
www.allitebooks.com

http://www.allitebooks.org

Mastering Unity 2D Game
Development

Become an expert in Unity3D's new 2D system, and
then join in the adventure to build an RPG game
framework!

Simon Jackson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Unity 2D Game Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 2211014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-734-7

www.packtpub.com

Cover image by Simon Jackson (darkside@zenithmoon.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Simon Jackson

Reviewers
Trond Abusdal

Ben Beagley

Fredrik Kellermann

Wei Wang

Simon Wheatley

Commissioning Editor
James Jones

Acquisition Editor
James Jones

Content Development Editor
Priyanka S

Technical Editors
Novina Kewalramani

Humera Shaikh

Copy Editors
Roshni Banerjee

Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mehreen Deshmukh

Tejal Soni

Priya Subramani

Graphics
Valentina D'silva

Disha Haria

Yuvraj Mannari

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Simon Jackson has been a tinkerer, engineer, problem solver, and solution
gatherer ever since his early years. In short, he loves to break things apart, figure
out how they work, and then put them back together; usually better than before.

He started way back when with his first computer, the Commodore Vic20. It was
simple, used a tape deck, and forced you to write programs in basic or assembly
language; those were fun times. From there, he progressed through the ZX Spectrum
+2 and the joyous days of modern graphics, but still with the 30 minutes load times
from a trusty tape deck. Games were his passion even then, which led to many
requests for another gaming machine, but Santa brought him an Amstrad 1640, his
first PC. From there, his tinkering and building exploded, and that machine ended
up being a huge monstrosity with so many add-ons and tweaked fixes. He was
Frankenstein, and this PC became his own personal monster crafted from so many
parts. Good times.

This passion led him down many paths, and he learned to help educate others on
the tips and tricks he learned along the way; these skills have equipped him well
for the future.

Today, he would class himself as a game development generalist. He works with
many different frameworks, each time digging down, ripping them apart, and
then showing whoever would listen through his blog, videos, and speaking events
on how to build awesome frameworks and titles. This has been throughout many
generations of C++, MDX, XNA (what a breath of fresh air that was), MonoGame,
Unity3D, The Sunburn Gaming Engine, HTML, and a bunch of other proprietary
frameworks—he did them all. This gives a very balanced view of how to build and
manage many different types of multiplatform titles.

www.allitebooks.com

http://www.allitebooks.org

He didn't stop there as he regularly contributed to the MonoGame project, adding new
features and samples, and publishing it on NuGet. He also has several of his own open
source projects and actively seeks any new and interesting ones to help with.

By day, he is a lowly lead technical architect working in the healthcare industry
seeking to improve patients' health and care through better software (a challenge to
be sure). By night, he truly soars! Building, tinkering, and educating while trying to
push game titles of his own. One day they will pay the bills, but until then, he still
leads a double life.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank my family above all, my wife, Caroline, and my four amazing
children (Alexander, Caitlin, Jessica, and Nathan) for putting up with me and giving
me the space to write this title as well as my other extravagances—they truly lift me
up and keep me sane. They are my rock, my shore, my world.

I would also like to thank Jamie Hales of PixelBalloon who generously donated some
content for the Appendix and gave me new ideas and insights to look in to.

A big shout out to all the guys who ran and helped me out with the Unity porting
events, which I supported throughout the course of this book, namely Lee Stott,
Simon Michael, Riaz Amhed, Louis Sykes, Ben Beagley, Josh Naylor, Mahmud
Chowdhury, and Michael Cameron. Also, the Unity evangelists who were badgered
throughout the events and were pumped for hidden details: Joe Robins and Andy
Touch. Truly a great crowd to get game developers energized and their titles onto
as many platforms as possible. Lots of weekends lost to writing, but the book was
better, for it was with so many different experiences.

Finally, thanks to the reviewers of this title who kept me grounded and on target,
although that didn't help to keep the page count low—thanks for your support guys.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Trond Abusdal first got into programming when writing a modification for
Quake2 with a childhood friend, but has been interested in computers since his
parents bought him and his brother a C64 in the early 90s.

This interest lead to a Bachelor's degree in Computer Science in 2006, after which he
started working for Terravision, a company that uses game technologies as a tool for
education and visualization. In 2008, he first got introduced to Unity, which is still
his main game development tool, although the knowledge of other technologies and
tools often come in handy.

Since 2010, he has been a programmer and more recently a partner at Rock Pocket
Games, which makes games for a variety of different platforms, both client projects
and internal projects.

Ben Beagley is a game development student at the University of Portsmouth,
specializing in programming with some design. Currently, he is in his final year after
being placed as a member of a small indie development company, the Chromium
Gamesroom, that uses Unity as their primary development tool. He also works with
Microsoft, promoting development for Windows 8 / Windows Phone 8 with Unity,
regularly attending events and helping other Unity developers port their titles.
When not working, he enjoys quiet nights in with his girlfriend watching Netflix and
getting beaten in all his favorite video games. He has a new development blog where
he posts about current projects and uploads old ones at www.benbeagley.com.

www.allitebooks.com

http://www.allitebooks.org

Fredrik Kellermann is the owner and founder of the independent game
development studio CasualGames.nu. He has been involved with the Windows
Phone platform since it was released in 2010 and has also been a beta tester of the
early version of Unity3D for the Windows Phone platform. Casualgames.nu has
since released a number of successful games on the Windows Phone platform
reaching more than 4 million downloads.

Wei Wang made his first iOS casual game with Unity3D while in his college, which
was a huge success with more than 5 million downloads over the world. Since then,
he discovered that it is a great thing to create great games. After earning his Master's
degree from Tsinghua University (one of the best universities of China), he joined
a game company in Japan, and now he is trying to create interesting games with
Unity3D.

Right now, he is a skilled engineer and always eager to learn more. He now lives
in Kawasaki with his wife. You can know more about him from his project page
http://project.onevcat.com or find him on his blog at http://onevcat.com
(Chinese). You can also follow him on Twitter at @onevcat.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Overview 7

Getting assets 10
Collection of sites 10

Welcome to 2D 11
The new 2D mode 11
Sprites 12

Sprite Renderer 13
Sprite Editor 14
Spritesheets 15
Texture atlases 16
Sprite meshes 17
The Box2D physics system 17
The new animation Dope Sheet 19

Other Unity 4.3 improvements 19
Improved Mecanim performance 20
The Windows Phone API improvements and Windows 8.1 support 20
Dynamic Nav Mesh (Pro version only) 21
Editor updates 22
MonoDevelop 4.01 23
Movie textures 24

Summary 25
Chapter 2: Character Building 27

Getting your project started – the right way 28
Structure 28
Object naming 30

Understanding components 31
Accessing components using a shortcut 32
A better way to use components – referencing 32
An even better way 33

Table of Contents

[ii]

Creating the project 34
Classes 35

The object-orientated design 36
The game structure 37

The common game object 38
More later 40

Planning behaviors 40
Behaviors for the common game object 41
Behaviors for the player's character 42

Introducing the Unity sprite system 43
Importing sprites 44

Texture type – sprite 45
Sprite Mode – single/multiple 45
Packing tag 45
Pixels to units 45
The Sprite Editor button 46

Sprite Editor 46
Sprite splitter (slicer) 47
View controls 49
Sprite region manipulation 50

Putting it together 51
Importing our main character 51
The hero 53
Controlling the hero 54

Going further 57
Summary 58

Chapter 3: Getting Animated 59
Sprite animation 59

Animation components 60
Animation controllers 60
Animation clips 60
The Animator component 61

Setting up animation controllers 62
Setting up animation clips 64

Manual animation clip creation 64
Automatic animation clip creation 67
Animator Dope Sheet 70

Putting it together 73
Setting up the animation controller 74
Adding your first animation clip (idle) 75
Adding another animation clip (run) 76
Connecting animation states 77
Accessing controllers from a script 79

Table of Contents

[iii]

Extra credit 80
Getting curvy 84

Going further 85
Summary 86

Chapter 4: The Game World 87
Backgrounds and layers 87

To slice or not to slice 88
The town background 89
The town buildings 90
The extra scenery 92

Building the scene 94
Adding the town background 95
Sprite sorting layers 96
Sprite sorting order 96
Updating the scene Sorting Layers 97

Working with the camera 99
Comparing Update, FixedUpdate, and LateUpdate 102
The perils of resolution 104
A better FollowCamera script 107

Transitioning and bounds 108
Towns with borders 108
Journeying onwards 111
Planning for the larger picture 115

Backgrounds and active elements 119
Parallaxing 119
Foreground objects 120

Shaders and 2D 121
Going further 126
Summary 126

Chapter 5: NPCs and Interactions 127
Considering an RPG 127
Advanced programming techniques 129

Singletons and managers 129
The manager approach – using empty game objects 130
The singleton approach – using the C# singleton pattern 131

Communicating between game objects 134
Delegates 134

The configurable method pattern 135
The delegation pattern 137
Compound delegates 139

Table of Contents

[iv]

Events 141
Messaging 144
A better way 145

Background tasks and Coroutines 149
Enter Coroutines 150
IEnumerator 151
Yielding 152
Starting Coroutines 152
Closing the gap 153

Serialization and scripting 154
Saving and managing asset data 155
Using the serialized files in the editor 158
Accessing the .asset files in the code 159

Putting it all together 160
Getting the NPC's talking 164

The conversation object 165
Saving and serializing the object for later 165
The Conversation Component 170

Building a basic conversation system 170
The manager 170
Starting a conversation 171
Displaying the conversation 171
Adding more 174

Connecting the dots 177
Going further 181
Summary 182

Chapter 6: The Big Wild World 183
The larger view 183

Types of maps 184
Fixed maps 184
Generated maps 186

2D doesn't mean you have to use only 2D 188
Going procedural 189
Screen space and world space 190

Putting it together 191
Adding the map 192
Adding places of interest 193
Creating the MapPoint prefabs for reuse 194
Updating the NavigationPrompt script 197
Updating the NavigationManager script 197
Traveling by click or touch 198

Managing input 199

Table of Contents

[v]

Managing input priorities 201
Managing input order 204
Getting curvy 205
Fixing the start location 207
Traveling too far 208

Transitions 209
Updating level loading to use fading 215

Updating build settings to include new scenes 216
Going further 217
Summary 218

Chapter 7: Encountering Enemies and Running Away 219
Event systems 219
Exploring randomness 220

Planning for random code/generation 221
True randomness 223

Basic Artificial Intelligence 223
State machines 224

Defining states 225
Simple singular choice 226
Planning for multiple cases 227
State managers 228

Sensors 230
Putting it together 230

Building the new scene 230
Adding the first enemy 231
Spawning the horde 236

Getting back home 242
The missing random piece 246
One last thing 249

Going further 249
Summary 250

Chapter 8: Shopping for Weapons 251
Why do we shop? 251
The power of an item 253
Building your shop 254
Laying out your inventory 255

Rule of '99 255
Encumbrance system 256
Slot-based system 257
A mini game 257
Real world 258

Table of Contents

[vi]

Getting paid 258
Paid 258
Paid with trial 258
Ad supported 259
In-app purchase 261
In-game currency 263

Putting it together 263
Gathering the shop assets 263
Building the shop scene 265
Creating inventory items 268
Managing the shop 269
Adding 2D button behaviors 274
Updating the player inventory definition 274
Stocking the shop 274
Leaving the shop 276
Entering the shop 278
Managing your inventory 282
Adding the Player inventory behavior 285

Going further 286
Summary 287

Chapter 9: Getting Ready to Fight 289
Efficient RPG UI overlays 290

The adventurer's overlay 290
A context-sensitive overlay 291
Modern floating UI approach 292
Balancing the need 293

Putting it together 293
The battle state manager 293
Getting to the state manager in the code 296
Starting the battle 300
Adding a little flair 301
Bring on the GUI 302

The command bar 303
The command button 311
Adding the command bar to the scene 313

Selecting the weapon 316
Selecting a command button 317
Managing the selections from the command bar 318
Updating the BattleManager state with selections 319
Updating the BattleManager state with a weapon 322

Going further 323
Summary 324

Table of Contents

[vii]

Chapter 10: The Battle Begins 325
Proving ground 325
Leveling up 326
Balancing 327
Putting it together 327

Preparing the BattleManager script 327
Beefing up the enemy 328

The enemy profile/controller 329
Updating the Goblin prefab 332
Setting up the enemy profile in the code 333

Selecting a target 334
The selection circle prefab 334
Adding selection logic to the EnemyController class 335

Attack! Attack! 340
The pesky Goblin reacts with 3D particles 342

Mixing up 2D and 3D 342
Particle effects and 2D 342
Adding the deathly sprites 343
Creating the material for the particle effect 343
Restructuring the Goblin prefab 344
Adding the particles 345
The death animation 348
Adding particles to the animation 351
Connecting the dots 353
Making the new GoblinEnemy game object a prefab and adding it to the battle 354
Houston, we have a problem! 355

The final run-through 356
Going further 357
Summary 357

Chapter 11: Onward Wary Traveler 359
Extending the editor 359

The property drawers 360
Property drawers examples 361

Custom editors 365
The editor window 369
Gizmos 372
Building your editor menus 374

Adding a MenuItem attribute 374
Enabling/disabling a MenuItem attribute 375
Adding shortcut keys to a MenuItem attribute 376
Adding contextual MenuItems 376

Running scripts in the Editor folder 378
Alternative approaches 379

Table of Contents

[viii]

Building in-game menu structures 383
The screens 383

Splash screens 383
Loading screens 384
The main menu 384
Save slots/level selections 385
Settings pages 385
About the screen 385
Privacy policy 385
Pause screens 386
Additionals (purchasing, achievements, leaderboards, and so on) 387
Social 387

The flow 387
Working with settings 388

Using PlayerPrefs 388
Serializing your data 390
Saving data to disk 392
Modeling your saved data 393
Making your game save and load functions 397
Testing your Save and Load functions 399
Backing up to the Web 401

Going further 404
Summary 404

Chapter 12: Deployment and Beyond 405
Handling platform differences 406

Preprocessor directives 407
Updating the save system for another platform 409
Build note 412

Getting access to Unity 413
Accessing the UnityEngine namespace 413
The static classes 414

Access to the platform 415
Static events in your Unity project 415
Embedding platform DLLs 416

Native plugins (Pro only) 420
Pushing code from Unity3D 421

Processing assets 421
Processing the build 422

Building your assets 423
Packaging gotchas 426
Marketing your game 428
Summary 428

Table of Contents

[ix]

Appendix: Additional Resources 429
Scripting resources 429

Extending the editor 429
Even more AI 430
Procedural generation 431
Advanced coding 431
Other scripting resources 432

Useful assets 432
Sources of art and SFX 434
Highlights from the Web 435

Index 437

www.allitebooks.com

http://www.allitebooks.org

Preface
Unity3D has long been viewed as a massive 3D game-making middleware system,
with lots of power and an easy-to-use editor. Now, with 2D games back in fashion,
Unity has created a 2D toolset for developers with the know-how to create great,
customized games.

If you are looking for a book that will show you how to make a fully functional,
customizable game product with popular game functionality, then this is the book
for you. You will learn how to build an RPG game framework, learning lots of tips
and tricks along the way, from advanced C# scripting to getting the most out of
Unity's built-in features such as Mecanim and curves, but in ways you may have
not even considered.

While creating your own character with its very own little village, you will
come to learn about all the new 2D features and how to make the most out of
them. Then, you will dive into the big wild world with your character, discovering
how to manage different types of scenes, scripting random events, and the dreaded
encountering of enemies. You will learn how to make your character ready for
battles (with a little shopping) and engaging hordes of angry creatures just
rumbling for a fight; how they react is completely up to you.

The one thing this title doesn't cover is audio, as this hasn't changed in Unity 4.3.
With so much preparation for Unity 5, it's fair to say that big things are coming;
however, there is more than enough to really sink your teeth into.

By the end of this book, you will be able to architect, create, deploy, and integrate
your game with all of your intended platforms, and you'll also have the knowledge
to build and customize the Unity editor and the games you create with confidence.
You will also be schooled with tricks of the trade on marketing and monetization,
as well as targeting as many platforms as possible, with a keen focus on how to best
profit from your title.

Preface

[2]

The lessons you will learn in this book will also set you in a good stead for Unity 5 as
everything has been checked in the latest beta's. In fact, there is only one slight code
change required at the time of writing (which is highlighted in Chapter 9, Getting
Ready to Fight).

The screens may change slightly, but it all just works. This is both a testament to
Unity 5's ability to upgrade projects and that the 2D system is rock solid; everything
you learn now will be valid for Unity 5.

No goblins were hurt during the production of this title; however, a few were extremely
grumpy about their poor working conditions.

What this book covers
Chapter 1, Overview, starts with a look at what Unity has brought to the table from
Version 4.2. In this chapter, we will have a walkthrough of the new 2D system and
other new features.

Chapter 2, Character Building, involves rolling up our sleeves as we dig in and start
working with 2D assets and sprites, thereby uncovering the sprite editor and a host
of other interesting features.

Chapter 3, Getting Animated, introduces that animation is a key in any 2D title; you
need more than just a picture to tell a story, so we delve into the new and improved
Unity animation system and dope sheet. Beware, curves ahead.

Chapter 4, The Game World, explains that with the basics in hand, we will build our
home town and let our character run free within it.

Chapter 5, NPCs and Interactions, explains that an RPG game without people to talk
to would be kind of dull. Here, we will build messaging and conversation systems,
readying ourselves to leave the nest and venture beyond. Advanced coding, engage.

Chapter 6, The Big Wild World, widens the scope of what we can see, and discusses art
and assets, building a map view for the player to navigate in. If you look closely, you
can just about see your house from here.

Chapter 7, Encountering Enemies and Running Away, discusses that the world is a big and
scary place; you stumble upon a crowd of goblins snacking on their latest meal (who
knows what's in that pot), and then get scared and run away. Here, we go through
building a battle scene, including setting up Mecanim as a state and AI machine.

Preface

[3]

Chapter 8, Shopping for Weapons, dives into lots of shiny things! Leveraging our
2D skills, we build a simple shop scene, reusing our messaging system to add
interactivity and expand the player's structure adding an inventory. Plus, we
look at the other graphical ways of displaying the player's inventory with a cool
command bar implementation.

Chapter 9, Getting Ready to Fight, makes us ready to rumble! We have a battle
scene but no battle engine yet. Now, it's time to expand on what we have created
with a turn-based battle engine, flexing Mecanim's muscles in ways you probably
haven't considered.

Chapter 10, The Battle Begins, depicts us opening fire (or at least the axe or sword
we came with) on the unsuspecting goblins and shattering their tiny bodies with a
gratuitous blood scene (PEGI rating pending). From here, it's up to you how you
wish to proceed.

Chapter 11, Onward Wary Traveler, describes that we have a game framework—all it
needs is content and some packaging. So, we'll look at what's involved in finishing
your game. Not stopping there, we will look at how you can extend the editor to
tame this wild beast to work for us and make it build our content for us (or at the
very least, make it a whole lot easier).

Chapter 12, Deployment and Beyond, covers the time taken to tackle the last piece of
the puzzle, putting your game on a device. We walk through what it means to be
multiplatform and build a trustworthy save/load system that will work on multiple
platforms, not just one. We finish with a handy marketing section, aimed to arm you
and help make your final product successful in the marketplace.

Appendix, Additional Resources, has a heap of assets, links, and information resources
to help you with your game building travels.

What you need for this book
In order to follow this book, you will need the Unity 3D software available at
http://unity3d.com/unity/download.

You can use any version of Unity from Version 4.3, but I recommend the latest 4.x
version, which at the time of writing was Version 4.5 (all screenshots have been
updated to this version).

You must be familiar with Unity's basic workflow: the words GameObject,
components, and Editor/Inspector should be familiar to you.

http://unity3d.com/unity/download

Preface

[4]

All the code pertaining to coding skills are available here and explained and
commented where appropriate. So, if you are not familiar with them, you will
still be able to understand them.

While working with this book, we will be using several freely available assets from
the Web, plus a few I cobbled together myself (using my poor programmer art skills).
All of these are available as a separate package download along with the book's code
downloads mentioned further.

Who this book is for
Whether you are a beginner starting to work with Unity 3D, an intermediate, or a
professional developer looking to make use of the new 2D features of Unity, this
book is for you.

The book also covers some intermediate and advanced coding topics, which are
explained for developers of any level such that they are easy to follow.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Using a path-like name such as playerScene1BounceToWallScript."

A block of code is set as follows:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;
 targetScript.cameraTarget = Handles.PositionHandle
 (targetScript.cameraTarget, Quaternion.identity);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are highlighted:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;

Preface

[5]

 targetScript.cameraTarget = Handles.PositionHandle
 (targetScript.cameraTarget, Quaternion.identity);
 Handles.SphereCap(0, targetScript.cameraTarget,
 Quaternion.identity, 2);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
easily change the profile that the editor is using at any time by navigating to Edit |
Project Settings| Editor and changing the Default Behavior Mode option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Additionally, the author has provided a support forum for the book. This forum
provides direct support from the author on your queries and any forthcoming
announcements regarding the title. You can find this forum at http://bit.ly/
MasteringUnity2DForums.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/7347OT_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/7347OT_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/7347OT_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Overview
Arguably, the most important part of any project is knowing where to start and what
tools you have in your war chest before setting out to make your game. Here, we will
walk through all the new features of the 2D system that were introduced in Version
4.3 of Unity.

Since this is the first chapter, let's cover how this book is structured. The main aim
of this book is to build a fully functional Role Playing Game (RPG) style game
framework and cover all the main aspects of any good and well-rounded RPG
game, including the following features:

• Character development and setup
• Building your main game view
• A wider world view
• Events and encounters
• Shopping and inventory systems
• Battles
• Skills, experience, and leveling

Overview

[8]

We will be visiting places such as the following:

• Your home town, as shown in the following screenshot:

• The local shop, as shown in the following screenshot:

Chapter 1

[9]

• The outside world, as shown in the following screenshot:

• Battling goblins in the dark forest, as shown in the following screenshot:

In this chapter, we'll walk through what's available in the new 2D toolkit and
also what else Unity added to the toolset in 4.3. Then, kick off the next chapter
with building the foundations of our project with some of the best practices in the
industry, including guidance from the Unity team themselves (either direct from
team members or from responses in the forums).

www.allitebooks.com

http://www.allitebooks.org

Overview

[10]

The following topics will be covered in this chapter:

• Overview of the new 2D system
• Rundown of the additional improvements in 4.3

Getting assets
Since creating games can become quite expensive these days, we'll use some of
the best free assets out there. There are plenty of resources available to the game
developers these days either as placement assets for the developer's use, whether
they are full assets, or just a framework that you can tweak to get your desired
result. There are a multitude of options.

In the code bundle of this book, you'll get all the assets that you need
to follow on during the creation of the game, and the site where it is
available online will be listed with the instructions.

Some of the best sites to gather assets are described as follows:

• Art: Art, especially 2D art, is generally easy to find on a budget; particularly
for the placeholder art until you buy or create your own for the finished
product (although I've seen many games created with some of these assets).
Some good sites to start with are http://opengameart.org/ and
http://open.commonly.cc/.

• Audio: Right sound is a lot trickier to get. Free sites are okay, but they
generally don't have the right sound you will want or you will end up
digging through hundreds or more sounds to get a close match. A good
website to start is at http://soundbible.com/.

We won't actually be covering audio as part of this title, as not much has
changed since the introduction of Unity 4.0. There are also some larger
changes being introduced in Unity 5.0 to look out for, so keep your eyes
peeled.

Collection of sites
Some sites just hold a general collection of assets instead of specializing in
specific areas. The best site for this, as everything is almost guaranteed to be
free, is http://search.creativecommons.org/.

For an even wider list of resources, refer to the following blog post that is updated
frequently with what's out there:

http://opengameart.org/
http://open.commonly.cc/
http://soundbible.com/
http://search.creativecommons.org/

Chapter 1

[11]

http://darkgenesis.zenithmoon.com/monster-set-of-free-resources-for-
game-design/

Welcome to 2D
Welcome to 2D, as you might say, Unity v4.3 has brought 2D into its primary toolset
a huge range of features to make 2D development a lot simpler and more integrated
with its editor environment.

What follows is a brief rundown of the entire primary enhancement and a
walkthrough of some of the other important improvements brought in with v4.3.

The new 2D mode
When creating a new Unity project, you now have the option to select whether you
want to treat assets as normal 3D assets or use the new 2D import wizards, as shown
in the following screenshot:

http://darkgenesis.zenithmoon.com/monster-set-of-free-resources-for-game-design/
http://darkgenesis.zenithmoon.com/monster-set-of-free-resources-for-game-design/

Overview

[12]

The main difference is the way assets will be imported into your solution and the
default camera is set up. You can easily change the profile that the editor is using at
any time by navigating to Edit | Project Settings | Editor and changing the Default
Behavior Mode option. This is shown in the following screenshot:

Changing the Mode setting will not affect the running of your game. This setting is
only used while importing new assets and adding them to your scene as to whether
they are imported as textures or sprites.

Sprites
In 2D, sprites are simple images that generally depict a single object (for example, a
character) or scene (for example, background). Several sprites can also be made for a
single object in the individual frames for that, as shown here:

Chapter 1

[13]

At the core of the new 2D system is the new sprite texture importer, which imports
your texture assets and prepares them as sprites in your project folder. When
dragged on to your scene, they are automatically given a new Sprite Renderer object
(refer to the next section) that is ready to be displayed in your game; no additional
lighting or work is required.

As you would expect, you can alter most of the characteristics of your sprite,
including the following characteristics:

• Scaling
• Pivot point
• Sprite region on texture

All of the previous characteristics can be modified straight from the editor or at
runtime through code or by using the new animation dope sheet (Unity's new
animation editor control).

By default, each texture is imported as a single sprite; however, by using the Sprite
Editor (refer to the Sprite Editor section), you can change this in various ways. These
are covered in the next sections.

Sprite Renderer
The Sprite Renderer is the new 2D renderer to draw sprites to the screen, much in the
same way as other Unity renderers draw currently. Refer to the following screenshot:

Overview

[14]

The main difference with the Sprite Renderer object is that you do not need to set up
a separate material manually (it is assigned automatically) and the default shader
does not require any additional lighting (single vertex lighting is used). You can
enhance beyond this by adding your own materials and lighting if you wish; there
are certainly no limits here.

The Sprite Renderer, like the other renderers, also supports dynamic batching with
uniform scaling as well.

Sprite Editor
The new Sprite Editor object is Unity's way of viewing and manipulating the sprite
texture assets once they have been imported into Unity.

The sprite editor window showing a single sprite

The editor allows some basic manipulations to happen to a sprite. For example:

• Changing the Alpha color
• Altering the sprite's pivot position
• Splicing the texture to identify the sprite region (this is also used for

spritesheets; refer to the next section)

Chapter 1

[15]

Spritesheets
Spritesheets are a core part of any 2D system, especially with 2D animation. Unifying
all textures into a single larger texture means greater performance when sending the
sprites to the graphic cards in a single texture, which is a lot faster than sending lots
of smaller files. Refer to the following screenshot:

Sprite editor window showing multiple sprites in a grid

The traditional way of forming spritesheets is to put sprites into specific regions on
a single image, and then identify the box regions where the individual sprites lie.
These regions form individual frames in the sprite animation. As you can see in the
preceding screenshot, you have six sprites arranged horizontally in two rows to form
a single splash animation. The sprites could have also been arranged in a single row
or a single column; it doesn't matter. It's just how the artist best packs the spritesheet
for the animation. Unity can handle just about any arrangement you wish to throw
at it. Just set the width and height of each texture region and the Unity Sprite Editor
will do the rest.

Overview

[16]

Texture atlases
Akin to spritesheets, texture atlases are a more efficient way of packing textures into
a single texture. Refer to the following screenshot:

A selection of separate textures that have been automatically packed, example
from Unity's platformer sample

Unity has added a very clever texture cutting and edge detection to make this work
very well and identify specific regions on the texture for each sprite. You can also
change the selection areas if Unity is too optimistic when selecting the texture regions.

If you have the Pro edition of Unity, the editor can also generate these texture atlases
for you from many other sprites very efficiently. This saves hours in asset generation.

Chapter 1

[17]

Sprite meshes
In Unity Pro, the engine also has the capability to turn your 2D texture asset into
a 2D static mesh, which allows you to have greater control over the display and
modification of the original texture at runtime. Refer to the following screenshot:

Image sprites that have been converted into 2D meshes in the scene view

You have several options with the mesh feature, and you can decide whether you
want a mesh for the entire texture or a single tight mesh for the sprite in parts only
(effectively, creating a flat 2D mesh just for your sprite).

This also would enable the ability to rig your sprites and alter their shape during
the course of the game.

The Box2D physics system
For those who have tried (or have created) physics systems in a 3D world of a
2D game, it's always been troublesome to just restrict one of the physics axes; it
basically just doesn't work very well and is not as performant as it could be due
to all calculations still being in 3D. Refer to the following screenshot:

Example of Box2D 2D colliders used in the Unity platformer example to surround walkable elements

Overview

[18]

More often than not, developers create their own much more simple physics systems
(which usually accounts for a high percentage of bugs in games if done wrong).

Unity recognized this limitation while building their 2D system and has pulled in
another world class physics system for 2D, called Box2D.

Games such as Angry Birds and Cut the Rope make heavy use of the
2D physics systems to handle a lot of on-screen animation for free using
physics.

Box2D has already been used and ported for many other platforms (including XNA),
so it makes complete sense for Unity; in most 2D games, you'll see a 4 times increase
in the physics performance. Care should be taken, as with every physics system;
don't expect it to solve all your problems. Code well and make sure that the standing
objects generate interactions.

If you want to see a great comparison between the 2D and 3D physics
systems, refer to this excellent post at http://x-team.com/2013/11/
unity3d-v4-3-2d-vs-3d-physics/.

Through Box2D, Unity adds several new physics collision options. They are
as follows:

• Rigidbody 2D
• CircleCollider 2D
• BoxCollider 2D
• PolygonCollider 2D
• EdgeCollider 2D

Unity also adds the following 2D physics joint options to control how two physics
bodies bond together:

• Distance Joint 2D
• Hinge Joint 2D
• Slider Joint 2D
• Spring Joint 2D

Similar to the 3D system, you can also apply the physics materials to your 2D objects
using Physics Material 2D. This allows greater control over an object's physics
interactions, such as friction and bounciness.

http://x-team.com/2013/11/unity3d-v4-3-2d-vs-3d-physics/
http://x-team.com/2013/11/unity3d-v4-3-2d-vs-3d-physics/

Chapter 1

[19]

The new animation Dope Sheet
The new animation Dope Sheet(animation editor) is effectively a second version of
the original animation Dope Sheet. This area has received a complete overhaul and
has now been tightly integrated with the Mecanim system. Refer to the following
screenshot:

The animation editor Dope Sheet window showing a single animation over time

When the recording mode is enabled (it is a small record button at the upper-left of
the Dope Sheet tab), simply changing any value in the editor while in animator view
will create new properties in the animation. These animations can then be enhanced
with curves for tweening/lerping support and can have the length of the animation
controlled much more easily.

You can also manually edit the Dope Sheet tab without the recording mode enabled
by adding the curves (the Animation properties) and selecting the property on the
attached object that you wish to animate.

For extra visibility, there is a Preview window next to the Animator controls. So, you
can see a close up of the effects of the changes you make to the animation.

In the 2D system, animations automatically generated from the spritesheets lean very
heavily on this feature, making it very powerful for 2D.

We will cover the animation Dope Sheet system in Chapter 3, Getting Animated, so
stay tuned.

Other Unity 4.3 improvements
Unity 4.3 was not just about the new 2D system; there are also a host of other
improvements and features with this release.

The major highlights of Unity 4.3 are covered in the following sections.

www.allitebooks.com

http://www.allitebooks.org

Overview

[20]

Improved Mecanim performance
Mecanim is a powerful tool for both 2D and 3D animations. In Unity 4.3, there
have been many improvements and enhancements, including a new game object
optimizer that ensures objects are more tightly bound to their skeletal systems and
removes unnecessary transform holders. Thus making Mecanim animations lighter
and smoother. Refer to the following screenshot:

The Mecanim Animator window showing an example animation tree

In Unity 4.3, Mecanim also adds greater control to blend animations together,
allowing the addition of curves to have smooth transitions, and now it also includes
events that can be hooked into at every step.

The Windows Phone API improvements and
Windows 8.1 support
Unity 4.2 introduced Windows Phone and Windows 8 support, since then things
have been going wild, especially since Microsoft has thrown its support behind
the movement and offered free licensing for the existing Pro owners. Refer to the
following screenshot:

Chapter 1

[21]

Unity 4.3 builds solidly on the v4 foundations by bringing additional platform
support, and it closes some more gaps between the existing platforms. Some of the
advantages are as follows:

• The emulator is now fully supported with Windows Phone (new x86 phone
build)

• It has more orientation support, which allows even the splash screens to
rotate properly and enabling pixel perfect display

• It has trial application APIs for both Phone and Windows 8
• It has improved sensors and location support

On top of this, with the recent release of Windows 8.1, Unity 4.3 now also supports
Windows 8.1 fully; additionally, Unity 4.5.3 will introduce support for Windows
Phone 8.1 and universal projects.

Dynamic Nav Mesh (Pro version only)
If you have only been using the free version of Unity till now, you will not be aware
of what a Nav Mesh agent is. Nav Meshes are invisible meshes that are created for
your 3D environment at the build time to simplify path finding and navigation for
movable entities. Refer to the following screenshot:

Overview

[22]

You can, of course, create the simplified models for your environment and use them
in your scenes; however, every time you change your scene, you need to update
your navigation model. Nav Meshes simply remove this overhead. Nav Meshes are
crucial, especially in larger environments where collision and navigation calculations
can make the difference between your game running well or not.

Unity 4.3 has improved this by allowing more runtime changes to the dynamic Nav
Mesh, allowing you to destroy parts of your scene that alter the walkable parts of
your terrain. Nav Mesh calculations are also now multithreaded to give an even
better speed boost to your game. Also, there have been many other under-the-hood
fixes and tweaks.

Editor updates
The Unity editor received a host of updates in Unity 4.3 to improve the performance
and usability of the editor, as you can see in the following demo screenshot. Granted
most of the improvements are behind the scenes.

The improved Unity Editor GUI with huge improvements

Chapter 1

[23]

The editor refactored a lot of the scripting features on the platform, primarily
to reduce the code complexity required for a lot of scripting components,
such as unifying parts of the API into single components. For example, the
LookLikeControls and LookLikeInspector options have been unified into a single
LookLike function, which allows easier creation of the editor GUI components.
Further simplification of the programmable editor interface is an ongoing task and a
lot of headway is being made in each release.

Additionally, the keyboard controls have been tweaked to ensure that the navigation
works in a uniform way and the sliders/fields work more consistently.

MonoDevelop 4.01
Besides the editor features, one of the biggest enhancements has to be the upgrade of
the MonoDevelop editor (http://monodevelop.com/), which Unity supports and
is shipped with. This has been a long running complaint for most developers simply
due to the brand new features in the later editions. Refer to the following screenshot:

MonoDevelop isn't made by Unity; it's an open source initiative run by Xamarin
hosted on GitHub (https://github.com/mono/monodevelop) for all the willing
developers to contribute and submit fixes to. Although the current stable release is
4.2.1, Unity is not fully up to date. Hopefully, this recent upgrade will mean that
Unity can keep more in line with the future versions of this free tool.

http://monodevelop.com/
https://github.com/mono/monodevelop

Overview

[24]

Sadly, this doesn't mean that Unity has yet been upgraded from the modified V2
version of the Mono compiler (http://www.mono-project.com/) it uses to the
current V3 branch, most likely, due to the reduced platform and the later versions of
the Mono support.

Movie textures
Movie textures is not exactly a new feature in Unity as it has been available for some
time for platforms such as Android and iOS. However, in Unity 4.3, it was made
available for both the new Windows 8 and Windows Phone platforms. This adds
even more functionality to these platforms that were missing in the initial Unity 4.2
release where this feature was introduced. Refer to the following screenshot:

With movie textures now added to the platform, other streaming features are also
available, for example, webcam (or a built-in camera in this case) and microphone
support were also added.

http://www.mono-project.com/

Chapter 1

[25]

Summary
So, now you can see what all the excitement is about with the new Unity 4.3 release.
Unity has gone a long way to address the gaps in their product and added some new
bells and whistles to boot. You should also watch the keynotes at http://unity3d.
com/unite/archive, especially to see what else is coming up (such as the new GUI
system coming in Version 4.6).

We covered the objective of the book, the paths to get the assets needed for the
sample project, a detailed analysis of the new 2D features added in Unity 4.3, and a
rundown of the additional features in 4.3 for reference.

Are you seated comfortably? Well keep your arms and legs in the ride at all times
and prepare yourself for a high-speed ride.

Character Building
It's time to start putting in the building blocks that will make up your game, starting
with setting up the project and then on to main character. It's an important first step
as most of your game's core logic and framework generally centers on the main
protagonist and highlights exactly how the player will interact with the game.

Here, we are aiming to create a 2.5D style in-game world where the player can
explore each town and have random encounter scenes to fight off those pesky
bad guys. So, first we need to get our character in and moving.

The following is the list of topics that will be covered in this chapter:

• Designing a good class structure
• Planning and designing behaviors
• Importing sprites
• Setting up user control effectively

For this game, we will use the excellent, free Unity games starter
kit resources, which can be found at http://wootstudio.ca/
win8platstarter (towards the bottom of the page).
There are several different themed sets of assets for use in any
game (commercial or otherwise). For the purpose of this book,
we will use the Fantasy pack and its associated Backgrounds.
Additional assets that I have created myself will be included
with the associated code bundle of this title.

http://wootstudio.ca/win8platstarter
http://wootstudio.ca/win8platstarter

Character Building

[28]

Getting your project started – the right
way
Before you start your project for real, you should consider how you intend to set it
up and architect your project in the long term. I've looked at or worked with far too
many projects that have created problems for themselves by just diving in rather
than designing the outline for the project at the start.

Your game and your assets are not the only things to consider when starting a fresh
project. Sure, you can start importing assets, creating scripts, and getting things
running; most Proof of Concept (POC) projects start this way. Once your project is
of a sufficient size and you start expanding on your initial concept, you'll realize that
you have issues with regards to picking up items and putting them together. Then,
you will start devising new ways to organize your project and eventually find that
it's an unmanageable mess; nevertheless, you will stride on, taking longer and longer
to produce new content or add new features.

The best advice one can give is to think about your entire project and how you
organize it as an asset in itself, and accordingly, design it correctly from the
beginning. So, what follows are a few short tricks that you can learn to get
started on the right foot.

Architecture is a point that is often missed out in any game development and
should not be overlooked. What follows are some of the best practices you can use
from day 1 to design your game and thereby save a lot of time to fix or change and
reorder things later. These lessons will be used throughout the course of the book
wherever applicable.

As this chapter focuses on the implementation of the 2D sprite
system, we will return to these lessons later in Chapter 5, NPCs and
Interactions; however, they are critical at this juncture, that is, before
we write the code.

Structure
When building games with Unity, especially when you are prototyping, you will
find that most projects have all their assets in the root of their Unity project folder or
are organized by how your game works. This isn't particularly wrong, but as your
project gets larger, this will eventually cause problems.

Chapter 2

[29]

The best way in which Unity advises you to organize your project (as also shown in
all of their own examples) is to group objects by their type in the root Assets folder,
as shown in the following screenshot:

This ensures that you will find assets for your entire project that are ready for reuse
in every scene or level according to the type of object. You can then subdivide these
appropriately depending on their use, such as the following:

• Separating animation clips from all the controllers that may act on them or
on your models:

• Grouping audio by its intended use in your game, such as enemies, special
effects, and background music:

• Grouping prefabs by layer or their intended use:

www.allitebooks.com

http://www.allitebooks.org

Character Building

[30]

• Sprites can also be structured in the same way; you can order them according
to how they should be used in your project:

By following the preceding patterns, you are organizing your project effectively
in the same way Unity itself does under the covers and guides you to use a more
component-based design. Each scene is built up of many components through the
lifetime of your project, so organizing your assets this way will help in the long run.

You can set this level of subgrouping for scripts, scenes, fonts, materials, and so on.
However, as these are generally distinct things that apply to every component, there
is no need to divide them further.

Object naming
There are no specific patterns for how you should name each object/component
in your asset library as such. Generally, this is left to your preference, and more
importantly, how you recognize each part of your game. There is no need to give
something a really long and complicated name in the preceding structure, only so
long that you can find it later.

Many of the other tutorials I have read or watched tend to lean on a few patterns
for naming, most of which seem to follow the usual coding standards such as
the following:

• Prefixing the name with a three letter acronym for its type: scn for a scene,
efx for an effect, and so on

• Suffixing an underscore plus the same three letter acronym to the end of
an asset's name

• Using a path-like name such as playerScene1BounceToWallScript

From experience, these are useful, but my advice is to name things plainly based on
what it is. Using the structure mentioned earlier, you have already organized your
assets to overcome a lot of the issues that the preceding patterns try to solve.

Chapter 2

[31]

Plan ahead before you even start your game and set a standard that works for you.
You should be able to identify what each asset is and what it does just by looking at
the name. However, remember that each asset will most likely be used many times
on many different game objects, so plan accordingly. Add prefixes and suffixes only
when a script or asset is intended to be limited to a certain type of game object.

The Unity examples are another good place to look for inspiration here. See the
following screenshot and decide whether you can tell what these scripts are and
what they are used for just by looking at them:

Understanding components
Components in Unity are the building blocks of any game; almost everything you
will use or apply will end up as a component on a GameObject inspector in a scene.

Until you build your project, Unity doesn't know which components will be in the
final game when your code actually runs (there is some magic applied in the editor).
So, these components are not actually attached to your GameObject inspector but
rather linked to them.

Character Building

[32]

Accessing components using a shortcut
In most Unity examples, you are shown how to access components through scripts
by using shortcuts to the MonoBehaviour class that the game object inherits from.
Accessing the components with the help of the following code:

this.renderer.collider.attachedRigidbody.angularDrag = 0.2f;

If you need any help with this title or have any suggestions on it,
join in on the support forum for the book at http://bit.ly/
MasteringUnity2DForums. The forum will also keep you updated
on any announcements on the title, so check it often.

What Unity then does behind the scenes for you is that it converts the preceding
code to the following code:

var renderer = this.GetComponent<Renderer>();
var collider = renderer.GetComponent<Collider>();
var rigidBody = collider.GetComponent<Rigidbody>();
rigidBody.angularDrag = 0.2f;

The preceding code will also be the same as executing the following code:

GetComponent<Renderer>().GetComponent<Collider>().GetComponent<Rig
 idbody>().angularDrag = 0.2f;

Now, while this is functional and working, it isn't very performant or even a
best practice as it creates variables and destroys them each time you use them; it
also calls GetComponent for each component every time you access them. Using
GetComponent in the Start or Awake methods isn't too bad as they are only called
once when the script is loaded; however, if you do this on every frame in the update
method, or even worse, in FixedUpdate methods, the problem multiplies; not to say
you can't, you just need to be aware of the potential cost of doing so.

A better way to use components – referencing
Now, every programmer knows that they have to worry about garbage and exactly
how much memory they should allocate to objects for the entire lifetime of the game.

Chapter 2

[33]

To improve things based on the preceding shortcut code, we simply need to
manually maintain the references to the components we want to change or affect
on a particular object. So, instead of the preceding code, we could simply use the
following:

Rigidbody myScriptRigidBody;
void Awake()
{
 var renderer = this.GetComponent<Renderer>();
 var collider = renderer.GetComponent<Collider>();
 myScriptRigidBody = collider.GetComponent<Rigidbody>();
}
void Update()
{
 myScriptRigidBody.angularDrag = 0.2f * Time.deltaTime;
}

This way the Rigidbody object that we want to affect can simply be discovered once
(when the scripts awakes); then, we can just update the reference each time a value
needs to be changed instead of discovering it every time.

An even better way
Now, it has been pointed out (by those who like to test such things) that even
the GetComponent call isn't as fast as it should be because it uses C# generics to
determine what type of component you are asking for (it's a two-step process: first,
you determine the type and then get the component).

However, there is another overload of the GetComponent function in which instead
of using generics, you just need to supply the type (therefore removing the need
to discover it). To do this, we will simply use the following code instead of the
preceding GetComponent<>:

myScriptRigidBody =(Rigidbody2D)GetComponent
 (typeof(Rigidbody2D));

The code is slightly longer and arguably only gives you a marginal increase, but if
you need to use every byte of the processing power, it is worth keeping in mind.

If you are using the "." shortcut to access components, I recommend
that you change that practice now. In Unity 5, they are being removed.
There will, however, be a tool built in the project's importer to upgrade
any scripts you have using the shortcuts that are available for you. This
is not a huge task, just something to be aware of; act now if you can!

Character Building

[34]

Creating the project
First things first! To ensure that you have all the bases covered, you need to start
a new project. For 2D, however, you need to ensure that you start the project
using the 2D game template in the Unity New Project wizard, as shown in the
following screenshot:

If you accidentally leave the 3D option set (which is the default) as is, don't worry!
You can change this at any time for your project through Editor Settings. To open
Editor Settings, simply navigate to Edit | Project Settings | Editor, as shown in
the following screenshot:

Chapter 2

[35]

Lastly, let's create the folder structure for the project, as shown in the following
screenshot, using the guidance provided earlier:

Assets
Animation

Clips

Audio
Controllers

Enemy
FX
Music
Player

Fonts
Materials
Physics materials
Prefabs

Characters
Environment
FX
Props
UI

Scenes
Scripts
Sprites

Characters
Environment
FX
Props
UI

At this point, it's important to note that we will most likely not use all of these
folders during the course of the book. Nevertheless, it is a good working practice
to get these set up for every project just so that you have a standard template.

This book will cover the process of creating your own project template
later in Chapter 12, Deployment and Beyond, which will create a standard
asset for our folder structure to import the setup of the project's
framework automatically; let's get on and start populating it.

Classes
Architecting the core of your game from the beginning is an often-skipped process.
Because we're too eager to just get on and build our game, let's jump straight in and
start placing assets in a scene, adding them as we go. This kind of practice is fine for
prototypes (mostly, however, even with prototypes, a level of architecture is usually
required). When building your actual product, however, without setting up a proper
architecture from the beginning, you are heading toward a world of utter mess.

Character Building

[36]

When we say architecture, it doesn't mean that you need to design everything (but it
helps). You just need to ensure that you plan what you are going to build before you
build it instead of thinking about stuff and checking Google for information on how
to do it. Even if you are using some kind of an agile method, you should have a good
framework and goal for each sprint as you plan for each sprint. This will guide you
on what should be done and when, not just designing the project on the fly.

The object-orientated design
Unity in itself is a fully object-orientated (OO) system with strict interfaces to ensure
that the engine knows what to expect and when, so why shouldn't your game follow
the same pattern? Unity is also component-based, which is something else to take
into account while designing how your game will be put together.

At the core of any object-orientated design, the focus is on reusability. If a set of
attributes is repeatedly used across multiple objects, then they should be separated
into one common class and shared in much the same way we do with code
refactoring; in addition to this, you should also reduce the amount of code that is
lying about doing the same job. This means that we can more easily make changes
to this base set without having to re-edit all the classes that might need those
attributes. The following diagram shows two approaches of using a base class to
define common attributes over multiple code implementations:

Enemy

Patrol mode
Aggressiveness

Loot

Player

XP
Inventory

Skills

Stats

Health
STR
ATK
DEF

EnemyPlayer

Health
STR
ATK
DEF
XP

Inventory
Skills

Health
STR
ATK
DEF

Patrol mode
Aggressiveness

Loot

VS

Chapter 2

[37]

Another facet of OO is to employ interfaces to govern exactly how a class should
look if you have multiple objects of the same type. For example, you have an Enemy
class structure that defines how enemies in general should work; then, using that
same structure, you specify all the enemy implementations, such as zombies, spiders,
and white-fanged rabbits. Interfaces can also define behaviors or methods on a class,
so you can ensure that all the classes that implement that interface will always have
the same common abilities, such as all the enemies will have patrol, Fight, and
run away methods. This means that if you have an enemy object, it will always have
those methods attached to them when you refer to them in the code.

The following diagram shows how you can plan for multiple inheritances, allowing
you to add a common behavior pattern to each group of entities:

Character

NPC Player Enemy

Fighting enemy Nonfighting enemy

ZombieSpider

Noninteractive
character

Interactive
character

Blob

Knowing this helps us design our game effectively and ensures that we architect it
correctly from the beginning.

We'll discuss these patterns in more detail when we implement them in the
following sections.

The game structure
To keep in line with the preceding architecture set, we'll design the layout of the
class to support a flexible structure that will be easily extended in the future.

Character Building

[38]

The common game object
As almost every entity in our game will have statistics and some basic behaviors, we
start with a generic object (Entity) to define the attributes that all the entities in our
game will have. As there is only one entity type, we don't need to set up an interface
for this object as all the other game objects will just use this one definition, as shown
in the following diagram:

Entity

Name
Age

Faction
Occupation

Level
Health

Strength
Magic

Defense
Speed

Damage
Armor

Weapon
Position

TakeDamage(amount)
Attack(entity)

This shows that we have several common attributes for things such as health and
strength. This Entity object is implemented in the code as follows in a C# script
called Entity in the Assets\Scripts folder:

using UnityEngine;
public class Entity : ScriptableObject
{
 public string Name;
 public int Age;
 string Faction;
 public string Occupation;
 public int Level = 1;
 public int Health = 2;
 public int Strength = 1;
 public int Magic = 0;
 public int Defense = 0;
 public int Speed = 1;

Chapter 2

[39]

 public int Damage = 1;
 public int Armor = 0;
 public int NoOfAttacks = 1;
 public string Weapon;
 public Vector2 Position;
}

The entity class is inherited from a specialized class called
ScriptableObject. This is essential to know how we will use it
in the game. We will cover ScriptableObject in more detail in
Chapter 5, NPCs and Interactions.

The player object
Basing the player's character on the Entity object makes the definition of the player
a lot simpler. So, you only need to focus on what is specific to the player's character
itself, that is, the differences between the player and all the other game entities.

(Implements entity)

Inventory
Skills

Money

Player

So, the player character we see here is the only one who has Inventory, Money, and
Skills since they are specific to our hero's work in our game. This is implemented in
the following code with the player inheriting all the properties from the Entity class
in another new C# script called Player in the Assets\Scripts folder:

using UnityEngine;
public class Player : Entity
{
 public string[] Inventory;
 public string[] Skills;
 public int Money;
}

www.allitebooks.com

http://www.allitebooks.org

Character Building

[40]

Preferably, all the attributes of any class should be of the read-only type
outside of the class itself (unless there is a very good reason for it). This
is to ensure that you don't mistakenly change a class's value without
knowing why. It might sound easier to just keep updating everything,
but at some point, while you are debugging, you will want to know why
things are changing. If any code updates these values, then you will
literally spend hours trying to find why. If you need to change values,
then you need to implement behaviors (see the following sections).

More later
To show you how to build the architecture progressively in this project, we will add
more classes to each section; we'll keep things simple and build the project with
a strong foundation.

We already have our base entity in place from which all the game entities as well as
our player are driven, so let's look at implementing them further.

Planning behaviors
Behaviors are just a fancy way of saying things or interactions that will happen in the
game. Breaking down these actions or reactions in this way helps to componentize
how we think our game will work. Stopping and thinking about this from the
very beginning means we won't get too many surprises later on. (There are always
surprises after a good night's sleep.)

For example, behaviors can take the following forms:

• Attacking another entity
• Taking damage
• Collecting the loot, which could be money or items
• Teleporting to another land

Chapter 2

[41]

It is also important to note that visual effects as the result of a behavior or action are
different to those that affect the characteristics of the game's object. You may have
a visual representation as the result of a behavior or action (for example, a particle
effect when taking damage or the character swinging their sword to attack), but in
Unity especially, you have to keep these separate. We will cover more on this later.

In traditional games that are built using other systems, bundling
visual interactions or audio with behaviors is quite common.
However, Unity forces you to think differently; it recommends you to
work with the system, not against it.

Behaviors on classes should only affect the class that it is defined on. If you are
going to affect another class's attributes, it should be through another behavior
on that class.

It is far too easy to simply perform player.health = 10 rather than player.
damage(10); this way any side effects or saves from damage can be taken into
account within the class itself. Read on!

Behaviors for the common game object
As we have an existing class for common game objects (Entity), we can start to
define some behaviors that are common to all the characters in our RPG game,
namely, the following objects:

• TakeDamage: This is an object where a character can be damaged. Keeping
this object as common ensures that the calculation of damages is the same
for all.

• Attack: This is an object where a character can attack another character; if
successful, it deals with damage, or in rare occurrences, it makes characters
hurt themselves. Again, having one way to calculate this helps in battle
games so that attacks are balanced.

Character Building

[42]

So, if we add these behaviors to our Entity object, we get something that looks like
the following screenshot:

Entity

Name
Age

Faction
Occupation

Level
Health

Strength
Magic

Defense
Speed
Attack

Damage
Armor

Weapon
Position

TakeDamage(amount)
Attack(entity)

The behaviors shown in the preceding screenshot would add the following to the
Entity class code:

public void TakeDamage(int Amount) { Health –
 = Mathf.Clamp((Amount - Armor),0,int.MaxValue);}

public void Attack(Entity Entity)
 { Entity.TakeDamage(Strength); }

We'll not implement these actual behaviors in the code just yet as we will cover
them in more detail when we visit the battle system. For now, we are just setting
the ground work for what we expect to use in the game.

Behaviors for the player's character
For now, we won't add any further behaviors to the player; we will simply evolve it
as we require it.

Chapter 2

[43]

If you are feeling adventurous using what was previously detailed, try
sketching out what kind of behaviors a player's character might have
and then compare/test them against future chapters.

Introducing the Unity sprite system
Armed with the data we need for our player character in our game world, let us now
turn to the visual side of things and get our first 2D visual elements into our game,
starting with our hero.

Before the new 2D system was implemented in Unity 4.3, setting up a 2D-rendering
system was a tortuous affair that required importing texture assets, creating a
2D-fixed camera system, implementing 2D lighting and a rendering pipeline, and
either constraining a physics system to just two dimensions or building your own.
It didn't stop there as there was a lot more to contend with, including an endless
Z-order fighting to draw the textures correctly (which the new 2D-sorting layers
resolve quite nicely). Most developers just ended up using one of the many 2D asset
packages from the store to solve a lot of these issues, but it was still a huge challenge
to get them right.

Now, with Unity's 2D pipeline, things are a lot simpler. I almost envy new
developers who come to the platform for the extra free tools they wish to arm
themselves with to build their projects. Unity doesn't stop there though as there are
many more new developments heading our way, such as the new UI system that was
introduced at the Unite keynote in Vancouver.

If you haven't done so already, I recommend that you at least watch the
keynotes from Unity's Unite conferences at http://Unity3D.com/
unite. Watch more if you can as they will provide you with a keen
insight into what is to come and also how to use it in advance in
most cases.
Some sessions will also show you how to better use the existing features
as a lot of the sessions are created from the leading issues in the forums.

http://Unity3D.com/unite
http://Unity3D.com/unite

Character Building

[44]

Importing sprites
When a Unity project is in 2D mode, the first change you will notice is that when
new images are imported into the project, they are configured as sprites instead of
just normal textures, as shown in the following screenshots:

Imported texture properties

Imported sprite properties

So, let's go into a bit more detail as to what these new properties mean.

Chapter 2

[45]

Texture type – sprite
Setting this option changes the import settings for the asset. Note the changes that
take place when you click on Apply or OK on the Import Settings change dialog.

Sprite Mode – single/multiple
This setting tells Unity whether there is a single sprite or multiple sprites within the
imported image. In Unity 4.3, only after you select Multiple will the Sprite Editor
become available, however in later versions, the Sprite Editor is always available.

Packing tag
This is a customizable option that lets you set groups to pack sprites into texture
atlases. By setting this up, it tells Unity to group all the objects with the same
tag under a separate texture atlas/sheet together, thereby overriding the default
behavior of placing all the assets on the same atlas. Any assets without a tag will
be grouped onto the default atlas.

Texture Atlas packing is a Unity Pro feature that will not be covered
in this book. You can read more about it at http://docs.Unity3D.
com/Documentation/Manual/SpritePacker.html.
If you don't have access to Unity Pro, there are a few texture packing
tools out in the wild that prepack the assets for you (such as Nvidia's
texture asset tools available at https://developer.nvidia.com/
legacy-texture-tools). Once there, Unity will automatically split
them up for you; more on this later.

Pixels to units
This option is just a setting that allows you to scale the image asset at import time,
the default being 100 pixels per unit (or scaled up to 100 percent).

This setting is important because it sets the relative scale of the assets
you will import to your defined game units. This is just as important
in 2D as it is in 3D. Your base game unit guides you on how all the
assets will scale appropriately to each other, and more importantly,
to the camera.
You can manage the game scale through this setting, or you can
handle this scale through the original texture's sizes; the choice is
up to you.

http://docs.Unity3D.com/Documentation/Manual/SpritePacker.html
http://docs.Unity3D.com/Documentation/Manual/SpritePacker.html
https://developer.nvidia.com/legacy-texture-tools
https://developer.nvidia.com/legacy-texture-tools

Character Building

[46]

The Sprite Editor button
When Sprite Mode is set to Multiple, the button to open the editor ()
becomes available.

Once you click on the Sprite Editor button, you will be presented with the new
Sprite Editor main window.

All the other settings under the sprite Inspector are pretty much the same with the
exception of the texture compression setting.

When the sprite texture type is selected, you will get warnings if your
image is not using a power of 2 size texture; this means that the height
must be a multiple of 2 against the image's width, so W2/H4 is a power
of 2 whereas W3/H4 is not. This is not critical as Unity will still make
best efforts to compress the image; it just won't be as small as it should
be. Unity will warn you about this with the following information box
in the inspector:

If your sprites look blocky or blurry on screen, be sure to check your
sprite texture's import compression level. If the texture's resolution is
higher than your import setting, then Unity will do its best to compress
the texture (scale it down), which can cause some weird onscreen
artifacts (especially if the difference is large, for example, a 4KB texture
compressed down to 1KB). Make sure this is what you want or resize
your original textures.

Sprite Editor
Sprite Editor, as the name suggests is Unity's new tool to allow the carving up
of spritesheets and texture atlases to identify individual sprites for use in your
game; also, it comes with several simple yet powerful features to control how
the individual sprites will be imported, as shown in the following screenshot:

Chapter 2

[47]

In the editor, you have two sets of functions: the sprite splitter and the view controls.

Sprite splitter (slicer)
The splitter or slicer has two modes, automatic and grid (manual), in which it can
carve up your spritesheet to create individual images for use in your game.

Automatic
Unity has put some very smart logic into its automatic sprite carving system that can
quite easily identify regions in your spritesheet where your images are packed. Plus,
you have some advanced options to guide the system to make it fit for your game, as
shown in the following screenshot:

Character Building

[48]

The carving is based on the alpha regions within the texture, so bear this in mind.
The following are the advanced options provided by Unity:

• Minimum size: Setting the minimum size of the sprite defines the smallest
pixel-grouping size on the image to select a single sprite. Setting this to a
larger value constrains the selection logic to look for larger groups of sprites.
It can also be viewed as the minimum space between the sprites on the sheet.

• Pivot: As the name suggests, it allows you to set the default pivot position at
import time for the sprites that it creates by default.

• Method: This option has the following options to guide the selection logic to
identify sprites:

 ° Delete existing: Selecting this option will clear all the existing sprite
ranges from the sheet.

This is the default option and Sprite Editor will not
select any sprites until you select one of the sprite
identification methods.

 ° Smart: This option will try to identify common patterns in the sprites
from the sheet meant for selection. In some cases, it is able to identify
groups that make up a single sprite together.

 ° Safe: This option focuses on tighter regions around each element
it identifies on the spritesheet, thereby making the edges as close
as possible.

Grid (manual)
The grid option is a lot simpler with no complex logic. It simply allows you to define
(as the name suggests) a grid over the spritesheet with defined cell sizes by setting
the height and width options, as shown in the following screenshot:

Chapter 2

[49]

Unity will then automatically identify sprites based on that grid. Note that it will
also ignore any blank areas on the spritesheet by default, so keep this in mind if
you need them.

If you do not see a selection box around your sprites, then check your
height and width settings against the original size of the spritesheet.
Normally, you will not see anything if the sizes are too big.
My advice is to start with a smaller size where the grid shows up and
alter the width and height settings upwards until you are happy with
the selection on the entire sheet, especially if you are unsure of the
dimensions of each sprite.

View controls
The view controls simply change or affect what you are viewing in Sprite Editor, as
shown in the following screenshot:

The following are the view controls provided by Unity:

1. Revert: This control simply resets the texture back to the original settings the
editor had when it was opened or when the apply option was used to save.
Note that this is not simply an undo button as it completely resets the editor
back to the beginning.

2. Apply: As the name suggests, this applies any changes you have made in
the editor. If you close the editor and keep the changes pending, you will
be prompted to apply the changes. Note that once you apply your changes,
these cannot be undone, so when you click on apply, be sure that the changes
refer to what you actually want.

3. Alpha/Color: This control simply changes the view between fully textured
sprites or just the alpha regions. It is useful if you want to see what the
automatic splitting options are using to identify individual sprites.

4. Zoom slider: This control is used to zoom in and zoom out. Need I say more?

www.allitebooks.com

http://www.allitebooks.org

Character Building

[50]

Sprite region manipulation
Once you have your individual regions identified on the spritesheet, you can
still further change the import settings for each sprite as if they were imported
individually; this is shown in the following screenshot:

The sprite editor zoomed in on a single sprite from the spritesheet shown earlier

In the preceding screenshot where a single sprite is selected, you can clearly alter the
name, the position of the spritesheet the sprite is picked from, its width and height,
and also the pivot point using the sprite selection inspector.

Additionally, you can use the selection box surrounding the sprite to alter the
settings graphically using the hook points in each corner or by dragging the pivot
circle to the center to alter the pivot's rotation point.

The settings you will change with a single sprite selected will only affect that sprite
and not the rest that are on the spritesheet, so keep this in mind if the sprite you are
editing is part of an animation.

Chapter 2

[51]

Putting it together
So now that we have understood how to import our 2D assets into our project and
how the sprite system works, let's look at building our game with it.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

I'm going to talk about the usual thought process that is used to build such systems
and highlight issues that you might commonly face and how to resolve them, rather
than just pointing out fingers and saying do this and that.

The lessons learned in the Classes section are very important lessons to
learn early on as we are just starting out with the 2D features. We won't
use them just yet but refer to this again when we hit Chapter 5, NPCs and
Interactions, and start implementing them fully.

Importing our main character
So with what we have learned, let us get our main character imported into our game.

Select the image titled 01.png from the 01_characters folder under FANTASY_PACK
from the free game art pack, then drag it to the Characters folder under Assets\
Sprites\ in your Unity project, as shown in the following screenshot:

Character Building

[52]

Next, as our image contains all the frames of the sprite's animation for our main
character, we need to break it up. So select the image from the project view and change
Sprite Mode in the Inspector to Multiple, as shown in the following screenshot:

You should now see that the Sprite Editor button is now enabled; click on it to bring
up the Sprite Editor window, as shown in the following screenshot:

Chapter 2

[53]

To carve up our sprites, change the slicing options to Grid and enter a width of 95
and a height of 128; then, click on Slice, as shown in the preceding screenshot. Leave
the Pivot point as Bottom.

Now, click on Apply and close Sprite Editor. Upon returning to the project view, you
should now see an arrow symbol next to the image asset we imported; clicking on
it will show you all the individual sprites that were identified, excluding any blank
spaces on the sheet as shown in the following screenshot:

Now that we have our character in our project and it is properly imported, let's put
our hero into the scene.

The hero
Earlier, we imported our hero character's spritesheet into our project and carved up
the sprites from that sheet to ensure they are ready to use. So, let's first just get him
or her into the play area.

As with most things in Unity, there are two ways in which we can do this; first, we'll
do this manually and then show you a shortcut route. The following steps describe
the manual procedure:

1. Create an empty game object in our game's hierarchy for our hero (by
navigating to GameObject | Create Empty in the menu) and name it Player.

2. Add a sprite renderer component to the player's game object by navigating to
Add Component | Rendering | Sprite Renderer.

3. Expand the 01 asset in the Sprite folder so that you can see all the sprites in
that spritesheet.

4. Drag the sprite named 01_5 (the idle sprite) to the Sprite parameter of the
sprite renderer on the player's game object.

Be sure to set your transform values for the new game object to 0 or it
will create issues later with the animation. Always define animations
with objects set at the center to avoid confusion; you can always
move/place them later.

Character Building

[54]

You should now have the same screen as shown in the following screenshot:

Alternatively, you can just drag the individual sprite on to the project
hierarchy to achieve the same effect.

Controlling the hero
A sprite that only stands on the screen isn't going to make much of a game, so we'll
add a script to allow the player to move the hero to the left or right.

First, we'll add the physics component to control the movements related to our hero;
we don't need anything heavy, just a rigidbody so that we won't pass through other
objects in the world and a collider so that we know when we bump into things:

1. Add a Rigidbody2D component by navigating to Add Component |
Physics2D | Rigidbody 2D in the player's GameObject inspector.

2. Set the Gravity Scale parameter to 0 (as we are not using gravity), and check
the Fixed Angle checkbox (as we want the player to always remain in the
standing position).

3. Next, add a BoxCollider2D component by navigating to Add Component |
Physics2D | Box Collider 2D, and scale down the Size X parameter to 0.41
(just to narrow the collision box to the width of the hero).

Chapter 2

[55]

This should give you the following view in the inspector:

As we are only setting up the basic physics and collisions, we won't be
using the full range of Rigidbody 2D settings. For more details on what
the rest of the Rigidbody 2D properties do, check the Unity Rigidbody
video at https://www.youtube.com/watch?v=rq6c2B_socs.

To finish off this chapter, add a new C# script to the Scripts folder by navigating
to Create | C# script in the project window and saving it as Assets\Scripts\
CharacterMovement.cs. Open the script in the editor and replace its contents with
the following script:

using UnityEngine;

public class CharacterMovement : MonoBehaviour
{

https://www.youtube.com/watch?v=rq6c2B_socs

Character Building

[56]

 // RigidBody component instance for the player
 private Rigidbody2D playerRigidBody2D;

 //Variable to track how much movement is needed from input
 private float movePlayerVector;

 // For determining which way the player is currently facing.
 private bool facingRight;

 // Speed modifier for player movement
 public float speed = 4.0f;

 //Initialize any component references
 void Awake()
 {
 playerRigidBody2D = (Rigidbody2D)GetComponent
 (typeof(Rigidbody2D));
 }

 // Update is called once per frame
 void Update () {
 // Get the horizontal input.
 movePlayerVector = Input.GetAxis("Horizontal");

 playerRigidBody2D.velocity = new Vector2(movePlayerVector *
 speed, playerRigidBody2D.velocity.y);

 if (movePlayerVector > 0 && !facingRight)
 {
 Flip();
 }
 else if (movePlayerVector < 0 && facingRight)
 {
 Flip();
 }
 }

 void Flip()
 {
 // Switch the way the player is labeled as facing.
 facingRight = !facingRight;

 // Multiply the player's x local scale by -1.
 Vector3 theScale = transform.localScale;
 theScale.x *= -1;
 transform.localScale = theScale;
 }
}

Chapter 2

[57]

The script is fairly basic; it simply has some parameters to control the speed and
its facing direction. The update method checks if the player is controlling the game
using the default horizontal keys (left and right) and then applies force to move the
hero accordingly. Finally, we check which way the hero is facing, and based on the
direction the player has pressed, it will flip the sprite to face the correct direction.

The scale parameters are a common way to swap which way a sprite
is drawn toward. This means you don't need sprites for every single
angle of your game; you can just flip or rotate them.

To finish off, add the script to the player's game object by either dragging it to the
object in the hierarchy or navigating to Add Component | Scripts | Character
Movement.

You should note that this very simple controller code only uses a
keyboard input. For touch-only-based platforms such as iOS, WP8,
and arguably Android, you would need to include touch controls or
use the accelerometer.

If you run the project now, you should see our hero on the screen, and using the left
and right arrows on the keyboard, we will move the player to the left or right.

An alternative approach to writing your own controller code is to
make use of the built-in Character controller components
of Unity. These components help you reduce the amount of code
you need to control a player's movements and also add other
recommended components such as physics.
You should also check out Unity's enhanced Sample Assets Beta,
which introduces a new true multiplatform singular control system
complete with touch controls. Check out http://blogs.unity3d.
com/2014/01/17/new-sample-assets-beta/ for more details.

Going further
If you are of the adventurous sort, try to expand your project by adding the following:

• Add a few more characters from the pack and get them rigged up
• Play with some of the other assets in the FANTASY_PACK and tackle

automatic and grid-based splicing

http://blogs.unity3d.com/2014/01/17/new-sample-assets-beta/
http://blogs.unity3d.com/2014/01/17/new-sample-assets-beta/

Character Building

[58]

Summary
We have certainly covered a lot in this chapter simply because there is a lot to say
about the new sprite rendering system, and we will not be stopping at this. In later
chapters, we will extend this further.

Until now, we have covered the following topics:

• The basics of game design and structure
• An overview of all the main sprite components (sprite / sprite renderer)
• Importing new sprites
• Carving up individual sprites from spritesheets
• Adding sprites to your game

Buckle up your seatbelts; there's more to come!

Getting Animated
In Unity V4.x, the new Mecanim animation system was introduced, bringing with it
a whole raft of new features to the already feature-packed Unity editor. With Unity
4.3 (and beyond), this system has had an overhaul for the new 2D animation system
to give developers even more fine-grained control along with many fixes, tweaks,
and performance improvements.

In this chapter, we will walk through all the features that are important to the new
2D system and go over several tips and tricks to irk the most out of what is available.

This chapter isn't going to cover everything you can do with the
Mecanim system as it needs an entire book in its own right. In fact,
there is one in the PacktPub library already, namely, Unity Character
Animation with Mecanim, Jamie Dean.

The topics that will be covered in this chapter are as follows:

• Sprite animation
• State machines and Mecanim
• Curves and fine control

Sprite animation
Besides the 2D sprite system, Unity has created and updated their animation to
handle 2D. With a greatly enhanced dope sheet animation/clip controller and full
integration with the Mecanim state management system, there is a boundless world
of choices available that are easy to use once you get to grips with them.

Getting Animated

[60]

Animation components
All of the animation in the new 2D system in Unity uses the new Mecanim system
(introduced in Version 4) for design and control, which once you get used to is very
simple and easy to use.

It is broken up into three main parts: animation controllers, animation clips, and
animator components.

Animation controllers
Animation controllers are simply state machines that are used to control when
an animation should be played and how often, including what conditions control
the transition between each state. In the new 2D system, there must be at least one
controller per animation for it to play, and controllers can contain many animations
as you can see here with three states and transition lines between them:

Animation clips
Animation clips are the heart of the animation system and have come very far from
their previous implementation in Unity. Clips were used just to hold the crafted
animations of the 3D models with a limited ability to tweak them for use on a
complete 3D model:

Chapter 3

[61]

The new animation dope sheet system (as shown in the preceding screenshot) is
very advanced; in fact, now it tracks almost every change in the inspector for sprites,
allowing you to animate just about everything. You can even control which sprite
from a spritesheet is used for each frame of the animation.

The preceding screenshot shows a three-frame sprite animation and a modified
x position modifier for the middle image, giving a hopping effect to the sprite as
it runs. This ability of the dope sheet system implies there is less burden on the
shoulders of art designers to craft complex animations as the animation system itself
can be used to produce a great effect.

Sprites don't have to be picked from the same spritesheet to be animated.
They can come from individual textures or picked from any spritesheet
you have imported.

The Animator component
To use the new animation prepared in a controller, you need to apply it to a game
object in the scene. This is done through the Animator component, as shown here:

Getting Animated

[62]

The only property we actually care about in 2D is the Controller property. This is
where we attach the controller we just created.

Other properties only apply to the 3D humanoid models, so we can
ignore them for 2D. For more information about the complete 3D
Mecanim system, refer to the Unity Learn guide at http://unity3d.
com/learn/tutorials/modules/beginner/animation.

Animation is just one of the uses of the Mecanim system; we'll explore other uses
of it in Chapter 7, Encountering Enemies and Running Away, Chapter 9, Getting Ready to
Fight, and Chapter 10, The Battle Begins.

Setting up animation controllers
So, to start creating animations, you first need an animation controller in order to
define your animation clips. As stated before, this is just a state machine that controls
the execution of animations even if there is only one animation. In this case, the
controller runs the selected animation for as long as it's told to.

If you are browsing around the components that can be added to the
game object, you will come across the Animator component, which
takes a single animation clip as a parameter. This is the legacy animation
system for backward compatibility only. Any new animation clip created
and set to this component will not work; it will simply generate a console
log item stating The AnimationClip used by the Animation component
must be marked as Legacy. So, in Unity 4.3 onwards, just avoid this.

Creating an animation controller is just as easy as any other game object. In the Project
view, simply right-click on the view and select Create | Animator Controller.

http://unity3d.com/learn/tutorials/modules/beginner/animation
http://unity3d.com/learn/tutorials/modules/beginner/animation

Chapter 3

[63]

Opening the new animation will show you the blank animator controller in the
Mecanim state manager window, as shown in the following screenshot:

There is a lot of functionality in the Mecanim state engine, which is
largely outside the scope of this book. Check out for more dedicated
books on this, such as Unity 4 Character Animation with Mecanim, Jamie
Dean, Packt Publishing.

If you have any existing clips, you can just drag them to the Mecanim controller's
Edit window; alternatively, you can just select them in the Project view, right-click
on them, and select From selected clip under Create. However, we will cover more
of this later in practice.

Once you have a controller, you can add it to any game object in your project by
clicking on Add Component in the inspector or by navigating to Component |
Create and Miscellaneous | Animator and selecting it. Then, you can select your
new controller as the Controller property of the animator. Alternatively, you can just
drag your new controller to the game object you wish to add it to.

Clips in a controller are bound to the spritesheet texture of the object
the controller is attached to. Changing or removing this texture will
prevent the animation from being displayed correctly. However, it
will appear as it's still running.

Getting Animated

[64]

So with a controller in place, let's add some animation to it.

If you are using the automatic clip creation technique detailed in the
next section, you can skip this step as it also generates the animation
controller for you.

Setting up animation clips
Unlike the 3D system in Unity where animations are defined in modeling programs
and bound to certain model types and poses, there are actually two ways in which
animations (or clips) can be created in the new 2D system. This is because Unity
controls the creation of an animation, not an external tool.

Manual animation clip creation
Let's start off by creating some animation clips manually. It is a slightly lengthier task
than the automatic route, but it is good to understand what the automatic system is
actually doing for you. This helps you choose which route to take depending on the
kind of animation you want to create.

To start, first we need to create a game object in the hierarchy with an animator
component and controller attached to it so that we can add a reference to the
spritesheet. Perform the following steps:

1. Drag either the spritesheet (with the regions defined) or any single sprite to
the scene hierarchy in the scene view. This will create a new game object with
Sprite Renderer for the assigned texture.

2. Add the Animator component to the game object.
3. Create a new animator controller by clicking on Animator Controller in the

Project view.
4. Drag the new animation controller to the game object, or set it to the

Controller property in the inspector panel for the animator.

Now, if you open the Animator window (Window | Animation) with the new game
object selected, you will get a blank animation with no clips defined, as shown in the
following screenshot:

Chapter 3

[65]

To create your first clip, simply click on the clip selection drop-down menu and click
on [Create New Clip], as shown here:

From here, you can either drag individual sprites onto the timeline at the points you
want to show a sprite from in your animation, or you can alter the properties in the
Inspector pane to animate how the sprite should look on the screen. You can even
preview the animation by clicking on the play button in the Animation tab and it
will display the running animation in the Scene view window:

Getting Animated

[66]

From the preceding screenshot, you will notice that I have moved the
Animation window to a separate part of the screen (just drag the tab and
move/dock) so that both the Project and Animator windows are placed
side by side. This makes it easier to drag the sprites on to the dope sheet.

Now, you can have ultimate control over your animation as it plays out on the
screen. The next section will go into more detail on the dope sheet system and what
it has to offer.

Note that you are not limited to the whole character animation with the new
animation system; you can also construct characters from several sprites and animate
them individually. The best example of this is Unity's own 2D platform sample,
which is available at the Unity Asset store (http://bit.ly/UnityPlatformer2D):

In the screenshot, you can see all the parts of the hero in the hierarchy, such as
the body, tash, feet, and bazooka as separate sprites; then, in the animation dope
sheet, the Run animation alters the position of each of these sprites to emulate a fast
walking effect. This feature can be used in a powerful way once you get your head
around what is possible.

http://bit.ly/UnityPlatformer2D

Chapter 3

[67]

Automatic animation clip creation
The approach I'd always recommend (especially for beginners) is to let Unity create
the animation clips for you. The automatic routines are well equipped to understand
your animations, and they set the various properties for you very well. You can
always tweak it later.

The process is very simple, and you can even create the default animation controller
in the process by performing the following steps:

1. First, delete the example you created previously, just to avoid confusion.
2. Browse to the spritesheet that is in the Assets folder structure in the

Project view.
3. Expand the discovered sprites by clicking on the arrow next to the

spritesheet's image.
4. Select all the sprites for a single animation.
5. Drag the selection to the Scene view hierarchy (not the Game view).

Dragging multiple sprites to the scene to make an animation

Getting Animated

[68]

6. You will then be prompted where to save the new animation clip:

The animation controller that is automatically created will have the
same name as the first sprite in your animation. Be sure to rename it if
you wish.

7. Save it to Assets\Animation\Clips and you are done.

If you perform the preceding steps for every animation, just remember to
delete any controllers it creates that you do not intend to use. Time and
experience will help you find the right path that fits your needs.

Once saved, be sure to sort your controllers and clips in the correct folder of your
project, or leave them where they are until you are happy.

Chapter 3

[69]

If you examine your new game object in the Inspector pane, you should find a new
sprite created with an Animator component along with the new controller you
saved, shown in the Inspector pane as you can see here:

Now, if you double-click on either the new controller in your Project folder or the
Controller parameter in the Animator controller component in the Inspector pane,
you will see the new single state animation that was generated for you, as follows:

Getting Animated

[70]

If you also want to check out how the animation looks like, select your new object in
your Project hierarchy and open the Animation view by navigating to Window |
Animation in the menu. Once open, you should see the animator Dope Sheet view
(as shown in the following screenshot) for the currently selected game object with the
current animation clip in view (as highlighted):

Here, you can see the simple sprite animation expressed in the Dope Sheet view
with the timings for when the sprite's image will change. By default, this will be in
an eternal loop from start to finish.

Any changes that you make at this point with Dope Sheet open in the Inspector
pane will be recorded at the selected time in the animation, so be careful about
what you click on. We will cover more on the dope sheet system later.

Animator Dope Sheet
The new and improved animation Dope Sheet has a growing set of features to make
the animation easier and yet more powerful:

Chapter 3

[71]

The features aren't limited to the new 2D system for use, but they do make a lot of
2D tasks a lot simpler to implement.

Navigating round the Animation editor (as shown in the previous screenshot), we
have the following sections:

(1) The time/recording controls
The time controls let you play or step through your recorded animation to see how it
flows. This is especially useful when combined with the active play in the Scene and
Game views.

The record button determines whether the changes in the Scene or Inspector panes
will affect the Animation properties and will add new ones if a property has not
been touched yet.

There are also the buttons to add new KeyFrames (specific point on the timeline
at the currently selected time) or Animation Events (script launching points based
on time).

(2) Selecting the animation clip
This is a simple list of all the clips in the current animation set/controller. It also has
the facility to add more clips directly from this drop-down menu.

(3) The sample rate (frames per second)
The sample rate sets the number of frames per second that are available in the
timeline. It controls the number of key frame points possible between time intervals.

(4) Animation properties
Animation properties list all the different Inspector properties that are being
controlled by this animation clip. If a property is touched in the editor while the
record mode is active, it will create a new property in the animator or alter the
existing property at the current time.

Getting Animated

[72]

Currently, the animations have one limitation. If a property is part of
a construct such as vector3 and even if you only change one part
of that construct, say the X value, it will set the other parts to their
default values.
Animating the x axis on a position property, for instance to 0.1, at
a specified time will also set the Y and Z values to 0; this overrides
any script, changing those values. Keep this in mind while animating
similar properties.

While in the record mode, any change in the editor will be captured. This includes
any child game object properties that you change. This becomes very useful if your
animated objects comprise multiple sprites in the child game objects.

(5) Timeline
The timeline window shows all the key frames being animated over the lifetime of
the animation. Setting the sample rate higher and lower will control how many key
points/frames will be available between time units.

You can also use the following keyboard shortcuts to navigate between the frames on
the timeline:

• Press comma (,) to go to the previous frame
• Press period (.) to go to the next frame
• Press Alt + Comma (,) to go to the previous key frame
• Press Alt + Period (.) to go to the next key frame

(6) Dope/curve view
The timeline view has an alternate view mode to add finer control and curves
between the key frame animations, as shown in the following screenshot:

Chapter 3

[73]

Editing the curves takes a little finesse but makes for a better-looking transition than
the default Boolean (on/off) effect.

You can further control the curves by setting the inbound and outbound tangents
of the curve, setting either a smooth (linear), sharp (constant), or free-form curve.
Simply play with these settings until you have the kind of curve you want.

Curves can also be used for just about anything and from anywhere in the
code. So, if you are using a separate library or complex math to emulate
curves or tweening, stop and have a serious look at the animation curves.
We will cover more on this later.

We'll cover curves in Chapter 5, NPCs and Interactions, where we'll learn a few of the
slightly more complex curves and animations.

Putting it together
So far, our hero can move to the left and right of the screen, but it is a little flat. As we
have some animation in our spritesheet, let's put that into action.

As described earlier, in order to get the animation running, we will need the
following prerequisites:

• An Animator component in our game object

Getting Animated

[74]

• An Animator controller to manage our animation that is bound to
the animator

• At least one animation clip to play in the controller

Setting up the animation controller
To get started, first we need to add the Animator component to the player's game
object by navigating to Add Component | Miscellaneous | Animator in the
Inspector pane. Leave all the other options alone for now.

Next, create a new animation Controller in Assets/Animation/Controllers
by navigating to Create | Animator Controller in the Project window (or by
right-clicking on it while viewing the folder). Then, drag the new controller to
the Controller property in the Animator component we just created.

You should now have something that looks like the following screenshot:

Chapter 3

[75]

Now, we just need to add our animation clip. Open the new animation Controller
(if you haven't done so already) by double-clicking on it, then open the Animation
window by navigating to Menu | Window | Animation (or press Ctrl or Command 6).

You may have to rearrange your Windows at this point, as the default
location for the Animation window is next to the Project view. I
recommend moving it next to the main window so you can see both the
Project folder and the Animation window at the same time.
This is easily done by dragging the tab for the Animation window to
the desired point. When it gets near a point in the editor where it can
dock, it will do so automatically.

Adding your first animation clip (idle)
To add your first animation clip, create a new clip by opening the clip selection
drop-down menu and selecting [Create New Clip] (as shown earlier in the Animator
Dope Sheet section, marked as item 2). This will prompt you for a location to save the
new clip. Save it under Assets/Animation/Clips as CharacterIdle.anim.

For the idle animation, we only need to add one sprite to show the hero standing at
rest, so drag the sprite named 01_5 onto the timeline at position 0, as shown here:

Getting Animated

[76]

The Animation controller should now look like the following screenshot, with a
single state for the idle animation (highlighted in orange to denote it is in the
default state):

Adding another animation clip (run)
To add the running animation, you'll need to add another clip. This time it is called
CharacterRun, and instead of just dragging a single sprite, we will add three sprites
to form one animation set. First, set the Sample rate to 12 in the Animation window;
select the 01_2, 01_3, and 01_4 sprites together and drag them to the timeline
window, which will order them on the timeline appropriately as shown in the
following screenshot:

Chapter 3

[77]

Looking at the Animation controller now, you will see that an additional state is added
to the view; the main difference being that it is gray (as it's not the default), and at this
point, nothing connects the two states together:

You can also create the animation clips with multiple sprites by
selecting the sprites in the Project view and dragging them together
to the Scene or Project hierarchy. This will automatically create a new
game object complete with Sprite Renderer, Animation component,
Animation Controller, and Clip for the set. If you start this way and
add an idle animation clip later, just be sure to check which state is the
default state.
There is a lot of power in Unity to automate the creation of animations.

Connecting animation states
At the moment, our two states are not connected. So when we run the project, the
hero is always idle (lazy guy); let's change that.

To tell the controller to move between the two states, we need the following
prerequisites:

• A transition link between the two states
• A parameter or event to activate the transition
• Something to change the value of that parameter, usually in a script

Getting Animated

[78]

So, first we create the transition between the default idle state by right-clicking
on the CharacterIdle state and selecting Make Transition. This will change the
mouse cursor to an arrow. Then, click on the state we want to transition to, which
in this case is the CharacterRun state. Clicking on the new transition shows you the
properties of that transition in the inspector, as shown in the following screenshot:

As shown in the Inspector pane, at the lower-right corner, by default, the new
transitions are controlled by a single parameter called Exit Time, which simply
means that when the first animation ends, it will transition to the second. We don't
want that here as we want to control when the Run animation is activated.

First, we need a new parameter, which we will be able to access later from our
character controller script. So click on the + symbol as indicated in the parameter
section of the animation controller and add a new Float parameter called speed.

Now in the Inspector pane, change the Exit Time parameter by clicking on it and
selecting the new speed parameter; give it a value of 0.1. This tells the animator that
when the speed is greater than 0.1 units, it will transition from the idle state to the
run state.

Chapter 3

[79]

Next, repeat the process and add a transition from the CharacterRun state back to
the CharacterIdle state, choosing the same parameter value; however, this time, set it
to Less with a value of 0.1, as shown in the following screenshot:

If you run the project at this point, the character still doesn't run when it moves.
For this, we need to update our Character movement script.

Accessing controllers from a script
Like most things in Unity, to access another component, we just need a reference to
it. With the animation controllers, it is no different.

Update your CharacterMovement.cs script by performing the following steps:

• A new Animator reference to hold a link to our sprites animator is needed,
as mentioned in the following code:
//Reference to the player's animator component.
private Animator anim;

• Discover the actual animator from the sprite object within the Awake function
to ensure we capture it at startup using using the technique we highlighted
earlier in Chapter 2, Character Building, for accessing components; in this case,
the Rigidbody2D component:
void Awake()
{
 //Setting up references.
 playerRigidBody2D =
 (Rigidbody2D)GetComponent(typeof(Rigidbody2D));
}

Getting Animated

[80]

• In the Update function, we update a float parameter we defined earlier
in the animator with the value of the movement that we got from the user
control. Refer to the following code:

void Update(){
 //Cache the horizontal input.
 movePlayerVector = Input.GetAxis("Horizontal");

 anim.SetFloat("speed", Mathf.Abs(movePlayerVector));

Now if you run the project, your hero will start running in the correct direction when
you tell him to and then rest when you stop.

If you also arrange Windows in a way that you can see both the Game and Animator
windows at the same time, you will see that each state will become active as and
when it reacts to the input.

Extra credit
We have a nice run and stand animation, but wouldn't it be better if our hero had a
spring in his step? So let's extend our running animation, and also highlight one of
the pitfalls of doing so and how to fix it by performing the following steps:

1. Select the Player game object, open the Animation window, and select the
CharacterRun animation clip.

2. Click on the middle keyframe in the animation.
3. In the Inspector pane, change the Y Transform value to 0.1.

This will update your animation as follows:

Chapter 3

[81]

However, when you now run your project and make the hero run around, you will
see the hero doing his new run animation and bobbing up and down as expected.
However, it will soon stop moving; what the heck? The reason is simple; by setting
the Y property of the game objects in the Transform pane, you also have to set the
X and Z properties to 0 because they are all part of the Transform pane's Vector3
property. This may be changed in future versions of Unity. However, currently, it
isn't possible to just animate a single property of constructs, such as vectors or other
complex types.

There is a workaround, which is more on the lines of how you should create complex
game objects that have many parts. Just split Character from the rendering of its
sprite by performing the following steps:

1. Rename our current Player game object to PlayerSprite.
2. Create a new game object named Player.
3. Click and drag the PlayerSprite game object to be a child of the Player

game object.
4. Reset all the Transform pane's values of both the Player and PlayerSprite

game objects (otherwise, everything will be an offset).
5. Remove the CharacterMovement script, RigidBody 2D, and Box Collider

2D components from the PlayerSprite game object and add them to the
Player game object again.

Also, be sure to update the options of the physics components and the
bounds of the box collider. This is because they are not on the sprite
object; they no longer automatically recognize the regions they need to
work with but just tweak them until they are correct.

Getting Animated

[82]

The Player (Controller) game object view will look like the following screenshot:

Chapter 3

[83]

The PlayerSprite (Animator/Sprite Renderer) game object view is shown in the
following screenshot:

With our scene reordered, the player's movements and physics are controlled by
the parent Player object, and the Sprite Rendering and Animator are controlled by
the child PlayerSprite object. We just need to update our control script so it knows
where to find everything. Perform the following step:

1. Edit the CharacterMovement.cs C# script and update it as follows:
 ° Add a reference to the point of the new PlayerSprite game object

as follows:
 //Reference to the player's sprite GameObject.
 private GameObject playerSprite;

Getting Animated

[84]

 ° Add discovery for the PlayerSprite game object and alter the
discovery for the animation component based on the new
playerSprite reference as follows:
 void Awake()
 {
 // Setting up references.
 playerRigidBody2D =

 (Rigidbody2D)GetComponent(typeof(Rigidbody2D));
 playerSprite = transform.Find("PlayerSprite").

 gameObject;
 anim =

 (Animator)playerSprite.GetComponent(typeof(Animator));
 }

Make sure you have renamed the GameObjects as shown in the
previous screenshot or this will give an error when you run the project.

 ° Alter the Flip() logic to work with the PlayerSprite game object's
rendering option as follows:

 void Flip()
 {
 //Switch the way the player is labelled as facing.
 facingRight = !facingRight;

 //Multiply the player's x local scale by -1.
 Vector3 theScale = playerSprite.transform.localScale;
 theScale.x *= -1;
 playerSprite.transform.localScale = theScale;
 }

So, when we run the game now, the entire Player object is moved by the script and
the animation runs independently.

Getting curvy
As a nice last touch, let's clean up the running of the animation to be a bit smoother.
At present, the hero jerks up and down with the frames it has, but we can improve
this by using the Curves features of the Animation editor.

To do this, let's make some space in the Animation window's timeline to add a few
extra frames by performing the following steps:

1. Move the last keyframe back from 0.02 to 0.04.

Chapter 3

[85]

2. Drag the 01_3 sprite again onto the timeline at 0.02 and 0.03.

You should now have five frames in the animation.

3. Set the Position.y property from 0.01 to 0.05.
4. Set the Position.y property from 0.02 to 0.1.
5. Set the Position.y property from 0.03 to 0.05.
6. Click on the Curves button at the bottom of the Animator window to switch

between the views.

With extra frames and settings, you should now see the curve as shown in the
following screenshot:

Now, while running the project, the slight hop in our hero's step should look a
lot smoother.

Going further
If you are of an adventurous sort, try expanding your project to add the
following features:

• Try adding more animations from the hero's spritesheet, such as jumping.
• Expand the animation and curves for the hero. Try playing with some of the

other options that were described in the overview.

Getting Animated

[86]

Summary
The updated Animation system provides a tremendous boost to the users with
lots of hidden features. I've not covered everything as that would deserve another
book entirely, so feel free to experiment further. The Mecanim system isn't just for
animation either, and we will return to this later on.

We covered an overview of all the main Sprite animation components (Animator,
Controller, Clips, Keyframes, and Curves), importing new sprites, animating sprites
and controlling states, improving animations, and structuring renderers.

In the next chapter, we will build an environment for our character to walk around
in, with environments, sprite layers, and scene navigation.

The Game World
With our main character in hand, let's give him a home and a place to walk around.
In this chapter, we will cover the basics of creating immersive areas where players
can walk around and interact, as well as some of the techniques used to manage
those areas.

This chapter will give you some practical tips and tricks of the spritesheet system
introduced with Unity 4.3 and how to get it to work for you.

Lastly, we will also have a cursory look at how shaders work in the 2D world and
the considerations you need to keep in mind when using them. However, we won't
be implementing shaders as that could be another book in itself.

The following is the list of topics that will be covered in this chapter:

• Working with environments
• Looking at sprite layers
• Handling multiple resolutions
• An overview of parallaxing and effects
• Shaders in 2D – an overview

Backgrounds and layers
Now that we have our hero in play, it would be nice to give him a place to live and
walk around, so let's set up the home town and decorate it.

Firstly, we are going to need some more assets. So, from the asset pack you
downloaded earlier, grab the following assets from the Environments pack,
place them in Assets\Sprites\Environment, and name them as follows:

• Name the ENVIRONMENTS\ STEAMPUNK\background01.png file
Assets\ Sprites\Environment\background01

The Game World

[88]

• Name the ENVIRONMENTS\STEAMPUNK\environmentalAssets.png file
Assets\Sprites\Environment\environmentalAssets

• Name the ENVIRONMENTS\FANTASY\environmentalAssets.png file Assets\
Sprites\Environment\environmentalAssets2

To slice or not to slice
As we progress through this book, you will notice that some assets are single
textures, whereas others contain multiple images and you may wonder which
method is best to create your assets and why it is best.

The answer (as it is in a lot of these situations) depends on the needs of your title.

It is always better to pack many of the same images on to a single asset/atlas and
then use the Sprite Editor to define the regions on that texture for each sprite, as long
as all the sprites on that sheet are going to get used in the same scene. The reason for
this is when Unity tries to draw to the screen, it needs to send the images to draw
to the graphics card; if there are many images to send, this can take some time. If,
however, it is just one image, it is a lot simpler and more performant with only one
file to send.

There needs to be a balance; too large an image and the upload to the graphics card
can take up too many resources, too many individual images and you have the
same problem.

The basic rule of thumb is as follows:

• If the background is a full screen background or large image, then keep
it separate.

• If you have many images and all are for the same scene, then put them into a
single spritesheet/atlas.

• If you have many images but all are for different scenes, then group them
as best you can—common items on one sheet and scene-specific items on
different sheets. You'll have several spritesheets to use.

You basically want to keep as much stuff together as makes sense and not send
unnecessary images that won't get used to the graphics card. Find your balance.

Chapter 4

[89]

The town background
First, let's add a background for the town using the Assets\Sprites\Environment\
background01 texture. It is shown in the following screenshot:

With the background asset, we don't need to do anything else other than ensure that
it has been imported as a sprite (in case your project is still in 3D mode), as shown in
the following screenshot:

The Game World

[90]

The town buildings
For the steampunk environmental assets (Assets\Sprites\Environment\
environmentalAssets) that are shown in the following screenshot, we need a bit
more work; once these assets are imported, change the Sprite Mode to Multiple
and load up the Sprite Editor using the Sprite Editor button.

Chapter 4

[91]

Next, click on the Slice button, leave the settings at their default options, and then
click on the Slice button in the new window as shown in the following screenshot:

Click on Apply and close the Sprite Editor. You will have four new sprite textures
available as seen in the following screenshot:

The Game World

[92]

The extra scenery
We saw what happens when you use a grid type split on a spritesheet and when
the automatic split works well, so what about when it doesn't go so well? If
we look at the Fantasy environment pack (Assets\Sprites\Environment\
environmentalAssets2), we will see the following:

After you have imported it and run the Split in Sprite Editor, you will notice that
one of the sprites does not get detected very well; altering the automatic split settings
in this case doesn't help, so we need to do some manual manipulation as shown in
the following screenshot:

Chapter 4

[93]

In the previous screenshot, you can see that just two of the rocks in the top-right
sprite have been identified by the splicing routine. To fix this, just delete one of the
selections and then expand the other manually using the selection points in the
corner of the selection box (after clicking on the sprite box). Here's how it will look
before the correction:

The Game World

[94]

After correction, you should see something like the following screenshot:

This gives us some nice additional assets to scatter around our towns and give it a
more homely feel, as shown in the following screenshot:

Building the scene
So, now that we have some nice assets to build with, we can start building our
first town.

Chapter 4

[95]

Adding the town background
Returning to the scene view, you should see the following:

If, however, we add our town background texture (Assets\Sprites\Backgrounds\
Background.png) to the scene by dragging it to either the project hierarchy or the
scene view, you will end up with the following:

Be sure to set the background texture position appropriately once you
add it to the scene; in this case, be sure the position of the transform is
centered in the view at X = 0, Y = 0, Z = 0.
Unity does have a tendency to set the position relative to where your
3D view is at the time of adding it—almost never where you want it.

The Game World

[96]

Our player has vanished!

The reason for this is simple: Unity's sprite system has an ordering system that
comes in two parts.

Sprite sorting layers
Sorting Layers (Edit | Project Settings | Tags and Layers) are a collection of sprites,
which are bulked together to form a single group. Layers can be configured to be
drawn in a specific order on the screen as shown in the following screenshot:

Sprite sorting order
Sprites within an individual layer can be sorted, allowing you to control the draw
order of sprites within that layer. The sprite Inspector is used for this purpose, as
shown in the following screenshot:

Chapter 4

[97]

Sprite's Sorting Layers should not be confused with Unity's rendering
layers. Layers are a separate functionality used to control whether groups
of game objects are drawn or managed together, whereas Sorting Layers
control the draw order of sprites in a scene.

So the reason our player is no longer seen is that it is behind the background. As they
are both in the same layer and have the same sort order, they are simply drawn in
the order that they are in the project hierarchy.

Updating the scene Sorting Layers
To resolve the update of the scene's Sorting Layers, let's organize our sprite
rendering by adding some sprite Sorting Layers. So, open up the Tags and Layers
inspector pane as shown in the following screenshot (by navigating to Edit | Project
settings | Tags and Layers), and add the following Sorting Layers:

• Background
• Player
• Foreground
• GUI

You can reorder the layers underneath the default anytime by
selecting a row and dragging it up and down the sprite's Sorting
Layers list.

The Game World

[98]

With the layers set up, we can now configure our game objects accordingly. So, set
the Sorting Layer on our background01 sprite to the Background layer as shown in
the following screenshot:

Then, update the PlayerSprite GameObject to the Player layer; our character will
now be displayed in front of the background.

You can just keep both objects on the same layer and set the Sort Order
value appropriately, keeping the background to a Sort Order value of 0
and the player to 10, which will draw the player in front. However, as
you add more items to the scene, things will get tricky quickly, so it is
better to group them in a layer accordingly.

Now when we return to the scene, our hero is happily displayed but he is seen
hovering in the middle of our village. So let's fix that next by simply changing its
position transform in the Inspector window.

Chapter 4

[99]

Setting the Y position transform to -2 will place our hero nicely in the middle of the
street (provided you have set the pivot for the player sprite to bottom), as shown in
the following screenshot:

Feel free at this point to also add some more background elements such as trees and
buildings to fill out the scene using the environment assets we imported earlier.

Working with the camera
If you try and move the player left and right at the moment, our hero happily bobs
along. However, you will quickly notice that we run into a problem: the hero soon
disappears from the edge of the screen. To solve this, we need to make the camera
follow the hero.

When creating new scripts to implement something, remember that
just about every game that has been made with Unity has most likely
implemented either the same thing or something similar. Most just get on
with it, but others and the Unity team themselves are keen to share their
scripts to solve these challenges. So in most cases, we will have something
to work from. Don't just start a script from scratch (unless it is a very
small one to solve a tiny issue) if you can help it; here's some resources to
get you started:

• Unity sample projects: http://unity3d.com/learn/
tutorials/modules

• Unity Patterns: http://unitypatterns.com/
• Unity wiki scripts section: http://wiki.Unity3d.com/

index.php/Scripts (also check other stuff for detail)

Once you become more experienced, it is better to just use these scripts
as a reference and try to create your own and improve on them, unless
they are from a maintained library such as https://github.com/
nickgravelyn/UnityToolbag.

http://unitypatterns.com/
http://wiki.Unity3d.com/index.php/Scripts
http://wiki.Unity3d.com/index.php/Scripts
https://github.com/nickgravelyn/UnityToolbag
https://github.com/nickgravelyn/UnityToolbag

The Game World

[100]

To make the camera follow the players, we'll take the script from the Unity 2D
sample and modify it to fit in our game. This script is nice because it also includes
a Mario style buffer zone, which allows the players to move without moving the
camera until they reach the edge of the screen.

Create a new script called FollowCamera in Assets\Scripts, remove the Start and
Update functions, and then add the following properties:

using UnityEngine;

public class FollowCamera : MonoBehaviour {

 // Distance in the x axis the player can move before the
 // camera follows.
 public float xMargin = 1.5f;

 // Distance in the y axis the player can move before the
 // camera follows.
 public float yMargin = 1.5f;

 // How smoothly the camera catches up with its target
 // movement in the x axis.
 public float xSmooth = 1.5f;

 // How smoothly the camera catches up with its target
 // movement in the y axis.
 public float ySmooth = 1.5f;

 // The maximum x and y coordinates the camera can have.
 public Vector2 maxXAndY;

 // The minimum x and y coordinates the camera can have.
 public Vector2 minXAndY;

 // Reference to the player's transform.
 public Transform player;
}

The variables are all commented to explain their purpose, but we'll cover each as we
use them.

First off, we need to get the player object's position so that we can track the camera
to it by discovering it from the object it is attached to. This is done by adding the
following code in the Awake function:

 void Awake()
 {
 // Setting up the reference.

Chapter 4

[101]

 player = GameObject.Find("Player").transform;
 if (player == null)
 {
 Debug.LogError("Player object not found");
 }

 }

An alternative to discovering the player this way is to make the player
property public and then assign it in the editor. There is no right or
wrong way—just your preference.
It is also a good practice to add some element of debugging to let you
know if there is a problem in the scene with a missing reference, else all
you will see are errors such as object not initialized or variable was null.

Next, we need a couple of helper methods to check whether the player has moved
near the edge of the camera's bounds as defined by the Max X and Y variables. In the
following code, we will use the settings defined in the preceding code to control how
close you can get to the end result:

 bool CheckXMargin()
 {
 // Returns true if the distance between the camera and the
 // player in the x axis is greater than the x margin.
 return Mathf.Abs
(transform.position.x - player.position.x) > xMargin;
 }

 bool CheckYMargin()
 {
 // Returns true if the distance between the camera and the
 // player in the y axis is greater than the y margin.
 return Mathf.Abs
(transform.position.y - player.position.y) > yMargin;
 }

To finish this script, we need to check each frame when the scene is drawn to see
whether the player is close to the edge and update the camera's position accordingly.
Also, we need to check if the camera bounds have reached the edge of the screen and
not move it beyond.

The Game World

[102]

Comparing Update, FixedUpdate, and
LateUpdate
There is usually a lot of debate about which update method should be used within
a Unity game. To put it simply, the FixedUpdate method is called on a regular
basis throughout the lifetime of the game and is generally used for physics and time
sensitive code. The Update method, however, is only called after the end of each
frame that is drawn to the screen, as the time taken to draw the screen can vary (due
to the number of objects to be drawn and so on). So, the Update call ends up being
fairly irregular.

For more detail on the difference between Update and FixedUpdate
see the Unity Learn tutorial video at http://unity3d.com/
learn/tutorials/modules/beginner/scripting/update-
and-fixedupdate.

As the player is being moved by the physics system, it is better to update the camera
in the FixedUpdate method:

 void FixedUpdate()
 {
 // By default the target x and y coordinates of the camera
 // are it's current x and y coordinates.
 float targetX = transform.position.x;
 float targetY = transform.position.y;

 // If the player has moved beyond the x margin...
 if (CheckXMargin())
 // the target x coordinate should be a Lerp between
 // the camera's current x position and the player's
 // current x position.
 targetX = Mathf.Lerp(transform.position.x,
 player.position.x, xSmooth *
Time.fixedDeltaTime);

http://unity3d.com/learn/tutorials/modules/beginner/scripting/update-and-fixedupdate
http://unity3d.com/learn/tutorials/modules/beginner/scripting/update-and-fixedupdate
http://unity3d.com/learn/tutorials/modules/beginner/scripting/update-and-fixedupdate

Chapter 4

[103]

 // If the player has moved beyond the y margin...
 if (CheckYMargin())
 // the target y coordinate should be a Lerp between
 // the camera's current y position and the player's
 // current y position.
 targetY = Mathf.Lerp(transform.position.y,
 player.position.y, ySmooth *
 Time. fixedDeltaTime);

 // The target x and y coordinates should not be larger
 // than the maximum or smaller than the minimum.
 targetX = Mathf.Clamp(targetX, minXAndY.x, maxXAndY.x);
 targetY = Mathf.Clamp(targetY, minXAndY.y, maxXAndY.y);

 // Set the camera's position to the target position with
 // the same z component.
 transform.position =
 new Vector3(targetX, targetY, transform.position.z);
 }

As they say, every game is different and how the camera acts can
be different for every game. In a lot of cases, the camera should be
updated in the LateUpdate method after all drawing, updating, and
physics are complete. This, however, can be a double-edged sword if
you rely on math calculations that are affected in the FixedUpdate
method, such as Lerp. It all comes down to tweaking your camera
system to work the way you need it to do.

Once the script is saved, just attach it to the Main Camera element by dragging the
script to it or by adding a script component to the camera and selecting the script.

The Game World

[104]

Finally, we just need to configure the script and the camera to fit our game size
as follows:

Set the orthographic Size of the camera to 2.7 and the Min X and Max X sizes to 5
and -5 respectively.

The perils of resolution
When dealing with cameras, there is always one thing that will trip us up as soon as
we try to build for another platform—resolution.

Chapter 4

[105]

By default, the Unity player in the editor runs in the Free Aspect mode as shown in
the following screenshot:

The Aspect mode (from the Aspect drop-down) can be changed to represent the
resolutions supported by each platform you can target. The following is what you
get when you switch your build target to each platform:

The Game World

[106]

To change the build target, go into your project's Build Settings by navigating to
File | Build Settings or by pressing Ctrl + Shift + B, then select a platform and click
on the Switch Platform button. This is shown in the following screenshot:

When you change the Aspect drop-down to view in one of these resolutions, you
will notice how the aspect ratio for what is drawn to the screen changes by either
stretching or compressing the visible area. If you run the editor player in full screen
by clicking on the Maximize on Play button () and then clicking on
the play icon, you will see this change more clearly. Alternatively, you can run your
project on a target device to see the proper perspective output.

Chapter 4

[107]

The reason I bring this up here is that if you used fixed bounds settings for your
camera or game objects, then these values may not work for every resolution,
thereby putting your settings out of range or (in most cases) too undersized. You can
handle this by altering the settings for each build or using compiler predirectives
such as #if UNITY_METRO to force the default depending on the build (in this
example, Windows 8).

You can read more about compiler predirectives in Chapter 12, Deployment
and Beyond. Alternatively, check the Unity documentation at http://
docs.unity3d.com/Manual/PlatformDependentCompilation.
html.

A better FollowCamera script
If you are only targeting one device/resolution or your background scrolls
indefinitely, then the preceding manual approach works fine. However, if you want
it to be a little more dynamic, then we need to know what resolution we are working
in and how much space our character has to travel. We will perform the following
steps to do this:

1. We will change the min and max variables to private as we no longer need
to configure them in the Inspector window. The code is as follows:
 // The maximum x and y coordinates the camera can have.
 private Vector2 maxXAndY;

 // The minimum x and y coordinates the camera can have.
 private Vector2 minXAndY;

2. To work out how much space is available in our town, we need to interrogate
the rendering size of our background sprite. So, in the Awake function, we
add the following lines of code:
 // Get the bounds for the background texture - world
 size
 var backgroundBounds = GameObject.Find("background")
 .renderer.bounds;

3. In the Awake function, we work out our resolution and viewable space by
interrogating the ViewPort method on the camera and converting it to the
same coordinate type as the sprite. This is done using the following code:
 // Get the viewable bounds of the camera in world
 // coordinates
 var camTopLeft = camera.ViewportToWorldPoint
 (new Vector3(0, 0, 0));
 var camBottomRight = camera.ViewportToWorldPoint
 (new Vector3(1, 1, 0));

http://docs.unity3d.com/Manual/PlatformDependentCompilation.html
http://docs.unity3d.com/Manual/PlatformDependentCompilation.html
http://docs.unity3d.com/Manual/PlatformDependentCompilation.html

The Game World

[108]

4. Finally, in the Awake function, we update the min and max values using the
texture size and camera real-world bounds. This is done using the following
lines of code:
 // Automatically set the min and max values
 minXAndY.x = backgroundBounds.min.x - camTopLeft.x;
 maxXAndY.x = backgroundBounds.max.x - camBottomRight.x;

In the end, it is up to your specific implementation for the type of game you are
making to decide which pattern works for your game.

Transitioning and bounds
So our camera follows our player, but our hero can still walk off the screen and keep
going forever, so let us stop that from happening.

Towns with borders
As you saw in the preceding section, you can use Unity's camera logic to figure out
where things are on the screen. You can also do more complex ray testing to check
where things are, but I find these are overly complex unless you depend on that level
of interaction.

The simpler answer is just to use the native Box2D physics system to keep things in
the scene. This might seem like overkill, but the 2D physics system is very fast and
fluid, and it is simple to use.

We already added the physics components, Rigidbody 2D (to apply physics) and a
Box Collider 2D (to detect collisions) to the player in Chapter 2, Character Building.
So, we can make use of these components straight away by adding some additional
collision objects to stop the player running off.

Chapter 4

[109]

To do this and to keep things organized, we will add three empty game objects
(either by navigating to GameObject | Create Empty, or by pressing Ctrl + Shift +N)
to the scene (one parent and two children) to manage these collision points, as shown
in the following screenshot:

I've named them WorldBounds (parent) and LeftBorder and RightBorder (children)
for reference. Next, we will position each of the child game objects to the left- and
right-hand side of the screen, as shown in the following screenshot:

The Game World

[110]

Next, we will add a Box Collider 2D to each border game object and increase its
height just to ensure that it works for the entire height of the scene. I've set the Y
value to 5 for effect, as shown in the following screenshot:

The end result should look like the following screenshot with the two new colliders
highlighted in green:

Alternatively, you could have just created one of the children, added
the box collider, duplicated it (by navigating to Edit | Duplicate or by
pressing Ctrl + D), and moved it. If you have to create multiples of the
same thing, this is a handy tip to remember.

If you run the project now, then our hero can no longer escape this town on his own.
However, as we want to let him leave, we can add a script to the new Boundary
game object so that when the hero reaches the end of the town, he can leave.

Chapter 4

[111]

Journeying onwards
Now that we have collision zones on our town's borders, we can hook into this by
using a script to activate when the hero approaches.

Create a new C# script called NavigationPrompt, clear its contents, and populate it
with the following code:

using UnityEngine;

public class NavigationPrompt : MonoBehaviour {

 bool showDialog;

 void OnCollisionEnter2D(Collision2D col)
 {
 showDialog = true;
 }

 void OnCollisionExit2D(Collision2D col)
 {
 showDialog = false;
 }
}

The preceding code gives us the framework of a collision detection script that sets a
flag on and off if the character interacts with what the script is attached to, provided
it has a physics collision component. Without it, this script would do nothing and it
won't cause an error.

Next, we will do something with the flag and display some GUI when the flag is set.
So, add the following extra function to the preceding script:

 void OnGUI()
 {
 if (showDialog)
 {
 //layout start
 GUI.BeginGroup(new Rect(Screen.width / 2 - 150, 50, 300,
 250));

 //the menu background box
 GUI.Box(new Rect(0, 0, 300, 250), "");

The Game World

[112]

 // Information text
 GUI.Label(new Rect(15, 10, 300, 68), "Do you want to
 travel?");

 //Player wants to leave this location
 if (GUI.Button(new Rect(55, 100, 180, 40), "Travel"))
 {
 showDialog = false;

 // The following line is commented out for now
 // as we have nowhere to go :D
 //Application.LoadLevel(1);

 //Player wants to stay at this location
 if (GUI.Button(new Rect(55, 150, 180, 40), "Stay"))
 {
 showDialog = false;
 }

 //layout end
 GUI.EndGroup();
 }
 }

The function itself is very simple and only activates if the showDialog flag is set to
true by the collision detection. Then, we will perform the following steps:

1. In the OnGUI method, we set up a dialog window region with some text and
two buttons.

2. One button asks if the player wants to travel, which would load the next area
(commented out for now as we only have one scene), and close the dialog.

3. One button simply closes the dialog if the hero didn't actually want to leave.
As we haven't stopped moving the player, the player can also do this by
moving away.

If you now add the NavigationPrompt script to the two world border (LeftBorder
and RightBorder) game objects, this will result in the following simple UI whenever
the player collides with the edges of our world:

Chapter 4

[113]

We can further enhance this by tagging or naming our borders to indicate a
destination. I prefer tagging, as it does not interfere with how my scene looks in
the project hierarchy; also, I can control what tags are available and prevent
accidental mistyping.

To tag a game object, simply select a Tag using the drop-down list in the Inspector
when you select the game object in the scene or project. This is shown in the
following screenshot:

If you haven't set up your tags yet or just wish to add a new one, select Add Tag in
the drop-down menu; this will open up the Tags and Layers window of Inspector.
Alternatively, you can call up this window by navigating to Edit | Project Settings |
Tags and layers in the menu. It is shown in the following screenshot:

The Game World

[114]

You can only edit or change user-defined tags. There are several other
tags that are system defined. You can use these as well; you just cannot
change, remove, or edit them. These include Player, Respawn, Finish,
Editor Only, Main Camera, and GameController.

As you can see from the preceding screenshot, I have entered two new tags called
The Cave and The World, which are the two main exit points from our town.

Unity also adds an extra item to the arrays in the editor. This helps you
when you want to add more items; it's annoying when you want a fixed
size but it is meant to help. When the project runs, however, the correct
count of items will be exposed.

Once these are set up, just return to the Inspector for the two borders, and set the
right one to The World and the left to The Cave.

Now, I was quite specific in how I named these tags, as you can now reuse these
tags in the script to both aid navigation and also to notify the player where they
are going. To do this, simply update the Do you want to travel to line to
the following:

//Information text
GUI.Label(new Rect(15, 10, 300, 68), "Do you want to travel to " +
 this.tag + "?");

Here, we have simply appended the dialog as it is presented to the user with the
name of the destination we set in the tag. Now, we'll get a more personal message,
as shown in the following screenshot:

Chapter 4

[115]

Planning for the larger picture
Now for small games, the preceding implementation is fine; however, if you are
planning a larger world with a large number of interactions, provide complex
decisions to prevent the player continuing unless they are ready.

As the following diagram shows, there are several paths the player can take and in
some cases, these is only one way. Now, we could just build up the logic for each of
these individually as shown in the screenshot, but it is better if we build a separate
navigation system so that we have everything in one place; it's just easier to manage
that way.

Scary village The swamp Evil witches'
house

The grove

Home townThe Cave World

World

This separation is a fundamental part of any good game design. Keeping the logic
and game functionality separate makes it easier to maintain in the future, especially
when you need to take internationalization into account (but we will learn more
about that later).

Now, we'll change to using a manager to handle all the world/scene
transitions, and simplify the tag names we use as they won't need to be
displayed.
So, The Cave will be renamed as just Cave, and we will get the text to
display from the navigation manager instead of the tag.

So, by separating out the core decision making functionality out of the prompt script,
we can build the core manager for navigation. Its primary job is to maintain where a
character can travel and information about that destination.

First, we'll update the tags we created earlier to simpler identities that we can use in
our navigation manager (update The Cave to Cave and The World to World).

The Game World

[116]

Next, we'll create a new C# script called NavigationManager in Assets\Scripts,
and then replace its contents with the following lines of code:

using System.Collections.Generic;
public static class NavigationManager
{

 public static Dictionary<string,string> RouteInformation =
 new Dictionary<string,string>()
 {
 { "World", "The big bad world"},
 { "Cave", "The deep dark cave"},
 };

 public static string GetRouteInfo(string destination)
 {
 return RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination] : null;
 }

 public static bool CanNavigate(string destination)
 {
 return true;
 }

 public static void NavigateTo(string destination)
 {
 // The following line is commented out for now
 // as we have nowhere to go :D
 //Application.LoadLevel(destination);
 }
}

Chapter 4

[117]

Notice the ? and : operators in the following statement:
RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination] : null;

These operators are C# conditional operators. They are effectively the
shorthand of the following:

if(RouteInformation.ContainsKey(destination))
{
 return RouteInformation[destination];
}
else
{
 return null;
}

Shorter, neater, and much nicer, don't you think?
For more information, see the MSDN C# page at http://bit.ly/
csharpconditionaloperator.

The script is very basic for now, but contains several following key elements that can
be expanded to meet the design goals of your game:

• RouteInformation: This is a list of all the possible destinations in the game
in a dictionary.
A static list of possible destinations in the game, and it is a core part of the
manager as it knows everywhere you can travel in the game in one place.

• GetRouteInfo: This is a basic information extraction function.
A simple controlled function to interrogate the destination list. In this
example, we just return the text to be displayed in the prompt, which allows
for more detailed descriptions that we could use in tags. You could use this
to provide alternate prompts depending on what the player is carrying and
whether they have a lit torch, for example.

• CanNavigate: This is a test to see if navigation is possible.
If you are going to limit a player's travel, you need a way to test if they can
move, allowing logic in your game to make alternate choices if the player
cannot. You could use a different system for this by placing some sort of
block in front of a destination to limit choice (as used in the likes of Zelda),
such as an NPC or rock. As this is only an example, we can always travel and
add logic to control it if you wish.

http://bit.ly/csharpconditionaloperator
http://bit.ly/csharpconditionaloperator

The Game World

[118]

• NavigateTo: This is a function to instigate navigation.
Once a player can travel, you can control exactly what happens in the game:
does navigation cause the next scene to load straight away (as in the script
currently), or does the current scene fade out and then a traveling screen is
shown before fading the next level in? Granted, this does nothing at present
as we have nowhere to travel to.

The script you will notice is different to the other scripts used so far, as it is a static
class. This means it sits in the background, only exists once in the game, and is
accessible from anywhere. This pattern is useful for fixed information that isn't
attached to anything; it just sits in the background waiting to be queried.

Later, we will cover more advanced types and classes to provide more
complicated scenarios.

With this class in place, we just need to update our previous script (and the tags) to
make use of this new manager. Update the NavigationPrompt script as follows:

1. Update the collision function to only show the prompt if we can travel.
The code is as follows:
void OnCollisionEnter2D(Collision2D col)
{
 //Only allow the player to travel if allowed
 if (NavigationManager.CanNavigate(this.tag))
 {
 showDialog = true;
 }
}

2. When the dialog shows, display the more detailed destination text provided
by the manager for the intended destination. The code is as follows:
//Dialog detail - updated to get better detail
GUI.Label(new Rect(15, 10, 300, 68), "Do you want to travel
 to " + NavigationManager.GetRouteInfo(this.tag) + "?");

3. If the player wants to travel, let the manager start the travel process. The
code is as follows:

//Player wants to leave this location
if (GUI.Button(new Rect(55, 100, 180, 40), "Travel"))
{
 showDialog = false;
 NavigationManager.NavigateTo(this.tag);
}

Chapter 4

[119]

The functionality I've shown here is very basic and it is intended to make
you think about how you would need to implement it for your game.
With so many possibilities available, I could fill several chapters on this
kind of subject alone.

Backgrounds and active elements
A slightly more advanced option when building game worlds is to add a level of
immersive depth to the scene. Having a static image to show the village looks good,
especially when you start adding houses and NPCs to the mix; but to really make it
shine, you should layer the background and add additional active elements to liven
it up.

We won't add them to the sample project at this time, but it is worth experimenting
with in your own projects (or try adding it to this one)—it is a worthwhile effect to
look into.

Parallaxing
If we look at the 2D sample provided by Unity, the background is split into several
panes—each layered on top of one another and each moving at a different speed
when the player moves around. There are also other elements such as clouds, birds,
buses, and taxis driving/flying around, as shown in the following screenshot:

The Game World

[120]

Implementing these effects is very easy technically. You just need to have the art
assets available. There are several scripts in the wiki I described earlier, but the one
in Unity's own 2D sample is the best I've seen.

To see the script, just download the Unity Projects: 2D Platformer
asset from https://www.assetstore.unity3d.com/en/#!/
content/11228, and check out the BackgroundParallax script
in Assets\Scripts.

The BackgroundParallax script in the platformer sample implements the following:

• An array of background images, which is layered correctly in the scene
(which is why the script does not just discover the background sprites)

• A scaling factor to control how much the background moves in relation to
the camera target, for example, the camera

• A reducing factor to offset how much each layer moves so that they all don't
move as one (or else what is the point, might as well be a single image)

• A smoothing factor so that each background moves smoothly with the target
and doesn't jump around

Implementing this same model in your game would be fairly simple provided you
have texture assets that could support it. Just replicate the structure used in the
platformer 2D sample and add the script. Remember to update the FollowCamera
script to be able to update the base background, however, to ensure that it can still
discover the size of the main area.

Foreground objects
The other thing you can do to liven up your game is to add random foreground
objects that float across your scene independently. These don't collide with anything
and aren't anything to do with the game itself. They are just eye candy to make your
game look awesome.

The process to add these is also fairly simple, but it requires some more advanced
Unity features such as coroutines, which we are going to cover in another chapter.
So, we will come back to these later.

https://www.assetstore.unity3d.com/en/#!/content/11228
https://www.assetstore.unity3d.com/en/#!/content/11228

Chapter 4

[121]

In short, if you examine the BackgroundPropSpawner.cs script from the preceding
Unity platformer 2D sample, you will have to perform the following steps:

1. Create/instantiate an object to spawn.
2. Set a random position and direction for the object to travel.
3. Update the object over its lifetime.
4. Once it's out of the scene, destroy or hide it.
5. Wait for a time, and then start again.

This allows them to run on their own without impacting the gameplay itself and just
adds that extra bit of depth. In some cases, I've seen particle effects are also used to
add effect, but they are used sparingly.

Shaders and 2D
Believe it or not, all 2D elements (even in their default state) are drawn using a
shader—albeit a specially written shader designed to light and draw the sprite in a
very specific way. If you look at the player sprite in the inspector, you will see that it
uses a special Material called Sprites-Default, as shown in the following screenshot:

This section is purely meant to highlight all the shading options you
have in the 2D system. Shaders have not changed much in this update
except for the addition of some 2D global lighting found in the default
sprite shader.
For more detail on shaders in general, I suggest a dedicated Unity
shader book as it is more than I can cover here.

The Game World

[122]

Clicking on the button will bring up the material selector, which also shows the
two other built-in default materials, as shown in the following screenshot:

However, selecting either of these will render your sprite invisible as they require
a texture and lighting to work; they won't inherit from the Sprite Renderer texture.
You can override this by creating your own material and assigning alternate sprite
style shaders.

To create a new material, just select Assets\Materials (this is not crucial, but it
means we create the material in a sensible place in our project folder structure) and
then right click on and select Create | Material. Alternatively, do the same using the
project view's Edit... menu option, as shown in the following screenshot:

Chapter 4

[123]

This gives us a basic default Diffuse shader, which is fine for basic 3D objects.
However, we also have two default sprite rendering shaders available. Selecting
the shader dropdown gives us the screen shown in the following screenshot:

The Game World

[124]

Now, these shaders have the following two very specific purposes:

• Default: This shader inherits its texture from the Sprite Renderer texture to
draw the sprite as is. This is a very basic functionality—just enough to draw
the sprite. (It contains its own static lighting.)

• Diffuse: This shader is the same as the Default shader; it inherits the texture
of Default, but it requires an external light source as it does not contain any
lighting—this has to be applied separately. It is a slightly more advanced
shader, which includes offsets and other functions.

Creating one of these materials and applying it to the Sprite Renderer texture of a
sprite will override its default constrained behavior. This opens up some additional
shader options in the Inspector, as shown in the following screenshot:

Chapter 4

[125]

These options include the following:

• Sprite Texture: Although changing the Tiling and Offset values causes
a warning to appear, they still display a function (even though the actual
displayed value resets).

• Tint: This option allows changing the default light tint of the rendered sprite.
It is useful to create different colored objects from the same sprite.

• Pixel snap: This option makes the rendered sprite crisper but narrows the
drawn area. It is a trial and error feature (see the following sections for
more information).

Achieving pixel perfection in your game in Unity can be a challenge due
to the number of factors that can affect it, such as the camera view size,
whether the image texture is a Power Of Two (POT) size, and the import
setting for the image. This is basically a trial and error game until you are
happy with the intended result.

If you are feeling adventurous, you can extend these default shaders (although this
is out of the scope of this book). The full code for these shaders can be found at
http://Unity3d.com/unity/download/archive.

If you are writing your own shaders though, be sure to add some lighting to the
scene; otherwise, they are just going to appear dark and unlit. Only the default sprite
shader is automatically lit by Unity. Alternatively, you can use the default sprite
shader as a base to create your new custom shader and retain the 2D basic lighting.

Another worthy tip is to check out the latest version of the Unity samples
(beta) pack. In it, they have added logic to have two sets of shaders
in your project: one for mobile and one for desktop, and a script that
will swap them out at runtime depending on the platform. This is very
cool; check out on the asset store at https://www.assetstore.
unity3d.com/#/content/14474 and the full review of the pack at
http://darkgenesis.zenithmoon.com/unity3dsamplesbeta-
anoverview/.

http://Unity3d.com/unity/download/archive
https://www.assetstore.unity3d.com/#/content/14474
https://www.assetstore.unity3d.com/#/content/14474
http://darkgenesis.zenithmoon.com/unity3dsamplesbeta-anoverview/
http://darkgenesis.zenithmoon.com/unity3dsamplesbeta-anoverview/

The Game World

[126]

Going further
If you are the adventurous sort, try expanding your project to add the following:

• Add some buildings to the town
• Set up some entry points for a building and work that into your navigation

system, for example, a shop
• Add some rocks to the scene and color each differently using a manual

material, maybe even add a script to randomly set the pixel color in the
shader instead of creating several materials

• Add a new scene for the cave using another environment background, and
get the player to travel between them

Summary
This certainly has been a very busy chapter just to add a background to our scene,
but working out how each scene will work is a crucial design element for the entire
game; you have to pick a pattern that works for you and your end result once as
changing it can be very detrimental (and a lot of work) in the future.

In this chapter, we covered the following topics:

• Some more practice with the Sprite Editor and sprite slicer including some
tips and tricks when it doesn't work (or you want to do it yourself)

• Some camera tips, tricks, and scripts
• An overview of sprite layers and sprite sorting
• Defining boundaries in scenes
• Scene navigation management and planning levels in your game
• Some basics of how shaders work for 2D

In the next chapter, we will build a conversation system. Be prepared for some
heavy scripting!

NPCs and Interactions
The world would be a lonely place if we were alone. So, in this chapter, we'll look to
add in some more characters and give them something to say.

There are a few more fair technical solutions that Unity has under its belt; some are
just programing-orientated, whereas some are specific to Unity. So, we'll go through
each one of them and explain their pros and cons; plus, we'll look at some extensions
that we can add to make them even better.

This is a heavy scripting chapter. All the techniques explained
are not used in this chapter but are important to know, and
what's more important is to know the difference between them
and when to use them.

The list of topics that will be covered in this chapter are as follows:

• Advanced coding, delegates, events, and messaging
• Coroutines
• Scriptable objects and custom importers
• Building a conversation system
• Thinking beyond

Considering an RPG
When making a role-playing-style game, there is a lot to consider. So far, we have
just modeled our player using some standard statistics, but this could be done for
any type of game. The thing that sets RPGs apart is their sheer depth and interaction
with the living world.

NPCs and Interactions

[128]

If you are building an RPG game (or one with RPG elements), you need to get some
research under your belt and construct your world, the places you can visit (and why),
and the characters you will be talking to or fighting with. Some games even go so far as
to construct an elaborate backstory that has nothing to do with the actual game.

RPGs have a rich history as they have been around for a long time, and they provide
you with a wealth of information, examples, and resources to help you make a great
game. One such site is called DriveThruRPG (http://rpg.drivethrustuff.
com/index.php), which even today has an ever-growing catalogue of playbooks,
magazines, and materials. As this site is constantly expanding, you have a perpetual
resource to continue to build your game beyond the bounds of its first release. If you
intend to make the best game out there, it'd be best to consider its long term future
and additional content to add in later.

A lot of the content on DriveThruRPG is on a paid basis; however, there
is also a great deal of free resources to get you started, and a lot of the
magazines are free. Just be sure to check the license of whatever you buy
to either use it as is in your game or as a base for your own content.
Always check the license of anything you use.

Breaking it down, the main parts of an RPG that this book will focus on are
as follows:

• Interactive NPCs
• Noninteractive NPCs
• Enemy characters
• Conversations
• Experience
• Maps and places
• Battles

Other things you should consider (but are not covered) are as follows:

• Missions
• Backstory

http://rpg.drivethrustuff.com/index.php
http://rpg.drivethrustuff.com/index.php

Chapter 5

[129]

• Supporting characters (team)
• Cutscenes (not essential, but really makes the game stand out)

The list might seem endless. However, if you focus on these main elements, you can
always expand later.

A common mistake that a lot of new developers make is to design everything for
their game from the beginning. Through experience though, you will learn that
it is better to start small; first, you should build the main parts of your core game
mechanics and then add more content or features over time. If you architect your
game in the right way from the beginning, additional content can be added as
expansions later on as extra revenue options.

Advanced programming techniques
As part of this chapter, we start to go in depth with some advanced programming
techniques. These enable us to structure our code better and add management to our
game project instead of just adding game objects to the scene.

Singletons and managers
Any project of a sufficient size and complexity is going to run into issues related to
managing your game objects as and when they are added and removed from a scene.
If you don't get your design right from the start, you are setting yourself up for a
world of mess later. A common way to handle this is to use one of the three patterns,
single instance managers, singletons, or a dependency system, to manage these
controllers for you.

There are two main ways through which you can implement the singleton pattern
in Unity. The first way is to use a public static parameter within a class to maintain
the runtime class. This also allows any other script to access it from anywhere in the
game and is useful if you want other events to cause the manager to do something,
for example, things related to conversation systems or traps. You can also use an
empty game object in the scene and attach a singleton pattern script to it. However,
you could cause conflicts if you add more than one pattern.

Managers, on the other hand, are just central scripts that are particular to an
individual scene to control and maintain the flow of the scene for one or many items.

NPCs and Interactions

[130]

The manager approach – using empty game objects
Whereas singletons are game wide, there is often a cause for just a scene-based
manager. Implementing this using an empty game object is very easy. Simply use
Create Empty from the GameObject menu or the keyboard shortcut, as shown in
the following screenshot. The placement of the new game object is up to you. If your
controller's position is important (like with an enemy spawner), place it where you
want the objects to spawn from. If not, it doesn't matter; it just needs to be in the
scene somewhere. As it's an empty game object, it will not be drawn.

Then, create your manager script in the normal way. For example, the following
script simply spawns the configurable enemy objects from a collection according
to a simple repeating interval:

public class EnemySpawnManager : MonoBehaviour
{
 public float spawnTime = 5f;
 //The amount of time between each spawn.
 public float spawnDelay = 3f;
 //The amount of time before spawning starts.
 public GameObject[] enemies;
 //Array of enemy prefabs.

 void Start ()
 {
 //Start calling the Spawn function repeatedly after a delay.
 InvokeRepeating("Spawn", spawnDelay, spawnTime);
 }

 void Spawn ()
 {
 //Instantiate a random enemy.
 int enemyIndex = Random.Range(0, enemies.Length);
 Instantiate(enemies[enemyIndex],
 transform.position, transform.rotation);
 }
}

Chapter 5

[131]

Then, simply attach your script to the new empty game object. For it to function, you
will need to assign the prefabs of the types of enemies you want to appear in the scene
by attaching them to the Enemies property, as shown in the following screenshot:

You could also extend the manager to keep track of the game objects it creates;
additionally, instead of creating new objects each time, you can just allocate an object
from a pool, thereby removing the need to create and destroy objects over time.

The singleton approach – using the C#
singleton pattern
The manager approach is fine in most cases, but you have to control each instance of
the controller where it is placed. Moreover, you cannot interact with it or trigger it
without more configurations added to the manager class, and then either binding the
manager to other objects or using the dreaded Find function.

If you need a true manager, a better approach is to employ the singleton pattern for a
manager class; refer to the following example:

public class MySingletonManager : MonoBehaviour {

 //Static singleton property
 public static MySingletonManager Instance {
 get; private set;
 }

NPCs and Interactions

[132]

 //public property for manager
 public string MyTestProperty = "Hello World";

 void Awake()
 {
 //Save our current singleton instance
 Instance = this;
 }

 //public method for manager
 public void DoSomethingAwesome()
 { }
}

The preceding code is just a very basic singleton implementation, which you can
attach to any game object in the scene.

Then, you can access the properties and functions within the singleton script by
simply calling the following method from anywhere within your project:

//Set the public property of the singleton
MySingletonManager.Instance.MyTestProperty = "World Hello";

//Run the public method from the singleton
MySingletonManager.Instance.DoSomethingAwesome();

The class can run like any other class with updates, fixed updates, and so on. It can
also be expanded very quickly.

One of the other common uses of this pattern is the use of global variables for your
project. However, if you intend to use your singleton class across the scenes, you will
also need to ensure that it is not destroyed when the scene unloads with a simple
update. This is done by calling DontDestroyOnLoad when you initialize the class, as
shown in the following code:

public class MySingletonManager : MonoBehaviour {

 //static singleton property
 public static MySingletonManager Instance { get; private set; }

 //public property for manager
 public string MyTestProperty = "Hello World";

Chapter 5

[133]

 void Awake()
 {
 //First we check if there are any other instances conflicting
 if (Instance != null && Instance != this)
 {
 //Destroy other instances if they are not the same
 Destroy(gameObject);
 }

 //Save our current singleton instance
 Instance = this;

 //Make sure that the instance is not destroyed
 //between scenes (this is optional)
 DontDestroyOnLoad(gameObject);
 }

 //public method for manager
 public void DoSomethingAwesome()
 { }
}

There are more complicated setups for singletons. If you so wish, you can read them
at http://wiki.unity3d.com/index.php/Singleton.

There is another pattern named Dependency Injection. A more robust
way to handle the need of manager– or factory–type requirements in any
project is to implement an Inversion of Control (IoC) pattern, such as
Dependency Injection.
Dependency Injection is a large subject, so we won't cover it in this book.
The goal here is to make you aware of all the options when architecting
your project. If you would like more detailed information on Dependency
Injection, I'd recommend the post at http://blog.sebaslab.com/
ioc-container-for-unity3d-part-2/ to start with, and then you
can work up from there.
Dependency Injection is a very powerful tool when employed correctly
and can make your project a lot easier, so it is worth looking at it if you
are serious. However, care is needed in its use, and it should not be used
everywhere; it should only be used where it solves a particular problem.
A good Unity-based IoC framework is StrangeIOC, which can
be found at http://strangeioc.github.io/strangeioc/
TheBigStrangeHowTo.html.

http://wiki.unity3d.com/index.php/Singleton
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://strangeioc.github.io/strangeioc/TheBigStrangeHowTo.html
http://strangeioc.github.io/strangeioc/TheBigStrangeHowTo.html

NPCs and Interactions

[134]

Communicating between game objects
In any game, there are planned interactions between any components within the
game. These could be as follows:

• Physics collision tests
• Reacting to being shot or shooting
• Opening and closing doors
• Triggers, switches, or traps
• Two or more characters talking

There are several ways in which you can achieve this, and each has their own
particular traits. The selection of the implementations depends on what you need
to achieve. The methods are as follows:

• Delegates
• Events
• Messaging

In this section, we will go through each method in detail and highlight the best uses
of each.

Delegates
We encounter delegates in our everyday lives. Sometimes they are managers,
sometimes they are subordinates, and they could even be the barista at your local
coffee shop. Delegates effectively are methods that accept pieces of work to do on
behalf of someone else.

Another form of delegates is to use the C# generics and the Action
or Action<T> methods, which is a shorthand version of the
implementations mentioned in the next section. For more information
about generics and Action, refer to http://msdn.microsoft.com/
en-us/library/018hxwa8(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx

Chapter 5

[135]

There are two main patterns in which delegates are used: the configurable method
pattern and the delegation pattern.

The scripts in this section can be found in Assets\Scripts\
Examples under the Delegates script.

The configurable method pattern
The configurable method pattern is used when a piece of work or function is passed
to another method to be used to complete a task. This pattern is usually used where
different pieces of code can perform a common task in unique ways, such as walking,
running, or patrolling. All these tasks can be the default behaviors of a character.
Refer to the following diagram:

Here, you will have your code calling a delegate method, but the contents of this
method can be different depending on what you have set it to.

For instance, refer to the following code:

using System;
using UnityEngine;
public class Delegates
{
 //Define delegate method signature
 delegate void RobotAction();
 //private property for delegate use
 RobotAction myRobotAction;

 void Start ()
 {
 //Set the default method for the delegate
 myRobotAction = RobotWalk;
 }

NPCs and Interactions

[136]

 void Update()
 {
 //Run the selected delegate method on update
 myRobotAction();
 }

 //public method to tell the robot to walk
 public void DoRobotWalk()
 {
 //set the delegate method to the walk function
 myRobotAction = RobotWalk;
 }

 void RobotWalk()
 {
 Debug.Log("Robot walking");
 }

 //public method to tell the robot to run
 public void DoRobotRun()
 {
 //set the delegate method to the run function
 myRobotAction = RobotRun;
 }

 void RobotRun()
 {
 Debug.Log("Robot running");
 }
}

This means that when the DoRobotWalk method is called, it will set the delegate to
the Walk method, and once updated, it will run the Walk behavior. If you call the
DoRobotRun public method, it will change the delegate to the Run behavior, and once
updated, it will run the Run behavior. This is a very simple kind of state machine
with no conditions around.

Chapter 5

[137]

The delegation pattern
The delegation pattern is used where a method calls out to a helper library, and on
completion of the required task, continues on back in the main function, as shown in
the following diagram:

This is usually used with what you might download from the Web. When the
download is finished, we do something with what we have downloaded.

For instance, refer to the following code:

using System;
using System.Collections.Generic;
public class Delegates
{
 public class Worker
 {
 List<string> WorkCompletedfor = new List<string>();
 public void DoSomething(
 string ManagerName,
 Action myDelegate)
 {
 //Audits that work was done for which manager
 WorkCompletedfor.Add(ManagerName);

 //Begin work
 myDelegate();
 }
 }

 public class Manager
 {
 private Worker myWorker = new Worker();

NPCs and Interactions

[138]

 public void PeiceOfWork1()
 {
 //A piece of very long tedious work
 }

 public void PeiceOfWork2()
 {
 //You guessed it, yet more tedious work
 }

 public void DoWork()
 {
 //Send worker to do job 1
 myWorker.DoSomething("Manager1",PeiceOfWork1);

 //Send worker to do job 2
 myWorker.DoSomething("Manager1", PeiceOfWork2);
 }
 }
}

Alternatively, you could just express it using the C# lamdas, which simply means
you don't need to declare separate functions as follows:

public void DoWork2()
{
 private Worker myWorker = new Worker();

 //Send worker to do job 1
 myWorker.DoSomething("Manager1", () =>
 {
 //A piece of very long tedious work
 });

 //Send worker to do job 2
 myWorker.DoSomething("Manager2", () =>
 {
 //You guessed it, yet more tedious work
 });
}

If your delegate also uses a string as a parameter, the preceding example could be
used as a download pattern where a helper library does the entire download and just
returns the XML asset. This asset can then be unpacked and used in the game in your
main function.

Chapter 5

[139]

Compound delegates
Both the configurable method pattern and delegation pattern are very powerful
techniques when used correctly.

Another feature of delegates is that they can be compounded, meaning you can
assign multiple functions to a single delegate. Also, when a delegate is called, all
the methods assigned to the delegate will run, as shown in the following code. This
feature is very handy when you want to chain several common functions together
instead of one:

public class WorkerManager
{
 void DoWork()
 {
 DoJob1();
 DoJob2();
 DoJob3();
 }

 private void DoJob1()
 {
 //Do some filing
 }

 private void DoJob2()
 {
 //Make coffee for the office
 }

 private void DoJob3()
 {
 //Stick it to the man
 }
}

You can achieve the same output but with more flexibility by using the
following code:

//A more intelligent WorkerManager
public class WorkerManager2
{
 //WorkerManager delegate
 delegate void MyDelegateHook();
 MyDelegateHook ActionsToDo;

NPCs and Interactions

[140]

 public string WorkerType = "Peon";

 //On Startup, assign jobs to the worker; note this is
 //configurable instead of fixed
 void Start()
 {
 //Peons get lots of work to do
 if (WorkerType == "Peon")
 {
 ActionsToDo += DoJob1;
 ActionsToDo += DoJob2;
 }
 //Everyone else plays golf
 else
 {
 ActionsToDo += DoJob3;
 }
 }

 //With Update, do the actions set on ActionsToDo
 void Update()
 {
 ActionsToDo();
 }

 private void DoJob1()
 {
 //Do some filing
 }

 private void DoJob2()
 {
 //Make coffee for the office
 }

 private void DoJob3()
 {
 //Play Golf
 }
}

Chapter 5

[141]

This also means it's dynamic and you can add additional functions to the delegate
that will be called whenever the delegate is called.

Word to the wise: only use chained delegates when you absolutely need
the flexibility to do so as they are a more complex pattern to implement.
They are also difficult to debug should something untoward happen.

Events
We can describe events as "expected announcements". Imagine you have a bat
phone at your desk; when it rings, you know it's "Batman" on the other end, usually
telling you some trouble has been averted. Events are similar to this pattern where
there is a hook; this is where you can listen for something to happen and then do
something with that event. When it occurs, additionally, through events, you can
pass this information to provide yourself with additional information about what has
occurred, as depicted in the following image:

In the following code, events use delegates to describe how they are going
to communicate. It defines the form that communication will take and what
information will be passed when the event is fired:

//Delegate method definition
public delegate void ClickAction();

//Event hook using delegate method signature
public static event ClickAction OnClicked;

Now when an event needs to be initiated in your class, all it needs to do to notify
any other code that is listening to the event is call the event like a method using
delegate as the signature.

However, what you must be careful about is that no one is listening to
the event (no one has subscribed to it). To do this, you need to check that
delegate is not null before you call it.

NPCs and Interactions

[142]

Refer to the following code:

void Update()
{
 //If the space bar is pressed, this item has been clicked
 if (Input.GetKeyDown(KeyCode.Space))
 {
 //Trigger the event delegate if there is a subscriber
 if (OnClicked != null)
 {
 OnClicked();
 }
 }
}

With the event exposed, any other class or game object that needs to be informed
about the occurrence of the event just needs to subscribe to the event as follows using
the += syntax:

void Start()
{
 //Hook on to the function's onClicked event and run the
 //Events_OnClicked method when it occurs
 OnClicked += Events_OnClicked;
}

 //Subordinate method
 void Events_OnClicked()
 {
 Debug.Log("The button was clicked");

 }

void OnDestroy()
{
 //Unsubscribe from the event to clean up
 OnClicked -= Events_OnClicked;
}

It's always a good idea to clean up after yourself and unsubscribe from
the events when you no longer need them, as shown in the preceding
code, using the -= syntax.

Chapter 5

[143]

This is a very simple example, but you could imagine exposing an event for when
an enemy is destroyed and hooking your score system into it so that the score is
incremented every time an enemy dies.

A better way is to write a separate method to call when you need to trigger the event;
refer to the following code. In this way, you don't have the preceding code repeated
throughout:

//Safe method for calling the event
void Clicked()
{
 //Trigger the event delegate if there is a subscriber
 if (OnClicked != null)
 {
 OnClicked();
 }
}

Now, all you have to do whenever the event needs to be fired is call the Clicked
method that is shown in the preceding code, which is always safe and won't crash if
there are no subscribers.

As a help, this code is the template I always use when creating an event. To
simplify its creation, all you have to do to use it each time is change the name, and
if necessary, the delegate signature if you need additional parameters; the following
code will tell you how to do this:

//Logging template to send a string/report every time something //
happens
public delegate void LogMessage(string message);
public static event LogMessage Log;

void OnLog(string message)
{
 if (Log != null)
 {
 Log(message);
 }
}

NPCs and Interactions

[144]

Messaging
Communication is a key factor in any game. A lot of times, we just use colliders
or physics to notify two components that there is something to be aware of. This
is a very basic form of communication. Other times, we use referencing or (in the
case of Unity) trawl through the project's hierarchy to find another game object to
communicate with or notify.

Unity has its own messaging-type functions, such as SendMessage and
BroadcastMessage. Both functions actually implement event-style code (as in
the preceding case) without actually declaring events, but they are very slow and
shouldn't be used extensively.

The SendMessage function will call a named method on a game object (any method
with the same name) with a single optional parameter as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.SendMessage("IHitYou");
}

So, it will call the IHitYou method on whatever you will collide with. By default,
this will not cause an error to be raised if whatever you collide with does not
have the IHitYou method. However, if you wish, you can change this by adding
SendMessageOptions when you call SendMessage, as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.SendMessage("IHitYou",
 SendMessageOptions.RequireReceiver);
}

If you want to send a value (there can only be one) with the call, just add it after the
method name and before SendMessageOptions (if set).

The BroadcastMessage method works in a similar way but will attempt to run your
selected method on the selected gameObject and all its children as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.BroadcastMessage("IHitYou");
}

Chapter 5

[145]

Using either of the methods (as stated) is very slow. This is because it has to try and
discover (under the hood) if the game object (and its children if using broadcast)
has the method first; it will then attempt to run it. As Unity will not know until your
game starts running and whether a game object will have that method, it has to
perform this each and every time you try it.

A better way
To break this dependency between the game objects and the need to keep references
or the need to discover each other at the design or runtime stage, we need an
intermediary that all objects know about, that is, a Manager class.

With this manager class, it will manage the list of game objects that want to listen to
the messages and provide an easy way to notify anyone who's listening.

To implement this, we will use the singleton behavior described earlier by creating
three simple, reusable components as a test case.

First, we create the manager class itself. So, create a MessagingManager.cs C# script
and then replace its contents as follows:

using System;
using System.Collections.Generic;
using UnityEngine;

public class MessagingManager : MonoBehaviour
{
 //Static singleton property
 public static MessagingManager Instance { get; private set; }

 // public property for manager
 private List<Action> subscribers = new List<Action>();
}

The first property is the singleton instance for the manager class, while the second is
a list of delegates that will be used to keep track of who needs to be notified.

Next, we add the Awake function to initialize the singleton approach:

void Awake()
{
 Debug.Log("Messaging Manager Started");
 //First, we check if there are any other instances conflicting

NPCs and Interactions

[146]

 if (Instance != null && Instance != this)
 {
 //Destroy other instances if it's not the same
 Destroy(gameObject);
 }

 //Save our current singleton instance
 Instance = this;

 //Make sure that the instance is not destroyed between scenes
 //(this is optional)
 DontDestroyOnLoad(gameObject);
}

This is the same as before but with a little extra debug information so you can see
when it is initialized in the Console window.

Then, we add a method so we can register recipients or subscribers to the messages
(with the associated UnSubscribe and ClearAllSubscribers methods), as follows:

//The Subscribe method for manager
public void Subscribe(Action subscriber)
{
 Debug.Log("Subscriber registered");
 subscribers.Add(subscriber);
}

//The Unsubscribe method for manager
public void UnSubscribe(Action subscriber)
{
 Debug.Log("Subscriber registered");
 subscribers.Remove(subscriber);
}

//Clear subscribers method for manager
public void ClearAllSubscribers()
{
 subscribers.Clear();
}

This method just adds the delegate you passed to the manager class to be added to
the notification list.

Chapter 5

[147]

Finally, we add a Broadcast method that tells the messaging system to let all the
subscribers know that something has happened; the following code tells us how to
do this:

public void Broadcast()
{
 Debug.Log("Broadcast requested, No of Subscribers = " +
 subscribers.Count);
 foreach (var subscriber in subscribers)
 {
 subscriber();
 }
}

Here, we simply loop through all the subscribers and notify them using their
delegates; very simple!

As you can see, this is just a very basic messenger that when called will tell anyone
who is listening that something has happened; there will be no extra information, no
details, just an event. This is like the fire alarm in your building; when it goes off, you
just run—you don't (usually) ask, you don't question—you just know that when that
alarm goes off, you need to get out of the building!

To finish this manager class off, simply create an empty game object in your scene
and add the script to it. There are ways to do that automatically, but I find this way
is cleaner so that you always know what the active agents in the scene are. Later in
Chapter 10, The Battle Begins, I'll show you a way to create an editor menu option to
do this automatically for you.

Putting this to use is simple. As mentioned before, we need three scripts; we have the
manager class, so now we need a client and a broadcast agent.

For the broadcast agent, create a C# script named MessagingClientBroadcast and
replace its contents with the following code:

using UnityEngine;

public class MessagingClientBroadcast : MonoBehaviour {

 void OnCollisionEnter2D(Collision2D col)
 {
 MessagingManager.Instance.Broadcast();
 }
}

NPCs and Interactions

[148]

The preceding code is just a simple example so that when attached to an object with a
2D collider, it will trigger a broadcast. To test, just add it to one or both of the border
objects in our game scene. In this way, if the player tries to leave the scene, it will
ring the alarm bells.

At the moment though, no one is listening, so let's add a listener/receiver. Create
another C# script and name it MessagingClientReceiver. This script will register
for events and log in to the Console window with some information about the object
it's attached to (obviously, there will be no information from the broadcast event as it
has none); the following code will tell you how to do this:

using UnityEngine;

public class MessagingClientReceiver : MonoBehaviour
{
 void Start()
 {
 MessagingManager.Instance.Subscribe(ThePlayerIsTryingToLeave);
 }

 void ThePlayerIsTryingToLeave()
 {
 Debug.Log("Oi Don't Leave me!! - " + tag.ToString());
 }
}

In simple words, when the game object script is attached to a startup, it will register
itself with the MessagingManager script, telling the manager class to run the second
method in the script when the event occurs. As stated before, this just logs in to the
Console window for now so that we have something to see.

Just for fun, also add this script to one or both of the borders in our scene; this
is simply because we don't have anything else at the moment. You could add
it to the player, making the event as an alarm that goes off and changing the
ThePlayerIsTryingToLeave method to cause the player to run in the opposite
direction if you wish.

If you run the project now, you should get the following results:

• One message to tell you that the MessagingManager script has started.
• One message per subscriber that has registered with the manager (although

in the Console window, you may just see 2 next to the event because it is
the same).

Chapter 5

[149]

• When the event is triggered, you will get one message per subscriber to tell
you that they have received it. Note that each message from the client is
particular to the game object you attached it to as the message is different.

Now, you could have just executed the preceding code using the Send or Broadcast
Unity methods, and it would have been much simpler. However, you should note
that since we are using a single manager class, which is a static instance in the scene,
at no point should any of the game objects involved need to know about each other.
There is no need to search the hierarchy or add components to each other at editing
time; it just works.

Background tasks and Coroutines
Next up in the fabulous journey of scripting, we will cover the treacherous realm of
background tasks. We use the background tasks to start something (in the background)
so that it is runs independently of the normal game update and draw cycle.

Coroutines, by default, run on the same thread as the normal game
loop. If you are not careful, they can stop your game from running.
(You can dispatch them on to separate threads in Unity Pro to offset
the work in order to improve the performance.)
For more information on Coroutines and the default execution order
of methods, refer to the article in the Unity docs at https://docs.
unity3d.com/Documentation/Manual/ExecutionOrder.html.

The following diagram shows that we can have a second process that runs alongside
our main game:

https://docs.unity3d.com/Documentation/Manual/ExecutionOrder.html
https://docs.unity3d.com/Documentation/Manual/ExecutionOrder.html

NPCs and Interactions

[150]

This is usually used for systems that are continually running and not for the main
events on the screen, such as AI, a background trading system, or even a continual
web-service-gathering data for the game.

Unity also has the ability to synchronize these background threads with a simple
function that pauses the operation (or returns the control back to Unity) until the
next frame of the game is drawn (WaitForEndOfFrame or WaitForFixedUpdate),
which gives you a pattern like the following screenshot:

The benefit of this is that you can wait for the last update or draw cycle to finish
before running your process. You might do this if you want to render what is
drawn on the screen to an image and either save it to a disk or upload it to a web
service or website.

The Unity documents provide a good example of using this behavior; you can
find them at https://docs.unity3d.com/Documentation/ScriptReference/
WaitForEndOfFrame.html.

Enter Coroutines
The proper way to implement long-running tasks in Unity is through the use of
a feature called Coroutines. In simple words, Coroutines are Unity's way of
launching code in the background, but they do have a few caveats and features
around them though.

Remember, Coroutines, run on the same thread as the normal game loop
and use the same resources as the game loop (albeit at the same time). To
enable threading (running processes on separate processors or pipelines,
distributing the workload), you will need Unity Pro. Sorry to reiterate
this, but it's a very important point to mention.

https://docs.unity3d.com/Documentation/ScriptReference/WaitForEndOfFrame.html
https://docs.unity3d.com/Documentation/ScriptReference/WaitForEndOfFrame.html

Chapter 5

[151]

IEnumerator
At their core, Coroutines are just normal methods, but they are implemented using
a particular generic interface named IEnumerator as their return type. This enables
Unity to track the method's state through several iterations (runs).

Don't confuse IEnumerator with IEnumerable when defining
your Coroutines; otherwise, you will find that they won't work.

To create a basic Coroutine, you simply need to set up the method as shown in the
following code:

IEnumerator MyCoroutine()
{
 //Do something
 //Then return
 yield return null;

}

This would create a simple single-use Coroutine that would perform a single
function, and when it's finished, it will die and go away.

A more common pattern is to have a loop of some kind within the function that will
not finish until some condition is met; this is done by either using a while or for
loop as follows:

IEnumerator MyCoroutine (){
 bool complete = false;
 while (!complete)
 {
 //Do some repetitive task
 //When done set complete to true

 //Then return control after each step
 yield return null;
 }
}

The preceding code will simply run in the background until the condition is met; for
example, a timer that is counting down should stop when it reaches 0.

NPCs and Interactions

[152]

Yielding
The Coroutines and IEnumerator feature are perfectly valid, but C# added a new
operator in Version 2 (Unity now supports V4) called the yield operator. The yield
operator suspends the current method on the current instruction line until the
operation is complete; however, it also allows the CPU to continue in between each
result that is returned by the called method or the instruction. The following example
will pause the loop for two seconds in between the iterations while retuning the
control back to the process.

Here's an example; say we have a function to print 10 lines:

IEnumerator Print10Lines()
{
 for (int i = 0; i < 10; i++)
 {
 print("Line" + i.ToString());
 yield return new WaitForSeconds(2);
 }
}

When the preceding code runs, it will simply loop 10 times, and each time it will
print out the line number. However, before continuing, it will wait for 2 seconds.

Do not confuse IEnumerator with IEnumerable. Coroutines and the
yield keyword only work in a method that returns an IEnumerator
feature. This is an easy mistake that can leave you scratching your head
for hours.

Starting Coroutines
There are actually two types of Coroutines (it is best to think of them in that way,
even though they are actually the same thing): those that are just launched (fire
and forget) and those that can be managed. The difference is just in the way they
are called. The fire and forget Coroutine functions are simply called by using the
following code:

StartCoroutine(MyCoroutine()); //or
StartCoroutine(MyCoroutine(MyParameter)); //to use parameters

Chapter 5

[153]

In the preceding code, the MyCoroutine function is started using the delegate
method. Once started, it will not finish until either the function ends or
StopAllCoroutines() is called. Now, start the Coroutine using the following code:

StartCoroutine("MyCoroutine"); //or
StartCoroutine("MyCoroutine", myParameter); //to use parameters

In the preceding code, you specify the name of your Coroutine function and the
method's name using a string. This enables you to stop the Coroutine from running
anytime (and from anywhere) using the following code:

StopCoroutine("MyCoroutine");

Currently, there are some enhancements being made in Unity that will
enable you to stop the Coroutines that are called using the method's
name. It is not clear yet whether this will be in the 4.x or 5.x timescales.
Keep watching!

The invocation path is something to be kept in mind. You might ask why not just
use the second method all the time. The answer is simple. Unity has to use slower
methods to discover the method it needs to track when you provide the Coroutine's
name as a string; just passing the method's name is quicker and smoother. The best
advice would be to use each type according to its strengths. Only use the string
launch method when you need to manage a background task and use the method
names when it is a short-lived function that is solely aimed at accomplishing a single
task. For everything else, just weigh up the pros and cons of each approach as you
implement it.

Coroutines can be powerful additions to the arsenal of your game's framework, but
they need to be implemented wisely; too many additions to your game (obviously)
will just grind to a halt. If you only ever use the fire and forget Coroutines, you
won't be able to stop them without shutting down all the rest as well (including
those you started by naming them as a string).

Closing the gap
So now that we understand how we call Coroutines, to make the Print10Lines
method described earlier, we will call it as follows:

void Example1()
{
 StartCoroutine(Print10Lines());
 print("I started printing lines");
}

NPCs and Interactions

[154]

As explained, the preceding code will kick off the Print10Lines function and then
continue forward while the routing to print the lines continues simultaneously. On
the other hand, the following code will print 10 lines, and only after it is finished will
it continue and notify you that printing has finished:

IEnumerator Example2()
{
 yield return StartCoroutine(Print10Lines());
 print("I have finished printing lines");
}

Any method that has a return type of IEnumerator has to be called
using one of the StartCoroutine methods; just calling any method
with IEnumerator on its own will do nothing. So, keep this in mind if
you are wondering why something is not being called.

Serialization and scripting
To finish with our theory for this chapter, we need to cover serialization in Unity.
Now, Unity already serializes just about everything from the editor to your scene
automatically (with a few exceptions) when it saves and loads the scene.

There are a few fringe cases where Unity will not serialize some data.
These cases have to do with the current limitations of the Mono 2
framework that Unity uses under the hood. A full explanation of
what doesn't work can be found in the following article; note that
it is very technical and includes a link to the error report in Unity
where it is recorded:
http://www.codingjargames.com/blog/2012/11/30/
advanced-unity-serialization/

However, what if we want to actually use this serialization to our advantage within
our game to save and load levels. We need bits of raw game data (or as we will
continue with this later, saving conversations for our NPCs). To accomplish this, the
best way is to use a Unity-inherited object named ScriptableObject.

The ScriptableObject entity allows you to save the data within the class that uses
it for a .asset file in your project.

http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/

Chapter 5

[155]

Saving and managing asset data
To achieve this, we simply need to create a script (named ScriptingObjects) with
some properties we want to serialize; then, we change its class inheritance from
MonoBehaviour to ScriptableObject as follows:

using UnityEngine;

public class ScriptingObjects : ScriptableObject {

 public Vector2[] MyPositions;
}

Great! So we have some serializable data. However, to use it in the editor, we need
to create an option in the editor to create and save these assets for us. Create a new
script named PositionManager in the Editor folder under Assets\Scripts (create
it if it does not exist yet), and replace its contents with the following code:

using UnityEngine;
using UnityEditor;

public class PositionManager : MonoBehaviour
{
 //Define a menu option in the editor to create the new asset
 [MenuItem("Assets/Create/PositionManager")]
 public static void CreateAsset()
 {
 //Create a new instance of our scriptable object
 ScriptingObjects positionManager =
 ScriptableObject.CreateInstance<ScriptingObjects>();

 //Create a .asset file for our new object and save it
 AssetDatabase.CreateAsset(positionManager,
 "Assets/newPositionManager.asset");
 AssetDatabase.SaveAssets();

 //Now switch the inspector to our new object
 EditorUtility.FocusProjectWindow();
 Selection.activeObject = positionManager;
 }
}

NPCs and Interactions

[156]

Any script that uses the UnityEditor namespace has to be placed in
a special Editor folder. This ensures that it is only packaged with the
editor solution and not used in the deployed game. Game projects are not
deployed with the editor.

There is a lot to explain, but it is all commented very well in short, as follows:

• We define a menu option from where we will call our creation code
• We set up a new object that we want to serialize and create the file where it is

to be stored
• We change the view of the editor to focus the inspector on the new object

If you create custom classes to be used in serialization, you must tag those
classes with the [System.Serializable] attribute. Otherwise, Unity
will not know that they are for serialization. We will cover more on this
later in the implemented example.

If you return to Unity now and right-click on the Asset folder (or click on the Create
menu option in the Project view), you will see the new menu option you just created,
as shown in the following screenshot:

Chapter 5

[157]

After clicking on it, you will see your new asset in the Project view (in the location
you saved it to, in this case, the root of the Asset folder) and the Inspector view for
your item, as shown in the following screenshot:

If we rename our new serialized object, give it some values, and save the scene or
project, we will see the following screenshot:

NPCs and Interactions

[158]

We go from the preceding screenshot to the following code stored in the .asset file
(when opened from the .asset file generated in Unity from File Explorer):

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!114 &11400000
MonoBehaviour:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 0}
 m_Enabled: 1
 m_EditorHideFlags: 0
 m_Script: {fileID: 11500000, guid:
 fa9c23f7a21df484a96802b68617f3b6, type: 3}
 m_Name: MyPositions1
 m_EditorClassIdentifier:
 MyPositions:
 - {x: 10, y: 10}
 - {x: 20, y: 20}
 - {x: 30, y: 30}
 - {x: 30, y: 30}
 - {x: 40, y: 40}

There is a fair amount of Unity information in the preceding code, but what is
important is our serialized data at the bottom. So if we wish, we can edit this file
outside of the editor and it will be reimported next time you open Unity.

Using the serialized files in the editor
Using the files in the editor is a very simple task. Simply create a property in any script
using the type of your serialized asset and then assign a project asset in the editor.

For example, edit the MessagingManager script and add the following property:

public ScriptingObjects MyWaypoints;

Chapter 5

[159]

Then, the script will be exposed in the Inspector pane and you can assign it
normally, as shown in the following screenshot:

You will also be able to access the contents of the serialized object from that script
as well.

You cannot edit the contents of the serialized file in the assigned
property by default. This is only achievable by using a custom
property inspector, which will be covered in Chapter 10, The Battle
Begins. However, it is still editable in the editor by opening the Asset
folder itself.

Accessing the .asset files in the code
Now, if you don't want to assign the asset through the editor, there is a way to just
load the .asset file directly from the project.

Firstly, to do this, you will need to store your .asset files in a special folder named
Resources in your Asset folder. You can read them there directly using Unity's own
resource functions once.

As an example, open the PositionManager script and add the following function:

public static PositionManager ReadPositionsFromAsset(string Name)
{
 string path = "/";

 object o = Resources.Load(path + Name);
 PositionManager retrievedPositions = (PositionManager)o;
 return retrievedPositions;
}

NPCs and Interactions

[160]

This function, which is available from anywhere as it is static, will perform the
following tasks:

• Using the Name parameter, it will read the .asset file from the root of the
Resources folder

• It will convert the retrieved file to the correct object type
• It will return the deserialized object to the calling function

So now you can call up the data contained within your .asset file anywhere in your
game project.

The same kind of pattern can also be used to download the .asset
files from the Web for your project to add DLC or expand the levels
of your game. A word to the wise though; if you do go down this
route, be sure to compress and encrypt your assets that are meant for
downloading to protect your IP.
Also, if you have any dependent files, such as images, be sure to
download them separately.
However, to use the downloaded files as assets in your scene, you
will require them to be packaged as asset bundles. This also requires
Unity Pro.

Putting it all together
Right, after all of that "brain input", let's start applying it to our game. In this chapter,
we are aiming to add an NPC or two, give them something to talk about, and maybe
add some special reactions.

If you haven't done so already, import the other character sprites and set up their
animations as well. You can either add them to the scene or just create some prefabs
in your Project view:

Chapter 5

[161]

I've added the following characters (shown in the preceding screenshot):

• Greandal (left): This character is the local barkeeper and mayor of our
lone village

• Olaf (right): This character is your hero's best friend and an all-round
troublemaker

• Greybeard (center): This character is the strange wizard from the east

With these characters in place, we need to start adding some character to our NPCs
as well as add our hero. In Chapter 2, Character Building, we outlined some classes to
describe and manage the entities in the game, so let's bring them in now.

We could also do with a little tidying up of our scripts folder since we are
generating a lot more content now. To do this, perform the following steps:

• Under Assets\Scripts, create four new folders: Classes, Examples,
Messaging, and Navigation (the Examples folder isn't actually needed, but
if you want to keep the code that is generated thus far in this chapter, we will
place them here).

• Copy the Entity and Player scripts to the new Classes folder or create
them if you haven't already.

• Copy the scripts from this chapter (Delegates, Events, Coroutines,
ScriptingObject) to the Examples folder, or just delete them as they are
not for the game itself. If you didn't create them, just ignore this step.

• Move the Messaging scripts to the Messaging folder, and likewise, the
Navigation scripts to the Navigation folder.

Starting with Greybeard, add him on the left-hand side of the scene, next to the cave.
This is because in the next section, he is going to stop our hero from entering the
cave, as it is just too dangerous for such an impetuous youth.

To do this (using the lessons we have learned already), perform the following steps:

1. Create a new game object and name it Greybeard.
2. If you haven't done so already, import the 04.png character spritesheet

and use Sprite Editor to slice it up.
3. Give it a Sprite Renderer component using the 04_3 sprite from the 04

wizard's spritesheet.

NPCs and Interactions

[162]

4. Create an idle animation for Greybeard using the 04_03 and 04_06 sprites
so it appears that Greybeard is fidgeting (optional); then, add it to a new
Animator component and add that to the Greybeard's game object.

5. Finally, add a Box Collider 2D component with the settings shown in the
following screenshot. This is so that the collider is of the same width as that
of Greybeard himself but with a larger height so that the player can collide
with it. Also, set the Is Trigger property to true/checked.

The final result should look something like the following screenshot:

I added an animation that shows he is fidgeting on the spot. This is just because most
old wizards are very crotchety, especially when they have to guard a cave full of
dangerous monsters.

Chapter 5

[163]

A few things to note while adding Greybeard are as follows:

• If you put Greybeard on the Player layer as I have done, the player will
appear behind him. As this is not what we expect, set the sorting order for
the Player to 10 so he appears in front.

• While running the game, if the hero bumps into Greybeard, he can fall
backwards. If this happens, it is just because the Player object does not have
the Fixed Angle parameter checked in the Rigid Body 2D component.

• NPC colliders should be set to Triggers. We want to be able to control
whether the NPC should stop the player or not through the script instead of
the physics system. So, on Greybeard's Box Collider 2D, check Is Trigger.

With this done, start building up the rest of your town using the skills you have
learned so far. The following screenshot is what I came up with:

A few things to note are as follows:

• Organize your game hierarchy in a sensible manner so you can quickly find
the things you need to manage. In the preceding screenshot, I created empty
game objects for Environment items, such as houses and bushes. I also
created an empty game object container for NPCs.

• Put the items on a layer that makes sense and then order the sprites on that
layer appropriately.

NPCs and Interactions

[164]

Don't spend too long crafting the animation (unless you want to); all in all, the scene
in the preceding screenshot took about 10 minutes to put together.

If you check the sample project, I also added a pacing animation for
Greandal using curves. We did this just to show how worried the
mayor is about the state of affairs going on outside the town and all
the rampaging beasts.

Getting the NPC's talking
So far in this chapter, we have our populated town with characters, buildings, and so
on. Therefore, let's give our hero something to talk about.

While building a conversation system for any game, there are many factors to
consider, which are as follows:

• How long a conversation is going to be (we don't want the player to get
bored with miles of text)?

• How many parties are likely to be involved in any discussion?
• Is this a flat one-sided conversation (such as a cutscene) or will the player be

allowed to make decisions?
• Are there going to be branches in the conversation so that the conversation

will change based on the player's response?
• How much content do you expect to be used in conversations (only text,

video, cutscenes, animation, and so on)? All of this content will decide just
how extensible your system needs to be.

• Will the conversation need to support any outbound triggers or states? Will
the conclusion of a conversation unlock a door or grant the player with some
experience or items?

There are lots of other factors that will affect both the design and implementation
of a robust conversation for your game, so think about it carefully before touching
the code.

A working example
For this book, we are going to build a basic conversation system that
is enough to meet the goals of the project at hand. However, I am
explaining each part along the way, so if you want to expand on it,
you can.

Chapter 5

[165]

The conversation object
When we want to start talking in the game, we first need to decide what you want to
include in that conversation. You can include the following things:

• The name of the character who is speaking
• The text of the conversation
• An image of the character talking
• Choices
• The position of chat

The more you look at it, the more you can dream about what you want to include.
You just need to remember the KISS principle (Keep it simple, stupid), that is, start
small and then build on it.

So, create a new C# script, name it ConversationEntry in Scripts\Classes, and
populate it with the following code:

using UnityEngine;

[System.Serializable]
public class ConversationEntry {
 public string SpeakingCharacterName;
 public string ConversationText;
 public Sprite DisplayPic;
}

This gives us just the basics for our conversation system with regards to who's
speaking, an optional picture that can be displayed in the conversation, and most
importantly, the conversation text to be displayed.

We also tag this class with the System.Serializable code attribute so that the
Unity serializer knows what to do with it.

Saving and serializing the object for later
With our core conversation entry object generated, we can start to store the
conversations in the .asset files for use in our game and also make it possible to
create the conversations outside of Unity if you wish.

NPCs and Interactions

[166]

As a conversation is (usually) more than just an opening line, we need a management
object that will support several lines/entries of the conversation and a couple of
switches to denote whether the conversation has already been played. This way, if
you have multiple conversations configured for a character, it will simply play the
next conversation and not repeat itself. You could just track this on the object where
you attach the conversations to, but this is cleaner.

As a rule of thumb, you should always keep flags, settings, or
properties for a thing with another thing. If you start having variables
to track the state of a thing elsewhere, it can get very messy. The
only time this is not true is when a thing is meant to be shared across
multiple objects.
Also note that the ScriptableObject entities are a fickle beast. They
let us attach them to the game objects, and they can be automatically
serialized and saved as part of the project. However, they are fixed
assets that should only be edited in the editor. If you need to alter them
as part of the game, you will need to save and store that change of state
separately.
This is just a simple note to remember when architecting such things.

So, create another C# class in Scripts\Classes named Conversation and populate
it with the following code:

using UnityEngine;

public class Conversation : ScriptableObject {

 public ConversationEntry[] ConversationLines;
}

Now the first thing you will note is that this class is derived from a scriptable
object class. As described earlier, this is what enables us to use Unity's serialization
methods and store them as a .asset file.

We are not done yet as we need that final hook to enable us to create these (at least
initially) in the editor.

Earlier, I showed you all of the code needed to create the asset for serialization, but
this is rather a lot of code to be generated all the time. So, it's better to place that logic
in a separate helper class that we can reuse rather than repeat ourselves all the time.

Chapter 5

[167]

Earlier, with the PositionManager example, we created assets in the editor and
reused them. You can reuse that code if you wish, but to simplify things, I added
a little helper script to the example project in Assets\Scripts\Classes. The
CustomAssetUtility class does all the work that the preceding code does. It also
uses the C# generics so that it can be reused for any type of SerializableObject
you want to throw at it. You don't have to use the class I provided; you can just use
the code earlier instead if you wish, just replace the code where the helper function is
used.

The C# generics is a fairly advanced C# topic, which we won't go into
in this book. If you want to know more, check out http://msdn.
microsoft.com/en-us/library/ms379564(v=vs.80).aspx;
alternatively, it will be better to try The C# Programming Yellow Book, Rob
Miles, Department of Computer Science, The University of Hull, which is a
fantastic C# primer book available at http://www.robmiles.com/c-
yellow-book/.

To show how we use this, let's create our editor script, which will create the
conversation assets for us. Create a new folder in Assets\Scripts named
Editor. In this folder, create a new script named ConversationAssetCreator in
the Editor folder under Assets\Scripts and then replace its contents with the
following code:

using UnityEditor;
using UnityEngine;

public class ConversationAssetCreator : MonoBehaviour {

 [MenuItem("Assets/Create/Conversation")]
 public static void CreateAsset()
 {
 CustomAssetUtility.CreateAsset<Conversation>();
 }
}

So, by using the helper function, instead of all the tangle of code to first generate our
asset and then save it, we simply call our utility, tell it the type of asset we want to
create (in angle brackets), and away it goes. I have crated the utility as well so that it
can also take a string parameter if you want to force the folder you want to create the
asset in; otherwise, it will take whatever is currently selected in the editor.

http://msdn.microsoft.com/en-us/library/ms379564(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms379564(v=vs.80).aspx
http://www.robmiles.com/c-yellow-book/
http://www.robmiles.com/c-yellow-book/

NPCs and Interactions

[168]

To test this out, create a new folder in the Asset folder named Resources (so we
can call assets directly from the code if we so wish) and then create another folder
in Resources named Conversations. This just keeps all our conversations in one
place and doesn't clutter up the hierarchy. If you so wish, you could create further
subfolders to identify characters, places, or whatever else you fancy. It won't have an
impact on the running of the game; it will just keep it tidy.

With the Conversation folder under Assets\Resources\ selected, click on Create
in the Project menu and you should see a new option named Conversation (as you
can see in the script earlier, this is what we named it as). When you click on it, a new
Conversation asset should appear, as shown in the following screenshot, which is
ready for you to start configuring:

Chapter 5

[169]

Feel free to set up your new conversation in whichever way you like or check
the sample in the project I've created for Greybeard. Name the conversation
GreybeardWarning and give it the lines shown in the following screenshot:

NPCs and Interactions

[170]

The Conversation Component
The last thing we need is a simple component to be able to attach conversations to a
character or other game object in keeping with the Unity-component-based way of
building games.

So, create a new class in the Classes folder under Assets\Scripts named
ConversationComponent and replace its contents with the following code:

using UnityEngine;

public class ConversationComponent : MonoBehaviour {

 public Conversation[] Conversations;

}

Nothing's complicated for now; the preceding code just holds an array of the possible
conversations that the game object can have. Ideally, you would want to expand on
this for a fuller conversation system, such as a pointer to the next conversation, or a
way to track how many conversations have taken place, and so on.

Building a basic conversation system
In order for our conversation assets to be of any use, we need a mechanism to play
these conversations on the screen and have the user interact with them (if that's how
your game rolls). For this, we need another manager that will take in conversations
from characters and display them on the screen. If we had any logic, branching, or
decisions in our conversations, it will handle those too.

Now, there are two basic approaches that we could take with the conversation system:
one being reactive (where we use a messaging system to notify the manager that a
conversation needs to take place) and one being just a utility (where scripts can request
for a conversation to take place). Both are valid approaches, and it really comes down
to personal preference as to which one you want to implement. To keep things simple,
let's create the basic utility first and then point out where it can be enhanced.

The manager
If we create our conversation manager as we did before with the messaging
manager, we start with the simple singleton framework. However, we will lean
on one of the great examples from Unity Wiki as our base.

Chapter 5

[171]

In the sample project under Assets\Scripts\Classes, you will find a Singleton
class that was sourced from http://wiki.unity3d.com/index.php/Singleton.
This simply saves us time and code while creating singleton objects for use in our
games and ensures they always have the same consistency.

With this in place, we can define our Conversation manager quite simply. Create
a new C# script in Assets\Scripts named ConversationManager and replace its
contents with the following code:

using System.Collections;
using UnityEngine;

public class ConversationManager : Singleton<ConversationManager >
{
 //Guarantee this will always be a singleton only –
 //can't use the constructor!
 protected ConversationManager () {}

}

Now that we have our manager, we can start adding functionalities to it.

Starting a conversation
We want it to take a conversation item we have and do something with it because we
have a manager. So, create a new function as follows:

public void StartConversation(Conversation conversation)
{}

This enables us to start a new conversation anywhere in the code by using the
following code:

ConversationManager.Instance.StartConversation(conversation);

Displaying the conversation
The manager is in place and we have a method to start a conversation, but it's not
doing much right now. So, let's add some simple logic to display the text of the
conversation on the screen. We will keep it simple since we are going to look into
more complex GUI-related functionalities in Chapter 8, Shopping for Weapons.

http://wiki.unity3d.com/index.php/Singleton

NPCs and Interactions

[172]

Starting things off, we need some new properties in ConversationManager to
control what needs to be displayed. So, open up the ConversationManager script
and add the following properties to it:

//Is there a conversation going on
bool talking = false;

//The current line of text being displayed
ConversationEntry currentConversationLine;

//Estimated width of characters in the font
int fontSpacing = 7;

//How wide does the dialog window need to be
int conversationTextWidth;

//How high does the dialog window need to be
int dialogHeight = 70;

Each property explains its use, but everything will become clear as we add the rest
of the functionality. Next, we'll add a Coroutine that will take a Conversation object
and loop through all the lines to be displayed. Add the following function to the
ConversationManager script:

IEnumerator DisplayConversation(Conversation conversation)
{
 talking = true;
 foreach (var conversationLine in conversation.ConversationLines)
 {
 currentConversationLine = conversationLine;
 conversationTextWidth =
 currentConversationLine.ConversationText.Length
 * fontSpacing;
 yield return new WaitForSeconds(3);
 }
 talking = false;
}

Chapter 5

[173]

This simple Coroutine takes the conversation passed to it and loops through each
of the individual lines of the conversation's text. Before we start, we set the talking
flag to denote that a conversation is in progress; then, for each conversation line, we
perform the following tasks:

• Set a pointer to the current conversation item in the list with the
currentConversationLine property

• Figure out how long the text is to gauge how big our display area needs to be
• Wait for three seconds before moving on to the next conversation item
• When we run out of conversation lines, we set the talking flag to false to

show that we have finished

So, we have a Coroutine looping through the text. The next thing to do is to use this
information to display it on the screen. For this, we need an OnGUI method in our
script as follows:

void OnGUI()
{
 if (talking)
 {
 //Layout start
 GUI.BeginGroup(new Rect(Screen.width / 2 -
 conversationTextWidth / 2, 50, conversationTextWidth + 10,
 dialogHeight));

 //The background box
 GUI.Box(new Rect(0, 0, conversationTextWidth + 10,
 dialogHeight), "");

 //The character name
 GUI.Label(new Rect(10, 10, conversationTextWidth + 30, 20),
 currentConversationLine.SpeakingCharacterName);

 //The conversation text
 GUI.Label(new Rect(10, 30, conversationTextWidth + 30, 20),
 currentConversationLine.ConversationText);

 //Layout end
 GUI.EndGroup();
 }
}

NPCs and Interactions

[174]

Like the navigation prompt in the previous chapter, we simply draw a GUI region,
give it a background texture with the box using the default style, and then show two
labels: one for the character who is speaking and one for the text of the conversation.

So, when the talking flag is set, Unity will know that it has to start drawing our
conversation GUI on the screen.

To finish this off, we need to call the Coroutine from our public method, which
other scripts can use to start a conversation:

public void StartConversation(Conversation conversation)
{
 //Start displaying the supplied conversation
 if (!talking)
 {
 StartCoroutine(DisplayConversation(conversation));
 }
}

Adding more
There are two simple areas where we can take this further. We can use the sprite
image and the style that we specified in the conversation item.

Adding the image is fairly simple; we just need to create enough space to display the
image and then draw it.

Sadly, one of the areas that the new sprite system has not been merged with is the
existing GUI system. It still relies on textures and not sprites. We can still work
with it, but it means we have to select the sprite's texture from the spritesheet
manually while drawing images. To do this, we use the DrawTextureWithTexCoords
GUI function.

A word of warning though: the DrawTextureWithTexCoords
function uses scaled coordinates while picking the section of the image
you want to display. This usually trips up developers as it is not very
well documented. The coordinates in the Sprite object are not scaled,
so you have to convert them manually.

Chapter 5

[175]

First, add a couple of properties to display the image using the following code:

//Offset space needed for character image
public int displayTextureOffset = 70;

//Scaled image rectangle for displaying character image
Rect scaledTextureRect;

The offset is to create space within our display region for the image, whereas the
other property is to hold the scaling information to indicate that we need to pick our
sprite from the spritesheet since the Unity system doesn't handle sprites.

Next, we need to calculate the scaling factor for the image for each conversation
line, just in case we are using different sizes of textures for each character in the
conversation. So, update the DisplayConversation Coroutine method with the
following code:

IEnumerator DisplayConversation(Conversation conversation)
{
 talking = true;
 foreach (var conversationLine in conversation.ConversationLines)
 {
 currentConversationLine = conversationLine;
 conversationTextWidth =
 currentConversationLine.ConversationText.Length *
 fontSpacing;

 scaledTextureRect = new Rect(
 currentConversationLine.DisplayPic.textureRect.x /
 currentConversationLine.DisplayPic.texture.width,

 currentConversationLine.DisplayPic.textureRect.y /
 currentConversationLine.DisplayPic.texture.height,

 currentConversationLine.DisplayPic.textureRect.width /
 currentConversationLine.DisplayPic.texture.width,

 currentConversationLine.DisplayPic.textureRect.height /
 currentConversationLine.DisplayPic.texture.height);

 yield return new WaitForSeconds(3);
 }
 talking = false;
 yield return null;
}

NPCs and Interactions

[176]

Lastly, we just need to update the OnGUI method to make space for the image using
the offset method and then add it to the draw list as follows:

void OnGUI()
{
 if (talking)
 {
 //Layout start
 GUI.BeginGroup(new Rect(Screen.width / 2 -
 conversationTextWidth / 2, 50, conversationTextWidth +
 displayTextureOffset + 10,dialogHeight));

 //The background box
 GUI.Box(new Rect(0, 0, conversationTextWidth +
 displayTextureOffset + 10,dialogHeight), "");

 //The character name
 GUI.Label(new Rect(displayTextureOffset, 10,
 conversationTextWidth + 30, 20),
 currentConversationLine.SpeakingCharacterName);

 //The conversation text
 GUI.Label(new Rect(displayTextureOffset, 30,
 conversationTextWidth + 30, 20),
 currentConversationLine.ConversationText);

 //The character image
 GUI.DrawTextureWithTexCoords(new Rect(10, 10, 50, 50),
 currentConversationLine.DisplayPic.texture,
 scaledTextureRect);

 //Layout end
 GUI.EndGroup();
 }
}

Note that the use of the DrawTextureWithTexCoords function and not the
standard DrawTexture function is normally preferred in GUI drawing. This is
because we are selecting the texture to be drawn from our spritesheet and we have
to use scaled coordinates to pick the image as that is what the function uses. The
Rect coordinates used in the Sprite object's textureRect property (the picking
coordinates) are unscaled.

Chapter 5

[177]

Connecting the dots
So now that we have something to talk about, we just need to be able to attach it to the
characters and then start displaying it on the screen for the player to interact with.

This book will cover the GUI system in more depth in Chapter 8, Shopping
for Weapons, so it will just include some basics here. You can come back
and update your styles here later if you wish.

First, we need an empty class for our NPCs, which is derived from the Entity object.
So, create a new C# script named Npc in the Classes folder under Assets\Scripts
and replace its contents with the following code:

using UnityEngine;
public class Npc : MonoBehaviour
{
 public string Name;
 public int Age;
 public string Faction;
 public string Occupation;
 public int Level;
}

As NPCs are things in the real world that we generate and place into
the scene, we actually need to break the convention to inherit from
the Entity class. This is actually a limitation in Unity because we can
only use scripts that derive from MonoBehaviour can be attached to
GameObjects in a scene. If you try to attach a class that uses or derives
from ScriptableObject, the editor will throw an error. So as we are
adding NPCs in our scene in the editor, we need to use a separate script.
If you were generating the towns procedurally or loading them from a
pre-built save file, then you could still use ScriptableObject-based
classes. For more information on that, see Chapter 7, Encountering Enemies
and Running Away.

With that created, add the script to our three NPCs in our scene. (Don't forget to
name your characters in the Inspector pane as well.)

Next, add the Conversation Component to the Greybeard's NPC and then drag the
conversation we just built to that character in the Conversations array.

NPCs and Interactions

[178]

The Inspector pane should now look like the following screenshot:

To make the Inspector pane look a bit prettier, be sure to check out
the editor extensions in Chapter 10, The Battle Begins.

So now that our character has a script and that we have the ConversationManager
set up, we just need to trigger the conversation when the hero tries to enter the
dark cave.

At the moment, the NavigationManager script that we used will let the player go
anywhere. So first let's update that and add a bit more flexibility and configuration
for the routes that the player can follow.

Chapter 5

[179]

Open up the NavigationManager script in the Navigation folder under Assets\
Scripts and create a new struct method as follows:

public struct Route
{
 public string RouteDescription;
 public bool CanTravel;
}

The preceding code now enables us to have a simple mechanism to say whether a
route is traversable or not. (In real scenarios, this should be serialized or it should
have a manager for the player to remember where the player has traveled; otherwise,
it is never going to get unlocked.)

Next, we need to update the RouteInformation variable to use this new struct
method and update the information for the two destinations that we have already
configured in our manager. This should enable us to state that you can travel to the
big bad world but not to the cave as follows:

public static Dictionary<string, Route> RouteInformation = new
Dictionary<string, Route>() {
 { "World", new Route { RouteDescription = "The big bad world",
 CanTravel = true}
 },
 { "Cave01", new Route { RouteDescription = "The deep dark cave",
 CanTravel = false}
 },
};

As we are now using a struct method for our destination information, we also need
to update the GetRouteInfo method to access the dictionary correctly and return the
routes' description if found; we do this using the following code:

public static string GetRouteInfo(string destination)
{
 return RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination].RouteDescription :
 null;
}

NPCs and Interactions

[180]

With that in place, all we need to do is check whether the CanTravel flag is true
when the system requests, and if you're allowed to travel, update the CanNavigate
method with the following code:

public static bool CanNavigate(string destination)
{
 return RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination].CanTravel :
 false;
}

Here, we simply look at the destination from our route information and return with
information on whether the player is allowed to travel there or not.

Now, when you try to go to the cave, you won't get the prompt from
NavigationManager whether you want to travel to it or not.

To finish off, we just need to get the Greybeard NPC to listen for the message that the
player will leave and then start his most troublesome conversation. So, remove the
MessagingClientReceiver script (that was created in the Messaging section) from
the left border (the cave) that you set up earlier and add it to the Greybeard NPC
game object.

Now, Greybeard is subscribing to and receiving the messages for the player leaving.
Next, update the MessagingClientReceiver script (in the Messaging folder under
Assets\Scripts) and update the ThePlayerIsTryingToLeave method with the
following code:

void ThePlayerIsTryingToLeave()
{
 var dialog = GetComponent<ConversationComponent>();
 if (dialog != null)
 {
 if (dialog.Conversations != null &&
 dialog.Conversations.Length > 0)
 {
 var conversation = dialog.Conversations[0];
 if (conversation != null)
 {
 ConversationManager.Instance.StartConversation
 (conversation);
 }
 }
 }
}

Chapter 5

[181]

Here, we now look to see if a ConversationComponent script is on the game object
it is attached to. If it is, we see if there are any conversations defined for this NPC; if
yes, we call the ConversationManager script and ask it to start the first conversation.

Granted, this is a simple example and should be extended in a full
system to track conversations that are played or conditions that need to
be met for a conversation to be played.
At the moment, the conversation system will keep on going even after
you have left the vicinity of the character you are talking with.

Now, if you run the project and try to enter the cave, the grumpy old Greybeard will
pipe up and harass you, as shown in the following screenshot:

Going further
If you are of the adventurous sort, try to expand your project to add the
following features:

• Apply the scriptable object technique to other areas of the level
• Extend the Conversation manager to step the text letter by letter in the

conversation text with another Coroutine
• Expand the event's messenger to support different types of events, passing

text, or an object

NPCs and Interactions

[182]

• Add more conversations to the scene for Olaf and Greandal, either by using
their collider or having more events (remember to use a grouping game
object to keep the hierarchy tidy; I called my grouper, NPCs)

• Add some conversation logic to terminate the conversation if the player gets
too far from the source

Summary
What a marathon! This certainly has been the heaviest chapter so far, but there were
a lot of advanced techniques to cover, and to do them justice, they needed a lot of
explanation. Building a conversation system for any game needs a lot of planning to
ensure you get the features you need for your game.

The lessons you learned in this chapter will set you in good stead for the
future features.

We covered the ways to communicate between the game objects using events,
delegates, and messaging solutions. We also covered working with background
tasks and Coroutines, serialization and scriptable objects, constructing your own
conversation system, and paid alternatives.

The Big Wild World
As we start considering the wider bounds of our RPG world, we need to look at
alternate views for the game. It's important to keep the player engaged and make
them feel that they are entering a vast arena with lots of places to explore, especially
when you initially release your game and you only have a few towns to visit.

Another thing to consider is whether you want fixed maps in your game or you want
to venture down the rabbit hole of procedural generation. Both are valid routes and
there's nothing to say that you only have to use one. In this chapter, we'll cover all
the options and then implement a nice and simple system to walk through the basics.

The following is a list of topics that will be covered in this chapter:

• Resources to build a map
• Structuring and adding points of interest
• Working with prefabs
• Transitioning between views
• Marshaling input

The larger view
Our budding hero is now ready to pack his bags and leave the shelter of his hometown
for the wider world. So, we need to widen the scope of what the player can see and
build a large map with places of interest to visit.

This usually opens the floodgates for just how big your game will be. Planning can
decide whether your game will be a hit or feel just too short.

The Big Wild World

[184]

Maps in RPGs certainly aren't mandatory; several hit games just go from place
to place with maybe an animation or cut scene to show movement. However, in
the best cases, a map just opens up the scope of the game and gives the player an
understanding of the world they are travelling in.

Types of maps
When looking at what kind of map or world you are going to choose to connect the
dots between places to visit or secret hideaways, there are a few paths you can take.
Generally, there are two options:

• Fixed: In this option, images are usually drawn by an artist and have extensive
detail of the world surrounding the player or are blank, exposing places as the
player travels to or discovers them.

• Generated: In this option, each run of the game completely randomizes
the places to go or events that will take place, with the focus being on
unpredictability.

Both the preceding options are perfectly valid and there's nothing to say; you need to
focus on just one or the other, mix it up if you wish. Generally, the better the variety,
the better the chances of the player being engaged in your game—it will entice them
to explore and play more.

Another keen element is that it should support repeatability and replayability—let
players return to existing locations and discover new things, and reuse what you
have to the fullest.

Fixed maps
There are many resources to get maps for your title if you don't have a dedicated artist
and, in some ways, these also provide insight or creative juice for how you want your
maps to look. The following map image is a good example of a high-quality paid map:

Chapter 6

[185]

The first site to mention, primarily because it is also completely free, is
http://freefantasymaps.org/. The preceding screenshot is a prime example
of the level of quality you can get from the site. Although the images on the site
are free to use for any purpose, I would recommend you to use their images to
donate to the running of the site so that they remain free.

Another useful site is the Cartographers' Guild at http://www.
cartographersguild.com/. This is a veritable map paradise with lots of content
available for use in most projects. Unlike the preceding site, all works are protected
and you will need to purchase them or gain rights to use them. However, they are
of a very high quality.

http://freefantasymaps.org/
http://www.cartographersguild.com/
http://www.cartographersguild.com/

The Big Wild World

[186]

When browsing maps and art, always be sure to check the license
and usage policies of the images you download. This should be
done whenever you acquire art, even from Google. Be safe, check,
and get permission.
The same can be said for code and any other kinds of assets. If in
doubt, check the license and even if it's free, just check with the
author whether they feel it's ok to use in your project.
Always check the license on anything you download and use.

Another good feature of the Cartographers' Guild is that it allows you to request a
map. They have an awesome request system and hundreds of artists are ready to
commission anything your heart wants (see http://www.cartographersguild.
com/mapmaking-requests/).

Generated maps
There are also many other resources out there to get maps for your game. Another
method is to use an online map generation system. Now, to be fair, most are aimed at
tabletop gamers and most are of a low quality, but there are a few gems to be found.

The one I used for the game we are building is from http://donjon.bin.sh/
fantasy/world/, because I like it and it provides fairly high-resolution generated
images and includes world features and places. It looks like a nice place to have a
holiday (if you are an Orc). The following image is the map I've used in the sample
project with lots of interesting places to see and explore:

http://www.cartographersguild.com/mapmaking-requests/
http://www.cartographersguild.com/mapmaking-requests/
http://donjon.bin.sh/fantasy/world/
http://donjon.bin.sh/fantasy/world/

Chapter 6

[187]

As you can see, there is a lot of detail here and a very large world for the player
to explore.

DonJon's site also offers a vast array of other generators to build maps and other RPG
elements. There are even name and game dialogue generators, so it really does meet
most RPG needs.

In-game generated maps
Now, if you want more control over what the player sees or will have in their game,
you can go all the way and start building maps and more through either Unity's
asset pipeline or in-code within the game.

External tools such as Tiled (http://www.mapeditor.org/), which is shown in
the following image, can be used to build and design maps. It has many interesting
features and can even output several layers. You can also use either top-down, 2D
side scrolling, or even isometric maps.

A great Unity example of this is a project called uTiled (https://bitbucket.org/
vinull/utiled), which provides a Unity asset that can read maps from Tiled. Here,
the author has customized a map generation system that uses an external tool to
build maps according to a predefined set of map tiles, which are just small textures
used when building the map.

http://www.mapeditor.org/
https://bitbucket.org/vinull/utiled
https://bitbucket.org/vinull/utiled

The Big Wild World

[188]

The following image is a simple example of what can be achieved with Tiled editor
that generates the maps:

The project is a great example of not just how to import a 2D-based tile map system
into Unity, but also how to construct and run these 2D maps in your game.

Using a system like uTiled, you can either build a selection of maps in Tiled for use
as world maps in your game, or even full 2D scenes.

Alternatively, you could use procedural techniques (see the Going procedural section)
to build the map while the game is running, using the framework to knit individual
segments of your map together. We will discuss this more later.

2D doesn't mean you have to use only 2D
Just because the rest of your game is 2D, it doesn't mean you have to use 2D.
Some of the best games I've seen use a mixture of 2D and 3D, and Unity will help
you there because it's not limited.

Whether you have 2D play areas and 3D terrain for maps, or 3D villages and a 2D
map, it doesn't really matter. Just go with whatever you are comfortable with or
what fits with the aesthetic of your game.

Thanks to the way 2D is implemented in Unity, you can even mix it up by having
3D elements placed and animated in your 2D scene either as background elements
or interactive components.

Chapter 6

[189]

A word to the wise
Although you can mix the 2D and 3D rendering in a single scene, you
cannot mix the 2D and 3D physics. This is simply because they are
separate engines and have no connection to each other. Keep this in mind
depending on what you are trying to build in your game.

Going procedural
If you are the bold or adventurous sort, another route to flesh out your world is
to procedurally generate it. What you usually see when you look for procedural
generation in Unity are dungeon generators. In fact, some of the best examples
I've seen out there involve randomly generated dungeons where every run of
the game is different from the last. Other examples are usually found in endless
running games where a style of procedural selection is done to choose the next
running area or to put random scene items in.

When we try to apply this to RPG games, we want to balance the fixed part of the
world/story we are looking to convey with a more random placement of towns/
villages or places of interest. This will make the world we see different for every
player but still convey the background of the theme.

Now, the whole subject of procedural generation is far too large to go into for this
book, but I can give you a few points for where to look.

The best place to start is the Procedural Content Generation Wiki available at
http://pcg.wikidot.com/; it's the go-to place to start learning the following
general techniques:

• Iterated function systems: These are fractals to create land masses or
structured areas

• L-systems: These are used for roads or path generation
• Diamond-square and midpoint displacement algorithms: These are used

to create random height terrains
• Perlin and simplex noise systems: These are used to add further

randomness to the generation

http://pcg.wikidot.com/

The Big Wild World

[190]

Reddit.com is also a great place for examples, questions, and queries on procedural
generation. Two of the best reddits are as follows:

• http://www.reddit.com/r/proceduralgeneration (this is the main
procedural generation reddit. Although it's mostly promotional these
days, there are still a lot of older posts with samples and information.
It's also a good place to start with questions.)

• http://www.reddit.com/r/worldbuilding (this is a good source of
information for this section on maps for your game. It is mainly related
to D&D, but it does contain a lot of useful information.)

A word to the wise
Procedural generation is not for the faint of heart, there is a lot of
math involved and a lot of trial and error. However, if you can master
small parts, you can achieve a truly wondrous game with lots of
replayability.
Procedural generation is too large a subject for this book. Hopefully,
I've given you a few tips and tidbits to get you going, so you know
what to look for should you want to venture down this road.

Screen space and world space
When dealing with either touch or mouse input, we have to recognize that coordinates
managed by Unity are in screen space and not world space. Both of these terms are
defined as follows:

• Screen space: This refers to coordinates relative to the screen / display area,
starting at the top-left corner of the screen

• World space: This refers to the coordinates that are used inside the
Unity engine

The starting position, (0, 0) 2D coordinate, for the mouse can be
different depending on how you access it:

• If you use Input.mousePosition, then (0, 0) is in the
top-left corner of the screen

• If, however, you use Event.current.mousePosition,
then (0, 0) is in the bottom-left corner of the screen

For touch, however, it is always in the the top-left corner of the
screen. This is something to keep in mind when you access input—
always check.

Reddit.com
http://www.reddit.com/r/proceduralgeneration
http://www.reddit.com/r/worldbuilding

Chapter 6

[191]

When you poll for the mouse position (which can only be one mouse), use the
following line of code:

Input.mousePosition

When we are looking at touch points (which can be many), we use the following
line of code:

Input.GetTouch(<touch index>).position

However, because the position we get back is always in screen space, we need
to convert it to world space when checking it against objects in the game world.
Thankfully, this is very simple to do using the following built-in Unity function:

Camera.main.ScreenToWorldPoint(<screenCoordinate>)

The preceding default function uses the main camera to translate
the coordinate from screen space to world space. If you are taking
input from an alternate view (like a mini-map), be sure to use the
specific camera for that view to convert the value, or else you will
get incorrect results.

Remember that any coordinate you get back from the input
system or used in world coordinates are always Vector3
coordinates. However, because this is a 2D game, we need
coordinates in Vector2 coordinates, so you will need to convert
the value you get back for any 2D functions such as colliders or
2D distance checking.

Putting it together
Moving on from theory, we need to look at something to put on our map of the world,
such as somewhere for our player to travel to and explore.

We not only need to provide graphical support in the game to open up areas on the
map or just show the journey between two points, but we also need to connect these
points with scenes in our game.

Now, we have already started the coding framework behind our places manager
with the creation of the NavigationManager script, which keeps track of all the
places available in the world for our player to travel to. Just add a few more routes
for the manager to look after and that's up and running.

The Big Wild World

[192]

Then, there is the visual side. As we want a common way to create places/markers
on the map, we can start to use prefabs in Unity so that we only have to design them
once and then just reuse them on our map.

Adding the map
Start off by copying your world texture into your project Assets folder in Assets\
Sprites\Environment, and use any image you wish to use or generate one from
http://donjon.bin.sh/fantasy/world/ or http://donjon.bin.sh/world/ like
I have done.

The following screenshot, which displays a map image,
is included in the download associated with this title
(Sample_Assets\Worldmap.png).

With that in place, create a new scene in Assets\Scene and call it World (this has
to be the same as the name used in your NavigationManager script). In your scene,
drag your world texture to the hierarchy and update your MainCamera GameObject
to show the starting region for your world.

As the world texture I have used is rather large, I have set this to the top-left region
of the map as shown in the following screenshot:

http://donjon.bin.sh/fantasy/world/
http://donjon.bin.sh/world/

Chapter 6

[193]

Adding places of interest
With the world that the player can travel to in place, we need to add the player to the
map and some places of interest.

Adding the player is simple; just create a new empty game object and call it player,
then add the Rigidbody2D and BoxCollider2D components to it so that it will be
able to interact with other points on the map. (You could use location testing, but it's
simpler to use the physics system and it's not much overhead.)

Finally, it's best for the player to have something to see moving when traveling, so
add a Sprite Renderer to the player game object and use a sprite image that suits it.
I used the running hero sprite for effect but you could use whatever you wish.

You should end up with something like the following:

The Big Wild World

[194]

Creating the MapPoint prefabs for reuse
Creating prefabs is very easy; just start creating a game object as you would do
normally and once you are happy with the result, drag the whole object to the
project view. The beauty is that just about anything can become a prefab for
reuse in your game.

When you create a prefab and use it in your scene, any changes to the
prefab will be automatically updated on all the objects you created
with that prefab. However, changes to those objects themselves do not
update the prefab or any other copies. All changes are one way from
the prefab itself.
If you want to update the prefab, select the Prefab option in the editor
and change it. Alternatively, select an instance in the scene, change the
required properties, and then click on Apply to save the changes back
to the prefab, as shown in the following screenshot:

This will only affect existing components and properties that were
already on the prefab. To add new components or scripts to the prefab,
you must edit the prefab itself.

The following screenshot shows a game object setup for a place of interest on our
map as an empty game object with a simple BoxCollider2D component (set as a
trigger). We can also see the NavigationPrompt script we used in earlier chapters
to bring up the traveling GUI.

Chapter 6

[195]

Finally, rename the new prefab to MapPoint so that we know what the prefab is for
in our folder structure.

With a collider set as a trigger, it will cause the OnTrigger functions
(OnTriggerEnter2D and OnTriggerExit2D) to be called in scripts as
opposed to the normal OnCollision functions (OnCollisionEnter2D
and OnCollisionExit2D). Bear this in mind when applying scripts
that rely on a collider. We will update our NavigationPrompt script
accordingly.

With the prefab created, just drag it to the project's Assets window in Assets\
Prefabs\Environment. You will get a new Prefab asset for a map's place of
interest, as shown in the following screenshot:

Note that prefabs are always highlighted in blue, both in the project asset
and hierarchy views. This makes them very easy to identify.

Always reset the position transform for prefabs to 0; this makes it a whole
lot easier when reusing them.

For the sake of simplicity, I've kept the example simple, but you could
expand on it to include a sprite renderer and use an additional image per
place to identify it. Some great examples of map point icons can be found
at http://calthyechild.deviantart.com/art/Fantasy-Map-
TutorialxResources-258559867, which provides some great free
resources and images.

http://calthyechild.deviantart.com/art/Fantasy-Map-TutorialxResources-258559867
http://calthyechild.deviantart.com/art/Fantasy-Map-TutorialxResources-258559867

The Big Wild World

[196]

Once the prefab is created, we can start to use it since this game object has now
become the first instance of our MapPoint prefab. So, rename it to Home and place it
over the town where the player starts, and then create a new tag for Home so that we
can add it to our NavigationManager script.

Next, create a new instance of our MapPoint prefab by dragging the prefab on to
the scene and placing it over the town of Kirkidw (or any suitable place on the map
near your start point; it's up to you to pick your own destination town). Rename it to
Kirkidw and create/set a tag with the same name.

As highlighted earlier, if you wish, you can also add a sprite to the
place's game object to highlight the town's position on the map. If you
want, you can add the sprite renderer to the prefab and change the
sprite image on each instance appropriately. If it's a common image,
then just set the sprite on the prefab.

For the best results and to make the scene easy to read, add any new map points as
children of the background texture (worldmap); this keeps the points of interest both
anchored to the texture and neatly organized.

Chapter 6

[197]

Updating the NavigationPrompt script
The map points we have defined are set as triggers. We use triggers when we
do not want any physics interactions between the collider and other rigid bodies;
all we want is to be notified that one collider has moved over (in the case of 2D)
or interacted with another collider.

As we are now using triggers, we need to swiftly update our NavigationPrompt
script to work with triggers. So, open the NavigationPrompt script and add the
following function in it:

void OnTriggerEnter2D(Collider2D col)
{
 //Only allow the player to travel if allowed
 if (NavigationManager.CanNavigate(this.tag))
 {
 showDialog = true;
 }
}

The function in the preceding code does exactly the same as the
OnCollisionEnter2D function, which we already have, but this will now respond
to the colliders that have been set as triggers using the is Trigger flag.

Updating the NavigationManager script
As the player can now venture out of town, we need to update our
NavigationManager script with additional places to visit, including our home town.
We can do this simply by adding additional routes to our NavigationManager script
as follows:

public static Dictionary<string, Route> RouteInformation = new
 Dictionary<string, Route>() {
 { "World", new Route {
 RouteDescription = "The big bad world", CanTravel = true}},
 { "Cave", new Route {
 RouteDescription = "The deep dark cave", CanTravel = false}},
 { "Home", new Route {
 RouteDescription = "Home sweet home", CanTravel = true}},
 { "Kirkidw", new Route {
 RouteDescription = "The grand city of Kirkidw",
 CanTravel = true}},
};

The Big Wild World

[198]

Nice and easy; although you should note one small flaw. We use the scene name as
a way to identify the area that we want to travel to and currently our home scene is
called Main. So, rename the Main scene to Home, which should leave you with the
following scenes in Assets\Scenes:

Traveling by click or touch
With the map set up, we can head into the land of scripting to handle the players.
Additionally (as highlighted earlier), we also need to ensure that the player doesn't
move when the navigation GUI is displayed.

Before we begin, you should recall earlier that I mentioned about screen and world
space conversion and the need to convert 3D (Vector3) coordinates to 2D (either a
Vector2 or a Vector3 with the Z value set to zero) else our calculations will be off. As
our map will be controlled by click or touch (to spice things up a bit), we need to be
able to access where the player has interacted on our map.

To this end, I added a set of extension methods to a new class called WorldExtensions
in Assets\Scripts\Classes, replacing its contents with the following:

using UnityEngine;
public static class WorldExtensions
{
 public static Vector3 ToVector3_2D(this Vector3 coordinate)
 {
 return new Vector3(coordinate.x, coordinate.y, 0);
 }

 public static Vector2 GetScreenPositionIn2D(this
 Vector3 screenCoordinate)
 {
 Vector3 wp = Camera.main.ScreenToWorldPoint(screenCoordinate);
 return new Vector2(wp.x, wp.y);
 }

 public static Vector3 GetScreenPositionFor2D(this
 Vector3 screenCoordinate)

Chapter 6

[199]

 {
 Vector3 wp = Camera.main.ScreenToWorldPoint(screenCoordinate);
 return wp.ToVector3_2D();
 }
}

The following extensions at the end of the current script are just for simplicity,
but you could define them anywhere:

• Convert any Vector3 in to a 2D Vector3 with a zero z value
• Convert a screen space coordinate and return a Vector2 for 2D
• Convert a screen space coordinate and return a Vector3 with a zero z

value for 2D

The this keyword signifies that this is an extension method, allowing the
function to be accessed by calling the function normally:

var clickPoint = WorldExtensions.GetScreenPositionFor2D
 (Input.mousePosition);

Otherwise, you could directly access the function from the type identified
by the this keyword:

var clickPoint = Input.mousePosition
 .GetScreenPositionFor2D();

Extension methods are a very powerful and easy way to extend functions
and methods on to existing object types. For more information on
extension methods, visit http://msdn.microsoft.com/en-gb/
library/bb383977.aspx.

Managing input
With our helpers in place, next we'll create a new MapMovement script in the project
under Assets\Scripts and replace its contents with the following:

using UnityEngine;

public class MapMovement : MonoBehaviour
{
 Vector3 StartLocation;
 Vector3 TargetLocation;
 float timer = 0;
 bool inputActive = true;
}

http://msdn.microsoft.com/en-gb/library/bb383977.aspx
http://msdn.microsoft.com/en-gb/library/bb383977.aspx

The Big Wild World

[200]

The properties are just there to track the progress of the player, and there is a flag to
track when the GUI is active.

Next, we can add the input handling functions to the script in the Update method.
Whenever you are giving an input, it's better to use Input as it gives more accurate
results, as shown in the following script:

void Update () {

 if (inputActive && Input.GetMouseButtonUp(0))
 {
 StartLocation = transform.position.ToVector3_2D();
 timer = 0;
 TargetLocation = WorldExtensions.GetScreenPositionFor2D
 (Input.mousePosition);
 }
 else if (inputActive && Input.touchCount == 1)
 {
 StartLocation = transform.position.ToVector3_2D();
 timer = 0;
 TargetLocation = WorldExtensions.GetScreenPositionFor2D
 (Input.GetTouch(0).position);
 }
}

The process is very simple; test whether the user has clicked the mouse (Input.
GetMouseButtonUp(0)) or touched the screen (Input.touchCount == 1). The value
could be greater than 1, but we want just one touch in this case. When they do so,
record the current position of the player as the start point, and where the user has
touched or clicked as the end point (target).

Input, as you will find in Unity, is not completely unified.
You have to code and manage touch and mouse separately.

Now that we have a place to move the player to, we just need to add the ability to
move the player once we have selected a target location and get the player moving
on his merry way. So, add the following to the end of the previous Update function:

 if (TargetLocation != Vector3.zero && TargetLocation !=
 transform.position && TargetLocation != StartLocation)
 {
 transform.position = Vector3.Lerp(StartLocation,
 TargetLocation, timer);
 timer += Time.deltaTime;
 }

Chapter 6

[201]

In the preceding code, we simply check whether the user has selected a destination
and check that we are not there already. If everything is fine, then we just keep
updating the player's position using the Lerp function gradually over time.

With that done, simply add the script to the player game object we created in our
scene earlier and run the project.

Although it works, you should instantly see one issue: when the players starts on
the map, they are actually interacting with the place on the map they started from
(Home in this case). Because it is interacting with that place already, this causes the
navigation prompt to appear and asks them whether they want to go home.

As our player is not a scaredy cat and wants to venture further, let's fix that.

Managing input priorities
When organizing your map navigation, input prioritization is an important point.
When you have both GUI input and player input challenging for control, you should
be able to manage which is currently active at any one time; otherwise, if both are
active, you will get unexpected or duplicate results.

For instance, once you have your player moving using the mouse/touch, then the
GUI to travel to that destination pops up and accepts input in both the GUI and the
map movement at the same time. Hence, when you click on a button to travel or stay,
then the map character will also move.

To combat this, the simplest and best way is to reuse our MessagingManager script
with a new message to handle whether the GUI is taking input or the game is.

It may be advantageous to have both the GUI and game input
working at the same time, for example, in situations where you have
in-game buttons for actions. In these cases, you would test where on
the screen the player interacted to decide which area gets the input.
However, when the pause menu or alternate screen appears, you are
still going to need to handle input priority.

So in the MessagingManager script, we add the following new handler to manage
the GUI events. We also need to track whether the GUI is displayed or not, so we
also need to manage a parameter for the event using a Boolean (true means GUI
is displayed and false means GUI is hidden):

private List<Action<bool>> uiEventSubscribers = new List<Action
 <bool>>();

The Big Wild World

[202]

Then, like before, we need a subscribing and broadcasting function for the new event:

// Subscribe method for UI manager
public void SubscribeUIEvent(Action<bool> subscriber)
{
 uiEventSubscribers.Add(subscriber);
}

// Broadcast method for UI manager
public void BroadcastUIEvent(bool uIVisible)
{
 foreach (var subscriber in uiEventSubscribers.ToArray())
 {
 subscriber(uIVisible);
 }
}

// Unsubscribe method for UI manager
public void UnSubscribeUIEvent(Action<bool> subscriber)
{
 uiEventSubscribers.Remove(subscriber);
}

// Clear subscribers method for manager
public void ClearAllUIEventSubscribers()
{
 uiEventSubscribers.Clear();
}

You will note we only use a copy of the subscribers array. This is to
ensure that the loop does not fall over when new subscriptions are
added or existing ones are removed while it is progressing through
the loop. It is unlikely in this scenario; however, it is a good practice
to follow either this option or use locking methods to ensure that the
array cannot be updated when the listis being traversed.

This ensures that when GUI events happen (if the game is paused and a pause menu
is displayed or, as in this case, when the travel prompt appears), the GUI system just
has one place to tell all scenes and objects that are listening through messaging when
the GUI is in focus in the game (everyone else stop talking, GUI has the floor), and
when it's finished

Chapter 6

[203]

So, next we need to update our NavigationPrompt script to broadcast when the GUI
is displayed and when it is hidden. First, let's refactor a bit and add a new method
that controls what happens when the dialog state needs to change:

void DialogVisible(bool visibility)
{
 showDialog = visibility;
 MessagingManager.Instance.BroadcastUIEvent(visibility);
}

This just sets the showDialog flag we were using to the new state and then follows
up by sending a broadcast of the new state (true means visible and false means
not invisible). Next, wherever we previously changed the showDialog flag, we
need to update it to use the new helper function. So, change the showDialog flag to
the following:

showDialog = false -> DialogVisible(false);

showDialog = true -> DialogVisible(true);

Next, we need to update the MapMovement script to add in the messaging handlers
so that the script knows when the GUI is displayed. So, add the following Start
function to subscribe to the MapMovement script for the new UI events:

void Start()
{
 MessagingManager.Instance.SubscribeUIEvent(UpdateInputAction);
}

Then, add the corresponding function to toggle the inputActive flag we
created earlier:

private void UpdateInputAction(bool uiVisible)
{
 inputActive = !uiVisible;
}

This just updates the inputActive property whenever the GUI informs us that
it's onscreen.

If you haven't done it yet, update the MessagingManager script
based on the example in the Managing input section to add the new
UI event handler. Additionally, update the NavigationPrompt
script to inform the message handler when the GUI is visible.

The Big Wild World

[204]

If you like Lamdas, you could actually write the preceding code to
subscribe to the MessagingManager line as follows:

MessagingManager.Instance.SubscribeUIEvent(uiVisible =>
 inputActive = !uiVisible);

However, I've kept it simple in the project for all to read and it's a good
practice to keep them separate in case you need to add more handling.
For more information on Lamdas, see the MSDN article at http://
msdn.microsoft.com/en-gb/library/bb397687.aspx.

Managing input order
If you run the code at this point, you will notice that all the changes we just made
did not actually fix the problem. When we click on the play button, the player still
moves to the click position. The reason for this is very simple: your machine is just
too darn quick.

Basically, when you click on the GUI button, the UI event is fired. In the MapMovement
script, however, it receives this straightaway and changes the inputActive flag.
Then, when the Update method is called, the script thinks the UI has already gone
away and receives the same click action and then proceeds to move the player.

We can handle this in one of two ways—either we can change the script execution
order (visit http://docs.unity3d.com/Manual/class-ScriptExecution.html
for more details, but this can become quite messy to manage), or we can simply
update the inputActive flag at the end of the Update loop.

To keep things simple, let's do the latter. So, create the following new property at the
top of the MapMovement script:

bool inputReady = true;

Then, instead of updating the inputActive flag directly, you would update the new
flag instead. This allows us to delay the change in the input status for the script. So,
update the UpdateInputAction method as follows:

private void UpdateInputAction(bool uiVisible)
{
 inputReady = !uiVisible;
}

Finally, at the end of the Update method, we would set the inputActive flag to the
value of the new inputReady flag after checking all the user input and allowing the
screen prompt to close first:

inputActive = inputReady;

http://msdn.microsoft.com/en-gb/library/bb397687.aspx
http://msdn.microsoft.com/en-gb/library/bb397687.aspx
http://docs.unity3d.com/Manual/class-ScriptExecution.html

Chapter 6

[205]

Now when you run the project and the GUI is displayed, clicking on the play button
no longer causes the player to move as well.

Getting curvy
If you recall, back in Chapter 3, Getting Animated, I showed you the animation curves
that can alter how a sprite or inspector value can be changed over time. You can also
use these just about anywhere in Unity. So, we'll apply this to our MapMovement script
to control how the player transits from his start position to his destination. To do this,
simply add a new public parameter to the top of the MapMovement script (this can
work on any script implementing MonoBehaviour) as follows:

public AnimationCurve MovementCurve;

When viewed from the editor, this will give you the custom inspector for an
animation curve as shown in the following screenshot:

You have to configure the curve initially from the editor for it to
do anything; the default is simply a flat line with no movement.

When you click on the curve, you will get the animation curve editor, as shown in
the following screenshot:

The Big Wild World

[206]

By default, no curve is defined and you have to configure a new curve. In the
preceding screenshot, you can see a basic linear curve that grows over time. But
this being an editor, you can apply just whatever kind of curve you want—either
start with one of the presets at the bottom of the editor or start altering the curve
by adding new animation keys (by right clicking on the curve and selecting Add
key) and changing the curve characteristics. You can even create something as
wacky as the one shown in the following screenshot:

With your curve parameter available and configured, we can then alter our previous
Lerp function in the MapMovement script to use the curve parameter as follows:

if (TargetLocation != Vector3.zero && TargetLocation !=
 transform.position && TargetLocation != StartLocation)
{
 transform.position = Vector3.Lerp(StartLocation, TargetLocation,
 MovementCurve.Evaluate(timer));
 timer += Time.deltaTime;
}

This, now gives us the ability to control how the Lerp function behaves at a very
fine level.

This curve could be updated procedurally to alter the curve if there are
mountains or other difficult terrain to maneuver over, or you could switch
from doing a fixed input (as shown in the following code) and use more
physics/forces to alter the interaction between the player and the terrain.

Chapter 6

[207]

Fixing the start location
To ensure that the hero doesn't actually run home on seeing the big bad wild world,
we just need to simply stop him looking at home until he has actually gone far enough
from home to actually miss it. To do this, we simply need to disable the collider on the
player until he is not colliding with home anymore. We will perform the following
steps to do this:

1. Achieving the start location is simple; just add a new property to the
MapMovement script to track whether the player has actually started
travelling yet. The code is as follows:
bool startedTravelling = false;

2. Next, we ensure that when the map scene starts, the player's BoxCollider2D
component is actually turned off. We do this in the Awake function before
anything is updated or checked. The code is as follows:
void Awake()
{
 this.collider2D.enabled = false;
}

3. Next, we change our Update function to take note of the new flag and also
perform the check as follows:
void Update()
{
 if (TargetLocation != Vector3.zero && TargetLocation !=
 transform.position && TargetLocation != StartLocation)
 {
 transform.position = Vector3.Lerp(StartLocation,
 TargetLocation, MovementCurve.Evaluate(timer));
 timer += Time.deltaTime;
 }
 if (startedTravelling && Vector3.Distance(StartLocation,
 transform.position.ToVector3_2D()) > 0.5)
 {
 this.collider2D.enabled = true;
 startedTravelling = false;
 }
}

The Big Wild World

[208]

Here, we added another statement after the movement code to test whether
the following conditions are satisfied:

 ° Has the player has started travelling yet? If not, do nothing.
 ° Is the distance between the place the player started at and the hero's

current position far enough (in world space values)? If yes, then
re-enable the player collider.

So once the player has moved a sufficient distance, the hero will then be able
to interact with places on the map again.

4. Finishing off, we need to update the StartTravelling flag whenever
the player taps or clicks a destination, or else the collider will never get
enabled by the preceding code. So, update the Update function to set this
appropriately by setting the following in both of the if statements:

if (inputActive && Input.GetMouseButtonUp(0))
{
 StartLocation = transform.position.ToVector3_2D();
 timer = 0;
 TargetLocation = WorldExtensions.GetScreenPositionFor2D
 (Input.mousePosition);
 startedTravelling = true;
}
else if (inputActive && Input.touchCount > 0)
{
 StartLocation = transform.position.ToVector3_2D();
 timer = 0;
 TargetLocation = WorldExtensions.GetScreenPositionFor2D
 (Input.GetTouch(0).position);
 startedTravelling = true;
}

Traveling too far
The last snag to watch out for is when the player shoots straight through the town
we are currently prompting them about and continues going. Thankfully, this one
is very easy to handle.

Chapter 6

[209]

We just need to check when our input has been disabled by the GUI by checking
the new inputReady flag. If the input has only just been disabled, we do this by
updating the end of the Update method in our MapMovement script as follows:

 if (!inputReady && inputActive)
 {
 TargetLocation = this.transform.position;
 Debug.Log("Stopping Player");
 }
 inputActive = inputReady;
}

So, when the UI event has turned off the inputReady flag but has not yet been
synchronized with the inputActive flag, we simply stop the player in their tracks
and fix their target position to their current position.

Transitions
When you are transitioning between scenes/levels within Unity, it can appear a
bit jarring to the player when a scene just freezes and then another one pops up.
Even when you make the loading of the scene as fast as possible, there is still a
flicker on the screen that is not smooth or fluid (as designers like to say).

Thankfully, we can easily fix this by adding some code to manage the transition
between the towns and world in our game. We will do this by adding a Fading
manager to our game.

To start off, in the same way as we did with the Conversation manager in the
previous chapter, we will create a new class and apply our singleton framework to it.
This is simply because there should only ever be one agent in our game managing the
fading of a scene so it does not cause an issue if a player enters and then immediately
exits a scene.

So, create a new FadeinOutManager C# script in the root of your project's Assets\
Scripts folder and replace its contents with the following code to create a singleton
manager that can be used by any scene:

using UnityEngine;
using System.Collections;
public class FadeInOutManager : Singleton<FadeInOutManager>{
// guarantee this will be always a singleton only –
// can't use the constructor!
 protected FadeInOutManager() { }
}

The Big Wild World

[210]

With this in place, we can start building the manager. First, start off with some
properties as shown in the following code:

 // The texture to display when fading
 private Material fadeMaterial;
 // Fading parameters
 private float fadeOutTime, fadeInTime;
 private Color fadeColor;

 //Place holder for the level you will be navigating to
//(by name or index)
 private string navigateToLevelName = "";
 private int navigateToLevelIndex = 0;

 //State to control if a level is fading or not,
 //including public property if access through code
 private bool fading = false;
 public static bool Fading
 {
 get { return Instance.fading; }
 }

The properties are documented and used to control how long the fade should
last when leaving the current scene into the next; there is an additional Material
property so that you can use different textures to display on the screen when fading
(maybe your game logo). Finally, there are some tracking properties if you are using
the class to navigate scenes by index or scene name.

With the properties in place, we now need the following initialization code:

 void Awake () {
 //Setup a default blank texture for fading if none is supplied
 fadeMaterial = new Material("Shader \"Plane/No zTest\" {" +
 "SubShader { Pass { " +
 " Blend SrcAlpha OneMinusSrcAlpha " +
 " ZWrite Off Cull Off Fog { Mode Off } " +
 " BindChannels {" +
 " Bind \"color\", color }" +
 "} } }");
 }

Chapter 6

[211]

In the previous code, we are simply setting up a default fading material in case you
don't pass one as a parameter.

At the moment, this material would be overwritten the first time
the manager is used to fade with a new material (defaults to the
last material used). If you want to apply a material in the editor or
use a prefab material, then remove or update this section of code.

Next, as we need to draw our fading image (the image is a part of the material,
even if it's only a black color) to the whole screen, we are going to need a little
helper function to do that using some of Unity's primitive drawing functions.

Primitives, in graphics terms, refers to when you manually
draw lines, quads, or shapes using manually-created vertexes,
vertices, and indexes. For more information about the editor, visit
https://docs.Unity3D.com/Documentation/Manual/
PrimitiveObjects.html. For more information on using the
low-level graphics library in scripting, visit https://docs.
Unity3D.com/Documentation/ScriptReference/GL.html.

Now, you can create a new C# class to hold the following drawing function if you
wish, but I have simply appended it to the FadeInOutManager script. Use whichever
method suits you; I kept it in FadeInOutManager because it's integral to the operation
of that function. It's still static, so it is still reusable wherever I need it. The code of the
required class is as follows:

public static class DrawingUtilities
{
 //Helper utility to draw a full screen texture
 public static void DrawQuad(
 Material aMaterial,
 Color aColor,
 float aAlpha)
 {
 aColor.a = aAlpha;
 aMaterial.SetPass(0);
 GL.PushMatrix();
 GL.LoadOrtho();
 GL.Begin(GL.QUADS);
 GL.Color(aColor);
 GL.Vertex3(0, 0, -1);
 GL.Vertex3(0, 1, -1);

https://docs.Unity3D.com/Documentation/Manual/PrimitiveObjects.html
https://docs.Unity3D.com/Documentation/Manual/PrimitiveObjects.html
https://docs.Unity3D.com/Documentation/ScriptReference/GL.html
https://docs.Unity3D.com/Documentation/ScriptReference/GL.html

The Big Wild World

[212]

 GL.Vertex3(1, 1, -1);
 GL.Vertex3(1, 0, -1);
 GL.End();
 GL.PopMatrix();
 }
}

This is just a very basic function using the low-level graphics library (the GL library,
more information about this library can be found at http://docs.unity3d.com/
ScriptReference/GL.html) to define a simple 2D plane that will be displayed in
front of the camera. On that plane, I set the material/texture that will be drawn with
it and then adjust the alpha (transparency) of the plane. To see how this is used, let's
add the following core fading coroutine to the manager:

 private IEnumerator Fade()
 {
 float t = 0.0f;
 while (t < 1.0f)
 {
 yield return new WaitForEndOfFrame();
 t = Mathf.Clamp01(
 t + Time.deltaTime / fadeOutTime);
 DrawingUtilities.DrawQuad(
 fadeMaterial,
 fadeColor,
 t);
 }
 if (navigateToLevelName != "")
 Application.LoadLevel(navigateToLevelName);
 else
 Application.LoadLevel(navigateToLevelIndex);
 while (t > 0.0f)
 {
 yield return new WaitForEndOfFrame();
 t = Mathf.Clamp01(t - Time.deltaTime /
 fadeInTime);
 DrawingUtilities.DrawQuad(
 fadeMaterial,
 fadeColor,
 t);
 }
 fading = false;
 }

http://docs.unity3d.com/ScriptReference/GL.html
http://docs.unity3d.com/ScriptReference/GL.html

Chapter 6

[213]

This coroutine is very simple and yet so powerful; walking through it, what happens
is as follows:

1. When the fade starts, we define a fading value and set it to zero.
2. Then, we run a while loop that runs until our fade value is 1 (full fade).

In this loop, we perform the following actions:
 ° Wait for the last frame to be drawn (keeps it smooth)
 ° Update our fade value based on how much time has passed against

how long the fade should last
 ° We use the Mathf.Clamp01 function to ensure the value does not go

above a certain range, limiting it to a maximum value
 ° Then, we use the drawing function we created earlier to draw a

plane/quad to the screen using our fading value as the alpha value

3. When fading out has completed, we load the next level as normal. However,
we check whether we have used an index or a name for the scene selection.

4. Finally, we repeat step 2, but this time fading in instead of out by looping
our fading value to 0.

5. When finished, we set the fading flag to false to indicate that the script
execution is complete.

Now, it is very important how we launch this coroutine because it could be interrupted
at any time, either by exiting the game or by another fade being requested before the
last fade finished. To be able to stop it from anywhere in the game, we need to ensure
it is only launched using its string name. This allows us to use the StopAllCoroutines
function to kill it.

As stated in the previous chapter, if you have long running
coroutines, always ensure they can be started using their string
names. Use method/delegate names only for short-lived coroutines.

The Big Wild World

[214]

All that's left to complete our FadeInOutManager script is the public function that
scenes will be able to use to kick off the process. The code for this script is as follows:

private void StartFade(
 float aFadeOutTime,
 float aFadeInTime,
 Color aColor)
{
 fading = true;
 Instance.fadeOutTime = aFadeOutTime;
 Instance.fadeInTime = aFadeInTime;
 Instance.fadeColor = aColor;
 StopAllCoroutines();
 StartCoroutine("Fade");
}

As you can see, when fading starts, we set the flag to denote fading has started,
capture the values for the manager used to control the fading motion, stop any
existing coroutines from running that might be from the existing scene or a previous
fading action, and kick off the Fade coroutine.

Then, we need the following public static (available anywhere) function that you can
use to start the level fading process:

public static void FadeToLevel(
 string aLevelName,
 float aFadeOutTime,
 float aFadeInTime,
 Color aColor)
{
 if (Fading) return;
 Instance.navigateToLevelName = aLevelName;
 Instance.StartFade(aFadeOutTime, aFadeInTime, aColor);
}

I've included many more overloads for the manager in the sample project. So, it is
as flexible as it needs to be for the game, including the ability to pass a material to
change the fading image, specify alternate fading values, or fade to another level
by index instead of name.

Chapter 6

[215]

Updating level loading to use fading
Next, in order to actually navigate to the world, we need to enable our
NavigationManager script to actually load our next scene and use the new
FadeInOutManager to transition smoothly.

So, open up the NavigationManager script in Assets\Scripts\Navigation and
look for the following lines:

 public static void NavigateTo(string destination)
 {
 //Application.LoadLevel(destination); <- commented out for
 now as we have nowhere to go :D
 }

Update the previous lines with the following lines:

 public static void NavigateTo(string destination)
 {
 FadeInOutManager.FadeToLevel(
 destination,
 2f,
 2f,
 Color.black);
 }

Now, if you return to the town scene and run it and try to leave the town for the
Big Bad world, it will fail—but in a nice way.

If you still have the messaging scripts attached to the RightBorder
game object (the right-most bounds of the town), you'll notice a
Greybeards conversation will start. This is because of the simplistic
nature of the messaging system. Just remove the scripts from that
object for now to stop that.

The reason is simple, because we haven't told Unity we have any scenes in our
game yet. You have only been effectively testing whatever scene you have been
in at the moment.

The Big Wild World

[216]

Updating build settings to include new scenes
To add new scenes, we need to set up the Build Settings options for our project
to tell it we have some additional scenes to choose from. Open Build Settings by
navigating to File | Build Settings from the main menu or use Ctrl + Shift + B on the
keyboard. The Build Settings window looks as shown in the following screenshot:

From here, you control how each platform will be built and what is contained within
the build. It's also used to change the default editor settings and screen aspects (as
described in Chapter 4, The Game World) that are available. We will cover more on this
later in Chapter 12, Deployment and Beyond, when we start building for platforms such
as Windows, Windows Phone, iOS, or Android.

Chapter 6

[217]

As you can see in the following screenshot, the Scenes In Build list is currently
empty. So when we run the game, it will just run the current scene in the editor.
To update this list, either drag the scenes from the project hierarchy or use the
Add Current button to add the scene you are currently viewing. So, add the two
current scenes into the Scenes In Build list as shown here:

Now, one important thing to note is the order of the scenes. As you may expect,
Unity will always start the project with scene 0, so be sure that the town is the first
scene in the list. You can do this by simply dragging the scenes up or down.

Now, when you start the game from the town and run screaming from the town,
you will nicely fade out from the town into the Big Bad world.

This ordering of scenes is very useful and powerful. Some developers like
to put levels in order so that they can use the index to progress through.
However, another trick if you are having trouble with a particular scene
in your game when running on a device is to reorder the scenes in the
build so that the troublesome one is the starting scene. This saves you
from having to keep playing through till you get to that scene or writing
code to accelerate you. Granted, you need to ensure whatever settings
required for the scene are set on load if you debug this way.

Going further
If you are the adventurous sort, try expanding your project to add the following:

• Add sprites for each of the towns; maybe even animate those sprites when
the place is new to draw attention to them.

• Add a camera-tracking script similar to the one used in the Home scene so
that the player can move further around the map.

• Create new scenes for the places to visit and get some more characters and
conversations going.

The Big Wild World

[218]

• Add a LineRenderer component to the MapMovement script (visit http://
cgcookie.com/unity/2013/05/03/animate-a-line-draw-using-line-
renderer-component/) to show a line as the player moves.

• Animate the player and flip the image when the hero moves in the opposite
direction as we did in the town.

• Add a keyboard input to move the player instead of just touch and click.
• Return to the CharacterMovement script and add touch/mouse input.
• Update the Fading manager to use curves and/or more images, and try to

add a middle image/scene between loading levels. This is commonly used
for ads or to hide long loading times.

Summary
Hopefully, you can appreciate by the end of this chapter how even a simple map-like
interface has its own flavors and complexities, but there is so much more you could
do to enhance this area. Depending on your style of game, the player could spend
quite a lot of time on the map exploring (such as Zelda) or they could just be zipping
through. So, plan time accordingly to decide how much you want to invest.

If you target mobile platforms, then other input strategies are very important.
On handheld devices, if players use the keyboard, they generally lose over half the
screen. So, all they have is touch input. Similarly, on consoles and PCs, they don't
have touch input, only keyboards or mice and gamepads. Input is a big area, but
we will revisit this area in Chapter 12, Deployment and Beyond.

In this chapter, we covered the following topics:

• Building the wider world using textures, texture generation tools, map tools,
and some hints at procedural generation

• The different UI interactions and marshaling input priority between GUI
and game

• Adding smoothing techniques to scene transitions and how to use animated
curves in places other than animation

• Adding some smooth transitions between scenes

http://cgcookie.com/unity/2013/05/03/animate-a-line-draw-using-line-renderer-component/
http://cgcookie.com/unity/2013/05/03/animate-a-line-draw-using-line-renderer-component/
http://cgcookie.com/unity/2013/05/03/animate-a-line-draw-using-line-renderer-component/

Encountering Enemies and
Running Away

The world is full of big and scary things, or so at least our budding hero is about to
find out; you'd think someone would have warned him.

At the heart of most RPG-style games are the bad guys. How they think and how
they confront and challenge you will mark your game as either too hard or too easy.
Sadly, there isn't any real middle ground (you can't please everyone all the time).
However, we can ensure a fair system all round and engage the players with systems
that will surprise and entertain them as they move around in the big bad world.

The following topics will be covered in this chapter:

• Planning for event systems
• State machines
• Basic AI techniques

Event systems
When you're looking to engage the player roaming around in your game, it is best to
throw them off guard and challenge them when they least expect it; this ensures that
the player is paying attention while playing, and it also serves to keep them on their
toes at all times.

Encountering Enemies and Running Away

[220]

The following methods help to achieve this:

• Fixed systems: This is where the places and interactions are actually planned
in advance by forcing the player to be drawn in to an event at prescribed
times/places

• Random generation: This involves using random systems to challenge the
player within a given time frame or occurrence, giving the player a chance of
an event but not a certainty of one

There are merits and demerits with either approach for the player as they interact
with your game. Fixed systems are easy to implement but limit replayability (game
becomes dull in the second or subsequent runs), whereas random systems can be
trickier to get the balance right but it also mean the player will likely keep playing
longer or get irritated very quickly.

Finding the balance between implementing events is a tricky process, which you
will have to find the right sweet spot for in your particular game, and inevitably all
games implement this differently.

Also, remember that there is no silver bullet and no reason not to use both systems
together, using fixed systems to tell a story and random events to keep it interesting.

Exploring randomness
Now one strange thing to keep in mind is that there is no such thing as a completely
random system, especially in gaming and computing. You can get close with some
really complex mathematical systems but nothing is truly random. The best we can
do is make it random enough to fool the player making them believe it is random.

The reason for this is simple: computers are not random and don't think in random
terms. When they generate a random number, they are using a seed (a unique
number to base their random generation on) to work out what number to give you.
But every time you generate a number based on that same seed, it will always be the
same sequence; this is known as pseudo-random.

So, if I generate a random number from a seed of 1234, every number generated from
that seed will always follow the same pattern (1, 5, 3, 7, 2, 4, 10, and so on). Most
basic systems try to balance this out by also randomly generating the seed number,
but this again falls under the same pattern. However, it does make the random
pattern a little more random. A lot of systems use the date or current clock tick as
the seed. It's important to know and remember this when you are planning to use
random systems.

Chapter 7

[221]

There is also a drawback to trying to make your random system even more random:
you end up spending more time computing the random number in your game and
stealing resources from other systems such as physics, AI, and so on. It's always a
balancing game to ensure you plan where your precious system resources are going
to be spent. For instance, if you use a triple-pass-random system using several levels
of Perlin noise generated for each frame, it is a heavy burden on the CPU (although,
this is a rather extreme example, you should never generate it for every frame unless
there is a very good reason to do so!).

In most cases, developers use other effects to try to create randomness by using
noise generating systems (Perlin/fractals/Gaussian drift) and other techniques to
try to make the best use of low-cost generation systems with as few passes needed
to get the desired result. By combining two or more systems, you can create an
approximate and fairly complex random system.

If you want to read up more on random and pseudo-random systems,
you can get a full history on RANDOM.ORG at http://www.random.
org/randomness/, which also features some examples of free and paid
random systems.

There is another side to this predictability of basic random number generation
systems: these can be used in various procedural techniques to build game items. If
you can predict a sequence of numbers based on a particular seed, you can use that
sequence to always build the same thing each and every time.

So, if you want a set of events to always occur in a particular order, you can actually
use the basic random system to create a fixed event system; just use the seed you
need to generate the sequence you need to use.

Planning for random code/generation
A key point of any good game design when you even start to think about adding
random code/generation to your game is to stop/look and listen. Never rush into
using random systems in your game, else you will end up rewriting it at least three
times before you're done, and even then you won't be absolutely happy with the result.

Start working from a simple base and ask yourself:

• Do I actually need it to be random or will it get configured?
This is the first and most important question: are you trying to add random
code/generation because it's easier to throw in, and will a fixed configuration
be more suitable (is it really random you're after)?

http://www.random.org/randomness/
http://www.random.org/randomness/

Encountering Enemies and Running Away

[222]

Never use randomization lightly, even when it is just a range of numbers
you want to pick from; always question whether it is the right tool for the
job. Inevitably, using randomization is always going to be more expensive in
terms of processing (especially with more complex systems with deepening
levels of recursion or noise generation) than a simple mathematical equation
to approximate the values you are after. Do your research.

• Where in your design do you see the need for randomization?
Be specific! What do you actually need to be randomized or sampled?
For example, in this RPG project for the random battle events on the map, we
need to figure out the following:

 ° The chance of an event occurring on a journey
 ° Where on the journey the event will occur
 ° What will be the starting condition of the battle, number of enemies,

their strength, and who fights first

• In each area, how frequently will you need a random sample?
Because of the cost of random selection, you need to decide when and
where the generation will take place. If you need a single random for
each frame, that might be okay (depending on what else is happening in
each frame); but if you have many, then it may be better to prefill an array
of random numbers at the start of the scene and perform a predictive
selection of numbers in that array (either stepping through or selection
based on other factors).

• What level of complexity does the random sampling/generation need?

So once you've decided where you need randomization and how often you
need it, only then do you decide on how complex that generation needs to
be. Is it simply picking a random number or do you need a more accurate
random number predication by using one of the aforementioned complex
techniques such as Perlin noise or fractal sampling?
This is arguably a much trickier question as how random do you need to be, in
a lot of cases only testing will tell; does your current random technique let you
down and the pattern always seems obvious? Does it hamper your gameplay?

For the purposes of this book, I will keep the use simple; this section is mainly to
highlight all the complexities of using random systems in games. This might sound
like a nice idea to begin with, but beware, here be dragons, even if it's just as simple
as a single random number picked in a range in each frame.

Chapter 7

[223]

Another important consideration is that random generation is not free.
Depending on the system you use it could also generate garbage and
hamper the performance of your game that may not seem obvious at
first glance.

True randomness
There is another course of logic in random generation systems called True
Random Number Generators (TRNGs). They go to great lengths to guarantee the
randomness of a generated number with greater and greater precision, but these also
come at a heavy cost (if you really need them, however, they are worthy of study).

In games, however, it is usually sufficient to rely on pseudorandom systems, both for
their efficiency as well as their predictability. They can be used for bug reproduction
or being able to do lock-step games over the net with only player input, for example,
in RTS games, or level-generation systems based on seeds, for example, Worms.
Another reason is that you often don't want 100 percent randomness, you want
something like a shuffle bag or similar to ensure that the event happens "randomly
enough" within a time frame.

Basic Artificial Intelligence
Artificial Intelligence(AI) is a term banded around most game systems and is a
general bucket for several techniques for machine-based learning systems. Its sole
aim is to fool the user/player into believing that the system is behaving like any
living being, mainly to challenge the player in head-to-head battles or helpful
supporting characters.

Some systems used to achieve this are as follows:

• Path-finding: This helps AI-controlled entities navigate through levels to a
specific destination

• Flocking: This orders how multiple AI entities will relate to each other
within a given area

• State machines: These are fixed and basic sensor-driven intelligence to drive
AI actions.

• Rule-based expert systems: These are the defined logic systems for an AI
entity to derive action from and aid decision making

Encountering Enemies and Running Away

[224]

• Neural networks: These are advanced learning networks for AI entities,
typically used to predict the performance of the AI and also understand the
predictable behavior of opponents

• AI algorithms (reinforced learning / simulated annealing / genetic
calculations): These are many different ways to reinforce neural networks
and decision engines for better predictable behavior

The area of AI can be a very complicated minefield. It is often seen by some as a "nice
thing to have"; however, getting it right is a very long and drawn out task no matter
the size of the project.

My advice, especially if you are just starting out, is to lean on existing
implementations either through the asset store or the Unity wiki to begin with and
learn from there. The whole subject of AI has spawned numerous books and entire
sites such as http://aigamedev.com/ (a fantastic general resource).

Start simple and move from there. For the purposes of this book and the RPG game,
we will focus on a simple state machine implementation using basic sensors to help
drive the AI.

State machines
In life, as well as game development, state machines (or Finite State Machines
(FSM) as they are more commonly called) are a core component for day-to-day
running. At a basic level, they tell us exactly what we are doing right now, what we
were doing previously, and what we can do next.

They are commonly used for:

• Menu systems
• Game-level transitions
• AI/Behaviors

We can implement these within games in various ways, from the very basic
(and generally hard to manage) to a more ordered system and beyond with full
state managers.

http://aigamedev.com/

Chapter 7

[225]

A basic state machine is like a flowchart and looks something like the following
diagram:

Defining states
In all implementations, we start with a collection of states: these define both what
conditions/states are in the game and what we do when that state changes.

These states describe both what can happen when that state is active and what
other potential states could result in an action from the current state. If we take the
example from UnityGems, which describes a simple case using a television(TV), we
would end up with the states listed in the following table:

State Description Actions
TV off No activity is present and

nothing is displayed.
The power button turns the TV on.

TV on The TV displays images and
plays sound.

The power button turns the TV off.
The up button selects the previous
channel.
The down button selects the next channel.
The menu button displays the menu.

Menu
displayed

The TV displays the menu,
overlaying the normal display.

The power button turns the TV off.
The menu button turns the TV on (menu
hidden).
The up button highlights the previous
menu item.
The down button highlights the next menu
item.
The ok button activates the menu item.

Encountering Enemies and Running Away

[226]

So from each individual state, there are a number of options; in some cases, the same
action will lead to the same result (such as the power button), some actions will do
different things based on what the current state is (such as the up and down buttons).

It's important to note that in any game, you will likely use many state systems, from
menus to in-game controls and AI.

So once you have your collection ready, the next step is to define an enumeration in
C# as follows, for example, using the previous states:

enum TvState
{
 Off,
 On,
 Menu
}

Simple singular choice
The simplest way to implement a state system is using the C# switch statement; the
benefit here is that there can only be a single result:

if (Input.GetButtonDown("Up"))
{
 switch (currentTvState)
 {
 case TvState.Off:
 //Nothing, tv is off
 break;
 case TvState.On:
 //Channel Up
 break;
 case TvState.Menu:
 //Menu selection up
 break;
 }
}

So as you can see in the previous example, we have simply implemented the pattern
for the Up button on the remote, and depending on what the television is doing
currently, it will act appropriately.

This is good for menus, but is limiting in situations where based on the state, we
might want to do multiple things.

Chapter 7

[227]

Planning for multiple cases
The alternate simple approach to state machines is to use the if blocks to test what a
state is: the only downside is that this can become very cumbersome to manage very
quickly. Consider a slightly more complex scenario (related to the game) where a
group of thugs are battling with you, but they are only confident when they are in a
group and will run if their health is good. Such a system wouldn't be possible using
the previous switch style (or at least will be difficult to do so), so by using several if
blocks as shown in the following code, we can achieve something like this:

if (EnemyState == State.Idle)
{
 //Check for player
 // If player found EnemyState == State.Attacking
 //Check for fellow enemies
}

if (EnemyState == State.Attacking && PlayerState == State.Idle)
{
 //Enemy Sneak attack
}

if (EnemyState == State.Attacking)
{
 //Play Attacking Music
}

if (EnemyState == State.Attacking && Health < 5)
{
 //Run away
}

if (EnemyState == State.Attacking && PlayerState ==
 State.RunningAway)
{
 //Give Chase
}

Now, although the previous code can be nested or transformed into switch
statements, writing it this way gives us other advantages: for one, we control
when and under what conditions certain things will happen, for example:

• Battle music will always be played when the battle begins

Encountering Enemies and Running Away

[228]

• Enemies will chase the player unless they have low health
• At any point that the player is idle, the enemies will have a sneaking

advantage

However, with either system, you are going to end up with a lot of code-making
decisions around your game, such as the player, enemies, NPCs, and so on. This
will make it hard to manage, and even worse to try debug; perhaps Unity offers us
another way?

State managers
Following on from the Animation tutorial in Chapter 3, Getting Animated, we have
seen that Unity has a very powerful state machine system built in it already using
Mecanim. We have only used it for animation so far, but like AnimationCurves, we
can use this to build a nice graphical system that is easier to maintain.

Although the state machine is very powerful for controlling what states
are available and how they transition between states, it can't actually
implement actions (other than animation). There are triggers built into
the state system, but these are not fully supported on all platforms. So if
you use them, keep it limited.

To achieve this properly, you need to separate out the responsibilities for what does
what within the state system into the following parameters:

• Inputs: What factors will be fed into the state system to affect change
• The decision engine: The core logic that drives the state machine
• Outputs: What the game will do based on the current state

Chapter 7

[229]

The previous diagram shows an example of how you would componentize your
state machine; this pattern is very extensible because it means you can apply separate
scripts for each of the inputs, which also means many areas of the game can have an
input to the state system. The outputs/reactions to states or state changes can also be
componentized (but don't have to be) so that you can swap and change AI behaviors
to the different states based on what you are implementing them on. Enemy 1 may
be very brave and just act, and Enemy 2 might be a bit more cautious and require
other enemies close by before attacking.

Implementing this in Mecanim Animation controllers is very simple since at its heart
it is a state machine itself, as shown in the following screenshot:

In the previous screenshot, we can see a simple example of this: there are no
animations connected to any of the states. We are just using them to track and
control what drives our state machine. Using the parameters, it's easy to configure
the following settings:

• If the player is seen, the enemy attacks
• If the player is seen and is attacking, the enemy should defend
• If the player attacks when the enemy is attacking, the enemy should defend
• If the player stops attacking, then the enemy should attack back
• If at any time the enemy health is less than 2 and the player's health is greater

than 2, the enemy should run away
• If at any time the enemy loses sight of the player, then go back to idle

Encountering Enemies and Running Away

[230]

So by controlling the input, we know how the enemy will behave, and this is
completely configurable within the controller without any complex scripting.

Sensors
Using the Mecanim state machine in this way is very powerful and just having
scripts update the parameters of the state machine through input (user taps a key, or
scene loads) is simple enough. However, if you want reactive AI, you might want to
think about sensors.

Sensors are effectively the AI's eyes and ears and whatever else it wants to use to
detect action within a scene (even if it's an alarm or trip wire). Generally, they are
self-contained components that look after themselves and inform whatever they are
attached to. They can be as complex or as simple as you need them to be.

A basic sensor might be an empty game object with a trigger collider (the trip wire),
which tells the enemy state machine that the player has come into view. Alternatively,
you could use ray casting (yes, even in 2D) to check whether the target is in view.

One of the best examples of a sensor I've seen is a wandering game object with a
sphere trigger that wanders round the screen to represent the point where the enemy
was looking at. If it falls on the player or an object that has been moved in the scene,
then all hell breaks loose.

Putting it together
As you would expect, we need to create a new scene for our battles. There is a
choice to make whether you want to create several scenes for different battle
areas or define one generic scene and randomize the contents of that scene to add
variation. Obviously there are pros and cons to each approach, but ultimately the
choice is up to you.

Building the new scene
For now, we will keep things simple and just create a new scene and then configure
it as our battle area. So, add a new scene called Battle to the project and make it look
pretty with some additional background scene elements.

For this example, I have used the Fantasy background (Environments\Fantasy\
Background01.png) with some of the environmental assets from our asset pack to
create the following screenshot:

Chapter 7

[231]

The Fantasy background from the free assets pack with the sprite's X scale set to 1.5 to better fit the camera

Remember to group your additional environmental assets under a single
empty game object to keep them tidy in the Project hierarchy, and also
set the sprite layer and order appropriately for all elements, including the
background texture.

Adding the first enemy
We need to create a prefab for our first enemy. Doing so is simple. First, let's start
with the goblin character in the asset pack (Fantasy_Pack\01_Characters\05.png),
split its sprite up using Sprite Editor, drag sprite image 05_03 on to the scene,
and then rename the new game object to Goblin. The enemy would look as the
following diagram:

With the character in place, it's time to give the nasty little fellow some logic; we
won't use this just yet in this chapter but it's good to have it from the beginning
(see Chapter 10, The Battle Begins, for the applied AI).

Encountering Enemies and Running Away

[232]

So create a new animator controller called GoblinAI.controller and place it in
Assets\Animation\Controllers, which gives us the basic Animator view, as
shown in the following screenshot:

Next, we need some parameters to control the state machine, so add the following
parameters to the controller by clicking on the + symbol on the parameters bar and
selecting the correct data type, as shown in the following screenshot:

The parameters to be added and their data types are as follows:

• EnemiesInBattle: Int
• PlayerHealth: Int

Chapter 7

[233]

• EnemyHealth: Int
• PlayerSeen: Bool
• PlayerAttacking: Bool

Now that we have some input parameters, next up we need our states. So, create
the states shown in the following screenshot on the current animation layer by
right-clicking and navigating to Create State | Empty:

The states to be added are as follows:

• Idle
• Run Away
• Attack
• Defend

You should note that the first state will be colored orange, whereas the
rest are colored grey. This is simply because the first one you create
becomes the default state (the state the state machine will start with).
You can change the default state at any time by right-clicking on it and
selecting Set As Default.

Encountering Enemies and Running Away

[234]

So with the parameters and states in place, all that is left is to connect everything up
and finalize the state machine. So as we did in Chapter 3, Getting Animated, we need
to create some transitions between the states along with the conditions for those
transitions, as shown in the following screenshot:

As seen in the previous screenshot, the states and their transitions are as follows:

• Idle -> Attack – PlayerSeen = true

Goblin attacks player when he sees him

• Idle -> Defend – PlayerSeen = true and PlayerAttacking = true

If the player attacks first when they are seen by the Goblin, then defend

• Attack -> Defend – PlayerAttacking = true

Switch to defend if the player attacks

• Defend -> Attack – PlayerAttacking = false

As soon as the player stops attacking, switch back to attack

• Any State -> Idle – PlayerSeen = false

If the Goblin loses sight of the player at any time, go back to idle

• Any State -> Run Away – EnemyHealth < 2 and PlayerHealth > 2

The Goblin is basically a coward; if at any time its health drops too low and
the player is a lot healthier, then it will run away as fast as its little legs will
take it

Chapter 7

[235]

Now that we have our AI state machine for our Goblin, select the Goblin game
object in the Scene hierarchy and add a new Animator Component in the Inspector
menu and drag the newly created animator to it, which should now look like the
following screenshot:

Now that we have our Goblin set up, we just need to create a prefab from it. So drag
the Goblin game object from the Scene hierarchy and place it in Assets\Prefabs\
Characters. You can now delete the original in the scene as we don't need it anymore.

If you ever need to change or add to a prefab, you can do this at any
time by selecting the prefab and updating it in the Inspector menu.
This will automatically update any scene object created from the
prefab. However, if you add the prefab to the scene and then change
it, the changes you make will only be for that instance in the scene and
will not update the prefab.
As noted in the previous chapter, you can also update the prefab from
the instance by clicking on the Apply button.

Encountering Enemies and Running Away

[236]

Spawning the horde
Now that we have our Goblin enemy, we need to be able to randomly drop some
into the battle. For this, we need to set up some spawning points (because we don't
want them to appear just anywhere) and a script to manage them.

So first create a new empty game object in the scene and call it SpawnPoints. This is
just a container to keep the spawn points all together. Next, create nine more empty
game objects, make them children of the SpawnPoints game object, and then name
them Spawn1, Spawn2, and so on, as shown in the following screenshot:

Now, position each Goblin in the scene where you want it to appear.

While doing this, I find that adding the prefab manually to each spawn
point and then positioning it makes it a lot easier to find the right spot.
However, remember that the order in which you add them to the scene
is important as it affects what order they are drawn in.
You can also alternatively add an editor script to the object to make it
easy to use in an editor. See Chapter 11, Onward Wary Traveller, for more
information on editor scripts.

Chapter 7

[237]

After a bit of tinkering, I ended up with the following (I also added a hero character
for effect):

An example scene where 8 Goblins (out of the possible 9) have spawned in

Now we know where the Goblins are going to appear; we just need to get them
there, so we'll manage this with a BattleManager script.

The purpose of this script is to manage the life cycle of the battle scene, from setting
up the battle scene to taking turns to attack and finalizing the battle once complete.

We start off by creating a new BattleManager C# script and placing it at the top of
the project Assets folder along with the other managers (if you wish, you can create
a separate Managers folder and organize them there). As this script only works when
we are in a battle, there is no need to make it a singleton. Battles come and go and
they should only last for the length of the current battle.

For now, we will just set up the framework for the battle scene and get
it populated. Our poor hero has no chance to defend himself yet, so
we'll just let him run away with his tail firmly between his legs.

Encountering Enemies and Running Away

[238]

First, we'll add some variables that we can configure from the scene using the
following code:

 public GameObject[] EnemySpawnPoints;
 public GameObject[] EnemyPrefabs;
 public AnimationCurve SpawnAnimationCurve;

These lines maintain the spawn points the battle manager knows about, the possible
enemy prefabs it can spawn into the scene, and a curve that we can use later to
control how we animate the Goblins. More on this later.

Next, we have some control variables to manage the battle as it ensues. This is done
using the following code:

 private int enemyCount;

 enum BattlePhase
 {
 PlayerAttack,
 EnemyAttack
 }
 private BattlePhase phase;

These states are only temporary. In Chapter 9, Getting Ready to Fight, and
Chapter 10, The Battle Begins, we will build on this for a more full-fledged
system using Mecanim.

We keep a count of how many enemies are active in the scene as well as what
phase the battle is in at the moment (along with our own enumeration of the states
the battle can be in; you can always add more). Finally, we have a flag to monitor
whether the enemy characters have actually started fighting.

Now when the script is run, it needs to initialize the battle arena; so add the
following code to the Start method:

 void Start () {
 // Calculate how many enemies
 enemyCount = Random.Range(1, EnemySpawnPoints.Length);
 // Spawn the enemies in
 StartCoroutine(SpawnEnemies());
 // Set the beginning battle phase
 phase = BattlePhase.PlayerAttack;
 }

Chapter 7

[239]

As this is a one-time coroutine, we are just initializing it with the method
definition instead of the string name of the method. There is no need to
stop it since it only runs till all the Goblins are in the scene and then stops.

Keeping things simple for now, we generate a random number of Goblins who will
attack (or be found wandering round the wood waiting to be chopped). Then, we
spawn them in using a coroutine and start battle with the player going first.

Since we simply need a fixed random number and we are only doing
it at the beginning of the scene, we are just using the Unity Random
function. If we needed a more complex random selection or more
frequent selection, we would change this to something more complex or
preloaded.

Now that we know how many Goblins we need in the battle, we can spawn them in.
I've used a coroutine here so we can animate them one by one as follows:

 IEnumerator SpawnEnemies()
 {
 // Spawn enemies in over time
 for (int i = 0; i < enemyCount; i++)
 {
 var newEnemy =
 (GameObject)Instantiate(EnemyPrefabs[0]);
 newEnemy.transform.position = new Vector3(10, -1, 0);

 yield return StartCoroutine(
 MoveCharacterToPoint(
 EnemySpawnPoints[i], newEnemy));

 newEnemy.transform.parent =
 EnemySpawnPoints[i].transform;
 }
 }

Here, we loop through how many Goblins we'll need, create a new instance using
the prefab we created earlier, set its position off screen, and then animate it on to
the screen using yet another coroutine (shown in the following code). When the
coroutine finishes animating, we anchor it to the spawn point it was meant for.

I made the Enemy prefabs into an array, so we can support multiple types
of enemies in the battle.

Encountering Enemies and Running Away

[240]

So that the Goblins don't appear, we use the AnimationCurve parameter we added
to the script and a coroutine to move the Goblin from off screen to its intended
spawn point, as follows:

IEnumerator MoveCharacterToPoint(GameObject destination,
GameObject character)
{
 float timer = 0f;
 var StartPosition = character.transform.position;
 if (SpawnAnimationCurve.length > 0)
 {
 while (timer < SpawnAnimationCurve.keys[
 SpawnAnimationCurve.length - 1].time)
 {
 character.transform.position =
 Vector3.Lerp(StartPosition,
 destination.transform.position,
 SpawnAnimationCurve.Evaluate(timer));

 timer += Time.deltaTime;
 yield return new WaitForEndOfFrame();
 }
 }
 else
 {
 character.transform.position =
 destination.transform.position;
 }
}

Using the same logic we used in the previous chapter when moving the character on
the map, we work out where the game object is starting from and then use a while
loop to keep the game object moving until it finally reaches its destination. However,
to improve things, this time we base the loop on the length of the AnimationCurve
parameter we have defined for this transition.

Chapter 7

[241]

This allows greater flexibility and allows us to have more complex and longer
animations.

• First we check whether there are animation steps (keys) within
AnimationCurve (if you want something to just pop in to place,
then don't configure a curve)

• If there are keys in the animation, then we keep iterating until we reach
the last key in the animation based on the time of that step and our current
iteration time

Then within the loop, we use Lerp for the position of the object from start to finish
using the animation curve to control its time and rate.

We only go to the next animation step when the next frame is ready
(using the WaitForEndOfFrame function) else the animation would
happen all at once; so we do it gradually each frame.
You could use yield return null; however, this happens
indeterminately and could cause the coroutine to be called several times
per frame depending on how long the last render/draw took. Since this is
a smooth animation, we need to process it for each frame. If it is another
operation that just needs controlled cycles/iterations, returning null
may be preferred.

Next, we need to give the player a way to interact with the battle scene, so we'll add
some GUI buttons that only appear if we are in the player's battle phase. We need the
following code to do this:

void OnGUI()
{
 if (phase == BattlePhase.PlayerAttack)
 {
 if (GUI.Button(new Rect(10, 10, 100, 50), "Run Away"))
 {
 NavigationManager.NavigateTo("World");
 }
 }
}

Encountering Enemies and Running Away

[242]

Now, add a new empty game object to the battle scene, name it BattleManager,
and then attach the new script to it. Once there, we can configure it by adding the
spawn points we created earlier to EnemySpawnPoints and the Goblin prefab to the
EnemyPrefabs parameter along with the Spawn Animation Curve, as shown in the
following screenshot:

Getting back home
Now, as the player hits the yellow streaked button to run away (obviously skipped
his ninja skill training back home), we see a very obvious problem: the map scene is
starting afresh back at home. This is simply because we are not tracking where the
player left the previous scene.

There are two ways to handle this: either we record where exactly everything is in
every scene and where the player enters and exits, or we can simply track the last
known position (or possibly a mixture of the two?).

Chapter 7

[243]

For now, let us simply implement the last known position method. To do this, we are
going to need a central place to remember everything about our game world (well,
at least the important bits we want to track), such as the player's stats, options and
preferences they have set, and where they have been in the world. Some of these
will need saving for the next time the player runs the game and some are just for
the current instantiation, but we will cover saving and loading later in Chapter 11,
Onward Wary Traveller.

The settings we need don't have to be part of any scene, actively tracked in the
scene, or even interact with other game components. So we don't need a class that
implements MonoBehaviour or ScriptableObject; we do, however, need it to be
around all the time and not be reloaded in every scene. For this, we need a very
simple static class (we implemented one of these earlier in Chapter 6, The Big Wild
World, with NavigationManager).

Create a new C# script in Assets\Scripts\Classes called GameState and populate
it with the following code:

using System.Collections.Generic;
using UnityEngine;

public static class GameState {

 public static Player CurrentPlayer =
 ScriptableObject.CreateInstance<Player>();
 public static bool PlayerReturningHome;
 public static Dictionary<string, Vector3> LastScenePositions =
 new Dictionary<string, Vector3>();
}

Here, we have some simple static properties to:

• Track the player's stats
• A flag to note whether the player is running home away from a battle
• A dictionary to record the scenes the player has been to and the last position

they were in that scene

Simple enough, but to avoid unnecessary code duplication I have also added some
helper methods to the GameState class to manage and simplify the use of the
LastScenePositions dictionary (to save time later).

Encountering Enemies and Running Away

[244]

So add the following code to the end of the GameState class:

 public static Vector3 GetLastScenePosition(string sceneName)
 {
 if (GameState.LastScenePositions.ContainsKey(sceneName))
 {
 var lastPos = GameState.LastScenePositions[sceneName];
 return lastPos;
 }
 else
 {
 return Vector3.zero;
 }
 }

 public static void SetLastScenePosition(
 string sceneName, Vector3 position)
 {
 if (GameState.LastScenePositions.ContainsKey(sceneName))
 {
 GameState.LastScenePositions[sceneName] = position;
 }
 else
 {
 GameState.LastScenePositions.Add(sceneName, position);
 }
 }

The preceding code is fairly similar but it ensures simple and effective use of any
dictionary class, checking the following:

• When you request a value from the dictionary, it checks whether it exists first
and then returns it

• If the value doesn't exist in the dictionary yet, it returns a default value
• When you add a new value to the dictionary, it checks whether it already

exists, and if it does, then it updates the existing value
• If the value does not exist when you try to add it, it just adds it to

the dictionary

Chapter 7

[245]

Dictionaries are powerful when used correctly: you can find values by
index (in this case a string) or you can find them by ID (like in arrays).
You can even loop over dictionaries with for or foreach loops.
However, depending on how you use them, they may not perform well
and can also generate garbage, so use them carefully.
For more details, see the C# article at http://blogs.msdn.com/b/
shawnhar/archive/2007/07/02/twin-paths-to-garbage-
collector-nirvana.aspx. The article is based on XNA but rings true
for any C# platform.
There are also considerations when you need to serialize the values from
a dictionary since they are handled differently on some platforms, and in
some cases not even supported for serialization.

With the GameState class in place, we just need to update the MapMovement script for
the map to load the last position if one exists, and save the last position when exiting
the scene (and in any other scene that will need the logic).

So, update the MapMovement script's Awake method with the following code:

void Awake()
{
 this.collider2D.enabled = false;
 var lastPosition =
 GameState.GetLastScenePosition(Application.loadedLevelName);

 if (lastPosition != Vector3.zero)
 {
 transform.position = lastPosition;
 }
}

The previous code simply looks for a last position for the current scene, and if there
is one, it moves the player to it.

Similarly, when closing the scene, we just need to store the last position. To do this,
we add an OnDestroy method as follows and save the player's current position:

void OnDestroy()
{
 GameState.SetLastScenePosition(
 Application.loadedLevelName, transform.position);
}

http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx

Encountering Enemies and Running Away

[246]

The missing random piece
We have our battle scene up and running, and when the player runs away he/she
will still be at the place on the map where the battle occurred. Wouldn't it be nice to
also enter the battle scene? So let's add that.

To keep things simple (you can always extend it later), we will just use a simple
probability to work out whether the player is likely to enter a battle while travelling.
If a battle is going to occur, we just figure out then where on the player's journey
the battle will take place. This way it looks random and catches the player off guard
when it happens (if it does, there's always a chance it won't).

Alternatively, you could place empty game objects on the scene with
colliders to change the probability of an event occurring and have
a script to start a battle if one happens. Similar techniques are used
in the Pokemon style games where deep grassy areas always have a
higher probability of a random battle occurring.

So to start off, we will add a couple of extra parameters to control the battle event
probability in the MapMovement script, as follows:

int EncounterChance = 100;
float EncounterDistance = 0;

Ideally, the EncounterChance parameter should be controlled by
some logic based on the player's level and how dangerous the area of
the world they are currently in, but you can extend that later if you
wish.
It is set to 100 for now to ensure the player will always hit the first
battle to send him home.

Chapter 7

[247]

Next, in the Update method where we track when a player taps or clicks on the map
to move, we check the probability of an event occurring. If that event occurs, then
set the EncounterDistance property as follows to denote when the event will occur
along the player's journey:

if (inputActive && Input.GetMouseButtonUp(0))
{
 StartLocation = transform.position.ToVector3_2D();
 timer = 0;
 TargetLocation =
 WorldExtensions.GetScreenPositionFor2D(Input.mousePosition);

 startedTravelling = true;

 //Work out if a battle is going to happen and if it's likely
 //then set the distance the player will travel before it
 //happens
 var EncounterProbability = Random.Range(1, 100);
 if (EncounterProbability < EncounterChance &&
 !GameState.PlayerReturningHome
 {
 EncounterDistance = (Vector3.Distance(StartLocation,
 TargetLocation) / 100) * Random.Range(10, 100);
 }
 else
 {
 EncounterDistance = 0;
 }
}

At this point, you will notice that the code between touch and click is
becoming duplicated; try to refactor this (clean it up) so less code is
duplicated. There is no spoon.

Encountering Enemies and Running Away

[248]

We know that if an event occurs and when it does, all that is left is to act on it. So, in
the Update method where we animate the player across the screen, we simply need
an additional check to see whether we have travelled to the event and if so, stop and
enter the battle. We can do so using the following code:

 if (TargetLocation != Vector3.zero && TargetLocation !=
 transform.position && TargetLocation != StartLocation)
 {
 transform.position =
 Vector3.Lerp(StartLocation,
 TargetLocation,
 MovementCurve.Evaluate(timer));
 timer += Time.deltaTime;
 }
 if (startedTravelling && Vector3.Distance(StartLocation,
 transform.position.ToVector3_2D()) > 0.5)
 {
 this.collider2D.enabled = true;
 startedTravelling = false;
 }

 //If there is an encounter distance, then a battle must occur.
 //So when the player has travelled far enough,
 //stop and enter the battle scene
 if (EncounterDistance > 0)
 {
 if (Vector3.Distance(StartLocation,
 transform.position) > EncounterDistance)
 {
 TargetLocation = Vector3.zero;
 NavigationManager.NavigateTo("Battle");
 }
 }

Chapter 7

[249]

One last thing
Now that the player has left home, found some nasty goblins, and run away, it
would be nice if he didn't encounter anymore until he next leaves home.

So using the additional flag PlayerReturningHome we set in the GameState class,
we can set this in the battle manager when the player hits the button. We also then
need to unset this when the player leaves home again. So, update the OnGUI method
in the battle manager to set the PlayerReturningHome flag to true.

Then for the home scene, set the flag to false when the player leaves. This can be
achieved by either editing an existing script in the home scene or adding a new one
to change the flag state in the OnDestroy method mentioned earlier, or update the
NavigationManager script to set the flag when the player travels home. It is your
choice. In the sample code, I have added this to the NavigationManager script, as
shown in the updated NavigateTo method here:

public static void NavigateTo(string destination)
{
if (destination == "Home")
{
GameState.PlayerReturningHome = false;
}
FadeInOutManager.FadeToLevel(destination);
}

Then when the NavigationManager script detects that the destination is the Home
scene, it will update the flag to false in the GameState class.

It is up to you and your game's design whether this is true for all battles or just for
the first; it all depends on the style of the game you are building.

Don't forget to add the new Battle scene to the Build settings if you want
to see it in the final project!

Going further
If you are the adventurous sort, try expanding your project to add the following:

• Add a coroutine to take the player home when he runs from the battle
• Plan and add further logic to determine the probability that a player will

enter the battle, either using the described zones or based on player stats
• Add a few more enemy types and integrate the enemy class into the prefab

(we will do this later but you can have a go yourself now)

Encountering Enemies and Running Away

[250]

• Try putting together another battle scene and update the battle logic to
pick a random scene

• Separate the random logic into its own manager class and try a few
different patterns

Summary
Picking when and how often a player will enter battles is a tricky balance between
fun and engagement. Do it too often and they will get annoyed, too few and they will
get bored. Also, the battles need to be achievable and stretch the player at the same
time. It is a complex paradox that if planned wrong, can ruin your hardwork. The
best solution when all is said and done is to get your game play tested by as many
people as possible and genuinely accept feedback no matter how harsh.

Alongside random generation of course is predictive planning: if you have a story
to tell, you also need to have a framework to replay that story over a period of time,
balancing when you need a random event or picking up the next page in your book.

In this chapter, we covered random generation, what it means, and when to use it
effectively; some very simple uses of random; built a battle scene and planned for
expansion; basic AI concepts and State Engines; enabled the player to run away and
fight another day; and built on our use of the AnimationCurve system.

Shopping for Weapons
Arguably, the inventory system in any good RPG game is one of the most important
components. Depending on the style or background of your design, it may be even
more important than the story or battle system. The reason I say this is because the
way in which you'd design and implement your shopping and inventory system will
alter how your game is played and how quickly the player will progress through
your creation.

Another factor that we will cover in this chapter is monetization. Every title needs to
have a monetization story so that the player will eventually be able to make money
through his or her hard work. There always has to be some kickback in the end to
help you pay the bills or keep tabs on your sanity. It doesn't have to be money; it
could just be recognition or an aid to your portfolio. However, in most cases, it's
about money.

The list of topics that will be covered in this chapter is as follows:

• Looking at the inventory and items
• Building a shop and an inventory UI layer
• Looking at monetization options
• Handling back navigation

Why do we shop?
People have been asking this question since caveman times probably (although
granted that Walmart wasn't yet open). What things do you need to help you become
contented in the world; let me pose that eternal question as an example, "Do these
shoes make me look fat?". Such questions have no real answer other than our appetite
as humans to collect things, and if they help us feel good about our lives, all the better.

Shopping for Weapons

[252]

The same is true in the gaming world. Adventures need things to help the budding
adventurer along, to make them better, and look better in a lot of modern games.

The motivation to buy things is strong, and we have come to expect this in almost
any game. From a simple adventure game where we just pick things up off the street
that may come in useful later, fashion games where you have to be as pretty as
possible, to full-fledged RPG games where inventory is everything, this motivation
is indispensable. If you haven't got that level 20 sword of ultimate banishing, you
just aren't going to make it in the world. Even FPS games aren't immune to this
phenomenon. If you can't upgrade and tweak your weapons, you are seen as old and
out of touch.

One of the biggest rises in consumerization these days has happened in the casual
market; just about every casual game has coins that you can collect to unlock power-
ups, extra levels, or even skins for your character to change their appearance (they
serve no actual value but just add further depth to the game). It is astounding how
simple tap-and-flick games have become some of the biggest marketing machines.

It is important to keep all of this in mind and look at the real world when designing
any shopping/inventory system for your RPG game. The more it feels like
something that someone would do in real life, the more at home they will feel with it,
and the easier they will find using it.

You should always be asking the following questions to yourself while designing
such a system:

• How does an item add value?
• Does it seem affordable?
• Is it going to improve the play? (Doesn't actually have to?)
• Is it desirable?
• Is it better to know what the player will already have and why?
• Is it for single use (consumable) or fixed (durable/nonconsumable)?
• Will it break or wear out over time?

A lot of this leads us beyond just what is good for the game; it leads us to what is
good for the player. Another factor that can lend weight to this is whether we are
going to monetize certain powerful items. However, we will cover more on this later.

Chapter 8

[253]

The power of an item
At the core of any inventory/shopping system are the individual items themselves.
They need to be designed in a way that will not only set each item apart from every
other item, but will also ensure that they work together to benefit the player as they
travel through your world.

Items generally have their individual properties. Refer to the following table:

Item/property Description
Slot Can this only be used in a certain slot for the player or in

general?
Stackable Can items, such as ammo or potions, be stacked on top of each

other?
Health Yes, items should have health and they shouldn't degrade.
Strength or damage What is the effect on the player's health (can it be negative to

add health)?
Defense Does the item protect the player at all, even if only a little bit?
Power Does the item have its own source of power/ammunition? Is it

limited?
Recharge rate Does the item recharge itself or not? Can it be recharged?
Size Is the item bulky and cumbersome?
Weight Is it light or heavy? Will it encumber the player or slow them

down?
Storage Similar to a backpack, does it enable the player to carry more?

Negative would mean that they will carry less.
Cost What is the in-game or real currency value of an item?
Trade-in value In some systems, the item's health will impact this.
Perks Does the item have bonuses that will also enhance the player?
Abilities Similar to perks, does the item grant a special action to the

player?
Use/type Is it a weapon, armor, potion, and so on?
Category Does it have a specific category within its type?
Level Can the item be leveled up, making it stronger, or is it a fixed

level?
Durable or consumable Is the item nonconsumable, durable, purchasable, or one-time

consumable?
Rarity Is the item one of a kind, simply hard to find, or a

commonplace object?

Shopping for Weapons

[254]

A lot of the preceding items will just depend on the style of the game you are
making; not all will fit, but you should review each of them in turn as you design
the shopping/inventory system.

Building your shop
Using the items, we are going to design our game. Now we need to start thinking
about how the player can be provided with these items. Do they need to be bought
from a shop, are they found somewhere, and can they be sold later, or does the
player simply throw them away once done with them and move on to the next
shiny thing? In some games, the previous item becomes fused with the new one to
highlight a progression.

The next thing that should come to mind once you have settled on some sort of
shopping system is how the player will access it. In most RPG games, it is the
traditional roadside shop or wandering peddler. The player has to travel to a certain
location in order to buy items. In the case of some of the rarer items, they have to
travel to a specific shop or a mystic sear guarding the item in order to acquire it.

Laying out the shop's design is fairly easy, simply because it is a shop. You don't
have to worry about loads or size; it is just a storefront.

Some examples of different shop layouts are as follows:

Final Fantasy has a very basic text layout
where each shop or shop owner only
stocks a single type of item.

World of Warcraft employs a much more
graphically rich but still a very basic system
with few categories to choose from.

Chapter 8

[255]

Other titles, such as DaggerVale from
Concept Softworks, use a simple grid-
based approach showing all the wares that
a shop stocks.

The pattern you choose will entirely depend on the style of your game.

Some games, however, take a different approach. They make the storefront available
from anywhere in the game, which can be simply accessed through the player's
inventory; items can be bought and sold anywhere in such games.

Laying out your inventory
Your character's layout is usually a lot more restricted as compared to that of a
storefront. However, the character's layout needs to follow the same design pattern
you are using in your game.

These systems usually fall into a couple of patterns.

Rule of '99
Players are limited to a certain number of each item. The number can vary based on
the item (for instance, you can have only one weapon) or its effect on the player's
load. As a rule of thumb, 99 should be the maximum number. However, it's up to
how your game will use the item to denote its maximum number.

Shopping for Weapons

[256]

In the Final Fantasy series of games, Rule of '99 was used throughout its inventory
system, allowing the player to carry no more than 99 potions at a time or anything
else for that matter, as shown in the following screenshot:

Encumbrance system
A system based on the strength, endurance, and energy of a player is a faux-style
system. It ensures that the player cannot carry more than he or she is able to; generally
though, it doesn't take into account the size of the item, just its weight. This provides a
more taxing system for the player, forcing them to only carry what they need.

Skyrim implements this system very well; it not only forces the player to manage
their load when looting but also focuses on leveling up the player to increase what
they can carry, as shown in the following screenshot:

Chapter 8

[257]

Slot-based system
A slot-based system is a variation of the preceding encumbrance system. Instead
of weight, it uses a grid system for the player's inventory and assigns a certain
number of those grid points to an item. These points relate to how bulky or awkward
a particular item is going to be. This generally limits the player more than other
systems because it forces the user to reserve enough space to carry the items they
really need.

The Fallout series and the upcoming Wasteland 2 games implement a very effective
slot-based system.

It gets tricky for the player when large mission items require a lot of slots. Refer to
the following screenshot:

A mini game
Another approach is to go a step further with an inventory system and evolve it into
a mini game in itself. Generally, players don't just move things around or sort them;
instead, they start combining items within the inventory to create or craft new items
or just upgrade them. A crazy idea I saw that was going around was to turn the
inventory screen into a game of Tetris with new items being dropped; if you could
place them, you would be successful.

It certainly brings a new challenge. Moreover, if the bandwidth of your game can
allow it, it's certainly another opportunity to make use of.

Shopping for Weapons

[258]

Real world
The most complex system to implement is a real world or a simulated kind of
inventory pattern to use. Attempting to make a player carry things around needs to
be as real as possible. It embodies all of the preceding systems and adds rules around
the need for special belts to carry axes/swords. Hooks and backpacks have to be
carefully packed. In some games, the player carries lots of items on their belt or back;
this generates noise, making them less stealthy.

Getting paid
One of the hardest decisions we have to make with our creations is how to get paid.
It is sure that we love our creations and they are a part of us, but there should always
be some sort of reimbursement for our effort.

Some of the most common patterns for monetization in games are paid, paid with
trial, ad supported, in-app purchase, and in-game currency.

Paid
Games are usually sold at a fixed price. For big game studios, this is generally the
only option, especially with disk-based delivery and some marketplaces.

The emphasis on a paid-only pattern means that you need a high-quality sales
portfolio for your game and outstanding game-marketing assets (logos, screenshots,
videos, and so on).

What is also just as important is the blurb about your game. It really has to stand out
and draw the player in to make them part of their hard-earned cash.

Paid with trial
Offering a trial with your game is a great way to entice the players in. Obviously, it
gives them a taste of your game before they commit to pay for it.

Be honest about the trial though; there have been many cases of annoyed
players where games were published for free but were actually limited
trials. Do not upset your potential buyers; be upfront about it.

You still need a good presence with your marketing and storefront, but the trial is
also another great option to draw them in.

Chapter 8

[259]

When going down the trial route, be sure to pick a single path and stick to it, either
by limiting the game, offering so many levels, or even having a time-limited play.
Just don't mix them!

Another factor in offering trials is that each platform you deploy to may have
a different way of providing it, either directly from the marketplace or through
marketplace APIs. It's best to design how your game will behave in a trial and link
that to a flag or option. You can then control the game separately from the menu or
check the game on startup.

Ad supported
Often, the ad-supported option is the route for a lot of free-to-play mobile titles. This
is one option that can be difficult to get right. If there are too many ads, the player
will just get annoyed and uninstall it. Alternatively, if there are few ads, you are not
going to get much back from it.

A key thing to remember about ads is that it's all about presentation and numbers.
You need thousands of ads presented through your titles to make any kind of money
back from the ad providers. It will be better if the player also clicks on the ad, as this
generates better revenue; however, you cannot bet that the player will do this.

Warning
Do not attempt to fake or force the player to click on ads. It's a very bad
experience and will most likely force the player to uninstall your game
quickly. Also, the ad providers are clever enough to work out whether
you are faking the clicks; if yes, they'll simply not pay for you.
I have seen cases where developers have layered ads on top of each
other to maximize the ad's presentation or use the GUI controls in close
proximity to the ads, tricking the player to click on them. These are very
bad practices and should be avoided. At best, you won't get paid for your
ads; at worst, it will significantly get you bad reviews and lower down
your number of players.

A few actions that generally work are as follows:

• Displaying a non-UI blocking portion of the screen in the gameplay
• Just displaying the menu or non-game screens (for example, the inventory

and the pause screen)
• Displaying ads only in the loading screens
• Pop-up ads that appear when an event occurs
• Ads on the purchase screens

Shopping for Weapons

[260]

You can mix and match the preceding patterns, but remember there is a fine line
between background annoyances that the player can just ignore if they don't want to
look and screens that are too intrusive and overbearing. Test with a selected audience
and alter your implementation based on their feedback before you publish it.

The terms used by the ad providers aren't meant to befuddle you, but they do take
some getting used to. Some of the terms and their meanings are described as follows:

• Fill rate: This term is the percentage rate at which the ads will be sent to your
game. If the provider has run out of ads or has none for your ad settings (age,
region, language, and so on), this can drop to zero, meaning no ads.

• Impressions: This term is a figure to denote the number of successfully
shown ads in your game. Beware of the same ad shown several times; some
ad providers count this as the same impression. Just check against your own
experience.

• Click through rate (CTR): This term is the higher paid option with ads to
denote that the players are actually clicking on the ads to look into them.

• eCPM: This term is basically a unit of measurement of how much you will be
paid per click or impression. Usually, you just need to multiply this figure by
the number of impressions to see how much you will get. Note that this figure
will go up and down based on just about anything, including the weather.

• AdTypes: There are various ad types and sizes supported by each provider
with different capabilities. Banners are the simplest. Being of a screen area
size, they take up the entire screen while displaying the ad. Others such as
interspatial are interactive and generally take up the entire screen. Check
each provider to know what they support and which you want to use.

Another factor to keep in mind is publishers. They will all perform differently in
different markets and languages. Generally, ad publishers focus on a few selected
markets or only take advertisements in certain languages, and so on.

Some of the publishers are as follows:

• Microsoft PubCenter: This publisher is strong in the US but is weak
elsewhere

• Smaato: This publisher is strong in central Europe and the US but poor in
non-English countries

• Inneractive: This publisher provides a good mix of support and ads across
the globe but suffers from low or poor fill rates in practice (something they
are working on)

• Google AdMob: This publisher is strong across the globe, but you need
millions of impressions to make any real money

Chapter 8

[261]

There are many more publishers out there, such as InMobi, VServe, Leadbolt, and
others, that have their strengths and weaknesses. You will be able to determine
which publisher works best for you in which countries by personally testing them.

When using advertising, it is very important to add your own
instrumentation to your title to track how the adverts are doing. Don't
just use the ad publisher's figures from their respective dashboards.
This way, you can manage yourself with what works best for you and
alter your plans accordingly. Don't just publish and let go; manage
effectively to improve your returns.

While implementing ads, there is no rule that says you have to use only one
provider. Always hedge your bets with the ad providers and implement as many as
you are comfortable with, structure your ad presentation in a framework so that you
always show the best-performing adverts first, and use another ad network if the
current one isn't delivering.

If this seems a bit much to do by yourself, there are several frameworks out there
that will do this for you. The ad-rotating solutions are fully featured to work with a
number of ad providers and ensure that you always display ads.

One such framework is a solution named AdRotator, which is open
source and works with most platforms. You can check it out at
http://getadrotator.com. There are others on the Unity asset
store as well; just be sure to check what platforms they support (iOS,
Android, Windows Phone, and so on). So, you might have to use a few
different ones for all the platforms you deploy to. For example, Vserv.
mobi (www.vserve.com) can also display ads from other providers
and not just its own.

In-app purchase
A common feature being implemented in most of the games these days is in-app
purchases. This feature is simply your paid shopfront within the game to unlock
levels, purchase rare items, or remove unwanted features such as ads.

In some cases, in-app purchases have been used to implement the trial functionality;
publishing the title as free, and then offering an in-game unlock option. On consoles
such as Ouya, this is a standard practice.

Note that with the trial system, be upfront if your game is sold as a trial.
Players do not like this and will aggressively mark down and slam titles
that appear free until they are forced to pay to play!

http://getadrotator.com
www.vserve.com

Shopping for Weapons

[262]

In-app purchases on most of the platforms come in the following two forms:

• Durable/nonconsumable: These are in-game items that the player can
purchase, and have real-world value (such as a sword, an unlockable area, or
even the ability to turn off advertising if your game is ad-supported). These
are generally single-use items, and you can verify with the marketplace of
the platform to check whether the player has purchased them or not. It is
advised that you also manage the information locally to ensure that you
don't slow the game down on startup while checking. You can also keep this
information on a backend service, just in case the user resets their device or
transfers to a new one; this is not mandatory however.
These can only be purchased once

• Consumable: Effectively, consumables are in-game currency, items that are
meant to be recharged and replenished over time.

The big difference between consumables and durables is that consumables
are not tracked on the server (other than in the payment history, but the
payment history is not available in apps/games)
These can be purchased many times over

Besides the store/marketplace for each platform, there are some online services that
will create payment systems for you, saving you from recreating everything for each
platform you support. One such service is called Lotaris (http://www.lotaris.
com/), which offers many different ways for players to purchase items and apps. You
still, however, have to publish your app to each platforms' store.

Warning
If you are using in-app purchases, beware that the big brother is
watching. Employing unethical or illegal practices when implementing
these systems could bring about a whole heap of trouble.
For more information, check out the article at http://webarchive.
nationalarchives.gov.uk/20140402142426/http://www.
oft.gov.uk/news-and-updates/press/2014/05-14.
Read this now if you plan to or are already using in-app purchases.

http://www.lotaris.com/
http://www.lotaris.com/
http://webarchive.nationalarchives.gov.uk/20140402142426/http://www.oft.gov.uk/news-and-updates/press/2014/05-14
http://webarchive.nationalarchives.gov.uk/20140402142426/http://www.oft.gov.uk/news-and-updates/press/2014/05-14
http://webarchive.nationalarchives.gov.uk/20140402142426/http://www.oft.gov.uk/news-and-updates/press/2014/05-14

Chapter 8

[263]

In-game currency
Virtual currency, as a practice in games, has been rising steadily. The basic premise
being that the game is generally free to play and uses some kind of in-game currency,
which the players can earn in the game. This currency usually takes two forms; the
basic coin, which can be earned in-game, and the premium coin, which can only be
bought with cash (or for completing rare and special events).

The idea is simple; play through the game slowly and normally. However, if you
want to advance quicker or get ultra-rare items, you need to buy and spend the
premium coin for those items. In some cases, you can also convert the premium coin
to the basic coin to get the in-game currency quicker.

Although this makes a steady profit in single player or offline games, it really comes
into its own with the multiplayer option online. It seems there is a growing market
for people to advance quicker than others or just to beat their friends quicker.

Implementing coin systems is generally harder than just implementing in-app
purchases but makes for an easier-to-manage ecosystem.

Also, see the warning about in-app purchases, as this applies heavily to in-game
currency/bitcoin systems as well, if not more.

Putting it together
As with other areas in this book, we will just keep things simple when implementing
the sample project. You can always extend or replace it later if you wish.

We will also look at two slightly different approaches: using a scene for the shop and
a layer system for the inventory.

Gathering the shop assets
For the shop, we'll just create a new scene to keep things simple as we expect to enter
a shop and leave it when we are done.

Shopping for Weapons

[264]

As I couldn't find anything I liked, I created a simple shop interface for use in the
scene, as shown in the following screenshot:

These are just enough features for what we need to implement in the shop. For
items to show in the shop, I turned back to the Web and found a fantastic site,
http://ccrgeek.wordpress.com/, where there are an astounding amount of
free icon spritesheets to choose from. I picked one of the Weapon Icons 1.png
weapon spritesheet from the amazing Icons to Characters RTP set found at http://
ccrgeek.wordpress.com/2012/05/29/more-converted-graphics/.

You can also find the image following in the supporting assets' .zip
file that accompanies this title.

Here is what it looks like:

http://ccrgeek.wordpress.com/
http://ccrgeek.wordpress.com/2012/05/29/more-converted-graphics/
http://ccrgeek.wordpress.com/2012/05/29/more-converted-graphics/

Chapter 8

[265]

This gives us a nice array of weapons to choose from. For our character, you can
always use the other icon sets for equipments, tools, food, and so on, if you wish.

Lastly, on the image front, we also need some buttons (included in the supporting
assets with this title), so I created a Back button, as shown in the following screenshot:

I also created a Buy button as shown here:

Nothing too fancy, just enough to get the job done.

Building the shop scene
To make the best use of the new 2D system, we can create a new scene to place the
shopping interface for the player to use; so we'll create a new scene named Shop.

With this in place, just copy the assets from the sample assets pack accompanying
this title for the shop interface into your project's Assets folder (ShopScreen images
for the environment and BackButton, BuyButton, and Weapon Icons 1 images for
props). Then, drag the ShopScreen image on to the new scene and check that the
new game object is called ShopScreen. Additionally, ensure that the sprite-sorting
layer for each of the sprite renderers is appropriate so that they get drawn in front; to
do this, set all of them to the foreground layer.

The Weapon Icons 1 image is a spritesheet, so remember you'll need
to set its SpriteMode option to multiple and splice it with Sprite Editor.
Each image is of 32 x 32 pixels.

As we are using the 2D system for the shop screen, we have greater flexibility to
design the screen without using Unity's native GUI system.

Unity is soon going to release a new GUI system in Version 4.6, which
could be used to replace what we are building here; however, currently
it is not available. Nevertheless, this section is written so that it will be
easily translatable and you'd not need to replace the code of the current
GUI framework.

Shopping for Weapons

[266]

So first, we need to create some empty game objects to place all the UI elements
we need on the screen, adding the following assets as children of the ShopScreen
game object:

• BackButton: An object that will capture when the user wants to exit the screen
• OwnerSlot: A place to display the sprite of the shop's owner
• Slot01 and Slot06: The available shop inventory slots
• Purchasing section: An empty grouping game object; this is used so that we

will be able to enable/disable all the purchasing options together
• BuyButton: An object to capture the user wanting to purchase an item; it is

attached to the PurchasingSection object
• PurchasingItem: A place to display the object that the user has currently

selected to buy; it is attached to the PurchasingSection object

Remember that as this is 2D, check whether each of the game object's
transform has only X and Y position values. Reset the Z value to zero if
it is not that already!

When you have put all the game objects into the scene, you should have something
like the following screenshot:

You can just assign appropriate sprites to the Buy and Back buttons. The rest of the
object images are dynamic and are assigned at runtime. They will also need to be
able to render sprites, so add a Sprite Renderer component to each of them.

Chapter 8

[267]

Next, arrange each of the items appropriately on the screen according to what the
item is. You should end up with something like the following screenshot:

Note that I find it useful when I have dynamic items that can display
different items to temporarily assign a sample sprite to the object while
placing it and then remove the sprite later.

Lastly, for the layout, we need to add 2D colliders to all the objects that we intend the
user to be able to click on; so, add an appropriate 2D collider to the following objects:

• Slots: Add a Box Collider 2D component, scaling the collider's size to fit the
graphics on the screen. For example, for a 32 x 32 image, scale the collider by
0.32 for both the X and Y position.

• Buy button: Add a Box Collider 2D component. It should scale
automatically, but it's good practice to check.

• Back button: Add a circle collider 2D component.

With the layout in place, we need something for the screen to use. So, let's add
some items.

Shopping for Weapons

[268]

Creating inventory items
Like with conversation items we created in Chapter 4, The Game World, we want to be
able to simply manage items that can be used or bought in our game.

First, we need a scriptable object to describe our inventory items. So, create a new
script in Assets\Scripts\Classes named InventoryItem and populate it with the
following structure:

using UnityEngine;

public class InventoryItem : ScriptableObject
{
 public Sprite Sprite;
 public Vector3 Scale;
 public string ItemName;
 public int Cost;
 public int Strength;
 public int Defense;
}

Note that we haven't implemented all of the properties we described
earlier, just a subset as an example. You can add more if you wish.

Now that we have our scriptable object, we need an editor script to create our
inventory items. So, create another script in Assets\Scripts\Editor named
InventoryItemAssetCreator and populate it with the following structure (note
that we are again using our generic utility class to make this very easy to implement):

using UnityEngine;
using UnityEditor;

public class InventoryItemAssetCreator : MonoBehaviour {

 [MenuItem("Assets/Create/Inventory Item")]
 public static void CreateAsset()
 {
 CustomAssetUtility.CreateAsset<InventoryItem>();
 }
}

Chapter 8

[269]

With this in place, we can now create some inventory items. Create a new folder in
Assets\Resources named Inventory Items, navigate to that folder, and create a
new InventoryItem class from the Create menu (right-click on Create or use the
Project folder window's Create menu option).

With the new InventoryItem asset created, we can configure our first weapon.
Rename the asset to Lv0_Sword and then configure its properties as shown in the
following screenshot:

You can configure the properties using the following settings:

• Set the Sprite property to a sword sprite image from the weapon icons
spritesheet (Weapon Icons 1_11)

• Scale the image up as by default it is quite small (X 2, Y 2, Z 0)
• Give it a name via the Item Name field
• Set Cost to 0 to denote it's a free item
• Set Strength to 5 and Defense to 0 so the weapon at least has some effect

Save the sword Inventory Item and then create another weapon or two in the same
manner. I also created an axe with the same values.

Managing the shop
Now that we have our shop interface and some stock we can put in it, it's time to
bring them together.

Shopping for Weapons

[270]

First, we need to set up a shop manager who looks after the day-to-day running
of the shop, then we will add the shelves to the shop to manage where we can put
the stock.

As the ShopSlot and ShopManager folder depend on each other, we
need to create them together. Until both are complete, you will most
likely see errors; just keep this in mind as we progress.
It is always the same when you are creating codependent classes.

First, we need the shop manager itself. To keep things neat, create a new folder in the
project's Assets\Scripts folder named Shop, then create a new script in the Shop
folder named ShopManager. This just ensures that any script related to shopping is
stored here if you want to expand it later. The manager is only used in this one scene,
so we don't need to make it a singleton.

To start off, we will just add some parameters so we can control the shop we are
creating and set it up as follows:

using UnityEngine;

public class ShopManager : MonoBehaviour {

 public Sprite ShopOwnerSprite;
 public Vector3 ShopOwnerScale;
 public GameObject ShopOwnerLocation;
 public GameObject PurchasingSection;
 public SpriteRenderer PurchaseItemDisplay;
 public ShopSlot[] ItemSlots;
 public InventoryItem[] ShopItems;
 private static ShopSlot SelectedShopSlot;

 private int nextSlotIndex = 0;
}

When the player enters the shop's screen, we want to be able to display the current
shop owner and a selection of their wares. So, when ShopManager starts, we need to
configure those items as follows:

void Start () {
 var OwnerSpriteRenderer =
 ShopOwnerLocation.GetComponent<SpriteRenderer>();

Chapter 8

[271]

 OwnerSpriteRenderer.sprite = ShopOwnerSprite;
 OwnerSpriteRenderer.transform.localScale = ShopOwnerScale;

 if (ItemSlots.Length > 0 && ShopItems.Length > 0)
 {
 for (int i = 0; i < ShopItems.Length; i++)
 {
 if (nextSlotIndex > ItemSlots.Length) break;
 ItemSlots[nextSlotIndex].AddShopItem(ShopItems[i]);
 ItemSlots[nextSlotIndex].Manager = this;
 nextSlotIndex++;
 }
 }
}

Here, we just took the configured sprite for the shop owner and assigned it to
SpriteRenderer then scaled for the relevant game object, and then looped through
all the available slots in the shop and picked out items from its inventory to place
in them, ensuring we only stock as many items as the shop can handle.

You will notice that the last function actually has an error. This is because we did
not add the actions/behaviors for the ShopSlot folder. We will fix that shortly.

Next, we need some helper functions that represent the actions/behaviors that the
shop is capable of performing; first, we add the ability to select an item for purchase
using the following function:

public void SetShopSelectedItem(ShopSlot slot)
{
 SelectedShopSlot = slot;
 PurchaseItemDisplay.sprite = slot.Item.Sprite;
 PurchasingSection.SetActive(true);
}

Then, we add the ability to clear the selected item from the shop using the
following function:

public void ClearSelectedItem()
{
 SelectedShopSlot = null;
 PurchaseItemDisplay.sprite = null;
 PurchasingSection.SetActive(false);
}

Shopping for Weapons

[272]

Finally, we add the ability to purchase the currently selected shop item using the
following function:

public static void PurchaseSelectedItem()
{
 SelectedShopSlot.PurchaseItem();
}

Each of the preceding functions are self-contained and controls each of the steps
necessary to perform each action. They do so by enabling or disabling the screen
elements, such as PurchasingSection, to perform actions on dependent objects such
as the shop slots.

You will note that this last function is also set as static. This is to enable it to
be accessed from anywhere in the code without referencing it or performing
GetComponent for the ShopManager script.

As stated in the previous sections, it might seem like you could make everything
static and avoid using GetComponent altogether. However, using statics has certain
overheads and can lead to a messy and hard-to-diagnose code; it should not be
overly used. If in doubt, don't use it, unless necessary.

If you wish, you can define ShopManager as a singleton. However,
unlike the singletons used so far, this shop will need to be destroyed
when the scene is unloaded. Otherwise, you will always get the same
shop. This is unless you also change how we load the shop.

With the ShopManager set up, we can now create the missing definition for ShopSlot.
This will define the slots in the shop that remember what is being stored on the shelf.
Create a new script in Assets\Scripts\Shop and name it ShopSlot replacing its
contents with the following code:

using UnityEngine;

public class ShopSlot : MonoBehaviour {

 public InventoryItem Item;
 public ShopManager Manager;
}

Now, to add other functions for the shop slots that will be used by the manager, add
the following functions to the ShopSlot script:

public void AddShopItem(InventoryItem item)
{
 var spriteRenderer = GetComponent<SpriteRenderer>();

Chapter 8

[273]

 spriteRenderer.sprite = item.Sprite;
 spriteRenderer.transform.localScale = item.Scale;
 Item = item;
}
public void PurchaseItem()
{
 GameState.CurrentPlayer.Inventory.Add(Item);
 Item = null;
 var spriteRenderer = GetComponent<SpriteRenderer>();
 spriteRenderer.sprite = null;
 Manager.ClearSelectedItem();
}

The previous line in the PurchaseItem method where we add an
InventoryItem to a players inventory will give an error until we
update the player definition in the upcoming Updating the player
inventory definition section.

The first function enables the ability to add an inventory item to the current slot and
display it, and the second function controls how an item is purchased. Again, each
function is distinct, and is just related to the task that it is to perform. Wherever
possible, you should follow this pattern as it will make maintaining or extending
your game much easier later.

Finally, we need to add one last piece of code in order to enable the player to click on
the items in the shop slots; so, add the following function to the ShopSlots script:

void OnMouseDown()
{
 if (Item != null)
 {
 Manager.SetShopSelectedItem(this);
 }
}

In these examples, I used OnMouseDown to capture the mouse click/
touch tap from the user. However, this doesn't seem to work on all
platforms. If your intended platform doesn't support it, you just need to
add some input raycasting to test whether the GameObject has been hit.
Check the following Unity forum post for a discussion on the subject:
http://forum.unity3d.com/threads/unity-2d-raycast-
from-mouse-to-screen.211708/

The preceding code simply uses the interaction between the Box Collider 2D on
the input OnMouseDown event, and as long as there is an item in the slot, it tells the
ShopManager script that you have selected it.

Shopping for Weapons

[274]

Adding 2D button behaviors
Now that we can stock our shop and purchase items from it, we just need the ability
for users to buy items when selected, so create a new script named BuyButton and
place it in Assets\Scripts\Shop with the following contents:

using UnityEngine;

public class BuyButton : MonoBehaviour {

 void OnMouseDown()
 {
 ShopManager.PurchaseSelectedItem();
 }
}

The preceding code simply calls the static Purchasing function we created in the
ShopManager script earlier to buy an item on any game object that has a 2D collider
placed on it, as we did with the ShopSlot script.

Updating the player inventory definition
Now that we have a definition for InventoryItem folders, we can update the Player
class so that the player can carry the correct item. So, open the Player class under
Assets\Scripts\Classes and update the script to use the new InventoryItem
class instead of a string:

using System.Collections.Generic;
public class Player : Entity
{
 public List<InventoryItem> Inventory = new
 System.Collections.Generic.List<InventoryItem>();
 public string[] Skills;
 public int Money;
}

Stocking the shop
With all our scripts in place, let us return to the shop scene, start applying them, and
finally get some stock displayed on the shelves.

So first, let's attach the following scripts:

• Attach the ShopManager script to the ShopScreen game object

Chapter 8

[275]

• Attach the BuyButton script to the BuyButton game object
• Attach the ShopSlot script to each of the slots in the shop

Now, our shop is ready to receive its owner and some inventory items to stock. So,
select the ShopScreen game object; once you do this, you should see the following
configuration options in the Inspector pane:

I've preconfigured Shop Manager as an example. So, let us walk through what is
available:

• We have the sprite and scale for the shop owner. I selected one of Greandal's
poses and scaled him appropriately. (The mayor is multitalented and also
owns almost everything in town, including the shop.)

• I then attached the Purchasing Section and Purchase Item Display item to
the scene. We could have discovered these in the scene by the name or tag if
you so wished. There are often many ways of doing the same thing.

• Next, I set the Item Slots pane's Size to 6 and attached each of the available
slots in the shop by dragging them from the Project hierarchy on to the
Inspector pane. You can also achieve this by using the dot icon next to each
element and finding the slots in the scene.

Shopping for Weapons

[276]

• Finally, I set the Shop Items pane's Size to 2 and dragged the two Inventory
Items we created earlier in Assets\Resources\InventoryItems on to each
element of the Shop Items array.

If you now run the scene at this point, you should see the following output:

• The owner along with your shop items are displayed.
• Clicking on an item connects the mouse or touches the box collider on the

slot and tells the shop manager to select the item in that slot.
• When an item is selected, the Buy button and the selected item appears.

Clicking on the Buy button adds the item to the player's inventory, clears the
selection, and removes the item from the slot.

Leaving the shop
The player can purchase items from the shop (actually, they can buy anything as it's
all free at the moment), but they are stuck in the shop, the doors and windows are
barred, and the owner has a very stern face.

As the shop could be used from anywhere in the game, it would not make much
sense to navigate through all the scenes of the game in a cycle to go back to the
earlier scene. So, we need to add the ability to go back to the previous location the
player was in, the place where his shop is located.

To implement this, we need to make a minor modification to the navigation manager
to remember the last place where it was. Open the NavigationManager script from
Assets\Scripts\Navigation and first add a new using statement to the beginning
of the class, as follows:

using System.Collections.Generic;
using UnityEngine;

This will quickly enable us to discover what the current scene is. Next, add the
following static property:

private static string PreviousLocation;

Then, in the NavigateTo method, we need to store the scene the player is travelling
from before we change it; to do this, add the following line:

public static void NavigateTo(string destination)
{
 PreviousLocation = Application.loadedLevelName;

Chapter 8

[277]

 if (destination == "Home")
 {
 GameState.PlayerReturningHome = false;
 }
 FadeInOutManager.FadeToLevel(destination);
}

Finally, we need to add a function to enable the scenes to tell the navigation manager
to go back to the previous scene; this can be done using the following lines of code:

public static void GoBack()
{
 var backlocation = PreviousLocation;
 PreviousLocation = Application.loadedLevelName;
 FadeInOutManager.FadeToLevel(backlocation);
}

All this function does is that it gets the previous location to a separate variable, sets
the current scene as the previous location (so if you go back again, you will return to
the scene you just went back from), and then transitions to the previous scene.

Now that our navigation manager has the ability to go back, we can return to our
shop scene to enable the user to leave the shop and go back to the real world.

Next, create another script named BackButton and place it in Assets\Scripts\Shop
with the following contents, which just calls the new Navigation method:

using UnityEngine;

public class BackButton : MonoBehaviour {

 void OnMouseDown()
 {
 NavigationManager.GoBack();
 }
}

Attach the preceding script to the BackButton game object in the shop scene. Now,
the player can click on the back button and leave the shop. Granted that this can only
work once you enter the shop from another location, so let's look at how to get into
the shop now.

Shopping for Weapons

[278]

Entering the shop
We can buy items from the shop and we can leave the shop, but how do we get into
the shop in the first place? As we did in Chapter 6, The Big Wild World, we just need to
add trigger colliders where the user can enter the shop if they wish with the caveat
that they can only enter when they are in front of the shop and have pressed a key
(the up arrow button in this case).

To enable this, we need a very similar script to the NavigationPrompt script that we
used in Chapter 4, The Game World, (always reuse) but with a few differences.

Create a new script named ShopEntry in Assets\Scripts\Navigation, then
replace its contents to add a variable to control whether we can enter the shop or not;
we do this using the following code:

using UnityEngine;

public class ShopEntry : MonoBehaviour {

 bool canEnterShop;
}

As with the Navigation script, we handle the changing of the state of this flag with
a single function. So, if we need to change anything else, we can do so using the
following code:

void DialogVisible(bool visibility)
{
 canEnterShop = visibility;
 MessagingManager.Instance.BroadcastUIEvent(visibility);
}

Next, we need trigger handlers to detect when the player is in front of a shop; refer to
the following code that tells you how to add trigger handlers:

void OnTriggerEnter2D(Collider2D col)
{
 DialogVisible(true);
}

void OnTriggerExit2D(Collider2D col)
{
 DialogVisible(false);
}

Chapter 8

[279]

Now that we can tell when the player is in front of the shop, we just need to capture
whether they have pressed the up arrow button to enter the shop. We do that in the
Update method as follows:

void Update()
{
 if (canEnterShop && Input.GetKeyDown(KeyCode.UpArrow))
 {
 if (NavigationManager.CanNavigate(this.tag))
 {
 NavigationManager.NavigateTo(this.tag);
 }
 }
}

Finally, we add a little GUI touch as follows to let the player know that they can
enter the shop when they are in front of it:

void OnGUI()
{
 if (canEnterShop)
 {
 //layout start
 GUI.BeginGroup(
 new Rect(
 Screen.width / 2 - 150,
 50,
 300,
 50));

 //the menu background box
 GUI.Box(new Rect(0, 0, 300, 250), "");

 //Dialog detail—updated to get better detail
 GUI.Label(
 new Rect(15, 10, 300, 68),
 "Do you want to Enter the Shop? (Press up)");

 //layout end
 GUI.EndGroup();
 }
}

Shopping for Weapons

[280]

Trying to enter the shop isn't going to get us very far if the game doesn't know
it exists, so add this scene to the project's Build Settings and also update the
NavigationManager script to include a new Route asset for the shop, as follows:

public static Dictionary<string, Route> RouteInformation = new
 Dictionary<string, Route>() {
 {"Battle", new Route {CanTravel = true}},
 {"World", new Route {RouteDescription = "The big bad world",
 CanTravel = true}},
 {"Cave", new Route {RouteDescription = "The deep dark cave",
 CanTravel = false}},
 {"Home", new Route {RouteDescription = "Home sweet home",
 CanTravel = true}},
 {"Kirkidw", new Route {RouteDescription = "The grand city of
 Kirkidw", CanTravel = true}},
 {"Shop", new Route {CanTravel = true}},
};

With the scripts in place, we now need to add them to the player's home in front of
the shop. Open the Home scene and add a new empty game object named Shop as a
child of the WorldBounds grouper game object (because it takes us out of the scene),
attach the ShopEntry script, and add a Box Collider 2D component (set as a trigger),
as shown in the following screenshot:

The collider just needs to be shaped or scaled enough so that our 2D character will
collide with it when he passes in front of the shop.

Chapter 8

[281]

Finally, to ensure that we navigate to the new Shop scene, we need to add a
new tag named Shop and assign it to the new Shop game object, as shown in the
following screenshot:

Now, when you run the Home scene and the player runs in front of the shop, you
should get a nice new prompt in front of the shop; tapping the up arrow key will
help you enter the shop and navigate inside it, as shown in the following screenshot:

Shopping for Weapons

[282]

Managing your inventory
Now that you have got to grips with building a GUI with a 2D system as it stands,
what about the existing GUI framework that Unity has? Well, as a comparison, let's
put in a small player inventory viewer for the player and cover off the difficulties of
using 2D with the GUI framework.

To start off, create a new script named PlayerInventoryDisplay in the Scripts
root folder, Assets\Scripts, and replace its contents with the following code,
adding some basic variables:

using UnityEngine;

public class PlayerInventoryDisplay : MonoBehaviour
{
 bool displayInventory = false;
 Rect inventoryWindowRect;
 private Vector2 inventoryWindowSize = new Vector2(150, 150);
 Vector2 inventoryItemIconSize = new Vector2(130, 32);

 float offsetX = 6;
 float offsetY = 6;
}

The names of each property should be fairly self-explanatory:

• A flag to confirm whether the inventory window is displayed or not
• Some sizes for the window and the inventory content sizes
• Offsets to space things out in the window

Next, we add an Awake function to set up the display of the inventory window
as follows. Based on the size of the screen, it will be displayed on different devices
(we don't want it to take up the whole screen):

void Awake()
{
 inventoryWindowRect = new Rect(
 Screen.width - inventoryWindowSize.x,
 Screen.height - 40 - inventoryWindowSize.y,
 inventoryWindowSize.x,
 inventoryWindowSize.y);
}

Chapter 8

[283]

Then, in an OnGUI function, we will draw a button to open the inventory (this
could instead be mapped to a key if you wish or both), and if the inventory is to be
displayed, we will draw a custom window using the following code:

void OnGUI()
{
 if (GUI.Button(
 new Rect(
 Screen.width - 40,
 Screen.height - 40,
 40,
 40),
 "INV"))
 {
 displayInventory = !displayInventory;
 }
 if (displayInventory)
 {
 inventoryWindowRect = GUI.Window(
 0,
 inventoryWindowRect,
 DisplayInventoryWindow,
 "Inventory");

 inventoryWindowSize = new Vector2(
 inventoryWindowRect.width,
 inventoryWindowRect.height);
 }
}

For the main inventory window, we will use the custom ability of the Unity3D GUI
to draw the window's contents (as opposed to the manual way, we applied it with
the navigation prompt with BeginGroup and EndGroup). We implement this with a
new function as follows, and this is where we but heads between the Unity3D GUI
system and the new Unity3D 2D system:

void DisplayInventoryWindow(int windowID)
{
 var currentX = 0 + offsetX;
 var currentY = 18 + offsetY;
 foreach (var item in GameState.CurrentPlayer.Inventory)
 {
 Rect texcoords = item.Sprite.textureRect;

Shopping for Weapons

[284]

 texcoords.x /= item.Sprite.texture.width;
 texcoords.y /= item.Sprite.texture.height;
 texcoords.width /= item.Sprite.texture.width;
 texcoords.height /= item.Sprite.texture.height;

 GUI.DrawTextureWithTexCoords(new Rect(
 currentX,
 currentY,
 item.Sprite.textureRect.width,
 item.Sprite.textureRect.height),
 item.Sprite.texture,
 texcoords);

 currentX += inventoryItemIconSize.x;
 if (currentX + inventoryItemIconSize.x + offsetX >
 inventoryWindowSize.x)
 {
 currentX = offsetX;
 currentY += inventoryItemIconSize.y;
 if (currentY + inventoryItemIconSize.y + offsetY >
 inventoryWindowSize.y)
 {
 return;
 }
 }
 }
}

In this window, we loop through all the items in the player inventory (if there are
any) and display them as buttons. You could then wire up these buttons to actions, if
the item has any, such as potions to be drank or bombs to be dropped.

Now, one thing to note is that the existing GUI system does not natively support sprites;
we have to use the GUI Texture2D drawing function to pick up the specific sprite
out of the spritesheet manually.

The texture on the sprite is purely a reference to the full image the
sprite came from. So, if your image is a single sprite, this is OK.
However, in most cases, it will be from a spritesheet and will show
the entire spritesheet.

Chapter 8

[285]

So, we have to use the GUI.DrawTextureWithTexCoords function to grab the
specific image region from the spritesheet. You should also note that we have to scale
the region to the size of the full image because the coordinates given for the specific
sprite are unscaled.

Thanks to one of the book reviewers, Trond Abusdal, for finding the
preceding solution. I tried and couldn't get it to work. Fantastic find!

One warning is that if you try to read the pixels from the sprite's texture, you will get
an Access denied message because of the way sprites are imported.

All is not lost, as in future, we will have the all new Unity UI, which will
support sprites fully.

Alternatively, if you want, you can use separate sprites (losing some of the
performance you get from spritesheets) for buttons, which makes the GUI
implementation easier; alternatively, you can have separate textures for things you
want to draw with the GUI system (just alter the import settings from Sprite to
Texture and click on Apply).

With the script in place, just add it to the Player game object in the Home scene so the
player can rummage through their pockets.

Adding the Player inventory behavior
Now that we are done with the whole inventory saga, we need to ensure that when the
player buys a weapon, they are able to use it and defend themselves when attacked.

There are a couple of ways of doing this as follows:

• Updating the player's statistics on acquiring the equipment
• Having assigned slots that affect the player's statistics
• All items in the inventory affect the statistics and are queried during

the battle

The first step is the simplest as it requires no additional UI, which we will implement
in the next code.

Shopping for Weapons

[286]

Open up the Player script under Assets\Scripts\Classes and add the following
additional function:

public void AddinventoryItem(InventoryItem item)
{
 this.Strength += item.Strength;
 this.Defense += item.Defense;
 Inventory.Add(item);
}

The preceding code gives us a single point to control how the player's statistics are
affected when we grant them a new inventory item in the game.

Ideally, you would want to add further control to this function, including
making the player's Inventory property read only to avoid accidental
direct access, which would bypass the calculation of the player's statistics.

Now that we have our helper function to control a player's Inventory property,
we just need to update the ShopSlot script we created earlier to use the following
new function:

public void PurchaseItem()
{
 GameState.CurrentPlayer.AddinventoryItem(Item);
 Item = null;
 var spriteRenderer = GetComponent<SpriteRenderer>();
 spriteRenderer.sprite = null;
 Manager.ClearSelectedItem();
}

Now, when the player receives a new weapon, their statistics will be improved.
Our budding player is ready to return to the big bad world to take on those horrible
goblins that block his way.

Going further
If you are of the adventurous sort, try expanding your project to add the
following features:

• Update the shop's setup to use ScriptableObjects to allow you to have
more shop configurations or screens.

Chapter 8

[287]

• Expand the player's Inventory options. Change it to use a 2D layout, such as
the shop, instead of using Unity GUI.

• Update the Inventory items to have the type of inventory (weapons, armor,
or potions) and then update the Inventory function of the player to assign
different statistics for different items.

• Think about extending the inventory system. Presently, if I buy two
weapons, I'll get two slots of additional statistics (the same as if I buy seven
swords). Obviously, you may not want to be affected thus, but how could
you prevent it?

• Have a go at adding money into the equation by making things cost
money. In the purchasing section, display and act on it if the player
does not have enough.

• Put a second view in the shop to allow the player to sell items back to
the shop.

Summary
In effect, the shopping or the inventory system is just a backdrop for this chapter.
Its main purpose is to make you stop and think how you are going to actually
make money from all your hard-earned efforts. With all the best will in the world,
there has to be some return for all your labor, from recognition and sharing (which
is what I mostly end up doing) to actually earning money. If you earn money, how
are you getting paid, per installation, or a reoccurring revenue stream through
in-app purchases?

Whichever way you go, stop and think carefully about it; don't leave it until you
have finished, or in all likelihood you will be disappointed.

We covered monetization and what it means, building a GUI using the 2D system,
the basic Unity3D GUI, and planning for an effective inventory system.

Getting Ready to Fight
As we reach the end of our journey with the RPG game, we enter the last
aspect of the framework itself. This brings to light one of the hardest parts of any
game development: engagement. This centers on how you can keep the players
playing the game in effect, how the game balances out to keep them challenged,
and how to deliver enough varied content so they feel they are always experiencing
something new.

So we'll start with a few finishing touches to the game's battle system itself and then
look at deepening the background of the game.

Unlike previous chapters, the focus here will be on the implementation, showing
you quite a few tips and tricks and helping you avoid some of the pitfalls of the
sometimes strange Unity way of doing things. Also, as we have much to cover, this
chapter will flow on to the next to give you time to pause, reflect, and then carry on.

The following is the list of topics that will be covered in this chapter:

• Preparing battle statistics and creating the game's UI
• Implementing the turn-based battle system
• Working with Mecanim in the code
• Building more advanced sprite 2D GUI systems

Getting Ready to Fight

[290]

Efficient RPG UI overlays
Taking stock of the various designs that have been floated around in RPG games,
conveying important information such as health, stats, and other important details
is crucial to any gameplay. If the information is too obscure, the player won't
understand when they are close to death (and should run far away) or struggle
to understand why their favorite magic trick just isn't going as well as it should.
Similarly, if you make the UI too obtrusive, draw players' attention away too much,
and obscure the real estate on the screen too much, then the result will be the same.

This balance is hard to maintain in any game, especially in RPG games, because
we want to give as many capabilities as possible to our budding adventurer. It gets
even harder once you start adding companions and hundreds of available skills and
instant use items.

The adventurer's overlay
Games such as Baldur's Gate (developed by Black Isle Studios) and many of the
difficult and true RPG games from the 80s took the style of surrounding the player
with everything at hand.

Chapter 9

[291]

In the preceding screenshot, we see all the party members to the right, all the menu
options to the left, and quick use items/skills laid at the bottom of the screen.
Although functional, this style of design leaves only a small portion of the screen for
the actual gameplay. As these were mostly PC titles and large screens were available,
this wasn't too much of an issue.

Today, with smartphones and 10-inch tablets being the norm, this would create a
large issue. Put simply, it doesn't scale well.

A context-sensitive overlay
The developers of Fallout (developed by Interplay Entertainment) took a slightly
different approach, taking a similar style to that of Baldur's Gate; it opted for an
onscreen approach but were a bit more clever about the use of it.

Getting Ready to Fight

[292]

In the preceding screenshot, we see a smaller overlay screen at the bottom of the
screen, taking up a lot less real estate. In this game, it was possible to change the
overlay based on what was selected, allowing the selection of a character of the
player's party to be displayed on the screen; this helped to change the details shown
to that character.

Buttons were added to provide pop-up sections for skills, character attributes, and
the map.

It also provided two modes: one for traveling and one for battle, each distinctly
different based on what the player would need at the time.

Modern floating UI approach
A popular pattern that fits more modern titles is to use floating elements on the
player's screen, taking advantages of the improvements that Fallout implemented
and extending them much further.

Mobile games such as Pylon (developed by QuantumSquid Interactive) follow the
standard of breaking up the important UI for the player and scaling/placing them on
top of the main gameplay's screen. With this, the player can easily see their important
stats, such as health/magic, and has easy access to actions and skills. Additionally, the
map is informative and tapping on it brings out a fullscreen version.

Chapter 9

[293]

Each of these elements only becomes active when the player needs them and are
appropriately sized, so they don't get in the way too much.

Balancing the need
As you can see, there are many choices as to how you can layout the important game
UI; however, every game is different, so you will need to match up what the player
needs to do against what they need to know in order to progress.

Above all, do not sacrifice the core of the gameplay at each point in the game just for
a flashy screen element, unless it adds true value to the player.

Putting it together
Now as I stated earlier, this section is going to be big and full of surprises. Some
things are just what you need to do in order to flex Unity in the way we want to use
it. Others are real gotchas that can leave you scratching your head and searching for
the answer endlessly.

We'll start with the battle state machine, getting the player ready for the battle and
then following up with some GUI interaction for the player to use in order to begin
his or her assault in the battle. In the next chapter, we'll close the loop in the player's
battle process and progress the state machine over to the opponents.

Let's begin!

The battle state manager
Starting back in our Battle scene, we need to replace our temporary state machine
with a proper one using all of Mecanim's handy features. Although we will still
only be using a fraction of the functionality with the RPG sample, I advise you to
investigate and read more about its capabilities.

Getting Ready to Fight

[294]

Navigate to Assets\Animation\Controllers and create a new Animator
Controller called BattleStateMachine, and then we can begin putting together the
battle state machine. The following screenshot shows you the states, transitions, and
properties that we will need:

As shown in the preceding screenshot, we have created eight states to control the
flow of a battle with two Boolean parameters to control its transition.

The transitions are defined as follows:

• From Begin_Battle to Intro
 ° BattleReady = true (Transition Duration = 0)

• From Intro to Player_Move
 ° Exit Time = 0.9 (Transition Duration = 2)

• From Player_Move to Player_Attack
 ° PlayerReady = true (Transition Duration = 0)

• From Player_Attack to Change_Control
 ° PlayerReady = false (Transition Duration = 2)

• From Change_Control to Enemy_Attack
 ° Exit Time = 0.9 (Transition Duration = 2)

Chapter 9

[295]

• From Enemy_Attack to Player_Move
 ° BattleReady = true (Transition Duration = 2)

• From Enemy_Attack to Battle_Result
 ° BattleReady = false (Transition Time = 2)

• From Battle_Result to Battle_End

 ° Exit Time = 0.9 (Transition Time = 5)

Summing up, what we have built is a steady flow of battle, which can be
summarized as follows:

• The battle begins and we show a little intro clip to tell the player about
the battle

• Once the player has control, we wait for them to finish their move
• We then perform the player's move and switch the control over to the

Enemy AI
• If there are any enemies left, they get to attack the player (if they are not

too scared and have not run away)
• If the battle continues, we switch back to the player, otherwise we show the

battle result
• We show the result for 5 seconds (or until the player hits a key), then finish

the battle and return the player to the world together with whatever loot and
experience they have gained

This is just a simple flow, which can be extended as much as you want, and as we
continue, you will see all the points where you could expand it.

With our animator state machine created, we now just need to attach it to our
battle manager so it will be available when the battle runs; follow the ensuing
steps to do this:

1. Open up the Battle scene.
2. Select the BattleManager game object in the project hierarchy and add an

Animator component to it.
3. Now drag the BattleStateMachine animator controller we just created into

the Controller property of the Animator component.

Getting Ready to Fight

[296]

The preceding steps attaches our new battle state machine to our battle engine.
Now, we just need to be able to reference the BattleStateMachine Mecanim state
machine from BattleManager script. To do this, open up the BattleManager script
in Assets\Scripts and add the following variable to the top of the class:

private Animator battleStateManager;

Then, to capture the configured Animator component in our BattleManager script,
we add the following to the Start function:

void Start () {
 battleStateManager = GetComponent<Animator>();
 if (battleStateManager == null)
 {
 Debug.LogError("No battlemanager Animator found");
 }

Sadly, we have to assign it this way because all the functionality to
interrogate the Animator Controller is built in to the Animator
component. We cannot simply attach the controller directly to our
BattleManager script and use it.

Now that it's all wired up, let's start using it.

Getting to the state manager in the code
Now that we have our state manager running in Mecanim, we just need to be able
to access it from the code. However, at first glance, there is a barrier to achieving
this. The reason being that the Mecanim system uses hashes (integer ID keys for
objects) not strings to identify states within its engine (still not clear why, but for
performance reasons probably). To access the states in Mecanim, Unity provides
a hashing algorithm to help you, which is fine for one-off checks but a bit of an
overhead when you need per-frame access.

A simple solution to this is to generate and cache all the state hashes when we start
and then use the cache to talk to the Mecanim engine.

First, let's remove the placeholder code from Chapter 7, Encountering Enemies and
Running Away, for the old enum state machine, so remove the following code from
the top of the BattleManager script:

enum BattlePhase
{
 PlayerAttack,

Chapter 9

[297]

 EnemyAttack
}
private BattlePhase phase;

Also, remove the following line from the Start method:

phase = BattlePhase.PlayerAttack;

There is still a reference in the OnGUI method, but we will replace that shortly;
feel free to remove it as well now if you wish.

Now, to begin working with our new state machine, we need a replica of the
available states we have defined in our Mecanim state machine. For this, we just
need an enumeration using the same names (you can create this either as a new
C# script or simply place it in the BattleManager class), as follows:

public enum BattleState
{
 Begin_Battle,
 Intro,
 Player_Move,
 Player_Attack,
 Change_Control,
 Enemy_Attack,
 Battle_Result,
 Battle_End
}

It may seem strange to have a duplicate of your states in the state
machine and in the code; however, at the time of writing, it is necessary.
Mecanim does not expose the names of the states outside of the engine
other than through using hashes. You can either use this approach
and make it dynamic, or extract the state hashes and store them in a
dictionary for use.
Mecanim makes the managing of state machines very simple under the
hood, and it is extremely powerful, much better than trawling through
code every time you want to update the state machine.

Next, we need a location to cache the hashes the state machine needs and a property
to keep the current state so we don't constantly query the engine for a hash. So, add a
new using statement to the beginning of the BattleManager class, as follows:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

Getting Ready to Fight

[298]

Then, add the following variables to the top of the BattleManager class:

private Dictionary<int, BattleState> battleStateHash
 = new Dictionary<int, BattleState>();
private BattleState currentBattleState;

Finally, we just need to interrogate the animator state machine we have created. So
create a new GetAnimationStates method in the BattleManager class as follows:

void GetAnimationStates()
{
 foreach (BattleState state in (BattleState[])System.Enum.
 GetValues(typeof(BattleState)))
 {
 battleStateHash.Add(Animator.StringToHash
 ("Base Layer." + state.ToString()), state);
 }
}

This simply generates a hash for the corresponding animation state in Mecanim and
stores the resultant hashes in a dictionary that we can use without having to calculate
them at runtime when we need to talk to the state machine.

Sadly, there is no way at runtime to gather the information from
Mecanim as all the classes for interrogating the animator are only
available in the editor.
You could gather the hashes from the animator and store them in a file
to avoid this, but it won't save you much.

To complete this, we just need to call the new method in the Start function of the
BattleManager script by adding the following:

GetAnimationStates();

Now that we have our states, we can use them in our running game to control both
the logic that is applied and the GUI elements that are drawn to the screen.

Now add the Update function to the BattleManager class, as follows:

void Update()
{
 currentBattleState = battleStateHash[battleStateManager.
 GetCurrentAnimatorStateInfo(0).nameHash];

 switch (currentBattleState)

Chapter 9

[299]

 {
 case BattleState.Intro:
 break;
 case BattleState.Player_Move:
 break;
 case BattleState.Player_Attack:
 break;
 case BattleState.Change_Control:
 break;
 case BattleState.Enemy_Attack:
 break;
 case BattleState.Battle_Result:
 break;
 case BattleState.Battle_End:
 break;
 default:
 break;
 }
}

In Unity 5, you will have to use the fullPathHash property instead of just
nameHash when checking an animator state.
Thankfully this is the only change required in this entire title that is
needed for Unity 5* :D (*at the time of writing).

This code gets the current state from the animator state machine once per frame and
then sets up a choice (switch statement) for what can happen based on the current
state. (Remember, it is the state machine that decides which state follows which in
the Mecanim engine, not nasty nested if statements everywhere in code.)

Next, replace/add the OnGUI function with the same pattern to control which GUI
elements would be displayed, as follows:

void OnGUI()
{
 switch (currentBattleState)
 {
 case BattleState.Begin_Battle:
 break;
 case BattleState.Intro:
 break;
 case BattleState.Player_Move:
 break;
 case BattleState.Player_Attack:
 break;
 case BattleState.Change_Control:
 break;

Getting Ready to Fight

[300]

 case BattleState.Enemy_Attack:
 break;
 case BattleState.Battle_Result:
 break;
 default:
 break;
 }
}

If you need a quick way to generate a switch statement code from an
enum state (as shown in the preceding code), there is a simple shortcut
to do so using Visual Studio's built-in snippets:
Just type switch and when the snippet prompt appears, tab it
twice. Then, type in the property name that has a type of an enum
state (the currentBattleState property in this case which is of
the type, BattleState). Finally, hit the down arrow key and your
case statements will be automatically generated for you!
Neat, eh!

With these in place, we are ready to start adding in some battle logic.

Starting the battle
As it stands, the state machine is waiting at the Begin_Battle state for us to kick
things off. Obviously, we want to do this when we are ready and all the pieces on the
board are in place.

When the current Battle scene we added in Chapter 7, Encountering Enemies and
Running Away, starts, we load up the player and randomly spawn in a number of
enemies into the fray using a coroutine function called SpawnEnemies. So, only when
all the nasty goblins are ready and waiting to be chopped down do we want to kick
things off.

To tell the state machine to start the battle, we simple add the following line just after
the end of the for loop in the SpawnEnemies IEnumerator coroutine function:

battleStateManager.SetBool("BattleReady", true);

Do not ask me why we can affect the properties just by using their string
names and cannot do the same with the states; it just baffles me. I hope
they change this in a future release.

Now when everything is in place, the battle will finally begin.

Chapter 9

[301]

Adding a little flair
In an ode to the fantastic game Star Command (http://www.starcommandgame.
com/), when a battle starts there is a little introductory animation that introduces the
two parties in battle, I added the Intro state sequence, which currently just displays
a message about the battle.

I was going to add a full animation to zoom and highlight the player
and the goblins and then show the vs message, but I'll leave that up
to you to play with. Can't have all the fun now, can I?

Currently, the state machine pauses at the Intro state for a few seconds, so while it's
paused, let's add a simple GUI dialog to tell the player about the impending battle.
Simply add the following to the case line of the Intro state in the OnGUI function:

case BattleState.Intro:
 GUI.Box(new Rect((Screen.width / 2) - 150 , 50, 300, 50),
 "Battle between Player and Goblins");
 break;

Now the player is informed that a battle is about to happen whether they like it or
not (and now he cannot run away again, yet!).

Now when you run the game in the Unity editor and bring up the
Animator tab, you will see that the animation states change as the battle
commences; it changes from Begin | Intro | Player_Move, indicating
that it's now the player's turn to act.

http://www.starcommandgame.com/
http://www.starcommandgame.com/

Getting Ready to Fight

[302]

If you wish, you can also re-add the Run Away button for the player into the
Player_Move state in the OnGUI function as well:

case BattleState.Player_Move:
 if (GUI.Button(new Rect(10, 10, 100, 50), "Run Away"))
 {
 GameState.PlayerReturningHome = true;
 NavigationManager.NavigateTo("World");
 }
 break;

As the battle is now in progress and the control is being passed to the player, we
need some interaction from the user. So let's give them something to click on with a
smarter GUI.

Bring on the GUI
Before we can start acting on the state machine, we first need to add something for
the player to interact with, namely, the weapons the player possesses to knock those
pesky goblins into the middle of the next week.

To do this, we will add a nice 2D graphical command bar with button placements
using the 2D system instead of the aging Unity GUI system. The following is a
sample of what we will be building:

The system is also flexible and dynamic enough to work in any portion of the screen,
with any number of buttons, even with multiple columns and rows if you wish.

CommandBar (the container) manages the placement, and the state of the bar can
contain any number of command buttons; each button will display the item it is
managing and its input control.

As the command bar and command buttons are codependent, our code won't
compile until they are both implemented, so let's start with the CommandBar class and
then add the button definition to it.

Chapter 9

[303]

The command bar and button code was refactored and updated to 2D
from an existing open source project; it can be found at github.com/
fholm/unityassets/tree/master/ActionBars.
The full 3D implementation also has several other features you might
like to implement in the command bar, such as cooldowns, multiselects,
and descriptors. So check it out if you wish.
You might also want to check out the rest of Fredrik's other free assets
in the repository.

The command bar
Starting with the command bar manager, create a C# script called CommandBar
in Assets\Scripts and replace its contents with the following class definition
and properties:

using UnityEngine;
using System.Collections;

public class CommandBar : MonoBehaviour {

 private CommandButton [] commandButtons;

 public float buttonSize = 1.28f;
 public float buttonRows = 1;
 public float buttonColumns = 6;
 public float buttonRowSpacing = 0;
 public float buttonColumnSpacing = 0;

 public Sprite DefaultButtonImage;
 public Sprite SelectedButtonImage;

 private float ScreenHeight;
 private float ScreenWidth;
}

Remember, where CommandButton is referenced, it will show as an
error until we add the CommandButton class to the next section.

github.com/fholm/unityassets/tree/master/ActionBars
github.com/fholm/unityassets/tree/master/ActionBars

Getting Ready to Fight

[304]

The properties should speak for themselves: an array for the buttons that the bar is
managing, settings related to button's positioning, two images to use for the base
button backdrops, and finally a couple of properties to manage the screen's real
estate that the command bar will be drawn in.

Next, we need a few controlled properties. These will be accessible in the code but
not visible in the editor because they are not marked as [SerializeField]:

public int Layer
{
 get { return gameObject.layer; }
}

float Width
{
 get
 {
 return (buttonSize * buttonColumns) +
 Mathf.Clamp((button ColumnSpacing * (buttonColumns - 1)),
 0, int.MaxValue);
 }
}

float Height
{
 get
 {
 return (buttonSize * buttonRows) +
 Mathf.Clamp((button ColumnSpacing * (buttonRows - 1)),
 0, int.MaxValue);
 }
}

For more information about class attributes and editor tags, such as
[SerializeField], check out Chapter 12, Deployment and Beyond,
and Appendix, Additional Resources.

The preceding code just enables us to discover the layer the command bar is assigned
to and ensure any child elements we add can be assigned to the same layer. The
remaining expose the calculated width and height for the entire command bar.

Chapter 9

[305]

If you create a public variable, it will be visible in the code and the editor,
for example:

public float myPublicVariable;

If you create a private variable, it will only be visible within the current
class in the code, for example:

private float myPrivateVariable;

If you create a variable property with a public property getter (get),
it will be visible to any reference in the class but not in the editor, for
example:

private float myPrivateVariable;
public float myPublicProperty
{
 get { return myPrivateVariable; }
}

The pattern you use is up to you, based on how you need to access/
control the property.
You can also customize the visibility of the properties in the editor using
the ([SerializeField] and [HideinInspector]} attributes;
more information on this will be provided in Chapter 12, Deployment and
Beyond, and Appendix, Additional Resources.

To ensure that we can also anchor the command bar to a region on the screen, we
will enable it to be placed relative to a fixed position such as top-left and bottom-
right. To do this, we will first need a new enum state for all the positions we are
going to support. So, create a new script in Assets\Scripts\Classes called
ScreenPositionAnchorPoint and replace its contents with the following:

public enum ScreenPositionAnchorPoint
{
 TopLeft,
 TopCenter,
 TopRight,
 MiddleLeft,
 MiddleCenter,
 MiddleRight,
 BottomLeft,
 BottomCenter,
 BottomRight
}

Getting Ready to Fight

[306]

Now returning to the CommandBar script, we can add the following variables to the
top of the script to track the desired anchor point on the screen using this new enum:

public bool anchor = true;
public Vector2 anchorOffset = Vector2.zero;
public ScreenPositionAnchorPoint anchorPoint =
 ScreenPositionAnchorPoint.BottomCenter;

Then, to work out where exactly on the screen the command bar should be based on
this anchor point, we just need a simple helper function. So, add the following to the
bottom of the CommandBar script:

Vector2 CalculateAnchorScreenPosition()
{
 Vector2 position = Vector2.zero;

 switch (anchorPoint)
 {
 case ScreenPositionAnchorPoint.BottomLeft:
 position.y = -(ScreenHeight / 2) + Height;
 position.x = -(ScreenWidth / 2) + buttonSize;
 break;

 case ScreenPositionAnchorPoint.BottomCenter:
 position.y = -(ScreenHeight / 2) + Height;
 position.x = -(Width / 2);
 break;

 case ScreenPositionAnchorPoint.BottomRight:
 position.y = -(ScreenHeight / 2) + Height;
 position.x = (ScreenWidth / 2) - Width;
 break;

 case ScreenPositionAnchorPoint.MiddleLeft:
 position.y = (Height / 2);
 position.x = -(ScreenWidth / 2) + buttonSize;
 break;

 case ScreenPositionAnchorPoint.MiddleCenter:
 position.y = (Height / 2);
 position.x = -(Width / 2);
 break;

Chapter 9

[307]

 case ScreenPositionAnchorPoint.MiddleRight:
 position.y = (Height / 2);
 position.x = (ScreenWidth / 2) - Width;
 break;
 case ScreenPositionAnchorPoint.TopLeft:
 position.y = (ScreenHeight / 2) - Height;
 position.x = -(ScreenWidth / 2) + buttonSize;
 break;

 case ScreenPositionAnchorPoint.TopCenter:
 position.y = (ScreenHeight / 2) - Height;
 position.x = -(Width / 2);
 break;

 case ScreenPositionAnchorPoint.TopRight:
 position.y = (ScreenHeight / 2) - Height;
 position.x = (ScreenWidth / 2) - Width;
 break;
 }
 return anchorOffset + position;
}

With all the settings in place for the command bar, we next need to initialize it. So,
add an Awake function as follows:

void Awake()
{
 ScreenHeight = Camera.main.orthographicSize * 2;
 ScreenWidth = ScreenHeight * Screen.width / Screen.height;
}

This simply displays the current screen's size, which will be used to scale the
command bar to the screen.

Finally, to complete the initialization, we need to set up the available buttons based
on the settings for the command bar. This is done in three parts:

• Looping through the columns and rows for the command bar
• Creating new command bar buttons for each position
• Aligning the display position for each button

Getting Ready to Fight

[308]

Like with the inventory system, there is a cooperative relationship
between the CommandBar class and its command bar buttons. So, the code
won't be compiled until we are done. Bear this in mind as we progress.

First we need to be able to create a button, so add the following function:

CommandButton CreateButton()
{
 // Create our new game object
 GameObject go = new GameObject("CommandButton");

 // Add components
 go.AddComponent<SpriteRenderer>();
 go.AddComponent<BoxCollider2D>();

 go.transform.parent = transform;

 // Init
 CommandButton button = go.AddComponent<CommandButton>();
 button.Init(this);

 return button;
}

This function performs the following:

• Creates a new empty game object (and names it CommandButton)
• Adds two game components (SpriteRenderer2D and BoxCollider2D)

that are required for the CommandButton game object to function; more on
this later

• Makes the button a child of the command bar by setting its parent transform
• Creates and assigns the CommandButton script we created earlier to the

new button
• Calls the Init function of the button (this doesn't exist yet; we will come

back to this later)
• Once everything is ready, it returns the new CommandButton game object to

whoever called it

Chapter 9

[309]

Now we have the ability to create buttons; we will also need the ability to re-position
them within the command bar. For this, we will add another function:

void InitButtonPositions()
{
 int i = 0;
 float xPos = 0;
 float yPos = 0;

 for (int r = 0; r < buttonRows; ++r)
 {
 xPos = 0;

 for (int c = 0; c < buttonColumns; ++c)
 {
 commandButtons[i].transform.localScale = new
 Vector3(buttonSize, buttonSize, 0);
 commandButtons[i].transform.localPosition = new
 Vector3(xPos, yPos, 0);

 i++;
 xPos += buttonSize + buttonColumnSpacing;
 }

 yPos -= buttonSize + buttonRowSpacing;
 }
}

This function will simply loop through all the buttons assigned to the command bar
and then scale and position them accordingly. We then have a set of arranged buttons
within the command bar according to the row and column settings we configured.

With all the helper functions defined, we can now actually complete the initialization
of the CommandBar class. To do this, add the following function:

void InitCommandButtons()
{
 commandButtons = new CommandButton[(int)buttonRows *
 (int)buttonColumns];

 for (int i = 0; i < commandButtons.Length; i++)
 {
 var newButton = CreateButton();

Getting Ready to Fight

[310]

 if (i < GameState.CurrentPlayer.Inventory.Count)
 {
 newButton.AddInventoryItem(GameState.CurrentPlayer.
 Inventory[i]);
 }

 commandButtons[i] = newButton;

 }

 InitButtonPositions();
}

Here, we simply set up the button array based on the configured rows and columns,
and then added a new empty command bar button to each element using the
preceding CreateButton function. Once all the buttons have been created, we
then use the InitButtonPositions function to position them correctly within the
command bar.

Then, if the player has any weapons in their inventory, it will add that item to the
button using a simple helper function (which we'll add in the next section).

All that is left is to ensure that the command bar is positioned correctly on the screen
according to the anchor point. To do this, we first need another helper function to set
the position:

void SetPosition(float x, float y)
{
 transform.position = new Vector3(x, y, 0);
}

We put this in a separate function so that if we need to apply offsets for the
CommandBar class for different platforms, we can do it from this central helper
instead of doing it throughout the code.

With the new helper in place, we need to replace/add the Update function that will
ensure the bar is drawn to the correct portion of the screen's space:

void Update () {
 Vector2 position = Vector2.zero;

 if (anchor)
 {
 position = CalculateAnchorScreenPosition();
 }
 else

Chapter 9

[311]

 {
 position = transform.position;
 }
 SetPosition(position.x, position.y);
}

We still use the SetPosition function here as this method places the
command bar relative to the position in the screen space we want it to be
drawn in. This still may need further offsetting if a particular platform is
needed, such as Ouya or Xbox.

With this, each frame simply gets the intended position of the command bar, either
from the anchor point or the position set in the editor, and uses our helper function
to push it to the correct part of the screen.

Finishing off, we need to call our InitCommandButtons function in the preceding
code when the script starts:

void Start () {
 InitCommandButtons();
}

The command button
Next we'll add the CommandButton class; firstly create a new C# script in Assets\
Scripts called CommandButton and replace its contents with the following:

using UnityEngine;
using System.Collections;

[RequireComponent(typeof(SpriteRenderer))]
[RequireComponent(typeof(BoxCollider2D))]
public class CommandButton : MonoBehaviour
{
 private CommandBar commandBar;
 public InventoryItem Item;
 bool selected;
}

Note the additional attributes placed on this class for the SpriteRender
and BoxCollider2D components. This is just Unity's way of stating that
these items are mandatory for this object when used in the scene. If you
forget, Unity will warn you.

Getting Ready to Fight

[312]

We have defined a tight reference for the CommandBar class that the button is a
child of so that the button knows what is controlling it and they can communicate
accordingly. This enables the button to tell the CommandBar class when it is selected,
and the CommandBar class will be able to clear its selection, if need be.

We also have a property for InventoryItem as we are going to use this bar to
activate items for use in the battle (the player's sword), and lastly, a flag to track
whether the button is selected or not.

As described, we are using tight coupling between the button and the
command bar because of their relationship, as opposed to the loose
coupling we did before using messaging. We will still use messaging for
some actions, but we will do that later.
It's important to understand when you should tightly couple objects and
when you shouldn't using the appropriate pattern as required.
Basically, if a parent needs to manage its children, then you should tightly
couple them so they can communicate effectively. If the two objects have
no direct relationship, then either of them uses static functions, central
state classes, or messaging to route information between them.

Next, we'll add the Init function that we called earlier to the CreateButton
function:

public void Init(CommandBar commandBar)
{
 this.commandBar = commandBar;
 gameObject.layer = commandBar.Layer;

 var collider = gameObject.GetComponent<BoxCollider2D>();
 collider.size = new Vector2(1f, 1f);

 var renderer = gameObject.GetComponent<SpriteRenderer>();
 renderer.sprite = commandBar.DefaultButtonImage;
 renderer.sortingLayerName = "GUI";
 renderer.sortingOrder = 5;
}

When initializing the button's contents, we are setting up all the components this
object has assigned to it; they are as follows:

• First we define a tight reference for the CommandBar class itself because each
button is managed by the CommandBar class.

• Next we set the layer of the new button to be the same as the command bar.

Chapter 9

[313]

• Then we get the BoxCollider2D game object and set its size appropriately.
(The default is actually the same as we are setting it, but it is worth being
prudent and ensuring it is the size we want; don't assume!)

• Finally, we get SpriteRenderer, give it the default button image, and set its
sorting parameters as required; if this is not the case, you won't see it because
it will be drawn behind everything else.

In an odd peculiarity (that can leave you scratching your head for hours),
if you try setting up the preceding code in line with where you are using
it (in the CommandBar script) instead of within the class script (as in the
preceding code), it will not actually work. It will create the new game
object, but anything else just gets forgotten when used. Try it for yourself
if you wish.

So now we can manage what the InventoryItem button is managing; we'll add
another function to do this in a controlled way. This is because there is a fair amount
of setup required in order for us to display the item on top of the button:

public void AddInventoryItem(InventoryItem item)
{
 this.Item = item;
 var childGO = new GameObject("InventoryItemDisplayImage");
 var renderer = childGO.AddComponent<SpriteRenderer>();
 renderer.sprite = item.Sprite;
 renderer.sortingLayerName = "GUI";
 renderer.sortingOrder = 10;
 renderer.transform.parent = this.transform;
 renderer.transform.localScale *= 4;
}

So when the CommandBar class requests to put InventoryItem in a button, it creates
a new empty game object and adds a sprite renderer to it with the relevant settings
for it to display. We also keep a reference for the item being displayed so that we can
reuse its properties later (like how much damage our sword would bring about).

Adding the command bar to the scene
Open up the Battle scene if you haven't done so already so that we can add the new
command bar to the Battle scene. The command bar we have built is part of the
battle controller, so we will add the new script to the BattleManager game object as
a second script.

Getting Ready to Fight

[314]

So, select the BattleManager game object and either drag the CommandBar script
to it, or click on Add Component and navigate to Scripts | Command Bar; the
inspector should now look as follows:

Next, we'll need the images for our buttons. In the assets that accompany this title,
you will find a button1.png spritesheet that contains four button highlights, as
shown in the following screenshot:

Chapter 9

[315]

Add this to the project in the UI folder under Assets\Sprites\ from the assets
included with this title, set Sprite Mode to Multiple, and open up Sprite Editor.
Next, use the Grid slicing mode and set both the pixel size settings for X and Y to
128; this gives us a nice 2 x 2 split of the sprite with our four button images as shown
in the following screenshot:

Now if we return to the CommandBar script we added to our BattleManager script,
we can configure it as shown in the following screenshot:

Getting Ready to Fight

[316]

You can play with these settings if you wish to meet your own style and flavor. If
you run the project now, six new buttons will appear floating at the top-right corner
of our screen.

Granted, unless you visit the shop first, no weapons will appear in the
command bar. What I recommend (unless you want to keep visiting the
shop you keep testing) is to add a new property to the CommandBar
script so that you can add a debug inventory item, as follows:

public InventoryItem debugItem;

Then, add this item to the players inventory when the script starts, as
follows:

 void Awake()
 {
 #if UNITY_EDITOR
 GameState.CurrentPlayer.AddinventoryItem(debugItem);
 #endif

 }

This way you will always see a weapon while you're testing, and it
will only be added to the editor, thanks to the #if UNITY_EDITOR
precompiler directive.
For more details on the precompiler directives supported
in Unity, see http://docs.unity3d.com/Manual/
PlatformDependentCompilation.html.

Selecting the weapon
Now that we have our command bar with a selection of buttons and items to display,
it would be good if we could actually use it as well.

The pattern I opted for with this bar is to make it so you can only select a single
button at a time (clicking on another button will clear any existing selected items).
This is just one pattern of course, and you could update/modify the code in this
section as you wish. For now, let's see what's involved in managing this selection and
also inform the battle manager that something has been selected.

In brief, what we will do is the following:

• Use the OnMouseDown function on a command button to detect a user's click
• This will cause a message to be fired to tell the BattleManager state that a

button has been clicked

http://docs.unity3d.com/Manual/PlatformDependentCompilation.html
http://docs.unity3d.com/Manual/PlatformDependentCompilation.html

Chapter 9

[317]

• The BattleManager state will then take whichever inventory item has been
selected and use it as an active weapon

• If the user clicks on another button, this will override the previous selection,
even if it is empty

So let's see what's involved in doing that.

Selecting a command button
To complete the story of the button, we need to add a couple of handlers to let it be
clicked; change its selection state, the button's sprite, and a function to safely clear
the button's selection state.

First, we'll add the UpdateSelection function to the CommandButton script:

void UpdateSelection()
{
 var renderer = gameObject.GetComponent<SpriteRenderer>();
 renderer.sprite = selected ? commandBar.SelectedButtonImage :
 commandBar.DefaultButtonImage;
}

Here, we simply get the SpriteRenderer component or the button itself (not its
child item) and assign the correct button sprite, either the selected or unselected
image configured for the command bar.

Next, we add the ClearSelection function:

public void ClearSelection()
{
 selected = false;
 UpdateSelection();
}

This simply sets the selected state to false and then calls the UpdateSelection
function to set the button sprite appropriately.

Finally, we add the OnMouseDown function to react to the BoxCollider2D component
we have on the button and receive clicked events:

void OnMouseDown()
{
 if (commandBar.CanSelectButton)
 {
 selected = !selected;
 UpdateSelection();

Getting Ready to Fight

[318]

 commandBar.Selectbutton(selected ? this : null);
 }
}

So now when the user clicks, it will flip the selected state for the button and then call
the UpdateSelection function to set the correct button sprite. You will note that
this function depends on a property in the CommandBar script that doesn't exist yet.
This is there so that if for some reason the command bar is disabled or input is not
allowed, then we can ignore any clicks; we'll add this shortly.

Once the user has selected the button, we tell the command bar about it. We then
let it manage what happens to the selection after that. We could handle it within the
button itself, but this would mean lots of complicated code in this very simple class;
it's best to leave it up to the manager. This function doesn't exist yet in the command
bar, so let's add it now.

Managing the selections from the command bar
As the command bar manages all the buttons that can be selected and we only want
one item to be selected at a time (in the weapon bar at least), we need a way to
unselect all the buttons (if the player changes their mind and wants to select another
button). The buttons do not know about each other; only the command bar knows
about all its children. This might also be used to clear any selections once we move
on to a different phase of the battle.

First we need some additional variables and properties to manage what is selected in
the command bar, so open up the CommandBar script and add the following variables
to the top of the script, just under the existing variables:

private bool canSelectButton = true;
private CommandButton selectedButton;

public bool CanSelectButton
{
 get
 {
 return canSelectButton;
 }
}

Now we can track which button is currently selected.

Chapter 9

[319]

As we will need a way to clear the current selection (for the enemies turn or the
player's next turn) to avoid having to duplicate the code everywhere, we will reuse
the ResetSection function to set a new selection if we have one. So let's add this
public function as follows:

public void ResetSelection(CommandButton button)
{
 if (selectedButton != null)
 {
 selectedButton.ClearSelection();
 }
 selectedButton = button;
}

This will simply clear the existing selection if there is one and then track the new
selection. If the user has simply cleared their last selection, then this would just
be null.

Now we just need to be able to actually select a button, but first we need a few things.

Updating the BattleManager state with selections
Now that the command bar can select and deselect buttons, we need to be able to
tell the BattleManager state that the player has selected a weapon. For this, we'll
use messaging as there is no direct relationship between the command bar and the
BattleManager state.

First we'll need to beef up the MessagingManager script with a new event we want
to publish as we have done previously with the Dialog and UI events.

So, open up the MessagingManager script and add the following:

private List<Action<InventoryItem>> inventorySubscribers = new
List<Action<InventoryItem>>();

// Subscribe method for Inventory manager
public void SubscribeInventoryEvent
(Action<InventoryItem> subscriber)
{
 if (inventorySubscribers != null)
 {
 inventorySubscribers.Add(subscriber);
 }
}

Getting Ready to Fight

[320]

// Broadcast method for Inventory manager
public void BroadcastInventoryEvent(InventoryItem itemInUse)
{
 foreach (var subscriber in inventorySubscribers)
 {
 subscriber(itemInUse);
 }
}

// Unsubscribe method for Inventory manager
public void UnSubscribeInventoryEvent(Action<InventoryItem>
 subscriber)
{
 if (inventorySubscribers != null)
 {
 inventorySubscribers.Remove(subscriber);
 }
}

// Clear subscribers method for Inventory manager
public void ClearAllInventoryEventSubscribers()
{
 if (inventorySubscribers != null)
 {
 inventorySubscribers.Clear();
 }
}

With the message in place, we just need to broadcast this new message when the
player selects a button. We will add a new SelectButton method to the CommandBar
script to complete the journey, as follows:

public void Selectbutton(CommandButton button)
{
 if (selectedButton != null)
 {
 selectedButton.ClearSelection();
 }
 selectedButton = button;
 if (selectedButton != null)
 {
 MessagingManager.Instance.BroadcastInventoryEvent
 (selectedButton.Item);
 }

Chapter 9

[321]

 else
 {
 MessagingManager.Instance.BroadcastInventoryEvent(null);
 }
}

To finish off the CommandBar script while we are updating its messaging, let's
also subscribe to the UI event's message and link it to the canSelectbutton
variable/property we added earlier.

So, create a new delegate method called SetCanSelectButton:

void SetCanSelectButton(bool state)
{
 canSelectButton = !state;
}

Then, update the Start function in the CommandBar script as follows:

void Start () {
 InitCommandButtons();
 MessagingManager.Instance.SubscribeUIEvent(SetCanSelectButton);
}

Don't forget to unsubscribe the event from it as well when the command bar is
destroyed by adding the OnDestroy method:

void OnDestroy()
{
 if (MessagingManager.Instance != null)
 {
 MessagingManager.Instance.UnSubscribeUIEvent
 (SetCanSelectButton);
 }
}

Now whenever the UI is locked, we ensure that no further button presses are
allowed, such as for events when the player has attacked the enemy.

Getting Ready to Fight

[322]

Updating the BattleManager state with a weapon
Finally, we return to the BattleManager script and decide what to do with this
new weapon the user has selected. First we need a variable to store the selected
weapon in, so add the following to the top of the BattleManager script with the
rest of the variables:

private InventoryItem selectedWeapon;

Next we need a handler function to store the new selected weapon:

private void InventoryItemSelect(InventoryItem item)
{
 selectedWeapon = item;
}

Then, we have to wire up this function to the event we are broadcasting from the
BattleManager state in the Start method:

MessagingManager.Instance.SubscribeInventoryEvent
 (InventoryItemSelect);

Now we know what the player is fighting with, let's update the UI with some
instructions.

So far, when the battle starts in the state machine, an intro is shown and then
two seconds later, it is the player's turn; however, at the moment, the player is
completely unaware of this, so let's update the OnGUI method in the BattleManager
script as follows:

void OnGUI()
{
 switch (currentBattleState)
 {
 case BattleState.Begin_Battle:
 break;
 case BattleState.Intro:
 GUI.Box(new Rect((Screen.width / 2) - 150, 50, 300, 50),
 "Battle between Player and Goblins");
 break;
 case BattleState.Player_Move:
 if (GUI.Button(new Rect(10, 10, 100, 50), "Run Away"))
 {
 GameState.PlayerReturningHome = true;
 NavigationManager.NavigateTo("World");
 }

Chapter 9

[323]

 if (selectedWeapon == null)
 {
 GUI.Box(new Rect((Screen.width / 2) - 50, 10, 100, 50),
 "Select Weapon");
 }
 break;
 case BattleState.Player_Attack:
 break;
 case BattleState.Change_Control:
 break;
 case BattleState.Enemy_Attack:
 break;
 case BattleState.Battle_Result:
 break;
 default:
 break;
 }
}

In the Intro part, we display a simple message to inform the player about the battle,
and when it is the player's turn, we display the Select Weapon message until they
have selected one.

Going further
As we reach the halfway mark in the battle implementation, we can take stock of
what we have and also look forward to more things we could include at this point.

Try expanding the battle to include the following:

• Add more weapons, items, potions, and other things that the player can use
in the battle and decide just how many actions they can have. Can they only
use one thing in a turn or are potions free to use?

• Add more command bars with different items. Return to the inventory view
and use it for the command bar as well.

• Add player/enemy health stats and display them on the screen for your
particular game style, using the tricks learned from the command bar.

Getting Ready to Fight

[324]

Summary
Getting the battle right based on the style of your game is very important as it is
where the player will spend the majority of their time fighting. Keep the player
engaged and try to make each battle different in some way, as receptiveness is a
tricky problem to solve and you don't want to bore the player.

Think about expanding the shops and the items they stock. From here, you should
have enough to finish the game design itself. Possibly, look to have different types of
inventory items, potions, shields, and so on.

We covered the following in this chapter:

• What makes a battle
• Planning to expand your game and how it should look
• Working with state machines in the code
• Working with better 2D GUI elements, such as the command bar

In the next chapter, we will continue the battle and set out to teach those pesky
goblins a lesson or two.

The Battle Begins
The previous chapter was so big that it had to be split in twain.

We left the previous chapter at a point where the player was just about ready for
battle, with a sword (or axe) in hand, staring down at the Goblin horde, ready to
hack them away. Let's finish this round; select a not-so-willing target and do some
damage to it.

The following topics will be covered in this chapter:

• What it means to battle
• Planning for longevity
• Enhancing the enemy AI
• Particle systems in 2D and other gotchas
• More animation know-how

Proving ground
What sets aside a really good RPG from a run-of-the–mill point-and-click adventure
are the battles (well, unless you count the insult sword fighting scene in the Secret of
Monkey Island series at http://monkeyisland.wikia.com/wiki/Insult_Sword_
Fighting).

Battles can take many forms, from real-time, hack-and-slash, nonstop action to the
more strategic turn-based battle systems. Each appeals to a different audience and
dramatically alters how your game is perceived. In many cases, the battles (apart
from the story) will make up the heart and soul of your game; if you get this wrong,
it's a quick one way - try to uninstall purgatory.

http://monkeyisland.wikia.com/wiki/Insult_Sword_Fighting
http://monkeyisland.wikia.com/wiki/Insult_Sword_Fighting

The Battle Begins

[326]

No matter which path you choose, the enemies that the player will face have to be
challenging at all times. This doesn't mean they should level up at the same time as
the player (in some titles, there is a flat progression between the player and his or her
enemies; avoid this at all cost as it will quickly become boring), but then they should
challenge the player in different ways.

There are several things you need to plan for; they are as follows:

• Animations
• Player actions
• Enemy defenses and reactions
• Special moves
• Interactions

Each of these provides an engaging experience to the player and makes the battle
feel worthwhile. If you don't focus on each area, players might feel bored when
playing the game.

Leveling up
While it's not always critical for games to have the story or progression on to the next
area as the focus, in most cases, it's important to ensure that the player feels they are
achieving something as they progress. This may be in how much gold they collect
from the fallen enemies to buy swanky new gear and that Level 20 battle sword with
flame powers they have had their eye on for weeks. It could also be about increasing
the statistics or skills of the player, enabling them to take on more powerful enemies
with a wave of their wrist.

Invariably, it is a mix of all of the previous things that makes a game stand out.
In fact, in some titles, this is the whole focus of the game; you spend more time
planning what skills to have or upgrade as you progress on to explore/fight.

One piece of advice I would give is to ensure that you have some sort of whole-
world experience system, not just focus on the battles. This will make you stand out
from the crowd. You can have skills and strengths the player can use to affect the
whole game; it should be about the game experience and not just the fight. Many big
RPG games spend a lot of their development effort getting this right, but that's not
to say this cannot be applied to smaller or even episodic games.

Chapter 10

[327]

Balancing
By far the most difficult thing to implement in any game is balancing. If done right,
you will spend over 50 percent of your development efforts testing, tweaking,
retesting, and retweaking the game.

Don't use just one focus group to test your game, but use people from all walks of
life. Have kids and public audiences, even your wife, husband, or partner to play
your game, and gauge their feedback. The more number of people test your game,
the better the balance of the game will be.

Finding that sweet spot between difficulty, playability, engagement, and fun is
always hard, so do not underestimate it. Remember, just because you play the
game in a certain way doesn't mean everyone else will play in the same way.

Putting it together
Following on from the previous chapter, we will continue on our journey of the
battle and kick off with some target practice.

Preparing the BattleManager script
As we prepare to attack our foe, we recognize that the player can only target one
Goblin at a time with his trusty sword or axe (there could be some splash damage or
knock - on attack later, but let's focus on our player's attack first). So, we'll add some
variables to BattleManager to manage this.

We will also add some other elements to spruce up the battle, such as a selection
circle or a target identifier, and add a variable to set a prefab for this.

So, open the BattleManager script and add the following variables to the top of
the class:

private string selectedTargetName;
private EnemyController selectedTarget;
public GameObject selectionCircle;
private bool canSelectEnemy;

bool attacking = false;

public bool CanSelectEnemy
{
 get
 {

The Battle Begins

[328]

 return canSelectEnemy;
 }
}

public int EnemyCount
{
 get
 {
 return enemyCount;
 }
}

We haven't created the EnemyController class yet, so it will
show as an error. We will add that next.

So, we have added properties to hold the selected target as we did with the selected
weapon, a flag, and a property to track whether we can actually select an enemy (as
the player needs to select a weapon first); additionally, we've added a variable to
maintain a record of just how many enemies are left in the battle, which the enemy
AI will use to decide how chicken they are or not.

Instantiating prefabs in the code requires the prefab to be in the
Resources folder, because they are associated with the asset-bundling
features. With Unity Pro, you can also download the asset bundles from
the Web and include them in your project at runtime. With the free
version, however, you can only use what is in your project already.
For single objects, it's easier to attach a prefab to the editor and use it from
there (either on an existing class or a static editor class).

Beefing up the enemy
At the moment, Goblin is just a sprite drawn on the screen with an AI system that
just sits idle in the background. So, let's expand on this and give our Goblins some
muscle power. Player, be warned!

As stated previously, to keep the player engaged, you need to have a varied amount
of enemies in the battle, and they need to be challenging enough to make the player
think and apply tactics.

Chapter 10

[329]

The enemy profile/controller
First, we'll create a new profile for the enemies, starting off with a new enumeration
for the enemy class. Create a new C# script named EnemyClass in Assets\Scripts\
Classes and replace its contents with the following code:

public enum EnemyClass
{
 Goblin,
 Ork,
 NastyPeiceOfWork
}

I've used just a couple of examples, as we will only be using the Goblin for now.
Next, create a new Enemy C# script in the same folder, as follows:

public class Enemy : Entity
{

 public EnemyClass Class;
}

The preceding code just extends the base Entity class for our enemies and adds the
EnemyClass enumeration we just created.

Now that we have a profile for the enemy, we need a controller to make the
enemy perform actions in a controlled way. So, create another C# script named
EnemyController in Assets\Scripts, starting with the following variables:

using System.Collections;
using UnityEngine;

public class EnemyController : MonoBehaviour {

 private BattleManager battleManager;
 public Enemy EnemyProfile;
 Animator enemyAI;

 public BattleManager BattleManager
 {
 get
 {
 return battleManager;
 }
 set
 {

The Battle Begins

[330]

 battleManager = value;
 }
 }
}

The preceding code gives us the missing EnemyController class that we used in
the BattleManager script with the following properties:

• A tight reference to the BattleManager script, which is needed because
the enemies are directly affected by the battle as it is ensued

• The enemy profile
• A reference to the AI animator controller we created in Chapter 7,

Encountering Enemies and Running Away

As the AI needs information about the battle, we need to ensure that it has kept
each frame up to date. So, for this, we add an UpdateAI method and call it from
the Update method to keep the AI up to date, as follows:

void Update()
{
 UpdateAI();
}

public void UpdateAI()
{
 if (enemyAI != null && EnemyProfile != null)
 {
 enemyAI.SetInteger("EnemyHealth", EnemyProfile.Health);
 enemyAI.SetInteger("PlayerHealth",
 GameState.CurrentPlayer.Health);
 enemyAI.SetInteger("EnemiesInBattle",
 battleManager.EnemyCount);
 }
}

The preceding code just sets the properties of the AI to the current values. As
the values change, the AI will react based on the transitions that are defined. For
example, if the Goblin's health drops below 2 and the player's health is greater than
2, it will transition to Run Away. Granted we are not doing anything with the states
yet, but we will come on to that later.

Chapter 10

[331]

Next, we need to grab the reference to the AI that is currently configured against
the game object that will be used by the previous UpdateAI function in the
Awake method:

void Awake()
{
 enemyAI = GetComponent<Animator>();
 if (enemyAI == null)
 {
 Debug.LogError("No AI System Found");
 }
}

There are several logging options in Unity, from the basic Log to the more detailed
LogWarning and LogError. These logging options provide us with more detail
while debugging our project, so use them wisely.

To save sanity when you are adding more content to the game, it is
worthwhile to add Debug comments, surrounding them with important
components or scripts required by an object. Using them this way does
not affect the performance and can save you hours of searching for the
reason for a crash because you forgot to add something.
However, as stated before, do not use Debug.Log extensively or in the
normal operation of your game. This is because it kills the performance!
Another approach is to write your own utility function to perform
logging, which can be controlled by a single flag. So, instead of
Debug.Log, you will call DebugUtility.Log or DebugUtility.
LogWarning, which will then call Debug.Log if it was enabled. This
allows you to place the logging code throughout your project and have a
single place where you can turn it all on or off.
Nice tip from our reviewer, Fredrik Kellerman!

The Battle Begins

[332]

Updating the Goblin prefab
The Goblin prefab we created earlier now needs this new EnemyController class
attached to it. Select the Goblin prefab from Assets\Prefabs\Characters, click
on the Add Component button in the Inspector window, and navigate to Scripts |
EnemyController, as shown in the following screenshot:

Once added, the updated Goblin will look like the following screenshot in the
Inspector window:

Chapter 10

[333]

As you can see, we cannot currently edit the Enemy Profile tab from the editor
(as this requires a custom inspector, which will be covered in Chapter 11, Onward
Wary Traveler). Hence, we are doing it through the code. You can use a scriptable
object asset and assign it to the tab, and I've already shown you how to do this. Feel
free to change it later if you wish.

Setting up the enemy profile in the code
Returning back to the BattleManager script, the area where we push our Goblins
into action is in the SpawnEnemies coroutine. Now, instead of just throwing sprites
at the screen, we can add some real danger to the mix for our humble player and his
itty-bitty sword using the following code:

IEnumerator SpawnEnemies()
{
 //Spawn enemies in over time
 for (int i = 0; i < enemyCount; i++)
 {
 var newEnemy = (GameObject)Instantiate(EnemyPrefabs[0]);
 newEnemy.transform.position = new Vector3(10, -1, 0);
 yield return StartCoroutine(
 MoveCharacterToPoint(EnemySpawnPoints[i], newEnemy));
 newEnemy.transform.parent = EnemySpawnPoints[i].transform;

 var controller = newEnemy.GetComponent<EnemyController>();

 controller.BattleManager = this;

 var EnemyProfile = ScriptableObject.CreateInstance<Enemy>();
 EnemyProfile.Class = EnemyClass.Goblin;
 EnemyProfile.Level = 1;
 EnemyProfile.Damage = 1;
 EnemyProfile.Health = 2;
 EnemyProfile.Name = EnemyProfile.Class + " " + i.ToString();

 controller.EnemyProfile = EnemyProfile;
 }
 BattleStateManager.SetBool("BattleReady", true);
}

Now, as we loop through the number of enemies being added to the battle, we
grab the EnemyController class attached to the Goblin prefab, create a new
EnemyProfile class, give it some values, and finally initialize the controller with
the new EnemyProfile class.

The Battle Begins

[334]

Ideally, you should change this generation to something that is a bit more structured
instead of just initializing it this way, but you should get the picture.

Now that we have a stronger opponent, let's select it and start with the attack.

Selecting a target
Like with CommandBar, the player needs some visual representation to confirm
whether their actions actually have an effect in the game. To this end, let's add
some selection logic for our enemies and a nice visual effect in 2D. First, we'll
create the prefab for this with a little animation and then get ready to attach our
BattleManager script using the variable we added earlier.

The selection circle prefab
First off, I created the following selection circle with my graphics skills
(aka programmer art :D):

This is nothing fancy, but it will look better once we get it in the game. So, add
SelectionCircle.png to your project from the assets that accompany this title to
Assets\Sprites\Props.

Next, we'll create a prefab of this sprite in our scene for later use. This simply sets up
how we want to use it visually, and since we are going to use it several times over in
the scene, using prefabs means that there will only be one instance with many copies.

Now, drag the SelectionCircle image on to the scene (if it doesn't work, you are
looking at the game view, which means that you need to switch to the Scene tab)
and set the properties as shown in the following screenshot:

Chapter 10

[335]

Finally, drag the object from the Scene hierarchy into Assets\Prefabs\Props to
create the prefab, ensuring its name is SelectionCircle. Then, delete the object
from the scene as we no longer need it.

Now, in the Battle scene, in the editor, select the BattleManager game object in
the Project hierarchy; once you do this, drag the SelectionCircle prefab on
to the Selection Circle property for the BattleManager script to attach it to the
BattleManager game object.

Adding selection logic to the EnemyController
class
With everything set up in the BattleManager game object, we can now return to the
EnemyController script and repeat the process we used with CommandButton so
the player can click on the Goblins to highlight them.

First, we need a couple of properties in the EnemyController script to keep a
reference to our SelectionCircle prefab and determine whether the current enemy
is selected or not. So, add the following to the top of the EnemyController class:

 private bool selected;
 GameObject selectionCircle;

The Battle Begins

[336]

Now, to liven the selection process a bit, let's add some spin to the selection circle
when it is on the screen. To do this, we'll add a simple coroutine to constantly update
the selection circles' rotation transform (simple and effective). We could have used
the 2D animation system to do the same thing, but it's a bit too much for a simple
rotation (unless you want to do more fancy things with the selection circle, such as
add particles, have the circle jump up and down while spinning, and so on).

So, in the EnemyController script, add the following coroutine function:

IEnumerator SpinObject(GameObject target)
{
 while (true)
 {
 target.transform.Rotate(0, 0, 180 * Time.deltaTime);
 yield return null;
 }
}

Nothing fancy; you just need to rotate the object on its z axis over time.

If you want the circle to spin faster or slower, just alter the amount of z axis rotation
you apply. Here, I have it set to spin 180 degrees every second, one full spin every 2
seconds.

Next, when the player clicks, we use the combination of the BoxCollider2D and
OnMouseDown functions to select the Goblin and display the selection circle.

Add a new BoxCollider2D component to the Goblin prefab and then add the
following function to the EnemyController script:

void OnMouseDown()
{
 if (battleManager.CanSelectEnemy)
 {
 var selection = !selected;
 battleManager.ClearSelectedEnemy();
 selected = selection;
 if (selected)
 {
 selectionCircle = (GameObject)GameObject.Instantiate(
 battleManager.selectionCircle);
 selectionCircle.transform.parent = transform;

 selectionCircle.transform.localPosition = Vector3.zero;
 StartCoroutine("SpinObject", selectionCircle);

Chapter 10

[337]

 battleManager.SelectEnemy(this, EnemyProfile.Name);
 }
 }
}

Here, we store what the current state of the selected Goblin is (if we click on the same
one twice, unselect it); make sure there are no other Goblins selected (you may want
to change this behavior if you have weapons that can target more than one enemy). If
it is a new selection, perform the following steps:

1. Create a clone of the SelectionCircle prefab.
2. Set its transform and position local to the selected Goblin.
3. Start SelectionCircle, spinning with its coroutine.
4. Tell the BattleManager game object that we have selected a target to destroy.

The new functions don't exist on the BattleManager script yet,
so we will return to those shortly.

Like with CommandButtons, we need a final function to clear the selection state of
this enemy if required, so add the ClearSelection method to the EnemyController
script, as follows:

public void ClearSelection()
{
 if (selected)
 {
 selected = false;
 if (selectionCircle != null)
 DestroyObject(selectionCircle);
 StopCoroutine("SpinObject");
 }
}

We are done with the EnemyController script now.

To finish off the selection logic, let's return to the BattleManager script and add the
two missing functions as follows:

public void SelectEnemy(EnemyController enemy, string name)
{
 selectedTarget = enemy;
 selectedTargetName = name;
}

The Battle Begins

[338]

public void ClearSelectedEnemy()
{
 if (selectedTarget != null)
 {
 var enemyController =
 selectedTarget.GetComponent<EnemyController>();
 enemyController.ClearSelection();
 selectedTarget = null;
 selectedTargetName = string.Empty;
 }
}

Both the functions are very simple. They either set the two variables we created
earlier for the selectedTarget and the selectedTargetName variables, or clear
these values, get the EnemyController component for the selected target, and use
the ClearSelection function we just added.

However, we still can't select the enemy to attack yet, as our BattleManager script
does not let us do it. Since we want to control the flow of what the player does, we
do not enable this until they have first selected a weapon; if there is no selected
weapon, there is no enemy selection.

To enable you to select an enemy and then progress on to the battle, we need
to update our OnGUI method again for the additional actions. So, alter the case
BattleState.Player_Move section of the OnGUI method as follows:

case BattleState.Player_Move:
if (GUI.Button(new Rect(10, 10, 100, 50), "Run Away"))
{
 GameState.PlayerReturningHome = true;
 NavigationManager.NavigateTo("World");
}
if (selectedWeapon == null)
{
 GUI.Box(new Rect((Screen.width / 2) - 50,10,100,50),"Select
 Weapon");
}
else if (selectedTarget == null)
{
 GUI.Box(new Rect((Screen.width / 2) - 50, 10, 100, 50), "Select
 Target");
 canSelectEnemy = true;
}

Chapter 10

[339]

else
{
 if (GUI.Button(new Rect((Screen.width / 2) - 50, 10, 100, 50),
 "Attack " + selectedTargetName))
 {
 canSelectEnemy = false;
 battleStateManager.SetBool("PlayerReady", true);
 MessagingManager.Instance.BroadcastUIEvent(true);
 }
}
break;

Now the battle can ensue. The player selects a weapon and a target, and they have
a nice (well, a nice GUI) button to tap to say they are happy with their choice. So, let
the battle commence.

We also inform anyone listening to the GUI events that the GUI is now locked, and
the player cannot do anything until it is their turn again.

Now, when you run the project, the flow of the battle will be as follows:

1. The battle begins.
2. The introduction is played, informing the player about the impending doom.
3. The player is asked to select a weapon.
4. The selected weapon is highlighted.
5. The player is asked to select a target.
6. The selected enemy gets the red ring of death circling their feet, and they

probably get a sense of foreboding.
7. The Battle state manager gets informed that the player has completed their

move and that they are ready by setting the PlayerReady property in the
state machine to true.

The Battle Begins

[340]

So, when you run the project, your scene should look like this:

Attack! Attack!
Now that the player has committed themselves into the fray, we can play through
their selected action. For now, this is just a single action, but if you have more
characters/moves, then this could be extended further.

As the attack is a loop that is played until the player (or his party) runs out of attacks,
we use a simple coroutine to perform the attack itself. So, let's add the following
function to the BattleManager script:

IEnumerator AttackTarget()
{
 int Attacks = 0;
 attacking = true;
 bool attackComplete = false;
 while (!attackComplete)
 {
 GameState.CurrentPlayer.Attack(selectedTarget.EnemyProfile);
 selectedTarget.UpdateAI();
 Attacks++;
 if (selectedTarget.EnemyProfile.Health < 1 || Attacks >
 GameState.CurrentPlayer.NoOfAttacks)

Chapter 10

[341]

 {
 attackComplete = true;
 }
 yield return new WaitForSeconds(1);
 }
}

The following is what the previous code is doing:

1. It sets the initial states for the battle. It tells us how many attacks have been
performed, the fact that we are attacking (disable non-attacking code such as
the GUI), and that the attack has not yet finished.

2. Then, until we are finished, we keep attacking:
 ° We call the Attack function for the player against the selected enemy

(this was defined in the Entity class; all the attacks are standard,
so if you want to modify them, ensure they are done correctly in the
class so that all the attacks are the same)

 ° We update the AI state for the selected enemy (let them have access
to bad news, if any)

3. If the enemy is dead or the player has run out of attacks, mark the battle
as complete.

4. Wait for the end of the frame to attack again or end the loop.

It's all very neat logic and central in one place. If you are unsure about what is
happening in a battle, then you only have one place to check (unless it's about
damage).

All that is left is to call this function now when the player clicks on the Attack
button in the Update method of the BattleManager game object. So, update the
case BattleState.Player_Attack section as follows:

case BattleState.Player_Attack:
 if (!attacking)
 {
 StartCoroutine(AttackTarget());
 }
 break;

Now that the attack has commenced and no doubt some Goblins were at least hurt
in the ensuing battle, let us provide the player with some visual feedback.

The Battle Begins

[342]

The pesky Goblin reacts with 3D particles
The player has made his or her move, and the Goblin has been affected in some way;
it would be nice to see what happened.

In this case, the player's sword (or axe, if you added the axe) has a damage level of
5 and the player's strength is only 1; however, this will still give him a total attack
damage of 6. The lazy Goblin didn't get any armor today while he was out pillaging
in the woods with his pals (unless he's alone and they ditched him), and his default
health is of 1. The formula for this is as follows:

Health 1 – Attack Strength 6 = dead

So, the poor Goblin has to go and meet his maker in the worst way possible. This
brings us to one of the last troublesome issues with the new 2D system, that is,
particles. To make the death animation nice, we are going to add a particle effect
when the Goblin is killed along with some other animation.

Mixing up 2D and 3D
Now, as all of the 2D rendering in Unity is actually performed in 3D with some
nice jazzy helpers to make it look seamless, it is possible to add 3D objects to your
2D scenes. This is possible, provided you still follow the normal pattern to balance
the performance in your scene; a large 2D scene that performs well is still going to
have its performance slaughtered if you throw lots of complex 3D models in the
background. It is no different than 3D in that respect.

However, what you do have to be content with is the drawing order (a good old z
buffer fighting for its return) of 3D elements in the scene as if they were 2D. The
area that is most impacted by this are particle effects.

Particle effects and 2D
Like other 3D elements, particle effects will work fine in a 2D scene, provided you set
them up correctly. To show this, we are going to define a new particle effect to use in
our Goblin's death scene. We will also add a new sprite to mark the Goblin's demise
and leave its mark on the world.

Surprisingly, however, unlike the GUI system, particles can understand
sprites. So, we don't need to mess with the texture import settings when
using sprites for particle effects.

Chapter 10

[343]

Adding the deathly sprites
In the Sample assets folder, you will find the following two sprites:

Now perform the following steps:

1. Add the blood splat to Assets\Sprites\FX.
2. Add the tombstone to Assets\Sprites\Props and set its Pivot field to

Bottom so that it is the same as all the Character sprites.

Creating the material for the particle effect
For particle effects to work, they need a material defined, not just the raw texture/
sprite itself. So, navigate to Assets\Materials (create it if you haven't done so
already) and right-click on it to create a new material and name it BloodSplatter.

Next, click on the Select button on the material properties in the Inspector window
for the new BloodSplatter material and select the bloodSplat.png image we
just imported.

Lastly, change the shader the material uses to the Transparent/Diffuse shader (this
is because our sprite has transparent sections. If we didn't use a shader that supports
transparency, any section that is transparent would be drawn in black) by clicking on
the dropdown next to the Shader property of the BloodSplatter material, and then
navigate to Transparent | Diffuse.

The Battle Begins

[344]

Your material should now look like the following screenshot:

Restructuring the Goblin prefab
Now, because of the way the 2D animation system works, animating child objects
from a parent is fine; animating the child of child objects does not work, and also
animating both the parent and the child does not work as well. Basically, the
transforms and parentage do not play nice together.

This isn't a big issue; it just means you need to plan ahead more when you create
objects that will have multiple sprites or supporting objects that will all interact
on the same animation.

To start off, perform the following steps:

1. Create a new and empty game object in the scene called GoblinEnemy.
2. Drag the existing Goblin prefab from Assets\Prefabs\Characters on to

the scene as a child of the new and empty game object (so we can reuse it); be
sure to reset the transform on the new child.

3. Delete the old prefab; we don't need it any more.
4. Remove the Animator, EnemyController, and Box Collider 2D scripts

from the old Goblin prefab and add them on to the new and empty game
object called GoblinEnemy, setting them up as before. There are some
components you can drag between game objects; then, there are others that
you need to remove and re-add manually. It's trial and error to see which
components support this behavior. In this instance, the EnemyController
script can be dragged over. Now, you should be left with just the sprite
renderer on the Goblin game object.

5. Check that Box Collider 2D on the GoblinEnemy game object is positioned
over the Goblin, adjusting the Center X & Y values.

Chapter 10

[345]

6. Drag the Tombstone sprite from Assets\Sprites\Props on to the
GoblinEnemy game object. Set its position transform to 0 for all the values, set
Scale transform where X is 0.2 and Y is 0.2, and set Sorting Layer to Player.

7. Set the color of the Tombstone SpriteRenderer where A (alpha) is 0 (click on
the color box and reduce the A scale to 0); we don't want to see it by default.

8. Create another empty game object and call it BloodParticles, then drag it
to the GoblinEnemy game object as a child. Make sure to also set its position
transform to 0 for all the values.

If you are using Unity 4.5, you can create child game objects quicker
by selecting the GoblinEnemy game object, the Create Empty Child
option under GameObject, or the hotkey Alt + Shift + N.

This gives a nice new framework for the life cycle of the Goblin's enemy; it also
allows you to use the same layout but switch out the particles you use in death
scenes or the marker that they leave behind in death.

Adding the particles
Now on to the crux of this section. Select the BloodParticles game object and add a
new particle system by clicking on Add Component and selecting Particle System
under Effects.

Straightaway, we can see a problem.

The Battle Begins

[346]

When the particles render, by default, they are always rendered behind the 2D view,
and no setting in the editor, by default, can change that for 3D renderers. It is only
available for a 2D sprite renderer.

To resolve this, we need to apply a script to either the particle system itself or when
we play the particle system in the code. For simplicity's sake, I've implemented it as
a script on the particle system; this way, it is always in effect, and I do not need to
worry about configuring it.

So, create a new script called ParticleSortingLayer in Assets\Scripts and
replace its contents with the following:

using UnityEngine;

[ExecuteInEditMode]
public class ParticleSortingLayer : MonoBehaviour
{

 void Awake()
 {
 var particleRenderer = GetComponent<Renderer>();
 particleRenderer.sortingLayerName = "GUI";
 }
}

Here, the script simply sets the sorting layer on the underlying renderer for the
particle system; in this case, I've hardcoded it to the GUI sprite layer.

The [ExecuteinEditMode] attribute just enables you to see the
effect in the editor as well. More on editor functionality is covered
in Chapter 11, Onward Wary Traveler.

Script libraries, such as the awesome UnityToolbag by Nick Gravelyn, also provide
the previous functionality and are worked into a more reusable script; it's well worth
checking it out at https://github.com/nickgravelyn/UnityToolbag.

Another one of these libraries will also expose the hidden
SortingLayer properties for 3D renderers in the editor. For more
information, you can read about it at https://github.com/
nickgravelyn/UnityToolbag/tree/master/SortingLayer.

https://github.com/nickgravelyn/UnityToolbag
https://github.com/nickgravelyn/UnityToolbag/tree/master/SortingLayer
https://github.com/nickgravelyn/UnityToolbag/tree/master/SortingLayer

Chapter 10

[347]

Now just attach this script to the particle system and it will be transformed into
what is shown in the following screenshot, with the particles now in front of
the background:

Now that we have our particle system working and rendering, we can configure it
for the game. The following are all the settings we need to change:

• Name: BloodParticles
• Rotation: X: -90
• Duration: 1.00
• Looping: false (unchecked)
• Start lifetime: 0.5
• Speed: 2 / 3 (random between two constants)
• Start Rotation: 10 / 50 (random between two constants)
• Gravity Multiplier: 0.5
• Inherit Velocity: 200
• Play On Awake: false (unchecked)
• Shape: Radius: 0.2
• Color Over Lifetime: Gradient – Alpha (v) 255 -> 0
• Size over Lifetime: progressive curve
• Renderer: Material: BloodSplatter material

The Battle Begins

[348]

To change a value to an alternate setting, such as Random
Between Two Constants, use the drop-down button to the right
of the property:

The curve editor appears at the bottom of the particle editor inspector.

Check the sample project in the Chapter9-10 folder for
what the completed particle system looks like in the Inspector
window.

The death animation
Now that we have all the parts constructed for our live Goblin and some extra
bits for his death, let's create a new GoblinDeath animation and add it to our
Goblin's AI.

With our new GoblinEnemy structure in the Project hierarchy, select it and bring
up the Animation tab (Window | Animation in the menu). Then, click on the Clip
dropdown and select [Create New Clip]. When prompted, save the new animation
in Assets\Animation\Clips and call it GoblinDeath.

If the Clip dropdown is grayed out, then remember to click on
the Record button to enable editing.

Chapter 10

[349]

The following is what we are aiming for in the animation, a simple alpha transition
to fade the Goblin out and then fade the tombstone in:

To recreate this, perform the following steps:

1. Click on 0:00 on the timeframe to select the start point.
2. Make sure the record button is enabled.
3. Select the Goblin game object in the hierarchy.
4. Open the Color editor for the SpriteRenderer (by clicking on the color box)

and alter the A (alpha) value; it doesn't matter to what. This just adds the
property to the animation curve.

5. At position 0:00, set the value of Goblin : Sprite Renderer.Color.a to 1.
6. At position 0:30, set the value of Goblin : Sprite Renderer.Color.a to 0.5.
7. At position 1:00, set the value of Goblin : Sprite Renderer.Color.a to 0.
8. Select the position 0:00 in the timeframe.
9. Select the Tombstone game object in the hierarchy.
10. Open the Color editor for the SpriteRender and alter the A (alpha) value.
11. At position 0:00, set the value of Tombstone: Sprite Renderer.Color.a to 0.
12. At position 0:30, set the value of Tombstone: Sprite Renderer.Color.a to 0

(you might have to set it to 1 first and then reset it back to 0 to stick).
13. At position 1:00, set the value of Tombstone: Sprite Renderer.Color.a to 0.5.
14. At position 1:30, set the value of Tombstone: Sprite Renderer.Color.a to 1.

The Battle Begins

[350]

This gives us the positions we want; however, if you look at the curve for
the Tombstone fade - in animation, it will not look quite right, as shown here:

This is just because the curve system is doing its best to figure out what you want
based on your recordings. To give us a flatter line at the beginning of our animation
and a more linear line while the tombstone fades in, we just need to override the
default behavior for the first two animation keys. To do this, we set the tangents for
each animation key appropriately, as follows:

1. Switch to the Curves view by clicking on the Curves button; then, right-click
on the animation key (a small diamond in the view) for Tombstone: Sprite
Renderer.Color.a at the position 0:00 and select Right Tangent | Constant.

Chapter 10

[351]

2. Right-click on the key of Tombstone: Sprite Renderer.Color.a at the position
0:30 and select Left Tangent | Linear.

This gives us a nice overlapping transition between the Goblin and the Tombstone.
The Goblin fades out, and halfway through this, the Tombstone fades in and our
curve now looks better, as it appears in the following screenshot:

Adding particles to the animation
So that the particles are played at the beginning of the animation, we need to add
an Animation event to the timeline. When the event is fired, it will call a custom
function against the object it is attached to.

Sadly, we still cannot call particle systems directly from the Animator Dope sheet, so
we have to work around this with these Animation events.

The Battle Begins

[352]

Before we can add the event, we first need to add the function and its corresponding
code of the particle system to the EnemyController script that the animator is
working from.

First, add a new variable to the top of the class to store a reference to the
particle system:

private ParticleSystem bloodsplatterParticles;

Next, we will grab the reference to the particle system from the component added to
the game object the script is attached to in the Awake function:

void Awake()
{
 bloodsplatterParticles =
 GetComponentInChildren<ParticleSystem>();
 if (bloodsplatterParticles == null)
 {
 Debug.LogError("No Particle System Found");
 }
 enemyAI = GetComponent<Animator>();
 if (enemyAI == null)
 {
 Debug.LogError("No AI System Found");
 }
}

Finally, we will add the following function that will cause the particle system
to play (and also clear the selected enemy from BattleManager):

void ShowBloodSplatter()
{
 bloodsplatterParticles.Play();
 ClearSelection();
 if (battleManager != null)
 {
 battleManager.ClearSelectedEnemy();
 }
 else
 {
 Debug.LogError("No BattleManager");
 }
}

Chapter 10

[353]

With these in place, we return to the Animation view, right-click on 0:00 in the
dark gray bar of the timeline, and select Add Animation Event, as shown in the
following screenshot:

This will bring up the Edit Animation Event window, shown in the following
screenshot, where you can select the function we just created:

Now, when the animation begins, it will also trigger the particle effect to start
spawning and explode the blood particles in a very tastily manner.

Connecting the dots
If you now select the GoblinEnemy game object in the Hierarchy window and
open the Animator tab (Window | Animator in the menu), you will see the new
animation clip as a new state in the GoblinAI animator sheet.

However, it is not connected to anything just yet, as we want to play the animation
when the Goblin dies. We just need to hook this up to the Any state for when the
Goblin's health drops to 0 or below.

So, right-click on the Any state, create a new transition, and connect it to the new
GoblinDeath state. Then, set the condition for this transition so that EnemyHealth
is less than 1.

The Battle Begins

[354]

To tidy things up, we also need to fix the transition from the Idle state to the Any
state because we only want the Any state to be used when the Goblin is leaving the
scene (either in a box or as fast as his little legs will take him). This is because the
Idle state is the default state and it will begin there, so we only need control when
the Goblin goes into a defense mode or attacks the player. To do this, we need to
perform the following:

1. Remove the transition between the Idle state and the Any state.
2. Add a new transition from Attack to Idle with the condition

playerSeen = false.
3. Add a new transition from Defend to Idle with the condition

playerSeen = false.

This closes the loop a bit more cleanly between the action and exit states (it also stops
a bug where the state machine could hop directly from Idle to Death).

The final Goblin AI Animator view should now look like this:

Making the new GoblinEnemy game object a prefab
and adding it to the battle
Now that we have the new base for the Goblin, drag the GoblinEnemy game object
to Assets\Prefabs\Characters (delete the old one if you haven't already). When
it's created, delete the original GameObject from the Project hierarchy as we will
only use the prefab from now on.

Chapter 10

[355]

Check over all the game objects in the prefab to ensure all the position transforms are
set to 0, 0, 0. This will avoid too much head-scratching when they don't draw in the
correct place.

Return to the BattleManager game object and add the new prefab to the
EnemyPrefabs property of the BattleManager script. We need to replace
the one we just deleted.

Houston, we have a problem!
Despite our best laid-out plans, we actually have problems now; if you run the
project at this point, you will notice two very annoying bugs:

• The Goblins spawn into the battle horrendously and die instantly
• Their death isn't finite as they keep dying repeatedly

Now, this isn't truly a problem for our budding adventurer and is arguably fun
to watch, but this isn't what we were really going for; there should at least be
some challenge.

Mecanim AI considerations
The answer to the first problem is simple enough: it takes time for EnemyController
to update the EnemyAI state machine for the first time (several frames actually, just a
Unity thing). As the AI isn't updated, the initial state of EnemyHealth is 0. So, when
the state machine starts, the initial condition for the transition to GoblinDeath is
met because EnemyHealth is less than 2. To resolve this, simply set the default state
machine's value for EnemyHealth to something more than the default condition, as
shown in the following screenshot (for example, I set the default value to 5):

When using the Mecanim system for AI, be sure to always check
your default values for properties.

The Battle Begins

[356]

Animation, states, and looping
The second issue is a bit more conventional and just requires a bit more knowledge
about the new animation system, as by default, all the animations will loop forever.

To stop an animation from looping, you would normally just transition it to another
animation state in the Mecanim animator view when it is complete (the condition
Exit Time = 0.9). However, in this case, our animation is the final resting state, and
as stated, with nowhere to go, the animation state will just loop forever.

To change this, we simply need to alter the animation clip's import settings to denote
it is a static animation and not a looping one (by turning off looping).

So, navigate to Assets\Animation\Clips and select the GoblinDeath animation
clip. Then, in the Inspector window, uncheck the Loop Time option as shown in
the following screenshot:

There are several other import properties for animation clips, but these are mainly
for 3D models.

The final run-through
Running the project now in the battle scene won't get you very far unfortunately;
you will need to switch back to the home scene and play through from there. You
can perform the following actions in your game:

1. Beginning at home.
2. Going to the shop and buying a weapon.
3. Leaving the shop and going to the big bad world.
4. Wandering until you encounter a battle.
5. Selecting a weapon to attack with.
6. Selecting a Goblin enemy.
7. Clicking on Attack.

Chapter 10

[357]

Once this is done, only then will you be able to see how the full effect of the battle
animation will unfold.

Alternatively, add a code set in Debug style to the BattleManager
script to give the player a sword when the script starts; just don't
leave it there when you run your game properly.

Going further
Now, you are probably thinking at this point, "What about the rest of the battle?" Put
simply, I leave that up to you.

You are now armed with everything you need to know to be able to complete the
rest of the battle scene. You should not just stop there, however, and you should see
just how far along you can get.

Try expanding the battle to include various states using the following steps:

1. Add an onscreen GUI to inform that the control is now changing hands in the
Change Control battle state.

2. Loop through the Goblins and let them attack the player; rough him or her
up a bit.

3. Check whether the battle is complete, and accordingly, either transition back
to the Player Move state or set the BattleReady state variable to false to
transition to the Battle Result state.

4. Display a 2D GUI to summarize the battle results and grant the user some
experience, perhaps with some gold, each time an enemy is slain.

5. Transition back to the map when the battle is over.

Summary
This is a chapter with lots of new code, features, and tips and tricks. Hopefully, you
have learned a lot.

From here on, you should look at planning for some sort of skill tree and putting a
simple UI in place that the user can access to either spend the experience he or she
has gained or level up certain skills.

The Battle Begins

[358]

The sample has more features implemented if you want to see the end result, but
I'll recommend reusing what you have learned and build it yourself. The best way
to learn is through re-enforcement and testing yourself.

We covered the factors that make a battle, a more advanced GUI with 2D, mixing 2D
and 3D and what to look out for, working with particle effects and animation, and
more animation know-how.

In the next chapter, we will look at packaging your game and making it a bit more
than just a couple of game screens.

Onward Wary Traveler
You have a game; it looks good, plays well, and everyone loves it. The only problem
is that it is still not a finished project.

In this chapter, we will look at how we can extend Unity to help make the content
easier and better, and finally, package up the game and surround it with menus and
other features that will make it whole.

As they say, the finishing of a project can take up to 80 percent of the time needed to
polish it. Be warned! This is usually right. To wrap up, we will cover the tricky art of
persisting the player's data as they play both on the device and on the cloud.

The following topics will be covered in this chapter:

• The editor and how to make the most out of it
• Packaging your game with menus and additional screens
• Saving, loading, and persistence for your game

Extending the editor
Everyone who uses Unity knows about the editor. It's the core place where you will
spend a great deal of time putting your game together. You will spend the rest of
your time in the choice of your code editor, patching things together, adding values,
and working around with what most see as limitations of the editor itself. This,
however, is not the case.

The people at Unity realized early that they couldn't do everything, since everyone
wanted something different or little tweaks here and there; if they had tried to do
everything, nothing would have ever left their doors.

Onward Wary Traveler

[360]

So, from the ground up, Unity was designed to be extensible, and they exposed
much of what is needed to build your own editor in effect within Unity itself.

If you browse the asset store (https://www.assetstore.unity3d.com/en), you
will see a lot of assets that take advantage of this, and they have produced some
really snazzy bolt-ons for the editor. These can reduce the need to code and just build
things using the editor GUI.

These aren't magical things and don't even require low-level C++ coding to achieve
(although some do). You can update your editor to fix your game very easily, and
you can do this in any of the languages that Unity supports.

The scripting framework behind the editor is broken up into several distinct layers
that can be combined to give you almost any effect you need to build your content.

The property drawers
The editor only has a basic way of looking at the properties in the Inspector pane
based on the classes and objects used in your game. If you are using an existing
Unity class, such as a string, color, or curve, Unity already has readymade property
drawers (or visual handles) to manage these with their own editor windows in some
cases (such as the curve editor). The majority of these are also built on the extensible
framework that Unity exposes and is available to you as well.

Other classes such as vectors and numbers have a basic implementation, which is
usually fine, but sometimes you would just prefer it in a different way.

This is where the property drawers come in. They can either replace the existing
property viewer for a single field or for a type of object entirely. If you want a slider
to alter a value between two values, add a PropertyDrawer attribute to the property
to show a slider instead of just int or float as follows:

[Range (0, 100)]
public float health = 100;

The preceding code example shows a range slider instead of a single float value as
you can see here:

https://www.assetstore.unity3d.com/en

Chapter 11

[361]

For a more advanced example, check out the post on the Unity blog,
which shows several different patterns to use your property drawers and
even create them. The post is available at http://blogs.unity3d.
com/2012/09/07/property-drawers-in-unity-4/.

While building the property drawers, you will use the EditorGUI controls to draw
the elements on the screen. The EditorGUI class provides a rich collection of controls
that can be used. For the list of available controls, visit https://docs.unity3d.
com/Documentation/ScriptReference/EditorGUI.html.

The property drawers can only use the default layouts in the EditorGUI
class. For performance reasons, they cannot use the automatic
controller found in the EditorGUILayout class, which is used in
EditorWindows.

For more information on property drawers, see the Unity reference guide
at https://docs.unity3d.com/Documentation/ScriptReference/
PropertyDrawer.html.

If you want to see some more creative uses of the property drawers,
check out the simple little GitHub repository at https://github.com/
tenpn/ChestOfPropertyDrawers.

Property drawers examples
Using the NPC script in Assets\Scripts\Classes, let's see the effect of adding some
simple property drawers to our NPCs in the Inspector pane.

Built-in property drawers
Starting simply, we can decorate some of the properties of the NPC class in our game
with the Range attribute by adding the following code:

public string Name;
[Range(10, 100)]
public int Age;
public string Faction;
public string Occupation;
[Range(1, 10)]
public int Level;

http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/
http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUI.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUI.html
https://docs.unity3d.com/Documentation/ScriptReference/PropertyDrawer.html
https://docs.unity3d.com/Documentation/ScriptReference/PropertyDrawer.html
https://github.com/tenpn/ChestOfPropertyDrawers
https://github.com/tenpn/ChestOfPropertyDrawers

Onward Wary Traveler

[362]

The preceding code has the following effect on the editor inspector:

This just makes it easier to manage your settings and makes it a little prettier to look
at. Now, let's look at something that is a little more complicated.

Custom property drawers
Creating your own property drawer is certainly a bit more advanced. However, once
you have learned the basics, it is quite easy to build your own.

For this example, we will create a simple pop up that takes an array of values for the
possible selection, as shown here:

First, we need a property type or attribute that we want to control. This could be a
set of parameters (such as the Range property, which has a beginning and an end), a
validation string, or even an enumeration.

The property type or attribute you want to control has to live in
your project folder and not in the special Editor folder. The Unity
documents are not clear enough on this.

Chapter 11

[363]

So, create a new folder named Properties in Assets\Scripts\Classes. Then,
create a new C# script named PopupAttribute in the Properties folder and replace
its contents with the following code:

using UnityEngine;
public class PopUpAttribute: PropertyAttribute
{
 public string[] value;
 public PopUpAttribute(params string[] input)
 {
 value = input;
 }
}

Note that your property class must be derived from the PropertyAttribute class,
and it must have a constructor with the same number of parameters required for
your attribute (for example, the Range attribute has two int values).

In a strange (I suspect reflection) circumstance, you can either call your
class by its name or suffix it with the word Attribute (as shown in
the preceding code); both will be recognized by the name alone.
For example, PopUpAttribute can be recognized as PopUp or
PopUpAttribute.

With the property in place, we can now add our custom property drawer code.
Unlike the property we just created, this does have to live in the special Editor
folder.

So, create a new folder named PropertyDrawers in the Assets\Scripts\Editor
folder and create a new script named PopUpCustomPropertyDrawer, replacing its
contents with the following code:

using UnityEditor;
using UnityEngine;

[CustomPropertyDrawer(typeof(PopUpAttribute))]
public class PopUpCustomPropertyDrawer : PropertyDrawer {

 PopUpAttribute popUpAttribute {
 get { return ((PopUpAttribute)attribute); } }
}

Onward Wary Traveler

[364]

The preceding code gives us the basic framework for our custom property drawer
(the public property I've added isn't mandatory, but provides quick and easy access
to the underlying property type we are enabling). Next, we need to add the OnGUI
function that will draw our custom property UI using the following code:

public override void OnGUI(Rect position, SerializedProperty prop,
 GUIContent label)
{
 if (prop.propertyType != SerializedPropertyType.String)
 {
 throw new UnityException("property " + prop + " must be string
 to use with PopUpAttribute ");
 }

 var popupRect = EditorGUI.PrefixLabel(position,
 GUIUtility.GetControlID(FocusType.Passive), label);

 var currentItem = prop.stringValue;
 var currentIndex = popUpAttribute.value.Length - 1;
 for (; currentIndex >= 0; currentIndex--)
 {
 if (popUpAttribute.value[currentIndex] == currentItem)
 break;
 }

 int selectedIndex = EditorGUI.Popup(popupRect, currentIndex,
 popUpAttribute.value);
 prop.stringValue = selectedIndex < 0 ? "" :
 popUpAttribute.value[selectedIndex];
}

Walking through the preceding script is quite simple; it is described as follows:

• The class is decorated with a CustomPropertyDrawer attribute and the type
of class it is targeted at.

• As stated, the class is derived from the PropertyDrawer class.
• A helper property (popUpAttribute) gets the correct type of class from the

attribute property of the PropertyDrawer base class (optional).
• We override the OnGUI function for the property drawers.
• We then check whether the target property (the variable you will attach this

to) is of the correct type (in this case, a string). It returns UnityException if it
is not correct.

Chapter 11

[365]

• A Rect variable is defined for where we want to draw the output from our
property drawer (a requirement to use the EditorGUI.Popup control).

• We get the current value for the property we are attached to and compare it
with the possible values for the item. We do this only because we have a list
of options and need to know which the current one is. For other types, this
may not be needed.

• We draw a pop-up control using the EditorGUI.Popup control.
• Lastly, we set the property we are attached to with the value the user

has selected.

We could have used an enum object instead of an array to give us a more
programmatic approach, in which case the preceding steps would be
very similar. However, this approach allows us to set the scope of the
selection for each property.

With the property and our custom property drawer in place, we can decorate the
variables in our NPC class to achieve the result I pictured earlier, as follows:

public string Name;
[Range(10, 100)]
public int Age;
[PopUp("Imperial", "Independant", "Evil")]
public string Faction;
[PopUp("Mayor", "Wizard", "Layabout")]
public string Occupation;
[Range(1, 10)]
public int Level;

It may seem like a lot of fuss. However, once it's complete, you can tune the Unity
editor to work for you more efficiently.

Custom editors
Say you want to control the entire scope of a single class or ScriptableObject; this
is where CustomEditor scripts come in.

They can be used against any script that can be attached to a game object to alter how
it works in the Unity editor inspector.

As an example of these (the best way to show custom editors is through code),
we will add some functionality to a camera to provide us with better control
over it in a scene.

Onward Wary Traveler

[366]

First, we'll need a very simple camera script that will point the camera to a specified
target, starting at 0, 0 ,0. So, create a new script named CameraLookAt in Assets\
Scripts and replace its contents with the following code:

using UnityEngine;

public class CameraLookAt : MonoBehaviour
{
 public Vector3 cameraTarget = Vector3.zero;

 void Update()
 {
 transform.LookAt(cameraTarget);
 }
}

We can then define a CustomEditor script that will be run by the editor whenever it
detects a game object with the script attached to it.

As with a lot of editor features, remember (as a good rule of thumb) that
if a class requires the UnityEditor namespace, it will need to live in the
special Editor folder in your project.

So, create a new C# script called CameraTargetEditor in Assets\Scripts\Editor
in your project and replace its contents with the following code:

using UnityEngine;
using UnityEditor;

[CustomEditor(typeof(CameraLookAt))]
public class CameraTargetEditor : Editor
{
 public override void OnInspectorGUI()
 {
 CameraLookAt targetScript = (CameraLookAt)target;

 targetScript.cameraTarget =
 EditorGUILayout.Vector3Field ("Look At Point",
 targetScript.cameraTarget);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
 }
}

Chapter 11

[367]

This script doesn't do much yet; we now have a Vector3 handle in our script that
displays the position of the camera's target (the specific point it is looking at). What
is very nice here is that you can edit the values and the camera will automatically
transform itself to look at the new point. To demonstrate this, create a new scene
named EditorDemos in Assets\Scenes and attach the CameraLookAt script to Main
Camera. If you then select the Main Camera game object in the hierarchy, you will
see the following settings in the Inspector pane:

This is a lot easier than messing with the rotation values of the ordinary camera.
Let's continue to add more functionalities that will blow your mind.

If the custom editor script depends on certain properties or components
being available on the game object you attach it to, then be sure to
use the RequireConponent attribute on the base class (not the
CustomEditor script).

To make it even more useful, we can also represent this selection in the scene
view as a control handle. To do this, we simply add another function to our
CameraTargetEditor CustomEditor script; add the following OnSceneGUI
function to the script:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;

 targetScript.cameraTarget = Handles.PositionHandle(
 targetScript.cameraTarget, Quaternion.identity);

 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

Onward Wary Traveler

[368]

Just as the OnGUI method draws in to your game, this function will draw in to the
editor scene. Using the Handles.PositionHandle control, it will draw a regular
handlebars control in the scene at the point you have specified, in this case, the
camera's look-at target, as seen here:

Camera Target (1) and Camera Transform (2)

Want more?? You can then alter how the handlebars will look on the screen with the
following code:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;

 targetScript.cameraTarget = Handles.PositionHandle(
targetScript.cameraTarget, Quaternion.identity);
 Handles.SphereCap(0, targetScript.cameraTarget,
Quaternion.identity, 2);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

Chapter 11

[369]

As shown in the following screenshot, this simply alters the handlebars we are
drawing, decorating them with a sphere. There are several other options as well
should you choose to explore them.

(1) Camera Target Sphere, (2) Camera Transform

For more information about custom editors, see the Unity reference
guide at http://docs.unity3d.com/Documentation/
ScriptReference/Editor.html.
For more information about handles and what you can do with them,
see the Unity reference guide at http://docs.unity3d.com/
Documentation/ScriptReference/Handles.html.

The editor window
Quite simply, Unity editor windows are just separate containers for collections of
editor GUI controls. These windows are a more advanced version of the property
drawers described previously, and as such use a different set of custom controls.

The Inspector, Game, and Scene windows, and in fact, pretty much every other
dockable window in the Unity editor, are editor windows. In fact, they are all built in
the same way using the same scripting framework.

As stated previously, remember that any script that uses the editor
functionality or the UnityEditor namespace must be placed in a
special project folder titled Editor.

http://docs.unity3d.com/Documentation/ScriptReference/Editor.html
http://docs.unity3d.com/Documentation/ScriptReference/Editor.html
http://docs.unity3d.com/Documentation/ScriptReference/Handles.html
http://docs.unity3d.com/Documentation/ScriptReference/Handles.html

Onward Wary Traveler

[370]

To implement your own editor window, you simply need to create a class that is
derived from EditorWindow instead of MonoBehaviour. The script must also live in
the special Editor folder within the project structure, so create a new script called
MyEditorWindow in Assets\Scripts\Editor, as follows:

using UnityEditor;
using UnityEngine;

public class MyEditorWindow : EditorWindow
{
string windowName = "My Editor Window";
bool groupEnabled;
bool DisplayToggle = true;
float Offset = 1.23f;

}

I've added some properties to give some depth to the example.

With your new window in place, you then need to implement a function to display
the window when it is called inside the new MyEditorWindow class:

[MenuItem ("Window/My Window")]
public static void ShowWindow ()
{
 EditorWindow.GetWindow(typeof(MyEditorWindow));
}

It doesn't matter what the preceding function is called; it's just an editor
reference attribute attached to the function that shows where the option
will appear in the Unity editor menu.

If you want more control over the size and position of your editor window,
instead of using the preceding GetWindow function, you can use the following
GetWindowWithRect function:

[MenuItem ("Window/My Window")]
public static void ShowWindow ()
{
 EditorWindow.GetWindowWithRect(typeof(MyEditorWindow),
 new Rect(0, 0, 400, 150));
}

Chapter 11

[371]

This will set the position and size of the window to a fixed point on the screen, but
as with all other editor windows, it can then be resized and docked like any other
window. This method is more useful to display a collection of properties in the scene
view to edit nodes or other position-based visual configuration.

Lastly, you need some GUI code. This is pretty much the same as the normal GUI
code, but with a few editor extensions because it is being drawn in the editor. This
goes in to an OnGUI method, for example:

void OnGUI()
{
 // Your custom Editor Window GUI code
 GUILayout.Label("Base Settings", EditorStyles.boldLabel);
 windowName = EditorGUILayout.TextField("Window Name",
 windowName);

 groupEnabled =
 EditorGUILayout.BeginToggleGroup("Optional Settings",
 groupEnabled);

 DisplayToggle =
 EditorGUILayout.Toggle("Display Toggle", DisplayToggle);

 Offset = EditorGUILayout.Slider("Offset Slider",
 Offset, -3, 3);
 EditorGUILayout.EndToggleGroup();
}

The preceding example will show the following menu window:

Onward Wary Traveler

[372]

When you put GUI elements together in an editor window, you can use either the
basic EditorGUI controls or the more advanced EditorGUILayout controls, which
implement some additional automatic layout features on top of the basic controls.

For more details on the controls available with EditorGUILayout,
check out the Unity reference at https://docs.unity3d.com/
Documentation/ScriptReference/EditorGUILayout.html.
For more information on editor windows, see the Unity reference
guide at https://docs.unity3d.com/Documentation/
ScriptReference/EditorWindow.html.

Gizmos
With custom editors, you could also have handles to represent a control in the scene
view, extending the Inspector features in to the scene.

We also have another way to have class-based features that are only available in the
editor through the use of Gizmos.

Gizmos offer a much richer graphical way to add visual elements to the scene to aid
the use of a class, unlike custom editors, which are only added to your base class that
the editor will then make use of.

OnDrawGizmo functions are only available on classes that are derived
from MonoBehaviour, not the Editor classes.

For example, we can amend the CameraLookAt script we created earlier and make
it draw a Gizmo line from the camera to the target's look-at point by adding the
following code to the script:

void OnDrawGizmos()
{
 Gizmos.color = Color.yellow;
 Gizmos.DrawLine(transform.position, cameraTarget);
}

https://docs.unity3d.com/Documentation/ScriptReference/EditorGUILayout.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUILayout.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorWindow.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorWindow.html

Chapter 11

[373]

The code produces the result as follows:

Now, when you return to the editor and move the look-at point or the camera, there
will be a yellow line drawn between them.

If you collapse the script in the Inspector pane, this will turn off
the Gizmo. This is handy if you want to just hide it.

If you don't want the Gizmo drawn all the time, you can also track when the user has
the Gizmo selected using the OnDrawGizmosSelected method, as follows:

void OnDrawGizmosSelected()
{
 Gizmos.color = Color.red;
 Gizmos.DrawLine(transform.position, cameraTarget);
}

Now when the game object the script is attached to is selected in the editor,
the line will be drawn in red instead of yellow. Alternatively, just use the
OnDrawGizmosSelected function on its own to only draw a line when selected.

For more information on Gizmos, see the Unity reference guide at
http://docs.unity3d.com/Documentation/ScriptReference/
Gizmos.html.
For fantastic additional resources and tutorials, check out the article
on CatLike Coding's blog at http://catlikecoding.com/unity/
tutorials/editor/star/.
Or, you can check out the excellent Gimzo-driven design tutorial at
http://code.tutsplus.com/tutorials/how-to-add-your-
own-tools-to-unitys-editor--active-10047.

http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.html
http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.html
http://catlikecoding.com/unity/tutorials/editor/star/
http://catlikecoding.com/unity/tutorials/editor/star/
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047

Onward Wary Traveler

[374]

Building your editor menus
Another way of extending in to the editor is to customize it by adding your own
menus. We covered little bits of this in previous chapters by adding extra options to
create your assets and such, but there is much more to it.

MenuItem functions must be declared as Static functions, else
they will not be recognized, and scripts must be placed in the
special Editor folder.

Adding a MenuItem attribute
The main way of adding a new menu item is to define a script in Assets\Scripts\
Editor and append the MenuItem attribute to a static method within it. So, create a
new script called MyMenu in this folder and replace its contents with the following code:

using UnityEditor;
using UnityEngine;
public class MyMenu
{
 // Add a menu item named MenuItem1 to a Menu option called
 // MenuName in the menu bar.
 [MenuItem ("MenuName/MenuItem1")]
 static void EnableMyAwesomeFeature ()
 {
 Debug.Log ("I am a leaf on the wind. Watch how I soar.");
 }
}

This code simply creates a new top-level menu option called MenuName with a single
item called MenuItem1, as shown here:

Chapter 11

[375]

From here, you can execute whatever you need to.

When you return to Unity after adding a menu script, it may
sometimes not show up immediately. You can either click on the menu
bar or restart the editor to make it appear (it just needs a nudge).

Enabling/disabling a MenuItem attribute
We can extend this further by adding a validation logic method to support a
MenuItem attribute. This controls whether the menu option is enabled or not.

For this, you need to create a pair of the following items:

• A menu item
• A menu item validator

The menu item and the menu item validator must have the same menu
path. So, if the menu item (as declared previously) is [MenuItem
("MenuName/MenuItem1")], the validator must have the same menu
definition as follows:

[MenuItem ("MenuName/MenuItem1", true)]

Validators do not add menu items. They only extend or validate the
existing menu items.

So, using the menu item we just added earlier, we can add a validator menu
function. It must have a return type of bool and an additional flag set against the
function attribute, as follows:

[MenuItem ("MenuName/MenuItem1", true)]
static bool CheckifaGameObjectisselected() {
 // Return false if no transform is selected.
 return Selection.activeTransform != null;
}

This simple validator just checks whether you have a game object selected in the
editor; if not, then MenuItem1 is disabled.

This new validation function is evaluated by the editor whenever it displays the
menu item of the same name. By setting the bool flag at the end of the MenuItem
attribute, it tells the editor that this function provides the validation logic for a
MenuItem attribute of the same name. Then, the editor will enable or disable that
MenuItem attribute based on the return of the validator function.

Onward Wary Traveler

[376]

Adding shortcut keys to a MenuItem attribute
If you add % and a letter to the end of your MenuItem attribute, Unity will also enable
a shortcut key for that letter.

So, %g would enable a shortcut of Ctrl + G on Windows and cmd + G on a Mac.

For example, add a new function to our MyMenu script as follows:

[MenuItem ("MenuName/MenuItem2 %g")]
static void EnableMyOtherAwesomeFeature()
{
 Debug.Log ("Find my key and win the prize - g");
}

This will show us an additional option with the shortcut defined, as you can see here:

Adding contextual MenuItems
The last bit of trickery you can perform is to add menu items to the existing features
of Unity, even Inspector.

You do this with a custom name for the MenuItem attribute and a different signature
for the function. So, we add the following method to our MyMenu script:

[MenuItem("CONTEXT/Transform/Move to Center")]
static void MoveToCenter(MenuCommand command)
{
 Transform transform = (Transform)command.context;
 transform.position = Vector3.zero;
 Debug.Log("Moved object to " +
 transform.position + " from a Context Menu.");
}

Chapter 11

[377]

The preceding script attaches itself to any transform component (in this case, the
Inspector pane). Then, when it is run, the parameter on the function receives the
instance of the object it was run on and lets you interrogate or alter it, resulting in the
following screenshot:

The structure of the special MenuItem name is as follows:

• CONTEXT: This is a fixed item to identify the menu as a contextual item
• Object: This is the type of object this context menu will be available on
• Name: This is the name of the menu item

You can just add extra dimensions/children to context menus by
adding additional "/" characters.
However, if there is an error or the depth of your menus is too deep,
Unity won't show the error; it just won't display the menu item
(leaving you scratching your head). If this happens, try setting a
shorter or different menu name.

Onward Wary Traveler

[378]

Context menus can be added to just about any object/component in the Unity editor,
including your own objects.

For more information on the MenuItem class and its use in Unity
Editor, see the Unity scripting reference guide at https://docs.
unity3d.com/Documentation/ScriptReference/MenuItem.
html.

Running scripts in the Editor folder
The last little tidbit you should be aware of surrounds scripts and their execution.

If you put a script in the Editor folder, it will be executed when you are in the
editor. However, what about all your other scripts?

Sure you can run the game and see the script running, but that doesn't help you
when you are in the editor. What if you want to see the effect of your script while
manipulating game objects in your scene? If you are using GUI controls, this
becomes even more critical when you are trying to place controls on the screen.

Thankfully, there is a way to force the editor to run your script, and all it takes is
yet another attribute called ExecuteInEditMode added to your class. To show this,
let's open the CommandBar script under Assets\Scripts in our project and add the
[ExecuteInEditMode] attribute to that class as follows:

using UnityEngine;
using System.Collections;

[ExecuteInEditMode]
public class CommandBar : MonoBehaviour
{

Now when you open up the Battle scene, CommandBar will always be drawn as
shown here:

https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.html
https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.html
https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.html

Chapter 11

[379]

If you are applying this to the GUI that repositions itself to the scene like
with CommandBar, the visual aspect you see in the editor may not be the
same as when the game is running. So, things may position differently.
You either manage it in the code or live with it in the editor; it's up to you.
If you have portions of your script that rely on other components that
may not be active in the editor, be sure to check for null references in your
code to avoid nasty errors in the console that may lead you down a dark
path.
For example, in the CommandBar script, we need to have null checking
on the MessagingManager calls and the SetPosition function, which
have been updated in the sample app.
Also, any calls to Static classes in the OnDestroy method may
generate errors/warnings when they are run in the editor; so just be
aware!

Alternative approaches
There is always more than one way to cut the cheese as they say, and so too it is
with Unity. Some more advanced options to run the scripts in the editor include the
following methods.

Onward Wary Traveler

[380]

The [InitialiseOnLoad] attribute
Another advanced feature with the editor is to make use of the [InitialiseOnLoad]
attribute. What this attribute does is run whatever class or script it is attached to
when the editor opens or when a build event occurs (such as after you edit a script
or run the project). Most developers use this for tracking purposes or to have
background processes run whenever something is changed. This is especially useful
if you have some level data stored in a custom file and need to regenerate a scene or
level based on that configuration.

Unlike [ExecuteInEditMode], the [InitialiseOnLoad] attribute
is an editor-only feature, and the scripts using it must be placed in the
special Editor folder in your project.

It is recommended that you combine the use of the [InitialiseOnLoad] attribute
together with a static constructor to ensure the script will run before any other scripts
in the scene or project.

If you are loading resources in an [InitialiseOnLoad] class,
beware that the filesystem may not be initialized when the script starts.
It's recommended you delay it until the first editor update (using the
following method). For more details, check out the detailed post at
http://bit.ly/InitiliseOnLoadResources.

The EditorApplication callbacks
The editor, like a lot of things in Unity, also comes adorned with several callbacks to
mark when things happen. Exposed through the EditorApplication class, you can
gain access to the following events:

Event/delegate Description
Update This event is called every time the editor window is

updated or refreshed. Note that this is more often that
the game or scene update calls.

projectWindowItemOnGUI This event is called for each project item in view of
the Project window when it is drawn to the screen.

hierarchyWindowItemOnGUI This event is called for each item in the Hierarchy
window when it is drawn to the screen.

projectWindowChanged This event is called whenever an item is changed in
the Project window.

hierarchyWindowChanged This event is called whenever an item is changed in
the Hierarchy window.

http://bit.ly/InitiliseOnLoadResources

Chapter 11

[381]

Event/delegate Description
playmodeStateChanged This event is called when you start or stop the game

in the editor.
searchChanged This event is called whenever the search criteria is

changed in any Editor window.
modifierKeysChanged This event is used to track when a modifier key

(Alt, cmd, Ctrl, and so on) is pressed. So, you need to
change a view when a modifier key is pressed, and
you need to watch for this event/delegate.

These events can be added to any class/script in your Editor project folder, so you
can hook up a functionality to run when these events occur using the following
syntax. For example, let's employ the following methods in an editor script to fire
whenever we change the project's hierarchy:

void OnEnable()
{
 // Event / delegate registration, usually put in the OnEnable
 //or other function
 EditorApplication.hierarchyWindowChanged +=
 HierarchyWindowChanged;
}

//callback function for when event occurs
void HierarchyWindowChanged()
{
 //Scan hierarchy for new items
 //If found add something to the editor window
}

void OnDestroy()
{
 // Don't forget to unregister the delegate when it goes out of
 //scope or is not needed
 EditorApplication.hierarchyWindowChanged -=
 HierarchyWindowChanged;
}

This gives your editor scripts the ability to react to whatever the editor does by
attaching to the hierarchyWindowChanged event when the script is enabled (making
sure to unattach it when the script is disabled).

Onward Wary Traveler

[382]

Mixing it up
In more advanced cases, you can build a framework that combines with the previous
approaches effectively to create a complete editor manager. This needs to be
implemented in a class with a static constructor so that it is initialized as soon as the
editor starts.

To demonstrate this, let's create a simple script that will save the scene for us when
we hit the play button. First, create a new script called SaveSceneOnPlay in Assets\
Scripts\Editor and replace its contents with the following code:

using UnityEditor;
using UnityEngine;
[InitializeOnLoad]
public class SaveSceneOnPlay
{
 // Static class constructor,
 // this is initialized as soon as Unity Starts
 static SaveSceneOnPlay()
 {

 }
}

This gives us the framework for an [InitializeOnLoad] script that will run when
Unity starts. Then, we add our static function to do the work of saving the scene:

static void SaveSceneIfPlaying()
{

 if (EditorApplication.isPlayingOrWillChangePlaymode &&
 !EditorApplication.isPlaying)
 {

 Debug.Log("Automatically saving scene (" +
 EditorApplication.currentScene +
 ") before entering play mode ");

 EditorApplication.SaveAssets();
 EditorApplication.SaveScene();
 }
}

This method checks whether the editor is about to change the play state and is not
being played currently; if this is the case, then it saves the current changed assets and
the current scene.

Chapter 11

[383]

Next, we hook up this function with the playmodeStateChanged event delegate in
the static constructor as follows:

static SaveSceneOnPlay()
{
 EditorApplication.playmodeStateChanged += SaveSceneIfPlaying;
}

Now, with this script in our project, whenever we hit play, the script will
automatically save the project for us.

Building in-game menu structures
Usually left as an afterthought or slapped on at the end, menu systems are just
as important as your game in most aspects. How the user interacts/starts or
walks through all the sections of your game leading to the actual gameplay can
radically change how the user feels about your game. There's no point in having
a world-beating game if the first thing the user sees on starting your game is a
roughly drawn or shabby-looking menu system. The best menu systems I've seen
are actually seamlessly built into the game mechanics themselves.

The screens
First off, you need to work out the structure of your menu systems in advance; it
doesn't need to be heavy, just understand the flow of your game from start to finish
and then iterate on that design until it looks impressive and easy to use. The kinds of
screens and areas that you need to focus on are covered in the next section.

Splash screens
Splash screens tell the user about you and your brand; it's the first thing they always
see. If you animate a splash screen, try to keep it under 3 seconds; a good baseline
is to aim for between 1-2 seconds—anything shorter and users won't pay attention,
longer and you could just annoy them waiting to start the game.

A big debate I've seen between studios is whether you should allow the user to skip
splash screens, and there doesn't seem to be any firm sway either way.

A general piece of advice though is to not allow skipping as it can devalue your brand.

Onward Wary Traveler

[384]

Splash screens can either be separate screens or just fullscreen GUI textures that are
drawn using the GUI.DrawTexture function in your menu scripts as follows:

public Texture m_texture;
void OnGUI()
{
 GUI.DrawTexture(new Rect(0, 0, Screen.width, Screen.height),
 m_texture,
 ScaleMode.ScaleToFit,
 true);
}

Either method will work; the direction you take will largely depend on the style of
your game.

Loading screens
Plan to have a loading screen in advance. You may not actually use it initially, but
when your game runs on lower spec devices, you will find that the loading times will
increase, sometimes dramatically. Be prepared!

A good example of a loading scene tutorial can be found at http://chicounity3d.
wordpress.com/2014/01/25/loading-screen-tutorial/.

The main menu
The main menu is the obvious focal point when the player starts your game. Ideally,
this should flow in to your game rather than look like a bolt on. Try to use game
elements and moving/animated features.

This screen will be the first true impression of your game on the player.

Ensure that the player has a Continue option that returns them to their last point in
the game so that they start playing in as few clicks/taps as possible. If you support
the saving option, have a Continue button to jump on to the last save. If you use
levels, jump on to the next level that they can play.

Don't force the player to wade through mountains of screens just to continue
playing. I'm not saying don't have a new button or an option to select levels;
just add an additional Continue option so they can jump straight in to the game.

http://chicounity3d.wordpress.com/2014/01/25/loading-screen-tutorial/
http://chicounity3d.wordpress.com/2014/01/25/loading-screen-tutorial/

Chapter 11

[385]

Save slots/level selections
The norm these days is just to have a grid array with masses of numbers plastered
across the screen. These aren't bad per se; however, if you want to stand out, think
differently. Surprise the player and stylize these screens as much as possible, and
animate them and make them exciting/interactive.

Settings pages
Every game usually has an array of settings to control various elements of the game
itself. However, don't fall foul of some platform requirements with regards to these.

If you use audio, always have options to control the volume and a quick mute
option; you may find you have to set this programmatically on some platforms.

If you use location services, then you must have an option to turn this on or off.
It's a mandatory requirement on some platforms. Have a backup plan if the location
is not available.

Try and support closed captioning; it is fairly easy to do this, and it means you open
up your game to an even wider audience. Then, just have a setting to enable/disable
it. Highlight it in your description on the store; you'll get extra credit for this from
your users and reviewers.

About the screen
There are so many games that leave this out. This is not essential by any means,
but you can have a page that describes your game studio, the developers, any extra
credit for artists, resources, and so on. This screen generally doesn't have to be fancy,
but it helps.

Privacy policy
In an ever-growing world of security, privacy, and data protection, even if your
game doesn't use any online features or store any data about the user, it is still
essential to include a privacy policy.

On some platforms, it is becoming mandatory to have your policy stated somewhere
in the app/game.

Do not ship your game without some form of privacy policy.

Policies do not have to be extensive, and there are numerous examples of different
types of policies out there; a quick search or a good lawyer will put you in good stead.

Onward Wary Traveler

[386]

The following site lists several generators; just pick the one that is right for you to
get started:

http://www.applicationprivacy.org/do-tools/privacy-policy-generator/

Pause screens
Like a lot of common screens used throughout your game, from scene to scene, one
of the most common panels the player will see is the pause menu.

Whether it is a simple "on hold" screen or a full navigation system, you should take
care of how you design it. Some games truly build the pause screen into the game
and make it part of the game experience, while others just stop everything and throw
up a panel.

Think different and don't just do what is necessary if possible.

Unity provides a delegate that is called when the Unity player receives a Pause event
(if the platform supports it), which you can implement in the script as follows:

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour {
 public bool paused;
 void OnGUI() {
 if (paused)
 GUI.Label(new Rect(100, 100, 50, 30), "Game paused");

 }
 void OnApplicationPause(bool pauseStatus) {
 paused = pauseStatus;
 }
}

If you are using a state machine (such as in this title), you should then also progress
it to a paused state as well.

A simple way to stop all of the game updating is to set Time.
timeScale = 0; but if you have logic that requires updates on the
screen, then this may not work.

http://www.applicationprivacy.org/do-tools/privacy-policy-generator/

Chapter 11

[387]

Additionals (purchasing, achievements,
leaderboards, and so on)
Generally shown as big lists on screens, these areas are your main way to entice
the player to keep playing, whether it's to compete with friends for the highest
scores or work toward a number of achievements (for the completionists out there).
You should try to make these screens fun and informative. For levels, think about
linking it with friends of the player to see how they compete with each other, or offer
deals/promotions with what your game has to offer. As per a repeated statement in
this chapter, think about what makes your game different and go beyond the norm.

Social
In an ever-increasing social world, games need to react to this and think beyond
the boundaries of just the game. Whether you are enabling simple bragging on
levels/scores or if you are using social networks to find friends online and suggest
games, you have to consider the social link-in with your game to stay competitive.

Not that social integration is the be all and end all, but an ever increasing number of
players now actively look for it, so you should consider it at some level.

The flow
When you have decided on all the screens within your game, the next step is to
visualize (before cutting code) how they will all fit together. It doesn't take long and
can save you hours of head-scratching later.

You can either grab a piece of paper or download some of the many free tools
out there such as Freemind (a Mindmap tool at http://freemind.sourceforge.
net/wiki/index.php/Main_Page) and Expression design (now free from MS at
http://www.microsoft.com/en-gb/download/details.aspx?id=36180).

In the end, you want to have written down how each screen will connect to each
other, what state the game will be in for that transition, and any key information that
will need storing to prevent failure (since your game could be closed at any point by
the user). At all states (based on how your game is intended to work), the player's
current state should be preserved; whether you save it once or progressively will be
impacted by how your screens fit together.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://www.microsoft.com/en-gb/download/details.aspx?id=36180

Onward Wary Traveler

[388]

The following diagram shows a very simple example in the Mindmap tool of a game
screen flow:

Working with settings
Saving data is always important, especially in games where you need to keep track
of the player's progress or at the very least a track record of scores, plays, and other
important data.

Within Unity, there is only one method of storing data natively, and that is
PlayerPrefs. It is very simple to use and very flexible, although it does have a
hard limit of 1 MB of storage for the web player. It is possible to serialize data into
PlayerPrefs (and some developers do this), but generally if you need to serialize,
most developers build their own system.

Using PlayerPrefs
PlayerPrefs is simply a key dictionary to store individual variables as a key in the
Unity runtime data store. On its own, it has to read each and every scene at runtime,
which is why most games use a static class to keep the state stored in PlayerPrefs
and only use it between scenes for scene-specific configuration.

Chapter 11

[389]

Using PlayerPrefs is very easy and simple. The process is the same as any other
dictionary to save a setting for your call:

PlayerPrefs.SetInt("PlayerScore", currentScore);
PlayerPrefs.SetFloat("PlayerDamage", currentDamage);
PlayerPrefs.SetString("PlayerName", currentPlayerName);

Loading it back again when you need it again involves the following code:

currentScore = PlayerPrefs.GetInt("PlayerScore");
currentDamage = PlayerPrefs.GetFloat("PlayerDamage");
currentPlayerName = PlayerPrefs.GetString("PlayerName");

You can also supply defaults to values with a second parameter if the setting does
not yet exist, as follows:

currentScore = PlayerPrefs.GetInt("PlayerScore", 0);
currentDamage = PlayerPrefs.GetFloat("PlayerDamage", 0);
currentPlayerName = PlayerPrefs.GetString
 ("PlayerName", "New Player");

By default, Unity will save the settings to disk when the application is closed.
However, it's recommended that you save them intermittently when possible by
calling the following:

PlayerPrefs.Save()

Saving settings in Unity isn't necessarily a given and should not be
treated as safe. The settings file has a hard limit of 1 MB of storage on
the web player. If this is exceeded, it will throw an exception. This limit
is per application.
So, you can either drastically limit what settings you store
(recommended) or wrap your SET PlayerPrefs calls in a try/
catch statement to be safe if you plan to deploy to the web player.
Other platforms do not have this limitation.

There are also delete functions to remove either a single key or to clear the cache
completely.

For more information about PlayerPrefs, see the Unity reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.
html.

https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html

Onward Wary Traveler

[390]

Serializing your data
To store any kind of complicated data or structure, you need to serialize it into a
concatenated format. The result can then be stored in PlayerPref as mentioned
previously or saved on a disk or the Web.

There are several types of serializers you can use, including the following:

• Binary serialization: This is binary-formatted output and is non-human
readable

• XML serialization: This is the basic text output formatted into XML and is
human readable

• JSON serialization: This is a compressed standalone output in XML format;
it is human readable and allows you to have a manual implementation

• Custom serialization: This is DIY and is used to build your own serialized
output

Each serializer has performance or security gains. There isn't a one size fits all; just
choose the serializer that fits your purposes.

For our example, we will enhance our game to save our player's state. First, we will
create a helper function to do the serialization for us, so create a new script called
SerializationHelper in Assets\Scripts\Classes and replace its contents with
the following code:

using System.IO;
using System.Xml.Serialization;

public class SerilizerHelper {
}

Now, in this script, we will add two functions: one to serialize our player (pack it up)
and one to deserialize it (unpack it). The serialize function is as follows:

public static byte[] Serialise<T>(T input)
{
 byte[] output = null;
 //Create an XML formatter
 var serializer = new XmlSerializer(typeof(T));
 try
 {

Chapter 11

[391]

 //Create an in memory stream to hold our serialized output
 using (var stream = new MemoryStream())
 {
 //Serialize the data
 serializer.Serialize(stream, input);
 //Get the serialized output
 output = stream.GetBuffer();
 }
 }
 catch { }

 //Return the serialized output
 return output;
}

I've implemented the serialization function using C# generics (type <T>).
This allows you to build a function that will work for any type of class
you supply it with. This saves us from creating a serialization function for
each and every type of data we want to serialize.
To learn more about generics (a fairly advanced topic), check out the
MSDN documentation at http://msdn.microsoft.com/en-gb/
library/512aeb7t.aspx.
Not all platforms support all serializers, and also, some classes (such as
MemoryStream) are not available on all platforms. You will sometimes
have to tailor the approach you use to work with other platforms. If you
do, however, make sure you do it within the helper classes so that all
the platform-variant code is in one place and does not clutter up your
game. More on supporting multiple platforms is covered in Chapter 12,
Deployment and Beyond.

The code is commented to explain what each step actually does. If you wish, you can
store the output of this function in PlayerPrefs. It's more likely, however, that you
will either save it to the Web or to a disk using a different buffer than MemoryStream
(see the following section). Other serializers work pretty much the same way using a
different formatter (for example, binary serialization uses BinarySerialiser).

To deserialize the data, we simply do the reverse:

public static T DeSerialise<T>(Stream input)
{
 T output = default(T);
 //Create an XML formatter
 var serializer = new XmlSerializer(typeof(T));

http://msdn.microsoft.com/en-gb/library/512aeb7t.aspx
http://msdn.microsoft.com/en-gb/library/512aeb7t.aspx

Onward Wary Traveler

[392]

 try
 {
 //Deserialize the data from the stream
 output = (T)serializer.Deserialize(input);
 }
 catch { }
 //Return the deserialized output
 return output;
}

So as you can see, both patterns are very similar; this just reverses the flow (doesn't
cross the streams).

Serialization is important as it can be used anywhere you need to package data to be
saved or even transmitted over the wire for a cloud backup or even network play.

For more information about serialization, see the MSDN .NET reference guide at
http://msdn.microsoft.com/en-us/library/ms172360(v=vs.110).aspx.

Saving data to disk
A better way to manage your games to save data is to serialize it to disk, a method
you will use to determine how fast and secure this is.

Instead of using PlayerPrefs, it is better to manage the saving and loading of your
player data to a disk (or the Web; see the following sections). Thankfully, Mono (the
C# engine behind Unity3D) and JS provide common functions to access the disk
across all the platforms that Unity supports.

There are exceptions, however, due to platform limitations or
specializations in some platforms (such as Windows 8, where
all disks access are accessed asynchronously). In these cases,
Unity provides special classes to access platform components, for
example, the UnityEngine.Windows namespace.

You can also write your disk access routines that are more platform-specific if you
wish to make them more performant, but this requires you to write an interface and
your platform-specific code for each routine (see Chapter 12, Deployment and Beyond,
for information on DLL import).

http://msdn.microsoft.com/en-us/library/ms172360(v=vs.110).aspx

Chapter 11

[393]

Modeling your saved data
If we look to add the saving and loading options to our game, we need to take a few
things into account first. Consider that we just had a basic class for our player's state;
the following is just an example:

[Serializable]
public struct Player {

 public string Name;
 public int Age;
}

We attach the [Serializable] attribute to the class to tell the serializer
that it is serializable data. This isn't mandatory as most sterilizers will
work with most public classes and serialize the public properties of that
class, but not private properties though.

We could then simply save the class directly to the disk. However, because our
player definition inherits from our common Entity class and the Entity class
inherits from ScriptableObject (so we could use it as a common base for all the
characters of our game), this means we cannot perform a simple serialization.

If you wish, you could change this implementation, moving all the
properties from the Entity class to the Player class and then marking
it as [Serializable]; it's your choice. I've kept it this way to show you
the considerations needed to also serialize ScriptableObject. This is
especially useful when (like we have in this game) ScriptableObjects
are attached to our player, in this case, the player's inventory (the
inventory items are part of the project, and we attach them to the player).

So, as the data we want to serialize is more complex, the best thing to do is build a
separate Save State class, which will model the data we want to save.

By defining a Save model, we can also tailor it to contain more than just one type of
data; it could contain other specific save information, such as the time in the world,
enemy progress (if the enemy AI is also marching through the world), and the
current state of the global economy. There is something you should keep in mind: it
is a fairly common practice to create a separate Save model to save data.

Onward Wary Traveler

[394]

Alternatively, it is also a good practice to have several save files,
some of which you save very frequently (game/world state) and
others you only write when the player asks to (the main save).
The implementation comes down to your type of game and your
saving/loading needs.

To create a Save model based on our player class in the game, create a new script
called PlayerSaveState in Assets\Scripts\Classes and replace its contents with
the following code:

using System;
using System.Collections.Generic;
using UnityEngine;

[Serializable]
public struct PlayerSaveState {

 public string Name;
 public int Age;
 public string Faction;
 public string Occupation;
 public int Level;
 public int Health;
 public int Strength;
 public int Magic;
 public int Defense;
 public int Speed;
 public int Damage;
 public int Armor;
 public int NoOfAttacks;
 public string Weapon;
 public Vector2 Position;
 public List<string> Inventory;
}

This gives us the basic Save model for our player. Note that some of the properties
are different, specifically the player's inventory. We'll come back to this later.

Now that we have our model, we need a way to convert an active class in the game,
such as the player in it to its savable state and back again. Now we can write static
methods in the preceding class; however, there is a better way to do this using
Extension methods (like we did with WorldExtensions to convert WorldSpace to
ScreenSpace coordinates).

Chapter 11

[395]

So, add the following code to the very end of the preceding class (you could also just
create a new script for this as before, but for now, let's just add it to the same class;
this is just so we can see all of the conversion code in one place):

public static class PlayerSaveStateExtensions { }

Next, we need another extension method to convert a Player class
into the new PlayerSaveState class. So, add the following code to the
PlayerSaveStateExtensions class:

public static PlayerSaveState GetPlayerSaveState(this Player
 input)
{
 PlayerSaveState newSaveState = new PlayerSaveState();
 newSaveState.Age = input.Age;
 newSaveState.Armor = input.Armor;
 newSaveState.Damage = input.Damage;
 newSaveState.Defense = input.Defense;
 newSaveState.Faction = input.Faction;
 newSaveState.Health = input.Health;
 newSaveState.Level = input.Level;
 newSaveState.Magic = input.Magic;
 newSaveState.Name = input.Name;
 newSaveState.NoOfAttacks = input.NoOfAttacks;
 newSaveState.Occupation = input.Occupation;
 newSaveState.Position = input.Position;
 newSaveState.Speed = input.Speed;
 newSaveState.Strength = input.Strength;
 newSaveState.Weapon = input.Weapon;

 newSaveState.Inventory = new List<string>();
 foreach (var item in input.Inventory)
 {
 newSaveState.Inventory.Add(item.name);
 }

 return newSaveState;
}

This is fairly simple; we are just copying the properties across. Of course, you only
need to copy savable properties. If there are values the player cannot affect, then
there is no need to save them. Of note is that for the player's inventory, where we
only capture the asset name of each item. This is because we don't need to serialize
InventoryItems themselves (the game already knows about them), only the ones
the player has.

Onward Wary Traveler

[396]

If you have items that can wear out, then you will also need to create a
savable state for InventoryItem so you can save just the important bits
or changeable values.
Instead of creating a Save model, you can simply tag each property
you want to serialize with a [SerializeField] attribute (including
private variables) and those that you don't want to serialize with a
[NonSerialized] attribute.
However, in practice, this can cause trouble or confusion when debugging
your saved data. In my personal experience, it's better to define a separate
Save model so that you always know what you are dealing with.

Then, you simply need another extension method to do the reverse, as follows:

public static Player LoadPlayerSaveState(this PlayerSaveState
 input, Player player)
{
 player.Age = input.Age;
 player.Armor = input.Armor;
 player.Damage = input.Damage;
 player.Defense = input.Defense;
 player.Faction = input.Faction;
 player.Health = input.Health;
 player.Level = input.Level;
 player.Magic = input.Magic;
 player.Name = input.Name;
 player.NoOfAttacks = input.NoOfAttacks;
 player.Occupation = input.Occupation;
 player.Position = input.Position;
 player.Speed = input.Speed;
 player.Strength = input.Strength;
 player.Weapon = input.Weapon;
 player.Inventory = new List<InventoryItem>();
 foreach (var item in input.Inventory)
 {
 player.Inventory.Add(
 (InventoryItem)Resources.Load("Inventory Items/" + item));
 }
 return player;
}

This is pretty much the same in reverse, except for the inventory. We cannot simply
create a new inventory item because each InventoryItem is a ScriptableObject
that we created in our game in the editor.

Chapter 11

[397]

So to give the player the correct InventoryItems from our game's library, we
call Resources.Load to pull the item from our game project, passing the path to
InventoryItem and its name (which we saved earlier). Then, we add them to the
player's inventory.

Hopefully, you can see why I stuck with the previous model to give you a
more in-depth look at how to manage ScriptableObjects with serialization.

Making your game save and load functions
Using the serialization helper we created earlier and our Save model, we can now
implement our Save and Load functions. So, open up the GameState script from
Assets\Scripts\Classes and add the following property to mark our save location
on the disk:

static string saveFilePath =
Application.persistentDataPath + "/playerstate.dat";

This just saves us from writing this over and over again. Alternatively, if you are
using a slot-saving system, then this will need to be a list that would also need to be
saved (probably in a PlayerPrefs property). Next, we will add the Save function as
follows:

public static void SaveState()
{
 try
 {
 PlayerPrefs.SetString("CurrentLocation",
 Application.loadedLevelName);
 using (var file = File.Create(saveFilePath))
 {
 var playerSerializedState =
 SerializerHelper.Serialise<PlayerSaveState>
 (CurrentPlayer.GetPlayerSaveState());
 file.Write(playerSerializedState,
 0, playerSerializedState.Length);
 }
 }
 catch
 {
 Debug.LogError("Saving data failed");
 }
}

Onward Wary Traveler

[398]

So, when we need to save our game, we perform the following actions:

1. Save the player's current location to PlayerPrefs as it is very simple data.
2. Create a save file using Unity's File function (passing in the path to its

location).
3. Create a serialized copy of our player in a new PlayerSaveState property.
4. Finally, we write our serialized data to our save file.

With any operation that writes data outside of your game, always wrap
it in a try/catch block. This will ensure your game doesn't crash when
one out of a million bad things could happen.

This is all very simple. Then, to retrieve the saved data from the disk, first we'll add
a little helper function to tell us whether a save file already exists, which we can also
use elsewhere in the game, as follows:

public static bool SaveAvailable
{
 get { return File.Exists(saveFilePath); }
}

This just uses another function of the File class to test the existence of a file. Now,
we can add the Load method as follows:

public static void LoadState(Action LoadComplete)
{
 try
 {
 if (SaveAvailable)
 {
 //Get the file
 using (var stream = File.Open(saveFilePath,
 FileMode.Open))
 {
 var LoadedPlayer =
 SerializerHelper.DeSerialise<PlayerSaveState>
 (stream);
 CurrentPlayer =
 LoadedPlayer.LoadPlayerSaveState(currentPlayer);
 }
 }
 }

Chapter 11

[399]

 catch
 {
 Debug.LogError("Loading data failed, file is corrupt");
 }
 LoadComplete();
}

Again, this is just the reverse of saving the file with one difference: you have to test
whether the save file exists first, else it will result in an error in the worst way possible.

You should note that we do not return the saved data directly back to the calling
function; instead, we use a delegate to tell the caller when it is finished. The reason
for this is simple: accessing the disk is slow. So, we need to ensure we have finished
loading all of our data before we continue with our game, which is obviously very
important. You can, if you want, also do this with the Save function if you wish
as well.

Testing your Save and Load functions
As a simple test for our saving and loading functions, we can add a basic menu
to our game. So, create a new scene named MainMenu in Assets\Scenes and a
new script called MainMenu in Assets\Scripts and replace its contents with the
following code:

using UnityEngine;

[ExecuteInEditMode]
public class MainMenu : MonoBehaviour {

 bool saveAvailable;
 void Start()
 {
 saveAvailable = GameState.SaveAvailable;
 }
}

Here, we simply start by using a variable to see whether we have a saved file when
the menu is loaded.

Then, we just add an OnGUI method as follows:

void OnGUI () {

 GUILayout.BeginArea(new Rect((Screen.width / 2) -
 100,(Screen.height / 2) - 100, 200,200));

Onward Wary Traveler

[400]

 if(GUILayout.Button("New Game"))
 {
 NavigationManager.NavigateTo("Home");
 }
 GUILayout.Space(50);
 if (saveAvailable)
 {
 if (GUILayout.Button("Load Game"))
 {
 GameState.LoadState(() =>
 {
 var lastLocation = PlayerPrefs.GetString(
 "CurrentLocation", "Home");
 NavigationManager.NavigateTo(lastLocation);
 });
 }
 }
 GUILayout.EndArea();
}

This is a very simple menu with two buttons. The first uses the NavigationManager
script to load the Home scene, and the other only displays whether there is a load
available and then performs the following operations:

1. Loads the current state of the game.
2. Once the Load delegate is complete, it also retrieves the player's last location

from PlayerPrefs.
3. Then, it navigates to the last scene the player was in.

Attach the script to the camera, save the scene, and add it to the Build settings, and
we are almost set.

The last thing to do is ensure that we save the game. You could do this by
implementing it via a pause menu in the game, but for simplicity, I just added it to
the NavigationManager script to save the game whenever the player moves from
scene to scene.

So, open up the NavigationManager script and add GameState.SaveState() before
the call to FadeInOutManager in both the NavigateTo and GoBack methods.

Chapter 11

[401]

Backing up to the Web
An alternative to the basic saving of data to a disk, a lot of games now (especially
if they are targeting multiple platforms) support a web backend to store a player's
data. It doesn't need to be heavy; just use a player name/ID key and store the
serialized data.

The benefit of this approach is that the player can continue playing on any device,
regardless of which device they were last playing on.

Halo Spartan Assault implemented this feature and its sales skyrocketed
because players on Windows Phones could switch to playing on their
desktop or Xbox when they got home or vice versa. A big selling point!

Implementing this approach depends on the backend service you use for your data;
whether you roll your own or use Azure MWS, Amazon Web Services, or Parse,
which all have plugins that work for Unity3D.

The simplest approach is to use the serialization methods described previously
and post your data to a backend web service using the Unity WWW class. As a full
example would be too complex to demonstrate, what follows are just some code
snippets of the available Unity functions.

Granted you will have to write your web service on a server to
accept this data, which is out of scope of this book, but if you search
on www.codeproject.com or stackoverflow.com, you will find
many good examples of such implementations.

You could post the serialized data direct to a service using a function similar to the
following code (as an example only):

void UploadSaveData1()
{
 string url = "http://mybackendserver.com/Upload.php";
 var playerSerializedState =
 SerializerHelper.Serialise<PlayerSaveState>
 (CurrentPlayer.GetPlayerSaveState());
 WWW www = new WWW(url, playerSerializedState);

 StartCoroutine(WaitForRequest(www));
}

www.codeproject.com
stackoverflow.com

Onward Wary Traveler

[402]

IEnumerator WaitForRequest(WWW www)
{
 yield return www;

 //check for errors
 if (www.error == null)
 {
 Debug.Log("Successful: " + www.text);
 }
 else
 {
 Debug.Log("Error: " + www.error);
 }
}

This simply takes the byte array of the serialized saved data and posts it to your
server.

Alternatively, you can post data to the server as a form (more common):

void WebPost2()
{
 string url = "http://mybackendserver.com/Upload.php";
 var playerSerializedState =
 SerializerHelper.Serialise<PlayerSaveState>
 (CurrentPlayer.GetPlayerSaveState());
 var data = Convert.ToBase64String(playerSerializedState);

 WWWForm saveForm = new WWWForm();
 saveForm.AddField("saveData", data);
 WWW www = new WWW(url, saveForm);

 StartCoroutine(WaitForRequest(www));
}

This makes a traditional HTTP post with parameters in the body of the request.

Chapter 11

[403]

Getting the data from the server is much simpler. To do so, write a simple coroutine
to download the data that you can call when it's needed:

IEnumerator GetSavedDataFromWWW()
{
 string url = "http://mybackendserver.com/DownloadSaveData.php";
 WWW www = new WWW(url);
 yield return www;

 if (www.error == null)
 {
 var restoredData = DeserializePlayerState(www.bytes);
 }
 else
 {
 Debug.LogError("Error: " + www.error);
 }
}

Note that the examples are over-simplified to show you how the WWW class works.

For more information about the WWW class, see the Unity scripting reference guide
at https://docs.unity3d.com/Documentation/ScriptReference/WWW.html.

If you would rather not roll your services, you can use backends such
as Azure for which some budding teams have put together plugins for
Unity3D. Check them out at http://www.bitrave.com/azure-
mobile-services-for-unity-3d/.
There is even a promising Unity implementation that connects to
Google Services as well at https://github.com/kimsama/Unity-
GoogleData.
I've not seen any implementation for AWS as yet, but keep an eye out for
this or use the previous examples as a primer to start your own; if you do
see any, please share!

https://docs.unity3d.com/Documentation/ScriptReference/WWW.html
http://www.bitrave.com/azure-mobile-services-for-unity-3d/
http://www.bitrave.com/azure-mobile-services-for-unity-3d/
https://github.com/kimsama/Unity-GoogleData
https://github.com/kimsama/Unity-GoogleData

Onward Wary Traveler

[404]

Going further
If you are of the adventurous sort, try expanding your project to add the following
features:

• Either add the property drawers or even a complete custom editor for
the dialogues in the conversation system covered in Chapter 5, NPCs and
Interactions.

• Extend the Enemy classes in Chapter 9, Getting Ready to Fight, to better
configure them in the editor.

• Build your menus either in a single scene or multiple ones. Manage the
transition between each menu state/view.

• Take one of your own game ideas and plan the flow of the game from end
to end using a Mindmap tool. Go beyond just the menu and sketch out the
entire game.

Summary
As we look to make best use of the editor, we look to extend and expand on the
default views that Unity gives us.

Through the course of this chapter, we looked at all of the capabilities that Unity
gives us to make best use of these features. With these tools in hand, we can make
building our games a lot easier and customize Unity to fit our game (rather than
the other way a round). The editor is there to help us build our game, so why not
improve it.

Several developers graciously share their editor scripts and work in open source
libraries, so be sure to look around; you don't need to start from scratch.

We also looked into what is involved in finishing and packaging the game itself with
menus and important touch points if you want to stand out.

We covered editor customization, property drawers, custom editors, editor
windows, and Gizmos. We also covered architecting the game package with screens
and menus and working with saving and loading data.

In the next chapter, we look at packaging the game on to several platforms and
extending our game out on to the platform itself and providing platform-specific
features either in the game or beyond.

Deployment and Beyond
Building a game is one thing, and showing it to your friends and family is another.
However, eventually, you are going to want to ship and sell your game in one of the
most challenging markets, games!

Your title has to shine—it has to enable features that other titles don't have to stand
out and be noticed.

In this chapter, we will take a deep dive into what it takes to try and take advantage
of native platform features and make them available to your game that is running
in Unity3D. This could be for notifications support, active or live tiles, location
capabilities, or even in-app purchasing (Unity doesn't support in-app purchases
currently, and it only supports full purchase).

The following topics will be covered in this chapter:

• Getting to Unity from a native platform
• Giving Unity access to a native platform
• Plugins and what they offer, including building your own
• Building your asset projects (and making a fortune on the asset store)
• Hints and tips for marketing and shipping

Deployment and Beyond

[406]

Handling platform differences
Unity does a lot for developers to abstract us from the many platforms you can
deploy to. Most of the common functions, such as memory management, audio,
controller inputs, purchasing, and so on, are all implemented with a single generic
interface with Unity3D. This means you do not need to write a separate code to play
an audio file, or draw to the screen for each and every device or platform that you
want to support and deploy to. It really is a big time saver (ask anyone who has
written their own engine just how much fun they had doing everything multiple
times for each platform).

Unity does a lot, but it doesn't do everything. For the following fringe areas, you will
have to do the leg work to get these features implemented:

• Social integration (Facebook and so on)
• In-app purchasing
• Alternate physics or networking implementations

The list goes on. In a lot of cases, there are already pre-made assets on the Unity store
that have done the hard work to build these implementations. A fair few, you will
note, do not support all platforms. In these cases, it will get you most of the way, but
you will either have to wait for them to support platform X or write it yourself.

In all cases, assets need to integrate tightly with the underlying platform. They have
made use of the interoperability features available in Unity, which this chapter will
go through in detail, what each asset has to offer, and what it brings to the table.
Some are simple to perform, others not so much. Also, in some cases, you will
have to work with the Unity platform build system to push your changes onto the
platform (though not absolutely necessary, this will save you from having to repeat
every build or if you want to create your assets). The following diagram shows the
layout of how Unity works with the platforms it supports:

Chapter 12

[407]

In general, the patterns you need to support are as follows:

• Using different code paths with directives
• Accessing the native platform from Unity
• Calling the platforms from Unity
• Implementing reusable libraries that are natively compiled to

work on all platforms

Preprocessor directives
When you want the code to run in a particular way on one platform and in a
different way on another, you can use the precompiler directives to tell Unity to pick
one section of code over another (when it builds the project), or to simply ignore the
sections of the code. This is also true for the editor, which Unity considers a platform,
just like any other. So, we can have the code to run and deploy in the editor, but
restrict its execution when it's deployed to another platform. You could say the
special editor classes do this, but you may also want to do this with any other code.

Deployment and Beyond

[408]

The preprocessor directives (or the platform defines) that Unity recognizes are listed
in the following table:

Statement Description
UNITY_EDITOR This code will run only in the editor, not on a platform
UNITY_EDITOR_WIN This code specifically targets the editor on Windows (if you

have the code that runs differently than on a Mac)
UNITY_EDITOR_OSX This code specifically targets the editor on Mac (if you have

the code that runs differently than on a PC)
UNITY_STANDALONE This code targets the desktop platforms (Windows/Mac/

Linux)
UNITY_STANDALONE_OSX This code targets Mac OS X only (this includes Universal,

PPC, and Intel architectures)
UNITY_DASHBOARD_
WIDGET

This code targets the Mac OS X dashboard widget
deployments

UNITY_STANDALONE_WIN This code targets the Windows desktop only (excluding
Windows 8)

UNITY_STANDALONE_
LINUX

This code targets the Linux desktop clients only

UNITY_WEBPLAYER This code targets the Web players
UNITY_WII This code targets the Wii platform only
UNITY_IPHONE This code targets the iPhone platform only
UNITY_ANDROID This code targets the Android platform only
UNITY_PS3 This code targets the PlayStation 3 platform only
UNITY_XBOX360 This code targets the Xbox 360 platform only
UNITY_FLASH This code targets the Adobe Flash platform only
UNITY_BLACKBERRY This code targets the BlackBerry10 platform only
UNITY_WP8 This code targets the Windows Phone 8 platform only
UNITY_WP_8_1 This code targets the Windows Phone 8.1 app or Universal

projects on Windows Phone 8
UNITY_METRO / NETFX_
CORE

This code targets the Windows Store 8.0, Windows Store
8.1, and Universal 8.1 apps

UNITY_METRO_8_0 This code targets the Windows 8.0 platform only
UNITY_METRO_8_1 This code targets the Windows 8.1 apps or Universal

projects on Windows 8.1
UNITY_WINRT This code targets all the RT-based platforms, including

Windows Phone and Windows 8, regardless of the version

Chapter 12

[409]

Statement Description
UNITY_WINRT_8_0 This code targets all the RT-based platforms, including

Windows Phone 8.0 and Windows 8.0
UNITY_WINRT_8_1 This code targets all the RT-based platforms, including

Windows Phone 8.1, Windows 8.1, and the Universal apps

It's worth noting that you are not limited to just the Unity preprocessor
directives. You can use Visual Studio's directives or even create your own
by adding the following class to the top of your #define MyDirective
class (no semicolon). Then, you can block out sections of your code by
enabling or disabling this line. If a directive does not exist, it will always
be skipped.

To use these directives, we will simply declare them with an #if statement to
surround the code we want to target. For example, if you recall in Chapter 11, Onward
Wary Traveler, we learned that File classes don't work for Windows 8 because the
OS does not have the File class or more specifically, the System.IO class (if you
build the project for Windows 8 currently, you will get lots of such errors). So, to be
able to load the files for Windows 8, you need to use different code.

Updating the save system for another platform
To walk through the use of preprocessor directives, let's handle one such platform that
needs some attention, that is, Windows 8. In Unity's implementation on Windows 8
(due to its asynchronous way of working), they have added some specialized classes
because the default implementations of these classes are not available on Windows
8 (in this case, the File class). On Windows 8, you need to use the UnityEngine.
Windows.File class instead of the normal UnityEngine.File class.

So, open up the GameState script and update the following code by adding the
highlighted snippet:

 public static void SaveState()
 {
 try
 {
 PlayerPrefs.SetString("CurrentLocation",
 Application.loadedLevelName);
 var playerSerializedState =
 SerializerHelper.Serialise<PlayerSaveState>

Deployment and Beyond

[410]

 (CurrentPlayer.GetPlayerSaveState());
 #if UNITY_METRO
 UnityEngine.Windows.File.WriteAllBytes(saveFilePath,
 playerSerializedState);
 #else
 using (var file = File.Create(saveFilePath))
 {
 file.Write(playerSerializedState, 0,
 playerSerializedState.Length);
 }
 #endif
 }
 catch
 {
 Debug.LogError("Saving data failed");
 }
 }

In the preceding code, we have added a preprocessor directive for the UNITY_METRO
target (and moved up the playerSerializedState variable as it can be used by all
platforms).

Now when you build for Windows 8, it will use the first block of code. For all other
platforms, it will use the second block.

We have to perform something similar for the LoadState class as follows:

 public static void LoadState(Action LoadComplete)
 {
 PlayerSaveState LoadedPlayer;
 try
 {
 if (SaveAvailable)
 {
 #if UNITY_METRO
 var playerSerializedState =
 UnityEngine.Windows.File.ReadAllBytes(saveFilePath);
 LoadedPlayer = SerializerHelper.DeSerialise<PlayerSaveState>
 (playerSerializedState);
 #else
 //Get the file
 using (var stream = File.Open(saveFilePath,
 FileMode.Open))
 {

Chapter 12

[411]

 LoadedPlayer =
 SerializerHelper.DeSerialise<PlayerSaveState>
 (stream);
 }
 #endif
 CurrentPlayer =
 LoadedPlayer.LoadPlayerSaveState(CurrentPlayer);
 }
 }
 catch
 {
 Debug.LogError("Loading data failed, file is corrupt");
 }
 LoadComplete();
 }

Additionally, since the File class on Windows 8 only returns a byte array (byte[]),
we need an additional deserialize function to work with the byte arrays instead of
a stream. So, open the SerializationHelper script and add the following method:

public static T DeSerialise<T>(byte[] input)
{
 T output = default(T);
 //Create an XML formatter
 var serializer = new XmlSerializer(typeof(T));
 try
 {
 //Create an in-memory stream with the serialsed data in it
 using (var stream = new MemoryStream(input))
 {
 //Deserialize the data from the stream
 output = (T)serializer.Deserialize(stream);
 }
 }
 catch { }

 //Return the deserialized output
 return output;
}

If you want to keep things simple, you can also convert the load
function to always pass a byte array for all platforms, and get rid
of the first deserialization method.

Deployment and Beyond

[412]

Finally, one last fix. If you build for Windows 8 now, you will still have one error
that remains in the SerializationHelper script. This is because the implementation
of the MemoryStream class on Windows 8 doesn't have a GetStream method. Now,
you can use another preprocessor directive and use a different implementation for
Windows 8. However, in this case, if you simply switch to using the ToArray()
method, it'll give you the result you want.

This may not always be the case! If you need to encode data for text
or images, you may find that using ToArray doesn't fit because it
can output the data differently, and you may potentially lose some
data in certain formats. Just test and check whether it still behaves as
you require!

Build note
Currently, there have been a few inconsistencies among the builds of Unity. In
some builds, the project works fine; in others, it crashes when you try to use the
singleton classes.

In testing, it seems as though the execution order of singletons is altered, and
they are actually destroyed after they are created. This mostly seems to affect
the .NET-based builds.

If this happens, you will need to compensate with a minor update to the singleton
script in Assets\Scripts\Classes and update the OnDestroy method with the
following code:

 public void OnDestroy()
 {
 #if !UNITY_METRO
 applicationIsQuitting = true;
 #endif
 }

By specifying !UNITY_METRO, we are stating that this code should be run on all
platforms except Windows 8 (in the last tested build 4.5.2, Windows phone was
unaffected). If you find this occurring on other platforms, add them to the ignore list.
Consider the following instance:

#if !UNITY_METRO && !UNITY_ANDROID

This process doesn't actually destroy the singleton script as it is recreated each time it
is used (if it has already been destroyed). However, this flag is there to ensure that it
is not recreated when the application is actually shutting down.

Chapter 12

[413]

Getting access to Unity
The first and simplest bridge between the platforms is to allow access to your Unity
game from a native platform. As you can see in the following diagram, the first
challenge is to enable a platform to talk to your Unity package:

On the .NET platforms such as Windows and Windows phone, the following two
patterns are used to access the game embedded within the Unity player directly from
the host platform:

• The UnityEngine namespace from the Unity player
• The static classes in your Unity project

Accessing the UnityEngine namespace
Once you have built a project for the .NET platforms, you have a ready-to-run solution.

The player that deploys with the project also gives you indirect access to all
the components and game objects within your scenes through the UnityEngine
namespace.

For the game objects, you can simply query with the GameObject.Find method, as
shown in the following code example:

var _cube = UnityEngine.GameObject.Find("Cube");

The preceding code will give you a game object that you can manipulate however
you wish to, as if you were in Unity itself.

Deployment and Beyond

[414]

Alternatively, if you want to access scripts or non-standard content, you will need to
cast the objects you search for to use them properly. Refer to the following example:

var mainScript = (MainScript)
 UnityEngine.GameObject.FindObjectOfType(typeof(MainScript));

This will give you a reference to an instance of a class of the MainScript type in your
current scene.

All the functions are not scene aware. So, if you have to access the
items in specific scenes, you will need to track that manually through
a static property or through events (refer to the next section).
Additionally, if your script is used on several objects in the scene, be
sure to perform the search from an instance of an object.

The static classes
The second method to access your Unity project from .NET platforms (such as
Windows) is to expose specific variables outside the confines of your game or app.

To do this, declare a static variable within a class in your project, as shown in the
following example:

public class MyExternalCass : MonoBehaviour
{
 public static bool TurnOnAds;
}

Then, from your project, once you have built it, you can access this variable using the
following code:

MyExternalClass.TurnOnAds = false;

You will then have the logic in your game to make use of these variables.

It is highly recommended that you use classes that are single scripts
to expose variables in this fashion. Do not use this method on the
reusable classes.

Chapter 12

[415]

Access to the platform
If you reverse the previous implementation, there are cases where you need to access
a specific behavior on the native platform itself.

If you need a bit more interactivity from your Unity project, and you wish to enable
Unity to communicate directly to the platform, then the following are the two
common methods to achieve this:

• Static events (.NET platforms only)
• Plugins

Static events in your Unity project
We covered events back in Chapter 5, NPCs and Interactions, to enable a loose coupling
between an action and a dependency. We can reuse events to bridge the gap between
Unity and the .NET platforms such as Windows and Windows Phone.

We will begin by defining a static event in Unity, which is intended to indicate an
action the project needs the native platform to enact:

public static EventHandler PurchaseRequested;
public static void Purchase(string productID)
{
 if (PurchaseRequested != null)
 {
 PurchaseRequested(productID, null);
 }
}

Deployment and Beyond

[416]

The previous code sets up a delegate that can be used to enact an in-app purchase on
the native platform. When requested in code, it tells whatever object is listening that
the user wishes to purchase an item in the game.

Then, in the platform project, you will hook up to the delegate to perform the action
when the event is raised, for example, on Windows Phone to complete a purchase,
you would need to use the following code:

private void Unity_Loaded()
{
 //Hook up the IAP request to platform
 InAppPurchase.PurchaseRequested += PurchaseRequested;
}
private void PurchaseRequested(object sender, EventArgs e)
{
 var ProductId = (string)sender;
 //Purchase requests must be done on UI thread so use dispatcher
 Dispatcher.BeginInvoke(() => PurchaseItem(ProductId));
}

private async void PurchaseItem(string productID)
{
 //Do stuff to purchase the item from the store
}

The code hooks up to the previous PurchaseRequested event in the InAppPurchase
class, and when a purchase is requested, it is routed to the UI thread and the item is
purchased.

Each platform handles in-app purchase differently, or you could
choose to use a third-party in-app solution such as Lotaris. The final
implementation is up to you.

The example is kept simple just to demonstrate one method for your Unity project to
communicate with the platform solution.

Embedding platform DLLs
The only other method to enable the platform features in your Unity project is to
create your platform class library and embed that library in your project.

Chapter 12

[417]

To enable this, Unity has even more special folders in the Assets folders. The root
folder of this structure is the Plugins folder, shown as follows:

• Plugins (editor plugins)
• Plugins\x86 (Pro only)
• Plugins\x86_64 (Pro only)
• Plugins\Android

• Plugins\iOS

• Plugins\BlackBerry

• Plugins\WP8

• Plugins\Metro

On the mobile platforms, Plugins are supported in the free version.
You will need Unity Pro to build plugins for desktop systems (targeted at
x86/x64/any CPU).
Plugins are not supported on the current web player for security reasons;
there's no information yet whether this will also be true for WebGL in U5.

To enable your plugin to work for each platform, you will need to install it in each of
the previous folders per platform.

However, on the .NET platforms, you also need an attritional editor plugin
(explained in detail in the next section) that provides the basic interface for your
plugin due to the way .NET plugins are compiled.

The editor plugin (.NET only)
The editor plugin is just a shell or interface for how your plugin will operate. Unity
will use this while in the editor for testing/editing purposes.

The mock interface needs to resemble what your real plugin interface will look like in
order for other scripts and code to be able to access the real plugin on each platform.

Deployment and Beyond

[418]

For the DLL that is going to be placed in Assets\Plugins, it must
be a .NET 3.5 Framework class library. Just be sure to select this
framework while creating the editor Plugin DLL.

As a simple example, create a new Class Library project in your code editor
(Visual Studio or MonoDevelop), and then create a new C# class (usually, there is a
default Class1.cs class created with the class library). You can then define a plugin
interface in the new class for the editor that looks like the following code:

namespace MyAwesomePlugin
{
 public class MyPluginClass
 {
 public static string GetPlatform
 {
 get
 {
 return "This is the Editor";
 }
 }
 }
}

This simple class just exposes a static string to return the name of the platform.

The platform plugin
For the platform plugin, we will create another Class Library, which targets the level
of framework required by the target platform. For example, a Windows 8 (store app)
class library for the Windows 8.0 platform.

Then, create a new class (or reuse the default class) and enter the following code:

namespace MyAwesomePlugin
{
 public class MyPluginClass
 {
 public static string GetPlatform
 {
 get
 {

Chapter 12

[419]

 return "Welcome to Windows 8";
 }
 }
 }
}

As you can see, it has the same namespace, same class name, and same property as
our editor class, but now the implementation has changed.

This is just a very simple example; the real platform implementation
could have any platform-specific code within it, as it will be executed
against the platform when deployed.

Accessing the plugin
So, we have our editor (mock) and platform (Windows 8) plugins defined; you just
need to copy them to your Unity project. Now, perform the following steps:

1. Copy the DLL from the Windows 8 class library to Assets\Plugins\Metro.
2. Copy the DLL from the editor class library in Assets\Plugins

(if required—.NET only).

Although not critical, it's best to name the two DLLs and any
others you create for other platforms using the same DLL name.
This just makes it easier to manage later if you need to add more
to the plugin.

With your DLLs now in your project, you can access the plugin from anywhere in
your Unity project by calling the following code:

string WhatsMyPlatform =
 MyAwesomePlugin.MyPluginClass.GetPlatform;

When you run the project from the editor, this will return in the following manner:

This is the Editor

However, when you run this on an actual Windows 8 machine, this will return in the
following manner:

Welcome to Windows 8

Deployment and Beyond

[420]

Native plugins (Pro only)
The last integration approach is the one that takes the most effort but can have the
most benefit—it also has the advantage of being the most reusable.

If you are running the Pro version of Unity, you can import the native C++ DLLs
and their corresponding functionalities into Unity3D. Generally, this is used to
access a third-party function library such as Physics and Math or Physics. Some
assets on the Asset store also ship with native plugins to enable them to be as fast as
possible (and as a by-product, they ensure that you cannot copy their code from a
compiled library):

The plugin, once created, should be placed in the Plugins folder mentioned
previously, and then called from the code as follows:

[DllImport ("PluginName")]
private static extern float FooPluginFunction ();

This effectively gives you a pointer to the code that will run outside of Unity3D. By
calling the previous function, Unity interprets this and passes it on to the external
library to process and return from.

The advantage of using the native plugins is mainly speed. You get direct access to
a native platform and all the performance boosts it provides. It is by far the most
complicated way to enable such features, and deciding on using it would simply
come down to if you need that level of power.

In some cases, native plugins are the only way to access the underlying features of a
platform, especially if it is a feature that Unity itself does not support.

Chapter 12

[421]

Additionally, native plugins can be created to be used on all platforms so long as
they are not using platform-specific features; in which case, you would still need one
plugin per platform.

One very cool feature with native plugins is that you can even
interact with Unity3D's own rendering engine, just in case you feel
adventurous and want to spice it up a bit. For more details on this,
check out the Unity scripting guide at http://docs.unity3d.com/
Documentation/Manual/NativePluginInterface.html.
For more information about the native plugins, refer to the Unity
scripting reference guide at http://docs.unity3d.com/
Documentation/Manual/Plugins.html.

Pushing code from Unity3D
Unity provides several post-processing capabilities that allow you to both intercept
and override and also add your own processing to just about anything in the Asset
pipeline, anything from assets, scripts, and even the build process itself.

Processing assets
Post- or pre-processing of assets is very useful if you have custom-made or complex
assets that need additional work once they are imported in Unity. In most cases, this
is not needed as Unity does a lot of work for you by processing assets already.

If you do create any asset-processing scripts, remember they need to
be placed in Assets\Editor.

We won't go into too much detail here as it is a very large area; this section is mainly
to highlight its existence for those who were not aware. It is well-worth reading and
checking up on.

For more information about asset processing, refer to the Unity scripting
reference guide at https://docs.unity3d.com/Documentation/
ScriptReference/AssetPostprocessor.html.
For a nice and clean example of an asset processor, see the post on using
Unity to make a simple FBX model post processor at http://forum.
unity3d.com/threads/53179-Simple-AssetPostprocessor-
example.

http://docs.unity3d.com/Documentation/Manual/NativePluginInterface.html
http://docs.unity3d.com/Documentation/Manual/NativePluginInterface.html
http://docs.unity3d.com/Documentation/Manual/Plugins.html
http://docs.unity3d.com/Documentation/Manual/Plugins.html
https://docs.unity3d.com/Documentation/ScriptReference/AssetPostprocessor.html
https://docs.unity3d.com/Documentation/ScriptReference/AssetPostprocessor.html
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor-example
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor-example
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor-example

Deployment and Beyond

[422]

Processing the build
A more interesting area for study, especially if you are working with many platforms
and find yourself doing repetitive tasks on each platform (or when you create your
Unity assets and need to copy files to a platform to work), is the ability to extend
Unity3D's own project build process.

Simply create a normal class script in Asset\Editor, and then create your build
action function with the [PostProcessBuild] attribute and the build function
signature, as follows:

using UnityEngine;
using UnityEditor;
using UnityEditor.Callbacks;

public class MyBuildPostprocessor
{
 [PostProcessBuild]
 public static void OnPostprocessBuild(BuildTarget target, string
 pathToBuiltProject)
 { }
}

The attributes from the build processing give you the following information:

• BuildTarget: This tells you which platform is currently being built using the
BuildTarget enumeration.

• Path: This gives you the output path where the build project is being written.
This is useful if you want to copy additional files to it.

You can also control the order in which this function is processed by adding
parameters to the [PostProcessBuild] attribute as follows:

[PostProcessBuild(10)]
public static void OnPostprocessBuild(BuildTarget target,
 string pathToBuiltProject)
{ }

The order number is a definition of priority: the higher the number, the lower the
priority. By default, all scripts have a priority of 1. Scripts with lower numbers are
executed first (even negative numbers such as -10 are allowed for ultimate priority),
whereas scripts with higher numbers are executed last.

Chapter 12

[423]

This is especially useful if you want to have several actions execute on a successful
build and want to control the order in which they are executed.

You can also copy code files directly to the target solution, if you wish,
from your Unity project. If you do not want those files to be read or
executed by Unity, then simply suffix them with .ignore, and Unity
will ignore them. Just remember to rename them when copying them
to a platform.
For example:

MyPlatformClassFile.cs.ignore

For more information about build processing, see the Unity scripting reference
guide at http://docs.unity3d.com/412/Documentation/ScriptReference/
PostProcessBuildAttribute.html.

For a very full-featured example of highly customized build
processing, check out the AdRotator Unity plugin, which is open
source, on GitHub at:
https://github.com/Adrotator/AdrotatorV2/tree/
master/AdRotatorUnityPackage

Just check in the AdRotatorUnitySDK.Assets\Editor\
AdRotatorPostBuild.cs script.

Building your assets
What may seem daunting is actually one of the simplest tasks to perform in Unity
because it is just a two-click job.

If you recall in Chapter 2, Character Building, I said you will create a package that
contains all the default folders you can use for any project; so, let's do that.

http://docs.unity3d.com/412/Documentation/ScriptReference/PostProcessBuildAttribute.html
http://docs.unity3d.com/412/Documentation/ScriptReference/PostProcessBuildAttribute.html
https://github.com/Adrotator/AdrotatorV2/tree/master/AdRotatorUnityPackage
https://github.com/Adrotator/AdrotatorV2/tree/master/AdRotatorUnityPackage

Deployment and Beyond

[424]

First, create a new project (just because it's best to start from scratch) and then
add in whatever folders, assets, scripts, and so on that you need in your asset
package. In this case, just all the folders we will commonly use in any Unity
project are shown here:

Chapter 12

[425]

With that in place, just navigate to Assets | Export Package from the Unity editor
menu, and you will be presented with the following window:

Here, you can select all the assets currently in your project that you want bundled up
in your own reusable Unity asset package. Once you are happy with your selection,
just click on Export…. Then, Unity will simply ask where you want your package to
be created:

Deployment and Beyond

[426]

There you have it! Once saved, you will simply have your new asset package that
you can reuse on every project or even publish to the asset store and make millions
(well probably not if it's just a bunch of folders, you might need a bit more than that).
This package can be named as follows:

MyDefaultFolderStructure.unitypackage

Packaging gotchas
You have your game running fine in the editor, and you finally come to start testing
it on a platform. Life is good and surely you must be ready to deploy; sadly, this is
just the point where your next journey begins.

Actually, shipping your title brings to light a whole raft of new challenges. What
follows is a list of tips, tricks, and gotchas I've encountered while working with
many different teams and events:

Just because it runs in the editor DOES NOT mean it will run on a platform
I've come across too many teams that finish their game in the editor without even
trying to run it on at least one target platform. This can cause serious rework later
on as you may find that the code will simply not run on some platforms.
Another issue that can sometimes rear its head is when you have written code that
depends on the editor but you have not placed it in the Editor folder. When you
run it in the editor, it will work fine, but on a platform it will either crash or give
you a spurious message (worse on some platforms than others.)
If you are targeting the Web, then beware of the limitations of deploying to that
platform.
The best advice is to build to a platform at regular intervals, and make sure that it
actually compiles and will deploy to a device.
Just because it works for one platform DOES NOT mean it will work for all
Unity obviously supports many different platforms, and each has its own
peculiarities. If you mean to target multiple platforms, always check periodically
whether you can build and deploy to the various platforms. It doesn't have to
be too often, just find the right balance for you. See whether you can automate it
through the Unity command-line tools.
What is often missed is how each platform behaves; Windows/Windows Phone/
Windows 8 all run on the NET platform directly; however, iOS/Android/Mac/
BlackBerry all run using the Mono framework (which is an interpretation of .NET
for those platforms). They are both different in their own ways and handle similar
situations differently. Don't assume just because it works for one, it will work for
all. This is true for both JavaScript and C#.
As stated already, the Web is just different from everything else.

Chapter 12

[427]

For maximum exposure, try to focus on the lowest common denominator
It's always attractive to build to the highest resolution and target really high spec'd
machines; however, this is going to really limit your target audience.
When working with mobile projects, it is better to test and target minimum
specifications or devices, and make it run acceptably on that device. Any higher
spec device, and it will just fly.
If you are feeling adventurous, then build your game to switch on higher spec
features/assets when a high spec machine is detected. However, this will also
potentially increase the size of your final download, which may also put your
game out of budget for low spec devices.
It is a hard challenge and requires a different approach to tackle for each game you
make, so think hard about it.
A last resort (which most developers shy away from) is to build two versions (a
PRO HD version and a Basic low res version). There is no one right answer, so just
pick a path that fits your game, budget, and time.
Assets from the store can be your savior; they can also be your downfall
Be aware of what assets you are downloading in the scope of your title; check what
platforms it supports and make sure it's maintained.
There have been quite a few horror stories about not being able to move to
platform X because the plugins won't even compile, and finding an alternative is
very difficult because of the particular plugin that is integrated in a project.
It all comes down to balance—ask why you are using a certain asset, make
sure you understand why you are using it, and assess its long term fit before
committing yourself to it.
Beware of the platform requirements
Certain platforms have very specific requirements when it comes to games and/
or apps. Some have limits on project sizes, others (such as Windows Phone) have
certain operating restrictions (Windows Phone has a hardware Back button, which
must always "go back" for example).
Others have restricted device capabilities or require enforced policies to be in place
before you can target certain markets.
In the end, it comes down to assessing your titles fit for a certain device/market or
operating system, and making plans before you go all-in to adopt it. Make a plan,
understand what you are getting into, and then move forward.

Deployment and Beyond

[428]

Marketing your game
If you are the adventurous sort, try expanding your project to add the
following features:

• Start a developer blog (go wild)
• Build an end-to-end story for a title you have been dreaming to make
• Make your dream a reality and ship a game

Summary
Rounding out our last technical chapter, we have been through an interesting ride to
finally complete and get your project out there. We also dug deeper into how Unity
can interact with the platforms you deploy to, above all when involving the platform,
and have a plan on how you will implement that same feature on all the platforms
you want to deploy to, or else users will notice that some versions (yes, quite a few
have multiple) lack more than others.

So, we covered extending your Unity project onto the platform, plugins and their
extensions, building your very own reusable assets, and tips and tricks for marketing
your title.

Something you can try when you engage with a platform is to look at engaging
across platforms, building titles that work cooperatively, enabling either a true
multiplatform, multiplayer experience, or even building cooperative apps/games
(where the phone version of a game can act as a second screen for your tablet/
console version), as this is where dreams truly become alive!

Additional Resources
In the previous chapters, you worked toward building a 2D RPG game. We've
covered lots of tips and tricks with a lot of scripts and a couple of assets to boot.
The Unity community, however, is very helpful, and there are a lot more resources
available, not just the ones on the asset store.

In this appendix, I'll highlight a lot of exciting places to go to and get more assets for
your title, scripts, and other noteworthy tutorials that will help you grow on your
journey through Unity.

We will cover the following topics:

• Scripting resources
• Useful assets
• Sources of art and SFX
• Highlights of the Web

Scripting resources
Scripting in Unity is a large part of what goes into making a game. As this title
has shown, there are some good ways to script and some not so good ones. In this
section, you will find several resources that extend what has already been shown and
offer you more places to look and learn from.

Extending the editor
The editor is by far the most underutilized feature of Unity, partly because while
building your game, you focus on what goes into it, and partly because the
documents surrounding the editor are quite sparse.

Additional Resources

[430]

However, many a brave soul has ventured into this domain and extracted the secret
sauce. I've shown you the basics, so continue on to more advance uses of this hidden
tool by going through the following links:

• An interesting article by Mana Break walks through the process of
transforming the Unity editor into your own level-creation system, which
is well worth a read. It is available at http://mana-break.blogspot.
co.uk/2013/12/howto-use-unity3d-as-level-editor-for.html.

• A good friend of mine, Jamie Hales (of Pixelballon), gave a talk in the UK on
extending the editor, and he was kind enough to share it. He provided a lot
of information to the audience about interesting tricks to extend the editor
(even adding context menus). You can view the deck for the presentation and
the associated code at the following links:

 ° http://t.co/VaiQjjFLHg (PowerPoint)
 ° https://t.co/AiNj2XVSVm (sample code)

• Catlike Coding has an awesome array of Unity articles with very interesting
results. I checked out the rest of the articles, but there was one in particular
that highlighted some great use of editor features for asset editing in the
scene. Visit http://catlikecoding.com/unity/tutorials/editor/star/
to read more about this article.

Even more AI
AI is a tricky subject at best; the following are a few extra tips and tricks for Unity on
how to build on the AI elements in this title:

• There is a great article on the use of NavMesh in Unity, valid for both 2D
and 3D, at http://blackwindgames.com/blog/pathfinding-and-local-
avoidance-for-rts-rpg-game-with-unity/.

• UnityGems.com is a wealth of content for Unity developers, like the
beginner's tutorial to develop a character AI, which is available at
http://unitygems.com/basic-ai-character/.

• AI Gamedev is one of the biggest sites for AI in game development. Its
resources reach far and wide. Some content is free, but for most, there is a
subscription fee. You can visit http://aigamedev.com/ for more information.

http://mana-break.blogspot.co.uk/2013/12/howto-use-unity3d-as-level-editor-for.html
http://mana-break.blogspot.co.uk/2013/12/howto-use-unity3d-as-level-editor-for.html
http://t.co/VaiQjjFLHg
https://t.co/AiNj2XVSVm
http://catlikecoding.com/unity/tutorials/editor/star/
http://blackwindgames.com/blog/pathfinding-and-local-avoidance-for-rts-rpg-game-with-unity/
http://blackwindgames.com/blog/pathfinding-and-local-avoidance-for-rts-rpg-game-with-unity/
UnityGems.com
http://unitygems.com/basic-ai-character/
http://aigamedev.com/

Appendix

[431]

Procedural generation
Procedural generation is a passion of mine; I wished there had been enough pages to
do justice to it in this title. If you are looking to get into this fascinating subject, the
following are some really handy and practical places to look:

• First and foremost is the Procedural Content Generation Wiki, not really
about wiki but procedural generation's techniques and guidance. It is a great
place to refer to when you're curious or stuck. Visit http://pcg.wikidot.
com/ for more information.

• Another fascinating post on the Catlike Coding blog shows an implementation
to generate procedural worlds using fractals. You can see the post at http://
catlikecoding.com/unity/tutorials/constructing-a-fractal/.

• At tutsplus.com, they have a wide array of game development tutorials
in lots of frameworks/platforms and languages. One such article is on
procedurally modifying game assets. Check it out and the rest of the
site at http://gamedevelopment.tutsplus.com/tutorials/how-to-
procedurally-customize-your-unity-game-assets-with-code--
gamedev-12324.

• As mentioned earlier in Chapter 6, The Big Wild World, if you want
some fascinating procedurally generated maps for your game, check
out http://donjon.bin.sh/fantasy/world/.

Advanced coding
Coding doesn't need to be hard. The following are a few helpful sites to keep
you moving:

• Coding Jar has a number of advanced coding-style posts and tutorials.
There is one such tutorial that particularly stands out to deal with
Advanced Serialization, which is well worth a look. It is available at
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-
serialization/.

• We discussed messaging and other systems in this title, so it's worth
checking out SignalChain, which is a much improved messaging engine
for Unity. You can visit https://github.com/sebas77/SignalChain for
more information.

http://pcg.wikidot.com/
http://pcg.wikidot.com/
http://catlikecoding.com/unity/tutorials/constructing-a-fractal/
http://catlikecoding.com/unity/tutorials/constructing-a-fractal/
tutsplus.com
http://gamedevelopment.tutsplus.com/tutorials/how-to-procedurally-customize-your-unity-game-assets-with-code--gamedev-12324
http://gamedevelopment.tutsplus.com/tutorials/how-to-procedurally-customize-your-unity-game-assets-with-code--gamedev-12324
http://gamedevelopment.tutsplus.com/tutorials/how-to-procedurally-customize-your-unity-game-assets-with-code--gamedev-12324
http://donjon.bin.sh/fantasy/world/
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/
https://github.com/sebas77/SignalChain

Additional Resources

[432]

• IOC and dependency injection is a particularly interesting and advanced
topic that can simplify your project immensely (however at a cost of
increased technical understanding). If you feel so inclined, you can check
out the full free implementation written specifically for Unity at https://
github.com/strangeioc/strangeioc.

• Another view on abstraction and interfaces can be found on the blog
(not for the faint hearted) at http://victorbarcelo.net/using-
abstractions-interfaces-unity3d/?goback=%2Egde_3383466_
member_5818738285761015811#%21.

Other scripting resources
The following sites simply have large collections of scripts that you can freely use
and learn from. Some have already been mentioned in this title, but it is worth
calling them out here specifically:

• One of the best collections of scripts in one powerful library is maintained by
a former XNA developer, Nick Gravelyn. UnityToolbag is chock-full of tried
and tested scripts that are essential for any Unity developer. You can visit
https://github.com/nickgravelyn/UnityToolbag for more scripts.

• I've mentioned Unity wiki on several occasions in this title—always keep its
location close at hand. The script also has a wealth of information on other
aspects of Unity. It's community-driven, so keep that in mind. The scripts
wiki is available at http://wiki.unity3d.com/index.php/Scripts.

• Game produce a lot of valuable resources; at one a Free Achievement
Framework for Unity was born. It is worth reading and looking into. Visit
http://www.stevegargolinski.com/progress-a-free-achievement-
framework-for-unity/ for more information.

Useful assets
The asset store holds a vast array of good and not so good offerings, some free, some
reasonable, and some just down right ludicrous.

Based on what we have covered in this book, the following are some prebuilt
alternatives you can use if you don't want to roll your own; above all, they are highly
rated and reviewed:

• LeenTween isn't just a powerful tweening solution (a framework that will
create transitions smoothly between two points, like animations), but it also
has a very robust and easy-to-use messaging system bundled with it. It is
available at https://www.assetstore.unity3d.com/#/content/3595.

https://github.com/strangeioc/strangeioc
https://github.com/strangeioc/strangeioc
http://victorbarcelo.net/using-abstractions-interfaces-unity3d/?goback=%2Egde_3383466_member_5818738285761015811#%21
http://victorbarcelo.net/using-abstractions-interfaces-unity3d/?goback=%2Egde_3383466_member_5818738285761015811#%21
http://victorbarcelo.net/using-abstractions-interfaces-unity3d/?goback=%2Egde_3383466_member_5818738285761015811#%21
https://github.com/nickgravelyn/UnityToolbag
http://wiki.unity3d.com/index.php/Scripts
http://www.stevegargolinski.com/progress-a-free-achievement-framework-for-unity/
http://www.stevegargolinski.com/progress-a-free-achievement-framework-for-unity/
https://www.assetstore.unity3d.com/#/content/3595

Appendix

[433]

For more details on how to use LeanTween or its event dispatcher
(messaging), visit the DentedPixels website, http://dentedpixel.com/.
You might also find some other interesting topics there (my favorite being
procedural textures scripts).

Also what's noteworthy on the store is a very in-depth review of all
the competitor tweening solutions and the pros/cons of each. It is
there at http://dentedpixel.com/video/leantween-speed-
comparison-to-itween-and-hotween/.

• Dialoguer is quite fantastic for the price and offers not only a full
conversation and UI system, but also a rich node-based editing tool for
crafting conversations. It is available at https://www.assetstore.unity3d.
com/#/content/14854.

• Another engine that is fairly full featured is called Conversation Engine.
Similar to dialoguer, it has a node-based editor and UI features and includes
video tutorials on its use. It can be found at https://www.assetstore.
unity3d.com/en/#!/content/11967.
If you haven't had the time to build your own, it can be worth shopping
around; remember that you can always extend what you get with the lessons
you have learned in this title.

• A great post as a rundown of the top editor extension assets on the
store that is well worth a read is available at http://blogs.unity3d.
com/2014/04/17/extend-the-editor-to-infinity-and-beyond/.

• Managing multiple languages within your project can be a hassle, but as it
turns out, there are assets to help you deal with this; the most notable one is
Language Manager Asset. For full details, check out the author's post about
the asset at http://thecreativechris.wordpress.com/2014/04/03/
localization-support-with-unity/.

• If you like Voxels (scenes made up of thousands/millions of tiny cubes)
such as MineCraft, you might want to try out Cubiquity. It's a full Voxel
engine that you can use to build your games with mountains of power
as it's implemented in C++ and available at https://bitbucket.org/
volumesoffun/cubiquity-for-unity3d.

http://dentedpixel.com/
http://dentedpixel.com/video/leantween-speed-comparison-to-itween-and-hotween/
http://dentedpixel.com/video/leantween-speed-comparison-to-itween-and-hotween/
https://www.assetstore.unity3d.com/#/content/14854
https://www.assetstore.unity3d.com/#/content/14854
https://www.assetstore.unity3d.com/en/#!/content/11967
https://www.assetstore.unity3d.com/en/#!/content/11967
http://blogs.unity3d.com/2014/04/17/extend-the-editor-to-infinity-and-beyond/
http://blogs.unity3d.com/2014/04/17/extend-the-editor-to-infinity-and-beyond/
http://thecreativechris.wordpress.com/2014/04/03/localization-support-with-unity/
http://thecreativechris.wordpress.com/2014/04/03/localization-support-with-unity/
https://bitbucket.org/volumesoffun/cubiquity-for-unity3d
https://bitbucket.org/volumesoffun/cubiquity-for-unity3d

Additional Resources

[434]

Sources of art and SFX
It's well known that programmers don't do art (except for a very talented few):
more often than not, we end up with either bad code or programmer art. However,
there are many great resources to get assets for your title, even if they are only
placeholders until you find a designer who is worthy of your vision. The following
are some of the best places to start your journey from:

• One of the latest marketplaces to spring up plenty of assets is the new
GameDev Market. It is chock-full of 2D, 3D, textures, and even sample GUI
art of which some are paid and some free. If you wish, you can also sell your
own assets. The store is available at https://www.gamedevmarket.net/.

• If free art helps you begin your title (sometimes even finish it), then one of
the biggest sites is the OpenGameArt site. It has hordes of free-to-use assets,
from spritesheets to textures and even audio, and it is available at
http://opengameart.org/.

• The VG resource is a forum-based art system where you can download or
even request art and SFX. It is well worth a look (so long as you wear shades)
and is available at http://www.vg-resource.com/.

• Another source of freely available assets under a creative commons license is
the aptly named search site, http://search.creativecommons.org/.

• As we had an entire chapter in this title where we worked
with maps, it only seems fair to point out this free resource for
maps at http://freefantasymaps.org/.

• A good review of some of the other most common map solutions out there
for titles can be found at http://nevermetpress.com/six-rpg-map-
making-solutions-for-your-game#.U6V1LvldURq.

• Inspiration is hard to come by at times, so the following sites are well worth
browsing for the next big idea (some assets can be used, just check the license):

 ° http://commons.wikimedia.org/wiki/Main_Page

 ° https://www.tumblr.com/

 ° https://www.pinterest.com/

• If you are looking for some cool effects, visit
http://dm4331-sidm-s1-2012-06.blogspot.co.uk/2012/07/updates-
for-healing-and-fire-effects.html. I used assets from this site for the
blood splatter effects in Chapter 9, Getting Ready to Fight.

https://www.gamedevmarket.net/
http://opengameart.org/
http://www.vg-resource.com/
http://search.creativecommons.org/
http://freefantasymaps.org/
http://nevermetpress.com/six-rpg-map-making-solutions-for-your-game#.U6V1LvldURq
http://nevermetpress.com/six-rpg-map-making-solutions-for-your-game#.U6V1LvldURq
http://commons.wikimedia.org/wiki/Main_Page
https://www.tumblr.com/
https://www.pinterest.com/
http://dm4331-sidm-s1-2012-06.blogspot.co.uk/2012/07/updates-for-healing-and-fire-effects.html
http://dm4331-sidm-s1-2012-06.blogspot.co.uk/2012/07/updates-for-healing-and-fire-effects.html

Appendix

[435]

• Finally, sometimes projects don't go well and sometimes they die.
However, if you are like these guys, you can share your content from your
title. The following two links contain gigs of assets from http://www.
glitchthegame.com/, which met its demise; however, the authors of these
links gave all the game assets away for free:

 ° https://github.com/ThirdPartyNinjas/GlitchAssets

 ° https://github.com/ThirdPartyNinjas/GlitchAssets-
Inhabitants

Highlights from the Web
The following are just a general collection of respected resources out on the Web to
help the budding Unity developer hone their skills:

• The Unity3D learn site is an ever growing set of tutorials and videos to help
you out; it's always worth checking them out every so often. It can be found
at http://unity3d.com/learn.

• What's specifically worth calling out on the Unity site is the live training
session and its archive. Here, the Unity learning team takes requests and then
transfers them into live recorded sessions. Keep watching! There's always
something to learn from these videos. The videos are available at http://
unity3d.com/learn/live-training.

• On my blog, there are two major posts worthy of mention, which contain
links to just about every interesting thing I find useful for budding game
developers. I keep them updated as often as I can (you can also check the rest
of my blog as well). The blogs can be found at:

 ° http://darkgenesis.zenithmoon.com/so-you-want-to-be-a-
unity3d-game-developer/

 ° http://darkgenesis.zenithmoon.com/monster-set-of-free-
resources-for-game-design/

• The indie resources site is a wealth of information, and the assets can be
freely used in any game. Visit http://www.pixelprospector.com/indie-
resources/ for more information.

• There is a fascinating post with information on the recent release of Unity
4.5, useful tips, and changes in the latest update; it is available at http://
va.lent.in/interesting-things-in-unity-4-5-you-probably-didnt-
know-about/.

http://www.glitchthegame.com/
http://www.glitchthegame.com/
https://github.com/ThirdPartyNinjas/GlitchAssets
https://github.com/ThirdPartyNinjas/GlitchAssets-Inhabitants
https://github.com/ThirdPartyNinjas/GlitchAssets-Inhabitants
http://unity3d.com/learn
http://unity3d.com/learn/live-training
http://unity3d.com/learn/live-training
http://darkgenesis.zenithmoon.com/so-you-want-to-be-a-unity3d-game-developer/
http://darkgenesis.zenithmoon.com/so-you-want-to-be-a-unity3d-game-developer/
http://darkgenesis.zenithmoon.com/monster-set-of-free-resources-for-game-design/
http://darkgenesis.zenithmoon.com/monster-set-of-free-resources-for-game-design/
http://www.pixelprospector.com/indie-resources/
http://www.pixelprospector.com/indie-resources/
http://va.lent.in/interesting-things-in-unity-4-5-you-probably-didnt-know-about/
http://va.lent.in/interesting-things-in-unity-4-5-you-probably-didnt-know-about/
http://va.lent.in/interesting-things-in-unity-4-5-you-probably-didnt-know-about/

Additional Resources

[436]

• Then, there is a post that should not be far from your reading list; one that
contains huge number of tips from experienced Unity developers sharing
their woes and how they overcame them; additionally, it provides some
very useful tricks of the trade. It is available at http://www.reddit.com/r/
Unity3D/comments/1r63tq/new_unity_users_if_i_knew_then/.

• Some final hints and tips with the Top 50 best practices when working in
Unity are given at http://devmag.org.za/2012/07/12/50-tips-for-
working-with-unity-best-practices/.

http://www.reddit.com/r/Unity3D/comments/1r63tq/new_unity_users_if_i_knew_then/
http://www.reddit.com/r/Unity3D/comments/1r63tq/new_unity_users_if_i_knew_then/
http://devmag.org.za/2012/07/12/50-tips-for-working-with-unity-best-practices/
http://devmag.org.za/2012/07/12/50-tips-for-working-with-unity-best-practices/

Index
Symbols
2D

and 3D, mixing 188, 342
2D button behaviors

adding 274
2D colliders

adding 267
2D elements

drawing, shaders used 121-125
2D mode

about 11
sprites 12, 13
Unity 4.3 19
using 11, 12

2D physics joint options 18
2D physics system

and 3D physics system, comparing 18
2D project

about 28
creating 34, 35
object naming 30, 31
structure 28-30

2D scene
particle effects, using 342

2D sprite system
about 43
implementing 28
Sprite Editor 46-50
sprites, importing 44-46

3D
and 2D, mixing 188, 342

3D Mecanim system
URL 62

3D physics system
and 2D physics system, comparing 18

[ExecuteinEditMode] attribute 346
[InitialiseOnLoad] attribute

about 380
URL 380

A
abstraction

URL 432
access

obtaining, to Unity 413
active elements

adding 119
AdRotator

about 261
URL 261

AdRotator Unity plugin
URL 423

ad-supported option 259-261
ad types 260
advanced coding 431, 432
Advanced Serialization

URL 431
adventurer's overlay, RPG UI 290, 291
AI

about 223, 224
algorithms 224
flocking 223
neural networks 224
path-finding 223
rule-based expert systems 223
state machines 223

[438]

AI character
URL 430

AI elements
building 430

AI Gamedev
about 430
URL 430

animation
Dope Sheet 19
particles, adding to 351-353

animation clip, Animator Dope Sheet
selecting 71

animation clips
about 60, 61
adding 76, 77
automatic creation 67-70
idle animation clip, adding 75, 76
manual creation 64-66
run animation clip, adding 76, 77
setting up 64

animation components, sprite
about 60
animation clips 60, 61
animation controllers 60
Animator component 61, 62

animation controllers
about 60
accessing, from script 79, 80
setting up 62-75

animation curves
configuring 205, 206

animation properties, Animator
Dope Sheet 71

animation states
CharacterIdle state 78
CharacterRun state 78
connecting 77-79

Animator component 61, 62
Animator Dope Sheet

about 70
animation clip, selecting 71
animation properties 71
dope/curve view 72
sample rate (frames per second) 71
timeline window 72
time/recording controls 71

area
focusing, in battle scene 325, 326

Art
sources 434
URL 10

Artificial Intelligence. See AI
assets

building 423-426
obtaining 10
processing 421
sites, used for 10
URL 10

asset store
about 432, 433
URL 360

attack
performing 340, 341

Attack object 41
audio

URL 10
Awake function 79, 107, 282
Azure

URL 403

B
BackgroundParallax script 120
BackgroundPropSpawner.cs script

examining 121
backgrounds

adding 119
foreground objects, adding 120
parallaxing 119, 120

balancing, battle scene 327
battle

expanding 357
flair, adding 301, 302
starting 300

BattleManager script
preparing 327, 328

battle scene
about 230
area, focusing 325, 326
balancing 327
BattleManager state, updating with

selections 319-321

[439]

BattleManager state, updating with
weapon 322, 323

command bar, adding to 313-316
command button, selecting 317
leveling up 326
project, running 356
weapon, selecting 316
weapon selection, managing from

command bar 318, 319
battle state machine 293
battle state manager

about 293-296
accessing, from code 296-300

behaviors
planning 40

behaviors, common game object
defining 41, 42

behaviors, player's character
defining 42

binary serialization 390
Box2D

about 18
physics collision options 18

Box2D physics system 18
build

processing 422, 423
build note 412
build, processing

attributes 422
BuildTarget attribute 422
Path attribute 422
URL 423

build settings
updating, to include new scenes 216, 217

BuildTarget attribute 422
built-in property drawers 361, 362

C
camera

FixedUpdate method and LateUpdate
method, comparing 102, 103

FollowCamera script 107, 108
resolution 104-107
Update method and FixedUpdate method,

comparing 102, 103

Update method and LateUpdate method,
comparing 102, 103

working with 99-101
CanNavigate 117
C# article

URL 245
Cartographers' Guild

URL 185
Catlike Coding

URL 430
Character controller components 57
CharacterIdle state 78
CharacterMovement.cs script

animation controllers, accessing from 79, 80
updating 79

CharacterRun state 78
classes

about 35
game structure 37-40
object orientated design 36, 37

click, on screen
moving by 198, 199

Click through rate (CTR) 260
code

enemy profile, setting up 333
pushing, from Unity3D 421

collision detection script
activating 111-114

collision function 118
command bar

adding, to battle scene 313-316
defining 303-310

command button
defining 311-313

common game object
about 38
Attack 41
player object 39
TakeDamage 41

common game object behavior
defining 41, 42

compiler predirectives
about 107
URL 107

components
about 31
accessing, shortcut used 32

[440]

used, by supplying type 33
used, via referencing 32, 33

consumables, in-app purchase option 262
context-sensitive overlay, RPG UI 291, 292
contextual menus

adding, to MenuItem attribute 376-378
CONTEXT 377
name 377
object 377

controller, enemy
creating 329, 330

Controller property 62, 74
Conversation Engine

about 433
URL 433

coroutine 213
creative commons license

URL 434
C# script

creating 111
C# switch statement

using 226
Cubiquity

URL 433
Curves feature

used, to improve running of sprite
animation 84, 85

curve view, Animator Dope Sheet 73
custom editors

about 365-369
URL 369

custom property drawers 362-365
custom serialization 390

D
data

saving, to disk 392
serializing 390-392

death animation 348-350
deathly sprites

adding 343
Default shader 124
DentedPixels website

URL 433
Dialoguer

about 433

URL 433
Diamond-square algorithm 189
Diffuse shader 124
disk

data, saving to 392
dope view, Animator Dope Sheet 72
dots

connecting 353, 354
durable/nonconsumable, in-app

purchase option 262

E
eCPM 260
EditorApplication callbacks 380, 381
editor, extending

about 359, 360, 429, 430
custom editors 365-369
editor menus, building 374
editor window 369-372
Gizmos 372, 373
property drawers 360, 361
scripts, running in Editor folder 378, 379

Editor folder
scripts, running in 378, 379

EditorGUI controls
URL 361

EditorGUILayout
URL 372

editor menus
building 374
contextual menus, adding to MenuItem

attribute 376-378
MenuItem attribute, adding 374
MenuItem attribute, disabling 375
MenuItem attribute, enabling 375
shortcut keys, adding to MenuItem

attribute 376
editor plugin (.NET only) 417, 418
editor updates 22, 23
editor windows

about 369-372
URL 372

empty game objects
creating 266

encumbrance system, inventory pattern 256

[441]

enemy
adding 231-235
beefing up 328
controller, creating 329, 330
enemy profile, setting up in code 333
Goblin prefab, updating 332, 333
profile, creating 329, 330

Enemy class 37
EnemyController class

selection logic, adding to 335-339
enemy profile

setting up, in code 333
Entity class 39
Entity object

about 38
implementing 38, 39

event systems
fixed systems 220
planning 219, 220
random generation 220

expansion tips, sprite animation 85
Expression design

URL 387
extension methods

URL 199
extra scenery 92-94

F
fading process

starting 213
used, by level loading update 215

FBX model post processor
URL 421

fill rate 260
Finite State Machines

(FSM). See state machines
fixed maps

about 184-186
URL 185

fixed systems 220
FixedUpdate method

about 102, 247
and LateUpdate method,

comparing 102, 103
and Update method, comparing 102, 103

float parameter
updating 80

flocking, AI 223
FollowCamera script 107, 108
foreground objects

adding 120
Free Achievement Framework

URL 432
Freemind

URL 387
free resource, maps

URL 434

G
game

marketing 428
settings 385

GameDev Market
URL 434

game object
tagging 113

GameState class 243
game structure

common game object 38, 39
general techniques, procedural generation

Diamond-square algorithm 189
iterated function systems 189
L-systems 189
midpoint displacement algorithm 189
perlin noise system 189
simplex noise system 189

generated maps
about 184-187
in-game generated maps 187, 188

generators
URL 386

generics
URL 391

GetComponent function 33
GetRouteInfo 117
GetWindowWithRect function 370
Gimzo-driven design tutorial

URL 373
GitHub

URL 23

[442]

Gizmos
about 372, 373
URL 373

GL library
URL 212

GoblinEnemy game object
creating 354, 355

Goblin prefab
restructuring 344, 345
updating 332, 333

Goblin, with 3D particles
2D and 3D, mixing 342
about 342
death animation 348-350
deathly sprites, adding 343
dots, connecting 353, 354
GoblinEnemy game object,

creating 354, 355
Goblin prefab, restructuring 344, 345
material, creating for particle effect 343
particle effects, used in 2D scene 342
particles, adding 345-348
particles, adding to animation 351-353
problems 355

Google AdMob publisher 260
gotchas

packaging 426, 427
GUI.DrawTexture function 384
GUI.DrawTextureWithTexCoords

function 285
GUI system, Unity

about 302
command bar 303-310
command bar, adding to battle

scene 313-316
command button 311-313

H
handles

URL 369
hero character

controlling 54-57
importing 53, 54

hierarchyWindowChanged event 380
hierarchyWindowItemOnGUI event 380

home town
assets, creating 88
extra scenery 92-94
setting up 87, 88
town background, adding 89
town buildings 90, 91

I
Icons to Characters RTP 264
idle animation clip

adding 75, 76
import settings, sprites

Packing tag 45
Pixels to units option 45
Sprite Editor button 46
Sprite Mode 45
Texture type 45

impressions 260
in-app purchase option

about 261, 262
consumables 262
durable/nonconsumable 262

indie resources
URL 435

in-game currency option 263
in-game generated maps 187, 188
in-game menu structures, building

building 383
flow 387
screens 383

Inneractive publisher 260
input

managing 199-201
input order

managing 204
input priorities

managing 201-203
interfaces

URL 432
inventory

laying out 255
managing 282-285

inventory items
creating 268, 269

inventory pattern
encumbrance system 256

[443]

mini game 257
real world, implementing 258
Rule of '99 255
slot-based system 257

items
about 253
properties 253, 254

iterated function systems 189

J
JSON serialization 390

L
Lamdas

URL 204
Language Manager Asset

URL 433
large map

building 183
LateUpdate method

about 103
and FixedUpdate method,

comparing 102, 103
and Update method, comparing 102, 103

LeenTween
about 432
URL 432

Lerp function 201
leveling up, battle scene 326
level loading

updating, to use fading 215
load function

implementing 397-399
testing 399, 400

LookLike function 23
Lotaris

URL 262
low-level graphics library

URL 211
L-systems 189

M
MainCamera GameObject 192
main character

importing 51-53

main menu, screens 384
Mana Break

URL 430
map

adding 192
MapPoint prefabs

creating, for reuse 194-196
map types

fixed maps 184
generated maps 184

material
creating, for particle effect 343

Material property 210
Mecanim AI considerations 355
Mecanim animation system 59
Mecanim system 19
Mecanim tool 20
MenuItem attribute

adding 374
contextual menus, adding to 376-378
disabling 375
enabling 375
shortcut keys, adding to 376

MenuItem class
URL 378

Microsoft PubCenter publisher 260
midpoint displacement algorithm 189
Mindmap tool

screen flow 388
mini game, inventory pattern 257
missing random piece 246, 248
modern floating UI approach, RPG UI 292
modifierKeysChanged event 381
Mono compiler

URL 24
MonoDevelop 4.01 23, 24
MonoDevelop editor

URL 23
movie textures 24
multiple cases

planning for 227

N
native plugins (Pro only)

about 420
advantage 420

[444]

URL 421
NavigateTo function 118
NavigateTo method 276
navigation GUI

animation curves, configuring 205, 206
displaying 198, 199
input, managing 199-201
input order, managing 204
input priorities, managing 201-203
start location, fixing 207, 208

NavigationManager script
about 191
updating 197, 198

NavigationPrompt script
about 203
updating 196

Nav Mesh
about 21, 22
URL 430

neural networks, AI 224
new scene

building 230, 231

O
object naming, 2D project 30, 31
object orientated design 36
Object Orientated (OO) system 36
OnDestroy method 245
OnGUI method 112
OpenGameArt site

URL 434

P
paid

with trial 258, 259
paid-only pattern 258
parallaxing 119, 120
particle effects

about 342
material, creating for 343
used, in 2D scene 342

particles
adding 345-348
adding, to animation 351-353

Path attribute 422
path-finding, AI 223

payment pattern
about 258
ad-supported option 259-261
in-app purchase option 261, 262
in-game currency option 263
paid-only pattern 258
paid, with trial 258, 259

perlin noise system 189
Pixel snap option 125
places of interest

adding 193
platform, accessing

about 415
platform DLLs, embedding 416
static events 415, 416

platform differences
handling 406, 407
native plugins (Pro only) 420
platform, accessing 415
preprocessor directives 407-409
Unity access, obtaining 413

platform DLLs, embedding
about 416
editor plugin (.NET only) 417, 418
platform plugin 418, 419
plugin, accessing 419

platform plugin 418, 419
player character's behavior

defining 42
Player inventory behavior

adding 285, 286
player inventory definition

updating 274
player object 39, 40
PlayerPrefs

URL 389
using 388, 389

PlayerSprite object 81, 83
playmodeStateChanged event 381
plugin

accessing 419
precompiler directives, Unity

URL 316
Prefab option 194
preprocessor directives

about 407-409
build note 412

[445]

save system, updating for another
platform 409-412

UNITY_ANDROID 408
UNITY_BLACKBERRY 408
UNITY_DASHBOARD_WIDGET 408
UNITY_EDITOR 408
UNITY_EDITOR_OSX 408
UNITY_EDITOR_WIN 408
UNITY_FLASH 408
UNITY_IPHONE 408
UNITY_METRO_8_0 408
UNITY_METRO_8_1 408
UNITY_METRO / NETFX_CORE 408
UNITY_PS3 408
UNITY_STANDALONE 408
UNITY_STANDALONE_LINUX 408
UNITY_STANDALONE_OSX 408
UNITY_STANDALONE_WIN 408
UNITY_WEBPLAYER 408
UNITY_WII 408
UNITY_WINRT 408
UNITY_WINRT_8_0 409
UNITY_WINRT_8_1 409
UNITY_WP8 408
UNITY_WP_8_1 408
UNITY_XBOX360 408

privacy policy, screens 385
problems, project

animation system 356
looping 356
Mecanim AI considerations 355
states 356

Procedural Content Generation Wiki
URL 189, 431

procedural generation 189, 190, 431
procedural generation reddit

URL 190
profile, enemy

creating 329, 330
project

running, in battle scene 356
projectWindowChanged event 380
projectWindowItemOnGUI event 380
properties, inventory items

configuring 269
property drawers

about 360, 361

built-in property drawers 361, 362
custom property drawers 362-365
examples 361
URL 361

pseudo-random 220
publishers, ad-supported option

Google AdMob 260
Inneractive 260
Microsoft PubCenter 260
Smaato 260

R
random code/generation

adding 221, 222
randomness

about 220, 221
drawback 221
random code/generation, adding 221, 222
True Random Number Generators

(TRNGs) 223
URL 221

Rect variable 365
resolution, camera 104-107
Rigidbody object 33
Rigidbody 2D properties video

URL 55
Rigidbody 2D settings 55
Role Playing Game (RPG) 7
RouteInformation 117
RPG UI overlays

about 290
adventurer's overlay 290, 291
context-sensitive overlay 291, 292
modern floating UI approach 292, 293
need, balancing of players 293

rule-based expert systems, AI 223
Rule of '99, inventory pattern 255

S
sample rate, Animator Dope Sheet 71
saved data

modeling 393-397
save function

implementing 397-399
testing 399, 400

[446]

save system
updating, for another platform 409-412

scene
building 94
sorting layers 96
sorting layers, updating 97-99
sprite, sorting 96
town background, adding 95, 96

screens
about 383-385
additionals 387
loading 384
main menu 384
pausing 386
privacy policy 385
settings pages 385
slots/level selections, saving 385
social integration 387
splash screens 383

screen space 190
ScriptableObject class 39
scripting resources

about 429, 432
advanced coding 431, 432
AI elements, building 430
editor, extending 429, 430
procedural generation 431

scripts
running, in Editor folder 378, 379

scripts, Editor folder
[InitialiseOnLoad] attribute 380
alternative approaches 379
approaches, mixing 382
EditorApplication callbacks 380, 381

scripts wiki
URL 432

searchChanged event 381
selection circle prefab

creating 334, 335
selection logic

adding, to EnemyController class 335-339
sensors 230
serialization

URL 392
serializers

binary serialization 390
custom serialization 390

JSON serialization 390
XML serialization 390

SetPosition function 311
settings, games

data, saving to disk 392
data, serializing 390-392
load function, implementing 397-399
load function, testing 399, 400
PlayerPrefs, using 388, 389
saved data, modeling 393-397
save function, implementing 397-399
save function, testing 399, 400
web backend, implementing 401-403

several paths
defining 115-119

SFX sources 434, 435
shaders

URL 125
used, for drawing 2D elements 121-125

shop
building 254, 255
entering 278-281
exiting 276, 277
managing 269-273
stocking 274-276

shop assets
gathering 263-265

shop layouts
examples 254

shopping
need for 251, 252

shop scene
building 265-267

shortcut keys
adding, to MenuItem attribute 376

simplex noise system 189
sites

used, for assets 10
sites, assets

Art 10
Audio 10

slot-based system, inventory pattern 257
slots/level selections

saving 385
Smaato publisher 260
SortingLayer properties

URL 346

[447]

sorting layers
about 96
updating 97-99

spawning points
setting up 236-246

splash screens 383
sprite animation

about 59
animation controller, setting up 74, 75
animation states, connecting 77-79
controllers, accessing from script 79, 80
expansion tips 85
extending 80-84
idle animation clip, adding 75, 76
run animation clip, adding 76, 77
run, improving with Curves feature 84, 85
running, prerequisites 73

Sprite Editor
about 14, 46, 47
region manipulation 50

Sprite Editor button 46
Sprite Editor functions

sprite splitter (slicer) 47-49
view controls 49

sprite meshes 17
sprite region manipulation 50
Sprite Renderer 13, 14
sprites

about 12, 13
animation Dope Sheet 19
Box2D physics system 17, 18
characteristics 13
importing 44
sorting 96
Sprite Editor 14
sprite meshes 17
Sprite Renderer 13, 14
spritesheets 15
texture atlases 16

spritesheets 15
sprite splitter advanced options

Method 48
Minimum size 48
Pivot 48

sprite splitter modes
automatic 47, 48
grid (manual) 48

Sprite Texture option 125
Star Command game

URL 301
Start function 203
start location

fixing 207, 208
state machines

about 224
C# switch statement, using 226
multiple cases 227
state managers 228, 229
states, defining 225, 226
using 224

state machines, AI 223
state managers 228, 229
states

Attack 233
Defend 233
defining 225, 226
Idle 233
Run Away 233
transitions 234

static classes 414
static events

using 415, 416
static properties 243
StopAllCoroutines function 213
structure, 2D project

about 28, 29
objects, grouping by type 29

system
designing, questions 252

T
TakeDamage object 41
target

selecting 334
selection circle prefab, creating 334, 335
selection logic, adding to EnemyController

class 335-339
terms, ad-supported option

ad types 260
Click through rate (CTR) 260
eCPM 260
fill rate 260
impressions 260

[448]

texture atlases 16
Texture Atlas packing feature

URL 45
this keyword 199
thumb rule 88
Tiled

URL 187
time controls, Animator Dope Sheet 71
timeline, Animator Dope Sheet

about 72
keyboard shortcuts 72

Tint option 125
touch, on screen

moving by 198, 199
town background

adding 89, 95, 96
town buildings 90, 91
towns

with borders 108-110
transitions

about 209-214
level load updating, to use fading 215

True Random Number Generators
(TRNGs) 223

tweening solutions
URL 433

U
Unity

access, obtaining to 413
Unity3D

assets, processing 421
build, processing 422, 423
code, pushing from 421

Unity3D learn site
URL 435

Unity 4.3
advantages 21
editor updates 22, 23
Mecanim tool 20
MonoDevelop 4.01 23, 24
movie textures 24
Nav Mesh 21, 22

Windows 8.1 support 20
Windows Phone API, improvements 20

Unity access, obtaining
static classes 414
UnityEngine namespace, accessing 413

UnityEngine namespace
accessing 413

Unity games starter kit
URL 27

Unity, Google Services
URL 403

Unity GUI (uGUI) 285
Unity New Project wizard 34
Unity Patterns

URL 99
Unity sample projects

URL 99
UnityToolbag

about 432
URL 346, 432

Unity wiki scripts
URL 99

Update event 380
Update function 80, 207
Update method

about 102, 204
and FixedUpdate method,

comparing 102, 103
and LateUpdate method,

comparing 102, 103
uTiled

URL 187

V
Vector3 property 81
VG resource

URL 434
view controls

Alpha/Color 49
Apply 49
Revert 49
Zoom slider 49

Vserv.mobi
URL 261

[449]

W
WaitForEndOfFrame function 241
Web

highlights 435
web backend

benefits 401
implementing 401-403

while loop 240

world space 190
WWW class

URL 403

X
XML serialization 390

Thank you for buying
Mastering Unity 2D Game
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity3D with a lot
of sample projects and next-generation techniques to
use in your Unity3D projects

1. A practical guide with step-by-step instructions
and example projects to learn Unity3D
scripting.

2. Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs.

3. Implement finite state machines (FSMs), path
following, and steering algorithms.

Practical Game Design with Unity
and Playmaker
ISBN: 978-1-84969-810-8 Paperback: 122 pages

Leverage the power of Unity 3D and Playmaker to
develop a game from scratch

1. Create artificial intelligence for a game using
Playmaker.

2. Learn how to integrate a game with external
APIs (Kongregate).

3. Learn how to quickly develop games in Unity
and Playmaker.

Please check www.PacktPub.com for information on our titles

Grome Terrain Modeling with
Ogre3D, UDK, and Unity3D
ISBN: 978-1-84969-939-6 Paperback: 162 pages

Create massive terrains and export them to the most
popular game engines

1. A comprehensive guide for terrain creation.

2. Step-by-step walkthrough of Grome 3.1 and
toolset.

3. Export terrains to Unity3D, UDK, and Ogre3D.

Unity 2D Game Development
ISBN: 978-1-84969-256-4 Paperback: 126 pages

Combine classic 2D with today's technology to build
great games with Unity's latest 2D tools

1. Build a 2D game using the native 2D
development support in Unity 4.3.

2. Create a platformer with jumping, falling,
enemies, and a final boss.

3. Full of exciting challenges which will help you
polish your game development skills.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview
	Getting assets
	Collection of sites

	Welcome to 2D
	The new 2D mode
	Sprites
	Sprite Renderer
	Sprite Editor
	Spritesheets
	Texture atlases
	Sprite meshes
	The Box2D physics system
	The new animation Dope Sheet

	Other Unity 4.3 improvements
	Improved Mecanim performance
	The Windows Phone API improvements and Windows 8.1 support
	Dynamic Nav Mesh (Pro version only)
	Editor updates
	MonoDevelop 4.01
	Movie textures

	Summary

	Chapter 2: Character Building
	Getting your project started – the right way
	Structure
	Object naming

	Understanding components
	Accessing components using a shortcut
	A better way to use components – referencing
	An even better way

	Creating the project
	Classes
	The object-orientated design
	The game structure
	The common game object
	More later

	Planning behaviors
	Behaviors for the common game object
	Behaviors for the player's character

	Introducing the Unity sprite system
	Importing sprites
	Texture type – sprite
	Sprite Mode – single/multiple
	Packing tag
	Pixels to units
	The Sprite Editor button

	Sprite Editor
	Sprite splitter (slicer)
	View controls
	Sprite region manipulation

	Putting it together
	Importing our main character
	The hero
	Controlling the hero

	Going further
	Summary

	Chapter 3: Getting Animated
	Sprite animation
	Animation components
	Animation controllers
	Animation clips
	The Animator component

	Setting up animation controllers
	Setting up animation clips
	Manual animation clip creation
	Automatic animation clip creation
	Animator Dope Sheet

	Putting it together
	Setting up the animation controller
	Adding your first animation clip (idle)
	Adding another animation clip (run)
	Connecting animation states
	Accessing controllers from a script
	Extra credit
	Getting curvy

	Going further
	Summary

	Chapter 4: The Game World
	Backgrounds and layers
	To slice or not to slice
	The town background
	The town buildings
	The extra scenery

	Building the scene
	Adding the town background
	Sprite sorting layers
	Sprite sorting order
	Updating the scene Sorting Layers

	Working with the camera
	Comparing Update, FixedUpdate, and LateUpdate
	The perils of resolution
	A better FollowCamera script

	Transitioning and bounds
	Towns with borders
	Journeying onwards
	Planning for the larger picture

	Backgrounds and active elements
	Parallaxing
	Foreground objects

	Shaders and 2D
	Going further
	Summary

	Chapter 5: NPCs and Interactions
	Considering an RPG
	Advanced programming techniques
	Singletons and managers
	The manager approach – using empty game objects
	The singleton approach – using the C#
singleton pattern

	Communicating between game objects
	Delegates
	The configurable method pattern
	The delegation pattern
	Compound delegates

	Events
	Messaging
	A better way

	Background tasks and Coroutines
	Enter Coroutines
	IEnumerator
	Yielding
	Starting Coroutines
	Closing the gap

	Serialization and scripting
	Saving and managing asset data
	Using the serialized files in the editor
	Accessing the .asset files in the code

	Putting it all together
	Getting the NPC's talking
	The conversation object
	Saving and serializing the object for later
	The Conversation Component

	Building a basic conversation system
	The manager
	Starting a conversation
	Displaying the conversation
	Adding more

	Connecting the dots

	Going further
	Summary

	Chapter 6: The Big Wild World
	The larger view
	Types of maps
	Fixed maps
	Generated maps

	2D doesn't mean you have to use only 2D
	Going procedural
	Screen space and world space

	Putting it together
	Adding the map
	Adding places of interest
	Creating the MapPoint prefabs for reuse
	Updating the NavigationPrompt script
	Updating the NavigationManager script
	Traveling by click or touch
	Managing input
	Managing input priorities
	Managing input order
	Getting curvy
	Fixing the start location
	Traveling too far

	Transitions
	Updating level loading to use fading

	Updating build settings to include new scenes

	Going further
	Summary

	Chapter 7: Encountering Enemies and Running Away
	Event systems
	Exploring randomness
	Planning for random code/generation
	True randomness

	Basic Artificial Intelligence
	State machines
	Defining states
	Simple singular choice
	Planning for multiple cases
	State managers

	Sensors
	Putting it together
	Building the new scene
	Adding the first enemy
	Spawning the horde
	Getting back home

	The missing random piece
	One last thing

	Going further
	Summary

	Chapter 8: Shopping for Weapons
	Why do we shop?
	The power of an item
	Building your shop
	Laying out your inventory
	Rule of '99
	Encumbrance system
	Slot-based system
	A mini game
	Real world

	Getting paid
	Paid
	Paid with trial
	Ad supported
	In-app purchase
	In-game currency

	Putting it together
	Gathering the shop assets
	Building the shop scene
	Creating inventory items
	Managing the shop
	Adding 2D button behaviors
	Updating the player inventory definition
	Stocking the shop
	Leaving the shop
	Entering the shop
	Managing your inventory
	Adding the Player inventory behavior

	Going further
	Summary

	Chapter 9: Getting Ready to Fight
	Efficient RPG UI overlays
	The adventurer's overlay
	A context-sensitive overlay
	Modern floating UI approach
	Balancing the need

	Putting it together
	The battle state manager
	Getting to the state manager in the code
	Starting the battle
	Adding a little flair
	Bring on the GUI
	The command bar
	The command button
	Adding the command bar to the scene

	Selecting the weapon
	Selecting a command button
	Managing the selections from the command bar
	Updating the BattleManager state with selections
	Updating the BattleManager state with a weapon

	Going further
	Summary

	Chapter 10: The Battle Begins
	Proving ground
	Leveling up
	Balancing
	Putting it together
	Preparing the BattleManager script
	Beefing up the enemy
	The enemy profile/controller
	Updating the Goblin prefab
	Setting up the enemy profile in the code

	Selecting a target
	The selection circle prefab
	Adding selection logic to the EnemyController class

	Attack! Attack!
	The pesky Goblin reacts with 3D particles
	Mixing up 2D and 3D
	Particle effects and 2D
	Adding the deathly sprites
	Creating the material for the particle effect
	Restructuring the Goblin prefab
	Adding the particles
	The death animation
	Adding particles to the animation
	Connecting the dots
	Making the new GoblinEnemy game object a prefab and adding it to the battle
	Houston, we have a problem!

	The final run-through

	Going further
	Summary

	Chapter 11: Onward Wary Traveler
	Extending the editor
	The property drawers
	Property drawers examples

	Custom editors
	The editor window
	Gizmos
	Building your editor menus
	Adding a MenuItem attribute
	Enabling/disabling a MenuItem attribute
	Adding shortcut keys to a MenuItem attribute
	Adding contextual MenuItems

	Running scripts in the Editor folder
	Alternative approaches

	Building in-game menu structures
	The screens
	Splash screens
	Loading screens
	The main menu
	Save slots/level selections
	Settings pages
	About the screen
	Privacy policy
	Pause screens
	Additionals (purchasing, achievements, leaderboards, and so on)
	Social

	The flow

	Working with settings
	Using PlayerPrefs
	Serializing your data
	Saving data to disk
	Modeling your saved data
	Making your game save and load functions
	Testing your Save and Load functions
	Backing up to the Web

	Going further
	Summary

	Chapter 12: Deployment and Beyond
	Handling platform differences
	Preprocessor directives
	Updating the save system for another platform
	Build note

	Getting access to Unity
	Accessing the UnityEngine namespace
	The static classes

	Access to the platform
	Static events in your Unity project
	Embedding platform DLLs

	Native plugins (Pro only)

	Pushing code from Unity3D
	Processing assets
	Processing the build

	Building your assets
	Packaging gotchas
	Marketing your game
	Summary

	Appendix: Additional Resources
	Scripting resources
	Extending the editor
	Even more AI
	Procedural generation
	Advanced coding
	Other scripting resources

	Useful assets
	Sources of art and SFX
	Highlights from the Web

	Index

