritance

about 71, 149
Angular, versus Backbone 149
class inheritance 72
constructor, overloading with super

keyword 73, 74
function, overloading with super

keyword 73, 74
interface inheritance 71, 72
JavaScript closures 75, 76
using, with Backbone 140, 141

installation
declaration files 135
definition files 138

integration tests
about 157, 182
detailed test results 185
page elements, searching 190, 191
simulating 182-184
test results, logging 186-190
versus acceptance tests 157
versus unit tests 157

IntelliSense 5
interface

about 64, 65
programming 236
using, with Backbone 142

Interface Segregation principle 237
Inversion of Control (IOC) 105

J
Jasmine

about 161
asynchronous tests 171, 172
data-driven tests 167
DOM events 175, 176

[335]

done() function, using 173
fixtures 174, 175
matchers 165 page elements, working with

192-194
running, ways 176
SpecRunner.html file 163, 164
spies, using 168-170
spies, using as fakes 170, 171
teardown 166
test 162
test startup 166
URL 161

Jasmine, runners
about 176
Karma 178, 179
Protractor 180
Testem 177, 178

JavaScript
about 1, 36
basic types 36
framework, selecting 138, 139
functions 47
variables, defining 36

JavaScript code blocks
structured data 111, 112
using, in HTML 110

Jenkins 160
jQuery plugins

using 229-232

K
Karma 178, 179

L
Liskov Substitution principle 237

M
Marionette

about 271
DOM events 310
views 297

Marionette application
building 290-293
main collection, loading 294-297

Marionette views
about 297, 298
BoardSizeView class 302
BoardView class 300, 301
FilterCollection class 305-308
filtering 308, 309
filtering, with IFilterProvider

interface 304, 305
ManufacturerCollectionView class 298, 299
ManufacturerView class 300

MaxUnit
URL 161

message interface 257-259
model

about 207
creating 208

Model View Presenter (MVP) 155
Model View Something (MV*) 155
Model View ViewModel (MVVM) 155
Model View Whatever (MVW) 155
modularization 197
module

merging 122, 123
multiple event handlers 259-262

N
nested function 56
nested namespaces

declaration file syntax 124
JavaScript syntax 124

Node module
creating 200, 201
using 201

NuGet
about 134
declaration files, installing 135
Extension Manager, using 134, 135
Package Manager Console, using 136
using 134

[336]

O
Open Closed principle 237

P
Package Manager Console

package names, searching 136
packages, installing 136
specific version, installing 136
using 136

packages, TSD
querying 137

page layout
about 272
board detail panel 273
board listing panel 273
Bootstrap, installing 273
Bootstrap, using 274
filter panel 273
footer panel 273
viewing panel 273

print function 66
private accessors 10, 11
properties, class

declaration file syntax 126
JavaScript syntax 126

Protractor
about 180
Selenium, using 180-182
URL 180

public accessors 10, 11

Q
QUnit

URL 161

R
reflection 236
Representational State Transfer (REST) 157
require.config file 210-213
runtime

interface, checking with generics 102-105
object, checking for function 101
reflection-like capabilities implementation,

issues 100

reflection process 98, 99
type, checking 96-98

S
Scripts directory 135
Selenium IDE

URL 191
Separation of Concerns principle 197
Service Location

about 243
versus Dependency Injection 244, 245

Service Locator
building 238
classes, registering against named

interfaces 247-250
implementing 245
named interfaces, writing 246
problem space 238-240
service, creating 240-242
testing 254
using 250-253

Single Responsibility principle 236
SOLID principles

about 236
Dependency Inversion 237
Interface Segregation 237
Liskov Substitution 237
Open Closed 237
Single Responsibility 236

State Design Pattern
about 315
business rules 315
changes, triggering 328, 329
class diagram 317, 318
concrete classes 318-320
IMediatorFunctions interface,

implementing 326, 327
Mediator class 320-323
Mediator class, moveToState

function 323-325
static functions

about 126
declaration file syntax 126
JavaScript syntax 126

static properties 126

[337]

T
TeamCity 161
Team Foundation Server (TFS) 160
Test Driven Development (TDD)

about 156
steps 156

Testem
about 177, 178
URL 177

Text plugin
using 221, 222

third-party libraries
JavaScript framework, selecting 138, 139
using 138

TSD
definition files, installing 138
packages, querying 137
URL 137
using 137
wildcards, using 138

type casting
using 152, 153

TypeScript
about 2, 3, 37
any type 42
benefits 4
compatibility, with Angular 148
compatibility, with Backbone 144
compiler 153
data types 41
DefinitelyTyped 8
duck-typing 40, 41
ECMAScript 3
encapsulation 8
explicit casting 42, 43
inferred typing 39
JavaScript libraries, defining 6, 7
private accessors 10
public accessors 10
strong typing 5
syntactic sugar 6
syntax 37-39

TypeScript Definition Manager. See TSD
TypeScript IDEs

about 12
Brackets 24
debugging, in Visual Studio 15, 16
Visual Studio 2013 12
WebStorm 17

U
union types

aliases 61, 62
guards 61

unit tests
about 157
versus acceptance tests 157
versus integration tests 157

User Acceptance Testing (UAT) 185

V
Visual Studio

Node, setting up TypeScript,
debugging 15, 16, 198-200

Visual Studio 2013
about 12
default project settings 14, 15
project, creating 13, 14

W
WebStorm

about 17
debugging, in Chrome 23
default files 18-21
index.html file, creating 18
project, creating 18
URL 17
web page, running in Chrome 22

WebStorm file watcher 19
white box tests 157
wildcards, TSD

using 138
Windows Workflow Foundation (WF) 160

Thank you for buying
Mastering TypeScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

TypeScript Essentials
ISBN: 978-1-78398-576-0 Paperback: 182 pages

Develop large scale responsive web applications with
TypeScript

1. Explore the key features of TypeScript to
develop web applications of your own.

2. Take advantage of the static typing system to
improve the web development experience and
add stability to your code.

3. Discover how to effectively use type
annotations, declaration files, and ECMA script
integration with lots of code and examples.

Visual Studio 2013 Cookbook
ISBN: 978-1-78217-196-6 Paperback: 332 pages

Over 50 simple but incredibly effective recipes to get
you up and running with the powerful features of
Visual Studio 2013

1. Provides you with coverage of all the new
Visual Studio 2013 features regardless of your
programming language preference.

2. Recipes describe how to apply Visual Studio to
all areas of development: writing, debugging,
and application lifecycle maintenance.

3. Straightforward examples of building apps for
Windows 8.1.

Please check www.PacktPub.com for information on our titles

Mastering JavaScript Design
Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1. Learn how to use tried and true software
design methodologies to enhance your
Javascript code.

2. Discover robust JavaScript implementations
of classic as well as advanced design patterns.

3. Packed with easy-to-follow examples that
can be used to create reusable code and
extensible designs.

Bootstrap Site Blueprints
ISBN: 978-1-78216-452-4 Paperback: 304 pages

Design mobile-first responsive websites with
Bootstrap 3

1. Learn the inner workings of Bootstrap 3
and create web applications with ease.

2. Quickly customize your designs working
directly with Bootstrap's LESS files.

3. Leverage Bootstrap's excellent
JavaScript plugins.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: TypeScript – Tools and Framework Options
	What is TypeScript?
	EcmaScript
	The benefits of TypeScript
	Compiling
	Strong Typing
	Type definitions for popular JavaScript libraries
	Encapsulation
	Public and private accessors

	TypeScript IDEs
	Visual Studio 2013
	Creating a Visual Studio Project
	Default project settings
	Debugging in Visual Studio

	WebStorm
	Creating a WebStorm project
	Default files
	Running the web page in Chrome
	Debugging in Chrome

	Brackets
	Installing Brackets
	Creating a Brackets project
	Using Brackets live preview
	Creating a TypeScript file
	Compiling our TypeScript
	Using Grunt
	Debugging in Chrome

	Summary

	Chapter 2: Types, Variables and Function Techniques
	Basic types
	JavaScript is not strongly typed
	TypeScript is strongly typed
	Type syntax
	Inferred typing
	Duck-typing
	Arrays
	The any type
	Explicit casting
	Enums
	Const enums

	Functions
	Anonymous functions
	Optional parameters
	Default parameters
	The arguments variable
	Function callbacks
	Function signatures
	Function callbacks and scope
	Function overloads
	Union types
	Type guards
	Type aliases

	Summary

	Chapter 3: Interfaces, Classes and Generics
	Interfaces
	Classes
	Class constructors
	Class functions
	Interface function definitions

	Inheritance
	Interface inheritance
	Class inheritance
	Function and constructor overloading with super
	JavaScript closures

	The Factory Design Pattern
	Business requirements
	What the Factory Design Pattern does
	The IPerson interface and the Person base class
	Specialist classes
	The Factory class

	Using the Factory class

	Class modifiers
	Constructor access modifiers
	Class property accessors
	Static functions
	Static properties

	Generics
	Generic syntax
	Instantiating generic classes
	Using the type T
	Constraining the type of T
	Generic interfaces
	Creating new objects within generics

	Runtime type checking
	Reflection
	Checking an object for a function
	Interface checking with generics

	Summary

	Chapter 4: Writing and Using Declaration Files
	Global variables
	Using JavaScript code blocks in HTML
	Structured data

	Writing your own declaration file
	The module keyword
	Interfaces
	Function overrides
	Rounding out our definition file

	Module merging
	Declaration Syntax Reference
	Function overrides
	Nested namespaces
	Classes
	Class namespaces
	Class constructor overloads
	Class properties
	Class functions
	Static properties and functions
	Global functions
	Function signatures
	Optional properties
	Merging functions and modules

	Summary

	Chapter 5: Third Party Libraries
	Downloading definition files
	Using NuGet
	Using the Extension Manager
	Installing declaration files
	Using the Package Manager Console
	Installing packages
	Searching for package names
	Installing a specific version

	Using TypeScript Definition Manager
	Querying for packages
	Using wildcards
	Installing definition files

	Using third party libraries
	Choosing a JavaScript framework

	Backbone
	Using inheritance with Backbone
	Using interfaces
	Using generic syntax
	Using ECMAScript 5
	Backbone TypeScript compatibility

	Angular
	Angular classes and $scope
	Angular TypeScript compatibility

	Inheritance – Angular versus Backbone
	Angular 2.0

	ExtJs
	Creating classes in ExtJs
	Using type casting
	ExtJs specific TypeScript compiler

	Summary

	Chapter 6: Test Driven Development
	Test Diven Development
	Unit, integration and acceptance tests
	Unit tests
	Integration tests
	Acceptance tests

	Using continuous integration
	Benefits of continuous integration
	Selecting a build server
	Team Foundation Server
	Jenkins
	TeamCity

	Unit testing frameworks
	Jasmine
	A simple Jasmine test
	Jasmine SpecRunner.html file
	Matchers
	Test startup and teardown
	Data-driven tests
	Using spies
	Using spies as fakes
	Asynchronous tests
	Using the done() function
	Jasmine fixtures
	DOM events

	Jasmine runners
	Testem
	Karma
	Protractor
	Using Selenium

	Integration tests
	Simulating integration tests
	Detailed test results
	Logging test results
	Finding page elements
	Working with page elements in Jasmine

	Summary

	Chapter 7: Modularization
	CommonJs
	Setting up Node in Visual Studio
	Creating a Node module
	Using a Node module
	Chaining asynchronous functions

	Using AMD
	Backbone
	Models, collections and views
	Creating a model
	The require.config file
	Fixing Require config errors
	Using Backbone.Collections
	Backbone views
	Using the Text plugin
	Rendering a collection
	Creating an application
	Using jQuery plugins

	Summary

	Chapter 8: Object-oriented Programming with TypeScript
	Program to an interface
	SOLID principles
	Single Responsibility
	Open Closed
	Liskov Substitution
	Interface Segregation
	Dependency Inversion

	Building a Service Locator
	The problem space
	Creating a Service

	Dependency Resolution
	Service Location
	Dependency Injection
	Service Location versus Dependency Injection

	A Service Locator
	Named interfaces
	Registering classes against named interfaces
	Using the Service Locator
	Testability

	The Domain Events Pattern
	Problem space
	Message and Handler Interfaces
	Multiple Event Handlers
	Firing an event
	Registering an Event handler for an Event
	Displaying error notifications

	Summary

	Chapter 9: Let's Get Our Hands Dirty
	Marionette
	Bootstrap
	Board Sales
	Page layout
	Installing Bootstrap
	Using Bootstrap

	Data structure
	Data interfaces
	Integration tests
	Traversing a collection
	Finding manufacturer names
	Finding board types

	Filtering a Collection

	Marionette application, regions and layouts
	Loading the main collection.
	Marionette views
	The ManufacturerCollectionView class
	The ManufacturerView class
	The BoardView class
	The BoardSizeView class
	Filtering using the IFilterProvider interface
	The FilterCollection class

	Filtering views
	DOM events in Marionette
	Triggering a Detail view event
	Rendering the BoardDetailView

	The State Design Pattern
	Problem space
	State class diagram
	Concrete State classes

	The Mediator class
	Moving to a new State

	Implementing the IMediatorFunctions interface
	Triggering State changes

	Summary

	Index

