
www.allitebooks.com

http://www.allitebooks.org

Microsoft Azure
Development
Cookbook
Second Edition

Over 70 advanced recipes for developing scalable
services with the Microsoft Azure platform

Roberto Freato

Neil Mackenzie

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Azure Development Cookbook
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Second edition: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-032-7

www.packtpub.com

Cover image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Roberto Freato

Neil Mackenzie

Reviewers
Michael S. Collier

Peter Kirchner

Sarang Kulkarni

Sachin Prakash Sancheti

Aaron Whittaker

Commissioning Editor
Joanne Fitzpatrick

Acquisition Editor
Kevin Colaco

Content Development Editor
Rikshith Shetty

Technical Editors
Indrajit A. Das

Dennis John

Copy Editors
Roshni Banerjee

Karuna Narayanan

Project Coordinator
Kinjal Bari

Proofreaders
Ting Baker

Simran Bhogal

Maria Gould

Sandra Hopper

Indexers
Hemangini Bari

Monica Ajmera Mehta

Tejal Soni

Production Coordinators
Saiprasad Kadam

Conidon Miranda

Alwin Roy

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Roberto Freato has been an independent IT consultant since he started working. He
worked for several small software firms while he was studying. After completing his MSc
in Computer Science and Engineering, where he worked on a thesis on Consumer Cloud
Computing, he specialized in cloud and Azure. Today, he works as a freelance consultant
for important companies in Italy, helping clients design and kick-off their distributed
software solutions. He trains for the developer community in his free time, addressing
many conferences. He is a Microsoft MVP since 2010.

Thanks to Simona, Mom, and Dad.

Neil Mackenzie has worked with computers for nearly 3 decades. He started his computer
career doing large-scale numerical simulations for scientific research and business planning.
Since then, he has primarily been involved in healthcare software and developing electronic
medical record systems. He has been using Microsoft Azure since PDC 2008 and has used
nearly all parts of the Microsoft Azure platform, including those parts that no longer exist.
Neil is very active in the online Microsoft Azure community, contributing to the MSDN
Microsoft Azure forums in particular. He is a Microsoft MVP for Microsoft Azure.

I would like to thank all the people from whom I've learned Microsoft Azure.
I would also like to thank the staff at Packt Publishing for nursing the
project along and Brent Stineman for first suggesting my name to them.
I have found the comments from the technical reviewers invaluable, which
immeasurably improved the book. Last but not least, I would like to thank
my wife, Claire, and my children for suffering through all the late nights
and lost weekends that went into the writing of the book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michael S. Collier serves as a principal cloud architect for Aditi Technologies, a Microsoft
NSI partner that focuses on cloud computing. He is a four-time Azure MVP and was the
2012 Azure MVP of the Year for his extraordinary community contributions. Michael has
had a successful 12-year career at various consulting and technology firms, where he
was instrumental in leading and developing solutions for a wide range of clients. He has
many years of experience in helping companies determine the best strategy to adopt cloud
computing and providing insight and hands-on experience to ensure that they're successful.
He is also a respected technology community leader, and can often be found sharing his
Azure insights and experiences at regional and national conferences. You can follow Michael's
experiences with Azure on his blog at www.michaelscollier.com and on Twitter at
@MichaelCollier.

Peter Kirchner has been working as a technical evangelist at Microsoft, Germany,
since 2008. In this role, he addresses conferences and writes articles that focus on
cloud computing, with the goal to inspire new technologies and support developers and
administrators in developing for and using the Microsoft platform. Before working with
Microsoft, Peter gained experience working in the area of SharePoint development and
consulting. While studying, he showed interest in network technologies, security, and
distributed systems, and graduated with a Diploma in Computer Science.

www.allitebooks.com

www.michaelscollier.com
http://www.allitebooks.org

Sarang Kulkarni lives in Pune, India, with his wife and daughter. He has been coding for
food for the last 14 years, and also talking and writing about it for the last 6 years. He has
mostly been around the Microsoft stack, with an occasional adventure in SAP ABAP and
Amazon AWS. Sarang has been building SaaS products and services on the Azure stack
since the "Red Dog" days. He worked with big consulting firms such as Accenture, Avanade,
and Cognizant before settling in Zevenseas, a SharePoint company, building and growing
its Azure business.

Sarang has previously worked on a collaborative book, Windows Azure Platform: Articles
from the Trenches, as a co-author.

Thanks to Packt Publishing for approaching me with this interesting
opportunity. I would also thank my family and my colleagues at Zevenseas
for being supportive of everything I keep on doing.

Sachin Prakash Sancheti hails from a small town in western India called Washim. He
has 15 years' experience, much of which was focused on Microsoft-oriented technologies. In
the last 4 years, he developed an expertise in cloud computing across both Windows Azure
and AWS. An innovative architect with solid technology acumen, Sachin is also an avid blogger
and speaker. He calls himself "a whiteboard as well as a keyboard guy." Being proud of his
modest origins, Sachin would like to bring recognition in some form to his hometown, Washim.

Currently, Sachin is working with Symphony Teleca, Pune, as a principal architect. Earlier in
his career, he was with Infosys and Microsoft, both in India. Immediately prior to Symphony
Teleca, he spent a couple of years with a startup called Cumulux, which was acquired by
Aditi Technologies for its expertise in Windows Azure.

I would like to thank Packt Publishing for this opportunity to review the
book. A special thanks to my wife, Vaidehi, who is my pillar when it comes
to clearing the clutter in my mind. Clearly, she is the secret to my ability to
focus on the task at hand.

www.allitebooks.com

http://www.allitebooks.org

Aaron Whittaker is a Microsoft Virtual Technology Solutions Professional (V-TSP) and
a technical account manager. He has spoken at many major technology events, including
several Microsoft TechEds. He is a guest author for Microsoft MSDN and TechNet.
He proactively learns new technologies and is currently focused on building customer
relationships to solve problems.

Aaron has received the vExpert award several times and was the host of a VMWare user
group for 5 years. He currently hosts the Brisbane Cloud User Group.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter
or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Developing Cloud Services for Microsoft Azure	 7

Introduction	 8
Setting up solutions and projects to work with Cloud Services	 10
Debugging a Cloud Service locally with either Emulator or Emulator Express 	 14
Publishing a Cloud Service with options from Visual Studio	 18
Debugging a Cloud Service remotely with Visual Studio	 23
Configuring the service model for a Cloud Service	 26
Providing a custom domain name for a Cloud Service	 35
Implementing HTTPS in a web role	 37
Using local storage in an instance	 41
Hosting multiple websites in a web role	 44
Using startup tasks in a Microsoft Azure role	 48
Handling changes to the configuration and topology of a Cloud Service	 52
Managing upgrades and changes to a Cloud Service	 59
Configuring diagnostics in Cloud Services	 62

Chapter 2: Deploying Quickly with Azure Websites	 69
Introduction	 69
Deploying a Website	 71
Administering and monitoring a Website	 77
Source versioning and continuous integration with Git and TFS	 83
Logging abstraction from .NET and PHP	 87
Deploying Java with Azure Websites	 91

Chapter 3: Getting Storage with Blobs in Azure	 95
Introduction	 96
Managing the Azure Storage service	 98
Connecting to the Azure Storage service	 101
Connecting to the storage emulator	 106

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Managing access control for containers and blobs	 110
Creating a shared access signature for a container or blob	 114
Using a container-level access policy	 123
Setting properties and metadata for a blob	 127
Using blob directories	 131
Creating and using a blob snapshot	 135
Creating and using the root container for blobs	 138
Uploading blocks to a block blob	 141
Uploading a VHD into a page blob	 146
Downloading a blob asynchronously	 154
Using retry policies with blob operations	 157
Leasing a blob and implementing distributed locks	 163
Using the Azure Content Delivery Network (CDN)	 169

Chapter 4: Going Relational with the Azure SQL Database	 173
Introduction	 173
Creating a SQL Database server and database	 175
Managing SQL Database logins and firewall rules	 180
Developing a SQL Database with Visual Studio	 184
Connecting to a SQL Database with ADO.NET	 190
Connecting to a SQL Database with Entity Framework	 198
Connecting to a SQL Database from PHP and Java	 202
Migrating a database to a SQL Database	 207
Leveraging backup solutions with SQL Database	 210
Monitoring SQL Database with the dynamic management views	 214
Handling connection failures to a SQL Database	 218

Chapter 5: Going NoSQL with Azure Tables	 225
Introduction	 225
Creating a table	 228
Inserting, updating, deleting, and querying data against the Table service	 232
Using entity group transactions	 242
Using continuation tokens and server-side paging	 247
Going inside continuation tokens and segmented queries	 252
Handling entity serialization events	 258
Facilitating NoSQL with client-side projection 	 266

Chapter 6: Messaging and Queues with the Storage and Service Bus	 273
Introduction	 273
Managing Azure Storage queues	 277
Managing Azure Service Bus queues	 281
Adding messages to a Storage queue	 286
Adding messages to a Service Bus queue	 289

iii

Table of Contents

Receiving messages with Storage queues	 294
Receiving messages with Service Bus queues	 299
Implementing publish/subscribe with Service Bus topics	 304
Implementing relayed messaging with the Service Bus	 308
Communication between .NET and Java with the Service Bus and AMQP	 312

Chapter 7: Managing Azure Resources with the Azure
Management Libraries	 317

Introduction	 317
Setting up the management client	 319
Managing the Storage service	 324
Deploying Cloud Services	 330
Inspecting and managing Cloud Services	 336
Managing and using the Azure Scheduler	 341
Monitoring and automating infrastructure operations	 349
Automating SQL Database operations	 356
Using Azure PowerShell 	 360

Chapter 8: Going In-memory with Azure Cache	 363
Introduction	 363
Building a simple cache for applications	 365
Using local cache and notifications	 373
Diagnosing cache and optimizing performance	 379
Using advanced caching features	 386
Using Redis Cache in Azure	 394

Index	 399

Preface
Microsoft Azure is Microsoft's platform for cloud computing. It provides developers with
elastic building blocks to build scalable applications. These building blocks are services for
web hosting, storage, computation, connectivity, and more. They are usable as standalone
services or are mixed together to build advanced scenarios.

This practical cookbook will show you these building blocks, focusing on why we should use
one or the other, and when to use them appropriately. Even though reading the entire book
will give you an advanced overview of the main blocks of the Azure platform, each chapter
is self-contained. So, even an inexperienced reader could jump from one chapter to another
without reading the entire book. Each chapter is organized into recipes—standalone units
of execution to complete tasks that involve a specific feature/service of the platform.
This approach gives readers the capability to focus on the technology for further use
in real-world projects.

This book tries to provide a comprehensive overview of the main aspects of the Azure platform
from the point of view of a developer. Some building blocks such as virtual machines are
deliberately avoided to focus on development tools, development libraries, and development
strategies. This is a recipe-based book; expect to dirty your hands with code that is also
outside the boundaries of the recipe, as you would do with food in a real recipe.

Finally, Microsoft Azure is an evolving platform. As technical topics have a high decay rate,
Azure services are enriched day by day with new features and service models, making the goal
of writing a "complete" book almost impossible. However, this book focuses on core concepts,
which remain quite stable over time.

What this book covers
Chapter 1, Developing Cloud Services for Microsoft Azure, shows you the main compute
engine of Azure (also known as web/worker roles). This building block uses a specific
service model to run web applications as well as any other custom code on stateless virtual
machines. This chapter is also a great introduction to Visual Studio integration for those who
are not familiar with it.

Preface

2

Chapter 2, Deploying Quickly with Azure Websites, shows you one of the most advanced
Platform as a Service in the market, which lets customers/developers deploy an existing
web application in minutes. This building block does not require a specific development skill,
as it is a lock-in-free environment that provides advanced integrated features regarding the
ALM. This chapter is essential for anyone who wants to start a new project or move an existing
project to the cloud.

Chapter 3, Getting Storage with Blobs in Azure, shows you how Azure deals with storage of
files (also known as Blobs). This building block is about Blobs' features, management, and
administration, with food for thought for advanced scenarios. This chapter will be helpful
to those who want to access the storage services programmatically.

Chapter 4, Going Relational with the Azure SQL Database, shows you the RDBMS of Microsoft
Azure, enabling existing SQL-Server-based solutions to move into the cloud seamlessly. This
building block is about SQL database management, monitoring, and development. This
chapter is a good read to identify the correct approach to SQL on Microsoft Cloud.

Chapter 5, Going NoSQL with Azure Tables, shows you how to use the original Table service
as a data store for unstructured data. This building block can be used to store entities when
there is no strict need of a SQL-based, but scalable, service. This chapter is particularly useful
while building a scalable data store of arbitrary entities.

Chapter 6, Messaging and Queues with Storage and Service Bus, shows you how to build
scalable systems with message-based, disconnected systems. This building block covers the
need for communication between heterogeneous systems, using queues of messages. This
chapter also covers the relayed messaging feature and cross-platform communication.

Chapter 7, Managing Azure Resources with the Azure Management Libraries, shows you
how to remotely manage a big portion of the Azure services, programmatically, through
Management Libraries. The building block is the Management API on which Management
Libraries rely. This chapter is suited for automation solutions, custom management tools,
or even parts of complex multitenant systems where resources must be created/configured/
destroyed dynamically.

Chapter 8, Going In-memory with Azure Cache, shows you how to improve an application's
performance with in-memory caching. This building block is of primary importance for
situations where there's web traffic and the demand is high, providing good service by
storing frequently accessed information. This chapter is about caching, so it is extremely
important to read it even if you are not adopting it as part of the implementation.

What you need for this book
This book requires a basic exposure to the main concepts of cloud computing, as well as the
C# programming language and the Visual Studio IDE. The software needed to run the samples
(and hopefully extend them) are Visual Studio 2012/2013, with the latest Azure SDK, SQL
Server Management Studio Express, and a few free tools that are referenced in the book.

Preface

3

Who this book is for
If you are an architect, this book will help you make the correct decisions about which Azure
building blocks to use. If you are a developer, this book will help you understand how to use
them appropriately, and if you are a .NET developer, this book is a pure delight.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Select Custom and specify Local Folder."

A block of code is set as follows:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

Any command-line input or output is written as follows:

C:\Users\Administrator>PowerShell -ExecutionPolicy Unrestricted .\
StartupTask.ps1

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Open Visual Studio, and on
the menu bar, navigate to File | New | Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our
author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Developing Cloud

Services for Microsoft
Azure

In this chapter, we will cover the following topics:

ff Setting up solutions and projects to work with Cloud Services

ff Debugging a Cloud Service locally with either Emulator or Emulator Express

ff Publishing a Cloud Service with options from Visual Studio

ff Debugging a Cloud Service remotely with Visual Studio

ff Configuring the service model for a Cloud Service

ff Providing a custom domain name for a Cloud Service

ff Implementing HTTPS in a web role

ff Using local storage in an instance

ff Hosting multiple web sites in a web role

ff Using startup tasks in a Cloud Service role

ff Handling changes to the configuration and topology of a Cloud Service

ff Managing upgrades and changes to a Cloud Service

ff Configuring diagnostics in Cloud Services

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

8

Introduction
Cloud Services are classified typically as Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). In the IaaS model,
the core service provided is a Virtual Machine (VM) with a guest OS. The customer is
responsible for everything about the guest OS, including hardening it and adding any
required software. In the PaaS model, the core service provided is a VM with a hardened
guest OS and an application-hosting environment. The customer is responsible only for the
service injected into this environment. In the SaaS model, a service is exposed over the
Internet, and the customer merely has to access it.

Microsoft Azure Cloud Services is the paradigm of the Platform-as-a-Service (PaaS) model
of cloud computing. A Cloud Service can be developed and deployed to any of the desired
Microsoft Azure datacenters (regions) located across the world. A service hosted in Microsoft
Azure can leverage the high scalability and reduced administrative benefits of the PaaS model.

In later chapters, we do not see how Azure also offers an IaaS alternative, Microsoft Azure
Virtual Machines, to let customers get the ability to deploy customized solutions in fully
customized environments. Either way, the benefits of using PaaS are strongly evident
compared to IaaS. In PaaS, we can reduce the governance of the whole system, focusing only
on technology and processes, instead of managing the IT, as we did earlier. PaaS enforces
the use of best practices throughout the development process, forcing us to take the right
decisions in terms of design patterns and architectural choices.

From an IT architect's perspective, using PaaS is similar to trusting a black-box model. We
know that the input is our code, which might be written with some environmental constraints
or specific features, and the output is the running application on top of instances, virtual
machines, or, generically, something that is managed, in the case of Azure, by Microsoft.

A Cloud Service provides the management and security boundaries for a set of roles. It is a
management boundary because a Cloud Service is deployed, started, stopped, and deleted
as a unit. A Cloud Service represents a security boundary because roles can expose input
endpoints to the public internet, and they can also expose internal endpoints that are visible
only to other roles in the service. We will see how roles work in the Configuring the service
model for a Cloud Service recipe.

Roles are the scalability unit for a Cloud Service, as they provide vertical scaling by increasing
the instance size and horizontal scaling by increasing the number of instances. Each role
is deployed as one or more instances. The number of deployed instances for a role scales
independent of other roles, as we will see in the Handling changes to the configuration and
topology of a Cloud Service recipe. For example, one role could have two instances deployed,
while another could have 200 instances. Furthermore, the compute capacity (or size) of each
deployed instance is specified at the role level so that all instances of a role are the same
size, though instances of different roles might have different sizes.

Chapter 1

9

The application functionality of a role is deployed to individual instances that provide the
compute capability for the Cloud Service. Each instance is hosted on its own VM. An instance
is stateless because any changes made to later deployment will not survive an instance
failure and will be lost. Note that the word role is used frequently where the word instance
should be used.

A central driver of interest in cloud computing has been the realization that horizontal
scalability, by adding commodity servers, is significantly more cost effective than vertical
scalability achieved through increasing the power of a single server. Just like other cloud
platforms, the Microsoft Azure platform emphasizes horizontal scalability rather than vertical
scalability. The ability to increase and decrease the number of deployed instances
to match the workload is described as elasticity.

Microsoft Azure supports two types of roles: web roles and worker roles. The web and worker
roles are central to the PaaS model of Microsoft Azure.

A web role hosts websites using the complete Internet Information Services (IIS). It can host
multiple websites with a single endpoint, using host headers to distinguish them, as we will
see in the Hosting multiple websites in a web role recipe. However, this deployment strategy is
gradually going into disuse due to an emerging powerful PaaS service that is called Microsoft
Azure Web Sites. An instance of a web role implements two processes: the running code that
interacts with the Azure fabric and the process that runs IIS.

A worker role hosts a long-running service and essentially replicates the functionality of a
Windows service. Otherwise, the only real difference between a worker role and web role is
that a web role hosts IIS, while the worker role does not. Furthermore, a worker role can also be
used to host web servers other than IIS; in fact, worker roles are suggested by Microsoft when
someone needs to deploy some kind of software that is not designed to run on the default
Microsoft web stack. For example, if we want to run a Java application, my worker role should
load a process of the JEE Application Server (that is, Glassfish or JBoss) and load the related
files needed by the application to run, into it. This deployment model should be helped by some
components, often called accelerators, that encapsulate the logic to install, run, and deploy the
third-party stack (such as the Java one, for example) in a box, in a stateless fashion.

Visual Studio is a central theme in this chapter as well as for the whole book. In the Setting up
solutions and projects to work with Cloud Services recipe, we will see the basics of the Visual
Studio integration, while in the Debugging a Cloud Service locally with either Emulator
or Emulator Express and Debugging a Cloud Service remotely with Visual Studio recipes,
we will see something more advanced.

Developing Cloud Services for Microsoft Azure

10

Setting up solutions and projects to work
with Cloud Services

Microsoft Azure Cloud Service is the paradigm for PaaS. As such, Microsoft Azure provides
a high-level, application-hosting environment, which is modeled on services, roles, and
instances. The specification of the roles in the service is referred to as the service model.

As we mentioned earlier, Microsoft Azure supports two types of roles: web roles and worker
roles. We said that a web role is essentially a worker role plus IIS because they comply
with the same running model where there is an entry point that interacts with the Azure
environment and our custom code, regardless of whether it is a web app or batch process.

Microsoft Azure provides us with a comprehensive set of command-line tools to package our
solutions to be deployed on the Cloud, as they should be wrapped into a single deployment
unit that is called a package. A package is like a ZIP file with encryption. It contains every
project component of the Cloud Service, so it is the self-containing artifact that goes onto the
Azure platform to instruct it about setting up machines and code. This package, along with its
configuration, represents the whole Cloud Service that Azure Fabric (the big brain of the Azure
data center) can deploy wherever it wants. In terms of black-box reasoning, the input of a
Cloud Service is package plus configuration, which we can produce using command-line tools
or just using Visual Studio, starting from our classic .NET binaries.

The corresponding Visual Studio artifact for the package mentioned earlier is a project
template called Microsoft Azure Cloud Service. It is a .ccproj project that wraps the .NET
projects in order to produce the resulting compressed unit of deployment. Later in the chapter,
we call this project wrapper to underline its purpose in the deployment process.

In fact, Visual Studio lets us automatically create the correct environment to deploy web
and worker roles, without facing the complexity of the command-line tools, by installing the
Microsoft Azure Tools for Visual Studio that, at the time of writing this book, are available
in Version 2.3.

In this recipe, we'll learn how to choose the service model for a Cloud Service and create
a project environment for it in Visual Studio.

Getting ready
For this recipe, we use Visual Studio 2013 with Microsoft Azure Tools installed. The goal of the
recipe is to produce a sample package for the Cloud Service, from new or existing projects.

Chapter 1

11

How to do it...
A Cloud Service is a composition of two scenarios: new or existing projects. We will split our
recipe into two branches to support the two scenarios:

1.	 Open Visual Studio, and in the menu bar, navigate to File | New | Project.

2.	 From the installed templates, choose either the Visual Basic, Visual C#, or Visual F#
node, and then, choose the cloud node. You will be prompted later about the actual
programming languages you will use in your services.

3.	 Select Microsoft Azure Cloud Service.

If you haven't installed the latest SDK, you will probably see something
like Get Microsoft Azure SDK for .NET or Enable Microsoft Azure
Tools in the window. This indicates that you have to download the SDK
first and then come back to the project creation wizard.

4.	 In the Name text box, enter the name (WAHelloWorld) of your wrapper project.
Remember that this name is only used to represent our service container, not a
real web project itself.

5.	 By choosing this project template, VS opens the New Microsoft Azure Cloud
Service windows.

6.	 If you want to create just the wrapper of your existing web/worker project, press OK
and go ahead to Branch 2. You will add your binaries to the wrapper project later.
If you want to create the wrapper and your web/worker projects from scratch,
read the Branch 1 section.

Branch 1: start from scratch by adding new projects

7.	 Use the arrow keys to add/remove the projects that will represent your web/worker
roles on the right-hand side. You can choose the following two projects:

�� The ASP.NET web role

�� The worker role

8.	 On the right-hand side pane, there will be the WebRole1 and WorkerRole1
entries. Customize the names of the two projects in WebHelloWorld and
WorkerHelloWorld, respectively, and go ahead.

9.	 Customize the project templates you added, with the windows that Visual Studio
displays later.

Developing Cloud Services for Microsoft Azure

12

Branch 2: add your existing projects to the wrapper

10.	 In the Solution Explorer, right-click on the solution and choose Add | Existing
Project.

11.	 In the browsing window, locate your project and select the Visual Studio project file.
Now, your existing project is linked to the new solution.

12.	 In the Solution Explorer, right-click on the Roles folder in the wrapper project and
navigate to Add | Web Role Project in solution or Worker Role Project in solution.

13.	 In the Associate with Role Project window, choose the project(s) to add and confirm.
Now, the project should appear under the Roles folder of the wrapper.

To be a compatible web role project, a project should be a valid web
application, regardless of the engine it runs on. On the other hand, every
class library could be potentially a worker role project. However, to let
Visual Studio add your existing class library, you must edit the project file
(csproj in C#) as outlined at the end of the recipe.

Recipe conclusion

14.	 Right click on the wrapper project and choose Package.

15.	 When prompted with the Package Microsoft Azure Application window, leave the
default settings and click on Package.

Later in the chapter, we will see how to understand and customize
service configuration and deployment options to better understand the
Package Microsoft Azure Application window.

16.	 After few seconds of VS operations in the background, you will be prompted with a
local filesystem folder with the output of the packaging process.

How it works...
From steps 1 to 5, we created the Microsoft Azure Cloud Service project, the project wrapper
that represents the unit of deployment for Azure. As mentioned earlier in the note, be sure to
have installed the SDK and the latest VS Tools required to complete the recipe first.

Chapter 1

13

In step 6, we chose between starting from scratch and using existing projects.

In steps 7 and 8, we added two projects, one web role and one worker role, from the choices
of the wizard. We could also add another project template such as the following:

�� The WCF service web role

�� The cache worker role

�� The worker role with Service Bus Queue

In step 9, for each .NET project that we added in the step 7, Visual Studio launches the Project
Template wizard. In the case of the WebHelloWorld one, VS opens the new ASP.NET project
window that lets us choose the ASP.NET engine to reference in the project. In the case of
WorkerHelloWorld, VS simply adds a class library to the solution.

From steps 10 to 13, we showed how to import an existing project into the solution and then
into the wrapper project. Finally, in step 15, we built the package using the default settings.
Actually, we would choose which service configuration to use to create the configuration file
and which build configuration to use to build the assemblies.

There's more
In the note of step 13, we mentioned that every class library could be used in a wrapper
project. In fact, the Azure runtime only needs a class library, and it searches in the Dynamic
Link Library DLL for a class that inherits the RoleEntryPoint abstract class as follows:

public class WorkerRole:RoleEntryPoint
{
}

This requirement is enforced only at runtime. At compile time, however, Visual Studio does
not block us if we miss the RoleEntryPoint implementation.

However, users who try to add their class library to the wrapper could be shown a grayed
option due to the inability of Visual Studio to distinguish a valid worker role from a generic
class library.

So, we need to perform a tweak on the project file:

1.	 Locate the project file (*.csproj, for example) of the class library to add it.

2.	 Open it with Notepad.

3.	 Before the first </PropertyGroup> closing tag, add the following line:
<RoleType>Worker</RoleType>

4.	 Save the file, and in Visual Studio, reload the project.

Developing Cloud Services for Microsoft Azure

14

See also
Have a look at these MSDN links to get additional information:

ff Information on the latest Azure SDKs with release notes at http://msdn.
microsoft.com/en-us/library/dn627519.aspx

ff How to upgrade an existing project with the latest version of Azure Tools at
http://msdn.microsoft.com/en-us/library/jj131257.aspx

Debugging a Cloud Service locally with
either Emulator or Emulator Express

As Cloud Services are more like a black-box runtime about which we don't (and shouldn't)
need to know anything. However, we should know how they behave different from (or
according to) a common IIS installed on a common Windows Server virtual machine.

The very first versions of Cloud Services had strict restrictions on the
interactions with OS, permitted by applications. They had to run in a
mode called Microsoft Azure Partial Trust, which isolated an application
from the underlying operating system, to prevent the defects and bugs in
the code from causing failures in the entire OS. Today, there is no longer
an option to isolate an application as a result of developers' continuous
requests to let them have control of the VMs under their services.

Despite the capability to access the underlying operating system, it is strongly recommended
that you use only the application resources and not rely on false friends such as filesystem,
folders structures, and so on. In fact, due to the nature of the PaaS model, the configuration
of the operating system as well as the operating system itself could change without any
control by the user, but for maintenance or deprecation purposes.

Finally, in the real Azure environment, there are some features available through the Service
Runtime API, which is available only when the code is running on Azure or to let developers
test their code locally, onto a local emulator shipped with the Microsoft Azure SDK.

The Emulator creates a logical representation of the Azure topology into the machine that
runs it. If our service was composed of two web roles and one worker role, for example, the
Emulator will start three separate processes in which the application code will behave exactly
as it runs on the real platform (with some soft exceptions, which are not discussed in this
book). As it needs to open network ports and change some OS settings, the Emulator needs
to be started as an administrator. Hence, to start it by simply debugging in Visual Studio, VS
itself should be started as an admin. Emulator Express, on its side, runs in a user mode that
does not require elevation but has some limitations in terms of emulation coverage.

http://msdn.microsoft.com/en-us/library/dn627519.aspx
http://msdn.microsoft.com/en-us/library/dn627519.aspx
http://msdn.microsoft.com/en-us/library/jj131257.aspx

Chapter 1

15

Getting ready
In this recipe we will explore the debugging options of a Cloud Service using the (full) Emulator
and Emulator Express, using the previously created Cloud Service, WAHelloWorld.

How to do it…
In order to explain the differences between the two emulators, we divided it into three parts.
Start an elevated Visual Studio window (as an administrator), and proceed as follows:

Part 1: choosing the emulator to use during debugging

1.	 In the Solution Explorer, right-click on the Azure wrapper project (Cloud Service)
and choose Properties (or just select the project and press Alt + Enter).

2.	 In the page that just opened, select the Web tab.

3.	 In the Local Development Server options group, choose Use IIS Express.

4.	 In the Emulator options group, choose Use Full Emulator.

Part 2: debugging a worker role using the (full) Emulator

5.	 Locate the Roles folder under the WAHelloWorld wrapper project.

6.	 Right-click on the WorkerHelloWorld project and go to the properties page.

7.	 In the Configuration tab, locate the Instance count box and set the value to 2.

8.	 Go to the WorkerHelloWorld project, and open the WorkerRole.cs file.

9.	 Locate the lines with the while (true) block and put a breakpoint on the
following code:
Trace.TraceInformation("Working", "Information");

10.	 Right-click on the Azure wrapper project (WAHelloWorld), and click on Set as
StartUp Project.

11.	 Press F5 or select Debug. Start debugging on the main menu.

At this point, if you run VS in the user mode, you will be prompted
with the message, The Microsoft Azure compute emulator must
be run elevated. If so, close VS and right-click on the VS icon;
then, run it as the administrator. Repeat the preceding step.

Developing Cloud Services for Microsoft Azure

16

12.	 Wait for a few seconds while you are shown the Starting the Microsoft Azure
Debugging Environment window.

The first time you run the Emulator, Windows will probably ask you to
open some ports on the firewall, because the Emulator needs to run
Web Services.

13.	 After about 10 seconds, VS breaks on the tracing line twice, once per running worker.

Part 3: understand the compute Emulator interface

14.	 During debugging, locate the Microsoft Azure Emulator icon in the system tray.

15.	 Right-click on it and choose Show Compute Emulator UI.

16.	 In the Microsoft Azure Compute Emulator (full) window, expand all the items in the
tree and click on one of the two green balls.

17.	 Read the log of the instance, which includes the text sent by our code in the tracing
line used earlier.

18.	 Shut down the deployment by stopping debugging, closing the browser, or clicking
on the stop icon in the Emulator UI on the current deployment.

How it works…
In part one, from steps 1 to 4, we chose which Emulator to use in debugging. In the Cloud
Service properties, we also find these tabs:

ff Application: This shows the current version of the SDK used by the project

ff Build Events: This lets you customize the pre/post build actions

ff Development: This lets you choose some options related to debugging and emulator

ff Web: This lets you choose which Emulator (Express or Full) to use and which IIS
server set to run

In part two, from steps 5 to 7, we customized the number of simultaneous running instances
of the WorkerHelloWorld code. On the configuration page, there is a lot of information
and a lot of custom points to edit, which we will see later in the chapter.

In step 9, we set a breakpoint on a line of code previously created by the VS wizard process,
as shown in the previous recipe. In step 11, VS prepared the project package and started
the Emulator.

Chapter 1

17

If you use Remote Desktop Services (RDS) in conjunction with Visual Studio
to develop your Microsoft Azure projects, it is not necessary that only one
instance of the Full Emulator will run on a machine at a point of time. Instead,
multiple instances of the Emulator Express can run on a machine at the
same time, letting you and your team debug on the same machine remotely.

In step 12, Azure Emulator picked the configuration from the wrapper project and set up
virtual instances, deploying our custom code to them. The Emulator started a runner for
each instance declared: one for the WebHelloWorld site and two for the
WorkerHelloWorld worker.

In step 13, the code stopped twice, as there were two instances deployed to the Emulator.
If we deployed 10 instances, the debugger would stop 10 times.

If you want to perform advanced debugging by temporarily freezing
concurrent worker threads, you can use the Threads window. You can access
this window by navigating to Debug | Windows | Threads. Locate the thread
ID; then, right-click on it and choose Freeze.

In part 3, in steps 14, 15, and 16, we opened the Compute Emulator UI. In the system tray
icon context menu, we also noticed the capability to open the Storage Emulator UI and to
shut down both the emulators (compute/storage). This feature will be very useful in the
upcoming chapters when we talk about storage.

In the final steps, we use the Emulator UI to monitor the parallel workers. In the main windows,
we can see the deployment slot with the roles, each one with its own instances. If there are
different behaviors between instances, we can monitor the output in the terminal-like window,
where it redirects all the tracing output of the worker thread (in both web and worker roles).

There's more…
As the emulator not only emulates the compute engine (web and worker roles) but also
the storage engines (which we will see in the upcoming chapters), it is in fact composed
of the following:

ff Compute Emulator

ff Storage Emulator

These two are always referred to as just one, the Azure Emulator. It is also possible to prevent
the Storage Emulator from being started during debugging by performing the following steps:

1.	 Open the Properties page of the Azure wrapper project.

2.	 In the Development tab, set the Start Microsoft Azure storage emulator option
to False.

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

18

When debugging your code in a (full) Emulator environment with multiple
instances running at the same time, be aware that your code will run in
the same AppDomain. This is the main difference between the real and
Emulator environment (where the code runs on different machines),
and this could cause runtime unexpected behaviors. If you use one or
more static classes with static fields, this would result in an unavoidable
behavior of shared memory between virtual instances. To actually test
this sort of scenario, you should write custom code to differentiate virtual
instances, relying on something that is related to the instance name (for
example, through the Service Runtime API or using the thread references).

See also
Have a look at the following MSDN links to get additional information:

ff More information about running the Emulator at http://msdn.microsoft.com/
en-us/library/azure/hh403990.aspx

ff Differences between the "real" Azure and the emulated environment at http://
msdn.microsoft.com/en-us/library/azure/gg432960.aspx

Publishing a Cloud Service with options
from Visual Studio

Microsoft Azure always shipped with an SDK for developers and a complementary toolset
for Visual Studio integration. In earlier versions of the official SDK, many features were only
available through the online portal at https://manage.windowsazure.com. At the time
of writing this book, Microsoft released its major SDK update that lets developers quickly
manage almost everything of the cloud infrastructure directly from Visual Studio. Hence,
it is now simpler to get on Azure and run a Cloud Service compared to the past.

When we publish a Cloud Service into Azure, we should know some foundation concepts
in advance, in order to understand the ecosystem better. First, to deploy a Cloud Service,
a deployment slot should be created. This could be done through the portal or from Visual
Studio, and it consists of creating a DNS name in [myCS].cloudapp.net form. This DNS,
under the hood, is linked to a load balancer that actually redirects the Internet traffic to the
CS, to each instance of our service, choosing it with a round-robin algorithm. This means that
regardless of the topology, we are deploying to Azure in this Cloud Service. Every web endpoint
that we are publishing stands behind this layer of balancing to provide the system with
transparent scaling capabilities.

http://msdn.microsoft.com/en-us/library/azure/hh403990.aspx
http://msdn.microsoft.com/en-us/library/azure/hh403990.aspx
http://msdn.microsoft.com/en-us/library/azure/gg432960.aspx
http://msdn.microsoft.com/en-us/library/azure/gg432960.aspx
https://manage.windowsazure.com

Chapter 1

19

During the deployment, we also decide the options that CS should be deployed with:

ff Production/staging slot

ff Remote desktop support

ff Diagnostics collection

ff Remote debugging

ff IntelliTrace support

ff Incremental/simultaneous update

After we perform the deployment, our service, comprehensive of all the roles of the package,
as defined in the Setting up solutions and projects to work with Cloud Services recipe, is
running in the cloud and is accessible through the DNS name Azure provided us.

Getting ready
For this recipe, we can create a sample solution on the fly by navigating to File | New project
| Cloud wizard or using the WAHelloWorld project created earlier.

How to do it…
We are going to see how to deploy a Cloud Service package to the cloud. We can do this by
performing the following steps:

1.	 Right-click on the Azure wrapper project (WAHelloWorld) and select Publish.

2.	 In the Publish Microsoft Azure Application window, click on Sign In to authenticate.

3.	 In the browser window, enter the credentials of the Microsoft Account (former Live ID)
associated with the Azure account and continue.

4.	 In the Choose your subscription dropdown, choose the subscription that will host
your service.

5.	 If your subscription is empty or it does not contain a Cloud Service, you will be
prompted with the Create Microsoft Azure Services window.

6.	 Enter a name into the Name box, and choose a location for your service.

7.	 In the Cloud Service dropdown, choose the Cloud Service to which you want
your service to be deployed.

8.	 In the Environment dropdown, choose Production.

9.	 In the Service configuration dropdown, choose Cloud.

10.	 In the Build configuration dropdown, choose the correct build configuration,
according to the ones available in your service (in the WAHelloWorld example,
choose Release).

Developing Cloud Services for Microsoft Azure

20

Configuring the remote desktop is optional.

11.	 Check on the Enable Remote Desktop for all roles checkbox.

12.	 In the Remote Desktop Configuration window, specify a username, a password,
and a date for account expiration. Then, click on OK.

Using RDP on Microsoft Azure is not recommended due to the nature
of PaaS services. It is recommended that you use it only for dev/test
purposes and rely on external or active monitoring to troubleshoot and
resolve issues.

The advanced settings tab is optional.

13.	 Specify WAHelloWorld Version 1 in the Deployment label box.

14.	 Leave the Append current date and time checkbox unchecked.

15.	 If your subscription is empty or it does not contain a storage account, you will
be prompted with the Create Microsoft Azure Services window.

16.	 Enter a name into the Name box, and choose a location for your service.

17.	 In the Storage account dropdown, choose the storage account where Visual
Studio will upload the package file, letting Azure deploy it from the Blob storage.

18.	 Uncheck every checkbox except the Deployment update one, then click on Settings.

19.	 In the Deployment settings window, select Incremental update.

20.	 Check the If deployment can't be updated, do a full deployment checkbox
and confirm.

Conclusion.

21.	 Next, in the Summary page of the wizard, check all the information and then save
your publish profile file.

22.	 Click on Publish.

23.	 After few or several minutes (it depends on the size of your deployment), check the
Microsoft Azure Activity Log tab in VS for completion of the deployment process.

24.	 At completion, if your service has a role with a valid HTTP endpoint, navigate to it
at http://[nameOfCloudService].cloudapp.net.

Chapter 1

21

How it works…
Up to step 3, we link VS with our Microsoft Account (formerly, Live ID). As a Microsoft account
could be the administrator and co-administrator of multiple Azure subscriptions at the same
time, after the authentication, the dropdown mentioned in step 4 could be a pretty long list
of entries.

In step 5, we create a Cloud Service on the Azure platform; this means that we create the
deployment slots (one for production, one for staging) to run our service. Every time we create
a service in the Azure platform, we must cope with the localization of the service, in terms
of the choice of a datacenter. There are actually about 13 datacenters, plus one in China:

ff Europe North: Ireland

ff Europe West: Netherlands

ff US Central: Iowa

ff US East: Virginia

ff US East 2: Virginia

ff US West: California

ff US North Central: Illinois

ff US South Central: Texas

ff Asia Pacific East: Hong Kong

ff Asia Pacific Southeast: Singapore

ff Japan East: Saitama Prefecture

ff Japan West: Osaka Prefecture

ff Brazil South: Sao Paulo State

Two new datacenters in Australia have also been announced, but not
yet released to the public.

In steps 7 and 8, we chose which slot to use for deployment and which configuration to
publish for it. For each new Cloud Service project, VS creates two service configuration files:
a local one and a cloud one.

In step 9, we choose the build configuration. This step is related to the actual build settings
of our solution. In the new solution, there are just two configurations (debug/release), but
the list could be longer according to real-life projects and complexity.

Developing Cloud Services for Microsoft Azure

22

In steps 10 and 11, we configured the remote desktop. Though this is not recommended,
this could let us connect to each instance to troubleshoot any issues and master the OS
configuration of an Azure Virtual Machine image. Due to security implications in this process,
a self-signed certificate is generated automatically to establish the TLS connection. It is
also possible to provide our own valid certificate by clicking on More Options in the Remote
Desktop Configuration window.

We learned that in Azure, we have many instances behind a single load
balancer (therefore, a single IP) to RDP the instances we must proceed
one-by-one with different combinations of ip:port.

Steps 12 and 13 were straightforward. They indicated the name of the deployment for further
administrative tasks.

In steps 14 and 15, we chose a storage account. As we never talked about this feature earlier
in the book, just keep in mind that a Cloud Service could be connected to a storage account
to provide it with logging and diagnostics data.

From steps 16 to 18, we set up the options for update. As Azure could have a previous online
version of our service, we had to decide how to manage the update. By unchecking the
Deployment update checkbox, we completely bypassed the update process, telling Azure to
delete the old deployment because a new one was going to arrive. Otherwise, we can specify
how to update the service, gracefully (incremental update) or suddenly (simultaneously
update). In the incremental update, Azure updates a service instance by instance,
theoretically without service interruption. On the other hand, Azure updates every instance at
the same time, causing an interruption of the service. In some cases, a deployment could not
be updated. If this is the case, then perform a delete-and-replace operation.

In step 19, we saved the publish settings to use them later, thus avoiding repeating all the
steps, by directly clicking on Publish from the summary pane. In step 21, we recognized the
VS-integrated progress window, refreshed periodically from an Azure service. We can also
use it to stop/cancel pending operations, as it reflects the portal operations.

There's more…
If we checked the Enable Remote Desktop for all roles checkbox during the publishing
process, it is possible to connect to each instance directly from Visual Studio using the
following steps:

1.	 Locate the Microsoft Azure node in the Server Explorer.

2.	 Locate the Cloud Services subnode and the Cloud Service you want to connect to
(in the example, WAHelloWorld).

3.	 Expand the node, and select the production or staging deployment.

4.	 Expand the node and the role of interest; it will show a list of the deployed instance.

Chapter 1

23

This list, as for the list of Cloud Services and related roles, could depend
on the actual running configuration of your service. Remember that a
Cloud Service can contain many roles, and each role can have many
instances.

5.	 Right-click on the selected instance (from instance 0 to instance "N"), and choose
Connect using Remote Desktop….

6.	 Confirm the settings in the Remote Desktop Connection window and enter the VM.
If prompted with a credential set (in most cases, only for the password), type the
ones you gave in the publishing process.

7.	 You are now connected to a real running instance of Azure.

While connected to the real instance of Azure, you can poke around the
OS, observing the following:

ff The filesystem topology (the C: / D: / E)
ff The virtualized hardware (processor, RAM, and so on)
ff The network settings (internal IP, gateway, and so on)

We cannot actually rely on the information we gain by browsing the VM, as it is subject to
change frequently without control by the user.

See also
Have a look at the following MSDN links to get additional information:

ff Complete recap of how to publish from Visual Studio at http://msdn.microsoft.
com/en-us/library/ee460772.aspx

ff How to constantly maintain the same IP of the CS endpoint at http://msdn.
microsoft.com/en-us/library/jj614593.aspx

Debugging a Cloud Service remotely with
Visual Studio

From the beginning of the Azure era, developers have been asking to be provided with the
capability of live debugging solutions in the cloud. As it is not a simple feature, Microsoft
figured it out only in 2013. However, now, we do have the strong capability to remotely debug
our Cloud Service from Visual Studio to enhance the testing experience and extend it to the
live application.

http://msdn.microsoft.com/en-us/library/ee460772.aspx
http://msdn.microsoft.com/en-us/library/ee460772.aspx
http://msdn.microsoft.com/en-us/library/jj614593.aspx
http://msdn.microsoft.com/en-us/library/jj614593.aspx

Developing Cloud Services for Microsoft Azure

24

Getting ready
To get ready, we need a ready-to-publish application with at least one valid role. Follow
steps 1 to 9 in the previous recipe and proceed with the instructions in the next recipe.

How to do it…
We will configure a Cloud Service to be attached with a remote debugger; then, we will
proceed with the debug session, using the following steps:

1.	 When we follow steps 1 to 9 of the previous recipe, we will see the Publish
Microsoft Azure Application window.

2.	 In Common Settings, choose Debug as the build configuration.

3.	 Select the Advanced Settings tab.

4.	 Check the Enable Remote Debugger option for all roles.

5.	 Complete the publish process and wait for it to finish.

Please note that it is strongly recommended that you remote debug
only in rare cases and, if needed, possibly for services in an isolated
slot. For this purpose, consider to publish the solution into the staging
slot of the CS.

Attach the debugger.

6.	 Locate a part of your code that is now running in Azure and set a breakpoint.

7.	 Locate the Microsoft Azure node in the Server Explorer and find the Cloud Service
you want to debug.

8.	 Expand the node and select the deployment slot first; then, right-click on the
instance to connect to (that is, Instance 0 under Production).

9.	 Click on Attach Debugger.

10.	 Perform the appropriate actions on the running code (firing events, for example)
to cover the code where the breakpoint is set.

As this is a fully featured debug session, we can also inspect
elements in the heap, add custom watch values, and, of course, use
the immediate window against the remote VM instance.

Chapter 1

25

How it works…
From steps 1 to 4, we republished the Cloud Service by enabling the capability to remote
debug the running code.

From steps 5 to 10, we executed an attach to process-like operation, connecting to a remote
Azure instance instead of a local process.

In step 7, we can also decide to debug the entire service, instead of a single
instance. This capability is to be intended as an attach-to-each-role process,
with advantages (that is, the first instance that meets the conditions will
break the debugger) and disadvantages (that is, if each instance is frozen by
the debugger, there will be potentially no thread free to serve the legitimate
requests).

There's more…
As remote debugging is not considered a best practice (there is also the Emulator to test
our code), there are some constraints you should know about and deal with:

ff Depending on your Internet connection's quality, debugging will be slower or faster
due to the amount of data exchanged between the VMs and the host.

ff Remember to softly use the debugging windows (Immediate, Watch, and Locals)
in order to prevent VS from freezing (due to the network transfers).

ff Attaching the debugger to a single instance is preferable. Attaching it to the whole
service (despite there being a limitation of 25 instances per role if remote debugging
is enabled) is considered much slower.

ff To enable remote debugging, the remote VM uses some ports (30400-30424 and
31400-31424 for the time being), so avoid using them in the application as this will
result in an error.

Mostly, the error message is Allocation failed. Please retry later, try
reducing the VM size or number of role instances, or try deploying to
a different region, which is not very user friendly in this context.

Until the Remote Debug feature was available, the only supported method to debug remotely
was by collecting the IntelliTrace logs in the live instances and downloading them later in
Visual Studio to analyze them. This method is quite complex, and it is not covered in this book.

Developing Cloud Services for Microsoft Azure

26

See also
Have a look at the following MSDN links to get additional information:

ff How to debug Virtual Machines from VS at http://msdn.microsoft.com/en-
us/library/ff683670.aspx

ff How to collect the IntelliTrace data of the remote Cloud Services at http://msdn.
microsoft.com/en-us/library/ff683671.aspx

Configuring the service model for a Cloud
Service

The service model for a Cloud Service in Microsoft Azure is specified in two XML files: the
service definition file, ServiceDefinition.csdef, and the service configuration file,
ServiceConfiguration.cscfg. These files are part of the Microsoft Azure project.

The service definition file specifies the roles used in the Cloud Service, up to 25 in a single
definition. For each role, the service definition file specifies the following:

ff The instance size

ff The available endpoints

ff The public key certificates

ff The pluggable modules used in the role

ff The startup tasks

ff The local resources

ff The runtime execution context

ff The multisite support

ff The file contents of the role

The following code snippet is an example of the skeleton of the service definition document:

<ServiceDefinition name="<service-name>"
 xmlns="http://schemas.microsoft.com/ServiceHosting/2008/
 10/ServiceDefinition" upgradeDomainCount="<number-of-upgrade-
 domains>" schemaVersion="<version>">
 <LoadBalancerProbes> </LoadBalancerProbes>
 <WebRole …> </WebRole>
 <WorkerRole …> </WorkerRole>
 <NetworkTrafficRules> </NetworkTrafficRules>
</ServiceDefinition>

http://msdn.microsoft.com/en-us/library/ff683670.aspx
http://msdn.microsoft.com/en-us/library/ff683670.aspx
http://msdn.microsoft.com/en-us/library/ff683671.aspx
http://msdn.microsoft.com/en-us/library/ff683671.aspx

Chapter 1

27

We can mix up to 25 roles from both the web role and worker role types. In the past, there
was also a third kind of supported role, the VM Role, which is now deprecated.

All instances of a role have the same size, chosen from standard sizes (A0-A04), memory
intensive sizes (A5-A7), and compute intensive sizes (A8-A9). Each role may specify a number
of input endpoints, internal endpoints, and instance-input endpoints. Input endpoints are
accessible over the Internet and are load balanced, using a round-robin algorithm, across all
instances of the role:

<InputEndpoint name="PublicWWW" protocol="http" port="80" />

Internal endpoints are accessible only by instances of any role in the Cloud Service. They
are not load balanced:

<InternalEndpoint name="InternalService" protocol="tcp" />

Instance-input endpoints define a mapping between a public port and a single instance under
the load balancer. An instance-input endpoint is linked to a specific role instance, using a port-
forwarding technique on the load balancer. Onto it, we must open a range of ports through the
AllocatePublicPortFrom section:

<InstanceInputEndpoint name="InstanceLevelService" protocol="tcp"
 localPort="10100">
 <AllocatePublicPortFrom>
 <FixedPortRange max="10105" min="10101" />
 </AllocatePublicPortFrom>
</InstanceInputEndpoint>

An X.509 public key certificate can be uploaded to a Cloud Service either directly on the
Microsoft Azure Portal or using the Microsoft Azure Service Management REST API. The
service definition file specifies which public key certificates, if any, are to be deployed with
the role as well as the certificate store they are put in. A public key certificate can be used
to configure an HTTPS endpoint but can also be accessed from code:

<Certificate name="CertificateForSSL" storeLocation="LocalMachine"
 storeName="My" />

Pluggable modules instruct Azure on how to set up the role. Microsoft Azure tooling for Visual
Studio can automatically add/remove modules in order to enable/disable services as follows:

ff Diagnostics to inject Microsoft Azure Diagnostics

ff Remote access to inject remote desktop capability

ff Remote forwarder to inject the forwarding capability used to support remote desktop

ff Caching to inject the In-Role caching capability

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

28

Though In-Role caching is not covered in this book, there is a chapter
about In-Memory Caching, using the Microsoft Azure Managed Cache
service.

The following configuration XML code enables the additional modules:

<Imports>
 <Import moduleName="Diagnostics" />
 <Import moduleName="RemoteAccess" />
 <Import moduleName="RemoteForwarder" />
 <Import moduleName="Caching" />
</Imports>

Startup tasks are scripts or executables that run each time an instance starts, and they
modify the runtime environment of the instance, up to and including the installation of
the required software:

<Startup>
 <Task commandLine="run.cmd" taskType="foreground"
executionContext="elevated">
 <Environment>
 <Variable name="A" value="B" />
 </Environment>
 </Task>
</Startup>

The local resources section specifies how to reserve an isolated storage in the instance,
for temporary data, accessible through an API instead of direct access to the filesystem:

<LocalResources>
 <LocalStorage name="DiagnosticStore" sizeInMB="20000"
 cleanOnRoleRecycle="false" />
 <LocalStorage name="TempStorage" sizeInMB="10000" />
</LocalResources>

The runtime execution context specifies whether the role runs with limited privileges (default)
or with elevated privileges that provide full administrative capabilities. Note that in a web role
that is running full IIS, the runtime execution context applies only to the web role and does
not affect IIS. This runs in a separate process with restricted privileges:

<Runtime executionContext="elevated" />

Chapter 1

29

In a web role that is running full IIS, the site's element in the service definition file contains
the IIS configuration for the role. It specifies the endpoint bindings, virtual applications, virtual
directories, and host headers for the various websites hosted by the web role. The Hosting
multiple websites in a web role recipe contains more information about this configuration.
Refer to the following code:

<Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1" />
 </Bindings>
 </Site>
</Sites>

The contents section specifies whether static contents are copied from an application folder to a
destination folder on the Azure virtual machine, relative to the %ROLEROOT%\Approot folder:

<Contents>
 <Content destination="MyFolder">
 <SourceDirectory path="FolderA"/>
 </Content>
</Contents>

The service definition file is uploaded to Microsoft Azure as part of the Microsoft Azure package.

The service configuration file specifies the number of instances of each role. It also specifies
the values of any custom configuration settings as well as those for any pluggable modules
imported in the service definition file.

Applications developed using the .NET framework typically store application configuration
settings in an app.config or web.config file. However, in Cloud Services, we can mix
several applications (roles), so a uniform and central point of configuration is needed.
Runtime code can still use these files; however, changes to these files require the
redeployment of the entire service package. Microsoft Azure allows custom configuration
settings to be specified in the service configuration file where they can be modified without
redeploying the application. Any service configuration setting that could be changed while
the Cloud Service is running should be stored in the service configuration file. These custom
configuration settings must be declared in the service definition file:

<ConfigurationSettings>
 <Setting name="MySetting" />
</ConfigurationSettings>

Developing Cloud Services for Microsoft Azure

30

The Microsoft Azure SDK provides a RoleEnvironment.GetConfigurationSetting()
method that can be used to access the values of custom configuration settings. There is also
CloudConfigurationManager.GetSetting() of the Microsoft.WindowsAzure.
Configuration assembly that checks in-service configuration first, and if no Azure
environment is found, it goes to the local configuration file.

The service configuration file is uploaded separately from the Microsoft Azure package
and can be modified independently of it. Changes to the service configuration file can
be implemented either directly on the Microsoft Azure Portal or by upgrading the Cloud
Service. The service configuration can also be upgraded using the Microsoft Azure Service
Management REST API.

The customization of the service configuration file is limited almost to the role instance count,
the actual values of the settings, and the certificate thumbprints:

<Role name="WorkerHelloWorld">
 <Instances count="2" />
 <ConfigurationSettings>
 <Setting name="MySetting" value="Value" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="CertificateForSSL"
 thumbprint="D3E008E45ADCC328CE6BE2AB9AACE2D13F294838"
 thumbprintAlgorithm="sha1" />
 </Certificates>
</Role>

The handling of service upgrades is described in the Managing upgrades and changes
to a Cloud Service and Handling changes to the configuration and topology of a Cloud
Service recipes.

In this recipe, we'll learn how to configure the service model for a sample application.

Getting ready
To use this recipe, we need to have created a Microsoft Azure Cloud Service and deployed
an application to it, as described in the Publishing a Cloud Service with options from Visual
Studio recipe.

Chapter 1

31

How to do it...
We are going to see how to implement a real service definition file, based on the following
scenario, taken from the WAHelloWorld sample. Suppose we have a Cloud Service with two
roles (a web role and a worker one). The web role has a medium instance size; it uses the
Diagnostics module, has a local storage of 10 GB, has two public endpoints (one at port 80
and another at port 8080), and has a setting value. The worker role is small, and it
has an input endpoint to let the various instances communicate together.

For the web role, we proceed as follows:

1.	 Open the ServiceDefinition.csdef file in Visual Studio.

2.	 Inside the <ServiceDefinition> root element, create a <WebRole> item:
<WebRole name="WebHelloWorld" vmsize="Medium"></WebRole>

3.	 Inside the WebRole tag just created, add an <Endpoints> tag with two
InputEndpoint tags, one for each public endpoint:
<Endpoints>
 <InputEndpoint name="Endpoint1" protocol="http" port="80"
 />
 <InputEndpoint name="Endpoint2" protocol="http"
 port="8080" />
</Endpoints>

4.	 Inside the WebRole tag, create a Sites element with the correct binding to the
web application in the solution:
<Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1" />
 <Binding name="Endpoint2" endpointName="Endpoint2" />
 </Bindings>
 </Site>
</Sites>

5.	 Inside the WebRole tag, declare the usage of the Diagnostics module:
<Imports>
 <Import moduleName="Diagnostics" />
</Imports>

Developing Cloud Services for Microsoft Azure

32

6.	 Inside the WebRole tag, declare a local storage element of 10 GB:
<LocalResources>
 <LocalStorage name="MyStorage" cleanOnRoleRecycle="true"
 sizeInMB="10240" />
</LocalResources>

7.	 Finally, declare the Settings section and a setting inside the WebRole tag:
<ConfigurationSettings>
 <Setting name="MySetting" />
</ConfigurationSettings>

Worker role.

8.	 Create a WorkerRole section like the following:
<WorkerRole name="WorkerHelloWorld" vmsize="Small"> ...

9.	 Declare InternalEndpoint inside a new Endpoints section:
<Endpoints>
 <InternalEndpoint name="Internal" protocol="tcp" />
</Endpoints>

10.	 In the corresponding ServiceConfiguration.cscfg file, configure the instance
count as follows:
<Role name="WebHelloWorld">
 <Instances count="1" />
</Role>
<Role name="WorkerHelloWorld">
 <Instances count="2" />
</Role>

11.	 Provide a value called MySetting for the configuration setting :
<ConfigurationSettings>
 <Setting name="MySetting" value="Test"/>
</ConfigurationSettings>

12.	 Save the file, and check the Visual Studio Error List window to solve any errors.

Chapter 1

33

How it works...
In step 2, we put an XML tag to declare a WebRole tag. The name of the WebRole tag must
be the name of a valid web application project inside the solution that contains the cloud
project itself. In the WebRole tag, we also specify the instance size, choosing among the
ones in the following table (there are more sizes available actually):

Size CPU Memory

ExtraSmall Shared 768 MB
Small 1 1.75 GB
Medium 2 3.5 GB
Large 4 7 GB
ExtraLarge 8 14 GB
A5 2 14 GB
A6 4 28 GB
A7 8 56 GB

In step 3, we declared two HTTP-based endpoints on ports 80 and 8080, respectively.
Intend this configuration as a load balancer firewall/forward configuration. Saying "There's
an endpoint" does not mean there is a real service under the hood, which replies to the
request made to the endpoints (except for the default one on port 80).

In step 4, we bound the WebHelloWorld web application to both the endpoints declared
earlier. It is also possible to specify additional configurations regarding virtual directories
and virtual applications.

In step 5, we simply told Azure to inject the Diagnostics module into the VM that runs our
service. As said earlier, other modules can be injected here.

In step 6, we told Azure to allocate an amount of 10 GB of space on a folder located somewhere
on the virtual machine. As this folder will be accessed through an API, it doesn't matter where
it's located. What we have to know is the meaning of the cleanOnRoleRecycle attribute. If it
is true, we agree that isolated storage won't be retained across role recycles; if it is false, we ask
it to preserve the data (if possible) instead.

In step 7, we declared the presence of a setting value but not the setting value itself, which is
shown instead in the service configuration in step 11.

Developing Cloud Services for Microsoft Azure

34

In step 8, we repeated the process for the worker role, but as it does not run IIS, we don't
declare any sites. Instead, due to the initial goal, we declare an internal endpoint. In step 9
in fact, we said that the VM will have an open TCP port. It will be our code's responsibility to
actually bind a service to this port.

In the InternalEndpoint tag, we can specify a fixed port number.
In the example given earlier, there is no port so that Azure can decide
which port to allocate. We can use the ServiceRuntime API as the
local storage to find out the information at runtime.

Finally, we populate the service configuration with the actual values for the parameters
specified in the service definition. One of these is the instance count (for both the roles)
and the configuration setting value for the web role.

There's more…
Is there more to the service definition document? First, for example, the capability to influence
the update process of our services/roles/instances. Let's introduce the concepts of fault
domain and update domain. Microsoft Azure assures that if two or more instances are
deployed, it will put them onto an isolated hardware to reduce as much as it can the possibility
of a downtime due to a failure. This concept is also known as Fault Domain, as Azure creates
instances in separate areas to increase the availability. Therefore, an Update Domain is about
how Azure manages the update flow on our instances, taking them offline one by one or
group by group to reduce, again, the possibility of a downtime. Think about Upgrade Domain
as groups of instances, which have the default value of 5. This means that if five or fewer
instances are deployed, they will be updated one by one. If there are more than five instances,
the default behavior makes five groups and updates the instances of a group altogether.

It is not always necessary to update instances one by one, or it is often
not feasible to update the system in parts. Despite the occurrence of a
downtime, systems often bring online new databases and new logic that
modify actual data. Bringing new instances online one by one could lead
to the same time coexisting on a different version of data/code that runs
on the system. In this case, a simultaneous upgrade as well as the related
downtime should be taken into consideration. During development, it is
advisable to keep a single instance deployed, to save time during upgrades;
however, during testing, it is recommended that you scale out and verify
that the application is behaving correctly.

Chapter 1

35

We can suggest a different value for Azure for the Upgrade Domain behavior; we can suggest
up to a value of 20. The higher the value, the lower the impact of the upgrade on the entire
infrastructure:

<ServiceDefinition name="WAHelloWorld" upgradeDomainCount="20"…

Consider letting Azure decide about the Upgrade Domains due to the
nature of the PaaS in the event of a breaking change happening to the
platform in the future. Designing a workflow based on an Azure constraint
is not recommended. Instead, design your update to be resilient without
telling Azure anything.

Finally, instances will know about the change that occurred in the topology (upgrades and
configuration) that walks the upgrade domains. This means that the instances will know
about the change one by one, only when it is their respective turn to change. This is the
default behavior.

See also
ff There is more information on topology changes in the Handling changes to the

configuration and topology of a Cloud Service recipe

ff The complete reference to the Service Definition schema at http://msdn.
microsoft.com/en-us/library/ee758711.aspx

Providing a custom domain name for a
Cloud Service

A Cloud Service can expose an input endpoint to the Internet. This endpoint has a load balanced
Virtual IP (VIP) address, which, for the time being, could change at each deployment.

Each VIP has an associated domain of the [servicednsprefix].cloudapp.net form.
The servicednsprefix name is specified when the Cloud Service is created, and it is
not changeable following the creation. A Cloud Service might be reached over the Internet
at servicednsprefix.cloudapp.net. All Cloud Services exist under the cloudapp.net
domain.

The DNS system supports a CNAME record that maps one domain to another. This allows,
for example, www.servicename.com to be mapped to servicednsprefix.cloudapp.
net. The DNS system also supports an A record that maps a domain to a fixed IP address.
Unfortunately, reliable use of an A record is not recommended with a Cloud Service, because
the IP address can change if the Cloud Service is deleted and redeployed.

http://msdn.microsoft.com/en-us/library/ee758711.aspx
http://msdn.microsoft.com/en-us/library/ee758711.aspx

Developing Cloud Services for Microsoft Azure

36

It is not possible to acquire a public key certificate for the cloudapp.net domain as
Microsoft controls it. Consequently, a CNAME is needed to map a custom domain to a
cloudapp.net domain when HTTPS is used. We will see how to do this in the Implementing
HTTPS in a web role recipe. In this recipe, we'll learn how to use CNAME to map a custom
domain to a Cloud Service domain.

Getting ready
To use this recipe we need to control a custom domain (for example, customdomain.com)
and must have created a Cloud Service (for example, theservice.cloudapp.net).

How to do it...
We are going to see how to use CNAME to map a custom domain to a Cloud Service using
the following steps:

1.	 Go to the dashboard of your DNS provider.

2.	 On the CNAME management page of your DNS provider, add a new CNAME that
maps www.customdomain.com to theservice.cloudapp.net.

3.	 If your DNS provider supports the domain-forwarding feature, forward
customdomain.com to www.customdomain.com.

4.	 Wait for some time as the propagation of the DNS is recorded all around the world.

How it works...
In step 1, we navigated to the dashboard of the DNS service. Each DNS service operates
on its own, so the interface might vary a lot from one vendor to another. In step 2, we told
the DNS to forward the DNS request to theservice.cloudapp.net if the DNS www.
customdomain.com is requested. In turn, when the Azure DNS is being requested from a
remote client with the theservice.cloudapp.net record, it returns the actual IP address
of the load balancer of the Cloud Service.

Finally, in step 3, we configured (if possible) forwarding so that the customdomain.com root/
naked name is forwarded automatically to www.customdomain.com.

A DNS change could take from a few minutes to a few days, depending on the service
provider. Expect the average time to wait until the DNS comes online to be about few hours.

Chapter 1

37

There's more...
Sometimes (we read it as always), it is necessary to test the development environment
while calling the production URL into the browser. This is possible by locally mapping
(on the development workstation) the domain name to the loopback IP address.

The equivalent of a CNAME mapping in the development environment is a hosts file
entry that maps servicename.com to 127.0.0.1. The hosts file is located in the
%SystemRoot%\system32\drivers\etc folder. For example, adding the following
entry to the hosts file maps servicename.com to 127.0.0.1:

127.0.0.1 servicename.com

Note that we need to remember to remove this entry from the hosts file on the development
machine after the application is deployed to the Microsoft Azure data center. Otherwise, we will
not be able to access the real servicename.com domain from the development machine.

We can also map the remote Azure service with this technique as follows:

1.	 Discover the current IP address of the service by pinging it:
ping theservice.cloudapp.net

2.	 Add a line into the hosts file that maps the IP just discovered to the domain name.

Implementing HTTPS in a web role
A Microsoft Azure web role can be configured to expose an HTTPS endpoint for a website.
This requires an X.509 public key certificate to be uploaded as a service certificate to the
Cloud Service and the web role to be configured to use it.

The following steps are used to implement HTTPS for a web role:

ff Acquire a public key certificate for the custom domain of the web role

ff Upload the certificate to the Cloud Service

ff Add the certificate to the web role configuration

ff Configure the website endpoint to use the certificate

The use of HTTPS requires the website to be configured to use a public key certificate. It is
not possible to acquire a public key certificate for the cloudapp.net domain as Microsoft
owns this domain. Consequently, a custom domain must be used when exposing an HTTPS
endpoint. The Providing a custom domain name for a Cloud Service recipe shows how to
map a custom domain to the cloudapp.net domain. For production use, a Certification
Authority (CA) should issue the certificate to ensure that its root certificate is widely available.
For test purposes, a self-signed certificate is sufficient.

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

38

The certificate must be uploaded to the Cloud Service using either the Microsoft Azure
Portal or the Microsoft Azure Service Management REST API. Note that this upload is to the
Certificates section for the Cloud Service and not to the Management Certificates section
for the Microsoft Azure subscription. As a service certificate must contain both public and
private keys, it is uploaded as a password-protected PFX file.

The configuration for the certificate is split between the service definition
file, ServiceDefinition.csdef, and the service configuration file,
ServiceConfiguration.cscfg. The logical definition and deployment location of the
certificate is specified in the service definition file. The thumbprint of the actual certificate is
specified in the service configuration file so that the certificate can be renewed or replaced
without redeploying the Cloud Service. In both cases, for each web role, there is a hierarchy
that comprises a Certificates child to the WebRole element, which, in turn, includes a
set of one or more Certificate elements, each referring to a specific certificate.

In this recipe, we'll learn how to implement HTTPS in a web role.

How to do it...
We are going to see how to implement an HTTPS endpoint in a web role only on the 443 port,
using a test (self-signed) certificate.

The first stage is creating a test certificate and uploading it to the Cloud Service using the
following steps:

1.	 Use the Server Certificates section of IIS 8 to create a self-signed certificate and
give it a friendly name of www.myservice.com.

Though IIS is not the purpose of this book, remember to click on the
Create Self-Signed Certificate link on the right-hand side pane, type the
name in the friendly name textbox, and choose the store (Personal is the
default one).

2.	 Open the Microsoft Management console by typing mmc in the Run windows of the
Start menu, and use the certificate snap-in, specifying the local machine level.

3.	 In the Personal/Certificates branch, right-click on the certificate with the friendly
name of www.myservice.com and navigate to All Tasks | Export to open the
Certificate Export Wizard.

4.	 Complete the wizard by choosing to export the private key (and otherwise accepting
default values) and providing a password and a location for the PFX file.

5.	 On the Microsoft Azure Portal, select the Certificates section for the Cloud Service
and click on Add certificate.

Chapter 1

39

6.	 Upload the public key certificate by providing the location for the PFX file and
its password.

The next stage is configuring a Cloud Service to use the certificate. We can do this by
performing the following steps:

1.	 Use Visual Studio to create an empty cloud project.

2.	 Add a web role to the project (accept the default name of WebRole1).

3.	 Right-click on the WebRole1 item under the Roles folder of the cloud project;
then go to the Properties page and click on the Certificates tab.

4.	 Click on Add Certificate, provide a name, select a Store Location, and a
Store Name.

For certificates at machine level in the personal store, choose
LocalMachine and My for the Store Location and Store Name,
respectively.

5.	 Click on the … icon to browse the store and look for the www.myservice.com
certificate. Then confirm it.

6.	 Go to the Endpoints tab of the Properties page you are on.

7.	 Modify Endpoint1 (the default one) to listen on port 443.

8.	 Choose https as the protocol.

9.	 Specify the certificate declared at step 4 in the SSL Certificate Name.

10.	 Build the application and deploy it into the Cloud Service.

The final stage is verifying that we can use HTTPS.

11.	 Use a browser to access the web role using HTTPS.

12.	 Choose to ignore the certificate error caused by our use of a test certificate,
and view the certificate.

How it works...
From steps 1 to 6, we created and uploaded our test certificate. We need to export the
certificate as a password-protected PFX file so that it contains both the public and
private keys for the certificate.

Developing Cloud Services for Microsoft Azure

40

In steps 7 and 8, we created a cloud project with a web role.

From steps 9 to 11, we specified the linkage between web role bindings and the certificate.
In step 10, we specified the certificate store on each instance into which the Azure fabric
deploys the certificate.

In step 13, we modified the default endpoint to listen as an HTTPS endpoint, using the
certificate, on port 443. In step 15, we specified the certificate to the endpoint.

In step 16, we built the application and deployed it into the Cloud Service. We verified that
we could use HTTPS in steps 17 and 18. We are using a test certificate for which there is
no root certificate in the browser. This consequently causes the browser to issue a warning.
For demonstration purposes, we ignored the error and looked at the certificate properties to
confirm that it was the test certificate.

There's more...
We can use IIS to generate a Certificate Signing Request (CSR), which we can send to a CA.
We do this by opening the Server Certificates section of IIS and clicking on Create Certificate
Request. When generating the request, we specify the fully qualified domain name for the
custom domain, for example, www.ourcustomdomain.com, in the Common Name field.
After the CA issues the certificate, we click on the Complete Certificate Request in the
Server Certificates section of IIS to import the certificate into the personal certificate store
of the local machine level.

From there, we can upload and deploy the CA-issued certificate by starting at step 2 of
the recipe.

Using makecert to create a test certificate
We can invoke the makecert command from the Visual Studio command prompt, as follows,
to create a test certificate and install it in the personal branch of the local machine level of
the certificate store:

C:\Users\Administrator>makecert -r -pe -sky exchange
-a sha1 -len 2048 -sr localmachine -ss my
-n "CN=www.ourservice.com"

The minimum required bit length for Azure is 2048, and this test certificate has a subject
name of www.ourservice.com.

www.ourcustomdomain.com

Chapter 1

41

Using local storage in an instance
The Microsoft Azure Fabric Controller deploys an instance of a Microsoft Azure role onto a
virtual machine (VM) as three Virtual Hard Disks (VHD). The guest OS image is deployed
to the D drive, the role image is deployed to the E or F drive, while the C drive contains the
service configuration and the local storage available to the instance. Only code running
with elevated privileges can write anywhere other than the local storage.

As Azure could change the way it manages the underlying operating
system of Cloud Services, the information provided about filesystem
topology could change suddenly with no obligation from Microsoft to
explain it.

Each instance has read-write access to a reserved space on the C drive. The amount of space
available depends on the instance size and ranges from 20 GB for an Extra Small instance
to 2,040 GB for an Extra Large instance. This storage space is reserved by being specified
in the service definition file, ServiceDefinition.csdef, for the service. Note that
RoleEnvironment.GetLocalResource() should be invoked to retrieve the actual path
to local storage.

The LocalStorage element for a role in the service definition file requires a name
(Name) and, optionally, the size in megabytes to be reserved (sizeInMb). It also requires
an indication of whether the local storage should be preserved when the role is recycled
(cleanOnRoleRecycle). This indication is only advisory, as the local storage is not copied
if an instance is moved to a new VM.

Multiple local storage resources can be specified for a role as long as the total space allocated
is less than the maximum amount available.

In fact, the purpose of the allocated space is just an upper-bound limit,
as an exception is thrown only when a write operation actually exceeds
the allowed maximum.

This allows different storage resources to be reserved for different purposes. Storage
resources are identified by name.

The RoleEnvironment.GetLocalResource() method can be invoked to retrieve the
root path for a local resource with a specific name. The role instance can invoke arbitrary
file and directory-management methods under this path.

In this recipe, we'll learn how to configure and use local storage in an instance.

Developing Cloud Services for Microsoft Azure

42

How to do it...
We are going to access the local storage on an instance and create a file on it. We will write
to the file and then read the contents from the file. We will do this using the following steps:

1.	 Use Visual Studio to create an empty cloud project.

2.	 Add a worker role to the project (accept the default name of WorkerRole1).

3.	 Right-click on the WorkerRole1 item under the Roles folder of the cloud project.
Then, go to the Properties page and click on the Local Storage tab.

4.	 Click on Add Local Storage and set Name as WorkerStorage, a size of 10 MB,
and leave the Clean on role recycle box unchecked.

5.	 Add a new class named LocalStorageExample to the project:

6.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.ServiceRuntime;
using System.IO;

7.	 Add the following private members to the class:
static String storageName = "WorkerStorage";
String fileName;
LocalResource localResource =
 RoleEnvironment.GetLocalResource(storageName);

8.	 Add the following constructor to the class:
public LocalStorageExample(String fileName)
{
 this.fileName = fileName;
}

9.	 Add the following method, which writes to the local storage, to the class:
public void WriteToLocalStorage()
{
 String path = Path.Combine(
 localResource.RootPath, fileName);

 FileStream writeFileStream = File.Create(path);
 using (StreamWriter streamWriter =
 new StreamWriter(writeFileStream))
 {
 streamWriter.Write("think but this and all is mended");
 }
}

Chapter 1

43

10.	 Add the following method, which reads the file, to the class:
public void ReadFromLocalStorage()
{
 String fileContent = string.Empty;
 String path = Path.Combine(
 localResource.RootPath, fileName);
 FileStream readFileStream = File.Open(path, FileMode.Open);
 using (StreamReader streamReader =
 new StreamReader(readFileStream))
 {
 fileContent = streamReader.ReadToEnd();
 }
}

11.	 Add the following method, using the methods added earlier, to the class:
public static void UseLocalStorageExample()
{
 String fileName = "WorkerRoleStorage.txt";

 LocalStorageExample example =
 new LocalStorageExample(fileName);
 example.WriteToLocalStorage();
 example.ReadFromLocalStorage();
}

12.	 Add the following code at the start of the Run() method in WorkerRole.cs:

LocalStorageExample.UseLocalStorageExample();

How it works...
In steps 1 and 2, we created a cloud project with a worker role.

In step 3, we used the GUI to locate the local storage section of the project properties. In
step 4, we added the definition of the local storage to the service definition file for the Cloud
Service. We provided a name by which it can be referenced and a size. We also specified that
the content of local storage should be preserved through an instance recycle.

In steps 5 and 6, we set up the LocalStorageExample class. In step 7, we added some
private members to store the filename and the local storage resource. We initialized the
filename in the constructor that we added in step 8.

In step 9, we added a method that created a file and added some text to it. In step 10, we
opened the file and read the text.

In step 11, we added a method that invoked the other methods in the class. In step 12, we
invoked this method.

Developing Cloud Services for Microsoft Azure

44

See also
Have a look at the following MSDN link to get additional information:

ff Additional details about local storage behavior and process model at http://msdn.
microsoft.com/en-us/library/azure/ee758708.aspx

Hosting multiple websites in a web role
Microsoft released Microsoft Azure as a production service in February 2010. A common
complaint was that it was too expensive to develop small websites because a web role could
support only a single website. The cause of this limitation was that a web role hosted a
website using a hosted web core rather than the full IIS.

With the Microsoft Azure SDK v1.3 release, Microsoft Azure added support for full IIS for web
roles. This means that a single web role can host multiple websites. However, all of these
websites share the same Virtual IP address, and a CNAME record must be used to map the
domain name of the website to the servicename.cloudapp.net URL for the web role.
Each website is then distinguished inside IIS by its distinct host header.

The Providing a custom domain name for a Cloud Service recipe shows how to use a CNAME
record to map a custom domain to a Cloud Service domain. Note that full IIS is also available
on worker roles.

The approach described in this recipe, as it is still valid, is probably not
the best you can do with Azure. If you need to host multiple websites in
a single role (and in a single unit of scale), the Microsoft Azure Websites
could be the best solution to accomplish this. We will talk about
Websites in a dedicated chapter, and it is the newest and probably the
most advanced PaaS on the market.

The Sites element in the ServiceDefinition.csdef service definition file is used to
configure multiple websites. This element contains one child Site element for each website
hosted by the web role. Each Site element has two attributes: name, which distinguishes
the configuration, and physicalDirectory, which specifies the physical directory for the
website. Note that multiple websites can reference the same physical directory. Each Site
element has a Bindings child element that contains a set of Binding child elements, each
of which identifies an endpoint used by the website and the host header used to distinguish
the website. Each endpoint must correspond to an input endpoint specified in the EndPoints
declaration for the web role. It is possible to define virtual applications and virtual directories
for a website, using the VirtualApplication and VirtualDirectory elements,
respectively. This configuration is a subset of the standard IIS configuration.

http://msdn.microsoft.com/en-us/library/azure/ee758708.aspx
http://msdn.microsoft.com/en-us/library/azure/ee758708.aspx

Chapter 1

45

The following example shows a fragment of a service definition file for a web role that hosts
two websites:

<WebRole name="MultipleWebsites">
 <Sites>
 <Site name="WebsiteOne" physicalDirectory="..\Web">
 <Bindings>
 <Binding name="HttpIn" endpointName="HttpIn"
 hostHeader="www.websiteone.com" />
 </Bindings>
 </Site>
 <Site name="WebsiteTwo" physicalDirectory="..\Web">
 <VirtualApplication name="Payment"
 physicalDirectory="..\..\Payment">
 <VirtualDirectory name="Scripts"
 physicalDirectory="..\Web\Scripts" />
 </VirtualApplication>
 <Bindings>
 <Binding name="HttpIn" endpointName="HttpIn"
 hostHeader="www.websitetwo.com" />
 <Binding name="HttpsIn" endpointName="HttpsIn"
 hostHeader="www.websitetwo.com" />
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>
 <InputEndpoint name="HttpIn" protocol="http"
 port="80" />
 <InputEndpoint name="HttpsIn" protocol="https"
 port="443" />
 </Endpoints>
 <ConfigurationSettings />
</WebRole>

This configuration specifies that the web role hosts two websites: www.websiteone.com and
www.websitetwo.com. They share the same physical directory, but www.websitetwo.
com also uses a virtual application with its own virtual directory. Both websites are accessible
using HTTP, but www.websitetwo.com also exposes an HTTPS endpoint.

In this recipe, we'll learn how to host multiple websites in a single Microsoft Azure web role.

Developing Cloud Services for Microsoft Azure

46

How to do it...
We are going to see how to implement the two websites in a Cloud Service. We do this
as follows:

1.	 Use Visual Studio to create an empty cloud project.

2.	 Add a web role to the project (accept the default name of WebRole1).

The changes from steps 3 to 8 affect the ServiceDefinition.csdef service definition file:

1.	 Set the name attribute of the Site element to WebSiteOne.

2.	 Add a physicalDirectory attribute, with the "..\..\..\WebRole1" value,
to the Site element.

3.	 Add a hostHeader attribute, with the www.websiteone.com value, to the
Binding element for the Site element.

4.	 Copy the entire Site element and paste it under itself.

5.	 Change the name attribute of the new Site element to WebsiteTwo.

6.	 Change the hostHeader attribute of the new Site element to
www.websitetwo.com.

7.	 Add the following entries to the hosts file present in the %SystemRoot%\
system32\drivers\etc folder:
127.0.0.1 www.websiteone.com
127.0.0.1 www.websitetwo.com

8.	 Build and run the Cloud Service.

9.	 Change the URL in the browser to www.websiteone.com, and refresh the browser.

10.	 Change the URL in the browser to www.websitetwo.com, and refresh the browser.

How it works...
On completing the steps, the WebRole element in the ServiceDefinition.csdef file
should be as follows:

<WebRole name="WebRole1">
 <Sites>
 <Site name="WebsiteOne" physicalDirectory="..\..\..\WebRole1">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1"
 hostHeader="www.websiteone.com"/>
 </Bindings>

Chapter 1

47

 </Site>
 <Site name="WebsiteTwo" physicalDirectory="..\..\..\WebRole1">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1"
 hostHeader="www.websitetwo.com"/>
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>
 <InputEndpoint name="Endpoint1"
 protocol="http" port="80" />
 </Endpoints>
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
</WebRole>

In steps 1 and 2, we created a Cloud project with a web role.

In steps 3 and 4, we configured the Site element for the first website. In step 3, we
provide a distinct name for the element, and in step 4, we specified the physical directory
for the website.

In step 5, we configured the Binding element for the Site element by specifying the host
header we use to distinguish the website.

In step 6, we created the Site element for the second website. In steps 7 and 8, we
completed the configuration of the second website by providing a name for its configuration
and specifying the host header we use to distinguish the website. Note that in this example,
we used the same physical directory for both websites.

In step 9, we modified the hosts file so that we can use the configured host headers as URLs.

We built and ran the Cloud Service in step 10. We will encounter an error in the browser
as there is no default website at 127.0.0.1:81 (or whichever port the Microsoft Azure
Compute Emulator has assigned to the Cloud Service). In steps 11 and 12, we confirmed this
by replacing 127.0.0.1 in the browser URL with the URLs we configured as host headers
for the two websites.

Note that although we only created two websites in this example,
we could have configured additional websites.

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

48

There's more...
When we use this Cloud Service, we must use CNAME records to map the two domains to
the ourservice.cloudapp.net URL of our Cloud Service. Just as we cannot access the
Cloud Service locally at 127.0.0.1, we cannot access the Cloud Service at ourservice.
cloudapp.net. We will see how to use CNAME to do this mapping in the Providing a custom
domain name for a Cloud Service recipe.

See also
Have a look at the following MSDN links and blog posts to get additional information:

ff Further information about hosting multiple websites in a web role at http://msdn.
microsoft.com/en-us/library/azure/ee758708.aspx

ff Blog post about custom build and CSPACK usage for advanced scenarios at
http://michaelcollier.wordpress.com/2013/01/14/multiple-sites-
in-a-web-role/

Using startup tasks in a Microsoft Azure
role

Microsoft Azure provides a locked-down environment for websites hosted in IIS (web roles)
and application services (worker roles). While this hardening significantly eases
administration, it also limits the ability to perform certain tasks such as installing software
or writing to the registry. Another problem is that any changes to an instance are lost
whenever the instance is reimaged or moved to a different server.

The service definition provides the solution to this problem by allowing the creation of startup
tasks, which are script files or executable programs that are invoked each time an instance is
started. Startup tasks allow a temporary escape from the restrictions of the locked-down web
role and worker role while retaining the benefits of these roles.

A startup task must be robust against errors because a failure could cause the instance
to recycle. In particular, the effect of a startup task must be idempotent. As a startup task
is invoked each time an instance starts, it must not fail when performed repeatedly. For
example, when a startup task is used to install software, any subsequent attempt to reinstall
the software must be handled gracefully.

http://msdn.microsoft.com/en-us/library/azure/ee758708.aspx
http://msdn.microsoft.com/en-us/library/azure/ee758708.aspx
http://michaelcollier.wordpress.com/2013/01/14/multiple-sites-in-a-web-role/
http://michaelcollier.wordpress.com/2013/01/14/multiple-sites-in-a-web-role/

Chapter 1

49

Startup tasks are specified with the Startup element in the ServiceDefinition.csdef
service definition file. This is a child element of the WebRole or WorkerRole element. The
child elements in the Startup element comprise a sequence of one or more individual Task
elements, each specifying a single startup task. The following example shows the definition of
a single startup task and includes all the attributes for a Task element:

<Startup>
 <Task
 commandLine="Startup.cmd"
 executionContext="elevated"
 taskType="simple" />
</Startup>

The commandLine attribute specifies a script or executable and its location relative to the
%RoleRoot%\AppRoot\bin folder for the role. The executionContext element takes
one of two values: limited, to indicate the startup task runs with the same privileges as
the role, or elevated, to indicate the startup task runs with full administrator privileges.
It is the capability provided by elevated startup tasks that gives them their power. There are
three types of startup tasks, which are as follows:

ff Simple: This indicates that the system cannot invoke additional startup tasks until
this one completes.

ff Background: This initiates the startup task in the background. This is useful in
the case of a long-running task, the delay in which could cause the instance to
appear unresponsive.

ff Foreground: This resembles a background startup task, except that the instance
cannot be recycled until the startup task completes. This can cause problems if
something goes wrong with the startup task.

Windows PowerShell 2 is installed on Microsoft Azure roles that run guest OS 2.x or higher.
This provides a powerful scripting language that is ideal for scripting startup tasks.

The guest OS is the nickname for the version set of Windows Server that
runs Azure instances. For the time being, we have four guest OS families:

ff Guest OS family 4, which is based on Windows Server 2012 R2
and supports the .NET Framework 4.0, 4.5, and 4.5.1.

ff Guest OS family 3, which is based on Windows Server 2012 and
supports the .NET Framework 4.0 and 4.5.

ff Guest OS family 2, which is based on Windows Server 2008 R2
SP1 and supports the .NET Framework 3.5 and 4.0.

ff Guest OS family 1 (retired in 2014), which is based on Windows
Server 2008 SP2 and supports the .NET Framework 3.5 and
4.0. It does not support Version 4.5 or later.

Developing Cloud Services for Microsoft Azure

50

A PowerShell script named StartupTask.ps1 is invoked from the startup task command
file as follows:

C:\Users\Administrator>PowerShell -ExecutionPolicy Unrestricted .\
StartupTask.ps1

The ExecutionPolicy parameter specifies that StartupTask.ps1 can be invoked even
though it is unsigned.

In startup tasks, we can use AppCmd to manage IIS. We can also use the WebPICmdLine
command-line tool, WebPICmdLine.exe, to access the functionality of the Microsoft Web
Platform Installer. This allows us to install Microsoft Web Platform components, which
includes, for example, PHP.

How to do it...
We are going to use a startup task that uses AppCmd to modify the default idle timeout
for IIS application pools. We will do this using the following steps:

1.	 Use Visual Studio to create an empty cloud project.

2.	 Add a web role to the project (accept the default name of WebRole1).

3.	 Add the StartupTask.cmd text file name to the root directory of the web
role project.

4.	 Set its Copy To Output Directory property to Copy always.

5.	 Insert the following text in the ASCII-encoded file:
%SystemRoot%\system32\inetsrv\appcmd
set config -section:applicationPools
-applicationPoolDefaults.processModel.idleTimeout:0.01:00:00
exit /b 0

If the "exit /b 0" clause is not provided, the role will enter a
continuous recycle state.

6.	 Add the following, as a child of the WebRole element, to ServiceDefinition.
csdef:
<Startup>
 <Task commandLine="StartupTask.cmd"
 executionContext="elevated" taskType="simple"/>
</Startup>

7.	 Build and deploy the application into the Cloud Service.

Chapter 1

51

8.	 Open IIS Manager, select Application Pools, right-click on any application pool,
and select Advanced Settings…. Verify that the Idle Timeout (minutes) setting
is 60 minutes for the application pool.

How it works...
In steps 1 and 2, we created a cloud project with a web role. In steps 3 and 4, we added the
command file for the startup task to the project and ensured that the build copied the file to
the appropriate location in the Microsoft Azure package. In step 5, we added a command to
the file that set the idle timeout to 1 hour for IIS application pools. The exit command ended
the batch file with a return code of 0.

In step 6, we added the startup task to the service definition file. We set the execution context
of the startup task to elevated so that it had the privilege required to modify IIS settings.

In step 7, we built and deployed the application into a Cloud Service. We verified that the
startup task worked in step 8.

There's more...
Note that the web or worker role itself can run with elevated privileges. In a web role, full
IIS runs its own process that continues to have limited privileges; only the role-entry code
(in WebRole.cs) runs with elevated privileges. This privilege elevation is achieved by
adding the following as a child element of the WebRole or WorkerRole element in the
ServiceDefinition.csdef service definition file:

<Runtime executionContext="elevated"/>

The default value for executionContext is limited.

Having done this, we can set the application pool idle timeout in code by invoking the
following from the OnStart() method for the web role:

private void SetIdleTimeout(TimeSpan timeout)
{
 using (ServerManager serverManager = new ServerManager())
 {
 serverManager.ApplicationPoolDefaults.ProcessModel.IdleTimeout =
timeout;
 serverManager.CommitChanges();
 }
}

The ServerManager class is in the Microsoft.Web.Administrator namespace, which
is contained in the following assembly: %SystemRoot%\System32\inetsrv\Microsoft.
Web.Administration.dll.

Developing Cloud Services for Microsoft Azure

52

Developing startup tasks
When developing startup tasks, it can be useful to log the output of commands to a known
location for further analysis. When using the development environment, another trick is to
set the startup task script to the following code:

start /wait cmd

This produces a command window in which we can invoke the desired startup command and
see any errors or log them with the DOS redirect (">>"). The /wait switch blocks the caller
until the prompt completes.

See also
Have a look at the following MSDN link to get additional information:

ff Best practices for startup tasks (http://msdn.microsoft.com/en-us/
library/jj129545.aspx)

Handling changes to the configuration and
topology of a Cloud Service

A Microsoft Azure Cloud Service has to detect and respond to changes to its service
configuration. Two types of changes are exposed to the service: changes to the
ConfigurationSettings element of the ServiceConfiguration.cscfg service
configuration file and changes to the service topology. The latter refers to changes in the
number of instances of the various roles that comprise the service.

The RoleEnvironment class exposes six events to which a role can register a callback
method to be notified about these changes:

ff Changing

ff Changed

ff SimultaneousChanging

ff SimultaneousChanged

ff Stopping

ff StatusCheck

The Changing event is raised before the change is applied to the role. For configuration setting
changes, the RoleEnvironmentChangingEventArgs parameter to the callback method
identifies the existing value of any configuration setting being changed. For a service topology
change, the argument specifies the names of any roles whose instance count is changing. The
RoleEnvironmentChangingEventArgs parameter has a Cancel property that can be set
to true to recycle an instance in response to specific configuration setting or topology changes.

http://msdn.microsoft.com/en-us/library/jj129545.aspx
http://msdn.microsoft.com/en-us/library/jj129545.aspx

Chapter 1

53

The Changed event is raised after the change is applied to the role. As for the previous event,
for configuration setting changes, the RoleEnvironmentChangedEventArgs parameter
to the callback method identifies the new value of any changed configuration setting. For
a service topology change, the argument specifies the names of any roles whose instance
count has changed. Note that the Changed event is not raised on any instance recycled in
the Changing event.

The SimulteneousChanging and SimultaneousChanged events behave exactly like the
normal events, but they are called only during a simultaneous update.

These events fire only if we have the topologyChangeDiscovery
attribute to Blast in service definition file, for example,
<ServiceDefinition name="WAHelloWorld"
topologyChangeDiscovery="Blast> as mentioned in the
Configuring the service model for a Cloud Service recipe. These events
cannot be canceled, and the role will not restart when these events are
received. This is to prevent all roles from recycling at the same time.

We will talk about this kind of update in the Publishing a Cloud Service with options from
Visual Studio recipe.

The Stopping event is raised on an instance being stopped. The OnStop() method is
also invoked. Either of them can be used to implement an orderly shutdown of the instance.
However, this must completed within 5 minutes. In a web role, the Application_End()
method is invoked before the Stopping event is raised and the OnStop() method is
invoked. It can also be used for shutdown code.

Microsoft Azure takes the instance out of the rotation of the load
balancer, and then, it fires the stopping event. This ensures that no
shutdown code can execute while legal requests are coming from the
Internet.

The StatusCheck event is raised every 15 seconds. The
RoleInstanceStatusCheckEventArgs parameter to the callback method for this event
specifies the status of the instance as either Ready or Busy. The callback method can
respond to the StatusCheck event by invoking the SetBusy() method on the parameter to
indicate that the instance should be taken out of the load-balancer rotation temporarily. This
is useful if the instance is so busy that it is unable to process additional inbound requests.

In this recipe, we'll learn how to manage service configuration and topology changes to a
Cloud Service.

Developing Cloud Services for Microsoft Azure

54

How to do it...
We are going to configure callback methods for four of the six RoleEnvironment events.
We will do this by performing the following steps:

1.	 Use Visual Studio to create an empty cloud project.

2.	 Add a worker role to the project (accept the default name of WorkerRole1).

3.	 Add the following to the ConfigurationSettings element of
ServiceDefinition.csdef:
<Setting name="EnvironmentChangeString"/>
<Setting name="SettingRequiringRecycle"/>

4.	 Add the following to the ConfigurationSettings element of
ServiceConfiguration.cscfg:
<Setting name="EnvironmentChangeString"
 value="OriginalValue"/>
<Setting name="SettingRequiringRecycle"
 value="OriginalValue"/>

You can perform steps 3 and 4 with the GUI provided by Visual
Studio in the Properties page of the role, under the Settings tab.

5.	 Add a new class named EnvironmentChangeExample to the project.

6.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.ServiceRuntime;
using System.Collections.ObjectModel;
using System.Diagnostics;

By adding a WorkerRole to the cloud project during the wizard phase,
VS automatically adds a reference to the most updated Microsoft.
WindowsAzure.ServiceRuntime library. Only with this reference
can the user legally use the using clauses of the step 6.

7.	 Add the following callback method to the class:
private static void RoleEnvironmentChanging(object sender,
RoleEnvironmentChangingEventArgs e)
{
 Boolean recycle = false;
 foreach (RoleEnvironmentChange change in e.Changes)
 {

Chapter 1

55

 RoleEnvironmentTopologyChange topologyChange =
 change as RoleEnvironmentTopologyChange;
 if (topologyChange != null)
 {
 String roleName = topologyChange.RoleName;
 ReadOnlyCollection<RoleInstance> oldInstances =
 RoleEnvironment.Roles[roleName].Instances;
 }
 RoleEnvironmentConfigurationSettingChange settingChange
 = change as RoleEnvironmentConfigurationSettingChange;
 if (settingChange != null)
 {
 String settingName =
 settingChange.ConfigurationSettingName;
 String oldValue =
 RoleEnvironment.GetConfigurationSettingValue(
 settingName);
 recycle |= settingName == "SettingRequiringRecycle";
 }
 }

 // Recycle when e.Cancel = true;
 e.Cancel = recycle;
}

8.	 Add the following callback method to the class:
private static void RoleEnvironmentChanged(object sender,
 RoleEnvironmentChangedEventArgs e)
{
 foreach (RoleEnvironmentChange change in e.Changes)
 {
 RoleEnvironmentTopologyChange topologyChange =
 change as RoleEnvironmentTopologyChange;
 if (topologyChange != null)
 {
 String roleName = topologyChange.RoleName;
 ReadOnlyCollection<RoleInstance> newInstances =
 RoleEnvironment.Roles[roleName].Instances;
 }
 RoleEnvironmentConfigurationSettingChange settingChange
 = change as RoleEnvironmentConfigurationSettingChange;
 if (settingChange != null)
 {
 String settingName =
 settingChange.ConfigurationSettingName;

Developing Cloud Services for Microsoft Azure

56

 String newValue =
 RoleEnvironment.GetConfigurationSettingValue(
 settingName);
 }
 }
}

9.	 Add the following callback method to the class:
private static void RoleEnvironmentStatusCheck(object sender,
 RoleInstanceStatusCheckEventArgs e)
{
 RoleInstanceStatus status = e.Status;
 // Uncomment next line to take instance out of the
 // load balancer rotation.
 //e.SetBusy();
}

10.	 Add the following callback method to the class:
private static void RoleEnvironmentStopping(object sender,
 RoleEnvironmentStoppingEventArgs e)
{
 Trace.TraceInformation("In RoleEnvironmentStopping");
}

11.	 Add the following method, associating the callback methods with the
RoleEnvironment events, to the class:
public static void UseEnvironmentChangeExample()
{
 RoleEnvironment.Changing += RoleEnvironmentChanging;
 RoleEnvironment.Changed += RoleEnvironmentChanged;
 RoleEnvironment.StatusCheck += RoleEnvironmentStatusCheck;
 RoleEnvironment.Stopping += RoleEnvironmentStopping;
}

12.	 If the application is deployed to the local Compute Emulator, the
ServiceConfiguration.cscfg file can be modified. It can then be applied
to the running service using the following command in the Microsoft Azure SDK
command prompt:
csrun /update:{DEPLOYMENT_ID};ServiceConfiguration.cscfg

13.	 If the application is deployed to the cloud, the service configuration can be modified
directly on the Microsoft Azure Portal.

Chapter 1

57

How it works...
In steps 1 and 2, we created a cloud project with a worker role. In steps 3 and 4, we added
two configuration settings to the service definition file and provided initial values for them in
the service configuration file.

In steps 5 and 6, we created a class to house our callback methods.

In step 7, we added a callback method for the RoleEnvironment.Changing
event. This method iterates over the list of changes, looking for any topology or
configuration settings changes. In the latter case, we specifically look for changes to the
SettingRequiringRecycle setting, and on detecting one, we initiate a recycle of
the instance.

In step 8, we added a callback method for the RoleEnvironment.Changed event.
We iterate over the list of changes and look at any topology changes and configuration
settings changes.

In both the previous steps, we respectively get oldValue and newValue
without using them. This is, for example, to get the settings value before
and after the changes are made, to eventually use them in a certain
situation. However, these events are intended to be used to be notified
when particular settings are changed, regardless of which is the actual
value before or after the change itself.

In step 9, we added a callback method for the RoleEnvironment.StatusCheck event.
We look at the current status of the instance and leave the SetBusy()call commented out,
which would take the instance out of the load balancer rotation.

In step 10, we added a callback method for the RoleEnvironment.Stopping event. In
this callback, we used Trace.TraceInformation() to log the invocation of the method.

In step 11, we added a method that associated the callback methods with the
appropriate event.

In step 12, we saw how to modify the service configuration in the development environment.
We must replace {DEPLOYMENT_ID} with the deployment ID of the current deployment.
The deployment ID in the Computer Emulator is a number that is incremented with each
deployment. It is displayed on the Compute Emulator UI. In step 13, we saw how to modify
the service configuration in a cloud deployment.

www.allitebooks.com

http://www.allitebooks.org

Developing Cloud Services for Microsoft Azure

58

There's more...
The RoleEntryPoint class also exposes the following virtual methods that allow various
changes to be handled:

ff RoleEntryPoint.OnStart()

ff RoleEntryPoint.OnStop()

ff RoleEntryPoint.Run()

These virtual methods are invoked when an instance is started, stopped, or when it reaches
a Ready state. An instance of a worker role is recycled whenever the Run() method exits.

Testing changes with the SDK command line
The csrun command in the Microsoft Azure SDK can be used to test configuration changes
in the development fabric. The service configuration file can be modified, and csrun can be
invoked to apply the change. Note that it is not possible to test topology changes that reduce
the number of instances. However, when the Cloud Service is started without debugging, it is
possible to increase the number of instances by modifying the service configuration file and
using csrun.

Using LINQ with the RoleEnvironment API
As both RoleEnvironmentChanging and RoleEnvironmentChanged use the
RoleEnvironment APIs to check collections, we can also simplify the code in steps 7
and 8 with new LINQ-based implementations as follows:

private static void RoleEnvironmentChanging(object sender,
 RoleEnvironmentChangingEventArgs e)
{
 var oldInstances =
 e.Changes.OfType<RoleEnvironmentTopologyChange>()
 .SelectMany(p => RoleEnvironment.Roles[p.RoleName].Instances);
 var oldValues = e.Changes.OfType<RoleEnvironmentConfigurati
onSettingChange>()
 .ToDictionary(p => p.ConfigurationSettingName,p=>R
oleEnvironment .GetConfigurationSettingValue(p.
ConfigurationSettingName));
 e.Cancel =oldValues.Any(p=>p.Key=="SettingRequiringRecycle");
}

In the code mentioned earlier, we group the old changing instances and the old settings' key-
value pairs. In the last line, we recycle the SettingRequiringRecycle setting, if there is any.

Step 8 can be modified as mentioned earlier, but by finding new instances and settings'
values instead of old ones, while asking the RoleEnvironment APIs about them.

Chapter 1

59

See also
Have a look at the following MSDN blog post to get additional information:

ff Architecture of the Microsoft Azure Role model http://blogs.msdn.com/b/
kwill/archive/2011/05/05/windows-azure-role-architecture.aspx

Managing upgrades and changes to a Cloud
Service

Microsoft Azure instances and the guest OS they reside in have to be upgraded occasionally.
The Cloud Service might need a new software deployment or a configuration change. The
guest OS might need a patch or an upgrade to a new version. To ensure that a Cloud Service
can remain online 24/7 (an SLA of 99.95%), Microsoft Azure provides an upgrade capability
that allows upgrades to be performed without stopping the Cloud Service completely as long
as each role in the service has two or more instances.

Microsoft Azure supports two types of upgrade: in-place upgrade and Virtual IP swap. An
in-place upgrade applies changes to the configuration and code of existing virtual machines
(VM) that host instances of the Cloud Service. A VIP swap modifies the load-balancer
configuration so that the VIP address of the production deployment is pointed at the instances
that are currently in the staging slot, and the VIP address of the staging deployment is pointed
at the instances currently in the production slot.

There are two types of in-place upgrades: configuration change and deployment upgrade.
A configuration change can be applied on the Microsoft Azure Portal by editing the existing
configuration directly on the portal. A configuration change or a deployment upgrade can be
performed on the Microsoft Azure Portal by uploading a replacement service configuration
file, ServiceConfiguration.cscfg, or by directly modifying the settings in the Configure
tab of the Cloud Service web page. They can also be performed by invoking the appropriate
operations in the Microsoft Azure Service Management REST API. By repeating the Publishing
a Cloud Service with options from Visual Studio recipe, a deployment upgrade could be
initiated directly from Visual Studio. Note that it is possible to do an in-place upgrade of an
individual role in an application package.

A configuration change supports only modifications to the service configuration file, which
includes changing the guest OS; changing the value of configuration settings such as
connection strings, and changing the actual X.509 certificates used by the Cloud Service.
Note that a configuration change cannot be used to change the names of configuration
settings as they are specified in the service definition file.

http://blogs.msdn.com/b/kwill/archive/2011/05/05/windows-azure-role-architecture.aspx
http://blogs.msdn.com/b/kwill/archive/2011/05/05/windows-azure-role-architecture.aspx

Developing Cloud Services for Microsoft Azure

60

A deployment upgrade supports changes to the application package as well as all the
changes allowed in a configuration change. Additionally, a deployment upgrade supports
some modifications to the ServiceDefinition.csdef service definition file. These
modifications include changing the following:

ff Role type

ff The local resource definitions

ff The available configuration settings

ff The certificates defined for the Cloud Service

A Cloud Service has an associated set of upgrade domains that control the phasing of
upgrades during an in-place upgrade. The instances of a role are distributed evenly among
upgrade domains. During an in-place upgrade, all the instances in a single upgrade domain
are stopped, reconfigured, and then restarted. This process continues with one upgrade
domain at a time until all the upgrade domains have been upgraded. This phasing ensures
that the Cloud Service remains available during an in-place upgrade, albeit with roles being
served by fewer instances than usual. By default, there are five upgrade domains for a Cloud
Service, although this number can be reduced/increased in the service definition file.

The only distinction between the production and staging slots of a Cloud Service is that the
load balancer forwards any network traffic that arrives at the service VIP address to the
production slot and any network traffic that arrives at the staging VIP address to the staging
slot. In a VIP swap, the production and staging slots to which the load balancer forwards
network traffic are swapped. This has no effect on the actual VMs running the service; it is
entirely a matter of where inbound network traffic is forwarded to. A VIP swap affects the entire
service simultaneously and does not use upgrade domains. Nevertheless, as a Cloud Service
is a distributed system, there might be a small overlap during a VIP swap, where inbound traffic
is forwarded to some instances that run the old version of the service and some instances
that run the new version. The only way to guarantee that old and new versions are never
simultaneously in production is to stop the Cloud Service while performing the upgrade.

Note that Microsoft occasionally has to upgrade the root OS of a server that hosts an
instance. This type of upgrade is always automatic, and Microsoft provides no ability
for it to be performed manually.

In this recipe, we'll learn how to upgrade a deployment to a Cloud Service.

Getting ready
We need to deploy an application to the production and staging slots of a Cloud Service.
We could use, for example, the Cloud Service we created in the Using startup tasks in
a Microsoft Azure role recipe.

Chapter 1

61

How to do it...
We are going to use the Microsoft Azure Portal to perform an in-place upgrade, a VIP swap,
and a manual guest OS upgrade. In this stage, we will perform an in-place upgrade of the
production deployment using the following steps:

1.	 On the Microsoft Azure Portal, go to the Dashboard tab of the Cloud Service in the
Cloud Services section and then choose the Production slot.

2.	 Click on Update and provide a deployment label, a package location, and a
configuration location.

3.	 Choose the roles to update (this is optional) or click on All to update the entire service.

An Azure Cloud Service can comprise many roles in its definition,
while it is not necessary to update them all if just one needs
updates. This is a very common use case and also an elegant
solution for partial updates.

4.	 Click on either the Allow the update if role sizes change or if the number of
roles change or Update the deployment even if one or more roles contain a
single instance boxes and then confirm.

In this stage, we perform a VIP swap.

5.	 Repeat steps 1 to 4 in the staging slot.

6.	 Click on the Swap button to perform the VIP swap.

In this stage, we perform a manual guest OS upgrade of the
production deployment.

7.	 In the Configure tab of either the production or staging slot of the Cloud Service,
locate the Operating system section.

8.	 Select the desired OS Family and OS Version, and press Save.

How it works...
We can perform in-place upgrades of the production and staging slots independently of each
other. In step 1, we indicated that we wanted to perform an in-place upgrade of the production
slot. In step 2, we specified the details of the upgrade, such as the label and a location for the
upgraded application package and service configuration file.

Developing Cloud Services for Microsoft Azure

62

In step 3, we chose which roles have to be upgraded, as it is common to have just a few parts
of the entire solution modified by an upgrade. In step 4, we told Azure to continue the upgrade
even under those circumstances. Those checkboxes are intended as a double check to avoid
unwanted downtime.

We can perform a VIP swap only if there is a Cloud Service deployed to the staging slot, and
we ensured this in step 5. We initiated the VIP swap in step 6.

We can perform guest OS upgrades of the production and staging slots independently of each
other. In step 7, we located the desired slot to upgrade the guest OS in. We initiated the guest
OS upgrade in step 8.

See also
In Chapter 7, Managing Azure Resources with the Azure Management Libraries, we will see
how to use the Microsoft Azure Management libraries to manage deployments, including
performing upgrades.

Have a look at the following MSDN links to get additional information:

ff Advanced scenarios about updating an Azure Cloud Service at http://msdn.
microsoft.com/en-us/library/azure/hh472157.aspx

ff Swapping deployments using Management REST APIs at http://msdn.
microsoft.com/en-us/library/azure/ee460814.aspx

Configuring diagnostics in Cloud Services
An Azure Cloud Service might comprise multiple instances of multiple roles. These instances
all run in a remote Azure data center, typically 24/7. The ability to monitor these instances
nonintrusively is essential both in detecting failure and in capacity planning.

Diagnostic data can be used to identify problems with a Cloud Service. The ability to view
the data from several sources and across different instances eases the task of identifying a
problem. The process to configure Azure Diagnostics is at the role level, but the diagnostics
configuration is performed at the instance level. For each instance, a configuration file is
stored in a XML blob in a container named wad-control-container located in the storage
service account configured for Azure Diagnostics.

A best practice from both security and performance perspectives would
be to host application data and diagnostic data in separate storage
service accounts. Actually, there is no need for application data and
diagnostics data to be located in the same storage service account.

http://msdn.microsoft.com/en-us/library/azure/hh472157.aspx
http://msdn.microsoft.com/en-us/library/azure/hh472157.aspx
http://msdn.microsoft.com/en-us/library/azure/ee460814.aspx
http://msdn.microsoft.com/en-us/library/azure/ee460814.aspx

Chapter 1

63

Azure Diagnostics supports the following diagnostic data:

ff Application logs: This captures information written to a trace listener

ff Event logs: This captures the events from any configured Windows Event Log

ff Performance counters: This captures the data of any configured performance
counters

ff Infrastructure logs: This captures diagnostic data produced by the Diagnostics
process itself

Azure Diagnostics also supports file-based data sources. It copies new files of a specified
directory to blobs in a specified container in the Azure Blob Service. The data captured
by IIS Logs, IIS Failed Request Logs, and Crash Dumps is self-evident. With the custom
directories data source, Azure Diagnostics supports the association of any directory on
the instance. This allows for the coherent integration of third-party logs.

The Diagnostics Agent service is included as Active by default for each new Visual Studio
Azure Service project.

The Diagnostics Agent would collect and transfer a user-defined set of logs.
The process does not add so much overhead to the normal operations,
but the more logs collected, the more delays in the running machines.

Then, it is started automatically when a role instance starts, provided the Diagnostics module
has been imported into the role. This requires the placement of a file named diagnostics.
wadcfg in a specific location in the role package. When an instance is started for the first
time, the Diagnostic Agent reads the file and initializes the diagnostic configuration for the
instance in wad-control-container with it. Initial configuration typically occurs in Visual
Studio at design time, while further changes could be made either from Visual Studio by the
Management API or manually.

In the past, Diagnostic initialization has been made by user code.
This is not recommended due to the high volume of hardcoded
directives. If needed, the class responsible for this is the
DiagnosticsMonitorConfiguration class.

Azure Diagnostics supports the use of Trace to log messages. Methods of the System.
Diagnostics.Trace class can be used to write error, warning, and informational messages
(the Compute Emulator in the development environment adds an additional trace listener so
that trace messages can be displayed in the Compute Emulator UI).

Developing Cloud Services for Microsoft Azure

64

Azure Diagnostics captures diagnostic information for an instance, keeps it in a local buffer,
and, periodically, it persists this data to the Azure Storage service. The Azure Diagnostics
tables can be queried just like any other table in the Table service. The Diagnostics Agent
persists the data mentioned earlier according to the following tables' mapping:

ff Application logs: WADLogsTable

ff Event logs: WADWindowsEventLogsTable

ff Performance counters: WADPerformanceCountersTable

ff Infrastructure logs: WADDiagnosticInfrastructureLogsTable

As the only index on a table is on PartitionKey and RowKey, it is important
that PartitionKey rather than Timestamp or EventTickCount be used for
time-dependent queries.

In this recipe, we see how to configure and use Diagnostic features in the role environment,
collecting every available log data source and tracing info.

Getting ready
This recipe assumes that we have an empty Cloud Service and an empty Storage account.
To create the first one, go to the Azure Portal and follow the wizards without deploying
anything in it. To create the second one, follow the instructions of the Managing the
Azure Storage Service recipe in Chapter 3, Getting Storage with Blobs in Azure.

We apologize, but as Azure building blocks are interconnected to provide
complex services, it is hard to explain a topic atomically. This is the case
of Diagnostics for Cloud Services, which requires knowledge of Storage
basics.

How to do it…
We are going to create a simple worker role-triggering diagnostics collection using the
following steps:

1.	 In Visual Studio, create a new Azure Cloud Service with a worker role named Worker.

2.	 Right-click on the Worker item in the Roles folder of the created project and
select Properties.

3.	 In the Configuration tab, perform the following actions:

�� Verify that the Enable Diagnostics checkbox is checked

�� Select Custom plan

Chapter 1

65

�� In the Specify the storage account credentials for the Diagnostics results
field, enter the connection string of the Diagnostics storage account (by
clicking the … (more) button, a wizard could help to build this string)

4.	 To customize the data collected by the Diagnostic service, click on the Edit button of
the Custom plan option selected earlier.

5.	 In the Diagnostics configuration window, select the logging mix, for example:

�� Application logs: Verbose level, 1-minute transfer, 1024 MB buffer size

�� Event logs: Application + System + Security with verbose level, 1-minute
transfer, 1024 MB buffer size

�� Performance counters: 1-minute transfer, 1 MB buffer size, and "%
processor time" metric

�� Infrastructure logs: Verbose level, 1-minute transfer, no buffer size

6.	 Close the window and save the configuration.

7.	 In the WorkerRole.cs file, in the Run() method, write this code:
while (true)
{
 Thread.Sleep(1000);
 DateTime now = DateTime.Now;
 Trace.TraceInformation("Information: "+now);
 Trace.TraceError("Error: " + now);
 Trace.TraceWarning("Warning: " + now);
}

8.	 Right-click on the Cloud Service project and Publish it using the following steps:

1.	 Select the proper subscription.

2.	 In Common Settings, select the previously created empty Cloud Service.

3.	 In Advanced Settings, select the previously created Storage Account.

4.	 Confirm, click on Publish, and wait for a few minutes.

Reading the collected data.

9.	 In the Server Explorer window of Visual Studio, expand the Azure node and locate
the proper storage account of the storage subnode.

10.	 Expand the tables node, and for each table found, right-click on it and select
View Table.

Developing Cloud Services for Microsoft Azure

66

How it works...
From steps 1 to 3, we prepared the wrapper project to hold the worker role and configure it.
By enabling the Diagnostics feature, an Import directive was placed into the service
definition file. By selecting Custom plan, we told Azure to collect user-defined data into the
storage account we finally specified.

In steps 4 and 5, we customized the collected data, telling the platform what to log
and when to transfer to storage.

Azure instances are stateless, meaning that an instance could
be taken down and be replaced by a new one seamlessly. Storing
logs in the VM leads to some design issues. What happens if the
instance has been recycled? How do you read service-wide logs
centrally? This is why a transfer phase is involved in log capturing.

After saving in step 6, we added some tracing code in step 7 and published the Cloud Service
as shown in step 8.

A more sophisticated way to trace messages is to use trace sources
and trace switches to control the capture of messages. Typically,
this control can be configured through the app.config file for an
application.

In steps 9 and 10, we used the built-in features of the Azure SDK integration for Visual Studio
to browse through the storage account elected for the Diagnostics collection.

While each table contains some properties specific to the data being logged, all of them
contain the following properties:

ff EventTickCount

ff DeploymentId

ff Role

ff RoleInstance

The EventTickCount property is Int64, which represents the time in which the event was
generated, to an accuracy of 100 nanoseconds. The DeploymentId property identifies the
specific deployment, while the Role and RoleInstance properties specify the role instance
that generated the event.

Chapter 1

67

The WADPerformanceCountersTable table, for example, contains the following
additional properties:

ff CounterName

ff CounterValue

When browsing through the collected data, note that the tables are
partitioned by minute. Specifically, when a record is inserted in a table,
PartitionKey is set to the tick count of the current UTC time with the
seconds discarded, with the entire value prepended by a 0. Discarding
the seconds has the effect of setting the last eight characters of
PartitionKey to 0. The RowKey property combines the deployment ID,
the role name, and the instance ID, along with a key to ensure uniqueness.
Timestamp represents the time the event was inserted in the table.

There's more…
Once the deployment has been made, the Diagnostics configuration can be edited easily
from Visual Studio as follows:

1.	 In the Cloud Services node of the Azure main node in the Server Explorer windows,
select the previously created Cloud Service.

2.	 Expand the node and select the desired role in the desired slot (staging
or production).

3.	 By selecting Update Diagnostics Settings option, we can change the Diagnostics
configuration at runtime.

Log directories
As mentioned earlier, we can transfer entire directories into the selected Storage Account,
for instance, integrate a third-party tool by logging directly in the filesystem. To do this, we
can open the diagnostics.wadcfg file and add this code in the <Directories> tag:

<DataSources>
 <DirectoryConfiguration container="wad-mylog"
directoryQuotaInMB="128">
 <Absolute expandEnvironment="true" path="%SystemRoot%\myTool\logs"
/>
 </DirectoryConfiguration>
</DataSources>

Developing Cloud Services for Microsoft Azure

68

Alerts
Azure has an integrated alerting system to notify users with particular events. Despite it is
not only related to Cloud Services, the following are some steps to enable it for the previously
created one:

ff In the Azure Portal, go to the Management Services section and click on the Alter tab

ff Add a new rule, specifying the following:

�� The name of the rule

�� Service type: Cloud Service

�� Service name: the one previously created

�� Cloud Service deployment: Production

�� Cloud Service role: Worker

ff In the second step, choose CPU Percentage as the metric to monitor

ff Set the greater than condition to 70% with the remaining default values

This alert will notify the user that creates it and, optionally, the service administrator
and co-administrators.

See also
Have a look at the following MSDN links to get additional information:

ff Best practice about Diagnostics and Cloud Service development at http://msdn.
microsoft.com/en-us/library/azure/hh771389.aspx

ff More about Diagnostics collection, blobs, and Q&A at http://msdn.microsoft.
com/library/azure/dn186185.aspx

http://msdn.microsoft.com/en-us/library/azure/hh771389.aspx
http://msdn.microsoft.com/en-us/library/azure/hh771389.aspx
http://msdn.microsoft.com/library/azure/dn186185.aspx
http://msdn.microsoft.com/library/azure/dn186185.aspx

2
Deploying Quickly with

Azure Websites

In this chapter, we will cover the following topics:

ff Deploying an Azure Website

ff Administering and monitoring a Website

ff Source versioning and continuous integration with Git and TFS

ff Logging abstraction from .NET and PHP

ff Deploying Java with Azure Websites

Introduction
Microsoft Azure is a comprehensive set of building blocks that can used as standalone or
mixed services to get complex systems and services. Infrastructure-as-a-Service blocks, as
virtual machines and/or virtual networks, in spite of being very common in the IT vendors'
scenario, are actually great services. Today, the real value-added service in the cloud
computing momentum is PaaS (Platform-as-a-Service).

The Azure Website is an advanced PaaS platform to deploy complex web applications to the
cloud, without having a steep learning curve, thus leveraging the existing skill sets. Think
about Websites as simple FTP-like endpoints, where we can upload our site's contents
(binaries or just plain text/resources) and let them run as they are. In addition, websites offer
enterprise-level services, such as scaling, backup, monitoring, logging, and more, around this
simple deploy-and-go concept. Last but not least, these Websites provide the capability to
deploy applications in several different languages.

Deploying Quickly with Azure Websites

70

At the time of writing this book, Azure Websites support the following:

ff .NET applications (with frameworks greater than or equal to Version 2.0)

ff PHP applications (up to the Version 5.5 of PHP)

ff Java (through the Jetty or Tomcat container)

ff Python (both 2.7.3 and 3.4.0 Versions)

More generally, these Websites support every language and
platform that can run on IIS, with FastCGI, plus Python and Java.

The architecture perceived by users of Azure Websites is charming. It is described as follows:

ff A user initiates one or more server farms (also known as Web Hosting Plans).
A plan is intended to be a website container tied to a particular pricing scheme.

ff In a specific farm/plan, users create one or more websites.

ff For each website, users can choose the execution platform just like they did for
the monitoring options, run time configuration, and so on.

�� These options, as the running binaries of the Website, are completely
isolated from each other, as they were in a sandbox.

ff Finally, as users group Websites into farms, they can let specific farms scale up
and/or out, resulting in all the Websites running on the initial machine being
replicated across all the instances allocated in the farm.

The scenario explained earlier refers to the standard pricing scheme, which is the one we
work with along the chapter as the most complete Websites offer of Azure.

At the time of writing this book, the pricing schemes are as follows:

ff Free: These Websites run in a shared environment. Many options are restricted,
no scaling is permitted, and one free web farm is permitted per location.

ff Shared: These Websites run in a shared environment, but options and scaling
are supported.

ff Basic: On these Websites, some advanced options are restricted.

ff Standard: These Websites provide a fully featured Azure Websites service.

Therefore, a company can deploy its production services into a single server farm
(web-hosting plan), which should considerably scale up and/or out. At the same time,
for testing and/or staging environments, the same company can run its services into
another smaller web farm (probably, with a smaller machine and no redundancy at all).

Chapter 2

71

What is the drawback of the Websites service? Customization of the runtime environment.
In fact, the more abstraction the environment offers, the less control there should be
over resources. What could happen if, for example, a single Website (hosted in the same
machine/web farm of other N websites) needs an MSI component installed on the underlying
operating system? In the case of installation, what guarantees that there will be no conflicts
between the existing Websites? Finally, how can we scale out if there is some manually
handled configuration of the operating system?

To build complex systems that need to release these constraints, Cloud Services is the right
service to choose. In other cases, or better, when we can avoid relying on Cloud Services,
Website is probably the leader.

Azure Websites can be simply deployed through FTP or Web Deploy, can have virtual
directories and multiple applications, and can also have staging slots. We learn how to deploy
an ASP.NET application in the Deploying a Website recipe. After deploying, the governance of
the Website or the Websites' pool is up to Microsoft; however, advanced configuration, scaling,
certificates and SSL, diagnostics, and monitoring is left to the user, as we will see in the
Administering and Monitoring a Website recipe.

We stated that FTP and Web Deploy are the deployment methods of Websites. The Websites
service can also be linked with a source code repository, taking the most recent version of
the committed code and integrating it automatically. This method (extended and maintained
internally by Microsoft) now supports several third-party providers as the built-in integration
with the SaaS version of TFS, Visual Studio Online. In the Source versioning and continuous
integration with Git and TFS recipe, we will see how to set up the source control integration
with Git and Visual Studio Online (VSO).

In the last two recipes, we dig into the support of alternative software platforms such as PHP
and Java. First, in the Logging abstraction from .NET and PHP recipe, we will learn how to
integrate logging into applications. Later, in the Deploying Java with Azure Websites recipe,
we will see how to run Java with Tomcat or Jetty.

Deploying a Website
Creating a Website is an administrative task, which is performed in the Azure Portal in the
same way we provision every other building block. The Website created is like a "deployment
slot", or better, "web space", since the abstraction given to the user is exactly that.

Azure Websites does not require additional knowledge compared to an old-school hosting
provider, where FTP was the standard for the deployment process. Actually, FTP is just one of the
supported deployment methods in Websites, since Web Deploy is probably the best choice for
several scenarios. In the Source versioning and continuous integration with Git and TFS recipe,
we will learn how to implement continuous integration with Websites, but since this is not always
necessary, consider FTP and Web Deploy to be the fastest lane to go live with this service.

Deploying Quickly with Azure Websites

72

Web Deploy is a Microsoft technology used for copying files and
provisioning additional content and configuration to integrate the
deployment process. Web Deploy runs on HTTP and HTTPS with basic
(username and password) authentication. This makes it a good choice
in networks where FTP is forbidden or the firewall rules are strict.

Some time ago, Microsoft introduced the concept of Publish Profile, an XML file containing
all the available deployment endpoints of a particular website that, if given to Visual Studio
or Web Matrix, could make the deployment easier. Every Azure Website comes with a publish
profile with unique credentials, so one can distribute it to developers without giving them
grants on the Azure Subscription.

Web Matrix is a client tool of Microsoft, and it is useful to edit live
sites directly from an intuitive GUI. It uses Web Deploy to provide
access to the remote filesystem as to perform remote changes.

In the Hosting multiple websites in a web role recipe of Chapter 1, Developing Cloud Services
for Microsoft Azure, we saw that defining multiple websites in a single role is not so easy, even
more so if we deal with multiple virtual directories or applications. In Websites, we can host
several websites on the same server farm, making administration easier and isolating the
environment from the neighborhood. Moreover, virtual directories can be defined from the
Azure Portal, enabling complex scenarios or making migrations easier.

In this recipe, we will cope with the deployment process, using FTP and Web Deploy with
some variants.

Getting ready
This recipe assumes we have an FTP client installed on the local machine (for example,
FileZilla) and, of course, a valid Azure Subscription. We also need Visual Studio 2013
with the latest Azure SDK installed (at the time of writing this, SDK Version 2.3).

How to do it…
We are going to create a new Website, create a new ASP.NET project, deploy it through
FTP and Web Deploy, and also use virtual directories. We do this as follows:

1.	 Create a new Website in the Azure Portal, specifying the following details:

�� The URL prefix (that is, TestWebSite) is set to [prefix].
azurewebsites.net

Chapter 2

73

�� The Web Hosting Plan (create a new one)

�� The Region/Location (select West Europe)

2.	 Click on the newly created Website and go to the Dashboard tab.

3.	 Click on Download the publish profile and save it on the local computer.

4.	 Open Visual Studio and create a new ASP.NET web application named TestWebSite,
with an empty template and web forms' references.

5.	 Add a sample Default.aspx page to the project and paste into it the
following HTML:
<h1>Root Application</h1>

6.	 Press F5 and test whether the web application is displayed correctly.

Create a local publish target.

7.	 Right-click on the project and select Publish.

8.	 Select Custom and specify Local Folder.

9.	 In the Publish method, select File System and provide a local folder where Visual
Studio will save files. Then click on Publish to complete.

Publish via FTP.

10.	 Open FileZilla and then open the Publish profile (saved in step 3) with a text editor.

11.	 Locate the FTP endpoint and specify the following:

�� publishUrl as the Host field

�� username as the Username field

�� userPWD as the Password field

12.	 Delete the hostingstart.html file that is already present on the remote space.

When we create a new Azure Website, there is a single HTML file in
the root folder by default, which is served to the clients as the default
page. By leaving on in the Website, the file could be served after
users' deployments as well if no valid default documents are found.

Deploying Quickly with Azure Websites

74

13.	 Drag-and-drop all the contents of the local folder with the binaries to the remote
folder, then run the website.

Publish via Web Deploy.

14.	 Right-click on Project and select Publish.

15.	 Go to the Publish Web wizard start and select Import, providing the previously
downloaded Publish Profile file.

16.	 When Visual Studio reads the Web Deploy settings, it populates the next window.
Click on Confirm and Publish the web application.

Create an additional virtual directory.

17.	 Go to the Configure tab of the Website on the Azure Portal.

18.	 At the bottom, in the virtual applications and directories, add the following:

�� /app01 with the path site\app01

�� Mark it as Application

19.	 Open the Publish Profile file and duplicate the <publishProfile> tag
with the method FTP, then edit the following:

�� Add the suffix App01 to profileName

�� Replace wwwroot with app01 in publishUrl

20.	 Create a new ASP.NET web application called TestWebSiteApp01 and create
a new Default.aspx page in it with the following code:
<h1>App01 Application</h1>

21.	 Right-click on the TestWebSiteApp01 project and Publish.

22.	 Select Import and provide the edited Publish Profile file.

23.	 In the first step of the Publish Web wizard (go back if necessary), select the
App01 method and select Publish.

24.	 Run the Website's virtual application by appending the /app01 suffix to the
site's URL.

Chapter 2

75

How it works...
In step 1, we created the Website on the Azure Portal, specifying the minimal set of
parameters. If the existing web hosting plan is selected, the Website will start in the specified
tier. In the recipe, by specifying a new web hosting plan, the Website is created in the free tier
with some limitations in configuration.

The recipe uses the Azure Portal located at https://manage.
windowsazure.com. However, the new Azure Portal will be at
https://portal.azure.com. New features will be probably
added only in the new Portal.

In steps 2 and 3, we downloaded the Publish Profile file, which is an XML containing the
various endpoints to publish the Website. At the time of writing this, Web Deploy and FTP are
supported by default. In steps 4, 5, and 6, we created a new ASP.NET web application with a
sample ASPX page and ran it locally.

In steps 7, 8, and 9, we published the binaries of the Website, without source code files, into
a local folder somewhere in the local machine. This unit of deployment folder can be sent
across the wire via FTP, as we did in steps 10 to 13 using the credentials and the hostname
available in the Publish Profile file.

In steps 14 to 16, we used the Publish Profile file directly from Visual Studio, which
recognizes the different methods of deployment and suggests Web Deploy as the default
one. If we perform steps 10-13, with steps 14-16 we overwrite the existing deployment.

Actually, Web Deploy compares the target files with the ones to
deploy, making the deployment incremental for those files that have
been modified or added. This is extremely useful to avoid unnecessary
transfers and save bandwidth.

In steps 17 and 18, we configured a new virtual application, specifying its name and location.
We can use an FTP client to browse the root folder of a website endpoint, since there are
several folders such as wwwroot, locks, diagnostics, and deployments.

In step 19, we manually edited the Publish Profile file to support a second FTP endpoint,
pointing to the new folder of the Virtual Application. Visual Studio will correctly understand this
while parsing the file again in step 22, showing the new deployment option. Finally, we check
whether there are two applications: one on the root folder / and one on the /app01 alias.

https://manage.windowsazure.com
https://manage.windowsazure.com
https://portal.azure.com

Deploying Quickly with Azure Websites

76

There's more…
Suppose we need to edit the website on the fly, editing a CSS of JS file or editing the HTML
somewhere. We can do this using Web Matrix, which is available from the Azure Portal itself
through a ClickOnce installation:

1.	 Go to the Dashboard tab of the Website and click on WebMatrix, which is at the
bottom of the page.

2.	 Follow the instructions to install the software (if not yet installed) and, when it opens,
select Edit live site directly (the magic is done through the Publish Profile file
and Web Deploy).

3.	 In the left-side tree, edit the Default.aspx file, and then save and run the
Website again.

Azure Websites gallery
Since Azure Websites is a PaaS service, with no lock-in or particular knowledge or framework
required to run it, it can host several Open Source CMS in different languages. Azure provides
a set of built-in web applications to choose while creating a new website. This is probably not
the best choice for production environments; however, for testing or development purposes,
it should be a faster option than starting from scratch.

Wizards have been, for a while, the primary resources for developers
to quickly start projects and speed up the process of creating complex
environments. However, the Websites gallery creates instances of well-known
CMS with predefined configurations. Production environments are manually
crafted, customizing each aspect of the installation.

To create a new Website using the gallery, proceed as follows:

1.	 Create a new Website, specifying from the gallery.
2.	 Select the web application to deploy and follow the optional configuration steps.

If we create some resources (such as databases) while using the gallery, they will be linked
to the site in the Linked Resources tab.

See also
Have a look at these MSDN links to get additional information:

ff Mixed deployment with .NET and PHP at http://blogs.msdn.com/b/kaushal/
archive/2014/04/19/microsoft-azure-web-sites-deploying-
wordpress-to-a-virtual-directory-within-the-azure-web-site.aspx

ff How to create a Websites from the gallery at http://azure.microsoft.com/en-
us/documentation/articles/web-sites-dotnet-orchard-cms-gallery/

http://blogs.msdn.com/b/kaushal/archive/2014/04/19/microsoft-azure-web-sites-deploying-wordpress-to-a-virtual-directory-within-the-azure-web-site.aspx
http://blogs.msdn.com/b/kaushal/archive/2014/04/19/microsoft-azure-web-sites-deploying-wordpress-to-a-virtual-directory-within-the-azure-web-site.aspx
http://blogs.msdn.com/b/kaushal/archive/2014/04/19/microsoft-azure-web-sites-deploying-wordpress-to-a-virtual-directory-within-the-azure-web-site.aspx
http://azure.microsoft.com/en-us/documentation/articles/web-sites-dotnet-orchard-cms-gallery/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-dotnet-orchard-cms-gallery/

Chapter 2

77

Administering and monitoring a Website
In the Deploying a Website recipe, we saw how to deploy an ASP.NET application into an
Azure Website. We saw that there is almost no unique knowledge required (except the skills
needed to write the web application), making the deployment process straightforward.
However, deploying is just the beginning of the process—leading to tasks such as advanced
configuration, monitoring, domain mapping, logging, disaster recovery, and more.

Such activities are performed entirely via the Azure Portal (or through PowerShell), making it
the central point of administration of the entire website's infrastructure.

After deployment, we probably focus on the fine-tuning of the runtime environment, making
some optimizations to load only the required frameworks, and disabling everything that is
not needed by the application. If the deployment will be a production deployment, a custom
domain should be mapped to the website and, if we want to avoid confusion in case of errors,
the proper logging and diagnostics strategy should take place before making any endpoint
publicly accessible.

A good PaaS should also provide tools to avoid repetitive actions. So, how many times have
we deployed a web application, forgetting to include directives to perform some sort of
instrumentation? What about configuration settings? How many times have you connected
remotely to change some settings in the Web.config file?

Websites can be the most powerful PaaS service of Microsoft, or even one of the most powerful
PaaS services on the market, since many features come day by day, enriching the capabilities
while maintaining the environment constraints. One of those features is the capability to define
additional deployment slots for a given website. From a technical point of view, this is done with
a new website (along with its configuration, web space, publish profile, and so on); however, the
additional slots can be swapped with the production one with the help of a few clicks.

In this recipe, we will see some of the customization options of a given Website, preparing it
for the production line.

Getting ready
This recipe assumes that we created a Website called TestWebSite (or similar), which is
empty or has sample content (we can also use the one from the previous recipe). We also
need the following:

ff A storage account. Create it in the Azure Portal with default options (to do that, see
the Managing the Azure Storage Service recipe in Chapter 3, Getting Storage with
Blobs in Azure).

ff A self-signed SSL certificate. Create it as shown in the Implementing HTTPS in a web
role recipe of Chapter 1, Developing Cloud Services for Microsoft Azure.

ff A custom domain with access to DNS management.

Deploying Quickly with Azure Websites

78

How to do it…
We are going to customize an existing Website with specific options instead of default ones,
and we will set up SSL bindings, custom domains, and many other built-in features. We do
this as follows, saving each time we perform an action on the Azure Portal:

1.	 Open the Azure Portal and go to the Scale tab of the Website for configuration.

2.	 If not yet selected, select the Standard mode in Web Hosting Plan mode and save.

The Standard mode is a paid mode, so you may be charged. We can
disable it at the end of recipe, however.

3.	 Go to the Configure tab, where all options are available now.

Define the basic settings.

4.	 Disable the PHP runtime by clicking on OFF in the PHP version line.

5.	 Choose between Classic or Integrated in the Managed Pipeline mode.

What is the difference between Classic and Integrated mode? In previous
versions of IIS, the default execution mode was Classic, where ASP.
NET runs as an ISAPI extension, exactly as other extensions, in a plugin
fashion. With Integrated Managed Pipeline, each request is passed into
the ASP.NET stack, giving the capability to write custom modules and
intercept everything that happens on the IIS side in the web application.

6.	 If the running instances are larger in size, select the 64-bit platform.

7.	 Enable the Always On feature.

8.	 Enable the Edit in Visual Studio Online feature.

9.	 Enable the Web Server Logging feature, specifying the Storage mode and the
Storage Account where to save the diagnostics data.

10.	 Enable Remote Debugging with Visual Studio 2013.

11.	 In the Monitoring area, add a new Endpoint:

�� Name: Test

�� URL: This will be auto-populated with the Website URL

�� Test location: Choose up to three remote locations

Chapter 2

79

12.	 In the Default Documents area, remove the unnecessary items, leaving only the
Default.aspx line.

Custom domain and SSL.

13.	 Identify the Website URL in the form [name].azurewebsites.net. It will be
TestWebSite.azurewebsites.net in the recipe.

14.	 Go to the DNS management panel of the custom domain on the domain's registrar
company and register a CNAME:

�� From: azuretest.mydomain.com

�� To: testwebsite.azurewebsites.net

15.	 In the Domain Names section of the Configure area of the Website (coming back
to the Azure Portal), click on Manage Domains.

16.	 Add the custom third-level domain to the list and confirm.

While performing the domain mapping, we can take note of the IP
address of the load balancer, which is to be used if an A-Record mapping
is needed, instead of CNAME.

17.	 In the Certificates section, upload a certificate specifying the self-signed certificate
on the local machine with the encrypting password.

18.	 In SSL bindings, choose the previously bound domain name, the previously uploaded
certificate, and the SNI SSL method.

Instrumentation and analytics.

19.	 In the Developer Analytics area, select Add-on. An empty drop-down window will
show up:

�� Click on View Azure Store and find New Relic

�� Select the free standard version and specify a name (that is,
RelicMonitoring) and a region (possibly the same as the Website)

20.	 If needed, come back to the Configure tab of the Website, select RelicMonitoring
as the Developer Analytics Add-on, and then save.

21.	 In the Add-ons section of the Azure Portal, select RelicMonitoring and click on
Manage in the bottom menu to go to the third-party website.

Deploying Quickly with Azure Websites

80

Manual and scheduled backup.

22.	 Go to the Backups tab of the Website and, in the Storage Account drop-down
window, select the storage account provisioned before.

23.	 To perform a one-time backup, click on Backup Now in the bottom menu.

24.	 To schedule a recurring backup, enable the automated backup feature and
specify Frequency and Start date.

How it works...
In steps 1 and 2, we change the Pricing/Plan mode to Standard, which means we have full
access to the complete feature set of Azure Websites (and we pay too).

In step 4, we disable PHP; since it is not required by our demo, it is useless to keep it enabled.
In addition, according the principle deny all, then allow, it is recommended to disable
everything, enabling only the necessary features.

In step 5, we chose the ASP.NET execution mode, but usually the integrated mode is
recommended. Websites can run on 32-bit or 64-bit execution platform, depending on the
user need. ASP.NET applications can generally run in both modes, but if the running instance
is large-sized, we probably want to address the whole memory surface (7 GB) that we cannot
address in 32-bit mode. Conversely, there is no need to run 64-bit mode if the instance is
small to medium sized.

In step 7, we tell the instances to warm up application pools after recycles, to make the
application always responsive. In steps 8, 9, and 10, we enable an advanced editing feature,
the automatic shipping of web server diagnostics data to a storage account, and the capability
to remote debug the Website. To remote debug the Website, proceed as follows:

1.	 In Visual Studio, assuming the latest SDK is installed and the subscription is already
linked, locate the Azure node in the Server Explorer window.

2.	 In the Websites node, locate the TestWebSite Website and select Attach Debugger
on the Options context menu.

In step 11, we instruct Azure to setup a monitoring endpoint, which pings the given URL from
remote locations. In the case of loss of availability, this feature acts as a trigger for an alert to
be send. In step 12, we customize the Default Document section of the Web.config file
directly from the Azure Portal.

Chapter 2

81

It is interesting how we can customize the Web.config settings from
the Azure Portal itself. In addition to the Default Documents section,
we can add/edit the App Settings section as for Connection
Strings. Azure keeps these settings isolated form the actual deployment
on the web space. They have precedence over the ones defined in the
Web.config file.

In steps 13 and 14, we mapped the custom domain with the Website domain name using
the CNAME method. In step 15 and 16, we completed the configuration on the Website side,
enabling the binding.

CNAME records are like redirect from a given third-level domain to a target
domain. However, CNAME cannot start from a naked domain in the form of
mydomain.com. To bind a naked domain, an A record is needed. A record
of type A needs, for a given second-level domain, an IP address to point to.

In steps 17 and 18, we uploaded a self-signed certificate, binding it to the previously bound
custom domain. We used the Server Name Indication (SNI) SSL method because it is
cheaper than the standard IP-based SSL. In the IP-based SSL, the host negotiation happens
after the SSL handshake, restricting from having multiple SSL certificates for a single IP
(so, it is called IP-based). With SNI SSL, the host negotiation happens along with the SSL
handshake, allowing multiple certificates to be bound on a single IP.

In step 19, we purchased (at no cost, however) an add-on from the Azure Store, a gallery of
integrated, third-party add-ons, which are pluggable into Azure applications as building blocks.
We buy New Relic, one of the most powerful instrumentation tools on the market and
we selected it as an add-on in step 20. Automatically, some settings will appear in the
App Settings section.

New Relic is a SaaS product (and a software company) used to generate
software analytics with not much effort from the developers. When
enabled on the Website, it automatically collects valuable information that
is useful to identify issues in the code and perform advanced monitoring.

In step 22, we configured the storage account holding the Website backups. In step 23, we
started a backup, saving a couple of files into the special, auto-generated websitebackups
container of the specified storage account. We can also set up a schedule, as shown in
step 24.

Deploying Quickly with Azure Websites

82

There's more…
At the beginning of the recipe, we stated that Websites have the capability of being linked to
additional deployment slots. They are actually Websites too, but we can swap the content
of the main Website with one of the deployment slots without service interruption:

1.	 In the Website's Dashboard section, locate the Add a new deployment slot link
on the right.

2.	 Select a name and specify whether to clone its settings from an existing slot or
start from scratch.

3.	 Now, under the main Website, there is an additional/dependent Website with its
own public URL, web space, and settings.

Edit in Visual Studio Online
In this the recipe, we enabled the Edit in Visual Studio Online features. Now, on the
Dashboard page, an Edit in Visual Studio Online link should appear on the right. By clicking
it, we go to https://[siteName].scm.azurewebsites.net/dev site, also called
project Monaco: a web-based integrated development environment with nice editing features.

Traffic Manager
Traffic Manager (TM) is a configurable DNS manager engine that distributes the traffic
between URLs, based on a given policy. Typical scenarios for Traffic Manager are as follows:

ff Augment availability: After providing TM with multiple endpoints of the same
application, TM will cycle over them (round-robin) or choose the most responsive one
(or nearest one)

ff Avoid downtime between upgrade: In failover configuration, providing TM with a
second endpoint, we can switch it with the primary with no downtime

In real-world scenarios, it is recommended to not expose the DNS name of the Azure Website
directly; instead should be mapped to the public DNS name of the Traffic Manager, working
under the hood.

See also
Have a look at these MSDN links to get additional information:

ff Learn more about DNS and custom domains at http://azure.microsoft.com/
en-us/documentation/articles/web-sites-custom-domain-name/

ff Learn more about Visual Studio Online (Monaco) at http://blogs.msdn.com/b/
monaco/

http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
http://blogs.msdn.com/b/monaco/
http://blogs.msdn.com/b/monaco/

Chapter 2

83

Source versioning and continuous
integration with Git and TFS

In the Deploying a Website recipe, we saw how to deploy a Website directly through FTP
or Web Deploy. Those strategies are very fast and effective; however, they are not always
suitable in complex scenarios because of the following reasons:

ff Developers cannot have direct access to the final endpoint or they should not even
know what the final endpoint is

ff Automated builds/tests should be performed after each release and check in,
centrally controlled on a specified server

These two scenarios involve new actors while deploying Websites; in addition to the Developer
and the Website, now there is also the source repository. In this recipe, we see how to invert
the process:

ff From:

�� Developer upgrades/updates the Website directly

ff To:

�� Developer saves his or her code somewhere

�� The Website takes that code and deploys it

This inversion of control makes the publishing process an administrative task by establishing
a link between the Website and the desired source code repository.

Git is an open source, distributed source control system that is widely used by the developers'
community. On the other side, TFS (and its SaaS correspondent Visual Studio Online) is the
centrally managed, enterprise-ready software suite to integrate source control, automated
builds/tests, and many other features.

In this recipe, we automate the deployment process by establishing proper connections
between the Website and the source repositories by using Git and VSO.

Getting ready
This recipe assumes we have Git installed on the local machine. We also use a GUI Git client
(TortoiseGit) to operate. To integrate TFS/VSO into the Website, we need a valid Visual Studio
Online account. To get it, go to http://www.visualstudio.com/ and activate a free plan
(up to 5 users). After activation, go to the management page and create a team project called
Test01 for further use.

http://www.visualstudio.com/

Deploying Quickly with Azure Websites

84

How to do it…
We are going to create a simple Website with static content, deploying it with Git integration.
After that, we will create a simple ASP.NET web application, deploying it through TFS/VSO
integration. The steps are as follows:

1.	 In the Azure Portal, create a new Website (that is, TestWebSite).

2.	 Go to the Dashboard tab and download the Publish Profile file.

Deployment from Git.

3.	 In the Dashboard tab of the created Website, click on the Set up deployment from
source control link on the right.

4.	 Choose Local Git repository and confirm; a help page will appear.

5.	 Go to an empty folder with Explorer and right-click on the empty surface.

6.	 Click on the Git Init Here option, or using TortoiseGit, click on the Git Create
repository here option.

7.	 Create a new index.html file (with Notepad) and paste this code as content:
<h1>Hello From Git V1</h1>

8.	 Right-click on the file and perform the Git add operation, and then perform the
Git commit specifying a message (that is, First version).

9.	 Now perform the Git push operation, specifying the URL in the form:
https://[user]@[site].scm.azurewebsites.net:443/[site].git

10.	 Replace [user] with the username attribute found in the Publish Profile file
(in the form $siteName). When Git asks for password, give it the one found in the
Publish Profile file too.

11.	 In the Deployments tab of the Website page, Active Deployment with the name
First version appears now. Browse the Website.

12.	 In the local folder, make the following change to the HTML file:
<h1>Hello From Git V2</h1>

13.	 Repeat steps 8 and 9, specifying Second version as the commit message.
A new active deployment will appear. Browse the Website.

14.	 Now click on the First version deployment and select Redeploy from the bottom
menu. Browse the Website.

15.	 To unlink the Website from the Git repository, click on the Delete Git repository
link on the right pane of the Dashboard tab.

Chapter 2

85

Deployment from TFS/VSO.

16.	 Open Visual Studio and create a new ASP.NET web application called
DeployFromTFS, with an empty template and web forms references.

17.	 Add the Default.aspx page and add this line into it:
<h1>Hello from TFS V1</h1>

18.	 In the Team Explorer window, find Connect to Team Projects and locate the Test01
project in the VSO endpoint.

If this is the first time you are using TFS from Visual Studio, a link must
be established before we can select the team project. To do that, in the
Connect to Team Foundation Server window, click on Servers and add
a new one in this form, https://[name].visualstudio.com,
where [name] is the VSO account. Use the Microsoft Account with
sufficient permission on that account.

19.	 Right-click on the solution and select Add Solution to Source Control.

20.	 Select a path under the Test01 team project and confirm.

21.	 In the Dashboard tab of the Website, right-click on Set up deployment from source
control and select Visual Studio Online.

22.	 Authorize the VSO account and select the team project Test01.

23.	 In Visual Studio, check in all the files of the solution with the First version comment.

24.	 After few seconds/minutes Azure will deploy the Website; browse it.

Deploying from VSO could be slower than other methods, due to the
build process involved.
It may need to remove the old index.html file used before in the
recipe, or just append /Default.aspx to the web path.

25.	 Make this edit to the Default.aspx file from Visual Studio, and have a look at
the Second version comment:
<h1>Hello from TFS V2</h1>

26.	 Browse the Website and/or rollback the deployment.

Deploying Quickly with Azure Websites

86

How it works...
In steps 1 and 2, we created a new Website, obtaining its Publish Profile file.

In steps 3 and 4, we set up the link between a local Git repository in the Azure Website with
the Website's root web space itself. In steps 5 and 6, we initialized a local repository on the
local machine, a process that creates a hidden .git folder with definitions and settings. In
step 7, we created a new HTML file, and we added and commit in step 8. Steps 9 and 10
described how to push/sync the local repository with the remote repository on the Azure side.
In step 11, we verified the result.

Instead of using the default credentials shown on the help page of
the Deployment tab on Azure, we use the credentials specified in the
Publish Profile file. The first is tied to the administrative user
(unique for all Websites), while the one in the Publish Profile file is
valid for the specific Website, making the approach more secure.

In steps 12 and 13, we made some changes and commit, noticing the automatic replacement
of the current deployment, which we rollbacked in step 14. To proceed with the recipe, using
the same Website, we unlink Git from it as shown in step 15.

In steps 16 and 17, we created a new ASP.NET project with a sample page. In step 18, we
connected to the VSO endpoint. Now the solution can be added to VSO, as shown in steps 19
and 20. Steps 21 and 22 showed you how to bind the Website to a team project in VSO, while
in step 23 we checked in the code to trigger the build-and-deploy process.

In step 25, we learned how to trigger a further build just by checking-in an edit.

There's more…
TFS and Visual Studio Online (formerly, TFS) are enterprise-grade software suites with several
features and support complex scenarios. The first requirement often needed by many is the
capability of a given Website to bind to a specific web application project. In fact, in the recipe,
the VSO integration took the first solution (and unique, in that case) it found by alphabetical
order, and deployed it.

Let's add a new web application called DeployWithTFSV2 into the existing solution. How
does VSO/Azure know we want that one bound to the Website? If not specified, Azure takes
the latest project involved in editing. To control the behavior, perform the following steps:

1.	 In the Team Explorer window of Visual Studio, go to the build section.

2.	 Select the Build definition of the desired Website (in the form [sitename]_CD).

3.	 Right-click on it and select Edit Build Definition.

Chapter 2

87

4.	 In the Process section, select the TfvcContinuousDeployment template.

5.	 In the Projects field, select the specific project of the solution and remove the
existing solution.

6.	 In the MSBuild Arguments field, paste this directive:
/p:VisualStudioVersion=12.0

7.	 Save and, at the next check-in, Azure will take the specified project.

However, the previous method does not prevent from deploying everything on each
check-in, regardless of whether the correct project is involved in the check-in itself. We
can simply ignore this or, better, we can change the source control folder of the build
definition to the subfolder of the actual project to be built.

See also
Have a look at these MSDN links to get additional information:

ff Learn more about the Visual Studio Online service at http://msdn.microsoft.
com/en-us/magazine/dn519923.aspx

ff Behind the scenes of Azure Websites—project Kudu at https://github.com/
projectkudu/kudu/wiki

Logging abstraction from .NET and PHP
Azure Websites collect diagnostic data from several sources, shipping them on a given storage
account or the same virtual filesystem where they reside. We can categorize diagnostic data
into the following two groups:

ff Application Diagnostics: Logs coming from the application code

ff Site Diagnostics: Logs coming from several infrastructure sources. They are as
follows:

�� Web server logging: Logs for every arriving HTTP request

�� Detailed error messages: HTTP status codes that indicate failures

�� Failed request tracing: A complete IIS trace of components involved in
processing requests

In this recipe, we focus on the application diagnostics group, collecting application logs in
the virtual filesystem, Table Storage, and Blob Storage services.

http://msdn.microsoft.com/en-us/magazine/dn519923.aspx
http://msdn.microsoft.com/en-us/magazine/dn519923.aspx
https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki

Deploying Quickly with Azure Websites

88

Getting ready
This recipe assumes we have a valid Azure subscription and Visual Studio 2013 with the
latest Azure SDK installed. We also use the Azure command prompt (or the developer
command prompt for Visual Studio), an FTP client (FileZilla), and a storage account.

How to do it…
We are going to create a simple website logging some messages in both ASP.NET and PHP.
We collect logs in the storage and we stream them with the Azure command-line tools. The
steps are as follows:

1.	 In the Azure Portal, create a new Website named TestWebSite.

2.	 In the Dashboard tab, download the Publish Profile file.

3.	 In the Configure tab, enable PHP 5.5 and enable application logging:

�� File System (with an error logging level)

�� Table Storage (with an information logging level)

�� Blob Storage (with a verbose logging level)

4.	 Click on Manage Table Storage and select the desired storage account, creating a
new table named logs4testwebsite.

5.	 Click on Manage Blob Storage and select the desired storage account, creating a
new blob container named logs4testwebsite.

6.	 For the Blob Storage logs, set a retention of 14 days (default) to prevent excessive
space being consumed and then click on Save.

ASP.NET Logging.

7.	 Open Visual Studio and create a new ASP.NET project with an empty template and
Web Forms references.

8.	 Create a Default.aspx page with this content:
<h1>On load it logs </h1>

9.	 Paste this code into the Page_Load event of the code:
System.Diagnostics.Trace.TraceError("Error from .NET");
System.Diagnostics.Trace.TraceWarning("Warning from .NET");
System.Diagnostics.Trace.TraceInformation("Info from
 .NET");

Chapter 2

89

10.	 Publish the Website using the Publish Profile file and browse the Website.

11.	 In the Azure node of the Server Explorer, find the TestWebSite Website,
right-click on it, and select View Streaming Logs.

12.	 Wait for the streaming service to connect and trigger some log, refreshing
the page on the browser.

13.	 Open the Blob container and the Table. Then, using the Server Explorer functions
in the Storage node, check whether the different logging levels are correctly set up.

PHP Logging.

14.	 Go to the Dashboard tab of the TestWebSite Website on the Azure Portal and click
on WebMatrix; then select the Edit live site directly option.

15.	 Create an empty phpinfo.php file in the root folder with this content:
<?php
phpinfo();
error_log("Error from PHP",0);
?>

16.	 Trigger the log by browsing the page several times.

17.	 Open FileZilla and connect to the Website using the credentials in the
Publish Profile file.

18.	 Go up in the root Website folder and enter the LogFiles folder.

19.	 Open the php_errors.log file.

How it works...
In steps 1 and 2, we created a new website and we downloaded the Publish Profile file
that contains the endpoint credentials for deployment. In step 3, we configured the Website,
enabling the PHP support and the application diagnostics collection. In the production
environment, consider just the Table and Blob storage methods, since the File System logging
has to be intended for testing purposes. In addition, the File System logging has a temporary
nature of 12 hours from its start; after that, Azure stops writing logs in the File System. In
steps 4, 5, and 6, we configured the storage account(s) where to save logs with a retention
policy for the Blob storage. File System logging and Blob Storage logging both save information
in text files, while in different formats. Refer to the following points:

ff File System logging, due to its temporary nature, only logs Timestamp, Process
ID, Level, and Message

ff Blob storage logging logs date, Level, applicationName, instanceId,
eventTickCount, eventId, pid, tid, Message, and activityId

Deploying Quickly with Azure Websites

90

ff Table storage logging logs Timestamp, EventTickCount, ApplicationName,
Level, EventId, InstanceId, Pid, Tid, and Message

ff PartitionKey is set to the date and time in the AAAAMMDDHH format

In steps 7 and 8, we created an ASP.NET application with a simple Default.aspx page with
static content. In step 9, we used the System.Diagnostics.Trace class to log messages
with different levels. After publishing in step 10, we experimented with log streaming in step
11. Since log streaming is available for the File System logging only, we see just the error logs
due to the configuration made in step 3. We triggered some log events in step 12, while in
step 13 we opened the Table and Blob container where the complete logs (with different log
levels) are collected.

In step 14, we browsed the Website content using WebMatrix, adding a simple PHP file with
logging code. By default, the PHP logs are collected in /LogFiles/php_errors.log
relative path.

So, in step 17, we connected to that folder via FTP and we downloaded the logfile.

There's more…
We can stream the logfiles even outside Visual Studio using the command-line tools from
the developer command prompt for Visual Studio. To do that, proceed as follows:

1.	 Open the developer command prompt for Visual Studio (or the Azure
command prompt).

2.	 Download the account setting by typing:
azure account download

3.	 Import the account settings by typing:
azure account import [path_to_file]

4.	 Set the desired subscription by typing:
azure account set [subscription_name]

5.	 Connect to the streaming logs service by typing:
azure site log tail [name_of_website] (i.e. "TestWebSite")

6.	 Now, browse either the PHP page or the ASP.NET page and enjoy the logs.

Log service can be customized with advanced options by overriding defaults appending new
settings in the App Settings section of the Configure tab of the Website. For File System logs,
there is a default limit on the total size of the Application Logs folder to 1 MB. To change
this, we can append this setting:

DIAGNOSTICS_TEXTTRACEMAXLOGFOLDERSIZEBYTES

The desired size is specified in bytes.

Chapter 2

91

See also
Have a look at these MSDN links to get additional information:

ff Read this blog post about logging with Websites at http://www.hanselman.com/
blog/StreamingDiagnosticsTraceLoggingFromTheAzureCommandLinePlus
Glimpse.aspx

ff Read the official documentation about troubleshooting Websites at http://msdn.
microsoft.com/library/azure/dn186185.aspx

Deploying Java with Azure Websites
Azure Websites also support Java, executed through Tomcat or Jetty (two open source Web
servers and Servlet containers). An in-depth discussion of Java language and platform is out of
the scope of this book. So, in this recipe, we are going to look at the two supported runtimes.

Tomcat and Jetty's heritage is about 20 years old and they have become the leading platform
for web applications written in Java. They are called Servlet container because they implement
only the Servlet specification. A Servlet is a Java class that can respond to clients' requests,
mostly used to respond to HTTP requests. The Java Servlet specification is part of the Java EE
platform. However, both Tomcat and Jetty don't implement the full Java EE stack, as they are
only Servlet container.

On the other hand, there are huge projects such as GlassFish or JBoss implementing the full
Java EE stack, which includes JSF (Java Server Faces), EJB (Enterprise Java Beans), JTA (Java
Transaction API), JPA (Java Persistence API) and more.

As a matter of fact, many web applications only need Servlet and JSPs (web pages with
dynamic code) to run, so Tomcat and Jetty are suitable for those projects, also because
they are pluggable with third-party components that extend the available features.

Actually, Apache Software Foundation (the nonprofit group behind Tomcat)
developed a JavaEE-compliant version of Tomcat, called TomEE (Tommy).

Tomcat runtime components are as follows:

ff Catalina: This is the servlet container; it runs the execution engine of Tomcat.

ff Coyote: This is the HTTP connector. It manages the incoming requests, forwarding
them to the Tomcat engine.

ff Jasper: This is the JSP processor. It compiles a JSP into a servlet to be passed to
the Tomcat engine. A Java Server Page (JSP) is actually a servlet.

http://www.hanselman.com/blog/ StreamingDiagnosticsTraceLoggingFromTheAzureCommandLinePlus Glimpse.aspx
http://www.hanselman.com/blog/ StreamingDiagnosticsTraceLoggingFromTheAzureCommandLinePlus Glimpse.aspx
http://www.hanselman.com/blog/ StreamingDiagnosticsTraceLoggingFromTheAzureCommandLinePlus Glimpse.aspx
http://msdn.microsoft.com/library/azure/dn186185.aspx
http://msdn.microsoft.com/library/azure/dn186185.aspx

Deploying Quickly with Azure Websites

92

Jetty, on the other hand, is often referred to as a fast and small product, embedding some
advanced features out of the box. It is developed by Eclipse Foundation and it is used
by large clusters of machines for its lightweight runtime.

Getting ready
This recipe uses a sample Hello World WAR application file. We can download a sample
WAR at https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.
war. It also needs an FTP client (FileZilla) to connect to the Website.

How to do it…
We are going to create a new Website with Java support, deploying the sample WAR file
in both Tomcat and Jetty. We proceed as follows:

1.	 In the Azure Portal, create a new Website named TestWebSite.

2.	 In the Dashboard tab, download the Publish Profile file.

3.	 In the Configure tab, enable Java (click on the most recent Java Version,
that is, 1.7.0). Many customization options will now become unavailable.

Apache Tomcat

4.	 Select Tomcat as the execution environment and click on Save.

5.	 Connect to the Website using the FTP credentials found in the
Publish Profile file.

6.	 In the root folder, locate the webapps folder and put the WAR file into it.

7.	 Wait for a few seconds and browse the Website relative path /sample.

Eclipse Jetty

8.	 After step 3, stop the Website, select Jetty, and start it again. Browse the Website's
root to verify.

9.	 Connect to the Website using FTP credentials found in the Publish Profile file.

10.	 In the root folder, locate the webapps folder and put the WAR file into it.

11.	 Wait for a few seconds and browse the Website's relative path /sample.

https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.war
https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.war

Chapter 2

93

How it works...
In steps 1 and 2, we created a new Website and we downloaded the Publish Profile file,
which contains the endpoint credentials for deployment. In step 3, we enabled Java, making
many other options unavailable. Although .NET and PHP is supported, mixed mode between
IIS and Java is not.

In step 4, we selected Tomcat as the servlet container. After saving, Azure creates a webapps
folder in the root of the Website, where another folder, the root one, contains the default
index.jsp page. This page shows the actual loading of the execution environment.

In steps 5 and 6, we connected to the Website using FTP. Notice the newly created webapps
folder. In both Tomcat and Jetty, there is a standard deployment process. Every WAR file that
we put in the webapps folder is automatically deployed in the /[name] subfolder. This is
why in step 7 we waited for a few seconds and then saw the sample application running.

This is the default behavior of Tomcat; however, with configuration,
many settings are customizable, such as the remapping of the root
application.

In step 8, we changed the runtime to Jetty and verified that the runtime was loaded.

Be sure to see evidence of the desired execution environment at the
bottom of the default page, for example (for Jetty), D:\Program
Files (x86)\jetty-distribution-9.1.0.v20131115.

Steps 9, 10, and 11 were the same as the steps for Tomcat; this is the proof that they are
similar in terms of the deployment process.

There's more…
On the Azure Portal (and from gallery), we only have the official supported version of Java and
containers (Tomcat and Jetty), and we can also upload and run our version as described in
the KB article at http://azure.microsoft.com/en-us/documentation/articles/
web-sites-java-custom-upload/.

http://azure.microsoft.com/en-us/documentation/articles/web-sites-java-custom-upload/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-java-custom-upload/

3
Getting Storage with

Blobs in Azure

In this chapter, we will cover the following topics:

ff Managing the Azure Storage service

ff Connecting to the Azure Storage service

ff Connecting to the storage emulator

ff Managing access control for containers and blobs

ff Creating a shared access signature for a container or blob

ff Using a container-level access policy

ff Setting properties and metadata for a blob

ff Using blob directories

ff Creating and using a blob snapshot

ff Creating and using the root container for blobs

ff Uploading blocks to a block blob

ff Uploading a VHD into a page blob

ff Downloading a blob asynchronously

ff Using retry policies with blob operations

ff Leasing a blob and implementing distributed locks

ff Using the Azure Content Delivery Network (CDN)

Getting Storage with Blobs in Azure

96

Introduction
The Azure Storage service manages the storage of blobs, queues, and tables. It is essential
that this data be kept secure so that there is no unauthorized access to it. Each storage
account has an account name and two access keys used to authenticate access to the
storage service. The management of these access keys is important. The storage service
provides two access keys for each storage account so that the access key not being used can
be regenerated. We will see how to do this in the Managing the Azure Storage service recipe.

The storage service supports hash-based message authentication (HMAC), in which a
storage operation request is hashed with the access key. On receiving the request, the
storage service validates it and either accepts or denies it. The Azure Storage library provides
several classes that support various ways of creating an HMAC and that hide the complexity of
creating and using one. We will see how to use them in the Connecting to the Azure Storage
service recipe.

Almost every recipe of the chapter is based on the Storage library. It
should be downloaded with NuGet, directly from inside Visual Studio.
This guarantees that you are using the latest version available.

The Azure SDK provides a compute emulator and a storage emulator. The latter uses a
hardcoded account name and access key. We will see the support provided for this in the
Connecting to the storage emulator recipe.

Blobs are ideal for storing static content, organized in containers and files. A container can
be configured either to be private or to allow anonymous access to the blobs (files) in it (blobs
in such a container can be downloaded without any authentication at all). We will see how to
configure this in the Managing access control for containers and blobs recipe.

There is a need to provide an intermediate level of authentication for containers and blobs,
a level that lies between full authentication and anonymous access. The Storage service
supports the concept of a shared access signature, which is a precalculated authentication
token that can be shared in a controlled manner and which allows the bearer to access a
specific container or blob for a limited timeframe. We will see how to do this in the Creating a
shared access signature for a container or blob recipe.

A shared access policy combines access rights with the time for which they are valid. A
container-level access policy is a shared access policy that is associated with a container
by name. A best practice is to derive a shared access signature from a container-level
access policy. Doing this provides greater control over the shared access signature, as
it becomes possible to revoke it. We will see how to do this in the Using a container-level
access policy recipe.

Chapter 3

97

Nearly all the recipes in this chapter use the Storage Client library. Scattered through the
recipes are examples of how to use it for basic operations such as creating a container and
uploading blobs.

As it is not covered in this book, it is worthwhile to have some knowledge of
the Storage Service REST API, because it is informative to look at the raw
REST operations sent over the wire to the storage service when debugging
problems with storage operations.

In the Leasing a blob and implementing distributed locks recipe, we will see how to use the
Lease Blob feature, which is particularly useful while implementing distributed locks.

Later in the chapter, we will see that there are two types of blobs. The first is block blobs,
optimized for streaming, and the second is page blobs, optimized for random access. In the
Uploading blocks to a block blob recipe, we will see how to increase control over the uploading
of a block blob by uploading individual blocks and then committing them to create the block
blob. In the Uploading a VHD into a page blob recipe, we will see how to improve the upload
performance by uploading only nonempty pages. The primary use case for page blobs is the
storage of Virtual Hard Disks (VHDs), which can then be attached as OS or data drives in the
Azure Virtual Machines.

Blobs can have both properties and metadata associated with them. The properties comprise
standard HTTP header fields that provide additional information to the clients who download
the blobs. The metadata comprises a sequence of arbitrary name-value pairs. In the Setting
properties and metadata for a blob recipe, we will see how to use properties and metadata.

The Blob service supports the creation of a blob snapshot to provide a read-only version of the
contents of a blob when the snapshot is created. A blob can be rolled back to an earlier state
by copying the snapshot over it. The Creating and using a blob snapshot recipe will show us
blob snapshots in action.

The Blob service stores blobs in a simple two-level hierarchy of containers and blobs. In
the Using blob directories recipe, we will use the pseudo-directory support provided by the
Blob service to simulate a more complex hierarchy that mimics directories in a filesystem.
In the Creating and using the root container for blobs recipe, we will see how to create a
root directory that allows blobs to appear as if they are located at the root of the hierarchy
and not inside a container.

The Storage library provides both synchronous and asynchronous versions of almost all
the methods that access the Storage service. The asynchronous methods adhere to the
Async/Await pattern. In the Downloading a blob asynchronously recipe, we will see how
easy it is to use the asynchronous methods to download a blob.

Getting Storage with Blobs in Azure

98

A storage operation against the storage service might fail for various reasons. Consequently,
the Storage library provides built-in support for retries of failed operations. In the Using
retry policies with blob operations recipe, we will see how to parameterize the existing retry
behavior and implement the custom retry functionality.

In the Blob service, a blob resource is addressed as follows:

http://{account}.blob.core.windows.net/{container}/{blob}

The {account}, {container}, and {blob} methods represent the name of the storage
account, container, and blob, respectively. However, the Azure Content Delivery Network
(CDN) can be used to cache blobs closer to the user. This significantly improves the download
performance and latency of blobs. In the Using the Azure Content Delivery Network (CDN)
recipe, we will see how to use the CDN and configure custom domains for both the Blob
service and the CDN.

Managing the Azure Storage service
The data stored by the Azure Storage service must be secured against unauthorized access.
To ensure this security, all storage operations against the Table and Queue services must be
authenticated. Similarly, other than inquiry requests against public containers and blobs, all
operations against the Blob service must also be authenticated. The Blob service supports
public containers so that, for example, blobs that contain images can be downloaded directly
into a web page anonymously, without any authentication.

Each storage account has a primary access key and secondary access key that can be used
to authenticate operations against the storage service. When creating a request against
the storage service, one of the keys is used along with various request headers to generate
a 256-bit hash-based message authentication code (HMAC). This HMAC is added as an
authorization request header to the request. On receiving the request, the Storage service
recalculates the HMAC and rejects the request if the received and calculated HMAC values
differ. The Azure Storage Library provides methods that manage the creation of the HMAC
and attach it to the storage operation request.

There is no distinction between the primary and secondary access keys. The purpose of the
secondary access key is to enable continued use of the Storage service while the other access
key is being regenerated. While the primary access key is used for authentication against the
Storage service, the secondary access key can be regenerated without impacting the service,
and vice versa. This can be extremely useful in situations where storage access credentials
must be rotated regularly due to the necessity of sharing them with the developers.

Chapter 3

99

As possession of the storage account name and access key is sufficient to
provide complete control over the data managed by the storage account,
it is essential that the access keys be kept secure (and changed at regular
intervals as a security policy). In particular, access keys should never be
downloaded to a client such as a smart phone, as this exposes them to
potential abuse.

In this recipe, we'll learn how to use the primary and secondary access keys.

How to do it...
We are going to create a storage account, view the access keys, and regenerate the secondary
one. We will do this using the following steps:

1.	 Go to the Azure Portal.

2.	 In the underlying menu, navigate to New | Data Services | Storage | Quick Create.

3.	 In the URL textbox, specify the name of the endpoint you want the storage account
reply from.

Every storage account in the Azure platform is a combination of four
services: blobs, tables, queues, and files. As we specify just one
account name, Azure appends the myaccount suffix to that name to
indicate the four different services in the form of respective service
endpoints as follows:

ff myaccount.blob.core.windows.net
ff myaccount.table.core.windows.net
ff myaccount.queue.core.windows.net
ff myaccount.file.core.windows.net

4.	 In the Location/Affinity Group dropdown, select the Region that will contain the
storage account.

5.	 Select the Geo-Replication type in the dropdown and confirm.

6.	 After a few minutes, needed by the creation process, go to the Storage section
of the Azure Portal and click on the newly created account.

7.	 In the underlying menu, click on the Manage Access Keys icon; a popup will appear.

8.	 In the Manage Access Keys popup, locate the secondary access key and click
on Regenerate.

Getting Storage with Blobs in Azure

100

How it works...
In step 2, we used the general menu of the Azure Portal to create a new resource and a
new storage account. In steps 3 and 4, we gave a name to the storage account and chose
a location for it.

In step 5, we left the Geo-Replication feature of the storage account enabled to ensure that
our data is preserved in two distinct regions to prevent data loss in case of a disaster. The
Geo-Replication feature, even if it is not required, guarantees a strong level of security for the
critical data by maintaining a copy of the entire storage account, for an additional cost.

After waiting for the account to be created in step 6, we opened the Manage Access Keys
window, where we can choose which access key to regenerate. It is important that we never
regenerate the access key that is currently being used, as doing so immediately renders the
storage account inaccessible. Consequently, we regenerate only the secondary access key if
the primary access key is currently in use, and vice versa.

In the Manage Access Keys window, you can copy the account name and the primary and
secondary keys to the clipboard.

There's more…
In step 5, we showed how to enable the Geo-Replication feature during the account creation
phase. In fact, we could also disable the Geo-Replication feature (which is enabled by default)
to reduce the pricing impact by around 25 percent of the total. Indeed, a Locally Redundant
Storage (LRS) account costs less than a Geo Redundant Storage (GRS) account. Eventually,
if you decide to enable the Geo-Replication feature for the second time, be aware of a
one-time charge to replicate the existing data to the secondary location.

The third option is Read Access Geo-Redundant Storage (RA-GRS). This provides read
access to a secondary storage replica in case the storage account on the primary location
becomes unavailable.

This secondary endpoint is similar to the primary endpoint, except
for the -secondary suffix. For example, if the primary endpoint is
myccount.<service>.core.windows.net, the secondary endpoint
is myaccount-secondary.<service>.core.windows.net.

Chapter 3

101

See also
Have a look at the following MSDN links to get additional information:

ff How to manage storage accounts at http://azure.microsoft.com/en-en/
documentation/articles/storage-manage-storage-account/

ff Pricing differences between LRS/GRS/RA-GRS at http://azure.microsoft.
com/en-us/pricing/details/storage/

Connecting to the Azure Storage service
In an Azure cloud service, the storage account name and access key are stored in the
service configuration file. By convention, the account name and access key for data access
are provided in a setting named DataConnectionString. The account name and access
key needed for Azure Diagnostics must be provided in a setting named Microsoft.
WindowsAzure.Plugins.Diagnostics.ConnectionString.

The DataConnectionString setting must be declared in the
ConfigurationSettings section of the service definition file.
However, unlike other settings, the connection string setting for Azure
Diagnostics is implicitly defined when the Diagnostics module is specified
in the Imports section of the service definition file. Consequently, it must
not be specified in the ConfigurationSettings section.

A best practice is to use different storage accounts for application data and diagnostic data.
This reduces the possibility of application data access being throttled by competition for
concurrent writes from the diagnostics monitor.

What is throttling?
In shared services, where the same resources are shared between tenants,
limiting the concurrent access to them is critical to provide service availability.
If a client misuses the service or, better, generates a huge amount of traffic,
other tenants pointing to the same shared resource could experience
unavailability. Throttling (also known as Traffic Control plus Request Cutting)
is one of the most adopted solutions for this issue.

It also provides a security boundary between application data and diagnostics data,
as diagnostics data might be accessed by individuals who should have no access to
application data.

Getting Storage with Blobs in Azure

102

In the Azure Storage library, access to the Storage service is through one of the Client
classes. There is one Client class for each Blob service, Queue service, and Table service;
they are CloudBlobClient, CloudQueueClient, and CloudTableClient, respectively.
Instances of these classes store the pertinent endpoint as well as the account name and
access key.

The CloudBlobClient class provides methods to access containers, list their contents, and
get references to containers and blobs. The CloudQueueClient class provides methods to
list queues and get a reference to the CloudQueue instance that is used as an entry point to
the Queue service functionality. The CloudTableClient class provides methods to manage
tables and get the TableServiceContext instance that is used to access the WCF Data
Services functionality while accessing the Table service. Note that the CloudBlobClient,
CloudQueueClient, and CloudTableClient instances are not thread safe, so distinct
instances should be used when accessing these services concurrently.

The client classes must be initialized with the account name, access key, as well as the
appropriate Storage service endpoint. The Microsoft.WindowsAzure namespace has
several helper classes. The StorageCredential class initializes an instance from an
account name and access key or from a shared access signature.

In this recipe, we'll learn how to use the CloudBlobClient, CloudQueueClient, and
CloudTableClient instances to connect to the Storage service.

Getting ready
This recipe assumes that the application's configuration file contains the following:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
 <add key="AccountName" value="{ACCOUNT_NAME}"/>
 <add key="AccountKey" value="{ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
storage account name and access key, respectively.

We are not working in a Cloud Service but in a simple console application.
Storage services, like many other building blocks of Azure, can also be
used separately from on-premise environments.

Chapter 3

103

How to do it...
We are going to connect to the Table service, the Blob service, and the Queue service, and
perform a simple operation on each. We will do this using the following steps:

1.	 Add a new class named ConnectingToStorageExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using Microsoft.WindowsAzure.Storage.Queue;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Auth;
using System.Configuration;

The System.Configuration assembly should be added via the
Add Reference action onto the project, as it is not included in most
of the project templates of Visual Studio.

3.	 Add the following method, connecting the Blob service, to the class:
private static void UseCloudStorageAccountExtensions()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(
 "{NAME}");

 cloudBlobContainer.CreateIfNotExists();
}

4.	 Add the following method, connecting the Table service, to the class:
private static void UseCredentials()
{
 string accountName = ConfigurationManager.AppSettings[
 "AccountName"];
 string accountKey = ConfigurationManager.AppSettings[
 "AccountKey"];

Getting Storage with Blobs in Azure

104

 StorageCredentials storageCredentials =
 new StorageCredentials(
 accountName, accountKey);

 CloudStorageAccount cloudStorageAccount =
 new CloudStorageAccount(storageCredentials, true);
 CloudTableClient tableClient =
 new CloudTableClient(
 cloudStorageAccount.TableEndpoint,
 storageCredentials);

 CloudTable table =
 tableClient.GetTableReference("{NAME}");
 table.CreateIfNotExists();
}

5.	 Add the following method, connecting the Queue service, to the class:
private static void UseCredentialsWithUri()
{
 string accountName = ConfigurationManager.AppSettings[
 "AccountName"];
 string accountKey = ConfigurationManager.AppSettings[
 "AccountKey"];
 StorageCredentials storageCredentials =
 new StorageCredentials(
 accountName, accountKey);

 StorageUri baseUri =
 new StorageUri(new Uri(string.Format(
 "https://{0}.queue.core.windows.net/",
 accountName)));
 CloudQueueClient cloudQueueClient =
 new CloudQueueClient(baseUri, storageCredentials);
 CloudQueue cloudQueue =
 cloudQueueClient.GetQueueReference("{NAME}");

 cloudQueue.CreateIfNotExists();
}

Chapter 3

105

6.	 Add the following method, using the other methods, to the class:

public static void UseConnectionToStorageExample()
{
 UseCloudStorageAccountExtensions();
 UseCredentials();
 UseCredentialsWithUri();
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we implemented the standard way
to access the storage service using the Storage Client Library. We used the static
CloudStorageAccount.Parse() method to create a CloudStorageAccount
instance from the value of the connection string stored in the configuration file. We then
used this instance with the CreateCloudBlobClient() extension method of the
CloudStorageAccount class to get the CloudBlobClient instance that we used to
connect to the Blob service. We can also use this technique with the Table service and the
Queue service, using the relevant extension methods, CreateCloudTableClient() and
CreateCloudQueueClient(), respectively, for them. We completed this example using the
CloudBlobClient instance to get a CloudBlobContainer reference to a container and
then created it if it does not exist. We need to replace {NAME} with the name for a container.

In step 4, we created a StorageCredentials instance directly from the account name
and access key. We then used this to construct a CloudStorageAccount instance,
specifying that any connection should use HTTPS. Using this technique, we need to provide
the Table service endpoint explicitly when creating the CloudTableClient instance. We
then used this to create the table. We need to replace {NAME} with the name of a table.
We can use the same technique with the Blob service and Queue service using the relevant
CloudBlobClient or CloudQueueClient constructor.

In step 5, we used a similar technique, except that we avoided the intermediate step of using
a CloudStorageAccount instance and explicitly provided the endpoint for the Queue
service. We used the CloudQueueClient instance created in this step to create the queue.
We need to replace {NAME} with the name of a queue. Note that we hardcoded the endpoint
for the Queue service.

Though this last method is officially supported, it is not a best practice to
bind our code to hardcoded strings with endpoint URIs. So, it is preferable
to use one of the previous methods that hides the complexity of the URI
generation at the library level.

In step 6, we added a method that invokes the methods added in the earlier steps.

Getting Storage with Blobs in Azure

106

There's more…
With the general availability of the .NET Framework Version 4.5, many libraries of the CLR
have been added with the support of asynchronous methods with the Async/Await pattern.
Latest versions of the Azure Storage Library also have these overloads, which are useful
while developing mobile applications, and fast web APIs. They are generally useful when
it is needed to combine the task execution model into our applications.

Almost every long-running method of the library has its corresponding methodAsync()
method to be called as follows:

await cloudQueue.CreateIfNotExistsAsync();

In the rest of the book, we will continue to use the standard, synchronous pattern.

See also
Have a look at these MSDN links to get additional information:

ff Azure Storage scalability targets at http://msdn.microsoft.com/en-us/
library/azure/dn249410.aspx

ff More about Storage connection strings at http://msdn.microsoft.com/en-us/
library/azure/ee758697.aspx

Connecting to the storage emulator
The Azure SDK provides a compute emulator and a storage emulator that work in a
development environment to provide a local emulation of Azure cloud services and storage
services. There are some differences in functionality between storage services and the
storage emulator.

By default, the storage emulator uses LocalDB, but it can be configured to
use an SQL server. More information on MSDN can be found at http://
msdn.microsoft.com/en-us/library/azure/gg433132.aspx

An immediate difference is that the storage emulator supports only one account name and
access key. The account name is hardcoded as devstoreaccount1. The access key is
hardcoded to the following code:

Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/
K1SZFPTOtr/KBHBeksoGMGw==

Chapter 3

107

Another difference is that the storage endpoints are constructed differently for the storage
emulator. The Storage service uses URL subdomains to distinguish the endpoints for the
various types of storage. For example, the endpoint for the Blob service for a storage account
named myaccount is as follows:

myaccount.blob.core.windows.net

The endpoints for the other storage types are constructed similarly by replacing the word
blob with either table or queue.

This differentiation by the subdomain name is not used in the storage emulator, which is
hosted on the local host at 127.0.0.1. Instead, the storage emulator distinguishes the
endpoints for the various types of storage through the use of different ports. Furthermore,
the account name, rather than being part of the subdomain, is provided as part of the URL.
Consequently, the endpoints used by the storage emulator are as follows:

ff 127.0.0.1:10000/devstoreaccount1 Blob

ff 127.0.0.1:10001/devstoreaccount1 Queue

ff 127.0.0.1:10002/devstoreaccount1 Table

The Azure Storage library hides much of this complexity, but an understanding of it remains
important in case something goes wrong. The account name and access key are hardcoded
into the Storage library, which also provides simple access to an appropriately constructed
CloudStorageAccount object.

The Storage Client library also supports a special value for the DataConnectionString
property in the service configuration file. Instead of specifying the account name and access
key, it is sufficient to specify the following:

UseDevelopmentStorage=true

For example, this is specified as follows for a cloud service in the service
configuration file:

<Setting name="DataConnectionString" value="UseDevelopm
entStorage=true" />

This value can also be used for the Microsoft.WindowsAzure.
Plugins.Diagnostics.ConnectionString data connection string
required for Azure Diagnostics.

The CloudStorageAccount.Parse() and CloudStorageAccount.
FromConnectionString() methods handle this value in a special way to create
a CloudStorageAccount object that can be used to authenticate against the
storage emulator.

In this recipe, we'll learn how to connect to the storage emulator.

Getting Storage with Blobs in Azure

108

How to do it...
We are going to connect to the storage emulator in various ways and perform some operations
on blobs. We will do this using the following steps:

1.	 Add a class named StorageEmulatorExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;

3.	 Add the following private members to the class:
private string containerName;
private string blobName;

4.	 Add the following constructor to the class:
StorageEmulatorExample(string containerName, string blobName)
{
 this.containerName = containerName;
 this.blobName = blobName;
}

5.	 Add the following method, using the CloudStorageAccount.
DevelopmentStorageAccount property, to the class:
private void UseDevelopmentStorageAccount()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.DevelopmentStorageAccount;

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);

 cloudBlobContainer.CreateIfNotExists();

 cloudBlockBlob.UploadText("Sample text");
 cloudBlockBlob.Metadata.Add("Prop1","Value1");
 cloudBlockBlob.SetMetadata();
}

Chapter 3

109

6.	 Add the following method, using the methods added earlier, to the class:

public static void UseStorageEmulatorExample()
{
 StorageEmulatorExample example =
 new StorageEmulatorExample("public", "test.txt");
 example.UseDevelopmentStorageAccount();
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we add some private members for the
container name and blob name, which we initialize in the constructor that we add in step 4.

In step 5, we initialize a CloudStorageAccount class from the hardcoded
DevelopmentStorageAccount property exposed by the class. We then get a reference
to a CloudBlockBlob class from the specified container (which needs to be created if it
does not exist). Then, we upload a text content to the blob and add some metadata.

In step 6, we add a helper method that invokes the method we added earlier. We can
replace the container and blob names with appropriate names.

There's more...
Fiddler is a program that captures HTTP traffic; this makes it very useful for diagnosing
problems when using the Azure Storage service. Its use is completely transparent when
cloud storage is being used. However, the data connection string must be modified if
you want Fiddler to be able to monitor the traffic to the Development Storage. The data
connection string must be changed to the following line of code:

UseDevelopmentStorage=true;DevelopmentStorageProxyUri=http://ipv4.
fiddler

Fiddler can be downloaded from http://www.telerik.com/fiddler.

Protocol versions in Storage Emulator
Sometimes it could happen that Microsoft releases updates to the various libraries (for
example, the Storage one) with some misalignment with the Visual Studio SDK. For instance,
a further version of a Storage library could not be compatible with the latest version of the
Storage Emulator.

This is because in the Storage library, each request is sent over the Internet with a HTTP
header that represents the version of the service protocol:

x-ms-version: 2013-08-15

Getting Storage with Blobs in Azure

110

If the storage emulator implements a different version of the protocol or the operation is
not supported in the specified version, it will reply with a Bad Request (400) error code.

See also
Have a look at the following MSDN links to get additional information:

ff Storage Emulator Command-Line Tool at http://msdn.microsoft.com/en-us/
library/azure/gg433005.aspx

ff Differences between the Storage Emulator and Azure Storage at http://msdn.
microsoft.com/en-us/library/azure/gg433135.aspx

Managing access control for containers
and blobs

The Storage service allows the possibility of unauthenticated access against the Blob service.
The reason is that blobs provide an ideal location to store large static content for a website.
For example, the images in a photo-sharing site could be stored as blobs and downloaded
directly from the Blob service without being transferred through a web role.

Public access control for the Blob service is managed at the container level. The Blob service
supports three types of access control: the first type is no public read access, in which all
access must be authenticated; the second is public read access, which allows blobs in a
container to be readable without authentication; and the third type is full public read access,
in which authentication is not required to read the container's data and the blobs contained
in it. No public read access is the same access control as for the Queue service and Table
service. The other two access control types allow anonymous access to a blob so that, for
example, the blob can be downloaded into a browser by providing its complete URL.

In the Azure Storage library, the BlobContainerPublicAccessType enumeration specifies
the three types of public access control for a container. The BlobContainerPermissions
class exposes two properties: PublicAccess, which specifies a member of the
BlobContainerPublicAccessType enumeration, and SharedAccessPolicies,
which specifies a set of shared access policies. The SetPermissions() method of the
CloudBlobContainer class is used to associate a BlobContainerPermissions
instance with the container. The GetPermissions() method retrieves the access
permissions for a container.

In this recipe, we'll learn how to specify the level of public access control for containers and
blobs managed by the Blob service.

Chapter 3

111

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"value="DefaultEndpointsProtocol=https
;AccountName={ACCOUNT_NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with the appropriate values for the
account name and access key, respectively.

How to do it...
We are going to specify various levels of public access control for a container. We will do this
using the following steps:

1.	 Add a new class named BlobContainerPublicAccessExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.Net;

3.	 Add the following method, setting public access control for a container, to the class:
public static void CreateContainerAndSetPermission(
String containerName, String blobName,
BlobContainerPublicAccessType publicAccessType)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer blobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 blobContainer.CreateIfNotExists();

 BlobContainerPermissions blobContainerPermissions =
 new BlobContainerPermissions()
 {
 PublicAccess = publicAccessType

Getting Storage with Blobs in Azure

112

 };
 blobContainer.SetPermissions(blobContainerPermissions);

 CloudBlockBlob blockBlob =
 blobContainer.GetBlockBlobReference(blobName);
 blockBlob.UploadText("Has been changed glorious summer");
}

4.	 Add the following method, retrieving a blob, to the class:
public static void GetBlob(
String containerName, String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 Uri blobUri = new Uri(cloudStorageAccount.BlobEndpoint +
 containerName + "/" + blobName);

 HttpWebRequest httpWebRequest =
 (HttpWebRequest)HttpWebRequest.Create(blobUri);
 httpWebRequest.Method = "GET";
 using (HttpWebResponse response =
 (HttpWebResponse)httpWebRequest.GetResponse())
 {
 String status = response.StatusDescription;
 }
}

5.	 Add the following method, using the method we just added, to the class:

public static void UseBlobContainerPublicAccessExample()
{
 CreateContainerAndSetPermission("container1", "blob1",
 BlobContainerPublicAccessType.Blob);

 CreateContainerAndSetPermission("container2", "blob2",
 BlobContainerPublicAccessType.Container);

 CreateContainerAndSetPermission("container3", "blob3",
 BlobContainerPublicAccessType.Off);

 GetBlob("container1", "blob1");
 //This leads to an exception
 GetBlob("container3", "blob3");
}

Chapter 3

113

How it works...
In steps 1 and 2, we set up the class.

In step 3, we added a method that creates a container and blob, and applies a public
access policy to the container. We created a CloudBlobClient instance from the
data connection string in the configuration file. We then created a new container using
the CloudBlobContainer reference obtained through the CloudBlobClient
method. Then, we created a BlobContainerPermissions instance with the
BlobContainerPublicAccessType enumeration passed into the method and set the
permissions on the container. Note that we must create the container before we set the
permissions, as SetPermissions() sets the permissions directly on the container.
Finally, we created a blob in the container.

It is also possible to specify the permissions of the container directly
into the Create() or CreateIfNotExists() method. However, as
we use the latter method, we do not know in advance if the requested
container exists, and consequently, we need to be sure to apply the
permission to the existing container.

In step 4, we used an HttpWebRequest instance to retrieve the blob without providing
any authentication. This request causes a Not Found (404) error when the request
attempts to retrieve a blob that has not been configured for public access. Note that
when constructing blobUri for the storage emulator, we must add a / into the path after
cloudStorageAccount.BlobEndpoint because of a difference in the way the Storage
Client library constructs the endpoint for the Storage Emulator and the Storage service. For
example, we need to use the following code for the Storage Emulator:

Uri blobUri = new Uri(cloudStorageAccount.BlobEndpoint + "/" +
 containerName + "/" + blobName);

There are further APIs to list and get blob contents from. This raw
method has to be used for demonstration purposes only.

In step 5, we added a method that invokes the CreateContainerAndSetPermission()
method once for each value of the BlobContainerPublicAccessType enumeration.
We finally invoked the GetBlob method for the public container and for the private one.
The second call will result in a runtime exception due to the HTTP 404 error, as container3
has not been configured for unauthenticated public access.

Getting Storage with Blobs in Azure

114

See also
The Blob service provides shared-access signatures, which provide time-limited public
access to containers and blobs. We will see how to use them in the Creating a shared
access signature for a container or blob recipe.

Have a look at the following MSDN link to get additional information:

ff Security options for Azure Storage containers and blobs at http://msdn.
microsoft.com/en-us/library/azure/dd179354.aspx

Creating a shared access signature for a
container or blob

The Azure Blob service supports fully authenticated requests, anonymous requests, and
requests authenticated by a temporary access key, referred to as a shared access signature.
The latter allows access to containers or blobs to only those in possession of the shared
access signature.

A shared access signature is constructed from a combination of the following:

ff Resource (container or blob)

ff Access rights (read, write, delete, and list)

ff Start time

ff Expiration time

ff Advanced settings

These are combined into a string from which a 256-bit HMAC is generated. An access key
for the storage account is used to seed the HMAC generation. This HMAC is referred to as a
shared access signature. The process of generating a shared access signature requires no
interaction with the Blob service.

Prior to API Version 2012-02-12, a shared access signature was valid for up
to 1 hour, which limited the allowable values for the start time and expiration
time. We must pay attention to those applications that use old APIs, as the
behavior could be different from what we expect. In Version 2012-02-12 and
newer ones, we must specify the API version while creating a SAS Token.

Chapter 3

115

When using a shared access signature to authenticate a request, it is submitted as one of the
query string parameters. The other query parameters comprise information from which the
shared access signature was created. This allows the Blob service to create a shared access
signature, using the access key for the storage account, and compare it with the shared
access signature submitted with the request. A request is denied if it has an invalid shared
access signature.

An example of a storage request for a blob named myBlob in a container named test01 is
as follows:

GET /test01/myBlob.txt

An example of the query string parameters is as follows:

?sv=2013-08-15&sr=b&sp=r
&st=2013-12-08T15%3A03%3A17Z
&se=2013-12-12T15%3A03%3A17Z
&sig=oPijtM59CPrMvGa4CvfhrumhEWPl6eRhoBF9WCGgY3k%3D

The following are the definitions of query string parameters:

ff st: This parameter is the start time for the validity of the shared access signature.

ff se: This parameter is the expiration time for the validity of the shared access
signature.

ff sr: This parameter specifies that the shared access signature is for a blob.

ff sp: This parameter specifies the permissions associated with the shared access
signature.

ff sv: This parameter specifies the API version that is requested.

ff sig: This parameter is the shared access signature.

The complete description of these parameters can be found at http://
msdn.microsoft.com/en-us/library/ee395415.aspx.

Once a shared access signature has been created and transferred to a client, no further
verification of the client is required. Hence, it is important for the shared access signature
to be created with the minimum period of validity and for its distribution to be restricted
as much as possible. It is not possible to revoke a shared access signature created in this
manner, except by regenerating the access key of the storage account that is used to
generate the SAS Token.

In this recipe, we'll learn how to create and use a shared access signature.

Getting Storage with Blobs in Azure

116

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to create and use shared access signatures for a blob. We will do this using the
following steps:

1.	 Add a class named SharedAccessSignaturesExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.Security.Cryptography;

3.	 Add the following private members to the class:
private String blobEndpoint;
private String accountName;
private String accountKey;
private DateTime utcNow;

4.	 Add the following constructor to the class:
SharedAccessSignaturesExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 blobEndpoint =
 cloudStorageAccount.BlobEndpoint.AbsoluteUri;
 accountName = cloudStorageAccount.Credentials.AccountName;
 utcNow = DateTime.UtcNow;

Chapter 3

117

 StorageCredentials accountAndKey =
 cloudStorageAccount.Credentials;
 accountKey =
 accountAndKey.ExportBase64EncodedKey();
}

5.	 Add the following method to the class to obtain a reference to the blob:
private static CloudBlockBlob GetBlob
 (String containerName, String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
cloudBlobContainer.CreateIfNotExists();
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 return cloudBlockBlob;
}

6.	 Add the following method, creating a container and blob, to the class:
 private void CreateContainerAndBlob(
 String containerName, String blobName)
{
 CloudBlockBlob cloudBlockBlob =
 GetBlob(containerName, blobName);
 cloudBlockBlob.UploadText("This weak and idle theme.");
}

7.	 Add the following method, creating a shared access signature using the SDK helpers,
to the class:
private String GetSASWithSDK(
 String containerName, String blobName
 , SharedAccessBlobPermissions permission)
{
 SharedAccessBlobPolicy sharedAccessPolicy =
 new SharedAccessBlobPolicy()
 {
 Permissions = permission,
 SharedAccessStartTime =

Getting Storage with Blobs in Azure

118

 utcNow.AddDays(-2),
 SharedAccessExpiryTime =
 utcNow.AddDays(2)
 };

 CloudBlockBlob cloudBlockBlob =
 GetBlob(containerName, blobName);

 String sharedAccessSignature =
 cloudBlockBlob.GetSharedAccessSignature(
 sharedAccessPolicy);

 return sharedAccessSignature;
}

8.	 Add the following method, creating a shared access signature manually, to the class:
private String GetSASManually(
 String containerName, String blobName
 , String sp)
{
 String iso8601Format = "yyyy-MM-ddTHH:mm:ssZ";
 CultureInfo culture = new CultureInfo("en-US");
 DateTime startTime = utcNow.AddDays(-2);
 DateTime expiryTime = utcNow.AddDays(2);
 String st =
 startTime.ToString(iso8601Format,culture);
 String se =
 expiryTime.ToString(iso8601Format, culture);
 //Latest version at time of writing
 String sv = "2013-08-15";
 String sr = "b";
 String si,rscc,rscd,rsce,rscl,rsct;
 si = rscc = rscd = rsce = rscl = rsct = String.Empty;

 String resource =
 string.Format("/{0}/{1}/{2}",
 accountName, containerName, blobName);

 String stringToSign = sp + "\n" +
 st + "\n" +
 se + "\n" +
 resource + "\n" +
 si + "\n" +
 sv + "\n" +

Chapter 3

119

 rscc + "\n" +
 rscd + "\n" +
 rsce + "\n" +
 rscl + "\n" +
 rsct;

 String sig = String.Empty;
 Byte[] keyBytes = Convert.FromBase64String(accountKey);
 using (HMACSHA256 hmacSha256 = new HMACSHA256(keyBytes))
 {
 Byte[] utf8EncodedStringToSign =
 System.Text.Encoding.UTF8.GetBytes(stringToSign);
 Byte[] signatureBytes =
 hmacSha256.ComputeHash(utf8EncodedStringToSign);
 sig = Convert.ToBase64String(signatureBytes);
 }

 String sharedAccessSignature =
 String.Format("?sv={0}&sr={1}&sig={2}&st={3}&se={4}&
sp={5}",
 sv, sr, sig, Uri.EscapeDataString(st),
 Uri.EscapeDataString(se), sp);

 return sharedAccessSignature;
}

9.	 Add the following method, authenticating it with a shared access signature,
to the class:
private void GetBlobWithSAS(
 String containerName, String blobName,
 String sharedAccessSignature)
{
 StorageCredentials storageCredentials
 = new StorageCredentials(sharedAccessSignature);
 CloudBlobClient cloudBlobClient =
 new CloudBlobClient(new Uri(blobEndpoint),
 storageCredentials);

 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 String blobText = cloudBlockBlob.DownloadText();
}

Getting Storage with Blobs in Azure

120

10.	 Add the following method, using the methods added earlier, to the class:

public static void UseSharedAccessSignaturesExample()
{
 String containerName = "test01";
 String blobName = "myBlob.txt";

 SharedAccessSignaturesExample example =
 new SharedAccessSignaturesExample();

 example.CreateContainerAndBlob(containerName, blobName);

 String sharedAccessSignature1 =
 example.GetSASWithSDK(
 containerName, blobName
 , SharedAccessBlobPermissions.Read);
 example.GetBlobWithSAS(
 containerName, blobName, sharedAccessSignature1);

 String sharedAccessSignature2 =
 example.GetSASManually(
 containerName, blobName, "r");
 example.GetBlobWithSAS(
 containerName, blobName, sharedAccessSignature2);
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we added some private members for the
blob endpoint as well as the account name and access key, which we initialize in the
constructor we added in step 4.

We use the ExportBase64EncodedKey() method to obtain the original
AccountKey instance from the StorageCredentials instance.

In step 5, we created an internal helper method to get a reference to a specific blob of a
specific container. In step 6, we created the container and upload a blob to it.

In step 7, we used the GetSharedAccessSignature() method of the CloudBlockBlob
class to get a shared access signature based on SharedAccessBlobPolicy that we
passed into it. In this SharedAccessBlobPolicy, we specified that we want read access on
a blob 2 hours before and after the current time. The fuzzing of the start time is to minimize
any risk of the time on the local machine being too far out of sync with the time on the Storage
service. This approach is the easiest way to get a shared access signature.

Chapter 3

121

In real scenarios, using the UTC time is always a best practice while dealing
with signatures. In the case of SAS, specifications tell that a clock skew of a
few seconds might happen. To avoid this, use a generous start time. It would
not be a security breach, as the Azure datacenter cannot go in the past!

In step 8, we constructed a shared access signature from first principles. This version
does not use the Storage library. We prepared the variables of the string to sign according
to the specifications. Dates are formatted in the ISO8601 format. We used Version
2013-08-15, which introduces new features and new mandatory fields to be used while
generating the signature. So, we generated a string to sign from the desired permissions,
start time, expiration time, resource to share, and the API version. We initialized an
HMACSHA256 instance from the access key and used this to generate an HMAC from the
string to sign. We then created the remainder of the query string while ensuring that the
data is correctly URL encoded.

In step 9, we used a shared access signature to initialize a StorageCredentials instance,
which we use to create a CloudBlobClient instance. We used this to construct the
CloudBlobContainer and CloudBlobClient instances that we used to download the
content of a blob.

In step 10, we added a helper method that invokes all the methods we added earlier. We tried
to get the same blob using the two SAS tokens generated manually and with the SDK. As the
tokens are equal, both the HTTP calls are successful.

There's more...
Let's go inside some advanced settings for the SAS generation. As they are completely hidden
from the SDK, it is interesting to investigate how they work and how we can perform advanced
operations using them.

In step 8, we saw the complete list of the supported fields, even if we did not include them in
the query string. We must include these fields in the empty signature.

The sr parameter stands for signedresource and it can have the following values:

ff b: For signing a blob

ff c: For signing a container

The si parameter stands for signedidentifier and represents a reference to a container
policy, if used.

Getting Storage with Blobs in Azure

122

The remaining parameters are used to instruct the blob service to append a custom header to
the HTTP response, to control the behavior from the client side. The remaining parameters are
as follows:

ff rscc: This represents the cache-control header

ff rscd: This represents the content-disposition header

ff rsce: This represents the content-encoding header

ff rscl: This represents the content-language header

ff rsct: This represents the content-type header

Finally, the sp parameter (signedpermission) could be r (for read), w (for write), and d (for
delete). On a container, it could also be l (for list).

We can get more details about container-level access policies in the Using a container-level
access policy recipe.

The purpose of shared access signatures is to provide users with access to
a fine-grained resource, without giving them access to the entire account.
A common scenario is a web application that hosts files (mail attachments
and so on) on behalf of the user. When a user, from their own web
page, asks for a download of a private resource, this resource should be
protected by the service but accessible to the user. Some websites expose
private resources through complex URIs (GUID-based), thinking that it
could be a good security policy for resources (hoping that no one can guess
those complex URIs). However, when a URI is discovered by someone,
there is no way to protect it. SASes fill this gap by providing temporary
access to private resources via public URIs.

See also
Have a look at the following links to get additional information:

ff HMAC on Wikipedia at http://en.wikipedia.org/wiki/Hash-based_
message_authentication_code

ff How to use a stored access policy at http://msdn.microsoft.com/en-us/
library/azure/ee393341.aspx

Chapter 3

123

Using a container-level access policy
A shared access policy comprises a set of permissions (read, write, delete, and list), combined
with start and expiration times for the validity of the policy. There are no restrictions on the
start and expiration times for a shared access policy. A container-level access policy is a
shared access policy associated by name with a container. A maximum of five container-level
access policies can be associated simultaneously with a container, but each must have a
distinct name.

A container-level access policy improves the management of shared access signatures.
There is no way to retract or otherwise disallow a standalone shared access signature once
it has been created. However, a shared access signature created from a container-level
access policy has validity depending on the container-level access policy. The deletion of a
container-level access policy causes the revocation of all shared access signatures derived
from it, and they can no longer be used to authenticate a storage request.

The container-level access policies for a container are set and retrieved as a
SharedAccessPolicies collection named as SharedAccessBlobPolicy objects. The
SetPermissions() and GetPermissions() methods of the CloudBlobContainer
class set and retrieve the container-level access policies. A container-level access policy can be
removed by retrieving the current SharedAccessPolicies objects, removing the specified
policy, and then setting the SharedAccessPolicies objects on the container again.

A shared access signature is derived from a container-level access policy by invoking the
CloudBlobContainer.GetSharedAccessSignature() method, passing in the name
of the container-level access policy and an empty SharedAccessBlobPolicy instance.
It is not possible to modify the validity of the shared-access signature using a nonempty
SharedAccessBlobPolicy class.

In this recipe, we'll learn how to manage container-level access policies and use them to
create shared access signatures.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Getting Storage with Blobs in Azure

124

How to do it...
We are going to create, use, modify, revoke, and delete a container-level access policy. We will
do this using the following steps:

1.	 Add a class named ContainerLevelAccessPolicyExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;

3.	 Add the following private members to the class:
private CloudBlobContainer cloudBlobContainer;

4.	 Add the following constructor to the class:
ContainerLevelAccessPolicyExample(string containerName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 cloudBlobContainer = cloudBlobClient
 .GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();
}

5.	 Add the following method, creating a container-level access policy, to the class:
private void AddContainerLevelAccessPolicy(String policyId)
{
 DateTime startTime = DateTime.UtcNow;
 SharedAccessBlobPolicy sharedAccessPolicy =
 new SharedAccessBlobPolicy()
 {
 Permissions = SharedAccessBlobPermissions.Read |
 SharedAccessBlobPermissions.Write,
 SharedAccessStartTime = startTime,
 SharedAccessExpiryTime = startTime.AddDays(3d)
 };

 BlobContainerPermissions blobContainerPermissions =
 new BlobContainerPermissions();

Chapter 3

125

 blobContainerPermissions.SharedAccessPolicies.Add(
 policyId, sharedAccessPolicy);

 cloudBlobContainer.SetPermissions(blobContainerPermissions);
}

6.	 Add the following method, getting a shared access signature using the container-level
access policy, to the class:
private String GetSharedAccessSignature(String policyId)
{
 SharedAccessBlobPolicy sharedAccessPolicy =
 new SharedAccessBlobPolicy();
 String sharedAccessSignature =
 cloudBlobContainer.GetSharedAccessSignature(
 sharedAccessPolicy, policyId);

 return sharedAccessSignature;
}

7.	 Add the following method, modifying the container-level access policy, to the class:
private void ModifyContainerLevelAccessPolicy(String policyId)
{
 BlobContainerPermissions blobContainerPermissions =
 cloudBlobContainer.GetPermissions();

 blobContainerPermissions.SharedAccessPolicies[
 policyId].SharedAccessExpiryTime=
 blobContainerPermissions.SharedAccessPolicies[
 policyId].SharedAccessExpiryTime.Value.AddDays(1);

 cloudBlobContainer.SetPermissions(blobContainerPermissions);
}

8.	 Add the following method, revoking a container-level access policy, to the class:
private void RevokeContainerLevelAccessPolicy(String policyId)
{
 BlobContainerPermissions containerPermissions =
 cloudBlobContainer.GetPermissions();

 SharedAccessBlobPolicy sharedAccessPolicy =
 containerPermissions.SharedAccessPolicies[policyId];
 containerPermissions.SharedAccessPolicies.Remove(policyId);
 containerPermissions.SharedAccessPolicies.Add(

Getting Storage with Blobs in Azure

126

 policyId + "1", sharedAccessPolicy);

 cloudBlobContainer.SetPermissions(containerPermissions);
}

9.	 Add the following method, deleting all container-level access policies, to the class:
private void DeleteContainerLevelAccessPolicies()
{
 BlobContainerPermissions blobContainerPermissions =
 new BlobContainerPermissions();

 cloudBlobContainer.SetPermissions(blobContainerPermissions);
}

10.	 Add the following method, using the methods added earlier, to the class:

public static void UseContainerLevelAccessPolicyExample()
{
 String containerName = "test01";
 String policyId = "myPolicy";

 ContainerLevelAccessPolicyExample example =
 new ContainerLevelAccessPolicyExample(containerName);

 example.AddContainerLevelAccessPolicy(policyId);
 String sharedAccessSignature1 =
 example.GetSharedAccessSignature(policyId);

 example.ModifyContainerLevelAccessPolicy(policyId);
 String sharedAccessSignature2 =
 example.GetSharedAccessSignature(policyId);

 example.RevokeContainerLevelAccessPolicy(policyId);
 String sharedAccessSignature3 =
 example.GetSharedAccessSignature(policyId + "1");

 example.DeleteContainerLevelAccessPolicies();
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we added some private members that
we initialized in the constructor that we added in step 4. We also created a container in
the constructor.

Chapter 3

127

In step 5, we created a SharedAccessBlobPolicy instance and added it to the
SharedAccessPolicies property of a BlobContainerPermissions object. Finally,
we passed this and also passed a policy name into a SetPermissions() method of the
CloudBlobContainer class to create a container-level access policy name for the container.

In step 6, we got a shared access signature for a container with a specified container-
level access policy. Finally, we passed the policy name into the CloudBlobContainer.
GetSharedAccessSignature() method to get a shared access signature for
the container.

In step 7, we invoked GetPermissions() on the container to retrieve the shared access
policies for it. We then added 1 day to the expiration date for a specified container-level
access policy. Finally, we invoked CloudBlobContainer.SetPermissions() to update
the container-level access policies for the container.

In step 8, we revoked an existing container-level access policy and created a new container-
level policy with the same SharedAccessBlobPolicy and a new policy name. We again
used GetPermissions() to retrieve the shared access policies for the container and
then invoked the Remove() method of the SharedAccessPolicies property to perform
the revocation. We also added a new policy with a different name. Finally, we invoked
CloudBlobContainer.SetPermissions() to update the container-level access
policies for the container.

In step 9, we deleted all container-level access policies for a container. We created a default
BlobContainerPermissions instance and passed this into CloudBlobContainer.
SetPermissions() to remove all the container-level access policies for the container.

In step 10, we added a helper method that invokes all the methods we added earlier.

Setting properties and metadata for a blob
The Azure Blob service allows metadata and properties to be associated with a blob. The
metadata comprises a sequence of developer-defined, name-value pairs. The properties
comprise HTTP request headers, which include Cache-Control, Content-Encoding, Content-
MD5, and Content-Type. The Blob service also supports metadata and properties for blob
containers. Requesting a download of the blob attributes, its metadata, and properties is an
efficient way of checking blob existence, as only a small amount of data is downloaded.

The Blob service uses the Content-MD5 property to validate blob upload. When specified,
the Content-MD5 property must be set to the base64-encoded value of the MD5 hash's
blob data. The Blob service returns an error if this value does not match the value it calculates
from the uploaded blob content.

In this recipe, we'll learn how to set and get blob properties and metadata. We will also learn
how to calculate the Content-MD5 property.

Getting Storage with Blobs in Azure

128

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to create a blob, and add some metadata and the Content-MD5 property to it.
We will then fetch the attributes of the blob to retrieve the property and metadata. We will do
this using the following steps:

1.	 Add a new class named PropertiesMetadataExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.Security.Cryptography;

3.	 Add the following member to the class:
CloudBlobClient cloudBlobClient;

4.	 Add the following constructor to the class:
public PropertiesMetadataExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
}

Chapter 3

129

5.	 Add the following method, uploading a blob as a Byte array, to the class:
private void UploadByteArray(
 String containerName, String blobName)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 Byte[] blobData = { 0x41, 0x7A, 0x75, 0x72, 0x65 };
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 cloudBlockBlob.Metadata["TodayIs"] = "Wednesday";
 cloudBlockBlob.Properties.ContentMD5 =
 CalculateMD5Hash(blobData);
 cloudBlockBlob.UploadFromByteArray(blobData,0,blobData.
Length);
}

6.	 Add the following method, retrieving blob attributes, to the class:
private void FetchAttributes(String containerName,
 String blobName)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);

 cloudBlockBlob.FetchAttributes();

 BlobProperties blobProperties =
 cloudBlockBlob.Properties;
 IDictionary<string,string> blobMetadata =
 cloudBlockBlob.Metadata;
 foreach (var item in blobMetadata)
 {
 String value = item.Value;
 }
}

7.	 Add a method, calculating the MD5 hash, to the class:
private static String CalculateMD5Hash(Byte[] bytes)
{
 MD5 md5 = MD5.Create();
 Byte[] md5Hash = md5.ComputeHash(bytes);

Getting Storage with Blobs in Azure

130

 String base64EncodedMD5Hash =
 Convert.ToBase64String(md5Hash);

 return base64EncodedMD5Hash;
}

8.	 Add the following method, using the methods added earlier, to the class:
public static void UsePropertiesMetadataExample()
{
 String containerName = "test01";
 String blobName = "myBlob.txt";

 PropertiesMetadataExample example = new
 PropertiesMetadataExample();
 example.UploadByteArray(containerName, blobName);
 example.FetchAttributes(containerName, blobName);
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we added a member to hold the
CloudBlobClient instance that we initialized in the constructor we added in step 4. We
initialized the CloudStorageAccount instance from the values in the app.config file.

In step 5, we added a method that creates a blob out of a Byte array, adds the calculated
Content-MD5 property to the blob, and associates some metadata named TodayIs with
the blob. In step 6, we added a method that retrieves the attributes of a blob and iterates
over any metadata associated with it.

In step 7, we added the method that calculates the base64-encoded MD5 hash for
a Byte array.

In step 8, we added a method that invokes the methods we added to the class.

See also
Have a look at the following MSDN links to get additional information:

ff Conditional headers for Blob service operations at http://msdn.microsoft.
com/en-us/library/azure/dd179371.aspx

ff Properties and metadata for Blob resources at http://msdn.microsoft.com/
en-us/library/azure/dd179404.aspx

Chapter 3

131

Using blob directories
The Azure Blob service uses a simple organizational structure for containers and blobs. A
storage account has zero or more containers, each of which contains zero or more blobs.
Containers might contain only blobs and not contain other containers. There is no hierarchy
for containers.

The Azure Storage library provides support for a simulation of a hierarchical directory
structure through an ability to parse blob names that contain a special delimiter character
and navigates to the list of blobs while taking the delimiter into account. This delimiter has
the forward slash symbol (/). The Azure Storage Client library exposes this feature through
the CloudBlobDirectory class.

The CloudBlobDirectory class provides methods that allow blobs to be enumerated
in a way that takes into account the directory structure built into the naming convention
used. A blob name can include multiple levels of directory.

A CloudBlobDirectory object can be created using either CloudBlobClient.
GetDirectoryReference() or CloudBlobContainer.GetDirectoryReference().
The CloudBlobDirectory object refers to a particular level in the directory hierarchy. The
blobs and directories in this directory can be retrieved using the synchronous ListBlobs(),
the asynchronous BeginListBlobsSegmented(), or the ListBlobsSegmentedAsync()
methods. The directory list can be paged through using the ListBlobsSegmented() method.

The various methods to list blobs provide the list as IEnumerable<IListBlobItem>.
The IListBlobItem interface is actually the base interface for CloudBlockBlob,
CloudPageBlob, and CloudBlobDirectory classes, as well as for the ICloudBlob
interface. Consequently, any given item in the list could be from any of these classes, so
care must be taken that the item is handled correctly. This is similar to the way in which a
file needs to be handled differently from a subdirectory when processing the contents of a
directory in a filesystem.

The CloudBlobDirectory class also exposes methods that retrieve strongly typed
CloudBlockBlob, CloudPageBlob, or CloudBlobDirectory classes with a specified
name that might include multiple levels in the directory hierarchy.

In this recipe, we'll learn how to generate a list of the contents of a directory and traverse a
directory hierarchy.

Getting Storage with Blobs in Azure

132

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to list the top-level contents of a directory. Then, we will get the top-level
directories and list their contents. We will do this using the following steps:

1.	 Add a new class named BlobDirectoryExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;

3.	 Add the following member to the class:
private CloudBlobContainer cloudBlobContainer;

4.	 Add the following constructor to the class:
public BlobDirectoryExample(String containerName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
}

Chapter 3

133

5.	 Add a method, creating a container and adding blobs to it, to the class:
private void CreateContainerAndBlobs(String containerName)
{
 cloudBlobContainer.CreateIfNotExists();
 CreateBlob("Yosemite/ElCapitan");
 CreateBlob("Yosemite/ElCapitan/TheNose");
 CreateBlob("Yosemite/ElCapitan/SalatheWall");
 CreateBlob("Yosemite/HalfDome");
 CreateBlob("Yosemite/HalfDome/NorthRidge");
 CreateBlob("Yosemite/HalfDome/NorthWestFace");
 CreateBlob("Yosemite/HalfDome/Trail");
}

6.	 Add a method, uploading a blob, to the class:
private void CreateBlob(String blobName)
{
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 cloudBlockBlob.UploadText("To be, or not to be");
}

7.	 Add a method, listing the top-level directory items, to the class:
private void ListTopLevelItems(String directoryName)
{
 CloudBlobDirectory cloudBlobDirectory =
 cloudBlobContainer.GetDirectoryReference(directoryName);

 IEnumerable<IListBlobItem> blobItems =
 cloudBlobDirectory.ListBlobs();
 foreach (IListBlobItem blobItem in blobItems)
 {
 Uri uri = blobItem.Uri;
 }
}

8.	 Add a method, traversing the directory tree, to the class:
private void TraverseDirectoryTree(String directoryName)
{
 CloudBlobDirectory cloudBlobDirectory =
 cloudBlobContainer.GetDirectoryReference(
 directoryName);

 IEnumerable<IListBlobItem> blobItems =
 cloudBlobDirectory.ListBlobs();

Getting Storage with Blobs in Azure

134

 foreach (CloudBlobDirectory cloudBlobDirectoryItem in
 blobItems.OfType<CloudBlobDirectory>())
 {
 Uri uri = cloudBlobDirectoryItem.Uri;

 IEnumerable<CloudBlockBlob> leafBlobs =
 cloudBlobDirectoryItem.ListBlobs().OfType<CloudBlockBlob>();
 foreach (CloudBlockBlob leafBlockBlob in leafBlobs)
 {
 Uri leafUri = leafBlockBlob.Uri;
 }
 }
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void UseBlobDirectoryExample()
{
 String containerName = "test01";
 String directoryName = "Yosemite";

 BlobDirectoryExample blobDirectoryExample =
 new BlobDirectoryExample(containerName);
 blobDirectoryExample.CreateContainerAndBlobs(
 containerName);
 blobDirectoryExample.ListTopLevelItems(directoryName);
 blobDirectoryExample.TraverseDirectoryTree(directoryName);
}

How it works...
In steps 1 and 2, we set up the BlobDirectoryExample class. In step 3, we added a
member that we initialized in the constructor we add in step 4.

In step 5, we created a container and then invoked CreateBlob() multiple times to create
the blobs we used in the example. In step 6, we added CreateBlob() to upload a blob.

In step 7, we added a ListTopLevelItems() method that uses a CloudBlobContainer
object for the current container to retrieve a CloudBlobDirectory object for the specified
directory. We then invoked CloudBlobDirectory.ListBlobs() to generate a directory-
listing query, which we invoke and enumerate. With the example blobs created earlier, this
corresponds to the directory listing of Yosemite that retrieves two blobs and two directories.

Chapter 3

135

In step 8, we added a TraverseDirectoryTree() method that uses a
CloudBlobContainer object for the current container to retrieve a CloudBlobDirectory
object for the specified directory. We then used CloudBlobDirectory.ListBlobs()
to generate a directory-listing query, which we invoked and enumerated while restricting
the enumeration only to CloudBlobDirectory objects. We then used these
CloudBlobDirectory objects as the base of separate CloudBlobDirectory.
ListBlobs() invocations to retrieve lists of their contents.

In step 9, we added a method to use the methods we added earlier.

Creating and using a blob snapshot
The Azure Blob service supports the creation of read-only snapshots of a blob. A storage
account is billed only for those blocks and pages in a snapshot that differ from those in the
underlying blob. A blob snapshot is useful in providing a backup for a blob, as it can be used
to reset the blob to an earlier state. Indeed, multiple snapshots can be made over time,
allowing a historic record to be kept of the changes made to a blob.

A blob snapshot is created using the CloudBlockBlob.CreateSnapshot() method.
Each snapshot of a blob is distinguished by its creation time, which must be provided to
operations that are accessing the snapshot. A snapshot created at a particular datetime is
addressed by appending a snapshot={datetime} query string to the URL, thus identifying
the underlying blob.

For example, the following is the complete URL for a snapshot taken on 11/25/2010 of a
blob named SnapshotsExample:

http://myaccountname.blob.core.windows.net/ chapter2/
SnapshotsExample?snapshot=2010-11-25T02:02:40.1680568Z

The storage account is named myaccountname, and the container is named chapter2.

In this recipe, we'll learn how to create and use blob snapshots.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Getting Storage with Blobs in Azure

136

How to do it...
We are going to create a blob and then create a snapshot of it. We are then going to download
the snapshot. We will do this using the following steps:

1.	 Add a new class named SnapshotsExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.IO;

3.	 Add the following private member to the class:
private CloudBlobClient cloudBlobClient;

4.	 Add the following constructor to the class:
public SnapshotsExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
}

5.	 Add the following method, creating the container and a blob, to the class:
private void CreateContainerAndBlob(
 String containerName, String blobName)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 cloudBlockBlob.UploadText("To be, or not to be");
}

Chapter 3

137

6.	 Add the following method, making a snapshot of the blob, to the class:
private DateTime MakeSnapshot(
 String containerName, String blobName)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);

 CloudBlockBlob snapshot = cloudBlockBlob.CreateSnapshot();
 return snapshot.SnapshotTime.Value.DateTime;
}

7.	 Add the following method, retrieving the snapshot, to the class:
private void RestoreSnapshot(String containerName,
 String blobName)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);

 var lastSnapshot = cloudBlobContainer
 .ListBlobs(blobName, true,
 BlobListingDetails.Snapshots)
 .Cast<CloudBlockBlob>()
 .Where(p=>p.IsSnapshot).Last();

 CloudBlockBlob blob = cloudBlobContainer
 .GetBlockBlobReference("restored_"+blobName);
 blob.StartCopyFromBlob(lastSnapshot);
}

8.	 Add the following method, using the methods added earlier, to the class:
public static void UseSnapshotsExample()
{
 String containerName = "test01";
 String blobName = "myBlob.txt";

 SnapshotsExample example = new SnapshotsExample();
 example.CreateContainerAndBlob(containerName, blobName);

 DateTime snapshotTime =
 example.MakeSnapshot(containerName, blobName);

Getting Storage with Blobs in Azure

138

 example.RestoreSnapshot(containerName,
 blobName);
}

How it works...
In steps 1 and 2, we set up the recipe. In step 3, we added a private member that stores
a CloudBlobClient class that we initialized in the constructor we add in step 4. This
constructor retrieves the storage account information from the app.config file. In step 5,
we created a container and upload the blob to it.

In step 6, we invoked the CreateSnapshot() method to make a snapshot of the blob.
We returned SnapshotTime that, in case, could uniquely identify the snapshot. In step
7, we used the ListBlobs method to retrieve all the blobs with the prefix of the original
blob, specifying to also list the snapshots that adhere to the rule. With LINQ, we obtained a
reference to the last snapshot of the desired blob, and finally, we promoted the snapshot to
a new blob with the StartCopyFromBlob method.

In step 8, we invoked the methods added earlier to create a blob, make a snapshot, and
retrieve it.

See also
Have a look at the following MSDN link to get additional information:

ff More about Snapshot service fees at http://msdn.microsoft.com/en-us/
library/azure/hh768807.aspx

Creating and using the root container
for blobs

The Azure Blob service supports a simple two-level hierarchy for blobs. There is a single level
of containers, each of which might contain zero or more blobs. Containers might not contain
other containers.

In the Blob service, a blob resource is addressed as follows:

http://{account}.blob.core.windows.net/{container}/{blob}

The {account}, {container}, and {blob} parts represent the names of the storage
account, container, and blob, respectively.

Chapter 3

139

This addressing convention works for most uses of blobs. In certain situations, we need to
place content inside the root space. Microsoft added support for a root container named
$root to the Blob service so that it could host content.

When using Silverlight, the runtime requires that a cross-domain policy
file reside at the root of the domain and not beneath a container as would
be the case with the standard addressing for blobs. The cross-domain
policy file allows a web client to access data from more than one domain
at a time (http://msdn.microsoft.com/en-us/library/
cc197955(VS.95).aspx). The root container could also be used
for this purpose.

There is no need to provide the root container's name when retrieving blobs contained in it.
For example, the following is a valid address for a blob named crossdomain.xml stored in
the root container:

http://{account}.blob.core.windows.net/crossdomain.xml

Note that the names of root-container blobs must not contain the / symbol to avoid any
confusion with blobs being named to simulate a directory tree.

It is possible to emulate a static website hosting under the root container.
By placing the HTML file inside a public $root container and subsequently
mapping the storage account with a custom DNS name, the resulting URLs
are very similar to those of common websites:

http://www.mydomain.com/index.html

However, it is not possible to indicate to Azure which is the default document
of that website, so it just a good approximation of the original behavior.

In this recipe, we'll learn how to create and use the root container for a storage account.

Getting ready
We need to create a file that we will upload using the recipe. As we do not rely on this file
being a cross-domain policy file, we can actually use any file for the recipe.

This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

Getting Storage with Blobs in Azure

140

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to create a root container and upload a cross-domain policy file to it. We will do
this using the following steps:

1.	 Add a new class named RootContainerExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;

3.	 Add the following method, uploading the cross-domain policy file, to the class:
private static void UploadCrossDomainPolicyFile(
 String fileName)
{
 String rootContainerName = "$root";
 String crossDomainPolicyName = "crossdomain.xml";
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(
 rootContainerName);
 cloudBlobContainer.CreateIfNotExists();
 cloudBlobContainer.SetPermissions(
 new BlobContainerPermissions()
 {
 PublicAccess=BlobContainerPublicAccessType.Blob
 });

 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(
 crossDomainPolicyName);
 cloudBlockBlob.UploadFromFile(fileName
 ,System.IO.FileMode.Open);
}

Chapter 3

141

4.	 Add the following method, using UploadCrossDomainPolicyFile(), to the class:
public static void UseRootContainerExample()
{
 String crossDomainPolicyFilename =
 Path.GetTempFileName();
 UploadCrossDomainPolicyFile(crossDomainPolicyFilename);
}

How it works...
In steps 1 and 2, we set up the recipe. In step 3, we created the root container, with the
special name $root, and then used UploadFile() to upload the cross-domain policy file
into it. Please note that in this case, the $root container must be public, or no clients can
correctly locate the contents inside it.

In step 4, we invoked the UploadCrossDomainPolicyFile() method we added in step 3,
passing a temporary empty file, to test scenarios.

Putting items in the $root container makes them available through the root of the Blob
service domain such as http://{account}.blob.core.windows.net/item.txt. This
approach, in conjunction with mapping a custom domain to the storage account, lets us host
static content on a generic root domain, using the Blob storage as a host for static websites.

See also
In the Using blob directories recipe, we saw how to simulate a directory hierarchy for blobs
inside a container.

Have a look at the following MSDN links to get additional information:

ff Working with the root container at http://msdn.microsoft.com/en-us/
library/azure/hh488356.aspx

ff Azure Storage Analytics at http://msdn.microsoft.com/en-us/library/
azure/hh343270.aspx

Uploading blocks to a block blob
The Azure Blob service supports two types of blobs: block blobs optimized for streaming and
page blobs optimized for random access. Block blobs are so named because they comprise
blocks (identified by block IDs) and can be updated either by replacing the entire blob or by
replacing individual blocks. Page blobs can be updated either by replacing the entire blob or
by modifying individual pages.

Getting Storage with Blobs in Azure

142

A block blob can be up to 200 GB in size and comprises blocks that can be up to 4 MB; a
block blob cannot exceed 50,000 blocks. Block blobs larger than 64 MB must be uploaded in
blocks, and then, a list of uploaded blocks must be committed to create the blob. The various
upload methods in the CloudBlob class handle this two-phase process automatically.
However, there are times when it is worthwhile taking direct control of the block upload and
commit process. These include uploading very large blobs, performing parallel uploads of
blocks, or updating individual blocks.

At any given time, a block blob can comprise a set of committed blocks and a set of
uncommitted blocks. Only the committed blocks are visible when the blob is accessed. The
block blob can be updated by committing some mixture of the committed and uncommitted
blocks. Any uncommitted blocks are garbage collected 7 days after the last time the blocks
were committed to the block blob.

In this recipe, we'll learn how to upload individual blocks and commit them to a block blob.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to upload some blocks and commit them as a block blob. Then, we are going to
upload some more blocks to the same blob and retrieve the block list to confirm that the blob
comprises a mixture of committed blocks and uncommitted blocks. Finally, we are going to
commit the latest blocks and confirm that all the blocks in the blob have been committed. We
will do this using the following steps:

1.	 Add a new class named UploadBlockBlobsExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.IO;

3.	 Add the following private member to the class:
private CloudBlockBlob cloudBlockBlob;

Chapter 3

143

4.	 Add the following constructor to the class:
public UploadBlockBlobsExample(String containerName,
 String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();
 cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
}

5.	 Add the following methods, uploading blobs, to the class:
private IEnumerable<String> UploadBlocks(Int32 numberOfBlocks)
{
 String[] base64EncodedBlockIds =
 new String[numberOfBlocks];
 for (Int32 blockId = 0; blockId < numberOfBlocks;
 blockId++)
 {
 base64EncodedBlockIds[blockId] =
 PutBlockFromStream(blockId);
 }

 return base64EncodedBlockIds;
}

6.	 Add the following method, uploading a single block, to the class:
private String PutBlockFromStream(Int32 blockId)
{
 String base64EncodedBlockId = Convert.ToBase64String(
 System.BitConverter.GetBytes(blockId));
 String blobText = new String('z', 1000);
 UTF8Encoding utf8Encoding = new UTF8Encoding();
 using (MemoryStream memoryStream = new
 MemoryStream(utf8Encoding.GetBytes(blobText)))
 {
 cloudBlockBlob.PutBlock(base64EncodedBlockId,

Getting Storage with Blobs in Azure

144

 memoryStream, null);
 }
 return base64EncodedBlockId;
}

7.	 Add the following methods, handling block lists, to the class:
private void PutBlockList(IEnumerable<String> blockList)
{
 cloudBlockBlob.PutBlockList(blockList);
}

private void GetBlockList()
{
 IEnumerable<ListBlockItem> listBlockItems =
 cloudBlockBlob.DownloadBlockList(
 BlockListingFilter.All);
 foreach (ListBlockItem item in listBlockItems)
 {
 Boolean committed = item.Committed;
 String name = item.Name;
 Int64 size = item.Length;
 }
}

8.	 Add the following method, using the methods added earlier, to the class:
public static void UseUploadBlockBlobsExample()
{
 String containerName = "test01";
 String blobName = "myBlockBlob.txt";

 UploadBlockBlobsExample example =
 new UploadBlockBlobsExample(containerName, blobName);

 IEnumerable<String> base64EncodedBlockIds =
 example.UploadBlocks(20);
 example.PutBlockList(base64EncodedBlockIds);

 base64EncodedBlockIds = example.UploadBlocks(10);
 example.GetBlockList();
 example.PutBlockList(base64EncodedBlockIds);
 example.GetBlockList();
}

Chapter 3

145

How it works...
In steps 1 and 2, we set up the UploadBlockBlobsExample class. In step 3, we added
a member that stores a CloudBlockBlob instance that we initialize in the constructor
we added in step 4.

The UploadBlocks() method we added in step 5 iterates over the specified number of
blocks and invokes the PutBlockFromStream() method. The UploadBlocks() method
passes in the loop counter as a block ID. In step 6, PutBlockFromStream() converts the
integer into the required Base64 format. For the sake of simplicity, we then created a memory
stream based on a simple string and invoke the CloudBlockBlob.PutBlock() method
to upload the block with the specified Base64 block Id. The PutBlockFromStream()
method returns the Base64 block ID to UploadBlocks(), which in turn returns
IEnumerable<String>, which contains the sequence of block IDs.

In step 7, we added a PutBlockList() method that simply refers to the
CloudBlockBlob.PutBlockList() method. The GetBlockList() method invokes the
CloudBlockBlob.DownloadBlockList() method to retrieve the list of committed blocks.
We then iterated over the list to observe various properties of GetBlockList().

In step 8, we added a method that uses the methods we created earlier. We upload 20 blocks
and commit them to a block blob. Then, we uploaded another 10 blocks and invoke the
GetBlockList() method to verify that we have 20 committed and 10 uncommitted blocks.
Finally, we commited the 10 blocks and confirmed with another call to GetBlockList() that
these blocks have replaced the blob with 20 blocks.

There's more…
The ListBlobs() method we saw earlier in another recipe lets us provide an option to the
list and also the uncommitted blobs. A blob stands uncommitted if there are blocks uploaded
but not yet committed through the PutBlockList() method.

The following method lists committed and uncommitted blobs, and then, it takes away the
committed ones with LINQ as follows:

public IEnumerable<string> ListUncommitted()
{
 return cloudBlockBlob.Container.ListBlobs(null, true,
 BlobListingDetails.UncommittedBlobs)
 .Select(p => p.Uri.ToString())
 .Except(cloudBlockBlob.Container.ListBlobs(null,true)
 .Select(p=>p.Uri.ToString()));
}

Getting Storage with Blobs in Azure

146

The Azure Storage library lets us have a fine-grained control over the upload and download
of the blocks of files. We can completely rely on methods such as the following:

cloudBlockBlob.UploadFromFile("[HUGE FILE]", FileMode.Open);

However, sometimes, we may want a higher degree of control around the upload process.
The library, by default, splits the file into 4 MB blocks and proceeds with the upload as
mentioned in the recipe. Each block is added, one by one, with an HTTP call as follows:

hugeBlob?comp=block&blockid=MTAzZTEyMzY3YTI3NGRkYjk3
YmU1MzU5Nzg3YWY5ZDUtMDAwMDAx

We can change the size of the block uploaded by the library by modifying the
StreamWriteSizeInBytes property in the CloudBlockBlob instance:

hugeBlob.StreamWriteSizeInBytes = 1048576;

Finally, we would also go parallel specifying another property:

hugeBlob.ServiceClient.ParallelOperationThreadCount = 4;

Another strategy is going with the Task Parallel Library (TPL). The .NET Framework includes
libraries that simplifiy the task of parallelizing operations. These provide parallel versions of
the traditional for and foreach statements. The Parallel.For and Parallel.ForEach
methods can be dropped almost as replacements for for and foreach.

The Blob service has a scalability target (http://msdn.microsoft.
com/en-us/library/windowsazure/dn249410.aspx) for
throughput of about 60 MB per second for an individual blob. This creates
a limit for how much performance improvement can be achieved through
parallelizing operations on a blob. When contemplating parallelization, it
is always worth testing the actual workload to ensure that any expected
performance gain is in fact realized.

Uploading a VHD into a page blob
An instance of an Azure role or Azure VM comprises several virtual disks (VHDs) deployed into
a virtual machine. For Windows OS, this VHD must be an NTFS-formatted, fixed-size VHD. The
VHD can be created directly as a page blob or uploaded like any other page blob.

The Disk Management snap-in for the Microsoft Management Console (MMC) can be used
to create and format a VHD on a local system. Once attached to the local system, files can
be copied to or created on the filesystem of the VHD, just as they can be created on any hard
drive. The VHD can then be detached from the local system and uploaded as a page blob to
the Azure Blob service.

Chapter 3

147

A page blob, which might have a maximum size of 1 TB, comprises a sequence of 512-byte
pages. All writes to a page blob must be aligned with a page boundary. There is no charge
for an empty page in a page blob. There is no need to upload empty pages in the VHD, which
means that bandwidth need not be wasted uploading empty pages. The Blob service identifies
these empty pages when a download of one of them is requested, and it merely injects a page
full of 0 x 0 bytes into the response stream.

Uploads to block blobs comprise a two-step process: upload the blocks and commit the blocks
to the blob. Uploading a page blob is a single-step process: write one or more 512-byte pages
to the blob. Once uploaded, these pages immediately form part of the blob. This can cause
problems if multiple writers are writing to the page blob simultaneously. The Azure Storage
service REST API provides support for a sequence number that can be used to control which
writer wins a contest to write to a single page.

In the Storage Client library, the CloudPageBlob class provides various methods to
support page blob uploads. The CloudPageBlob class provides synchronous and
asynchronous WritePages() methods specifically to upload page blobs. Additionally, there
are synchronous and asynchronous forms of the GetPageRanges() method that returns
IEnumerable<PageRange> of the nonempty page ranges in the blob.

In this recipe, we'll learn how to upload a VHD into a page blob.

Getting ready
We use the Disk Management snap-in to create and format a VHD on the local system, which
we will upload with the recipe. There is more documentation on the Disk Management snap-in
at http://technet.microsoft.com/en-us/library/dd979539(WS.10).aspx.

We launch Disk Management by clicking on Start, typing diskmgmt.msc in the Search box,
and then pressing Enter. The Create VHD and Attach VHD operations are on the
Action menu.

We use the Disk Management snap-in for the following tasks:

ff Create a VHD as fixed size with a specified size in the specified location (remember
that Azure supports page blobs up to 1 TB of size)

ff A new disk will appear in the Disk Management window; initialize it with a master
boot record

ff Create a new simple volume formatted as NTFS with a specified drive letter

ff Copy files and directories to the specified drive

ff Detach the VHD

Getting Storage with Blobs in Azure

148

If the VHD already exists, we use the Disk Management snap-in for the following tasks:

ff Attach the VHD

ff Copy files and directories to the specified drive

ff Detach the VHD

This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to create a page blob and upload a VHD into it. We will do this using the
following steps:

1.	 Add a new class named UploadVhdExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.IO;

3.	 Add the following members to the class:
private const Int32 pageSize = 0x200; // 512 bytes
private const Int32 uploadSize = 0x100000; // 1MBytes
private CloudBlobClient cloudBlobClient;

4.	 Add the following constructor to the class:
public UploadVhdExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
}

Chapter 3

149

5.	 Add the following method, uploading a VHD, to the class:
private void UploadCloudDrive(
 String containerName, String blobName, String vhdPath)
{
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 CloudPageBlob cloudPageBlob =
 cloudBlobContainer.GetPageBlobReference(blobName);
 cloudPageBlob.Properties.ContentType =
 "binary/octet-stream";

 using (FileStream fileStream =
 new FileStream(vhdPath, FileMode.Open))
 {
 Int32 blobSize = (Int32)fileStream.Length;
 if ((blobSize % pageSize) != 0)
 {
 throw new ApplicationException(
 "Page blob size must be a multiple of page size");
 }
 cloudPageBlob.Create(blobSize);

 Int32 pageBlobOffset = 0;
 Int32 numberIterations = blobSize / uploadSize;
 for (Int32 i = 0; i < numberIterations; i++)
 {
 pageBlobOffset = UploadPages(
 fileStream, cloudPageBlob, pageBlobOffset);
 }

 pageBlobOffset = UploadFooter(
 fileStream, cloudPageBlob, pageBlobOffset);
 }
}

6.	 Add the following method, uploading pages to a page blob, to the class:
private Int32 UploadPages(FileStream fileStream,
 CloudPageBlob cloudPageBlob, Int32 pageBlobOffset)
{
 Byte[] buffer = new Byte[uploadSize];
 Int32 countBytesRead = fileStream.Read(
 buffer, 0, uploadSize);

Getting Storage with Blobs in Azure

150

 Int32 countBytesUploaded = 0;

 Int32 bufferOffset = 0;
 Int32 rangeStart = 0;
 Int32 rangeSize = 0;
 while (bufferOffset < uploadSize)
 {
 Boolean nextPageIsLast =
 bufferOffset + pageSize >= uploadSize;
 Boolean nextPageHasData =
 NextPageHasData(buffer, bufferOffset);
 if (nextPageHasData)
 {
 if (rangeSize == 0)
 {
 rangeStart = bufferOffset;
 }
 rangeSize += pageSize;
 }

 if ((rangeSize > 0) && (!nextPageHasData ||
 nextPageIsLast))
 {
 using (MemoryStream memoryStream =
 new MemoryStream(buffer, rangeStart, rangeSize))
 {
 cloudPageBlob.WritePages(
 memoryStream, pageBlobOffset + rangeStart);
 countBytesUploaded += rangeSize;
 rangeSize = 0;
 }
 }
 bufferOffset += pageSize;
 }
 pageBlobOffset += uploadSize;

 return pageBlobOffset;
}

7.	 Add the following method, uploading the VHD footer, to the class:
private Int32 UploadFooter(FileStream fileStream,
 CloudPageBlob cloudPageBlob, Int32 pageBlobOffset)
{
 const Int32 numberFooterBytes = 512;
 Byte[] footerBytes = new Byte[numberFooterBytes];

Chapter 3

151

 Int32 countBytesRead = fileStream.Read(
 footerBytes, 0, numberFooterBytes);

 using (MemoryStream memoryStream =
 new MemoryStream(footerBytes))
 {
 cloudPageBlob.WritePages(memoryStream, pageBlobOffset);
 pageBlobOffset += numberFooterBytes;
 }
 return pageBlobOffset;
}

8.	 Add the following method, verifying that the page contains data, to the class:
private Boolean NextPageHasData(Byte[] buffer,
 Int32 bufferOffset)
{
 for (Int32 i = bufferOffset; i < bufferOffset + pageSize;
 i++)
 {
 if (buffer[i] != 0x0)
 {
 return true;
 }
 }
 return false;
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void UseUploadVhdExample()
{
 String containerName = "{CONTAINER_NAME}";
 String blobName = "{BLOB_NAME}";
 String pathName = @"{PATH_TO_THE_VHD}";
 UploadVhdExample example = new UploadVhdExample();
 example.UploadCloudDrive(
 containerName, blobName, pathName);
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we defined various constants and the
CloudBlobClient class that we used to access the Blob service. We initialized this
in the constructor we added in step 4.

Getting Storage with Blobs in Azure

152

In step 5, we added the method that controls the upload process. We opened FileStream
on the VHD and created a page blob of the same size as the VHD. We then iterated over the
VHD file in increments of 1 MB, invoking UploadPages() to upload the data in each 1 MB
window. Finally, we invoked UploadFooter() to upload the VHD footer.

In step 6, we added the UploadPages() method to upload nonempty pages to the page
blob. We read the VHD into a buffer in 1 MB chunks. We then looked for ranges of 512-byte
pages that contained some data and uploaded only these ranges. Remember that we do not
need to upload empty pages. The tricky part of this process is identifying the end of a range
when we come across an empty page or reach the end of the buffer.

In step 7, we added the UploadFooter() method to upload the 512-byte VHD footer. We
simply loaded the footer into a Byte[] buffer and created a MemoryStream class on it.
We then invoked WritePages() to upload this to the page blob.

In step 8, we added a method that returns false if every byte of a specified 512-byte page of
a buffer is 0 x 0. Otherwise, NextPageHasData() returns true.

In step 9, we added a method to use the methods added earlier. We must replace
{CONTAINER_NAME} and {BLOB_KEY} with actual values for account name and access key,
respectively. We must also replace {PATH_TO_THE_VHD} with the actual path to a VHD.

When uploading an arbitrary file that, unlike the VHD, is not an integral
multiple of the upload buffer, we need to correctly handle the final chunk
that is smaller than the size of the upload buffer.

There's more…
Uploading a VHD into the Blob storage for further use inside cloud services roles or a
virtual machine is a great deal, with one big limitation. Only one instance at a given time
can mount the VHD volume in the read/write mode, making filesystem-based shares a
hard (or impossible) scenario to set up.

In recent years, developers tried to figure out this limitation by proposing creative solutions,
such as the following two, for example:

ff One instance mounts the VHD in read/write mode; then, it shares it as a
network share.

Additional instances mount the network share using it to read/write data.

ff Each instance has a local filesystem-based buffer where the application saves
the relevant information.

The local file and folders are sent to the other nodes by peer-to-peer algorithms.

Chapter 3

153

These solutions have some drawbacks, and they are often very hard to implement. The Azure
Storage service offers the Files feature (at the time of writing this book, in preview), which
enables SMB Network Shares between virtual machines and roles inside of Azure environments.

Azure Files stay at the fourth endpoint of the Azure storage account
(http://[account].file.core.windows.net), which is enabled
by preview; they can be used only for storage accounts that support REST
Version 2014-02-14 or newer.

To create a Network Share using Files, proceed as follows:

1.	 Install the latest Azure PowerShell module (from Web Platform Installer).

2.	 Download the PowerShell Scripts from http://go.microsoft.com/
fwlink/?LinkID=398183.

3.	 Execute this script to import the previously downloaded module:
import-module .\AzureStorageFile.psd1

4.	 Execute this script to create the Storage Context, replacing <name> and <key> with
actual values:
$ctx=New-AzureStorageContext <name> <key>

5.	 Execute this script to create the Network Share, replacing <name> with the
actual value:
$s = New-AzureStorageShare <share name> -Context $ctx

6.	 Connect to a new or existing Azure Virtual Machine or Cloud Service role (via Remote
Desktop); open a command prompt and execute the following script:
net use z: \\[account].file.core.windows.net\[share] /u:[account]
[key]

We must replace [account] with the Azure Storage account name, [share] with the
Network Share name created earlier, and [key] with the Storage account key obtained from
the Management Portal. With this, each Azure instance could read/write data in the same
shared location.

See also
Have a look at the following links to get additional information:

ff VM VHDs in Azure at http://blogs.msdn.com/b/kdot/
archive/2013/06/29/creating-vm-vhds-in-windows-azure.aspx

ff The Azure Files (preview) service at http://blogs.msdn.com/b/
windowsazurestorage/archive/2014/05/12/introducing-microsoft-
azure-file-service.aspx

Getting Storage with Blobs in Azure

154

Downloading a blob asynchronously
The Azure Storage library provides synchronous and asynchronous versions of nearly all the
methods that access the Azure Storage service.

The asynchronous methods follow the common language runtime (CLR) Asynchronous
Programming Model (APM). In this model, asynchronous methods for an action are
defined as a pair named BeginAction and EndAction. The asynchronous operation is
initiated through a call to BeginAction and is cleaned up by a call to EndAction. The
BeginAction action has a parameter that is a callback delegate, and EndAction must be
invoked in this delegate.

This apparent complexity can be greatly simplified through the use of a lambda expression
to represent the callback delegate. Furthermore, local variables defined in the method that
contain the lambda expression are available inside the lambda expression. This removes any
difficulty caused by a need to pass variables into the delegate. Using a lambda expression,
instead of a callback delegate, makes using the asynchronous methods almost as simple as
using the synchronous methods.

In this recipe, we'll learn how to use asynchronous methods to download a blob into a file.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to download a blob asynchronously. We will do this using the following steps:

1.	 Add a new class named DownloadBlobExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration;
using System.Net;
using System.IO;

Chapter 3

155

3.	 Add the following method, creating a container and blob, to the class:
private static void CreateContainerAndBlob(
 String containerName, String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 cloudBlockBlob.UploadText("To be, or not to be");
}

4.	 Add the following method, downloading a blob, to the class:
private static void DownloadBlob(String containerName,
 String blobName, String fileName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 CloudBlockBlob cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);

 FileStream fileStream = new FileStream(fileName,
 FileMode.Append);
 IAsyncResult iAsyncResult =
 cloudBlockBlob.BeginDownloadToStream(fileStream,
 (result) =>
 {
 cloudBlockBlob.EndDownloadToStream(result);
 fileStream.Close();
 },
 null);

Getting Storage with Blobs in Azure

156

 return;
}

5.	 Add the following method, using the methods added earlier, to the class:
public static void UseDownloadBlobExample()
{
 String containerName = "{CONTAINER_NAME}";
 String blobName = "{BLOB_NAME}";
 String fileName = Path.GetTempPath() + @"\{FILE_NAME}";

 CreateContainerAndBlob(containerName, blobName);
 DownloadBlob(containerName, blobName, fileName);
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we initialized a CloudStorageAccount
class from app.config file and used it to create a CloudBlobClient instance. We used
this to create a container and a blob.

In step 4, we followed the same route to get a CloudBlockBlob reference to the blob. We used
it to invoke the BeginDownloadToStream() method. We passed this lambda expression,
instead of a callback delegate, and invoked EndDownloadToStream() in the lambda
expression to clean up the asynchronous call. We used the ability to refer to local objects from
inside the lambda expression to close the FileStream class used in the download.

Note that in this example, the main thread ends before the callback is
called. To make the sample (given earlier) perform the remote operation,
keep in mind to wait for the asynchronous operations to finish.

In step 5, we added a method that sets the parameters for the call to DownloadBlob(). We
downloaded the blob to a temporary directory. We must replace {CONTAINER_NAME} and
{BLOB_NAME} with the appropriate container and blob names, and {FILE_NAME} with
the filename.

There's more…
Recently, in the .NET framework, the Async/Await pattern began to take place. This pattern is
useful when we work with responsive interfaces (for example, Windows Store/Phone apps)
and hides the complexity of the callback mechanism by writing code that seems synchronous.

Chapter 3

157

See also
Have a look at the following MSDN links to get additional information:

ff Using cross account blob copy at http://blogs.msdn.com/b/
windowsazurestorage/archive/2013/04/01/azcopy-using-cross-
account-copy-blob.aspx

ff Azure Storage Explorer, an open and free Management Software, at
http://azurestorageexplorer.codeplex.com/

Using retry policies with blob operations
A storage operation that accesses the Azure Storage service can fail in various ways. For
example, there could be an unexpected timeout if the Storage service is moving a partition
for performance reasons, so we are dealing with transient errors. It is advisable, therefore,
to code defensively in the assumption that failure could occur unexpectedly.

The Azure Storage library supports defensive coding by providing a retry policy for operations
to the Storage service. This is done by default, but the retry policy classes support
parameterization and customization of the process.

The CloudBlobClient class has a RetryPolicy property to define it at factory level. In
addition, a storage operation on a blob object has a retry policy associated with it through
the RetryPolicy property of its BlobRequestOptions parameter. These RetryPolicy
properties provide access to a RetryPolicy instance that implements the IRetryPolicy
interface and the ShouldRetry method, which specifies whether or not a retry should
be attempted.

The Microsoft.WindowsAzure.Storage.RetryPolicies namespace provides several
RetryPolicy implementations as follows:

ff The NoRetry class does not perform retries

ff The LinearRetry delegate performs a number of retries with a fixed interval
between them

ff The ExponentialRetry delegate performs a number of retries with an exponential
back-off time between them (that is, the interval between successive retries
roughly doubles)

By default, an ExponentialRetry instance is associated with a
CloudBlobClient class and with any storage operation using it.
This default can be overridden for an individual storage operation by
associating a RetryPolicy property with the storage operation.

Getting Storage with Blobs in Azure

158

The configurability provided by the default retry policies is sufficient for most cases. However,
the IRetryPolicy interface can be used if more control is needed. For example, none of the
default retry policies provided in the RetryPolicies namespace uses the exception thrown
by a failed operation.

In this recipe, we will see various uses of retry policies. We will see how to have a no-retry
policy and a nondefault retry policy, and how to customize the retry process.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to use various retry policies when uploading a 10 MB blob. We will do this using
the following steps:

1.	 Add a new class named RetryPoliciesExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using Microsoft.WindowsAzure.Storage.RetryPolicies;
using System.Configuration;

3.	 Add the following private members to the class:
private String blobText = new String('z', 10000000);
private CloudBlockBlob cloudBlockBlob;
Add the following constructor to the class:
public RetryPoliciesExample(String containerName,
 String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);

Chapter 3

159

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
}

4.	 Add the following method, uploading a blob with a no-retry policy, to the class:
private void UploadWithNoRetry()
{
 BlobRequestOptions blobRequestOptions =
 new BlobRequestOptions();
 blobRequestOptions.ServerTimeout= TimeSpan.FromSeconds(2);
 blobRequestOptions.RetryPolicy = new Microsoft
 .WindowsAzure.Storage.RetryPolicies.NoRetry();
 try
 {
 cloudBlockBlob.UploadText(blobText, new UTF8Encoding()
, null, blobRequestOptions);
 }
 catch (Exception)
 {
 //Immediately here, no retry
 }
}

5.	 Add the following method, uploading a blob using an exponential retry policy, to
the class:
private void UploadWithModifiedRetry()
{
 TimeSpan deltaBackOff = TimeSpan.FromSeconds(2);
 BlobRequestOptions blobRequestOptions =
 new BlobRequestOptions();
 blobRequestOptions.ServerTimeout = TimeSpan.FromSeconds(2);
 blobRequestOptions.RetryPolicy =new Microsoft
 .WindowsAzure.Storage.RetryPolicies
 .ExponentialRetry(deltaBackOff,5);
 try
 {
 cloudBlockBlob.UploadText(blobText, new UTF8Encoding()
, null, blobRequestOptions);

Getting Storage with Blobs in Azure

160

 }
 catch (Exception)
 {
 //Here after 5 attempts
 }
}

6.	 Add the following class, implementing a custom retry, in the project:
public class MyRetry : IRetryPolicy
{
 public IRetryPolicy CreateInstance()
 {
 return new MyRetry();
 }

 public bool ShouldRetry(int currentRetryCount, int
statusCode, Exception lastException, out TimeSpan retryInterval,
OperationContext operationContext)
 {
 retryInterval = TimeSpan.FromSeconds(1);
 return (DateTime.Today.Day == 15);
 }
}

7.	 Add the following method, uploading a blob with a custom retry policy, to the class:
private void UploadWithCustomRetry()
{
 BlobRequestOptions blobRequestOptions =
 new BlobRequestOptions();
 blobRequestOptions.ServerTimeout= TimeSpan.FromSeconds(2);
 blobRequestOptions.RetryPolicy = new MyRetry();

 try
 {
 cloudBlockBlob.UploadText(blobText, new UTF8Encoding()
, null, blobRequestOptions);
 }
 catch (Exception)
 {
 //Never here, if today in the 15th of any month.
 //Else, immediately here
 }
}

Chapter 3

161

8.	 Add the following method, using the methods just added, to the class:
public static void UseRetryPoliciesExample()
{
 String containerName = "test01";
 String blobName = "myBlob.txt";

 RetryPoliciesExample retryPoliciesExample =
 new RetryPoliciesExample(containerName, blobName);

 retryPoliciesExample.UploadWithNoRetry();
 retryPoliciesExample.UploadWithModifiedRetry();
 retryPoliciesExample.UploadWithCustomRetry();
}

How it works...
In this recipe, we used a short timeout of 2 seconds when uploading a 10 MB blob with the
deliberate intent of making the upload operation fail so that we can see various retry policies
in action.

The ServerTimeout property is a query string parameter appended to
the request with the intent of telling the Storage service to fail if it cannot
complete the request in the specified timeout. With this property, we can
force a level of service for our applications, stating that the operation
should complete in that time or never complete at all.

The blob size can be increased if the upload speed is so fast that the upload succeeds
without the retry policy being invoked. This recipe should be used with the Storage service
rather than the Storage Emulator to take advantage of the slower connection speeds on
the Internet.

In steps 1 and 2, we set up the class. In step 3, we initialized the string that will upload to the
blob and defined a CloudBlockBlob instance that we initialized in the constructor we added
in step 4. We also created a container in the constructor.

In step 5, we uploaded a blob while using the no-retry policy. We do this by creating
a BlobRequestOptions instance and assigning an instance of the NoRetry class
to RetryPolicy of the BlobRequestOption class for the CloudBlockBlob.
UploadText() operation. When this method is invoked, it makes a single call to the
Blob service. It throws an exception if the operation times out. With no retries, the code
immediately goes into the catch block.

Getting Storage with Blobs in Azure

162

In step 6, we uploaded a blob while using an exponential retry policy. We do this by
creating a BlobRequestOptions instance and assigning a ExponentialRetry
instance to RetryPolicy of the BlobRequestOption class for the CloudBlockBlob.
UploadText() operation. This retry policy performs five retries of a failed operation with
a 2-second back-off interval. The default policy is set to three retries and 4 seconds for the
back-off interval.

In step 7, we added a custom implementation of IRetryPolicy, which specifies that if the
current date lies on the 15th day of any month, a retry should be performed, without taking
care of the context. This is a clearly strange behavior, just for example purposes.

In step 8, we uploaded a blob using a custom retry policy. The library will call the
ShouldRetry method of our class to evaluate whether to perform a retry.

In step 10, we added a method that invokes the three upload methods.

There's more...
The Transient Fault Handling Application Block, part of the Microsoft Enterprise library, adds
some infrastructure features that are helpful in handling transient errors due to the nature of
network protocols or raised by remote services. After installing Topaz (the library) from NuGet,
we can use the retry policies provided (along with the related classes) instead of the built-in
classes of the Storage library.

If you are wondering why you should use this external library instead of the simple built-in
support, note that Topaz is service agnostic and lets us wrap every service of action we want
into retry policies by applying the same coding pattern.

In Topaz, a retry policy uses a detection strategy to determine if an error is transient or it is
just an application error. This great degree of customization makes Topaz extendable
as follows:

public class MyDetectionStrategy : ITransientErrorDetectionStrategy
{
 public bool IsTransient(Exception ex)
 {
 var we=ex as WebException;
 if (we!=null)
 {
 var resp=we.Response as HttpWebResponse;
 if (resp != null)
 {
 return resp.StatusCode == HttpStatusCode.
InternalServerError;
 }
 }

Chapter 3

163

 return false;
 }
}

The preceding class treats the exception as transient if it is related to a HTTP error code 500;
otherwise, the exception should be given back to the application code. To instantiate a retry
policy using an existing implementation, proceed as follows:

var retryPolicy = new RetryPolicy<MyDetectionStrategy>(
 new ExponentialBackoff(5, TimeSpan.FromMilliseconds(10),
 TimeSpan.FromMilliseconds(10000), TimeSpan.
FromMilliseconds(200)));
Finally, to use it, do this:
retryPolicy.ExecuteAction(() => { /*Action*/ });

See also
Have a look at these links to get additional information:

ff Retry policy recommendations at http://azure.microsoft.com/
blog/2014/05/22/azure-storage-client-library-retry-policy-
recommendations/

ff Transient fault-handling application block at http://msdn.microsoft.com/en-
us/library/hh680934(v=pandp.50).aspx

Leasing a blob and implementing
distributed locks

As the same services of Azure consume the Blob storage as a service, it needed some
features to be enabled for complex scenarios. One of these is to allow an Azure virtual
machine to exclusively access a blob (a VHD, for example), preventing other clients to
access it in any way. To provide this feature, Blob Storage has the lease function: a lock-like
status in which a blob cannot be written by anybody except the one who owns the lease.

A blob can be leased for 15 seconds up to 60 seconds (or infinite), and it can be renewed as
many times as needed (while it is still locked). This is particularly useful with page blobs as
they can be updated with random writes. Indeed, the Azure virtual machines use leases to
ensure that only one instance at a time can mount a VHD page blob as a disk.

Getting Storage with Blobs in Azure

164

There are five blob-leasing actions:

ff Acquire

ff Renew

ff Change

ff Release

ff Break

The Acquire action is invoked on a blob to acquire a lease on it for a specified amount of
time. This lease is identified by a lease ID that must be presented with any operation that
modifies the blob. The Renew action renews an existing lease for another timeframe that
is equal to the Acquire one. The Change action changes the lease ID from one value to
another to permit a graceful transition between two holders without interference from outside.
The Release action ends the lease immediately so that the blob can be updated without
presenting the lease ID. The Break action ends the lease but does not allow the blob to be
updated until the expiration of the current lease period.

The Change operation is probably the most interesting action to be
performed on a leased blob. There are, in fact, certain scenarios where the
workflow manager should pass the ownership of a resource to a specific
process/actor. In this case, a release would be impossible as any process/
actor could subsequently obtain the lease and override the correct workflow.
In such situations, the manager transfers the ownership of the lease directly
to another process (changing the lease ID), never leaving the blob in an
inconsistent state.

Remember that a lease could be acquired for an infinite time span, passing a null value
instead of a TimeSpan interval. In the case of infinite leases, the Break operation would
break immediately. In this recipe, we will show how to use leases on blobs.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Chapter 3

165

How to do it...
We are going to lease a blob and attempt some operations such as acquire again,
change, renew, and release. We will do this using the following steps:

1.	 Add a new class named LeaseBlobsExample to the project.

2.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Blob;

3.	 Add the following private members:
private String leaseIdForProcessA;
private String leaseIdForProcessB;
private CloudBlockBlob cloudBlockBlob;

4.	 Add the following constructor that initializes the blob:
public LeaseBlobsExample(String containerName,
 String blobName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();
 CloudBlobContainer cloudBlobContainer =
 cloudBlobClient.GetContainerReference(containerName);
 cloudBlobContainer.CreateIfNotExists();

 cloudBlockBlob =
 cloudBlobContainer.GetBlockBlobReference(blobName);
 cloudBlockBlob.UploadText("The slings and arrows");
}

5.	 Add the following methods to the class, one for each lease action (except break):
private void AcquireLease(string leaseId)
{
 cloudBlockBlob.AcquireLease(TimeSpan.FromSeconds(30),
leaseId);
}
private void RenewLease(string leaseId)
{

Getting Storage with Blobs in Azure

166

 cloudBlockBlob.RenewLease(
 new AccessCondition() { LeaseId = leaseId });
}
private void ReleaseLease(string leaseId)
{
 cloudBlockBlob.ReleaseLease(new AccessCondition()
 {
 LeaseId = leaseId
 });
}
private void ChangeLease(string sourceLeaseId, string
destinationLeaseId)
{
 cloudBlockBlob.ChangeLease(destinationLeaseId, new
AccessCondition()
 {
 LeaseId = sourceLeaseId
 });
}

6.	 Add the following method to write content to the blob:
private void WriteContent(string content,string leaseId=null)
{
 cloudBlockBlob.UploadText(content,null,
 leaseId!=null?new AccessCondition()
{LeaseId=leaseId}:null);
}

7.	 Add the following method, using the code above, to the class:
public static void UseLeaseBlobsExample()
{
 String containerName = "test01";
 String blobName = "myBlob.txt";

 LeaseBlobsExample leaseBlobsExample =
 new LeaseBlobsExample(containerName, blobName);

 leaseBlobsExample.leaseIdForProcessA
 = Guid.NewGuid().ToString();
 leaseBlobsExample.leaseIdForProcessB
 = Guid.NewGuid().ToString();

 leaseBlobsExample.AcquireLease(leaseBlobsExample
 .leaseIdForProcessA);

Chapter 3

167

 try
 {
 //This call fails
 leaseBlobsExample.AcquireLease(leaseBlobsExample
 .leaseIdForProcessB);
 }catch{}

 leaseBlobsExample.ChangeLease(leaseBlobsExample
 .leaseIdForProcessA, leaseBlobsExample.
leaseIdForProcessB);
 //Now is permitted
 leaseBlobsExample.AcquireLease(leaseBlobsExample
 .leaseIdForProcessB);

 try
 {
 //This call fails
 leaseBlobsExample.WriteContent("Sample");
 }
 catch { }

 leaseBlobsExample.WriteContent("Sample"
 , leaseBlobsExample.leaseIdForProcessB);
 leaseBlobsExample.RenewLease(leaseBlobsExample
 .leaseIdForProcessB);
 leaseBlobsExample.ReleaseLease(leaseBlobsExample
 .leaseIdForProcessB);
 leaseBlobsExample.AcquireLease(leaseBlobsExample
 .leaseIdForProcessA);
}

How it works...
In steps 1 and 2, we set up the class. We added some members to the class in step 3 and
initialized the blob in the constructor we add in step 4.

In step 5, we created one method for each lease operation, except the break one. The
AcquireLease operation calls the corresponding operation on the blob using the leaseId
parameter passed as an argument and a default 30-second timeframe for the lease. The
RenewLease operation does not need a TimeSpan interval (as the release operation reflects
the original interval requested while acquiring) but the leaseId to authorize the renewal.

Getting Storage with Blobs in Azure

168

The ChangeLease operation requires, in addition to the current leaseId parameter, the
new leaseId parameter to switch to. Keep in mind that some operations would not complete
correctly if the conditions are not met (that is, changing a lease with the wrong source
leaseId parameter or renewing a lease on an expired lease).

In step 6, we added a method that writes sample content to the blob.

In step 7, we generated two lease IDs (emulating a two-actor environment), and we initially
acquired a lease from actor A. The second acquire call, from actor B, will fail, because A
owns the lease and the blob is currently locked. So, with the ChangeLease operation, we
transferred the ownership from A to B; after that, B can acquire the lease again.

The difference between the Acquire and Renew operations performed
on a locked blob is that in the former, we can specify a shorter or longer
timeframe instead of the original one, while the latter always assumes the
same timeframe of the original Acquire operation.

We can try to write some content without a leaseId parameter (failing, of course), and
we immediately retry specifying the correct leaseId parameter. Finally, we renewed
and released the lease to finally allow process A to acquire the lock.

To explore the REST API around the lease actions, run this code with
the Fiddler listening.

There's more...
There is a Lease Container API designed to control or prevent deletion of containers. The
available actions are the same for blobs, except that the behavior is like lock for deletion. It
can be used to organize workers who access specific containers and APIs, one by one.

See also
Have a look at the following links to get additional information:

ff More information about lease container at http://msdn.microsoft.com/en-
us/library/azure/jj159103.aspx

ff One of the most popular Azure Storage Management Tools at http://www.
cerebrata.com/products/azure-management-studio/introduction

Chapter 3

169

Using the Azure Content Delivery
Network (CDN)

The Azure Blob service is hosted on a small number of Azure datacenters worldwide. The
Azure CDN is a service that enhances end user experience by caching blobs in more than
20 strategic locations across the world (a complete listing can be found at http://msdn.
microsoft.com/library/azure/gg680302.aspx).

After the CDN is enabled for a storage account, a CDN endpoint can be used, instead of the
storage-account endpoint, to access a cached version of publicly accessible blobs in the
storage account. The CDN endpoint is location aware, and a request to the CDN endpoint is
directed automatically to the closest CDN location. If the blob is not currently cached there,
the CDN retrieves the blob from the Blob service endpoint and caches it before satisfying
the request.

The cache-control property of the blob can be used to specify a time to live in the cache.
Otherwise, the CDN uses a heuristic based on how old the blob is and caches the blob for
less than 72 hours or 20 percent of the time since the blob was last modified.

A custom domain can be associated with a CDN endpoint. As with a custom domain for a
storage account, this provides a convenient alias for the CDN endpoint. When configuring a
custom domain for either a CDN or a storage account, it is necessary to validate the custom
domain by demonstrating access to the DNS records for the domain.

The endpoints for the Blob service and CDN are as follows:

ff http://{account_name}.blob.core.windows.net

ff http://{CDN_name}.vo.msecnd.net

The {CDN_name} part is the unique identifier the Azure Portal uses to specify the CDN for the
storage account. When the account name and CDN endpoints are associated with custom
domains, they can be addressed as follows:

ff http://blobs.{domain}.com

ff http://cdn.{domain}.com

In this recipe, we'll learn how to enable a CDN for a Blob service endpoint and associate a
custom domain with it.

Getting Storage with Blobs in Azure

170

How to do it...
We are going to enable the CDN and validate it. Then, we will add a custom domain to it.
We will do this using the following steps:

1.	 On the Azure Portal, navigate to New | App Services | CDN | Quick Create.

2.	 In the Origin Domain dropdown, choose the storage account you want to enable
on Content Delivery Network and confirm.

3.	 In the CDN section of the portal, a new item is created with a name similar to
azNNNNNN; select it.

4.	 In the footer menu, enable HTTPS and Query String.

5.	 Click on Manage Domains. In the pop-up dialog, enter the desired custom domain.

6.	 Azure will ask for a validation of the domain proposed. This can be done by creating a
DNS record just for validation purposes or by creating the real DNS mapping between
the custom domain and CDN.

7.	 After the domain is validated, confirm the settings.

How it works...
In step 2, we use the Azure Portal to enable the CDN for a specific storage account, and in
step 3, we navigated to the newly created item.

In step 4, we enabled the HTTPS endpoint (with a valid certificate provided by Microsoft) and
the Query String support. The Query String support is useful, as the CDN, which is similar to
a web cache, treats two URIs that point to the same resource as two different resources if
different query strings are provided.

In steps 5 and 6, we demonstrated our control over the custom domain through a validation
process. The Azure Portal provides a specific validation domain that we must use to create a
CNAME mapping from the custom domain to Azure custom domain's verification endpoint. We
then go back to the Azure Portal and validate the domain.

Having validated the custom domain, we confirm the mapping from our custom domain to the
CDN endpoint.

We add a custom domain for a storage account endpoint in exactly the
same way. Remember that custom SSL certificates are not available while
accessing CDNs or storage accounts with custom domains.

Chapter 3

171

See also
Have a look at the following link to get additional information:

ff How to use Azure CDN at http://azure.microsoft.com/en-en/
documentation/articles/cdn-how-to-use/

4
Going Relational

with the Azure
SQL Database

In this chapter, we will cover the following topics:

ff Creating a SQL Database server and database

ff Managing SQL Database logins and firewall rules

ff Developing a SQL Database with Visual Studio

ff Connecting to a SQL Database with ADO.NET

ff Connecting to a SQL Database with Entity Framework

ff Connecting to a SQL Database from PHP and Java

ff Migrating a database to a SQL Database

ff Leveraging backup solutions with SQL Database

ff Monitoring SQL Database with the dynamic management views

ff Handling connection failures to a SQL Database

Introduction
An Azure SQL Database provides relational database technology to the Azure platform. It is
a specific derived version of the SQL Server. However, Microsoft provides all management
of the physical server, leaving the customer responsible for managing individual databases
on a logical but not a physical level.

Going Relational with the Azure SQL Database

174

The SQL Database administrator must provision a SQL Database server, which is the
administrative and security boundary for a collection of SQL Databases This is a logical server,
more like a container than a physical server, as the SQL Database customer has no access
to the physical servers on which SQL Databases are stored. In the Creating a SQL Database
server and database recipe, we will see how to create one using the Azure Portal.

The next step after creating a SQL Database server is to create some SQL Databases in it.
We can do this using either the Azure Portal or by invoking a Transact SQL operation. This is
almost the same as the traditional Microsoft SQL Server, except that there are constraints
on database size, edition, and location. Furthermore, any attempt to specify the physical
placement of data and logs is forbidden, as the SQL Database administrator has no control
over physical placement. Finally, specific firewall rules must be set to grant access rights to
any client that wants to connect, as we will see in the Managing SQL Database logins and
firewall rules recipe.

Having created a SQL Database, we might need to create tables in it and populate it with data
from an existing Microsoft SQL Server database. We will see how to use the SQL Database
Migration Wizard to do this in the Migrating a database to a SQL Database recipe.

Maintaining a SQL Database on Azure can be challenging, so we will see a non-Azure
technology useful to build even complex databases with a more rational approach. We will see
Visual Studio database projects in the Developing a SQL Database with Visual Studio recipe.

SQL Database is a shared, multitenant database system in which the databases of many
customers might coexist on the same physical hardware. This causes resource constraints
on maximum size and operational throughput. Monitoring the usage of these resources is
consequently important. In the Monitoring SQL Database with the dynamic management
views recipe, we will see how to use dynamic management views to look at the current
resource consumption.

An important feature of SQL Database is its similarity to Microsoft SQL Server. Often, code
that works against the Microsoft SQL Server can be used against SQL Database merely by
changing the connection string to point to the SQL Database. We will see how to do this in the
Connecting to a SQL Database with ADO.NET and Connecting to a SQL Database with Entity
Framework recipes. This principle is also valid for non-.NET environments, so we will see this
in the Connecting to a SQL Database from PHP and Java recipe.

Architects should build available systems, implementing the proper policy for disaster recovery
and application errors, which could lead up to unavailability. Backup solutions are always
one of the most important aspects of a given architecture. With SQL Database, various
approaches can be implemented, as we will see in the Leveraging backup solutions with a
SQL Database recipe.

An increased likelihood of dropped connections is an important consequence of the resource
constraints imposed by the shared nature of SQL Database. It is important for an application
to have some easy mechanism to handle this. In the Handling connection failures to a SQL
Database recipe, we will see how to do this using the Transient Fault Handling Framework.

Chapter 4

175

Creating a SQL Database server and
database

SQL Database is a multitenanted database system in which many distinct databases are
hosted on many physical servers managed by Microsoft. SQL Database administrators have
no control over the physical provisioning of a database to a particular physical server. Indeed,
to maintain high availability, a primary and two secondary copies of each SQL Database are
stored on separate physical servers, and users can't have any control over them.

Consequently, SQL Database does not provide a way for the administrator to specify the
physical layout of a database and its logs when creating a SQL Database. The administrator
merely has to provide a name, maximum size, and service tier for the database.

A SQL Database server is the administrative and security boundary for a collection of SQL
Databases hosted in a single Azure region. All connections to a database hosted by the server
go through the service endpoint provided by the SQL Database server. At the time of writing
this book, an Azure subscription can create up to six SQL Database servers, each of which can
host up to 150 databases (including the master database). These are soft limits that can be
increased by arrangement with Microsoft Support.

From a billing perspective, only the database unit is counted towards,
as the server unit is just a container. However, to avoid a waste of
unused resources, an empty server is automatically deleted after 90
days of non-hosting user databases.

The SQL Database server is provisioned on the Azure Portal. The Region as well as the
administrator login and password must be specified during the provisioning process. After
the SQL Database server has been provisioned, the firewall rules used to restrict access to
the databases associated with the SQL Database server can be modified on the Azure Portal,
using Transact SQL or the SQL Database Service Management REST API.

The result of the provisioning process is a SQL Database server identified by a fully -qualified
DNS name such as SERVER_NAME.database.windows.net, where SERVER_NAME is an
automatically generated (random and unique) string that differentiates this SQL Database
server from any other. The provisioning process also creates the master database for the SQL
Database server and adds a user and associated login for the administrator specified during
the provisioning process. This user has the rights to create other databases associated with
this SQL Database server as well as any logins needed to access them.

Going Relational with the Azure SQL Database

176

Remember to distinguish between the SQL Database service and the
famous SQL Server engine available on the Azure platform, but as a plain
installation over VMs. In the latter case, you will continue to own the
complete control of the instance that runs the SQL Server, the installation
details, and the effort to maintain it during the time. Also, remember that
the SQL Server virtual machines have a different pricing from the standard
VMs due to their license costs.

An administrator can create a SQL Database either on the Azure Portal or using the CREATE
DATABASE Transact SQL statement.

At the time of this writing this book, SQL Database runs in the following two different modes:

ff Version 1.0: This refers to Web or Business Editions

ff Version 2.0: This refers to Basic, Standard, or Premium service tiers with
performance levels

The first version is deprecating in few months. Web Edition was designed for small databases
under 5 GB and Business Edition for databases of 10 GB and larger (up to 150 GB). There is
no difference in these editions other than the maximum size and billing increment.

The second version introduced service tiers (the equivalent of Editions) with an additional
parameter (performance level) that sets the amount of dedicated resource to a given
database. The new service tiers (Basic, Standard, and Premium) introduced a lot of advanced
features such as active/passive Geo-replication, point-in-time restore, cross-region copy, and
restore. Different performance levels have different limits such as the Database Throughput
Unit (DTU) and the maximum DB size. An updated list of service tiers and performance levels
can be found at http://msdn.microsoft.com/en-us/library/dn741336.aspx.

Once a SQL Database has been created, the ALTER DATABASE Transact SQL statement can
be used to alter either the edition or the maximum size of the database. The maximum size is
important as the database is made read only once it reaches that size (with the The database
has reached its size quota error message and number 40544).

In this recipe, we'll learn how to create a SQL Database server and a database using the Azure
Portal and T-SQL.

Getting ready
To perform the majority of operations of the recipe, just a plain Internet browser is needed.
However, to connect directly to the server, we will use the SQL Server Management Studio
(also available in the Express version).

http://msdn.microsoft.com/en-us/library/dn741336.aspx

Chapter 4

177

How to do it...
First, we are going to create a SQL Database server using the Azure Portal. We will do
this using the following steps:

1.	 On the Azure Portal, go to the SQL DATABASES section and then select the
SERVERS tab.

2.	 In the bottom menu, select Add.

3.	 In the CREATE SERVER window, provide an administrator login and password.

4.	 Select a Subscription and Region that will host the server.

To enable access from the other service in WA to the server, you
can check the Allow Windows Azure Services to access the server
checkbox; this is a special firewall rule that allows the 0.0.0.0 to
0.0.0.0 IP range.

5.	 Confirm and wait a few seconds to complete the operation.

6.	 After that, using the Azure Portal, go to the SQL DATABASES section and then the
SERVERS tab.

7.	 Select the previously created server by clicking on its name.

8.	 In the server page, go to the DATABASES tab.

9.	 In the bottom menu, click on Add; then, after clicking on NEW SQL DATABASE,
the CUSTOM CREATE window will open.

10.	 Specify a name and select the Web Edition. Set the maximum database size to
5 GB and leave the COLLATION dropdown to its default.

SQL Database fees are charged differently if you are using the Web/
Business Edition rather than the Basic/Standard/Premium service
tiers. The most updated pricing scheme for SQL Database can be
found at http://azure.microsoft.com/en-us/pricing/
details/sql-database/

11.	 Verify the server on which you are creating the database (it is specified correctly in
the SERVER dropdown) and confirm it.

12.	 Alternatively, using Transact SQL, launch Microsoft SQL Server Management Studio
and open the Connect to Server window.

13.	 In the Server name field, specify the fully qualified name of the newly created SQL
Database server in the following form: serverName.database.windows.net.

14.	 Choose the SQL Server Authentication method.

http://azure.microsoft.com/en-us/pricing/details/sql-database/
http://azure.microsoft.com/en-us/pricing/details/sql-database/

Going Relational with the Azure SQL Database

178

15.	 Specify the administrative username and password associated earlier.

16.	 Click on the Options button and specify the Encrypt connection checkbox.

This setting is particularly critical while accessing a remote SQL Database.
Without encryption, a malicious user could extract all the information to
log in to the database himself, from the network traffic. Specifying the
Encrypt connection flag, we are telling the client to connect only if a
valid certificate is found on the server side.

17.	 Optionally check the Remember password checkbox and connect to the server.

To connect remotely to the server, a firewall rule should be created. To
do this, follow the instructions in the Managing SQL Database logins and
firewall rules recipe.

18.	 In the Object Explorer window, locate the server you connected to, navigate to
Databases | System Databases, and then right-click on the master database
and select New Query.

19.	 Copy and execute this query and wait for its completion:.
CREATE DATABASE DATABASE_NAME
(
 MAXSIZE = 1 GB
)

How it works...
The first part was pretty straightforward. In steps 1 and 2, we went to the SQL Database
section of the Azure portal, locating the tab to manage the servers. In step 3, we filled in
the online popup with the administrative login details, and in step 4, we selected a Region
to place the SQL Database server. As a server (with its database) is located in a Region, it
is not possible to automatically migrate it to another Region. This is possible by manually
transferring the database contents or using any of the methods explained in the Migrating
a database to a SQL Database or Leveraging backup solutions with SQL Database recipe.

After the creation of the container resource (the server), we created the SQL Database by
adding a new database to the newly created server, as stated from steps 6 to 9. In step 10,
we could optionally change the default collation of the database and its maximum size.

Chapter 4

179

In the last part, we used the SQL Server Management Studio (SSMS) (step 12) to connect
to the remote SQL Database instance. We noticed that even without a database, there was
a default database (the master one) we could connect to. After we set up the parameters in
step 13, 14, and 15, we enabled the encryption requirement for the connection. Remember to
always set the encryption before connecting or listing the databases of a remote endpoint, as
every single operation without encryption consists of plain credentials sent over the network.
In step 17, we connected to the server if it granted access to our IP. Finally, in step 18, we
opened a contextual query window, and in step 19, we executed the creation query, specifying
a maximum size for the database.

Note that the Database Edition should be specified in the CREATE DATABASE query as well.
By default, the Web Edition is used. To override this, the following query can be used:

CREATE DATABASE MyDB (Edition='Basic')

There's more…
We can also use the web-based Management Portal to perform various operations against
the SQL Database, such as invoking Transact SQL commands, altering tables, viewing
occupancy, and monitoring the performance. We will launch the Management Portal using
the following steps:

1.	 Obtain the name of the SQL Database server that contains the SQL Database.

2.	 Go to https://serverName.database.windows.net.

3.	 In the Database fields, enter the database name (leave it empty to connect to the
master database).

4.	 Fill the Username and Password fields with the login information and confirm.

Increasing the size of a database
We can use the ALTER DATABASE command to increase the size (or the Edition, with the
Edition parameter) of a SQL Database by connecting to the master database and invoking
the following Transact SQL command:

ALTER DATABASE DATABASE_NAME
MODIFY
(
 MAXSIZE = 5 GB
)

We must use one of the allowable database sizes.

https://serverName.database.windows.net

Going Relational with the Azure SQL Database

180

See also
Have a look at the following MSDN links to get additional information:

ff Comparison of an SQL Server with a SQL Database at http://social.technet.
microsoft.com/wiki/contents/articles/996.comparison-of-sql-
server-with-azure-sql-database.aspx

ff Managing a SQL Database using SSMS at http://azure.microsoft.com/en-
us/documentation/articles/sql-database-manage-azure-ssms/

Managing SQL Database logins and firewall
rules

The Azure SQL Database is a fully managed service that offers a relational database with
capabilities very similar to the Microsoft SQL Server, except for some features, especially
related to the actual topology of the installation and server setup. Due to this nature, an SQL
Database can be considered as a subset of the on-premises version. This behavior is also
found in SSMS, where a connection to a SQL Database offers fewer functionalities than a
connection to an on-premises SQL Server instance.

While connecting to n SQL Database, we do not have the same wizards we had for an SQL
Server, even if connecting through the SSMS. Some of the high-level settings of SQL Database
can be configured in the Azure Portal, as mentioned in the Creating a SQL Database server
and database recipe. The portal allows us to set up the firewall rules at server level, and the
administrative login can be set/reset there.

Instead, the database-level firewall rules, as for the database-level logins, must be set using
the T-SQL script while connecting to the database using valid credentials. In this recipe, we dig
into the management of firewall rules and credentials.

Getting ready
Before starting the recipe, a SQL Database server is needed. Consider to provision it following
the Creating a SQL Database server and database recipe. We just need a server name,
username, and password to login.

http://social.technet.microsoft.com/wiki/contents/articles/996.comparison-of-sql-server-with-azure-sql-database.aspx
http://social.technet.microsoft.com/wiki/contents/articles/996.comparison-of-sql-server-with-azure-sql-database.aspx
http://social.technet.microsoft.com/wiki/contents/articles/996.comparison-of-sql-server-with-azure-sql-database.aspx
http://azure.microsoft.com/en-us/documentation/articles/sql-database-manage-azure-ssms/
http://azure.microsoft.com/en-us/documentation/articles/sql-database-manage-azure-ssms/

Chapter 4

181

How to do it…
We want to connect to the SQL Database's master database through SSMS, configuring the
firewall rules for the entire server, using T-SQL as follows:

1.	 Go to the Azure Portal; then, open the SQL DATABASES window.

2.	 In the SERVERS tab, select the server previously created and go to the
CONFIGURE tab.

3.	 In the allowed id addresses section, click on the ADD TO THE ALLOWED IP
ADDRESSES button to allow the specified IPs to connect to the database IP,
and then click on Save.

4.	 Launch Microsoft SQL Server Management Studio and open the Connect to Server
window.

5.	 In the Server name field, specify the fully qualified name of the newly created SQL
Database server in the following form: serverName.database.windows.net.

6.	 Choose the SQL Server Authentication method.

7.	 Provide administrative credentials associated earlier.

8.	 Click on the Options button and check the Encrypt connection checkbox.

9.	 Optionally, check the Remember password checkbox and connect to the server.

10.	 Launch a New Query window on the master database and run the following query
to list all the active firewall rules on the server:
select * from sys.firewall_rules

In the Results pane, a firewall rule named AllowAllWindowsAzureIps
could be shown, with the starting and ending addresses equal to
0.0.0.0. This rule is added by Azure Portal when the user chooses
to allow Windows Azure Services to access the database (the Yes/No
toggle in the server's CONFIGURE tab).

11.	 Run this query to grant access to the 0.0.0.80 example IP:
exec sp_set_firewall_rule N'ExampleRule','0.0.0.80','0.0.0.80'

12.	 Create a new database as follows:
CREATE DATABASE myTest

Going Relational with the Azure SQL Database

182

13.	 Open a New Query window on the newly created database.

14.	 Run this query to grant access to everyone to the newly created database only:
exec sp_set_database_firewall_rule N'PermitAllRu
le','0.0.0.0','255.255.255.255'

Consider to avoid opening the firewall to everything due to the natural
security consequences while exposing the database surface to
external attacks.

15.	 Run this query to remove the rule created in the previous step:
exec sp_delete_database_firewall_rule N'PermitAllRule'

The equivalent call to remove a server-level firewall rule is as follows:
exec sp_delete_firewall_rule N'RuleName'

In this second part, we create credentials with the permission to connect to the newly
created database only.

16.	 Open a New Query window into the master database, and create a login as follows:
CREATE LOGIN myTestLogin WITH password='myComplexPa$$word';

17.	 Move to a New Query window on the myTest database, and create the database user
for the login:
CREATE USER myTestUser FROM LOGIN myTestLogin;

18.	 Assign the db_owner permissions to the newly created database user:
EXEC sp_addrolemember 'db_owner', 'myTestUser';

19.	 Connect to SSMS using the newly created credentials (use myTestLogin as
username), specifying the myTest database instead of the default (master) one.

How it works…
In steps 1 and 2, we connected to the Azure Portal to enable access to the SQL Database
server by our development machine. In step 3, we saved the rule by telling Azure to permit
traffic from that range of IPs. Note that the Portal suggests the calling IP. Do not make a
mistake by adding a LAN IP in the firewall exceptions.

Chapter 4

183

The IP address of your computer might not be a global IP address. Your
company and/or ISP will have the globally visible IP, and you would
most probably be behind an Network Address Translation (NAT). You
can use a service such as http://ping.eu to get the global IP you
are NATted behind.

In steps 4 to 9, we connected to the SQL Database server using SSMS, as mentioned in the
first recipe of the chapter. We asked SQL the Database for a list of the current firewall rules in
step 10, opening a New Query on the master database. It is not possible to switch between
databases using the USE keyword. Instead, we must connect to each database to perform
queries. In step 11, we added a server-level rule for the sample IP. This rule grants that IP
access to every database contained in the SQL Database server instance. In step 12, we
created a new database and we connected to it in step 13, then we added a permit all firewall
rule on that database in step 14. A database-level firewall rule is valid only for the database
which it applies to. If there are no firewall exceptions for the master database but for a single
database, only that one can listen to remote endpoints. This is generally considered a good
practice, avoiding publicly exposing the master database. Finally, in step 15, we restored the
original situation by removing the firewall rule.

In step 16, we opened a query window on the master database to create a valid server-level
login. Remember that a server-level login must exist in order to create a database-level valid
credential. After the login was created, we created a database-level user mapped to this login
in step 17, and in step 18, we assigned the db_owner permissions to this user (a Login is
required to log in to the server, and a User is required to access the database). In step 19,
we showed that it is now possible to connect to the database using the new credentials.

See also
Have a look at the following MSDN links to get additional information:

ff More about the sys.firewall_rules procedure at http://msdn.microsoft.
com/en-us/library/ff951627.aspx

ff More about the SQL Database firewall at http://msdn.microsoft.com/en-us/
library/ee621782.aspx

http://ping.eu
http://msdn.microsoft.com/en-us/library/ff951627.aspx
http://msdn.microsoft.com/en-us/library/ff951627.aspx
http://msdn.microsoft.com/en-us/library/ee621782.aspx
http://msdn.microsoft.com/en-us/library/ee621782.aspx

Going Relational with the Azure SQL Database

184

Developing a SQL Database with
Visual Studio

While developing a database as the data tier for our applications, there are many tools to
help us in creating tables, views, stored procedures, starting from a design phase and more
or less adhering to the ER conceptual modeling.

Developers often delegate DBAs to build a powerful database that meets their application's
needs, and in most cases, the DB Team is somehow disconnected from the Dev Team. From
a process-management perspective, as the requirements are part of the same software
artifact, a unified toolset is desirable. Why not use the same IDE to develop the application
as well? Why not use Visual Studio?

For a while now, Visual Basic has offered to create a database project, a kind of project
template that provides developers with the correct environment to deal with database design,
which is particularly useful in complex scenarios. Using a database project, we are demanding
the following issues from a well-known IDE:

ff Organize DB objects in a semantic structure: Whatever be the project scope, it
is always better to group the same object types logically together (the tables in the
Tables folder, as they are represented in the RDBMS itself). This pattern creates a
similarity with Management Studio, where objects in the database are grouped by type.

ff Work focused on a single object without affecting other objects: It is better to open
a file that represents the Users table, instead of opening a long all-in-one creation
script. It is also useful to group other kinds of objects, such as constraints, schemas,
keys, and so on, to focus on the single unit of work.

ff Check the consistency of the resulting database in a build-like fashion: A good
toolset for SQL development always performs a syntax check before running a script.
In addition, it is common to have suggestions to fix errors, but if we make a grammar
error (for example, a foreign key to a field with a different type) the check is often
performed at runtime, while actually executing the script. In the VS environment,
the Build operation against a database project results in a strong check of the
entire database structure; this guarantees consistency before applying changes
to the real database.

ff Deploy the differences to a target database without dealing with a lot of
scripts: As the complexity of the database grows, it is mandatory to implement a
structured process to maintain the up/down scripts or rather use these scripts to
alter a database object to the next version and to rollback it to the previous one.
The database project, instead of keeping a history of the full scripts, maintains a
different script of subsequent changes between the sources and the target database.
To deploy the previous version of a table, we will only need to change the table's
definition in the sources and let VS do the rest.

Chapter 4

185

ff Version the database with the integrated source control system: To complete the
previous point, as the database project is a VS project, it could be part of a Source
Control system, with the integrated features of Visual Studio. This permits us to save
different versions of a given table and to reverse to that version as we reverse a file
of code.

Developing a database with a database project is not only a technical matter, but it is also a
best practice to make a complex process as structured as the software development itself
should be. In this recipe, we will see how to create a database project (currently called the
SQL Server Database Project) that targets a SQL Database by comparing the local version to
the remote version and applying differences in Visual Studio with minimal T-SQL knowledge.

Getting ready
To work with the database projects, we will install the SQL Server Data Tools package
and create a SQL Database, as mentioned in the Creating a SQL Database server and
database recipe. We assume that the database has a firewall rule to be accessed from
the development machine.

How to do it…
We are creating and deploying a database to a SQL Database server using Visual Studio.
The first part is to create a project that will contain the database definition as follows:

1.	 In Visual Studio, open the New Project window.

2.	 Navigate to Other Languages | SQL Server, choose SQL Server Database Project,
and enter a name for the new project and confirm.

3.	 In the Project Settings tab of the project properties window, change Target platform
to Azure SQL Database.

The SQL Server database project is designed to work well with many
versions of the SQL Server (including the Azure SQL Database), starting
from the 2005 version. If a version different from the SQL Database is
selected, many customizations are permitted in the Database Settings
window of project settings. However, as the SQL Database is fully
managed, minimal customization is available while targeting Azure.

4.	 In Solution Explorer, right-click on the project; then, navigate to Add | New Item and
add a table object named Customers.

Going Relational with the Azure SQL Database

186

In the Add New Item window, VS suggests many types of object to add in
the database project. They are all SQL scripts, but to select an object type
from the window, a sample implementation is provided; it aids developers
with the SQL syntax that they are not always familiar with.

5.	 Fill the Customers.sql file as follows:
CREATE TABLE [dbo].[Customers](
 [CustomerID] [nchar](5) NOT NULL PRIMARY KEY,
 [CompanyName] [nvarchar](40) NOT NULL,
 [ContactName] [nvarchar](30) NULL,
 [ContactTitle] [nvarchar](30) NULL,
 [Address] [nvarchar](60) NULL,
 [City] [nvarchar](15) NULL,
 [Region] [nvarchar](15) NULL,
 [PostalCode] [nvarchar](10) NULL,
 [Country] [nvarchar](15) NULL,
 [Phone] [nvarchar](24) NULL,
 [Fax] [nvarchar](24) NULL,
)

6.	 Create an Orders table and fill it as follows:
CREATE TABLE [dbo].[Orders](
 [OrderID] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
 [CustomerID] [nchar](3) NULL
 FOREIGN KEY REFERENCES [dbo].[Customers]([CustomerID]),
 [EmployeeID] [int] NULL,
 [OrderDate] [datetime] NULL,
 [RequiredDate] [datetime] NULL,
 [ShippedDate] [datetime] NULL,
 [ShipVia] [int] NULL,
 [Freight] [money] NULL,
 [ShipName] [nvarchar](40) NULL,
 [ShipAddress] [nvarchar](60) NULL,
 [ShipCity] [nvarchar](15) NULL,
 [ShipRegion] [nvarchar](15) NULL,
 [ShipPostalCode] [nvarchar](10) NULL,
 [ShipCountry] [nvarchar](15) NULL,
)

Chapter 4

187

7.	 Build the project and notice the error:
"SQL71515: The column '[dbo].[Customers].[CustomerID]' is not
the same data type as the referencing column '[dbo].[Orders].
[CustomerID]' in the foreign key.

8.	 Fix the error by changing [nchar](3) to [nchar](5) in the Orders table and
build the project.

9.	 In the Project contextual menu, select Publish.

10.	 In the Publish Database window, edit the target connection to point to an existing
SQL Database. Remember to use the SQL Server's Authentication and Encrypt
connection flags.

11.	 Confirm the process by clicking on Publish and wait for the completion of the
publishing process in the Data Tools Operations window in VS.

In the second part, we make changes to the database structure (on the project side)
and compare it with the target database.

12.	 Before editing the database schema, right-click on the project and select the
Snapshot Project action.

This method is a built-in feature that allows us to make a backup copy
of the current database structure in a single DACPAC file. It is strongly
recommended that you use a Source Control system in conjunction with
the database project to keep track of better fine-grained changes.

13.	 Add an Employees table to the project, as follows:
CREATE TABLE [dbo].[Employees](
 [EmployeeID] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
 [LastName] [nvarchar](20) NOT NULL,
 [FirstName] [nvarchar](10) NOT NULL,
 [Title] [nvarchar](30) NULL,
 [TitleOfCourtesy] [nvarchar](25) NULL,
 [BirthDate] [datetime] NULL,
 [HireDate] [datetime] NULL,
 [Address] [nvarchar](60) NULL,
 [City] [nvarchar](15) NULL,
 [Region] [nvarchar](15) NULL,
 [PostalCode] [nvarchar](10) NULL,
 [Country] [nvarchar](15) NULL,
 [HomePhone] [nvarchar](24) NULL,
 [Extension] [nvarchar](4) NULL,

Going Relational with the Azure SQL Database

188

 [Photo] [image] NULL,
 [Notes] [ntext] NULL,
 [PhotoPath] [nvarchar](255) NULL,
)

14.	 Change the EmployeeID field of the Orders table to point to the Employees table:
[EmployeeID] [int] NULL
FOREIGN KEY REFERENCES [dbo].[Employees]([EmployeeID])

15.	 Right-click on the project and choose Schema Compare; the SqlSchemaCompare1
tab will appear.

16.	 In the Select Target drop-down menu, select the previously used database
and confirm.

17.	 Click on the Compare button and wait for the results page that shows the
differences between the source and the target databases.

18.	 Select only Add difference, unchecking the Change checkbox.

19.	 Click on Update to invoke the update script to the remote database.

How it works…
In steps 1 and 2, we created a new project using the SQL Server Database Project template.
In step 3, we made a change to the project properties to target a SQL Database, instead of the
default target (the latest version of the SQL Server). If we also need to deploy the database
to a local instance of the SQL Server, no change is needed. We could see the SQL Database
target as a subset of a full SQL Server instance, so the further publishing process will complete
successfully as well. However, if you change the target to an on-premise version of SQL Server,
a bunch of customization settings will be available in the Database Settings window.

In step 4, we added a Table object to the project. As we could notice from the Add New Item
window, we can drill down to a large amount of object types. The goal of a database project
is also to force the developer to realize a well-organized folder structure of database items,
to make the development easier with the natural growth of the overall complexity.

In steps 5 and 6, we added the definition to the Customers table and the Orders table,
respectively. Note that we introduced an error intentionally to make the build process fail,
as shown in step 7. It is very interesting to rank the database correctness as we did for a
software application, with a build operation.

In step 8, we finally corrected the error and built the project to publish the resulting script
to the real database, as shown in steps 9, 10, and 11. In these last steps, we just filled the
database endpoint details, and VS does the rest.

Chapter 4

189

In the Publish Database window, there is an Advanced button that goes
to a settings page for the publishing process. Moreover, these settings for
the target database can be saved through the Save Profile As… button.
Consider this approach to save a profile for each target database of the
environment (staging, test, production, and so on).

In the second part, we added some changes to the database's definition. First, in step 12,
we created a local backup of the schema definition.

A DACPAC is a self-contained unit with the database definition. It
is an abstraction layer between the database engine (DACPACs
are available from SQL Server 2005 or later versions) and the
developers.

In step 13, we added another table, and in step 14, we changed an old table by adding a
foreign key that pointed to the new one. In step 15, we added a Schema Compare object to
the database, comparing (in step 17) the current online version (the right pane of the compare
window) with the current source version (the left pane of the compare window). In step 18,
we intentionally deployed just a part of all the changes to the real database, to show that it is
possible to select what to apply and what to leave in the sources. However, if we keep the Add
difference to the target database option off, even the Change difference option would be
taken off from VS, as it detects the dependencies between changes in the database schema.

In step 19, we finally deployed the differences to the target database.

If the target database has data and the differences to be deployed could
cause a data loss, by default, VS interrupts the process to avoid it. An
example of this is when we try to remove a field or downgrade a bigint
field type to an int one. To customize (and in case override) this and other
behaviors, click on the Schema Compare options in the Schema Compare
window. A list of options will appear, which lets you decide what to do or
what not to do during the publish process.

There's more…
Database projects are very useful to set a common framework between software development
and database development. Unfortunately, we do not always have the capability to start from
scratch with a new database, often starting from an existing one of the partial work from
someone in the team, using a plain SQL editor.

Going Relational with the Azure SQL Database

190

With a new database project, we can also import an existing definition from both an SQL script
(or DACPAC) and from an existing database. To do this, proceed as follows:

1.	 Right-click on an empty database project and select Import Script (*.sql)

2.	 In the Import SQL Script File window, follow the wizard steps and select the SQL
script (that is a sample Northwind database).

3.	 After the wizard's completion, the project will be filled with many files, representing
the objects of the database.

Because it is not as accurate as the manual work (that is, the constraints are together
with the tables' definitions), it is a good starting point to reduce an existing work to a
database project.

See also
Have a look at the following MSDN links to get additional information:

ff Creating database and data-tier applications at http://msdn.microsoft.com/
en-us/library/vstudio/dd193245(v=vs.110).aspx

ff Understanding data-tier applications at http://technet.microsoft.com/en-
us/library/ee240739(v=sql.105).aspx

Connecting to a SQL Database with
ADO.NET

An application communicates with a SQL Database using the same tabular data stream
(TDS) format used in communicating with Microsoft SQL Server. This simplifies the task
of migrating from the Microsoft SQL Server to SQL Database, as an application need only
change to the appropriate connection string.

Official documentation often talks about the simplicity to migrate an
existing SQL Server database to a SQL Database one. However, there
are some features that are not supported in Azure, as mentioned in the
official documentation. The key point to understand is that if an existing
feature relies on some server dependency, topology dependency, or
filesystem dependency, it probably would not be supported.

http://msdn.microsoft.com/en-us/library/vstudio/dd193245(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd193245(v=vs.110).aspx
http://technet.microsoft.com/en-us/library/ee240739(v=sql.105).aspx
http://technet.microsoft.com/en-us/library/ee240739(v=sql.105).aspx

Chapter 4

191

When a SQL Database server is provisioned, it is assigned a fully qualified DNS name of the
SERVER_NAME.database.windows.net form. A database name must be provided when
the SQL Database is created. SQL Database logins are created in precisely the same way they
are in Microsoft SQL Server, as you can see in the Managing SQL Database logins and firewall
rules recipe. It is conventional to specify SQL Database logins in the LOGIN@SERVER_NAME
form, even if it is not required. All communication with the SQL Database is over an encrypted
channel, and it is recommended that the server certificate used with this channel not be
trusted. This leads to a connection string as follows:

Data Source=SERVER_NAME.database.windows.net;Initial Catalog=DATABASE_
NAME;
User ID=LOGIN@SERVER_NAME;Password=PASSWORD;
Encrypt=True;TrustServerCertificate=False

This connection string can be retrieved from the application's configuration, or it can be
created using the SqlConnectionStringBuilder class. Note that the SQL Database
forces the connection to be encrypted, even if the client does not specify encryption. The
TrustServerCertificate parameter forces the client to validate the server certificate,
helping avoid man-in-the-middle attacks.

ADO.NET is a set of classes that abstracts the data access services to the developers. It
can be used to connect to different data sources, using an efficient driver model. In recent
years, using ADO.NET directly in applications is considered somehow low-level programming,
as there are frameworks (on top of ADO.NET) that make the DB access simpler and more
productive. However, in this recipe, we will learn how to connect to the SQL Database from
the lowest but most efficient level, using ADO.NET.

How to do it...
We are going to connect to the SQL Database using ADO.NET and perform various data
definition language (DDL) and data manipulation language (DML) operations. We will
do this using the following steps:

1.	 Add a new class named StandardConnectionExample to the project.

2.	 Add the following using statements to the top of the class file:
using System.Data;
using System.Data.SqlClient;

Going Relational with the Azure SQL Database

192

3.	 Add the following private member to the class:
String connectionString;

4.	 Add the following constructor to the class:
public StandardConnectionExample(String server,
 String database, String login, String password)
{
 SqlConnectionStringBuilder connStringBuilder;
 connStringBuilder = new SqlConnectionStringBuilder();
 connStringBuilder.DataSource =
 String.Format("{0}.database.windows.net", server);
 connStringBuilder.InitialCatalog = database;
 connStringBuilder.Encrypt = true;
 connStringBuilder.TrustServerCertificate = false;
 connStringBuilder.UserID = String.Format("{0}@{1}",
 login, server);
 connStringBuilder.Password = password;
 connectionString = connStringBuilder.ToString();
}

5.	 Add the following method, retrieving the session tracing ID, to the class:
public String GetSessionTracingId()
{
 String commandText =
 "SELECT CONVERT(NVARCHAR(36), CONTEXT_INFO())";
 String sessionTracingId;
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 connection.CreateCommand())
 {
 sqlCommand.CommandText = commandText;
 sessionTracingId =
 sqlCommand.ExecuteScalar() as String;
 }
 }
 return sessionTracingId;
}

Chapter 4

193

6.	 Add the following method, creating the Writer table, to the class:
public void CreateTable()
{
 String commandText =
 @"CREATE TABLE Writer (
 Id int PRIMARY KEY NOT NULL,
 Name nvarchar(20) NOT NULL,
 CountBooks int NULL)";

 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 connection.CreateCommand())
 {
 sqlCommand.CommandText = commandText;
 sqlCommand.ExecuteNonQuery();
 }
 }
}

7.	 Add the following method, dropping the Writer table, to the class:
public void DropTable()
{
 String commandText = "DROP TABLE Writer";
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 connection.CreateCommand())
 {
 sqlCommand.CommandText = commandText;
 sqlCommand.ExecuteNonQuery();
 }
 }
}

Going Relational with the Azure SQL Database

194

8.	 Add the following method, querying the Writer table, to the class:
public void QueryTable()
{
 String commandText = "SELECT * FROM Writer";
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 new SqlCommand(commandText, connection))
 {
 using (SqlDataReader reader =
 sqlCommand.ExecuteReader())
 {
 Int32 idColumn = reader.GetOrdinal("Id");
 Int32 nameColumn = reader.GetOrdinal("Name");
 Int32 countBooksColumn =
 reader.GetOrdinal("CountBooks");
 while (reader.Read())
 {
 Int32 id = (Int32)reader[idColumn];
 String name = reader[nameColumn] as String;
 Int32? countBooks =
 reader[countBooksColumn] as Int32?;
 }
 }
 }
 }
}

9.	 Add the following method, inserting rows in the Writer table, to the class:
public Int32 InsertRows()
{
 String commandText =
 @"INSERT INTO Writer
 (Id, Name, CountBooks)
 VALUES
 (1, N'Cervantes', 2),
 (2, N'Smollett', null),
 (3, 'Beyle', 4)";

Chapter 4

195

 Int32 rowsAffected;
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 new SqlCommand(commandText, connection))
 {
 rowsAffected = sqlCommand.ExecuteNonQuery();
 }
 }
 return rowsAffected;
}

10.	 Add the following method, updating a row in the Writer table, to the class
public Int32 UpdateRow()
{
 String commandText =
 @"UPDATE Writer
 SET Name=@Name
 WHERE Id=3";

 Int32 rowsAffected;
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand sqlCommand =
 new SqlCommand(commandText, connection))
 {
 SqlParameter sqlParameter = new SqlParameter()
 {
 ParameterName = "@Name",
 Value = "Stendhal",
 SqlDbType = SqlDbType.NVarChar,
 Size = 20
 };
 sqlCommand.Parameters.Add(sqlParameter);
 rowsAffected = sqlCommand.ExecuteNonQuery();
 }
 }
 return rowsAffected;
}

Going Relational with the Azure SQL Database

196

11.	 Add the following method, using the methods added earlier, to the class:
public static void UseStandardConnectionExample()
{
 String server = "SERVER_NAME";
 String database = "DATABASE_NAME";
 String login = "LOGIN";
 String password = "PASSWORD";

 StandardConnectionExample example =
 new StandardConnectionExample(
 server, database, login, password);

 example.GetSessionTracingId();
 example.CreateTable();
 example.InsertRows();
 example.QueryTable();
 example.UpdateRow();
 example.QueryTable();
 example.DropTable();
}

How it works...
In steps 1 and 2, we set up the class. In step 3, we added a private member for
the connection string that we initialized in the constructor we added in step 4 using a
SqlConnectionStringBuilder instance. Configuring a connection string for the SQL
Database is precisely the same as for the Microsoft SQL Server, apart from the way in which
the DataSource is specified—using the fully qualified DNS name. We turned encryption on, as
this is required and set TrustServerCertificate to false so that the server certificate
was validated. Instead of building the connection string like this, we could have loaded it from
a configuration file.

In step 5, we created and open SqlConnection, which we used to create SqlCommand. The
connection is closed automatically when we exit the using block. We used the SqlCommand
class to retrieve the session tracing ID for the connection. This is a GUID that identifies a
particular connection, which can be provided to SQL Database Support when its help is
sought in debugging a problem.

In step 6, we invoked a CREATE TABLE operation on the SQL Database to create a table
named Writer. The table has three columns: the primary key is the ID column, and the
remaining columns store the name of a writer and the number of books they wrote.

In step 7, we invoked a DROP TABLE operation on the SQL Database to drop the Writer table.

Chapter 4

197

In step 8, we retrieved all rows from the Writer table and then iterated over them to examine
the content of each column. In step 9, we inserted three rows into the Writer table and
updated one of the rows in step 10.

In step 11, we added a method that invoked the methods added earlier. We need to provide
the server name, database name, login, and password.

Note that with an appropriately configured connection string, all the
code in this recipe can be run against the Microsoft SQL Server with the
exception of retrieval of the session-tracing ID in step 5.

There's more…
There is a software package, which is available on the Microsoft Download Center (or through
a SQL Server installation), that allows us to connect to a TDS endpoint to perform T-SQL
command, sqlcmd (part of the command-line utilities for the SQL Server). Once installed,
we can connect to a SQL Database instance from the command prompt as follows:

1.	 Open a command prompt with the path environment pointing to sqlcmd

2.	 Enter the following command to connect to the master database:
sqlcmd -U [user]@[server] -P [password] -S [server].database.
windows.net -d master

3.	 Enter the following command to create a new database and exit from the current
session (the USE clause is not permitted in WASD):
CREATE DATABASE MySqlCmdTest;
GO
EXIT

4.	 Reconnect to the newly created database:
sqlcmd -U [user]@[server] -P [password] -S [server].database.
windows.net -d MySqlCmdTest

5.	 Create a new table using the plain SQL syntax:
CREATE TABLE TestTable (ID int primary key, Name varchar(20));
GO

6.	 List all the records of the table with the following command:
SELECT * FROM TestTable
GO

To make the above scripts work, we must replace the [user], [server], and [password]
fields with the real values.

Going Relational with the Azure SQL Database

198

Through the Microsoft ODBC Driver for the SQL Server (available for
Windows, SUSE Linux, and Red Hat Linux), it is also possible to connect to
the SQL Database using the Open Database Connectivity (ODBC).

See also
Have a look at the following MSDN link to get additional information:

ff Connect to the Azure SQL Database using the ODBC at http://msdn.microsoft.
com/en-us/library/hh974312.aspx

Connecting to a SQL Database with Entity
Framework

The Azure SQL Database is a SQL Server-like fully managed relation database engine. In many
other recipes, we showed you how to connect transparently to the SQL Database, as we did in
the SQL Server, as the SQL Database has the same TDS protocol as its on-premise brethren.
In the Connecting to a SQL Database with ADO.NET recipe, we see how to connect directly
with ADO.NET, which is very efficient but requires much work from the developer. In addition,
using the raw ADO.NET could lead to some of the following issues:

ff Hardcoded SQL: In spite of the fact that a developer should always write good code
and make no errors, there is the finite possibility to make mistakes while writing
stringified SQL, which will not be verified at design time and might lead to runtime
issues. These kinds of errors lead to runtime errors, as everything that stays in the
quotation marks compiles. The solution is to reduce every line of code to a command
that is compile time safe.

ff Type safety: As ADO.NET components were designed to provide a common layer of
abstraction to developers who connect against several different data sources, the
interfaces provided are generic for the retrieval of values from the fields of a data row.
A developer could make a mistake by casting a field to the wrong data type, and they
will realize it only at run time. The solution is to reduce the mapping of table fields to
the correct data type at compile time.

ff Long repetitive actions: We can always write our own wrapper to reduce the code
replication in the application, but using a high-level library, such as the ORM, can take
off most of the repetitive work to open a connection, read data, and so on.

http://msdn.microsoft.com/en-us/library/hh974312.aspx
http://msdn.microsoft.com/en-us/library/hh974312.aspx

Chapter 4

199

Entity Framework hides the complexity of the data access layer and provides developers with
an intermediate abstraction layer to let them operate on a collection of objects instead of rows
of tables. The power of the ORM itself is enhanced by the usage of LINQ, a library of extension
methods that, in synergy with the language capabilities (anonymous types, expression trees,
lambda expressions, and so on), makes the DB access easier and less error prone than in
the past.

This recipe is an introduction to Entity Framework, the ORM of Microsoft, in conjunction with
the Azure SQL Database.

Getting ready
The database used in this recipe is the Northwind sample database of Microsoft. It can be
downloaded from CodePlex at http://northwinddatabase.codeplex.com/.

How to do it…
We are going to connect to the SQL Database using Entity Framework and perform various
operations on data. We will do this using the following steps:

1.	 Add a new class named EFConnectionExample to the project.

2.	 Add a new ADO.NET Entity Data Model named Northwind.edmx to the project;
the Entity Data Model Wizard window will open.

3.	 Choose Generate from database in the Choose Model Contents step.

4.	 In the Choose Your Data Connection step, select the Northwind connection from
the dropdown or create a new connection if it is not shown.

5.	 Save the connection settings in the App.config file for later use and name the
setting NorthwindEntities.

If Visual Studio asks for the version of EF to use, select the
most recent one.

6.	 In the last step, choose the object to include in the model. Select the Tables,
Views, Stored Procedures, and Functions checkboxes.

http://northwinddatabase.codeplex.com/

Going Relational with the Azure SQL Database

200

7.	 Add the following method, retrieving every CompanyName, to the class:
private IEnumerable<string> NamesOfCustomerCompanies()
{
 using (var ctx = new NorthwindEntities())
 {
 return ctx.Customers
 .Select(p => p.CompanyName).ToArray();
 }
}

8.	 Add the following method, updating every customer located in Italy, to the class:
private void UpdateItalians()
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.Customers.Where(p => p.Country == "Italy")
 .ToList().ForEach(p => p.City = "Milan");
 ctx.SaveChanges();
 }
}

9.	 Add the following method, inserting a new order for the first Italian company
alphabetically, to the class:
private int FirstItalianPlaceOrder()
{
 using (var ctx = new NorthwindEntities())
 {
 var order = new Orders()
 {
 EmployeeID = 1,
 OrderDate = DateTime.UtcNow,
 ShipAddress = "My Address",
 ShipCity = "Milan",
 ShipCountry = "Italy",
 ShipName = "Good Ship",
 ShipPostalCode = "20100"
 };
 ctx.Customers.Where(p => p.Country == "Italy")
 .OrderBy(p=>p.CompanyName)
 .First().Orders.Add(order);
 ctx.SaveChanges();
 return order.OrderID;
 }
}

Chapter 4

201

10.	 Add the following method, removing the previously inserted order, to the class:
private void RemoveTheFunnyOrder(int orderId)
{
 using (var ctx = new NorthwindEntities())
 {
 var order = ctx.Orders
 .FirstOrDefault(p => p.OrderID == orderId);
 if (order != null) ctx.Orders.Remove(order);
 ctx.SaveChanges();
 }
}

11.	 Add the following method, using the methods added earlier, to the class:
public static void UseEFConnectionExample()
{
 var example = new EFConnectionExample();
 var customers=example.NamesOfCustomerCompanies();
 foreach (var customer in customers)
 {
 Console.WriteLine(customer);
 }
 example.UpdateItalians();
 var order=example.FirstItalianPlaceOrder();
 example.RemoveTheFunnyOrder(order);
}

How it works…
This recipe uses EF to connect and operate on a SQL Database. In step 1, we created a class
that contained the recipe, and in step 2, we opened the wizard for the creation of Entity Data
Model (EDMX). We created the model, starting from an existing database in step 3 (it is also
possible to write our own model and then persist it in an empty database), and then, we
selected the connection in step 4. In fact, there is no reference in the entire code to the Azure
SQL Database. The only reference should be in the App.config settings created in step 5;
this can be changed to point to a SQL Server instance, leaving the code untouched. The last
step of the EDMX creation consisted of concrete mapping between the relational table and
the object model, as shown in step 6.

This method generates the code classes that map the table schema, using
strong types and collections referred to as Navigation properties. It is
also possible to start from the code, writing the classes that could represent
the database schema. This method is known as Code-First.

Going Relational with the Azure SQL Database

202

In step 7, we asked for every CompanyName of the Customers table. Every table in EF
is represented by DbSet<Type>, where Type is the class of the entity. In steps 7 and 8,
Customers was DbSet<Customers>, and we used a lambda expression to project (select)
a property field and another one to create a filter (where) based on a property value.
The SaveChanges method in step 8 persisted to the database the changes detected in the
disconnected object data model. This magic is one of the purposes of an ORM tool.

In step 9, we used the navigation property (relationship) between a Customers object
and the Orders collection (table) to add a new order with sample data. We used the
OrderBy extension method to order the results by the specified property, and finally, we
saved the newly created item. Even now, EF automatically keeps track of the newly added
item. Additionally, after the SaveChanges method, EF populates the identity field of
Order (OrderID) with the actual value created by the database engine.

In step 10, we used the previously obtained OrderID to remove the corresponding order from
the database. We used the FirstOrDefault() method to test the existence of the ID, and
then, we removed the resulting object like we removed an object from a plain old collection.

In step 11, we used the methods created to run the demo and show the results.

See also
Have a look at the following links to get additional information:

ff Entity Framework's official page at http://msdn.microsoft.com/en-us/data/
ef.aspx

ff EF connection resiliency specifications at http://entityframework.codeplex.
com/wikipage?title=Connection%20Resiliency%20Spec

Connecting to a SQL Database from PHP and
Java

Not every software application in the world is written in .NET and with Microsoft technologies,
and of course, Azure could be used from another development environment and language.
Azure is a collection of services, so the ability to use them all or a mix between them and
other cloud providers is up to the consumer of the service. From a developer's perspective,
the SQL Database is a fully managed relation database service, so a .NET client should
connect to it like a PHP or Java application could.

It is just a matter of drivers and software components that mediate between the application
and the data layer, implementing the product-specific feature of a particular Relational
Database Management System (RDBMS).

In this short recipe, we connect to the SQL Database using PHP and Java.

http://msdn.microsoft.com/en-us/data/ef.aspx
http://msdn.microsoft.com/en-us/data/ef.aspx
http://entityframework.codeplex.com/wikipage?title=Connection%20Resiliency%20Spec
http://entityframework.codeplex.com/wikipage?title=Connection%20Resiliency%20Spec

Chapter 4

203

Getting ready
In this recipe, we will use:

ff Visual Studio and IIS Express as the PHP environment

ff Eclipse (http://www.eclipse.org/) as the Java environment

ff PHP 5.4 (http://php.net)

ff Latest JRE (http://www.java.com)

ff SQL Server Driver 3.0 for PHP (http://sqlsrvphp.codeplex.com/)

ff SQL Server JDBC Driver (http://www.microsoft.com/download/details.
aspx?id=11774)

In the recipe, we will use a SQL Database version of the Northwind database, available on
CodePlex at http://northwinddatabase.codeplex.com/ (consider a brief read at the
Migrating a Database to a SQL Database recipe to know how to port that DB to Azure).

To register the SQL Server Driver for PHP, extract the content of the downloaded archive into
the ext folder of the PHP installation. In the PHP.INI file of the PHP installation, add the
following line:

Extension=[pathToPHP]/ext/php_sqlsrv_54_ts.dll

To enable IIS Express to work with PHP, we must register the engine for the PHP pages that
execute the following two commands in the command prompt:

"C:\Program Files (x86)\IIS Express\appcmd.exe" set config /
section:system.webServer/fastCGI /+[fullPath='"C:\[locationOfPHP]\php-
cgi.exe"']

"C:\Program Files (x86)\IIS Express\appcmd.exe" set config /
section:system.webServer/handlers /+[name='PHP_via_FastCGI',path='*.php'
,verb='*',modules='FastCgiModule',scriptProcessor='"C:\[locationOfPHP]\
php-cgi.exe"',resourceType='Unspecified']

In both commands, we assume that IIS Express stays in the default installation folder.

How to do it…
In the first part, we create a PHP page that connects to the Northwind database, listing all
the rows in the Customers table as follows:

1.	 Create an empty web application and make sure in that the Web tab of the
Properties page, the debug is targeted to IIS Express.

http://www.eclipse.org/
http://php.net
http://www.java.com
http://sqlsrvphp.codeplex.com/
http://www.microsoft.com/download/details.aspx?id=11774
http://www.microsoft.com/download/details.aspx?id=11774
http://northwinddatabase.codeplex.com/

Going Relational with the Azure SQL Database

204

2.	 Add a Reader.php file to the project and fill it as follows:
<html>
 <head>
 <title>SQL Database Reader</title>
 </head>
 <body>
 <?php echo '<p>PHP Working</p>'; ?>
 </body>
</html>

3.	 Debug the project and point it to http://localhost:[port]/Reader.php.

4.	 Verify that the PHP engine is installed correctly.

5.	 Before the closing of the body tag, add the following block of HTML/PHP code:
<table>
 <tr><td>Company Name</td><td>Contact Name</td></tr>
 <?php

 $serverName = "tcp:[serverName].database.windows.net,1433";
 $userName = '[user]@[serverName]';
 $userPassword = '[password]';
 $dbName = "Northwind";
 $table = "Customers";

 $connectionInfo = array("Database"=>$dbName,
 "UID"=>$userName, "PWD"=>$userPassword,
 "MultipleActiveResultSets"=>true);

 sqlsrv_configure('WarningsReturnAsErrors', 0);
 $conn = sqlsrv_connect($serverName, $connectionInfo);
 if($conn != false)
 {
 $tsql = "SELECT * FROM [$table]";
 $stmt = sqlsrv_query($conn, $tsql);

 while($row = sqlsrv_fetch_array($stmt, SQLSRV_FETCH_NUMERIC))
 {
 echo "<tr>";
 echo "<td>".$row[1]."</td>";
 echo "<td>".$row[2]."</td>";
 echo "</tr>";
 }

http://localhost:[port]/Reader.php

Chapter 4

205

 sqlsrv_free_stmt($stmt);
 sqlsrv_close($conn);
 }
?>
</table>

6.	 Debug the page as done in step 3.

In the second part, we show the same data from a Java
application.

7.	 In Eclipse, navigate to File | New and select Java Project.

8.	 In the Create a Java Project page of the wizard, give a project name and
leave the other options at their default values.

9.	 In the Java Settings wizard page, select the Libraries tab, locate the sqljdbc4.jar
driver that presses the Add External JARs button, and click on Finish.

10.	 Right-click on the src folder on the project created; click on New and then on Class.

11.	 In the New Java Class window, give a package and class name and check
the public static void main(String[] args) checkbox.

12.	 At the top of the class, add these import clauses:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

13.	 Modify the signature of the main(…) method as follows:
public static void main(String[] args) throws Exception

14.	 Add the following code, to list the customers, to the main method:
// Create the connection string.
String connectionUrl = "jdbc:sqlserver://[database_name].database.
windows.net;"
 + "databaseName=Northwind;user=[user]@[database_
name];password=[password]";

// Declare the JDBC objects.
Connection con = null;
Statement stmt = null;
ResultSet rs = null;

// Load the appropriate driver
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");
con = DriverManager.getConnection(connectionUrl);

Going Relational with the Azure SQL Database

206

// Create and execute a SQL statement
String SQL = "SELECT TOP 10 * FROM Customers";
stmt = con.createStatement();
rs = stmt.executeQuery(SQL);

// Print the results.
while (rs.next()) {
 System.out.println(rs.getString(2) + " - " + rs.getString(3));
}

15.	 Debug the file class and look at the results.

How it works…
In step 1, we created an empty web application to contain the sample PHP page. The
application was formally an ASP.NET web application, so we could add .NET contents as well.
The key point is to set up the environment to let IIS Express run the PHP code. In step 2, we
added a PHP file with sample content to test whether the prerequisites setup was correct by
launching the VS debugger in steps 3 and 4.

In step 5, we added the code to list the contents of the Northwind database. In the first few
lines, we had to replace the [serverName], [user], and [password] fields with the actual
values. With sqlsrv_connect, we used the settings to connect to the SQL Database, and
if the connection was made, we executed a standard SQL statement against the DB, fetching
row by row and showed the results as an HTML table.

In the second part, we made the same tool for the Java environment. From steps 7 to 9,
we started Eclipse and set up the new project, adding the dependency to the JAR file (the
equivalent of a .NEL assembly/dll), which holds the SQL Server JDBC Driver. In steps 10 and
11, we added a class and the main method as the entry point of the application. In step 12,
we added the import clauses (similar to the using statement of C#) to work with JDBC
objects, and in step 13, we modified the main method to propagate the exceptions to the
operating system. Finally, in step 14, we added the code to load the driver, connect to the
SQL Database, and iterate over the results and display them in the console (note that the
ResultSet object has a 1-based index convention).

See also
Have a look at the following link to get additional information:

ff JDBC on Wikipedia at http://en.wikipedia.org/wiki/Java_Database_
Connectivity

http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Java_Database_Connectivity

Chapter 4

207

Migrating a database to a SQL Database
The SQL Database supports many but not all the features of Microsoft SQL Server. For
example, all SQL Database tables must have a clustered index, as the SQL Database does
not support heap tables. Consequently, although it is not difficult to migrate a Microsoft SQL
Server database to the SQL Database, some attention must be paid when doing so. This
involves identifying the features that are not supported and modifying the Transact SQL
script so that it can run correctly in Azure SQL Database.

The SQL Database Migration Wizard (http://sqlazuremw.codeplex.com/) is a CodePlex
project that can be used to analyze a Microsoft SQL Server database to identify the features
not supported in the SQL Database. It generates a Transact SQL script that can recreate
the database and modifies to a valid form any statement not supported by Azure. The SQL
Database Migration Wizard can then migrate the database by applying the script to a SQL
Database and using bcp, a bulk-copy utility, to copy the data from the Microsoft SQL Server
database and upload it to the SQL Database.

The default mode of the SQL Database Migration Wizard works well. The method it uses to
identify features that are not supported is configurable and can be changed, if necessary.
The SQL Database Migration Wizard can also be used to analyze an arbitrary Transact SQL
script to ensure that it is valid when used with Azure.

In this recipe, we will learn how to use the SQL Database Migration Wizard to migrate a
Microsoft SQL Server database to Azure.

Getting ready
The SQL Database Migration Wizard only uploads data into an existing SQL Database. If
necessary, we must create the SQL Database before we invoke the SQL Database Migration
Wizard. We will see how to do this in the Creating a SQL Database server and database recipe.

How to do it...
We are going to migrate a Microsoft SQL Server database to an SQL Database using
the SQL Database Migration Wizard. We will do this using the following steps:

1.	 Download the SQL Database Migration Wizard from CodePlex at
http://sqlazuremw.codeplex.com/.

2.	 Extract the files from the compressed downloaded file.

3.	 Start the SQLAZureMW executable to bring up the Script Wizard dialog.

4.	 In the Select Process dialog, select Database and press Next.

http://sqlazuremw.codeplex.com/
http://sqlazuremw.codeplex.com/

Going Relational with the Azure SQL Database

208

5.	 In the Connect dialog, specify the Microsoft SQL Server name source (or leave
it as localhost) and press Connect.

6.	 On the Select Source dialog, select the source database and press Next.

7.	 On the Choose Object dialog, press Next.

8.	 On the Script Database Summary dialog, press Next.

9.	 On the Generate Script popup, press Yes.

10.	 In the Result Summary dialog, press Next to continue with the migration.

11.	 On the Connect popup, select Use a specific user ID and password.

12.	 Specify a user name

13.	 Specify a password

14.	 Select the Specify database

15.	 Specify a database name

16.	 Press Next.

17.	 On the Execute Script popup dialog, press Yes.

18.	 In the Target Server Response dialog, we can view the summary of the database
migration and verify its success.

How it works...
In step 1, we downloaded the latest version of the SQL Database Migration Wizard from
CodePlex. In step 2, we extracted it to a suitable location.

In step 3, we launched the SQL Database Migration Wizard. This progressed in two phases,
analysis and migration, through the remaining steps in the recipe. In the analysis phase,
we specified the Microsoft SQL Server database source. The SQL Database Migration
Wizard analyzed it and generated scripts that could recreate the database tables on the
SQL Database and use bcp to extract the data. In the migration phase, we specified the
SQL Database to which we were going to migrate the database, and then, the SQL Database
Migration Wizard extracted the data and uploaded it to the newly created tables in the
destination SQL Database.

In step 4, we specified that we wanted to analyze and migrate a Microsoft SQL Server
database to Azure. We had other choices here, including specifying that we only wanted to
perform the analysis. In steps 5 through 9, we specified the source Microsoft SQL Server
instance and the source database, and started the analysis process.

Chapter 4

209

On completion of the analysis phase, we could see both the Transact SQL script required
to regenerate the tables in a SQL Database and a summary that showed the modifications
required to handle the limitations of Azure SQL Database. We then specified that we wanted
to continue with the migration process.

In step 11, we provided the information required to connect to the destination SQL Database.
In steps 12 and 13, we completed the configuration and started the migration process.

We viewed the result of the migration phase in step 14.

There's more…
In SQL Server Management Studio (SSMS) 2012 or newer, there is a nice feature to deploy
a local database to the SQL Database with minimal effort. Unfortunately, this method tries
to deploy the database as is, resulting often in a failure due to the T-SQL limitations of Azure.
However, if we are dealing with local databases that are already fixed for the deployment of
the SQL Database (or they are created with SQL standard tools), the following method will
save us much time.

1.	 Open SSMS and connect to the local database

2.	 Right-click on the local database and select Tasks and then Deploy Database
to SQL Azure.

3.	 Click on the Connect button to populate the Server connection field.

4.	 Specify a new database name (Azure will create it) and the corresponding
Edition and Maximum size.

5.	 Go ahead with the wizard and complete it.

See also
Have a look at the following MSDN links to get additional information:

ff Migrating Databases to the Azure SQL Database at http://msdn.microsoft.
com/en-us/library/ee730904.aspx

ff How to import/export a SQL Database at http://msdn.microsoft.com/en-us/
library/hh335292.aspx

http://msdn.microsoft.com/en-us/library/ee730904.aspx
http://msdn.microsoft.com/en-us/library/ee730904.aspx
http://msdn.microsoft.com/en-us/library/hh335292.aspx
http://msdn.microsoft.com/en-us/library/hh335292.aspx

Going Relational with the Azure SQL Database

210

Leveraging backup solutions with SQL
Database

Microsoft completely manages its services in Azure from the disaster-recovery point of
view. This means that in case of hardware failure or in case of events not dependent on the
application surface, Microsoft takes care of the process of recovering data. All these activities
should be definitely transparent to the user. However, as accountable developers, we should
take care of the backup in terms of application recovery. In addition, while dealing with
large-scale applications, it is very important to think about the most efficient strategies to
protect our solution from accidental data loss and to provide the entire system a fast and
robust way to recover to a consistent state.

I would personally divide the problem into two areas: offline backup and online backup. Offline
backup means that in case of a failure, we have the backup of the last running instance
somewhere, more or less, far from the production environment. By far we mean logically far or
long to restore, comparing the offline backup to the old school backup made on magnetic tapes.

Online backup means that in case of a failure, we have a running copy of the last running
instance somewhere very near to the production environment. Compared to an offline backup,
a near backup is very close (in terms of the time taken to restore it).

The Azure SQL Database offers, at the time of writing this book, a good offline backup
solution, pushing a BACPAC (a self-contained DB unit with schema and data) into the
Blob Storage service. This service, called Automated Export, is efficient, inexpensive,
and completely managed and available through the Azure portal. Users could connect
to the Azure Portal, configure a storage account and the backup schedule, and let Azure
do the rest.

Restoring a backup from a BACPAC in the storage account is a simple but long operation.
A BACPAC for a 10-GB database could take up to 30 minutes or 1 hour to be online again,
and in fact, there is no predictable time to get back online.

Another good (but expensive) solution is to provide online backup by performing an online
database copy through a simple SQL Database copy statement, as we will see in the
There's more... section. This leads to a duplicate database, with relevant costs connected.

With the introduction of the new service tiers (Basic/Standard/Premium), many
availability-related features have been introduced:

ff Point-in-time restore: A user can restore a previous version of a SQL Database of
a given date and time

ff Geo-restore: A user can restore the latest full backup of a SQL Database to a
different Azure Region

Chapter 4

211

ff Geo-copy: A user can copy a database from one server to another, even if the target
is located in another Region

ff Active/Passive Geo-replication: A user can set up some secondary active (readable)
or passive (offline) replicas of the primary database across all the Azure Regions

The latest option (Geo-replication) is more suited for disaster recovery
than application backup, as from the application's perspective, a
malicious operation on the DB (a mistake while writing, such as a
table drop) would be replicated to the distributed replicas as well.

In this recipe, we will see how to restore a SQL Database and how to set up a secondary
replica for a given database.

Getting ready
This recipe uses a SQL Database created at least 1 day (24 hours) in advance. This
requirement is due to the point-in-time restore to have sufficient backup history to work.

In addition, this recipe uses the new service tiers (Basic/Standard/Premium) that, at the
time of writing this book, could be in preview. In such a case, subscribe to the proper preview
feature at http://azure.microsoft.com/en-us/services/preview/.

Create a new database with the Standard Edition service tier. We will see how to do this in
the Creating a SQL Database server and database recipe.

How to do it…
We are going to restore a SQL Database to a previous version of the last 24 hours. Then,
we create a disconnected database copy on a different Region of Azure, and we set up a
connected but offline (passive) Geo-replica. We will do this using the following steps:

1.	 In the Azure Portal, select SQL DATABASES from the left menu and locate
the SQL Database created for the purpose of the recipe.

2.	 Select it without navigating into its details; a bottom menu will appear.

3.	 Click on the RESTORE button; a Restore [db] window will appear.

4.	 Select ON as the POINT IN TIME option.

5.	 Change or leave the default value in the DATABASE NAME field.

6.	 Choose a destination server (even the same as the source).

7.	 Slide appropriately the RESTORE POINT slider to decide which version of database
would be restored, and confirm.

http://azure.microsoft.com/en-us/services/preview/

Going Relational with the Azure SQL Database

212

Cross-region database copy

8.	 In the SERVERS tab of the SQL DATABASES section of the Azure Portal, add a new
server, as mentioned in the first recipe of this chapter. The server must be located
at a different Region than the one that hosts the database of the recipe.

9.	 In the Azure Portal, select SQL DATABASES from the left menu and locate
the SQL Database created for the purpose of the recipe.

10.	 Select it without navigating into its details; a menu will appear at the bottom
of the screen.

11.	 Click on the COPY button; a COPY SQL DATABASE window will appear.

12.	 Choose the NAME of the destination database, as well as the TARGET SERVER
(the one in a different Region), and confirm.

Setup a passive Geo-Replication

13.	 Select the source SQL Database and go to the GEO-REPLICATION tab.

14.	 In the bottom menu, click on ADD SECONDARY; a New secondary for geo
replication window will appear.

15.	 Select the TARGET SERVER where Azure will maintain the replica, and confirm.

How it works…
In steps 1 and 2, we located the SQL Database created for the purpose of this recipe. In step
3, we initiated the restore process, specifying that we want a point-in-time restore in step 4 to
choose the specific date and time of the backup we set in step 7. In steps 5 and 6, we chose
the target database Name and the Target server that could be different from the source one
but located in the same Region.

If we choose OFF as the POINT IN TIME option, we ask Azure for the
latest backup of the current database. This time, the Target server could
also be located in a different Region.

In step 8, we created a new server in a different Region of the previously created Database.
This is to demonstrate the ability to create cross-Region copies of a given SQL Database.
From steps 9 to 12, we located the database and initiated the copy process to the
Target server.

Chapter 4

213

In step 13, we initiated the Geo-replication setup process. As we deal with a SQL Database
of Standard Edition, we can only create a passive (synchronized but offline) replica of the
source database. With Premium, we can create an active (synchronized and online, but
read only) replica. At the time of writing this book, a user can create up to four active
replicas of a Premium database.

Be aware that the costs connected to usage of Standard and Premium
database are much higher than the old Web and Business Editions. The
updated pricing page can be found at http://azure.microsoft.
com/en-us/pricing/details/sql-database/#basic-
standard-and-premium

Each copy/restore/add-replica operation could take several minutes or hours, depending
on the size and usage of the source database. Remember to delete/deallocate the unused
database resources after the completion of the recipe.

There's more…
We can use the COPY DATABASE command to create a transactionally consistent copy
of a SQL Database by connecting to the master database and invoking the following
Transact SQL command:

CREATE DATABASE NEW_DATABASE_NAME

AS COPY OF DATABASE_NAME

The copy is performed asynchronously. The sys.dm_database_copies system view
can be queried to check on its status as follows:

select * from sys.dm_database_copies

Deleted databases
For each SQL Database of the Basic/Standard/Premium Editions that has been deleted,
a user can restore a copy with the point-in-time selection for a limited timeframe (depending
on the service tier).

Automated Exports
As mentioned in the introduction of the recipe, a cheap way to backup a SQL Database
is by performing periodical exports via BACPACs. This could be leveraged in the Azure
Portal as follows:

1.	 Go to the CONFIGURE tab of a given database

2.	 In the Automated Export section, select Automatic

http://azure.microsoft.com/en-us/pricing/details/sql-database/#basic-standard-and-premium
http://azure.microsoft.com/en-us/pricing/details/sql-database/#basic-standard-and-premium
http://azure.microsoft.com/en-us/pricing/details/sql-database/#basic-standard-and-premium

Going Relational with the Azure SQL Database

214

3.	 Select a storage account where Azure should save the BACPACs

4.	 Select a schedule for the automatic export as well as a retention period for old backups.

5.	 Specify the credentials, which can connect to the SQL Database to perform the
export, and click on Save.

To restore a previously created BACPAC, a user can click on the NEW DATABASE button
on the same page.

See also
Have a look at the following MSDN links to get additional information:

ff The Azure SQL Database business continuity at http://msdn.microsoft.com/
en-us/library/azure/hh852669.aspx

ff Active Geo-Replication for the Azure SQL Database at http://msdn.microsoft.
com/en-us/library/azure/dn741339.aspx

Monitoring SQL Database with the dynamic
management views

A SQL Database resides on a physical server shared with many other SQL Databases. This
sharing leads to resource constraints on the maximum size and operational throughput of a
SQL Database. No data can be written to a SQL Database that has reached its maximum size.
Connections are terminated when operational throughput limits are breached. It is therefore
important that SQL Database usage is measured to avoid the consequences of hitting
resource constraints. SQL Database exposes various dynamic management views that can
be queried to measure resource usage.

The SQL Database allocates one partition for a table and one partition for each nonclustered
index in a database. As the SQL Database manages the physical allocation of a database, it
does not provide operations that support partition management. However, the sys.dm_db_
partition_stats dynamic management view contains one row for each partition allocated
in the database. Consequently, the view can be queried to find the current size of the database
as well as the objects in it. These queries are useful in ensuring that the database is not
approaching its maximum size and in identifying which objects are consuming the most space.

The sys.dm_exec_sessions dynamic management view contains information about all
connections on the SQL Database server. It can be used to observe current usage of the
server. The sys.dm_exec_query_stats dynamic management view contains information
on the performance of cached queries. It can be used to identify those queries that consume
the most resources with regard to CPU time as well as logical and physical data access.

In this recipe, we will see how to measure the usage of the SQL Database.

http://msdn.microsoft.com/en-us/library/azure/hh852669.aspx
http://msdn.microsoft.com/en-us/library/azure/hh852669.aspx
http://msdn.microsoft.com/en-us/library/azure/dn741339.aspx
http://msdn.microsoft.com/en-us/library/azure/dn741339.aspx

Chapter 4

215

Getting ready
This recipe uses an existing SQL Database. We have seen how to create this in the Creating
a SQL Database server and database recipe.

How to do it...
We are going to invoke various queries against dynamic management views of a SQL
Database to collect information that helps us manage our use of the database. We will
do this using the following steps:

1.	 Connect to the SQL Database.

2.	 We invoke the following query to calculate the total size of the current database
in MB:
SELECT
 DB_NAME() AS [Database],
 SUM(reserved_page_count) * 8.0 / 1024 AS [Size in MB]
FROM
 sys.dm_db_partition_stats;

3.	 We invoke the following query to calculate the total size in MB of each object
in the current database:
SELECT
 o.name AS [table_name],
 sum(p.reserved_page_count) * 8.0 / 1024 / 1024 AS [size_in_
gb],
 p.row_count AS [records]
FROM
 sys.dm_db_partition_stats AS p,
 sys.objects AS o
WHERE
 p.object_id = o.object_id
 AND o.is_ms_shipped = 0
GROUP BY o.name , p.row_count
ORDER BY o.name

4.	 We invoke the following query to calculate the total size of each partition in
the current database in MB:
SELECT
 OBJECT_NAME(object_id) AS [Name],
 index_id AS [Index Id],
 row_count AS [Row Count],
 used_page_count * 8.0 / 1024 AS [Used in MB],
 reserved_page_count * 8.0 / 1024 as [Reserved in MB]
FROM
 sys.dm_db_partition_stats

Going Relational with the Azure SQL Database

216

5.	 We invoke the following query to view CPU usage of active connections to the
current database:
SELECT
 ec.connection_id AS [Connection ID],
 es.session_id AS [Session ID],
 es.cpu_time AS [CPU in ms] ,
 es.last_request_end_time AS [Last Used]
FROM
 sys.dm_exec_sessions AS [es]
INNER JOIN
 sys.dm_exec_connections AS [ec]
ON
 es.session_id = ec.session_id

6.	 We invoke the following query to view the top five queries, by average worker time,
in the current database:
SELECT TOP 5
 query_stats.query_hash AS [Query Hash],
 SUM(query_stats.total_worker_time) /
 (1000000.0 * SUM(query_stats.execution_count))
 AS [Avg CPU Time (s)],
 SUM(query_stats.total_logical_reads) /
 (1000000.0 * SUM(query_stats.execution_count))
 AS [Avg Logical Reads (s)],
 SUM(query_stats.total_logical_writes) /
 (1000000.0 * SUM(query_stats.execution_count))
 AS [Avg Logical Writes (s)],
 MIN(query_stats.statement_text) AS [Statement Text]
FROM
 (SELECT
 qs.*,
 SUBSTRING(st.text, (qs.statement_start_offset/2) + 1,
 ((CASE statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE qs.statement_end_offset END
 - qs.statement_start_offset)/2) + 1) AS [statement_text]
 FROM
 sys.dm_exec_query_stats AS [qs]
 CROSS APPLY
 sys.dm_exec_sql_text(qs.sql_handle) AS [st])
 AS [query_stats]
GROUP BY
 query_stats.query_hash

Chapter 4

217

How it works...
In step 1, we connected to the desired SQL Database. Note that the queries do not work
against the master database.

In step 2, we invoked a query to retrieve the total size of the current SQL Database. We can
use this query to check how close we are to hitting the size limit for the database.

In step 3, we invoked a query to retrieve the total size of each object in the current SQL
Database. We can use this query to find out which objects are taking up most space in the
database. With the is_ms_shipped toggle set to zero (0), we can only check the user-
defined objects; otherwise every table, including the ones provided by default, is counted in.

In step 4, we invoked a query to retrieve the total size of each partition used by each object in
the current SQL Database. We can use this query to identify when it might be useful to rebuild
nonclustered indexes in particular, as each of these is in its own partition. A large difference
between the used and reserved page count indicates that an index rebuild might help free
up space.

In step 5, we invoked a query to retrieve the total CPU time used by current connections to the
database as well as the last time each of them was used. We can use this information to find
out the current usage of our SQL Database.

In step 6, we invoked a query to retrieve five queries with the highest average CPU time. We can
use this information to focus our attention on optimizing these queries. This query also returns
the average logical reads and writes for these queries. The query uses a standard technique,
using sys.dm_exec_sql_text(), to generate the query text from the query handle.

There's more…
Users can enable the SQL Database Auditing feature to audit operations against a given
SQL Database. At the time of writing this book, the feature is in preview (and it needs
a specific activation), and it is available only through the new management portal at
https://portal.azure.com.

To audit a SQL Database, follow these steps:

1.	 Create a storage account where Azure could save Audit Logs.

2.	 Go to the management portal, select the SQL Database, and under Auditing,
configure the storage account to collect data.

3.	 Replace, in the desired applications, each connection string in the [server].
database.windows.net form with [server].database.secure.windows.
net.

https://portal.azure.com

Going Relational with the Azure SQL Database

218

Azure will automatically catch each request from the applications that go to the SQL
Database, logging them into the proper storage account. After that, a complete Excel
workbook is available for download to navigate to the details of the audited data.

See also
Have a look at these MSDN links to get additional information:

ff SQL Database dynamic management views at http://msdn.microsoft.com/
en-us/library/ff394114.aspx

ff Getting started with SQL Database Auditing at http://azure.microsoft.com/
en-us/documentation/articles/sql-database-auditing-get-started/

Handling connection failures to a SQL
Database

The Azure SQL Database is a distributed system in which each server hosts many databases.
This sharing of resources leads to capacity constraints on operational throughput. The
SQL Database handles these capacity constraints by throttling operations and closing
connections that are using too many resources. SQL Database also closes connections when
it alleviates operational hot spots by switching from a primary SQL Database to one of its
two backup copies. Furthermore, connectivity to a SQL Database is likely to be less reliable
than connectivity to a Microsoft SQL Server database on a corporate LAN. It is imperative,
therefore, that applications using the SQL Database must be designed to withstand
connection failures that are far more likely to occur than with Microsoft SQL Server.

One of the mantras of cloud development is design for failure. It is important that applications
that use the SQL Database be designed to handle failures appropriately. There are two
kinds of errors: permanent errors, which indicate a general failure of part of the system,
and transient errors, which exist only for a brief time. Permanent errors, perhaps, indicate a
logical problem with the application and handling them might require code changes. However,
an application should handle transient errors gracefully by retrying the operation that led
to the error in the hope that it does not recur. A dropped connection should be regarded as
transient, and an application should respond to a dropped connection by opening a new
connection and retrying the operation.

There remains the problem of distinguishing permanent errors from transient ones. This can
be done by comparing the error returned from a failed operation with a known list of transient
errors. An application can, therefore, include a retry mechanism that checks the status of
operations and retries any operations that experienced a transient error.

http://msdn.microsoft.com/en-us/library/ff394114.aspx
http://msdn.microsoft.com/en-us/library/ff394114.aspx
http://azure.microsoft.com/en-us/documentation/articles/sql-database-auditing-get-started/
http://azure.microsoft.com/en-us/documentation/articles/sql-database-auditing-get-started/

Chapter 4

219

Microsoft has made available on NuGet the assemblies for the Transient Fault Handling
Application Block. This comprises a set of classes that can be used to detect transient
failures and retry SQL operations. It contains an extensible way to identify transient failures,
with various examples that include the one that compares an error with a list of known
transient failures. The Transient Fault Handling Framework provides various built-in retry
backoff techniques that specify how often and frequently an operation should be retried
following a transient failure. These include both a fixed interval and an exponential delay
between retries. The classes in the Transient Fault Handling Application Block include
various extension methods that simplify the use of the framework, thereby minimizing
the work required to add the handling of dropped connections and other transient failures
to an application using Azure.

In this recipe, we will learn how to use the Transient Fault Handling Application Block
to handle dropped connections and other transient failures when using WASD.

Getting ready
This recipe uses an existing SQL Database. We have seen how to create this in the
Creating a SQL Database server and database recipe.

How to do it...
We are going to connect to the SQL Database using ADO.NET and perform a simple operation
with a retry policy to handle transient errors. We will do this using the following steps:

1.	 Add the following assembly references to the project:
EnterpriseLibrary.TransientFaultHandling
System.Configuration

2.	 Add a new class named RetryConnectionExample to the project.

3.	 Add the following using statements to the top of the class file:
using Microsoft.Practices.EnterpriseLibrary.
TransientFaultHandling;
using Microsoft.Practices.EnterpriseLibrary.WindowsAzure.
TransientFaultHandling.SqlAzure;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;

4.	 Add the following private members to the class:
String connectionString;

Going Relational with the Azure SQL Database

220

5.	 Add the following constructor to the class:
public RetryConnectionExample()
{
 connectionString = ConfigurationManager
 .ConnectionStrings["MyTestDBConnectionString"]
.ConnectionString;
}

6.	 Add the following method, to perform a simple operation, to the class:
public String GetSessionTracingId<T>()
 where T: ITransientErrorDetectionStrategy, new()
{
 String commandText =
 "SELECT CONVERT(NVARCHAR(36), CONTEXT_INFO())";
 String sessionTracingId;
 var retryPolicy = new RetryPolicy<T>(3,
 TimeSpan.FromSeconds(3));
 retryPolicy.Retrying+=retryPolicy_Retrying;
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.OpenWithRetry(retryPolicy);
 using (SqlCommand sqlCommand =
 connection.CreateCommand())
 {
 sqlCommand.CommandText = commandText;
 sessionTracingId =
 sqlCommand.ExecuteScalarWithRetry(retryPolicy)
 as String;
 }
 }
 return sessionTracingId;
}

7.	 Add the following callback method to the class:
void retryPolicy_Retrying(object sender, RetryingEventArgs e)
{
 Exception ex = e.LastException;
TimeSpan delay = e.Delay;
Int32 retryCount = e.CurrentRetryCount;
}

Chapter 4

221

Add the following class to the project:
public class CustomSQLRetryStrategy
 : ITransientErrorDetectionStrategy
{
 public bool IsTransient(Exception ex)
 {
 return true;
 }
}

8.	 Add the following method, using the method added earlier, to the class:
public static void UseRetryConnectionExample()
{
 RetryConnectionExample example =
 new RetryConnectionExample();
 example.GetSessionTracingId
 <SqlDatabaseTransientErrorDetectionStrategy>();
 example.GetSessionTracingId
 <CustomSQLRetryStrategy>();
}

9.	 Add the following section to the App.config file:
<connectionStrings>
 <add name="MyTestDBConnectionString" connectionString="data
source=
 tcp:[serverName].database.windows.net;
 Database=myTest;Uid=[user]@[serverName];
 Pwd=[password];Encrypt=yes;"/>
</connectionStrings>

How it works...
In step 1, we added references to the Transient Fault Handling Application Block and the
configuration assemblies. In steps 2 and 3, we set up the class and added the using clauses.

In step 4, we added a member to hold the connection string that we obtained from the
configuration, in the constructor added in step 5.

Going Relational with the Azure SQL Database

222

In step 6, we implemented a method that performed a very simple operation, just
to get the SessionID from Azure. We instantiated a retry logic based on the strategy
passed as the generic parameter-less argument, T. A strategy is an implementation of
ITransientErrorDetectionStrategy that has a single bool method that determines if
an exception is the result of a transient error or just an error. Using the strategy passed as a
parameter, the method uses the default FixedInterval method to retry, based on a retry
count value (3 in the example) and an interval between consecutive retries (3 seconds in
the example). In step 7, we added a callback for the Retrying event of the RetryPolicy
class, and finally, we used the ADO.NET classes as usual, with the slight difference of the
OpenWithRetry and ExecuteScalarWithRetry methods. These two methods are
extension methods provided by the library and accept a retry policy as a parameter.

The retryPolicy_Retrying callback is given a
RetryingEventArgs argument, with some details about the transient
error that occurred. First, the LastException property indicates the
exception that caused the retry conditions to occur. The Delay property
indicates how long the current thread will be suspended before the next
iteration is invoked. The CurrentRetryCount property finally indicates
the retry count of the operation.

In step 8, we added a class that represented a custom strategy to determine if an exception is
due to a transient error or not. In this trivial implementation, we assumed that every exception
was the result of a transient error.

In step 9, we added a method that invoked the method added earlier. If we intentionally made
a mistake in the connection string (for example, wrong password), the first call with the official
retry policy would result in an application exception, never passing from the callback. Instead,
the second call, using the custom retry strategy, would deal with the exception as a transient
error, invoking the Retrying callback added in step 7. In step 10, we added a connection
string in the App.config file. We needed to replace the [serverName], [user], and
[password] fields with the actual values.

There's more...
The Transient Fault Handling Application Block can also be used to retry operations against
the Azure Storage service and the Azure Service Bus.

Chapter 4

223

With Entity Framework 6, Microsoft shipped a bundled support to manage Windows Azure
SQL Database's transient errors. In the Connecting to a SQL Database with Entity Framework
recipe, we connected to an SQL Database using EF without dealing with any retry logic at all.
However, introducing this logic has a minimal impact in EF6 because we only need to add a
class (with minimal implementation) that inherits from the DbConfiguration class, to the
project as follows:

public class SQLDatabaseConfiguration:DbConfiguration
{
 public SQLDatabaseConfiguration()
 {	
 SetExecutionStrategy("System.Data.SqlClient",
 () => new SqlAzureExecutionStrategy
 (1, TimeSpan.FromSeconds(30)));
 }
}

The following using clauses are needed too:

using System.Data.Entity;
using System.Data.Entity.SqlServer;

This class is instantiated every time a DbContext class is created, so we do not need
to modify the existing code to create an aware EF code.

See also
Have a look at the following MSDN links to get additional information:

ff Transient Fault Handling Application Block at http://msdn.microsoft.com/en-
us/library/hh680934(v=pandp.50).aspx

ff More about using the Transient Fault Handling Framework at http://msdn.
microsoft.com/en-us/library/dn440719(v=pandp.60).aspx

http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/dn440719(v=pandp.60).aspx
http://msdn.microsoft.com/en-us/library/dn440719(v=pandp.60).aspx

5
Going NoSQL with

Azure Tables

In this chapter, we will cover the following topics:

ff Creating a table

ff Inserting, updating, deleting, and querying data against the Table service

ff Using entity group transactions

ff Using continuation tokens and server-side paging

ff Going inside continuation tokens and segmented queries

ff Handling entity serialization events

ff Facilitating NoSQL with client-side projection

Introduction
The Microsoft Azure Table Service is the Storage service feature that provides cost-effective
scalable storage of entities.

During the last 3 decades, relational databases have become the dominant data storage
systems. Relational databases are transaction oriented and implement ACID semantics
in which database transactions are atomic, consistent, isolated, and durable. These are
important considerations for a data system where data fidelity is of absolute importance,
such as those used in a financial system. However, large-scale data systems that implement
ACID semantics are extremely expensive, as they require huge infrastructures behind them.

Going NoSQL with Azure Tables

226

In the last decade, there has been a growing interest in creating cost-effective, large-scale
data systems. This interest is driven primarily by those in need of data collection, such as the
data-mining needs of social websites that generate enormous amounts of click-stream data
or scientific datasets. Much of this data is read only, so there is less emphasis on support for
transactions. Furthermore, these data systems typically do not provide support for SQL, so
they are referred to as NoSQL systems with No being an acronym for not only.

Some NoSQL data systems implement BASE semantics that are basically available in the soft
state; they are eventually consistent rather than ACID semantics. The idea is that a change to
stored data does not have to be immediately consistent across the data system as long as it is
eventually consistent.

The Table service is the NoSQL data system provided by the Azure Platform. It provides
large-scale storage at a cost significantly lower than that provided by the Azure SQL Database,
the relational database provided in the Azure Platform.

The Table service uses storage accounts to provide an authentication boundary. Unlike a
relational database, these tables have no fixed schema, and each entity stored in the table
defines its own schema. We see how to create a table in the Creating a table recipe.

An entity is a collection of properties and their associated values. The primary key for a table
is the combination of two properties, PartitionKey and RowKey, that must be present in
each entity stored in the table. The Table service uses PartitionKey to provide scalability
(partitioning data) and RowKey to ensure uniqueness within a given partition. The entities
in a table with the same PartitionKey property comprise a partition.

The Azure Storage Service REST API provides the definitive interface to the Table service. The
Azure Storage library is a high-level, managed .NET API for the Table service that hides the
underlying Storage Service REST interface. The Storage Client library, at the time of writing
this book, supports two methods to operate against the Table service: a former one and a
newer one. The former extends the WCF Data Services stack, while the latter introduces a
new Table service layer (also based on OData) with major performance optimization and new
features. It is likely that the former method will be eventually deprecated, but as it is used by
many existing applications and is still effective, we decided to implement both in this book.

In the recipes of this chapter, we will see how to achieve results in
both the patterns/methods mentioned earlier; we call these patterns/
methods Method1 (the WCF Data Service pattern) and Method2
(the new Table service layer).

The Storage library provides developers with a functionality specific to the Table service, such
as authentication, server-side paging, and automated retry logic. All the recipes in this chapter
use the Storage library.

Chapter 5

227

In the WCF Data Services paradigm, we associate table entities with a model class. To some
extent, this imposes a schema on the table, although many model classes could be associated
with a single table. It uses a context to track instances of the model class; these instances
represent the entities to be inserted in the table or retrieved from the table. We will go further
into this in the Inserting, updating, deleting, and querying data against the Table service recipe.

The Table service provides limited support for ACID semantics. Up to 100 storage operations
against the same partition might be batched into a single entity group transaction and
performed as a single transaction in which either all operations succeed or all operations
are rejected (with a maximum total payload size of 4 MB). We will consider these in the
Using entity group transactions recipe. Note that the Table service does not implement BASE
semantics, as it uses hard state, with all data changes being strongly consistent.

Optimistic concurrency is a technique used in NoSQL data systems to avoid the scalability
problems caused by data being locked to prevent simultaneous updates by different clients.
The Table service implements optimistic concurrency by providing an entity tag (ETag) with
each entity it returns to a client. A subsequent update succeeds only if the current ETag tag
is provided. This provides a lightweight and scalable way to manage concurrent updates to an
entity. We will look at optimistic concurrency in the Using entity group transactions recipe.

The Table service supports the concept of server-side paging in which no more than 1,000
entities are returned in response to a query, in no more than 5 seconds. When this throttling
occurs, the Table service also returns continuation tokens that the client can use to reissue
the query for the next page of data. We will show this in the Using continuation tokens and
server-side paging and Going inside continuation tokens and segmented queries recipes.

The Azure Storage library takes care of the serialization/deserialization of entities against
the REST API, but we can customize this behavior, thanks to some extension endpoints in
the library. In the Handling entity serialization events recipe, we will see how to control the
serialization process.

NoSQL data stores are generally classified by how they organize their aggregates, the single
and minimal unit of storage. In RDBMS, we can say that the row is the minimal unit of storage,
while in NoSQL, it can vary. The Azure Table service organizes its data in entities; an entity is
defined by the PartitionKey and RowKey properties, but it can contain several key-value
pairs. We can also say that an entity is a key-value pair collection. Under these circumstances,
it could not be easy to define a single entity model (in a programming language) that could
map the result of a given query against the service. Instead, a more generic result for a given
entity should be a collection of key-value pairs. In the Facilitating NoSQL with client-side
projection recipe, we will see how to deal with this.

Going NoSQL with Azure Tables

228

Creating a table
The Azure Table service supports a simple two-level hierarchy. There is a single level
of tables, each of which contains zero or more entities. An entity can have up to 255
properties, including three system-defined properties, and there is no requirement that
different entities in the same table have the same properties. This feature makes the Table
service schemaless. The only requirement of entities in a table is that the combination of
PartitionKey and RowKey properties is distinct for each entity in a table. Consequently,
when a table is created, the only required information is its name.

The Azure Storage library contains a CloudTableClient class that provides a set of
synchronous and asynchronous methods that support the creation and deletion of tables.
It also supports the listing of the tables associated within an Azure Storage service's
storage account.

In this recipe, we will learn how to use the synchronous methods to create and delete tables
as well as list them.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to create two tables, list the tables, and then delete a table. We will do this using
the following steps:

1.	 Add a new class named TablesExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following
assembly references to the project:
System.Configuration

Chapter 5

229

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using System.Configuration;

4.	 Add the following member to the class:
private CloudTableClient cloudTableClient;

5.	 Add the following constructor to the class:
TablesExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
}

6.	 Add the following method, creating a table, to the class:
public void CreateTable(String tableName,
 Boolean checkExistence = false)
{
 CloudTable table=cloudTableClient
 .GetTableReference(tableName);
 if (checkExistence)
 {
 table.CreateIfNotExists();
 }
 else
 {
 table.Create();
 }
}

7.	 Add the following method, deleting a table, to the class:
public bool DeleteTable(String tableName)
{
 CloudTable table = cloudTableClient
 .GetTableReference(tableName);
 table.DeleteIfExists();
 return !table.Exists();
}

Going NoSQL with Azure Tables

230

8.	 Add the following method, listing the tables, to the class:
protected void ListTables(String tableNamePrefix)
{
 IEnumerable<CloudTable> listTablesPrefix =
 cloudTableClient.ListTables(tableNamePrefix);
 Int32 countListTablesPrefix =
 listTablesPrefix.Count();

 IEnumerable<CloudTable> listTables =
 cloudTableClient.ListTables();
 Int32 countListTables = listTables.Count();
}

9.	 Add the following method to the class:
public static void UseTablesExample()
{
 TablesExample example = new TablesExample();
 example.CreateTable("Stars");
 example.CreateTable("Planets", true);
 example.ListTables("P");
 example.DeleteTable("Planets");
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the CloudTableClient instance used to connect to the Table service. We initialized this
in the constructor we added in step 5.

In step 6, we added a method that shows two ways to create a table, starting from an instance
of CloudTable. The first invoked CreateIfNotExists(), which created the table only if it
did not already exist. The second invoked Create(), which throws an exception if the table
already existed (HTTP error code 409, which means Conflict). In step 7, we added a method
that deleted a table. This method is safe due to the DeleteIfExists() method.

In step 8, we added a method to list all the tables in the storage account. It did so in two
different ways: with and without using a prefix. In step 9, we added a simple method to use
the methods we added earlier. We created a couple of tables, listed all the tables in the
storage account, and then deleted one of the tables.

Chapter 5

231

There's more…
The Azure Table service is cloud based. In the Azure SDK, Microsoft provides a Storage
Emulator, which runs in the development environment and can be used for local development
and testing. This emulator uses LocalDB, but it can also be configured to the use Microsoft
SQL Server.

There are some circumstances in which the Storage Emulator and the Table service behave
differently. Consequently, when problems are identified while developing with the Storage
Emulator, it is often useful to check whether the problem exists when using the Table service.

The Azure Storage Service REST API is the definitive way to interact with the Table service.
The Azure Storage library is a high-level .NET library that sits on top of the Storage Service
REST API.

A utility such as Fiddler, which allows us to inspect HTTP traffic, can be helpful in identifying
problems when developing against either the Table service or the Storage Emulator. Fiddler
makes it easy to verify that the correct REST operations are invoked and to check the request,
response headers, and payloads. These can be compared with the MSDN documentation in
the Azure Storage Service REST API. Fiddler also provides direct access to any error message
returned by the Storage Service REST API.

No special configuration is required to use Fiddler with the Table service. Fiddler merely needs
to be running to capture all the network traffic to and from the Azure Table service. However, a
special connection string must be provided when using Fiddler with the Storage Emulator. In
this case, the data connection string must be set to the following:

UseDevelopmentStorage=true;DevelopmentStorageProxyUri=http://ipv4.
fiddler

Although Fiddler is useful in identifying problems, it can introduce problems when used
with the Storage Emulator, while it always behaves correctly when used with the real
cloud environment.

See also
Have a look at these MSDN links to get additional information:

ff Differences between the Storage Emulator and Azure Storage at http://msdn.
microsoft.com/en-us/library/azure/gg433135.aspx

ff Using the Table storage from Node.js at http://azure.microsoft.com/en-us/
documentation/articles/storage-nodejs-how-to-use-table-storage/

http://msdn.microsoft.com/en-us/library/azure/gg433135.aspx
http://msdn.microsoft.com/en-us/library/azure/gg433135.aspx
http://azure.microsoft.com/en-us/documentation/articles/storage-nodejs-how-to-use-table-storage/
http://azure.microsoft.com/en-us/documentation/articles/storage-nodejs-how-to-use-table-storage/

Going NoSQL with Azure Tables

232

Inserting, updating, deleting, and querying
data against the Table service

The Azure Storage library uses both WCF Data Services and OData to invoke table operations
in the Azure Storage Services REST API. The library has methods that provide functionality
specific to the Azure Table service, such as the retry functionality that allows methods to be
retried automatically in the event of failure and continuation token functionality that supports
server-side paging.

In the Storage library, instances of a model class represent entities of a table. When saving
an instance to a table, the Storage library creates a property in the entity for each public
property of the instance. The model class must contain the primary key properties for the
entity: PartitionKey and RowKey. An entity can have no more than 252 user-defined
properties (due to the primary key properties plus the Timestamp properties). Furthermore,
if it is used to store query results, the model class must have a default constructor that takes
no parameters. The Storage library provides a convenient base class from which to derive
model classes for both Method1 and Method2. They are the TableServiceEntity and the
TableEntity classes, respectively.

The Storage Client library supports only the following datatypes for entities:

ff Byte[]

ff Boolean

ff DateTime

ff Double

ff Guid

ff Int32

ff Int64

ff String

Both Byte[] and String are limited to no more than 64 KB. Note that the Storage Client
library automatically converts DateTime values to the local time zone when retrieving
entities. Each entity has a maximum size of 1 MB.

Method1 uses DataServiceContext to expose storage operations and queries, as well as
to track entities used in these storage operations and queries. Entities are tracked by adding
them as new entities using DataServiceContext.AddObject() or attaching them to
the context with the DataServiceContext.AttachTo() method that provides additional
functionality to update entities. Entities returned by queries are also tracked. Any changes to
tracked entities are submitted as individual storage operations when the SaveChanges()
method is invoked on the context.

Chapter 5

233

The Storage library contains a TableServiceContext class, derived from
DataServiceContext, which adds the retry functionality to the synchronous
and asynchronous SaveChanges() methods through the provision of the
SaveChangesWithRetries() methods. It can be convenient to create a model-dependent
class derived from TableServiceContext. This can be generalized by creating a generic
class parameterized by the type of the model class. Doing so simplifies the text of queries
and provides type-safe methods to manage entities.

The following two code fragments demonstrate this simplification:

from c in tableServiceContext.CreateQuery<Country>("Country")
from c in countryContext.GenericEntities

The first example explicitly uses TableServiceContext to create a query, while the second
uses a generic context class that exposes a GenericEntities property, which encapsulates
the CreateQuery<Country>() method.

Contexts should not be reused, that is, unrelated storage operations should use
different contexts.

When we have asynchronous operations being performed against the
Table Storage service, the operations might take longer than expected and
leave the context in an unpredictable state. Hence, it is recommended that
the context be recreated even to retry the same operation, to isolate the
retry attempts completely.

Method2 uses a CloudTable reference to execute commands against the Table service,
with the Execute and ExecuteQuery methods. The first method takes an instance of
TableOperation as a parameter; it identifies a CRUD action against the datastore. The
second one takes a TableQuery instance that can be constructed by string-based queries
as follows:

new TableQuery().Where("PartitionKey eq 'Italy'")

To help developers while writing this challenging syntax, TableQuery provides a static
method to generate the necessary strings for the query operators needed by the Where
clause. To further help developers who work on a familiar set of classes and with LINQ, there
is also a LINQ provider to query data against a table, using the CreateQuery<T> method on
the CloudTable instance.

In this recipe, we'll learn how to create a model class and use the two methods to perform
various storage operations and queries.

Going NoSQL with Azure Tables

234

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with the appropriate values
for the account name and access key, respectively.

How to do it...
We are going to perform an insert, update, and delete operation on the Table service
for a query to retrieve data. We will do this using the following steps:

1.	 Add a new class named ModelContextExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Table.DataServices;
using System.Configuration;

4.	 Add the following member to the class:
private CloudTableClient cloudTableClient;

5.	 Add the following constructor to the class:
private ModelContextExample(String tableName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 var table=cloudTableClient.GetTableReference(tableName);
 table.CreateIfNotExists();
}

Chapter 5

235

Now, let's proceed with Method1.

6.	 Add the following class in the project:
public class CountryDS : TableServiceEntity
{
 private readonly String partitionKey = "country";

 public String CapitalCity { get; set; }
 public Int64 Population { get; set; }

 public CountryDS() { }

 public CountryDS(String name, String capitalCity,
 Int64 population)
 {
 PartitionKey = partitionKey;
 RowKey = name;
 CapitalCity = capitalCity;
 Population = population;
 }
}

7.	 Add the following method to the ModelContextExample class:
private void InsertQueryAndUpdateMethod1()
{
 TableServiceContext tableServiceContext =
 cloudTableClient.GetTableServiceContext();

 tableServiceContext.AddObject("Country",
 new CountryDS("Australia", "Canberra", 22558947));
 tableServiceContext.AddObject("Country",
 new CountryDS("India", "New Delhi", 1189914000));
 tableServiceContext.SaveChangesWithRetries();

 var query = tableServiceContext.CreateQuery<CountryDS>("Count
ry")
 .Where(p => p.PartitionKey == "country" && p.RowKey ==
"Australia");

 CountryDS country = query.FirstOrDefault<CountryDS>();

 country.Population += 100000;
 tableServiceContext.UpdateObject(country);
 tableServiceContext.SaveChangesWithRetries();
}

Going NoSQL with Azure Tables

236

8.	 Add the following method to the ModelContextExample class:
private void DeleteAllMethod1()
{
 TableServiceContext tableServiceContext =
 cloudTableClient.GetTableServiceContext();
 var items = tableServiceContext.CreateQuery<CountryDS>("Count
ry");
 foreach (var item in items)
 {
 tableServiceContext.DeleteObject(item);
 }
 tableServiceContext.SaveChangesWithRetries();
}

Now, let's proceed with Method2.

9.	 Add the following class to the project:
public class Country : TableEntity
{
 private readonly String partitionKey = "country";

 public String CapitalCity { get; set; }
 public Int64 Population { get; set; }

 public Country() { }

 public Country(String name, String capitalCity,
 Int64 population)
 {
 PartitionKey = partitionKey;
 RowKey = name;
 CapitalCity = capitalCity;
 Population = population;
 }
}

10.	 Add the following method to the ModelContextExample class:
private void InsertQueryAndUpdateMethod2()
{
 var table = cloudTableClient.GetTableReference("Country");

 var c1= new Country("Australia", "Canberra", 22558947);

Chapter 5

237

 var c2 = new Country("India", "New Delhi", 1189914000);
 var op1=TableOperation.Insert(c1);
 var op2=TableOperation.Insert(c2);

 table.Execute(op1);
 table.Execute(op2);

 var query=table.CreateQuery<Country>()
 .Where(p => p.PartitionKey == "country" &&
 p.RowKey == "Australia");

 Country country = query.FirstOrDefault();

 country.Population += 100000;
 table.Execute(TableOperation.Merge(country));

}

11.	 Add the following method to the ModelContextExample class:
private void DeleteAllMethod2()
{
 var table = cloudTableClient.GetTableReference("Country");
 var items = table.CreateQuery<Country>();
 foreach (var item in items)
 {
 table.Execute(TableOperation.Delete(item));
 }
}

In both cases, follow this final step.

12.	 Add the following method to the ModelContextExample class:
public static void UseModelContextExample()
{
 String tableName = "Country";
 ModelContextExample example =
 new ModelContextExample(tableName);
 example.InsertQueryAndUpdateMethod1();
 example.DeleteAllMethod1();
 example.InsertQueryAndUpdateMethod2();
 example.DeleteAllMethod2();
}

Going NoSQL with Azure Tables

238

How it works...
In steps 1 through 4, we set up the ModelContextExample class, and in step 5, we created
a constructor that initializes the CloudTableClient instance to create a table that was
specified as argument.

We then split the recipe into two branches: the first for the Method1 and second for
the Method2.

In step 6, we added a model class named CountryDS, which inherits from
TableServiceEntity, to represent entities that describe various properties of countries.
The PartitionKey property is always set to the country for entities created using this class.
The RowKey property is set to the name of the country. The Timestamp property, even if
it is not directly visible (due to its belonging to the base class), is one of the three system
properties present in each entity. In practice, it is not really needed in the model class. There
are two constructors: one being the required parameterless constructor and the other fully
initializing an instance of the model class.

In step 7, we added a method that uses TableServiceContext to add several entities to
the Country table. It then queried the table to retrieve a single entity and updated this entity
to the table. We used the SaveChangesWithRetries() method, which performs automatic
retries, in case of transient failures on the service side.

While writing distributed applications (not only for Azure), a common
approach to follow is to design software that is failure proof or, better,
designed for failures. The Azure Storage service is a great service, but it
can throttle a request or can be temporarily out of service. In some cases,
a denial of service is due to a transient failure, and the corresponding
action to recover it is just the retry.

In step 8, we added a method to delete each object of the Country table. As shown in the
code, it is required to first fetch the entities and then delete them one by one.

In step 9, since we followed Method2, we created another model class, inheriting now the
TableEntity base class. This new model class is used by the Table service layer to perform
operations against the table, even if it is actually identical to its peer created in step 6.

In step 10, we added a method that uses the Execute method of a CloudTable instance to
add several entities to the Country table. Since the Execute method is operation aware, we
needed to build the operation in advance with the helpers provided by the static methods of
the TableOperation class. It then queried the table to retrieve a single entity and updated
that entity to the table, using the same pattern by invoking the Execute method.

Chapter 5

239

In step 11, we added a method to delete each object of the Country table. As shown in the
code, it is still required to first fetch the entities and then delete them one by one. However,
it is possible to optimize this behavior using the DynamicTableEntity pattern, as shown
in the Facilitating NoSQL with client-side projection recipe.

In step 12, we added a method that uses the methods we added in the previous steps.

There's more…
Now, we see how to work with a custom context and how to choose partition and row
keys appropriately.

Dealing with a custom context
With Method1, instead of using the TableServiceContext class to operate against the
Table service, we can also create our custom context to wrap the strongly typed entities
to simplify the further query needs (or to use the Repository pattern instead of using
context methods) as follows:

1.	 Add the following class to the project:
public class CustomContext<T> : TableServiceContext
{
 public String TableName { get; set; }

 public CustomContext(
 CloudTableClient client)
 : base(client)
 {
 Type type = typeof(T);
 TableName = type.Name;
 }
 public void AddEntity(T entity)
 {
 AddObject(TableName, entity);
 }

Going NoSQL with Azure Tables

240

 public void DeleteEntity(T entity)
 {
 DeleteObject(entity);
 }
 public IQueryable<T> GenericEntities
 {
 get { return CreateQuery<T>(TableName); }
 }
}

2.	 Add the following method to the ModelContextExample class:
private void InsertQueryAndUpdateMethod1bis()
{
 CustomContext<Country> countryContext =
 new CustomContext<Country>(cloudTableClient);
 countryContext.AddEntity(
 new Country("France", "Paris", 63900000));
 countryContext.AddEntity(
 new Country("Italy", "Rome", 59600000));
 countryContext.SaveChangesWithRetries();

 var query = countryContext.GenericEntities
 .Where(p => p.PartitionKey == "country"
 && p.RowKey == "France");

 Country country = query.FirstOrDefault();

 country.Population += 100000;
 countryContext.UpdateObject(country);
 countryContext.SaveChangesWithRetries();
}

In step 1, we added a generic-context class, GenericContext<T>, derived from
TableServiceContext. We inferred the table name from the name of the type. The
constructor for this class simply invoked the base class constructor. We added a type-safe
method to add objects to the context. Finally, we added a GenericEntities property that
returned an IQueryable<T> class, which we used to simplify the syntax for queries.

In step 2, we added a method that used GenericContext<Country> to add several
entities to the Country table. It then queried the table to retrieve a single entity and
updated this entity in the table.

Chapter 5

241

Choosing a good combination of PartitionKey and RowKey
The primary key for a table in the Azure Table service is the combination of PartitionKey
and RowKey. These properties are not symmetric, in that PartitionKey and RowKey serve
different purposes. The PartitionKey property provides scalability for a table, while the
RowKey property ensures uniqueness for a given value of PartitionKey.

A set of entities with the same PartitionKey property in a table is referred to as a partition.
The Table service has a scalability target for a partition that is lower than that for the
storage account. Consequently, performance can be improved by ensuring that data access
is distributed across partitions. It is important for PartitionKey to be designed so that
performance is optimized for the actual workload of a service while minimizing unnecessary
partitioning or interrelated data.

When a query is executed against a table, the resulting entities are ordered by
PartitionKey and then by RowKey. The Table service does not support any other index.
Consequently, if entities must be retrieved in a particular order, the RowKey property must be
constructed to facilitate this order. An interesting case is where entities must be retrieved in
reverse chronological order. Each DateTime has an associated Ticks property that specifies
the number of ticks since the earliest DateTime property. A chronological order for RowKey
can be achieved using the Ticks count for a DateTime property of RowKey. A reverse
chronological ordering can be achieved by subtracting the number of ticks from the Ticks
count for the maximum value of DateTime. For example, the following code calculates the
number of ticks remaining from now until the maximum number of ticks:

DateTime.MaxValue.Ticks - DateTime.UtcNow.Ticks

When converted to a string, as required for the RowKey property, this requires 19 characters
to ensure that all the possible values can be represented. The Ticks count can be converted
as follows:

String.Format("{0:D19}",
 DateTime.MaxValue.Ticks - DateTime.UtcNow.Ticks);

This creates a 19-character string that, when used for the RowKey property, creates a reverse
chronological ordering.

See also
Have a look at the following MSDN links to get additional information:

ff More about the Table service data model at http://msdn.microsoft.com/en-
us/library/azure/dd179338.aspx

ff The WCF Data Service documentation center at http://msdn.microsoft.com/
en-us/data/odata.aspx

http://msdn.microsoft.com/en-us/library/azure/dd179338.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179338.aspx
http://msdn.microsoft.com/en-us/data/odata.aspx
http://msdn.microsoft.com/en-us/data/odata.aspx

Going NoSQL with Azure Tables

242

Using entity group transactions
The Azure Table service supports entity group transactions in which a group of storage
operations on entities with the same PartitionKey property are handled automatically.
That is, if any operation in the group fails, then all the operations are rolled back. Unlike
transactions in a traditional SQL database, entity group transactions cannot span tables
or even partitions.

A single entity group transaction is limited to no more than 100 entities and a total size
of 4 MB. An individual entity can be used only once in an entity group transaction. Any
combination of the create, update, and delete operations can be contained in an entity
group transaction. Alternatively, it can contain only query operations. However, an entity
group transaction might not combine queries with the create, update, and delete operations.

Handling batch operations differs much between Method1 and Method2. With WCF Data
Services, we control the save operation with the SaveChanges() method. The default
behavior when a SaveChanges() or SaveChangesWithRetries() method is invoked
on a context is that any changes to entities tracked by the context are submitted to the
Table service, one storage operation at a time. Specifying a SaveChangesOptions.Batch
parameter for these methods causes all the changes to be submitted as a single entity
group transaction.

With the new Table service layer, we have a new explicit ExecuteBatch() method on the
CloudTable instance. This method takes a TableBatchOperation class as a parameter;
this class is a sort of container for multiple operations.

Regardless of how many individual storage operations a single entity group transaction
contains, it is billed as a single storage operation. This will considerably save costs over
performing the storage operations individually.

In this recipe, we will learn how to use entity group transactions.

Getting ready
This recipe uses model classes named Country and CountryDS that are declared in the
Inserting, updating, deleting, and querying data against the Table service recipe. This recipe
also assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Chapter 5

243

How to do it...
We are going to show one entity group transaction that inserts two entities in a table and
another entity group transaction that updates one entity and deletes another from the same
table. We will do this using the following steps:

1.	 Add a new class named EntityGroupTransactionsExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following assembly
references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Table.DataServices;
using System.Configuration;

4.	 Add the following private members to the class:
private CloudTableClient cloudTableClient;
private String tableName = "Country";

5.	 Add the following constructor to the class:
public EntityGroupTransactionsExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 cloudTableClient.GetTableReference(tableName)
 .CreateIfNotExists();
}

Now, let's proceed with Method1.

6.	 Add the following method, showing an insert-only entity group transaction, to the class:
public void BatchInsertMethod1()
{
 TableServiceContext tableServiceContext =
 cloudTableClient.GetTableServiceContext();
 CountryDS pakistan = new CountryDS(
 "Pakistan", "Islamabad", 171365000);

Going NoSQL with Azure Tables

244

 tableServiceContext.AddObject(tableName, pakistan);
 CountryDS bangladesh = new CountryDS(
 "Bangladesh", "Dhaka", 149715000);
 tableServiceContext.AddObject(tableName, bangladesh);
 tableServiceContext.SaveChangesWithRetries(
 SaveChangesOptions.Batch);
}

7.	 Add the following method, showing a mixed-operation entity group transaction,
to the class:
public void MixedBatchMethod1()
{
 TableServiceContext tableServiceContext =
 cloudTableClient.GetTableServiceContext();
 CountryDS turkey = new CountryDS(
 "Turkey", "Istanbul", 72561312);
 tableServiceContext.AddObject(tableName, turkey);
 CountryDS pakistan = new CountryDS(
 "Pakistan", "Islamabad", 171000000);
 tableServiceContext.AttachTo(tableName, pakistan, "*");
 tableServiceContext.UpdateObject(pakistan);
 CountryDS bangladesh = new CountryDS()
 {
 PartitionKey = "country",
 RowKey = "Bangladesh"
 };
 tableServiceContext.AttachTo(tableName, bangladesh, "*");
 tableServiceContext.DeleteObject(bangladesh);
 tableServiceContext.SaveChangesWithRetries(
 SaveChangesOptions.Batch);
}

Now, let's proceed with Method2.

8.	 Add the following method, showing an insert-only entity group transaction,
to the class:
public void BatchInsertMethod2()
{
 var table = cloudTableClient
 .GetTableReference(tableName);
 var batch = new TableBatchOperation();
 Country italy = new Country(

Chapter 5

245

 "Italy", "Rome", 60000000);
 batch.Insert(italy);
 Country uk = new Country(
 "UK", "London", 63000000);
 batch.Insert(uk);
 table.ExecuteBatch(batch);
}

9.	 Add the following method, showing a mixed-operation entity group transaction,
to the class:
public void MixedBatchMethod2()
{
 var table = cloudTableClient
 .GetTableReference(tableName);
 var batch = new TableBatchOperation();
 Country germany = new Country(
 "Germany", "Berlin", 81000000);
 batch.Insert(germany);
 Country italy = new Country(
 "Italy", "Rome", 61000000) { ETag = "*" };
 batch.Replace(italy);
 Country uk = new Country(
 "UK", "London", 0) { ETag = "*" };
 batch.Delete(uk);
 table.ExecuteBatch(batch);
}

In both cases, follow this final step.

10.	 Add the following method, invoking the other methods, to the class:
public static void UseEntityGroupTransactionsExample()
{
 EntityGroupTransactionsExample example =
 new EntityGroupTransactionsExample();
 example.BatchInsertMethod1();
 example.BatchInsertMethod2();
 example.MixedBatchMethod1();
 example.MixedBatchMethod2();
}

Going NoSQL with Azure Tables

246

How it works...
In steps 1 through 4, we set up the EntityGroupTransactionsExample class, and in step
5, we created a constructor that initializes the CloudTableClient instance to create a table
specified as an argument.

We then split the recipe into two branches: the first for Method1 the and second for Method2.

In step 6, we added a BatchInsertMethod1() method. In it, we created a new context.
Then, we created two entities and added them to the context with AddObject(), before
invoking SaveChangesWithRetries (SaveChangesOptions.Batch) to send the
appropriate insert operations to the Table service as a single entity group transaction.

In step 7, we added a MixedBatchMethod1() method. In it, we created a new context and
used it to update one entity and delete another. As we are performing storage operations
on existing entities, we need to take into account the optimistic concurrency provided by the
Table service. We do this using AttachTo() with an ETag of * to have the context track
the entities.

This special ETag value allows us to override the optimistic concurrency
used by the Table service and make it update or delete this entity in the
table. A valid ETag must be provided when updating or deleting objects.
A valid value is the one returned that is with the entity as the result of a
query or the special value of * as in this example.

After attaching the entities, we use UpdateObject() with one entity and DeleteObject()
with the other to indicate which storage operation should be used. Finally, we invoked
SaveChangesWithRetries (SaveChangesOptions.Batch) to send the appropriate
update and delete operations to the Table service as a single entity group transaction.

In step 8, we added a BatchInsertMethod2() method. We used a
TableBatchOperation instance to add, with the Insert() method, two entities into it.
We called the ExecuteBatch() method on the CloudTable instance to send the
appropriate insert operations to the Table service as a single entity group transaction.

In step 9, we added a MixedBatchMethod2() method. We now used two other methods
(Replace() and Delete()) of the TableBatchOperation class, finally committing the
entire operation onto the table. The same considerations of the ETag value * apply to the
second method.

In step 10, we added a method that uses the methods we added in the previous steps.

Chapter 5

247

There's more…
While dealing with entity group transactions, remember the following rules:

ff All entities in a transaction group must have the same PartitionKey value

ff Multiple PartitionKey values in the same group transaction would throw error

ff One entity can appear only once and with only one operation as part of the entity
group transactions

See also
Have a look at these MSDN links to get additional information:

ff Designing a scalable partitioning strategy for the Azure Table storage at http://
msdn.microsoft.com/en-us/library/azure/hh508997.aspx

ff Implementing retries via the enterprise library at http://msdn.microsoft.com/
en-us/library/hh680934(v=pandp.50).aspx

Using continuation tokens and server-side
paging

The Azure Table service uses partition servers to manage the entities stored in a table.
One partition server manages all the entities with the same PartitionKey value in the
table. However, different partition servers might manage entities with different values
of PartitionKey. This distribution of entities among partition servers is, in general,
transparent to clients of the Table service. This partitioning scheme is central to the
scalability of the Table service.

When processing a query, the Table service submits the query to the first partition server
(ordered by PartitionKey) that manages entities that satisfy any filter on PartitionKey.
It then returns the first page of up to 1,000 entities retrieved by the partition server. The
Table service inserts two headers, x-ms-continuation-NextPartitionKey and x-ms-
continuation-NextRowKey(possibly null), into the response if there are additional results.
These headers comprise the continuation tokens for the query.

Any remaining results can be retrieved one page at a time by adding the continuation tokens
as request headers to the query. The Table service uses these continuation tokens to start the
query processing at the correct page. This might be on the current partition server or the next
partition server if the previous query had returned all the entities it managed that matched
the query. The client can reuse the continuation tokens if a previously requested page of data
is needed. This paging functionality is referred to as server-side paging.

http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx
http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx

Going NoSQL with Azure Tables

248

Note that it is possible that a query execution returns no entities but does return a
continuation token, which indicates that there are additional results. This can happen if a
query spans multiple partition servers, but the current partition server has found no entities
that match the query.

Handling of continuation tokens is completely transparent to the user in both Method1
and Method2. However, Method1 supports automated handling of continuation tokens
with the TableServiceQuery<T> class, a subtype of DataServiceQuery<T>. If
a large number of entities satisfy a query invoked using a synchronous method of the
TableServiceQuery<T> class, the method might not return for a considerable time.
The AsTableServiceQuery<T>() method in the TableServiceExtensions class
can be used to convert DataServiceQuery<T> into TableServiceQuery<T>.

The TableServiceQuery<T> class supports retries. It also provides synchronous execution
of queries through the Execute() method and asynchronous execution through the
BeginExecuteSegmented() and EndExecuteSegmented() methods.

Method2 supports automatic continuation token handling though the TableQuery class,
and, we should explicitly make a segmented query to avoid this. We go under the hood about
segmented queries in the Going inside continuation tokens and segmented queries recipe.

In this recipe, we will learn how to handle server-side paging.

Getting ready
This recipe uses model classes named Country and CountryDS that are declared in the
Inserting, updating, deleting, and querying data against the Table service recipe. This recipe
also assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Chapter 5

249

How to do it...
We are going to invoke a query in two different ways, for both Method1 and Method2. In one,
we do not handle the automatic server-side pagination support, while in the other, we do. We
will proceed as follows:

1.	 Add a class named ContinuationTokensExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following assembly
references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Table.DataServices;
using System.Configuration;

4.	 Add the following private members to the class:
private CloudTableClient cloudTableClient;
private String tableName = "Country";

5.	 Add the following constructor to the class:
public ContinuationTokensExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 cloudTableClient.GetTableReference(tableName)
 .CreateIfNotExists();
}

6.	 Add the following method, uploading 10,000 entities, to the class:
private void Insert10000Rows()
{
 var table = cloudTableClient.GetTableReference(tableName);
 int counter = 1;
 for (int i = 0; i < 100; i++)
 {

Going NoSQL with Azure Tables

250

 var batch = new TableBatchOperation();
 for (int j = 0; j <100; j++,counter++)
 {
 batch.Insert(new Country("Country" + counter,
 "Capital", 0));
 }
 table.ExecuteBatch(batch);
 }
}

Now, let's proceed with Method1.

7.	 Add the following method, using DataServiceQuery, to the class:
private void GetEntitiesNoContinuationMethod1()
{
 var ctx=cloudTableClient.GetTableServiceContext();
 var res=ctx.CreateQuery<CountryDS>(tableName)
 .ToArray();
}
Add the following method, using TableServiceQuery, to the class:
private void GetEntitiesWithContinuationMethod1()
{
 var ctx = cloudTableClient.GetTableServiceContext();
 var res = ctx.CreateQuery<CountryDS>(tableName)
 .AsTableServiceQuery(ctx)
 .ToArray();
}

Now, let's proceed with Method2.

8.	 Add the following method, forcing the segmentation of the query, to the class:
private void GetEntitiesNoContinuationMethod2()
{
 var table = cloudTableClient.GetTableReference(tableName);
 var res = table.ExecuteQuerySegmented<Country>(
 table.CreateQuery<Country>(),null)
 .ToArray();
}

Chapter 5

251

9.	 Add the following method, handling continuation support, to the class:
private void GetEntitiesWithContinuationMethod2()
{
 var table = cloudTableClient.GetTableReference(tableName);
 var res = table.CreateQuery<Country>()
 .ToArray();
}

In both cases, follow this final step.

10.	 Add the following method, invoking the other methods, to the class:
public static void UseContinuationTokensExample()
{
 ContinuationTokensExample example =
 new ContinuationTokensExample();
 example.Insert10000Rows();
 example.GetEntitiesNoContinuationMethod1();
 example.GetEntitiesNoContinuationMethod2();
 example.GetEntitiesWithContinuationMethod1();
 example.GetEntitiesWithContinuationMethod2();
}

How it works...
In steps 1 through 3, we set up the ContinuationTokensExample class. In step 4,
we added some private members to the class: one that specifies the name of the Country
table and the other that contains CloudTableClient which we initialize in the constructor
we added in step 5. In step 6, we added 10,000 entities to the Country table. We used
Method2 with 100 batch inserts of 100 entities each (due to the limitation explained in the
Using entity group transactions recipe, as it is the best way to accomplish the task from a
performance perspective.

In step 7, we added a method that uses DataServiceQuery, which does not handle
the continuation tokens returned by the Windows Azure Table service. In step 8, instead,
we obtained the query object through AsTableServiceQuery<T>() to convert it to
TableServiceQuery<T>. We then executed the query asking materialization of entities.

Note that AsTableServiceQuery<T>() is a method in the
TableServiceExtensions class of the Storage library. To let Visual
Studio IntelliSense suggest it, the Microsoft.WindowsAzure.Storage.
Table.DataServices namespace should be added to the code file.

Going NoSQL with Azure Tables

252

In step 9, we replayed the behavior with Method2, using the new pattern based on the
TableQuery<T> object. As the new pattern natively supports server-side pagination or,
better, it does not have a general-purpose object to deal without it, we need to explicitly
ask for a segmented query to ask for the first and only chunk of results.

In step 10, we used the same method that, without specifying anything, handles the
server-side pagination that performs several queries on the data store.

To see the behavior of the Storage library, open Fiddler while
executing the methods that handle the pagination to see that
10 consecutive queries are performed against the Table service,
hidden from the user.

In step 11, we added a method that uses the methods we added in the previous steps.

See also
Have a look at the following MSDN link to get additional information:

ff Reference to the REST implementation of timeout and pagination at http://msdn.
microsoft.com/en-us/library/azure/dd135718.aspx

Going inside continuation tokens and
segmented queries

As we saw in the Using continuation tokens and server-side paging recipe, the Azure Storage
library offers the capability to automatically handle the server-side pagination for queries that
go over some boundaries (more than 1,000 entities, cross partition, and so on). Also, the
library offers, through the concept of segmented queries, the capability to control the query
process deeply, one iteration at a time.

Both Method1 and the Method2 have this capability through the ExecuteSegmented
method of the TableServiceQuery<T> and TableQuery<T> classes, respectively. In
addition, as the Azure Storage library uses the Common Language Runtime (CLR), this
method is also provided with the Asynchronous Programming Model, to provide asynchronous
versions in addition to that method, to nearly all the methods that access the Azure
Storage service. The asynchronous methods that download lists, such as entities, tables,
and so on, typically come in a matched pair named BeginExecuteSegmented () and
EndExecuteSegmented(), where the segmented suffix indicates that the results are
returned as a result segment, which might not contain the complete result set. Essentially,
these methods page through the data, one result segment at a time.

http://msdn.microsoft.com/en-us/library/azure/dd135718.aspx
http://msdn.microsoft.com/en-us/library/azure/dd135718.aspx

Chapter 5

253

The TableServiceQuery<T> and TableQuery<T> classes expose the
BeginExecuteSegmented() and EndExecuteSegmented() methods to implement the
query execute functionality. The BeginExecuteSegmented() method takes a parameter
that specifies the current ContinuationToken header along with the callback method
in which EndExecuteSegmented() must be called to clean up resources used in the
asynchronous call. The code can be simplified using a lambda expression in place of the
callback method.

The EndExecuteSegmented() method returns a TableQuerySegment<T> class, which
contains the current page of results (the Results property) as well as any continuation
tokens returned by the Table service. Subsequent synchronous or asynchronous calls to the
same methods should provide them with the ContinuationToken header returned by the
Table service to obtain subsequent pages of data.

In this recipe, we will learn how to manually control the server-side pagination in conjunction
with the use of the APM pattern.

Getting ready
This recipe uses the model classes named Country and CountryDS that are declared
in the Inserting, updating, deleting, and querying data against the Table service recipe and
performs queries on the 10,000-entity dataset uploaded in the Using continuation tokens
and server-side paging recipe. This recipe also assumes that the following lines of code are
in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

How to do it...
We are going to execute segmented queries using the asynchronous
BeginExecuteSegmented() and EndExecuteSegmented() methods. We will do this
using the following steps:

1.	 Add a class named AdvancedContinuationTokensExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following
assembly references to the project:
System.Configuration

Going NoSQL with Azure Tables

254

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Table.DataServices;
using System.Configuration;
using System.Threading;

4.	 Add the following private members to the class:
private CloudTableClient cloudTableClient;
private String tableName = "Country";

5.	 Add the following constructor to the class:
public AdvancedContinuationTokensExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 cloudTableClient.GetTableReference(tableName)
 .CreateIfNotExists();
}

Now, let's proceed with Method1.

6.	 Add the following private members to the class:
private List<CountryDS> resultsDS = new List<CountryDS>();
private AutoResetEvent loadedDS = new AutoResetEvent(false);

7.	 Add the following method, demonstrating asynchronous server-side paging, to
the class:
private void ManualContinuationMethod1()
{
 var ctx = cloudTableClient.GetTableServiceContext();
 TableServiceQuery<CountryDS> query =
 ctx.CreateQuery<CountryDS>(tableName)
 .AsTableServiceQuery(ctx);
 query.BeginExecuteSegmented(null, SegmentedStepMethod1,
query);
 loadedDS.WaitOne();
}

Chapter 5

255

8.	 Add the callback method needed by the previous asynchronous call:
private void SegmentedStepMethod1(IAsyncResult obj)
{
 var query = obj.AsyncState as TableServiceQuery<CountryDS>;
 TableQuerySegment<CountryDS> segmented
 = query.EndExecuteSegmented(obj);
 resultsDS.AddRange(segmented.Results);
 if (segmented.ContinuationToken != null)
 {
 query.BeginExecuteSegmented(segmented.ContinuationToken
 , SegmentedStepMethod1, query);
 }
 else
 {
 loadedDS.Set();
 }
}

Now, let's proceed with Method2.

9.	 Add the following private members to the class:
private List<Country> results = new List<Country>();
private AutoResetEvent loaded = new AutoResetEvent(false);

10.	 Add the following method, demonstrating asynchronous server-side paging,
to the class:
private void ManualContinuationMethod2()
{
 var table = cloudTableClient.GetTableReference(tableName);
 TableQuery<Country> query = table.CreateQuery<Country>();
 query.BeginExecuteSegmented(null, SegmentedStepMethod2,
query);
 loaded.WaitOne();
}

11.	 Add the callback method needed by the previous asynchronous call:
private void SegmentedStepMethod2(IAsyncResult obj)
{
 var query = obj.AsyncState as TableQuery<Country>;
 TableQuerySegment<Country> segmented
 = query.EndExecuteSegmented(obj);
 results.AddRange(segmented.Results);
 if (segmented.ContinuationToken != null)
 {

Going NoSQL with Azure Tables

256

 query.BeginExecuteSegmented(segmented.ContinuationToken
 , SegmentedStepMethod2, query);
 }
 else
 {
 loaded.Set();
 }
}

In both cases, follow this final step.

12.	 Add the following method using the methods we added earlier:
public static void UseAdvancedContinuationTokensExample()
{
 AdvancedContinuationTokensExample example =
 new AdvancedContinuationTokensExample();

 example.ManualContinuationMethod1();
 example.ManualContinuationMethod2();
}

How it works...
In steps 1 through 3, we set up the ContinuationTokensExample class. In step 4, we added
some private members to the class, one that specifies the name of the Country table and
the other that contains the CloudTableClient table which we initialized in the constructor we
added in step 5. In step 6, we proceeded with the DataServices pattern, adding two private
members to the class: a list, to save the CountryDS instances returned by the queries, and an
AutoResetEvent class, to block the execution of the asynchronous queries.

In step 7, we created a TableServiceQuery class using the AsTableServiceQuery()
extension method, and we began to execute the asynchronous chain of operations. The
WaitOne() method gets blocked to avoid program termination, and it is intended for
demonstration purposes only.

In step 8, we added the callback method that ends the segmented query, adds the
partial results to the list of items, and reiterates a new segmented query, calling the
BeginExecuteSegmented() method again; this time, it passed a valid continuation
token until it is null, meaning that there are no more entities to fetch from the table.

Chapter 5

257

Steps 9 and 10 are basically the same as 7 and 8, with the exception that with Method2, some
classes change. We used a TableQuery class instead of a TableServiceQuery class, but
the callback method used a TableServiceSegment class for results, as it did for Method1.

In step 12, we added a method that uses the methods we added earlier.

There's more…
In the current recipe, we see how to perform segmented queries with the APM pattern.
However, it is possible to perform these queries in a synchronous way as follows:

private void ManualContinuationMethod2Sync()
{
 var table = cloudTableClient.GetTableReference(tableName);
 TableQuery<Country> query = table.CreateQuery<Country>();
 TableContinuationToken token=null;
 var list=new List<Country>();
 do
 {
 var res = query.ExecuteSegmented(token);
 token = res.ContinuationToken;
 list.AddRange(res.Results);
 } while (token != null);
}

As shown in the code snippet, we cycle over a ContinuationToken condition to check if
there is more data to fetch from the Table service.

See also
We will see how to use the Storage Client library to download blobs asynchronously in the
Downloading a blob asynchronously recipe of Chapter 3, Getting Storage with Blobs in Azure.

Have a look at this MSDN link to get additional information:

ff The Azure Table storage while implementing Cloud solutions at http://msdn.
microsoft.com/en-us/library/ff803362.aspx

http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff803362.aspx

Going NoSQL with Azure Tables

258

Handling entity serialization events
The Azure Table service exposes a RESTful interface in which an entity is represented in
various formats. Initially, there was only the Atom format to support JSON in recent years.
In saving an instance to a table, the Azure Storage library serializes the instance into the
appropriate format before invoking the appropriate REST operation on the Table service.
Similarly, when retrieving an entity from a table, the Storage Client library deserializes the
entry into an instance of the model class.

The Table service supports a limited set of simple datatypes for the properties of entities.
These datatypes are listed in the Inserting, updating, deleting, and querying data against the
Table Service recipe. By default, the Storage Client library serializes an instance of a model
class by converting each public property of one of the supported datatypes into an element
in a result entry. Deserialization simply reverses this process.

Method1 and Method2 differ dramatically in how deserialization can be controlled or
influenced. The first method, based on WCF Data Services, allows us to operate on the
TableServiceContext configuration to intercept serialization events in the request
pipeline. The second one passes the control of serialization events to the entity involved
in the process.

In this recipe, we will learn how to influence the serialization events to modify the default
serialization and deserialization behaviors when saving and retrieving data from a table.

Getting ready
This recipe assumes that the following lines of code are in the application's configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for the
account name and access key, respectively.

Chapter 5

259

How to do it...
We are going to create model classes to represent cars, books, and customers. We want to
save these entities in the same table while marking the items with their type, to perform a
filtered retrieval subsequently. We will proceed with the two methods separately, as they
differ a lot:

1.	 Add a class named ReadingWritingEntityExample.

2.	 Install the WindowsAzure.Storage NuGet package and add the following assembly
references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.Data.OData;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure.Storage.Table.DataServices;
using System.Configuration;
using System.Collections.Generic;
using System.Configuration;
using System.Data.Services.Client;
using System.Xml.Linq;

4.	 Add the following private members to the class:
private CloudTableClient cloudTableClient;
private String tableName = "Stuff";

5.	 Add the following constructor to the class:
public ReadingWritingEntityExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 cloudTableClient.GetTableReference(tableName)
 .CreateIfNotExists();
}

Now, let's proceed with Method1.

Going NoSQL with Azure Tables

260

6.	 Add the BaseEntityDS class to the code after the namespace declaration:
public class BaseEntityDS : TableServiceEntity
{
 public string Type { get; set; }
 public BaseEntityDS()
 {
 PartitionKey = "variousDS";
 }
}

7.	 Add the model classes after the preceding class declaration:
public class CarDS : BaseEntityDS
{
 public string Brand { get; set; }
}
public class BookDS : BaseEntityDS
{
 public string Author { get; set; }
}
public class CustomerDS : BaseEntityDS
{
 public string Name { get; set; }
}

8.	 Add this method, performing a 100-entity bulk insert, to the class:
private void AddSomeEntitiesMethod1()
{
 var ctx = cloudTableClient.GetTableServiceContext();
 ctx.Configurations.RequestPipeline.OnEntryEnding(a =>
 {
 var typeName = a.Entity.GetType().Name;
 var props = a.Entry.Properties.ToList();
 var type = props
 .FirstOrDefault(p => p.Name == "Type");
 if (type == null)
 {
 type = new ODataProperty() { Name = "Type" };
 props.Add(type);
 a.Entry.Properties = props;
 }
 type.Value = typeName;
 });
 int counter = 1;
 for (int i = 0; i < 100; i++)

Chapter 5

261

 {
 BaseEntityDS entity = null;
 if (counter == 1) entity =
 new CarDS() { Brand = "BMW" + i,
 RowKey = i.ToString() };
 if (counter == 2) entity =
 new BookDS() { Author = "Whitman" + i,
 RowKey = i.ToString() };
 if (counter == 3) entity =
 new CustomerDS() { Name = "Steve" + i,
 RowKey = i.ToString() };
 counter = (counter == 3 ? 1 : counter + 1);
 ctx.AddObject("Stuff", entity);
 }
 ctx.SaveChangesWithRetries(SaveChangesOptions.Batch);
}

9.	 Add this method, reading only certain type of entities, to the class:
public void ReadingEntitiesMethod1()
{
 var ctx = cloudTableClient.GetTableServiceContext();
 var res = ctx.CreateQuery<CarDS>("Stuff")
 .Where(p => p.Type == "CarDS")
 .ToArray();
}

Now, let's proceed with Method2.

10.	 Add the BaseEntity class to the code after the namespace declaration:
public class BaseEntity:TableEntity
{
 public string Type { get; set; }
 public BaseEntity()
 {
 PartitionKey = "various";
 }

 public override IDictionary<string, EntityProperty>
WriteEntity(OperationContext operationContext)
 {
 var dict= base.WriteEntity(operationContext);
 dict["Type"]= new EntityProperty(this.GetType().Name);
 return dict;
 }
}

Going NoSQL with Azure Tables

262

11.	 Add the model classes after the preceding class declaration:
public class Car : BaseEntity
{
 public string Brand { get; set; }
}
public class Book : BaseEntity
{
 public string Author { get; set; }
}
public class Customer : BaseEntity
{
 public string Name { get; set; }
}

12.	 Add this method, performing a 100-entity bulk insert, to the
ReadingWritingEntityExample class:
public void AddSomeEntitiesMethod2()
{
 var table = cloudTableClient
 .GetTableReference(tableName);
 int counter = 1;
 var batch = new TableBatchOperation();
 for (int i = 0; i < 100; i++)
 {
 BaseEntity entity = null;
 if (counter == 1) entity =
 new Car() { Brand = "BMW"+i,
 RowKey = i.ToString() };
 if (counter == 2) entity =
 new Book() { Author = "Whitman"+i,
 RowKey = i.ToString() };
 if (counter == 3) entity =
 new Customer() { Name= "Steve"+i,
 RowKey = i.ToString() };
 counter=(counter==3?1:counter+1);
 batch.Insert(entity);
 }
 table.ExecuteBatch(batch);
}

Chapter 5

263

13.	 Add this method, reading only certain type of entities, to the class:
public void ReadingEntitiesMethod2()
{
 var table = cloudTableClient.GetTableReference(tableName);
 var res = table.CreateQuery<Car>().Where(p=>p.Type=="Car")
 .ToArray();
}

In both cases, follow this final step.

14.	 Add the following method using the methods we added earlier:
public static void UseReadingWritingEntityExample()
{
 ReadingWritingEntityExample example =
 new ReadingWritingEntityExample();
 example.AddSomeEntitiesMethod1();
 example.ReadingEntitiesMethod1();
 example.AddSomeEntitiesMethod2();
 example.ReadingEntitiesMethod2();
}

How it works...
In steps 1 through 3, we set up the ReadingWritingEntityExample class. In step 4,
we added some private members to the class: one that specifies the name of the Stuff
table and the other that contains the CloudTableClient class which we initialize in the
constructor we added in step 5.

In step 6, we proceeded with the DataServices pattern, creating a BaseEntityDS father
type, writing its instances to the variousDS partition. In step 7, we added the CarDS,
BookDS, and CustomerDS subtypes. As done with the Country data model (of the previous
recipes), we wrote two separate models to deal independently from Method1 and Method2.

In step 8, we added 100 entities to the Stuff table, using an index technique to equally
distribute them across subtypes. Before invoking the SaveChangesWithRetries()batch,
we injected a custom serialization function in RequestPipeline to make it called each time
the TableServiceContext class tried to serialize an entity before sending it to the cloud.
Hence, we asked for the properties being serialized, and we injected the Type field to the
entity type name. We needed to reassign the Properties property of the Entry instance
due to the (IEnumerable<ODataProperty>) property type that is not editable.

In step 9, we made a simple query that performed a filter onto the Type property, to retrieve
only the entities that are of the CarDS type.

Going NoSQL with Azure Tables

264

In step 10, we proceeded with the new pattern, declaring a base entity type (writing to
the various partition), which directly handled its serialization logic by overriding the
WriteEntity method of the TableEntity type. The semantic of this method is to influence
a dictionary of properties before returning it to the storage library. So, it is quite simple to add
the interested property to the dictionary and return it.

As done for Method1, in step 11, we added the car, book, and customer subtypes to the
code, and we added 100 entities of mixed types in step 12. The batch operation performed a
single query with the whole dataset, as explained better in the Using entity group transactions
recipe. Finally, in step 13, we used CloudTable.CreateQuery<T> to perform a query,
filtered by the type we are interested in.

In step 14, we added a method that uses the methods we added earlier.

There's more…
As we can imagine, as we deal with the event during serialization, we can even handle the
event during the deserialization process. With WCF Data Services, we can influence the entire
RequestPipeline property to fit our needs of customization. In particular, we have to
handle these events as follows:

public class DataServiceClientRequestPipelineConfiguration
{
 public Func<DataServiceClientRequestMessageArgs,
 DataServiceClientRequestMessage> OnMessageCreating { get; set;
}
 public DataServiceClientRequestPipelineConfiguration
 OnEntityReferenceLink(Action<WritingEntityReferenceLinkArgs>
action);
 public DataServiceClientRequestPipelineConfiguration
 OnEntryEnding(Action<WritingEntryArgs> action);
 public DataServiceClientRequestPipelineConfiguration
 OnEntryStarting(Action<WritingEntryArgs> action);
 public DataServiceClientRequestPipelineConfiguration
 OnMessageWriterSettingsCreated(Action<MessageWriterSettingsAr
gs> args);
 public DataServiceClientRequestPipelineConfiguration
 OnNavigationLinkEnding(Action<WritingNavigationLinkArgs>
action);
 public DataServiceClientRequestPipelineConfiguration
 OnNavigationLinkStarting(Action<WritingNavigationLinkArgs>
action);
}

Chapter 5

265

During the response, when the entities are deserialized from the HTTP stream, we have these
events too:

public class DataServiceClientResponsePipelineConfiguration
{
 public DataServiceClientResponsePipelineConfiguration
 OnEntityMaterialized(Action<MaterializedEntityArgs> action);
 public DataServiceClientResponsePipelineConfiguration
 OnEntryEnded(Action<ReadingEntryArgs> action);
 public DataServiceClientResponsePipelineConfiguration
 OnEntryStarted(Action<ReadingEntryArgs> action);
 public DataServiceClientResponsePipelineConfiguration
 OnFeedEnded(Action<ReadingFeedArgs> action);
 public DataServiceClientResponsePipelineConfiguration
 OnFeedStarted(Action<ReadingFeedArgs> action);
 public DataServiceClientResponsePipelineConfiguration
 OnMessageReaderSettingsCreated(Action<MessageReaderSettingsAr
gs> messageReaderSettingsAction);
 public DataServiceClientResponsePipelineConfiguration
 OnNavigationLinkEnded(Action<ReadingNavigationLinkArgs>
action);
 public DataServiceClientResponsePipelineConfiguration
 OnNavigationLinkStarted(Action<ReadingNavigationLinkArgs>
action);
}

With the new pattern, we can override the ReadingEntity method in each son of the
TableEntity type. This lets us customize the deserialization process; this is very useful
while dealing with third-party objects nested in our model classes.

Legacy approach to custom serialization with Atom feeds
The Storage Client library exposes extension points, the WritingEntity and
ReadingEntity events, that can be used to modify the default behavior of serialization and
deserialization, but only while using an XML Atom feed as the negotiating format. An argument
of the ReadingWritingEntityEventArgs type is passed into the WritingEntity and
ReadingEntity handlers. This argument provides access to both the instance properties,
and the Atom entry allows them to be inspected and modified as desired.

Going NoSQL with Azure Tables

266

The following is an excerpt of how to deal with that:

var ctx = cloudTableClient.GetTableServiceContext();
XNamespace ns = ctx.DataNamespace;
XNamespace meta = ctx.DataNamespace + "/metadata";
ctx.Format.UseAtom();
ctx.WritingEntity += (s, e) =>
{
 var entity = e.Entity as BaseEntityDS;
 entity.Type = entity.GetType().Name;
 XElement properties = e.Data.Descendants(
 meta + "properties").First();
 properties.Add(new XElement(ns + "Type", entity.Type));
};

As we can see, this kind of customization involves the specific format, and it is
generally deprecated.

See also
We learned about the data model used by the Table service in the Inserting, updating,
deleting, and querying data against the Table service recipe.

Have a look at the following MSDN links to get additional information:

ff Performance considerations with Table storage, serialization, and JSON at
http://blogs.msdn.com/b/windowsazurestorage/archive/2013/12/05/
windows-azure-tables-introducing-json.aspx

ff AtomPub specifications at http://msdn.microsoft.com/en-us/library/
dd541369.aspx

Facilitating NoSQL with client-side
projection

The Azure Table service is a powerful storage service that enables an application to save and
query entities (potentially schemaless) with an unbelievable scalability target and, of course,
minimal governance. As we can save several types of aggregates of different topologies into
the same table, the Storage library helps us deal with this, performing client-side projection
to provide the application with the strong-typed model, instead of a collection of key-value
items for each entity.

http://blogs.msdn.com/b/windowsazurestorage/archive/2013/12/05/windows-azure-tables-introducing-json.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2013/12/05/windows-azure-tables-introducing-json.aspx
http://msdn.microsoft.com/en-us/library/dd541369.aspx
http://msdn.microsoft.com/en-us/library/dd541369.aspx

Chapter 5

267

In this chapter, we wrote about two different ways to accomplish tasks
with the Table service. We called them Method1 (for the WCF Data
Services way) and Method2 (for the new officially supported OData
method). In this recipe, we will only show how to proceed with Method2,
as there are no valid counterparts to Method1.

In this brief recipe, we will see how to notice the SDK to manipulate returning entities
before giving them back to the application.

Getting ready
This recipe uses the BaseEntity, Car, Book, and Customers classes defined in the
Handling entity serialization events recipe. Although a complete reading of the recipe
is useful to proceed, only the class model is needed to proceed.

This recipe also assumes that the following lines of code are in the application's
configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values for
the account name and access key, respectively.

How to do it...
We are going to query the DynamicStuff table to obtain each entity, but as they are
different in type and properties, we want a client-side resolver that wraps each entity
into the correct class type. We will proceed as follows:

1.	 Add a class named ClientSideProjectionExample.

2.	 Install the WindowsAzure.Storage NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using System.Configuration;
using System.Collections.Generic;
using System.Configuration;

Going NoSQL with Azure Tables

268

4.	 Add the following private members to the class:
private CloudTableClient cloudTableClient;
private String tableName = "DynamicStuff";

5.	 Add the following constructor to the class:
public ClientSideProjectionExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudTableClient =
 cloudStorageAccount.CreateCloudTableClient();
 cloudTableClient.GetTableReference(tableName)
 .CreateIfNotExists();
}

6.	 Add the following method, to wrap each entity into the correct type, to the class:
public IEnumerable<BaseEntity> GetAllItemsByType()
{
 var table = cloudTableClient.GetTableReference(tableName);

 EntityResolver<BaseEntity> resolver =
 (pk, rk, ts, props, etag) =>
 {
 BaseEntity resolvedEntity = null;
 string type = props["Type"].StringValue;

 if (type == "Car") { resolvedEntity = new Car(); }
 else if (type == "Book") { resolvedEntity = new Book(); }
 else if (type == "Customer") { resolvedEntity
 = new Customer(); }

 resolvedEntity.PartitionKey = pk;
 resolvedEntity.RowKey = rk;
 resolvedEntity.Timestamp = ts;
 resolvedEntity.ETag = etag;
 resolvedEntity.ReadEntity(props, null);
 return resolvedEntity;
 };
 return table.ExecuteQuery(table
 .CreateQuery<BaseEntity>(), resolver);
}

Chapter 5

269

7.	 Add the following method using the method we added earlier to print only the brand
values of the Car entities:
public static void UseReadingWritingEntityExample()
{
 ClientSideProjectionExample example =
 new ClientSideProjectionExample();
 var items = example.GetAllItemsByType();
 foreach (var item in items.OfType<Car>())
 {
 Console.WriteLine(item.Brand);
 }
}

How it works…
In steps 1 through 3, we set up the ClientSideProjectionExample class. In step 4,
we added some private members to the class: one that specifies the name of the Stuff
table and the other that contains the CloudTableClient class which we initialized in the
constructor we added in step 5.

In step 6, we created an EntityResolver<BaseEntity> instance, specifying that for
each entity retrieved from the data store, a lambda must be called to handle a custom
resolving logic. In the code, we discriminated the Type field to create a specific instance
of the correct type. Then, we called the underlying deserialization logic with the
TableEntity.ReadEntity method.

In step 7, we got all the items of the data store, and then, we used LINQ to cycle only the
Car instances.

There's more…
There is really no need to build our custom data model to fit the Azure Table service. Instead,
we can just work with a top-level implementation of TableEntity that wraps the entire
content of an entity into a set of key-value items.

The DynamicTableEntity class is returned by the Storage library when the query is not
bound to an actual type, so the library can't deserialize the entity into a custom object. With
the DynamicTableEntity class, we can deal with heterogeneous queries, as it extends
the TableEntity base class with heterogeneous updates as well.

Going NoSQL with Azure Tables

270

To perform a generic query for all the elements in a specific partition, proceed as follows:

public IEnumerable<DynamicTableEntity> GetHeterogeneousItems()
{
 var table = cloudTableClient.GetTableReference(tableName);
 return table.ExecuteQuery(new TableQuery()
 .Where(TableQuery.GenerateFilterCondition
 ("PartitionKey",QueryComparisons.Equal,"various")));
}

Please note that the Where clause of the nongeneric TableQuery class does not have the
LINQ expressions' overloads to use lambda for filters. Instead, it has a simple string-based
query language (the OData language) that could also be generated using the TableQuery
static helper members and the QueryComparisons helper class.

Each item of the returned set has the base properties of each TableEntity class plus
every other property stored in an IDictionary<string,EntityProperty> property,
and it is accessible as follows:

var heterogenous = example.GetHeterogeneousItems();
foreach (var item in heterogenous)
{
 Console.WriteLine(item["Type"].StringValue);
}

Finally, to perform a batch update of the heterogeneous entities, we can use the following
line of codes:

public void PerformHeterogeneousUpdate(IEnumerable<DynamicTableEntity>
set)
{
 var table = cloudTableClient.GetTableReference(tableName);
 TableBatchOperation batch = new TableBatchOperation();
 foreach (var item in set)
 {
 item["NewField"] =new EntityProperty("Hi");
 batch.Merge(item);
 }
 table.ExecuteBatch(batch);
}

Chapter 5

271

See also
Have a look at these MSDN links to get additional information:

ff Comparison between the Azure Table storage and Azure SQL Database at http://
msdn.microsoft.com/en-us/library/jj553018.aspx

ff The NoSQL perspective around the Table storage at http://msdn.microsoft.
com/en-us/magazine/dn166928.aspx

http://msdn.microsoft.com/en-us/library/jj553018.aspx
http://msdn.microsoft.com/en-us/library/jj553018.aspx
http://msdn.microsoft.com/en-us/magazine/dn166928.aspx
http://msdn.microsoft.com/en-us/magazine/dn166928.aspx

6
Messaging and Queues

with the Storage and
Service Bus

In this chapter, we will cover the following topics:

ff Managing Azure Storage queues

ff Managing Azure Service Bus queues

ff Adding messages to a Storage queue

ff Adding messages to a Service Bus queue

ff Receiving messages with Storage queues

ff Receiving messages with Service Bus queues

ff Implementing publish/subscribe with Service Bus topics

ff Implementing Relayed messaging with the Service Bus

ff Communication between .NET and Java with the Service Bus and AMQP

Introduction
Queues provide a way to decouple the connection between two actors, interconnecting
heterogeneous systems by message-driven contact points. The producing actor inserts a
message containing the details of the request into the queue. The consuming actor polls
the queue and upon getting the message, performs the associated task. If necessary, the
consuming actor can insert a message in another queue indicating completion of the task.

Messaging and Queues with the Storage and Service Bus

274

A more general view is that a generic queue service provides a way to manage the processing
of a task so that it is more robust against failure. Azure is a scalable system and it is possible
that a component of the system could fail at any time, causing the loss of any work in
progress. The extent of this loss can be minimized by breaking the task into individual steps.
The loss of work-in-progress for an individual step is less significant than that of the overall
task. A queue service supports this functionality by providing a coherent way to track the work
status of a task through the insertion of a message in a queue to indicate the completion of a
step and allow the next step to start.

While developing cloud services, a queue facilitates their scalability by allowing disconnected
communication between roles in it, allowing the roles to scale independently of each other.
Indeed, they do not even need to be active at the same time.

More generally, the queue service provides a coherent way to manage the processing of a
task comprising several steps. For example, a long-lived task could be broken up into steps
and the status of these steps managed using queues, enabling scalable systems and patterns
like CQRS.

The Azure Storage queues is the Azure feature that manages queues and the messages
in them at the same level as blobs and tables, while the Azure Service Bus is the Azure
building clock comprising another version of queues, plus Topic (publish/subscribe queues)
and Relay services.

Storage queues were introduced first, as part of the Azure Storage service. Later, Microsoft
released the Service Bus platform with apparently overlapping features. In addition, Service
Bus queues offer a more featured service, compared to the Azure Storage queues. It is
recent debate when to use Storage queues and when to use the Service Bus platform;
this is something we try to discuss later in this chapter.

The following table is taken from http://msdn.microsoft.com/en-us/library/
hh767287.aspx

Comparison
Criteria Queues Service Bus Queues

Ordering guarantee No Yes, First-In-First-Out (FIFO)

(through the use of messaging sessions)
Delivery guarantee At-Least-Once At-Least-Once

At-Most-Once
Transaction support No Yes

(through the use of local transactions)

http://msdn.microsoft.com/en-us/library/hh767287.aspx
http://msdn.microsoft.com/en-us/library/hh767287.aspx

Chapter 6

275

Comparison
Criteria Queues Service Bus Queues

Receive behavior Nonblocking

(completes immediately if
no new message is found)

Blocking with/without timeout

(offers long polling or the Comet
technique)

Nonblocking

(through the use of .NET managed
API only)

Push-style API No Yes

OnMessage and OnMessage sessions
managed (.NET) API

Receive mode Peek & Lease Peek & Lock

Receive & Delete
Exclusive access
mode

Lease-based Lock-based

Lease/Lock
duration

30 seconds (default)

7 days (maximum)

(you can renew or release
a message lease using
the UpdateMessage API)

60 seconds (default)

(you can renew a message lock using
the RenewLock API)

Lease/Lock
granularity

Message level

(each message can
have a different timeout
value, which you can
then update as needed
while processing the
message by using the
UpdateMessage API)

Queue level

(each queue has a lock granularity
applied to all of its messages, but
you can renew the lock using the
RenewLock API)

Batched receive Yes

(explicitly specifying
message count when
retrieving messages,
up to a maximum of 32
messages)

Yes

(implicitly enabling a pre-fetch property or
explicitly through the use of transactions)

Batched send No Yes

(through the use of transactions or
client-side batching)

Messaging and Queues with the Storage and Service Bus

276

In the preceding table, there is a comparison of the two services by their features and how
they implement them differently. Refer to the following points for more information:

ff Ordering guarantee: Storage queues do not guarantee ordering, so a message sent
at time T could be processed after a message sent at time T+1.

ff Delivery guarantee: When messages arrive to the consumer, it retrieves, processes
and deletes them. If something goes wrong during this process, the message is put
again on the queue. This is often referred to as At-Least-Once processing, compared
to the At-Most-Once (supported by the Service Bus) that guarantees that the message
is only processed once.

ff Transaction support: Service Bus supports transaction and it is for transaction that
provides the At-Most-Once delivery.

ff Receive behavior: With Storage queues, we must perform a manual polling to the
service to discover new messages, while the Service Bus provides itself blocking calls
if no messages are found in the queue.

ff Push-style API: This means the Service Bus library supports notifications via .NET
managed callbacks.

ff Receive mode: In both services, a read message becomes invisible for a given
timeout. After that, it becomes available again to clients for further processing.
So, the client should delete it before the lease/lock expires. In Service Bus queues,
we can perform a Receive & Delete call, avoiding the second-pass deletion.

.NET Applications can operate against queues by using the following two libraries, respectively:

ff Azure Storage Library: This is used for the Storage queues, using the same
foundation classes of the Storage blobs and tables

ff Azure Service Bus Library: This is used for the Service Bus queues, using Topics
and Relay services

In the Managing Azure Storage queues and Managing Azure Service Bus queues recipes, we
will see how to allocate resources and start using the two platforms. In the Adding messages
to a Storage queue and Adding messages to a Service Bus queue recipes, we will see
message insertion with expiration and delayed delivery, while in the Receiving messages with
Storage queues and Receiving messages with Service Bus queues recipes, we will get the
Get, Peek, and Bulk receive messages from the queues.

Chapter 6

277

In the Implementing publish/subscribe with Service Bus topics recipe, we will see the unique
publish/subscribe feature of Azure, implemented by the Service Bus with Topics. Also, the
relayed messaging feature, enabling WCF services to register themselves to a public-faced
endpoint of Azure, is a unique feature of Service Bus. We will see this in the Implementing
Relayed messaging with the Service Bus recipe.

Finally, since Azure Service Bus queues support the AMQP protocol, we see how to integrate
non-.NET solutions with queues, as described in the Communication between .NET and Java
with the Service Bus and AMQP recipe.

Managing Azure Storage queues
The Azure Storage Service partitions data to provide scalability and has a lower scalability
target for data in a single partition than for a storage account. The queue service stores
each queue in its own partition. At the time of writing, the scalability target for a single
queue is 2,000 messages per second, while the scalability target for an entire storage
account is up to 20,000 messages per second. Consequently, scalability may be improved
by using multiple queues.

In the Azure Storage library, the CloudQueue class provides both synchronous and
asynchronous methods to manage queues and the messages in them. These include
methods to create, delete, and clear queues. Although queues may have metadata associated
with them, only the queue name is needed to create a queue. The queue name may comprise
only lowercase letters, numbers, and the dash character.

In this recipe, we'll learn how to manage queues.

Getting ready
This recipe assumes the following code is in the application configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values of the
account name and access key.

Messaging and Queues with the Storage and Service Bus

278

How to do it...
We are going to create a queue, look at some of its attributes, and then delete the queue.
We do this as follows:

1.	 Add a new class named ManageStorageQueueExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Queue;
using System.Configuration;

4.	 Add the following private member to the class:
private CloudQueueClient cloudQueueClient;

5.	 Add the following constructor to the class:
public ManageStorageQueueExample()
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 cloudQueueClient =
 cloudStorageAccount.CreateCloudQueueClient();
}

6.	 Add the following method, creating a queue, to the class:
public void CreateQueue(String queueName)
{
 CloudQueue cloudQueue =
 cloudQueueClient.GetQueueReference(queueName);
 cloudQueue.CreateIfNotExists();
}

7.	 Add the following method, retrieving queue information, to the class:
public void GetQueueInformation(String queueName)
{
 CloudQueue cloudQueue =
 cloudQueueClient.GetQueueReference(queueName);

Chapter 6

279

 int? approximateMessageCount =
 cloudQueue.ApproximateMessageCount;
 cloudQueue.FetchAttributes();
 approximateMessageCount = cloudQueue.ApproximateMessageCount;
 Uri uri = cloudQueue.Uri;
 foreach (String key in cloudQueue.Metadata.Keys)
 {
 String metadataValue = cloudQueue.Metadata[key];
 }
}

8.	 Add the following method, deleting the queue, to the class:
public void DeleteQueue(String queueName)
{
 CloudQueue cloudQueue =
 cloudQueueClient.GetQueueReference(queueName);
 cloudQueue.DeleteIfExists();
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void UseCreateQueueExample()
{
 String queueName = "{QUEUE_NAME}";
 ManageStorageQueueExample example = new
ManageStorageQueueExample();

 example.CreateQueue(queueName);
 example.GetQueueInformation(queueName);
 example.DeleteQueue(queueName);
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store the
CloudQueueClient object used to connect to the queue service. We initialized this in the
constructor we added in step 5.

In step 6, we added a method that initializes a CloudQueue object and uses it to create a
queue. It is always preferable to use the CreateIfNotExists() method to avoid runtime
exceptions while creating the remote resources.

Messaging and Queues with the Storage and Service Bus

280

In step 7, we added a method that initializes a CloudQueue object and uses it to retrieve the
approximate message count of the queue. We asked for that property twice, since the first
time the queue's attributes are not fetched from the remote service. The second time, after
calling FetchAttributes(), we have the property actually populated.

The GetQueueReference() method builds only a class instance
pointing to the URI of the Storage queue passed as an argument.
So, since there is no exchange between client and server, the
ApproximateMessageCount property is null. This is why we ask
the FetchAttributes() method on the server side to populate the
property as long as the metadata of the queue.

We then retrieved and looked at the queue attributes, including the URI and any user-defined
metadata associated with the queue.

In step 8, we added a method that initializes a CloudQueue object and uses it to delete a
queue (also, it is preferable to use the safer DeleteIfExists() method).

In step 9, we added a method that invokes the methods we added earlier. We need to replace
{QUEUE_NAME} with an appropriate name for a queue.

The queue name should be in lower case with names no longer than
63 characters (with a minimum of three characters); the first and the
last letters of the name should be alphanumeric and the dash (-) is the
only nonalphanumeric character permitted.

There's more…
As for every Storage endpoint (tables and blobs), the queues also support the listing of the
current queues of a storage account. To get that list, we can proceed as follows:

public IEnumerable<CloudQueue> GetQueues()
{
 return cloudQueueClient.ListQueues()
 .ToArray();
}

In the ListQueues() method, an optional string could be passed to filter the queues result
by a prefix.

Chapter 6

281

Nagle's algorithm
TCP operates with algorithms that help it to enhance transmission performance. One of them
is Nagle's algorithm. Nagling is an optimization that merges requests (on the sender part) to
avoid network congestion while sending small requests (of less than the default TCP packet
size). Under certain conditions, for example, during many HTTP subsequent calls to the Azure
Storage service, this behavior could be cumbersome and we can power up the wire using the
following statement:

ServicePointManager.UseNagleAlgorithm = false;

See also
Have a look at the following links to get additional information:

ff The Storage queue documentation at http://azure.microsoft.com/en-en/
documentation/articles/storage-dotnet-how-to-use-queues/

ff Learn more about Nagle's algorithm at http://en.wikipedia.org/wiki/
Nagle's_algorithm

Managing Azure Service Bus queues
Service Bus is a comprehensive set of enterprise-ready connectivity tools to enable
messaging between endpoints. It differs from the Storage service as mentioned in the
introduction, and talking about queues, it offers many more features than that.

To provide our application with a Service Bus queue, a Service Bus endpoint should be
created as explained in the following section. The Service Bus integrates the Access Control
Service (ACS) to provide fine-grained security across its objects (such as queues, topics,
and relays).

Here and later in the chapter, we use ACS with default credentials (owner
user) to operate against the Service Bus. It is a common approach, even if
it is not recommended in production where a fine-grained security should
be implemented. For testing and learning purposes, the following approach
is effective as well.

At the time of writing, the average latency of the Azure Storage is said to be slightly less than
the Service Bus: 100 ms for Service Bus and 10 ms for Storage Bus, under certain conditions.

http://azure.microsoft.com/en-en/documentation/articles/storage-dotnet-how-to-use-queues/
http://azure.microsoft.com/en-en/documentation/articles/storage-dotnet-how-to-use-queues/
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://en.wikipedia.org/wiki/Nagle's_algorithm

Messaging and Queues with the Storage and Service Bus

282

In the previous recipe, we showed how to maximize the performance
of multiple and consecutive small requests with the Storage service,
disabling the TCP Nagle algorithm. Since Service Bus queues are also
available through TCP over TLS, disabling Nagle is not necessary anymore.

In the Azure Service Bus, there is a central management connection string (the owner one)
that lets us operate completely on the endpoint as for its objects. With that connection
string, we use the NamespaceManager and the MassagingFactory classes to operate,
respectively, on the Service Bus entirely and on the Queues and Topic objects.

In this recipe, we'll learn how to manage queues.

Getting ready
This and further recipes assume you have previously created a valid Service Bus namespace
in the Azure Portal. The steps are as follows:

1.	 Go to http://manage.windowsazure.com.

2.	 Locate the SERVICE BUS section on the right, and click on it.

3.	 In the bottom menu, click on CREATE and provide information needed to create the
queue, which comprises the following:

�� Namespace name: This is the friendly name of the entire endpoint

�� Region: This is the region of the datacenter where we place the endpoint

�� Subscription: This is the subscription that is billed for the service

4.	 When the provisioning process is completed, click on the Connection Information
icon on the bottom menu to obtain the connection string for the endpoint.

This recipe assumes that the following code is in the application configuration file:

<appSettings>
 <add key="ServiceBusConnectionString"
 value="Endpoint=sb://[your namespace].servicebus.windows.net;S
haredSecretIssuer=owner;SharedSecretValue=[your secret]" />
</appSettings>

We must replace [your namespace] and [your secret] with appropriate values of the
namespace name and owner access key.

http://manage.windowsazure.com

Chapter 6

283

How to do it...
We are going to create a queue, look at some of its attributes, and then delete the queue.
We do this as follows:

1.	 Add a new class named ManageServiceBusQueueExample to the project.

2.	 Install the WindowsAzure.ServiceBus NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class:
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System.Configuration;

4.	 Add the following private member to the class:
private NamespaceManager manager;

5.	 Add the following constructor to the class:
public ManageServiceBusQueueExample()
{
 var conn = ConfigurationManager
 .AppSettings["ServiceBusConnectionString"];
 manager = NamespaceManager.CreateFromConnectionString(conn);
}

6.	 Add the following method, creating a queue, to the class:
public void CreateQueue(String queueName)
{
 if (!manager.QueueExists(queueName))
 {
 var descr = new QueueDescription(queueName);
 descr.DefaultMessageTimeToLive
 = TimeSpan.FromDays(14);
 descr.EnableDeadLetteringOnMessageExpiration = true;
 descr.RequiresDuplicateDetection = true;
 descr.DuplicateDetectionHistoryTimeWindow
 = TimeSpan.FromMinutes(10);
 descr.LockDuration
 = TimeSpan.FromSeconds(30);
 descr.MaxDeliveryCount = 10;
 descr.Status = EntityStatus.Active;
 manager.CreateQueue(descr);
 }
}

Messaging and Queues with the Storage and Service Bus

284

7.	 Add the following method, retrieving queue information, to the class:
public void GetQueueInformation(String queueName)
{
 QueueDescription queue =
 manager.GetQueue(queueName);

 long messageCount = queue.MessageCount;
 MessageCountDetails details = queue.MessageCountDetails;
 var detail1 = details.ActiveMessageCount;
 var detail2 = details.DeadLetterMessageCount;
 var detail3 = details.ScheduledMessageCount;
 var detail4 = details.TransferDeadLetterMessageCount;
 var detail5 = details.TransferMessageCount;

 string metadata = queue.UserMetadata;
 bool ordering = queue.SupportOrdering;
 long size = queue.SizeInBytes;
 bool session = queue.RequiresSession;
 bool anonymous = queue.IsAnonymousAccessible;
 string forward = queue.ForwardTo;
 bool available = queue.AvailabilityStatus
 == EntityAvailabilityStatus.Available;
}

8.	 Add the following method, deleting the queue, to the class:
public void DeleteQueue(String queueName)
{
 if (manager.QueueExists(queueName))
 {
 manager.DeleteQueue(queueName);
 }
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void UseCreateQueueExample()
{
 String queueName = "{QUEUE_NAME}";
 ManageServiceBusQueueExample example
 = new ManageServiceBusQueueExample();
 example.CreateQueue(queueName);
 example.GetQueueInformation(queueName);
 example.DeleteQueue(queueName);
}

Chapter 6

285

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the NamespaceManager object used to connect to the Service Bus. We initialized this in
the constructor we added in step 5.

In step 6, we added a method that creates a QueueDescription object and uses it to
create a queue. We first checked the queue existence through the NamespaceManager
object and then customized the queue properties before creating it, as shown in step 6.
Note the following points to customize the queue:

ff We specify that after 14 days in the queue, a message should be marked as expired.
We also tell the queue that expired messages should be placed into the dead
letter queue.

ff We specify that Service Bus should check for duplicates in the queue. The control of
duplicate messages is performed by checking the MessageId of a given message
against a history maintained by the Service Bus for a period specified in the
DuplicateDetectionHistoryTimeWindows property.

ff We specify that when picking a message from the queue, it should remain locked for
a period of 30 seconds (default is 1 minute and maximum 5 minutes). After that, if
the message has not been completed, it becomes available to the receivers again.

ff We specify that after a message is delivered to a client 10 times, it is considered
dead in order to prevent the poison message problem.

In step 7, we added a method that retrieves information about the queue into a
QueueDescription instance and uses it to retrieve the message count of the queue. Thus,
we dig into the various counting details about the queue. Finally, we checked the following:

ff The UserMetadata info (null by default)
ff Whether the queue supports ordering (true by default)
ff The total current size of the queue in bytes
ff Whether the queue supports sessions (false by default)
ff Whether the queue supports anonymous access (false by default)
ff The second queue to whom the current queue should forward the messages

received (null by default)
ff The availability status of the queue (it differs from available in the case of

transient errors)

In step 8, we added a method that retrieves information about the queue into a
QueueDescription instance and uses it to delete the queue.

In step 9, we added a method that invokes the methods we added earlier. We need
to replace {QUEUE_NAME} with an appropriate name for a queue.

Messaging and Queues with the Storage and Service Bus

286

The queue names for Service Bus queue have less restrictive rules
compared to the rules for naming Storage queues. They can contain up
to 260 characters and some special characters too (periods, numbers,
hyphens, and underscores).

There's more…
We can use NamespaceManager to list the current queues in the Service Bus endpoint.
To get that list, we can proceed as follows:

public IEnumerable<QueueDescription> GetQueues()
{
 return manager.GetQueues().ToArray();
}

In the GetQueues() method, an optional string could be passed to filter the queues result
by a prefix.

See also
Have a look at the following MSDN links to get additional information:

ff Learn more about Azure Access Control Service at http://azure.microsoft.
com/en-us/documentation/articles/active-directory-dotnet-how-
to-use-access-control/

ff Learn more about the best practices for using Service Bus messaging at http://
msdn.microsoft.com/en-us/library/hh545245.aspx

Adding messages to a Storage queue
The CloudQueue class in the Azure Storage library provides both synchronous and
asynchronous methods to add a message to a queue. A message comprises up to 64 KB
bytes of data (48 KB if encoded in Base64). By default, the Storage library Base64 encodes
message content to ensure that the request payload containing the message is valid XML.
This encoding adds overhead that reduces the actual maximum size of a message.

A message for a queue should not be intended to transport a big payload,
since the purpose of a queue is just messaging and not storing. If
required, a user can store the payload in a blob and use a queue message
to point to that, letting the receiver fetch the message along with the blob
from its remote location.

http://azure.microsoft.com/en-us/documentation/articles/active-directory-dotnet-how-to-use-access-control/
http://azure.microsoft.com/en-us/documentation/articles/active-directory-dotnet-how-to-use-access-control/
http://azure.microsoft.com/en-us/documentation/articles/active-directory-dotnet-how-to-use-access-control/
http://msdn.microsoft.com/en-us/library/hh545245.aspx
http://msdn.microsoft.com/en-us/library/hh545245.aspx

Chapter 6

287

Each message added to a queue has a time-to-live property, after which it is deleted
automatically. The maximum and default time-to-live value is 7 days.

In this recipe, we'll learn how to add messages to a queue.

Getting ready
This recipe assumes the following code is in the application configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values of the
account name and access key.

How to do it...
We are going to create a queue and add some messages to it. We do this as follows:

1.	 Add a new class named AddMessagesOnStorageExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following assembly
references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Queue;
using System.Configuration;

4.	 Add the following private member to the class:
private CloudQueue cloudQueueClient;

5.	 Add the following constructor to the class:
public AddMessagesOnStorageExample(String queueName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudQueueClient cloudQueueClient =
 cloudStorageAccount.CreateCloudQueueClient();
 cloudQueue = cloudQueueClient.GetQueueReference(queueName);
 cloudQueue.CreateIfNotExists();
}

Messaging and Queues with the Storage and Service Bus

288

6.	 Add the following method to the class, adding two messages:
public void AddMessages()
{
 String content1 = "Do something";
 CloudQueueMessage message1 = new CloudQueueMessage(content1);
 cloudQueue.AddMessage(message1);

 String content2 = "Do something that expires in 1 day";
 CloudQueueMessage message2 = new CloudQueueMessage(content2);
 cloudQueue.AddMessage(message2, TimeSpan.FromDays(1.0));

 String content3 = "Do something that expires in 2 hours,"+
 " starting in 1 hour from now";
 CloudQueueMessage message3 = new CloudQueueMessage(content3);
 cloudQueue.AddMessage(message2,
 TimeSpan.FromHours(2),TimeSpan.FromHours(1));
}

7.	 Add the following method, that uses the AddMessage() method, to the class:
public static void UseAddMessagesExample()
{
 String queueName = "{QUEUE_NAME}";
 AddMessagesOnStorageExample example = new
AddMessagesOnStorageExample (queueName);
 example.AddMessages();
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the CloudQueue object used to interact with the Queue service. We initialized this in the
constructor we added in step 5 where we also created the queue.

In step 6, we added a method that adds three messages to a queue. We created three
CloudQueueMessage objects. We added the first message to the queue with the default
time-to-live of seven days, the second is added specifying an expiration of 1 day, and the
third will become visible after 1 hour since its entrance in the queue, with an absolute
expiration of 2 hours.

Chapter 6

289

Note that a client (library) exception is thrown if we specify a visibility delay
higher than the absolute TTL of the message. This is naturally obvious and
it is enforced at the client side, instead making a (failing) server call.

In step 7, we added a method that invokes the methods we added earlier. We need to replace
{QUEUE_NAME} with an appropriate name for a queue.

There's more…
To clear the queue from the messages we added in this recipe, we can proceed by calling the
Clear() method in the CloudQueue class as follows:

public void ClearQueue()
{
 cloudQueue.Clear();
}

See also
Have a look at the following MSDN links to get additional information:

ff Best practices to maximize scalability using queues at http://msdn.microsoft.
com/en-us/library/azure/hh697709.aspx

ff Guidance for resilient cloud architectures at http://msdn.microsoft.com/en-
us/library/azure/jj853352.aspx

Adding messages to a Service Bus queue
In the chapter introduction, there is a comprehensive comparison between Service Bus
queues and Storage queues. However, from the producer's perspective (which is the purpose
of this recipe), we must keep in mind the following constraints:

ff The total message must be maximum 256 KB (quadruple of the Storage service)

ff The total queue size is up to 5 GB (significantly smaller than the Storage service)

ff In the case of TCP communication, there is a cap on the concurrent connections
(currently the value is 100)

We are comparing the two platforms by pursuing the same goals; the Service Bus queue adds
more advanced features that the Storage service does not implement.

In this recipe, we'll learn how to add messages to a Service Bus queue.

http://msdn.microsoft.com/en-us/library/azure/hh697709.aspx
http://msdn.microsoft.com/en-us/library/azure/hh697709.aspx
http://msdn.microsoft.com/en-us/library/azure/jj853352.aspx
http://msdn.microsoft.com/en-us/library/azure/jj853352.aspx

Messaging and Queues with the Storage and Service Bus

290

Getting ready
This recipe assumes the following code is in the application configuration file:

<appSettings>
 <add key="ServiceBusConnectionString"
 value="Endpoint=sb://[your namespace].servicebus.windows.net;S
haredSecretIssuer=owner;SharedSecretValue=[your secret]" />
</appSettings>

We must replace [your namespace] and [your secret] with appropriate values of the
namespace name and owner access key.

How to do it...
We are going to attach to a queue, adding some messages. The steps are as follows:

1.	 Add a new class named AddMessagesOnServiceBusExample to the project.

2.	 Install the WindowsAzure.ServiceBus NuGet package and add the following
assembly references to the project:
System.Configuration
System.Transactions

3.	 Add the following using statements to the top of the class:
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System.Configuration;
using System.Transactions;

4.	 Add the following private members to the class:
private NamespaceManager manager;
private MessagingFactory factory;

5.	 Add the following constructor to the class:
public AddMessagesOnServiceBusExample(string queueName)
{
 var conn = ConfigurationManager
 .AppSettings["ServiceBusConnectionString"];
 manager = NamespaceManager.CreateFromConnectionString(conn);
 if (!manager.QueueExists(queueName))
 {

Chapter 6

291

 var descr = new QueueDescription(queueName);
 descr.RequiresDuplicateDetection = true;
 manager.CreateQueue(descr);
 }
 factory = MessagingFactory.CreateFromConnectionString(conn);
}

6.	 Add the following method to the class to add messages to the queue:
public void AddMessages(string queueName)
{
 MessageSender sender = factory.CreateMessageSender(queueName);
 String content1 = "Do something";
 BrokeredMessage message1 =new BrokeredMessage(content1);
 sender.Send(message1);
 String content2 = "Do something that expires in 1 day";
 BrokeredMessage message2 = new BrokeredMessage(content2)
 {
 TimeToLive=TimeSpan.FromDays(1)
 };
 sender.Send(message2);
 String content3 = "Do something that expires in 2 hours," +
 " starting in 1 hour from now";
 BrokeredMessage message3 = new BrokeredMessage(content3)
 {
 TimeToLive = TimeSpan.FromHours(2),
 ScheduledEnqueueTimeUtc=DateTime.UtcNow.AddHours(1)
 };
 sender.Send(message3);
}

7.	 Add the following method, using the methods added earlier, to the class:
public static void UseAddMessagesExample()
{
 String queueName = "{QUEUE_NAME}";
 AddMessagesOnServiceBusExample example
 = new AddMessagesOnServiceBusExample(queueName);
 example.AddMessages(queueName);
}

Messaging and Queues with the Storage and Service Bus

292

How it works...
In steps 1 through 3, we set up the class. In step 4, we added two private members to
the store, the NamespaceManager object used to connect to the Service Bus and the
MessagingFactory object to create the MessageSender instance, respectively. We
initialized this in the constructor that we added in step 5.

The namespace points to System.Transactions, which
is not used in these steps of the recipe. As for the descr.
RequiresDuplicateDetection = true; statement, it will be
useful when we discuss transaction and duplicate detection in the
There's more… section for further details.

In step 6, we added some messages with different options. We started by creating a
MessageSender instance, and then we instantiated three BrokeredMessage objects and
send them to the queue. As we saw in the previous recipe, the three messages have the
following different properties:

ff First: This is instantly visible in the queue with infinite TTL

ff Second: This is instantly visible in the queue with a TTL of 1 day

ff Third: This is visible in the queue only after 1 hour, and expires in 2 hours

Where do expired messages go? During the queue creation, we can provide
the descr.EnableDeadLetteringOnMessageExpiration =
true; flag that instructs the Service Bus to move expired messages into a
special queue called the dead letter queue.

In step 7, we added a method that invokes the method we added earlier. We need to replace
{QUEUE_NAME} with an appropriate name for a queue.

There's more…
Service Bus SDK integrates with the Transactions API to provide developers with a simple way
to handle multiple Service Bus operations within the same transaction boundaries. A revised
version of the AddMessages() method is provided here, using a TransactionScope
method to write all or nothing. Refer to the following code:

public void AddMessagesWithTransaction(string queueName)
{
 MessageSender sender = factory.CreateMessageSender(queueName);
 using (var scope = new TransactionScope())
 {

Chapter 6

293

 String content1 = "Do something";
 BrokeredMessage message1 = new BrokeredMessage(content1);
 sender.Send(message1);
 String content2 = "Do something else";
 BrokeredMessage message2 = new BrokeredMessage(content2);
 sender.Send(message2);
 scope.Complete();
 }
}

We call Complete() to commit the two operations in a single transaction.

Detecting duplicates
A common problem in messaging solutions is to identify duplicated messages in order to
avoid reprocessing of already-processed items. Actually, a good software solution should
guarantee idempotency by design, but since it is not always actionable, any help provided
by the technology is definitely not bad. To add some duplicate messages, proceed as follows:

public void AddDuplicateMessages(string queueName)
{
 MessageSender sender = factory.CreateMessageSender(queueName);
 String content1 = "Do something";
 BrokeredMessage message1 = new BrokeredMessage(content1)
 { MessageId = "MSG01" };
 sender.Send(message1);
 String content2 = "Do something else";
 BrokeredMessage message2 = new BrokeredMessage(content2)
 { MessageId = "MSG01" };
 sender.Send(message2);
}

Thanks to the creation flag of the queue (descr.RequiresDuplicateDetection =
true;), it now automatically detects and deletes duplicates in the default timeframe
(10 minutes) by looking at the MessageId property.

To troubleshoot and test more efficiently the Service Bus, we use the
Service Bus Explorer. You can download it from http://code.msdn.
microsoft.com/windowsazure/Service-Bus-Explorer-
f2abca5a.

http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a

Messaging and Queues with the Storage and Service Bus

294

See also
Have a look at the following MSDN links to get additional information:

ff Brokered messaging tutorial with Service Bus at http://msdn.microsoft.com/
en-us/library/hh367512.aspx

ff Learn more about the best practices for performance using the Service Bus at
http://msdn.microsoft.com/en-us/library/hh528527.aspx

Receiving messages with Storage queues
The CloudQueue class in the Azure Storage library provides both synchronous and
asynchronous methods to retrieve messages from a queue. The GetMessage() method
retrieves a message from a queue while the GetMessages() method retrieves up to 32
messages at a time. The GetMessages() method reduces the number of storage operations
used to access a queue and can improve scalability of an Azure cloud service.

Messages retrieved in this way have a visibility timeout during which they cannot be retrieved
by additional calls to the Azure Queue service. The maximum visibility timeout for a message
is 7 days and the default is 30 seconds. This visibility timeout enhances the durability of a
hosted service. If a consumer fails while processing a message, the expiration of the visibility
timeout causes the message to be visible once again on the queue from which another
consumer can retrieve it.

One consequence of the visibility timeout is that if a consumer fails to process a message
before the visibility timeout expires, another consumer may retrieve the message and start
processing it. This can cause problems if message processing is not idempotent, that is, the
same result arises whenever a message is processed.

The Queue service also uses optimistic concurrency to manage message deletion. When a
message is retrieved, it includes a pop receipt that must be provided to delete the message
from the queue. Even after the visibility timeout expires, the pop receipt remains valid
until the message is next retrieved from the queue. In the Azure Storage Client library, the
CloudQueue.DeleteMessage() method is used to delete messages.

The Queue service supports the concept of peeking at a message. This allows a consumer to
retrieve a message while leaving it visible to other consumers of the queue. Consequently, a
consumer can retrieve and delete a message that another consumer is peeking at. The Queue
service does not generate a pop receipt when a message is peeked at, so the consumer
peeking at the message is unable to delete it from the queue. The Storage Client library has
the PeekMessage() and PeekMessages() methods in the CloudQueue class. These
mimic the functionality of the equivalent GetMessage() and GetMessages() methods.

In this recipe, we'll learn how to retrieve messages from a queue.

http://msdn.microsoft.com/en-us/library/hh367512.aspx
http://msdn.microsoft.com/en-us/library/hh367512.aspx
http://msdn.microsoft.com/en-us/library/hh528527.aspx

Chapter 6

295

Getting ready
This recipe assumes the following code is in the application configuration file:

<appSettings>
 <add key="DataConnectionString"
value="DefaultEndpointsProtocol=https;AccountName={ACCOUNT_
NAME};AccountKey={ACCOUNT_KEY}"/>
</appSettings>

We must replace {ACCOUNT_NAME} and {ACCOUNT_KEY} with appropriate values of the
account name and access key.

How to do it...
We are going to add some messages to a queue. We do this as follows:

1.	 Add a new class named GetMessagesFromStorageExample to the project.

2.	 Install the WindowsAzure.Storage NuGet package and add the following assembly
references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Queue;
using System.Configuration;

4.	 Add the following private member to the class:
private CloudQueue cloudQueueClient;

5.	 Add the following constructor to the class:
public GetMessagesFromStorageExample(String queueName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 CloudQueueClient cloudQueueClient =
 cloudStorageAccount.CreateCloudQueueClient();
 cloudQueue = cloudQueueClient.GetQueueReference(queueName);
}

Messaging and Queues with the Storage and Service Bus

296

6.	 Add the following method to the class to set up the recipe:
public void SetupRecipe()
{
 cloudQueue.CreateIfNotExists();
 for (Int32 i = 0; i < 100; i++)
 {
 String content = String.Format("Message_{0}", i);
CloudQueueMessage message = new CloudQueueMessage(content);
 cloudQueue.AddMessage(message);
 }
}

7.	 Add the following method, retrieving a message, to the class:
public void GetMessage()
{
 CloudQueueMessage cloudQueueMessage =
 cloudQueue.GetMessage();
 if (cloudQueueMessage != null)
 {
 String messageText = cloudQueueMessage.AsString;
 // use message
 cloudQueue.DeleteMessage(cloudQueueMessage);
 }
}

8.	 Add the following method to the class to peek at a message:
public void PeekMessage()
{
 CloudQueueMessage cloudQueueMessage =
 cloudQueue.PeekMessage();
}

9.	 Add the following method, retrieving 20 messages, to the class:
public void GetMessages()
{
 IEnumerable<CloudQueueMessage> cloudQueueMessages =
 cloudQueue.GetMessages(20);
 foreach (CloudQueueMessage message in cloudQueueMessages)
 {
 String messageText = message.AsString;
 // use message
 cloudQueue.DeleteMessage(message);
 }
}

Chapter 6

297

10.	 Add the following method, using the methods added earlier, to the class:
public static void UseGetMessagesExample()
{
 String queueName = "{QUEUE_NAME}";
 GetMessagesFromStorageExample example =
 new GetMessagesFromStorageExample(queueName);
 example.SetupRecipe();
 example.GetMessage();
 example.PeekMessage();
 example.GetMessages();
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the CloudQueue object used to interact with the queue. We initialized this in the constructor
we added in step 5. In step 6, we added a method to set up the recipe by creating a queue
and adding 100 messages to it.

In step 7, we added a GetMessage() method that requests a message from the queue. If
a message is retrieved, we get its content as a string, use the message, and finally delete
it. In step 8, we added a method that peeks at a message. In this case, we can't delete the
message because PeekMessage() does not retrieve the pop receipt for the message. In
step 9, we added a method that retrieves up to 20 messages, processes them, and then
deletes them.

In step 10, we added a method that uses the other methods in the class.

There's more…
When using an Azure Storage queue to drive processing, the simplest technique for a
consumer is to poll the queue and initiate processing when it retrieves a message. This works
well when the queue contains messages. However, when the queue is empty for an extended
period, it can lead to unnecessary storage operations.

The Queue service, at the time of writing, has a scalability target of 2,000 messages per
second, which corresponds to 7.2 million messages per hour. At the standard current billing
rate for storage operations ($0.005/100 K operations), this amounts to $0.36 per hour
which is (although minimal) useless. Consequently, when the queue is empty, it may be worth
implementing a strategy to throttle the polling of the queue.

Messaging and Queues with the Storage and Service Bus

298

The basic idea is that once a consumer finds the queue to be empty, it should introduce
a wait interval between successive polls of the queue. This reduces the polling frequency.
If the queue remains empty, it could also further increase the wait interval. The consumer
should not increase the wait interval to a level where there would be a significant delay when
messages are added to the queue. The consumer can reset the wait interval when it retrieves
a message from the queue as follows:

public void GetMessagesPerpetually()
{
 while (true)
 {
 var message = cloudQueue.GetMessage();
 if (message == null) Thread.Sleep(1000);
 else cloudQueue.DeleteMessage(message);
 }
}

In the preceding code, we perpetually check for new messages on the queue, waiting for
a fixed time of 1 second if the queue doesn't contain any new message. As mentioned
previously, an incremental waiting time could be considered as well. However, due to the
really low costs of this solution (0.00018$/hour), it could be good for many scenarios.

Poison messages
The standard way to use an Azure Storage queue is to retrieve a message, perform some
processing based on the message, and then delete the message from the queue. A problem
arises if the content of the message causes an error during processing that prevents the
consumer from deleting the message from the queue. When the message once again
becomes visible on the queue, another consumer will retrieve it and the failure process begins
again. Such a message is referred to as a poison message because it poisons the queue and
prevents messages in it from being processed. When there is only a single consumer, a poison
message can completely block processing of the queue.

A poison message has to be identified, removed from the queue, and logged for subsequent
investigation. A convenient way to log the poison message is to insert it in a poison message
queue where it is not processed in a way that causes problems. When a consumer requests
a message, the Queue service provides a dequeue count that specifies the number of times
the message has been dequeued. If this count exceeds some application-specific value,
the message can be identified as a poison message and diverted into poison message
handling. The Azure Storage library exposes the dequeue count as CloudQueueMessage.
DequeueCount as follows:

if (message.DequeueCount > 10)
{
 //Handle Poison message
}

Chapter 6

299

See also
Have a look at the following MSDN link to get additional information:

ff The Queue Service REST API reference at http://msdn.microsoft.com/en-us/
library/azure/dd179363.aspx

Receiving messages with Service
Bus queues

Service Bus is the fully-featured service for companies that are looking for a robust and
scalable solution of messaging and integrating disconnected and heterogeneous systems.
In the Managing Azure Service Bus queues recipe, we saw how to create a queue in a specific
namespace and we saw how to add messages into it in the Adding Messages to a Service Bus
queue recipe.

The most important entity that represents a message travelling in the queue is the
BrokeredMessage class. Each message on the queue is represented by this object
model that wraps a large set of message-specific properties such as user-defined properties
and, of course, content. The body content could be everything that is compatible with
DataContractSerializer, while Properties is a key-value collection of user-defined
properties; it is probably the most interesting feature of the entire Service Bus. In fact, a
BrokeredMessage property could be used for the following purposes:

ff To deliver the payload of the message, instead of using the body

ff To define metadata that is useful for clients who want to conditionally process an
incoming message

ff To define filters that are useful to route messages at a subscription level (we see what
a subscription is in the Implementing publish/subscribe with Service Bus topics recipe)

A BrokeredMessage instance also contains the methods to manage the lifecycle of the
message itself. When the client completes processing the message, it should call the
Complete() method to remove the message from the queue; if not, the message becomes
available again to the queue for reprocessing after a lock period. If the client knows in
advance that it cannot process the message correctly, it should call the Abandon() method
to avoid the waiting time of the lock period.

There are several differences between a message handled by the Service Bus and ones
handled by the Storage service, as mentioned in the chapter introduction. By the way,
MessageReceiver is a useful class while dealing with receiving messages or while wrapping
the Receive() method to receive a message or the ReceiveBatch() method to receive
multiple messages.

http://msdn.microsoft.com/en-us/library/azure/dd179363.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179363.aspx

Messaging and Queues with the Storage and Service Bus

300

Getting ready
This recipe assumes the following code is in the application configuration file:

<appSettings>
 <add key="ServiceBusConnectionString"
 value="Endpoint=sb://[your namespace].servicebus.windows.net;S
haredSecretIssuer=owner;SharedSecretValue=[your secret]" />
</appSettings>

We must replace [your namespace] and [your secret] with appropriate values of the
namespace name and owner access key.

How to do it...
We are going to attach to a queue, adding some messages. The steps are as follows:

1.	 Add a new class named GetMessagesFromServiceBusExample to the project.

2.	 Install the WindowsAzure.ServiceBus NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class:
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System.Configuration;

4.	 Add the following private members to the class:
private NamespaceManager manager;
private MessagingFactory factory;

5.	 Add the following constructor to the class:
public GetMessagesFromServiceBusExample(string queueName)
{
 var conn = ConfigurationManager
 .AppSettings["ServiceBusConnectionString"];
 manager = NamespaceManager.CreateFromConnectionString(conn);
 if (!manager.QueueExists(queueName))
 {
 var descr = new QueueDescription(queueName);
 descr.RequiresDuplicateDetection = true;
 manager.CreateQueue(descr);
 }
 factory = MessagingFactory.CreateFromConnectionString(conn);
}

Chapter 6

301

6.	 Add the following method to the class to retrieve a message:
public void GetMessage(string queueName)
{
 MessageReceiver receiver =
 factory.CreateMessageReceiver(queueName);
 BrokeredMessage message = receiver.Receive();
 if (message!=null)
 {
 string messageText = message.GetBody<string>();
 message.Complete();
 }
 receiver.Close();
}

7.	 Add the following method to the class to peek at a message:
public void PeekMessage(string queueName)
{
 MessageReceiver receiver = factory.CreateMessageReceiver(queue
Name);
 BrokeredMessage message = receiver.Peek();
 receiver.Close();
}

8.	 Add the following method to the class to retrieve 20 messages:
public void GetMessages(string queueName)
{
 MessageReceiver receiver = factory.CreateMessageReceiver(queue
Name);
 IEnumerable<BrokeredMessage> messages = receiver.
ReceiveBatch(20);
 foreach (var message in messages)
 {
 string messageText = message.GetBody<string>();
 message.Complete();
 }
 receiver.Close();
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void UseGetMessagesExample()
{
 String queueName = "{QUEUE_NAME}";
 GetMessagesFromServiceBusExample example =
 new GetMessagesFromServiceBusExample(queueName);
 example.GetMessage(queueName);
 example.PeekMessage(queueName);
 example.GetMessages(queueName);
}

Messaging and Queues with the Storage and Service Bus

302

How it works...
In steps 1 through 3, we set up the class. In step 4, we added two private members to
the store, the NamespaceManager object used to connect to the Service Bus and the
MessagingFactory object to create the MessageReceiver instance, respectively.
We initialized this in the constructor we add in step 5.

In step 6, we added a method to retrieve a single message from the queue. Actually, the
runtime stops at the Receive() method until a server timeout has reached. This is blocking
the receive behavior, which is different from the Storage service that returns immediately
even if no messages are found. After reading the body content of the message, we call
Complete() to definitely remove it from the queue. Please note that the body of a message
could be an arbitrary object, so the GetBody<T>() method could end up as an exception.

In step 7 we peeked into a message, that is, we are reading from the top element without
locking it—usually for testing purposes only. In step 8, we asked the receiver to fetch up to
20 messages at a time and we eventually cycle over them.

In step 9, we added a method that invokes the method we added earlier. We need to replace
{QUEUE_NAME} with an appropriate name for a queue.

There's more…
The Service Bus SDK provides a wide variety of features to better deal with queues and
messages. One of them is the ability to create an event-based message receive, instead
of using a polling pattern:

public void EventBasedReceiver(string queueName)
{
 QueueClient client=factory.CreateQueueClient(queueName);
 var options = new OnMessageOptions()
 {
 AutoComplete=true,
 MaxConcurrentCalls=1
 };
 options.ExceptionReceived += (sender, args) =>
 {
 var ex = args.Exception;
 };
 client.OnMessage(message =>
 {
 //Process message
 }, options);
 Thread.Sleep(10000);
 client.Close();
}

Chapter 6

303

In the preceding lines, we used the QueueClient class instead of the MessageReceiver
class. For the purpose of this example, the two classes are equal, exposing both the
OnMessage() methods. However, the QueueClient class is a generic implementation for
both receivers and senders, offering the union of the respective methods to read/write a
queue. In the event-based example, we pass a lambda to the OnMessage() method with a
OnMessageOptions instance, providing an exception handler and some delivery properties
such as the maximum number of concurrent receiving threads as for the auto complete
behavior for delivered messages. Finally, we forced the main thread to sleep, for testing
purposes only (the OnMessage method is callback based), or it would end immediately.

Dead lettering
The dead letter queue is the hidden queue associated to a plain queue, intended for those
messages that have related issues. For instance, a poison message should go out from a
main queue and could probably go into the dead letter one (in the Receiving messages with
Storage queues recipe, we explained the concept of poison messages better). Also, an expired
message could go into the dead letter queue. This is done automatically if we specify the flag
on queue creation as follows:

queueDescription.EnableDeadLetteringOnMessageExpiration = true;

The process to move, automatically or not, a message into the dead letter queue is often
known as dead lettering.

In the example below, we dead letter a message that has been processed more than 10 times
(because probably it is a poison message) as follows:

public void GetMessagesUntilCancellation
 (string queueName,CancellationToken token)
{
 MessageReceiver receiver =
 factory.CreateMessageReceiver(queueName);
 while (!token.IsCancellationRequested)
 {
 var message = receiver.Receive();
 if (message.DeliveryCount > 10) message.DeadLetter();
 else
 {
 message.Complete();
 }
 }
 receiver.Close();
}

We also used the cancellation pattern to stop the receiver between a receive operation and
the next one. Please note that the default timeout is 60 seconds, so this is the time a client
could take to realize that it should cancel.

Messaging and Queues with the Storage and Service Bus

304

However, how can a client read from the dead letter queue? The answer is exactly as it was
done for a standard queue, changing only the queue name/path as follows:

public void ReadFromDeadLetter(string queueName)
{
 var receiver=factory.CreateMessageReceiver(
 QueueClient.FormatDeadLetterPath(queueName));
 BrokeredMessage message=null;
 while ((message = receiver.Receive(TimeSpan.FromSeconds(1)))
 !=null)
 {
 message.Complete();
 }
}

The static QueueClient.FormatDeadLetterPath() method simply appends the
conventional name of the dead letter queue to the standard queue. The remaining code
is equal to the examples in the recipe.

See also
Have a look at the following MSDN link to get additional information:

ff Service Bus samples at http://msdn.microsoft.com/en-us/library/
azure/dn194201.aspx

Implementing publish/subscribe with
Service Bus topics

Messaging systems are implemented in hundreds of different technologies, but often they
implement mainly two patterns: queue-based and publish/subscribe. The first, which is the
main character of this chapter, stands on the concept of a single queue in which someone
(one or many) sends a message and someone (and only one) receives the message to
process and delete it.

Queue-based messaging is often implemented with a FIFO (First-In-First-Out) pattern and
sometimes ordering is guaranteed (for example, in the Service Bus). On the other hand, there
is the publish/subscribe messaging pattern that is the key component in many interconnected
enterprise systems, known in the Service Bus as the Topic service.

In this pattern, a topic is created (like a queue) to make the messages go through,
differently from a queue; along with the topic one or many subscriptions must be created.
As Subscription tells which messages are of interest for it, based on some filtering rules that
are applied declaratively on subscription creation. These rules are built upon the message
metadata (BrokeredMessage.Properties), which the sender could customize to let the
message be routed correctly.

http://msdn.microsoft.com/en-us/library/azure/dn194201.aspx
http://msdn.microsoft.com/en-us/library/azure/dn194201.aspx

Chapter 6

305

The SubscriptionDescription instance defines the subscription name and the topic,
along with a filter implementation, which checks against the actual message properties
during reception. A SqlFilter is one implementation of the Filter base class, that provides
developers with a familiar SQL92-like syntax to filter messages (for example, Property > 10).

In this recipe, we will see how to implement the publish/subscribe pattern with Service Bus
topics and how to create filtered subscriptions.

Getting ready
This recipe assumes the following code is in the application's configuration file:

<appSettings>
 <add key="ServiceBusConnectionString"
 value="Endpoint=sb://[your namespace].servicebus.windows.net;S
haredSecretIssuer=owner;SharedSecretValue=[your secret]" />
</appSettings>

We must replace [your namespace] and [your secret] with appropriate values of the
namespace name and owner access key.

How to do it...
We are going to create a new topic, a producer, and two different consumers. The first
consumer will catch all messages of the topic and the second will catch only the flagged
messages. We do this as follows:

1.	 Add a new class named PublishAndSubscribeExample to the project.

2.	 Install the WindowsAzure.ServiceBus NuGet package and add the following
assembly references to the project:
System.Configuration

3.	 Add the following using statements to the top of the class:
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System.Configuration;
using System.Threading;
using System.Threading.Tasks;

4.	 Add the following private members to the class:
private NamespaceManager manager;
private MessagingFactory factory;

Messaging and Queues with the Storage and Service Bus

306

5.	 Add the following constructor to the class:
public PublishAndSubscribeExample(string topicName)
{
 var conn = ConfigurationManager
 .AppSettings["ServiceBusConnectionString"];
 manager = NamespaceManager.CreateFromConnectionString(conn);
 if (!manager.TopicExists(topicName))
 {
 var descr = new TopicDescription(topicName);
 manager.CreateTopic(descr);
 var sub1 = new SubscriptionDescription(topicName, "all");
 manager.CreateSubscription(sub1);
 var sub2 = new SubscriptionDescription(
 topicName, "flagged");
 manager.CreateSubscription(sub2,
 new SqlFilter("flagged=true"));
 }
 factory = MessagingFactory.CreateFromConnectionString(conn);
}

6.	 Add the following method that produces messages to the class:
public void ProduceOnTopic(string topicName)
{
 TopicClient producer = factory.CreateTopicClient(topicName);
 for (int i = 0; i < 10; i++)
 {
 bool flag = i % 2 == 0;
 BrokeredMessage msg = new BrokeredMessage();
 msg.Properties.Add("flagged", flag);
 producer.Send(msg);
 }
}

7.	 Add the following method to the class in order to consume (perpetually) messages of
a given topic and on a given subscription:
public void ListenForNotifications(
 string topicName,string name)
{
 SubscriptionClient listener = factory.
CreateSubscriptionClient(
 topicName, name, ReceiveMode.ReceiveAndDelete);
 while (true)
 {
 var message = listener.Receive();
 }
}

Chapter 6

307

8.	 Add this method, calling the methods created before, to the class:
public static void UseGetMessagesExample()
{
 String topicName = "{TOPIC_NAME}";
 PublishAndSubscribeExample example =
 new PublishAndSubscribeExample(topicName);
 var consumer1 = Task.Factory.StartNew(() =>
 {
 example.ListenForNotifications(topicName, "all");
 });
 var consumer2 = Task.Factory.StartNew(() =>
 {
 example.ListenForNotifications(topicName, "flagged");
 });

 var producer = Task.Factory.StartNew(() =>
 {
 example.ProduceOnTopic(topicName);
 });
 consumer2.Wait();
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added two private members
to store—the NamespaceManager object is used to connect to the Service Bus and the
MessagingFactory object is used to create the MessageReceiver instance. We initialized
this in the constructor we added in step 5. In step 5, together with the creation of the Topic
instance itself, we also created two different subscriptions: one for all messages, with no filter
rules applied, and one for the flagged messages (the messages with a property flagged set
to true, as stated in the SqlFilter instance).

In step 6, we added a method to produce messages on a given topic, putting 10 messages—5
of them flagged and 5 of them unflagged. In step 7, we defined a generic method
that could listen on a particular topic and subscription, retrieving the message to perform
some action. The ReceiveMode.ReceiveAndDelete object tells the SDK to perform an
automatic Complete after receiving the message (an explicit call to the Complete() method
raises an Exception). This is opposed to the standard PeekAndLock method.

In step 8, we added a method that invokes the method we added earlier. We used tasks to
start three parallel jobs, one to produce messages and two to consume (or better, to listen
to) them. The latter (consumer2) will be notified only by the flagged messages. We need
to replace {TOPIC_NAME} with an appropriate name for a queue.

Messaging and Queues with the Storage and Service Bus

308

See also
Have a look at these MSDN links to get additional information:

ff The Service Bus topics documentation at http://azure.microsoft.com/en-
en/documentation/articles/service-bus-dotnet-how-to-use-topics-
subscriptions/

ff Comparison of queues and topics at http://msdn.microsoft.com/en-us/
library/hh367516.aspx

Implementing relayed messaging with the
Service Bus

When talking about Service Bus, or Enterprise Service Bus (ESB), we are often talking about
integrating heterogeneous systems and decoupling them through a middleware. Azure Service
Bus not only offers messaging services such as queues and topics, but also offers a Relay
service that provides a bridge between non-Azure services and the Azure infrastructure. The
Relay service is sometimes referred as the service to integrate on premises solutions with the
cloud but it is suitable for integrating different clouds too.

A Relay service consists of a public endpoint, available in the URI form [name].
servicebus.windows.net bound to a private endpoint and hosted somewhere. Since it
is really hard to expose a private endpoint in the public Internet, the Relay service provides
a bridge between those clients who are Internet faced to the hosted private services, for
example, inside the private LAN of a company's datacenter.

To do that, the company's service should register itself onto the Service Bus Relay service,
using WCF bindings; then, for each call to the public endpoint, Service Bus forwards the
request to the bounded service. Since the latter initiated the communication first, there is no
need to traverse the company firewall or NAT or to know the network topology.

WCF is a huge platform and going deep in it is completely out of the scope of this book. In this
recipe, we see how to minimally implement a Relay service using a WCF endpoint that is hosted
locally on a developer machine and is available globally through its public endpoint as well.

On the service side, ServiceHost is the class responsible for the self-hosting of WCF
services, the NetTcpBinding class is responsible for the WCF binding listening of TCP, and
the NetTcpRelayBinding class is the binding specific to the endpoints being forwarded.

From the consumer perspective, ChannelFactory is the proxy to the remote service,
strongly-typed against the service interface. This simplifies the development phase,
providing a transparent proxy to the remote methods exposed by the service.

In this recipe, we are going to create a service, bind it to the Service Bus, and call it from
a consumer.

http://azure.microsoft.com/en-en/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/
http://azure.microsoft.com/en-en/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/
http://azure.microsoft.com/en-en/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/
http://msdn.microsoft.com/en-us/library/hh367516.aspx
http://msdn.microsoft.com/en-us/library/hh367516.aspx

Chapter 6

309

Getting ready
Since we configure WCF in the code, there is no need to set up the configuration file in
the application.

How to do it...
We are going to create a new service interface along with its implementation. We bind it
to the cloud and consume it locally. We do this as follows:

1.	 Add this interface to the project, defining the contract of the service:
[ServiceContract(Namespace = "urn:ts")]
interface ITimeService
{
 [OperationContract]
 DateTime UtcTime();
}

2.	 Add this interface to the project, defining the service channel for the proxy:
interface ITimeServiceChannel : ITimeService, IClientChannel { }

3.	 Add this service implementation to the project:
public class TimeService : ITimeService
{
 public DateTime UtcTime()
 {
 return DateTime.UtcNow;
 }
}

4.	 Add a new class named RelayExample to the project.

5.	 Install the WindowsAzure.ServiceBus NuGet package to the project.

6.	 Add the following using statements to the top of the class file:
using Microsoft.ServiceBus;
using System.Threading.Tasks;

7.	 Add this method to the class to start and bind the service to the Service Bus :
public void StartServiceHost(string ns,string key
 ,Action onChannelReady)
{
 ServiceHost sh = new ServiceHost(typeof(TimeService));

Messaging and Queues with the Storage and Service Bus

310

 sh.AddServiceEndpoint(
 typeof(ITimeService), new NetTcpBinding(),
 "net.tcp://localhost:9999/time");

 sh.AddServiceEndpoint(
 typeof(ITimeService), new NetTcpRelayBinding(),
 ServiceBusEnvironment.CreateServiceUri("sb", ns, "time"))
 .Behaviors.Add(new TransportClientEndpointBehavior
 {
 TokenProvider = TokenProvider.
CreateSharedSecretTokenProvider
 ("owner", key)
 });

 sh.Open();
 Console.WriteLine("Press ENTER to close");
 onChannelReady();
 Console.ReadLine();
 sh.Close();
}

8.	 Add this method to the class to connect and consume the service through its
remote endpoint:
public void CallRelayService(string ns,string key)
{
 var cf = new ChannelFactory<ITimeServiceChannel>(
 new NetTcpRelayBinding(),
 new EndpointAddress(ServiceBusEnvironment.CreateServiceUri
 ("sb", ns, "time")));

 cf.Endpoint.Behaviors.Add(new TransportClientEndpointBehavior
 { TokenProvider = TokenProvider.
CreateSharedSecretTokenProvider
 ("owner", key)});

 using (var ch = cf.CreateChannel())
 {
 var res = ch.UtcTime();
 }
}

Chapter 6

311

9.	 Add the following method, using the methods above, to the class:
public static void UseRelayExample()
{
 string ns="{NAMESPACE}";
 string ownerKey = "{KEY}";
 RelayExample example = new RelayExample();
 var serverAndClient = Task.Factory.StartNew(() =>
 {
 example.StartServiceHost(ns, ownerKey,
 ()=>example.CallRelayService(ns,ownerKey));
 });
 serverAndClient.Wait();
}

How it works…
In step 1, we prepared the service, writing its interface and decorating it with the
ServiceModel attributes. In WCF, the ServiceContract attribute defines the contract
for a service, while the OperationContract attribute defines that a method should be
exposed through the service endpoint. In step 2, we prepared the service channel used
by the client/consumer to invoke the service through a transparent proxy. In step 3, we
finished preparing the service and implementing its interface with a simple method to
get the current UTC time.

In step 4, we added the class containing our logic methods. In steps 5 and 6, we added
the Service Bus reference from NuGet along with its using statements. Note that the
previous code about WCF services is bundled in the .NET Framework and it does not
depend on the Service Bus SDK. In step 7, we started the service host by binding the
service implementation to a local endpoint and then to the public endpoint of the
Service Bus, using the TokenProvider class to authenticate against it.

This method uses a callback action onChannelReady to invoke a
custom method after the binding completes. It is for demonstration
purposes only.

In step 8, we added the consumer code, instantiating a channel based on the ITimeService
interface and providing a transparent proxy to the client. After being authenticated by the
Service Bus through its public endpoint, we called the UtcTime() method.

In step 9, we used the methods added before, using tasks to perform parallel operations.
Note that the program is never exited (and replace the {NAMESPACE} and {KEY} strings
with the appropriate values).

Messaging and Queues with the Storage and Service Bus

312

See also
Have a look at these MSDN links to get additional information:

ff The Service Bus relayed messaging tutorial at http://msdn.microsoft.com/en-
us/library/ee706736.aspx

ff The Service Bus relayed messaging documentation at http://msdn.microsoft.
com/en-us/library/jj860549.aspx

ff Learn more about WCF bindings for Service Bus at http://msdn.microsoft.
com/en-us/library/hh410102.aspx

Communication between .NET and Java with
the Service Bus and AMQP

By default, the Service Bus SDK uses a .NET-friendly protocol to exchange messages, which is
primarily supported by the Service Bus service. In the real world, however, enterprise systems
are often built in different technologies, and it is not unusual that a receiver system could be
developed in a completely different language/platform than the sender system.

This is why the market (and recently the OASIS organization) went to a common definition
of a standard for messaging protocol, Advanced Message Queuing Protocol (AMQP). This
protocol provides many benefits, from the absence of lock-in to full interoperability between
heterogeneous systems.

Azure Service Bus implements the AMQP protocol. From the .NET perspective, using one or
another is a configuration detail. It is only necessary to append this parameter to the existing
connection string as follows:

TransportType=Amqp

It is irrelevant which protocol is used because the Service Bus will operate seamlessly in every
case. However, from a Java application's point of view, it is easier to use the AMQP endpoint
due to the large library support in the Java ecosystem.

Java Message Service (JMS) is the official Java API specification to operate against queues.
In this recipe, we use the Apache AMQP Qpid library through the JMS contract to connect to
the Service Bus and read messages.

http://msdn.microsoft.com/en-us/library/ee706736.aspx
http://msdn.microsoft.com/en-us/library/ee706736.aspx
http://msdn.microsoft.com/en-us/library/jj860549.aspx
http://msdn.microsoft.com/en-us/library/jj860549.aspx
http://msdn.microsoft.com/en-us/library/hh410102.aspx
http://msdn.microsoft.com/en-us/library/hh410102.aspx

Chapter 6

313

Getting ready
This recipe uses Eclipse as Java Development IDE. The following steps fit Eclipse but they are
very similar in other environments. To use Eclipse, download and install the latest version
from https://www.eclipse.org/downloads/.

To run the example, it is strongly recommended to follow the Adding Messages to a Service
Bus queue recipe to read the existing messages added with .NET, from the Java client.

How to do it…
We will connect to an existing queue to read messages with the AMQP protocol. The steps
are as follows:

1.	 In Eclipse, go to File | New | Other then select Maven Project.

2.	 In the New Maven Project window, perform the following steps:

1.	 Check the Create a simple project checkbox.

2.	 Specify SBTests as Group id.

3.	 Specify AMQPExample as Artifact id.

3.	 In the root folder of the project, add a text file named servicebus.properties
and populate it as follows:
connectionfactory.ServiceBus = amqps://owner:[key]@[ns].
servicebus.windows.net
queue.Name = [queue_name]

4.	 In the pom.xml file, add the following XML to declare the project dependencies:
<dependencies>
 <dependency>
 <groupId>javax.jms</groupId>
 <artifactId>javax.jms-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.qpid</groupId>
 <artifactId>qpid-amqp-1-0-client-jms</artifactId>
 <version>0.26</version>
 </dependency>
</dependencies>

https://www.eclipse.org/downloads/

Messaging and Queues with the Storage and Service Bus

314

5.	 In the src/main/java file, add a class named AMQPExample.java.

6.	 Add the following imports statements to the class:
import java.util.Hashtable;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Session;
import javax.naming.Context;
import javax.naming.InitialContext;

7.	 Add the following main method, to perform the entire sample:
public static void main(String[] args) throws Exception{
 Hashtable<String, String> env
 = new Hashtable<String, String>();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.apache.qpid.amqp_1_0.jms"+
 ".jndi.PropertiesFileInitialContextFactory");
 env.put(Context.PROVIDER_URL, "servicebus.properties");
 Context context = new InitialContext(env);
 ConnectionFactory cf =
 (ConnectionFactory) context.lookup("ServiceBus");
 Destination queue = (Destination) context.lookup("Name");

 Connection connection = cf.createConnection();

 Session receiveSession = connection
 .createSession(false, Session.CLIENT_ACKNOWLEDGE);
 MessageConsumer receiver = receiveSession.
createConsumer(queue);
 receiver.setMessageListener(new MessageListener() {
 public void onMessage(Message arg0) {
 try {

Chapter 6

315

 System.out.println(arg0.getJMSMessageID());
 } catch (JMSException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 connection.start();
 System.in.read();
 }
}

How it works…
In step 1 and 2, we set up the project and configure Maven (an open infrastructure to manage
project lifecycle and dependencies). In step 3, we defined a custom properties files where
the information about the Service Bus endpoint is located. We must replace the [key],
[ns], and [queue_name] fields with the appropriate values. In step 4, we declared the
dependencies in the Maven pom.xml file: the first is the specification, while the second is
the implementation (they will be automatically downloaded during the build).

In step 6, we declared the classes that we are going to use in step 7, where we added the
main method. In the main method, we initialized the JNDI/JMS context that looks into the
servicebus.properties file. After creating the receiver through the MessageConsumer
class, we registered a listener to handle incoming messages in the anonymous inner class
pattern. In the onMessage() method, eventually, the MessageID is printed on the console.

See also
Have a look at these links to get additional information:

ff AMQP on Wikipedia at http://en.wikipedia.org/wiki/Advanced_Message_
Queuing_Protocol

ff Apache implementation for AMQP at http://activemq.apache.org/amqp.html

ff Official OASIS site for AMQP at http://www.amqp.org/

http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://activemq.apache.org/amqp.html
http://www.amqp.org/

7
Managing Azure

Resources with the
Azure Management

Libraries

In this chapter, we will cover the following topics:

ff Setting up the management client

ff Managing the Storage service

ff Deploying Cloud Services

ff Inspecting and managing Cloud Services

ff Managing and using the Azure Scheduler

ff Monitoring and automating infrastructure operations

ff Automating the SQL Database operations

ff Using Azure PowerShell

Introduction
The Microsoft Azure Portal provides a convenient and easy-to-use way of managing all the
available services of an Azure subscription, as well as many configuration settings for each
of these services. Microsoft also provides a REST API to access Azure resources in order to
allow developers to build custom management clients or automation solutions.

Managing Azure Resources with the Azure Management Libraries

318

The Service Management API provides almost complete control over the resources contained
in a Microsoft Azure subscription. All operations using this API must be authenticated using an
X509 management certificate, which is generated on the client side and trusted by Azure by
uploading its public key onto the Azure Portal.

We will see how to create this trust in the Setting up the management client recipe. Once the
trust is created, a programmatic client can transmit messages through a secure, encrypted
connection, calling HTTP methods in a typical REST convention.

In the first half of 2014, Microsoft released a new set of libraries for the public to remotely
manage Azure (using the Service Management REST API) using .NET. These libraries are
available for developers through NuGet and allow building .NET clients to create powerful
automation solutions with managed code.

Microsoft will update these libraries to reflect platform changes over time, as they expose
RPC-like interfaces and strong-typed models, according to the current/latest version of
services. While the libraries are built to elegantly support the natural underlying platform's
evolution, it is expected that they will change.

As we stated earlier, in the Setting up the management client recipe, we will set up the
trust between us and Azure by creating a valid X509 certificate, using it to connect to
the Management API with the .NET libraries. This is the starting point to perform other
management operations such as managing the storage service. In the Managing the Storage
service recipe, we will see how to list existing Storage accounts to create new ones using a
different programming pattern. At the end of the chapter, in the Monitoring and automating
infrastructure operations recipe, we will see how to perform advanced operations on the
subscription and on the library itself, to intercept request/response flow events.

One by one, we will continue with Cloud Services management, a particularly hot topic
for companies that wish to automate their monitoring processes or build a custom
continuous-integration solution. It is common to see similar solutions currently implemented
with the Powershell cmdlets that are provided, as we will see in the Using Azure PowerShell
recipe. Despite being a valid method and actually used by many automation solutions, it
requires specific skills on Powershell that developers often do not have. We will understand
how to use the Service API to monitor and manage Cloud Services in the Deploying Cloud
Services recipe, while we go deep into deployment details in the Inspecting and managing
Cloud Services recipe.

To enable advanced scenarios where automation is strongly needed, the Azure Scheduler
is the right service for those who need a service that is completely managed, performing
periodical actions against a cloud infrastructure (hosted on Azure or not). With the
introduction of the Management Libraries, it is possible to configure Scheduler items from
managed code, making this a good point of interest for .NET developers, as we will see in
the Managing and using the Azure Scheduler recipe.

Chapter 7

319

Setting up the management client
Microsoft Azure implements a Management API via HTTP, the same one that is used by the
Portal itself to execute commands against the platform. While in the Portal, the authentication
is enforced by a Microsoft account (or an Azure Active Directory account) from a remote client
that we are supposed to identify ourselves using a certificate.

After the trust is established, we can call the HTTP API through a managed proxy with
strongly-typed models for requests and responses. Almost every response inherits from the
OperationResponse class of OperationStatusResponse in order to show the status
of the REST operation to the client.

The OperationResponse class is a base class that provides a
RequestId and HttpStatusCode parameter to the client's request,
while OperationStatusResponse is its derived class, which provides
additional domain-specific information such as error information and the
status of operation.

For each specific management library, there is a base namespace for the proxy classes and
a subnamespace (called Models) for the models involved in communication. It is common to
find a response-model that implements IEnumerable<T>, making it iterable and queryable
by LINQ. For example, the LocationsListResponse class implements IEnumerable<Lo
cationsListResponse.Location>, an inner POCO class that contains the model of the
single location item.

Getting ready
This recipe assumes that we have a valid X509 certificate on the local machine, with its
public key already uploaded to the Azure Portal. To set up the management client, proceed
as follows:

1.	 Open a developer command prompt and go to a local folder where the certificate's
public key is stored.

2.	 Run the following command, replacing CertificateName with the real values:
makecert -sky exchange -r -n "CN=<CertificateName>" -pe -a sha1
-len 2048 -ss My "<CertificateName>.cer"

3.	 After that:

1.	 In the current folder, a .cer file is created.

2.	 Then, in the local user store, a complete certificate is saved.

Managing Azure Resources with the Azure Management Libraries

320

4.	 To make the entire certificate (including its private key) portable, press Windows + R
(the Run command) and run mmc.

5.	 Then, navigate to File | Add/Remove Snap-in and select Certificates
(my user account).

6.	 In the Personal | Certificates folder, find the certificate created earlier (it will be
shown as CertificateName according to the one specified earlier).

7.	 Right-click on the certificate. Then, navigate to All Tasks | Export and follow the
wizard to export a PFX file wherever convenient (select Yes, export the private key
and specify a good password).

8.	 To create the trust between Azure and our certificate, upload the public key to the
Portal. Then go to the Azure Portal and locate the Management Certificates tab in
the Settings section.

9.	 Then, in the bottom menu, click on Upload and upload the .cer file created earlier.

Before closing the browser instance, write down the subscription ID where the certificate was
uploaded. We will use it along with the PFX created here in every recipe of the chapter.

How to do it…
We are going to obtain and list some platform-wide information such as the following:

ff Available Regions with their available services

ff Affinity groups of the subscriptions

ff Virtual machines available in the platform

We will do this using the following steps:

1.	 Add a new class named SetupManagementClientExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class f﻿﻿ile:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management;
using Microsoft.WindowsAzure.Management.Models;
using System.Security.Cryptography.X509Certificates;
using System.IO;

4.	 Add the following private member to the class:
ManagementClient client = null;

Chapter 7

321

5.	 Add the following constructor to the class:
public SetupManagementClientExample(string subId,
 byte[] certificate,string password=null)
{
 client = new ManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, listing location and services, to the class:
public void ListLocationAndServices()
{
 LocationsListResponse list = client.Locations.List();
 foreach (LocationsListResponse.Location item in list)
 {
 Console.WriteLine(
 string.Format("Region: {0} with services: {1}",
 item.Name, string.Join(", ", item.
AvailableServices)));
 }
}

7.	 Add the following method, listing the affinity groups of the subscription, to the class:
private void ListAffinityGroups()
{
 var list = client.AffinityGroups.List();
 foreach (AffinityGroupListResponse.AffinityGroup item in list)
 {
 Console.WriteLine(string.Format("{0} in {1}"
 ,item.Name,item.Location));
 }
}

8.	 Add the following method, listing the available virtual machine (VM) sizes,
to the class:
private void ListVMSizes()
{
 var list = client.RoleSizes.List();
 foreach (RoleSizeListResponse.RoleSize item in list)
 {
 Console.WriteLine(item.Label);
 if (item.SupportedByVirtualMachines)

Managing Azure Resources with the Azure Management Libraries

322

 Console.WriteLine("Available for VMs");
 if (item.SupportedByWebWorkerRoles)
 Console.WriteLine("Available for Cloud Services");
 Console.WriteLine("-----");
 }
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";

 SetupManagementClientExample example =
 new SetupManagementClientExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.ListLocationAndServices();
 example.ListAffinityGroups();
 example.ListVMSizes();
}

How it works...
In steps 1 through 3, we set up the class.

The Azure Management Libraries are a composable set of libraries
under a common top-level namespace. By adding the NuGet reference to
Microsoft.WindowsAzure.Management, we also add every specific
library currently available, such as Compute, Scheduler, Storage,
WebSites, and more. To work only with a specific library, it is preferable to
add it directly; we can avoid downloading and referencing the entire set.

In step 4, we added a private member to store the ManagementClient object used to
connect to the Management service. We initialized this in the constructor we add in step 5.

In step 6, we asked the client for a list of the currently available Regions in Azure
(also known as Data Centers). Almost each method of the class that inherits the base
ManagementClient object implements a Request/Response-object pattern that
wraps the actual result of the query operation in a general purpose object; this object
contains references and additional information about the request generated. In step 6,
LocationListResponse is inherited from the base OperationResponse class, which
contains the following:

Chapter 7

323

ff RequestId: This is a string with a unique trace identifier of the request issued. It is
very useful for troubleshooting requests.

ff StatusCode: This is an HTTP status code, which represents the low-level status
code of the operation.

In REST, there are conventions about the semantic association between
HTTP status codes and application status. However, it is not always intuitive
to expect a Created (201) status in the case of a successful creating
operation (perhaps, a OK (200) status should be expected by someone).
Often, in the Management Libraries, we also see a high-level status code,
which is provided through the OperationStatusResponse object (a
subclass of OperationResponse) in the property status. This status is a
domain-specific status that could be InProgress, Succeeded, or Failed.

In step 7, we listed the affinity groups created in our subscription, if any, and we showed the
name and location (Region) for each one. In step 8, we asked Azure to list the VM size that
is currently available to use in our services. Note that shipped in the RoleSize object, there
are two flags (SupportedByVirtualMachines and SupportedByWebWorkerRoles) that
tell us if the VM could be used by the Virtual Machine service (IaaS), the Cloud Services (PaaS
or the web and worker roles), or both. It is common, in fact, to have a VM size (that we should
call Instance instead of VM) that is available to specific services.

In step 9, we called the methods added earlier, specifying the Subscription ID where we need
to operate, with respect to the physical path of the PFX certificate and its password. Replace
the {SUB_ID}, {PFX_PATH}, and {PFX_PASSWORD} parts with the actual values.

There's more…
While debugging the REST services, an HTTP proxy could be our best friend, inspecting all
the request/response flows, and helping us detect errors and better understand object types
and properties returned by remote services. While the Management Libraries provide a
comprehensive set of method/classes, sometimes, a plain, old HTTP debugger is appreciated.
So, consider using Fiddler while developing with REST.

See also
Have a look at these MSDN links to get additional information:

ff Management Libraries reference at msdn.microsoft.com/library/azure/
dn602775(v=azure.11).aspx

msdn.microsoft.com/library/azure/dn602775(v=azure.11).aspx
msdn.microsoft.com/library/azure/dn602775(v=azure.11).aspx

Managing Azure Resources with the Azure Management Libraries

324

Managing the Storage service
The Azure Management Libraries are a composable set of libraries under a common top-level
namespace. Along with this, Microsoft shipped a single sublibrary for each of the services
of the entire Azure surface, enforcing separation of concerns, in order to maintain
them independently.

We will see for the first time that the CloudContext factory is instantiating the management
clients. This factory is smartly created with extension methods lying in each satellite library. At
the time of writing this book, this makes visible for the Management clients only those factory
methods that are physically referenced by the project.

From the beginning of Azure, a storage account is a container of three services: Blob, Tables,
and Queues. Recently, Azure Files have been introduced, so we can inspect these endpoints
with the StorageAccount.Properties.Endpoints collection, expecting three (or four)
public URIs as results. Since, in the last years, Microsoft introduced new options for storage,
we can check if the GeoReplicationEnabled flag is set to true or false, and in the case
it is positive, we can check which Region is designated to host the secondary replica. In the
case of a Geo-replicated storage account, the secondary replica could also be accessed to
scale our applications. Prior to the activation of the right option (RA-GRS, Read Access, and
Geo-Redundant Storage), the public URI that represents the replica will reply to the clients'
requests.

A storage account also has two access keys, used to authenticate the service from a remote
client. As these keys could be lost or stolen, Azure lets the user regenerate them through the
Portal or via the Management API.

Finally, the Management Libraries send textual information encoded in Base64 strings. This
is generally made by the library itself, but sometimes, a manual conversion is required. To see
it in action, inspect a client request issued by the library with Fiddler and see how it converts
our strings.

In this recipe, we will use the Storage Management Library, which is useful for automating
operations on storage accounts.

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file
and a PFX file. The first file should be uploaded to the Azure Portal, and the second (with its
password) has to be used in the code. We also need the Subscription ID of the subscription
on which we operate against. To complete these steps, please read the Setting up the
management client recipe.

Chapter 7

325

How to do it…
We are going to list the storage accounts of the subscription with their main properties. Then,
we will create a new storage account and change its properties as well. We will do using the
following steps:

1.	 Add a new class named ManagingStorageExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management.Storage;
using Microsoft.WindowsAzure.Management.Storage.Models;
using System.Security.Cryptography.X509Certificates;
using System.IO;

4.	 Add the following private member to the class:
StorageManagementClient client = null;

5.	 Add the following constructor to the class:
public ManagingStorageExample(string subId,
 byte[] certificate,string password=null)
{
 client = CloudContext.Clients.CreateStorageManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, listing storage accounts, to the class:
public void ListStorageAccount()
{
 StorageAccountListResponse list = client.StorageAccounts.
List();
 foreach (StorageAccount item in list)
 {
 Console.WriteLine(string.Format("Account: {0}",item.
Name));
 foreach (var ep in item.Properties.Endpoints)
 {
 Console.WriteLine(ep.ToString());
 }
 Console.WriteLine(string.Format("Geo-replication: {0}",
 item.Properties.GeoReplicationEnabled?"Enabled in "
 +item.Properties.GeoSecondaryRegion:"Disabled"));
 }
}

Managing Azure Resources with the Azure Management Libraries

326

7.	 Add the following method, creating a new storage account, to the class:
public bool CreateStorageAccount(string name)
{
 var r1 = client.StorageAccounts.CheckNameAvailability(name);
 if (r1.IsAvailable)
 {
 var bytes = Encoding.UTF8.GetBytes(name);
 var base64Name= Convert.ToBase64String(bytes);
 OperationStatusResponse r2= client.StorageAccounts
 .Create(new StorageAccountCreateParameters()
 {
 GeoReplicationEnabled=true,
 Location="North Europe",
 Name=name,
 Label=base64Name
 });
 if (r2.Status == OperationStatus.Succeeded)
 {
 return true;
 }
 }
 return false;
}

8.	 Add the following method, regenerating keys, to the class:
public void RegenerateKeys(string name)
{
 StorageAccountRegenerateKeysResponse r1= client
 .StorageAccounts.RegenerateKeys(
 new StorageAccountRegenerateKeysParameters()
 {
 KeyType=StorageKeyType.Primary,
 Name=name
 });
 Console.WriteLine(string
 .Format("New key: {0}",r1.PrimaryKey));
}

Chapter 7

327

9.	 Add the following method, disabling geo-replication, to the class:
public void DisableGeoReplication(string name)
{
 client.StorageAccounts.Update(name,
 new StorageAccountUpdateParameters()
 {
 GeoReplicationEnabled=false
 });
}

10.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string storageAccount = "{NEW_ACCOUNT}";

 ManagingStorageExample example =
 new ManagingStorageExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.ListStorageAccount();
 if (example.CreateStorageAccount(storageAccount))
 {
 example.RegenerateKeys(storageAccount);
 example.DisableGeoReplication(storageAccount);
 }
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the StorageManagementClient object used to connect to the Management service.
We initialized this in the constructor we add in step 5.

In the first recipe, we used the constructor of the ManagementClient
class to create an instance. However, the CloudContext class exposes
a static Clients property on which some extension methods provide
factories to the actual clients. This method, alternative to the previous
method, is easy to use to determine which clients are available and
which ones are not.

Managing Azure Resources with the Azure Management Libraries

328

In step 6, we listed the storage accounts of the subscription, and for each account found, we
showed its public HTTP endpoints. We expect three (or four) endpoints for each account: one
for the Blob service, one for the Table service, and one for the Queue service.

Storage accounts created after TechEd NA 2014 (mid-May 2014)
might have four endpoints, including the File endpoint, while the
preview period depends on whether the appropriate preview has been
opted for.

Finally, we showed the secondary Region of replica, in case Geo replication is enabled for
the account.

In step 7, we created a storage account by name. Assuming that the name is compliant
with the platform requirements, we checked its availability before creating it. We then called
a create operation on the StorageAccounts property, passing a wrapper object that
contains some settings: Geo replication status, location, name, and label.

To retrieve the list of the currently available locations/regions, please
see the Setting up the management client recipe. Moreover, note that
we encode the label's value in Base64. This is generally implemented
by the libraries themselves in other clients; for the storage one, we
have to do this manually.

The Create operation, under the hood, acts as follows:

1.	 It submits an initial request to the platform, which replies immediately with an
accepted/not-accepted response, including a RequestId.

2.	 However, as the create operation could take up to a few minutes, the libraries
periodically check the status of the request by asking it to the platform, using
the RequestId obtained earlier.

It does this step in a loop until the status of the operation, in the In-Progress
status, changes.

3.	 When, finally, the status of the operation changes to Failed or Succeeded, the
Create method returns, and the control is passed back to the custom code.

In step 8, we called the API to regenerate access keys of a given storage account. There are
two access keys (primary and secondary), and we can regenerate them one by one. Except for
some transient error in communication, it is uncommon that this operation could fail, so we
don't check the StatusCode object of the response, as we are quite sure it was a success.

In step 9, we disabled Geo replication, updating the settings of a given existing storage account.

Chapter 7

329

In step 10, we called the methods added earlier, specifying the Subscription ID on which we
need to operate , with respect to the physical path of the PFX certificate, its password, and
the storage account to create. Replace the {SUB_ID}, {PFX_PATH}, {PFX_PASSWORD},
and {NEW_ACCOUNT} parts with actual values.

There's more…
For each long-running operation (as is the case of the Create method on
StorageAccounts), there is a version that returns immediately and allows the user to
check the status subsequently, polling the service manually.

We implement this pattern as follows:

public bool CreateStorageAccountBeginAndPolling(string name)
{
 var r1 = client.StorageAccounts.CheckNameAvailability(name);
 if (r1.IsAvailable)
 {
 var bytes = Encoding.UTF8.GetBytes(name);
 var base64Name = Convert.ToBase64String(bytes);
 OperationResponse r2 = client.StorageAccounts
 .BeginCreating(new StorageAccountCreateParameters()
 {
 GeoReplicationEnabled = false,
 Location = "North Europe",
 Name = name,
 Label = base64Name
 });
 if (r2.StatusCode == System.Net.HttpStatusCode.Accepted)
 {
 OperationStatusResponse r3 = null;
 while ((r3=client.GetOperationStatus(r2.RequestId))
 .Status == OperationStatus.InProgress) Thread.
Sleep(1000);
 return r3.Status == OperationStatus.Succeeded;
 }
 }
 return false;
}

We used BeginCreating to submit the request to the platform, which immediately returns
a RequestId associated to the operation. Then, in a while/sleep loop (not too elegant, but
effective), we periodically checked the status of the operation, and when it completes, we
returned. This is exactly how the Management Library works under the hood when we call the
blocking methods such as the Create() method we used in the recipe.

Managing Azure Resources with the Azure Management Libraries

330

See also
Have a look at the following MSDN links to get additional information:

ff How to manage storage accounts at http://azure.microsoft.com/en-us/
documentation/articles/storage-manage-storage-account/

ff Operations on storage accounts at http://msdn.microsoft.com/en-us/
library/azure/ee460790.aspx

Deploying Cloud Services
Azure services have similar self-provisioning models. The user reserves a name/namespace
for the deployment unit, and then, they deploy its service using the specific technology of the
actual service. For storage, the deployment unit is the storage account itself. For compute, it
is represented by the concept of Cloud Services, a robust and fully featured container of web
applications (web roles) and generic processes (worker roles).

The ComputeManagementClient object is the specific client to work with Cloud Services
and VMs. In this book, however, VMs are not covered. A Cloud Service-hosting web or worker
role is represented by a service name with two (staging and production) deployment slots. A
user can deploy the same solution to both the slots that have two independent environments,
which are swappable at runtime in a few seconds, thanks to the VIP swap functionality.

VIP swap is a user-initiated process that swaps the load-balancer pointer to the deployment
slot opposite to the one at which it is currently pointed. So, if the Virtual IP (VIP) points to the
staging slot before a swap, after that, it will point to the production slots, with no downtime.

A sample development/deployment process flow, following best practices, could be as follows:

1.	 The developer initially deploys their solution to a production slot.

2.	 The public start to use the service, with no stops, 24/7.

3.	 The developer builds a second version, deploying it to the staging slot.

The QA team tests if everything is good to go live.

4.	 The developer swaps the two environments, performing the following action:

�� Making that change transparent for the user

�� Taking offline the old production slot, which now becomes the
current staging

In this recipe, we will automate a deployment operation, swapping slots and changing
the service configuration programmatically.

http://azure.microsoft.com/it-it/documentation/articles/storage-manage-storage-account/
http://azure.microsoft.com/it-it/documentation/articles/storage-manage-storage-account/
http://msdn.microsoft.com/en-us/library/azure/ee460790.aspx
http://msdn.microsoft.com/en-us/library/azure/ee460790.aspx

Chapter 7

331

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file and a
PFX file. The first should be uploaded to the Azure Portal, and the second (with its password)
has to be used in the code. We also need the Subscription ID of the subscription on which we
operate. To complete these steps, please read the Setting up the management client recipe.

This recipe also assumes that we have a CSPKG package (which contains a valid Cloud
Service) uploaded into the blob storage of an account in the same subscription as the one
currently managed, in a public blob, or in a private blob accessible with Shared Access
Signature (SAS).

How to do it…
We are going to create a Cloud Service in North Europe, deploying an existing cloud package
into its staging slot. After that, we will swap the deployment slots and update the service
configuration. We will do this using the following steps:

1.	 Add a new class named DeployingCloudServicesExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management.Compute;
using Microsoft.WindowsAzure.Management.Compute.Models;
using System.Threading.Tasks;
using System.Security.Cryptography.X509Certificates;;
using System.IO;

4.	 Add the following private member to the class:
ComputeManagementClient client = null;

5.	 Add the following constructor to the class:
public DeployingCloudServicesExample(string subId,
 byte[] certificate,string password=null)
{
 client = new ComputeManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2 (certificate, password)));
}

Managing Azure Resources with the Azure Management Libraries

332

6.	 Add the following method, creating and deploying the Cloud Service into the staging
slot, to the class:
public async Task<bool> CreateServiceSlotAndDeploy
 (string sn,string pack,string conf)
{
 HostedServiceCheckNameAvailabilityResponse res
 = await client.HostedServices.
CheckNameAvailabilityAsync(sn);
 if (res.IsAvailable)
 {
 OperationResponse r1= await client.HostedServices
 .CreateAsync(new HostedServiceCreateParameters()
 {
 Label=sn,
 ServiceName=sn,
 Location="North Europe"
 });
 if (r1.StatusCode == System.Net.HttpStatusCode.Created)
 {
 OperationStatusResponse r2= client.Deployments
 .Create(sn, DeploymentSlot.Staging,
 new DeploymentCreateParameters()
 {
 Configuration=File.ReadAllText(conf),
 Label=sn,
 Name="V1",
 PackageUri=new Uri(pack),
 StartDeployment=true,
 TreatWarningsAsError=false
 });
 return r2.Status == OperationStatus.Succeeded;
 }
 }
 return false;
}

7.	 Add the following method, swapping deployment slots, to the class:
public void SwapDeploymentSlots(string sn)
{
 OperationStatusResponse resp = client.Deployments.Swap(sn
 , new DeploymentSwapParameters() { SourceDeployment = "V1"
});

Chapter 7

333

 if (resp.Status != OperationStatus.Succeeded)
 {
 //Check why
 }
}

8.	 Add the following method, changing the service configuration, to the class:
public void ChangeConfiguration(string sn,string newConf)
{
 //We intentionally lose the OperationResponse returned
 client.Deployments.ChangeConfigurationBySlot(sn,
 DeploymentSlot.Production
 , new DeploymentChangeConfigurationParameters()
 {
 Mode=DeploymentChangeConfigurationMode.Auto,
 Configuration=File.ReadAllText(newConf)
 });
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string packagePath = "{CSPKG_URI}";
 string configPath = @"{CSCFG_PATH}";
 string serviceName = "{SERVICE_NAME}";

 DeployingCloudServicesExample example =
 new DeployingCloudServicesExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.CreateServiceSlotAndDeploy(serviceName,
 packagePath, configPath)
 .ConfigureAwait(continueOnCapturedContext: false)
 .GetAwaiter().GetResult();
 example.SwapDeploymentSlots(serviceName);
 example.ChangeConfiguration(serviceName, configPath);
}

Managing Azure Resources with the Azure Management Libraries

334

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the ComputeManagementClient object used to connect to the Management service.
We initialized this in the constructor we added in step 5.

Management Libraries recommend the use of the Async/Await pattern,
if used in applications where responsiveness of the UI is important or
where we need to execute operations asynchronously. For almost each
method of the Management libraries, there is an Async/Await version.

In step 6, we created an Async-aware method to create a Cloud Service and deployed
a Cloud Package into its staging slot. We first check the availability of the service name
we choose. If it is available, we create the service in the North Europe region. In the
DeploymentCreateParameters object, we passed PackageUri for the configuration XML.
The configuration XML is passed as a plain string to the method, which is converted in Base64
by the library. We also specified to immediately start the deployment; once the deployment
completes, we can proceed with the operation, even in the case of warnings.

We must remember that a stopped deployment continues to consume resources, and
consequently, we incur charges. Finally, there are some settings that cause warnings
in the deployment process, such as the number of instances (should be two or more).
If the TreatWarningsAsError property is set to true, the deployment stops in the case
of similar warnings.

In step 7, we swapped the deployment slots, while in step 8, we changed the configuration of
an existing service by passing a new one. This will cause the roles involved in the change to be
upgraded, according to the current upgrade domains.

In step 9, we called the methods added earlier, specifying the Subscription ID on which to
operate, its password for the physical path of the PFX certificate, the new package with
its configuration, and the Cloud Service to update. Replace the {SUB_ID}, {PFX_PATH},
{PFX_PASSWORD}, {CSPKG_URI}, {CSCFG_PATH}, and {SERVICE_NAME} parts with
the actual values.

There's more…
Changing the configuration of a running Cloud Service could result in topology changes or
cause the running instance to reboot. The way Azure manages these updates relies on the
concept of Upgrade Domain. An Upgrade Domain is a logical grouping between the instances
of a Cloud Service, made to let Azure upgrade one domain at time, without causing service
interruption. If the service has only two instances, we have two Upgrade Domains. If there are
more, Azure divides the instances into 5 logical groups of Upgrade Domains by default; these
will be updated one by one in case of an in-place update.

Chapter 7

335

With the Management API, we can control this behavior, walking the upgrade process
manually, and updating the domains of the running service one by one. This is done
using the following code:

public void ChangeConfigurationAndUpgradeManually(string sn, string
newConf)
{
 DeploymentGetResponse dep = client.Deployments
 .GetBySlot(sn, DeploymentSlot.Production);
 var operation= client.Deployments.ChangeConfigurationBySlot(sn,
 DeploymentSlot.Production
 , new DeploymentChangeConfigurationParameters()
 {
 Mode = DeploymentChangeConfigurationMode.Manual,
 Configuration = File.ReadAllText(newConf)
 });
 if (operation.Status == OperationStatus.Succeeded)
 {
 for (int i = 0; i < dep.UpgradeDomainCount; i++)
 {
 var singleDomainResult = new OperationStatusResponse()
 {
 Status=OperationStatus.Failed
 };
 while (singleDomainResult.Status != OperationStatus.
Succeeded)
 {
 singleDomainResult= client.Deployments
 .WalkUpgradeDomainByDeploymentSlot(sn,
DeploymentSlot.Production,
 new DeploymentWalkUpgradeDomainParameters()
 {
 UpgradeDomain = i
 });
 }
 }
 }
}

We initially called the GetBySlot() method of the Deployments property to obtain
information about the current deployment in the production slot. We then called
ChangeConfigurationBySlot to start the upgrade process, specifying the following:

Mode = DeploymentChangeConfigurationMode.Manual

Managing Azure Resources with the Azure Management Libraries

336

The preceding code instructs Azure to allow us to decide when to upgrade the
instances. If the operation succeeded, we set up a loop on the total count of
Upgrade Domains of the Deployment property. For each one, we simply called
WalkUpgradeDomainByDeploymentSlot to start the upgrade of that specific
logical group of instances.

See also
Have a look at the following MSDN links to get additional information:

ff API reference about Cloud Service Management at http://msdn.microsoft.
com/en-us/library/azure/ee460812.aspx

ff Updating an Azure service at http://msdn.microsoft.com/en-us/library/
azure/hh472157.aspx

Inspecting and managing Cloud Services
As we saw in the Deploying Cloud Services recipe, we can automate the deployment
operations of Cloud Services to build rich automation solutions. When a Cloud Service has at
least one deployment with any role, under the hood, there are virtual machines (also known
as Instances) that hold the code of the web application or the worker process.

These VMs run a specific Windows Server OS, also called Azure Guest OS. Each Azure Guest
OS is a modified version of Windows Server based on 2008 (now deprecated), 2008 R2,
2012, and so on.

We use the OperatingSystems property of the ComputeManagementClient object to
obtain the currently available Azure operating system's versions. In this collection, OSes are
grouped per family, which is a logical group based on the major version of Guest OS (that is,
2008, 2012, and so on).

In the Deploying Cloud Services recipe, we saw how to deploy and update a running role. In this
recipe, we will see how to inspect it, walking over some properties of the active deployment. We
use BeginRebootingRoleInstanceByDeploymentSlot to reboot a physical instance of a
given role and BeginReimagingRoleInstanceByDeploymentSlot to reimage it.

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file and a
PFX file. The first file should be uploaded to Azure Portal, and the second (with its password)
has to be used in the code. We also need the Subscription ID of the subscription on which we
operate. To complete these steps, please read the Setting up the management client recipe.

This recipe also assumes that we have an up-and-running Cloud Service to inspect. To have
such a Cloud Service, deploy a sample worker role to Azure and take note of the service name.

http://msdn.microsoft.com/en-us/library/azure/ee460812.aspx
http://msdn.microsoft.com/en-us/library/azure/ee460812.aspx
http://msdn.microsoft.com/en-us/library/azure/hh472157.aspx
http://msdn.microsoft.com/en-us/library/azure/hh472157.aspx

Chapter 7

337

How to do it…
We are going to list the supported operating systems for our deployments, understanding
which ones are available for Cloud Services, virtual machines, or both. We then inspect all
the existing Cloud Services in the subscription, having at least an active deployment. Finally,
we refresh an existing deployment. We will do this using the following steps:

1.	 Add a new class named InspectingManagingCloudServicesExample to
the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management.Compute;
using Microsoft.WindowsAzure.Management.Compute.Models;
using System.Security.Cryptography.X509Certificates;
using System.IO;

4.	 Add the following private member to the class:
ComputeManagementClient client = null;

5.	 Add the following constructor to the class:
public InspectingManagingCloudServicesExample(string subId,
 byte[] certificate,string password=null)
{
 client = new ComputeManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, obtaining the default platform OS, to the class:
public void GetDefaultOSs()
{
 OperatingSystemListFamiliesResponse familiesWithOss
 = client.OperatingSystems.ListFamilies();
 OperatingSystemListFamiliesResponse.OperatingSystem def
 =familiesWithOss.SelectMany(p=>p.OperatingSystems)
 .FirstOrDefault(p=>p.IsDefault);
 Console.WriteLine(def.Label);
 Console.WriteLine(def.Version);
}

Managing Azure Resources with the Azure Management Libraries

338

7.	 Add the following method, inspecting a Cloud Service, to the class:
public void InspectCloudService()
{
 HostedServiceGetDetailedResponse serviceWithActiveDeployments
 = client.HostedServices.List() .Select(p=>client.
HostedServices.GetDetailed(p.ServiceName))
 .FirstOrDefault(p=>p.Deployments
 .Any(q=>!string.IsNullOrWhiteSpace(q.SdkVersion)));
 if (serviceWithActiveDeployments != null)
 {
 Console.WriteLine(serviceWithActiveDeployments.
ServiceName);
 HostedServiceProperties props =
serviceWithActiveDeployments.Properties;
 Console.WriteLine(string.Format("Service {0} created on
{1} in {2}",
 props.Label,props.DateCreated,props.Location));
 foreach (HostedServiceGetDetailedResponse.Deployment item
 in serviceWithActiveDeployments.Deployments)
 {
 var roles=item.RoleInstances.GroupBy(p=>p.RoleName)
 .Select(p=>new {Role=p.Key,Instances=p.Count()});
 Console.WriteLine(string.Format("Deployment {0} in
{1}: {2}"
 ,item.Name,item.DeploymentSlot,item.Status));
 Console.WriteLine(string.Format("Public url:
{0}",item.Uri));
 Console.WriteLine(string.Format("Public IP: {0}",
 item.VirtualIPAddresses.First().Address));
 Console.WriteLine(string.Format("Packaged with SDK:
{0}",
 item.SdkVersion));
 Console.WriteLine(string.Format("{0} roles with
average of {1} instances"
 ,roles.Count(),roles.Average(p=>p.Instances)));
 }
 }
}

Chapter 7

339

8.	 Add the following method, refreshing an existing role instance, to the class:
public void Refresh1stRoleInstance(string sn,bool
rebootOnly=false)
{
 var service=client.HostedServices.GetDetailed(sn);
 if (service.Deployments.Any())
 {
 var dep=service.Deployments
 .FirstOrDefault(p=>p.DeploymentSlot
 ==DeploymentSlot.Staging && p.RoleInstances.
Any());
 if (dep!=null){
 var instance=dep.RoleInstances.First();
 Console.WriteLine(string.Format(
 "Refreshing: {0} instance {1}",
 instance.RoleName,instance.InstanceName));
 OperationResponse resp= rebootOnly?
 client.Deployments
 .BeginRebootingRoleInstanceByDeploymentSlot(sn,
 dep.DeploymentSlot, instance.InstanceName):
 client.Deployments
 .BeginReimagingRoleInstanceByDeploymentSlot(sn,
 dep.DeploymentSlot, instance.InstanceName);
 }
 }
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string serviceName = "{SERVICE_NAME}";

 InspectingManagingCloudServicesExample example =
 new InspectingManagingCloudServicesExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.GetDefaultOSs();
 example.InspectCloudService();
 example.Refresh1stRoleInstance(serviceName, true);
}

Managing Azure Resources with the Azure Management Libraries

340

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the ComputeManagementClient object used to connect to the Management service.
We initialized this in the constructor we added in step 5.

In step 6, we asked Azure to list all the currently available operating system families of the
platform. We filtered the results to get the default operating system (usually the latest) used
to build new services.

In step 7, we used LINQ to get the first Cloud Service, which has at least one active
deployment. We listed the following properties of this Cloud Service:

ff The running status of the deployment

ff The public URL and IP of the Cloud Service

ff The SDK version used to package the deployment

ff The average instances per role

We also asked for the !string.IsNullOrWhiteSpace(q.
SdkVersion) condition to make sure it is a user-uploaded service (web
or worker role).

In step 8, with a given up-and-running Cloud Service, we got its staging deployment, and
tried to reboot or reimage the first instance we find. Rebooting is simple to understand, while
reimaging is the process that destroys the existing machine that builds another one, starting
from the Service Package (CSPKG) used to build the original machine image.

In the case of a reboot, the local storage of the instance is preserved,
while in the case that the role instance is reimaged, there is no guarantee
that the local storage is preserved, even if Azure tries to do it. So, do not
rely on the local storage of role instance, preferring to persist data into
the appropriate places.

In step 9, we call the methods added earlier, specifying the Subscription ID on which to
operate, with respect to the physical path of the PFX certificate, its password, and the
Cloud Service to refresh. Replace the {SUB_ID}, {PFX_PATH}, {PFX_PASSWORD}, and
{SERVICE_NAME} parts with the actual values.

Chapter 7

341

There's more…
While building a Cloud Service wrapper project for a web role or a worker role, we have
a service definition and service configuration. Among settings, endpoints, and storage
configurations, we could also set up some additional processes that run in the role instances
when they have been deployed to Azure. These processes, such as the Remote Desktop
module, the Diagnostics module, the Active Directory integration, the Monitoring Agent, and
the Antimalware, are called Extensions. To know which extensions are currently supported
(and available) on a role instance, we use the following method:

public void ListExtensions()
{
 IEnumerable<string> exts
 = client.HostedServices.ListAvailableExtensions()
 .Select(p => p.Description);
 foreach (string item in exts)
 {
 Console.WriteLine(item);
 }
}

See also
Have a look at the following MSDN links to get additional information:

ff Azure Guest OS releases at http://msdn.microsoft.com/en-us/library/
azure/ee924680.aspx

ff Extensions for virtual machines at http://msdn.microsoft.com/en-us/
library/azure/dn606311.aspx

Managing and using the Azure Scheduler
The Azure Scheduler lets us create scheduled actions against an HTTP or HTTPS endpoint
for a storage queue. By implementing complex infrastructures, we often need to schedule
some actions with specific recurrence. Also, the Windows Task Scheduler helps us run
custom processes in a scheduled fashion. However, having a Task Scheduler that runs
on a user-managed VM involves maintenance and skills, although that is not to say that
it is not a highly available solution, as the underlying VM represents a single point
of failure.

http://msdn.microsoft.com/en-us/library/azure/ee924680.aspx
http://msdn.microsoft.com/en-us/library/azure/ee924680.aspx
http://msdn.microsoft.com/en-us/library/azure/dn606311.aspx
http://msdn.microsoft.com/en-us/library/azure/dn606311.aspx

Managing Azure Resources with the Azure Management Libraries

342

The Azure Scheduler, via the Azure Portal or the Management API, lets us submit jobs of the
following two types:

ff HTTP endpoint call

ff Message in queue

In the former case, we can customize the request by appending custom headers and
choosing the appropriate method (GET, POST, and so on). In the latter, we can put a message
on a storage queue, supposing there is someone on the other side ready to process it, before
or later.

The Azure Scheduler does not run custom code in either .NET or other runtimes. Triggered by
Azure itself and following the recurrence rules, its purpose is to start a user process. In this
recipe, we will see how to manage the Scheduler service and how to use it to submit new jobs.

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file and a
PFX file. The first file should be uploaded to Azure Portal, and the second (with its password)
has to be used in the code. We also need the Subscription ID of the subscription on which we
operate. To complete these steps, read the Setting up the management client recipe.

How to do it…
We are going to create a Job Collection, putting a Job into it, waiting for the first execution, and
checking the status of the action that is executed. We will do this using the following steps:

1.	 Add a new class named ManagingUsingSchedulerExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management.Scheduler;
using Microsoft.WindowsAzure.Management.Scheduler.Models;
using Microsoft.WindowsAzure.Scheduler;
using Microsoft.WindowsAzure.Scheduler.Models;
using System.Security.Cryptography.X509Certificates;
using System.Threading;
using System.IO;
using System.Collections.Generic;

4.	 Add the following private member to the class:
SchedulerManagementClient client = null;

Chapter 7

343

5.	 Add the following constructor to the class:
public ManagingUsingSchedulerExample(string subId,
 byte[] certificate, string password = null)
{
 client = new SchedulerManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, enabling the resource provider for the Scheduler service,
to the class:
public void CheckIfEnableAndPrintProperties()
{
 try { client.RegisterResourceProvider(); }
 catch { }

 IDictionary<string, string> props =
 client.GetResourceProviderProperties().Properties;
 foreach (var keyValue in props)
 {
 Console.WriteLine(string.Format("{0}: {1}",
 keyValue.Key, keyValue.Value));
 }
}

7.	 Add the following method, a new resource holder (formally, Cloud Service),
to the class:
public void CreateNewResourceHolder(string name)
{
 CloudServiceManagementClient csClient =
 CloudContext.Clients
 .CreateCloudServiceManagementClient(client.Credentials);

 var list = csClient.CloudServices.List();
 foreach (CloudServiceListResponse.CloudService item in list
 .Where(p => p.Resources.Any()))
 {
 Console.WriteLine(string.Format("{0} in {1} with: ",
 item.Name, item.GeoRegion));
 foreach (var resource in item.Resources)
 {
 Console.WriteLine(string.Format("{0}: {1}",
 resource.Name, resource.Type));

Managing Azure Resources with the Azure Management Libraries

344

 }
 }
 if (!list.Any(p => p.Name.Equals(name,
 StringComparison.InvariantCultureIgnoreCase)))
 {
 csClient.CloudServices.Create(name,
 new CloudServiceCreateParameters()
 {
 Description = name,
 Label = name,
 GeoRegion = "North Europe"
 });
 }
}

8.	 Add the following method, creating a Job collection, to the class:
public void CreateJobCollection(string cs,string jobCollection)
{
 client.JobCollections.Create(cs, jobCollection,
 new JobCollectionCreateParameters()
 {
 Label = "My Job collection",
 IntrinsicSettings = new JobCollectionIntrinsicSettings()
 {
 Plan = JobCollectionPlan.Standard
 }
 });
}

9.	 Add the following method, creating a monitoring Job, to the class:
public string CreateMonitoringJob(string cs,string jobCollection)
{
 SchedulerClient jobClient = CloudContext.Clients
 .CreateSchedulerClient(client.Credentials, cs,
jobCollection);
 var job = jobClient.Jobs.Create(new JobCreateParameters()
 {
 StartTime=DateTime.UtcNow.AddMinutes(1),
 Recurrence = new JobRecurrence()
 {
 Frequency=JobRecurrenceFrequency.Hour,
 Count=10
 },
 Action = new JobAction()

Chapter 7

345

 {
 Type=JobActionType.Http,
 RetryPolicy = new RetryPolicy()
 {
 RetryCount=5,
 RetryInterval=TimeSpan.FromMinutes(5),
 RetryType=RetryType.Fixed
 },
 Request = new JobHttpRequest()
 {
 Uri=new Uri("http://www.microsoft.com"),
 Method="GET"
 },
 ErrorAction = new JobErrorAction()
 {
 Type=JobActionType.Http,
 Request = new JobHttpRequest()
 {
 Uri=new Uri("http://myService/
log?error?ID=001"),
 Method="GET",
 Headers = new Dictionary<string, string>()
 { {"Auth","Key"}}
 }
 }
 }
 });
 if (job.StatusCode == System.Net.HttpStatusCode.Created)
 {
 return job.Job.Id;
 }
 else return null;
}

10.	 Add the following method, checking the status of the Job, to the class:
public void CheckExecutionStatus(string cs,
 string jobCollection,string jobId)
{
 SchedulerClient jobClient = CloudContext
 .Clients.CreateSchedulerClient(client.Credentials,
 cs, jobCollection);
 JobGetHistoryResponse list= jobClient.Jobs
 .GetHistory(jobId, new JobGetHistoryParameters()
 {

Managing Azure Resources with the Azure Management Libraries

346

 Top=10,
 Skip=0
 });
 foreach (JobGetHistoryResponse.JobHistoryEntry item in list)
 {
 Console.WriteLine(string.Format("Execution of: {0} - {1}",
 item.EndTime,item.Status));
 }
}

11.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string resourceHolder = "{CLOUD_SERVICE}";
 string jobCollection = "{JOB_COLL_NAME}";

 ManagingUsingSchedulerExample example =
 new ManagingUsingSchedulerExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.CreateNewResourceHolder(resourceHolder);
 example.CreateJobCollection(resourceHolder, jobCollection);
 string id = example.CreateMonitoringJob(
 resourceHolder, jobCollection);
 if (id != null)
 {
 //Wait a minute
 Thread.Sleep(60000);
 example.CheckExecutionStatus(resourceHolder,
 jobCollection, id);
 }
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the SchedulerManagementClient object used to connect to the Management service.
We initialized this in the constructor we added in step 5.

Chapter 7

347

In step 6, we registered the resource provider. The Scheduler service, as for many other new
services in the Azure Platform, comes like an optional add-on for an existing subscription.
In fact, people can choose to entitle the subscription to its usage, so it is necessary to
explicitly add it into the subscription, using the RegisterResourceProvider() method.

In step 7, we again dealt with the concept of Cloud Service, this time, differently from the
previous times in the book. Cloud Services could be endpoints for our web or worker roles,
VM, and now, even for resource providers.

Note that the name of a Cloud Service for resource providers does not
match the name of a publicly faced Cloud Service (for web/worker roles
or VMs). This could be confusing.

Therefore, we created a Cloud Service (in the recipe, we also call it a resource holder),
and in step 8, we created a Job Collection into it, specifying the Standard (paid) mode
in the Plan property.

In step 9, we submitted a new Job definition. This job should call an HTTP URL (Microsoft's
home page) 10 times every hour, starting in 1 minute. We state that if something goes wrong,
the Job should retry the operation up to five times, every 5 minutes. Finally, if the job fails for
some reason, it must call a custom web endpoint, passing a custom HTTP header (Auth).

In step 10, we used the previously created job reference to check its execution status,
printing the occurrences. In the case of failure, we will see many executions according to the
RetryPolicy class.

In step 11, we called the methods added earlier, specifying the Subscription ID on which
to operate with respect to the physical path of the PFX certificate, its password, the Cloud
Service, and the Job Collection to create. Replace the {SUB_ID}, {PFX_PATH}, {PFX_
PASSWORD}, {CLOUD_SERVICE}, and {JOB_COLL_NAME} parts with the actual values.

There's more…
As the Scheduler actually accepts two kinds of job types, we will see how to put a message
in a storage queue, instead of calling an HTTP service as follows:

public string CreateJobWithMessageQueue(
 string cs, string jobCollection,string storage,
 string queue,string sasToken)
{
 SchedulerClient jobClient = CloudContext.Clients
 .CreateSchedulerClient(client.Credentials, cs, jobCollection);
 var job = jobClient.Jobs.Create(new JobCreateParameters()
 {

Managing Azure Resources with the Azure Management Libraries

348

 StartTime = DateTime.UtcNow.AddMinutes(1),
 Action = new JobAction()
 {
 Type = JobActionType.StorageQueue,
 QueueMessage=new JobQueueMessage(){
 StorageAccountName=storage,
 QueueName=queue,
 Message="Message from Scheduler",
 SasToken=sasToken
 }
 }
 });
 if (job.StatusCode == System.Net.HttpStatusCode.Created)
 {
 return job.Job.Id;
 }
 else return null;
}

We just need a storage account with a queue that is accessible through an SAS token, and the
Scheduler will put a message into it. HTTP endpoints are exposed to the public, and even if
we can authenticate the request with headers over HTTPS, the Queue mechanism is generally
more secure or, at least, more private.

See also
Have a look at these MSDN links to get additional information:

ff The Azure Scheduler documentation center at http://azure.microsoft.com/
en-us/documentation/services/scheduler/

ff Using Scheduler from the Management Portal at http://msdn.microsoft.com/
en-us/library/azure/dn495651.aspx

http://azure.microsoft.com/it-it/documentation/services/scheduler/
http://azure.microsoft.com/it-it/documentation/services/scheduler/
http://msdn.microsoft.com/en-us/library/azure/dn495651.aspx
http://msdn.microsoft.com/en-us/library/azure/dn495651.aspx

Chapter 7

349

Monitoring and automating infrastructure
operations

When a user initiates an operation on the Azure Portal, it is given with a RequestId to keep
track of its status, in case it's needed. In the Managing the Storage service recipe, we saw
how to use that RequestId to check the status of a request, but we might need to ask Azure
for a list of every operation in a specific timeframe.

Going back to the ManagementClient class, which manages infrastructure services,
we can use the ListOperations() method to obtain a complete list of the operation
history against the platform; this is initiated by us or someone else who has the rights to
the subscription.

For each operation, we can track:

ff The operation name

ff Who made it (the e-mail address) and from where (the IP address)

ff The current status of the operation and when it occurred

As the purpose of the Management Libraries is to mirror the functionalities of the Azure
Portal, we can also use them to install new client certificates, automating the management
process itself.

Finally, through the SubscriptionGetResponse class, we can get useful information
about the current subscription, knowing if we reached the quota for any service we used. In
this recipe, we dig into the operation log, the capability of uploading new certificates, and the
quotas for services.

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file and
a PFX file. The first file should be uploaded to the Azure Portal, and the second one (with its
password) has to be used in the code. We also need the Subscription ID of the subscription
on which we operate. To complete these steps, please read the Setting up the management
client recipe.

This recipe also assumes that we have a new X509 certificate, different from the one used to
connect to the Management service, ready to be uploaded by the code.

Managing Azure Resources with the Azure Management Libraries

350

How to do it…
We are going to do some basic monitoring to the subscription, verifying the usage limits. We also
list management certificates, uploading a new one, eventually exporting a list of management
operations that took place in the last hour. We will do this using the following steps:

1.	 Add a new class named MonitoringAutomatingExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management;
using Microsoft.WindowsAzure.Management.Models;
using System.Threading;
using System.Threading.Tasks;
using System.Net;
using System.Net.Http;
using System.Security.Cryptography.X509Certificates;
using System.IO;

4.	 Add the following private member to the class:
ManagementClient client = null;

5.	 Add the following constructor to the class:
public MonitoringAutomatingExample(string subId,
 byte[] certificate,string password=null)
{
 client = new ManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, checking subscription limits, to the class:
private void SubscriptionCountersCheck()
{
 Action<string,int, int> checkAndPrint = (name,current, max) =>
 {
 string message = string.Format("{0}: {1} of {2} "
 , name, current, max);
 if (current>(max*0.75)) message+=" - Attention";
 else message +=" - OK";
 Console.WriteLine(message);
 };

Chapter 7

351

 SubscriptionGetResponse status = client.Subscriptions.Get();
 Console.WriteLine(string.Format(
 "Subscription: {0} ({1}) with admin: {2}",
 status.SubscriptionName, status.SubscriptionStatus,
 status.AccountAdminLiveEmailId));
 checkAndPrint("Cores used",status.CurrentCoreCount,
 status.MaximumCoreCount);
 checkAndPrint("DNS servers used", status.CurrentDnsServers,
 status.MaximumDnsServers);
 checkAndPrint("Cloud Services used", status.
CurrentHostedServices,
 status.MaximumHostedServices);
 checkAndPrint("Network sites used", status.
CurrentLocalNetworkSites,
 status.MaximumLocalNetworkSites);
 checkAndPrint("Storage accounts used", status.
CurrentStorageAccounts,
 status.MaximumStorageAccounts);
 checkAndPrint("Virtual network sites used", status.
CurrentVirtualNetworkSites,
 status.MaximumVirtualNetworkSites);
}

7.	 Add the following method, listing current certificates, to the class:
private void ListCertificates()
{
 var list = client.ManagementCertificates.List();
 foreach (ManagementCertificateListResponse
 .SubscriptionCertificate item in list)
 {
 Console.WriteLine(string.Format("{0} certificate found",
 item.Thumbprint));
 }
}

8.	 Add the following method, uploading a new management certificate, to the class:
public void UploadManagementCertificate(byte[] certificate)
{
 X509Certificate2 X509 = new X509Certificate2();
 X509.Import(certificate);
 try
 {
 OperationResponse resp = client.ManagementCertificates.
Create(

Managing Azure Resources with the Azure Management Libraries

352

 new ManagementCertificateCreateParameters()
 {
 PublicKey = certificate,
 Thumbprint = X509.Thumbprint
 });
 if (resp.StatusCode == HttpStatusCode.Created)
 {
 Console.WriteLine("Operation submitted with id: {0}",
 resp.RequestId);
 }
 }
 catch (CloudException ex)
 {
 //Details
 }
}

9.	 Add the following method, listing the last hour's operations, to the class:
private void ListManagementOperations()
{
 var list= client.Subscriptions.ListOperations(
 new SubscriptionListOperationsParameters()
 {
 StartTime=DateTime.UtcNow.AddDays(-1),
 EndTime=DateTime.UtcNow,
 OperationStatus=OperationStatus.Succeeded
 });
 foreach (SubscriptionListOperationsResponse.
SubscriptionOperation
 item in list.SubscriptionOperations)
 {
 Console.WriteLine(string.Format("Operation: {0}",
 item.OperationName));
 Console.WriteLine(string.Format("By user: {0} from {1}",
 item.OperationCaller.UserEmailAddress,
 item.OperationCaller.ClientIPAddress));
 Console.WriteLine(string.Format("Status: {0}",
 item.OperationStatus));
 Console.WriteLine(string.Format("Started: {0} - Ended:
{1}",
 item.OperationStartedTime
 ,item.OperationCompletedTime));
 }
}

Chapter 7

353

10.	 Add the following method, using the methods added earlier, to the class:

public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string newCertPath = @"{NEW_CERT_PATH}";

 MonitoringAutomatingExample example =
 new MonitoringAutomatingExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.SubscriptionCountersCheck();
 example.ListCertificates();
 example.UploadManagementCertificate(File
 .ReadAllBytes(newCertPath));
 example.ListManagementOperations();
}

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to store
the ManagementClient object used to connect to the Management service. We initialized
this in the constructor we added in step 5.

In step 6, we built a lambda that takes two numbers (current and max) and prints a result
by the following rules:

ff If the current number is 75 percent more than the max number, the lambda
shows Attention

ff If the current number is less than or equal to 75 percent of the max number,
the lambda shows OK

After printing the subscription name and the administrator's e-mail, we then ask Azure for
every current counter of our subscription, printing its status of saturation using the lambda
defined earlier.

For each subscription, Azure defines some limits for its resources. We
must take these limits into planning considerations, when we design an
infrastructure, not by a numerical perspective (many of them could be
increased by calling Microsoft Support) but knowing that they exist and
designing our software to react to saturation, properly.

Managing Azure Resources with the Azure Management Libraries

354

In step 7, we listed the current management certificates. You can expect to see many results if
you used Visual Studio to connect to Azure from different devices.

In step 8, we uploaded a new .CER certificate to the management portal. If we hold the
private key of the new certificate; we could also use it instead of the old one. Remember that
the new certificate must be different from any of the previously uploaded ones, or an error
would occur. In step 9, we used the ListOperations() method to obtain the operation log
for the last hour.

In step 10, we called the methods added earlier, specifying the Subscription ID on which we
need to operate with respect to the physical path of the PFX certificate, its password, and
the path of the new certificate to upload. Replace the {SUB_ID}, {PFX_PATH}, {PFX_
PASSWORD}, and {NEW_CERT_PATH } parts with the actual values.

There's more…
Under the hood, the ManagementClient class and its subclasses implement HTTP
operations using the new Async-ready .NET stack, with the HttpClient library. According
to its model, ManagementClient could be extended to intercept HTTP operations through
the concept of DelegatingHandler. A DelegatingHandler class is a handler that is
called during the request/response pipeline, where the user can add custom code to perform
workflow operations.

In the following example, we create a DelegatingHandler class that tries to get a custom
header from the HTTP response, launching a custom action behind the scenes:

public class TraceRequestDelegatingHandler : DelegatingHandler
{
 ManagementClient client = null;
 public TraceRequestDelegatingHandler(ManagementClient client)
 {
 this.client = client;
 }
 protected override async Task<HttpResponseMessage> SendAsync
 (HttpRequestMessage request, CancellationToken
cancellationToken)
 {
 return await base.SendAsync(request, cancellationToken)
 .ContinueWith<HttpResponseMessage>(task=>{
 HttpResponseMessage response = task.Result;

 if (response.IsSuccessStatusCode)
 {
 var requestId = response.Headers
 .GetValues("x-ms-request-id").
FirstOrDefault();

Chapter 7

355

 if (requestId!=null)
 {
 OperationStatusResponse status
 = client.
GetOperationStatus(requestId);
 if (status.Status == OperationStatus.
Failed)
 {
 //do something
 }
 }

 }
 return response;
 },TaskContinuationOptions.OnlyOnRanToCompletion);
 }
}

When we override the SendAsync method, we tell the base handler to process the request,
and in the case of success, we tell it to execute a custom script, extracting from the headers
a specific one (the RequestId of the last request). To integrate this handler into
the ManagementClient pipeline, the following code is required:

private void InterceptResponseFlow()
{
 client = client.WithHandler(
 new TraceRequestDelegatingHandler(client));
 //Do something
}

Every subsequent operation of the WithHandler() registration will pass through the
custom handler.

See also
Have a look at these MSDN links to get additional information:

ff Azure subscription and service limits, quotas, and constraints at http://azure.
microsoft.com/en-us/documentation/articles/azure-subscription-
service-limits/

ff How to increase limits at http://azure.microsoft.com/blog/2014/06/04/
azure-limits-quotas-increase-requests/

ff HTTP message handlers at http://www.asp.net/web-api/overview/
working-with-http/http-message-handlers

http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/
http://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
http://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
http://www.asp.net/web-api/overview/working-with-http/http-message-handlers
http://www.asp.net/web-api/overview/working-with-http/http-message-handlers

Managing Azure Resources with the Azure Management Libraries

356

Automating SQL Database operations
The Azure SQL Database is the fully managed PaaS version of a SQLServer-like database
engine in the cloud.

When dealing with big multitenant infrastructures, where we pool group of tenants into the
same database, automation solutions on database management are necessary.

Let's assume that we need to automate the creation process of a new database. As far as
we know, we can proceed as follows:

1.	 Use the Azure T-SQL (create database).

2.	 Use the Management API (even through the managed libraries).

If then we need to create new servers, only the second option remains available. It is easy to
understand that if we want to scale out automatically, an automated management solution
has to be implemented on the Management API side.

In this recipe, we will see some basics of SQL Database management through the APIs.

Getting ready
This recipe assumes that we created a valid certificate, and we exported it to a CER file and
a PFX file. The first file should be uploaded to the Azure Portal, and the second one (with its
password) has to be used in the code. We also need the Subscription ID of the subscription on
which we operate. To complete these steps, read the Setting up the management client recipe.

How to do it…
We are going to list the current SQL Database servers and databases, looking at some
properties. We will then create a new server and database. We will do this using the
following steps:

1.	 Add a new class named AutomatingSQLDatabaseExample to the project.

2.	 Install the Microsoft.WindowsAzure.Management NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Management.Sql;
using Microsoft.WindowsAzure.Management.Sql.Models;
using System.Security.Cryptography.X509Certificates;
using System.IO;

Chapter 7

357

4.	 Add the following private member to the class:
SqlManagementClient client = null;

5.	 Add the following constructor to the class:
public AutomatingSQLDatabaseExample(string subId,
 byte[] certificate, string password = null)
{
 client = new SqlManagementClient(
 new CertificateCloudCredentials(subId,
 new X509Certificate2(certificate, password)));
}

6.	 Add the following method, listing servers and databases, to the class:
public void ListServersAndDatabases()
{
 ServerListResponse servers = client.Servers.List();
 foreach (Server server in servers)
 {
 Console.WriteLine(string.Format("Server: {0} - Admin:
{1}",
 server.Name,server.AdministratorUserName));
 Console.WriteLine(string.Format("Version: {0} - Location:
{1}",
 server.Version,server.Location));
 DatabaseListResponse databases =
 client.Databases.List(server.Name);
 foreach (Database db in databases)
 {
 Console.WriteLine(string.Format(
 "DB: {0} - Edition: {1} - Size: {2} - MaxSize:
{3}",
 db.Name,db.Edition,db.SizeMB,db.
MaximumDatabaseSizeInGB));
 }
 }
}

7.	 Add the following method, creating a new database, to the class:
public void CreateNewServerAndDatabase(string admin,
 string password,string databaseName)
{
 ServerCreateResponse resp= client.Servers
 .Create(new ServerCreateParameters()
 {

Managing Azure Resources with the Azure Management Libraries

358

 AdministratorUserName=admin,
 AdministratorPassword=password,
 Version="2.0",
 Location="West Europe"
 });
 if (resp.StatusCode == System.Net.HttpStatusCode.Created)
 {
 var db=client.Databases.Create(resp.ServerName,
 new DatabaseCreateParameters()
 {
 Edition="BASIC",
 MaximumDatabaseSizeInGB=1,
 Name=databaseName
 });
 if (db.StatusCode == System.Net.HttpStatusCode.Created)
 {
 Database database = db.Database;
 }
 }
}

8.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 string subId = "{SUB_ID}";
 string certPath = @"{PFX_PATH}";
 string certPwd = "{PFX_PASSWORD}";
 string adminName = "{S_ADMIN}";
 string adminPassword = "{S_PASSWORD}";
 string dbName = "{DB_NAME}";

 AutomatingSQLDatabaseExample example =
 new AutomatingSQLDatabaseExample(subId,
 File.ReadAllBytes(certPath), certPwd);
 example.ListServersAndDatabases();
 example.CreateNewServerAndDatabase(
 adminName, adminPassword, dbName);
}

Chapter 7

359

How it works...
In steps 1 through 3, we set up the class. In step 4, we added a private member to
store the SqlManagementClient object used to connect to the Management service.
We initialized this in the constructor we added in step 5.

In step 6, we listed the current servers of the subscription, looking, among other properties,
at the server version. Version 1.0, to be discontinued in 2015, is the one supporting the
Web and BusinessDB editions, while Version 2.0 is the one supporting the Basic, Standard,
and Premium DB performance levels.

Therefore, in step 7, we created a Version 2.0 server with a basic database in it.

In step 8, we called the methods added earlier, specifying the Subscription ID on which
to operate with respect to the physical path of the PFX certificate, its password, the new
database name, and the credentials of the server to use. Replace the {SUB_ID}, {PFX_
PATH}, {PFX_PASSWORD}, {DB_NAME}, {S_ADMIN}, and {S_PASSWORD} parts with the
actual values.

There's more…
The SQL Database offers an Import/Export feature that lets customers export the entire
database (schema and data) into a self-contained unit called BACPAC. This feature could be
scheduled to run automatically and periodically, but we can also use the Management API to
perform manual imports and exports.

The following code show how to create a new database by importing an existing BACPAC,
which is located in a storage account:

public void ImportBACPAC(string serverName,string admin,
 string password,string database, Uri storageUri,string
storageKey)
{
 DacImportExportResponse res = client.Dac
 .Import(serverName, new DacImportParameters()
 {
 AzureEdition = "Business",
 BlobCredentials = new DacImportParameters
 .BlobCredentialsParameter()
 {
 Uri = storageUri,
 StorageAccessKey = storageKey
 },

Managing Azure Resources with the Azure Management Libraries

360

 ConnectionInfo = new DacImportParameters
 .ConnectionInfoParameter()
 {
 DatabaseName = database,
 ServerName = serverName,
 UserName = admin,
 Password = password
 },
 DatabaseSizeInGB = 150
 });
 if (res.StatusCode == System.Net.HttpStatusCode.OK)
 {
 //Check async import status
 }
}

Note that the destination server version must be 1.0 in order to permit the Business edition to
be created correctly.

See also
Have a look at the following MSDN links to get additional information:

ff Using a DAC BACPAC to migrate a database at http://msdn.microsoft.com/en-
us/library/jj156148.aspx

ff Azure SQL Database service tiers at http://msdn.microsoft.com/en-us/
library/dn741336.aspx

Using Azure PowerShell
Azure PowerShell uses the Azure Service Management REST API to expose service
management operations as PowerShell cmdlets. The cmdlets provide a convenient
way to manage many aspects of an Azure subscription.

In this recipe, we will learn how to use Azure PowerShell cmdlets to invoke various service
operations in the Azure Service Management REST API, and we will create a sample Azure
cache endpoint.

Getting ready
If necessary, we can download Azure PowerShell from Web Platform Installer.

http://msdn.microsoft.com/en-us/library/jj156148.aspx
http://msdn.microsoft.com/en-us/library/jj156148.aspx
http://msdn.microsoft.com/en-us/library/dn741336.aspx
http://msdn.microsoft.com/en-us/library/dn741336.aspx

Chapter 7

361

How to do it...
We are going to use the Azure PowerShell to retrieve various properties of an Azure
subscription, as follows:

1.	 Open the Azure PowerShell console.

The first time we use the Azure PowerShell console, we might be
required to authorize the execution of various pieces of software. We
can select R (run once) or A (always run) for each module to be loaded.

2.	 Type Add-AzureAccount and press Enter. A pop-up window might appear. Type
your credentials that are connected to a valid Azure subscription and continue.

3.	 Type Get-AzureWebsite to retrieve the list of current websites.

4.	 Type Get-AzureSqlDatabaseServer to retrieve the list of current SQL
Database servers.

5.	 Type Get-AzureLocation to retrieve the currently available Regions.

6.	 Type Get-AzureManagedCache to retrieve the currently available caches.

7.	 Type the following command to create a new cache endpoint:
New-AzureManagedCache -Name myCache -Location "West Europe" -Sku
Standard -Memory 1GB

8.	 Type Get-AzureService to retrieve the current Cloud Services.

9.	 Type the following command to create a new Cloud Service:
New-AzureService -ServiceName myService -Location "North Europe"

How it works...
In step 1, we open Azure PowerShell, authorizing it to execute its scripts. In step 2, we linked
our Azure subscriptions to PowerShell. The process is automatic, as PowerShell asks for a
valid management credential. If we have multiple subscriptions, everything is now linked
to PowerShell.

In step 3, we listed all the current websites; for step 4, we listed the SQL Database servers;
and in step 5, we listed the Regions. In steps 6 and 7, we listed the existing cache endpoints
and create a new one.

In steps 7 and 8, we finally listed the available Cloud Services and created a new one,
specifying the service name for the Region where we need to place it.

Managing Azure Resources with the Azure Management Libraries

362

There's more…
An incredible set of cmdlets are available in Azure PowerShell, performing almost
every operation available in the platform. To get a complete list of commands, type
the following command:

help azure

To refine the search on a single area (for example, the SQL Database), type the
following command:

help sqldatabase

PowerShell will filter the search result in the help libraries according to the selection.

See also
Have a look at the following MSDN links to get additional information:

ff Getting started with Azure Powershell at http://azure.microsoft.com/en-us/
documentation/articles/install-configure-powershell/

ff Getting started with the Azure Cross-Platform Command-Line Interface at http://
azure.microsoft.com/en-us/documentation/articles/xplat-cli/

http://azure.microsoft.com/it-it/documentation/articles/install-configure-powershell/
http://azure.microsoft.com/it-it/documentation/articles/install-configure-powershell/
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/

8
Going In-memory with

Azure Cache

In this chapter, we will cover the following topics:

ff Building a simple cache for applications

ff Using local cache and notifications

ff Diagnosing cache and optimizing performance

ff Using advanced caching features

ff Using Redis Cache in Azure

Introduction
Today's software applications often need to be designed to be resilient under varying degrees
of load that originates from web or mobile clients. Either we are dealing with a web service
tier (or web API) or just frontend web applications. Scaling to thousands or millions of users
is something that is not only up to the infrastructure, but, mainly, it is a software aspect. Best
practices while writing software could avoid bottlenecks and performance issues. We can
save some CPU cycles (and potentially, save money on Azure by allocating less instances) by
optimizing the most used functions, and we can rely on common sense to protect our core
resources from the external attacks (database, for example).

Going In-memory with Azure Cache

364

At the end of what we can optimize in terms of software, we have the ubiquitous, big issue
of data access. Scalable persistence stores have been a very important problem to solve
in recent years, especially for the correlation between persisting something and slow
performance. We write something on the disk either using the OS filesystem API or through
a database engine. This is a slow operation as compared to the in-memory operations and
CPU cycles. The world of software tried to mix disk and memory to gain some points in the
benchmarks, making hybrid scenarios of storage system, which support quick in-memory
reads/writes that are eventually consistent.

For many years, disks have been considered the slowest alternative
in terms of memory. Nowadays, with the advent of Solid State Drives
(SSDs), disks are faster mostly due to decreased latency. The conjunction
between faster disks and in-memory strategies could lead to a great gain
of performance in most software applications.

NoSQL momentum also focuses on this dogma, telling us that if we want scalability,
redundancy, and high availability, we must sacrifice the synchrony of systems. In fact,
eventually consistent suggests that there is something to persist on the data storage
here. Do this as soon as possible; in the meantime, data will not be consistent.

Potentially, in the future, the performance of disk operations will be compared to the
in-memory counterparts. However, now, the difference is very high (even with SSDs),
and we must consider hybrid scenarios to implement fast applications.

Azure Managed Cache is the managed, in-memory, and fast cache service to read/write
frequently used data. On almost each tier of a complex application, there is some kind of
caching system. The foundation of cache is: The first time we access the real data storage
(slower), we save the results in the cache. From then on, we access the cache (faster) until
someone or the cache itself removes the cached item due to its expiration. Cached data that
is inconsistent with the real data storage (because it is deprecated) is called stale data.

Azure Cache is a standalone service that we can access remotely (from everywhere) and,
of course, from every Azure compute service such as Websites, Cloud Services, and Virtual
Machines. This makes the Cache service also a place to store shared objects between
different applications and sources. As it is managed, we are not involved in scalability
consideration, and there is no throttling or quotas, except for the reserved size of the cache
that we declare at the time of configuration. Azure Cache is completely integrated with the
.NET platform through a library (also available on NuGet); for other platforms, there is a shim
(an adapter) that provides a Memcache abstraction layer to non-.NET clients, translating calls
to the Azure Cache service.

Anyway, the best cache solution for non-.NET clients could be the new Azure Redis
Cache, which is based on Redis and is compatible with every Redis client developed by
the community. Redis Cache is also a NoSQL key-value store, and it is supported in .NET
applications as well, through a variety of libraries.

Chapter 8

365

In the Building a simple cache for applications recipe, we set up a cache endpoint and
perform some simple operations to explore the basic APIs. Azure Cache is secured by the
transport (that could be over SSL), and access is guaranteed by a shared key. There are some
interesting features of Cache, such as notifications, depending on the version we choose
in the Azure Portal. In the Using local cache and notifications recipe, we show how to be
informed about changes made by other clients on the cache itself. Local cache speeds up
the application performance by establishing an additional layer of cache on the client side,
avoiding useless TCP calls to the distributed cache service. Even if Azure Cache is a fast,
in-memory, and managed service, local cache helps gain another small percentage on the
overall performance counters.

This chapter is about Cache, but it is really about performance. Caching is made to gain
performance, and we need to move in that direction for every choice we make while using
it. In the Diagnosing cache and optimizing performance recipe, we will see how to evaluate
the performance indicators of the Cache service and how to control the connections and the
serialization process. Despite the Cache service being a powerful service from the client's
perspective; it is quite a simple service in terms of functionalities, as compared to the growing
Azure Redis Cache service.

To be complete, today, there are three ways to implement an in-memory cache
in Azure. In addition to the Azure Managed Cache and the new Redis Cache
(both discussed in the chapter), users can use their own worker roles in Cloud
Services to host an arbitrary amount of memory dedicated to cache. This is
often referred to as In-Role Caching, and more information about it can be
found at http://azure.microsoft.com/en-en/documentation/
articles/cache-dotnet-how-to-use-in-role/.

In the Using advanced caching features recipe, we will see how to use user-defined regions
together with the tagging capability, to search for semantically stored items. We will also see
a brief excursus on optimistic and pessimistic concurrency with multiple clients. Finally, in
the Using Redis Cache in Azure recipe, we will cover a short introduction to the Redis Cache,
using the well-known, popular, and fast StackExchange.Redis library.

Building a simple cache for applications
Azure Cache is a managed service with (at the time of writing this book) the following
three offerings:

ff Basic: This service has a unit size of 128 MB, up to 1 GB with one named cache
(the default one)

ff Standard: This service has a unit size of 1 GB, up to 10 GB with 10 named caches
and support for notifications

ff Premium: This service has a unit size of 5 GB, up to 150 GB with ten named caches,
support for notifications, and high availability

http://azure.microsoft.com/en-en/documentation/articles/cache-dotnet-how-to-use-in-role/
http://azure.microsoft.com/en-en/documentation/articles/cache-dotnet-how-to-use-in-role/

Going In-memory with Azure Cache

366

Different offerings have different unit prices, and remember that
when changing from one offering to another, all the cache data is lost.
In all offerings, users can define the items' expiration.

The Cache service listens to a specific TCP port. Accessing it from a .NET application is
quite simple, with the Microsoft ApplicationServer Caching library available on NuGet.
In the Microsoft.ApplicationServer.Caching namespace, the following are
all the classes that are needed to operate:

ff DataCacheFactory: This class is responsible for instantiating the Cache proxies
to interpret the configuration settings.

ff DataCache: This class is responsible for the read/write operation against the
cache endpoint.

ff DataCacheFactoryConfiguration: This is the model class of the configuration
settings of a cache factory. Its usage is optional as cache can be configured in
the App/Web.config file in a specific configuration section.

Azure Cache is a key-value cache. We can insert and even get complex objects with arbitrary
tree depth using string keys to locate them. The importance of the key is critical, as in a single
named cache, only one object can exist for a given key. The architects and developers should
have the proper strategy in place to deal with unique (and hierarchical) names.

Getting ready
This recipe assumes that we have a valid Azure Cache endpoint of the standard type.
We need the standard type because we use multiple named caches, and in later recipes,
we use notifications.

We can create a standard cache endpoint of 1 GB via PowerShell, as mentioned in the
Using Azure PowerShell recipe of Chapter 7, Managing Azure Resources with the Azure
Management Libraries.

Perform the following steps to create the standard cache endpoint :

1.	 Open the Azure PowerShell and type Add-AzureAccount. A popup window might
appear. Type your credentials connected to a valid Azure subscription and continue.

�� Optionally, select the proper Subscription, if not the default one.

2.	 Type this command to create a new cache endpoint, replacing myCache with the
proper unique name:
New-AzureManagedCache -Name myCache -Location "West Europe" -Sku
Standard -Memory 1GB

Chapter 8

367

3.	 After waiting for some minutes until the endpoint is ready, go to the Azure Portal
and look for the Manage Keys section to get one of the two Access Keys of the
cache endpoint.

4.	 In the Configure section of the cache endpoint, a cache named defaultis created
by default. In addition, create two named caches with the following parameters:

�� Expiry Policy: Absolute

�� Time: 10

�� Notifications: Enabled

Expiry Policy could be Absolute (the default expiration time or the one set
by the user is absolute, regardless of how many times the item has been
accessed), Sliding (each time the item has been accessed, the expiration
timer resets), or Never (items do not expire).

This Azure Cache endpoint is now available in the Management Portal, and it will be used
in the entire chapter.

How to do it…
We are going to create a DataCache instance through a code-based configuration.
We will perform simple operations with Add, Get, Put, and Append/Prepend, using
a secondary-named cache to transfer all the contents of the primary one.

We will do this by performing the following steps:

1.	 Add a new class named BuildingSimpleCacheExample to the project.

2.	 Install the Microsoft.WindowsAzure.Caching NuGet package.

3.	 Add the following using statement to the top of the class file:
using Microsoft.ApplicationServer.Caching;

4.	 Add the following private members to the class:
private DataCacheFactory factory = null;
private DataCache cache = null;

5.	 Add the following constructor to the class:
public BuildingSimpleCacheExample(string ep,
 string token,string cacheName)
{

Going In-memory with Azure Cache

368

 DataCacheFactoryConfiguration config
 = new DataCacheFactoryConfiguration();
 config.AutoDiscoverProperty
 = new DataCacheAutoDiscoverProperty(true, ep);
 config.SecurityProperties
 = new DataCacheSecurity(token, true);

 factory = new DataCacheFactory(config);
 cache = factory.GetCache(cacheName);
}

6.	 Add the following method, creating a palindrome string into the cache:
public void CreatePalindromeInCache()
{
 var objKey = "StringArray";
 cache.Put(objKey, "");
 char letter = 'A';
 for (int i = 0; i < 10; i++)
 {
 cache.Append(objKey,
 char.ConvertFromUtf32((letter+i)));
 cache.Prepend(objKey,
 char.ConvertFromUtf32((letter + i)));
 }
 Console.WriteLine(cache.Get(objKey));
}

7.	 Add the following method, adding an item into the cache to analyze its
subsequent retrievals:
public void AddAndAnalyze()
{
 var randomKey = DateTime.Now.Ticks.ToString();
 var value="Cached string";
 cache.Add(randomKey, value);
 DataCacheItem cacheItem = cache.GetCacheItem(randomKey);
 Console.WriteLine(string.Format(
 "Item stored in {0} region with {1} expiration",
 cacheItem.RegionName,cacheItem.Timeout));
 cache.Put(randomKey, value, TimeSpan.FromSeconds(60));
 cacheItem = cache.GetCacheItem(randomKey);
 Console.WriteLine(string.Format(
 "Item stored in {0} region with {1} expiration",
 cacheItem.RegionName, cacheItem.Timeout));

Chapter 8

369

 var version = cacheItem.Version;
 var obj = cache.GetIfNewer(randomKey, ref version);
 if (obj == null)
 {
 //No updates
 }
}

8.	 Add the following method, transferring the contents of the cache named initially into
a second one:
public void BackupToDestination(string destCacheName)
{
 var destCache = factory.GetCache(destCacheName);
 var dump = cache.GetSystemRegions()
 .SelectMany(p => cache.GetObjectsInRegion(p))
 .ToDictionary(p=>p.Key,p=>p.Value);
 foreach (var item in dump)
 {
 destCache.Put(item.Key, item.Value);
 }
}

9.	 Add the following method to clear the cache named first:
public void ClearCache()
{
 cache.Clear();
}

10.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 var cacheName = "[named cache 1]";
 var backupCache = "[named cache 2]";
 string endpoint = "[cache endpoint]";
 string token = "[cache token/key]";

 BuildingSimpleCacheExample example
 = new BuildingSimpleCacheExample(endpoint,
 token, cacheName);
 example.CreatePalindromeInCache();
 example.AddAndAnalyze();
 example.BackupToDestination(backupCache);
 example.ClearCache();
}

Going In-memory with Azure Cache

370

How it works...
From steps 1 to 3, we set up the class. In step 4, we added private members to store the
DataCacheFactory object used to create the DataCache object to access the Cache service.
In the constructor that we added in step 5, we initialized the DataCacheFactory object using
a configuration model class (DataCacheFactoryConfiguration). This strategy is for code-
based initialization whenever settings cannot stay in the App.config/Web.config file.

In step 6, we used the Put() method to write an empty string into the StringArray bucket.
We then used the Append() and Prepend() methods, designed to concatenate strings to
existing strings, to build a palindrome string in the memory cache.

This sample does not make any sense in real-world scenarios, and we must
pay attention to some of the following issues:

ff Writing an empty string into the cache is somehow useless.
ff Each Append() or Prepend() operation travels on TCP to the

cache and goes back. Though it is very simple, it requires resources,
and we should always try to consolidate calls.

In step 7, we used the Add() method to add a string to the cache. The difference between
the Add() and Put() methods is that the first method throws an exception if the item
already exists, while the second one always overwrites the existing value (or writes it for the
first time). GetCacheItem() returns a DataCacheItem object, which wraps the value
together with other metadata properties, such as the following:

ff CacheName: This is the named cache where the object is stored.

ff Key: This is the key of the associated bucket.

ff RegionName (user defined or system defined): This is the region of the cache where
the object is stored. More about regions can be found in the Using advanced caching
features recipe.

ff Size: This is the size of the object stored.

ff Tags: These are the optional tags of the object, if it is located in a user-defined region.

ff Timeout: This is the current timeout before the object would expire.

ff Version: This is the version of the object. This is a DataCacheItemVersion object
whose properties are not accessible due to their modifier. However, it is not important
to access this property, as the Version object is used as a token against the Cache
service to implement the optimistic concurrency. As for the timestamp value, its
semantic can stay hidden from developers.

Chapter 8

371

The first Add() method does not specify a timeout for the object, leaving the default global
expiration timeout, while the next Put() method does, as we can check in the next Get()
method. We finally asked the cache about the object with the GetIfNewer() method,
passing the latest version token we have. This conditional Get method returns null if the
object we own is already the latest one.

In step 8, we listed all the keys of the first named cache, using the GetSystemRegions()
method (to first list the system-defined regions), and for each region, we asked for their
objects, copying them into the second named cache. In step 9, we cleared all the contents
of the first cache.

In step 10, we called the methods added earlier, specifying the cache endpoint to connect
to and the token/password, along with the two named caches in use. Replace [named
cache 1], [named cache 2], [cache endpoint], and [cache token/key]
with actual values.

There's more…
Code-based configuration is useful when the settings stay in a different place as compared
to the default config files for .NET. It is not a best practice to hardcode them, so this is the
standard way to declare them in the App.config file:

<configSections>
 <section name="dataCacheClients" type="Microsoft.ApplicationServer.
Caching.DataCacheClientsSection, Microsoft.ApplicationServer.Caching.
Core" allowLocation="true" allowDefinition="Everywhere" />
</configSections>

The XML mentioned earlier declares a custom section, which should be as follows:

<dataCacheClients>
 <dataCacheClient name="[name of cache]">
 <autoDiscover isEnabled="true" identifier="[domain of cache]" />
 <securityProperties mode="Message" sslEnabled="true">
 <messageSecurity authorizationInfo="[token of endpoint]" />
 </securityProperties>
 </dataCacheClient>
</dataCacheClients>

In the upcoming recipes, we will use this convention to set up the DataCache objects.

Going In-memory with Azure Cache

372

ASP.NET Support
With almost no effort, the Azure Cache can be used as Output Cache in ASP.NET to save the
session state. To enable this, in addition to the configuration mentioned earlier, we need to
include those declarations in the <system.web> section as follows:

<sessionState mode="Custom" customProvider="AFCacheSessionStateProvid
er">
 <providers>
 <add name="AFCacheSessionStateProvider" type="Microsoft.
Web.DistributedCache.DistributedCacheSessionStateStoreProvider,
Microsoft.Web.DistributedCache" cacheName="[named cache]"
dataCacheClientName="[name of cache]" applicationName="AFCacheSession
State"/>
 </providers>
</sessionState>
<caching>
 <outputCache defaultProvider="AFCacheOutputCacheProvider">
 <providers>
 <add name="AFCacheOutputCacheProvider" type="Microsoft.Web.
DistributedCache.DistributedCacheOutputCacheProvider, Microsoft.Web.
DistributedCache" cacheName="[named cache]" dataCacheClientName="[name
of cache]" applicationName="AFCacheOutputCache" />
 </providers>
 </outputCache>
</caching>

The difference between [name of cache] and [named cache] is
as follows:

ff The [name of cache] part is a friendly name of the cache
client declared above an alias.

ff The [named cache] part is the named cache created in the
Azure Cache service.

See also
Have a look at the following MSDN links to get additional information:

ff Azure Managed Cache documentation at http://msdn.microsoft.com/en-us/
library/azure/dn386094.aspx

ff More about Output Cache at http://msdn.microsoft.com/en-us/library/
vstudio/sfw2210t(v=vs.100).aspx

http://msdn.microsoft.com/en-us/library/azure/dn386094.aspx
http://msdn.microsoft.com/en-us/library/azure/dn386094.aspx
http://msdn.microsoft.com/en-us/library/vstudio/sfw2210t(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/sfw2210t(v=vs.100).aspx

Chapter 8

373

Using local cache and notifications
Distributed cache solves a series of critical issues when we develop distributed systems. In
these systems, often made by many servers working in a pool, the state should be persisted
somewhere out of process. In fact, in case of a scalable web application made by N identical
stateless servers in parallel, no one can safely own the state of something either because it
might fail or because the other servers cannot access the web application and they can't even
know that something is stored into a peer's state.

So, distributed cache solves this big problem by keeping the state out of process, out of
server, and sometimes out of datacenter. However, this comes at a price. First is the latency
of networks due to the physical distance between the client (stateless application) and server
(caching endpoint). Second, the network bandwidth is not infinite, and it is certainly slower
than in-process memory operations. Therefore, we must reduce the number of cache calls for
frequently accessed data, especially if those data are not updated. We can call it just a local
cache. The local cache is the fastest, in-process cache that runs in the same memory area for
the application that uses it. It is only a client abstraction as it does not require any configuration
on the endpoint side; in fact, the cache endpoint can never know anything about it.

Local cache can be configured via code or configuration file, providing some settings
that tell the Azure Cache library how to behave and refresh it during the time. The
DataCacheLocalCacheProperties class defines the following properties:

ff ObjectCount: This defines how many objects to keep in the local cache.
ff InvalidationPolicy: This defines how to determine if an object is stale. Refer to the

following points:

�� TimeoutBased: using the DefaultTimeout property, we specify how much
time the local cache must wait to remove an object

�� NotificationBased: using the notification feature, the local cache is notified
as soon as the real item (on the cache side) is expired or changed

Notification features allow the DataCache object to be notified about the changes that
happened in the real cache tier. Actually, the Azure Cache does not actively notify the remote
clients; instead, it collects a list of occurred events that a client can read (by polling) and
makes the appropriate decisions. Notifications, in conjunction with the local cache, let their
objects be removed gracefully in a very short time after the server event occurs.

On the client side, we can control the notification with the following methods:

ff AddCacheLevelCallback: This is called whenever a specified operation occurs
on the entire cache

ff AddItemLevelCallback: This is called when a specified operation occurs on a
single item

In this recipe, we demonstrate the local cache features for the notification mechanism.

Going In-memory with Azure Cache

374

Getting ready
This recipe assumes that we created a valid cache endpoint. This section should be included
in the application configuration file:

<configSections>
 <section name="dataCacheClients" type="Microsoft.ApplicationServer.
Caching.DataCacheClientsSection, Microsoft.ApplicationServer.Caching.
Core" allowLocation="true" allowDefinition="Everywhere" />
</configSections>

The XML mentioned earlier declares a custom section, which should be as follows:

<dataCacheClients>
 <dataCacheClient name="[name of cache]">
 <autoDiscover isEnabled="true" identifier="[domain of cache]" />
 <securityProperties mode="Message" sslEnabled="true">
 <messageSecurity authorizationInfo="[token of endpoint]" />
 </securityProperties>
 </dataCacheClient>
</dataCacheClients>

Replace [name of cache] with an alias (in the recipe, we use the default named cache),
replace [domain of cache] with the endpoint's fully qualified domain name, and replace
[token of endpoint] with the token/password obtained by the Azure Portal.

How to do it…
We are going to create three independent DataCache instances to operate on the same
Azure Cache endpoint, showing how the local cache works and how to be notified of changes.
We will do this by performing the following steps:

1.	 Add a new class named LocalCacheNotificationExample to the project.

2.	 Install the Microsoft.WindowsAzure.Caching NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.ApplicationServer.Caching;
using System.Threading;
using System.Threading.Tasks;

4.	 Add the following private members to the class:
private DataCache firstCachePointer = null;
private DataCache secondCachePointer = null;
private DataCache thirdCachePointer = null;
private string objectKey = "LocalCacheNotificationExample";

Chapter 8

375

5.	 Add the following constructor to the class:
public LocalCacheNotificationExample(string cacheName)
{
 var firstCacheConfig = new DataCacheFactoryConfiguration("defa
ult");
 var localConfig = new DataCacheLocalCacheProperties(
 objectCount: 1000,
 defaultTimeout: TimeSpan.FromSeconds(5),
 invalidationPolicy: DataCacheLocalCacheInvalidationPolicy.
TimeoutBased);
 firstCacheConfig.LocalCacheProperties = localConfig;
 firstCachePointer = new DataCacheFactory(firstCacheConfig).
GetCache(cacheName);

 secondCachePointer = new DataCacheFactory().
GetCache(cacheName);

 var thirdCacheConfig = new DataCacheFactoryConfiguration("defa
ult");
 var notificationConfig = new DataCacheNotificationProperties(
 maxQueueLength: 1000,
 pollInterval: TimeSpan.FromSeconds(1));
 thirdCacheConfig.NotificationProperties = notificationConfig;
 thirdCachePointer = new DataCacheFactory(thirdCacheConfig).
GetCache(cacheName);
}

6.	 Add the following method, using notifications, to the class:
public void MonitorRemoteCacheChanges()
{
 thirdCachePointer.AddCacheLevelCallback(
 DataCacheOperations.AddItem |
 DataCacheOperations.RemoveItem |
 DataCacheOperations.ReplaceItem,
 (cName, cRegion, oKey, oVersion, opId, nDescriptor) =>
 {
 var version = oVersion.GetType()
 .GetProperty("InternalVersion",
 System.Reflection.BindingFlags.NonPublic
 | System.Reflection.BindingFlags.Instance)
 .GetValue(oVersion).ToString();
 Console.WriteLine(string.Format(
 "{0} occurred in {1} for item {2} with version
{3}",
 opId,cName,oKey,version));
 });
}

Going In-memory with Azure Cache

376

7.	 Add the following method, replacing the item after a delay, to the class:
public void WaitAndReplaceItem()
{
 Task.Delay(2000).ContinueWith(t =>
 { secondCachePointer.Put(objectKey,
 "Summer is Coming!"); });
}

8.	 Add the following method, continuously replacing the item, to the class:
public void PutAndGet10Times()
{
 DataCacheItemVersion current= firstCachePointer
 .Put(objectKey, "Winter is Coming!");
 firstCachePointer.AddItemLevelCallback(
 objectKey, DataCacheOperations.ReplaceItem,
 (cName, cRegion, oKey, oVersion, opId, nDescriptor) =>
 {
 Console.WriteLine(
 "The item " +objectKey+" has been replaced");
 });
 for (int i = 0; i < 10; i++)
 {
 var obj = firstCachePointer.Get(objectKey);
 Console.WriteLine(string.Format(
 "Element {0}:{1} retrieved"
 ,i,obj));
 Thread.Sleep(1000);
 }
}

9.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 var cacheName = "[named cache]";
 LocalCacheNotificationExample example
 = new LocalCacheNotificationExample(cacheName);
 example.MonitorRemoteCacheChanges();
 example.WaitAndReplaceItem();
 example.PutAndGet10Times();
}

Chapter 8

377

How it works...
From steps 1 to 3, we set up the class. In step 4, we added private members to store the
three DataCache objects used to access the Cache service and a string key that represents
the cache item that we are working on.

In step 5, we added a complex constructor that acts as follows:

ff For the first cache pointer, it instantiates a DataCacheFactoryConfiguration
object based on the configuration it reads from the App.config file. Then, it adds
the local cache feature by specifying a timeout of 5 seconds and a maximum of
1000 objects.

ff The second cache pointer is instantiated using the default configuration.

ff For the third cache pointer, it instantiates a DataCacheFactoryConfiguration
object that is customized with the notifications feature. It specifies a polling interval
of 1 second, and 1000 notification elements are read each time.

Please note that a notification polling interval of 1 second is not
recommended. We should design the application to overcome some
delays.

In step 6, we added a cache-level callback for some remote events (Add, Remove, and
Replace). We used the third DataCache object to be sure that we are not working locally
with the local cache.

There are other events related to user-defined regions that we are not
interested in for this example (CreateRegion, RemoveRegion,
and ClearRegion).

The callback signature is quite complex, and even if we can guess it from the code, it adheres
to this delegate:

public delegate void DataCacheNotificationCallback(string cacheName,
string regionName, string key, DataCacheItemVersion version,
DataCacheOperations cacheOperation, DataCacheNotificationDescriptor
nd);

Code inside the callback is for demonstration purposes only. In fact, as mentioned earlier in
the chapter, the DataCacheItemVersion type does not expose public properties as it is
used as a token from the library itself. However, we used reflection to look into the object to
show how it manages the version identifiers.

Going In-memory with Azure Cache

378

In step 7, we launched a parallel task to overwrite the object into the cache after 2 seconds of
delay. We used the second DataCache object to avoid the local cache to be updated, so the
first DataCache object cannot know about these changes until it checks the Cache service.

In step 8, we put the initial value for the cache object, and subsequently, we got this 10 times
to show how the various notifications behave from different DataCache objects. We expected
to see an immediate notification from the MonitorRemoteCacheChanges() method, while
no item-level notification will appear for the AddItemLevelCallback method added here.
This is because we did not enable the notification feature for the first DataCache pointer.
Finally, as we used a timeout-based local cache, we saw the updated item in the Get loop
after 5 seconds.

In step 9, we called the methods added earlier, specifying the named cache used. Then,
we replaced [named cache] with the actual value.

There's more…
Notifications can work via the following standalone callbacks:

ff AddCacheLevelBulkCallback: This is a catch-all callback for cache operations
on all regions and items

ff AddCacheLevelCallback: This is a customizable callback for the entire cache
and only the specified operations occurred

ff AddFailureNotificationCallback: This is a callback for missed notifications

ff AddItemLevelCallback: This is the item-level callback for cache operations on
a specific object and for specific operations

ff AddRegionLevelCallback: This is the region-level callback for cache operations
in a specific region for specific operations

However, notifications can also be used in conjunction with the local cache mechanism,
to avoid waiting for the local expiration to timeout. To enable the first DataCache pointer
to receive notifications on the local cache, we can change the constructor as follows:

var firstCacheConfig = new DataCacheFactoryConfiguration("default");
var localConfig = new DataCacheLocalCacheProperties(
 objectCount: 1000,
 defaultTimeout: TimeSpan.FromSeconds(50),
 invalidationPolicy: DataCacheLocalCacheInvalidationPolicy.
NotificationBased);
var notificationConfig = new DataCacheNotificationProperties(
 maxQueueLength: 1000,
 pollInterval: TimeSpan.FromSeconds(1));

Chapter 8

379

firstCacheConfig.NotificationProperties = notificationConfig;
firstCacheConfig.LocalCacheProperties = localConfig;
firstCachePointer = new DataCacheFactory(firstCacheConfig).
GetCache(cacheName);

We can now run the example and see that the local cache is immediately notified when items
are changed on the cache side.

See also
Have a look at the following MSDN links to get additional information:

ff Azure Managed Cache and local cache reference at http://msdn.microsoft.
com/en-us/library/azure/dn386096.aspx

ff Azure Managed Cache and notifications reference at http://msdn.microsoft.
com/en-us/library/azure/dn386095.aspx

Diagnosing cache and optimizing
performance

Azure Cache is a managed cache service provided as a service for Cloud and non-Cloud
applications (as we saw in the previous recipes, we can even use it from a local environment).

Azure Portal provides developers with a simple chart-based dashboard to quickly understand
cache metrics, which will help them while troubleshooting. We can explore the monitoring
options of the Cache service by going on the Azure Portal in the Monitor section of a specific
cache. Here, we see some metrics added by default:

ff Bandwidth used: This refers to the percentage of committed bandwidth used
by applications. The larger the objects in the cache, the higher will be this value.

ff Compute used: This refers to the percentage of committed CPUs in the read/write
operations. If this value is high, there will be an increase in the latency that might occur.

ff Memory used: This refers to the percentage of total memory used by applications.
Do not expect the exact byte-count value because there are some factors that
influence this indicator (regions, tags, and notifications).

ff Cache miss: This refers to the percentage of calls that do not find any values for the
given key. A higher cache-miss value is generally bad due to some mistakes in the
application logic.

ff Read/Write requests/sec: This refers to the rate of requests in a given time frame.

http://msdn.microsoft.com/en-us/library/azure/dn386096.aspx
http://msdn.microsoft.com/en-us/library/azure/dn386096.aspx
http://msdn.microsoft.com/en-us/library/azure/dn386095.aspx
http://msdn.microsoft.com/en-us/library/azure/dn386095.aspx

Going In-memory with Azure Cache

380

Along with these metrics added by default, we have other options to explore, by clicking on the
Add Metrics button in the bottom menu. Some of these are object count, bytes received/sent,
expired objects, evicted objects, and so on.

What is an Evicted object? Eviction is a process of removal of old resources,
based on an last recently used (LRU) algorithm. Eviction is useful to prevent
the cache memory from being saturated, removing the last-accessed objects
first in order to free up some space.

Avoiding bottlenecks on the cache is very important to build scalable applications. In the
Using local cache and notifications recipe, we saw how to increase throughput by maintaining
a local in-process cache on the client side, which results in a good compromise between
accuracy of data and performance. We must also avoid storing large objects in a single cache
item. Despite being faster than DB or disk, an application should be designed to work against
cache at a fine-grained level, caching many small objects instead of few large ones.

In this recipe, we will see how to implement a custom serialization to speed up the performance.

Getting ready
This recipe assumes that we created a valid cache endpoint. This section should be included
in the application configuration file:

<configSections>
 <section name="dataCacheClients" type="Microsoft.ApplicationServer.
Caching.DataCacheClientsSection, Microsoft.ApplicationServer.Caching.
Core" allowLocation="true" allowDefinition="Everywhere" />
</configSections>

The XML mentioned earlier declares a custom section, which should be as follows:

<dataCacheClients>
 <dataCacheClient name="[name of cache]">
 <autoDiscover isEnabled="true" identifier="[domain of cache]" />
 <securityProperties mode="Message" sslEnabled="true">
 <messageSecurity authorizationInfo="[token of endpoint]" />
 </securityProperties>
 </dataCacheClient>
</dataCacheClients>

Replace [name of cache] with an alias (in the recipe, we use the default named cache),
replace [domain of cache] with the endpoint's fully qualified domain name, and replace
[token of endpoint] with the token/password obtained by the Azure Portal.

Chapter 8

381

How to do it…
We are going to save a list of 100 items in the cache, using a custom serializer based on Json.
NET. We will do this by performing the following steps:

1.	 Add a new class named DiagnosingAndOptimizingExample to the project.

2.	 Install the Microsoft.WindowsAzure.Caching and Newtonsoft.Json
NuGet packages.

3.	 Add the following using statements to the top of the class file:
using Microsoft.ApplicationServer.Caching;
using Newtonsoft.Json;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.Serialization;

4.	 Add the following private members to the class:
private DataCacheFactory factory = null;
private DataCache cache = null;
private string objectKey = "ListOf100Items";
private DateTime operationStarted;
private List<TimeSpan> elaspedValues = new List<TimeSpan>();

5.	 Add the following constructor to the class:
public DiagnosingAndOptimizingExample(string cacheName)
{
 var cacheConfig = new DataCacheFactoryConfiguration("defau
lt");
 cacheConfig.IsCompressionEnabled = true;
 cacheConfig.MaxConnectionsToServer = 10;
 cacheConfig.RequestTimeout = TimeSpan.FromSeconds(1);
 cacheConfig.SerializationProperties =
 new DataCacheSerializationProperties(
 DataCacheObjectSerializerType.CustomSerializer,
 new JsonSerializer());
 factory = new DataCacheFactory(cacheConfig);
 cache=factory.GetCache(cacheName);
}

Going In-memory with Azure Cache

382

6.	 Add the following class to the project:
public class JsonSerializer : IDataCacheObjectSerializer
{
 public object Deserialize(System.IO.Stream stream)
 {
 using (var reader = new StreamReader(stream))
 {
 return JsonConvert
 .DeserializeObject(reader.ReadToEnd());
 }
 }
 public void Serialize(System.IO.Stream stream, object value)
 {
 using (var output = new StreamWriter(stream))
 {
 output.Write(JsonConvert
 .SerializeObject(value));
 }
 }
}

7.	 Add the following class to the project:
public class Item
{
 public Guid ID { get; set; }
 public string Description { get; set; }
 public DateTime? Occurred { get; set; }
 public string Data { get; set; }

 public Item()
 {
 Data = "".PadRight(8388608);
 }
}

8.	 Add the following method, generating random items, to the
DiagnosingAndOptimizingExample class:
public IEnumerable<Item> GenerateSomeItems()
{
 var list = new List<Item>();
 for (int i = 0; i < 10; i++)
 {
 list.Add(new Item()
 {

Chapter 8

383

 ID = Guid.NewGuid(),
 Description = "Random string: " + Guid.NewGuid(),
 Occurred = DateTime.UtcNow
 });
 }
 return list;
}

9.	 Add the following callback methods to the DiagnosingAndOptimizingExample
class:
void cache_CacheOperationStarted(object sender,
 CacheOperationStartedEventArgs e)
{
 operationStarted = DateTime.Now;
}
void cache_CacheOperationCompleted(object sender,
 CacheOperationCompletedEventArgs e)
{
 if (e.HasSucceeded)
 {
 var elapsed = DateTime.Now.Subtract(operationStarted);
 elaspedValues.Add(elapsed);
 Console.WriteLine(string.Format(
 "Operation {0} ended in {1}",
 e.OperationType, elapsed));
 }
}

10.	 Add the following method, saving an object into the cache, to the
DiagnosingAndOptimizingExample class:
public void PutListMeasurePerformance()
{
 var list = GenerateSomeItems();
 cache.Put(objectKey, list);

 cache.CacheOperationStarted +=
 cache_CacheOperationStarted;
 cache.CacheOperationCompleted +=
 cache_CacheOperationCompleted;
 var localStarted = DateTime.Now;
 for (int i = 0; i < 100; i++)
 {
 try
 {

Going In-memory with Azure Cache

384

 cache.Put(objectKey, list);
 }
 catch (DataCacheException ex)
 {
 if (ex.ErrorCode == DataCacheErrorCode.RetryLater)
 {
 //Transient failure
 }
 }
 }
 Console.WriteLine("Average milliseconds: "
 + elaspedValues.Average(p=>p.Milliseconds));
 Console.WriteLine("Total: "
 + DateTime.Now.Subtract(localStarted).ToString());
}

11.	 Add the following method, using the methods added earlier, to the
DiagnosingAndOptimizingExample class:
public static void RunExample()
{
 var cacheName = "[named cache]";
 DiagnosingAndOptimizingExample example
 = new DiagnosingAndOptimizingExample(cacheName);
 example.PutListMeasurePerformance();
}

How it works...
From steps 1 to 3, we set up the class. In step 4, we added private members to store
the objects we use later in the class. In step 5, we initialized the DataCache object using
a DataCacheFactoryConfiguration object based on the configuration file. We added
some customization to improve the application's performance and reliability as follows:

ff IsCompressionEnabled: This saves bandwidth

ff MaxConnectionsToServer: This scales out locally

ff RequestTimeout: This sets a client SLA; operations slower than 1 second should
be dropped by the application code

ff SerializationProperties: This instructs the DataCache client to use our
custom serializer instead of the default one (NetDataContractSerializer)

Chapter 8

385

In step 6, we created a custom serializer using the Json.NET implementation. In step 7,
we declared a custom Item class with a big string inside each instance, and in step 8, we
generated a list of these items. Step 9 defined the two callbacks used to measure the cache
operation times (please avoid using these callbacks in production, as they are declared by
Microsoft for internal use only).

In step 10, we registered the callback methods and subsequently put the same collection
into the cache. The DataCacheException method is thrown whenever something happens
at the cache-client level. A DataCacheErrorCode.RetryLater error occurs for transient
failures, for example, if the cache is not currently available. A developer should manage this
situation by performing the retry operation, using the preferred retry strategy.

In step 11, we called the methods added earlier, specifying the named cache used. Replace
[named cache] with the actual value.

There's more…
Azure Cache library supports the following three modes to serialize an object into the cache:

ff NetDataContractSerializer: This is the default mode and is widely used in the
.NET ecosystem

ff CustomSerializer: This is a user-provided serializer that implements
IDataCacheObjectSerializer

ff BinaryFormatter: This is the old-school serializer that requires the
[Serializable] attribute

Most serializers use reflection to get object properties, and it could be very slow under
some circumstances, for example, when there are many object properties. We can always
implement the serialization logic ourselves by implementing the ISerializable interface
as follows:

ff The GetObjectData() method to serialize values

ff The Serialization special constructor to deserialize values back into an object

We can edit the Item class as follows to enable manual serialization logic:

[Serializable]
public class Item:ISerializable
{
 public Guid ID { get; set; }
 public string Description { get; set; }
 public DateTime? Occurred { get; set; }
 public string Data { get; set; }

Going In-memory with Azure Cache

386

 public Item()
 {
 Data = "".PadRight(8388608);
 }
 public Item(SerializationInfo info,
 StreamingContext context)
 {
 ID = (Guid)info.GetValue("ID", typeof(Guid));
 Description = info.GetString("Description");
 Occurred = info.GetDateTime("Occurred");
 Data = info.GetString("Data");
 }
 public void GetObjectData(SerializationInfo info,
 StreamingContext context)
 {
 info.AddValue("ID", ID);
 info.AddValue("Description", Description);
 info.AddValue("Occurred", Occurred);
 info.AddValue("Data", Data);
 }
}

In small objects, this method can also be slower than reflection, but when you increase the
object complexity, it should represent a good choice to save some CPU time.

Using advanced caching features
Azure Cache Service has simple functionalities to enable in-memory distributed cache for
applications. As it is a data storage service (even though it is not persistent), some sort of
search is required. As search in the whole cache surface could be slow, the Cache service is
designed to support searches for only those objects that are located in user-defined regions.
A user-defined region of cache is a logical group of key-value pairs located in the same portion
of memory. We do not need to know how the Cache service behaves; however, think of regions
like partitions for the Table Storage service.

In Chapter 5, Going NoSQL with Azure Tables, we saw how to use
the Table Storage service, a scalable NoSQL-like key-value storage
service. Table Storage organizes data into partitions that are logical
groups of items located together.

Chapter 8

387

The DataCache class exposes methods to manage user-defined regions such as
CreateRegion, ClearRegion, RemoveRegion, and so on. Objects put in user-defined
regions can be tagged with specific keywords to enable further lookup based on these keys.
There is an overload of most of the methods to support the regions; for example, Put(),
Add(), Get(), and so on have proper overloads.

Azure Cache library also provides classes and methods to work with concurrency. We can
use the library for both optimistic and pessimistic concurrency models, which are described
as follows:

ff In optimistic concurrency, we use a version token as a timestamp against the
storage service. The drawback is the probability of failing an update due to a
meantime update from different sources.

ff In pessimistic concurrency, the person who wants to get an object locks it for a while,
until he releases the lock or a timeout occurs (to prevent deadlocks). This is safe and
guarantees consistency; however, it is slower and can cause race conditions.

In this recipe, we will see how to tag an object in user-defined regions and how to implement
optimistic and pessimistic concurrencies.

Getting ready
This recipe assumes that we created a valid cache endpoint. This section should be included
in the application's configuration file:

<configSections>
 <section name="dataCacheClients" type="Microsoft.ApplicationServer.
Caching.DataCacheClientsSection, Microsoft.ApplicationServer.Caching.
Core" allowLocation="true" allowDefinition="Everywhere" />
</configSections>

The XML mentioned earlier declares a custom section, which should be as follows:

<dataCacheClients>
 <dataCacheClient name="[name of cache]">
 <autoDiscover isEnabled="true" identifier="[domain of cache]" />
 <securityProperties mode="Message" sslEnabled="true">
 <messageSecurity authorizationInfo="[token of endpoint]" />
 </securityProperties>
 </dataCacheClient>
</dataCacheClients>

Replace [name of cache] with an alias (in the recipe, we use the default named cache),
replace [domain of cache] with the endpoint's fully qualified domain name, and replace
[token of endpoint] with the token/password obtained by the Azure Portal.

Going In-memory with Azure Cache

388

How to do it…
We are going to create a user-defined region, placing some blog posts along with their
keywords/tags. We use the DataCache methods to look up posts using these tags. After that,
we simulate two processes that increment a remote counter: first, using an optimistic approach
and finally, using a pessimistic one. We will do this by performing the following steps:

1.	 Add a new class named AdvancedCachingExample to the project.

2.	 Install the Microsoft.WindowsAzure.Caching NuGet package.

3.	 Add the following using statements to the top of the class file:
using Microsoft.ApplicationServer.Caching;
using System.Threading;
using System.Threading.Tasks;

4.	 Add the following private members to the class:
private DataCacheFactory factory = null;
private DataCache firstCache = null;
private DataCache secondCache = null;
private string counterItemKey = "ProcessingCounter";

5.	 Add the following constructor to the class:
public AdvancedCachingExample(string cacheName)
{
 factory = new DataCacheFactory();
 firstCache = factory.GetCache(cacheName);
 secondCache = new DataCacheFactory().GetCache(cacheName);
}

Regions and Tagging.

6.	 Add the following method, caching blog posts, to the class:
public void CacheRegionWithTaggedItems()
{
 var myRegion = "BlogPosts";
 firstCache.CreateRegion(myRegion);
 firstCache.ClearRegion(myRegion);

Chapter 8

389

 firstCache.Put(Guid.NewGuid().ToString(), "My first blog
post",
 new DataCacheTag[] { new DataCacheTag("fun"),
 new DataCacheTag("sport") }, myRegion);
 firstCache.Put(Guid.NewGuid().ToString(), "My second blog
post",
 new DataCacheTag[] { new DataCacheTag("food"),
 new DataCacheTag("drinks") }, myRegion);
 firstCache.Put(Guid.NewGuid().ToString(), "My third blog
post",
 new DataCacheTag[] { new DataCacheTag("food"),
 new DataCacheTag("fun") }, myRegion);
 firstCache.Put(Guid.NewGuid().ToString(), "My fourth blog
post",
 new DataCacheTag[] { new DataCacheTag("animals"),
 new DataCacheTag("sport") }, myRegion);
 firstCache.Put(Guid.NewGuid().ToString(), "My fifth post",
 new DataCacheTag[] { new DataCacheTag("drinks"),
 new DataCacheTag("life") }, myRegion);
 firstCache.Put(Guid.NewGuid().ToString(), "My sixth post",
 new DataCacheTag[] { new DataCacheTag("night"),
 new DataCacheTag("life") }, myRegion);

 var exactSearch = firstCache.GetObjectsByTag(
 new DataCacheTag("fun"), myRegion)
 .Select(p => p.Value).ToArray();
 var orSearch = firstCache.GetObjectsByAnyTag(
 new DataCacheTag[] { new DataCacheTag("sport"),
 new DataCacheTag("food") }, myRegion)
 .Select(p => p.Value).ToArray();
 var andSearch = firstCache.GetObjectsByAllTags(
 new DataCacheTag[] { new DataCacheTag("life"),
 new DataCacheTag("drinks") }, myRegion)
 .Select(p => p.Value).ToArray();
}

Optimistic concurrency.

Going In-memory with Azure Cache

390

7.	 Add the following method, simulating temporized increments, to the class:
private void OptimisticIncrement100Times(DataCache cache)
{
 var random = new Random(DateTime.Now.Millisecond);
 for (int i = 0; i < 100; i++)
 {
 var cacheItem = cache.GetCacheItem(counterItemKey);
 int counter = (int)cacheItem.Value;
 int newValue = counter + 1;
 //Simulate operation time
 Thread.Sleep(random.Next(500));
 try
 {
 cache.Put(cacheItem.Key, newValue, cacheItem.Version);
 var threadId = "Thread-" +
 Thread.CurrentThread.ManagedThreadId;
 Console.WriteLine(threadId + " updated counter from "
 + counter + " to " + newValue);
 }
 catch (DataCacheException ex)
 {
 if (ex.ErrorCode == DataCacheErrorCode
 .CacheItemVersionMismatch) continue;
 else throw;
 }
 }
}

8.	 Add the following method, creating two increment clients, to the class:
public void OptimisticParallelProcess()
{
 firstCache.Put(counterItemKey, 0);
 var t1 = Task.Factory.StartNew(() =>
 OptimisticIncrement100Times(firstCache));
 var t2 = Task.Factory.StartNew(() =>
 OptimisticIncrement100Times(secondCache));
 Task.WaitAll(t1, t2);
}

Pessimistic concurrency.

Chapter 8

391

9.	 Add the following method, simulating temporized increments, to the class:
private void PessimisticIncrement100Times(DataCache cache)
{
 var random = new Random(DateTime.Now.Millisecond);
 for (int i = 0; i < 100; i++)
 {
 DataCacheLockHandle handle;
 while (true)
 {
 try
 {
 var counter = (int)cache.GetAndLock(
 counterItemKey, TimeSpan.FromSeconds(1), out
handle);
 int newValue = counter + 1;
 //Simulate operation time
 Thread.Sleep(random.Next(500));

 cache.PutAndUnlock(counterItemKey,
 newValue, handle);
 var threadId = "Thread-" +
 Thread.CurrentThread.ManagedThreadId;
 Console.WriteLine(threadId + " updated counter
from "
 + counter + " to " + newValue);
 break;
 }
 catch (DataCacheException ex)
 {
 if (ex.ErrorCode == DataCacheErrorCode
 .ObjectLocked) Thread.Sleep(random.Next(100));
 else throw;
 }
 }
 }
}

10.	 Add the following method, creating two increment clients, to the class:
public void PessimisticParallelProcess()
{
 firstCache.Put(counterItemKey, 0);
 var t1 = Task.Factory.StartNew(() =>

Going In-memory with Azure Cache

392

 PessimisticIncrement100Times(firstCache));
 var t2 = Task.Factory.StartNew(() =>
 PessimisticIncrement100Times(secondCache));
 Task.WaitAll(t1, t2);
}

11.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 var cacheName = "[named cache]";
 AdvancedCachingExample example
 = new AdvancedCachingExample(cacheName);
 example.CacheRegionWithTaggedItems();
 example.OptimisticParallelProcess();
 example.PessimisticParallelProcess();
}

How it works...
From steps 1 to 3, we set up the class. In step 4, we added private members to store
the two DataCache objects used to connect to the Cache service. We initialized this in the
constructor we add in step 5.

In step 6, we demonstrated the usage of the tagging feature. First, we created a region, clear
it (because the CreateRegion method works even if the region already exists), and put
some blog posts (strings) using the overload that carries the region name and tag list (tags
must be IEnumerable of DataCacheItem). We performed the following three searches:

ff GetObjectsByTag(): This searches everything that is tied to the specified tag
passed

ff GetObjectsByAnyTag(): This searches everything that is tied to at least one of the
tags passed (it is an OR search)

ff GetObjectsByAllTags(): This searches everything that is tied to every tag passed
(it is an AND search)

All the three methods mentioned earlier need the user-defined region where the search is to
be performed.

In step 7, we defined a method that gets a specific item (integer counter), increments it,
simulates a sort of processing time, and puts it back into the cache, using the Put() overload
with the item's version. This overload accepts the item only if the passed version matches
the server version. In case a concurrency is detected, a DataCacheException class with
a CacheItemVersionMismatch error code is thrown. In step 8, we initialized the counter
value and spawned two threads that simulate concurrency. Only a few of the 100 put
operations per thread will succeed.

Chapter 8

393

In step 9, we followed the same logic as the previous steps, except for the locking behavior
of the GetAndLock() method, which prevents other clients from locking the cache element.
This time, the client that loses the acquisition must catch a DataCacheException class
with the ObjectLocked error code and perform its retry strategy. In step 10, we initialized
the counter value and spawn two threads that simulate concurrency. Every 100 put
operations will succeed.

In step 9, we called the methods added earlier, specifying the named cache used. Then,
we replaced [named cache] with the actual value.

There's more…
The previous example tries to explain how concurrency models work. However, to perform safe
increment/decrement operations, Azure Cache provides two methods specially designed for
this purpose. We can proceed as follows:

private void Increment100Times(DataCache cache)
{
 var key = "IncrementCounter";
 for (int i = 0; i < 100; i++)
 {
 var value = cache.Increment(key, 1, 0);
 var threadId = "Thread-" +
 Thread.CurrentThread.ManagedThreadId;
 Console.WriteLine(threadId + " updated counter from "
 + (value - 1) + " to " + value);
 }
}

The preceding code uses the Increment() method to increase the value of the counter.
The method returns the new value after increment.

See also
Have a look at the following MSDN links to get additional information:

ff Azure Managed Cache, regions, and tagging reference at http://msdn.
microsoft.com/en-us/library/azure/dn386102.aspx

ff More about pessimistic concurrency at http://blogs.msdn.com/b/cie/
archive/2013/05/19/windows-azure-cache-pessimistic-concurrency-
model.aspx

http://msdn.microsoft.com/en-us/library/azure/dn386102.aspx
http://msdn.microsoft.com/en-us/library/azure/dn386102.aspx
http://blogs.msdn.com/b/cie/archive/2013/05/19/windows-azure-cache-pessimistic-concurrency-model.aspx
http://blogs.msdn.com/b/cie/archive/2013/05/19/windows-azure-cache-pessimistic-concurrency-model.aspx
http://blogs.msdn.com/b/cie/archive/2013/05/19/windows-azure-cache-pessimistic-concurrency-model.aspx

Going In-memory with Azure Cache

394

Using Redis Cache in Azure
Redis is an open source, high-performance data store written in ANSI C. As its name stands
for Remote Dictionary Server, it is a key-value data store with optional durability. Since its wide
adoption in 2010, it became one of the most popular in-memory cache and also NoSQL data
store. Today, there are Redis clients for almost every popular language used by developers
around the world (an updated list is available at http://redis.io/clients), making it a
good choice for heterogeneous systems as well.

Microsoft decided to add support for the Redis software through Azure, offering a fully
managed Redis service of the same flavor as every other Azure building block. At the
beginning of 2014, a new Azure Portal rose at https://portal.azure.com. Here,
there is the support for this new emerging cache endpoint.

Redis service is a complex software with many features and explaining them is out of the
scope of the book. In this recipe, however, we use a .NET, community-driven library to
operate against it by performing simple operations.

Getting ready
This recipe assumes that we have a valid Redis Cache endpoint. We can obtain one by
performing the following steps:

1.	 Go to https://portal.azure.com

2.	 Follow the instructions to create a new Redis Cache:

1.	 Specify the smallest pricing tier (that is Basic)

2.	 Choose the location (that is North Europe)

3.	 Give it a name (in the [name].redis.cache.windows.net form)

After a few minutes, click on the Redis Cache created earlier and take note of one of the two
authentication keys.

How to do it…
We are going to list the existing items in the Redis Cache and store some strings. We will do
this by performing the following steps:

1.	 Add a new class named UsingRedisExample to the project.

2.	 Install the StackExchange.Redis NuGet package.

3.	 Add the following using statements to the top of the class file:
using StackExchange.Redis;

http://redis.io/clients
https://portal.azure.com
https://portal.azure.com

Chapter 8

395

4.	 Add the following private members to the class:
private IDatabase cache = null;
private ConnectionMultiplexer connection=null;

5.	 Add the following constructor to the class:
public UsingRedisExample(string ep,string token,int db)
{
 var config = new ConfigurationOptions()
 {
 EndPoints = { {ep }},
 Password=token,
 SyncTimeout=10000,
 Ssl=true,
 AllowAdmin=true
 };
 connection= ConnectionMultiplexer.Connect(config);
 cache = connection.GetDatabase(db);
}

6.	 Add the following method, listing and removing the existing values, to the class:
public void KeyListAndFlush(int db)
{
 var servers = connection.GetEndPoints()
 .Select(p=>connection.GetServer(p));
 var keys=servers.SelectMany(p=>p.Keys(db)).ToArray();
 foreach (var key in keys)
 {
 Console.WriteLine("Key: "+key);
 }
 foreach (var server in servers)
 {
 Console.WriteLine("Flushing: "+server.EndPoint);
 server.FlushDatabase(db);
 }
}

7.	 Add the following method, storing big strings, to the class:
public void StoreOfBigStrings()
{
 for (int i = 0; i < 10; i++)
 {
 var key=Guid.NewGuid().ToString();

Going In-memory with Azure Cache

396

 if (cache.StringSet(key, "".PadRight(1048576, '$')))
 {
 Console.WriteLine("Added: "+key);
 }
 }
}

8.	 Add the following method, using the methods added earlier, to the class:
public static void RunExample()
{
 int db = 1; //choose a DB number
 string endpoint = "[redis endpoint]";
 string token = "[redis password]";
 UsingRedisExample example
 = new UsingRedisExample(endpoint, token, db);
 example.KeyListAndFlush(db);
 example.StoreOfBigStrings();
}

How it works...
From steps 1 to 3, we set up the class. In step 4, we added a private member to store the
ConnectionMultiplexer object used to create the IDatabase object used to connect
to the Redis service.

The StackExchange.Redis library is one of the most performant
client libraries for Redis for .NET applications. We use this as this is also
recommended by Microsoft.

In step 5, the constructor used the settings provided to create a connection to Redis, using
the ConfigurationOptions model class, specifying a 10-second timeout for operations
that are SSL enabled and in the Admin mode.

We specify a high timeout due to the long-running operations we need to
perform, while the Admin mode is set to true to permit the flushing of
the database.

In step 6, we used the GetServer() API to obtain a list of keys currently stored on the
specific DB passed. Redis can spawn over many servers, so there is no method to list
every key over the entire multiserver area, because it would be probably too slow to be
good enough.

Chapter 8

397

In Redis, a DB is a collection of key-value pairs that are analogous to
the named cache concept we found in the Azure Managed Cache.

In step 7, we saved 10 big strings to the Redis store, and in step 8, we ran the example.
Remember to replace the DB number with the one needed and the endpoint/password
with actual values.

There's more…
As mentioned earlier, Redis is quite complex and has a lot of features. In the previous
example, in step 7, we have to wait several seconds for the operation to complete due
to the limited bandwidth between us and Azure and for the overall size of the big strings
loaded. Redis also has the capability to save an item with the Fire-and-Forget pattern,
without taking care of the result of the operation, and return immediately to the client.
We will do this as follows:

public void FastestStoreOfBigStrings()
{
 for (int i = 0; i < 10; i++)
 {
 cache.StringSet(Guid.NewGuid()
 .ToString(), "".PadRight(1048576, '$')
 ,null,When.NotExists,CommandFlags.FireAndForget);
 }
}

The overload of the StringSet method allows us to pass an optional expiration (that we
do not pass), a conditional set (only if it does not already exist), and the behavior of the
command (Fire-and-Forget).

See also
Have a look at the following links to get additional information:

ff MSDN reference to Azure Redis Cache at http://azure.microsoft.com/en-
en/documentation/articles/cache-dotnet-how-to-use-azure-redis-
cache/

ff Redis clients at http://redis.io/clients

http://azure.microsoft.com/en-en/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/
http://azure.microsoft.com/en-en/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/
http://azure.microsoft.com/en-en/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/
http://redis.io/clients

Index
Symbols
.NET and Java communication

with Service Bus, AMQP used 312

A
access control, for containers and blobs

managing 110-113
Access Control Service (ACS) 281
Add() method 371
ADO.NET

SQL Database, connecting to 190-197
advanced caching features

using 386-392
Advanced Message Queuing Protocol

(AMQP protocol)
implementing 312

Append() method 370
application diagnostics group 87
application performance improvement,

customizations
IsCompressionEnabled 384
MaxConnectionsToServer 384
RequestTimeout 384
SerializationProperties 384

Application_End() method 53
ASP.NET support, Azure Cache 372
asynchronous methods

used, for downloading blob 154-156
Atom format 258
attach to process-like operation 25
Automated Export 210, 213
Azure

Redis Cache, using in 394-396

Azure Cache
about 364
diagnosing 379-385
local cache, using 373-378
notifications, using 373-378
performance, optimizing 379-385
simple cache, building for

applications 365-371
Azure Cache, offerings

Basic 365
Premium 365
Standard 365

Azure Content Delivery Network (Azure CDN)
about 98
URL 171
using 169, 170

Azure Diagnostics
about 63
application logs 63
event logs 63
infrastructure logs 63
performance counters 63

Azure Managed Cache
about 364
reference 372, 379

Azure Portal
URL 394

Azure PowerShell
using 360-362

Azure Scheduler
managing 341-348
using 341-348

Azure SDK 96
Azure Service Bus queues

connecting to read messages, with AMQP
protocol 313-315

400

dead lettering 303, 304
duplicates messages, detecting 293
managing 281-285
messages, adding to 289-292
messages, receiving with 299-303

Azure SQL Database. See SQL Database
Azure Storage Queues

about 274
managing 277-280
messages, adding to 286-289
messages, receiving with 294-297
poison messages 298

Azure Storage service
about 96
access control for blobs, managing 110-113
access control for containers,

managing 110-113
Azure CDN, using 169, 170
blob directories, using 131-135
blob, downloading asynchronously 154-156
blob, leasing 163-167
blob snapshot, creating 135-138
blob snapshot, using 136-138
blocks, uploading to block blob 141-146
connecting 101-105
container-level access policy, using 123-127
distributed locks, implementing 163-167
managing 98-100, 324-329
metadata and properties, setting

for blob 127-130
retry policies, using with blob

operations 157-162
root container, creating for blobs 138-141
root container, using for blobs 138-141
shared access signature, creating for

container or blob 114-122
VHD, uploading into page blob 146-153

Azure Table Service. See Table Service
Azure Website

about 69
administering 77-81
architecture 70
continuous integration, with Git

and TFS 83-87
deploying 71-76
gallery 76
Java, developing with 91-93

logging abstraction, from .NET and PHP 87-90
monitoring 77-81
source versioning, with Git and TFS 83-87

B
backup solutions

active/passive geo-replication 211
features 210
geo-copy 211
geo-restore 210
leveraging, with SQL Database 210-212
point-in-time restore 210

Bad Request (400) error code 110
BeginAction action 154
blob

leasing 163-167
blob directories

using 131-135
blob-leasing actions

Acquire 164
Break 164
Change 164
Release 164
Renew 164

Blob service
access control, managing 110-113
block blobs 141
full public read access 110
no public read access 110
page blobs 141
public read access 110

blob snapshot
creating 135-138
using 135-138

block blob
about 141
blobs, uploading to 142-146

C
cache

building, for applications 365-371
diagnosing 379-385

cache metrics
bandwidth used 379
cache miss 379

401

compute used 379
memory used 379
Read/Write requests/sec 379

Catalina 91
Certificate Signing Request (CSR) 40
Certification Authority (CA) 37
Changed event 53
changes

testing, with SDK command-line 58
Changing event 52
classes, Microsoft.ApplicationServer.Caching

namespace
DataCache 366
DataCacheFactory 366
DataCacheFactoryConfiguration 366

client-side projection
used, for facilitating NoSQL 266-270

CloudBlobClient class 102
CloudBlobDirectory class 131
CloudBlobDirectory object 131
CloudQueue class 294
CloudQueue.DeleteMessage() method 294
Cloud Service. See Microsoft Azure Cloud

Service
Cloud Service properties

Application tab 16
Build Events tab 16
Development tab 16
Web tab 16

Cloud Services
deploying 330-336
inspecting 336-341
managing 336-341

CloudStorageAccount.FromConnectionString()
method 107

CloudStorageAccount.Parse()
method 105, 107

CloudTableClient class 102
CNAME 36
code-based configuration 371
commandLine attribute 49
Common Language Runtime (CLR) 252
compute emulator 106
ComputeManagementClient object 330
concurrency models

working 393
configuration change, Cloud Service 59

Conflict (HTTP error code 409) 230
connection failures, SQL Database

handling 218-223
container-level access policy

using 123-127
continuation tokens

exploring 252-257
using 247-251

Coyote 91
CreateCloudBlobClient() extension

method 105
Created (201) status 323
csrun command 58
custom context

dealing with 239, 240
custom domain name, for Cloud Service

providing 35-37
custom serialization

legacy approach, with Atom feeds 265, 266

D
database

migrating, to SQL Database 207, 208
Database Edition 179
database project, Visual Studio

issues 184, 185
Database Throughput Unit (DTU) 176
DataCache class 366, 387
DataCacheFactory class 366
DataCacheFactoryConfiguration class 366
DataCacheLocalCacheProperties class,

properties
InvalidationPolicy 373
ObjectCount 373

data definition language (DDL) 191
data manipulation language (DML) 191
DB Team 184
dead lettering 303
deleted databases 213
deployment unit 330
deployment upgrade, Cloud Service 60
Dev Team 184
Diagnostics Agent 63, 64
diagnostics, Cloud Service

alerts 68
configuring 62-66
log directories 67

402

Disk Management snap-in 146
Dynamic Link Library DLL 13
dynamic management views

used, for monitoring SQL Database 214-218

E
Eclipse

URL 313
Edit in Visual Studio Online feature

enabling 82
Emulator (Emulator Express)

used, for debugging Cloud Service 14-16
EndAction 154
Enterprise Service Bus (ESB) 308
Entity Data Model (EDMX) 201
Entity Framework

about 199
SQL Database, connecting to 198-201

entity group transactions
using 242-246

entity serialization events
handling 258-265

eventually consistent 364
Evicted object 380
eviction 380
extensions 341

F
Fiddler

URL 109
FIFO (First-In-First-Out) pattern 304
Files feature

about 153
used, for creating Network Share 153

G
Geo Redundant Storage (GRS) 100, 324
GetBlockList() method 145
GetIfNewer() method 371
GetMessages() method 294
Get() method 371
GetPermissions() method

using 123
GetSystemRegions() method 371

H
hash-based message authentication

(HMAC) 96
HTTPS

implementing, in web role 37-40

I
IListBlobItem interface 131
Infrastructure-as-a-Service (IaaS) 8
infrastructure operations

automating 349-355
monitoring 349-355

In-Progress status 328
In-Role Caching

about 365
URL 365

instance
local storage, using 41-43

Internet Information Services (IIS) 9
InvalidationPolicy property

NotificationBased 373
TimeoutBased 373

J
Jasper 91
Java

developing with, Azure Website 91-93
SQL Database, connecting to 202-206

Java Message Service (JMS) 312
Job Collection

creating 342

L
last recently used (LRU) 380
Lease Container API 168
LINQ

using, with RoleEnvironment API 58
ListBlobs() method 145
ListOperations() method 349
local cache

reference 379
using 373-378

Locally Redundant Storage (LRS) 100

403

local storage
using, in instance 41-43

LocalStorage element 41
Login 183

M
makecert command

used, for creating test certificate 40
management client

setting up 319-323
metadata and properties, for blob

setting 127-130
metadata properties, DataCacheItem object

CacheName 370
Key 370
RegionName 370
Size 370
Tags 370
Timeout 370
Version 370

methods, for notification control
AddCacheLevelCallback 373
AddItemLevelCallback 373

methods, for search
GetObjectsByAllTags() 392
GetObjectsByAnyTag() 392
GetObjectsByTag() 392

Microsoft Azure Cloud Service
about 8-10
changes, managing 59-61
configuration changes, handling 52-57
custom domain name, providing 35-37
debugging, with Emulator or Emulator

Express 14-17
diagnostics, configuring 62-66
publishing with options, from

Visual Studio 18-23
remote debugging, with Visual Studio 23-25
roles 8
service model, configuring 26-35
solutions and projects, setting up 10-14
topology changes, handling 52-57
upgrades, managing 59-61

Microsoft Azure role
startup tasks, using 48-51

Microsoft Azure Table Service. See Table
Service

Microsoft Azure Web Sites 9
Microsoft Management Console (MMC) 146
MSDN reference, Azure Redis Cache

URL 397
multiple websites

hosting, in web role 44-48

N
Nagle's algorithm 281
Network Address Translation (NAT) 183
Network Share

creating, Files used 153
NoSQL

facilitating, with client-side
projection 266-270

Not Found (404) error 113
notifications

reference 379
using 373-378

notifications working, with standalone
callbacks

AddCacheLevelBulkCallback 378
AddCacheLevelCallback 378
AddFailureNotificationCallback 378
AddItemLevelCallback 378
AddRegionLevelCallback 378

O
OnStop() method 53
Open Database Connectivity (ODBC) 198
optimistic concurrency 387
Output Cache

URL 372

P
page blob

about 141
VHD, uploading 146-153

PartitionKey property 241
partition servers 247
performance

optimizing 379-385

404

permit all firewall rule 183
pessimistic concurrency

about 387
URL 393

PHP
SQL Database, connecting to 202-206

Platform-as-a-Service (PaaS) 8
POCO class 319
Prepend() method 370
property status 323
Publish Profile 72
publish/subscribe messaging pattern

implementing, with Service Bus
topics 304-307

PutBlockFromStream() method 145
PutBlockList() method 145
Put() method 370, 371

Q
query string parameters

se 115
sig 115
sp 115
sr 115
st 115
sv 115

QueueClient.FormatDeadLetterPath()
method 304

R
raw ADO.NET issues

hardcoded SQL 198
long repetitive actions 198
type safety 198

Read Access 324
Read Access Geo-Redundant Storage

(RA-GRS) 100, 324
Redis

about 394
Fire-and-Forget pattern 397

Redis Cache
using, in Azure 394-396

Redis clients
URL 394, 397

Relational Database Management System
(RDBMS) 202

relayed messaging
implementing, with Service Bus 308-311

Remote Desktop Services (RDS) 17
RequestId 323
retry policies

using, with blob operations 157-163
RetryPolicy implementations

ExponentialRetry 157
LinearRetry 157
NoRetry 157

RetryPolicy property 157
RoleEntryPoint class

about 58
virtual methods 58

RoleEnvironment API
LINQ, using with 58

RoleEnvironment.Changing event 57
RoleEnvironment class 52
RoleEnvironment.GetLocalResource()

method 41
root container, for blobs

creating 138-141
using 138-141

RowKey property 241
rscc parameter 122
rscd parameter 122
rsce parameter 122
rscl parameter 122
rsct parameter 122

S
scalability unit 8
segmented queries

about 252
exploring 252-257

se parameter 115
serialization modes, object

BinaryFormatter 385
CustomSerializer 385
NetDataContractSerializer 385

Server Name Indication (SNI) SSL method 81
server-side paging

using 247-251

405

Service Bus
about 281
AMQP protocol, implementing 312
relayed messaging, implementing

with 308-311
Service Bus topics

publish/subscribe messaging pattern,
implementing with 304-307

Service Management API 318
service model, Cloud Service

configuring 26-35
SetBusy() method 53
SetPermissions() method

using 123
shared access signature, for container or blob

about 114
creating 114-120

Shared Access Signature (SAS) 331
sig parameter 115
SimultaneousChanged event 53
SimulteneousChanging event 53
site diagnostics group

about 87
detailed error messages 87
failed request tracing 87
web server logging 87

Software-as-a-Service (SaaS) 8
Solid State Drives (SSDs) 364
sp parameter 115
SQLAZureMW 207
SQL Database

about 173-175
backup solutions, leveraging 210-212
connecting, from PHP and Java 202-206
connecting, with ADO.NET 190-197
connecting, with Entity Framework 198-202
connection failures, handling 218-223
database, migrating to 207, 208
developing, with Visual Studio 184-189
features 174
firewall rules, managing 180-183
logins, managing 180-183
monitoring, with dynamic management

views 214-218
size, increasing 179
Version 1.0 176
Version 2.0 176

SQL Database Migration Wizard
about 174
URL 207

SQL Database operations
automating 356-360

SQL Database server
creating 175-179

SQL Database Support 196
SQL Server Management Studio

(SSMS) 179, 209
sr parameter

about 115
values 121

stale data 364
Standard Cache endpoint

creating 366
startup tasks

background 49
developing 52
foreground 49
simple 49
types 49
using, in Microsoft Azure role 48-51

StatusCheck event 53
StatusCode 323
Stopping event 53
Storage Client library 107
Storage Emulator

connecting to 106-109
protocol versions 109

Storage Queues. See Azure Storage Queues
Storage service. See Azure Storage service
st parameter 115
SubscriptionGetResponse class 349
sv parameter 115

T
Table Service

about 226
data, deleting 232-238
data, inserting 232-238
data, querying 232-238
data, updating 232-238
table, creating 228-230

tabular data stream (TDS) format 190
Task Parallel Library (TPL) 146

406

test certificate
creating, makecert command used 40

throttling 101
Tomcat runtime components

Catalina 91
Coyote 91
Jasper 91

Topaz 162
Trace.TraceInformation() 57
Traffic Control plus Request Cutting 101
Traffic Manager (TM)

about 82
augment availability 82
avoid downtime between upgrade 82

Transient Fault Handling Application Block
using 219

Transient Fault Handling Framework 174

U
Upgrade Domain 334
upgrades, Cloud Service

configuration change 59
deployment upgrade 60
in-place upgrade 59
managing 59-61

UploadBlocks() method 145

V
Virtual Hard Disks (VHD)

about 41, 97
uploading, into page blob 146-153

Virtual IP (VIP) address 35
Virtual IP (VIP) points 330
Virtual Machine (VM) 8
Visual Studio

Cloud Service, publishing from 18-23
SQL Database, developing with 184-190
used, for remote debugging Cloud

Service 23-25
Visual Studio Online (VSO) 71

W
WCF Data Services functionality 102
Web Hosting Plans 70
WebPICmdLine command-line tool 50
web role

HTTPS, implementing 37-40
multiple websites, hosting 44-48

X
X509 management certificate 318

Thank you for buying
Microsoft Azure Development Cookbook

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused books
on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited to) IBM,
Microsoft and Oracle, often for use in other corporations. Its titles will offer information relevant to a
range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in touch
with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience,
our experienced editors can help you develop a writing career, or simply get some additional reward for
your expertise.

Microsoft Silverlight 5 and
Windows Azure Enterprise
Integration
ISBN: 978-1-84968-312-8 Paperback: 304 pages

A step-by-step guide to creating and running scalable
Silverlight Enterprise Applications on the Windows
Azure platform

1.	 This book and e-book details how enterprise
Silverlight applications can be written to take
advantage of the key features of Windows Azure
to create scalable applications.

2.	 Provides an overview of the Windows Azure
platform and how the different technologies can
be integrated within your enterprise application.

(MCTS) Microsoft BizTalk
Server (70-595) Certification
and Assessment Guide
Second Edition
ISBN: 978-1-78217-210-9 Paperback: 570 pages

Including Microsoft Partner Network Technical
Competency Assessment for Application Integration
(BizTalk Server 2013) and Windows Azure BizTalk
Services coverage

1.	 Features a comprehensive set of test questions
and answers that will prepare you for the
actual tests.

2.	 This second edition of the book is updated
to target both BizTalk Server 2010 and
BizTalk Server.

Please check www.PacktPub.com for information on our titles

Microsoft SQL Azure:
Enterprise Application
Development
ISBN: 978-1-84968-080-6 Paperback: 420 pages

Build enterprise-ready applications and projects with
SQL Azure

1.	 Develop large scale enterprise applications using
Microsoft SQL Azure.

2.	 Understand how to use the various third party
programs such as DB Artisan, RedGate, and
ToadSoft developed for SQL Azure.

3.	 Master the exhaustive Data migration and Data
Synchronization aspects of SQL Azure.

Microsoft Azure: Enterprise
Application Development
ISBN: 978-1-84968-098-1 Paperback: 248 pages

Straight talking advice on how to design and build
enterprise applications for the cloud

1.	 Build scalable enterprise applications using
Microsoft Azure.

2.	 The perfect fast-paced case study for developers
and architects wanting to enhance core
business processes.

3.	 Packed with examples to illustrate concepts.

4.	 Written in the context of building an online portal
for the case-study application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Developing Cloud Services for Microsoft Azure
	Introduction
	Setting up solutions and projects to work with Cloud Services
	Debugging a Cloud Service locally with either Emulator or Emulator Express
	Publishing a Cloud Service with options from Visual Studio
	Debugging a Cloud Service remotely with Visual Studio
	Configuring the service model for a Cloud Service
	Providing a custom domain name for a Cloud Service
	Implementing HTTPS in a web role
	Using local storage in an instance
	Hosting multiple websites in a web role
	Using startup tasks in a Microsoft Azure role
	Handling changes to the configuration and topology of a Cloud Service
	Managing upgrades and changes to a Cloud Service
	Configuring diagnostics in Cloud Services

	Chapter 2: Deploying Quickly with Azure Websites
	Introduction
	Deploying a Website
	Administering and monitoring a Website
	Source versioning and continuous integration with Git and TFS
	Logging abstraction from .NET and PHP
	Deploying Java with Azure Websites

	Chapter 3: Getting Storage with Blobs in Azure
	Introduction
	Managing the Azure Storage service
	Connecting to the Azure Storage service
	Connecting to the storage emulator
	Managing access control for containers
and blobs
	Creating a shared access signature for a container or blob
	Using a container-level access policy
	Setting properties and metadata for a blob
	Using blob directories
	Creating and using a blob snapshot
	Creating and using the root container
for blobs
	Uploading blocks to a block blob
	Uploading a VHD into a page blob
	Downloading a blob asynchronously
	Using retry policies with blob operations
	Leasing a blob and implementing distributed locks
	Using the Azure Content Delivery
Network (CDN)

	Chapter 4: Going Relational
with the Azure
SQL Database
	Introduction
	Creating a SQL Database server and database
	Managing SQL Database logins and firewall rules
	Developing a SQL Database with
Visual Studio
	Connecting to a SQL Database with ADO.NET
	Connecting to a SQL Database with Entity Framework
	Connecting to a SQL Database from PHP and Java
	Migrating a database to a SQL Database
	Leveraging backup solutions with SQL Database
	Monitoring SQL Database with the dynamic management views
	Handling connection failures to a SQL Database

	Chapter 5: Going NoSQL with Azure Tables
	Introduction
	Creating a table
	Inserting, updating, deleting, and querying data against the Table service
	Using entity group transactions
	Using continuation tokens and server-side paging
	Going inside continuation tokens and segmented queries
	Handling entity serialization events
	Facilitate NoSQL with client-side projection

	Chapter 6: Messaging and Queues with the Storage and Service Bus
	Introduction
	Managing Azure Storage queues
	Managing Azure Service Bus queues
	Adding messages to a Storage queue
	Adding messages to a Service Bus queue
	Receiving messages with Storage queues
	Receiving messages with Service Bus queues
	Implementing publish/subscribe with Service Bus topics
	Implementing relayed messaging with the Service Bus
	Communication between .NET and Java with the Service Bus and AMQP

	Chapter 7: Managing Azure Resources with the Azure Management Libraries
	Introduction
	Setting up the management client
	Managing the Storage service
	Deploying Cloud Services
	Inspecting and managing Cloud Services
	Managing and using the Azure Scheduler
	Monitoring and automating infrastructure operations
	Automating SQL Database operations
	Using Azure PowerShell

	Chapter 8: Going In-memory with Azure Cache
	Introduction
	Building a simple cache for applications
	Using local cache and notifications
	Diagnosing cache and optimizing performance
	Using advanced caching features
	Using Redis Cache in Azure

	Index

