
www.allitebooks.com

http://www.allitebooks.org

Microsoft BizTalk Server
2010 Patterns

Create effective, scalable solutions with Microsoft
BizTalk Server 2010

Dan Rosanova

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft BizTalk Server 2010 Patterns

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2011

Production Reference: 1181011

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-460-6

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Dan Rosanova

Reviewers
René Brauwers

Steef-Jan Wiggers

Randal van Splunteren

Acquisition Editor
Dilip Venkatesh

Development Editors
Swapna Verlekar

Pallavi Iyengar

Technical Editors
Manasi Poonthottam

Ankita Shashi

Copy Editor
Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Bernadette Watkins

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Nilesh R. Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dan Rosanova is a two-time Microsoft BizTalk Architecture MVP with over
twelve years of experience delivering solutions on Microsoft platforms in the
financial services, insurance, banking, telecommunications, logistics, and high-tech
industries. He specializes in high volume and low latency distributed applications.
He has served as both a technical and strategic advisor to clients ranging in size from
startups to Fortune 500. Dan has extensive experience with .NET, XML, services, and
queuing, as well as evolutionary computation.

Dan is a Senior Architect in the Technology Integration Practice at West Monroe
Partners, an international, full-service business and technology consulting firm,
focused on guiding organizations through projects that fundamentally transform
their business.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

René Brauwers started his IT career at the end of the last century as a web
developer/designer and was primarily engaged with building websites using
classic ASP. Soon, his focus got more drawn towards developing client/server
applications using the 3GL language Centura/Gupta Team Developer. Around the
end of 2002, he got involved with the EAI/B2B/B2C/BPM world, starting off with
WebMethods and did this for the next three years with an occasional side step to
.NET development. This occasional side step got him in touch with BizTalk Server
in 2005 and, since then, he has been involved with BizTalk Server and general .NET
programming. Currently, he is employed as a senior BizTalk consultant for Motion10
(Motion10.com) in the Netherlands and can be contacted at rene@brauwers.nl.

I would love to thank my parents, brother, and soon-to-be sister-in-
law for supporting me and allowing me to become the person I am
today; my girlfriend, best friend, and soul mate Miranda (let's move
to Australia), and last but not least, Leena and Pallavi for finding me
and giving me this opportunity.

Steef-Jan Wiggers, architect for Ordina (www.ordina.com), has built a strong
foundation of experience as a technical lead developer and application architect,
specializing in custom applications, enterprise application integration, and web
services. He has experience in architecting, designing, developing, and supporting
sophisticated and innovative software using many different Microsoft technologies
and products. Steef-Jan has been awarded the Microsoft Most Valuable Professional
(MVP) award (2010) for his contributions to the world-wide BizTalk Server
community. He maintains a blog on his exploits, pitfalls, and musing with BizTalk
Server and Windows Azure-related technologies at http://soa-thoughts.
blogspot.com/.

Microsoft BizTalk Server MVP: https://mvp.support.microsoft.com/default.
aspx/profile/steef-jan.

www.allitebooks.com

http://www.allitebooks.org

Randal van Splunteren lives with his wife, daughter, and son in the Netherlands.
He works as a consultant for a Dutch consulting company. His focus is on
implementing integration scenarios using Microsoft products and technologies.
He has real-world experience with all versions of BizTalk Server and was awarded
Most Valuable Professional (MVP) for BizTalk Server by Microsoft in 2010 and 2011.
Randal is an active BizTalk community member and maintains a blog on BizTalk
(http://biztalkmessages.vansplunteren.net). You can contact Randal at:
randal.van.splunteren@hotmail.com.

I would like to thank Dan Rosanova for writing this book and
giving me the opportunity to review it. I think Dan has succeeded in
writing one of the best BizTalk books available today.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
www.PacktPub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to Jennie.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Part 1
Chapter 1: Introducing BizTalk Server 2010 9

Understanding what is BizTalk Server 9
Stating the goals of BizTalk Server 10

Increasing reliability 11
Decoupling systems 11
Providing reuse 12
Decreasing development time 12
Providing rich information to technical as well as business consumers 12
Improving administration 13

When to use BizTalk Server 13
Where does BizTalk fit into the Enterprise? 15
Exploring the architecture of BizTalk Server 15
Design patterns within the BizTalk architecture 16

Messaging 16
Publish Subscribe 17
Adapter 19
Streaming 20

Understanding BizTalk message flow 20
The Message Box 21
Other BizTalk databases 23

Presenting the BizTalk runtime environment 24
Servers and services 24

Application Servers 24
Database Servers 25
Web Servers 25

Table of Contents

[ii]

Enterprise Single Sign-On Servers 25
Understanding roles and relationships 26

The BizTalk group 26
Hosts 27
Host instances 28
Isolated vs. in-process hosts 29

Summary 30
Chapter 2: Introduction to BizTalk Development 31

Developing BizTalk solutions 31
Partitioning the BizTalk solution 33

Specifying the requirements of solution structure 33
Understanding the layers of a BizTalk solution 35
Visual Studio solution structure 37

Projects 38
External Schemas (.xsd files) 38
Internal Schemas (.xsd files) 39
Maps (.btm files) 39
Pipelines (.btp files) 39
Pipeline components (.cs files) 40
Orchestrations (.odx files) 40
Libraries (C#, resources, and so on) 40
Testing (.xml, .dtd, .cs files) 40
Non-project artifacts 41

Motivations for solution structure 42
Understanding types in BizTalk 43

Message types 44
Types in contexts 45
Type resolution 46

Understanding the solution at runtime 46
Monitoring 49

Why BAM? 49
Understanding BAM concepts 50
Creating a BAM activity 50
Creating a BAM view 51
Creating a BAM tracking profile 51
Advanced BAM concepts 52

Continuation 52
Relationship 52
Document reference URL 53

Introducing the BAM portal 53
Presenting BAM alerts 53

Summary 54

Table of Contents

[iii]

Chapter 3: BizTalk Development Guidelines 55
Core guidance 55

Determining where to place different types of logic 55
Maps 56
Orchestrations 56
Business rules 57
Pipelines and pipeline components 57
General concept 58

Mapping at the port level 58
Orchestration best practices 59

Avoid overuse of orchestration 60
Always use multipart messages in orchestrations 62
Avoid large orchestrations 63
Minimize trips to the message box (persistence points) 63
Avoid using atomic scopes to call .NET methods 64
Don't use XmlDocument for a message type… ever 66
Avoid loading messages into classes via the XmlSerializer 67
Use direct bound ports and Content Based Routing 68
Leverage filters in orchestrations 70
Use distinguished fields instead of XPath 71
Avoid unnecessary looping on collections 73

Pipelines 75
What are pipelines? 75
Stages in a receive pipeline 76
Stages in a send pipeline 78
Pipeline components 78
Metadata and message context 79
Stream processing 80

Summary 81
Chapter 4: Operating BizTalk 83

Understanding BizTalk operational architecture 83
Administering BizTalk Server 84
Scalability in BizTalk Server 87

Scaling SQL Server 87
Scaling BizTalk Server 89

Adding more hosts and host instances 90
Adding more servers to the group 92

Exploring high availability in BizTalk 92
High availability in SQL Server 92
High availability with clustered BizTalk hosts 94

Understanding disaster recovery 96
The BizTalk backup job 97

Table of Contents

[iv]

Standing the new BizTalk environment up 98
Examining sample installation topologies 98

A single application with a single database 99
Dual application with dual database (active/passive) 100
Dual application with dual database (active/active) 101
Sample Enterprise topology 102

Walking through the BizTalk deployment process 103
Presenting the best practices for BizTalk configuration 105

Separating BizTalk hosts 105
Host-specific settings 106
HTTP performance optimization settings 107

Troubleshooting BizTalk issues 108
Summary 110

Part 2
Chapter 5: Basic Messaging Solution 113

Pass thru messaging scenario 113
Examining the solution 118
Adding a second receive location 118
Transport properties 119

Basic subscriptions 122
Simple XML messaging with maps 124

Creating schemas 125
Creating maps 132

Creating a map from external PoPurchaseOrder to PurchaseOrder 132
Creating a map from canonical PurchaseOrder to SalesOrder 140

Wiring up the solution 141
Creating the receive port 142
Creating the send port 142

Testing the solution 143
Content-based routing and promoted properties 143

Property promotion 144
Updating the solution routing 146

Multicasting messages 147
Adding the new send port 148

Summary 149
Chapter 6: Unit Tests and BAM 151

What are unit tests? 151
Tenets of a good test 152
Composition of a test 152
Test steps 153

Table of Contents

[v]

Tests for the current solution 154
Standard Purchase Order test 155

Test setup and cleanup 156
The test execution stage 157

Harnessing a test 158
Visual Studio Project Settings for tests 159

Creating BAM for a solution 159
Creating a basic BAM profile 160
Creating an Activity 160
Creating a View 162
Creating the Tracking Profile 163

Examining the BAM database infrastructure 167
BAM tables 167
BAM views 168
BAM maintenance 169

Data maintenance 169
Analysis 170

Receiving a new Legacy Order format 170
Creating a BizUnit test 172

Summary 173
Chapter 7: Leveraging Orchestration 175

Introducing orchestration 175
Orchestration basics 176

Creating the orchestration outline 177
Creating the PurchaseOrder message 179
Adding ports to the canvas 180
Implementing the logical comparison 182
Checkpoint 184

Consuming the order discount service 184
Adding the service artifacts to the solution 185
Creating the maps 185
Distinguished fields 187
Creating a new send port 188

Handling SOAP Faults 189
Using scopes and exceptions 189
Encountering a SOAP Fault 190

Why is this happening? 192
Using a scope to catch the fault 192
Using a loop to retry the request 193

Breaking out of retry loop 194
Implementing Failed Message Routing 195
Summary 196

Table of Contents

[vi]

Chapter 8: The WCF-SQL Adapter and WCF Services 197
Polling a database with the WCF-SQL Adapter 197

Constructing XML from SQL using FOR XML 198
Creating the SQL message schema 200
Creating the map for the website orders 202
Creating the new WCF-SQL receive location 202

Creating the unit test for website order 203
Performing imperative queries with the WCF-SQL Adapter 205

Creating the schemas to communicate with the database 206
Creating the external schema for the service request 207
Creating the internal schema for the service request 208
Creating maps for the service 209
Publishing the schemas as a WCF service 211
Changing the IIS AppPool 213
Creating the send port for the SQL request 214
Testing the service 214

Summary 216
Chapter 9: Expanding the Solution with Services and Rules 217

Consuming the customer service 217
Creating a new map 218
Adding the data query to the orchestration 219

Creating the logical port 219
Adding the new send and receive shapes 219
Enhancing the discount calculation 220

Updating the WCF-SQL Send Port 220
Using Business Rules to improve our process 221

Introduction to the Business Rules Editor 222
Creating a vocabulary 223

Adding a new set of values called definition 223
Creating XML definitions in a vocabulary 225

Creating a policy 226
Updating the orchestration to call this policy 227

Performing a simple update to the policy 228
Understanding how business rules work 229

Expanding the policy 229
Looping in BRE 230

Building the Library project 231
Using the product class from BRE 231

Deploying policies 233
Summary 236

Table of Contents

[vii]

Chapter 10: Envelopes, Flat Files, and Batching 237
Understanding delimited flat files 237

Creating the delimited flat file schema 238
Mapping the delimited flat file 244
Using the flat file schema 245
Compile and deploy the solution 246

Working with positional flat files 246
Grasping important flat file schema concepts 249

Using flat file headers and trailers 250
Processing XML envelopes 251
Testing envelopes and pipelines 253

XML Disassmbler 253
Flat file disassembler 255
XML assembler / flat file assembler 255
Pipeline testing 256

Summary 256
Chapter 11: Completing the Order Processing Solution 257

Exposing the process to web service clients 257
Expose the schema as a service endpoint 258
Creating a new one-way receive location 258

Examining the solution bindings 259
Exporting the bindings 259
Understanding bindings 260
Modifying bindings 263

Creating bindings for each environment 264
Building and deploying the solution 264

Building an MSI manually 264
Examining how the MSI is built 266
Automating MSI builds 266

Using advanced BAM features 269
Updating BAM activities 269
Defining groups for BAM milestones 270
Creating dimensions 270
Defining measures in BAM views 272
Leveraging BAM continuation 274
Exploring the improved view 275

Running the SSIS package to process aggregations 275
Viewing the aggregation results 276

Summary 277

Table of Contents

[viii]

Chapter 12: Asynchronous Solutions 279
Introducing the inventory management solution 279
Inventory notification with approval 280

Creating the notification schema with the WCF SQL adapter 280
Using SQL table operations 282
Consuming the vendor order service 284

Creating the orchestration 284
Creating messages 284
Laying out the shapes 285
Creating the logical ports 288
Creating the correlation 291

Updating the inventory 291
Creating a composite operation schema 292
Creating the composite operation map 293

Creating the other maps 296
Binding the solution 296

Importing the notification bindings 297
Importing the WCF-SQL send bindings 297
Manually creating a WCF-SQL send port 298
Creating the approval physical ports 298

Manually creating a web service send port 299
Binding the orchestration 300

Exploring other approaches 300
Querying for missed notifications 301
Using the polling method 301
Polling settings 302

Summary 303
Chapter 13: Performing Parallel Processing and Branching 305

Revising solution requirements 305
Implementing the broker pattern 306

Using the decide shape 306
Assessing this approach 307
Creating a more extensible solution 308

Understanding roles 308
Understanding parties 308

Improving the broker with role-based links 308
Implementing role party links 309
Creating parties 310
Adding a new vendor 313

Enabling parallel processing 315
Understanding the parallel shape 319

Table of Contents

[ix]

Implementing scatter gather 319
Improving scatter gather 322

Summary 325
Chapter 14: Processing Message Convoys 327

Creating a sequential convoy 327
Creating the envelope 328
Creating the pipeline 328
Creating the orchestration 329
Creating the convoy correlation 332
Binding the solution 333
Running the sequential convoy 333
Improving our solution 334
Dealing with zombies 335

Creating a parallel convoy 336
Creating the VendorInformation schema 336

Creating the promoted property 337
Promoting the elements 338

Creating the orchestration 339
Wiring up the orchestration ports 342
Creating the correlation 342
Binding the solution 343
Running the parallel convoy 343

Creating a non-uniform sequential convoy 343
Using advanced correlations 345
A note about orchestration development 345
Summary 346

Appendix 347
XML for BizTalk development 347

A brief history of XML 347
Understanding parts of an XML document 348

Declaration 348
Elements 348
Attributes 348
Root elements 349
Namespaces 349

Understanding XPath 350
The rest of XML 350
Understanding equivalence 351

Troubleshooting guide 351
Nothing happened—what now? 351
I dropped my message and it didn't get picked up 353

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

I dropped my message and it disappears, but does not go
where I expect it to go 353

What is coupling? 353
Untyped messages 354
Implicitly ordered operations 354
The continuum of coupling 355
Definition of loose coupling 355
State 356

What is state? 356
Why is state expensive? 357
How does state relate to coupling? 357
Why do people feel like they need state? 358
How can you avoid state? 358
Where does all this fit into services? 359

Index 361

Preface
Microsoft BizTalk Server 2010 is an exciting platform for developing middleware
and integration solutions. As our computing ecosystem moves ever further away
from monolithic mainframe style applications, we find ourselves spending an ever
increasing amount of time integrating existing systems. This trend continues and
increases as more of these systems move to the cloud. The book is broken into two
major sections: an introduction to Microsoft BizTalk Server 2010 from a detailed
technical perspective; and the story of a realistic enterprise embarking on the process
of adopting Microsoft BizTalk Server 2010 to build solutions. Through this unified
story line that mimics how many real-world development initiatives flow, readers
will walk through creating solutions according to best practices that will expand and
grow with the enterprise that they serve. The same patterns and practices presented
here apply to any middleware or integration platform including the upcoming
AppFabric ServiceBus.

What this book covers
Part 1
Chapter 1, Introducing BizTalk Server 2010: This chapter introduces the reader to
BizTalk Server, its capabilities, and internal architecture in an abstract manner. It
introduces fundamentals of BizTalk Server 2010, the components that make up the
platform, and how BizTalk fits into most enterprise environments.

Chapter 2, Introduction to BizTalk Development: This chapter introduces the developer
to the BizTalk development experience, first through structure and architecture and
then through the IDE and tool experience. It concludes with coverage of Business
Activity Monitoring.

Chapter 3, BizTalk Development Guidelines: This chapter describes the best practices
development guidelines for the most common areas of BizTalk development
including maps, orchestrations, adapters, and pipelines.

Preface

[2]

Chapter 4, Operating BizTalk: This chapter introduces operational concepts of BizTalk
that are important for both the developer as well as the administrator.

Part 2
Chapter 5, Basic Messaging Solution: This chapter introduces messaging in BizTalk
Server at a basic binary level, and proceeds to build upon the concepts at each stage,
until demonstrating how to make expressive and powerful message-based solutions.

Chapter 6, Unit Tests and BAM: This chapter introduces critical concepts to make
every solution complete: monitoring and automated unit testing. This will show the
reader how to create and deploy basic monitoring profiles and also how to create
automated unit tests.

Chapter 7, Leveraging Orchestration: This chapter introduces the reader to orchestration
and shows them how to model their current solution with orchestration (and why
not to). It then introduces the true purpose of orchestration: service composition.

Chapter 8, The WCF-SQL Adapter and WCF Services: This chapter introduces the
WCF-SQL Adapter, as well as how to expose WCF services from BizTalk. The user
will learn both polling and query approaches to working with the WCF-SQL
Adapter and how to expose different services in different manners from BizTalk.

Chapter 9, Expanding the Solution with Services and Rules: This chapter demonstrates
how to use the previously defined WCF-SQL artifacts to make our processing
solution more expressive and rich. The reader then learns how to use the business
rules engine (BRE) to create powerful rules-driven solutions for decision making
that are decoupled from our core solution.

Chapter 10, Envelopes, Flat Files, and Batching: This chapter extensively covers the
concepts of flat file processing in BizTalk. It introduces the reader to both consuming
and creating flat files, as well as providing guidance for working with flat files. It
then covers envelope processing for XML documents, to handle message assembly
and disassembly.

Chapter 11, Completing the Order Processing Solution: This chapter covers completing
the order processing solution by exposing the existing solution to WCF clients,
creating build scripts for deployment packages, and expanding the current
monitoring solution to provide rich self-service interactive reporting capabilities to
business users.

Preface

[3]

Chapter 12, Asynchronous Solutions: This chapter introduces advanced asynchronous
concepts that scale well and address common challenges in the enterprise. The
WCF-SQL Adapter is used with query notifications to provide alerts to changes in
a database that do not rely on polling. Continuations are introduced and explained;
then used to integrate with InfoPath documents (or other sources) to provide human
workflow capabilities.

Chapter 13, Performing Parallel Processing and Branching: This chapter introduces
methods for parallel processing in BizTalk server, and how to use them to shorten
processing time and increase scalability, as well as when not to.

Chapter 14, Processing Message Convoys: The final chapter of the book introduces
convoy patterns in BizTalk Server. These patterns are often used to overcome large
impedance mismatches between systems in an enterprise, such as batched systems
connecting to real-time (non-batched) systems.

Appendix: The appendix provides an introduction to XML presented in a BizTalk
context. There is also troubleshooting guide that provides common problem solution
approaches for use in BizTalk applications. Finally, there is an introduction to the
concepts of loose coupling in software systems.

What you need for this book
Windows 7 (or Windows Server 2008 R2)

Visual Studio 2010

BizTalk Server 2010 Developer Edition

SQL Server 2008 R2 (Developer or Express Edition)

BizUnit 3.0.1

Who this book is for
This book is targeted at software architects, solution architects, and developers of
BizTalk solutions. The technical focus will make the book less applicable to managers
unless they have a fairly deep technical background, but it will still be useful
for them to assure that their teams stay on track to developing effective BizTalk
solutions according to time tested patterns and practices.

Preface

[4]

This book does not expect any level of experience with BizTalk. It is targeted at the
beginner or intermediate BizTalk developer who has previous experience developing
on the Microsoft platform in .NET and Visual Studio. If you have absolutely no
experience with Visual Studio, then BizTalk will likely be more of a challenge to you
and I recommend working with C# or Visual Studio a little on your own, ahead of
time, to familiarize yourself with the IDE experience.

I strongly believe even advanced BizTalk developers will learn very much from the
book, as it presents patterns and practices that are ideal for BizTalk solutions, but
are largely not common knowledge in the BizTalk developer community. Cursory
knowledge of XML, although useful, is not required. The book does include an XML
primer in the appendix, so if you're new to XML you may want to read through this.
The material in this book has successfully trained dozens of .NET developers as well
as Fox Pro, Java, and iSeries programmers who have no .NET experience at all.

BizTalk is a departure from almost any other platform most of us have worked on,
but it is largely a step up into a more abstract level that allows us to focus more on
the business solution and less on the infrastructure involved.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

public MyMessage SomethingInteresting(XLANGMessage message)
{
 MyMessage myMessage = message[0].RetrieveAs(typeof(MyMessage)) as
MyMessage;
 return myMessage;
}
public XmlReader SomethingElse(XLANGMessage message)
{
 XmlReader reader = message[0].RetrieveAs(typeof(XmlReader)) as
XmlReader;
 return reader;
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?xml version="1.0" encoding="utf-8"?>
<Order xmlns="http://wmp/schemas/quote">
 <Number>1234</Number>
 <Date>2011-06-11</Date>
 <Item Number="4432" Quantity="1" />
 <Item Number="5532" Quantity="2" />
</Order>

Any command-line input or output is written as follows:

gacutil /i PRP.OrderProcessing.Library.dll

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you click
the Parameter Name dropdown, you will see that the Products variable is already
specified. Select it and click OK".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Part 1
Introducing BizTalk Server 2010

Introduction to BizTalk
Development

BizTalk Development Guidelines

Operating BizTalk

Introducing BizTalk
Server 2010

This chapter introduces the reader to BizTalk Server, its capabilities, and internal
architecture in an abstract manner. It introduces the fundamentals of BizTalk Server
2010, the components that make up the platform, and how BizTalk fits into most
enterprise environments. It also presents some of the internal design patterns
used within BizTalk. The material in this chapter may be a little in depth for the
beginner, especially if you are also new to middleware. Feel free to come back to
it later if necessary.

This chapter covers the following:

What is BizTalk Server
Goals of BizTalk Server
When to use BizTalk
Where does BizTalk fit in the enterprise
Architecture of BizTalk Server
Design patterns used internally by BizTalk
The BizTalk runtime environment

Understanding what is BizTalk Server
BizTalk Server is quite possibly the most advanced product produced by Microsoft
to date. It offers scalability and reliability simply unrivalled on the Windows
platform or, for that matter, any platform. According to Gartner, it falls in the leaders
quadrant and has the highest ability to execute. It is now in its seventh version (2010)
and has grown more robust and feature-rich with each release. It scales both up and
out and is designed to meet the needs of even the most demanding enterprises, but
also to work well for medium sized organizations.

•
•
•
•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

Introducing BizTalk Server 2010

[10]

At its core, BizTalk Server is meant to be a mediator or a conduit for information
throughout an organization. BizTalk's primary focus is connecting systems and
providing services. Yet it is more than just a middleware product, it is an entire
toolset designed to help you build, run, and grow your enterprise's information
systems. Today, more than ever, no software lives in isolation and BizTalk is the
tool with which to break down the isolation that is still inherent in most existing
software. Even cloud offerings like Azure or Salesforce.com no longer exist in a
vacuum. Often these clouds are required to interact with other software systems
in the enterprise, or with business partners, and increasingly with other cloud
platforms. BizTalk is designed to bridge the gap between applications; to act as a
mediator, broker, and router for business transactions. BizTalk is an integral part of
Microsoft's future strategy, including their Cloud Strategy.

In addition to the core messaging server, additional tools such as Tracking,
Monitoring, Business Rules, and a Visual Studio based IDE experience are provided
to make working with BizTalk more familiar and powerful. Any developer having a
background with Microsoft development should feel quickly at home with BizTalk.
Developers from other platforms should also find the experience familiar when
done correctly.

Through the use of BizTalk's core components (Adapters, Pipelines, Mapping,
Orchestration, and Business Rules) BizTalk allows seamless integration with all
major enterprise platforms such as SQL Server, DB2, Oracle, SAP, PeopleSoft, and
many others. Beyond integration, BizTalk allows expressive and powerful business
processes to be built upon the integrations it facilitates. Used in conjunction with
human workflow products like SharePoint and InfoPath, BizTalk provides the
enterprise with a variety of tools with which to create expressive, unique solutions
that enable business and increase productivity.

In the past, BizTalk was referred to as a Business Process Management (BPM)
product but that doesn't go far enough to convey the power of BizTalk. It is really
more of a business enablement platform. As we will learn in the second part of this
book, BizTalk can be a central component in the connected enterprise via enterprise
application integration, SOA, or ESB.

Stating the goals of BizTalk Server
BizTalk is Microsoft's premier messaging platform. It was designed with many
specific scenarios in mind and has evolved to work with others as well. Whether
you are involved in integration, service orientation, business process management,
or enterprise service bus, BizTalk's purpose is to enable the following goals:

Increasing reliability•

Chapter 1

[11]

Decoupling systems
Providing reuse
Decreasing development time
Providing rich information to technical as well as business consumers
Improving administration
Providing a rich set of security options that can be controlled separately from
the functionality of a solution

Used as presented in this text, it will deliver on all of these points. This is a lot to
cover, so let's address each of these aspects individually and discuss how they
are achieved.

Increasing reliability
The very core of BizTalk Server is a construct called the Message Box. Everything that
goes in and out of BizTalk Server travels through the Message Box. We will cover this
in greater depth later, but for now it is enough to know that even in a catastrophic
outage, there is never a chance for messages to simply be "lost" in BizTalk. Distributed
transactions while managing the input, update, and removal of messages from the
Message Box are fully ACID compliant. BizTalk is designed as a distributed system
and has resilience built into the product. Just as we have been able to abstract away
details of processor architecture, BizTalk abstracts away details of durability and
reliability. BizTalk recovers cleanly and often automatically from outages. This
inherent reliability allows us to shift our focus to solving business problems rather
than solving technical issues. BizTalk is also designed to work in a scaled environment;
addressing both scale out and scale up scenarios in a simple manner.

Decoupling systems
BizTalk, when used correctly, provides unprecedented decoupling by allowing you
to graphically map message formats to each other. This simple flexible mapping
capability is critical to decreasing coupling as it enforces a barrier between chains
of connected systems. Using the best practices presented in this text, changes in
endpoints such as transport, encoding, timing, and format will have little or no
impact on your internal solutions. Here again the Message Box achieves abstraction
and helps by decoupling message senders from message receivers. As mentioned
earlier, every message in BizTalk goes through the Message Box—so even a simple
solution still uses the Message Box. This separation enforced by the Message Box
allows us to decouple message senders (publishers) from message consumers
(subscribers). For more information on loose coupling see "What is Loose
Coupling" in the appendix.

•

•

•

•

•

•

Introducing BizTalk Server 2010

[12]

Providing reuse
By using internal message formats that are known only to your BizTalk solutions,
endpoints and adapters of existing solutions can be leveraged repeatedly over time.
Other great candidates for reuse are infrastructure services such as logging or audit
that can easily be provided by the ESB capabilities of BizTalk. Properly structured
BizTalk solutions encourage reuse. By decoupling, format, transport, and time
constraints solutions and their components can be readily reused to solve variations
of specific processes. Some of these components, like the WCF Adapters, can even be
used completely outside of BizTalk.

Decreasing development time
By leveraging the familiar Visual Studio environment, developers are quickly at
home with BizTalk and can begin creating solutions almost immediately. We will
see later how to make those solutions effective, scalable, and flexible. Perhaps the
greatest time savers for developers are all the tools that are part of BizTalk. The
Mapper, the Flat File Wizard, Business Activity Monitoring, the other wizards for
various adapters, and all the robust infrastructure and service publishing tools make
BizTalk a complete toolset to address the vast majority of issues facing the enterprise.
Very few of the tools involved in BizTalk will be completely new or unfamiliar to
developers who work on the Microsoft platform. Great care has been taken to make
the transition to BizTalk as easy as possible. Further, because BizTalk does not focus
on code and libraries the way most programming environments do, the amount of
time taken to create a solution is greatly decreased.

Providing rich information to technical as well
as business consumers
As mentioned earlier, nothing is ever "lost" in BizTalk. By default, there is a
tremendous amount of technical tracking for every message and workflow
(orchestration) inside of BizTalk. As useful as this is, there is another level available
via Business Activity Monitoring (BAM) that allows for the creation of tracking
profiles to follow business processes at the desired level of granularity and to include
data from within the messages (content) as well as metadata about the messages
(context). Further, this data can be used in automatically created analysis cubes
(via SQL Server Analysis Services) to provide nearly self-service BI solutions. With
the addition of notifications on this monitoring information, what BizTalk offers in
this area is currently unrivalled by any other platform.

Chapter 1

[13]

Improving administration
Continuing in the line of messages never being "lost", BizTalk also provides a rich set
of tools for administrators to deploy, monitor, and manage solutions. Using the MSI
deployment package concept, there is also no compiling or scripting necessary for
the administrator (although these features are available if needed). BizTalk enables
the solid line handoff between developers and administrators that is increasingly
required by regulatory compliance regimes. Further, BizTalk allows administrators
to reallocate and partition processing over their servers to make solutions more
scalable or allow for in-place upgrades requiring little or no downtime. IT
administrators have more control over the runtime of BizTalk solutions than of any
other platform in the Microsoft stack. Moreover, none of these controls require code
to be implemented, freeing staff to focus on their primary jobs rather than learning
new scripting languages. BizTalk is also heavily instrumented and uses familiar
MMC and WMI tools that IT operations staff will quickly feel comfortable with.
Additionally, other administration tools like SCOM have add-on packs for BizTalk
that plug into this instrumentation.

After using BizTalk for a while (in accordance with the practices outlined here), I
invite you to revisit this list and determine for yourself how relevant each of the
points have been.

When to use BizTalk Server
Perhaps most strikingly, unlike a lot of other software, such as Office, Windows,
and even SAP or PeopleSoft in the enterprise space, after installation BizTalk doesn't
actually do anything yet. I think this really confuses people and a good analogy is in
order. BizTalk Server is much like its close companion SQL Server. Once you install
SQL Server, it doesn't actually do anything; you must build solutions that use a
database before it does anything useful. The same is true of BizTalk. Both products
are platforms on which solutions are built, not solutions in and of themselves. In fact,
BizTalk is an application built on top of SQL Server and .NET. To a certain extent, the
same can be said of SharePoint; SharePoint doesn't do anything, it allows you to do
things with it and is also built on a similar platform.

There are two primary areas where BizTalk fits very well into an organization:
integrated (or distributed) systems and high volume systems. BizTalk is ideal for
solutions that involve inter-system communication. If you are building software
systems that will interact with other external systems, BizTalk is a good fit. Bear in
mind that external doesn't always mean outside of your enterprise. It could mean
outside your department or outside your current ability to change. The more external
interactions that take place the better the leverage from the investment in BizTalk
Server as you replace point to point or direct connections with a hub and spoke or
service bus architecture.

Introducing BizTalk Server 2010

[14]

The other close fit is for high volume and/or mission critical systems. BizTalk
provides scale up and scale out growth more easily than any other platform
choice and can accommodate the loads of even the most intensive scenarios. It is
also reliable enough not to lose any messages and to provide best in class disaster
recovery while maintaining transactional integrity.

For all its features and the benefits it brings to an organization, BizTalk Server is
not the right tool for every possible solution. The license cost is high by Microsoft
standards; although it is extremely low compared to rivals in the space. Not all
businesses need BizTalk Server, but many will benefit from it. If you don't need
adapters to connect to the existing line of business systems, business activity
monitoring to provide analytics and visibility, message format mapping, business
rules, or iron clad reliability you may not need BizTalk. If your solution only does
Web Services (or WCF) in a homogeneous Microsoft environment with limited need
for tracking and monitoring, you may be able to simply use Workflow Services
on App Fabric and build a good solution. It may even be possible to simply code
services by hand.

Finally, if your solution is not meant to be real-time, but instead to handle large
volumes of data on a scheduled fashion, such as ETL, there are other tools that are
probably more appropriate. SQL Server Integration Services (SSIS) certainly comes to
mind quickly. SSIS is a great tool, but it is meant for point to point ETL and does not
offer the rich fabric of features offered by BizTalk.

It can effectively be argued that everything BizTalk Server does could be built
into in-house applications and thus there would be no need for it. Although this is
theoretically correct, it would prove terribly costly to do so. Imagine the amount
of dollars and resources Microsoft has already invested into BizTalk to ensure
that it is reliable, scalable, extensible, and easily manageable. It's probably billions
of dollars at this point in the seventh version. I would consider that to be well
beyond the budget of most projects, especially considering that the risk is really the
infrastructure that sits below the solution, not the solution itself. The same argument
can be made of database software. One could choose to write their own database, but
they would have a very difficult time justifying the cost.

David Chappell addresses this very issue in his article, Introducing Windows Server
AppFabric: "One of the great truths of building software is this: Application developers
shouldn't spend their time creating infrastructure." BizTalk is an infrastructure layer
that provides us with messaging, reliability, durability, and scalability. To this end
BizTalk is a force multiplier, in that it allows fewer developers (and operations staff)
to accomplish more work in less time. This is a bold statement, but once you know
the product and its tools, the results are unmistakable. Unlike many other platforms,
the tools in BizTalk Server allow for rapid but robust solution development. WCF
services, for example, can be created, exposed, and secured without a single line of

Chapter 1

[15]

code being written. For this very reason many programmers are put off by BizTalk,
but make no mistake, code is being written and it is quite advanced .NET code. For
now, it is enough to say that you can get a lot out of BizTalk without ever knowing
much about .NET, but a deep understanding of .NET will help you get the most out
of the platform over time.

Where does BizTalk fit into the
Enterprise?
This is an important question that bears answering. For all its glory, BizTalk is not a
panacea for the enterprise. It is not an ERP or human workflow system, nor is it an
accounting, claims management, or inventory management system. In fact, out of
the box, BizTalk inherently does nothing. BizTalk's value is connecting these types of
systems within your enterprise and with your trade partners. BizTalk is ultimately
middleware, used to bridge these disparate systems and replace costly, tightly
coupled, point to point integrations with an ESB or hub and spoke architecture,
that is able to deliver more value as a whole than the constituent parts individually.
BizTalk enables business processing to happen faster, more easily, and more reliably.
BizTalk empowers your enterprise to leverage existing assets and interact with the
larger world of software more easily. In some organizations, this will make it a core
and central part of the enterprise architecture. In other organizations, BizTalk may
serve more of an edge role, bridging the gap between external trade partners or
legacy systems. Either way it is important to find where BizTalk fits for you and I
invite you to start small, convince yourself, and iteratively build up and out to find
the right place for BizTalk.

Exploring the architecture of BizTalk
Server
At its core, BizTalk Server is a .NET application built upon a set of SQL Server
databases that enable it to be both reliable and scalable. It is a Publish-Subscribe
messaging system built to achieve the loosely coupled, flexible design criteria of
modern enterprise software systems.

Introducing BizTalk Server 2010

[16]

Critical to understanding the product is understanding the Publish Subscribe design
pattern, which will be explored further later on. Importantly, as most of BizTalk
is indeed written in .NET, it really does demonstrate some very advanced and
specialized programming techniques utilized to make it so powerful. From stream-
based processing (the pipes and filters pattern) to design patterns like unit of work
and transaction script; BizTalk really is an example of a well-designed, modern,
enterprise software system implemented in .NET. So specialized is the skill that went
into the product that the development team actually tuned SQL Server to run in
specific ways to improve the performance of the product (which, by the way, is part
of the reason why it is unsupported to change anything in the databases, which are
carefully and specifically tuned for BizTalk Server).

Design patterns within the BizTalk
architecture
In addition to being a great application server, BizTalk serves as a model in
application architecture and design. The following sections explore some of the
architectural features of the product itself ranging from core precepts to more subtle
implementation details.

Messaging
Messaging has become an overloaded term in technical parlance these days. You can
ask different parts of the technical (IT) community what messaging means and get
very different answers. Almost all of them legitimate. To some, messaging represents
e-mail and instant messenger or human communication. If this is the camp you find
yourself in, I am afraid you have purchased the wrong book. Increasingly, messaging
means an interaction between parts of a software system. Today these are generally
distributed systems, but that need not necessarily be the case. A quick read of
Grady Booch's seminal work, "Object Oriented Analysis and Design with Applications",
Addison-Wesley Object Technology, will show that, even in early OOP, the concept of
a client and server were well understood; though they almost assuredly were parts
of the same executable. Booch goes as far as using the term message to describe the
call from a client to a server (client and server are also used in a different, but very
appropriate, context from what we would understand today). In this way, we can see
that what messaging and middleware are doing is not necessarily a radical departure
from traditional programming paradigms, but an evolutionary step into a more
robust and distributed incarnation.

Chapter 1

[17]

As Phil Boardman once proclaimed to me during his journey deep into WCF: "The
message is the unit of work". This is an important proclamation because it bridges a
divide between traditional software design patterns and distributed computing.
We'll dig deeper into this as we go on and see exactly how significant this statement
is in terms of BizTalk, but for now it is enough to remember that a message is an
encapsulated payload of meaningful data normally having associated metadata.

On this note, it is probably appropriate to explain how messaging in our context
of modern distributed systems differs from messaging of old. Although Booch
may have seen setting the properties of a class as messages, those would not be
meaningful in a distributed software environment. These types of messages would
be neither meaningful nor self-encapsulated. In order to be both meaningful and
self-encapsulated, such a message would have to contain the entire object (which
would violate some OOP principles including the Law of Demeter). This is an aspect
where distributed/message-oriented development can appear to deviate from OOP
practices. Most often, in practice, the Data Transfer Object is the pattern used to
reconcile these differences.

Messages can be commands or CRUD operations or simply status updates, but
as the definition says, they should be meaningful and encapsulated. A Purchase
Order, let's say (in XML format) would be a great example of a message. In the
service context, the Operation (or Action) to which the Purchase Order is sent
would determine what is to happen to it. There are many schools of thought on
message and schema definitions or designs, and it is important to strike the right
balance for your organization between flexibility and control, but that is a topic
for another conversation.

Publish Subscribe
It is important to point out that Publish Subscribe is predicated upon messages being
published, that is to say, to external sources sending messages in. This is perhaps
one of the more difficult concepts for many developers to embrace with BizTalk.
BizTalk is not a proactive or imperative (procedural) environment like Java, C#, or
most programming languages; it is a reactive one. BizTalk never starts processes
on its own; it may start complex processes based upon specific messages being
received, but it does not have the concept of a traditional application starting point.
There is no "Hello world" in BizTalk. Frankly, "Hello world" is a concept best left to
introductions to computer programming.

Introducing BizTalk Server 2010

[18]

In a traditional procedural/imperative environment, the starting point of an
application is often similar to the following:

1. Look for input.
2. Decide what to do with the input.
3. Send the data to whatever destination is determined to be the recipient.

This pattern is pictured as follows:

1 - Sender
1

2 - Router
3

4

2
Destination 1

Destination 2

Destination 3

In most implementations, parts 1 and 2 are in the same process. This results in each
sender (step 1) needing to be aware of each possible recipient. Even if implemented
in clever ways, such as recipient list, the result is implicit coupling from the source
to the destination. Also troublesome is the fact that the router is normally replicated
in many places throughout the enterprise, often via unique implementations in each
system that is being integrated. This is a colossal opportunity for reuse that is missed
in most organizations. Some try to leverage this with home grown solutions or open
source platforms that can fall far short in the long run. The previous pattern violates
loose coupling principles for both service and object-oriented methodologies.

Publish Subscribe overcomes these limitations by almost completely turning
this model around. In the Publish Subscribe model, the sequence of events
is as follows:

1. Subscribers enlist (or enter) their subscriptions (what they're interested in).
2. The Subscription Manager tracks these subscriptions.

The sending system (Publisher) sends a message (it is now done) and the
Subscription Manager matches the subscription list, forwarding each subscriber
its own immutable copy of the message.

Chapter 1

[19]

5 - Publisher
4 4 - Subscription

Manager
2

3

1
Subscriber 1

Subscriber 2

Subscriber 3

The Publisher (sender before) is now completely unaware of which systems are
interested in the message it is sending. Further, the Subscription Manager not only
abstracts away the recipients, it also abstracts away the state of those destination
systems. Filled subscriptions can simply await their delivery long after the sender
has completed sending its message. If there are no subscribers, it is really not the
concern of the sending system, but of the Subscription Manager.

A primary goal of Publish Subscribe is to move away from point to point and
synchronous architectures and towards loosely coupled asynchronous interactions.
Publish Subscribe goes a long way towards making loose coupling a first class
concept in software.

BizTalk embraces Publish Subscribe so fully that there is actually no such thing as
a synchronous request in BizTalk. We can make services or endpoints appear to be
synchronous, but they are in fact asynchronous.

Adapter
Adapters are a core concept of BizTalk. Adapters allow us to bridge different
systems together through common experiences and tools. The adapter pattern has a
readily understandable implementation in the wider software world: ODBC. Most
developers have at least some experience with ODBC (or JDBC). These are adapters
to the underlying database they connect to. Although connecting to SQL Server,
Oracle, or MySQL are all done in a fundamentally different way, the ODBC driver
(really it's an adapter) allows us to connect to all of these data sources and more.
BizTalk uses adapters for all endpoints, in and out, of a solution. In this way, no
matter the platform outside of BizTalk, inside everything is a common platform
and is almost all XML.

www.allitebooks.com

http://www.allitebooks.org

Introducing BizTalk Server 2010

[20]

Streaming
Streaming is another critical architectural principle in BizTalk, but thankfully it is
one that many developers will never need to work with directly. With very few
exceptions every component in BizTalk is a stream-based component. Pipelines and
maps use streaming to handle messages in BizTalk. This means that stream classes
are chained together in the framework so as to avoid large memory buffers. This is
one of the concepts I struggled the most with early in BizTalk, but it is also so critical
to the scalability of the platform.

Instead of loading an entire message into memory, BizTalk loads a piece of it—
normally only a few kilobytes. Then, each class in the chain of classes involved in
mapping and pipeline processing calls the Read operation on the next in the chain,
passing this small buffer between them, making their requisite changes along the
way. The ultimate motivation behind this is to keep a flat memory footprint for the
process. Even with relatively small messages, a high volume system will quickly
consume large amounts of memory if loading entire messages. The larger the
messages, the faster this becomes problematic. For very large messages that have
operations requiring large intermediate buffers, BizTalk will even stream to
disk as needed, to save memory.

These stream classes are some of the most impressive parts of the BizTalk
framework and something many in the .NET world have been eagerly awaiting.

Understanding BizTalk message flow
When a message is received by BizTalk, it is received via an Adapter; always.
Adapters are the endpoints of any BizTalk system. They are the points of contact
to the outside world; the gateways if you will, into the realm that is BizTalk. These
endpoints could be File, HTTP, DB2, or any of the dozens of transports supported by
BizTalk out of the box.

Upon arrival, all messages go to the Message Box, but to get there they must follow a
specific sequence. The following is the list of actors involved in receiving a message
listed in the order in which they process the message:

1. Adapter.
2. Pipeline: chain of Pipeline Components.
3. Map.
4. Message Box.

Chapter 1

[21]

This flow is depicted in the following figure:

Adapter Pipeline Map

Receive Port

Message Box

Message

Before we discuss the Message Box itself, it is worth describing a little more of what
these components do. The message is clearly what we are interested in receiving. The
Adapter is the communication endpoint that does the physical receiving of the bytes.
Pipelines process the stream of data received, so that it can be made more usable
for later components. The pipeline contains components within it that can provide
services like decoding (such as decryption), disassembly, validation, and party
resolution (determining who sent the message).

This is almost like an international arrival when flying. The adapter is the airplane,
the pipeline is the way you get to customs, with components of jet bridge and
hallway, the signs and queues are the map, and the customs booth is the Message
Box. The customs agent really doesn't care if you flew in a Boeing 777 or an Airbus
330, or even how you got to the booth; they care about letting you into the country.

As this chain of processing completes, the message is mapped and streamed into the
Message Box.

The Message Box
The Message Box has been the central construct behind every version of BizTalk
Server since 2004. The Message Box is the place where everything in BizTalk
happens. Messages that are received from adapters are put into the Message Box.
Messages sent out of BizTalk are retrieved from the Message Box in a pull fashion by
send ports and orchestrations. These sent messages are pulled by their subscribers.
Understanding this complex series of steps is very useful, but you can also skip this
section for now and come back later, if you prefer.

The Message Box is based on the concept of queues. In fact, the first versions of
BizTalk used MSMQ internally to organize their work queues. MSMQ is really a
fantastic technology, but BizTalk's solution to queuing is far more scalable and
appropriate for the type of work BizTalk performs.

Introducing BizTalk Server 2010

[22]

Each queue consists of several tables that are as follows:

Queue
Suspended queue
Scheduled queue
Message Ref Count Log
Dequeued batched

In a nod towards our future discussions, these tables exist for each Host in the
BizTalk group; the significance of which will be addressed later in this chapter.

When a message arrives at the Message Box—during insert to the actual database—
the Subscription Manager checks the subscription list to determine subscribers
for that message. Then each subscriber gets a queued "work item" inserted into its
queue. If there are many they each get a work item, but the message itself is not
actually duplicated, they simply get a reference to the original message from which
to perform their work. This reduces duplication and increases performance. It all
works because messages are immutable in BizTalk. That is, you cannot change a
message once it has been received. Even at times when it may look like you are
changing an existing message, you are not; you're creating a new message.

Each subscriber then retrieves its queued work items, marks them as retrieved, and
processes them. When they are completed (be they an orchestration or a send port)
they are marked as completed and the reference counts are adjusted to reflect this.
Other maintenance tasks perform the necessary clean-up later on.

If no subscribers are found, the message is still inserted into the Message Box,
but as a failed message, which is a special type of message that simply stays in
the Message Box.

All of this may sound a little complicated, and to some extent it is, but it is the
key to BizTalk's scalability. As users of BizTalk, and I mean this as developers or
administrators, we are completely unaware of all this going on. It simply works.
It is an infrastructure provided to allow us to focus on delivering real value in
our solutions. The Message Box construct is the core of BizTalk that makes all
of this possible.

•

•

•

•

•

Chapter 1

[23]

Other BizTalk databases
Beyond the Message Box there are quite a few databases involved in BizTalk. They
each fill a specific role in the platform to enable it to be the scalable, distributed
product that it is. The BizTalk databases are briefly introduced as follows:

BizTalkMgmtDb: This is the management database that holds all artifacts
that are part of a BizTalk solution. Ports, Maps, Schemas, Orchestrations;
they all go into this database. Although some are actually loaded from the
Global Assembly Cache (GAC: the .NET component registry), this is where
BizTalk knows what to load from the GAC. If the Message Box is the heart
of BizTalk, the management database is the brain to a large extent. The
management database is also where runtime information and statistics
are kept to allow BizTalk to self-tune or throttle itself.
BizTalkRuleEngineDb: This database is for the Business Rules Engine,
which stores and manages policies as well as vocabularies.
BizTalkDTADb: This is the tracking database that records all events which
take place within BizTalk.
BAMPrimaryImport: This database stores all initial Business Activity
Monitoring (BAM) data. BAM data arrives here from the Message Box and
can also be offloaded to the BAM Archive database later on, in order to
further reduce the burden on system runtime.
BAMArchive: This database is an exact mirror, structurally, of the BAM
Primary Import database. This database is used to offload Business tracking
data that is outside the lifetime of online requirement, but is not yet able to be
deleted. Custom reports, or even the BAM Portal, can be pointed at this data
source to allow indefinite storage.
BAMStarSchema: This database is used for the analysis services feature
of BAM.
SSODB: This is the Single Sign on Service database that holds configuration
information for BizTalk groups.
BAMAlertsNSMain: This database contains information on how notification
services connect to BAM, such as the protocols used for notification delivery
and the version of the BizTalk database.
BAMAlertsApplication: This database is the real body of notifications. It
stores subscription parameters as well as records of all notification deliveries.

•

•

•

•

•

•

•

•

•

Introducing BizTalk Server 2010

[24]

Add to these the Message Box, which we've already covered, UDDI and the ESB
databases and you are looking at almost a dozen databases that are part of the core
BizTalk product. This may sound excessive if you come from a background of single
large databases, but it makes perfect sense and is part of why BizTalk can scale so
well. As a system administrator you're free and even encouraged to move these
databases to different servers and instances. If your applications are tracking heavy,
you can move all the BAM databases to their own servers so as not to interfere with
live transactions.

Presenting the BizTalk runtime
environment
Now we will examine the BizTalk runtime and its different constituent parts. This
section is useful for developers and critical for architects and administrators. We
will start by outlining the servers and their roles (services) involved in a BizTalk
installation and then focus on the organization of a BizTalk environment; concluding
with specifics of the runtime itself.

Servers and Services
All of the following servers fulfil a specific role in a BizTalk installation. They do not
directly equate to physical machines (or virtual ones). They are servers in the sense
of a role they fulfil. Each server provides a specific set of services for the platform.

Application Servers
BizTalk is an application server, but it is designed as a distributed system. There
are several specific servers in a BizTalk installation and each runs specific services.
The first is the BizTalk Application Server; this is what most people would think
is a "BizTalk Server". The BizTalk application is a Windows service that runs in
the background on the server, in a similar way to any other service like IIS or SQL
Server. Each BizTalk Server can run multiple instances of this runtime that function
independently of each other. It is these services (introduced later as host instances)
that actually pull the queued work items from the Message Box for processing.

Chapter 1

[25]

Database Servers
The second set of servers/services are the Database Servers. These host the databases
for BizTalk that were covered earlier. They also host Notification Services for use
with BAM. Because the Message Box is the heart of BizTalk, the database servers
play a critical role in any BizTalk environment. They also run SQL Jobs that are a
vital part of the BizTalk architecture. Finally, they run Analysis Services when using
BAM Aggregations.

Web Servers
Web Servers also serve an important role in BizTalk. Two specific areas served are as
endpoints for HTTP/Web Services/WCF and the BAM Portal; both of which run on
IIS. Adapter endpoints must be on a server with the BizTalk Runtime installed, but
the BAM Portal only needs the BAM Portal components installed and can thus be on
a non-BizTalk Server.

Enterprise Single Sign-On Servers
The Enterprise Single Sign-On service provides secure credential storage for BizTalk
solutions. This service is a mandatory part of any server hosting the BizTalk runtime.
This is necessary in BizTalk because many applications require non-Active Directory
authentication, such as the FTP, DB2, and Oracle Adapters. SSO allows BizTalk
to securely store credentials for use by the Adapters. Many other settings are also
stored here, which is how BizTalk is able to share credentials and configuration
information between different servers in a collection of BizTalk Servers, known
as a group.

Each BizTalk server runs its own instance of the SSO service, but one must be
designated as the Master Secret Server, which is used to prime the pump, so to
speak, for the other SSO servers, by hosting the encryption key used to make the
SSO store secure. The other servers in the BizTalk group (introduced next) securely
request the master secret from the master secret server and keep a cached copy,
checking periodically to see if the secret has changed.

Introducing BizTalk Server 2010

[26]

These servers comprise the core parts you would expect in a Visio diagram of
a BizTalk environment. In fact, they also match what you would expect from a
SharePoint installation or many other systems. Depending on the environment, they
could all be on one physical server. This would not, however, be very desirable. They
could also be spread over a dozen servers in a large, highly available environment.
In Chapter 4, Operating BizTalk, we will cover more about specific topologies and how
they might look from an infrastructure perspective.

Single Sign-On Web Server / IIS SQL Server Databases BizTalk

Understanding roles and relationships
In this section, we introduce the basic logical components of the BizTalk
infrastructure and explain the organization of the BizTalk runtime.

The BizTalk group
This BizTalk group is the top level abstraction of BizTalk. It is a logical container
for everything in a BizTalk installation. The group generally has an analogy to an
enterprise, department, or division of the organization that it serves. Applications,
servers, and the databases we discussed before belong to one, and only one, BizTalk
group. The group is associated with a BizTalk management database, and when
you connect to a group via the BizTalk Administration Console, you are actually
connecting to this management database, which provides command and control for
the entire group. The group itself is purely an abstract construct. It doesn't physically
exist on a server; it is all the servers that are involved in a BizTalk installation
represented as a collection or single container for ease of organization.

We use the BizTalk group to operate on BizTalk on a global scale, that is to say
on all servers in the group at once. From within the BizTalk group, we can see all
servers that are part of the group and all applications in the group, as well as their
status, which we can also control. If we stop an application in BizTalk, which is done
through the group level, it stops simultaneously on every server in that group. The
best way to understand the group is to see it through the BizTalk Administration
Console. When we look at the Administration Console, we can see the group
displayed in a graphical format and this makes it more clear as to how
it is structured, as shown in the following screenshot:

Chapter 1

[27]

We can clearly see sections for Applications, Parties, and Platform Settings. These
are all attributes of the group as a whole and are displayed as such by being directly
beneath the BizTalk group to which they belong.

A typical enterprise will have several BizTalk groups, normally one for integration/
developer testing (used after individual developers check in their changes), one for
UAT or user testing, and a production environment. Promotion of a solution through
these environments is an important aspect of getting the most out of BizTalk and
provides many opportunities for control and audit.

Hosts
Hosts are the next level in the abstraction and hosts are also a purely abstract
concept. A BizTalk host defines a logical runtime component; it is an organizational
unit for BizTalk that allows separate physical servers to be represented together
as a single unit. Hosts are almost like a virtual machine in reverse; they represent
a virtual process that can actually exist in multiple physical processes on multiple
servers concurrently. That concurrent part is what makes BizTalk so much more
powerful than typical clustering. Unlike in a cluster, hosts in a BizTalk group are

Introducing BizTalk Server 2010

[28]

meant to run concurrently, meaning that two or more servers running the same
host instance will not only have automatic fail over, but they will run in an active-
active fashion, fully utilizing their potential. Hosts allow us to create a single larger
"virtual process" out of many different machines; hence the notion of them being
like a virtual machine in reverse. Hosts are the organizational units that equate to
the work queues we discussed earlier. Recall that when messages are delivered to
subscriptions they are placed into work queues; these work queues are organized by
hosts. This gives us the unique ability in BizTalk to tailor our runtime environments
to the type of processing our solutions require. If we have solutions that are heavily
involved in sending messages to a web service, we can distribute this load over
multiple servers though host configurations.

Hosts are also the place where performance settings can be set for the specific
purpose that the host is fulfilling. These include throttling, which can be resource,
rate, or orchestration-based (covered in Operations Guidance). This is even more
significant in BizTalk 2010, where settings that were once global across all hosts in
the group are no longer; specifically the Message Box Polling Interval. This is the
timespan that the runtime will query the Message Box to check for pending queued
work items. Lower polling times allow lower latency, but at the cost of overhead
that will reduce throughput. This means a specific host can be set up to be High
Throughput or Low Latency, two opposing goals that were not possible to be
balanced in a single BizTalk group in older versions of the platform. Fortunately,
BizTalk 2010 remedies this and, if nothing else, it is worth the upgrade just for this
feature. Because a server can only belong to a single BizTalk group and the licenses
are not inexpensive, the alternative in older versions was to simply have two groups.
Thankfully, this is no longer the case.

Host instances
A host instance is, as the name implies, the instantiation of a BizTalk Host. This is the
executable runtime process that people generally think of as BizTalk. A host instance
runs under a Windows user account and on a specific server within the BizTalk
group. A host instance is the Windows service for a given host. Each host configured
on a server gets its own Windows service, which is automatically created. This is
where the processing is actually done; maps, orchestrations, pipelines, and business
rules all execute in the context of a host instance. Host instances are powerful
constructs different from many programmatic concepts that developers come
across. They are indeed processes, but being in a .NET platform they contain app
domains and thread pools all their own. They are heavy weight constructs capable
of performing all of BizTalk's processing in a single one of them (which is the default
upon installation, but not appropriate for a true server installation). Importantly, a
server can only have one host instance for a given host, this is not the limitation it
may at first appear in the context of the previous statement about their capability. It
is a well-designed and thought out construct.

Chapter 1

[29]

On a server that is running Host Instances, they will be visible within the Services
MMC just like any other Windows service, as shown in the following screenshot:

This Windows service functions like most .NET applications and thus has many
other settings that can be set at the host instance level. In BizTalk 2010 .NET CLR,
orchestration and memory throttling settings are set at this host instance level.

The following is a figure depicting the relationship between the group, hosts, servers,
and host instances in BizTalk:

Group

Host 2Host 1

Server 1 Server 2

Host Instance 2 Host Instance 2

Host Instance 1 Host Instance 1

Isolated vs. in-process hosts
Finally, we have the concept of in-process versus isolated host instances. In-process
host instances run the BizTalk runtime executable, which covers everything we
discussed earlier about host instances. It is a Windows service running on the specific
server within the BizTalk group. An isolated host instance is isolated in the sense
that it runs in another process context, most often Internet Information Services (IIS).
This is isolated, and called such, because it has a limited role that it can fulfill as it is
not the BizTalk service executable we described previously.

www.allitebooks.com

http://www.allitebooks.org

Introducing BizTalk Server 2010

[30]

It is generally a host specifically for receive adapter and cannot perform
orchestration, tracking, or send operations. Because these host instances are not in
the BizTalk runtime, their status will always appear as Unavailable in the BizTalk
Administration Console, as they are not equipped with the same instrumentation
that the in-process hosts instances have been.

Summary
In this chapter, we were introduced to Microsoft BizTalk Server 2010; its architecture,
components, and runtime. We discussed how the Message Box is the core of the
publish subscribe model and how this pattern allows us to have loosely coupled
solutions that are asynchronous and scalable. We covered how BizTalk achieves
scalability and reliability through the use of immutable messages in the Message
Box and how streams are used to enable a flat memory footprint for the runtime
under any load. We also set out the ambitious goals that we plan to accomplish with
BizTalk. For more detailed coverage of the BizTalk runtime environment, see Chapter
4, Operating BizTalk.

Introduction to BizTalk
Development

This section introduces BizTalk as a development platform. After a brief introduction
to the developer experience, the remainder presents best practices for solution
structure, and outlines the pieces of best practices in BizTalk solution.

The following topics are covered in this chapter:

The BizTalk development experience
BizTalk solution architecture
Types in BizTalk
Monitoring a solution

Developing BizTalk solutions
The developer experience in BizTalk largely revolves around Microsoft Visual
Studio, the premier integrated development environment for the Windows platform.
Visual Studio has set the benchmark for IDEs for a decade regardless of the platform.
Many developers who work in the Microsoft space will be very comfortable with
Visual Studio already, but even those who do not will quickly feel at home in it.
Microsoft expends a great deal of effort to make this the case.

The general steps involved in creating a BizTalk solution are typically:

1. Creating schemas
2. Creating maps
3. Creating orchestrations
4. Deploying locally

•

•

•

•

Introduction to BizTalk Development

[32]

5. Binding the solution
6. Creating visibility and monitoring
7. Testing the solution

Steps one through four are done in Visual Studio and are often aided by wizards
and simple UIs. Step five is performed via the BizTalk Administration Console that
we were first introduced to in Chapter 1, Introducing BizTalk Server 2010. Step six is
generally performed in Excel and the Tracking Profile Editor (TPE). Step seven can
be performed in a variety of ways, but implies a running solution; ideally this is
through automated unit testing.

The primary components of the development process are outlined as follows in no
particular order:

Let's discuss what all of these pieces actually are. Schemas represent our internal
and external data types. File formats that we receive or send would be external data
types; XML messages that we use inside our solution would be internal. Maps are
the translation used to bridge internal and external formats. Recall these play a vital
role in preserving our loosely coupled goal. Orchestrations represent message flows
that are used to model more advanced scenarios. Bindings connect orchestrations,
endpoints (ports), maps, and schemas together. The monitoring components (BAM)
provide us with visibility and monitoring.

Chapter 2

[33]

The artifacts we create in Visual Studio are compiled into .NET assemblies that
the BizTalk runtime loads in a host instance to execute our application. This fully
leverages the capabilities of the .NET framework for making extensible solutions and
is the best implementation of these extensibility features I have ever seen. To make
deployment and management easier, the assemblies and other artifacts of a BizTalk
solution are then bundled into an MSI Installer package for deployment onto other
BizTalk servers.

Before we begin to create BizTalk solutions, it is useful to know how we can partition
and structure our solution to get the most out of the platform.

Partitioning the BizTalk solution
The structure of a BizTalk solution can be critical to its success and ease the
development, deployment, and maintenance efforts required over its lifetime. In the
years I have been developing BizTalk solutions, I have happened upon many tips
that make the process much easier and many are related to solution structure and the
build/deployment process. This section will describe some of these tips in detail and
provide guidance for architects and developers.

In the context of a BizTalk solution, structure carries the dual role of enforcing
the isolation of components through separation of concerns/loose coupling and
organizing artifacts into manageable pieces that can allow for varying rates of
change. A poor solution structure will allow changes to propagate uncontrolled
throughout the solution and result in a more haphazard spaghetti code approach;
this is a bad thing for any project on any platform. It will also slow development and
the rate of change while increasing costs for both development and maintenance.
Ultimately it can even lower morale and result in a less successful solution outcome
and a perception that BizTalk and the team have fallen short of expectations.

The guidance for solution structure that follows will help you create a successful
BizTalk solution by avoiding the common pitfalls many make with the product.
(I know. I made them. This book exists to help you avoid them.)

Specifying the requirements of solution
structure
Before we delve into how to structure your solutions, we should outline the basic
goals we are trying to achieve from a development perspective. The solution
structure for all but the most trivial BizTalk applications must support:

Multiple concurrent developers (and robust source control)
Building on any developer workstation

•
•

Introduction to BizTalk Development

[34]

Testing on any developer workstation
Test-driven development (TDD)
Automated functionality testing
Continuous integration
Automated performance testing

These bullets are all important for different reasons and all manifest themselves in
different ways in the solution structure. If your application centers around one large
orchestration with all the logic enclosed in a single giant file then only one developer
at a time will be able to make changes to it safely. You could try shared checkout, but
I'm not sure what results you'll receive when it comes time to merge. Newer tools
are meant to merge these files better, but I am still not convinced. BizTalk wasn't
meant to be used that way anyhow, good BizTalk solutions have more smaller parts
rather than fewer larger ones. Furthermore, as in traditional development, large
monolithic structures are not very easy to work with. They are one of the code smells
that Martin Fowler wrote about nearly a decade ago. This is certainly an area where
BizTalk and traditional software development have much in common.

Being able to easily build the entire solution on any developer workstation, and
test it, is also critical. Every developer should be able to see the solution work, on
their own, in a private environment where they can feel free to break things or tear
things apart, as well as simply debug issues. There are several other reasons for this,
including support, loss of the build server, and emergency fixes.

Importantly, component and functionality testing must be automated and should
be done early. After only a few manual test runs you would already have saved
time by creating automated tests at the outset. Further, automated functional testing
reinforces the idea that first you identify the problem, then you devise the solution.
This is the core of TDD and is a great fit with BizTalk. These tests should provide
self-documentation for the solution so that a new developer can see what the
solution is meant to do and then watch it work. If you take TDD to its zenith then
you will build your tests first and they will simply fail until the solution works.

Once these tests are in place and working with your first pass solution, you are
free to go change the internal implementation with the confidence that you are still
solving the problem at hand in a predictable and expected manner. As solutions
get more complex, this becomes even more imperative, as it is easy to lose details.
We'll cover unit testing later, but I'll leave it now by saying all expected behavior,
including error handling, should have automated coverage. It is simply unacceptable
in BizTalk to do this any other way. Manual testing is a recipe for disaster as changes
in one part of the solution may introduce errors in another. Manual testing makes
finding these errors almost impossible and requires far more time than simply
automating tests.

•
•
•
•
•

Chapter 2

[35]

Continuous integration (CI) aids us further by allowing full test suites to be run after
every developer checks in. This becomes crucial in larger solutions as the decoupling
BizTalk encourages carrying a price that some errors will not be found until runtime.
I have worked on solutions where one developer's changes in a completely separate
application have caused failures across many applications. Using the same tests from
TDD on your CI environment can greatly reduce the chance of side effect issues.

Finally, automated performance or stress testing provides insurance that your
solution will scale and run as expected with realistic loads. Many who are new to
BizTalk create solutions that will work perfectly well on their developer machine
running a few transactions, but fall apart when they encounter production loads.
Sadly this is often in production environments. This embarrassment is unnecessary
and completely avoidable.

Poorly planned solution structure will restrict all of the abilities listed previously and
can make the platform feel more like a prison than a liberator.

Understanding the layers of a BizTalk
solution
Continuing our train of thought about partitioning a BizTalk solution, we now
arrive at a very familiar topic in system architecture: logical structure. From a logical
standpoint, a properly constructed BizTalk solution, like any good software solution,
stresses the separation of concerns in an effort to control dependencies. This throws
off a lot of people new to BizTalk because it involves concepts from both the object-
oriented and message-oriented theories of software development.

The following proximity diagram depicts how the layers in a BizTalk solution should
interact. Only layers that actually touch each other should be interacting in any way.
The intention from this should be quite clear; it is to isolate the layers in the solution
and minimize their interaction points so as to create a more robust solution that does
not allow changes to propagate throughout the core.

Orchestrations

Internal Schemas

Maps

External Schemas

Introduction to BizTalk Development

[36]

This layout will give us the ability to drastically change the solution, at its edges or
in its core, without impacting other parts of the solution. A new external partner
schema, say for a different vendor purchase order format, should have no impact
on our orchestration layer or on our internal schemas. Conversely, a change to logic
within an orchestration should be completely invisible to the outside world.

This same concept can also be expressed in a more detailed fashion with a UML
diagram. The following diagram expresses the basic layers (or packages to use
the classic term) in a BizTalk solution that follows these guidelines. This also
allows us to further restrict the dependencies with relationships between layers
expressed explicitly.

External Schemas Internal Schemas

Pipeline
components

OrchestrationMaps

Pipelines

Again the goal is flexibility by tightly controlling contact points between different
parts of a solution. Visual Studio can be leveraged to help enforce this architecture
in your solution. Importantly, each of these packages actually represents a .NET
assembly containing pertinent artifacts to that layer of the solution. For the rest of
this chapter, package, assembly, and project will be used interchangeably.

Recall that at its core a BizTalk solution is really a specialized .NET application. Since
these are .NET assemblies we are able to leverage the concept of references in the
.NET framework and Visual Studio to enforce our layering pattern. This is done by
creating separate projects in the solution for each of the layers presented previously.

If you're not already comfortable with the layers pattern, or you're already a little
familiar with BizTalk solutions, you may be asking yourself 'So why do this?' Some
would argue that you could just do a logical separation using solution folders and
not need separate Visual Studio projects for each of the packages shown previously.
While there certainly is some merit to this argument, it overlooks some very
important capabilities inherent in this architecture.

Chapter 2

[37]

For one, there is no chance of a dependency creeping throughout your solution, the
Visual Studio references between projects will ensure that. Further, you can also
now choose to deploy your solution in a variety of arrangements of tiers* derived
from the layers presented above. Finally, and perhaps most importantly, this design
allows you a much larger amount of flexibility when deploying, upgrading, and
especially patching BizTalk solutions. Maps, for example, can have many mapping
errors resolved and redeployed without requiring downtime in a highly available
BizTalk group.

Tiers versus layers
I know it is subtle and often contested, but I believe tiers and layers
to be two distinct concepts in application architecture. Layers exist in
software at the design and development level, they represent abstractions
and separations in that software whereas tiers exist on the deployment
and operations level representing physical distribution of components.
Although layers may be deployed on tiers that very closely resemble the
same structure, there is no fundamental requirement to do so.

It is important to also note that not all solutions will follow this exact structure. A
common variation I encounter is using pipelines from within orchestrations. If you
must do this, be sure the pipeline uses internal messages and not external ones. You
may end up needing both internal and external pipeline projects and that is perfectly
acceptable, but they should be separate projects because they will reference separate
schemas and this division is important to protect your architecture.

Visual Studio solution structure
Now we'll see how to use Visual Studio to implement the structure that has just been
introduced. These suggestions are based on both my experiences as well as that of
others within the BizTalk community. I always use this basic template presented in
the following image for every solution and it has served me well for years.

First always start with a blank Visual Studio solution, as this will allow you to name
the solution in a way that represents the functional area, the solution addresses,
and the projects within the solution in a manner that reflects their purpose within
that solution; such as Maps, ExternalSchemas, and so on. It is important to note
that within the solution, the projects can have short names like Maps instead of
MyIntegration.Maps. The name of the solution in Visual Studio is unrelated to the
names of the assemblies or namespaces. Once you have your blank solution you can
add new projects to it by right clicking the solution and selecting Add Project.

Introduction to BizTalk Development

[38]

Generally, I like to break my solutions into the six projects as shown in the following
screenshot. I find that this meets the needs of most solutions, but it is not a hard rule.
Some solutions will have more, others less, but they will all be a similar variation
of this concept. Each project is explained below. Importantly, only start with the
projects you need and simply add others as the need arises. A Visual Studio template
can be found here: http://biztalk2010patterns.com/documents/templates/
solutionstructure and can be used to generate solutions with all these base
projects already created, complete with references.

Projects
The following are the typical projects in a BizTalk Visual Studio solution and a brief
explanation of the role that they serve.

External Schemas (.xsd files)
This project contains all of the schemas that are sent or received by the BizTalk
solution. Port-level mapping, a later recommendation, ensures no dependencies
are leaked into or out of the BizTalk solution. This project would include schemas
generated by adapter wizards, SOAP, or WCF references, flat file formats that we
send or receive, and EDI schemas. It is vital that these be treated as what they really
are: external artifacts (that is external dependencies). Even if you own the source
system, don't assume that the rate of change between two systems will be equal. You
may end up with schemas that closely match internal schemas, but the flexibility
you gain is certainly worth the very small cost. This project contains no references to
other projects in the solution as it represents the endpoint or edge of our solution.

Chapter 2

[39]

Internal Schemas (.xsd files)
The InternalSchemas project contains all the schemas used internally by a BizTalk
solution. These are schemas that are never exposed to any other systems outside of
BizTalk and define entities within the actual solution. Every external schema should
have a corresponding internal schema or translate to part of a composite internal
schema. These schemas are commonly referred to as canonical schemas. This project
also contains no references to other projects in the solution. It represents messages
that will be used internally by orchestrations, business rules, direct subscription
routing, and so on. Property schemas would also exist here.

Maps (.btm files)
The Maps project contains all maps within the solution that translate internal to
external schemas. It references the InternalSchemas and ExternalSchemas projects
and nothing else (with the exception of custom functoid assemblies). This project
is the guardian that prevents external dependencies from permeating a BizTalk
solution. Critically, every external schema should have a map translating either to
or from internal types as needed. Again, this ensures the flexibility that is so vital to
successful distributed systems. The orchestrations assembly should never reference
the maps assembly as it would require the orchestration package to now have an
indirect reference to the external schemas project, and therefore bypass this carefully
constructed separation we are trying to enforce. It is true that occasionally you need
a map in an orchestration, but that map should exist in the orchestrations assembly
or in an internal assembly of its own, perhaps named InternalMaps, not in the maps
assembly, as this would violate our separation of concerns.

Pipelines (.btp files)
All pipeline components (assemblers and disassemblers) are grouped in this
project to make testing and maintenance easier. This project should reference the
ExternalSchemas project or the InternalSchemas project as needed. If you want
to provide a very robust isolation, you could create internal and external pipeline
projects, but I really only recommend this if you need to call a pipeline from within
an orchestration to avoid leaking a dependency into your orchestrations layer. The
Pipelines project will contain BizTalk pipeline files (.btp) and also reference any
assemblies that contain custom pipeline components if they exist. Pipelines are
perhaps the most underutilized and most misunderstood part of BizTalk.

www.allitebooks.com

http://www.allitebooks.org

Introduction to BizTalk Development

[40]

Many useful and complex solutions can be created in BizTalk using only pipelines
and adapters.

Pipeline components (.cs files)
Not all solutions will need a Pipeline Components project, but when they do,
pipeline components, which are .NET classes, should be in their own project to
continue our isolation paradigm. If the pipeline component being used is commonly
reused throughout your enterprise, you can just put the component in third-party
assemblies (covered shortly) and have a dedicated solution just for the pipeline
component. Pipeline components should be flexible and reusable and thus be in
their own solutions. This can also avoid assembly locking problems in Visual Studio.

Orchestrations (.odx files)
This project contains all orchestrations used in the solution. It references the internal
schemas project and possibly the pipelines project (if you're using pipelines from
within an orchestration). As depicted earlier, orchestrations are the top layer of the
BizTalk solution layer model. They should generally be unaware of any outside
systems or artifacts. Failure to preserve this isolation principle results in tighter
coupling creeping into your solution. Even when you call a web service from an
orchestration, you're not actually calling the service from an orchestration. The
message box functions as an intermediary. Care must be taken not to tie your
orchestrations to the specific endpoints that you will eventually connect them to.

Libraries (C#, resources, and so on)
Any custom classes or utilities that are used by your solution should also be broken
into their own projects. It is important to not let these bleed dependencies into your
solution. If you have some custom components to do processing in an orchestration
and some for custom functoids or pipeline components these should be broken into
their own distinct projects. Isolating functionality into separate assemblies gives us
flexibility to make changes without having side effects on other parts of the solution.
It will also simplify our versioning and patching options.

Testing (.xml, .dtd, .cs files)
This project hosts all unit and functional tests and their supporting data. The only
direct references should be to the utility assemblies (libraries) and to the testing
frameworks (for example, Microsoft UnitTesting/NUnit and BizUnit). This also
ensures a clean separation of tests and artifacts from the other parts of a solution.
Normally there is only one testing project in the entire solution and it can be used
to test BizTalk as well as .NET artifacts.

Chapter 2

[41]

Non-project artifacts
There are also several solution-level folders I like to use to organize my solutions.
Solution-level folders in Visual Studio are logical folders, not physical directories,
so I like to create physical directories that match them to keep everything more
organized. These are generally:

Third-party assemblies: For storing any external assemblies and components
the solution may need to utilize. The BizUnit assembly used by the solution
testing should go here.
Bindings: To store deployment bindings used in each of the environments
you will have in your solution. I generally have Local Development,
Integration, Staging, and Production. You may have more or less depending
upon your organization and its needs.
Build: Used to hold build scripts and other build artifacts like assembly
signing keys. I also put my CI scripts into the build folder for safe keeping
and source control.
Policies: This solution folder will hold business rule policies and
vocabularies and will help you keep them organized and in source control.
Tracking: This folder will hold all BAM-related artifacts like activity
definitions and tracking profiles.

It is important to not only structure your solution correctly, but to ensure that the build
is as self-contained as possible. Although some environments will have only a single
BizTalk developer working on a solution, it is vital that solutions contain all the artifacts
necessary to build them within source control. This is a time saver if your workstation
dies or your team size grows, or better yet you win the lottery and decide to take
some well-deserved time off. I would like to validate that I am accomplishing this by
building the solution on another developer workstation to ensure the build is portable,
repeatable, and reliable. The following tips will help you to achieve these goals.

Tip
Always use relative path locations for all artifacts including:

Keys used to sign assemblies. Don't browse to these; that will hard code
an absolute path to the key file and the chances of another developer's
workstation being set up exactly the same are slim. Worse still the browse
feature in Visual Studio will likely make a local copy of the key file in the
project folder. You really only need one key for an entire solution:
<PropertyGroup>
<AssemblyOriginatorKeyFile>..\Build\PurchaseOrder.snk</
AssemblyOriginatorKeyFile>
</PropertyGroup>

•

•

•

•

•

•

Introduction to BizTalk Development

[42]

References to other assemblies and projects in the solution. Always
use project references, not absolute references, when adding references
to other BizTalk projects in the solution. After adding references to
third-party assemblies (and if it is not compiled in this solution, it is
a third-party assembly) edit the project file manually, it is simply an
MSBuild file, and correct the absolute path. This is easy to test as your
solution will no longer build correctly if the path is invalid.
Paths of test files should also be made relative. For instance in BizUnit tests
it is easy enough to simply paste in the path to the sample input file, but now
that path is hard coded, use a relative path instead.

Tip
Bad idea:

D:\Projects\BizTalkPatterns\InvoiceProcessing\UnitTests\TestData\
PurchaseOrder.xml

Good idea:

..\..\UnitTests\TestData\PurchaseOrder.xml

This will make it easier to build the solution on multiple machines and also make it
easier to use a CI server to perform automated building and testing of the solution.
Not doing this will result in solutions that only properly build on one developer's
workstation. A good guideline is that you should be able to compress a solution
folder and send it to another developer (or Microsoft Support Services, should the
need arise) and not have to spend any time getting the solution to build or deploy.
I was once given what I consider to be a great complement by Microsoft Support
Services when a solution I needed support for built and deployed cleanly with no
changes at all directly from a zip file. Even the support engineer was amazed.

Remember not all solutions will have these projects listed above; some will have
less, others more, but keep in mind the separation of concerns brought up in the
discussion about layers in a BizTalk solution. Later on I'll cover some specific
examples of when to combine which parts of this guidance.

Motivations for solution structure
It is natural and healthy to ask why we should go through all this trouble (ignore
that creating projects in a solution is very simple; even more so with a template).
Earlier we covered the need to control dependencies and this is a certain way to do
that, but there are other reasons as well. You may find yourself needing to update
in-flight orchestrations or maps in a solution with such in-flight orchestrations that

•

•

Chapter 2

[43]

you cannot terminate and cannot wait for completion. Perhaps it's a simple fix and
you haven't quite worked out your versioning strategy, or the business demands
an emergency resolution (a misplaced decimal point or rounding error would be
good motivations). With separate assemblies you are free to deploy just the changes
necessary, rather than all assemblies and artifacts at once as would be the case with
a single project solution, which would also require a full stop and termination of any
in-flight instances.

Building solutions in a separable manner is a good practice that allows
administrators and operators more control over the solution once it is out of
development. This is critical to the success of any enterprise software system
and even more so to BizTalk solutions.

Understanding types in BizTalk
All good technology makes the complex look simple. BizTalk is no exception, but
beneath this simple façade lie some fairly complex constructs. This section gets very
deep into some complex parts of BizTalk and the .NET framework. Do not worry if
you don't understand it, and feel free to skip over it, but be sure to remember where
it is for when you need this knowledge.

The preceding compiled projects are actually .NET assemblies that will be used by
the BizTalk runtime to execute our solution. All BizTalk artifacts become .NET types
when they are compiled. Understanding types in BizTalk is slightly tricky at times
and we'll walk through it now.

In most programming languages, types are the structures we work with to organize
our code. BizTalk bridges a gap between messaging, which is often XML and .NET.
This means that BizTalk has both messaging types and .NET types. Messaging types
are for XML messages, but everything is a .NET type. If we look at the properties
of any BizTalk artifact in Visual Studio we can see that they all have a section for
Namespace and TypeName. This is a core concept of .NET. Namespaces are used
to organize classes and types. A good example would be System.Net which is
the collection of classes and types having to do with networking in the .NET
framework. In this namespace, there is a class identified as System.Net.WebRequest;
WebRequest is the actual class and it is in the namespace System.Net. Because our
BizTalk artifacts are all compiled into .NET types for use by the BizTalk runtime,
they must all be organized into namespaces and types. The best way to do this is to
set the default namespace in the project properties in Visual Studio. Each project that
we outlined previously should have its default namespace set before we start adding
artifacts to them.

Introduction to BizTalk Development

[44]

The typical naming convention for project namespaces would be as follows:

[Company abbreviation].[Solution].[Project]

An example external schemas default namespace for a company called Performance
Racing Parts creating an order processing solution would be:

PRP.OrderProcessing.ExternalSchemas

In very large organizations, this can be expanded to include a division if necessary.

[Company abbreviation].[Division].[Solution].[Project]

The project portion of the namespace should match the name we give the project
within the solution and helps us to organize our artifacts better. Each artifact will
then have a fully qualified name organized by namespace. To complete our example
a schema for a sales order in our external schemas project would have a .NET name
(namespace+type) of PRP.OrderProcessing.ExternalSchemas.SalesOrder.

Message types
XSD schemas in BizTalk have .NET name type like we covered previously, but
XML messages that conform to those schemas also have an XML message type.
In XML, it is common to identify documents by their fully qualified root element
name; this includes the namespace and the element name. Unfortunately in this
case, the worlds of XML and .NET have collided and namespace is an overloaded
term. In the following XML, we can see an example of an XML namespace:
http://somecompany.net.

<order xmlns="http://somecompany.net">
 <number>1234</number>
</order>

The message type for this XML document would be http://somecompany.
net#order and this is how BizTalk will identify the message and match it to a
specific schema. It is this dual identity role that can be tricky for a lot of developers
new to BizTalk.

For non-XML messages, as far as the messaging infrastructure is concerned, they
are generally untyped. This means we cannot use data from within their content for
routing or use maps on them, but we do still have context and internally BizTalk
does use .NET types to represent them. As these types are internal to BizTalk, they
are generally not too visible to developers.

Chapter 2

[45]

Types in contexts
In BizTalk, there are not just different types of types there are also different types in
different contexts. All messages in BizTalk's messaging engine, including pipeline
components, are represented as an instance of the interface Microsoft.BizTalk.
Message.Interop.IBaseMessage. Once in an orchestration a message is represented
as an instance of Microsoft.XLANGs.BaseTypes.XLANGMessage and can be sent to
or from a user component as such. Often this would be in a helper class. Interestingly
enough, these types cannot be converted between each other, nor can they be casted.
You'll generally use IBaseMessage in pipeline components and XLANGMessage
exclusively in orchestrations.

If this is a little confusing at first you're not alone, but trust me, it makes sense
once you stop fighting it. Look at it this way: a message arrives in BizTalk, goes
through a pipeline (and its components) and a map then goes to the message box.
It was represented by IBaseMessage this entire journey and its journey is over.
Even if you have an orchestration that will receive this message, it will receive it
as XLANGMessage and in a fresh receive, completely disconnected from the first
operation (the adapter, pipeline, and map). In our minds as developers, this all looks
like one flow and that is the catch with BizTalk. It is not one flow, it is two, and they
are completely decoupled. Delivery to the message and then to the orchestration
engine are in fact two distinct operations.

To make things a little more complicated, any message in an orchestration can also
be declared as an instance of System.Xml.XmlDocument. It is not so much that these
classes are all related per se, but they have both practical and historic reasons for
this arrangement. Historically this is because the original versions of BizTalk used
the DOM extensively to pass around XML documents; as a result the use of the
XmlDocument class, which is the .NET DOM object, was included to make it easier for
developers and solutions to be ported to newer versions of BizTalk. This has been
a decision that has caused much confusion over the years. Another reason is that it
allows you a simple way to deal with non-XML messages in orchestrations; you can
specify their type as XmlDocument and handle just about any type of message, even
binary. That said, if you have a non-XML message and try to use any of the members
of XmlDocument on it, you will receive an exception from the orchestration engine
at runtime. XmlDocument is very dangerous to use in orchestration and should be
avoided at all costs. Its use was common in older versions of BizTalk, but should not
be repeated. Further, XmlDocument is actually not what it at first appears. Although
the language of the orchestration engine appears to be C# it is in fact a different
language X#; the XLANGs language. XmlDocument in the context of X# is actually a
wrapper around the real XmlDocument class from the System.Xml namespace which,
even more inexplicably, is not serializable.

Introduction to BizTalk Development

[46]

These different interfaces (or interface and classes) allow different types of
interactions with messages in their own contexts which can sometimes be
challenging until you understand the lay of the land so to speak. All will allow
you to manipulate message bodies, but again, care must be taken here so as not to
load the entire message body into memory at once, which is the real downfall of
XmlDocument. Recall our coverage of streaming.

To sum it up, in these contexts, messages are of these types:

Messaging Engine: IBaseMessage

Orchestration: XLANGMessage or XmlDocument

Type resolution
Even in a messaging-only scenario where orchestration is not involved, BizTalk
does a sort of two-phase type resolution. The first is to determine the message type
via message inspection, which is performed by XML and flat file pipelines. This is
where the namespace and root element name will be used to resolve the message
type. From here BizTalk uses this message type to retrieve the schema information
from a .NET assembly that actually contains the schema. This assembly is deployed
with the MSI you install, or from Visual Studio, in the case of a workstation. This is
an automatic resolution based on a BizTalk global catalog of namespace and root
element name for all schemas deployed to BizTalk.

A conflict can and normally will occur if you deploy multiple schemas containing the
same namespace and root element combination to BizTalk. This happens when one
of these messages is received and run through a pipeline like the XmlDisassembler
(that is, something that inspects the message to determine its type). The error will
be very clear, normally including "Multiple schemas match the message type".
This makes sense, because you have done something naughty and short circuited
BizTalk's message type resolution mechanism.

A final note is in order here. The Pass Thru pipelines, as their name implies, don't
inspect or modify messages in any way. They are almost like a null pipeline that
simply lets a message flow unaltered through them.

Understanding the solution at runtime
Earlier we saw a package diagram representing a typical BizTalk solution and in the
previous chapter we discussed how BizTalk uses the management database and the
GAC to load solutions. How this all works is a fairly important aspect of our solution
architecture and of BizTalk so we'll now have a quick stroll through this process. The
actors involved are as follows:

Chapter 2

[47]

BizTalk runtime (.NET runtime)
Message box
Management database
Global Assembly Cache (GAC)

Of these, the only one that we have not covered is the GAC. The GAC is a core
feature of the .NET framework and was created to address the shortcomings of COM
architectures. The GAC is a database or repository of .NET assemblies installed on
a machine; hence the global part of the name. The GAC is responsible for making
sure that we don't experience the pain of versioning and management that often
accompanies COM DLLs (colloquially referred to as DLL Hell). To accomplish this,
the GAC enforces several constraints on assemblies, the largest being that they must
be Strongly Named. This is accomplished through the assembly manifest; metadata
about the assembly itself; specifically a combination of the name, version number,
digital signature, and culture.

This means that assemblies for BizTalk solutions must be strongly named. That's
why we talked about keys before; we use them to strongly name assemblies. This
mechanism gives us an explicit method for defining versions of assemblies. The
default version for an assembly in .NET is "1.0.0.0". These four sections of the
version number correspond to the following: [Major version].[Minor version].[Build
version].[Revision version]. The idea is that the numbers will count up with the
left-most numbers changing the slowest and the right most changing the fastest.
The .NET framework itself reflects this in the v1.1 and v3.5 releases, where 3.5
was major version 3, minor version 5.

This whole apparatus allows .NET applications to load types at runtime secure in
the knowledge that the types will be what they expect (or at least conform to the
same interface). An added benefit is that this arrangement also allows for multiple
versions of assemblies to coexist safely with each other.

The following diagram depicts the way this is used by BizTalk to load our solution.
The steps are labeled in the diagram. It is intentionally a simple example:

1. When a message arrives in BizTalk, the host instance (BizTalk runtime)
that receives the message inspects the message to see if it matches a known
message type. The list of known types is stored in the management database.

2. After finding a matching message type, the runtime then loads the assembly
containing this type from the GAC.

•

•

•

•

Introduction to BizTalk Development

[48]

3. The runtime is now free to use the loaded .NET type which can be a schema,
map, pipeline, or orchestration.

Message
BizTalk Runtime

Message Box

Management
Database

Solution
Assembly 1

Solution
Assembly 2

Solution
Assembly 2

Global Assembly Cache

1 3

4

2

The diagram shows how BizTalk resolves the message type and loads the schema
representing that message type from the Global Assembly Cache. A final note of
importance is that this loading from the GAC only occurs one time for each type
during the lifetime of a host instance. This means that after the first load, the process
is considerably faster. This is a part of the cache portion of the name. If you restart a
host instance, which is to say restart the windows service for that host instance, you
have to shut down the old process and the types will again load on first use. Some
assemblies in BizTalk will also unload after extensive periods of idle time.

Every .NET application that uses the GAC doesn't actually run the assemblies from
the GAC, it copies them to its own working area so that the GAC can be changed
and updated without interfering with running processes. This allows us to register
replacement assemblies in the GAC without first stopping the processes that are
currently using those assemblies. The drawback is that a replacement assembly
will not be loaded until the application domain (a sort of lighter weight version of a
process that lives within a process) is reloaded; this generally means restarting the
host process; that is, the BizTalk runtime. That said, newer versions with different
version numbers can be deployed and loaded without restarting the process in a
side-by-side manner. This means that when planned carefully a BizTalk application
can be upgraded in place without any downtime. Carefully planned is the key
operative here.

Chapter 2

[49]

Monitoring
Monitoring is a critical part of all software solutions, but even more so with
Middleware, Integration, and Service Orientation. These types of solutions
inherently do not have a user interface so knowing 'what is happening' becomes
critical. The ability to view data and transactions as they happen becomes important
both from a technical, as well as from a business operations standpoint. No solution
is complete without monitoring. I repeat that point, no solution is complete without
monitoring capability. Monitoring can generally fall into two types: technical or
platform, which would be covered by tools like SCOM and commonly referred
to as tracking and business or solution monitoring.

Unfortunately most solutions don't have good monitoring or instrumentation built
into them in the first place. This, however, is one place where BizTalk Server really
shines. The entire solution stack, all the way through the adapters and message box,
support advanced monitoring centered on BAM—Business Activity Monitoring. In
most cases, BAM can be added to a solution after it is completed without requiring
code changes. This is actually the preferred method as monitoring is rarely an
upfront requirement; though it certainly should be.

Why BAM?
BAM is a powerful set of tools that, when used properly, creates the infrastructure
we need to gather, analyze, and present data about our business solutions
without writing a single line of code. This can even include complex statistics
and aggregations. The BAM tools in BizTalk will create the infrastructure needed
to provide monitoring. This includes tables that BizTalk will then automatically
populate with the tracked data analysis cubes used for more complex derivatives,
and also maintenance of SSIS packages, to age or archive that data and to process
analysis cubes. These are all designed to scale and built with a care and detail it
would be very difficult to replicate on our own. That said, like most of BizTalk,
they also represent a good model to be inspired by, if the need ever arises. In fact,
BAM can be used without BizTalk at all and any WCF service can have BAM added
without recompiling the service.

Importantly, although BAM has a lot of similarities to data warehousing, it is not a
data warehouse and not meant to replace your data warehouse. Data warehouses are
created for exploring your data. Generally speaking, in BAM you aren't exploring
that deeply although you can to a certain extent. BAM is, however, a great way to
feed your data warehouse and it is a great way to provide both business monitoring,
as the name implies, as well as operational monitoring.

www.allitebooks.com

http://www.allitebooks.org

Introduction to BizTalk Development

[50]

BizTalk also has its own tracking information in the DTA tracking database and this
can be good for emergency operational tracking or viewing some information about
running transactions. This data is really meant for BizTalk, however, and generally
this type of tracking should not be relied upon as it encourages inappropriately
tight coupling. A term I have often used, resulting in many giggles, is inappropriate
intimacy. This data is also purged periodically and requires administrator
permission to BizTalk (or at least operator) just to be viewed. It is also prone to
bloat in even moderate volume environments if not purged often, which it is
critically important to do. For this reason, BAM should be used for all tracking
and monitoring wherever possible.

Understanding BAM concepts
There are several ways to work with BAM, including a .NET API, but I believe the
best way is to keep it simple and as originally intended by the tools. I believe this
approach results in a more loosely coupled solution than other methods such as the
BAM API. Coupling is a slippery slope and it is something we must struggle to avoid
all the time. There certainly are times when the BAM API is needed, but I've run into
only two in all my time with BizTalk.

The best way to avoid coupling and produce excellent tracking is via the Excel
Plug-In and the Tracking Profile Editor (primarily the TPE). This is covered in great
detail in the second half of this text in the context of our development storyline, but
I will briefly present the concepts here. Please refer to the appropriate sections for a
detailed walk through of each concept.

Instrumenting a BizTalk solution is done in three steps: creating the structure of what
you want to track (an activity), creating the way you want to present the data from
this activity (a view), and binding the activity to the solution via a profile.

Creating a BAM activity
A BAM activity defines the base data that we wish to track. This is broken down into
milestones and business data. Milestones are timestamps, points in time when events
happen, such as a message received or sent. Business data can be any text, integer,
or decimal that is in a message. Although something like Order Date in a received
message is a date, it is not a milestone, it is actually business data; whereas Order
Received would be a milestone representing when BizTalk actually received the
order message.

Chapter 2

[51]

You should track all pertinent information that you will need to report against
in BAM, but do keep in mind that there is such a thing as too much information.
BizTalk will handle this fine and the SSIS packages that are created to manage the
data will help keep the database bloating to a minimum, but you should really track
only the data you're actually interested in. The activity represents the database
structure that will be created to hold our tracking data.

Creating a BAM view
Creating a BAM view allows us to select which activity data we would like to
present in a display. We can combine data from multiple activities or display only
some of the tracked fields. We may want to do this because IT operations staff may
want to know things like the number of orders or time to process, while business
operations staff may be more interested in the total dollar amounts of orders (that is,
teams will be interested in different metrics and creating different views is a great
way to provide each with what they need).

In addition to selecting what we want to see we can create durations between
milestones, groups that allow any one in a set of milestones to represent a logical
milestone (such as when a branch can be taken, but both sides result in a "complete"
status), and create aliases so that specific user groups can see different labels for the
same data. We can also make logical progression markers out of milestones so that
we can assign labels to each milestone. This would be useful if we wanted to show
the current progress of a long-running process that has multiple milestones.

Perhaps most extraordinarily, we can also create dimensions and measures with
which to drive deeper analysis. These result in multidimensional analysis cubes
from our data, for which the BAM tools will then create the infrastructure. All of
this will be covered in detail later. Measures are data aggregations such as count,
sum, average, maximum, and minimum values, while dimensions can be time, data,
ranges, and the aforementioned progress. Taken together, these allow us to provide
our users with complex and expressive views into business transaction data.

Creating a BAM tracking profile
The tracking profile is the glue that binds an activity (and its views) to a BizTalk
solution. These are created in the Tracking Profile Editor (or implemented via the
API, which I've already explained I believe is best to avoid). The activity and views
define what we want to track, and the profile defines how we want to track it; that
is to say at which points in our solution we want to connect data passing through
BizTalk to our tracking profile. The TPE is a simple graphical tool that allows us to
bind these components together. The complete figure if the BAM activity and profile
in action is displayed before.

Introduction to BizTalk Development

[52]

In this diagram, we can see how the profile ties the running solution to our activity,
which represents the tables into which the data will flow.

Message Box BAM Profile BAM Activity BAMPrimaryImport

Advanced BAM concepts
Although all of these are covered in detail this is an explanation of some of the more
critical, advanced BAM concepts covered in the second half of this book.

Continuation
A continuation is a way to connect disparate parts of a business process into a single
tracking record. Suppose a business process involved receiving a purchase order that
is sent to an ERP system, then receiving the order confirmation from the ERP later
on, asynchronously. This solution involves two disparate steps, but they are both
part of the same business process—processing a sales order. A BAM continuation
would allow us to connect these two by the use of a common information token,
like an order number.

Subtly and importantly a continuation is expected to continue at some point, so they
should be designed with care.

Relationship
A relationship in BAM allows two different activities to be linked together. Suppose
in addition to the previously mentioned "purchase order received" that we also
have "purchase order cancellations" sent via a different mechanism. These are
two different business processes, a sale and a cancellation, so they should be two
different activities. They are, however, related because the cancellation is of a
previous sale. This is accomplished via a BAM relationship that also uses a specific
piece of data, like the continuation though in a different way, to perform its duty.

Chapter 2

[53]

Document reference URL
The document reference URL is perhaps not an advanced concept, but it is useful
and allows us to add links to file shares or better still to SharePoint to link documents
into our monitoring profile. If these purchase orders were submitted via an InfoPath
form a link to the archived original form within SharePoint could be provided for
fast and easy reference.

Introducing the BAM portal
Another component of BAM is the portal that ships with BizTalk to allow us to
view the data we are tracking and monitoring with BAM. The BAM portal is a
simple SharePoint inspired website that installs as part of a BizTalk installation.
It is a fairly light weight tool that allows us to build and run queries based on the
tracking data that we have defined. It allows for sorting and also for saving queries
and also creating alerts based on these queries. Finally, it has interactive charting
capabilities built into it that allow users to drill down into aggregations we define
in the activities and views. The portal is not the only way to interact with BAM,
however. We can also access the underlying SQL infrastructure either through
ADO or even via SharePoint's Business Connectivity Services.

Presenting BAM alerts
Finally after detailing all that we have here we get to the subject of BAM alerts.
Alerts in BAM are user-created notifications that can be tied to simple BAM queries
or even complex aggregations. BAM alerts (and BAM in general) really spearhead
the concept of self service in IT. What specifics interest users will change depending
upon who the user is, business conditions at the time, and often even the time of
year. BAM alerts allow users to decide when they want alerts and give them an
ability, through the BAM Portal, to configure them.

BAM alerts are either via e-mail or a file. I only use the file ones to trigger other
BizTalk processes, as we'll see later, but the e-mails are very popular with users.
Perhaps a user wants to be notified when a very large order (or very large check)
is received (or requested). Or perhaps they want to be alerted by the result of an
aggregation, such as a specific client orders more than X dollars within Y months.
All of these can be linked to user-created BAM alerts. This frees our time as
developers to focus on higher value tasks while still getting our users exactly
what they want. Better yet, they still think we're rock stars because of it.

Introduction to BizTalk Development

[54]

Summary
In this chapter, we learned about the steps involved in developing BizTalk solutions,
how to logically partition and manage our solution, and how to use Visual Studio
to structure our solution. We also covered details about how our solution is used by
BizTalk at runtime. We finished with an introduction to the monitoring capabilities
of BAM and how we can use them to instrument our solutions and provide visibility.

BizTalk Development
Guidelines

This chapter will cover various best practice guidelines to follow when creating
BizTalk solutions. Some will be abstract principles and others will be specific
techniques. All will contain what I believe are ample justifications that I hope will
convince you of their validity. Everything covered here is implemented in the second
part of the book, but this chapter gives you the reasoning and the theory behind it.

This chapter covers the following:

Determining where to place different types of logic
Isolating our solutions
Orchestration best practices
Pipelines and pipeline components

Core guidance
This section contains core guidance principles for BizTalk best practices.
Most of these will be a little on the abstract side and therefore serve more as
recommendations than as best practices per se, but I strongly believe in all of them.

Determining where to place different types
of logic
In Chapter 2, Introduction to BizTalk Development, we looked at the architecture of the
BizTalk platform and the basic components involved in a solution. Now we will
focus more on these components themselves and present suggestions and patterns
for them. The first involves deciding where to place logic within the solution
structure that we saw in the previous chapter.

•
•
•
•

BizTalk Development Guidelines

[56]

A common problem that BizTalk developers face is determining exactly where in a
solution to house different parts of their logic. This can be a fairly complex issue that
can result in paralysis by over analysis. I wish I could say there was an easy answer,
but finding the right balance is really more of an art than a science, and all I can do is
offer some basic guidelines.

Maps
Maps are a common place to put a lot of logic in a BizTalk solution and it can be a
good place. The problem comes, however, with scalability in terms of the growth
of large maps and the extension of logic placed within them. It can be hard to track
down where a logical decision is being made in BizTalk, when it takes place in a
map. Appropriate uses of pages, notations, and documentation can alleviate this,
but maps are mostly meant for translation, not for the embodiment of business logic.
In fact, avoiding placing business logic in maps is really considered a best practice
within the BizTalk community. One benefit to putting logic in maps is that fixes
can be made by simply GAC-ing a new assembly and restarting the affected host
instances. This can provide low (or no) downtime patching. This generally is not
a good enough reason to place logic in maps. Maps are really intended only to
perform translation between formats.

Orchestrations
Being graphical, workflows that have similarities to flowchart's orchestrations
often seem very familiar to us as developers, even more so with Windows Workflow
now in the marketplace, but stuffing too much logic into orchestrations is not a
good practice. Orchestrations are focused on message handling, but the decision
and looping shapes providing familiar programming constructs to work with and
many programmers quickly, equate these with decision and looping constructs in
programming languages. The greatest downside of overusing these is that your
orchestration canvas grows very large very quickly and making changes becomes
cumbersome. Even working in a team environment becomes more difficult in these
circumstances. This is similar to creating large methods in C#; it's just not a good
practice. Orchestration is not the programming language of BizTalk and should
not be treated as a programming language; it is one part of the entire platform
that is BizTalk.

Chapter 3

[57]

Business rules
Not a lot of people use the Business Rules Engine (BRE) in BizTalk and I cannot
say I know why, but it could be due to a lack of real world examples and cryptic
documentation. I don't believe this tool ever lived up to its original promise of a
business analyst friendly tool, but it certainly lives up to my expectations of an
effective way to encapsulate logic into a solution in a loosely coupled manner. This is
because the rules themselves are deployed independently from the BizTalk solutions
that use them. This means they can be updated without changing the solutions that
use them. If you have complex decision logic, this is a great tool to implement it.
Used correctly, BRE can help you create extensible solutions that can be extended
without recompiling your entire solution.

The BRE is an ideal place for logic that is used for routing, and business decisions
such as pricing or discounts. There is also the classic example of credit scoring. The
BRE is meant to address more rapidly changing logic than orchestration shapes
would provide. My favorite way to use BRE is to call rules with XML documents;
ideally providing them with all the information they will need, so that they do not
need to make external lookups. This focuses the rules on business rule logic rather
than on lookup or database logic.

Pipelines and pipeline components
Pipelines are one of the least understood areas of BizTalk, but deserve a lot more
credit and attention than they often receive. Almost any .NET component can be
called in a custom pipeline component such as BAM and BRE, but great care must be
taken not to interfere with the memory model used by BizTalk. Pipeline components
can also be used to promote properties or check for duplicate messages. Almost
the entire ESB Toolkit for BizTalk is implemented via pipeline components. This
allows the developer to use these already created components for a variety of tasks
throughout BizTalk from mapping to itinerary processing. Even in the included tool
set, pipelines can be used to determine parties and promote or demote properties.
Pipeline components are a good example of real reuse in BizTalk, but unfortunately
pipelines themselves often are not reused. The parameters for a pipeline can be set in
the BizTalk Administration console and they can be set separately for specific receive
locations or send ports. This allows us to create a single pipeline that can be reused
in multiple places by simply changing the configuration. If less is indeed more, this is
a great way to achieve it.

BizTalk Development Guidelines

[58]

General concept
Ultimately, I believe the downfall of any part of a BizTalk solution is complexity.
You should never try to put too much logic into a single place. This is a design
tenant well known in OOP—Single Responsibility Principle—but it is one that is
easy to lose sight of when working on any platform and BizTalk is no different.
BizTalk's graphical focus can actually make this more difficult to avoid at first, as
well as the fact that it is not as granular as OOP by nature. Often, if a design is too
complex, it should be broken into smaller designs. This advice serves well for maps,
orchestrations, rules, and even pipeline components.

Mapping at the port level
As we have seen in our solution architecture so far, it is important to isolate our
internal, canonical formats from the outside world; that is external formats. This
advice is extremely important, even if all the systems involved in the communication
are controlled by a single development team. This is critical because any schema
exposed by BizTalk is in essence a public interface. Public interfaces are a contract
that may need to be supported for a long time. Any change to a public interface may
break calling applications, and BizTalk will be unaware of these implications; yet,
just as in traditional programming, we want to be free to change the implementation
behind any interface.

The solution is to always map messages going into or out of BizTalk, so as to never
let external dependencies bleed in, or internal details seep out of a solution. If your
solution is very simple and will never have more than a single calling system and
will never ever have to change over time, you may not need to use this technique.
The effort required to use maps at the port level is indeed small and it is worth
the extra effort to be prepared for the changes that inevitably come to all
software programs.

To see this in action, imagine that we create a simple solution receiving a message,
routing on some part of the content, and then transforming (mapping) this message
as we send it out of BizTalk. If we now have to make this solution work with another
inbound message format, we need to route on the new message's content and create
another map for sending the message out. If our solution uses business rules or
orchestration, this makes it even more work to add a second format; it would also
affect our BAM.

What we're trying to do is isolate our solution from changes in other external
systems, or requirements. Mapping on both the receipt and send of a message
isolates our internal solution from changes in the outside world. The following is
an example of the chain connected, travelling through BizTalk and being mapped
at both ends of the chain.

Chapter 3

[59]

Map MapAdapter AdapterMessage Box

The isolation enforced by this pattern guarantees that no external dependencies will
leak into or out of the solution. Our routing, orchestration, and business rules, and
even our BAM tracking, are isolated from the outside world. They will be easier
to manage and change as a result. Anything between the maps can be changed or
implemented in a different way and the external interfaces and endpoints will not
need to change at all. This is an effective example of decoupling.

Orchestration best practices
Orchestration is the technology provided by BizTalk to allow us to graphically model
business processes and complex messaging scenarios. Orchestration is a powerful
tool that allows us to build expressive solutions that can help us overcome coupling
inherent in the systems we are connecting. It is also the tool we generally use for
service composition.

Orchestration is a close relative to sequential workflow in Workflow Foundation
(WF). In fact, the same team that built WF built BizTalk's orchestration engine;
orchestration even predates WF. The two have many similarities and some distinct
differences. The biggest difference being that in orchestration, like in all of BizTalk,
messages are immutable; meaning that once assigned, their values cannot be
changed. The two share the concept of dehydration—the saving of state—so that the
workflow can be removed from memory. This is vital to the scalability and reliability
of both, but in orchestration we do not directly control when dehydration occurs.
Orchestration also has a concept of persistence related to dehydration.

To create an orchestration, we sequentially model the steps of our business process
in the orchestration designer within Visual Studio. The toolbox provided to create
orchestration resembles a flow chart from Visio, but it also includes more advanced
concepts for constructs than most flow charts cover. These include delays, exception
handling, compensation, branching, and role party links.

When we design orchestrations, they are actually stored as XML, much like WF,
but are then compiled into a language of their own, X# (X Sharp), which looks
very much like C#, but is a distinct language. The orchestration engine in BizTalk
is called XLANGs; hence the X# language. In addition to a simple graphical flow,
orchestration provides us with durability in our business processes thanks to the
previously mentioned dehydration and persistence.

BizTalk Development Guidelines

[60]

Developers and analysts tend to favor orchestration because it gives them a clear
graphical representation of the process they are modeling. As a result, orchestration
tends to be over utilized or not used optimally in BizTalk solutions. The following
recommendations relate to best practices in the use of orchestration within
BizTalk solutions.

Avoid overuse of orchestration
Orchestrations are a great tool in the BizTalk toolkit, but they come at a considerable
cost. Many of these costs manifest themselves as round trips to the message box,
which means crossing a process boundary and writing to and reading from a
database; the message box. This is an expensive operation and one that should only
be done when it is necessary. Early in their experiences with BizTalk, developers
often latch onto orchestration because of its apparent simplicity and graphical
design. Please try to resist this urge. You can do this on your development machine
just to get comfortable, but for your first project, make your life easier and avoid
orchestration for simple operations.

When I train developers on BizTalk, we wait until the fourth or fifth lesson to cover
orchestration at all, which this book does as well. I strongly believe it is important
to cover the fundamentals of messaging, mapping, and testing before one begins to
create orchestrations.

The following figure shows a situation where orchestration was not the right solution
for the problem:

Chapter 3

[61]

All this orchestration does is receive a message, map it, and forward it on to a send
port. This can all be accomplished using a messaging only approach. The following
steps explain how it would work:

1. On the send port, where you want to send this message, go to the Filters page
and add a filter similar to the following: BTS.ReceivePortName == <<Name
of Receive Port>>.

2. While still on the send port, change to the Outbound maps page and assign
the map to use for transforming this message.

If your schemas and map already exist, these two steps can be completely
accomplished within the BizTalk Administration console. The two solutions are
functionally equivalent, so let's take a look at the runtime steps involved for each; in
particular how they interact with the message box. Often in BizTalk, trips through
the message box are called message box hops. These are expensive operations and
should be minimized.

In the orchestration solution, the steps executed by the runtime are as follows:

1. Receive message via adapter and write to message box.
2. Retrieve work item from message box and start orchestration.
3. Write new mapped message to message box.
4. Retrieve work item from message box for send port.

Each of the previous four steps requires an interaction with the message box. If we
now look at the messaging only approach, the steps are as follows:

1. Receive message via adapter and write to message box.
2. Retrieve work item from message box for send port.

Clearly, the second approach has half the trips to the message box. Your performance
realistically will be twice as good in the second solution as the first. When you deal
with high throughput or low latency solutions, these types of savings are critical.
Even when you don't have strict performance requirements, remember that BizTalk
is a global platform. Just because one solution does not have high performance
requirements is not to say that another, running in the same group, will not. The
aggregate demand of many poorly implemented low volume applications can
adversely impact a BizTalk environment.

BizTalk Development Guidelines

[62]

Always use multipart messages in
orchestrations
Although most messages used in BizTalk solutions are not multipart, in the
sense that they only have one body, using multipart messages in an orchestration
provides the benefit of isolating schema changes from impacting orchestrations.
In an orchestration, we must define messages at the orchestration level and these
messages can be either schemas, .NET classes, multipart messages, or web message
types (which makes no sense to me, as this represents tight coupling considering
that, by their nature, they are external). The BizTalk IDE is trying to be our friend
here by giving us choices, but you should really only use multipart messages. This is
because the use of multipart message types gives us another level of indirection and
also gives us a reusable type that we can leverage in all of our orchestrations in the
solution rather than just in one.

Assigning a message directly to a schema message type is almost like in lining a
type. It effectively creates a statement in the orchestration, declaring a variable and
its type: OrderSchema MyMessage. This means that anywhere the message is used,
the orchestration is essentially being coded to this in lined type.

This is significant because changing a schema without using multipart messages will
require disconnecting all the port, send, and receive shapes within the Orchestration
Designer. This is a tedious and error-prone process and it is not always easy to track
down all of these affected shapes. There is also no automated way to do it ahead of
time. If you think you'll never change your message types, imagine what happens
the first time you have to version your assemblies (for a side by side deployment).
If you guessed that you need to disconnect all the port, send, and receive shapes in
your orchestration, you guessed right!

The solution is to use a multipart message type in the orchestration and then create
a body part for the new multipart message type that is bound to the schema we
want. We then assign the message to use this new multipart message type. This
effectively translates to a declaration similar to IMySchema MyMessage. This is not
a totally accurate translation because orchestration really doesn't care what the
previous interface is, just that it is there. In a way it means we are free to change
the implementation, just not the actual interface. This pattern probably has more in
common with COM, or even the concept of a pointer to a pointer, or a reference to
a pointer.

Multipart message types can be reused between orchestrations, so that we do not
have to create as many message types, but be aware that this does introduce a small
degree of coupling. Sometimes it is a good idea to put all multipart messages or
shared types into an orchestration that contains no logic at all and is only used for
such definitions.

Chapter 3

[63]

Finally, this technique allows you to stub out your ideas more quickly in the
development phase because you can always just convert everything into an
XmlDocument. This directly contradicts my other advice in a later section, but
we all do it at some time. Only don't let it get into production that way!

Avoid large orchestrations
This is the same as the OOP coding suggestion to avoid excessively long methods. As
you build orchestrations, it becomes very easy to keep adding functionality to them
by dragging more shapes onto the canvas. This can make the orchestration difficult
to follow and lock all of the functionality deep inside of it. The Call Orchestration
shape is a simple way to compartmentalize your orchestrations. This shape works
just like a method or function call—it is a synchronous direct invocation. You
can send parameters into it or receive them out; or both. Call Orchestration even
supports reference parameters. Any orchestration that does not have an activating
receive shape as its first shape is considered callable. One benefit to call is that,
just like a function or method invocation, there is not a lot of overhead with the
call. This is different from Start Orchestration, which asynchronously creates a
new orchestration under a new context and does so via the message box. Start
Orchestration is actually a specialized direct send.

Encapsulating reusable logic inside called orchestrations is a great way to leverage
reuse and is something you should address the same way you do in traditional code.
Generally, the second time that you need logic that already exists, simply refactor the
original logic into a new orchestration and execute it using Call Orchestration. If you
know at the outset that your orchestration will be big, and some are by nature, try to
compose it from multiple orchestrations. This is clearly simple advice, but it took me
a long time to take it to heart and realize the benefits of doing so.

Minimize trips to the message box
(persistence points)
One of the great benefits of orchestration is that it provides us with robust durability
automatically. This is very different from traditional programming paradigms.
Orchestrations are process agile, meaning that they are independently able to change
to a different process—indeed server—as needed; an example would be an outage.
This is possible because at any point where an orchestration makes contact with the
outside world, it saves its state in the message box. This is called a persistence point
and it happens automatically. During this operation, all messages and variables used
within the orchestration, including any artifacts that contribute to its state, are saved
into the message box. Send shapes are the most common persistence point. The
engine does this because once the orchestration sends out a message, it does not

BizTalk Development Guidelines

[64]

know if the response will be immediate or not. Remember, the message box acts as
a buffer here, like always, decoupling the orchestration from the actual send and
receive. This allows the orchestration to be unloaded from memory and to restart
on any available host when it continues. Atomic scopes and send operations result
in persistence points, but others happen automatically for other reasons. Most,
however, are driven by a trip through the message box.

An easy way to determine if your orchestrations are resulting in too many
persistence points is to use Performance Monitors to determine the runtime
characteristics of your solution. I always recommend doing this. For orchestration
in particular, the performance monitor's Persistence points and Persistence
points/sec in the XLANG/s Orchestrations performance object category are
particularly useful.

A simple tip to reduce persistence points includes, bunching multiple sends together
in a single atomic operation. This will result in one persistence point instead of
one for each send. This can be confusing at first but it works fine. Orchestration is
not like C# or Java. A send shape does not need to be immediately followed by its
corresponding receive shape. This is because the response is held in the message box
anyway. If you have to call three web services that don't require the response from
one to call the next, you can place all three send shapes in a single atomic scope and
they will all go to the message box together; in one persistence point. Even if the
responses arrive out of order, the orchestration will only retrieve them in the order
you have laid the receive shapes in.

It is a good practice to design with persistence point counts in mind. Because
persistence has a significant cost and can happen unexpectedly, there really is no
replacement for stress testing of a solution to find where these points will emerge.

Avoid using atomic scopes to call .NET
methods
Orchestration allows us to create .NET class variables and use their methods to
assist our business process. This can be a great feature, but any class that is used as a
variable in an orchestration must be marked with the Serializable attribute. This
allows the orchestration engine to store the class with the running orchestration in
the message box (the durability we talked about before). This is fine if you're creating
your own classes and libraries, but not if you're using existing ones. The workaround
most use is the atomic scope, which will allow us to instantiate any .NET class and
call its methods. The atomic scope was designed to handle Atomicity, Consistency,
Isolation, and Durability (ACID) compliant operations that must either all succeed or
all fail as a group. This is a classic database transaction style. It is designed to carry
an orchestration from one stable state to another. This is why you cannot both

Chapter 3

[65]

send and receive from an atomic scope, because by design the message box is not
a lockable resource. To accomplish this atomicity, the orchestration engine persists
the entire orchestration state to the message box before the atomic scope begins; it
subsequently persists the orchestration again when the atomic scope completes.

Do not use an atomic scope to simply call a method of a .NET class that is not
Serializable. If you absolutely must call a non-Serializable class, and can only do
it in an atomic scope, try to combine this with other operations to make the most of
the trip to the message box; like a send shape as shown in the following figure:

This call at least reuses one of the two persistence points to perform a send that
was needed anyway. A better way to solve this problem is to create a wrapper
class with a static method that instantiates the required objects, uses them, and
returns the desired result. Keep in mind that the orchestration engine is smart
enough to inspect any classes that you create to make sure they do not have
non-Serializable members.

BizTalk Development Guidelines

[66]

Don't use XmlDocument for a message
type… ever
As we saw earlier, the orchestration engine will allow us to represent any message as
an XmlDocument. Just because this feature is available does not mean that we should
use it. XmlDocument within XLANGs (the orchestration engine) is actually a special
class that wraps the XmlDocument; which oddly enough is not serializable. This class
is dangerous for several reasons. First, it allows us to create messages and variables
that will fail if any of their methods or properties are used; this is in the case of
non-XML messages being represented by this message type. These errors will also
only happen at runtime. This is a bigger problem because as new developers have to
work with a solution, it will not be clear which messages they can modify and how.
If you have edge cases using non-XML in an XmlDocument and your solution testing
doesn't provide 100 percent coverage, you could end up with a fatal runtime error
that you only find in production.

Worse still for messages that actually are XML, XmlDocument loads the contents into
the DOM (Document Object Model) for processing. The first and most obviously
dangerous side effect of this is that because the DOM allows random access to
the document, it loads the entire document into memory. To make matters worse,
in order to make this access fast, the memory requirement is often an order of
magnitude greater than for the pure XML data. That means a 100K message will
likely occupy 1MB of memory. If you have several of them and have moderate
throughput, you will face memory pressure and the throughput of your solution
will rapidly decline.

Another and more subtle issue often caused by using an XmlDocument is that the
class allows for modification of the document through its members. Recall from the
earlier pages that messages in BizTalk are immutable; that is they cannot be changed.
This is at the center of the durability and distributed architecture of BizTalk. An
XmlDocument will allow you to make local changes in a message that are not
reflected in the message box. Under certain circumstances, such as when persistence
points occur and orchestrations rehydrate on another server, your local changes
may not appear anymore. This is precisely because messages truly are immutable.
Troubleshooting issues such as this one are time consuming and difficult because it
can be hard to reproduce.

If you need to pass non-XML messages through an orchestration, you should really
use XLANGMessage to do this. This class makes the intention clear that the message is
not XML and should not be treated as such. It also has a smaller memory footprint.
Like XmlDocument, XLANGMessage can be assigned to any message—with the
validation happening at runtime. This class can be found in the Microsoft.XLANGs.
BaseTypes namespace of the Microsoft.XLANGs.BaseTypes.dll assembly.

Chapter 3

[67]

Finally, if you must access the content of an XML message within an orchestration
(normally done through a helper class) you should retrieve the body part as
XmlReader rather than as XmlDocument. The XmlReader class is stream-based, like
the rest of the BizTalk infrastructure; this preserves the flat memory footprint that is
sought after in BizTalk.

Alternatively, you can also create .NET classes that match your schema using xsd.
exe, which will generate classes conforming to the message schema. This technique
will allow you to work with messages in .NET, which can be more useful in helper
methods. Both of these techniques are accomplished using the RetrieveAs method
of the XLANGMessage class, as shown in the following two methods:

public MyMessage SomethingInteresting(XLANGMessage message)
{
 MyMessage myMessage = message[0].RetrieveAs(typeof(MyMessage)) as
MyMessage;
 return myMessage;
}
public XmlReader SomethingElse(XLANGMessage message)
{
 XmlReader reader = message[0].RetrieveAs(typeof(XmlReader)) as
XmlReader;
 return reader;
}

Again, keep in mind that less is more. If you need to do extremely complex
operations in many helper methods, you might want to reconsider your solution. All
.NET data structures are memory resident, so using the XmlSerializer—which is
what the previous example ultimately does—loads the entire message into memory.
That said, it takes considerably less memory space than an XmlDocument.

Avoid loading messages into classes via the
XmlSerializer
The XmlSerializer allows us to load messages into classes automatically. This class
dates to the very first versions of the .NET Framework and is a great technique most
developers are unaware of. Working in C# or Visual Basic .NET, it is much easier to
work with classes and data structures than with the XML classes of the System.Xml
namespace. This is the technique presented previously. This is a convenient feature
and there certainly are some situations where it can be much easier to accomplish
a given development task in .NET classes rather than in XML messages or maps. It
is important to note, however, that the entire architecture of BizTalk Server is built
around the concept of stream-based components. This means that message sizes,

BizTalk Development Guidelines

[68]

even for very large messages, will not adversely affect the operation of the platform.
This gives BizTalk a very flat memory footprint and helps to make the product
as scalable as it is. The XmlSerializer does not follow this same stream-based
approach. On the contrary, classes serialized with the XmlSerializer are completely
loaded into memory at one time and can have negative effects on the memory
footprint of your solutions as a result. Generally speaking, if the messages are small,
or the nodes that you send into a method for processing are small, then the impact
may not be too severe. Keep in mind that even small messages, when there are a lot,
can add up to large memory footprints.

Use direct bound ports and Content Based
Routing
Many developers new to BizTalk don't grasp the power and flexibility of Content
Based Routing (CBR) in BizTalk Server. CBR allows for the implementation of logical
decisions that new developers often turn to orchestration to solve. In the following
figure, we see an example of this. A decide shape is used to route a message based
upon content within the message. This could be a total order amount, the status of
the client, or anything else in the message. In this case, it is based on the vendor.

Chapter 3

[69]

The previous orchestration clearly shows what routing decision is being made and
is easy to understand, but it is not an optimal solution for many scenarios. For one,
the solution is effectively hardwired. Changing any of the routing or adding new
vendors will require recompiling and deploying the solution. A good alternative
is to use CBR in BizTalk, which is often referred to as a direct bound port in an
orchestration. To accomplish this, follow these three steps:

1. Create a property schema in the solution and promote the property you
wish to use for routing. This can be done via the Add New Item… dialog
in Visual Studio.

2. Configure the send port in the orchestration to use direct binding. This will
cause BizTalk to submit the message directly to the message box; at which
point it will be matched against any subscriptions and sent to all subscribers.
This is shown in the following screenshot:

3. After deploying the new property schema, configure each send port
you want to include with a filter (subscription) that matches the desired
operation. Usually, this will be a message type, an operation, or receive port
name, and a value for the promoted property. The following example shows
a filter that makes this solution functionally equivalent to one of the branches
in the orchestration in the previous figure.

4. Although this may not be as graphically appealing as the orchestration
approach, it does the same thing and is easier to change in the future. With
this approach, new vendors can be added using only the Administration
console. Many developers who become comfortable with CBR often forget
that it can be used throughout BizTalk, not just on send ports.

BizTalk Development Guidelines

[70]

Leverage filters in orchestrations
The most common way to receive messages in an orchestration is to use the
Specify Later option when configuring a port. This is then followed by binding the
orchestration to a receive port in the BizTalk Administration console. This pattern
does carry some significant benefits. It is very easy for administrators to understand
the flow of messages and also to know the impact of downtime or changes. The
drawback is that an orchestration is then coupled to a single port. Although this
port can have multiple locations, it is still just a single port. In simple scenarios, this
is not a bad approach but it makes reuse much more difficult as an orchestration
is effectively now coupled to a specific receive port, which must have external
messages flow into it. Because this results in a specific path of message flow, it also
tends to lead to large orchestrations. A simple way around this is to use a direct
bound receive port.

When configuring a receive port in the Port Configuration Wizard, simply change the
type to direct and use the default option of Routing between ports will be defined
by filter expressions on incoming. After configuring the port, you now use the Filter
property of the receive shape to define the expression that will match incoming
subscriptions. This filter functions just like the other filters that we have covered up
to this point. An example orchestration filter is shown in the following screenshot:

Chapter 3

[71]

Importantly, inside of the orchestration's filter values (the right-hand side of
the expressions) must be enclosed in quotes. The orchestration will not
compile otherwise.

What this now allows us to do is chain orchestrations together, so that they can
feed into each other in arbitrarily long or winding chains. This is a pretty advanced
concept, so it may take a while to really leverage. This is an extreme approach
to loose coupling and does not provide the crutch that a single large graphical
representation, or even that Call Orchestration would offer us. One of the greatest
advantages to this approach is that it actually decouples our orchestrations from each
other, allowing them to change at different rates. Like all design decisions, simpler
tends to be better, so don't go out of your way just to try to use this. Experiment with
it and eventually you will find the right use for this technique.

There is another type of binding Specify now that we should never use as it
performs the port creation from within the orchestration and results in very tight
coupling that is not easily changed without recompiling.

Use distinguished fields instead of XPath
The X# language provides us with a few tools specifically designed to make working
with messages easier. One of these is the xpath function, which can be used to set
or retrieve values from an XML message. The syntax is as follows:

xpath(Message/Part, <<XPath expression string>>)

The XPath expression is a fully qualified expression including namespaces. The
easiest way to get this expression is to navigate to the node you're trying to read or
write in the schema editor and look in the properties window at the Instance XPath.
Simply copy it from here. Other tools like XML NotePad and DanSharp XmlViewer
also provide easy access to XPath expressions.

This can be really useful, but it carries a few side effects. First, it normally requires
long function calls that can't easily be seen on the screen without scrolling, such as
the following:

xpath(MyMessage, "/*[local-name()='MyMessage' and namespace-
uri()='http://nova/billing/schemas/internal/2011-05']/*[local-
name()='Number' and namespace-uri()='']") = "1234";

That's a pretty big assignment statement and this is only a simple example. A much
easier way to do this is to use distinguished fields in your schema. Real-world
examples will be much larger than this. A distinguished field is a schema annotation
that is used by BizTalk to allow for XPath shorthand. In orchestration, this can make
our statements much more simple.

BizTalk Development Guidelines

[72]

To distinguish a field, simply right-click the node inside the schema editor and
under the Promote option select Show Promotions…. This is shown in the
following screenshot:

From here you have a list of all the nodes in the schema on the left (with the node
you had right-clicked and already selected) and all the distinguished fields on the
right. Simply click the Add >> button and then click OK. Be sure to save the schema,
and if it is in a separate project to recompile, as shown in the following screenshot:

A visual queue is given to let us know that this node has been either distinguished or
promoted. It is the little gold and blue icon now attached to the node. The resulting
assignment statement is much easier to read and its intention is much more clear.

MyMessage.Number = "1234";

Chapter 3

[73]

There is also another benefit that is not always apparent at first. The XPath statement
before has the namespace in it and if we need to change our namespace, we must
remember to go and change all these XPath strings in the orchestrations. Changing
namespaces is common when versioning solutions (creating a 2.0 version, and so
on) and the xpath function is evaluated only at runtime, so as long as the second
parameter is a string, it will compile; even if it is the wrong string. Because the
distinguished field is annotated in the schema with which we're working, it will
be automatically updated when the schema's namespace is updated.

There is, however, one drawback to using distinguished fields; it is that they must exist
in the message at runtime in order to avoid an error when evaluating them. If it's an
important piece of data it should exist anyway, but you can also explicitly map in place
holder or null values if needed. Zero would be a good example in a decimal field.

Avoid unnecessary looping on collections
I frequently see scenarios where developers receive a batch into an orchestration and
then loop over the records to process them. I particularly see this from the SQL or
WCF-SQL adapters; or for that matter from any database adapter. Often the result
looks similar to the following figure:

BizTalk Development Guidelines

[74]

This is a bad use of orchestration for a variety of reasons. For one, although not
clearly shown, it uses xpath and the DOM to create each individual message.
We've already covered why that is not a good practice. Worse still, each submessage
then does a send, which results in a persistence point. Larger messages will not
work well in this sort of arrangement. If you needed to break apart a message in
an orchestration, calling a pipeline with an XML disassembler from within the
orchestration would be a much better approach to the xpath DOM assignment
approach. Don't let that friendly loop lull you into a sense of familiarity. The
previous loop is nothing like what you would write in a procedural or imperative
language, it incurs a lot of overhead and there is no way to keep a single connection
to the destination system open. The loop, like most orchestration shapes, is meant as
a control structure, not a programming structure.

The problems actually only get worse from here. There is no transactional integrity
between the individual requests. If one request fails, all the messages before it are
already complete and are committed in the case of database transactions. It will
also stop any subsequent messages in the batch from processing. You could add
compensation or exception logic to address this, but it really just starts piling more
bad approaches on an approach that is not elegant to begin with.

There are two better ways to approach this issue and the approach which you should
use will depend on what you're doing. They are as follows:

To debatch (disassemble) the message in the receive location, which also
allows us better control over failures. The orchestration would then subscribe
to the debatched message and the map on the receive port would map at this
debatched level as well. This approach will result in many orchestrations
running completely independently. The modeling path is simple and this
works well in many cases. This will scale, even for very large messages,
though you may end up with throttling due to large loads. BizTalk is
designed to handle large loads.
To simply map the multiple lines together in a single request. The classic
SQL adapter even allows you to combine separate operations to different
stored procedures or updategrams in a single request. The order of the nodes
within the XML determines the order in which they execute. This can be
a very useful technique as all operations complete in a single Distributed
Transaction Coordinator (DTC) context. That is to say, they either all
succeed or all rollback as one. There is much less deadlocking in the case of
database connections because all the requests execute serially in this single
DTC transaction.

•

•

Chapter 3

[75]

This technique is very useful, but very large messages will strain the adapters.
The SQL and WCF-SQL adapters tend to decline in performance above 50,000
transactions in a single message. That said, this amounts to a lot of transactions.
Because we already discussed that ETL is normally better done with other tools
like SSIS, that makes this approach even more useful in context.

Pipelines
This section introduces pipelines and some recommendations for their use in
BizTalk solutions.

What are pipelines?
Pipelines are one of the least understood components of BizTalk server. They are a
mechanism for processing message streams and are a realization of the pipes and
filters design pattern. In this pattern, processing components are arranged in a chain
and each link in the chain consumes the data from the link before it and feeds data
to the link after it. This allows for different stages of processing to modify the stream
that can make the data more useful. Two very important activities also occur in
pipelines, namely, the conversion to or from native formats and XML and property
promotion. An example of a pipeline with different stages would be the following:

1. Decrypt data.
2. Change from flat file to XML.
3. Authenticate the data or the sender.

The previous operations are dependent on order because it would not be useful to
try to convert an encrypted flat file to XML. First, it must be decrypted, then later in
the chain it can be converted to XML.

In BizTalk, these links in the chain are pipeline components and the chain they are
a part of is a pipeline. For example, most of the artifacts in BizTalk pipelines, which
have a .btp extension, are graphical representations. This helps us to see quickly
which components are executed in what order and whether they are kept with the
graphical concepts that drive BizTalk development.

BizTalk Development Guidelines

[76]

Stages in a receive pipeline
The chain of components formed by a pipeline is segmented into different sections
to help us organize and focus our efforts. These sections are called stages and each
represents a specific opportunity to manipulate the message stream in a certain way.
An empty receive pipeline is shown in the following figure, complete with its stages:

Decode

Drop Here!!

Disassemble

ResolveParty

Drop Here!!

Drop Here!!

Drop Here!!

Validate

This image shows the four stages of a receive pipeline and how components are
graphically laid out on them. As configured previously, this pipeline is equivalent
to the PassThruReceive pipeline, which, as the name implies, simply lets a message
pass through it unaltered.

Each stage can contain between zero and 255 components and in every stage except
Disassemble, they are executed in the order in which they are laid out on the canvas.
The descriptions of the stages are as follows:

Decode: This stage is designed for decoding, which can include decryption.
Generally, the components in this stage will be used to make the data more
useful for later components. Decryption is a good example because, without
it, no other stage can process the data in a meaningful way. S/MIME is also a
format that requires decoding, which would be done in this first stage.

•

Chapter 3

[77]

Disassemble: This stage is responsible for determining which schema the
data conforms to. This is done via a process called message probing, which
inspects the message to determine the message type. In the case of XML
messages, this is the namespace and root element node name. In the case
of a flat file, this would be the layout of the raw flat file and would use the
flat file schemas specified in the flat file disassemble pipeline component.
This stage is also responsible for splitting messages apart. Both flat files and
XML documents with envelopes can be used to break a batched message
into individual submessages. This stage will produce one output message
for each of the batched messages if batching or envelopes are used. Finally,
this stage is also responsible for promoting properties that are often used for
content-based routing in BizTalk. The first component in this stage that can
identify the data will be used to process it and all the following components
will be skipped.
Validate: This stage is used to enforce schema constraints of the previously
resolved schemas. The XML Validator is the most common component
used in this stage and works for both flat file schemas as well as traditional
XML schemas. If you use constraints in a schema such as types, lengths, or
required fields, this is the stage that will enforce them; suspending messages
that do not conform.
Resolve Party: This stage is used to determine the sender of a message
normally via the certificate thumbprint that was used to sign the message.
Later components in BizTalk can use this information to determine how to
process a message or where to send a response for a particular sender.

As we discussed type resolution in Chapter 2, Introduction to BizTalk Development,
schemas in BizTalk are resolved by namespace and root element name in a global
catalog. The XML Disassembler can be used to explicitly match a message to specific
schema and thus resolve the name collision. To do this, you specify a Document Spec
in the XML Disassembler component. The document spec name is the mechanism
BizTalk uses to identify a schema in the DocumentSpec table of the management
database. It is a fully qualified .NET name consisting of [type name], [assembly name],
[version], [culture], and [public key]. An example would be as follows:

PRP.OrderProcessing.ExternalSchemas.PurchaseOrder, PRP.
OrderProcessing.ExternalSchemas, Version=1.0.0.0, Culture=neutral, Pub
licKeyToken=0e3c97569ac5667e

If that looks like a mouthful, you're right, it is, but this is how the GAC in .NET
works and, as we covered in the last chapter, it does a specific job and works. You
would need to do this if you had two different schemas with the same namespace
and root element name in the same BizTalk group, which might happen if multiple
applications use the same web services.

•

•

•

BizTalk Development Guidelines

[78]

Stages in a send pipeline
The send pipeline works in almost the same way as the receive pipeline, but in
reverse. This pipeline contains only three stages as there is no party resolution
concept in a send pipeline. An example of a send pipeline is shown as follows:

Pre-Assemble

Drop Here!!

Assemble

Drop Here!!

Drop Here!!

Encode

In this pipeline, the Pre-Assemble stage is designed to host any custom operations
that should take place before the message is assembled (either as XML or flat format)
and encoded. The Assemble and Encode stages work exactly like before, only
this time they are undoing those equivalent operations from the receive pipeline.
Assemble can combine multiple messages into a single message and can also convert
from XML to flat file if needed. Encode is the last stage to process the message
stream and can be used for encryption or other operations that happen immediately
before the message is sent "on the wire".

Pipeline components
Pipeline components are .NET or COM components that are designed to work at a
specific stage of a pipeline. They are either designed for send or receive pipelines
and normally address a specific task such as decryption. Pipeline components are a
good method for reusing custom messaging logic; once created, pipeline components
can be added to the Visual Studio toolbox by right-clicking the toolbox and selecting
Choose Items. Thankfully, the need to create custom pipeline components is fairly
limited and you can go through many projects without them at all.

Chapter 3

[79]

If you need to, however, the BizTalk Pipeline Component Wizard on codeplex
(http://btsplcw.codeplex.com) is my favorite way to create pipeline components.
It is an easy-to-use tool that walks you through the pipeline component creation
process via a friendly wizard.

Metadata and message context
Pipelines are the place where message context and metadata are normally assigned.
Every message in BizTalk has metadata associated with it. This metadata describes
the message itself. In very simple cases, the metadata would include the name of
the receive port. In the following, we can see an example of message metadata in
a screenshot taken from the BizTalk Administration console:

We can see a lot of information here and we can also see that some of it is
marked as promoted. Promoted properties, as we covered before, can be used for
content-based routing. Other properties, which are written, but not promoted,
cannot. Understanding message context is an important aspect of working with
BizTalk. In the process of promoting a property, the BizTalk runtime copies the data
out of the message and into the Context. This makes the value quickly accessible for
routing and other operations, which are the core purpose of property promotion, but
it also adds to the size of the message context. It is a good practice to only promote
those properties which you will need. Property promotion is covered in detail
shortly. There are also size limits to the data that can be promoted.

BizTalk Development Guidelines

[80]

Please note that this is different from the distinguished field concept
we saw recently, which only provides a reference or pointer to the
data within the message itself.

One of the places I have needed to use custom pipelines before was to promote
message properties, especially those that exist in the message, but are not promoted.
This is an easy operation once you have your pipeline component created and can be
accomplished with this single line of code:

inmsg.Context.Promote("Property Name", "Property Namespace", "value");

Stream processing
Stream processing is at the core of BizTalk Server's scalability. Stream processing
is nothing new, but is still a concept most developers are not terribly familiar with.
I know it wasn't until I worked with BizTalk that I really understood the power
of stream processing. Fundamentally, stream processing is about breaking work
into small enough pieces, so that they don't consume excessively large amounts of
memory. Anyone who has ever written code to process flat files is familiar with the
ReadLine() concept. ReadLine() saves a program from having to load an entire file
into memory for processing. The line functions as a buffer and the program simply
reads one line at a time. Most of the classes in System.IO namespace are stream-
based and this is why they can work quickly and efficiently with large files.

BizTalk builds upon this concept and implements it throughout the product.
Pipelines are stream-based; at runtime every component in a pipeline simply calls
Read on the components before it and data is piped from one stream to the next for
processing. This is why they are called pipelines and this is why they can process
extremely large files without taking up the entire memory of the server or crashing
any processes with the dreaded OutOfMemory Exception.

Stream processing is also used in mapping as well as in BAM and reading from
and writing to the message box database. Generally, all that is needed to create
your own streaming component (and you should always stream if you're writing
custom code in BizTalk) is to implement a class derived from the abstract class
System.IO.Stream. You then choose which methods to implement to provide
the behavior you require.

Chapter 3

[81]

Summary
In this chapter, we covered a large array of BizTalk development best practices
including determining where to place logic in a solution, how to best use
orchestration, and how pipelines work. All of these practices will be put to
use in part II of this book.

Operating BizTalk
This chapter introduces BizTalk Server 2010 operations concepts that are critical
for architects and administrators to understand in order to build and run BizTalk
solutions. This chapter will provide an overview of operational architecture and
will explain how to scale BizTalk installations. It will also introduce the deployment
process for BizTalk solutions, and then introduce performance tuning and
troubleshooting.

This chapter covers the following topics:

Operational architecture
Scalability
High availability
Disaster recovery
Performance optimization
Deployment process
Troubleshooting BizTalk issues

Understanding BizTalk operational
architecture
We have already explored the core conceptual architecture of BizTalk Server 2010,
but now we will delve more deeply into how this architecture fits into the real world
of Windows Servers and applications.

•

•

•

•

•

•

•

Operating BizTalk

[84]

At its core, BizTalk is a .NET application built on top of SQL Server. This already
tells us that we have two definite dependencies: SQL Server and Windows Server.
We also have a core dependency on Active Directory to provide a service account
and user access and control; that said, in smaller environments, BizTalk can use local
groups, but this does not scale well. The core set of servers involved in a BizTalk
environment are shown in the following diagram:

Active Directory

BizTalk

BT

SQL Server

These three servers are the core moving parts in any BizTalk environment. SQL
Server hosts the message box and all the other databases. BizTalk provides most of
the processing and Active Directory provides authentication. This book does not
cover Active Directory, as that is already expected to be running in your enterprise,
but the other two will be explored in detail.

Administering BizTalk Server
Most administration and operation tasks for BizTalk Server are performed in the
BizTalk Administration console; an MMC Snap-In designed to provide access to
all the settings in a BizTalk group through a single interface. MMC provides a
common user interface approach for Windows administration tasks and the use
of an MMC Snap-In makes BizTalk very familiar to most administrators. Like
most MMC Snap-Ins (IIS, Active Directory, and so on), there are three panes
in the BizTalk Administration console Snap-In from left to right: navigation,
information, and actions.

Chapter 4

[85]

As you click on different nodes in the left navigation pane, a different context comes
up in the center and right panes. The right Actions pane changes further when
different objects are selected in the center information pane. This context allows
us to change specific settings more easily depending on where we have set our
focus in the console.

The root node in the navigation pane displays a Console Root folder with the
BizTalk Server Administration and Event Viewer (Local) nodes beneath it. By
default, the first node will have the BizTalk group of the local machine listed within
it, but by right-clicking the BizTalk Server Administration node, we can connect
to other BizTalk groups. This allows us to remotely administer multiple BizTalk
groups from a single workstation. It also allows us to perform most administration
tasks without logging into the BizTalk Servers directly. When connecting to
a BizTalk group, we actually provide the connection information for the
management database, which is the brain of BizTalk.

Operating BizTalk

[86]

Within the BizTalk group, there are three primary areas of the console that we use to
manage our solutions; each is represented by a node. They are introduced as follows
and can be seen in the previous screenshot:

Applications: This node houses all the applications deployed to a BizTalk
Server group. It is from here that we can configure and control specific
applications in BizTalk. An application in BizTalk is the logical grouping
for a set of related artifacts that normally form a solution. Within each
application, the artifacts are categorized in the nodes, as shown in the
following screenshot:

These nodes largely correspond to concepts that we covered in the previous
chapters. When our BizTalk application deploys locally from Visual Studio,
all the assemblies should deploy to the same application, and thus be part
of the same "solution". This view will list all artifacts from any assembly
deployed to this application. Policies are BRE rule sets; this is their formal
name. Send Port Groups are simple grouping mechanisms for the Send
Ports. Role Links tie parties to ports and orchestrations.
Parties: These are mechanisms for working with trade partners and are
particularly suited to solutions that require the same general processing for
messages, but may need to send the results, or intermediary requests, to
different endpoints. Parties are heavily utilized in B2B scenarios to create
easily extensible solutions. A party can represent a trade partner or another
system or division within the enterprise and is a key factor to EDI.
Platform Settings: This is the place where the settings for a BizTalk group
and all its subordinate objects reside. Hosts, host instances, servers, message
boxes, and adapters are all configured here. As the name implies, this is
where we work with settings that affect the core BizTalk platform.

•

•

•

Chapter 4

[87]

Scalability in BizTalk Server
According to Wikipedia, "scalability is the ability of a system, network, or process to handle
growing amounts of work in a graceful manner, or its ability to be enlarged to accommodate
that growth". There are generally two types of scalabilities in the computer world:
scale up, which means moving to a larger and more powerful server, and scaling out;
which means adding more servers. For most software, scaling up is the simpler or
even the only path. BizTalk is fundamentally designed to scale out with no changes
needing to be made for the software running a solution. As we move further into
the era of multicore processors, we are actually blurring this distinction and shifting
more to the scale out model, even when we choose to scale up. Only software and
platforms that are made to be parallel can take full advantage of the multicore
architectures now prominent in the industry.

Scaling SQL Server
There are two specific areas where BizTalk can scale out. The first and generally most
important is the SQL Server area. SQL Server is frequently a bottleneck for BizTalk
solutions. Often, this confuses administrators, even ones who know SQL Server,
because they see low utilization on BizTalk Servers and don't see high utilization
on SQL Servers. Most often, this is because SQL Server tends to be a disk bound
application, meaning that the real bottlenecks tend to be the disk queues of SQL
operations waiting to take place.

BizTalk Server has been carefully designed to fully exploit SQL Server in an
extremely optimized manner, and subsequently exploit the BizTalk databases,
specifically the message box, which should not be on a shared SQL instance used by
other applications. In fact, the message box should have its own instance separated
even from the other BizTalk databases.

While we're on the subject, now is probably a good time to raise a very important
caveat about the message box. During configuration of BizTalk, the Maximum
Degree of Parallelism (Max DOP) setting on your SQL Server will be changed to
one (1). This is because the message box is a highly tuned database that works very
differently from most other databases. The job of most databases is to hold data that
will be returned as record sets. The Max DOP setting controls how SQL Server will
try to run queries in parallel to each other to speed up their results. It is an instance-
wide setting in SQL Server and defaults to zero (0), which allows SQL Server to use
all available processors. For nearly all databases, the default Max DOP setting allows
SQL Server to perform the query and return the data faster by breaking the query
up amongst the processors on the server. This is a divide and conquer approach if
you will. This optimization in SQL Server will actually harm the performance of the
message box database. The message box is structured in such a way that setting

Operating BizTalk

[88]

the Max DOP to any value other than one will cause the message box operations
to slow down. This is because the operations performed on the message box are
generally single record (and small record at that) operations. The overhead to
parallelize them turns out to be more than beneficial from executing them in parallel.
This will cause BizTalk to slow down if the SQL instance hosting the message box
has the Max DOP set to any value besides one.

Having said all this, the other databases that make up BizTalk actually benefit
from not setting the Max DOP to one. This is a great demonstration of why you
may want to consider multiple SQL Servers or at least multiple instances for your
BizTalk installation. Generally, SQL Server should be configured into two instances:
one for the message box and one for all other databases. These can all be on the
same physical server, but they should be separated from other databases and from
each other. Newer versions of SQL Server do allow tighter resource control over
databases, but this is still good advice for SQL 2008 R2. Within these databases, it is
also a good idea to separate indexes from data storage to improve performance.

Adding more SQL Servers, or even just instances, to your BizTalk installation is
a way to scale out the SQL Tier of your environment, but BizTalk also provides
another way to scale out SQL Server by creating multiple message boxes. The idea is
that one message box functions as the master message box, managing subscriptions,
and the others function as runtime message boxes for delivering matched
subscriptions (that is, starting orchestrations and send ports). This allows the master
message box to focus only on subscription matching and thus it performs even
better. It is suggested that if you create separate message boxes, so that you have at
least three in total, then one should master and the other two should be publishing,
due to the extra overhead involved in using multiple message boxes. The intention
is that these message boxes can each exist on different servers or at least on different
SQL instances.

This is a very sophisticated technique and approach to addressing scalability, but like
many tasks in BizTalk, this turns out to be surprisingly easy to accomplish. Simply
right-click the Message Boxes node in the BizTalk Administration console (under
Platform Settings), select New, and then select Message Box….

Chapter 4

[89]

This will bring up a configuration dialog allowing you to specify the server and
database name for this new message box. After you have created your new message
boxes, you can go back to the master message box and disable new message
publication, which will instruct the master message box to only perform routing
and subscription matching. This entire operation can be performed while the
platform is running.

If you ever need to remove a message box, you simply disable new message
publication and let it continue running, then delete that message box.

Please note that you cannot delete the master message box without
designating a new one.

Scaling BizTalk Server
After sorting out any SQL Server issues and scaling challenges, the next place to
consider is the BizTalk tier. There are two ways to scale out the BizTalk tier: one is to
add more hosts and host instances to the group, and the other is to add more servers.
Both turn out to be quite easy in BizTalk.

Operating BizTalk

[90]

Adding more hosts and host instances
To add more hosts, you simply right-click the Hosts node in Platform Settings and
select New | Host… from the context menu. The dialog that will appear is shown in
the following screenshot:

In this dialog, you can specify the name and the Windows group that the host users
will need to be a part of. You can also choose to mark a host as 32 bit in case you're
working with components that do not support 64 bit runtime. Allowing different
Windows groups for hosts enables us to strictly control security permissions. If we
have a location that receives (or sends) messages to a non-secure endpoint, we can
isolate the execution of that port or location by using a less privileged account; this
will help enforce security within our application. Once you create the host, you
perform a similar operation to create a new host instance for that host. If you now
left-click the Host instances node, you will notice that the Actions pane, on the far
right, provides an alternative to right-clicking for a context menu.

Chapter 4

[91]

Clicking New here is the same as right-clicking and selecting New | Host Instance
from the context menu. Again, this is common in all MMC Snap-Ins. From this dialog
we configure the settings for a specific host instance shown as follows:

These settings consist of Host name:, which would be the host we created before,
and the server within the group on which to configure this host instance. We must
also provide Logon: credentials for the Windows service that will be automatically
created on this server for us. We can optionally decide to make sure this host
instance is not capable of starting. This can be useful if we're setting up new hosts
and instances on many servers, but are not yet ready to start them. We will see this
presented more thoroughly later in this chapter, in the section, Presenting the best
practices for BizTalk configuration.

Operating BizTalk

[92]

Adding more servers to the group
This step is a little more complicated, but only a little. All you have to do is install
BizTalk on the new server and then run the BizTalk Server Configuration tool on
the new server. When the wizard opens, click on Advanced Configuration and
under Enterprise SSO, select Join an Existing SSO System, and under Group, select
Join an existing BizTalk Group. Once this is done, the last task is to create host
instances on the new server for all existing hosts; the same process we just did. As
soon as we start the new host instances through the BizTalk Administration console,
the new server will immediately begin processing the transactions. Adding new
servers to the BizTalk group turns out to be very simple and enables us to quickly
stand up with more capacity as needed.

As more servers are added to the group, they simply continue to pull work items off
the queues independently. The more servers in the group, the more work it is able to
perform. There is no practical limit to the number of servers that can be added to a
BizTalk enterprise installation.

Exploring high availability in BizTalk
High Availability (HA) is the ability of an environment to deal with failures or
outages without causing service or processing interruptions. For example, failures
would be the loss of servers or services within the environment. BizTalk gives
us a good degree of high availability inherent in the group concept, but the same
is not true for SQL Server, or some of the other services involved in our BizTalk
installation. The following are some examples of how to make your BizTalk
installation highly available. There is an excellent poster available from Microsoft
that details scaling out BizTalk Server that is located at http://www.microsoft.
com/download/en/details.aspx?id=15223.

High availability in SQL Server
SQL Server can be made highly available with Windows clustering, now known as
Failover Clustering. Failover clustering has been around in the Windows platform
since NT 4 and has been improved with each release. This technology is meant to
provide failover for services in Windows environments. The basic idea is that the
cluster is a logical construct consisting of two or more nodes (nodes being Windows
Servers); clients connect to this logical resource rather than a specific server. Only
one node is active at any given time with the others being passive, but they are
all capable of being active in the event of an active node failure. This switch over
happens automatically and is the core feature of the Failover Cluster. Failover
Cluster allows us to run services in the cluster and ensures that an instance of the
service will be running on one of the nodes in the cluster. It is really a way to treat

Chapter 4

[93]

multiple servers as a single computing resource that has much higher uptime due to
the ability to transfer the service to a passive node. This is exactly how SQL Server is
clustered. Because SQL Server ultimately stores data on disk, this storage must be a
shareable resource, normally on a SAN. The active node logs transactions and works
the same way as SQL Server normally does. When the active node fails, one of the
passive nodes becomes active, takes control of the storage resource and starts the
SQL service. This failover process is demonstrated in the following screenshot:

Disk Disk

Before Failure After Failure

PassiveActive ActiveFailed

After the failover, clients continue to use the same resource to connect to the new
server because the resource is a logical resource that exists in the cluster. In BizTalk
Server, this failover is automatic. Running host instances will lose connectivity to
the message box database at the time of SQL failure and will automatically attempt
to reconnect repeatedly. As the passive node becomes active, these connections will
succeed, and BizTalk will continue processing as if nothing had happened. More
configurations are covered in the section, Examining Sample Installation Topologies,
later in this chapter.

Clustering centers around making storage, networks, and the application's
cluster resources. All this is done through an MMC Snap-In that is part of the
Windows Server Manager and is a feature that can be installed in Windows
Server. MSDN contains a great amount of information about configuring failover
clustering and specifically clustering SQL Server located at http://msdn.
microsoft.com/en-us/library/ms189134.aspx. To configure a cluster, this
documentation will be the most up-to-date and best resource for you to use.
Although it provides extremely advanced features, Failover Cluster is a fairly
simple technology to work with and I strongly encourage you to experiment
with it. It is critical for getting high availability out of Windows Server solutions.

Operating BizTalk

[94]

High availability with clustered BizTalk hosts
The BizTalk runtime can also be clustered much like SQL Server. There is limited
applicability for when to do this because the group concept in BizTalk provides a
large degree of high availability automatically. This is precisely why persistence
and durability are so critical to BizTalk's scalability. Adapters use a transaction to
deliver a message to the message box. Once it is there, it is marked for processing
in a transaction and eventually marked as "processed" in another transaction. Every
part of BizTalk functions in this transactional manner; including orchestration. If
an orchestration were running on a server that simply went dark (power failure
perhaps), the BizTalk runtime would detect that this orchestration was no longer
running and would load it to another server from its last persistence point. This is a
pretty sophisticated capability and, like most of BizTalk, is something we just get for
free as part of the infrastructure.

There certainly are instances where clustering BizTalk hosts is a good idea. A good
example is for adapters that are not safe for parallel operations, such as the FTP and
MSMQ adapters when used for the receive operations. Because the FTP protocol
does not provide a way to lock a file, there is no way to know that the file is being
read by another host instance. If our environment had two BizTalk Servers, each
running a host instance with an FTP receive, we could very well have the same file
read into BizTalk twice. This would not be a desirable situation.

The solution to this is to allow only one host instance to run these adapters. This is
easy to specify in the BizTalk Administration console. To do this, we simply create
a new BizTalk host and then assign the adapter handlers that we want to run in
this host. The handler is the binding between an adapter and a host. Adapters can
have many handlers for different hosts and have different ones for send and receive
operations. This allows us to have a fine-grained level of control over the partitioning
of our solutions in our environment. Creating a host was covered previously and
assigning the handlers is fairly easy. In the BizTalk Administration console, expand
the Platform Settings node and click on Adapters. The list of configured adapters
is displayed. If you click on a specific adapter, in our case the FTP adapter, you are
shown which handlers are set up for both send and receive operations. If we double-
click Receive, or click the Properties option in the actions pane, we can change the
assigned handler; that is, which host this operation is bound to. In the following
screenshot, we can see that the Receive handler has been assigned to a host named
SingleInstanceHost:

Chapter 4

[95]

We can also use the New operation to create new handlers, so that certain
applications use one host for an adapter and others can use another host. In the
previous scenario, we could easily create a poor man's cluster by marking the host
instance as disabled on all servers except one. This would ensure that the host
instance only ran on one server. Unfortunately, however, it would not provide
automatic failover. Failover would require an administrator enabling, and then
starting, one of the other host instances.

To accomplish real clustering of the host instance, we need to create a cluster
resource like before. Clustering a host instance is similar to clustering SQL Server,
though it does not require shared storage for data files. This is shown as follows:

Operating BizTalk

[96]

Understanding disaster recovery
Disaster recovery is generally one of the least understood parts of BizTalk Server.
This could be because the product does so much for us that we don't give serious
thought into how it works, until there is a disaster. The vast majority of BizTalk
installations are not set up properly for disaster recovery. This section will outline
how disaster recovery works in BizTalk and how to make sure it is working correctly
in your environment.

Unlike high availability or scalability, disaster recovery is what we turn to after a
true disaster, such as fire, flood, or earthquake. These are the sorts of disasters that
wipe out entire data centers. These types of disasters can be extinction-level events
for many enterprises. IT has a long history of planning to cope with these sorts
of disasters.

BizTalk has several specific aspects that require more planning and discipline for
disaster recovery than most applications. Unlike many applications, you cannot use
the raw data and transaction log files in BizTalk to perform disaster recovery. In fact,
you can't even use the normal SQL disaster recovery plans that most enterprises
have already established. Generally, most enterprises create a backup job that simply
backs up all the databases on a server. This will not work with BizTalk. This is
because BizTalk involves many databases that interact with each other often through
DTC. The use of multiple databases is why BizTalk can be so well distributed and
can scale so well, but it requires the databases to stay in sync with each other. This is
also why mirroring cannot be used in SQL Server, because mirroring cannot ensure
transactional integrity between multiple databases. BizTalk is backed up through the
concept of log shipping.

In SQL Server, a database is represented by two (or more) physical files; a Master
Data File (MDF) and a Log Database File (LDF). The MDF stores all the data
for a database and the LDF is where transactions are actually written before
being committed. This allows SQL Server to defer some processing and to hold
intermediate results (or on-going transactions) without changing the current state
of the database until a transaction is complete. This is critical for providing rollback
capability and also for making SQL Server able to handle read operations while
simultaneously processing write or update operations. Unless the database is
brought offline gracefully, which normally means processing the transactions into
the MDF, the state of the database will be unreliable without the LDF. Log shipping
involves moving differential snapshots of the transaction log to a new file that can be
used to restore the database without taking it offline.

Chapter 4

[97]

The BizTalk backup job
Backup for the databases in BizTalk is accomplished with transaction log marking
and is performed by the only supported method for backing up BizTalk databases:
an included SQL job designed specifically for this purpose. This job, Backup BizTalk
Server, marks all the databases in a BizTalk group with the same log mark at the same
time. It then copies the differential transaction logs as files to a new location. This
multi-database synchronized marking and shipping is shown in the following figure:

Transactions

Message Box Management DTA

Log Log Log

Log Shipping

The job runs by default every fifteen minutes; once per day, it creates a full backup of
all the databases, the other times it creates only the transaction logs. Unfortunately,
for many BizTalk environments, this job is not configured to run by default because
it requires a location to move the files to. This location should be a network share or
on a SAN. As soon as you set a location in the backup job configuration, you can and
should enable this job.

Ultimately, this is also only half the process, the other half is configuring a
destination for these transaction logs to be imported into. The destination SQL Server
for a restore will use the backup files and the differential logs to recreate the state of
the original databases on the new server. This does mean, however, that we could
lose some transactional history if we perform a true disaster recovery. The maximum
amount of data lost is the time window that the BizTalk backup is scheduled to
run in, which defaults to the previously mentioned 15 minutes. This value can be
lowered or increased depending on your requirements.

Operating BizTalk

[98]

Standing the new BizTalk environment up
The destination SQL Server has several jobs that run on it to help it track and process
the backed up files. When time comes to stand this server up as the replacement, you
disable the jobs that import log files and run a restore job (these jobs are created for
you with scripts that ship with BizTalk). You then run other scripts on the individual
BizTalk Servers in your new environment to configure them to point to this new
database. If these are completely new servers, you can simply configure them to
join an existing group as if you were adding new servers to a group. The scripts are
really designed for transferring existing servers to point to the new databases. This is
common if you're using backups to restore the BizTalk Servers.

All of this is well documented in the BizTalk documentation and on MSDN, but it
is presented here for clarity. There is, however, one final option to provide disaster
recovery and that is the stretch-cluster or geo-cluster. In this scenario, a node in
the SQL Failover Cluster runs in a geographically remote location. This allows
auto-failover without log shipping, but it requires immense bandwidth and is
currently not feasible for most organizations. Also, due to the laws of physics,
which dictate how fast information can travel over a network, it is not appropriate
for very long distances. It also requires SAN technology that supports mirroring,
which at this point tends to be proprietary and expensive. If you have this
bandwidth available, you could also have nodes of your BizTalk group configured
in the redundant location and disaster failover would be almost completely
automated. Finally, it is important to keep in mind that there is no job that cleans
up the files after the log shipping; they need to be deleted periodically to keep the
shared storage location from becoming full.

Examining sample installation topologies
In this section, we will examine several example topologies for BizTalk installations.
These are provided only for reference and should be used as a guide for designing
your own specific topology.

Chapter 4

[99]

A single application with a single database
In this configuration, there is a single BizTalk Server and a single SQL Server. This is
the most basic configuration BizTalk with which should ever go into production. The
BizTalk and SQL Servers should always be separate machines for scalability reasons;
although, with the growing capability of Intel-based servers, this is becoming less of
an issue. The backup job is configured, but only for moving the files to a fileserver for
safe keeping.

BT

Log Shipping

This base configuration will work well for small environments and it is quick to
stand up, but it lacks high availability and the disaster recovery is weak, though
it is sufficient. Recovering from a disaster will require a lot more effort as no
previous preparation has been made. This configuration is suitable for BizTalk
Standard Edition.

Operating BizTalk

[100]

Dual application with dual database
(active/passive)
This common topology leverages two application servers for BizTalk and a Failover
Cluster for SQL Server. The passive node provides the ability to seamlessly recover
in the event of a server failure on the SQL Tier. It also does not require extra SQL
licenses as the secondary node is passive. Log shipping is used again, but not
completely implemented, as the standby recovery servers are not actively
processing the shipped log files.

BT

Log Shipping

BizTalk 1

BT

BizTalk 2

PassiveActive

Disk

This configuration enables us to afford good high availability. Loss of either BizTalk
Server, or a node in the SQL cluster, will have little impact and processing will
continue automatically. The primary limitation is that due to the passive nature of
the second SQL node, it sits there idle, not processing anything. Combined with the
fact that the Max DOP settings are slowing down our primary SQL instance for some
operations, this is not an ideal configuration. We are also susceptible to overload
on the BizTalk Servers if only one is active, but generally this is acceptable. It is
normally better to run at reduced capacity in a failure than not to run at all.

Chapter 4

[101]

Dual application with dual database
(active/active)
This configuration builds on Dual application with dual database (active/passive) by
making the second SQL node active. This is done by creating two clustered instances
of SQL Servers and designating one to be active on each of the servers. The first
instance runs the message box and the second runs all other databases required by
BizTalk. In addition to the good high availability we had before, we now gain better
throughput and processing as both SQL Servers are processing transactions and the
Max DOP setting only affects the message box instance.

BT

BizTalk 1

BT

BizTalk 2

All Other DbsMessage Box

Disk

Active-Active
SQL Cluster

Mutual Failover

Log Shipping

In the event of a SQL node failure, one server simply runs both instances. This is not
as bad as it sounds, though it will probably reduce our throughput. There is still little
real disaster recovery built into this option as the log shipping of the backup job is
not being read into a live failover database.

Operating BizTalk

[102]

Sample Enterprise topology
This topology has a passive node added to the active/active SQL cluster and allows
high availability failover without performance degradation. There are enough
BizTalk Servers to more than handle the load and Enterprise SSO, and a single
instance host has been clustered as well. The weak point is clearly the shared disk,
but most SANs have some sort of failover capability built into them. In the event of
two SQL nodes being lost, both instances would revert to a single node and would
likely be affected throughout, but would still continue to process. The topology is
shown in the following figure:

BT BT BT BT

Message Box Passive All Other Dbs

Disk

Log shipping-Full

SSO
Clustered Host

SSO
Clustered Host

Remote Site -Warm Standbys

BTBT

Chapter 4

[103]

Importantly, this is the first example of a configured disaster recovery capability.
Not only will this installation run even with the loss of several servers, it is set up
to quickly be failed over to a new remote environment. If practiced well, this can
be done in a short amount of time. The log shipping destination SQL Server is
continually reading the logs as they arrive, so that the databases are up-to-date in
case a failover is needed.

To save costs, the remote sites can simply be warm standbys rather than fully
running machines. This is an area where virtualization technology can really help
us. In my experience, virtualization does not work as well for BizTalk as for other
servers. This is because the BizTalk group concept already encapsulates many similar
features. It is also because BizTalk will use many resources, including ports, which
can harm some virtualization approaches, most commonly through post exhaustion
in high volume scenarios. Also, BizTalk Servers tend not to be greatly underutilized
like the typical low utilization target of virtualization. Importantly, having all
your servers virtualized on one large physical server is not buying you anything
other than a false sense of security. The major risk to most of these components is
hardware failure and if you over-virtualize, you may be opening yourself up to
much more risk than you realize. The benefit to virtualization with disaster recovery
is that we can reduce the costs of keeping a ready and capable disaster recovery
environment. It is generally understood that such an environment will not perform
as well as our primary environment (unless we are prepared to pay twice the cost),
but it is better to have a functioning, but slower, environment for disaster recovery
than none at all.

Walking through the BizTalk deployment
process
As discussed before, BizTalk applications are built using Visual Studio on a
developer's workstation, but when the time comes to deploy to server environments,
we move away from Visual Studio towards more capable approaches. One
of the most critical requirements of software deployment is knowing that the
solution being deployed is exactly what was tested, approved, and intended for
deployment. BizTalk provides us with an MSI installer capability for deploying
BizTalk applications that helps us meet this requirement. The basic steps in BizTalk
application deployment are the following:

1. Compile and deploy solution.
2. Export MSI of application.
3. Import MSI onto target group.
4. Install MSI onto target servers.

Operating BizTalk

[104]

The first step simply deploys the application on our workstation or build server.
From here we want to export an MSI from BizTalk that can be used for installing
the application elsewhere; normally the progression of test, UAT, and production.
This MSI package consists of all the assemblies that contain the artifacts and can also
contain the bindings that tie these artifacts together, as well as any custom assemblies
or pipeline components that our solution requires; even BAM and BRE.

There are two primary ways to export an MSI from a BizTalk Server. One is through
the BizTalk Administration console. Simply right-click the application and select
Export | MSI file…, as shown in the following screenshot:

This brings up a wizard that walks us through selecting which artifacts, dependencies,
and resources will be included in the MSI. We can even bring in global party
information and IIS virtual directories. The other way to accomplish this is with the
BTSTASK.exe command line utility. It is useful to walk through the graphical wizard
to understand how it works, but in automated builds, we will use BTSTASK. This is
covered in detail in Chapter 11, in the section Building and deploying.

The next step is to import the application to the group. This step will create records
in the management database for all the artifacts in the package and thus make
BizTalk aware of them so it can use the loading process we discussed in Chapter 2,
Introduction to BizTalk Development. Just as with export, there is a graphical wizard
for importing MSI packages as well. This wizard is very simple and easy to use;
it allows us to pick an installation path and also allows us to specify the target
bindings. This last part is critical as it allows a single MSI to contain bindings for all
the environments we will deploy it to. The only difference in the installation between
test, UAT, and production is specifying which target bindings to use.

The final step is to install the MSI, which can also be done in the final step of the
import MSI wizard. Unlike the import, which happens once per BizTalk group, the
installation must happen for every BizTalk Server in the group. The installation is the
step that will physically install the assemblies on the server, create an application in
the server's Windows applications list, and register the assemblies in the GAC.

Chapter 4

[105]

The core concept behind the MSI package installation is that we can use the exact
same binary package to install the application on all of our environments. We simply
create different bindings (which are added as resources) for each environment. This
gives us certainty that a package has not changed between environments and that
the core artifacts are the exact same. This can make promotion very controlled and
very auditable. Better still, MSI automatically knows if two packages are the same by
using metadata in the package, so there is less confusion over file names. If you try
to install a package a second time, it will present you with the options to remove or
repair the application.

Presenting the best practices for BizTalk
configuration
As we have seen, BizTalk is a capable, scalable, and a powerful platform for running
messaging and middleware solutions. However, more often than not, it is not
configured in a way that maximizes its potential. The default configuration for BizTalk
creates only one host and one host instance; this means, by default only one .NET
thread pool will be used to run all the processing performed by BizTalk, including
receiving, sending, orchestration, tracking, and BAM. Under these circumstances,
it is very easy for a BizTalk Server to underperform. Typical signs will include low
throughput combined with low CPU utilization. Often, the root cause is thread
starvation as different parts of BizTalk are queued, awaiting processing threads.

Separating BizTalk hosts
The basic recommendation for a BizTalk configuration is to create four hosts and
host instances for each host on every server. These are generally as follows:

Receive host
Send host
Orchestration host
Tracking host

You then assign the receive handlers for all adapters to use the receive host and
the send handlers to use the send host. All orchestrations should be bound to
the orchestration host, which you can mark as the default host. I often name this
host, BizTalkServerApplication, which is the host BizTalk creates for you by
default. The tracking host is now left only to perform tracking (an option in the host
configuration), and in this way, tracking will not interfere with processing. Under
high loads, BizTalk will defer tracking in favor of transaction processing. This allows
the platform to continue servicing requests in overload scenarios as it can catch up
on tracking when the overload subsides.

•
•
•
•

Operating BizTalk

[106]

Host-specific settings
These simple changes will vastly increase the processing capability of any BizTalk
platform and should be performed on any environment. You may want to expand this
host list to include low latency hosts, which are then configured with a lower and more
aggressive polling interval that will allow them to process messages faster. The host
settings in the BizTalk Administration console control the majority of the throttling and
performance settings for BizTalk. Again, these are well covered in the documentation
located at http://msdn.microsoft.com/en-us/library/aa561042(v=BTS.70).
aspx and the default values will work for most scenarios. If you do start to change
these settings, it is important you have set up repeatable stress testing that allows you
to measure the effects of the change. It is also important that you only change one
setting at a time, so as to know what the true effect of the change is.

BizTalk Settings Dashboard, shown in the following screenshot, is the unified
settings interface for all BizTalk performance-related settings. Here we can see that
on the left there is a section to highlight the settings we want to see: Group, Hosts, or
Host Instances. On the right are the settings for the selected entry on the left. As you
change selections, the options available also change. The Hosts and Host Instances
settings also contain different tabs for different sets of settings. The settings for
Group are shown in the following screenshot:

Chapter 4

[107]

HTTP performance optimization settings
In addition to the platform settings in the BizTalk Administration console, there
are a few other critical settings that should be adjusted in BizTalk environments.
The most important is the maximum connections allowed for HTTP based send
adapters, including SOAP, HTTP, and HTTP-based WCF adapters. These settings
are configured in the BTSNTSvc.exe.config or BTSNTSvc64.exe.config file. This
is the .NET configuration file for the BizTalk Server process (the BizTalk runtime).
Because .NET respects the HTTP 1.1 specification, this value defaults to two
concurrent connections to the same server for a given process. This is appropriate
for workstations, but not for servers, and certainly not for BizTalk Servers that are
sending HTTP based requests. Without changing this value, the default limit of two
will greatly reduce the throughput of any BizTalk solution making use of HTTP
based send ports. The configuration change required is shown as follows and all
you must do is add this to your existing configuration file:

<configuration>
 <system.net>
 <connectionManagement>
 <add address="*" maxconnection="10" />
 <add address="www.novaenterprisesystems.com" maxconnection="25"
/>
 </connectionManagement>
 </system.net>
</configuration>

As we can see from this configuration element, we can specify DNS names and
specific connection settings for them. We can also use IP addresses for this purpose
or the asterisk (*) as a wildcard.

A thorough covering of these and more performance settings is available on MSDN
at http://msdn.microsoft.com/en-us/library/ff629772(v=BTS.70).aspx.

Operating BizTalk

[108]

Troubleshooting BizTalk issues
In addition to letting us configure and administer BizTalk applications, the
Administration console also acts as our window into a running solution and
environment. When you click on the group node in the navigation pane, the page
shown in the information pane is the Group Hub page. This page gives us an
overview of the current state of the applications in that BizTalk group. The
Group Hub page contains the following sections:

Configuration Over: This section lists the name of the group, the location of
the management database, and also the state of applications, host instance,
and adapter handlers, depicted with green, blue, and red icons, respectively.
In a production server, all nodes should generally be green. This makes it
much easier for everyone to quickly tell that everything is running.
Work in Progress / Suspended Items: This section lists running service
instances on the left and suspended service instances on the right. Service
instances can be send ports or orchestrations (anything that subscribes
to messages). This dashboard allows us to quickly see how many service
instances are running or, more importantly, suspended in our group.
Well-designed BizTalk solutions should not produce suspended messages.
Suspended messages mean something is wrong and needs to be corrected.
This aspect of BizTalk is critical, as it is not designed to hold too much
information for too long, but to pass the information on and move it out of
the message box.
Grouped Suspended Service Instances: This section displays similar
information to the previous section, but the results are grouped together by
application, error code, service name, or URI.
Tracked Service Instances / Tracked Message Events: This section displays
links to queries that will show us any messages or service instances for which
tracking has been enabled.
EDI Status Reports: This section displays transaction reports for
B2B solutions.
EDIINT Status Reports: This section displays status reports for the transport
normally used by B2B solutions.

Clicking any of the links in the previous sections will bring up details about
that subject; for all sections other than configuration overview, the details will
be new tabs in the information pane displaying a query. The query tool in the
Administration console is the same for all this information, but allows us different
context depending on what we're examining. An example, Suspended Service
Instances, is shown as follows:

•

•

•

•

•

•

Chapter 4

[109]

In this screenshot, we can see the query expression that was used to build this
specific view. The query tool itself consistently follows the same pattern that
allows us to select: Search For, Operator, and Value. Depending on what we select
in Search For, the options for Operator and Value change. Mostly, the option for
Operator is Equals, but for time based values like suspension time, greater than
and less than operators are available for using with a date and time based value.
Other Search For options will list specific sets of values to choose from; some
allowing free text entry. This tool is used to help us create queries that display
views we may specifically be interested in. We can save queries for later use to
help in troubleshooting specific issues.

If we right-click on one of the results of the query, a context menu appears; this menu
also changes depending upon the context of the selected item. For messages, the
menu appears as follows:

Operating BizTalk

[110]

Here we can see details about the message, including its content and context, as
well as having the option to resume or terminate the message. For orchestrations
in this results pane, an option Orchestration Debugger is present that allows us to
graphically trace through an orchestration to see which shapes were executed and
when. This can be a very useful tool for debugging issues with orchestrations, but
should be used sparingly.

This same query tool allows us to view tracked service instances and message events.
This capability, formerly done through the Health and Activity Tracking tool (HAT),
which has since been largely retired, allows us a window into the past processing
activities that have taken place in a BizTalk group. As we discussed previously,
BizTalk, by default, internally tracks a great deal of information on what processing
has taken place in the DTA database. On any port or orchestration, we can specify
what level of detail we want to track down to complete a message- or property-
level detail before and after pipeline processing. This can be turned on or off by an
administrator in the BizTalk Administration console through the Tracking tab of the
configuration for a specific port or orchestration. This capability greatly aids us when
we start experiencing issues and can be performed in any environment, including
production. That said, there is a cost to overusing tracking information. The DTA
(tracking) database will grow extremely large if we track too much detail for too
many service instances. This will also impact the throughput of our environment
by causing more database writes and general IO operations. As useful as this
tracking information is, it should be used sparingly. If we want visibility into
processes, Business Activity Monitoring (BAM) is a much better approach than
tracking information.

Summary
In this chapter we have learned how BizTalk runs on servers in our environment
and the different roles and servers required for building scalable and reliable BizTalk
installations. We learned about scalability and high availability, as well as disaster
recovery. We also examined sample topologies and their benefits and requirements.
We ended with some configuration best practices and a brief introduction to
troubleshooting issues in BizTalk Server. This concludes Part I of the book.

Part 2
Basic Messaging Solution

Unit Tests and BAM

Leveraging Orchestration

The WCF-SQL Adapter and
WCF Services

Expanding the Solution with Services
and Rules

Envelopes, Flat Files, and Batching

Completing the Order
Processing Solution

Asynchronous Solutions

Performing Parallel Processing
and Branching

Processing Message Convoys

Part 2
The rest of the book will cover the story of Performance Racing Parts (PRP); a
company just beginning to use BizTalk Server. PRP is a distributor of car and
motorcycle aftermarket components. The company has been around for thirty years
and has experienced rapid growth in the last ten. PRP sells parts via its own call
center application and a public facing website. PRP also receives sales through a
mail order catalog that is outsourced for processing. PRP recently purchased an
inventory management system and is currently assessing how to integrate it into
their enterprise which contains a CRM system. Eventually all purchase orders must
be sent to the new inventory management system for processing. As a stop gap,
orders today are entered a second time manually. The company assessed integration
and middleware products and has decided to try out BizTalk Server. You have been
tasked with implementing their solutions.

Basic Messaging Solution
This chapter will walk through the first BizTalk solutions for Performance Racing
Parts (PRP). These solutions will be messaging only, but leverage useful and
expressive designs.

Pass thru messaging scenario
The IT Director at PRP decides that a quick and simple project with low risk is the
best path forward with BizTalk. You review the project backlogs and find a request
by the finance department to consolidate reports from the different ordering systems
in the enterprise to a single file share. Currently, this is a manual job that often loses
reports and takes time from IT staff to copy files; aspects that make it disliked by
IT as well as finance. Initially, the idea was to write scheduled task scripts to copy
the files, but you decide that BizTalk can do this as well. Further, this process can
change and may use SharePoint or FTP in the future, so the company would prefer
a configuration approach over a code-based approach.

You must create a simple BizTalk solution that will receive binary files from two
directories and copy them to a single destination. One directory is for call center
order reports; the other is for website order reports. As this project is a pass thru
messaging solution it will only involve using the BizTalk Administration Console:

1. Open the BizTalk Server Administration Console (Start | Programs |
Microsoft BizTalk Server 2010 | BizTalk Server Administration Console).

2. Expand the BizTalk Group node.

Basic Messaging Solution

[114]

3. Right-click the Applications node and select New | Application….

4. Name the application Order Processing.
5. Expand the new Order Processing application, right-click the Receive Ports

node, and select New | One-way Receive Port…. Name this new port
OP_Receive_Reports and click OK when done. The naming convention
follows the basic pattern [Application]_[Direction]_[Noun]. This will help us
organize the artifacts in this solution over time. More information is provided
in the appendix under Naming Conventions.

6. Click the Receive Locations item on the left side of the Receive Port
Properties dialog that you just created and click New… on the right side.
Name this receive port OP_File_Receive_Reports_CallCenter and select File
as the transport type.

Chapter 5

[115]

7. Be sure not to change the Receive Pipeline. It should remain the default
PassThruReceive.

8. Click on the Configure button and set this new location to point to the
pickup folder C:\BizTalk\PRP\CallCenterReportDrop with a File
mask of *.* as shown in the following screenshot:

9. Click OK to close each of the dialogs.

We now need to create a send port that will send the files to our destination location,
which is very similar to the receive location we just set up.

1. Right-click Send Ports in the Administration Console and select New |
Static One-way Send Port.

Basic Messaging Solution

[116]

2. Name this send port OP_File_Send_Reports and select FILE as the Type.
Click on the Configure button and set the transport properties so that the
destination folder is C:\BizTalk\PRP\SendReports and the file name is
%SourceFileName%; the port should resemble the following screenshot:

3. Now we must connect our Receive Port to our Send Port. This is done via
Subscription and the simplest form of subscription is the Send Port Filter.
This type of filter, as the name suggests, is configured on the send port itself.
On the left side of the Send Port Properties dialog click on the Filters node.
Then click on the Property column to select a property to filter by. You
|will notice there are many properties, but we are only interested in the
BTS.ReceivePortName property. Keep the default operator of == and type
in the Value of OP_Receive_Reports. This is the name of the receive port we
created before and will be used to connect the two ports together.

Chapter 5

[117]

4. Click OK to close the send port configuration dialog.
5. Finally, we need to start these ports in order for messages to flow through.

The easiest way to do this is to right-click the Order Processing application
in the Administration Console and select Start.

6. Accept the default properties in the next dialog and click Start.

You should now be able to drop any file in the receive location (C:\BizTalk\PRP\
CallCenterReportDrop) and it will be routed to the send location (C:\BizTalk\
PRP\SendReports).

If this does not immediately work, the most likely cause is that the user account
under which the BizTalk host instance is running does not have permission to either
receive or send paths. If you have not already done so, grant this user Full Control to
C:\BizTalk\PRP.

The File Receive adapter will need a specific permission that is
part of the Modify set of rights, but is not granted by default;
this is the Delete Sub Folders and Files option, which can be
granted in the Advanced tab of Windows Explorer. It is simply
often easier to grant Full Control.

The second most common cause will be if the subscription is not entered correctly.
This is where typos can cause some headaches in BizTalk. To see if the message has
suspended you can refer to Chapter 4, Operating BizTalk.

Basic Messaging Solution

[118]

Examining the solution
Let's review exactly what's happening at this point in this solution. This is explored
in detail in Chapter 2, Introduction to BizTalk Development, but we'll summarize here
for convenience:

1. Message (File) is received as raw binary by file adapter.
2. Message is submitted to message box.
3. A subscription matched for send port OP_File_Send_Reports on messages

from received port named OP_Receive_Reports.
4. The subscription is filled (that is, work item queued) for send port OP_

Receive_Reports which retrieves the work item and uses the file adapter to
write out to the file system as raw binary.

At first glance, this may seem like it was a lot of steps, but we didn't write any code
or have to do any extra work to get reliability, locking (concurrency), persistence,
high availability/scalability, and tracking. These are all features that come as part of
the BizTalk platform and did not require custom code.

Now let's see how much more work it is to add another receive location to handle the
web sales reports.

Adding a second receive location
Right-click Receive Locations in the BizTalk Administration Console (under the
OrderProcessing application) and select New | One-way Receive Location.

1. You will be presented with a list of Receive Ports to attach this receive
location to (this is required, as there can be no orphan receive locations).
Select the only Port in the list OP_Receive_Reports and click OK.

2. In the Location Details dialog that pops up, enter the name OP_File_
Receive_WebSiteReports. Configure the receive location transport type to
FILE to read files from C:\BizTalk\PRP\WebSiteReportDrop much like
we did before. Use the same mask, *.*, as before and be sure to leave the
PassThruReceive pipeline.

Chapter 5

[119]

3. When you click OK you will see the list of receive locations in the
Administration Console. You will notice that the new location is disabled
so you must enable it (which can be done by right-clicking the location and
selecting Enable).

You should now be able to drop files in either location and they will be moved to the
destination folder.

You may be asking yourself 'Why all this just to move some files, why not use a
script'? at this point. That's a good question, so let's address some of the motivations.
Suppose you wanted to change from file shares to FTP sites. All you would do is
change the transport type in your send port or receive locations. Perhaps you want
the reports to be sent to a SharePoint document library or maybe an iSeries server.
This is also not a problem; these are just other adapters (equating to transport types).
Not even routing (that is, filtering) changes pose a problem and are in fact activities
that can be performed by operations staff if need be. This decouples the creator of the
application from the operator of that application.

Transport properties
At this point, it is worth exploring some of the other advantages we have over
scripting or other common solutions to this trivial example. First let's look at some of
the Send Port Properties; do this by right-clicking (or double-clicking) the send
port OP_File_Send_Reports. There is a screenshot of these properties after the
next paragraph.

We can see under the Transport Advanced Options that we can set the Retry
Count, Interval, and other settings. Importantly, we also see a setting for a Service
Window. This is a setting that will control when BizTalk will send messages on
this port. Outside of the service window, messages will simply queue up in the
message box to be delivered when the service window is reached. This allows us to
address another aspect of coupling: time. Time is perhaps one of the most insidious
forms of coupling. It is usually not a thought in our solution development. Our
test environments and workstations are always running when we are using them.
Normally this sort of dependency rears its head in production or late in testing. Even
in this trivial example we are able to resolve this without changing our solution or
writing any code.

Basic Messaging Solution

[120]

Sending applications drops the files in the receive locations, and they do not care that
the destination is down. They do not need to care because they are decoupled from
the process.

We can also specify a backup transport to use in the event of failure of the primary
transport. This backup transport will become active after the primary transport fails
(that is, its retry count has been exceeded) and it has its own retry count and service
window settings. We are completely free to use a different transport type altogether
such as FTP. This feature can be used to provide automatic failover or even instant
failover by setting the retry count on the primary transport to zero.

Chapter 5

[121]

The receive location has similar settings that can be used to provide service windows
as well. In the receive context, a service window simply stops the receive location
from trying to pick up messages. Providing these capabilities in a script would
be much more difficult. You would quickly exceed the amount of time we spent
creating this solution and it would still not be as robust.

Although this lesson is intentionally trivial it should be pretty clear how flexible
BizTalk can make even a simple solution. Flexibility, after all, is one of the primary
motivations for using BizTalk. Now let's take a quick look at exactly how this
solution works in detail.

Basic Messaging Solution

[122]

Basic subscriptions
Click the BizTalk Group node in the Administration Console (above Applications).
You will see a Group Hub tab that gives you an overview of the group and a tab
called New Query. Click on the New Query tab. This allows us to query the BizTalk
server for a variety of information; in this case we will select Subscriptions.

We can then further refine our search by using the Subscription Type field
and selecting the value Activation Subscription. Activation subscriptions are
subscriptions that are used to initiate a service. Services can be either orchestrations
or send ports. This is an important distinction because it shows that there is a
marked difference between receiving and doing (read sending) in BizTalk. The
other subscription type option, Instance Subscription, is for service instances
that are already active and awaiting another message.

By clicking the Run Query button, we can see the list of results returned. At
the top of this list will be our most recently added subscriptions: the send port
OP_File_Send_Reports is the one we are interested in. From returned list itself
we can see some summary information about the subscriptions.

Chapter 5

[123]

Right-clicking anywhere in the results allows us to see our command options:
Subscription Details (the default double-click handler) and Add/Remove Columns,
which is self-explanatory. This behavior is typical of the BizTalk Administration
Console query tool and the columns to be added are unique to the specific view
of the query (driven by the Search For criteria).

This allows operators, administrators, and developers to create unique views into
BizTalk applications to facilitate their respective roles. These queries can then be
saved as .btq files by right-clicking the tab at the top of the query and sorted by
clicking any column header. More about the query tool in the BizTalk Administration
console was covered in Troubleshooting BizTalk issues in Chapter 4, Operating BizTalk.
Double-clicking the OP_File_Send_Reports entry will allow us to see its details.

Basic Messaging Solution

[124]

The Expression tab shows us the details of the subscription itself and here we can
see the subscription that we entered earlier (plus some bits that BizTalk has put
in for us).

You will notice that these subscription details are read only, but this is a very
useful place to find why messages aren't routing the way you expect. You would
be surprised how easy it is to type a subscription incorrectly.

If we were to go back to our send port OP_File_Send_Reports and stop it, then run
the subscriptions query again, we would see its state listed as Stopped under the
General tab that we looked at in the previous screenshot. If we were to go unenlist
that send port, the subscription would disappear from the Activation Subscriptions
query altogether. This should help to drive home the point that BizTalk operates on
a publish-subscribe model that is highly expressive. Subscriptions are only present
when they are enlisted and only active when started. If you have a send port, but it
is not enlisted, the messaging engine doesn't actually know it exists. When ports are
stopped (or enlisted, but not started) the messaging engine will see them and will
queue messages for them. This is similar to the service window concept we
saw before in the port configurations.

Simple XML messaging with maps
After the success of the report collecting solution, the team decides it's time to
develop a real solution with BizTalk. The call center application team have already
developed an XML export for purchase orders that occurs in real time. They
decided to write out an XML file containing the purchase order when it is saved to
their database. These files need to get to the fulfillment system, which came with a
purchase order import capability that uses XML files. The two file formats do not,
however, match.

Chapter 5

[125]

The immediate goal of this project is to receive purchase orders from the call center
application, transform them to the format required by the fulfillment system, and
then deliver them to the fulfillment system. Recall from the section on Solution
structure in Chapter 2, Introduction to BizTalk Development, that we will need two
external formats and one canonical format to accomplish this. The canonical format
is used to decouple the solution we are building. Our intention is to build this as
the base for what will be an order messaging bus for the enterprise. This is clearly
going to be only the first of several integrations connecting purchase orders to the
fulfillment system, so the team decides to add an additional element to the canonical
schema: SalesChannel—to identify which line of business the purchase order
came from.

After reading about Visual Studio Solution Structure in Chapter 2, Introduction to
BizTalk Development, you decide to download a blank solution template to use for the
new project. You are also given the XSD format that the fulfillment system requires
for import. Importantly in following best practices and solution structures described
earlier you already know the development tasks are as follows:

1. Create a Visual Studio solution (download from
http://biztalk2010patterns.com/documents/order-processing/
purchaseorder.zip).

2. Import the fulfillment schema (http://biztalk2010patterns.com/
documents/order-processing/Schemas/SalesOrder.xsd) into the
external schemas project.

3. Generate an external schema for the call center application format (http://
biztalk2010patterns.com/documents/order-processing/messages/
PoPurchaseOrderExport.xml).

4. Create a canonical schema for a purchase order.
5. Create maps from call center to canonical and canonical to

fulfillment formats.
6. Create ports and locations to tie the integration together.

Creating schemas
Once the solution is open use the Solution Explorer to navigate to the External
Schemas project and right-click the project icon selecting Add | Existing Item.

Next, navigate to the SalesOrder.xsd that you downloaded and saved. Click
Add and the schema will now be part of the ExternalSchemas project.

Basic Messaging Solution

[126]

When talking to the lead of the call center development team, you learn that they
are writing out their XML using a class serializer and do not actually have a schema,
but can provide sample XML documents. Fortunately, BizTalk provides a facility
to generate XSD Schemas from well-formed XML documents. You receive one of
these sample XML documents (PoPurchaseOrderExport.xml) and save it to the
UnitTests\TestData\External folder for future reference. We want this artifact
to exist in the solution for later use both in testing and sharing the artifact with
other developers:

1. To add it to your solution right-click the External data folder and Add |
Existing Item (being sure to change the file type mask to All Files (*.*) in
the lower right side.

2. In Visual Studio Solution Explorer again right-click the External Schemas
project and select Add, but this time select Generated Items. From the
dialog (as shown in the following screenshot) select Generate Schemas
and click Add.

Chapter 5

[127]

The next dialog that appears allows you to select an input document type and
instance. For our project, we will use Well-Formed XML and navigate to the
PoPurchaseOrderExport.xml that we were provided with by the call center
development team (this should be in UnitTests\TestData\External).

The first time you run the Well-Formed XML option of the Add
Generated Items wizard, you will be shown a message stating
that the component has not been installed. This message shows
you the path to a visual basic script (.vbs) file that you must
execute before this wizard will work.

Basic Messaging Solution

[128]

You now have the schemas that you will receive purchase orders in and translate
them to. There are two primary options facing you as you move forward: directly
map from the call center format to the fulfillment format or create a canonical schema
that will form the basis for all purchase order integrations at PRP. Despite the fact
that the upfront cost is marginally higher to create the canonical format you decide
that it is a better approach to follow. Create the canonical schema as follows:

1. In Visual Studio Explorer right-click Internal Schemas and select Add |
New Item. In the dialog that follows select Schema and enter the name
PurchaseOrder.xsd.

This schema will be the stable internal representation of the concept of a Purchase
Order in our BizTalk solution. Like many of the wizards and tools in BizTalk, you
have already been helped along considerably, but there are some settings that are
a good idea to change. For instance, the Target Namespace in the schema has been
set as http://PRP.PurchaseOrder.InternalSchemas.PurchaseOrder. Now there is
nothing inherently wrong with this namespace, but in following popular convention
we should rename it to http://performanceracingparts.com/schemas/PurchaseOrder/
internal/2011-050 so it will be more useful.

Chapter 5

[129]

The first part of the name is the company's name; even if this is not a URL we own,
it is still their name. The schemas part defines that this is a message contract rather
than an interface contract (which would be used for defining web services and
operations). Purchase Order is the functional area of the enterprise that this schema
will serve. Were we building the invoice integrations they would use invoice instead.
The next part defines that this is an internal schema that is not meant to be used by
anyone or anything outside of BizTalk. This is important because even if another
system in the enterprise wants a schema to use they should always use an external
schema and map at the port level. This really is a best practice in BizTalk and saves a
lot of pain over the lifetime of an integration solution. The last part is also significant.
The schema is given a date to make versioning easier. As explained in Chapter 2,
Introduction to BizTalk Development, a versioning strategy is critical to the long term
success of any integration or service orientation initiative. You may also choose to
use a version number.

With our schema's framework in place we complete the schema by performing the
following steps:

1. Rename the root element from Root to PurchaseOrder.
2. Right-click the PurchaseOrder record and add a child field element

called Number.
3. Add a child element named Date and set its Data Type (under General in

the Properties window) to xs:date as shown in the following screenshot. This
will restrict the valid values of this element to the xs:date data type, which
also checks for validity of the date itself rather than just the format.

Basic Messaging Solution

[130]

4. Create a Total node and set its Derived By property to Restriction and Base
Data Type to xs:decimal. This will allow us to further restrict this type into
meeting our business requirements, namely that a purchase order cannot be
for a negative amount. We set the MinFacet Value to 0 (zero) and keep the
default MinFacet Type as Inclusive.

5. Create a SalesChannel element and set Derived By to Restriction. This time
go to the Enumeration section of the Restriction group of the properties and
enter the values: Call Center, Website, Mail Order, Field Sale, Third Party.

6. Create child records for ShipTo and BillTo, but leave them empty for now.
7. BillTo and ShipTo will contain the same data and rather than defining them

twice (as is quite common) we will define a common type to be used in both.

Chapter 5

[131]

This contact type will define a name, phone number, and address.
Note that when you add child nodes in a schema there are a variety of
options and they are context sensitive. For now, we are concerned only
with Elements and Records. Right-click the Schema folder icon above
PurchaseOrder and select Insert Schema Node | Child Record. Rename
the Record to Address and add to it Street, City, State, and PostalCode
child elements.

8. Click on the Address node and set the Data Structure Type property to
AddressType. This effectively makes the data structure we just defined a
reusable type that we can use throughout our schema. This is shown in the
following screenshot:

9. Delete the Address record. Don't worry, the AddressType we defined will
still be in the schema.

10. Right-click the Schema folder icon above PurchaseOrder and select Insert
Schema Node | Child Record. Rename the Record to Contact and add to it
Name and PhoneNumber child elements.

11. Add a child record to Contact called Address and set its Data Structure Type
to AddressType (Complex Type). Instantly you will see that it contains the
fields and types we defined earlier.

Basic Messaging Solution

[132]

12. Change the Data Structure Type of the Contact record to ContactType.
13. Delete the Contact record.
14. Set the Data Structure Type of BillTo and ShipTo to ContactType.
15. Create a child record of PurchaseOrder and call it LineItem (be sure to set

its Max Occurs property to unbounded (*) so that more than one LineItem
is allowed).

16. Add to LineItem: CatalogNumber, Quantity, UnitCost, and
Description elements.

17. Change Quantity to be Data Type to xs:positiveInteger (this is not Base
Data Type).

18. Change UnitCost to be a restriction of xs:decimal with 0 as the MinFacet
Value (like we did for Total).

This schema looks pretty complete and everyone is pleased that you have defined
the canonical format of what a Purchase Order is to Performance Racing Parts.

Creating maps
The solution now requires two final artifacts: a map from PoPurchaseOrderExport to
the canonical PurchaseOrder and one from PurchaseOrder to SalesOrder. BizTalk
provides a robust tool for translating formats via a graphical interface in the BizTalk
mapper. The mapper has three main panes that are used to create a map: a source on
the left that is the input format, a destination on the right that is the output format,
and a canvas in the middle used to connect the two and perform translations. More
information about the mapper can be found at: http://msdn.microsoft.com/en-
us/library/aa547076(BTS.70).aspx.

Following best practices and conventions, these maps will be called Ext_
PoPurchaseOrderExport_To_PurchaseOrder and Int_PurchaseOrder_
To_SalesOrder. The pattern of this name is [Int/Ext]_[SourceSchema]_To
_[DestinationSchema]. This naming makes it easy to quickly see what this
map is meant to accomplish.

Creating a map from external PoPurchaseOrder to
PurchaseOrder
Right-click the Maps project in Solution Explorer to add the first of these maps
(via Add | New Item) and name the map Ext_PoPurchaseOrderExport_To_
PurchaseOrder.btm.

Chapter 5

[133]

After clicking Add you will see a blank mapping canvas that allows you to select the
source schemas (on the left) and destination schemas (on the right) for the map. The
center grid is the mapping canvas itself.

Clicking the link on the left brings up the Schema browser. Expand the Maps project
and the References node, then expand External Schemas and the Schemas node.
Select the PRP.OrderProcessing.ExternalSchemas.PoPurchaseOrderExport schema.

For the destination schema, select PRP.OrderProcessing.InternalSchemas.
PurchaseOrder.

By clicking on the root node of either schema, we can select Expand Tree Node and
easily see our entire schema.

Click the node PurchaseOrderNumber on the left-hand side, under
PoPurchaseOrder and drag it to the Number node under PurchaseOrder on the
right. Now drag PurchaseOrderDate on the right to Date on the left.

If you click and drag the Item record from the left to the LineItem record on the
right, a context menu appears asking how you would like to link the records and
their children. Click Link by Name and the records will automatically link by name
match. The other option, Link by Structure, is simply by order of the nodes (Direct
is a normal link and Mass Copy simply drops a Functoid of the same name between
the nodes). Now map ItemNumber to CatalogNumber and Amount to UnitCost for
the line item.

Basic Messaging Solution

[134]

Your map will look something similar to the following screenshot:

You notice that there is no order total on the input schema PoPurchaseOrder. It has
already been decided that order total is a meaningful piece of information so it must
be added. We will use two Functoids to provide this information:

1. Open the Mathematical Functoids section of the tool box and drag a [X]
Multiplication Functoid onto the map canvas between Item and LineItem.

2. Connect the Amount and Quantity elements from the PoPurchaseOrder (on
the left) to the Multiplication Functoid. This will give us an item total.

3. Expand the Cumulative Functoids part of the tool box and drag
a [∑] Cumulative Sum Functoid onto the map to the right of the
multiplication one.

4. Click and hold on the Multiplication Functoid and drag to the Cumulative
Sum Functoid, this tells the map to create a sum of the input value.

5. Click and hold on the Cumulative Sum and drag to the Total element of the
PurchaseOrder (right-hand side) schema.

Click around the elements you have already mapped and notice how the mapper
highlights complete paths through the map for any node. Clicking Amount on the
left highlights which elements this node maps to on the right, in this case there are
two. Clicking Total on the right highlights the source nodes and Functoids used to
calculate this value. These are some of the improvements in BizTalk 2010 that make
mapping more expressive and easier to work with on large or complex maps.

Chapter 5

[135]

We are yet to map the address elements and this presents a problem for us because
if we look at the example XML message we can see that the address type (Billing or
Shipping) is expressed in the Address element itself.

 <BillToContact >Some Contact</BillToContact>
 <Address >
 <Street>123 Fake St</Street>
 <City>Whatever City</City>
 <State>MD</State>
 <Zip>60606</Zip>
 <Type>Billing</Type>
 </Address>
 <Address >
 <Street>401 N Michigan Ave</Street>
 <City>Chicago</City>
 <State>IL</State>
 <Zip>60611</Zip>
 <Type>Shipping</Type>
 </Address>

Basic Messaging Solution

[136]

To get around this, we will use some logical Functiods, but to keep our map clean
and easy to understand we will do this on a new page. Right-click the ribbon at the
bottom of the map (on or near the Page 1 tab) and click Add Page.

After the page is added, right-click it again and click Rename Page and change it to
Shipping. Naming pages helps us keep the intent of that part of the map clear.

Map the ShipToName, ShipToContact, Street, City, State, and Zip nodes from the
left schema to the appropriate children of the ShipTo node on the right. Then drag
an [=] Equal Functoid from the Logical Functoids group onto the upper center of
the canvas.

This will be used to control node output. The output of any Logical Functiod can be
connected to a node on the destination schema to control if that node will be output
or not. Conditions that evaluate to true output the node, while those that are false
suppress output generation for that node.

Drag the Type node under Address on the left to the [=] Equal Functiod then
double-click the Functoid to bring up the properties window. The second row of the
configuration warns us that it is incomplete, but allows us to create a new constant
value input simply by clicking the Value cell and typing in a value; use the value
Shipping. We can see in the right of this dialog that the Functoid input types are a
schema element and a constant value; mouse over either of these icons to see more
information. This dialog is also where we can add labels and comments to help
document our maps better.

Chapter 5

[137]

Now connect the output of the [=] Equal Functoid to the ShipTo node on the right.
Your map will now look similar to the following screenshot:

Add a new page named Billing and repeat the process you carried out for Shipping,
using the value Billing in the Equals Functoid.

Basic Messaging Solution

[138]

Finally, you are left with only SalesChannel which is not filled in. For this, we will
simply force a value of Call Center because we only receive purchase orders in
this external format from the call center application. To do this, we'll use the String
Concatenate Functoid with a single constant input value of Call Center. To add this
constant value, simply double-click the String Concatenate Functoid then type in
the value in the Value cell. The String Concatenate Functoid works even with only
one input and is a good way to insert constant values (you can also use the Value
Mapping Functoid and set the first parameter to true and the second to Call Center.

When working this way in maps, it is useful to see details about the schema
you are mapping to; fortunately the mapper also facilitates this. If you click the
SalesChannel node on the right (in the PurchaseOrder schema) you can see the
details of the node as we defined it earlier. All the details are read-only, which makes
sense. You can also click Enumeration under the Restriction properties to view the
list of possible values and even copy the values out if they are more complex or, like
me, you don't trust yourself to retype something exactly.

Testing the map
Visual Studio will also make it easier for us to test maps. If you right-click the map
in Solution Explorer, you will see a command to do this. Since we have not defined
an input instance, Visual Studio will simply generate one, but we already have one
we'd like to use, so let's do that. Click the map in the Solution Explorer and look at
the Properties at the bottom (by default). In the properties window you can specify
a TestMap Input Instance; select the sample XML file we generated our external
schema from (PoPurchaseOrderExport.xl).

Chapter 5

[139]

We will need to build the solution in order to test the map, you will receive an error
otherwise, stating that the artifacts have not been built. Now right-click the map
again and click Test Map.

The output window in Visual Studio will show the results of the map test and allow
us to see the output:

Invoking component...
TestMap used the following file: <file:///C:\Users\BizTalkDeverloper\
Documents\Visual Studio 2010\Projects\BizTalkPatterns\PurchaseOrder\
UnitTests\TestData\External\PoPurchaseOrderExport.xml> as input to the
map.
Test Map success for map file C:\Users\BizTalkDeverloper\Documents\
Visual Studio 2010\Projects\BizTalkPatterns\PurchaseOrder\Maps\Ext_
PoPurchaseOrderExport_To_PurchaseOrder.btm. The output is stored in
the following file: <file:///C:\Users\BizTalkDeverloper\AppData\Local\
Temp_MapData\Maps\Ext_PoPurchaseOrderExport_To_PurchaseOrder_output.
xml>
Component invocation succeeded.

Basic Messaging Solution

[140]

By holding the Ctrl key and left clicking the link on the bottom right of the output
window, we can see the results of the mapping and ensure that everything looks
the way we had planned. We view this XML in an Internet Explorer window, but
if we right-click anywhere in that window we can select View Source to get to the
raw XML. It is useful at this time to save this output to our UnitTests project under
the TestData\Internal folder as PurchaseOrder.xml. Be sure to right-click
that Internal data folder and Add | Existing Item and change the file type mask
to All Files (*.*) to ensure the artifact is packaged with the code and does not just
exist on your machine. This will be useful when we need to test other maps that use
this format and also to compare expected results with actual files when we get to
automated testing later on.

Creating a map from canonical PurchaseOrder to
SalesOrder

1. Right-click the Maps project in Solution Explorer to add the first of these
maps (via Add | New Item) and name the map Int_PurchaseOrder_To_
SalesOrder.btm.

2. On the Source Schema (left) navigate to References | InternalSchemas |
Schemas | PRP.PurchaseOrder.InternalSchemas.PurchaseOrder.

3. On the right side click the Open Destination Schema and navigate
to References | ExternalSchemas | Schemas | PRP.PurchaseOrder.
ExternalSchemas.SalesOrder.

The names in these schemas very closely match, so map each of the nodes and the
schemas. Note that they are both content complete so we don't need any Functoids
this time. If you right-click the Number node on the left and click Indicate Matches
you will see that the mapper suggests a mapping, that in this case is correct.
Microsoft incorporated some of the search technology from Bing into the
mapper to assist this and it can be helpful in complex schemas.

Chapter 5

[141]

Your map should look similar to the following screenshot:

To test this map we can use the PurchaseOrder.xml file we saved to our
UnitTests\TestData\Internal folder earlier. Testing maps this way is a very
convenient and simple way to make sure nothing has been missed. This sort of
testing leverages the rules of XSD to validate both the input and output documents.
If you are not leveraging these tools (and not leveraging XSD schema validation)
then you are not using BizTalk to its full potential.

The artifacts for our solution are now created. We can build and deploy the solution
from the build menu. It is important to note here that one should always use the
Deploy Solution menu option, not the individual project's Deploy option. Visual
Studio is managing dependencies for us and already knows the appropriate build
order. It is best to trust it to do its work.

Wiring up the solution
After deploying the solution from Visual Studio, open the BizTalk Administration
Console and go to the Order Processing application. The project template is set to
restart the BizTalk host instances after deployment of the Maps project (which is last
in the Visual Studio build order), so there is no need to do this manually. Forgetting
to do this will make your new changes appear not to be deployed at runtime (there
will be an assembly load failure, as discussed in Chapter 2, Introduction to BizTalk
Development).

Basic Messaging Solution

[142]

If you still have the console open from before, you will have to refresh it to see the
new artifacts that were deployed. This can be done by right-clicking anywhere in
the navigation pane and selecting Refresh. Here we can see how the Administration
Console organizes the artifacts in an application in an easy to manage structure.
Importantly it doesn't matter which projects, read which assemblies, these artifacts
are in, they all deploy to this application for this solution. As explained in the section
on solution structure, we are gaining a lot of flexibility from this architecture.

We now have to create ports for our new solution; this will be done from within the
BizTalk Administration Console.

Creating the receive port
Create a one-way receive port called OP_Receive_PurchaseOrders with a receive
location called OP_File_Receive_CallCenter_PurchaseOrders. These names are
meant to link the one-to-many relationship of Ports to Locations. We want to see
which application, action, and noun are in a port and see which port, adapter, and
system are in a location.

For the receive location, select the FILE transport and set the receive path to
C:\BizTalk\PRP\CallCenterOrders. Also, be sure to set the pipeline to
XMLReceive. Not doing this will result in a failed message because BizTalk
never inspects the message to determine its message type.

On the receive port, be sure to select the map Ext_PurchaseOrderExport_To_
PurchaseOrder. This will tell BizTalk how to translate the received message on its
way to the message box. The message will enter the message box as a canonical
PurchaseOrder allowing us to build a solution around our stable canonical format
that we own and control specifically for BizTalk.

Creating the send port
Create a static one-way send port called OP_File_Send_Fulfillment_SalesOrder
and select the FILE transport. Configure the transport to send to C:\BizTalk\PRP\
SendInventoryPurchaseOrder and keep the default %MessageID%.xml filename.
This will name the file with the BizTalk Message ID, a GUID, that guarantees
global uniqueness.

On the Outbound Maps section of the send port configuration, select the map
Int_PurchaseOrder_To_SalesOrder.

Chapter 5

[143]

The last step is to wire up a filter to route these messages. Though you could
use BTS.ReceivePortName like we did before, it is really quite a weak
subscription and could result in invalid XML (or whatever arbitrary file) being
sent to our send port. You instead could use BTS.MessageType with a value
of http://performanceracingparts.com/schemas/PurchaseOrder/internal/2011-
05#PurchaseOrder as the message type value.

Testing the solution
If you now start the BizTalk application by right-clicking it and selecting Start,
the new ports will be enabled and started. You should now be able to copy
PoPurchaseOrderExport.xml to the receive file location C:\BizTalk\PRP\
CallCenterOrders and see SalesOrders output to the location C:\BizTalk\PRP\
SendInventoryPurchaseOrder.

This solution is still very basic, but we are now using some more features of BizTalk
to accomplish our goals and, importantly, we have laid the framework for what will
be a larger and more feature rich application as we continue.

Content-based routing and promoted
properties
The solution goes to production and is working well, but like all software business
users, they decide they would like to build upon it further. This is a good thing no
matter what the reason is, even if it was a missed requirement. The business would
like to route orders above a certain amount to a different location than standard
orders. This will allow them to be input into the fulfillment system more quickly and
allow the users of that system to process them more quickly. The decision is made
to make this priority limit $1000 and greater (inclusive). Orders below this limit will
continue to function as they currently do.

Basic Messaging Solution

[144]

Property promotion
The easiest way to do this is with promoted properties in BizTalk. To do this we
must add a Property Schema to our InternalSchemas project. This is done with
the Add | New Item… wizard from the Solution Explorer. Name this new schema
OrderProcessingProperties.xsd and be sure to use the Property Schema template.

The first thing to do is to change the namespace of this new property schema
to http://performanceracingparts.com/schemas/PurchaseOrder/internal/
properties/2011-05.

Then rename Property1 to OrderTotal and change its type to xs:decimal. Save the
schema before you proceed to save yourself a headache later.

Chapter 5

[145]

Double click the PurchaseOrder schema in the Solution Explorer and expand to root
element so you can see the Total node. Right-click the Total node and click Promote
| Show Promotions… (I never use Quick Promotion; it never does what I want,
honestly). Property promotion was introduced in Chapter 3, BizTalk Development
Guidelines.

Click the Property Fields tab on the right of the dialog to switch from Distinguished
Fields to Property Fields.

Click the folder icon on the upper left and navigate to your new property schema
OrderProcessingProperties.xsd. Total should still be highlighted on the left and once
you specify the property schema the Add >> button should become enabled. Click it
to add Total as a property. Since we only have one property it will be assigned to it
on the right. The dialog will look like the one shown in the following screenshot:

Click OK. You have successfully promoted the PurchaseOrder.Total element.
It can now be used for routing. Save all open documents in Visual Studio and
deploy the solution.

Basic Messaging Solution

[146]

Updating the solution routing
Go back to the BizTalk Administration Console and right-click the Order Processing
application and click Refresh. This will refresh all the artifacts in the administration
console. Double-click the existing send port OP_File_Send_Fulfillment_SalesOrder
and click the Filters section on the left. Click the blank column below BTS.
MessageType and look for the property PRP.OrderProcessing.InternalSchemas.
OrderTotal (the properties are alphabetized, but you can also type in PRP to scroll
to it). Change the Operator to < (less than) and set the Value to 1000. We have
now successfully enabled routing for standard orders. Here is another example of
how naming conventions can have a big impact on BizTalk solutions. By following
naming conventions, all the properties in a solution will be grouped together and
will be easier to find in all of the BizTalk tools: Visual Studio, Administration
Console, Tracking Profile Editor, and so on.

Now we must create the new send port for priority orders. This will be called
OP_File_Send_Fulfillment_PrioritySalesOrder. It will still use FILE transport and
send to C:\BizTalk\PRP\SendInventoryPriorityPurchaseOrder. Be sure to set the
Outbound Map to Int_PurchaseOrder_To_SalesOrder and set the filter as we did
before. This time our filter expression will look like this:

BTS.MessageType == http://performanceracingparts.com/schemas/
PurchaseOrder/internal/2009-10#PurchaseOrder

and

PRP. OrderProcessing.InternalSchemas.OrderTotal >= 1000

Chapter 5

[147]

Click OK to close the Send Port Properties dialog. Right-click this new send port
and click Start.

We can now drop our sample PoPurchaseOrderExport.xml and see where it routes.
In order to make sure this is working the way we expect we should add a new XML
document to UnitTest\TestData\External called PoPurchaseOrderStandard.xml.

Paste in the contents of PoPurchaseOrderExport.xml and delete the
second line item. You should now be able to drop both the test XML files
PoPurchaseOrderExport.xml and PoPurchaseOrderStandard.xml and
see them route to the normal and priority locations.

The most common problems you will have creating solutions like this have to do
with mismatched subscriptions. It happened to me twice when writing this lesson
and the subscription viewer we covered earlier is how you go about resolving such
issues. Any typos or misspellings in the Filters will cause the subscription not to
work; resulting in failed messages. Importantly, filters entered this way do not have
quotes around them and the type of the promoted property will affect routing; that
is, it will have an impact on the type of comparison performed: string or numeric.

Multicasting messages
PRP's CRM system can be fed with purchase orders to build and maintain profiles
on customers. We need to send every order received by the fulfillment system to the
CRM system. The CRM team had been planning to create some sort of integration
with the inventory system so they can already receive the same XML format as the
fulfillment system.

There are a variety of ways we could do this, but the simplest is through a send port
with a Filter subscription. This solution has no impact on the current implementation
and can be achieved completely through the administration console. This is a good
example of how operators and administrators can add to BizTalk solutions without
the need to go back to the development team or how the development team can
easily add to an existing solution.

Basic Messaging Solution

[148]

Adding the new send port
To accomplish this you must create a new send port and the subscription for it that
routes all orders in its direction.

The new send port will be called OP_File_Send_CRM_SalesOrder and will be
configured to use the FILE adapter on the location C:\BizTalk\PRP\CRM.

We want to use the same outbound map that we used on the other ports because the
CRM application is already expecting the format used by the fulfillment system to
which we currently send messages.

Additionally this port will need a filter to direct messages to the destination. The
filter will consist of the receive port name and the message type as follows:

BTS.ReceivePortName == OP_Receive_PurchaseOrders

And

BTS.MessageType == http://performanceracingparts.com/schemas/
PurchaseOrder/internal/2009-10#PurchaseOrder

We are purposely using the receive port name because we only want newly received
orders. At this point in the solution it is not necessary, but this distinction will be
more significant as our solution grows.

After making these changes be sure to start the new send port and then
test the solution as you have before, by dropping XML files. The sales orders
should go to the appropriate fulfillment directories as well as the CRM folder
C:\BizTalk\PRP\CRM.

Chapter 5

[149]

How this works behind the scenes is that we have two overlapping subscriptions.
They are both matched for the order that arrives. They each get a copy of the
message, technically a reference to a single immutable message instance. Each service
then completes its work, updating the reference to mark it as complete. When the
message has no more references it is purged from the message box. Ultimately when
people think about a messaging bus, this is an artifact at the very core of BizTalk:
publish-subscribe.

Summary
This chapter introduced messaging-only scenarios such as simple pass thru, basic
XML with mapping, content-based routing, and message multicasting. We also
learned about routing messages based on metadata or context, as well as content.
These tools alone are enough to create many BizTalk solutions, but they will also be
the basis for the next chapters.

Unit Tests and BAM
This chapter introduces Unit Testing and Business Activity Monitoring (BAM). These
will be added to the current solution to make it more stable and maintainable, as well
as to provide visibility. Unit Testing and BAM are critical components to any BizTalk
solution because they both provide understanding and monitoring. Unit Tests
allow developers to understand how a solution is meant to work and to run it for
themselves. BAM provides visibility that can be tailored to the technical or business
aspects of a solution.

What are unit tests?
We can already see that dropping the test files manually and inspecting the results
is tedious and error prone. It also requires intimate knowledge about the expected
behavior of the solution that can be lost over time through turnover or forgetfulness.
Fortunately, there is a simple way to automate our tests and allow us to make them
repeatable and reliable. This will let us know if we break anything in the solution
over the course of its lifetime. It is common to start with writing the tests before we
build the solution and I encourage it strongly; but because I want the focus of this
book to be BizTalk and not Test Driven Development, I will simply add them to the
solution we have now. Ideally, you will tie the tests themselves to specific solution
requirements and thus create a good deal of documentation before development
begins in earnest, or at least before it completes.

There are many ways you can create unit tests for BizTalk, but by far the most widely
used is the BizUnit framework (http://bizunit.codeplex.com). BizUnit is an
automation framework to create tests for distributed systems. It is open source and
freely available. Anyone with experience of NUnit or JUnit will be at home fairly
quickly with BizUnit. The framework, however, does not use NUnit and can be
harnessed from either JUnit or Visual Studio Unit Testing.

Unit Tests and BAM

[152]

Importantly, BizUnit does not use code, such as C#, to create tests. BizUnit tests are
XML files that lay out the steps of the test to be executed. This allows for their rapid
construction. As we will see shortly, tests for the solution we just built are extremely
quick to build and require only a little editing of XML.

Tenets of a good test
Before we dive into BizUnit, it is probably logical to discuss what exactly makes
a test good in the first place. Good tests are self-encapsulated and completely
independent; that is, they run in isolation and are repeatable. They should also test a
specific aspect of functionality. Rather than being one big test that covers the entire
solution, a test should target a specific scenario. This will allow the test to clearly
reveal its intention and form the basis of living documentation for an integration or
service solution. Later, developers can refer to these tests to know what the expected
behavior is and can convey this information to business users. Good unit tests are
as follows:

Self-encapsulated
Repeatable
Target a specific functional aspect

This means that all the unit tests for a solution will be completely independent
of each other. This makes it easier to diagnose specific issues and also to address
changing or developing a specific aspect of the solution.

Importantly, unit tests should treat the solution as a black box. This makes BizUnit
tests different from many other code-based unit tests, most of which test specific
methods, which in BizTalk would be most analogous to a map or policy. BizUnit
tests are designed to test the solution the way the real world will. This is a good
match for BizTalk as most middleware/service solutions are responsible for
receiving input and producing output in a very discreet manner and in discreet
locations. This fits well in the BizTalk model of endpoint isolation. There are other
built-in testing tools for finer grained testing of maps and schemas that will be
covered as the concepts are introduced.

Composition of a test
Like any xUnit-based testing framework, there are three stages to a BizUnit test,
which are as follows:

Setup
Execution
Cleanup

•
•
•

•
•
•

Chapter 6

[153]

These three stages help us achieve our goals of good testing. The setup and cleanup
stages prepare and then reset the environment respectively. This is critical to making
tests repeatable and also not interfering with other tests or the order in which tests
are run. Often the setup and cleanup stages will be nearly identical. This is because
you want to have a clean slate on which to run your tests.

The execution stage is where the real work happens. This is where actions that cause
events in BizTalk, as well as validations, will take place. A good example would be
creating a file in a specific location or sending a message via SOAP or MSMQ, then
verifying that the message was received and processed correctly by checking the
downstream system for results. Normally, this would be a file, database, or queue. In
this way, BizUnit tests are by nature black box tests. The BizTalk solution is the box
and you cause an event on one side of the box and verify the results on the other side
of the box.

Additionally, good tests and test suites not only verify expected behavior—positive
result tests—they also verify negative behavior. That is, they check to ensure that
only the expected results take place. This can be a challenge in BizTalk because
many subscribers may receive a single message. It is critical if you have any sort of
branching logic to make sure that only one branch is, in fact, executed. This is all the
more important with routing and filters.

In the case of test suites collection of tests, we must also ensure that failure situations
are handled appropriately because, despite our best efforts, there will always be
failures, and designing tests to handle them gracefully from the beginning is critical
to a successful solution.

Test steps
Each stage of a test consists of zero or more test steps. These steps are the building
blocks that we use to create tests and each fills a specific common need in integration
or service projects. BizUnit includes dozens of test steps including steps to work with
files, queues, databases, HTTP, SOAP, and many others; being open source it is also
easy to add whatever steps you may need.

The steps themselves follow a common structure as well. This structure includes the
name of the .NET class that implements the test and parameters for the step. Some
steps will have nested parameters or other structures, commonly for validation, or
for more complex tasks like database queries.

Unit Tests and BAM

[154]

We'll start pretty simply with BizUnit, but make no mistake as this is a powerful
framework that allows us to create amazingly powerful and expressive tests. We
can also develop our own test steps if we need to, and the fact that it is open source
makes this fairly easy as you can examine the implementation of any test step that
you've worked with. There are even test steps for working with LoadGen—a load
generation tool provided by Microsoft for use in stress and performance testing.

Tests for the current solution
Our solution at this point is quite simple. Because BizUnit tests are black boxes, we
should really think of the business purpose for which we will create a test, rather
than the technical purpose. If we were to consider what test we should have, there
would be two distinct tests so far, which are as follows:

Priority Order Routing
Normal Order Routing

Let's start by making these two tests to cover the solution as it stands by following
the following steps:

1. The first task is to add a reference to BizUnit.dll to the UnitTests project.
I like to place this assembly in the 3rdPartyAssemblies directory of the
solution, so that it always travels with the solution and makes source control
easier. BizUnit will still need to be installed on any machine that runs these
tests. We covered more about solution structure back in Chapter 2 Introduction
to BizTalk Development.

2. Like all the guidance in this text, it is intended to make your solution
portable and easy to build between developer environments. To add this
reference, simply right-click the References folder beneath the UnitTests
project and click Add Reference. You will be presented with a file explorer
window and you should navigate to the BizUnit.dll assembly and select it.

3. If you really want to make sure you are creating a portable solution, you can
change the UnitTests.csproj file in the UnitTests directory to use a relative
path for this assembly (which it should do by default). In this file, there is an
ItemGroup node for the reference to BizUnit.

4. We can see in the following XML code, which is an excerpt from UnitTest.
csproj, that Visual Studio has used a relative path location for the assembly
hint used to load this reference. This helps the solution compile under
different directories or development machines:

 <ItemGroup>
 <Reference Include="BizUnit">

•
•

Chapter 6

[155]

 <HintPath>..\3rdPartyAssemblies\BizUnit.dll</HintPath>
 </Reference>
 </ItemGroup>

For the sake of brevity, the first two tests are provided for you in the solution
template downloaded for this book and all we need to do is add them. We can
add them to the UnitTest project by using the Add | Existing Item wizard for the
following files:

CanRoutePriorityPurchaseOrder.xml

CanRouteStandardPurchaseOrder.xml

TestEntities.dtd

They should be added to the BizUnitTests folder in the UnitTests project.

If we examine TestEntities.dtd, we can see entries for input and output directories
used by the solution as follows:

<!ENTITY CRMDirectory "C:\BizTalk\PRP\CRM">
<!ENTITY NormalSendDirectory "C:\BizTalk\PRP\
SendInventoryPurchaseOrder">

Again the motivation here is for portability and modularity. Some of these paths
must be hardcoded due to the way either BizUnit or BizTalk work (BizTalk needs
a real location for receiving the file), but by using entity definitions this way, we
can simply change our DTD file if we need different environments. Document
Type Definition (DTD) is a predecessor to XML schema (XSD), but was designed
to provide a different set of capabilities. In this section, we are exploiting entity
definitions to create shortcuts, or stand-ins, to commonly used values that we can
control in a single location. Commonly, there would be different DTDs for different
environments—developer and build would be the two best examples.

Changing test locations
If you are not using the C:\BizTalk\PRP folder structure that
this course uses, you can simply change this DTD and all the tests
will now use whatever locations you have chosen.

Standard Purchase Order test
This test verifies that a PoPurchaseOrderExport XML file, with a total order
amount less than 1000 created in our receive location, will be picked up and sent
to the normal send directory as well as the CRM directory. This matches with the
business requirements of the solution up to this point.

•

•

•

Unit Tests and BAM

[156]

The following is the structure for our Standard Purchase Order test:

The steps to be followed for setup are as follows:

1. Delete files from the standard order output folder
2. Delete files from the CRM folder

The steps to be followed for execute are as follows:

1. Create an XML file in the receive call center orders location
2. Verify that one file has been created at the standard order output folder
3. Validate that the file created at the standard order output folder meets the

following requirements:
Conforms to the SalesOrder.xsd schema
Has a specific namespace
Has the expected Order Number and Total

The steps to be followed for cleanup are as follows:

1. Delete files from the standard order output folder
2. Delete files from the CRM folder

If we examine CanRouteStandardPurchaseOrder.xml, we can see that it has
the three sections that we talked about before. We can also see an XML DOCTYPE
declaration that instructs the parser to use our TestEntities.dtd as follows:

<!DOCTYPE TestCase SYSTEM "TestEntities.dtd">

Test setup and cleanup
The first BizUnit test step in the test setup is shown as follows:

<TestStep assemblyPath="" typeName="BizUnit.FileDeleteMultipleStep">
 <Directory>&NormalSendDirectory;</Directory>
 <SearchPattern>*.xml</SearchPattern>
</TestStep>

We can see that this step specifies that a FileDeleteMultipleStep is to be executed
and provides the directory and search pattern to perform this operation. The
FileDeleteMultipleStep, as its name implies, will delete multiple files from the
directory matching the search pattern. Simple test steps all work this way. More
complicated steps have more parameters and sometimes nested structures that allow
for expressive testing.

•
•
•

Chapter 6

[157]

In this test, both setup and cleanup simply delete files from the expected output
directories—in this case the standard send and CRM directories.

The test execution stage
This is where the vast majority of testing is done, even for this simple test. The first
step creates a file in the directory that our solution looks in for orders; again using
the DTD entity to abstract the physical location out of the test as much as possible,
which is shown as follows:

<TestStep assemblyPath="" typeName="BizUnit.FileCreateStep">
 <SourcePath>External\PoPurchaseOrderStandard.xml</SourcePath>
<CreationPath>&OrderReceiveDirectory;\PoPurchaseOrderStandard.xml</
CreationPath>
</TestStep>

As we can see, this test step is also very simple. The next step, again as its name
implies, checks for the existence of a file in a specific location, matching a specific
mask, and an expected number of results as follows:

<TestStep assemblyPath="" typeName="BizUnit.FilesExistStep">
 <Timeout>10000</Timeout>
 <DirectoryPath>&NormalSendDirectory;</DirectoryPath>
 <SearchPattern>*.xml</SearchPattern>
 <ExpectedNoOfFiles>1</ExpectedNoOfFiles>
</TestStep>

This helps us to be more precise about what output we produce.

The next step, the FileValidateStep, is the most compelling step as it shows how
BizUnit can help us ensure that our output message meets our expectations, shown
as follows:

<TestStep assemblyPath="" typeName="BizUnit.FileValidateStep">
 <Timeout>10000</Timeout>
 <Directory>&NormalSendDirectory;\</Directory>
 <SearchPattern>*.xml</SearchPattern>
 <DeleteFile>false</DeleteFile>
 <ValidationStep assemblyPath="" typeName="BizUnit.XmlValidationStep">
<XmlSchemaPath>..\..\..\ExternalSchemas\SalesOrder.xsd</XmlSchemaPath>
 <XmlSchemaNameSpace>http://inv...2009-10</XmlSchemaNameSpace>
 <XPathList>
 <XPathValidation query="/Number">1929132</XPathValidation>
 <XPathValidation query="/Total">785.3</XPathValidation>
 </XPathList>
 </ValidationStep>

Unit Tests and BAM

[158]

</TestStep>
<TestStep assemblyPath="" typeName="BizUnit.FilesExistStep">
 <Timeout>3000</Timeout>
 <DirectoryPath>&CRMDirectory;</DirectoryPath>
 <SearchPattern>*.xml</SearchPattern>
 <ExpectedNoOfFiles>1</ExpectedNoOfFiles>
</TestStep>

This step has had some values truncated for brevity, but we see an example of a
much more expressive test step. It allows us to specify a maximum timeout period,
to delete the file when we're done validating it, which schema to validate it against,
and even which parts of the message we would like to validate for specific values.

The test for priority orders is very similar, but checks a different output location and
validates different values. At this point, the tests themselves are complete and we
simply need to run them.

Harnessing a test
To harness the BizUnit tests we use Microsoft Unit Test for simplicity. NUnit could
also be used with very few changes. In C#, we can harness a BizUnit test with two
lines of code which are as follows:

[TestMethod]
public void CanRoutePriorityOrder()
{
 BizUnit.BizUnit test = new BizUnit.BizUnit(
 "CanRoutePriorityPurchaseOrder.xml");
 test.RunTest();
}

This is fairly simple code and very straightforward: instantiate a BizUnit object
loaded via the constructor with the BizUnit test case and an XML file, and run the
test. The important aspect to note is the use of relative path locations. We'll see this
in our test cases themselves and it is important to consider and keep in mind.

To run these tests the UnitTests project already contains a BizUnitTests.cs
file that contains the two test harness methods. Simply uncomment them and
you can use the Test menu in Visual Studio to run them. Ctrl+R, Ctrl+T will run
all tests in the current context. This means if your cursor is in the test method
CanRoutePriorityOrder (between the braces) then only this test will run. If your
cursor is outside of that method, but inside the BizUnitTests class, all the tests in
the class will run. Ctrl+R, Ctrl+T will run the tests in debug mode and allow you to
step into them, including stepping into BizUnit test steps.

Chapter 6

[159]

Visual Studio Project Settings for tests
Because MSTest is designed to work in server environments as well, we need to
take some steps to make our test cases run correctly. We'll need to edit the Test
settings for everything to work here. In Visual Studio, click the Test menu and
expand Edit Test Settings, selecting the Local settings. Under the Deployment
section, you will need to check the box Enable deployment and in the Additional
files and directories to deploy, you will need to add two directories: \UnitTests\
BizUnitTests\ and \UnitTests\TestData\. This can be done via the Add
Directory... button on the right. These settings will tell MSTest to copy the relevant
test files to the local directory used by MSTest. This is required so MSTest will find
the BizUnit test xml files and the input messages for the tests.

Finally, run the tests and see that they produce the expected output. They should
both pass. If they don't, the errors in the test results should be able to point you in the
right direction. You can also check your Group Hub page for suspended messages
to see where they might be. Chapter 4, Operating BizTalk, provides more information
about tracking down issues in BizTalk.

Creating BAM for a solution
Business Activity Monitoring (BAM) is quite possibly the most important aspect
of BizTalk and it is also the most overlooked. There are so many flashy parts of the
platform that are immediately eye catching, like maps and orchestrations, that many
developers simply overlook the use of BAM. Until recently, it was also not well
understood. As discussed in Chapter 2, Introduction to BizTalk Development, BAM is an
amazingly powerful toolset that allows us to create rich interactive reporting based
on our BizTalk solutions. BAM does not require custom code and produces so much
value that it is amazing to see solutions that don't leverage it.

Unit Tests and BAM

[160]

Creating a basic BAM profile
Our solution has been running for some time, but it is clear that our CRM is not an
easy way to see which orders are going through our integration. You decide to create
a BAM profile for the current solution to provide visibility into the process.

You are asked to create a basic tracking profile for the following information:

Order Total
Order Date
Billing State
Shipping State
Sales Channel
Order Received

As discussed in Chapter 2, Introduction to BizTalk Development, some of these are
business data and others are milestones. Milestones are points in time when events
happen, such as when messages are received or sent. Business data is normally
content from the message itself, but can also be context or metadata. In the
previous list, only Order Received and Order Sent are milestones.

Creating an Activity
Creating BAM activities is done via an Excel plugin. Open Excel and go to the
Add-Ins tab. Click the BAM Add-In and click BAM Activity… as shown in the
following screenshot:

•
•
•
•
•
•

Chapter 6

[161]

Enable Excel Add-In for BAM
Be sure to enable the Excel plugin by going to File | Options navigating
to Add-Ins and clicking the Go button at the bottom of the dialog near
Manage: Excel Add-ins. From here you will see the Business Activity
Monitoring add-in. Be sure to check the box to enable it.

The window will be empty when it opens, as shown in the following screenshot:

Click New Activity… on the right to create a new BAM activity. Name the new
activity Purchase Orders and the New Activity dialog shown in the following
screenshot will appear:

Unit Tests and BAM

[162]

Click the New Item… button and add the following items selecting the appropriate
Item Type for each:

Order Total: Decimal
Order Date: Text
Billing State: Text
Shipping State: Text
Sales Channel: Text
Order Received: Business Milestone

Click OK when you're done and then click OK again on the Business Activity
Monitoring Activity Definition dialog. Doing so will launch the View Creation
wizard. This is where we will define which data we want in a specific view. Recall that
a view is a presentation of one or more activities. Click Next > to begin this process.

Creating a View
All of the view-related user interfaces resemble the activity from the previous section
and you now see the View Creation wizard on your screen. At this point, your only
choice will be Create a new view, click Next > to continue. Name the new view
Received Orders and select Purchase Orders as the activity to drive the view.
Click Next >.

Select all the items as the View Items and click Next >. Click Next > when back at
the View Creation wizard. We are next provided with the opportunity to create
dimensions and measures. We will not do that at this point, so click Next > again.
Click Next > again at the summary page of the wizard. A dialog telling you that You
have successfully created a new view will appear, click Finish to close the wizard.
Save the Excel file as OrderProcessing.xlsx.

Now you must deploy the view. The tool used to do this is BM.exe, a command line
utility that controls BAM. This tool is located in: Install Directory\Microsoft
BizTalk Server 2010\Tracking. It can be useful to add this path to your
environment in Windows.

The following are the steps to deploy the tracking activity:

1. Open a command line (which can be done by clicking the Windows button
and typing cmd into the Search programs and files box).

2. CD into the directory containing OrderProcessing.xlsx.
3. Type the following command:
 bm deploy-all -definitionFile:OrderProcessing.xlsx

•
•
•
•
•
•

Chapter 6

[163]

The format of the command is: bm [operation] [parameters].

At this point, navigating to http://localhost/bam will bring up the BAM portal.
We can see the view, Received Orders, and activity, Purchase Orders, that we
created, but we still have to create a tracking profile to bind the activity to the
solution. Without this step, nothing will appear in the BAM data.

Creating the Tracking Profile
Start the Tracking Profile Editor (TPE) by clicking Start | All Programs | Microsoft
BizTalk Server 2010 | Tracking Profile Editor. When the Tracking Profile Editor
starts, it is an empty window consisting of two panes. The one on the left is where
we view our activity definition and the one on the right is where we view our
event source.

1. Click on the Click here to import a BAM Activity Definition link in the
left pane.

2. Select the Purchase Orders activity in the list that displays all
activity definitions.

3. Click the Select Event Source dropdown in the upper right corner of the
TPE and click Select Messaging Payload. This will allow us to browse for a
specific event source that is a messaging payload. In the Select Event Source
Parent Assembly dialog, we can see all the BizTalk assemblies on the server.
Now, perform the following steps:

Double-click PRP.OrderProcessing.InternalSchemas
Select the PRP.OrderProcessing.InternalSchemas.PurchaseOrder,
which is the specific schema we want to track
Expand the <Schema> and PurchaseOrder nodes in the right pane to
see the schema elements

°
°

°

Unit Tests and BAM

[164]

4. Drag all the following matching elements from the schema on the right to the
profile on the left:

Total
Date
Sales Channel
ShipTo.Address.State
BillTo.Address.State

5. You now need to set the port mappings for each of these elements. All the
elements should be bound to the receive port: OP_Receive_PurchaseOrders.
To do this, perform the following steps:

Right-click each element on the left starting with Total and click Set
Port Mappings. A dialog opens to allow you to see all the ports.
Type in OP_Receive_PurchaseOrders (or a substring) or simply
scroll to this port name in the list.
Click the > button or double-click the port name to assign the port to
this tracking profile element.
Repeat the process for the Date, Sales Channel, and both
State elements.

We can see here how the naming convention we're using for port names is
significant, in that it makes working with the tracking part of a solution infinitely
easier. As your BizTalk environment grows, these conventions become even
more important.

We have two elements remaining that haven't been mapped yet: Order Received
and Order Sent. We get a visual cue that these are milestones because of the clock
icon by which they are represented. To map these, perform the following steps:

1. Click Select Event Source on the right and click Select Messaging Property
from the list. Expand the <Schema> and MessageProperties nodes on
the right.

2. Drag Port Start Time on the right to the Order Received milestone on
the left.

3. Bind Order Received to OP_Receive_PurchaseOrders like we did for the
other elements.

4. Save the profile as PurchaseOrderTracking.btt in the Tracking folder of
the solution.

5. Click Tools | Apply Tracking Profile.

°
°
°
°
°

°

°

°

°

Chapter 6

[165]

At this point, your tracking definition is now bound to your solution via the profile
we just applied. You can now run any of your Unit Tests and watch the results
appear in the BAM portal. To do this, navigate to http://localhost/bam. On the
left-hand side, you will see Views that you have access to. Expand the Activity
Search node under Received Orders and you can now see our Purchase Orders
activity. Clicking Purchase Orders will bring up the BAM query window. If you
highlight all the columns in the left of the Column Chooser section and click the >>
button to assign them to the right, you will be able to select the items you want to see
in your result set, as shown in the following screenshot:

Clicking Execute Query at the top right will return the records from BAM. If you
click on one of the records, you can see details for that specific instance. Every time
you run your unit tests, you should see two more entries appear in the BAM Portal.

Unit Tests and BAM

[166]

We can already see how just this basic tracking sets up visibility into our solution
that can be very valuable for either technical or business users, particularly in the
operations space. The query section of the window allows us to create queries
that can search on either data or milestones. The operator for a query changes
depending upon the type in the activity. The types and operators are described
in the following table:

Data Type Operator
Text Is Exactly

Contains
Does not contain
Is empty
Is not empty

Milestone At
On or before
On or after
Before
After
In the last
Before the last
Is empty
Is not empty

Integer and Decimal Equals
Greater than
Greater than or equal
Less than
Less than or equal
Not equal
Is empty
Is not empty

With just this set of tools, we are already able to create expressive queries that will
enable us to find specific sets of transactions as they pass through our solution. We
can also save the queries as XML documents to load them later on. Each column in
the results is also sortable by clicking the heading.

Clicking on any of the rows in the results pane will bring us to the details of this
activity instance. The activity status or details page, displays exactly what we saw
in our activity definition: milestones and data.

Chapter 6

[167]

Many developers I teach BAM to, are put off at first by the use of an Excel plugin and
the lack of 'code' behind the solution. In reality, however, this is one of the greatest
strengths of BAM. We have not written a single line of code, but we have extremely
reliable tracking now integrated with our solution, that is infinitely better than any
of us could do in anywhere near similar time on our own. To see how advanced
this is, we will now examine the BAM infrastructure a little. There is a great deal
of documentation on BAM available at http://msdn.microsoft.com/en-us/
library/aa561326(v=BTS.70).aspx and there is an excellent book that I highly
recommend, Pro Business Activity Monitoring in BizTalk 2009, Geoff Snowman and Jeff
Sanders, Apress.

Examining the BAM database
infrastructure
As impressive as all of this is so far (and recall that we're only scratching the surface),
the real amazing part of it is the infrastructure which is automatically created and
deployed for us.

BAM tables
If we open SQL Server Management Studio and look in the BAMPrimaryImport
database, we can see that the following tables were created for our tracking solution:

bam_Purchase Orders_Active

bam_Purchase Orders_ActiveRelationships

•

•

Unit Tests and BAM

[168]

bam_Purchase Orders_Completed

bam_Purchase Orders_CompletedRelationships

bam_Purchase Orders_Continuations

These tables hold the raw BAM data that is moved here by the BizTalk engine
as it cleans out the message box and DTA databases. This also means that if a
BizTalk environment is overloaded, it will slow down BAM processing to increase
transaction processing, then process the BAM information when the transaction
load declines. In a production solution, this is a profound and important feature.
Many home-built tracking and instrumentation frameworks slow down the run
time through synchronous calls. BAM does not.

BAM views
Browsing around in our BAMPrimaryImport database, we can also see there are
several views created for both the activity and the view.

What we see in the BAM portal is actually directly driven from
these views, not the tables. If you plan to query BAM directly either
through SharePoint or Reporting Services, it is critical that you query
the views and not the tables. As we will see shortly, these views are
recreated periodically so it is important to only query them and not
the underlying tables.

The views created for activity are as follows:

bam_Purchase Orders_ActiveInstances

bam_Purchase Orders_AllInstances

bam_Purchase Orders_AllRelationships

bam_Purchase Orders_CompletedInstances

bam_Purchase Orders_InstancesForArchive

bam_Purchase Orders_RelationshipsForArchive

The views created for view are as follows:

bam_Received Orders_ViewPurchase Orders_ActiveAliasView

bam_Received Orders_ViewPurchase Orders_ActiveView

bam_Received Orders_ViewPurchase Orders_CompletedAliasView

bam_Received Orders_ViewPurchase Orders_CompletedView

bam_Received Orders_ViewPurchase Orders_View

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[169]

BAM maintenance
In addition to these views, there are also two SSIS packages created for each activity
that are as follows:

bam_DM_Purchase Orders

bam_AN_Purchase Orders

Data maintenance
The data maintenance package is denoted by the DM in its name and must be
configured on the schedule you choose to run. The package uses the concepts of
windows and partitions. Each time the package is run, it creates a new set of the base
tables for completed instances and completed relationships named bam_Purchase
Orders_[GUID] and bam_Purchase Orders_[GUID]_Relationships. These new
tables have a GUID in their name so there are no name conflicts. The package then
recreates the views, so that the new tables are included in them. This keeps the tables
from getting too big and slowing down the SQL server. This package also marks the
partitions with a date. Any partition whose date is outside the time window will be
either archived or deleted. The default time window is six months and the default
action is to archive to the BAMArchive database.

This means that if you set this package to run every month it will create a partition
each month with the completed tracking data for that month. After six months,
the first partition will be archived off into BAMArchive and then deleted from
BAMPrimaryImport. The data will no longer show up in the BAM Portal, but you
will have it if you need it in BAMArchive, which is not an operational store and
therefore can grow very large without causing trouble. The benefit here is that
BAMPrimaryImport, and consequently the BAM Portal, will be kept clean and thus
perform better. This is an ideal way to address business users who like to hoard
data with the common request 'we need everything saved forever' paired with the
common requirement 'but nothing can slow down over time'.

The options covering the time window are month, day, hour, and minute; which
enable us to control exactly how we want BAM to partition and archive, or purge.
This enables BAM to serve the same purpose for high volume or long duration
solutions. The archive option controls the cleanup. It can be used to move the records
to the BAMArchive database, the default behavior, or to simply delete the records.

•

•

Unit Tests and BAM

[170]

Analysis
The analysis services package, denoted by the AN in its name, was not created at
this time, as there are no cubes for our tracking solution. We will cover this shortly
and it is one of the most compelling aspects of BAM. As with the data maintenance
package, you must create the job to run the analysis services package on a schedule
that you choose, which is very simple as the package has no parameters or extra
configuration. Both of these packages are ready to run out of the box, but must have
a SQL job set up to actually execute them. Depending upon your specific volume
and data retention needs, you should determine the schedule on which to run
these packages.

At this point, it should be clear that BAM is bringing a lot to the table and that
working with an Excel plugin is not as bad as you may have at first thought. As we
explore more advanced BAM features, such as dimensions and aggregations, the
choice of excel becomes far more obvious and the results more impressive.

Receiving a new Legacy Order format
The current solution is working well and all the stakeholders are pleased. It comes to
your attention that a business analyst has created an InfoPath form to fill orders that
has become quite popular with some of the travelling sales teams.

Microsoft InfoPath
This is a part of the Office suite specifically designed for working with
electronic forms, specifically as XML. InfoPath is commonly used as a
presentation layer for XML documents and provides rich features that
make working with forms easy and still provide separation between the
data in the form and the presentation of that data. For more information
see the following: http://office.microsoft.com/en-us/
infopath/.

Until now the sales people would just save this form or print it. Subsequently, either
sales or call center staff would rekey the order into the call center application or
web portal. The duplicate work, crossing two operating centers, is causing friction.
Because the InfoPath form is built on an XML template anyway, you decide they
should just submit the form to the File Share that BizTalk receives call center
purchase orders from.

Chapter 6

[171]

The sales team give you their format schema and InfoPath template; now you
must incorporate it into your solution. To do so you will need to perform the
following steps:

1. Add the schema that the sales team have provided you with,
InfoPathPurchaseOrder.xsd, to External Schemas. This schema and a sample
message are available at http://biztalk2010patterns.com//documents/
order-processing.

2. Create a new map Ext_InfoPathPurchaseOrder_To_PurchaseOrder.btm.
3. Select InfoPathPurchaseOrder from External Schemas as the left-hand source.
4. Select PurchaseOrder from Internal Schemas as the right-hand destination.
5. Map the Sales Channel as Field Sale using a String Concatenate Function.
6. Map the Customer items to both the ShipTo and BillTo nodes mapping:

Name to Name
PhoneNumber to PhoneNumber
Address1 to Address/Street
City to Address/City
State to Address/State
ZipCode to Address/PostalCode

7. Map the OrderItem attributes to LineItem as follows:
ItemNumber to CatalogNumber
Quantity to Quantity
Price to UnitCost
Description to Description

8. Select the file UnitTest\TestData\External\ InfoPathPurchaseOrder.xml as
the Test Map Input Instance.

9. Build the solution then test the map.
10. Deploy the solution.
11. Refresh the Administration Console.
12. Add the map Ext_InfoPathPurchaseOrder_To_PurchaseOrder to the receive

Port OP_ Receive_ PurchaseOrders.
13. Copy the file InfoPathPurchaseOrder.xml to the receive location

C:\BizTalk\PRP\CallCenterOrders to verify whether the solution works.
The file should end up in C:\BizTalk\PRP\SendInventoryPurchaseOrder
in the SalesOrder format.

°
°
°
°
°
°

°
°
°
°

Unit Tests and BAM

[172]

Because we receive these in the same location as our existing call center purchase
orders, we do not need a new receive location, yet BizTalk is smart enough to
identify the incoming message type and decide which map to use. This is done in
the XMLReceive pipeline in our receive location through the process of message
inspection. You will recall that a message type in messaging solutions is identified
by XML namespace and root element name. BizTalk identifies the received message
type then looks for a map that matches the message type.

Creating a BizUnit test
Although we have seen that this solution is working, we should also create an
automated test so that we can verify it continues working and also to document
expected behavior of the solution:

1. Right-click the BizUnitTests folder in the UnitTests solutions
and select Add | New Item to add a new XML file named
CanRouteNormalInfoPathOrder.xml.

2. Copy the contents of CanRouteStandardPurchaseOrder.xml and paste them
into this new file.

3. Change the testName attribute of the TestCase root element to
CanRouteStandardPurchaseOrder.

4. Change the FileCreateStep to use the InfoPathPurchaseOrder.xml.
5. Change the XmlValidationStep so that the XPathValidations use the values

57463 for Number and 505.43 for Total.
6. Create a new test method in BizUnitTests.cs to run the test. You can

copy one of the existing test methods and change the method name to
CanRouteNormalInfoPathOrder. Be sure to change the name of the XML
file in the constructor to CanRouteNormalInfoPathOrder.xml.

All of your tests should pass for the solution at this point. As we can see, in just a few
steps we were able to receive a completely new format and have it flow all the way
through our solution by only adding a map. This is the goal of the internal schemas
concept. Changes to the periphery of our solution should not impact the solution
itself. As proof of how effective this was, we can now actually see our new Field Sale
Orders listed in the BAM Portal.

Chapter 6

[173]

Summary
In this chapter, we were introduced to BizUnit tests and created tests for our current
solution. We also created monitoring with BAM and ended by adding support for
a new message format. All of these add value to our solution and their importance
should not be overlooked. Automated unit testing is critical to solution success and
monitoring is so powerful that BAM alone is worth the cost of BizTalk. The BAM
infrastructure can actually be used from .NET and WCF applications that aren't
even part of BizTalk. The flexibility of the solution structure that we chose was
also evident as we made changes with ease.

Leveraging Orchestration
Messaging only solutions can be made very powerful and complex, but some actions
are best done with a more robust and feature-rich toolset. This is what orchestration
was designed to address. This chapter introduces orchestration in BizTalk and
refactors our current solution to incorporate orchestration. We will then see how to
use orchestration for service composition including error and fault handling.

Introducing orchestration
Orchestration is the workflow engine of BizTalk. It allows developers to create
sequential workflows similar to flowcharts commonly used by business analysts. The
orchestration engine predates Workflow Foundation (WF), but was created by the
same team and many of the concepts are similar. Orchestration is specifically focused
on messaging or system to system choreography, whereas WF is targeted more
at human workflow. We have intentionally not started with orchestration earlier
because it is overused in situations where it is not necessary. To demonstrate this
point, we will now modify our existing solution to use an orchestration instead of
promoted properties. These were covered in Chapter 3, BizTalk Development Guidelines
and Chapter 5, Basic Messaging Solution.

Leveraging Orchestration

[176]

Orchestration basics
The graphical representation of this flowchart such as the construct that we work
with when creating orchestrations is called the canvas. Like a real canvas, at first it
is empty. In the following screenshot, we can see what a new (empty) orchestration
canvas looks like:

The green and red dots represent where the orchestration starts and where it
finishes. These are simple visual cues; these don't actually do anything. On the sides
of the canvas, we can see two Port Surface areas. These are where we would place
logical ports that are used to bind an orchestration to the outside world.

Please note how the concepts of binding and port are reused within
orchestration; they also fundamentally mean the same thing as in the
context we saw them before. Nearly all of BizTalk uses a common lexicon
that describes its core concepts.

On the left side of your screen (by default) is the Toolbox. Orchestration, like
much of BizTalk, uses a customized toolbox in Visual Studio that is specific to it.
This Toolbox contains only 22 shapes, but they are enough to implement very
rich logic designs and patterns. Shown in the following screenshot is the complete
orchestration toolbox. I've broken the image out side by side for better presentation:

Chapter 7

[177]

Although they look simple so far (and have cute little icons), these shapes really are
enough to meet the vast majority of service composition needs. Our solution will
only use a handful of them. Again like most of Visual Studio, when we drop a shape
from the toolbox onto the orchestration canvas, there will be a properties window
specifically for that shape (or any shape that we highlight). What properties are in
this window will depend on what shape is highlighted.

There is also an Orchestration View window that appears when we work with
orchestration. This window is on the upper right of Visual Studio by default,
grouped with the solution explorer that we've worked with up to this point. This
window is shown as follows:

As we can see in the Orchestration View, there are two distinct parts: the top
one is labeled with the name of the orchestration, in this case OrderProcessing,
and the bottom one is called Types. The top section contains artifacts specific to
this orchestration, and this could be thought of as members in a .NET class. The
bottom section contains orchestration types that are in all the orchestrations in the
current Visual Studio project. We discussed this in more detail in Chapter 3, BizTalk
Development Guidelines.

Creating the orchestration outline
We will now modify our current solution to use an orchestration. To do this, we
must create a new orchestration and start adding shapes to the canvas. The steps for
this are as follows:

1. Add a new orchestration to the project Orchestrations called
OrderProcessing.odx via the Add | New Item wizard.

Leveraging Orchestration

[178]

2. Add the following orchestration shapes for the solution:
A Receive shape named Rcv_PurchaseOrder and set the Activate
property to true
A Decide shape following the receive shape named Decide_Priority
and rename Rule_1 on the left to If_Priority
A Send shape named Snd_PriorityPurchaseOrder in the left branch
of the decision
A Send shape named Snd_StandardPurchaseOrder in the right
branch of the decision

At this point, we have the basic skeleton for our orchestration and it is immediately
clear why many developers are more comfortable with this approach than the
messaging solution we have used up to this point. It is an imperative model that is
all in one place and the intent is explicitly clear as shown in the following figure:

We can also see that there are clear visual cues as to what elements of our solution
are incomplete. Clicking any of the red exclamations will display the error and
provide a simple way to resolve the issue. A simple way we should generally not use
due to the increased coupling that can result. Visual Studio is trying to be our friend
and it is telling us what the problems are, but its solutions to the problems aren't
always the best in terms of design, so resist the urge to use them.

°

°

°

°

Chapter 7

[179]

Creating the PurchaseOrder message
First, we will need to create a message for this solution to be processing. As covered
in Chapter 3, BizTalk Development Guidelines, we should always use multipart
messages in orchestrations. They are far more flexible and allow us to change the
orchestration easily in the future, should we need to. We will now add a multipart
message for our purchase order schema to the solution:

1. In the Orchestration View of Visual Studio:
Expand the Types section.
Right-click Multipart Message Types and click New Multipart
Message Type.
Rename the message MultipartType_1 to PurchaseOrderType.
Rename the part MessagePart_1, following PurchaseOrderType,
to Body.
Click Body and then in the properties window click the Type
dropdown and expand Schemas selecting <Select from a referenced
assembly…>.
Select the PurchaseOrder schema from Internal Schemas.
Right-click Messages in the top part of the Orchestration View and
click New Message. This will create the message instance in our
orchestration itself.
Rename Message_1 to PurchaseOrder.
Click Message Type of this new PurchaseOrder message and expand
Multipart Message Types, selecting our PurchaseOrderType that we
created previously.

2. Click each send and receive shape and change the Message to our new
PurchaseOrder message.

You'll notice that despite the fact that we corrected the listed issues for each of the
send and receive shapes, the warnings did not go away. We have corrected the first
issue to uncover the second, namely, that we need to provide ports to connect these
shapes to.

°

°

°

°

°

°

°

°

°

Leveraging Orchestration

[180]

Adding ports to the canvas
The solution now needs ports connected to the receive and send shapes. This will
provide channels to which we can send and receive messages from the rest of
BizTalk:

1. Expand the Toolbox and drag a Port onto the Port Surface area to the upper
right side of your canvas. A wizard will appear to walk you through the
process of creating a new port on the canvas as follows:

Click Next.
Enter the value ProcessessPurchaseOrderPort, as shown in the
following screenshot and click Next:

Create a new Port Type with Port Type Name:
ProcessessPurchaseOrderPortType. Keep the default values for
Communication Pattern and Access Restrictions, as shown in the
following screenshot, and click Next:

°

°

°

Chapter 7

[181]

Keep the default values for Port direction of communication and
Port binding and click Next again, as shown in the following
screenshot:

Click Finish. After the wizard closes, the new port will be in the
right hand port surface and we can see a single operation on it called
Operation_1. Rename Operation_1 to OP_Receive_PurchaseOrder.

2. Click and drag the Rcv_PurchaseOrder to the OP_Receive_PurchaseOrder
to connect the shape to the operation. This will create a line connecting the
receive shape and the port and also assigns the message type property for the
operation to our multipart message.

3. Repeat the process in the previous step to create the Send Ports and Types.
These will both use the communication direction I'll always be sending
messages on this port as follows:

Use the names StandardPurchaseOrderPort,
StandardPurchaseOrderPortType
PriorityPurchaseOrderPort, PriorityPurchaseOrderPortType
Rename the operations to OP_Send_PriorityPurchaseOrder and
OP_Send_StandardPurchaseOrder respectively
Connect the send shapes to their corresponding ports/operations

If you want to make your orchestration neater, you can move the
PriorityPurchaseOrderPort to the left side of the canvas, even after it is connected.

°

°

°

°

°

°

Leveraging Orchestration

[182]

Implementing the logical comparison
We now have a nearly complete solution. The only piece missing is the If_Priority
conditional check, which still contains a red exclamation mark. Double-click that
shape and an expression editor window will appear. This window, which is used
by several shapes, is intentionally limited in capabilities because the creators did not
want entire programs being written here. Pressing Ctrl + Space Bar will bring up a
context list and here we can see our PurchaseOrder message. If you Tab or click the
message it will auto complete. Now entering a left parenthesis will bring up the list
of promoted properties available for this message. We're looking for our property
that we mentioned earlier.

Enter the following expression: PurchaseOrder(PRP.OrderProcessing.
InternalSchemas.OrderTotal) >= 1000 and click OK.

The expression editor is shown in the following screenshot. Note the three icons in
the upper left. These allow you to display an object member list, parameter info, and
word completion based on the current context.

Our orchestration is now complete. We did have other options available for the
conditional, namely, using a distinguished field or even an XPath query, which
should generally be avoided for reasons explained in Chapter 3, BizTalk Development
Guidelines. As a brief reminder, the primary reasons were due to versioning and
changes that will only surface at runtime, but also for readability reasons.

Once we deploy, our solution must wire it up or configure its bindings in the BizTalk
Administration console as follows:

1. Refresh the Administration console and navigate to the Order Processing
application.

2. Click on the Orchestrations node.

Chapter 7

[183]

3. Double-click the OrderProcessing orchestration (the only one).
4. Set the bindings as follows:

Host: BizTalkServerApplication
Set the Inbound Logical Ports such as

 ProcessPurchaseOrderPort to OP_Receive_PurchaseOrders
Set the Outbound Logical Ports such as
PriorityPurchaseOrderPort to OP_File_Send_Fulfillment_Priority-
SalesOrder and StandardPurchaseOrderPort to OP_File_Send_Ful-
fillmentSalesOrder
Click OK

5. Right-click the orchestration and select Start.

We are now ready to run. The solution template is setup to restart host instances
after deployment of the Maps project—the last one in the build order. If you're not
using the downloaded template, be sure to restart your host instances in order for the
changes to take effect. If we now run our test CanRoutePriorityOrder, we will see
that it fails with the following error:

BizUnit.TestStepExecutionException: BizUnit encountered an error
executing a test step ---> System.ApplicationException: Directory does
not contain the correct number of files!
 Found: 2 files matching the pattern *.xml.

So what's going on? Why did this happen? If you comment out the cleanup state of
the test, you can actually inspect the files and see that we have two of the exact same
transactions. Indeed this is part of the reason we have unit tests because it is not that
messages aren't going through, but that we're getting too many of them; duplicates
of the same message. The cause for this is simple and can be seen if we go to the
activation subscription query that we looked at earlier in Chapter 5, Basic Messaging
Solution. Recall that we got to that query by navigating to the Group Hub page in
the BizTalk Administration console and creating a new query with Search For set to
Subscriptions and Subscription Type set to Activation Subscriptions. We have a
new subscription matching on receive port and message type as follows:

http://schemas.microsoft.com/BizTalk/2003/system-properties.
ReceivePortID == {1215B90E-AD4F-4AB6-BCBD-A92BFD4717A8} And http://
schemas.microsoft.com/BizTalk/2003/system-properties.MessageType
== http://performanceracingparts.com/schemas/PurchaseOrder/
internal/20011-05#PurchaseOrder

°

°

°

°

Leveraging Orchestration

[184]

This is because our orchestration is already expecting a typed message and we
bound it to that receive port. To resolve this, all we have to do is go and remove the
filters from our send ports. Be sure that the tests have passed before proceeding.
Amazingly, our BAM still works even though we've completely re-engineered the
solution internally. Behold the glory of BAM.

Checkpoint
So, we have our first orchestration and it required quite a few steps to make it do
what our messaging only solution was already doing. This is an example of a terrible
orchestration that should not be created. Let's list some of the pros and cons of this
solution as follows:

Pros Cons
Simple to follow code path: we can
easily see what this solution does.

Twice the number of trips to the message box: this
will make the solution take longer to run.
Requires recompiling and deploying to change the
routing threshold value: this makes maintenance
more difficult.
Took more time to create: there were many more
steps here.
Has more bindings: the simplicity is deceiving,
there are actually more parts to manage here.

The list of pros is not very long. Despite that, we will keep the solution as it is and
grow it into a better solution. Many of the tasks that are normally accomplished
via orchestration can also be done via messaging. All the orchestration engine
does anyway is orchestrate messages; it really does run on top of the messaging
framework in BizTalk. We will now expand our solution to be more useful than
simple routing.

Consuming the order discount service
The company's CRM system, which we already send orders to, allows for a
discounting feature that calculates a discount amount based on the customer's
purchase history and standing. This feature is accessible via a web service. We need
to call this service on priority purchase orders to apply a discount as specified by the
CRM. Orchestration is by far the easiest, but not the only way to consume services
and create more complex service compositions. Recall that this service, despite
being hosted in our enterprise, is in fact an external schema. When we look at the
service, we can see that it uses the same message structure for the request as for the
response—a simple message that contains an order number, customer name, and
order total.

Chapter 7

[185]

Adding the service artifacts to the solution
The steps for adding the service artifacts to the solution are as follows:

1. Right-click ExternalSchemas and select Add Generated Items.
2. Double-click Consume WCF Service.
3. Type in the following URL for the discount service:

http://localhost/DiscountService/DiscountService.svc?wsdl.
4. Click Get, then Next.
5. Keep the existing namespace and click Import.
6. Click Finish.

If you look at the artifacts created, there are three schemas (xsd), an orchestration,
and two binding files (xml). The orchestration is the IDE trying to help us, but it
is not really being our friend here. It breaks our separation model. We don't want
to use it. The only useful things in it are multipart message types and ports for the
service request and response, which we already know how to create and we will do
so later on. Now we will delete this orchestration and move the bindings to a more
appropriate location as follows:

1. Delete the orchestration that was created: DiscountService.odx.
2. Move the *.BindingInfo.xml files that were created to the Bindings

folder or just exclude them from the project. We will use DiscountService.
BindingInfo.xml, but once we have imported it we will not need it again.

Creating the maps
We must now create maps to consume the service. We want to simply send
our purchase order out of the orchestration and get back a response. The order
processing orchestration should be as unaware of this discount service as possible
and thus be as decoupled as possible. The request and response schemas for the
discount service are located in DiscountService_tempuri_org.xsd.

1. Create a map in the Maps project named Int_PurchaseOrder_To_
DiscountServiceRequest.btm.

2. Select the schema PurchaseOrder from InternalSchemas for the left side
of the map and GetCustomerDiscount from ExternalSchemas for the
destination on the right.

3. Map BillTo.Name to CustomerName.
4. Map Number to OrderNumber.
5. Map Total to Total.

Leveraging Orchestration

[186]

This is where saving our previous internal purchase order format can prove to be
useful. If we like, we can now use this file as the input to test our map with:

1. Create a map named Ext_DiscountServiceResponse_To_PurchaseOrder.
btm.

2. Select GetCustomerDiscountResponse as the source schema and
PurchaseOrder as the destination.

3. Map Discount to Total.

Now we simply need to modify our existing orchestration to call the discount service
from within the priority branch as follows:

1. Add a send shape named Snd_DiscountRequest_PurchaseOrder in the
Is_Priority branch before the Snd_PriorityPurchaseOrder shape.

2. Assign the PurchaseOrder message to this shape.
3. Add a receive shape for the discount service named Rcv_DiscountResponse_

PurchseOrder.
4. Create a new message OrderDiscount to hold the response in and make its

type the multipart type PurchaseOrderType. Assign this new message to
Rcv_DiscountResponse_PurchseOrder via the properties window.

5. Create a port to call the service by dragging a port shape onto the Port
Surface and perform the following steps:

Name the port DiscountServicePort
Name the port type DiscountServicePortType
Select Request-Response as the communication pattern
Select I'll be sending… as the direction and keep the specify
later option
Rename Operation_1 to OP_Send_DiscountRequest

6. Connect the Snd_DiscountResponse_PurchseOrder and Rcv_
DiscountResponse_PurchseOrder shapes to the OP_Send_DiscountRequest
operation (on the Request and Response connectors).

7. Create a new message DiscountedPurchaseOrder of multi-part type
PurchaseOrderType to hold the final order.

8. Drag a Message Assignment shape following the Rcv_DiscountResponse_
PurchaseOrder shape and perform the following steps:

Rename ConstructMessage_1 to Construct_
DiscountedPurchaseOrder

°

°

°

°

°

°

Chapter 7

[187]

Assign DiscountedPurchaseOrder as the Messages Constructed
property of Construct_DiscountedPurchaseOrder
Rename MessageAssignment_1 to Assign_
DiscountedPurchaseOrder

At this point, we need to assign the discount to the original purchase order payload
and we have three options on how to do this. We can:

Use an XPath expression
Use the existing promoted property
Use a distinguished field to work with this value

Distinguished fields
Although we can use our existing promoted property to perform the value
assignment for the purchase order, we can also use a distinguished field for the same
purpose. As discussed in Chapter 3, BizTalk Development Guidelines, distinguished
fields provide an XPath short hand for use in orchestrations. The benefits of
distinguished fields over promoted properties are twofold: one, they use a compact
and familiar notation and two, they are not loaded into the message context. To
create the distinguished field follow the steps as follows:

1. Open the PurchaseOrder schema in the InternalSchemas project.
2. Navigate to the Total node and right-click on it.
3. Click Promote | Show Promotions.
4. Click on the Distinguished Fields tab in the upper right.
5. Click on the Add >> button to mark the field as distinguished.
6. Click OK.
7. Build the solution.

Go back to the OrderProcessing orchestration, as we're now ready to use our new
distinguished field. If we double-click the Assign_DiscountedPurchaseOrder, we
again see the expression window. Enter the following two lines of code into the
expression window:

DiscountedPurchaseOrder.Body = PurchaseOrder.Body;
DiscountedPurchaseOrder.Body.Total = OrderDiscount.Body.Total;

The first line assigns the PurchaseOrder we received to the
DiscountedPurchaseOrder. The second line assigns the discounted order total that
we get back from the web service call.

°

°

•

•

•

Leveraging Orchestration

[188]

Finally, click the shape Snd_PriorityPurchaseOrder and change the Message
property to DiscountedPurchaseOrder. Failing to do this would cause the old
message to be sent out of the orchestration, negating all our previous work. Deploy
the solution and refresh the BizTalk Administration console.

Creating a new send port
We now need to create a new send port to consume this web service. The steps for
creating a new send port are as follows:

1. Right-click Send Ports and click New | Static Solicit-Response
Send Port….

2. Name this port OP_Wcf_Send_OrderDiscount.
3. Select WCF-BasicHttp as the Type.
4. Select XMLReceive as the Receive pipeline.
5. Click Configure to configure the port type.
6. Enter http://localhost/DiscountService/DiscountService.svc as the

Address (URI).
7. Enter http://tempuri.org/IDiscountService/GetCustomerDiscount as

the Action.

SOAP Action
Although the previous Action may look like a URL, it is not.
SOAP Actions are much like XML namespaces in that they are
qualifiers that simply provide uniqueness. They do not need to
correspond to an actual URL, and generally do not.

8. On the Messages tab, be sure to uncheck Propagate Fault Message.
9. Click OK.
10. Assign the outbound map Int_PurchaseOrder_To_DiscountServiceRequest

and the inbound map Ext_DiscountServiceResponse_To_PurchaseOrder.
11. Click OK.
12. Double-click the orchestration OrderProcessing and assign OP_Wcf_Send_

OrderDiscount to DiscountServicePort.
13. Click OK.
14. Start the application.

Chapter 7

[189]

We have now connected the order discount service into our solution. We
should be able to run our unit tests and see the results come out. The unit test
CanRoutePriorityPurchaseOrder will fail, however, after the test fails, we will see a
failed test row in the Test Results window in Visual Studio. Double-clicking on the
failure will bring up a detailed error page for that specific test failure. Near the top of
the test results, we will see the reason for the failure, which is shown as follows:

Test method UnitTests.BizUnitTests.CanRoutePriorityOrder threw
exception:
BizUnit.ValidationStepExecutionException: BizUnit encountered an
error executing a validation step ---> System.ApplicationException:
XmlValidationStep failed, compare 1492.07 != 1492.070, xpath query
used: /*[local-name()='SalesOrder' and namespace-uri()='http://
inventorymanagement/schemas/purchaseorder/external/2009-10']/*[local-
name()='Total' and namespace-uri()='']

The failure is because our output amount is not the expected value. Again our unit
tests are providing a safety net for us. They are, in fact, telling us something isn't
right and needs to be addressed. Because this is a trivial example, we can simply
replace the expected total amount with the value that is left in the order now, which
is 1492.070 (a 5 percent discount).

Handling SOAP Faults
So far, we have a working solution, but this is not necessarily the sort of solution you
would want to go to production with. The solution is far more fragile than it at first
appears. Although it will retry if a service is down, it will not be able to be resumed
in the case of a SOAP or other service-side fault. This can cause us a lot of pain.

Using scopes and exceptions
Expecting the unexpected is generally a good rule and orchestration is no different
in this regard. We are provided with a few different tools to help us handle the
unexpected within an orchestration; one of them is the scope shape. A scope is a
container or context block in which we can place other shapes almost to function
as a unit of work. Scopes help us logically organize our orchestrations. Scopes can
contain their own messages, variables, and correlation sets that are local to them and
their children. This helps us avoid having too many orchestration global artifacts
complicating our solutions.

Leveraging Orchestration

[190]

Scopes also allow us the use of transactions. Every scope has a transaction type, as
does an overall orchestration. The transaction types are listed as follows:

None: This transaction type means that no special transactionality is added
to the shapes within the scope.
Atomic: This transaction type is fully ACID compliant and will commit
all changes together or rollback as a group. This type of scope has special
limitations, such as not being able to have send and receive shapes in it. This
makes sense because the message box is a decoupling mechanism and we
cannot hold a long lasting lock on it. Atomic scopes also allow for working
with services components (DTC/Enterprise Services).
Long Running: This allows us to specify that a group of shapes is considered
to be a connected group and transacted together, but is not fully ACID
compliant. Because they are designed to run for a long time, they can be
neither atomic nor isolated, but they are durable and consistent. Long
running scopes also allow us to nest other scopes.

Finally, scopes also allow for exception handlers; much like a try/catch block in
.NET. Exception handlers allow us to specify different expected exceptions in
order of most (first) to least specific and bring the same benefit we get from them
in traditional code; namely, that we know something has gone wrong and have an
opportunity to resolve it.

Along these lines, orchestration also allows compensation blocks; which are used to
undo completed transactions. Importantly, compensation blocks are only available in
long running transactions; they are in fact the key to the consistency and durability
that we discussed previously. Compensation blocks can be executed even after a
scope is complete from either an exception handler or another (parent) scope or
compensation block.

Encountering a SOAP Fault
We will now force a fault in our service; we can do this in the computer management
console (or IIS Manager) by stopping the web service application. Click Start, right-
click Computer and select Manage. Expand Service and Applications at the bottom
of the left side. Click on Internet Information Services (IIS) Manager. Expand the
root node of the local server and expand Sites; then expand Default Web Site. Click
the DiscountService website and select Stop Application from the Actions pane on
the right-hand side.

•

•

•

Chapter 7

[191]

If we run our priority test again, we can see that it fails (eventually). We can also
see in the BizTalk Administration console that we now have a dehydrated instance
of our send port. We have triggered the retry mechanism in the send port, but
eventually the port will exceed the retry and suspend. This actually isn't as bad
as it first appears. We can simply resume these service instances from the BizTalk
Administration console after restarting the service. The real problem comes when
something else happens, something unexpected. If we navigate to C:\inetpub\
wwwroot\DiscountService and edit the web.config file, we can see the following
setting near the bottom:

 <CrmDiscountService.Properties.Settings>
 <setting name="ThrowFault" serializeAs="String">
 <value>False</value>
 </setting>
 </CrmDiscountService.Properties.Settings>

This setting exists solely for the purpose of our experiments, but as the name implies,
it is telling this service if it should throw a fault. This fault is not explicitly listed in
the service contract exposed by this service, but this doesn't mean that the service
developer won't throw it. If we change this value to True, our priority test will
now fail.

If we look in the BizTalk Administration console, we can see that the orchestration
itself is suspended this time. Double-clicking the suspended orchestration will allow
us to see the details of this service instance, which is shown as follows:

Leveraging Orchestration

[192]

If we click on the Error Information tab, we can see the exact error text. Importantly,
we can see the name of the shape that threw this error and a little further down some
information telling us that we received an expected message type.

Clicking the Messages tab shows us exactly what this errant message is. This is
shown in the following screenshot:

It is in fact a SOAP Fault message and our solution currently does not know what
to do about it. The bad news is that our send port service instance is complete. This
message is now stuck. We cannot resume it; we must save the original message out
and terminate this instance. This is generally not an acceptable solution.

Why is this happening?
If you're interested in the details of how we ended up here, we can briefly look at
the subscriptions query we used before, but this time query on subscriptions with
Subscription Type set to Instance Subscription. We can see a stopped XLANGs
subscription and if we look at the expression, it is similar to the following:

http://schemas.microsoft.com/BizTalk/2003/system-properties.Correla-

tionToken == d1e5e9a0-5806-4dc1-8c4d-398f7a2537d9.

The GUID will be different each time, but this is simply showing us that
this subscription is explicitly waiting for a message with a property called
CorrelationToken set to the expected value. If you examine the suspended
orchestration's messages, you will see that the SOAP Fault does have this property
and it is set to this value. This is because the service did return a message, it
just wasn't the message that the service contract said it would be. This is a good
demonstration of how decoupled all the parts of BizTalk are. This orchestration and
port may appear coupled in our minds, but they are not as coupled as we think. We
have no choice but to terminate the existing service instances.

Using a scope to catch the fault
We quickly realize that any outage in the Discount Service results in the non-
resumable orchestration instances that must be resolved manually by the Operations
team. We decide to add some error handling to the orchestration, so that the
instances can simply be resumed. The steps for this are as follows:

1. Open the orchestration OrderProcessing.

Chapter 7

[193]

2. Add a scope shape named Discount Service Scope between the send and
receive for the Discount Service Call.

3. Set the Transaction Type to None in the properties window.
4. Move both the Snd_PurchaseOrder and Rcv_OrderDiscount shapes for the

Discount Service into this scope.
5. Add a Reference to the Orchestrations project for System.Web.Services.
6. Right-click Discount Service Scope and click New Exception Handler; name

this new exception handler SOAP Exception.
7. Change the new handler's properties as follows:

For the Exception Object Type click <.NET Exception> and browse
to System.Web.Services.SoapException (if System.Web.Services is
not already referenced in your project you may need to add a new
reference)
Set Exception Object Name to ExSoapException

8. Build the solution and see why it is failing. This makes sense, as our scope
has not assigned the message definitively, which orchestration will not allow.

9. Move the Construct_MsgDiscountedOrder and Snd_PriorityPurchaseOrder
shapes into the Discount Service Scope after the Rcv_DiscountResponse_
PurchaseOrder shape.

Our solution will now build and we can catch the SOAP exception returned by the
discount server. Now we have to decide what to do about it. Ultimately, we want a
way to safely retry the service even if a fault is returned. Because our orchestration
cannot proceed without this service response, retrying is our only real option.

Using a loop to retry the request
A simple way to accomplish this is with a loop shape inside the orchestration. The
loop will bring us back around to the service request in the event of a fault. The steps
for this are as follows:

1. Drag a loop shape named Service Loop above the Discount Service Scope.
2. Move the Discount Service Scope into Service Loop.
3. Create an orchestration variable called Complete of type boolean with an

initial value of False (in the orchestration view).
4. Click the condition for Service Loop and set it to Complete == false.
5. Drag an expression shape after the shape Rcv_OrderDiscount; name it

Discount Complete.
6. In Discount Complete add the expression: Complete = true;.

°

°

Leveraging Orchestration

[194]

We now have crude and dangerous retry capabilities. The solution as it stands
will indeed retry when there is a fault, but it will retry instantly and it will retry
indefinitely. If the service we're calling is throwing a fault, it is unlikely to be
resolved instantly. Assuming our request is correct, which can be validated in the
send port, we should be getting a legitimate response back. Because most platforms
are not as robust or parallel as BizTalk, they are unlikely to be able to handle the
request flood that a solution like this can cause. We must put in some sort of safety
net to this solution.

Breaking out of retry loop
To do this, we will use another orchestration variable to control how many times we
actually attempt retry in the case of a SOAP Fault:

1. Create a variable at the orchestration level called RetryCount of type Int32
with Initial Value of 0.

2. Drag a decision shape into the exception handler SOAP Exception and call it
Retry Count Exceeded:

Label the Rule_1 side as Yes with an expression RetryCount > 1
Drag a suspend shape into the Yes branch named Retry Exceeded
Suspend with an Error Message "The Retry Count has been
exceeded for a service call, this Instance can be resumed and will
try again"; – note that the quotes and semicolon are required
Drag an expression shape after the suspend named Clear Count with
expression RetryCount = 0;
Drag an expression shape to the Else side of the decide named
Increment Retry Count with expression RetryCount = RetryCount
+ 1;

3. Deploy the solution (remember this will restart the host instances for us).
4. Update the Send Port OP_Wcf_Send_DiscountService to have a Retry

Count of 0 (this is for demonstration only).
5. Run the CanRoutePriorityOrder (it will fail) and look at All In-Progress

Service Instances and you will see what has happened.
6. Change the web.config element from earlier back to False and resume the

suspended orchestration.

°

°

°

°

Chapter 7

[195]

The suspended orchestration should resume and complete as we expect. This
solution is by no means perfect, but it does allow us to use some of the BizTalk
features like port level, retry in the case of transport failures, and still trap generic
SOAP Faults. The business requirement is met here by making sure we're able to
complete the business process, but the side effect is that we get failed messages from
the send port. This is because the send port itself does receive a response from the
service that is the fault, but it's a response that it does not understand and now has
nowhere to send it to.

Over time, these failed messages will accumulate in our message box (in the
suspended queue) and slow down our system. They make debugging and tracking
on a live system much more difficult. Our goal in BizTalk should really be that
solutions clean up after themselves. For a variety of reasons this isn't always the case.
One possible solution is Failed Message Routing.

Implementing Failed Message Routing
Failed Message Routing is an error handling capability built into BizTalk that allows
us to automate how we handle failures in either send or receive ports. Unlike the
suspended messages we have seen in the BizTalk Administration console thus far,
which are moved out of the work queues and into the suspended queue, failed
messages marked for routing do not suspend, but make a second pass, looking for
a new set of subscribers with a new set of properties promoted. The old promoted
properties are demoted during this failed routing process.

These newly promoted properties include a failure code and the send or receive port
names. There are others, but these are generally the most useful to us. Enabling failed
message routing is done at the port level.

We will now simply send our failed messages to a file send port, so as to keep them
out of the message box as follows:

1. Create the directory C:\BizTalk\PRP\ErrorLocation (if it does not
already exist).

2. On the send port OP_Wcf_Send_DiscountService, go to Transport
Advanced Options and check Enable routing for failed messages.

3. Create a new Static One-way send port named OP_File_Send_
FailedMessages.

4. Use FILE as the type.
5. Use the location: C:\BizTalk\PRP\ErrorLocation and Fault.xml as the

name. Be sure to change the Copy Mode to Overwrite.

Leveraging Orchestration

[196]

6. Under Filter, create the following filter ErrorReport.SendPortName == OP_
Wcf_Send_DiscountService.

7. Start the new port.
8. Repeat our forced failure test by toggling the web.config back to True for the

ThrowFault setting.
9. Toggle ThrowFault back to False and resume the instance.

This solution does work and doesn't even interfere with our BAM, and because we
overwrite our failure message, we even avoid overhead maintenance of having to
clean the faulted messages out of the file location. This solution does, however, carry
some very serious caveats. So far, we have focused heavily on how BizTalk never
loses messages, but this is a direct way to make BizTalk appear as if it is, in fact,
losing messages. A quick look at the tracked service instances will show this not to
be the case, but it will appear that way; especially to the inexperienced who have
yet to fully embrace the reliability of BizTalk. The other and quite possibly more
serious issue is that failed messages contain the entire content of the message and
this could include sensitive information. The solution presented previously may not
be appropriate for handling sensitive information. A similar solution can be created
in orchestration that avoids having to write out to disk.

One of the most useful ways to utilize failed message routing is to use it for message
repair scenarios. The ESB Framework for BizTalk does this extensively and even
provides a generic portal for it. The steps to do this would be to route a failed
message out to disk, or SharePoint, and to allow a user to repair and resubmit them
to a new receive location on the existing receive port.

Finally, it is also important to understand that although we are using failed message
routing within an orchestration, it is not actually an orchestration concept. It is a
messaging feature and we can use it completely outside of orchestration.

Summary
In this chapter, we learned how to use orchestration for service composition to
consume existing services. We also learned how to make orchestrations that can
recover from errors and also how to route failed messages. This is really just the
beginning of our journey with orchestration, but already we can see how powerful
it is. Later chapters will build on orchestration techniques and cover advanced
orchestration concepts.

The WCF-SQL Adapter and
WCF Services

The current solution is a robust real-world scenario that does a good job
demonstrating some basic capabilities of BizTalk Server 2010. We have orchestration,
messaging, BAM, and unit tests. This chapter introduces the WCF-SQL adapter and
how to use it to pull data from upstream systems as well as send data and requests to
downstream ones. We will finish with how to expose WCF services from BizTalk.

Polling a database with the WCF-SQL
Adapter
Our application is running well and it is now time to connect our solution to the site
that receives sales orders from the web. This website uses a SQL Server backend to
store sales orders. We must now automatically retrieve orders from the website's
database and flow them into our solution. The name of the website database
is AlphaOrders. The data structure of orders is a fairly standard parent-child
relationship. The tables that hold an order are Order and OrderLine.

The WCF-SQL Adapter and WCF Services

[198]

An order has one or more order lines. This schema closely resembles our current
understanding of what a purchase order is.

Polling is a technique used by many BizTalk adapters to periodically check on a
system that does not provide outbound notifications. On a set interval, a polling
operation reaches out to the source system and checks for messages. This is how
the FTP and file adapters work internally. The adapter is responsible for when the
polling will occur and decouples our applications from the entire concept of time.
Although polling involves proactive operations, such as reading a file from an FTP
site, it appears to BizTalk purely as a receive operation.

The WCF-SQL Adapter allows us many options when it comes to retrieving data
from a database, but the polling approach most closely resembles the majority
of other adapters like DB2 and Oracle, so we will use this approach to build up
our skillset. In previous versions of BizTalk, this type of polling was the only
option in the classic SQL Adapter. We're going to use a stored procedure to pull
the records from the website database and we will base our solution on the same
pattern as classic SQL Adapter, but we will use the new WCF-SQL Adapter at
runtime. Although we could use inline SQL in performing a polling query, the
stored procedure approach allows us to have yet another controlled contact point
in our solution. The stored procedure acts as an endpoint and contract between
the AlphaSales database and our solution. As long as the signature of the stored
procedure doesn't change, the team maintaining it is free to change the other artifacts
in the database.

Constructing XML from SQL using FOR XML
The classic SQL Adapter required us to use an often overlooked feature of SQL
Server in order to use stored procedures. This feature is called FOR XML and is
used to construct XML results instead of the traditional rowset provided by the SQL
Server. FOR XML is added to a select query, simply by adding the words FOR
XML and a directive, such as AUTO, which instructs SQL Server to use heuristics
based on the select statement specified.

In the AlphaSales database, this can be accomplished with the following query:

select * from [order] join orderline on id = orderid for xml auto,
elements

The join part of the query is standard T-SQL and the elements directive at the end
instructs SQL Server to use element normal XML; meaning that it will make child
node's elements rather than attributes. Running this query in SQL Management
Studio returns an XML result that shows the following XML document:

Chapter 8

[199]

<order>
 <Id>25</Id>
 <OrderNumber>4321</OrderNumber>
 <CustomerName>Dan</CustomerName>
 <CustomerAddress1>123 Fake St</CustomerAddress1>
 <CustomerState>CA</CustomerState>
 <CustomerZip>94101</CustomerZip>
 <CustomerCity>San Francisco</CustomerCity>
 <OrderTotal>1000.00</OrderTotal>
 <ReadStatus>1</ReadStatus>
 <PhoneNumber>555-1212</PhoneNumber>
 <OrderDate>2011-05-08</OrderDate>
 <orderline>
 <OrderLine>25</OrderLine>
 <OrderId>25</OrderId>
 <ItemNumber>1234 </ItemNumber>
 <Quantity>1</Quantity>
 <UnitCost>1.000000000000000e+002</UnitCost>
 <Description>test</Description>
 </orderline>
 <orderline>
 <OrderLine>28</OrderLine>
 <OrderId>25</OrderId>
 <ItemNumber>3332 </ItemNumber>
 <Quantity>2</Quantity>
 <UnitCost>7.500000000000000e+001</UnitCost>
 <Description>another</Description>
 </orderline>
</order>

The XML listed previously, closely resembles our order schema already. Note, how
the SQL query engine inferred the structure of the resulting XML, based on the
parent- child relationship of the Order and OrderLine tables. This is evident, because
the order node is the parent of the orderline nodes. Without using the FOR XML
technique, we would need to run two separate queries: one to get the order and one
to get the orderlines. SQL XML is a great technique for getting rich records out of
SQL Server that are stored in a normalized form, while making only one query to
the database.

A stored procedure named ReadUnprocessedOrders exists in the AlphaSales
database that contains a modified version of the previous query. These modifications
are subtle, but significant. This stored procedure is shown as follows:

CREATE PROCEDURE [dbo].[ReadUnprocessedOrders]
AS
BEGIN
update TOP (500) [order] set readstatus = 1 where readstatus = 0

The WCF-SQL Adapter and WCF Services

[200]

select TOP 500 * from [order] join orderline on id = orderid where
readstatus = 1 for xml auto, elements--, xmldata

update TOP (500) [order] set readstatus = 2 where readstatus = 1
END

The modifications are as follows:

A readStatus column is used to determine if a record has been read or not,
and this is handled via a where clause. This technique uses a three state read
status with the following meanings:

Ready: This status indicates that the record is to be read
Locked: This status indicates that the record is in the process of
being read
Done: This status indicates that the record has been read

Two update queries are added before and after the select, to update the
records that are to be read. This allows the query to mark records as having
been read and also allows multiple host instances running the WCF-SQL
receive handler to safely read from the same table. This can greatly increase
our throughput.
All the queries use a TOP clause to limit how many records will be read at any
time. This is always a good idea to keep from overloading our solutions with
large numbers of records, when systems are first turned on or data imports
are performed on the source database. The limit shown in the previous code
is 500, which is quite small, but it is large enough for most scenarios.
There is a subtle part of the query that is commented out: , xmldata.
This directive tells SQL Server to return an inline schema with the results
and is required in the next section, when we generate the schema for this
stored procedure.

Creating the SQL message schema
The steps for creating the SQL message schema are as follows:

1. Uncomment the --,xmldata directive in the stored procedure
ReadUnprocessedOrders in the AlphaSales database by deleting the
two dashes.

2. Right-click Add | Generated Items | Add Adapter Metadata.
3. Click Add.
4. Select SQL from the adapter list.
5. Click Set in the upper right to set the connection string for the database.

•

°
°

°
•

•

•

Chapter 8

[201]

6. Enter localhost for the server, Use Windows NT Integrated Security, and
select AlphaSales as the database.

7. Click OK.
8. Click Next.
9. Keep the radio button on Receive port and enter the value http://

performanceracingparts.com/schemas/PurchaseOrder/sql/2011-05
for the namespace and WebSiteOrders for the root element name.

10. Click Next, select Stored Procedure and click Next again.
11. Click the dropdown and select ReadUnprocessedOrders. Click the Generate

button, and you will see the text appear in a read-only textbox.
12. Click Next.
13. Click Finish.
14. Rename the schema SQLService__x32011_x2d05.xsd (or whatever it is)

to WebSiteOrders.xsd and be sure to rename the Type Name as well to
WebSiteOrders.

15. Also, because we're not actually using the classic SQL Adapter, we must
change the setting for the schema root node Element Form Default from
qualified to unqualified (or default, which is the same).

16. Delete the orchestration that this wizard made for us automatically—BizTalk
Orchestration.odx—as we will not be using it.

We can see here some of the reasons this adapter was retired, the artifacts it made for
us were not only not terribly useful; they had terrible autogenerated names as well.

17. Finally, we must edit ReadUnprocessedOrders to remove the , xmldata
directive; delete, or comment it out.

The xmldata statement was required when running the
classic SQL wizard, but it cannot be used after the wizard is
run. This is because it will return an inline schema that BizTalk
is not expecting and it will cause an error. Be sure to comment
out or delete this statement after running the wizard.

Our schema is now complete and ready to be used in our solution. Fortunately
for us, all we have to do is create a map and a receive location within our existing
receive port to make this happen.

The WCF-SQL Adapter and WCF Services

[202]

Creating the map for the website orders
The steps for creating the map for the website orders are as follows:

1. Create a map from WebSiteOrders to PurchaseOrder, name it
Ext_WebSiteOrders_To_PurchaseOrder.btm.

2. Like we did for the InfoPath order, map the customer information to the
BillTo and ShipTo nodes.

3. Map CustomerAddress1 to Street and CustomerZip to PostalCode.
4. On the orderline, map ItemNumber to CatalogNumber.
5. Finally, for the SalesChannel we will again use a String Concatenate

Functoid and this time use the value Website.
6. Deploy the solution.

The map turns out to be very similar to what we did in Chapter 5, Basic Messaging
Solution, in the section, Creating Maps. Please refer to that section for screenshots and
other information about maps.

Creating the new WCF-SQL receive location
The steps for creating the new WCF-SQL receive location are as follows:

1. Create a receive location called OP_SQL_Receive_PurchaseOrders, selecting
OP_Receive_PurchaseOrders as the parent receive port.

2. Select WCF-SQL for the type and XMLReceive for the receive pipeline.
3. Click Configure.
4. Enter mssql://localhost/sqlexpress/alphasales? as the Address (URI) in the

General tab, which can also be done via the Configure button.
5. Switch to the Bindings tab.
6. Set XmlStoredProcedureRootNodeName to WebSiteOrders.
7. Set XmlStoredProcedureRootNodeNamespace to http://

performanceracingparts.com/schemas/PurchaseOrder/sql/2011-05.
8. Set Inbound Operation Type to XmlPolling.
9. Set the PolledDataAvailableStatement to select COUNT(*) from [order]

where readstatus = 0.
10. Set the PollingStatement to exec ReadUnprocessedOrders.
11. Update the OP_Receive_PurchaseOrders to also have the new map

Ext_WebSiteOrders_To_PurchaseOrder in Inbound Maps.

Chapter 8

[203]

We have now added the capability of handling a completely new and much more
complex data source to our current solution. Our BAM profile continues to function,
unaffected by these changes, and we can see a real-world example really developing
in our solution.

Most organizations are already storing their data in databases and most of the
adapters we'll work with will be able to return complex record structures that we
will want to work with in the manner we have seen here. With only the addition of a
single column to a table and a stored procedure, we are able to integrate easily with
SQL Server-based applications.

Creating the unit test for website order
Arguably, we should have done this first, but now is as good a time as ever. This unit
test will be a little more real-world than our previous ones. This unit test will clearly
have to work with SQL Server in order to accomplish our test objectives, but as we'll
now see, BizUnit makes this easy, as explained in the following points:

1. Be sure your TestEntities.dtd has an accurate value for the AlphaSales
database connection string as follows:
<!ENTITY AlphaSalesDb "Server=localhost\sqlexpress;Database=AlphaS
ales;Trusted_Connection=True;">

2. Create a new XML document in the BizUnitTests folder called
CanRouteStandardWebsiteOrder.xml.

3. Copy the contents of CanRouteStandardPurchaseOrder.xml into
CanRouteStandardWebsiteOrder.xml.

4. Rename the testName attribute CanRouteStandardWebsiteOrder.
5. In the test setup, add the following two test steps after the

FileDeleteMultiStep as follows:

<TestStep assemblyPath="" typeName="BizUnit.DatabaseDeleteStep">
 <ConnectionString>&AlphaSalesDb;</ConnectionString>
 <Table>OrderLine</Table>
 <Condition>OrderLine >= 0</Condition>
</TestStep>
<TestStep assemblyPath="" typeName="BizUnit.DatabaseDeleteStep">
 <ConnectionString>&AlphaSalesDb;</ConnectionString>
 <Table>[Order]</Table>
 <Condition>Id >= 0</Condition>
</TestStep>

The WCF-SQL Adapter and WCF Services

[204]

If we look at these steps, the power of BizUnit becomes immediately clear. These
simple steps simply take a connection string, a table name, and a condition, they
then delete all the records in that table matching that condition. We leverage another
entity in the DTD to make this connection string only exist in a single place as
follows:

1. Copy these two steps to the test cleanup as well, again after the
FileDeleteMultiStep.

Please note that the order these are in is significant because of
the foreign key relationship that exists between these tables.

2. Replace the FileCreateStep in the test setup with the following test step:
<TestStep assemblyPath="" typeName="BizUnit.
DBExecuteNonQueryStep">
 <DelayBeforeExecution>1</DelayBeforeExecution>
 <ConnectionString>&AlphaSalesDb;</ConnectionString>
 <NumberOfRowsAffected>1</NumberOfRowsAffected>
 <SQLQuery>
 <RawSQLQuery>INSERT INTO [Order] (OrderNumber, CustomerName,
CustomerAddress1, CustomerState, CustomerZip, CustomerCity,
OrderTotal, ReadStatus, OrderDate, PhoneNumber) VALUES
('3774632','John Doe','123 Fake
St','IL','60611','Chicago','247.54', '0','2010-03-26','312-555-
1234')
 </RawSQLQuery>
 </SQLQuery>
</TestStep>

This DBExecuteNonQuery step, as the name implies, runs a raw SQL statement that
does not return results. In this case, it is an insert into the order table. It allows us
to specify the number of seconds to wait before executing the query, the connection
string, and the number of rows affected by the query. We also specify the query
itself. This step creates the row in the order table. We will now insert a record into
the OrderLine table as follows:

1. Copy the DBExecuteNonQuery step from the previous code and paste it
directly in the following code.

2. Paste the query in the following code into the RawSQLQuery element of the
newly copied step:
INSERT INTO OrderLine (OrderId, ItemNumber, Quantity, UnitCost,
[Description])
VALUES ((SELECT TOP 1 id FROM [Order]), '54346',
'1','247.54','Some Item')

Chapter 8

[205]

We now have our test setup and cleanup complete. This test will create new records
in the AlphaSales database and delete them when it is complete. We will now
modify the text execution stage of the unit test as follows:

1. Increase the Timeout value of the first step in the test execution stage—which
is the FileExistStep—to 50,000. This parameter is measured in microseconds.

2. Update the Number in the XmlValidateValidationStep to 3774632 and the
Total to 247.54.

3. Create a new test harness method in BizUnitTests.cs with the
following code:

[TestMethod]
public void CanRouteStandardWebsiteOrder()
{
BizUnit.BizUnit test = new
 BizUnit.BizUnit("CanRouteStandardWebsiteOrder.xml");
 test.RunTest();
}

Our test is now complete and, in those few steps, we replaced trivial file operations
with realistic database ones.

Performing imperative queries with the
WCF-SQL Adapter
The WCF-SQL Adapter can also be used for send ports and performing imperative
queries, rather than just polling read operations, like we just accomplished. Our
AlphaSales database also contains customer information that we, and other teams
in the enterprise, are interested in accessing. We are asked to create a customer WCF
service for accessing this information. Like always in BizTalk solutions, we will use a
canonical schema to provide isolation and decoupling. To accomplish this, we must
perform the following steps:

1. Create WCF-SQL endpoint schema
2. Create an external schema to expose as a service
3. Create an internal, canonical schema to build our solution
4. Create maps to tie the schemas together
5. Publish our service endpoint

The WCF-SQL Adapter and WCF Services

[206]

Creating the schemas to communicate with
the database
Our first step is to use the WCF-SQL Adapter to consume services from the
AlphaSales database. This will allow us to access the SQL artifacts from
within BizTalk and expose them as we choose other consumers, as shown
in the following steps:

1. Right-click ExternalSchemas and select Add | Generated Items | Consume
Adapter Service to launch the Adapter Framework wizard.

2. Select the sqlBinding and enter the following URI:
mssql://localhost/sqlexpress/AlphaSales?

3. Click Connect.
4. Expand the Tables category on the left and click the Customer table,

below Tables.
5. Select Insert, Select, Update, operations in the Available categories and

operations section on the right and click Add.
We can see that the three operations were added to the section Added categories
and operations.

1. At the bottom of the dialog, enter AlphaCustomer_ as the Filename Prefix.
2. The Consume Adapter Service dialog should look similar to the following

screenshot, before we click OK:

Chapter 8

[207]

3. Click OK.
4. We can see that the following files were added to the solution:

AlphaCustomer_SimpleTypeArray.xsd

AlphaCustomer_Table.dbo.xsd

AlphaCustomer_TableOperation.dbo.Customer.xsd

WcfSendPort_SqlAdapterBinding_Custom.bindinginfo.xml

Of these, AlphaCustomer_TableOperation.dbo.Customer.xsd is the most
interesting to us as it is where the operations and their responses are defined.
WcfSendPort_SqlAdapterBinding_Custom.bindinginfo.xml is a bindings
file that we can use to create a new send port in the administration console.

Creating the external schema for the service
request
Now, we must create the external schema that we will expose as our actual service.
Our goal is to make this service simple for our consumers, so exposing the schemas
from the WCF-SQL Adapter would not be ideal. We are trying to decouple the
consumer from the details of SQL and the WCF-SQL Adapter. The steps for creating
the external schema for the service request are as follows:

1. Create a new schema CustomerRead.xsd in ExternalSchemas.
2. Change the namespace to the following: http://performanceracingparts.com/

schemas/customer/2011-05.
3. Rename the Root node CustomerReadRequest.
4. Add a child element called Name.
5. Create a new root node called CustomerReadResponse.
6. Add the following nodes to the response record:

Name
Status
TotalOrderedAmount (set the Data Type to xs:decimal)
PhoneNumber
State
LastOrderDate (set the Data Type to xs:date)

°

°

°

°

°
°
°
°
°
°

The WCF-SQL Adapter and WCF Services

[208]

Creating the internal schema for the service
request
Because we always want to isolate our internal and external schemas, we now
need to create an internal schema that directly matches our external customer read
request, as shown in the following steps:

1. Add an existing item to the InternalSchemas project and select the
CustomerRead.xsd from the ExternalSchemas project.

2. Change the namespace to the following: http://performanceracingparts.com/
schemas/customer/internal/2011-05.

3. Expand the CustomerReadRequest and add an Action element after Name.
4. Right-click the Action node, select Promote | Show Promotions with the

Microsoft.BizTalk.GlobalProperties schema. Click the Property Fields tab
and click the folder icon to add a new property schema. Select BTS.bts_
system_properties on the Operation property, as shown in the
following screenshot:

5. Click OK.
6. Click Add >> to assign the property to the right and select ns0:Operation, as

shown in the following screenshot:

Chapter 8

[209]

7. Click OK.

System properties
There are many existing system properties within BizTalk that are used
internally and are vital to the functioning of the platform. We are free to
use some of these, as we do in this example, to inject functionality into the
platform. In this case, we are using the BTS.Operation system property,
which will later be used to control the WCF action that is called.

Creating maps for the service
Our last development task is to create maps to tie the request, the internal messages,
and the response together. This is a two-way service, so we will require four maps
to do this; two on each direction. All of these will be added to the Maps project. The
steps for creating maps for the service are as follows:

1. Create a map Ext_CustomerReadRequest_To_CustomerReadRequest.btm.
Select the external CustomerReadRequest for the source and the internal one
for the destination.

2. Map Name to Name.
3. Map Select to the Action node using a String Concatenate Functoid.

The WCF-SQL Adapter and WCF Services

[210]

4. Create a map Int_CustomerReadRequest_To_AlphaCustomerSelect.btm,
selecting the internal CustomerReadRequest schema for the source and
AlphaCustomer_TableOperation.dbo.Customer as the destination; when
the dialog appears asking you which root node to use, click Select.

5. Drop two String Concatenate Functoids onto the grid, one above the other.
6. Enter * as the value in one and connect it to Columns.
7. Connect the Name input to the other Functoid.
8. Click the + sign to add a constant valued Functoid and enter WHERE Name

=', use the up arrow to move this constant to the top of the list. Add another
constant value at the bottom and enter a single quote ' in the other (the result
will come out as WHERE Name = '<NameValue>').

9. Create a map, Ext_AlphaCustomerSelectResponse_To_
CustomerReadResponse.btm, using the SelectResponse root element from
the AlphaCustomer_TableOperation.dbo.Customer schema and the internal
CustomerReadResponse as the destination.

10. Drag Customer to CustomerReadResponse and select Link by Name.
11. Create map Int_CustomerReadResponse_To_CustomerReadResponse.btm.

Recall that, by the naming convention, we know that the schema on the source
(left) will be the internal and the destination (right) will be the external.

12. Drag CustomerReadResponse to CustomerReadResponse and select
Link by Name.

13. Deploy the solution.

Chapter 8

[211]

We now have all the artifacts that we need for our service to be published to the
broader world. It required a few more steps in the beginning, but this service
follows the same principles that all of our solutions have up to this point.

Publishing the schemas as a WCF service
BizTalk comes with a tool that will help us publish WCF services and we will now
use that tool to expose our new schemas as services. This tool makes exposing WCF
services very simple and allows us a great deal of control over the resulting service.
The steps for publishing the schemas as a WCF service are as follows:

1. Launch the WCF Service Publishing Wizard by clicking Start |
All Programs | Microsoft BizTalk Server 2010 | WCF Service
Publishing Wizard.

2. Click Next.
3. Select the ServiceEndpoint radio button (the default) and Wcf-BasicHttp

as the Adapter name (Transport type). Check Enable on-premise metadata
exchange or (Enable metadata endpoint, if you do not have the AppFabric
extensions installed) and create BizTalk Receive locations by selecting
Order Processing as the application.

4. Click Next. If you have the AppFabric add-on installed, then skip the
AppFabric settings and click Next again.

5. Change the radio button to Publish Schemas as WCF service.

It is a good idea to avoid the first option, Publish BizTalk
orchestrations as WCF service; this is because it would
expose our internal schemas to the outside world and
break our carefully crafted isolation model. Although there
are great features like fault contracts that we miss out on,
there are other ways to accomplish these; namely WCF
interceptors.

6. Rename Web Service Description from BizTalkWcfService to
CustomerServices, rename the service from Service1 to CustomerService
and Operation1 to GetCustomer.

The WCF-SQL Adapter and WCF Services

[212]

7. Set Request and Response to appropriate schemas by right-clicking them.
Click Select schema type and navigate to ExternalSchemas\bin\Debug\
PRP.OrderProcessing.ExternalSchemas.dll. Select CustomerReadRequest
for request and CustomerReadResponse for response.

8. Click Next and change the Target namespace of WCF service to
http://performanceracingparts.com/interfaces/customer/2011-05.

9. Check Allow anonymous access to WCF service and click Next.
10. Click Create.
11. Click Finish.
12. After deployment, rename the port and location as the following:

OP_Receive_CustomerService
OP_Wcf_Receive_CustomerService

13. Enable the Location.
14. Set the Maps on the Receive Port as Ext_CustomerReadRequest_To_

CustomerReadRequest (Inbound) and Int_CustomerReadResponse_To_
CustomerReadResponse (Outbound).

°
°

Chapter 8

[213]

Changing the IIS AppPool
We have created all of the artifacts that will be used by our solution and, at this point,
we have two more steps. The first is to change the AppPool that was assigned to our
service during the deployment wizard. The service must run in an AppPool that has
access to BizTalk through an Isolated Host Instance. The steps for this are as follows:

1. Start the Internet Information Services Manager by clicking Start and typing
inetmgr in the search box (you can also use the computer management
console if you like).

2. This console is another MMS Snap-In. On the left, expand the root (local
computer) node and expand the sites node.

3. Expand the Default Website node.
4. Click on the CustomerServices site.
5. On the right, in the action pane, click Basic Settings.
6. Change the Application pool on the Virtual Directory to BizTalk Isolated

Host AppPool, as shown in the following screenshot:

This will assign an AppPool that is capable of communicating with the message box
to the IIS application. This AppPool was created when we configured BizTalk on the
machine. Skipping this step will cause an error when we browse to the service. This
step can also be performed via the command line as shown in the following line of
code:

C:\Windows\System32\inetsrv\appcmd set app /app.name: "Default Web Site/
CustomerServices" /applicationPool:"BizTalk Isolated Host AppPool"

The WCF-SQL Adapter and WCF Services

[214]

Using the command line is often much faster and can be used to automate processes
as well.

Creating the send port for the SQL request
The last step is to create the send port that will send our customer service requests to
the SQL Server. This will tie together the WCF service request that we receive to the
SQL Server. The steps for this are as follows:

1. In the BizTalk Administration console, right-click the application Order
Processing and select Import | Bindings.

2. Browse to the bindings file WcfSendPort_SqlAdapterBinding_Custom.
bindinginfo.xml that was created by the consume adapter service wizard.

3. Click on send ports and double-click the send port WcfSendPort_
SqlAdapterBinding_TableOp_dbo_Customer_Custom and rename it as
OP_WcfSql_Send_AlphaCustomer.

4. Attach the maps Ext_AlphaCustomerSelectResponse_To_
CustomerReadResponse (Inbound) and Int_CustomerReadRequest_To_
AlphaCustomerSelect (Outbound).

5. Add a filter BTS.ReceivePortName == OP_Receive_CustomerService.
6. Start the send port.

Testing the service
Don't worry, we're not going to make an automated test for this service, but it would
be easy to do. We will simply test this service with SoapUI.

SoapUI is a freely available web services testing tool, available at
http://www.soapui.org. It is a great tool for testing services,
and is especially compatible with non-.NET systems.

1. Launch Soap UI and click File | New soapUI Project.
2. Enter the location of the WSDL for our new service http://localhost/

CustomerServices/CustomerService.svc?wsdl in the Initial WSDL/WADL
textbox and click OK, as shown in the following screenshot:

Chapter 8

[215]

3. The new project contains a sample request for our service called Request1, as
shown in the following screenshot:

4. Double-click Request1 and edit the request, so that the name element
contains Dan and click the Green arrow to perform a customer read for
Dan. The AlphaSales database already has a record for a customer named
Dan in it, so this will work. There are a few other customers we can use too,
but seeing who they are is left as an exercise for the reader, as shown in the
following screenshot:

5. Bask in the glory.

The WCF-SQL Adapter and WCF Services

[216]

This last step is especially important. We have just exposed a WCF service,
compatible with Java (as SoapUI is a Java-based tool) that provides access to SQL
Server artifacts without writing a single line of code. This is a pretty amazing feat if
you think about it. We can easily add other operations and thus create a service layer
over our databases to further abstract data consumers from the underlying storage. If
we were to switch to another data source or backend system altogether, our service
consumers would never need to even know about it.

Summary
In this chapter, we learned how to respond to database changes via the polling
technique that is minimally intrusive to our source and scales well. We also
learned how to perform imperative queries to SQL databases using the WCF-SQL
Adapter. We ended with how to expose WCF services from BizTalk to provide
access to these SQL resources. In the next chapter, we will expand our solution by
consuming this customer information and using the Business Rules Engine to add
rich processing logic.

Expanding the Solution with
Services and Rules

This chapter starts with consuming the customer service that we previously exposed.
We will use this information in making a discount decision for orders. We will
explore different ways to do this and introduce the Business Rule Engine as a way
to provide rich, loosely coupled business decisions.

Topics covered in this chapter include the following:

Consuming WCF-SQL services
Creating policies, rules, and vocabularies
Looping in a policy
Versioning policies

Consuming the customer service
Now that we have exposed the customer service to other consumers, we are
asked to use it ourselves when calculating an order discount. We need to use
the customer service that we built in the last chapter from inside of our Order
Processing orchestration. Our goal is to produce better discount calculations
based on this information.

•

•

•

•

Expanding the Solution with Services and Rules

[218]

Creating a new map
The first task will be to create a new map that translates from our canonical purchase
order format to the customer select request, and is shown as follows:

1. Create a new map Int_PurchaseOrder_To_ AlphaCustomerSelect.btm.
2. Drop two String Concatenate functoids onto the grid, one above the other.
3. Enter * as the value in one and connect it to Columns.
4. Connect the Name input to the other Functoid.
5. Click the + sign to add a constant valued Functoid and enter WHERE Name

=', using the up arrow to move this constant to the top of the list. Add
another constant value at the bottom and enter a single quote ' in the other
column (the result will come out WHERE Name = '<NameValue>').

The result is shown in the following screenshot:

Our map is now complete and we don't even need to add a new port for the
service. Both the subscription and the orchestration can use the existing port
to send messages.

Chapter 9

[219]

Adding the data query to the orchestration
Now that we have the way to call our customer service and we already have the
canonical format for the customer response, we must connect our Order Processing
orchestration to the actual endpoint itself.

Creating the logical port
The first step is to add a logical port that is later bound to the existing WCF-SQL
send port. The steps for this are as follows:

1. Open the Order Processing Orchestration and add a new port.
2. Name the port AlphaCustomerPort and click Next.
3. Name the port type: AlphaCustomerPortType and be sure to select

Request-Response.
4. Select Always be Sending and Specify Later and click Next.
5. Create a new multipart message called CustomerType, rename Part1 as

Body and select the schema CustomerReadResponse as the type.
6. Update the new port in the type browser of the orchestration view.
7. Change the Operation to OP_Send_GetCustomer.
8. Change the Request Message Type to our PurchaseOrderType multipart

message.
9. Change the Response Message Type to CustomerType multipart

message type.

Adding the new send and receive shapes
With our orchestration port in place, we must now add send and receive shapes to
connect to it, which we do as follows:

1. Add new send and receive shapes, Snd_GetCustomer and Rcv_Customer,
and put these after the Rcv_OrderDiscount.

2. Connect these to the port AlphaCustomerPort that we created previously
(note that a new message called Message_1 of CustomerType was added,
but not a PurchaseOrder).

3. Rename Message_1 as Customer.
4. Select PurchaseOrder as the message for Snd_GetCustomer.

Expanding the Solution with Services and Rules

[220]

Enhancing the discount calculation
We have successfully connected this WCF-SQL service to our orchestration and we
did it in the best practice manner; that is, we do not have an internal map, and the
orchestration is still largely decoupled from the service. We now need to use the data
returned by this service to perform some sort of processing.

There are many ways we could use this newly retrieved information in our
orchestration, but following the model of the current solution, we decide to use the
expression editor to create a progressive discount calculation as follows:

1. Distinguish the element TotalAmountOrdered in the internal
CustomerReadResponse schema.

2. Update the Assign_DiscountedPurchaseOrder expression to contain the
following:
DiscountedServiceOrder.Body.Total = OrderDiscount.Body.Total -
((Customer.Body.TotalOrderedAmount / OrderDiscount.Body.Total) *
OrderDiscount.Body.Total);

3. Deploy the solution.

We are done coding our new solution changes and we can see that this wasn't really
all that much work. Granted our canonical customer schemas did exist before we
began this phase, but this is a good demonstration for why canonical schemas should
always be created anyway; they encourage reuse and foster a big picture view, which
makes it easier for us to pick and choose which functionality we want to add to a
solution. Besides being able to help us enforce our separation of concerns and a clean
architectural model, we are also able to easily provide services to outside consumers
or use the schemas ourselves.

Updating the WCF-SQL Send Port
We have only a few minor changes to make for our solution to work with the new
service. We must bind the new orchestration port, create a new entry in the WCF
Action map, and attach the new map, as follows:

1. Configure the Orchestration to now use our new Send Port
OP_WcfSql_Send_AlphaCustomer.

2. Update OP_WcfSql_Send_AlphaCustomer to have a new Action map entry:
<Operation Name="OP_Send_GetCustomer" Action="TableOp/Select/dbo/
Customer" />

Chapter 9

[221]

Action map
The Action map in a WCF Send Port is used to specify which WCF Action
(similar to a SOAP Action) will be used at runtime. The action is similar
to a method or operation name. In the previous example, the Action map
is used to translate from BTS.Operation (the name of our logical send
operation in the orchestration) to the WCF action that will be called. This
helps to keep us decoupled from our endpoint as our orchestration does
not internally use the external action names.

3. Add the map, Int_PurchaseOrder_To_ AlphaCustomerSelect as an
Outbound map.

Our current solution will run and the tests will actually still pass because the
customer used for this purchase has a new status, which basically makes the
calculation apply no additional discount. We can quickly see from the previous
assignment that using code to perform our pricing is becoming burdensome. The
solution for pricing and discounts currently requires us to recompile and redeploy in
order to make any changes. The expression window that the calculation is typed into
is also limiting; recall that it is intentional.

We could simply put that logic in a .NET assembly and call the assembly from the
orchestration, but we would still have the fundamental problem of having the GAC
assemblies on every server and having to restart the host instances for the changes
to appear. This is not very scalable and for most systems not very practical. The
more frequently our discounting policy changes, the more painful it will be. This
is completely contrary to our IT promise to enable Business; we would actually
be a hindrance.

Using Business Rules to improve our
process
We decide with our business users that having the customer information and the
discount should allow us much more flexibility and power in our pricing and
discount calculations than we currently have. Our users express a desire to be able
to more quickly change pricing and discount models to incorporate more dynamic
decisions. They also do not like the way relatively simple calculations look inside
our expression window, because the use of parenthesis to provide scoping makes
reading the formulas more difficult.

Expanding the Solution with Services and Rules

[222]

You are aware that the Business Rule Engine can help out with these types of
situations and decide to use it to meet the requirements. The business team wants
to use the customer loyalty status returned by the customer lookup in the price
calculation.

Introduction to the Business Rules Editor
The primary tool for working with BRE is the Business Rules Composer that is part
of the BizTalk solution stack. The composer is a separate UI outside of Visual Studio
and can be installed and used on machines that are not running the full BizTalk
Developer edition.

The tool is partitioned into the following three major parts:

Explorers on the left
Conditions on the top right
Actions on the bottom right

These three parts are shown in the following screenshot:

The Explorers allow us to see Policies (with their rules) as well as Vocabularies.
There is also a Properties window. These artifacts were introduced in Chapter 2,
Introduction to BizTalk Development.

•

•

•

Chapter 9

[223]

Creating a vocabulary
We will now create a vocabulary, the base element of the BRE. The vocabulary, as the
name implies, is the language of the business we are creating rules for. This could
almost be looked at as a domain-specific language. It will allow our users to express
rules in terms that they are familiar with rather than with element, property, or
column names that developers may have specified. Although not explicitly required,
especially when working with .NET-based artifacts, a vocabulary is a useful layer of
abstraction in most BRE scenarios that allows us to translate from technical code type
concepts to business concepts. The steps for creating a vocabulary are as follows:

1. Start the Business Rule Composer (Start | All Programs | Microsoft
BizTalk Server 2010 | Business Rule Composer).

2. Create a new vocabulary called Order Processing by right-clicking
Vocabularies on the left and selecting Add New Vocabulary.

Adding a new set of values called definition
Right-click the Version 1.0 below new vocabulary and click Add New Definition
Customer Loyalty Level as a Set of Values (string) {New, Silver, Gold}.

If you happen to name a definition or a rule incorrectly, simply highlight
it and press F2. You will now be able to edit the value.

The first page of the wizard shows us several options which we have when creating
new definitions in the vocabulary. Here we can choose the type of definition that we
are creating, namely: constant value, XML, and Database.

After selecting the type of definition and clicking Next, we are presented with
another dialog that will allow us to name the definition as well as to further define it,
which in the case of constant values means the type of constant value to create. There
are three types of constant values which are as follows:

Constant: This is simply a value that is always the same no matter what.
These are used to stand in for the values themselves. In our solution thus far,
we could use a constant value of 1000 called Priority Order, instead of typing
the value 1000 into the places we use it. This allows us to name this value and
to define it only in one place and use it in many. If we ever have to change
the value, we only change the definition, not every rule using the definition.
Range of values: This defines a bound range that can be used for more fuzzy
definitions like defining a large order or good credit.

•

•

Expanding the Solution with Services and Rules

[224]

Set of Values: This is a list of values that are possible for a particular
definition. States are a good example. We can define a set of values that can
be used to describe something in our business. In this case, state could be
used to help us determine routing, shipping, or discount information and we
would have a single list of valid states for use across our rules.

We will be using a set of values, which will function very much like an enumeration
in the rules.

The final dialog lets us enter the details for the subtype that we have selected. Here,
it is the specific values of the enumeration that we are defining. Our values Gold,
Silver, and New all correspond not only to values within the customer table (which
is important by itself), but to concepts within the business context in which we are
working. Vocabularies really are the common language we need to establish with
business users in order to create effective solutions. This is true in BizTalk or any
other platform. The following image shows this final dialog in the Vocabulary
Definition Wizard:

•

Chapter 9

[225]

Creating XML definitions in a vocabulary
Some definitions are useful on their own, such as the previous constant values, but
very often we need data from our messages or even .NET classes or databases in
order to perform useful comparisons. Vocabulary definitions can help us here as well
by functioning as shorthand for XPath or .NET properties that would normally not
be well understood by business users. Now we will create several XML vocabulary
definitions that will be used to interact with the messages in our solution, as follows:

1. Create a new definition and select XML Document Element or Attribute,
click Next.

2. Use the name Get Customer Loyalty Level and browse to InternalSchemas\
CustomerRead.xsd (ignore the warning about the imported schema, you
don't need to browse for it).

3. In the schema, use the CustomerReadResponse root node and select Status.
Also be sure to change the radio button at the bottom to Perform "Get"
operation.

The first page of the XML document element or attribute definition wizard is shown
in the following screenshot:

Expanding the Solution with Services and Rules

[226]

1. Create another XML definition called Get Order Total. Again, be sure you
select Get at the bottom. This time you will use the PurchaseOrder schema
and select Total.

2. Create a final definition called Set Order Total and again use the Total
element of the PurchaseOrder, but this time select Perform "Set" operation
at the bottom of the definition wizard.

3. Right-click the vocabulary and select Publish.

We now have our basic vocabulary. This will be used to create a policy that contains
individual rules. Again this vocabulary is our translation layer between our solution
and the business users.

Creating a policy
Policies are sets of rules that work together in one functional unit. We'll explore the
mechanics shortly, but for now, we just need to think of them as the conditions and
actions that will produce our outcome. Here, we will create a policy for calculating
the order discount for a specific customer. The basic logic is as follows:

Gold Customers receive a 10 percent discount
Silver customers get a 5 percent discount
New customers do not get a discount

We will now create a policy that implements this logic in BRE as follows:

1. Right-click the Policies folder in the policy explorer and select Add New
Policy.

2. Name the new policy Order Discount.
3. Right-click the Version 1.0 below Order Discount and select Add New Rule

(Right-Click version) called Gold Customer.
4. In the upper center of the editor, right-click Conditions and at the bottom

select Predicates | Equal.
5. Drag Get Customer Loyalty Level to argument 1 and Customer Loyalty

Level to argument 2. Click the drop down to the right of Customer Loyalty
Level and set it to Gold.

6. Drag Set Order Total to Actions (near bottom under THEN).
7. Right-click the 0 and select Functions Multiply.
8. Drag Get Order Total to Value 1 and .90 to Value 2.
9. Add a new rule called Silver Customer.

•

•

•

Chapter 9

[227]

10. Do the same as previously, but make the multiplication .95.
11. Create a rule named New Customer.
12. Set the equals to check for New.
13. Set the Set Order Total at the bottom to Get Order Total.
14. Right-click to publish and then again to deploy the policy.

Because the policies are stored in a central database, many different people can
contribute to them or test them before they are finalized. Publish and deploy are
separate steps because publish allows others to see and test the policy without
making it available to rules' consuming applications like orchestrations. The policies
become finalized and available to orchestrations, only when they are deployed. This
is also because the Business Rules Engine stores policies and vocabularies in a central
database, which allows many consumers to access it concurrently. Publishing allows
us to make policies available for testing and review by other users without allowing
them to be used by running applications.

Updating the orchestration to call this policy
The final task facing us is to call the rules from the order processing orchestration.
This turns out to be quite easy as there is already a Call Rules shape in the
orchestration toolbox. The steps for this are as follows:

1. Add a Call Rules shape to the OrderProcessing orchestration above
Construct_DiscountedPurchaseOrder and name it Call Discount Policy.

2. Configure the shape to call the Policy and add the following messages:
Customer.Body
PurchaseOrder.Body

3. Redeploy and test.

The priority order test will now break and that's OK, because we expect it to. We
can see the reason for the failure is because the amounts do not match. This makes
sense because we're not applying the 5 percent discount returned by the discount
web service.

We now have a policy driving our decision on discount pricing and fixing the
previous error. This turns out to be much easier than before where our only
option was to redeploy the orchestration.

°

°

Expanding the Solution with Services and Rules

[228]

Performing a simple update to the policy
We want to slightly adjust the way the prices are calculated. The discount for new
customers, which is currently none, must be set to 0.95. We must update the policy to
do this. We cannot simply go and change our policy though, because it is already in
the enterprise and is being used. To do this, we must version our policy. Versioning,
which is done to both policies and vocabularies, allows us to keep a history of
what rules were active in what timeframe. By default, the Call Rules shape in
orchestration always uses the latest version of a given policy. The old policies
remain, unless we explicitly delete them, so that we can run them explicitly if we
need to and audit when they were changed. It turns out that modifying policies is
quite easy.

In order to modify our policy, all we have to do is create a new version of the policy,
make our change, and publish/deploy the new policy that is shown as follows:

1. In the Policy Explorer, right-click Version 1.0 of the Order Discount policy
and click Copy. This context menu is shown in the following screenshot.

2. With our policy copied into the clipboard, we next paste the just copied
version into the policy. This is shown in the following screenshot as the
Paste Policy Version menu option:

3. Right-click the Order Discount policy (from Version 1.0) and click Paste
Policy Version.

4. Edit the New Customer rule, so that instead of assigning the Get Order
Total, we use the multiplication function like the other rules and multiply
by 0.95.

5. Publish and deploy the modified version.

As always, test to make sure that your policy is working as expected by running the
BizUnit tests; specifically the priority purchase order test.

Chapter 9

[229]

Understanding how business rules work
The basics of the BRE were covered in Chapter 2, Introduction to BizTalk Development,
but some important aspects were not covered and probably are not immediately
clear from the example we just completed. This is because BRE does not use an
imperative programming model like procedural or even OOP languages. The BRE
uses a forward chaining technique, which is a modified Rete algorithm. These types
of algorithms are amazingly fast, much faster than pure .NET, but they come with
some costs, including memory costs.

Perhaps most importantly, they do not execute like procedural .NET code at all; it
is a totally different paradigm. You will notice that there is no Else concept to these
rules. The way this works is that when the engine starts, it loads all the artifacts it
needs into memory; in this case the two messages it is expecting. This is done via an
assert command, which asserted them into the memory. Then all the rule predicates
are loosely evaluated to look for potential matches. Each condition is not assessed,
but each condition that might be true is. Part of the power of BRE is that instead of
independently assessing each rule in code iteratively—like you would in .NET—the
engine assesses separate facts then evaluates them, once sharing the results with rules
that also use that fact. These rules are then placed on an agenda, which runs them in
order of their priority (which can be assigned a number in the editor).

If no changes are made to the memory of the rule engine, then the process ends
when the last rule is executed. This is the case in our policy as it sits. Only one rule
is ever true and all it does is change a value. Other actions, which can be viewed by
right-clicking Actions in the lower part of the rule editor, actually change the state
of the rule engine's memory. This causes a second sweep of rules and the creation of
another agenda. This is the whole concept of forward chaining. The policy executes
until there are no more changes made to the memory.

This may be easier to understand in terms of a graph. The policy is really a graph
that is dynamically built and run until a leaf node, that is, a node with no children,
is reached. The leaf is being no more memory changes.

Expanding the policy
With the current state of our rules, we are making extremely poor use of the BRE.
The rules may be easier to read than code and they are certainly easier to change,
in that they don't require us to compile anything, but we have really just scratched
the surface of the BRE. It is the forward chaining that is both the most difficult to
understand and the most powerful part of the engine. This section demonstrates
forward chaining.

Expanding the Solution with Services and Rules

[230]

Looping in BRE
One issue always encountered by those new to the BRE is that there seems to be no
way to loop over collections, even if you include your own custom classes in a policy.
This causes most developers to either not use BRE or to assume that they need
to call a policy, once for every item in a collection; both of which are unnecessary.
The developers of BRE did not overlook a major commonly used feature of
programming languages, it is just implemented differently because of the Rete
nature of the rules engine.

In order to demonstrate basic looping in the BRE, we are going to define a class that
contains a product. This will also serve to help us see how to use custom classes from
within orchestrations:

1. Right-click the PurchaseOrder solution and select Add | New Project.
2. Select C# Class Library as the project type and name it Library.
3. Right-click Library and select Properties.
4. In the Application section, rename the assembly name and default

namespace both to PRP.OrderProcessing.Library.
5. In the Signing section, check Sign the assembly and under Choose—a

strong name key file—browse to the key PurchaseOrder.snk, which is in
the Build folder of the solution.

6. Delete the Class1.cs file that was created with the project.
7. Right-click Library and select Add | Class using the name Product.cs.

The following code listing for this class shows that there is nothing significant
in this class, just some properties, two constructors, and a method. One
of the more important features of this class is that it is decorated with the
SerializableAttribute; this allows the .NET Framework to serialize instances of
the class and makes them useable in the durable orchestration environment. In order
for a .NET class to be used from within an orchestration, it must either be marked
explicitly as serializable or it must be used within an atomic scope, shown as follows:

using System;

namespace PRP.OrderProcessing.Library
{
 [Serializable]
 public class Product
 {
 public Product()
 {

Chapter 9

[231]

 }
 public Product(string number, int quantitySold, decimal
profitMargin)
 {
 Number = number;
 QuantitySold = quantitySold;
 ProfitMargin = profitMargin;
 }
 public string Number { get; set; }
 public int QuantitySold { get; set; }
 public decimal ProfitMargin { get; set; }

 public void OrderMore()
 {
 System.Diagnostics.Trace.WriteLine("This product is
selling, we should order more: " + Number);
 }
 }
}

Building the Library project
We now need to build the Library project that we just created. We will also need to
register this assembly in the GAC. To do so, click Start | All Programs | Microsoft
Visual Studio 2010 | Visual Studio Tools | Visual Studio Command Prompt to
open a visual studio command prompt.

Browse to the PurchaseOrder\Library\bin\Debug directory and type the
following command:

gacutil /i PRP.OrderProcessing.Library.dll

The assembly is now in the GAC and is accessible to other applications including the
Business Rule Composer from which we will now consume it.

Using the product class from BRE
Open the business rule composer. In the .NET Classes section of the Business Rules
Composer (a tab near vocabularies), right-click the folder .NET Assemblies and click
Browse and add PRP.OrderProcessing.Library.

Expanding the Solution with Services and Rules

[232]

Repeat the processing this time adding mscorlib (then main .NET assembly) and
be sure to select the Version 4.0. We will now create a new policy explicitly for the
purpose of demonstrating iteration over collections inside BRE as follows:

1. Add a new policy in the Business Rules Composer and name this policy
Product Policy.

2. Add a new rule called Assert Collection.
3. Set the condition to 1 is equal to 1.
4. Right-click Actions at the bottom and select Assert.
5. Browse to the ArrayList class in mscorlib 4.0.0.0 and drag the method

ArrayList.GetEnumerator to the right of the assert statement.
6. Create another rule called Iterate.
7. Navigate to the IEnumerator interface in mscorlib and drag the MoveNext

method to the Conditions of the rule.
8. Add an assert to the actions list and drag IEnumerator.get_Current to the

assert.
9. Add an update to the actions, below the assert, and drag the IEnumerator

class to the right of the update.
10. Add a third rule named Evaluate Purchase.
11. Right-click Conditions and select is greater than.
12. Go to the Product class in PRP.OrderProcessing.Library and drag Product.

get_ProfitMargin onto the left of the condition and type .1 on the right.
13. Drag the OrderMore method of the Product class onto the Actions at

the bottom.

We are now ready to use our policy to iterate a collection of the .NET class
Product. To do this, we will need to create an ArrayList of products from within
our orchestration. Having access to the Product class requires us to add a project
reference to the orchestrations project. Right-click the orchestrations project and
click Add Reference. Navigate to the Projects tab and double-click Libraries.

Open the OrderProcessing orchestration and add a new orchestration level variable
called Products. Select <.NET Class> and browse to ArrayList as the type.

Drag an expression shape to the top of the If_Priority branch of our decision shape.
Name it Populate Products. Enter the following expression:

Products.Add(new PRP.OrderProcessing.Library.Product("1234", 100,
.1M));
Products.Add(new PRP.OrderProcessing.Library.Product("4321", 50,
.2M));
Products.Add(new PRP.OrderProcessing.Library.Product("2222", 100,
.3M));

Chapter 9

[233]

This just adds some products to our product list. If we were really extending this
solution, we would probably want to do something more useful, such as possibly
getting the products from our order as follows:

1. Drag a Call Rules shape onto the orchestration, directly below Populate
Products and double-click this shape to configure it.

2. Select the Product Policy that we just created.
3. If you click the Parameter Name dropdown, you will see that the Products

variable is already specified. Select it and click OK.
4. Deploy the solution.
5. Start DebugView and make sure all the options except Log Boot are enabled.
6. Run the priority test again (or drop the priority file in the receive location).

You will see that the diagnostics trace writes out twice. As can be seen here, the
policy does not even show the concept of iteration as we normally know it. There
is no for loop, but we can see that it is happening when the policy itself executes.
We can also see that the concept of a variable is different in BRE as well. Anything
asserted or changed in the memory of the policy is a "variable", but the specific rules
are written against a seemingly disconnected type rather than against a variable. This
is different from the normal case in C#, which would use a foreach loop to process
any logic against a single variable instance that functions as the current place of
the iterator.

The BRE works this same way with XML as well. Looping is a concept that is built
into the BRE by default, but it's not always clear to us how or whether it is really
there. This example shows quite clearly how different BRE is from our normal
environments. All this said, recall that BRE was designed to run large rules' sets
very quickly and it is very good at doing that.

Deploying policies
We saw earlier how the Business Rules Composer can be used to deploy and publish
policies and vocabularies, but normally the process much more closely resembles the
rest of the BizTalk development and deployment pattern.

Just like in BizTalk when the "developers" of policies are finished (that's in quotes
because they may not be developers like you) the policy and any vocabularies it
uses are exported from the BRE as XML files, which are then imported into the
next server. This isn't the only way to do this, you can include policies as resources
in your BizTalk MSI, but this is the most common approach to deploying newer
versions of policies.

Expanding the Solution with Services and Rules

[234]

As we discussed before, it is this ability to decouple policies from a BizTalk solution
which uses them that makes the whole BRE proposition so compelling. Just like we
were able to correct our new customer pricing rule, our business users can also make
changes as needed.

The simple wizard used to export and import vocabularies and policies is called
the Business Rules Engine Deployment Wizard. When this wizard starts, we are
presented with the following four options from which to choose:

Import and publish Policy/Vocabulary to the database from the file
Export Policy/Vocabulary to the file from the database
Deploy Policy
Undeploy Policy

When the wizard starts, you simply choose if you wish to import, export, deploy,
or undeploy. From here you can choose the rule store by providing a server and
database name. The resulting file from an export of either policy or vocabulary is
an XML file that contains the parts of that vocabulary or policy. It is really a rather
simple file, but there are few needs to edit the files directly and if you do, please
be careful.

The following is an extract from the vocabulary we created earlier. As we can see, the
vocabulary contains the definitions we created, the version numbers, and in the case
of Get Discount Amount, the schema and XPath for the underlying definition:

<?xml version="1.0" encoding="utf-8"?>
<brl xmlns="http://schemas.microsoft.com/businessruleslanguage/2002">
 <vocabulary id="fdd61fdc-6e8b-47e8-ad5c-75e60fea849c" name="Order
Processing" uri="" description="">
 <version major="1" minor="0" description="" modifiedby="BT2010Dev\
BTDev" date="2011-05-11T16:07:42.153784-05:00" />

 <vocabularydefinition id="45203a3e-8943-49a4-9695-4eec3f9dfd00"
name="Customer Loyalty Level" description="">
 <setdefinition type="string">
 <element>
 <valuedefinitionliteral type="string">
 <string>New</string>

•

•

•

•

Chapter 9

[235]

 </valuedefinitionliteral>
 </element>
 ...
 </setdefinition>
 <formatstring language="en-US" string="Customer Loyalty Level"
/>
 </vocabularydefinition>

 <vocabularydefinition id="8b19038c-f4a5-48e5-8207-9a8ae8271d42"
name="Get Discount Amount" description="">
 <bindingdefinition>
 <documentelementbindingdefinition field="*[local-
name()='Total' and namespace-uri()='']" fieldalias="Total"
type="decimal">

 <documentinfo schema="C:\Users\BTDev\Documents\Visual
Studio 2010\Projects\PurchaseOrder\InternalSchemas\PurchaseOrder.
xsd" documenttype="PRP.OrderProcessing.InternalSchemas.PurchaseOrder"
selector="/*[local-name()='PurchaseOrder' and namespace-uri()='http://
performanceracingparts.com/schemas/PurchaseOrder/internal/2011-
05']" selectoralias="/*[local-name()='PurchaseOrder' and namespace-
uri()='http://performanceracingparts.com/schemas/PurchaseOrder/
internal/2011-05']" instance="0" />

 </documentelementbindingdefinition>
 </bindingdefinition>
 <formatstring language="en-US" string="Get Discount Amount" />
 </vocabularydefinition>
 </vocabulary>
</brl>

Although we cannot edit deployed vocabularies, we can export their definition,
manually make changes if absolutely necessary, and then redeploy them with the
deployment wizard. This can be a very risky and dangerous activity and should be
avoided if at all possible. Policies are very similar in structure to vocabularies and
can also be manipulated in a similar fashion as a last resort. This is perhaps more
pertinent to policies because, as you version them, they will keep references to the
original vocabularies that were used to create them. This can result in a policy that
requires multiple versions of a vocabulary deployed to function properly.

Expanding the Solution with Services and Rules

[236]

Summary
This chapter showed us how to consume WCF-SQL services from within an
orchestration and how our solution structure facilitates reuse. We were also
introduced to the Business Rules Engine and shown how to create vocabularies and
policies, how to version and deploy policies, and how to iterate over collections in
the BRE.

Envelopes, Flat Files,
and Batching

At this point, we have a very well-developed real-world solution built according to
the best practices with some of the latest technologies. But the fact of the matter is
that many data interactions in our industry still involve batches or flat file formats,
such as EDI and HL7, or custom formats that have been in operational use for a very
long time. This legacy of computing is not going away any time soon, and despite
the rise of services and SOAP, we will be required to work with flat files and batches
for a very long time. The good news is that BizTalk can really help us here. In this
chapter, we will cover the following topics:

Delimited flat files
Positional flat files
Header and footer records
XML envelopes
Testing envelopes and pipelines

Understanding delimited flat files
Delimited flat files are files that use a specific symbol or character to mark the
delineation between two elements in the file. Comma Separated Value (CSV) is
a very common example of a delimited file format. The file CatalogOrders.csv
(available at http://biztalk2010patterns.com//documents/order-processing/
CatalogOrders.csv) contains sales orders from one of PRP's catalog outsourcers.
The file has two types of records within it: orders and lines. Each order has one
or more lines after it that belongs to the order directly before it. The file itself can
contain many different orders in a batch. Our current solution processes orders
individually and we need to break this file apart into individual orders.

•

•

•

•

•

Envelopes, Flat Files, and Batching

[238]

Fortunately, this is very easy in BizTalk. The flat file processing features of BizTalk
are well suited to a variety of processing tasks.

Creating the delimited flat file schema
Our first task will be to use the Flat File Schema Wizard to generate a schema that
represents the delimited file we're dealing with. A wizard will walk us through
defining the format and will ultimately result in an XSD schema being created that
components in BizTalk can use to translate to and from text/XML:

1. Right-click ExternalSchemas and click Add | New Item.
2. Select Flat File Schema Wizard and name the file CatalogOrderCsv.xsd.
3. Browse to the instance file being sure to change the filter to All Files (*.*).
4. Rename the root as CatalogOrderCsv.

Namespaces are slightly different for flat files because the files themselves
do not contain the namespace within them. This gives us a lot more
latitude when selecting namespaces for flat file schemas. It is still a good
idea to follow the naming conventions of this book so for this schema I
have selected the namespace: http://performanceracingparts.
com/schemas/PurchaseOrder/external/2011-05.

Chapter 10

[239]

The wizard now highlights the entire document and asks us to highlight
the area we are interested in defining a schema for. Since we are making a
schema for the entire document do not change the highlighting.

5. Keep the full highlighting and click Next.
6. Keep By delimiter symbol radio button checked and click Next.
7. Keep {CR}{LF} as the delimiter and click Next again.

Some delimiters mark the dividing point between records and
some mark the dividing point between fields in a record. In this
case, it is the former. Each record is delimited with a carriage
return line feed, the new line standard of Windows files.

8. Rename the first row as Order and change its element type to Record.
9. Rename the second row as Line and change its element type to

Repeating Record.

Change the element type to Ignore for the rest of the rows as these are
merely repeats of the two we have just named. This tells the flat file parser
to skip these parts of the file in the rest of the wizard. The Record type we
specified before tells the parser that a given record will occur exactly once.
The Repeating record element type specifies an element with a Max Occurs
set to unbounded. The other two options: Record element and Record
attribute both specify a field-level data point that will either become an
element or attribute in the resulting XML schema. This dialog also allows
us to select an XSD data type for a data point of an element or attribute.
This data type is then used in file validation and allows us to provide
strong typing to flat files. Elements and attributes are leaves in the XSD,
that is they have no child elements.

Envelopes, Flat Files, and Batching

[240]

The following screenshot shows the Child Elements dialog filled out for this
step in our flat file generation:

10. Click Next.
11. Click Next again to define the Order record.
12. Keep the By delimiter symbol radio button selected and click Next.

As we can see in the following screenshot, the entire line is highlighted. If we
scroll to the right, we will see that the CR LF has been excluded, as that is a
part of the parent record.

Chapter 10

[241]

13. Type in a comma (,) as the child delimiter.
14. Check the Record has tag identifier checkbox and type in ORDER as the tag.

You can see that each line begins with either ORDER or LINE. This is how
the parser in BizTalk will know which lines are orders and which are lines.
This is shown in the following screenshot:

Envelopes, Flat Files, and Batching

[242]

15. Click Next.
Notice how the fields are already broken out, albeit with non-expressive
names. We have the chance here to name the fields however we like and
also to set their type. Notice in the following screenshot how this is the
same Child Elements dialog that we have walked through once already.
This wizard allows us to model complex nested structures very easily.

16. Name the elements as follows:
Number: string
Date: date
Total: decimal
CustomerName: string
Street: string
City: string
Zip: string
Phone: string
Click next: string

17. Click Next and you will see the schema view displayed again, this time
highlighting the Line. Click Next again.

°

°

°

°

°

°

°

°

°

Chapter 10

[243]

18. Repeat the process for Line using LINE as the tag identifier.
19. Name the elements and set their types as follows:

ItemNumber: string
Quantity: int
UnitCost: decimal
Description: string

20. Click Next.
21. Click Finish.

The completed schema will now be in your external schemas project and if you
right-click the schema, you can validate the input instance that we used to generate
the schema.

If we do this, we are presented with the same type of output window we saw when
testing maps:

Invoking component...
Validation generated XML output <file:///C:\Users\BTDev\AppData\Local\
Temp_SchemaData\CatalogOrderCsv_output.xml>.
Validate Instance succeeded for schema CatalogOrderCsv.xsd, file:
<file:///C:\Users\BTDev\Documents\CatalogOrders.csv>.
Component invocation succeeded.

We can click on the upper link and be shown the output from the validation, which
is shown as follows:

<CatalogOrderCsv xmlns="http://performanceracingparts.com/schemas/
PurchaseOrder/external/2011-05">
 <Order xmlns="">
 <Number>1233233</Number>
 <Date>2009-10-05</Date>
 <Total>599.52</Total>
 <CustomerName>Jack Daniels</CustomerName>
 <Street>362 State Rd 27</Street>
 <City>Lynchburg</City>
 <State>TN</State>
 <Zip>53823</Zip>
 <PhoneNumber>312-555-1212</PhoneNumber>
 </Order>
 <Line xmlns="">
 <ItemNumber>DHS32S</ItemNumber>
 <Quantity>1</Quantity>
 <UnitCost>500.00</UnitCost>

°

°

°

°

Envelopes, Flat Files, and Batching

[244]

 <Description>Carbon Fiber Exhaust Pipe</Description>
 </Line>
 <Line xmlns="">
 <ItemNumber>DHS32T</ItemNumber>
 <Quantity>1</Quantity>
 <UnitCost>99.52</UnitCost>
 <Description>Exhaust Installation Kit</Description>
 </Line>
</CatalogOrderCsv>

Interestingly, despite the fact that this file contained two orders, we only see one
in the output. This is because the flat file parser was specifically designed to make
our job easier in this case; namely to transform batches of data into individual
transactions. This file is broken apart because we set the Order to be a record, which
equates to maximum occurrence being set to one (or more precisely to the default,
which is one). This instructs the parser to break the file every time it encounters an
Order record after reading Line records.

BizTalk really is a transaction-based system and although you can do batch
processing with it, it is really designed for live transaction processing. This particular
schema is actually quite complex compared to most flat files, which contain only a
single record structure. With files of that type, we don't have to break the file apart.

There is something else going on here that is really quite impressive as well. Recall
that we set the order date to be a date field; defined as xs:date in the schema. If we
go into CatalogOrders.csv and change one of these order date values to 2011-09-
31, the schema validation will now fail. This is because there are only 30 days in
September and we have provided an invalid date. The same is true for the order
total or any other field we wish to put constraints on. We have the entire validation
framework of XSD, including regular expressions, at our disposal for validating
flat files that we are sent. This greatly simplifies working with flat files when
using BizTalk, as field validation is almost always the first step performed
by custom solutions that interact with flat files. This is a feature that should be
heavily leveraged.

Mapping the delimited flat file
Now that we have our XML representation of the flat file schema, we are ready to
map it into our canonical order schema. This map, Ext_CatalogOrderCsv_To_
PurchaseOrder.btm, is fairly simple and many of the fields will map by using the
Link by Name feature of the mapper. Importantly, map the customer and address
information to both the BillTo and ShipTo nodes. Also, map the ItemNumber to the
CatalogNumber. Finally, we still need to set the source for this file, so again use a
String Concatenate functoid with the value Mail Order.

Chapter 10

[245]

Using the flat file schema
We have our external format defined and our map to translate from the flat file XML
to our canonical XML. Now we need a way to actually apply our flat file schema
so that it can convert the text into XML. This is done in a pipeline. Pipelines were
introduced in Chapter 2, Introduction to BizTalk Development, and are a core component
of BizTalk's architecture. Their stream-based programming model makes working
with even large data sets keep a small memory footprint, which helps BizTalk scale
and process both larger files and more files:

1. Right-click the Pipelines Project and click Add | New Item.
2. Select Receive Pipeline from the list of BizTalk components and name the

pipeline CatalogOrderCsvReceive.btp.
3. When the pipeline appears (double-click it to open it if it does not) look for

the Flat file disassembler component in the Toolbox and drag it onto the
Disassemble stage of the pipeline.

If you now click the Flat file disassembler component and look at its properties you
will see a section for Document schema. We need to specify a document schema here
to instruct this disassembler as to what schema to apply to the flat file data stream
that it receives.

Envelopes, Flat Files, and Batching

[246]

Click on Document schema and the drop-down list will be filled with all the
schemas on this BizTalk environment. It is a long list and we will be thankful that
we have used a naming convention to make selecting the appropriate schema
easier. Select the schema that begins with PRP.OrderProcessing.ExternalSchemas.
CatalogOrderCsv.

Setting the document schema is required in the flat file disassembler, but
it can be overwritten in any receive location, so that you don't have to
create a new pipeline for each flat file that is received. That can help keep
your solution free of artifact clutter.

Compile and deploy the solution
With the solution complete, all we need to do now is add a receive location to pick
up the catalog files. This new location will still use the same port, OP_Receive_
PurchaseOrders, and will be named OP_File_Receive_MailOrderCsv. We will reuse
the existing call center order location and this time use a file mask of *.csv (the URI in
the Administration Console will be: C:\BizTalk\PRP\CallCenterOrders*.csv).

We also need to select our pipeline CatalogOrderCsvReceive as the receive pipeline.
If this pipeline does not appear in the Administration Console, remember that you
must refresh it after deploying new artifacts.

Finally, we must add the map Ext_CatalogOrderCsv_To_PurchaseOrder to the
receive port OP_Receive_PurchaseOrders. Now if you copy CatalogOrders.csv
to C:\BizTalk\PRP\CallCenterOrders, the file will be picked up and one order
will route to the priority SendInventoryPriorityPurchaseOrder and the other to
SendInventoryPurchaseOrder.

Working with positional flat files
Not all flat files are delimited. Some systems, particularly mainframe and AS400,
send files by a different method altogether. These are positional flat files that do not
use delimiters between fields, but use their character position within a line of the file.
These files are called positional files.

BizTalk is capable of dealing with positional flat files as well and we happen to have
such a file from one of our mail order resellers that we must incorporate. The file is
available at http://biztalk2010patterns.com//documents/order-processing/
CatalogOrders.txt. This file contains very similar data to the delimited flat file, but
as can be seen, it is in fact positional. We will now create the schema for this file.

Chapter 10

[247]

1. Right-click external schemas and select Add | New Item. Again, we
will select the Flat File Schema Wizard and this time name the schema
CatalogOrderPositional.xsd.

2. Click Add, then click Next.
3. Browse to CatalogOrders.txt.
4. Name the root node CatalogOrderPositional and change the namespace

to http://performanceracingparts.com/schemas/PurchaseOrder/
external/2011-05.

5. Click Next.
6. Keep the entire file highlighted and click Next.
7. Despite the fact that this is a positional flat file, each line is still delimited

with a CR LF (carriage return, line feed) so keep the radio button selection
of By delimiter symbol.

8. Click Next.
9. Keep the CR LF default and click Next again.
10. Like before, name the first line Order and set the Element Type to Record.

Name the second one Line and set the Element Type to Repeating Record.
11. Set the other records to Ignore for Element Type and click Next.

If you are given real files to work with to generate your flat file
schemas via the wizard, you should delete most of the file, so as not
to have to mark many records to be ignored. If you're going to do
this, please be aware that you should delete the middle of the file, not
the end because the last CR LF will dictate if the file is Infix or Postfix.
Postfix files will have a blank line at the end because the delimiter is
always affixed post record, rather than between records.

Envelopes, Flat Files, and Batching

[248]

We will now define the elements for the order. This starts out in a similar way
as before so click Next twice so that you reach the Select Record Format page
of the dialog:

1. Select the By relative positions radio button and click Next.
We are now presented with a new dialog that allows us to graphically select
where to split the elements as well as define a tag identifier.

2. Check the Record has a tag identifier checkbox and enter H as the tag.
3. Click on the record displayed in the text window at positions: 1, 10, 20, 30, 53,

77, 101, 106, and 111.
4. Click Next.
5. Rename the elements as we did before:

Tag: string
Number: string
Date: date
Total: decimal
CustomerName: string
Street: string
City: string
Zip: string
Phone: string
Click Next: string

°
°
°
°
°
°
°
°
°
°

Chapter 10

[249]

6. Repeat the process for the line defining the tag as D and the break positions
at: 1, 7, 9, 18.

7. Name the elements and set their types appropriately:
Tag: string
ItemNumber: string
Quantity: int
UnitCost: decimal
Description: string

8. Click Next and Finish.

We now have a completed positional schema and are ready to use it in our solution.
This is left as an exercise to the reader as it works exactly like the previous example.
We need only a map, a pipeline, and a receive location (again, it can be in the same
path due to the new file mask .txt).

Grasping important flat file schema
concepts
Flat files have many rules governing them that have been developed and refined
over decades. BizTalk goes a long way towards making flat files easy to work with.

Justification: In a positional flat file, the justification will control which side the
value in that field is set against. The default justification is left, but it is common for
monetary values to be right justified. This is controlled through an attribute on the
individual elements in the schema. The following is an example:

Left-justified elements are often strings as in the following
example: "3X2H63 "
Right justification is common in number fields as in the following
example: " 29.55"

Pad character: When values do not fill the entire available area in the positional
structure, a padding character must be selected to be used when filling out a file. This
value can be set at the element level, but one of the options is Default Pad Character,
which uses the pad character defined at the schema level (the folder above the root
node). A pad character can be any character, but is commonly a space or a zero. If
we had a value of "29.55" and it needs to be padded with leading zeros to result
in a 10-digit number, we would set the justification to right and the pad character
to "0" for a positional field we specified with a length of 10. The result would be
"0000029.55" and we would not need to write any code to get it.

°

°

°

°

°

•

•

Envelopes, Flat Files, and Batching

[250]

Wrap character: The wrap character is used with the wrap character type to define
special characters that enclose, or qualify, values. This is commonly a double quote
in CSV files, as in the following line:

"Bob", "1234", "ABC"

If you're working with CSV files that are quote wrapped like this, you can specify the
wrap character to enclose the values. The wrap characters are automatically stripped
from the value when it is converted into XML and automatically inserted when XML
is converted to text.

Importantly, although we saw examples of converting text flat files into XML, these
same schema definitions are used to do the opposite: convert XML into flat files. The
only difference is that instead of using a receive pipeline you use a send pipeline,
and instead of using a disassembler, you use an assembler. Finally, there are other
options available at the root level of a flat file schema that impact how the flat file
parser performs; of particular note are the Lookahead Depth which controls how far
ahead in the file the parser will search for matching data and the parser optimization
which can either be set to speed (the default) or complexity. Complexity enables the
parser to handle more ambiguous formats, but this comes at the price of speed.

Using flat file headers and trailers
Some flat files will contain records in the beginning or the end that are simply
unrelated header and trailer records. Often these will contain counts and totals, but
aren't necessary for the processing of records within the file. These fields tend to be
holdovers from the bad old days of networking and data transmission, when we had
much less certainty in the reliability of networks or even computer systems. Records
at the first and last lines would contain counts or checksums to ensure that the file
had not been truncated. Although these are not really necessary anymore, they are
still there.

We can define header and trailer records to remove these lines from our message.
Header and trailer schemas are defined exactly like normal flat file schemas, but
in the pipeline they are selected for the header or trailer schema, rather than the
document schema. The default behavior is to simply remove these parts of the
message, but they can be subscribed to individually if you like (although they
won't cause a failed routing error if they are not). We can also preserve the header
in the message context if we choose, but I have found this to be of limited use.

Alternatively, we can define the header and trailer inline (within the document
schema) if we would rather keep them as part of the message. A great walkthrough
of using header and trailer schemas exists on MSDN at http://msdn.microsoft.
com/en-us/library/aa560774(BTS.70).aspx.

Chapter 10

[251]

Processing XML envelopes
If we look carefully at our SQL solution for receiving website orders, we will notice
that there is actually a problem with it. In its current form, the solution only works
correctly with one order. Clearly, our query is capable of returning more than one
record. We could use a TOP 1 clause in the stored procedure to only return one
record, but that would be terribly inefficient and not scale well at all. We can also
use an envelope to accomplish this.

Envelopes are special schemas that instruct the XML Disassembler to break apart
matching messages. The XMLReceive pipeline that we're already using extensively
has an XML Disassembler built into it, so this change is relatively easy. This all works
through message probing using the message type (namespace#rootnodename).

If we were to look at our current solution and the XML it produces (which can be
done by changing the receive pipeline on OP_SQL_Receive_WebsiteOrders to the
PassThruReceive) we would see that the message contains the following content:

<WebSiteOrders xmlns="http://performanceracingparts.com/schemas/
PurchaseOrder/sql/2011-05">
 <order xmlns="">
 <Id>44</Id>
 <OrderNumber>3774632</OrderNumber>
 <CustomerName>John Doe</CustomerName>
 <CustomerAddress1>123 Fake St</CustomerAddress1>
 <CustomerState>IL</CustomerState>
 <CustomerZip>60610</CustomerZip>
 <CustomerCity>Chicago</CustomerCity>
 <OrderTotal>247.54</OrderTotal>
 <ReadStatus>1</ReadStatus>
 <PhoneNumber>312-555-1234</PhoneNumber>
 <OrderDate>2010-03-26</OrderDate>
 <orderline>
 <OrderLine>46</OrderLine>
 <OrderId>44</OrderId>
 <ItemNumber>54346 </ItemNumber>
 <Quantity>1</Quantity>
 <UnitCost>2.475400000000000e+002</UnitCost>
 <Description>Some Item</Description>
 </orderline>
 </order>
</WebSiteOrders>

Envelopes, Flat Files, and Batching

[252]

It is a good practice to keep external sample data in the
TestData\External directory of the UnitTests project.
Save the preceding file to that directory and add it as an
existing item so it can be used by other developers.

If there were multiple orders, there would simply be more order nodes. This is the
reason why we needed to specify a root element node name as well as a namespace
in the adapter configuration, because the adapter wraps the returned XML document
fragments in an outer element to form valid XML. What we really want is just the
order itself, not the envelope that contains the orders. This turns out to be fairly easy:

1. Open the SQL Adapter generated schema and click on the schema node (the
small folder). Scroll down to the reference section of the Properties and look
for a property called Envelope. Change this property to Yes. This instructs
BizTalk to use this schema for breaking apart messages.

2. Click on the WebSiteOrders node and look for the property Body XPath.
This is where we instruct BizTalk how to break the message. BizTalk will
look for sub-messages below this node. Click the ellipsis on the right of this
property and a dialog will be presented to you.

3. Set this property to be the root node: WebSiteOrders.
You can see that the property is now populated with the fully qualified
xpath of the node that you selected. In this case it is the following:
/*[local-name()='WebSiteOrders' and namespace-uri()='http://
performanceracingparts.com/schemas/PurchaseOrder/sql/2011-05']

4. Create a new schema called WebSiteOrder.xsd (via Add | New Item in
external schemas) and delete the value from the Target namespace property.

5. Rename the Root node as order.

Since there is a change to the way the SQL Adapters work,
we need to use a blank target namespace in this new
schema because the XML itself has an explicit xmlns=""
in it. Remember the parser is looking for exact matches
and it will not work properly if it does not find one.

6. Import the WebSiteOrders schema by browsing for the Imports property
and clicking the ellipsis.

7. Change the Data Structure Type of order to orderType which is now
available in the drop-down thanks to our import.

Chapter 10

[253]

8. Modify the map Ext_WebSiteOrders_To_PurchaseOrder to use our new
schema. This is quite easy if you open the map and right-click the top node of
the source. On the left, the schema folder, there is an option Replace Schema.
If you click this you can browse for the source schema again. This time pick
PRP.OrderProcessing.ExternalSchemas.WebSiteOrder.

Fortunately for us, the schema didn't really change that much, so the mapper is
actually able to reconnect all of the links that were there before. This turns out to be
all we have to do to make the new envelope processing work for us. If you want to
see it in action run the website order test again. It will still pass. If you change the test
to make two records (or just insert more records) you will see that the disassembly
happens as we expect it to.

Testing envelopes and pipelines
Although the preceding solution does work, figuring out exactly how pipelines and
envelopes will function at runtime can be tedious if you have to deploy your solution
every time in order to test them. The developers of BizTalk thought the same and
provided us with plenty of tools to make working with envelopes and pipelines
much easier. These are available in the following directory:

<InstallDir>\Microsoft BizTalk Server 2010\SDK\Utilities\
PipelineTools

Add this to the path of your development workstation so that working
with these tools is easier. The easiest way to do this is to click the Start
button, right-click Computer, and select Properties. Click Advanced
System Settings on the left, then click Environment Variables.

XML Disassmbler
The tool we would use to test the envelope above is xmldasm, the XML
Disassembler. This is a command-line tool that wraps much of the BizTalk
infrastructure of the XML Disassembler pipeline component. The interactive
help for this tool is as follows:

Microsoft BizTalk XML Document Disassembler. Version 1.0
Copyright (C) Microsoft Corporation. All rights reserved.

usage: xmldasm document -ds documentSchema... [-es envelopeSchema...
] [-s] [
 -c] [-p] [-sd] [-se] [-m filenamemask] [-en encoding] [-v
] [-ri]

Envelopes, Flat Files, and Batching

[254]

where:
 document XML document
 documentSchema XML document schema(s)
 envelopeSchema XML envelope schema(s)
 -s Validate document structure
 -c Display disassembled XML message on the console
 -p Display promoted properties on the console
 -sd Set document schema(s) as design-time property
 -se Set envelope schema(s) as design-time property
 -m Output file name mask (default is %MessageID%)
 encoding Input message body part encoding name (e.g.
windows-1252) o
r code page (e.g. 936)
 -v Verbose mode
 -ri Recoverable Interchange

file name macros:
 %MessageID% XML message identifier (Guid)
 %MessagePartID% XML message part identifier (Guid)
 %MessageNumber% XML message number

If you open a command prompt and change directories into the external schemas
folder of the solution, you can run the following command to watch this message
be disassembled.

xmldasm ..\UnitTests\TestData\External\WebSiteOrders.xml -ds
WebSiteOrder.xsd -es WebSiteOrders.xsd -v

Creating objects.
Creating message.
Adding message to a pipeline.
Executing pipeline.
Getting processed message(s).
Doing output for a message 1.

You can see here that I have specified the WebSiteOrders.xml file as input, the
WebSiteOrder.xsd as the document schema (for the single external order) and the
WebSiteOrders.xsd as the envelope (the schema we marked as an envelope and
gave a body xpath to). I also added the –v (verbose) parameter to see more output.
For each message that is debatched in the envelope, one line of Doing output for
a message n. will be listed on the console.

If we copy the order element in the source message and run this command again, we
will see two messages written out. We can also see that new files named with GUIDs
have been created. Each output message will be displayed this way.

Chapter 10

[255]

Flat file disassembler
A very similar tool, FFDASM.exe, provides the same functionality for flat file
disassembly. This tool basically works the same way and running the command
with no parameters lists the help (as it does with all of the pipeline tools). The
primary difference is that you use –bs for body schema, -hs for header schema,
and –ts for trailer schema.

ffdasm ..\UnitTests\TestData\External\CatalogOrder.csv -bs
CatalogOrdersCsv.xsd -v
Creating objects.
Creating message.
Adding message to a pipeline.
Executing pipeline.
Getting processed message(s).
Doing output for a message 1.
Doing output for a message 2.

We can see that the disassembler does, in fact, create two output messages for our
disassembled flat file.

XML assembler / flat file assembler
There are also tools that allow us to deal with the reverse process, which is document
assembly. This will enable us to assemble many messages into a single document
(XML or flat file) or to test that our flat files are being created the way we want
without having to deploy the solution. These tools, XMLASM.exe and FFASM.exe,
work almost identically.

Microsoft BizTalk XML Document Assembler. Version 1.0
Copyright (C) Microsoft Corporation. All rights reserved.

usage: xmlasm document... [-dm documentMask...] -ds
documentSchema... [-es en
velopeSchema...] [-c] [-d] [-sd] [-m filenamemask] [-v]

where:
 document XML document(s)
 documentMask XML document(s) file mask, e.g. c:\\documents*.xml
 documentSchema XML document schema(s)
 envelopeSchema XML envelope schema(s)
 -c Display assembled XML message on the console
 -d Demote properties
 -sd Set document schema(s) as design-time property
 -d Demote properties
 -m Output file name mask (default is %MessageID%)
 -v Verbose mode

Envelopes, Flat Files, and Batching

[256]

file name macros:
 %MessageID% XML message identifier (Guid)
 %MessagePartID% XML message part identifier (Guid)

Much like their disassembler cousins, these tools allow you to specify a document
and the schemas to use for the assembly. You can even use the documents that are
output by the FFDASM and XMLDASM as input to XMLASM and FFASM. You can
also use a document mask (–dm) if you want to assemble multiple messages into a
single output message.

Pipeline testing
There is a final tool, again similar to the ones before, pipeline.exe, which allows
for testing full .btp files (like the CatalogOrderCvsReceive.btp that we created
earlier). This tool takes a few more parameters and will test every stage of the
pipeline, not just assembly and disassembly.

Pipeline.exe can also be connected to the Visual Studio Debugger to allow us to
step into custom pipeline components. This is useful for testing components that
have not yet been deployed to a BizTalk server. To do this, you simply set your
pipeline project as the startup project in the solution and change the debug values
properties. Select Start External program and browse to pipeline.exe. Now you
set the Command line arguments like you would for using pipeline.exe directly
from the command line. Additionally, like with maps and schemas, you can set
the Enable Unit Testing property to true, which will wrap the pipeline in the
TestablePipeline class and this then makes it available for code-based unit testing.

If you put a breakpoint in your custom pipeline component, Visual Studio will stop
at the breakpoint when the pipeline executes.

Alternatively, you can also attach to the BTSNTSvc.exe process and debug from there.
This allows you to see everything going on inside BizTalk at the time the pipeline
executes. For more information on using the Visual Studio Debugger to attach to
processes, please see http://msdn.microsoft.com/en-us/library/c6wf8e4z.aspx.

Summary
In this chapter, we have learned how BizTalk can help us work with flat files and
batches of data. We learned how to incorporate these legacy formats into our modern
real-time solution architecture and how to be a producer or consumer of these
formats. We also learned about debatching data files and testing pipelines, flat files,
and XML envelopes. In the next chapter, we will expose the current service as a WCF
service, learn about solution bindings, create a build script, and create advanced
BAM views.

Completing the Order
Processing Solution

This chapter rounds out our solution by exposing it to web service consumers,
providing a walkthrough of build and deployment strategies, and creating
advanced BAM views. This chapter concludes our initial project and we will
soon start a second solution: inventory management.

Topics covered in this chapter include:

Exposing our current solution as a web service
BizTalk bindings
BizTalk resources
MSI deployment
BAM continuations and aggregations

Exposing the process to web service
clients
In an effort to modernize their B2B channels, we have been asked to provide
a real-time service for our customers. We want to expose the InfoPath order
format as a message type that service clients can submit to us directly via a
web service request.

•

•

•

•

•

Completing the Order Processing Solution

[258]

Expose the schema as a service endpoint
We've already used the BizTalk WCF service publishing wizard once before, but we
can also use it now to expose our current solution as a WCF service for a variety of
consumers. We must now use this wizard to create a service endpoint.

1. Launch the wizard.
2. Click Next.
3. Select Service Endpoint and check the checkbox Enable metadata

publishing.
4. Click Next.
5. Select Publish Schemas and click Next.
6. Rename the service description to PrpOrderServices.
7. Rename the service to OrderService.
8. Add a new one-way operation.
9. Delete the operation1 web method.
10. Right-click Request and specify the message type for this new operation as

the InfoPath.
11. Click Next.
12. Replace the namespace http://tempuri.org with

http://performanceracingparts/interfaces/orderprocessing.
13. Check Allow anonymous access to WCF service and click Next.
14. Review the service summary and click Create.
15. Click Finish.

Creating a new one-way receive location
We will now create a receive location on our OP_Receive_PurchaseOrders port
to receive these messages and flow them into our existing solution. Unlike before
we did not let the wizard create our receive location; we will do it manually to
understand how it works:

1. Select OP_Receive_PurchaseOrders as the port.
2. Name the location OP_Wcf_Receive_PurchaseOrders.
3. Select the WSHttp as the Type.
4. Click Configure and set the URI to /PrpOrderServices/OrderService.svc.
5. Click OK.

Chapter 11

[259]

6. Select the XMLReceive pipeline.
7. Click OK.
8. Enable the new location.
9. Run the following command:

C:\Windows\System32\inetsrv\appcmd set app /app.name: "Default Web
Site/PrpOrderServices" /applicationPool:"BizTalk Isolated Host
AppPool"

Setting the AppPool can also be performed via the Internet
Information Services (IIS) Management Console.

Our solution is now exposed as a web service endpoint on our local machine. We can
test this in SoapUI or even in InfoPath.

InfoPath is a very good tool for using with BizTalk as it can allow
us to return results (i.e. submit forms) via SOAP or even e-mail.

Examining the solution bindings
Although we have created many artifacts in Visual Studio and other tools, the
solution is largely comprised of the configurations of ports, locations, and settings
that we configured in the BizTalk Administration console. This configuration is
called the bindings for a BizTalk solution.

The bindings are critical for any BizTalk solution because they bind together
everything that we created. Without the bindings our solution simply won't
work; it won't do anything or even know where to look to do anything.

Exporting the bindings
We can export the bindings from the BizTalk Administration console and we will do
that now in order to explore them further:

1. Expand the Applications node in the group and right-click Order
Processing, then click Export | Bindings.

2. The wizard will ask you for a location to save the bindings to, so save them
to Bindings\LocalDev_OrderProcessing.BindingInfo.xml at the solution
root and click OK.

Completing the Order Processing Solution

[260]

Don't be surprised if it takes a moment to export the bindings, there is actually a lot
of information in the bindings and it is being serialized into XML during this process.
What you will now have is a relatively large XML file that very verbosely describes
our entire solution. Add the bindings as an existing item to the Bindings folder of
the solution.

For security reasons, passwords are removed from bindings when they
are exported. If you use adapters or locations that include their own
usernames and passwords, the passwords will have to be manually set
after importing the bindings or updating in the bindings file. For security
reasons, it is best to manually update them.

Understanding bindings
Open the newly added bindings file in Visual Studio as we can see all the details of
this application. Don't worry, we don't need to know what all this XML means, but
we will take a brief tour of it.

There are five major sections within the bindings document introduced as follows:

ModuleRefCollection: This section contains information about the
application as a whole, including all the assemblies, schemas, and
orchestrations within the solution. Some of the information for the
application as a whole is as follows. As can be seen, the schemas are listed
below the TrackedSchemas element, which is a slightly misleading name.
<ModuleRefCollection>
 <ModuleRef Name="[Application:Order Processing]" Version=""
Culture="" PublicKeyToken="" FullName="[Application:Order
Processing], Version=, Culture=, PublicKeyToken=">
 <Services />
 <TrackedSchemas>
 <Schema FullName="PRP.OrderProcessing.ExternalSchemas.
WebSiteOrder" RootName="order" AssemblyQualifiedName="PRP.
OrderProcessing.ExternalSchemas.WebSiteOrder,PRP.OrderProcessing.
ExternalSchemas, Version=1.0.0.0, Culture=neutral, PublicKeyToken=
0e3c97569ac5667e" AlwaysTrackAllProperties="false">
 <TrackedPropertyNames />
 </Schema>
 </TrackedSchemas>
 </ModuleRef>
 ...
</ModuleRefCollection>

•

Chapter 11

[261]

More interestingly, a little further down the ModuleRef for the
orchestrations project shows us some things we actually set up ourselves
in the BizTalk Administration console. We can see some highlighted
sections of this part of the bindings as follows. Under Services, there are
Service elements that detail orchestration bindings. Critically, we can see
the Ports and for each Port the orchestration name and the reference to
the actual BizTalk port.
 <ModuleRef Name="PRP.OrderProcessing.Orchestrations"
Version="1.0.0.0" Culture="neutral" PublicKeyToken="0e3c97569ac566
7e" FullName="PRP.OrderProcessing.Orchestrations, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=0e3c97569ac5667e">
 <Services>
 <Service Name="PRP.OrderProcessing.Orchestrations.
OrderProcessing" State="Started" TrackingOption="ServiceStartEnd
MessageSendReceive OrchestrationEvents" Description="">
 <Ports>
 <Port Name="ProcessPurchaseOrderPort" Modifier="2"
BindingOption="1">
 <SendPortRef xsi:nil="true" />
 <DistributionListRef xsi:nil="true" />
 <ReceivePortRef Name="OP_Receive_PurchaseOrders" />
 </Port>
 ...
 <Roles />
 <Host Name="BizTalkServerApplication"
NTGroupName="BizTalk Application Users" Type="1" Trusted="false"
/>
 </Service>
 </Services>
 </ModuleRef>

Recall that we configured all of these settings graphically within the
BizTalk Administration console.

SendPortCollection: This collection is named more appropriately and it is
fairly straightforward, albeit quite verbose. Some of the following listing
has been removed for simplicity, but if you examine the file on your own
screen you will see that all of the elements correspond to the settings in the
administration console that we are free to change.
The file adapter is a rather trivial example, but we can see the highlighted
Address node would be likely to be changed between environments.
 <SendPort Name="OP_File_Send_CRM_SalesOrder" IsStatic="true"
IsTwoWay="false" BindingOption="0">
 <Description xsi:nil="true" />

•

Completing the Order Processing Solution

[262]

 <TransmitPipeline Name="Microsoft.BizTalk.DefaultPipelines.
PassThruTransmit" REMOVED TrackingOption="ServiceStartEnd
MessageSendReceive PipelineEvents" Description="" />
 <PrimaryTransport>
 <Address>C:\BizTalk\PRP\CRM\%MessageID%.xml</Address>
 <TransportType Name="FILE" Capabilities="11" ConfigurationClsi
d="5e49e3a6-b4fc-4077-b44c-22f34a242fdb" />
 <TransportTypeData><CustomProps> REMOVED lt;/
CustomProps></TransportTypeData>
 <RetryCount>3</RetryCount>
 <RetryInterval>5</RetryInterval>
 <ServiceWindowEnabled>false</ServiceWindowEnabled>

We can also see the SendHandler lists the Host that is configured for this
send port.
 <SendHandler Name="BizTalkServerApplication"
HostTrusted="false">
 <TransportType Name="FILE" Capabilities="11" ConfigurationClsid
="5e49e3a6-b4fc-4077-b44c-22f34a242fdb" />
 </SendHandler>

 </PrimaryTransport>
 <SecondaryTransport>

We can see that this port has a filter in place on it and we can also see that
this filter is stored in the bindings as escaped XML. This allows the filters
to be arbitrarily complex, but it also introduces some caveats. For one,
the filter must not have any whitespace at the beginning. If you paste this
port's information into a new XML document in Visual Studio, it will add
a new line after the opening Filter tag. This will break your filters and
you will be unable to start the port in the administration console.
 </SecondaryTransport>
 <ReceivePipelineData xsi:nil="true" />
 <Tracking>0</Tracking>
 <Filter><?xml version="1.0" encoding="utf-16"?>
<Filter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Group>
 <Statement Property="BTS.ReceivePortName" Operator="0"
Value="OP_Receive_PurchaseOrders" />
 <Statement Property="BTS.MessageType" Operator="0"
Value="http://performanceracingparts.com/schemas/PurchaseOrder/
internal/2011-05#PurchaseOrder" />
 </Group>
</Filter></Filter>

Chapter 11

[263]

We can also see any transforms listed on this port. Again, this has been
truncated to make reading easier in the book.
 <Transforms>
 <Transform FullName="PRP.OrderProcessing.Maps.Int_
PurchaseOrder_To_SalesOrder" REMOVED />
 </Transforms>

Finally, we can also see the application that this port is destined for. This
is useful because we can use bindings files to add just a single port to an
application. We did this a few chapters ago and we were warned about
the application names not matching because the WCF wizard did not
specify a value in this element.
 <RouteFailedMessage>false</RouteFailedMessage>
 <ApplicationName>Order Processing</ApplicationName>
</SendPort>

DistributionListCollection: The distribution list is the name for send port
groups. We don't have any in our application, but if we did they'd be listed
here. They can have their own filters and a list of send ports that belong
to them.
ReceivePortCollection: Again this is a fairly straightforward section
named appropriately and clear in intent. This section is very similar to
ReceivePortCollection and contains many of the same values and
structure applied to send rather than receive ports.
PartyCollection: This section contains any party information used by the
application. Again, we're not using parties in this application, but if we did
they would be listed here.

The bindings are stored inside the management database with sensitive information,
like passwords, stored in the SSO system used by BizTalk. In order to deploy our
solution to another machine, including another developer who is working on the
project with us, we should provide the bindings so that they can quickly setup and
run the project. These would be developer targeted bindings.

Modifying bindings
As we can see, these are very tight bindings and would very likely need to be
changed as we move the solution from our developer workstation to an integration
server, UAT, and ultimately production. As we learned in Chapter 4, Operating
BizTalk, we want to use MSIs to perform this installation and they will give us the
opportunity to bundle bindings within them for each target environment that we
plan to deploy to.

•

•

•

Completing the Order Processing Solution

[264]

Creating bindings for each environment
The key part to this aspect of BizTalk management and development is to know
which settings are going to change between environments and how. There are
two primary ways to approach this. One is to make the changes manually in the
administration console and export them for specific environments. The other is
to manually change the binding XML files. Either way, you will want to create
a Bindings file for each environment that you plan to deploy this solution onto.
This should be at least two and hopefully more. The Bindings folder exists in our
solution so that the bindings are organized in a place we will remember and so that
they can be managed in source control, which is also an important part of changing
management with BizTalk. Other than the settings within the bindings, the names
of the files are also a good key to help keep them different. In this solution, we will
prepend the environment names to our Bindings files.

In Windows Explorer, navigate to the solution directory and open the Bindings
folder. Make two copies of LocalDev_OrderProcessing.BindingInfo.xml in
that same folder naming them UAT_OrderProcessing.BindingInfo.xml and
Production_OrderProcessing.BindingInfo.xml. Then add these files as existing
items to the Build solution folder. If this were a real solution, we would now go and
change the appropriate values, but this is left as an exercise to the user.

Building and deploying the solution
Now that our solution is complete, we have to be able to deploy it to other server
environments in our enterprise such as UAT/Staging and production. The best
practice for deploying BizTalk solutions is MSI installation. MSIs are binary
installation packages used for deploying software in Windows environments.
The MSI approach helps us to be certain that the artifacts we approve in a testing
environment are the ones deployed to a production environment.

Building an MSI manually
We can create an MSI directly from the BizTalk Administration console and we'll
walk through that process right now:

1. Right-click the Order Processing application and select Export | MSI file….
A welcome screen will greet us that explains how this wizard works.

2. Click Next. From here we are shown a list of all the resources within this
application which is displayed in the following screenshot:

Chapter 11

[265]

We can select which resources we want to include in the package here.

3. Click Next.
We can now see which IIS hosts (or virtual directories) will be exported
as well.

4. Click Next.
The next screen shows us dependencies to other BizTalk applications. Since
we don't have any, only BizTalk.System is shown.

5. Click Next.

Here we can set the application name we wish this application to be installed
to and the destination on the filesystem on which to construct the MSI file.

6. Click Export.
The wizard shows us status as it bundles up all the selected resources and
creates an MSI for them.

7. Click Finish.

Completing the Order Processing Solution

[266]

We now have an MSI that we can use to install our package onto other environments.
This is pretty useful, but it's not ideal yet. For one, our bindings are not in this
package and worse still, even if they were, because we did not uncheck the Bindings
checkbox at the bottom of the Select Resources dialog, we wouldn't be able to use
them anyway. If we don't uncheck that box, then the bindings from the current
server get packaged into the MSI and if the next server has any different settings, the
installation will simply fail. Different settings could be as simple as a different send
hander (host) for an adapter. Clearly this is problematic.

We can add our bindings to the BizTalk server as resources using the administration
console. All we have to do is right-click Resources and select Add. This presents
another problem altogether. The bindings will be a snapshot at the time they were
added to the BizTalk application as resources. If we then go and make changes to
them, we would need to re-add them to the application. Obviously, this is a hassle
and something that just won't work for automated building, which if you recall is
something we should all strive towards.

Examining how the MSI is built
Before we automate this entire BizTalk build process, it is worth considering exactly
what is going on. When we walked through the wizard before, we could see that
there were certain boxes we could check (or uncheck) to tell the administration
console how to construct our MSI package. It turns out there is a second
administration tool that is a command-line utility: btstask.exe.

Btstask.exe provides nearly all the same features as the BizTalk Administration
console, but in a command-line form. This links to the past of BizTalk when there
was no administration console, but also exists to help us with exactly these types
of automated tasks we are trying to achieve here.

The steps involved in our build will be:

Updating the bindings in the application
Packaging all resources, except the installed bindings
Exporting an MSI from BizTalk

Automating MSI builds
Considering the steps we need to perform, this turns out to be quite easy. We're
going to use a .bat file to hold a few commands to btstask.exe that will perform
the three preceding tasks. This batch file should be created in the Build directory of
the solution and named BuildMSI.bat. The commands that should be in this file are
listed as follows:

•

•

•

Chapter 11

[267]

btstask addresource /ApplicationName:"Order Processing" /Type:
System.BizTalk:BizTalkBinding /Property:TargetEnvironment="Producti
on" /Source:"bindings\Production_OrderProcessing.BindingInfo.xml" /
Overwrite

btstask addresource /ApplicationName:"Order Processing" /Type:
System.BizTalk:BizTalkBinding /Property:TargetEnvironment="UAT" /
Source:"build\UAT_OrderProcessing.BindingInfo.xml" /Overwrite

btstask exportapp /ApplicationName:"Order Processing" /Package:
OrderProcessing.msi /ResourceSpec:Build/OrderProcessingResourceSpec.
xml

The first two commands will add our Bindings files to the application.
The /overwrite switch will overwrite previous versions of these resources.

The last command will actually perform the export of the MSI. We specify the name
of the MSI to export as well as the ResourceSpec which is an XML file listing the
resources we want to export. This is analogous to the Select Resources dialog we
saw earlier.

We do have a little bit of setup to do before this becomes seamlessly repeatable, but
it only needs to be done once. We need to run the first two commands that add the
resources and then generate the ResourceSpec:

1. Open a Visual Studio command prompt and change directories into your
solution directory.

2. Run the two btstask addresource commands.
3. Change directories into the Build directory.
4. Run the following command:

btstask listapp -ApplicationName:"Order Processing" -ResourceSpec:
OrderProcessingResourceSpec.xml

If we open the OrderProcessingResourceSpec.xml file, we will see the
listing as follows:
<?xml version="1.0" encoding="utf-16"?>
<ResourceSpec xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
ApplicationName="Order Processing" xmlns="http://schemas.
microsoft.com/BizTalk/ApplicationDeployment/ResourceSpec/2004/12">
 <Resources>
 <Resource Type="System.BizTalk:BizTalkAssembly" Luid="PRP.
OrderProcessing.ExternalSchemas, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=0e3c97569ac5667e" />

Completing the Order Processing Solution

[268]

 <Resource Type="System.BizTalk:BizTalkAssembly" Luid="PRP.
OrderProcessing.InternalSchemas, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=0e3c97569ac5667e" />
 <Resource Type="System.BizTalk:BizTalkAssembly" Luid="PRP.
OrderProcessing.Maps, Version=1.0.0.0, Culture=neutral, PublicKeyT
oken=0e3c97569ac5667e" />
 <Resource Type="System.BizTalk:BizTalkAssembly" Luid="PRP.
OrderProcessing.Orchestrations, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=0e3c97569ac5667e" />
 <Resource Type="System.BizTalk:BizTalkAssembly" Luid="PRP.
OrderProcessing.Pipelines, Version=1.0.0.0, Culture=neutral, Publi
cKeyToken=0e3c97569ac5667e" />
 <Resource Type="System.BizTalk:BizTalkBinding"
Luid="Production_OrderProcessing.BindingInfo.xml" />
 <Resource Type="System.BizTalk:BizTalkBinding" Luid="UAT_
OrderProcessing.BindingInfo.xml" />
 <Resource Type="System.BizTalk:BizTalkBinding"
Luid="Application/Order Processing" />
 <Resource Type="System.BizTalk:WebDirectory" Luid="/
CustomerServices" Source="http://localhost/CustomerServices" />
 </Resources>
</ResourceSpec>

The highlighted line is the equivalent of the checkbox we saw before for bindings
that are always applied. We need to remove that line from the file. Above it we can
see the two bindings that we added to the application.

From now on, we can build our MSI with updated resources and bindings by simply
running build\buildmsi.bat from our solution root. This makes it very easy to
do this from TFS, MSBuild, or CruiseControl.NET. The only tasks we would need
for any of these is a Visual Studio deploy task and a command-line task to run
BuildMSI.bat. We could also add in a copy task to move the MSI somewhere from
where it can be installed.

If we added custom assemblies to our application and wanted to deploy them, we
can also add them via BtsTask. We would then want to regenerate our resource spec
or add a line in it for them so that they are bundled into our MSI. We can even add
policies and BAM definitions and profiles this way. For more information on using
BtsTask see: http://msdn.microsoft.com/en-us/library/aa559686(BTS.70).
aspx.

Chapter 11

[269]

Using advanced BAM features
Our solution is now functionally complete and we even have an automated build
and self-contained MSI that is used for deployment. The last missing part is in depth
monitoring. Our current BAM is woefully inadequate for almost all intents and
purposes. It contains no aggregations and only tracks when the solution receives
orders, not when it sends them out. It is also tracking inaccurate price information
because it does not take the discount into consideration. We will now update our
BAM definition and profile to address these issues.

Updating BAM activities
Before we can update a BAM activity, there are a few things that are happening that
we need to be aware of. Since the entire BAM infrastructure is dynamic, we need to
be aware of what our update is going to do. Adding new fields to an activity is not
a problem, but taking them away will be and so may changing aliases. Importantly,
changing views is going to cause problems. You will get an error updating the view.
The solution to this is to delete the views, which are only views anyway, not stored
data. We can then perform a BAM update and the views will be recreated along with
any new fields:

1. Open the OrderProcessing.xlsx file in Excel and click the Add-Ins tab and
then the BAM menu. Select BAM Activity.

2. Click Edit Activity.
3. Create a new item called Discounted Total of type Decimal.
4. Create a new item called Priority Order Sent of type Business Milestone.
5. Create a new item called Standard Order Sent of type Business Milestone.
6. Click OK, then click OK again.

This will launch the View Creation wizard:

1. Click Next.
2. Keep the Create a new view selection and click Next.
3. Name the view Sales View and check the Purchase Orders activity.
4. Click Next.
5. Click Select all items and click Next.

Completing the Order Processing Solution

[270]

Defining groups for BAM milestones
We can group milestones together when only one of a given action is expected
to happen, which is conveniently the case in our solution. An order will either be
priority or not.

1. At the View Items page click New Group.
2. Name the new group (milestone alias) as Order Sent and select Priority

Order Sent and Standard Order Sent from the available milestones, then
click OK.

3. Click New Duration and name the duration Processing Time selecting
Order Received (Purchase Orders) as the start milestone and Order Sent
(Purchase Orders) as the end milestone.

4. Click OK and then click Next.

Creating dimensions
We're now at the Aggregations and Dimensions dialog and we will create both to
improve our visibility and understanding of the solution.

1. Click New Dimension.
2. Name the dimension Date Received and set the Dimension type as Time

Dimension with Display Settings as Year, week, day, hour, minute (the
option at the bottom).

3. Create another dimension and name it Sales Channel and choose Data
Dimension.

4. Select Sales Channel from the Available data items and click Add.
5. The dialog should look similar to the following screenshot:

Chapter 11

[271]

6. Click OK.
7. Create another data dimension named Billing State using the Billing State

as the Available data item.
8. Create a new dimension named Order Size and this time select Numeric

Range Dimension selecting Order Total as the Base data item.
9. Click New Range and name this range Small and set 0 as the From and 250

as the To values.

10. Click OK.

11. Create another range in that same dimension called Medium and use From
and To values of 250 and 1000, respectively.

Completing the Order Processing Solution

[272]

This tool is actually smart enough to know if you're creating
overlapping ranges and it will prevent you from doing so.

12. Create a final range called Large using To and From values of 1000 and
100000000. Your final configuration for the Order Size dimension should
look similar to the following screenshot:

13. Click OK.

Defining measures in BAM views
Measures allow us to see aggregated metrics based upon certain underlying data
within a BAM activity; some are based on numbers in the data and others are based
on the number of individual activities.

1. Back at the Aggregations and Dimensions dialog, click New Measure.
2. Name this measure Order Count and select Count as the Aggregation Type

as shown in the following screenshot.
3. Click OK.
4. Create another measure called Order Sum and use Sum as the Aggregation

Type and Order Total as the Base activity.

Chapter 11

[273]

5. Click Next at the Aggregations and Dimensions dialog.
6. Click Next at the Summary dialog, then click Finish.

It will now become much more clear why Excel was chosen as the tool for creating
BAM definitions as we can see the base of a pivot table in the workbook now.

7. Drag the Date Received dimension from the right to the left-hand side of the
pivot table as shown in the following screenshot:

8. Drag the Sales Channel to the top of the pivot table.
9. Check the Order Count and Order Sum checkboxes in the ∑ Values list.

Your final pivot table should look similar to the following screenshot:

Excel is actually creating fake or stub values for us to see
what our pivot table will actually look like. This is only
sample data at this time.

10. Rename PivotTable1 in the upper left to Sales just to be kind to our users
and avoid embarrassment.

11. Save and close the workbook.
12. Deploy our updated activity with the following command:

 bm update-all -definitionfile:orderprocessing.xlsx

Completing the Order Processing Solution

[274]

The activity and views (there are two now) then update and if we go back into the
BAM portal we can see more than we did before. We now have our new Sales view
and amazingly enough, there are already records in this view, albeit incomplete.

We now need to update our tracking profile to show us the Order Sent as well as
Discounted Total fields. If we open the Tracking Profile Editor, we can click the
Click here to import a BAM Activity Definition link. Select Purchase Orders and be
sure to check the box Retrieve the current tracking settings for this activity at the
bottom of the list of activity. Click OK.

We can now see that there are three new nodes in our activity on the left and we
need to connect them.

1. Drag the PortEndTime Messaging Property onto both Priority Order Sent
and Standard Order Sent.

2. Right-click Priority Order Sent and click Set Port Mappings.
3. Map this to the send port OP_File_Send_Fulfillment_

PrioritySalesOrder.
4. Map Standard Order Sent to OP_File_Send_Fulfillment_SalesOrder.

We're now left with the discounted order total. To track this, we actually need to
use the external schema PRP.OrderProcessing.ExternalSchemas.SalesOrder
rather than our internal schema. This makes sense because we could very well have
done a calculation in our map and this way we can monitor the actual value that was
sent out post mapping. We map this element to both OP_File_Send_Fulfillment_
SalesOrder and OP_File_Send_Fulfillment_PrioritySalesOrder.

Leveraging BAM continuation
We now have a bit of a problem because those send ports are not the same as the
port we used before to bind our profile. If we run the solution now, we will actually
end up with two records in our BAM. One for the receive port and the information
bound to it, and another for the send port and its information. We need to bridge
these two parts of the business process. The way we do that is with a continuation.
A continuation is a part of two elements in a tracking profile that connect with each
other using the same piece of data. It can be something from within the schema, or
something else entirely:

1. Right-click the Purchase Orders folder in the left of the TPE and click New
Continuation.

2. Name this new continuation InterchangeID.

Chapter 11

[275]

3. Right-click Purchase Orders again and this time click New ContinuationID.
Also, name this one InterchangeID.

Critical
It is imperative that the names of Continuation and
ContinuationID are the exact same and that the values
that will link the two are unique during their active
runtime (that is, before the process completes).

4. Drag (associate) the Messaging Property named InterchangeID to both the
continuation and continuationID.

5. Map the Continuation to the port OP_Receive_PurchaseOrders
and map the ContinuationID to both OP_File_Send_Fulfillment_
PrioritySalesOrder and OP_File_Send_Fulfillment_SalesOrder. This
allows the profile to be bound to either of these events, functioning almost
like our group did in the view.

Exploring the improved view
The new Sales view we have created not only shows us more tracking data, it shows
it as it is updated; meaning as the continuation populates more records. This allows
us to have a single tracking view over multiple discreet parts of a process, rather
than using orchestrations to provide a tracking view. Better still, it also creates
aggregations that we can view either from Excel or from the BAM portal directly.
Before we can see these though, we must run the SSIS package that processes them.

Running the SSIS package to process aggregations
Connect to Integration Services on your local machine. Browse to Stored Packages
in MSDB and look for BAM_AN_Sales View. This package was created by BAM
when we deployed our new definition. Right-click this package and select Run
Package. When the dialog appears click Execute. When the package is done click
Close and then click Close again. This package will use the data in the activity tables
to populate the analysis cubes that we defined and used in the pivot table.

This package, which takes no parameters, should be scheduled to run as a SQL job
on a regular basis in your environments. How often to run this is a function of the
volume, time sensitivity, and processing power available to you. Most aggregations
can be defined as real time within the Excel Plug-In when creating them. This allows
users to dynamically run the aggregation without the need for the SSIS package, but
it also places extra strain on the SQL Servers running BAM.

Completing the Order Processing Solution

[276]

Viewing the aggregation results
Go back to the BAM portal and expand Aggregations node under the Sales view
then click Sales (which is what we called our pivot table). Here we get a screen split
into two parts, upper and lower. The upper part is a tabular view of our dimensions
and measures (aggregations). This is called the Pivot Table view. The lower part is a
chart of the same information and is the Chart view. The two parts of the screen stay
in sync and if you expand the time dimension on the left and open the Year, Week,
and Day you will see the pivot table resembles the following screenshot:

The lower chart view will resemble the following screenshot:

The two views stay synchronized with each other and, no matter which you change,
the other reflects the changes. From this window, you can also change dimensions
and measures.

Chapter 11

[277]

Users can also view this data in Excel outside of the BAM portal. When we deployed
the tracking profile, BAM actually created a spreadsheet already connected to the
live data feed. The spreadsheet is named the same as the BAM definition spreadsheet
with _LiveData appended to the filename.

Finally, users can also create BAM alerts based on this aggregated information. If
you want to set an alert for a specific aggregate condition (or composite aggregate
condition) it occurs just as easily as the previous alerts. The user simply right-clicks
the cell they want to create an alert based on (the aggregate) and selects Create Alert.
These alerts can use the aggregation as a threshold and restrict the alert based on
a dimension (normally a time dimension). These alerts can be used for expressing
complex business scenarios like 'notify anytime a particular sales channel has more
than $X in sales in any hour'.

The really cool part is we're getting full analysis services here with charts, alerts,
and interactive Excel access and we didn't have to work with SSAS or MDX directly
at all. We didn't even have to write any code for all of this. This type of capability
is amazingly powerful and is generally an epiphany for executives and business
leaders when they are presented with this level of monitoring capability. It is also at
the forefront of self-service business intelligence that is really gaining momentum.

Summary
This chapter rounded out and completed our order processing application. We
exposed our primary ordering process, examined how bindings hold a solution
together, and even built an automated script for creating deployment packages. We
then improved our monitoring capabilities by updating our activity and creating an
entirely new view. This solution which we have just completed should now serve
as a reference architecture for all BizTalk solutions we have to create in the future.
Every solution will be different, but they should exhibit the same architectural
principles laid down in this solution: organized, loosely coupled, controlled
dependencies, automated testing, high reusability, and ample monitoring.

The next chapter, Asynchronous Solutions, introduces tools and techniques used for
dealing with solutions that cannot rely on centralized timing and control.

Asynchronous Solutions
This chapter breaks out from the previous solution and creates a completely new
solution to address a different aspect of the business, that of inventory management.
As our previous solution processes sales, products are removed from our inventory
and need to be replenished when it is appropriate. We break this into a separate
BizTalk application (and Visual Studio solution) so as to keep the applications
isolated and allow them to evolve separately.

The following topics are discussed in the chapter:

Receiving SQL broker notifications
Using correlations
Composite SQL operations
Processing missed notifications
Using polling instead of notifications

Introducing the inventory management
solution
The operations team wants to be notified when the inventory of any product falls
below a given threshold value. To streamline operations, they want the notification
to send out a quote request to their primary supplier and then send the quote to a
person for approval via an InfoPath form. At the end of the process, regardless of
whether the order is approved and sent, we must update the inventory system to
reflect that the product is on back order or has been discontinued.

•

•

•

•

•

Asynchronous Solutions

[280]

Inventory notification with approval
The database AlphaInventory contains a table Products that we are to monitor
for conditions that require inventory orders. We must do so without creating any
database artifacts or making changes to the database. This means we cannot use the
stored procedure approach that we used earlier.

We need to:

Receive the product notification from the database
Send the quote request to the web service of the supplier (vendor)
Send the quote out for approval
Receive the approval response
Send the inventory order
Update the inventory system

We have to decide how we want to proceed with this and the clearest solution is to
use an orchestration. We will need to call some web services and also wait for an
approval from a person who reviews the order; which is an asynchronous operation
that can take any length of time to complete.

We also have two choices as to how we should receive the inventory notifications
from the AlphaInventory database in the first place. We could use a polling
approach like we did in the previous example, but we also have access to
notifications delivered via SQL Broker. Notifications fire when the results of
the query that specifies the notification change. Unlike polling, SQL Server itself
actively sends out these notifications immediately.

These notifications have some benefits over the polling approach, but also some
drawbacks. The greatest benefit is that events are sent out in real time as they
happen, so we don't need a polling interval or the overhead of repeated polling for
empty data. This can be critical in low latency applications. The drawbacks will
be detailed later in this chapter. We will build this solution using the notification
features of the WCF-SQL adapter.

Creating the notification schema with the
WCF SQL adapter
The first step to using SQL notifications is to create a schema that will deliver the
notifications to us. This is a fairly simple schema, but it will also show us some more
of how to use the WCF-SQL adapter tool:

•
•
•
•
•
•

Chapter 12

[281]

1. Right-click External Schemas and select Add Generated Item | Consume
Adapter Service.

2. Choose slqBinding.
3. Set the connection settings to mssql://localhost/sqlexpress/AlphaInventory?

InboundId=InventoryNotification and click Connect.

The preceding URI is broken down according to the following
pattern: the adapter type—MSSQL, the machine name—
localhost, the SQL instance—SQLExpress, the database name—
AlphaInventory, and an InboundId parameter that we can
use to specify exactly which notification we are receiving.

4. Change the Select contract type drop-down to Service (Inbound
operations).

5. Place your cursor in the Search in category textbox and press the Tab
button on your keyboard; this will populate the list Search in categories and
operations.

6. Double-click Notification to add the operation to the Added categories and
operations list.

7. Type AlphaInventory_ into the Filename Prefix textbox and click OK.

A schema named AlphaInventory_Notification.xsd was created in our external
schemas project and if we examine it, or better still right-click it and select Generate
Instance, we can see the XML will look similar to the following:

<ns0:Notification xmlns:ns0="http://schemas.microsoft.com/Sql/2008/05/
Notification/">
 <ns0:Info>Update</ns0:Info>
 <ns0:Source>Data</ns0:Source>
 <ns0:Type>Change</ns0:Type>
</ns0:Notification>

Unfortunately, this schema does not give a lot of information. We can see that it
was an update that caused this, rather than an insert, and that the source was a data
change event. The other type of event we can receive is a startup event, which we
will discuss shortly.

All this really does is tells us that something has "changed"; we now have to decide
what to do after a "change". We could make an orchestration to receive these
notifications, but that will fairly quickly couple us to the notification concept. We
may want to be able to change to polling that will use a direct subscription to
retrieve the product details as well as to instantiate our new orchestration.

Asynchronous Solutions

[282]

Using SQL table operations
As we can see from the XML example before, we cannot see what record was
actually changed. We will have to perform a separate operation to actually retrieve
the product record itself. We will again use the WCF-SQL adapter and this time we
will perform a select operation to retrieve this data. But we'll also use this adapter to
perform other operations, so now we must generate another set of schemas using the
wizard again:

1. Right-click External Schemas and click Add | Generated Items.
2. Select Consume Adapter Service and click OK.
3. Use the URI: mssql://localhost/sqlexpress/AlphaInventory?.
4. Click Connect.
5. Use the default Client (Outbound operations) and expand Tables and

[dbo].[Products] and add Select and Update.
6. Once selected click the Add button.
7. Again use the prefix AlphaInventory_.
8. Click OK.

The preceding operations will let us perform the database operations that are
required for the rest of our solution. We can see three schemas and a binding file
were added to our project; the schemas are as follows:

AlphaInventory_Table.dbo.xsd

AlphaInventory_TableOperation.dbo.Products.xsd

AlphaInventory_TableOperation.dbo.Vendors.xsd

We will now need to connect our notification to our select operation from the
database. Despite the fact that we know we should not create maps that map from
external schema to external schema, we will now violate this guideline for the sake
of brevity. This is also because what we ultimately want to do is combine these two
WCF-SQL operations in a chain to retrieve the record we are actually interested in.
The process for this is as follows:

1. Create a new map Ext_AlphaInventory_Notification_To_AlphaInventory_
ProductsSelect.btm.

2. Select PRP.InventoryManagement.ExternalSchemas.AlphaInventory_
Notification as the source schema.

3. Select PRP.InventoryManagement.ExternalSchemas. AlphaInventory_
TableOperation.dbo.Products as the destination schema and choose Select
as the root element.

•

•

•

Chapter 12

[283]

4. Drag two String Concatenate Functoids onto the canvas.
5. Use * as the constant value for one Functoid and connect it to the Select\

Columns element in the destination.
6. Use WHERE Stock = 'Low' and OrderStatus = 'Filled' as the constant value

input for the other and connect it to the Select\Query element.

Finally, we want to transform this product message into an inventory notification
format we can build our solution with. The InternalSchemas project contains a
schema InventoryNotification.xsd that will model what we want to accomplish
in this application.

Create a map Ext_AlphaProduct_To_InventoryNotification.btm that maps
SelectResponse to InventoryNotification. If you drag from Products on
the left to Products on the right and select Link by Name many of the fields will
map automatically.

Map LastOrderDate to Product/PreviousOrder/Date, LastUnitCost to Product/
PreviousOrder/UnitCost, and LastVendorNumber to Product/PreviousOrder/
Vendor.

The final field IsValidProduct is going to be used internally by our application to
help us distinguish between data change and startup events. To make this work,
we need to implement the map equivalent of if/then/else logic which we will
do now:

1. Drag a Logical Existence [?] functoid onto the canvas.
2. Drag a Logical Not [!] functoid to the lower-right of the logical existence.
3. Drag two Value Mapping functoids onto the canvas to the right of the

previous two functoids (one above the other).
4. Connect the output of the [?] functoid to the logical not [!] and also to one of

the value mapping functoids; for this value mapping, use type in the value
true for the second parameter as shown in the following screenshot:

5. Connect the output of the logical not [!] to the input of the other value
mapping functoid and use the hardcoded value false for the second
parameter of this functoid.

Asynchronous Solutions

[284]

6. Connect the output of both the value mapping functoids to the
IsValidProduct element on the right side (destination) schema. Your
completed functoids should look similar to the following screenshot:

This arrangement will allow us to use IsValidProduct as a distinguished property,
which we will do shortly.

Consuming the vendor order service
For the sake of brevity, the schemas necessary to consume the vendor order service
have already been added to the external schemas project. The service itself is located
at: http://localhost/ItalianMotorImports/ItalianMotorOrderService.
svc?wsdl.

For more details about how to consume WCF services see
Chapter 7, Leveraging Orchestration.

Creating the orchestration
We are now ready to begin processing of our notification messages and,
as we have already discussed, we will be using an orchestration to do so.
This orchestration is fairly simple and will start when it receives our canonical
InventoryNotification message.

Right-click the orchestration project and select Add | New item. Select
Orchestration and use the name ProductInventory.odx.

Creating messages
Before we get too far into our orchestration design, we'll create the three messages
that we know we need to execute this process:

1. Right-click the Multi-part Message Types folder and click New Multi-part
Message Type.

Chapter 12

[285]

2. Name the type InventoryNotificationType, rename the MessagePart_1
to Body and select PRP.InventoryManagement.InternalSchemas.
InventoryNotification from Schemas as the body type.

3. Add a second message type called ProductQuoteType; again rename
the MessagePart_1 to Body and this time use the schema PRP.
InventoryManagement.InternalSchemas.ProductQuote as the body type.

4. Add a third message VoidResponseType and this time for the body select
.NET Classes and <Select from referenced assembly…>. When the browse
dialog appears browse to the type System.Xml.XmlDocument.

5. Recall that in Chapter 3, BizTalk Development Guidelines, we covered how bad
an idea it is to use XmlDocument, even in this simple limited fashion. If we
were to put this code into production it would be much better to simply
create a void, or empty, type schema. This is left as an exercise for the reader.

Finally create three messages that correspond to the three types we just created:
InventoryNotification, ProductQuote, and VoidResponse.

Laying out the shapes
With our messages created we are ready to layout the shapes that will exist in this
orchestration. Recall that we will receive completed inventory notification message
(corresponding to the products table) not the un-typed SQL notification:

1. Drag a receive shape on the canvas named Rcv_InventoryNotification.
2. Assign InventoryNotification as the message for this receive shape, then

set the Activate property to True and click the ellipsis (…) next to the Filter
property. Then use BTS.LastInterchangeMessage as the Property and the
value true as shown in the following screenshot:

Asynchronous Solutions

[286]

3. Click OK to close the dialog.

BTS.LastInterchange is a property that describes if a
message is the last in a related group of messages. With a batch
of messages it is the last in a batch, with a two-way adapter call
it is the second message.

Just like we used filters in send ports before, we can also use them in orchestrations.
This allows us to activate (start) our orchestration when any arbitrary conditions of a
message are met. This also allows us to receive messages from many ports or even to
daisy chain multiple orchestrations together in a very loosely coupled manner.

Filters in Orchestrations
Creating filters is subtly different inside of orchestration. This is
largely because orchestration is a strongly typed environment, unlike
the BizTalk Administration console. Notice that the value true used
above does not have quotes around it. This is because the BTS.
LastInterchangeMessage property is a Boolean property. If we
chose a different property that is a string, such as BTS.Operation,
we would need to enclose the value in quotes. Not doing so will cause
compilation errors that aren't always the easiest to figure out. You can see
a visual cue to this by the Filter Expression Created part of the dialog.

One important note about this filter is that it will be triggered by any
message with the message type that matches the underlying message type of
InventoryNotification and has the BTS.LastInterchangeMessage property set
to true. If we did not use this filter our very first send shape would also match the
subscription and we would have a new instance of our orchestration spawned in a
perpetual chain. It happened to me when writing this chapter. You must be careful
to avoid these types of conditions:

1. Drag a decide shape onto the canvas and name it Is Valid Product
Order. Rename Rule_1 as Yes and set the Expression to be
InventoryNotification.Body.IsValidProduct == true.

2. Drag a send shape named Snd_QuoteRequest onto the canvas in the Yes
branch of the decide.

3. Drag a receive shape named Rcv_Quote below the send shape.
4. Drag another send shape below Rcv_Quote and name it

Snd_ApprovalRequest.
5. Drag a receive shape below Snd_ApprovalRequest and name it

Rcv_Approval0.

Chapter 12

[287]

6. Drag another decide shape below Rcv_Approval; name it Approved and
rename Rule_1 as Yes and set expression to ProductQuote.Body.Approved
== true.

7. Drag a send shape into this new Yes branch and name it Snd_Order.
8. Drag a receive shape below Snd_Order and name it Rcv_OrderResponse.
9. Drag a final send shape Snd_OrderComplete after the Approved decide

shape, but still inside the Yes branch of the Is Valid Product Order.

Your completed orchestration outline should resemble the following screenshot:

Asynchronous Solutions

[288]

Creating the logical ports
With our message types and schema layout complete, we can create the ports
necessary for this solution. The following tables list each port that needs to be
created and the properties for each of them.

Property Value
Name InventoryNotificationPort
Type InventoryNotificationPortType
Communication Pattern One-Way
Port Direction I'll always be receiving messages on this port
Binding Direct (routing between ports will be defined by

filter expressions on incoming)
Operation IM_Receive_InventoryNotification
Message Type InventoryNotificationType

Wire this receive port to the shape Rcv_InventoryNotification and assign the
message InventoryNotification to the shape.

Property Value
Name ProductQuotePort
Type ProductQuotePortType
Communication Pattern Request-Response
Port Direction I'll be sending a request and receiving a response
Binding Specify Later
Operation IM_Send_ProductQuote
Message Type InventoryNotificationType (Request)

ProductQuoteType (Response)

Wire up the port to Snd_QuoteRequest using message InventoryNotification and
Rcv_Quote using the ProductQuote message.

We now need to create two ports that will handle the sending and receiving on the
notification. Since this is an asynchronous event and we very well may send and
receive these messages with separate transports, we will be using two one-way
ports for send and receive. This first port is to send out the approval request.

Chapter 12

[289]

Property Value
Name QuoteApprovalRequestPort
Type QuoteApprovalRequestPortType
Communication Pattern One-Way
Port Direction I'll always be sending messages on this port
Binding Specify Later
Operation IM_Send_QuoteApprovalRequest
Message ProductQuoteType

Connect the send shape Snd_ApprovalRequest to the operation IM_Send_
QuoteApprovalRequest on this port and assign the message ProductQuote
to the send shape.

This second port is to receive the approval responses.

Property Value
Name QuoteApprovalResponsePort
Type QuoteApprovalResponsePortType
Communication Pattern One-Way
Port Direction I'll always be receiving messages on this port
Binding Specify Later
Operation IM_Receive_QuoteApprovalResponse
Message ProductQuoteType

Connect the send shape Rcv_Approval to the operation IM_Receive_
QuoteApprovalResponse of this new port and assign the message ProductQuote
as the message for the shape.

Messages are immutable
Remember that we are completely overwriting the ProductQuote
message. Since messages are immutable we are actually creating a
completely new message that will not have any of the context properties
of the originally received message. Often it is better to create a new
location to hold a new message if you need some of the context of the
original message later on.

Asynchronous Solutions

[290]

We also need a way to send out the web service request to place our order, but we
don't have to (and should not) create a new port for this, as we can simply reuse the
existing port ProductQuotePort.

Right-click this port and click New Operation as shown in the following screenshot:

Name the new operation IM_Send_ProductOrder and assign PRP.
InventoryManagement.Orchestrations.ProductQuoteType as the request message
type and PRP.InventoryManagement.Orchestrations.VoidResponse as the response
message type. Connect Snd_Order to the request using the message ProductQuote
and Rcv_OrderResponse to the response using the message VoidResponse.

We need one final port and that is to send out the completed product quote and
update the AlphaInventory database accordingly. Like the first port we created,
we will be using direct binding to send messages directly to the message box.

Property Value
Name ProductOrderCompletePort
Type ProductOrderPortCompleteType
Communication Pattern One-Way
Port Direction I'll always be receiving messages on this port
Binding Direct
Operation IM_Send_ProductOrder
Message ProductQuoteType

If we build the solution, we will see the following error and may then wonder
exactly what has gone wrong:

you must specify at least one already-initialized correlation set for
a non-activation receive that is on a non-selfcorrelating port

Chapter 12

[291]

If we double-click this error, the shape Rcv_Approval is highlighted in the
orchestration canvas. Once we know what this error means it does make perfect
sense. Recall how we have always had to set the first receive shape in our
orchestrations to have the Activate property set to True. This is so that BizTalk
knows to create a subscription that will activate the orchestration. The orchestration
compiler is warning us right now that it does not have a way to connect Rcv_
Approval to the shapes before it. We need to find a way to correlate an approval
message to the specific orchestration instances that sent it out. The mechanism we
use to do this is called a correlation.

Creating the correlation
So far we have only seen orchestrations use request-response ports to perform
two-way communications. We already know that internally BizTalk uses instance
subscriptions to make this work and it is in fact asynchronous behind the scenes,
but we can actually do this ourselves explicitly with a correlation and we will do
that now.

The Id element of the ProductInventoryQuote schema has already been promoted
for us into the QuoteId, which was done exactly as we did before via the wizard.
Now we will use this property for correlation:

1. Right-click the Correlation Types in the orchestration view and select New
Correlation Type.

2. Name this correlation type QuoteIdCorrelationType.
3. Right-click Correlation Sets in the orchestration section (upper part) of the

orchestration view and click New Correlation Set.
4. Name this correlation QuoteIdCorrelation and select the type

QuoteIdCorrelationType as the Correlation Type.
5. On the send shape Snd_QuoteApprovalRequest set the property Initializing

Correlation Set by selecting QuoteIdCorrelation from the drop-down.
6. On the shape Rcv_QuoteApprovalResponse set the property Following

Correlation Set by selecting QuoteIdCorrelation from the drop-down.
7. Build the solution, which should now succeed.

Updating the inventory
We are nearing the end of our solution, but we do have one final challenge to
address. We must update the products table that launched our notification, as well
as conditionally updating the vendors table if the order was approved and placed.

Asynchronous Solutions

[292]

We could perform these in separate send operations from our orchestration, but this
could result in inconsistent states in our database if the first operation succeeds and
the second one does not. We could handle these with compensating actions or other
approaches, but it is far easier to simply use the transactional nature of the WCF-
SQL adapter itself to accomplish these goals for us. We are going to do this with a
composite operation on the WCF-SQL adapter, which allows us to group any set of
operations together in a single operation.

Critically composite operations do not support
table-based select operations.

Creating a composite operation schema
In order to execute a composite operation, we need to create a composite schema
that will both update the product record to reflect the order status (In Progress or
Discontinued) as well as to update the last order date of the vendor if the order
was approved. Recall that when we ran the WCF-SQL wizard we generated update
operations for both the products and vendors tables, so all we have to do now is
make a schema that includes both of these operations:

1. Add a new item to external schemas named Alpha_CompositeOperation.
xsd.

2. Click the schema root and in the properties window click the ellipsis (...) in
the Imports property.

3. In the Imports dialog click Add.
4. Add the schema PRP.InventoryManagement. ExternalSchemas.

AlphaInventory_TableOperation.dbo.Products.
5. Rename the Root node as CompositeRequest.
6. Add a child node to CompositeRequest.
7. Click this new node and change the Data Structure Type to ns0:Update

(Reference). Notice how the node was renamed for us.
8. Add another child node to CompositeRequest and change the Data

Structure Type of this new node to ns1:Update (Reference). We can see how
the node now reflects the fields of the vendors update.

9. Create a new root node called CompositeRequestResponse.

Chapter 12

[293]

We can name the request and response nodes whatever
we like, especially in this case because we won't actually
use the response schema, but the name of the response
root node must be the same as the request with the word
Response appended.

10. Add a child record to CompositeRequestResponse and change its Data
Structure Type to ns0:UpdateResponse.

11. Add a second child record to CompositeRequestResponse and change its
Data Structure Type to ns1:UpdateResponse.

We now have the vehicle that will perform the two operations against the
WCF-SQL adapter that we require in one single DTC transaction. We could add
as many operations as we want to this composite schema and perform complex
database operations. The order in which the nodes appear in the XML dictates the
order that they execute against the database as well.

Creating the composite operation map
The last task we have to address is to create a map that will use this new composite
schema to actually perform the updates in the AlphaInventory database:

1. Right-click the Maps project and click Add | New Item and select a map
using the name Int_ProductQuote_To_AlphaCompositeOperation.btm.

2. Select PRP.InventoryManagement.InternalSchemas.ProductQuote as the
source schema and PRP.InventoryManagement.ExternalSchemas.Alpha_
CompositeOperation as the destination schema.

3. Expand all the XML tree nodes so that you can see the complete source and
destination formats.
We can see that each update on the right has an Update/Rows/RowPair
node with After and Before children. Before functions like a where clause
and After like the set clauses in a query against a table.

4. Click the map grid to get to the map properties and change Ignore
Namespaces for Links to False.

5. Connect ProductInventoryQuote/Product/CatalogNumber to
CompositeRequest/ns0:Update/ns0:Rows/ns0:RowPair/ns0:Before/
CatalogNumber.

Asynchronous Solutions

[294]

The previous step will allow us to map to destinations with the same
name, but different namespaces, which is what we have in this case. This
last step will effectively produce a where clause using the catalog number
column of the products table.

6. Drag a Logical Equal functiod [=] onto the upper part of the canvas.
7. Connect ProductInventoryQuote/Approved to the equal functoid and enter

true as the hardcoded second parameter.
8. Drag a Logical NOT functoid onto the canvas to the upper right of the equal

and connect the output of [=] to the input of the [!].
9. Drag a Value Mapping functoid [->] to the right of the logical not [!] and

connect the [!] to [->] then set the second parameter of the value mapping to
Discontinued.

10. Drag another Value Mapping functoid [->] to the right of the logical equal
[=] and connect the output of [=] to this new value mapping and set the
second parameter of the value mapping to the value In Progress.

11. Connect both of the value mapping functoids to the output element
CompositeRequest/ns0:Update/ns0:Rows/ns0:RowPair/ns0:Before/
OrderStatus.
Your map should resemble the following screenshot:

The rest of the fields we want to map are conditional based upon the
result of the approval, which we already have a logical equal to determine
and drive our mapping.

12. Drag another Value Mapping functoid onto the canvas below the previous
functoids and connect [=] to the input of it.

13. Drag the Product\UnitCost node from the left to this new value mapping
(it will be the second argument).

14. Connect this new value mapping to the LastUnitCost element in the
After node.

Chapter 12

[295]

The order of inputs to the Value Mapping functoid is
significant. The first value should either be true or false
(or a logical functoid) and will determine if the second
parameter is mapped or not. In the preceding arrangement,
the LastUnitCost is only updated if the order was approved
(meaning it was placed).

15. Drag a Date functoid onto the canvas below this latest value mapping.
16. Drag another Value Mapping functoid to the right of the Date functoid and

connect [=] to this new value mapping as the first parameter and the Date as
the second.

17. Connect this latest Value Mapping functoid to the LastOrderDate of the
After record in the destination then connect this same value mapping to
the ns1:Update\ns1:Rows\ns1:RowPair\ns1:After\LastOrderDate
(of the vendors table, which only has three nodes in the After element.

18. Drag a final Value Mapping functoid onto the canvas below the
Date functoid.

19. Connect the output of [=] to this last Value Mapping functoid as the first
parameter and the Vendor\Name element from the source schema as
the second.

20. Connect the output of this final Value Mapping functoid to ns0:After\
LastVendorNumber ns1:After\VendorNumber and ns1:Before\
VendorNumber.

The final map should resemble the following screenshot:

Asynchronous Solutions

[296]

Creating the other maps
We have created three maps thus far, but we have a few more to go. Fortunately,
these are fairly straightforward and some are extremely simple. Create a
map Int_ProductInventoryNotification_To_QuoteRequest.btm with PRP.
InventoryManagement.InternalSchemas.InventoryNotification as the source and
PRP.InventoryManagement.ExternalSchemas.ItalianMotorOrderService_tempuri_
org as the destination schemas.

Map only CatalogNumber and ReorderLotSize from InventoryNotification\
Product to ItemNumber and Quantity of GetQuote\requestForQuote\Products\
Product\ respectively.

Create the map Ext_Quote_To_ProductQuote.btm using PRP.
InventoryManagement.ExternalSchemas.ItalianMotorOrderService_tempuri_org
as the source and PRP.InventoryManagement.InternalSchemas.ProductQuote as
the destination schemas. Every element in the source has a name matched element
in the destination schema with the following exceptions that should be matched:
Number to Id, ValidUnit to ValidThru, and Approved (destination) which should
be mapped with the constant value false in a String Concatenate functoid.

We also need two more maps, Int_ProductQuote_To_ProductQuote.btm and
Ext_ProductQuote_To_ProductQuote.btm which are one-to-one direct maps where
every field maps exactly by name or structure.

The final map, Int_ProductQuote_To_PlaceOrderRequest.btm, maps directly just
like Ext_Quote_To_ProductQuote.btm.

Our solution is now complete and should be built and deployed.

Binding the solution
Now that the solution is deployed, it is time to bind it all together. We have several
binding files that were generated for us by the consume adapter service wizard. We
can use these and then customize the ports to fit our specific needs. For several other
ports we will have to create them manually. The rest of this will be performed in the
BizTalk Administration console.

Chapter 12

[297]

Importing the notification bindings
We can now import the bindings that were created by the consume adapter service
wizard for our notification:

1. Right-click the InventoryManagement application and click Import |
Bindings and browse to WcfReceivePort_SqlAdapterBinding_Custom.
bindinginfo.xml.

2. Rename the new port as IM_Receive_InventoryNotification.
3. Rename the location as IM_WCFSQL_Receive_InventoryNotification.
4. Click the Configure button for the transport.
5. On the Bindings tab change inboundOperationType to Notification.
6. Set the notification statement to select CatalogNumber,

SupplierItemNumber, QuantityInStock, from dbo.Products where Stock =
'Low' and OrderStatus = 'Filled'.

The database schema, dbo in this case, is required and the
columns must be explicitly listed because wildcards are not
allowed in SQL notifications.

We can now enable this receive location and we will begin receiving messages as
soon as changes occur to the underlying source table.

Service Broker must be enabled on the database from which you intend
to receive notifications. This can be enabled in the database options,
which can be accessed by right-clicking the database in Management
Studio, clicking Properties and navigating to the Options section.

Importing the WCF-SQL send bindings
We will now create the send port that will perform the select statement that retrieves
the product details for us:

1. Right-click the InventoryManagement application and click Import |
Bindings and browse to WcfSendPort_SqlAdapterBinding_Custom.
bindinginfo.xml.

2. Rename this send port as IM_WcfSql_Send_AlphaProductSelect.
3. Click the Configure button and set the Action to TableOp/Select/dbo/

Products and click OK.

Asynchronous Solutions

[298]

4. Set the outbound map to Ext_AlphaInventoryNotification_To_
AlphaProductSelect.

5. Set the inbound map to Ext_AlphaProduct_To_InventoryNotification.
6. Set the Filter to BTS.ReceivePortName == IM_SQL_Receive_

InventoryNotification.
7. Click OK.

This third step is used to hardcode the WCF Action of the port. Because we are not
using an orchestration and didn't promote a special property like we did previously,
we need a way to tell the adapter which action to perform.

Manually creating a WCF-SQL send port
We need another WCF-SQL send port to provide our final update:

1. Right-click Send Ports and select Static One-way Send Port.
2. Name the port IM_WcfSql_Send_AlphaProductVendorUpdate and select

WCF-SQL as the Type then click Configure.
3. Set the Address (URI) to mssql://localhost/sqlexpress/AlphaInventory? and

the Action to CompositeOperation and click OK.

CompositeOperation is a special operation that tells
the adapter to look one node lower in the message for the
actual operations to perform. The WCF SQL Adapter uses
name matching to perform this. We must use the value
CompositeOperation to make this work.

4. Set the outbound map to Int_ProductQuote_To_AlphaCompositeOperation.
5. Set the Filter to BTS.Operation == IM_Send_ProductOrderComplete.
6. Click OK.

This port was fairly easy to configure and you can see that not all of these parameters
are as complicated as they at first appear.

Creating the approval physical ports
Finally we need to create the two ports that will send and receive the approvals for
the solution. For simplicity we will use the file adapter for both ports. In reality,
SMTP and WCF would be much better options, but incorporating them is left as
an exercise for the reader.

Chapter 12

[299]

Property Value
Name IM_File_Send_ApprovalRequest
Type Static One-way Send Port
Address (Destination Folder) C:\BizTalk\PRP\ApprovalRequest
Filename %MessageID%.xml
Map Int_ProductQuote_To_ProductQuote

This second port receives the actual approval response.

Property Value
Port Name IM_Receive_ApprovalResponse
Location Name IM_File_Receive_ApprovalResponse
Type Static One-way Receive
Address C:\BizTalk\PRP\ApprovalResponse
Mask *.xml
Map Ext_ProductQuote_To_ProductQuote

Manually creating a web service send port
Our final port to create is a WCF send port to call the vendor order service and we
could simply import the bindings that the wizard created for us, but in an effort to
better understand these bindings, we will create this port manually:

1. Right-click Sent Ports and select New Static Solicit-Response Port. Name it
IM_Wcf_SendPort_ItalianMotorOrderService.

2. Select WCF-BasicHttp as the Type.
3. Set the Receive pipeline to XMLReceive.
4. Click Configure and set the Address (URI) to http://localhost/

ItalianMotorImports/ItalianMotorOrderService.svc.
5. Set the Action to include the following action mapping which translates BTS.

Operation (that is, logical send port name from an orchestration) into a
WCF Action.
<BtsActionMapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Operation Name="IM_Send_ProductQuote" Action="http://tempuri.
org/ItalianMotorOrderService/GetQuote" />
 <Operation Name="IM_Send_ProductOrder" Action="http://tempuri.
org/ItalianMotorOrderService/PlaceOrder" />
</BtsActionMapping>

Asynchronous Solutions

[300]

6. Click OK.
7. Set the inbound map to Ext_Quote_To_ProductQuote and set the outbound

maps to contain Int_ProductInventoryNotification_To_QuoteRequest and
Int_ProductQuote_To_ProductOrder.

8. Click OK.

Binding the orchestration
We now have all of our ports complete and we are ready to bind the orchestration
itself. Click the Orchestrations folder in the administration console then right-click
the orchestration and select Properties. Set the Host to BizTalkServerApplication
and set IM_Receive_QuoteApproval as the Inbound Logical Port for
QuoteApprovalResponsePort. Set IM_File_Send_ApprovalRequest as the
Outbound Logical Port for QuoteApprovalRequestPort and IM_Wcf_SendPort_
ItalianMotorOrderService for ProductQuotePort.

We should now be able to start the application and begin to test our solution. We can
do this by running the following query against the AlphaInventory database.

update products set orderstatus = 'Filled'

This will cause an XML file to be created in C:\BizTalk\PRP\ApprovalRequest
which we can view or edit, should we choose to. To reject this order, all we would
have to do is move the file to C:\BizTalk\PRP\ApprovalResponse and the process
would end, updating the product as Discontinued.

If we change the Approved attribute to true then we will see that the order is routed
to the web service to place the order and the product's order status is updated to
In Progress. The product and vendor have their last order date updated to the
current date.

Exploring other approaches
Our solution is not perfect as it sits and for all the advantages that SQL notifications
can give us, they have several specific drawbacks. One of the largest drawback is
that we will never receive notifications for which the location was disabled. This is a
problem because we could potentially miss these important notifications. There are
two ways we can approach this problem and one is provided by the adapter itself.

Chapter 12

[301]

Querying for missed notifications
Recall that when we created the notification schema we briefly mentioned the startup
event that can be sent by the adapter. This event is intended to inform us that a
location has just started and we're ready to receive events on it. The implication is
that because the location started there could be records that have changed into a
state that would have fired the event had we been listening for it (that is to say the
location had been enabled).

We can use this to create a different orchestration or process that will specifically
handle these missed records. Fortunately for us, due to clever crafting, our
solution will already handle these scenarios. All we have to do is ensure that the
notifyOnListenerStart property of the WCF-SQL binding is set to True.

Using the polling method
The polling method is similar to the classic SQL adapter approach of Chapter 8, The
WCF-SQL Adapter and WCF Services. Our solution is conveniently compatible with
changing between the polling approach and notification. This is because we handle
the product query outside of the orchestration. The new WCF-SQL adapter actually
gives us much greater flexibility in polling and does not require the use for FOR
XML in SQL Server.

To use the polling method run the Consume Adapter Service wizard again and
follow these steps:

1. Select sqlBinding as the binding.
2. Enter mssql://localhost/sqlexpress/AlphaInventory?InboundId=Inventory

Notification as the URI.
3. Click Configure.
4. Go to the Binding Properties tab.
5. Change the InboundOperationType to TypedPolling.
6. Under the Polling section of the bindings set the

PolledDataAvailableStatement to SELECT COUNT(*) FROM Products
WHERE Stock = 'Low' AND OrderStatus = 'Filled'.

7. Set the PollingStatement to SELECT * FROM Products WHERE Stock =
'Low' AND OrderStatus = 'Filled'; UPDATE Products SET OrderStatus =
'In Progress' WHERE Stock = 'Low' AND OrderStatus = 'Filled'.

8. Click OK.
9. Click the Connect button on the left side of the screen.
10. Change the contract type to Service (Inbound operations).

Asynchronous Solutions

[302]

11. Mouse into Category and hit the Tab key.
12. Select Typed Polling and Add (or double click) to add this operation.
13. Use the Filename prefix of AlphaInventory_.
14. Click OK.

A single schema, AlphaInventory_TypedPolling.InventoryNotification.xsd,
is created that contains a root element TypedPolling and a namespace of http://
schemas.microsoft.com/Sql/2008/05/TypedPolling/InventoryNotification.
The last part of this name corresponds to the InboundId we specified in the URI and
allows us to have many polling operations against a single database without having
name collisions.

If we create a map from Ext_InventoryNotification_To_
InventoryNotification.btm, we can transform this typed polling result directly
into an inventory notification. All we have to do after deploying the solution is add
the map to the receive port IM_Receive_InventoryNotification and change
the following properties in IM_WCFSQL_Receive_InventoryNotification to
match the properties we used in the preceding steps for InboundOperationType,
PolledDataAvailableStatement, and PollingStatement.

Polling settings
The following settings affect how polling works in the WCF-SQL adapter:

PolledDataAvailableStatement: This is the statement that runs on the
polling interval and is expected to return a single column and a single row
that is designed to return the number of rows available.
PollingIntervalInSeconds: This setting controls how often the adapter will
poll against the target database. The smallest valid amount is 1.
PollingStatement: This is the statement that executes when the
PolledDataAvailableStatement returns a result. This statement can
be a stored procedure or can contain multiple statements separated by a
semicolon (as in our example). In this way, we can achieve the locking and
updating that we used previously.
PollWhileDataFound: This parameter controls whether the adapter should
continue running more queries even if it is still returning results from a
previous query. If we have a very low interval and large amounts of data
this would result in concurrent reads from the target database.
UseAmbientTransaction: This parameter instructs the adapter to reuse the
DTC transaction so that it will send the results to the message box.

•

•

•

•

•

Chapter 12

[303]

A critical issue to remember is that concurrent reads will occur if you have two
BizTalk servers in the group each running a host instance that hosts a SQL polling
receive location. It is important to either make your reads transactional, so that they
do not interfere with each other, or to cluster a specific host, so that only one server
runs the location at a given time.

Summary
In this chapter, we learned how to create asynchronous solutions leveraging SQL
Broker notifications, polling, continuation, and briefly explored InfoPath and
SharePoint options for enriching our processing.

We saw how to explicitly create a correlation exactly like the BizTalk infrastructure
does under the covers for every two-way port. We will continue building upon this
solution in the next chapters.

Performing Parallel
Processing and Branching

This chapter will explore the options we have when dealing with parallel and
decision scenarios in BizTalk solutions. Several different approaches to common
problems are introduced and compared as we continue to expand and refine our
inventory management solution.

The following topics are covered in this chapter:

Broker pattern
Role-based links
Parallel actions shape
Self-correlating shapes
Scatter gather pattern

Revising solution requirements
All successful software changes; this is a fact of life. Most software that doesn't
change is actually a failure because it is so difficult or painful to change that people
simply choose to leave it alone and often to write a replacement.

Our solution has been quite successful and we have been asked to make several
changes. The first is to send quotes out to different vendors based upon the vendor
number in the products table. The first part of this chapter explores different
approaches to addressing such a request.

•

•

•

•

•

Performing Parallel Processing and Branching

[306]

Implementing the broker pattern
This is a fairly common request in integrated solutions and very common in B2B
and healthcare scenarios. We need to send the quote request to the specific vendor
that supplies that particular product. Our current vendors are Italian Motor Imports,
which we're already integrated with, and Japan Racing Accessories. Their vendor
numbers in our database are IMI01 and JRA01. They currently both run the same
B2B platform so for now, they use the same service, but it runs at different endpoints
and the service may change for one vendor in the future. This type of pattern is often
called a broker because it decides where messages will ultimately be sent.

Using the decide shape
The most obvious solution to this problem is to use the decide shape that we
have already used to make decisions. Before we start, make a copy of your
ProductInventory.odx file. We're going to need this backup soon.

1. Drag a decide shape onto the canvas at the top of the Yes branch of the
Is Valid Product Order shape. Name this shape Vendor and rename
Rule_1 to IMI01.

2. Set the Expression for the IMI01 branch to: InventoryNotification.
Body.Product.PreviousOrder.Vendor == "IMI01".

3. Move Snd_QuoteRequest and Rcv_Quote to be inside the IMI01
branch. Right-click the Vendor shape and click New Rule Branch and
name this branch JRA01. Set the Expression for the JRA01 branch to:
InventoryNotification.Body.Product.PreviousOrder.Vendor ==
"JRA01".

4. Right-click Snd_QuoteRequest and click Copy then right-click in the JRA01
branch and click Paste. Do the same thing for Rcv_Quote.

We cannot set an expression for the Else branch so we will drag a Terminate
shape into this branch and name it Invalid Vendor Terminate and set the Error
Message property to The selected vendor is invalid;.

1. Drag a port onto the port canvas and in the wizard name this port
ProductQuotePortJRA and click Next.

2. Change the radio button to Use an existing Port Type and click Next
again. Be sure to change the port direction to sending. Click Next and
then click Finish.

Chapter 13

[307]

You will see that the port is created for us and that the operations already exist in
it. This is nice in that we can reuse the types and can avoid some work. In order
to complete this solution, we will have to repeat this same decision on the actual
order placement.

This will involve dragging a new decision shape onto the canvas in the Yes branch
of the Approved decision shape, setting the expression like we did previously and
then moving the Snd_Order and Rcv_OrderResponse into this branch. We will then
again have to copy Snd_Order and Rcv_OrderResponse into the new JRA01 branch
and connect them to the appropriate operation of the ProductQuotePortJRA port.

The orchestration will end up looking like the following figure:

Once we deploy the solution, we will have to bind the orchestration to a new
physical port that points to the JRA order service. Since the two companies
currently use the same B2B platform we can use the same maps.

Assessing this approach
As you can imagine this is not an ideal approach. If we only have two vendors and
will never have more or need to change vendors this is not a terrible approach and
the orchestration will certainly accomplish this task, but as we add vendors we have
to change our solution at the most internal component; the orchestration. This is a
major impediment to business operations that most companies have simply come to
accept as inevitable.

We could explore other options like dynamic send ports, but there is a lot of value
in the control and visibility that administrators get from the static port approach we
have used up to this point. Most administrators really like that part of BizTalk.

Performing Parallel Processing and Branching

[308]

Creating a more extensible solution
Ideally we would like to be able to add new vendors without making changes to
our orchestration as it is likely to contain a fair deal of our business process. Further,
using a different vendor is not really a part of our business process, it is really an
implementation detail; a technology detail. Any vendor we use will have to be able
to offer us a quote and allow us to place an order. BizTalk does contain an elegant
set of tools specifically designed to accommodate exactly these types of variable
situations. These tools center around the concepts of roles and parties.

Understanding roles
As their name implies, roles are placeholders for an actor in a process. That might
be a bit of a textbook flowchart explanation, so let's think of them as we would for
a play or movie. Not to impart too much animosity into the customer-provider
relationship but let's use the analogy of hero and villain. When a movie or play is
written, the script is written for the role of the hero and the villain, but the specific
actor is not selected until casting time (for us that's runtime).

In this same way, roles play a stand-in for our business process script; that is, our
orchestration. Since roles are targeted at business systems and not movies, we
replace hero and villain with provider and consumer (or consumer and provider
depending on where you sit, again let's keep the animosity to a minimum). Providers
implement something others want to use and consumers use it.

Understanding parties
Here's the fun part of the book. No I'm just kidding. Parties are not quite as fun as
they may at first sound, but they are incredibly useful and greatly underutilized.
Parties are entities that will fill a role. Normally parties are another company or
division, but they could be anything. Parties are commonly known as trade partners
in the EDI world. In BizTalk, parties are global entities that can be used (or use)
certain artifacts in any application in the group.

Improving the broker with role-based
links
With our new knowledge of roles and parties, we are ready to improve our
current solution. We're going to close the orchestration ProductInventory.odx
and delete it in Windows Explorer (not in Visual Studio), then rename our copy to
ProductInventory.odx (I said we'd need it at the beginning of the chapter, so I
hope you have kept it).

Chapter 13

[309]

Implementing role party links
There are two ways to create roles and links. The first is in the orchestration view,
similar to how we've worked with multipart messages, the other is by using the Role
Link orchestration shape. We will use the latter approach.

1. Drag a Role Link onto the port surface of the ProductInventory orchestration
and a Role Link Wizard will start up.

2. Name the link VendorRoleLink and click Next. Use the Create a new Role
Link Type option (the default) and enter the name VendorRoleLinkType
and click Next.

3. In the Role Link Usage, change to Consumer Role: I will be sending the
first message.

A new construct that almost looks like a logical port will be added to the port canvas
and will resemble the following screenshot:

We can see that this shape actually tells us where to drop, send, and receive ports.
At first it may appear that the roles themselves are exactly the opposite of what we
had just seen in the wizard. We specified that we were the consumer, but send ports
go in the provider section. This is because the IDE is showing us the view from the
perspective of the orchestration. To the orchestration, the role is being filled by a
provider, the orchestration itself is the consumer. To make this clearer, click the
Provider word in the role link, and change the name to VendorRoleProvider in
the properties.

Performing Parallel Processing and Branching

[310]

All we have to do is drag the port ProductQuotePortType into the Provider section
of the VendorRoleLink as shown in the following screenshot:

The last thing we need to do is assign the role link so that it will do a runtime lookup
for the party that should fill the role. To do this, drag an expression shape above
Snd_QuoteRequest, enter the following expression and name it Assign Vendor:

VendorRoleLink(Microsoft.XLANGs.BaseTypes.DestinationParty) = new
Microsoft.XLANGs.BaseTypes.Party(InventoryNotification.Body.Product.
PreviousOrder.Vendor, "OrganizationName");

We can see that this expression uses the new VendorRoleLink we created and sets
the DestinationParty property. In this case, we're using our distinguished vendor
field and the OrganizationName property to perform the linking. We can now build
and deploy the solution.

Creating parties
Before we can run this solution, we need to create the parties that the role will link to
in our orchestration. We do this in the BizTalk Administration console.

Right-click the Parties node in the BizTalk Administration Console and select
New | Party as shown in the following screenshot:

Chapter 13

[311]

Name the new party IMI01. Your configuration should resemble the
following screenshot:

Click on Send ports on the left and we will now associate this party with a specific
send port. We will select the port IM_Wcf_Send_ItalianMotorOrderService as
shown in the following screenshot:

Performing Parallel Processing and Branching

[312]

If we look at the bindings for our orchestration in the InventoryManagement
application we can see that there are not as many as there used to be. The bindings
for the WCF calls to the web service are gone, because we now use role party links to
bind the logical port to a physical port at runtime.

Click OK to close the party configuration. We're almost done, but we have one more
step to complete the process. We need to tell BizTalk which ports for a party can fill
what roles. Click the Role Links node in the InventoryManagement application and
you will see a VendorLinkProvider role listed. Right-click VendorLinkProvider and
select Properties.

You are presented with a Role Link Properties dialog. Click the Enlist button and
you will now be presented with a list of parties configured in your environment as
shown in the following screenshot:

Chapter 13

[313]

Check the box next to IMI01 and click OK. You will see a visual cue that this process
is not complete yet because there is a yellow warning sign on the party. Click the
Bind button (be sure to keep the party IMI01 highlighted) and you are presented
with a dialog that allows you to select send ports for this party as shown in the
following screenshot:

There is only one option in this drop-down, IM_Wcf_Send_
ItalianMotorOrderService; select it for both the operations.

There is only one port available because this party only has one port
configured with it. If we had multiple ports associated with this party
that matched the message exchange pattern (One way / Two way) they
would be listed here.

You can now run the SQL command that causes this orchestration to fire and it will
work as it did before. The following is the command:

update products set orderstatus = 'Filled'

Adding a new vendor
We now need to create a new send port and party for Japan Racing Accessories. This
time the process is much simpler than the previous decision shaped approach; in fact
there are no code changes. All we have to do is create a new send port, a party, and
then enlist the party in the role. The steps are as follows:

1. Right-click Send Ports and click New | Static Solicit Response Send Port.
2. Name the port IM_Wcf_Send_JRAOrderService and select WCF-BasicHttp

as the Type, then click Configure.

Performing Parallel Processing and Branching

[314]

3. Set the Address (URI) to http://localhost/JapanRacingAccessories/
JRAOrderService.svc and the Action to:
<BtsActionMapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Operation Name="IM_Send_ProductQuote" Action="http://tempuri.
org/ItalianMotorOrderService/GetQuote" />
 <Operation Name="IM_Send_ProductOrder" Action="http://tempuri.
org/ItalianMotorOrderService/PlaceOrder" />
</BtsActionMapping>

4. Click OK.
5. Right-click the Parties node and select New | Party.
6. Name the party JRA01 and click Send Ports then select IM_Wcf_Send_

JRAOrderService from the drop-down.
7. Navigate back to the Role Links node in the InventoryManagement

application and right-click VendorLinkProvider and select Properties.
8. Click Enlist and check the box next to JRA01 (notice how IMI01 is no longer

available as it is already enlisted) then click OK.
9. Click JRA01 and click the Bind button and select IM_Wcf_Send_

JRAOrderService for both the operations then click OK.
10. Click OK again.

We can now use the application like we did before and we will see that it calls a
different web service based on the LastVendorNumber of the product. We can test
this by running the following query against the AlphaInventory database:

update products set orderstatus = 'Filled', LastVendorNumber = 'JRA01'

We can see where the message was actually sent in the BizTalk Administration
console. From here, we can query Tracked Service Instances, which was covered
in Chapter 4, Operating BizTalk. Here we can see all the orchestrations and pipelines
that have been involved in the process so far. If you right-click the newest (they
default to sort by most recent) PRP.InventoryManagement.Orchestrations.
ProductInventory orchestration and select Message Flow you will see a window
that is similar to the following (the following screenshot has been cropped):

Chapter 13

[315]

We can see from here that the upper part was a transmit and the lower was a receive
(the pipelines tell us this) and both used the vendor role link as the port. We can also
see that the lower message has a URL from the Japan Racing Accessories service.

If we approve and complete the request we can also see that the second operation
remembers which party we're using and uses the proper port automatically. Our
solution is now able to be extended very easily. Even if the vendor used a completely
different web service (or an HTTP service or maybe just a SQL query), we can create
new external schemas and maps and that is all we would have to change or deploy
to interface with the client. None of our core business process is affected.

It is worth mentioning that, despite the fact that one of these solutions is far superior
to the other in terms of flexibility and maintainability, they both implement the
same broker pattern. The pattern describes their functional action, not their specific
implementation. This is really just scratching the surface of parties and role party
links. Unlike the traditional publish subscribe model that is driven by the message,
parties allow us to add new metadata and constraints at the party level that can be
used to drive logic, transport, routing, and encryption. All this sits on top of the
publish subscribe model and can be used to deliver rich applications.

Enabling parallel processing
Parallel processing is becoming increasingly important in all software solutions
and distributed software in particular. Many business (and technical) processes can
be parallelized to decrease how long they take to run. As we move further into the
multicore era of CPU architecture, this will become even more significant. Some
tasks like our approval and order simply cannot be parallelized, but many others
can. We will now expand our solution to perform parallel processing on the product
information before we place a quote.

Performing Parallel Processing and Branching

[316]

One of our development teams has already written a .NET library that will perform
calculations based on basic product information to determine how many of a product
we should order. The project for this library has been included in the solution
template for simplicity. The primary method for calling these calculations involves
calling a static .NET method with one of three enumeration values. The calculation
can take a long time as it accesses a large data warehouse. The following is the
method signature:

public static void ProcessProductMargins(XmlDocument productQuote,
ReorderLotSize reorderLotSize)

Passing around XmlDocument in an orchestration is a terrible
idea, please avoid the temptation to do it and see Chapter 3, BizTalk
Development Guidelines, for further details.

We need to call this method three different times with different enumeration values.
The method uses System.Diagnostics.Trace.WriteLine to trace out its progress.
We can use DebugView to see this trace output.

Solution Instrumentation
DebugView is available at http://live.sysinternals.com/
dbgview.exe. Trace.WriteLine and DebugView are a classic
combination for providing visibility into services, but they are no longer
a best practice. The BizTalk Solution Instrumentation Framework is now
the recommended way to provide tracing for ultra-high performance
scenarios as it uses kernel-level features of Event Tracing for Windows
(ETW). Since we don't want to make our Product Inventory orchestration
overly complicated we will do this processing in a new orchestration that
we will call from our current orchestration.

1. Right-click the Orchestrations project and select Add | New Item
and select BizTalk Orchestration and name this new orchestration
ReorderCalculations.odx.

2. Open this new orchestration and switch to the Orchestration View
and right-click Orchestration Parameters and select New Message
Parameter. Rename the new parameter, which will be named Message_1,
to InventoryNotification and set the Message Type to the multi-
part message type PRP.InventoryManagement.Orchestrations.
InventoryNotificationType. Also, change the Direction to Ref.

Chapter 13

[317]

Orchestration Parameter Direction
Parameters in orchestrations can be In, Out, or Ref (short
for reference). Reference parameters allow for both in and
out flows, but can only be used by an orchestration call shape
rather than a start shape.

3. Drag an expression shape onto the canvas, name it Calculate Small
Lot and enter the expression: PRP.InventoryManagement.Library.
ProductCalculations.ProcessProductMargins(InventoryNotification
.Body, PRP.InventoryManagement.Library.ReorderLotSize.Small);.

4. Repeat this process for the other two enumeration values, Medium and Large.

Your final orchestration will have three expression shapes and will resemble the
following image:

We are now ready to call our new orchestration from our Product Inventory
orchestration.

1. Change back to that orchestration and drag a Call Orchestration shape
onto the canvas above the AssignVendor shape. Name this new shape
Call_ReorderCalculations and set the Identifier property to the same value.

Performing Parallel Processing and Branching

[318]

2. Double-click this new call shape (which has a red warning next to it) and you
will be presented with the following dialog box:

We can see that the orchestration IDE is smart enough to know that the only
orchestration we could be calling is ReorderCalculations and it fills in all
of the information for us.

3. Click OK to set these values.

Call versus Start orchestration
Call and Start orchestrations serve a similar role, but function significantly
differently from each other. Call orchestration is simply like a method
(function) call in .NET; it is a synchronous call that transfers control and
context, then returns. Start is different in that it processes asynchronously
through the message box. If you start an orchestration, the parent
orchestration that called Start will continue immediately and, as a result, you
cannot have output or reference parameters in a started orchestration shape.

If we now build and deploy our solution, we will have to bind the new orchestration
ReorderCalculations to a host, we can use the BizTalkServerApplication.

If we start DebugView (turn on all capture features except Log Boot, then start
capture) and run the solution like we did before. By executing that SQL query
we can see the trace output in the DebugView window:

Begin ProcessProductMargins for: Small
End ProcessProductMargins for: Small
Begin ProcessProductMargins for: Medium
End ProcessProductMargins for: Medium
Begin ProcessProductMargins for: Large
End ProcessProductMargins for: Large

Chapter 13

[319]

We can also see the times printed out to the left of this window and see that this part
took thirty seconds to execute.

Understanding the parallel shape
We already know these operations can take a long time and don't want this to
slow down our processing as it could create long delays that are the aggregated
processing time of each operation. We know there is a parallel shape that we can use:

1. Drag a Parallel Actions shape onto the canvas of ReorderCalculations and
name it Calculate Reorder Size.

2. Right-click Calculate Reorder Size and select New Parallel Branch.
3. Drag each of the expression shapes into one of the parallel branches putting

small on the left, medium in the middle, and large on the right.

If we deploy and run our solution again we see the exact same output as before. The
parallel shape did not parallelize our solution at all. In reality, the parallel shape is
not as parallel as we think; it executes from left to right until it hits an operation that
goes through the message box (that is, a send shape or a start orchestration).

Many operations we can do could be made parallel even with this in mind. If we
needed separate approvals from different departments, or to call multiple services
that are not dependent on each other, we can use the parallel shape and reap these
benefits. As the first message send to a service occurs, the parallel shape starts
executing the next branch on the left.

Imagine if we needed to get quotes from all of our vendors. Just like with our decide
shape example before, if we had a static list of vendors, we could use the parallel
shape to do this.

Implementing scatter gather
We're going to use the start orchestration shape to process all of these requests in
true parallel. This pattern is commonly referred to as scatter-gather because we
scatter the requests out and then gather the responses back together. To do this we
will use a self-correlating direct bound port and another orchestration. First we will
add this new port to the ReorderCalculations orchestration:

1. In ReorderCalculations.odx drag a new port to the port canvas.
2. Name the port Receive_DirectCalculationPort and create a new port

type named DirectCalculationPortType.

Performing Parallel Processing and Branching

[320]

3. Set the binding to Direct and choose the Self Correlating radio button.
4. Rename Operation_1 to ProcessCalculation and set the Message

Type of the request to PRP.InventoryManagement.Orchestrations.
InventoryNotificationType.

We now want to use this new port from within a new child orchestration which will
be solely responsible for processing and return the results to the calling orchestration
(ReorderCalculations):

1. Create a new orchestration named Calculation.odx.
2. Create a new message parameter named InventoryNotification, set the

direction to In, and the Message Type to PRP.InventoryManagement.
Orchestrations.InventoryNotificationType.

3. Right-click Orchestration Parameters and select New Configured Port
Parameter.

4. Name the port Send_DirectCalculationPort and click Next.
5. Select Use an Existing Port Type and select DirectCalculationPortType from

the list and click Next.
6. Change the direction to I'll always be sending messages on this port, change

the Binding to Direct and the select the Self Correlating ratio button.
7. Click Next, then click Finish.
8. Back in the orchestration view, drag a new send shape onto the canvas and

name it Snd_CalculationResult and connect it to the ProcessCalculation
operation of the Send_DirectCalculationPort port. It will automatically
assign the appropriate message, in this case InventoryNotification.

9. Right-click Orchestration Parameters again, click New Variable Parameter
and name this variable LotSize. For Type browse to <.NET Class> and then
to PRP.InventoryManagement.Library.ReorderLotSize.

Back in the ReorderCalculations.odx we can now use the Start Orchestration
shape to execute the calculation. We will need to provide an enumerator variable to
do this.

Create a new orchestration variable called LotSize and again assign the type PRP.
InventoryManagement.Library.ReorderLotSize. If we replace the expression
in each of our expression shapes (Small, Medium, and Large) with something like
the following:

LotSize = PRP.InventoryManagement.Library.ReorderLotSize.Small;

Chapter 13

[321]

We will cause ourselves an issue if we try to build that and we'll get a compile-time
error similar to the following:

'LotSize': if shared data is updated in a parallel then all references
in every task must be in a synchronized or atomic scope

Although the parallel shape is not as parallel as we at first thought, it is enforcing
parallel access rules to avoid deadlocks and inconsistent updates. It will not allow
us to change this variable outside of a synchronized or atomic scope, both of which
would re-serialize our solution anyway. This is very similar to how F# works and
how it is able to be thread safe automatically.

The way around this is to create three enumeration variables of ReorderLotSize and
assign them each before we enter the parallel shape.

Delete the expression shapes Calculate Medium Lot and Calculate Large Lot.

Move Calculate Small Lot to above the parallel shape and set the expression to:

LotSize = PRP.InventoryManagement.Library.ReorderLotSize.Small;
MediumSize = PRP.InventoryManagement.Library.ReorderLotSize.Medium;
LargeSize = PRP.InventoryManagement.Library.ReorderLotSize.Large;

Drag one Start Orchestration shape into each of the three parallel branches.

Double-click each start orchestration shape and configure the parameters, being sure
to change two of them to be MediumSize and LargeSize for the last parameter.

Drag three receive shapes after the parallel shape; they can be in any order,
and connect them all to the ProcessCalculation operation of the Receive_
DirectCalculationPort logical port. Assign each of these to receive the
InventoryNotification.

It really doesn't matter what order the receive shapes are in because they
will all be received in the message box before they are matched against
the instance subscription. If some of these were from different operations
or different types they would simply queue in the message box until the
specific message that matches the first receive shape is ready.

Performing Parallel Processing and Branching

[322]

The completed orchestration will look like the following screenshot:

If we now deploy the solution and run it, again like we did before with the simple
SQL query, we can see in DebugView that all three trace statements happen
immediately. Perhaps better still BizTalk will distribute this processing (the newly
started Calculate orchestrations) over the entire group. If we have multiple servers
(or even multiple cores or processors in a single server) we are likely to experience
significant performance gains as we are doing true parallel processing.

This is a great improvement over what we had before because we have cut down
processing time significantly, but again we have the same problem we had with the
original approach to the broker solution: any changes will require orchestration-
level changes and recompilation / deployment. Again we have a solution with a
hard-coded limitation. In an effort to strive for a more flexible solution, we will now
refactor this to be a true scatter-gather solution.

Improving scatter gather
We would like to create a solution that is free to change how many requests are
scattered out, without the need to recompile the orchestration and one that is not as
limited as with a hard-coded set. This turns out to be relatively easy and can help us
turn our BizTalk group into a very powerful parallel processing platform.

Chapter 13

[323]

We're going to use loops to make our solution more flexible. Since we're using
looping we're going to need a counter and we're also going to use an enumerator to
control the looping.

1. In the ReorderCalculations orchestration create an orchestration variable
named ScatterCount of type Int32 and set the Initial Value to 0.

2. Create a variable named Enumerator and browse to the .NET type PRP.
InventoryManagement.Library.ReorderLotSizeEnumerator.

3. Rename Calculate Small Lot to Enumerate Values.
4. Drag a Loop shape below Enumerate Values, name the loop Scatter Loop

and assign the expression Enumerator.MoveNext().
5. Move the StartOrchestration_1 shape into this loop (you can really use any

of the start shapes) then delete the Calculate Reorder Size parallel shape and
the shapes that remain in it.

6. Drag another loop below the Scatter Loop and name it Gather Loop. Set the
expression to ScatterCount > 0.

7. Move Receive_1 into the Gather Loop and delete the other two
receive shapes.

8. Set the expression in Enumerate Values to: Enumerator = PRP.
InventoryManagement.Library.ProductCalculations.
ListReorderLotSize();

We're making use of some of the System.Collections features
in .NET to make this application more extensible. One way is
by using a method to return all the possible enumerations as
an enumerable object and the other is by using an enumerator
class that implements IEnumerator. This is because any
.NET type used in an orchestration must be decorated with the
Serializable attribute, which IEnumerator is not.

9. Drag an expression shape to the top of the scatter loop, name it Assign Lot
Size - Increment and use the following expression:
LotSize = (PRP.InventoryManagement.Library.ReorderLotSize)Enumerat
or.Current;
ScatterCount = ScatterCount +1;

10. Drag one last expression shape into the Gather Loop named Decrement
Count and use the expression ScatterCount = ScatterCount -1;.

Performing Parallel Processing and Branching

[324]

The orchestration is now complete and will resemble the following screenshot:

We can now run this solution and again see that it executes very quickly, just like
before. To prove the extensibility, all we need to do is add another value to the
enumeration ReorderLotSize. Add a Mega value to the enumeration with a value
of 3 so the enumeration looks like the following code listing:

public enum ReorderLotSize
{
 Small = 0,
 Medium = 1,
 Large = 2,
 Mega = 3
}

We can now GAC this assembly, like we did in Chapter 9, Expanding the Solution with
Services and Rules, and restart the BizTalk host instance. We will see that, instead of
three processing requests, there are four.

Chapter 13

[325]

Not all of these techniques are BizTalk specific; in fact half of our extensibility is
the use of .NET enumerators. It is always important in BizTalk solutions to find
extensibility points and leverage them; in this case some of them were .NET specific.
A common alternative is to use a query, perhaps of all vendors to send a quote
request to every vendor. Another is to use something in the message itself to
control looping, such as the individual products in the request.

Lastly, this was a trivial example and we really didn't do anything with the resulting
messages, but we certainly could have. We could even store them all in a .NET list
or collection for use later. Another common approach for scatter gather is to wait for
multiple approvals.

Summary
In this chapter, we have learned to use the decide shape as well as how to use role
party links with parties to make our solution more extensible and flexible when
implementing the broker pattern. We then learned how to use the parallel actions,
call and start orchestration shapes to compose complex processes through smaller
and simpler parts, which make our solutions easier to understand and maintain.
Finally, we used self-correlating direct bound ports and loops to create an extensible
parallel processing application that implements the scatter-gather pattern. The next
chapter will cover convoy processing.

Processing Message
Convoys

The final chapter in this book addresses complex issues related to sequencing events
and messages. Commonly in integration scenarios we must react to a series of events
that span different time and message exchange patterns to create a unified process.
When multiple messages are treated together as a single process, the pattern is
normally called a convoy. This chapter presents different types of convoys through
specific examples as we continue to build on our inventory management application.

The following topics will be covered in this chapter:

Uniform sequential convoys
Zombies
Non-uniform sequential convoys
Parallel convoys
Dealing with zombies

Creating a sequential convoy
Our solution is working great, but we now need to be able to batch together
inventory notifications to be used for reconciliation. Our requirement is to gather all
notifications every day and send a single reconciliation message that our users want.

To accomplish this, we are going to create a new orchestration that uses a convoy to
collect messages until the end of the day; then use an envelope and send pipeline to
combine the messages into a single batch message. A process where many messages
are received one after another is called a sequential convoy. If all the messages in the
convoy are of the same type, as in this case, the convoy is said to be uniform.

•

•

•

•

•

Processing Message Convoys

[328]

To create this solution, we will need to create an envelope, a pipeline, and an
orchestration. These steps are performed in the next sections.

Creating the envelope
Back in Chapter 10, Envelopes, Flat Files, and Batching, we disassembled XML messages
using an envelope; now we need another envelope in order to use the pipeline for
assembly. In this section, we will create a new XML envelope:

1. Create a new schema named InventoryNotificationEnvelope.xsd and
rename the Root element to ProductBatch.

2. Set the schema's Envelope property to Yes.
3. Right-click ProductBatch and select Insert Schema Node | Any Element.

The schema element <xs:any /> functions like the name
implies, it allows any element to take the place of it. This
element can be a complex type with elements and attributes of
its own. This makes it a sort of wildcard in the XSD toolset; like
all wildcards it should be used sparingly. The argument that it
provides future support is greatly weakened by the side-by-side
versioning capabilities provided by BizTalk.

4. Set the Body XPath of the ProductBatch root element to ProductBatch.

Creating the pipeline
Since we're going to be assembling many messages into a single message, we will
need a send pipeline as opposed to the receive pipeline we used before. We need to
create the actual pipeline (.btp) file that will be used. Again, we follow the solution
structure guidance and put this pipeline into a project of its own:

1. Right-click the Internal Pipelines project and select Add | New Item and
create a new Send Pipeline named XmlAssemblerSend.btp.

2. Drag an XMLAssembler onto the Assemble stage of the pipeline.
3. Set the Document schemas property to include the schema PRP.

InventoryManagement.InternalSchemas.InventoryNotification.
4. Set the Envelope schemas property to include the

message PRP.InventoryManagement.InternalSchemas.
InventoryNotificationEnvelope.

We now have the base messaging components that will be used by our solution.

Chapter 14

[329]

Creating the orchestration
At this point, we're ready to create the actual orchestration that will implement
the convoy itself. In order to use the pipeline we just created from within an
orchestration, we must use the SendPipelineInputMessages class from the
Microsoft.XLANGs.Pipeline namespace. This will function as a container in
which we can load the messages for the XmlAssemblerSend pipeline we created
in the previous section.

Using pipelines in orchestrations
One of the keys to this is a class in the BizTalk framework Microsoft.
XLANGs.Pipeline.SendPipelineInputMessages. We'll need to
add a reference in the orchestrations project to the assembly Microsoft.
XLANGs.Pipeline.dll to use this class. This assembly is in the BizTalk
root directory, normally [Drive:]\Program Files\Microsoft
BizTalk Server 2010\.

We will now create the orchestration that processes this message convoy:

1. Add a new orchestration to the inventory management application named
OrderAggregator.odx.

2. Create a new orchestration message named InventoryNotification and
set the message type to PRP.InventoryManagement.Orchestrations.
InventoryNotificationType.

Notice how we can reuse message and port types between
orchestrations. This is very useful, but can also introduce
inter-orchestration dependencies that surface during
refactoring. Some developers like to put all their message
and port types in a single orchestration that solely serves
this purpose.

3. Create a new multi-part message type named
InventoryNotificationBatchType with a part named Body set to the
schema InventoryNotificationBatch and a new message using this type
named NotificationBatch.

4. Create an orchestration variable named Aggregator and set its type to the
.NET class Microsoft.XLANGs.Pipeline.SendPipelineInputMessages.

5. Create another orchestration variable called Complete of type Boolean with
an Initial Value of False.

Processing Message Convoys

[330]

6. Drag a receive shape onto the canvas named Rcv_InitialNotification
and set the Activate property to True. Set the message to
InventoryNotification.

7. Drag an expression shape below the receive shape and name it Add Message.
Set the expression to: Aggregator.Add(InventoryNotification);.

8. Drag a loop below the receive shape named Aggregate Loop and set the
expression to Complete == false.

9. Drag a listen shape into this loop and name it Message Listen.
10. On the left branch of the listen, drag a receive shape named Rcv_

Notification, setting the message to InventoryNotification. Below that,
still in the branch, place a copy of the expression shape named Add Message.

Right-clicking a shape will allow you to select Copy or Paste
from the context menu, but you can also use the Ctrl + C and
Ctrl + V keyboard shortcuts.

11. On the right side of the listen shape, drag a delay shape named Order Delay
and set the delay to new System.TimeSpan(0,5,0).

I know we're not actually meeting our true requirement
here because we're not waiting until the end of the day. If
we really wanted this, we would use some time calculation
against a TimeSpan variable, but that detail is left as an
exercise to the reader. If you find yourself in need of this type
of functionality, using a .NET Class Library or even the BRE
is a good idea.

12. Drag an expression shape after the delay named Mark Complete and set the
expression to Complete = true;.

13. Drag a Message Assignment shape onto the canvas after the loop and name
the construct (outer shape) Construct NotificationBatch and set the
Messages Constructed property to NotificationBatch. Name the inner
(assignment) AssignNotificationBatch and enter the following expression:
Microsoft.XLANGs.Pipeline.XLANGPipelineManager.ExecuteSendPipeline
(typeof(PRP.InventoryManagement.InternalPipelines.XmlAssemblerSend
),Aggregator,NotificationBatch);

Chapter 14

[331]

In this step, we are using another utility class form to actually execute the
XmlAssemblerSend pipeline. The parameters are: the type of the pipeline to
execute, the aggregated messages to be used as input to the pipeline, and the
output message that will be populated with the results of the pipeline (which
is passed by reference).

14. Drag a send shape named Snd_NotificationBatch onto the canvas and set
the message to NotificationBatch.

Your completed orchestration layout should resemble the following image:

Processing Message Convoys

[332]

This completes the basic orchestration flow layout and we're ready to fill in
the details.

Creating the convoy correlation
The convoy needs a way to relate the messages together. We know from experience
that we can use correlation sets to accomplish this. Normally, in sequential convoys
you want something even more generic than the quote number we used before
(which would correlate all messages with that quote number) so it is common to
use Receive Port Name or something similar. If you do use Receive Port Name you
should be aware that you are limiting the ability of your operations staff to rename
the port without recompiling the application. If many orders could be part of a batch
with a specific batch number that would be a natural fit for a convoy correlation:

1. Create a new Correlation Type and use the properties BTS.
SPName and WCF.Action to correlate on. Name this correlation
NotificationCorrelationType.

Notice how we are able to use multiple properties
when creating a correlation type. A correlation type can
contain up to three different properties that are used to
create a specific correlation. Although this may sound
limiting it is actually quite expressive.

2. Create a new correlation set with the identifier NotificationCorrelation
using the NotificationCorrelationType.

3. Create a new port named OrderAggregatorPort and a new port type
named OrderAggregatorPortType. Make this port One-Way and
change the binding to direct. Set the request message type to PRP.
InventoryManagement.Orchestrations.ProductQuoteType.

4. Set the Rcv_InitialNotification shape's Initializing Correlation
Sets property to NotificationCorrelation.

5. Set the Rcv_Notification shape's Following Correlation Sets property
to NotificationCorrelation.

6. Create a new port named ProductOrderBatchPort with a port type
ProductOrderBatchPortType that is a One-Way send port with the "specify
later" binding and connect the Snd_ProductOrderBatch shape to the single
operation of this port (we're ignoring proper names for brevity).

7. Build and deploy the solution.

Chapter 14

[333]

Binding the solution
We're now ready to bind the orchestration in the BizTalk Administration console.
Bind the orchestration to the host BizTalkServerApplication and for the logical
send port binding, click the drop down and under Send Ports/Send Port Groups
click <New send port…> which is shown in the following screenshot:

Name the port IM_File_Send_NotificationBatch and set it to use FILE as the
Type with the destination folder set to C:\BizTalk\PRP\PlaceOrder.

Right-click the InventoryManagement application and select Start.

Running the sequential convoy
Run and approve an order by running the query update products set
orderstatus = 'Filled' against the AlphaInventory database like we did before;
then setting the Approved attribute to true in the file created in C:\BizTalk\PRP\
ApprovalRequest.

If you created or downloaded the InfoPath form you can simply click the
Approved checkbox and click Save, then move the form to C:\BizTalk\
PRP\ApprovalResponse.

If you look in the All In-Progress Service Instances view of the BizTalk
Administration console, you will see an active (or dehydrated) OrderAggregator
instance.

Run and approve (or reject) a second order and the aggregator will also add that
order to the aggregator. Now take a break and have some tea or coffee because we
have a five-minute timer in that orchestration so you have a little time to relax. After
that five minutes you will see a file output to C:\BizTalk\PRP\PlaceOrder. If we
open this file we can see a message that resembles the following XML:

<?xml version="1.0" encoding="utf-8"?>
<ns0:ProductBatch xmlns:ns0="http://PRP.InventoryManagement.
InternalSchemas.ProductOrderEnvelope">
 <ns0:InventoryNotification xmlns:ns0="http://performanceracingparts.
com/schemas/Inventory/internal/2011-05">

Processing Message Convoys

[334]

 <IsValidProduct>false</IsValidProduct>
 </ns0:InventoryNotification>
 <ns0:InventoryNotification xmlns:ns0="http://performanceracingparts.
com/schemas/Inventory/internal/2011-05">
 <Product>
 <CatalogNumber>1234</CatalogNumber>
 ...
 </Product>
 <IsValidProduct>true</IsValidProduct>
 </ns0:InventoryNotification>
 <ns0:InventoryNotification xmlns:ns0="http://performanceracingparts.
com/schemas/Inventory/internal/2011-05">
 <Product>
 ...
 </Product>
 <IsValidProduct>true</IsValidProduct>
 </ns0:InventoryNotification>
</ns0:ProductBatch>

As can be seen, there are in fact multiple notifications inside this file. We can even
see that the first has IsValidProduct set to false because it is a side effect of the
notification solution we built in the last chapter.

Improving our solution
This solution is not perfect as it sits and there is one common and subtle change that
you may need to make. Recall that we use the <xs:any/> element in our envelope
schema. This wasn't because I wanted to show you a bad practice; it is because
when using a send pipeline within an orchestration this turns out to be a necessity.
Importing or including the InventoryNotification schema like we did before
would result in the following error when the pipeline executes:

Error details: "Token StartElement in state Epilog would result in an
invalid XML document."

The problem is that the <xs:any> element makes mapping just about impossible
unless we want to use XSLT. This error is unique to orchestrations and I cannot
say I truly know the cause, but I do have a solution. All we need to do is create
a second schema to represent the batch record we are interested in. Name this
schema InventoryNotificationBatch.xsd and rename the Root node to
NotificationBatch.

Import the InventoryNotification.xsd schema into this new schema.

Chapter 14

[335]

Create a child record under NotificationBatch name and set the Data Structure
Type to ns0:InventoryNotification (Reference) and set the Max Occurs
property to unbounded.

When setting the Max Occurs property, you can simply type in
* (asterisk) and the IDE will replace it with the word unbounded.

The last thing we need to do is use a map inside the orchestration that will
transform from one format to the other, and this can be done with the transform
shape. We will need only one Functoid, the Mass Copy, and the map will resemble
the following image:

This solution allows us to aggregate messages the way we want to and still have
the flexibility and separation of concerns enabled with maps and strong typing
of messages.

Dealing with zombies
They're not just in B-movies anymore; zombies are an unfortunate side effect of
some convoy scenarios. The convoy we have just created may be a uniform
sequential convoy, but it is also a non-deterministic one. This is because it uses a
delay to end the collection of messages. This makes it possible that a message could
be received and matched with the convoy subscription just as the delay shape is
executing, and thus breaking the listen loop. BizTalk would then try to deliver the
message to the orchestration instance which would now be terminated (or be in
the process of terminating). The result is a zombie, a message that has already been
accepted by the message box, but now has nowhere to go.

This will result in a failed instance in the message box with an error like
the following:

0xC0C01B4C The instance completed without consuming all of its messages. The
instance and its unconsumed messages have been suspended.

The good news is that we can use failed message routing like we did in Chapter 7,
Leveraging Orchestration or even use a WMI script and need to filter only on ErrorId
= "0xC0C01B4C".

Processing Message Convoys

[336]

This error code is a change from the error code used in previous
versions of BizTalk.

Creating a parallel convoy
We have been asked to create a vendor on boarding process. When vendors join our
network, three distinct things must happen before we can do business with them:

They must have a vendor application filled out
We must have a credit report run on them
We perform a bank account validation procedure

Currently these three things all happen independently and a user must coordinate
their execution to get a vendor added to the AlphaInventory database.

A scenario that involves multiple, possibly different, messages that must all be
collected before processing can continue is called a parallel convoy. We will use a
parallel convoy to handle vendor on board.

The three schemas that will be used for this process are all included with the project
template and can be added by right-clicking Internal Schemas and selecting Add |
Existing Item. The three schemas are:

BankValidation.xsd

CreditReport.xsd

VendorApplication.xsd

Since our goal is to gather all of this information together, we will also create
a new vendor information schema that is a composite of the three schemas
introduced above.

Creating the VendorInformation schema
We will quickly create our composite schema before we go any further:

1. Add a new internal schema named VendorInformation.xsd. Rename
the Root element to VendorInformation. Click the <Schema> folder
above the root then change the Target Namespace property to http://
performanceracingparts.com/schemas/inventorymanagement/
internal/2011-06.

•

•

•

•

•

•

Chapter 14

[337]

2. Set the Root Reference to VendorInformation.
3. Click the ellipses in the Imports property. At the Imports dialog

change the dropdown to XSD Include then click Add and browse
to the CreditReport schema.

4. Include the BankValidation and VendorApplication schemas as well.
5. Right-click the VendorInformation node and select Insert Schema Node |

Child Record then change the record's Data Structure Type to BankAccount
(Reference).

6. Add another child record and change its Data Structure Type to
CreditReport (Reference).

7. Add a final child record for the data type VendorApplication.

We now have our source and destination messages and can being tying the pieces
together. Promoting the correlated data. The first step in creating a convoy of any
type is to decide what data will be used for correlation. All three schemas contain the
same core identifying piece of information: Tax Identification Number. Each schema
has a slightly different name for this element, but they all represent the same core
data. We will create a promoted property for this data and then promote the element
in each of the three schemas.

There are two parts to promoting elements. The first is to create a property in a
property schema that can be used for promotion. The second is to promote the data
in each schema using this property.

Creating the promoted property
In the schema InventoryManagementProperties.xsd, which came with the
solution, right-click the Schema folder and select Insert Schema Node | Child
Field Element.

Name the element TaxIdentificationNumber.

Save and close the property schema so that we can use the property in the
other schemas.

Processing Message Convoys

[338]

Promoting the elements
In the schema BankValidation.xsd, right-click the element TIN and select Promote
| Show Promotions:

1. Click on the Property Fields tab on the right side of the dialog, then
click the folder icon on the upper-right to add a property schema and
navigate to the schema PRP.InventoryManagement.InternalSchemas.
InventoryManagementProperties under the Schemas node as shown
in the following screenshot:

2. Click OK.
3. Click Add >> and change the drop-down on the right to

TaxIdentificationNumber then click OK. Save and close the
BankValidation.xsd schema.

4. Repeat this process for CreditReport.xsd using the element TaxIdNumber
and on VendorApplication.xsd using the TaxId element.

5. Build the solution so that the new types will be visible in the
orchestration project.

Chapter 14

[339]

Creating the orchestration
We will now create the orchestration that will implement the convoy:

1. Add a new orchestration named VendorOnboarding.odx to the
orchestrations project.

2. Create a new multipart message type named BankValidationType
and name the default part Body. Click the Type property then choose
Schemas and <Select from referenced assembly> and click PRP.
InventoryManagement.InternalSchemas on the left and then PRP.
InventoryManagement.InternalSchemas.BankValidation on the right.

3. Repeat that step for CreditReportType, VendorApplicationType, and
VendorInformationType and their corresponding schemas.

4. Create four orchestration messages BankValidation, CreditReport,
VendorApplication, and VendorInformation that each correspond to their
similarly named multi part message types.

5. Drag a parallel actions shape onto the canvas and name it Receive Vendor
Documents.

6. Right-click Receive Vendor Documents and select New Parallel Branch.
7. In the left branch, drag a receive shape named Rcv_VendorApplication, set

the Message property to VendorApplication, and set the Activate property
to True.

8. In the middle branch, add a receive shape named Rcv_BankValidation, set
the Message property to BankValidation, and set the Activate property to
True.

9. In the right branch, add a receive shape named Rcv_CreditReport, set the
Message property to CreditReport, and set the Activate property to True.

10. Drag a transform shape onto the canvas after the parallel shape and it
will automatically create the transform nested inside a construct message
shape (just like the assign message shape does). Name the construct
message Construct Vendor Information and the transform XForm_
VendorDocuments_To_VendorInformation.

Processing Message Convoys

[340]

11. Double-click the transform shape and it will bring up the transform
configuration dialog. Set the Source Variable Name to BankValidation.
Body and then set two more sources for CreditReport.Body and
VendorInformation.Body. The configuration should resemble the
following screenshot:

12. Finally, set the Destination's Variable Name to VendorInformation.Body
and click OK.

Mapping in orchestration
As useful as this map is, it has one very serious drawback. Since there are
many sources used, the messages are all loaded into the DOM behind the
scenes. Using this technique with large messages or very high volumes
will hurt your memory footprint.

You will notice that a new map has been created for us. The left side of this
map is a schema named Root that has three children InputMessagePart_0,
InputMessagePart_1, and InputMessagePart_2. Each of these records has a
child node that corresponds to the specific message types as shown in the
following screenshot:

Chapter 14

[341]

Fortunately for us we only need to map three nodes to make this entire map:

1. Drag BankAccount from the left to BankAccount on the right and click Link
by Name. Do the same for CreditReport and VendorApplication.

Recall that because this matches both name and structure
you could really use either option.

2. Save and close the map.
3. Drag a send shape named Snd_VendorCreate onto the canvas and assign

VendorInformation as the message.

The orchestration should resemble the following screenshot:

We're done creating the orchestration layout and control flow.

Processing Message Convoys

[342]

Wiring up the orchestration ports
We now need to connect logical ports in the orchestration to allow our solution to be
bound to the outside world. We can do this with the following steps:

1. Drag a port onto the port canvas and complete the wizard to create
a port with the name ReceiveVendorDocumentsPort, the type
ReceiveVendorDocumentsPortType, and communication pattern One-Way
and communication direction of receive.

2. Rename Operation_1 to ReceiveBankValidation.
3. Right-click the port ReceiveVendorDocumentsPort and click New

Operation then rename the new Operation_1 to ReceiveCreditReport.
4. Create a final operation named ReceiveVendorInformation.
5. Connect the receive shapes to their respective operations.
6. Drag a new port onto the port canvas and name it CreateVendorPort with

a new port type named CreateVendorPortType. Set the communication
pattern to One-Way with a direction of Send.

7. Rename Operation_1 on the CreateVendorPort port to IM_Send_
VendorCreate and connect the send shape Snd_VendorCreate to it.

Creating the correlation
Now that we have all the pieces in place, we're ready to create the actual
correlation itself:

1. Create a new correlation type named TaxIdentifierCorrelationType
that uses the correlation property PRP.InventoryManagement.
InternalSchemas.TaxIdentificationNumber.

2. Create a new correlation set named TaxIdentifierCorrelation that uses
this new correlation type.

On smaller screen resolutions it may be hard to see the
full names. Mouse over and you will see them. This one
happens to be last in the list.

3. Set the Initializing Correlation Sets property of each of the three
receive shapes to TaxIdentifierCorrelation.

Build and deploy the solution.

Chapter 14

[343]

Binding the solution
We have now built and deployed our solution and we need to bind the orchestration
inside the BizTalk Administration console:

1. Click the Orchestrations node under the InventoryManagement application
then double-click the new orchestration (it's the only one that will be
unbound and red).

2. Set the Host to BizTalkServerApplication.
3. Click the drop-down next to ReceiveVendorDocumentsPort and create a

new receive port named IM_Receive_VendorDocuments with a receive
location named IM_File_Receive_VendorDocuments that uses the URI C:\
BizTalk\PRP\VendorDocuments*.xml and the XMLReceive pipeline.

4. Click the drop-down next to CreateVendorPort and create a new send port
named IM_File_Send_CreateVendor that uses the URI C:\BizTalk\PRP\
CreateVendor\%MessageID%.xml.

5. Start the application via the BizTalk Administration console.

Running the parallel convoy
Although this solution did not come with a UnitTests project, it does have the test
data directories. The folder InventoryManagement\UnitTests\TestData\External
contains three example XML files; BRCBankValidation.xml, BRCCreditReport.
xml, and BRCVendorApplication.xml that can be copied to C:\BizTalk\PRP\
VendorDocuments either all together or one at a time. The first processed will
create a new instance of the orchestration and the others will join this instance.

Creating a non-uniform sequential convoy
The parallel convoy we implemented above was not the only possible solution to
our requirement. We could also implement the convoy as a non-uniform sequential
convoy; which means that it is still sequential, but the messages within it may be
different. Suppose we already knew that the vendor application would always arrive
first. If that were the case, we could create a new orchestration and copy the four
messages from VendorOnboarding.odx by using Ctrl + C / Ctrl + V to copy them
from and paste them to the Messages folder of the orchestration view. We could then
do the same thing with the three receive shapes, placing Rcv_VendorApplication
first. From here, we could copy the ports and the transform / message construct
in the same way. As we paste in the pieces (the ports in particular) all the shapes
will connect to the ports and the warnings will go away. This is very useful for
refactoring orchestrations.

Processing Message Convoys

[344]

The resulting orchestration would resemble the following diagram:

The primary difference between this convoy and the parallel convoy is that any of
the three receive shapes can activate an instance of the parallel convoy orchestration.
With a non-uniform sequential convoy the first shape must execute first or the other
messages will not be routed correctly (in this case that's the vendor information
message). After the first message the other messages can arrive in any order if they're
all using the same correlation set and BizTalk will simply queue the messages in
the message box until their respective receive shapes in the orchestration execute.
In this example, even if the credit report were to arrive before the bank information
it would be delivered to the correct instance, but it would sit in the message box
awaiting consumption.

Chapter 14

[345]

Using advanced correlations
So far what we have seen are fairly simple correlations, but they need not be so. If
our vendor had many branches and we wanted to identify them by postal code and
tax identification number we could use both properties together to have concurrent
convoys for each office that were separate.

Understanding when and where to use convoys is also important. Like every system,
features come at a price and the price for convoys is message box space and zombies.
There are situations where it is better to use a database to store records until
processing is complete, but it is really more guidance than a hard and fast rule.

All of the convoys that we built in this chapter are actually examples of the
Aggregator pattern. An aggregator combines multiple messages into a single
message. Although one used multiples of the same message type and the others
used different types, they are still all technically aggregators.

We can even expand this pattern to create a re-sequencing aggregator debatch
messages in a pipeline (ideally at a receive location) and aggregate subgroups
within orchestrations. This is fairly common in situations where files can contain
transactions from multiple batches. We don't have space to cover a re-sequencing
aggregator, but you have all the tools you need to create one.

A note about orchestration development
This chapter, perhaps better than any other, demonstrates a common and effective
pattern for orchestration development. The following steps are generally used to
build orchestrations:

1. Determine messages and required patterns.
2. Create orchestration messages.
3. Layout shapes.
4. Create logical ports.

Although not all orchestration development (or developers) will follow these steps,
I think they work best with the toolset as they start at the edges (messages) and work
their way inward, ending in connecting the specific pieces.

Processing Message Convoys

[346]

Summary
In this chapter, we have learned how to use advanced features of the orchestration
engine in BizTalk to help us overcome timing and delivery issues through the
use of convoys. We also learned how to call pipeline components from within
orchestrations. We have also tied together the last of our inventory management
changes and seen how advanced correlations can make our solutions even more
expressive and flexible.

Appendix

XML for BizTalk development
XML has become a nearly ubiquitous format for data exchange over the last decade,
but many developers still do not know that much about it. Fortunately for us, most
of the process of working with XML is abstracted away with tools that make our
jobs easier. This section will provide a very brief introduction to XML that can serve
as a basic guide in the event that you have had no XML experience. I would call it a
rough survival guide at most.

A brief history of XML
Extensible Markup Language (XML) is a syntax for describing information;
originally text documents. XML documents primarily consist of markup and content.
Markup describes and organizes the content within it; content is, well, content.
Importantly, XML itself doesn't actually do anything; it is merely a format that
enables us to do things with it. XML documents are basically hierarchical structures
that layout information in an extensible tree. XML has been designed from inception
to be compatible with international languages through UNICODE text encoding
and thus removes a major impediment to many internationalization challenges
that had plagued previous formats. Part of this benefit comes at the cost, or feature,
depending how you view it, of being quite verbose.

Appendix

[348]

Understanding parts of an XML document
The following is an example of a very simple XML document. We will examine the
parts of the XML document in the following sections:

<?xml version="1.0" encoding="utf-8"?>
<Order>
 <Number>1234</Number>
 <Date>2011-06-11</Date>
 <Item Number="4432" Quantity="1" />
</Order>

Declaration
Generally, the first thing in an XML document is the XML declaration. This line
states that the following document is in fact XML and states the version of XML as
well as the text encoding used in the document. The declaration in the preceding
XML document is: <?xml version="1.0" encoding="utf-8"?>.

The preceding declaration specifies that version 1.0 is used with a UTF-8 encoding
for this particular XML document. Most BizTalk schemas will use UTF-16 encoding,
but BizTalk can handle either.

Elements
Elements are one of the two types of markup that are available within an XML
document. An element contains an opening and closing tag and is enclosed in angle
brackets, similar to HTML.

In our example, we can see the Order element has an opening tag <Order> and a
closing tag </Order>. Notice that the end tag has a / character after the opening
angle bracket.

Elements can have other elements nested within them and can also have attributes,
which are covered below.

Attributes
Attributes are markup that describes the element to which they belong. In our
preceding example, the Item element has two attributes: Number and Quantity.
Attributes cannot have children, as there is no place to place them, but they
generally describe or enrich the element to which they are attached.

Appendix

[349]

Root elements
Every XML document has one and only one root element which immediately follows
the declaration (if there is one). This is a markup element that specifies the actual
document in question. Since XML is a tree it must, like all trees, have a single root.

Importantly, an XML document must start with either a declaration or an opening
element; anything else, including whitespace and comment lines, is illegal. This is a
subtle, but important constraint on XML; one of few constraints.

Namespaces
Although not shown in the preceding example, most XML documents will actually
resemble the following one:

<?xml version="1.0" encoding="utf-8"?>
<Order xmlns="http://wmp/schemas/quote">

 <Number>1234</Number>
 <Date>2011-06-11</Date>
 <Item Number="4432" Quantity="1" />
 <Item Number="5532" Quantity="2" />
</Order>

In this example, we can see that an attribute named xmlns has been applied to the
root element. This particular attribute actually specifies that the XML document in
question uses a specific namespace to qualify the Order element. This allows us to
define multiple order elements in different parts of the document without ambiguity.
In complex XML documents, namespaces can be defined at multiple levels, but
basically the namespace is a qualification mechanism. Often you will see named or
prefixed namespaces that will qualify particular elements within a document.
This is the reason you will often see an element defined like the following: <ns0:
Number>. This tells us that the Number element is defined within the ns0 namespace,
which will have a declaration in the root element similar to the following: xmlns:
ns0="http://wmp/schemas". Again, it is important to remember that this is
primarily a name/identity resolution technique. We could use the xmlns attribute on
any given element to specify its namespace, but this can become very verbose as our
previous example with the Number element would result in the following <Number
xmlns ="http://wmp/schemas">. Finally, sometimes you will see documents where
every element has a prefix, for example ns0. These documents have their element
form set to qualified; the other setting is unqualified which is the default (as in our
preceding example).

Appendix

[350]

Understanding XPath
As we have seen, XML documents are basically trees. We can identify specific
elements within the tree that is an XML document with a path, referred to as an
XPath. An XPath is the path to a specific node (or set of nodes) in an XML document.
These paths work in a manner similar to paths on a file system or queries in SQL.
The simple path to our Number element that we looked at before is /Order/Number.
This tells us that Number is a child element of the Order element, which happens to
be the root.

XPaths do not need to result in a single node and normally do not. In our example,
the XPath /Order/Item identifies, or selects, a node set; zero or more nodes. In
our specific example, this node set consists of two nodes. We can identify specific
instances within a node by using a familiar array indexing nomenclature: [n] where
n is the one based index of the set. To select the first Item we could use the XPath /
Order/Item[1].

Attributes are distinguished from elements by using the @ sign. In our preceding
example, we could select all the Number attributes of the Items with the XPath /
Order/Item/@Number.

Finally, there are different wildcards and query capabilities we can use in XPath to
identify specific elements. For example, //Item would select all the Item elements
anywhere within the document and //Item[@Number = '5532'] would select
all the Item elements that have a Number attribute that equals 5532. Suffice to
say that XPath allows us tremendous expressive capability when dealing with
XML documents.

The rest of XML
When people say XML they generally mean three related components: schema,
instance, and transform that correspond to three specific technologies: XSD, XML,
and XSLT.

XSD or schema is the specific format an XML document adheres to and is much
like a database schema. A schema describes what constitutes a legal (as in valid)
document. An XML document itself conforms to a specific schema, or should. This
schema will prescribe what elements, attributes, and values are valid for every part
of an XML document. If you are not using XSD schemas, which can really be thought
of as data contracts, then you are not making full use of XML. XML without XSD is
basically an angle bracket-delimited text file and does not bring many benefits with
it, but does incur many costs.

Appendix

[351]

Schemas are covered further within the text, but they can define both structure
and data type; much like a database schema defines tables, columns, and column
types. Elements and attributes can not only be strongly typed, but their order can be
dictated as well as instance requirements such as optional, one, or many (or even an
arbitrary number or range).

Understanding equivalence
XML, as the name implies, is extensible, but this extensibility means that a particular
XML document can conform to multiple different XSD schemas. This actually gives
us a bit of leeway when we deal with schemas that were designed outside of our
control. In our example, we could use the schema that defines the example XML
document we have seen and add further restrictions such as Quantity must be
greater than zero or that Item must exist once, but no more than ten times in any
Order. Our specific XML document could conform to both of these schemas because
it currently meets both sets of rules.

Troubleshooting guide
The following sections provide a brief troubleshooting guide for BizTalk solutions.

Nothing happened—what now?
This section is a troubleshooting guide to help you get through some of the more
subtle (and at times frustrating) parts of BizTalk development. Whether you've
already read through the text and are now developing your own solutions, or are
skipping ahead to search for answers to other issues, this section will probably be
one of frequent reference for many readers.

Perhaps, the most frustrating and difficult part of BizTalk for developers new to
the platform is knowing where to look when things go wrong. Being a distributed
system by nature, there isn't always a single centralized place to look for all the
answers. This is largely a byproduct of the distributed nature of the platform;
proving once again that everything comes with a price. The Administration Console
does go pretty far in accomplishing this goal, but even within the console there are
many places to find specific information:

Check the BizTalk Administration console for All In-Process Service
Instances or Messages. This is probably the most common location for
errors and there may be a failure there you need to see (some only appear
in Messages).

•

Appendix

[352]

Check the Application event log. Often BizTalk writes here for warnings and
errors. Be sure to check the event log on all machines in the group if this is
a multi-server environment. This can be critical to helping operations teams
track down issues as some errors will only occur on specific nodes.
Check Tracked Service Instances and Tracked Message Events and sort by
most recent. If you've turned on failed message routing, this can help you see
an error being routed out that you've forgotten about.
Be sure all your Host Instances, Send Ports, and Receive Locations are started
and enabled. If BizTalk reaches an error threshold on any of these, they may
shutdown or become disabled. This will certainly cause undesired results.
If you're calling an IIS hosted service (that is, something running in the
Isolated Host) check the IIS Logs. These contain detailed information about
every request made to a server and can help you see some errors that happen
before the actual call to the message box.
Consider connecting to the BizTalk Server with DebugView to see if any
traces are active. If you've followed the advice in this book, you will have
embedded, helpful, and low overhead trace statements throughout your
solution. This will aid in debugging complex issues. The BizTalk CAT
Instrumentation Framework provides even better support for logging
and is much more optimized; it is the preferred logging method for high
volume scenarios.
Restart the Host Instances. Especially on older or unpatched systems, this
may be required. Some of the older software, custom components and
adapters may not be fully optimized. If you're not versioning your BizTalk
assemblies, in the .NET sense, then new versions will not take effect until the
hosting processing (the host instance) is restarted.
Reboot the server (yes this is not pleasant, but sometimes necessary, although
I've never had to do this in a production environment). This mostly comes
up with older versions of BizTalk and the Visual Studio integration. This
has gotten much better with the 2010 platform alignment, but it still could
happen. A few minutes for a reboot on your development machine can save
hours of trouble.
If you get really desperate break out Ethereal or Netmon (or any other
network sniffer). This is getting pretty hardcore, as these tools can be
complex, but are extremely powerful. If you really want to know what's
going on "on the wire" this is a great way to find out.

•

•

•

•

•

•

•

•

Appendix

[353]

I dropped my message and it didn't get
picked up
Check that the receive location and the host instances that host it are started. This
can be slightly embarrassing when it happens, but even monkeys fall from trees.
Also, check the mask if this is a file or FTP receive. Finally, check the event log
because there could be security issues associated with any receive location. The devil
is certainly in the detail here. Two of the most common causes are user permission
and files being marked as "read only".

I dropped my message and it disappears, but
does not go where I expect it to go
This is often the result of an erroneous subscription and can be compounded by the
use of Failed Message Routing. The Tracked Messages / Tracked Service Instances
views should help you see what is happening. Often messages will end up in some
sort of error or logging location that someone has set up and forgotten about (or
failed to share).

What is coupling?
The following section describes, as succinctly as I could manage, the concept of loose
coupling; types of coupling, their impact / cost, and how they pertain to distributed
systems / middleware.

Every developer of the last decade knows that coupling in software is bad. It is an
anti-pattern, an example of what not to do. Yet if you ask developers what loose
coupling is they mostly give examples, not a definition. I myself couldn't create a
clear definition until I first wrote on the subject, and as you'll see, it's still not
that clear.

Part of what makes coupling so difficult to understand or spot in your own projects
is that there are actually many different types of coupling. The following are all
examples of coupling:

Contract/Interface
Transport
Location
Time
Platform (should be less of an issue in SOA, but it's still there)

•

•

•

•

•

Appendix

[354]

Some of these are obvious: transport and location represent clear concepts that
services are designed to help alleviate. Others are a little more complex. Consider
contract coupling. Contracts can couple in obvious ways, like types, and less obvious
ways. Recall that one of the principles of a good service is that it has an explicit
contract. XSD does a great job making contracts explicit and enforceable: it allows for
strong type definitions, complex types, and type validation. One thing XSD cannot
address, however, is implicit coupling. I often see two distinct forms of implicit
coupling: untyped messages and implicitly ordered contracts.

Untyped messages
This is one of my favorites as there is almost a good reason behind it: namely
flexibility. Generally, it is believed that by using an untyped message (string or xs:
any) a service interface can be changed at will without the normal planning (or pain)
required. This anti-pattern service will often expose a method called Execute or
something similar and take a string parameter of the XML payload or just xs:any.

This sounds like it might actually provide easy changeability and low maintenance,
but there are two fundamental flaws with untyped messages: first consumers have
no way to know what is legal to send. They have to ask, for example, payloads or
a separate schema file outside of the service definition. This means the service is
not well encapsulated. Worse, they only know if their message is correct once they
actually send it.

The second issue is that untyped messages accomplish nothing. Just because you can
change this vague implicit contract without the cooperation of your consumers does
not mean they can now use this service. Remember, they'll be sending what they
thought was the correct message before this contract update. Now they will just
be sending the incorrect, old format and not know why it doesn't work the way
they expect.

I've seen some reputable software companies take this approach, and I've never
seen it work out well. There is a difference between extension points in a schema and
untyped messaging. As my friend Phil Boardman pointed out, 'Untyped messaging
is basically an angle bracket delimited text file'. (Phil does admit he didn't think of
this, but I heard it from him).

Implicitly ordered operations
This is a much more subtle, and perhaps more dangerous, type of coupling. This is
where implicit rules or restrictions work their way into a service. Imagine a service
with operations like these:

Appendix

[355]

Login
Add item to basket
Validate order
Place order

This should look funny to begin with for a few reasons. First of all, this looks a lot
more like an API than a service, and second, you can see there is probably some sort
of order expected for these operations, but it is not clearly defined. You would need
a separate readme document to tell you that you must first call the Login operation,
then Add item to basket, then Validate order before calling Place order. WS-Policy
is one way to solve the order of operations, but it would only mask the problem
(mostly because it is not widely adopted or understood).

This example service also violates other principles: Autonomy and Statelessness.
By requiring multiple separate operations to be sent in a specific order, this service
implicitly contains state within it (if it didn't, it wouldn't know about your shopping
cart or the items in it) and it forces consumers to understand its internal working
(the order of operations). These are bad signs as changes to the service will almost
certainly impact the consumer. Let's suppose your service now needed to calculate
tax or shipping. This type of service would have no real place for them.

This service should really exist as one operation: Place order. In the implementation
of this service, the validation and login should all take place together in one unit of
work or transaction script.

The continuum of coupling
Service design is a series of trade offs; the impacts of which are not always
immediately clear. Thus coupling is really a continuum and where your services fall
on this continuum will vary with every implementation based upon these trade offs.
For instance, the goal of flexibility is in direct opposition with the goals of validation
and control. This is why service design deserves careful attention before you begin
implementation. This is the essence of contract-first development, and it is a good
idea both in code and in services. Test Driven Development really shines here
because you will get to know what your services are like before you are stuck
with their legacy implementations.

Definition of loose coupling
When I alluded to that definition of loose coupling I would probably break it down
like this: Something is loosely coupled if its interactions are separated by abstractions
of type, transport, platform, and state.

•

•

•

•

Appendix

[356]

So, how can you tell if a service (or code for that matter) is loosely coupled? This
part is strangely simple. If it is difficult to test a service, class, or method, then it is
probably not loosely coupled. Inversely, code that can be easily tested without major
setup and teardown is loosely coupled. To be clear when I say test, I mean effective,
completely automated tests. It's very easy to make tests that are almost useless
without realizing it. A test suite for even a single service should cover all the major
expected scenarios for valid and invalid service invocation.

This is one of those Code Smells Martin Fowler writes about in Refactoring and you
should be aware of it. When you start to realize your setup and teardowns are very
large and cumbersome, your code is slipping into tight coupling. This is the same
for services and code in general (which is normally service implementations). This
is probably the last warning sign that you're about to have major maintenance
problems; unless you don't have adequate tests, in which case you'll end up with
major production problems.

State
This section outlines the coupling inherent in state.

What is state?
State is the current configuration and settings of a system at a given point in time.
When I put my laptop down on the table, it remains there until I move it; it maintains
state. When I save this document I am writing it stays that way until I work on it
next; it too retains state. On a more technical level, when I set a variable to a value
that code now has state. State is a very natural concept for software developers and
one they learn early on. The fact that state is constant in all our human activities
probably exacerbates the issue.

Back to my previous shopping cart example, adding items to a cart is creating state.
When multiple operations are part of a single task they share state in that the task is
only complete when all the operations happen. Most often these operations must be
in a specific order and the operations must share data to accomplish their task.
This data and order are part of the state of this task. The more operations and
data are shared, the more state there is and the management of it will become
more cumbersome.

Anytime, two or more operations (meaning requests) are composed into a single unit
of work (or are required to perform a single task) state is necessarily involved. This is
because the requests are somehow related and someone will have to pay the penalty
for correlating them; that is to say matching the first request with the second.

Appendix

[357]

Many developers who "came of age" (in the programming sense) during the client
server era have state mentality deeply ingrained and will fall back on it when
tackling newer problems. This is a dangerous path into stateful, tightly coupled code.

Why is state expensive?
So what is wrong with all this? Why is state bad? State is bad because it is
complicated by its very nature. State involves several parts moving in unison in
order to work correctly. The separate operations must be coordinated and the
progress tracked (normally on both the client and the server); this is most often done
through the use of sessions. Sessions are conduits through which this data passes
and the mechanism for connecting separate operations into the single task. Any time
you open a database connection, or even a terminal screen, that is a session. Sessions
must do a lot of coordination in order to facilitate the work being performed. They
must match multiple requests from the client to the appropriate session that is in
progress (normally a specific thread of execution). Most frameworks do this for us,
but the fact of the matter is that as we scale sessions become far more cumbersome.

Even this quasi-automatic matching of requests to specific sessions, often called
session affinity, becomes an issue as you scale because if the session is provided in
a web server process every request from that user, for that session, must go to the
same web server. Alternatively, the session could be stored in a shared resource,
like a database, but this will slow every operation as the session is loaded back into
process by the application (the web server).

Then it actually gets worse, as besides simply coordinating requests and data, there
are issues around session lifetime management. How long should a session be valid?
What should be done when a session is no longer valid? Who will clean up whatever
resources the session used when it expired? For some older client server applications
this was easy, when the application closed the session was over. This shows how
tightly bound the application was to its session. In the distributed world, this is a
much more difficult problem to solve. Unless you're using a single open, persistent
TCP/IP connection there is not a definite lifetime for a session.

How does state relate to coupling?
Finally, the sequence of steps and data exchanged creates a type of coupling we
discussed in loose coupling. This prescribed sequence of operations and data
exchanges create glue that makes our programs stay in a specific form. This is an
implicit contract, perhaps the worst kind, because it is not expressed via the service
itself, but normally through outside documentation.

Appendix

[358]

So state is complicated and heavy with great amounts of overhead and it makes
it harder to change our services and applications. You can't just create a new
mandatory middle step without coordinating with all of your consumers. That
would break their existing applications. State affects coupling—generally more
increases it, less decreases it.

There are many technical reasons as to why state is bad, but for now let's just stick
with the fact that it's complicated and requires a lot of resources and overhead, as
well as creating an implicit contract.

Why do people feel like they need state?
More often than not the perceived need for state is actually misplaced. State is
obviously useful; all human interactions are built around it. When I'm shopping
online, I want to see what's in my cart as I add things. This cart is state, but a
careful distinction must be drawn between services and applications. Services are
used by applications, applications are used by people. People do not directly use
services. Using a web portal to tie together services to provide an e-commerce
experience is a great idea, but there is a distinction that must be made between
what functionality resides in the services and what resides in the web portal. In our
example, the stateful shopping cart definitely belongs in the web portal application,
the submission of an order really belongs in a service.

How can you avoid state?
There are several strategies one can use to avoid state in services and they work
better in specific situations. The easiest, perhaps, is to defer to the consumer. This is
what classic client-server applications did. The client was responsible for tracking
and taking care of its own session. This does work and our shopping cart example
would fit this type of state deferral pattern. The web portal must keep its own
shopping cart and when the user is ready submit it to the Order service.

Another popular technique is to defer to the ultimate destination application that the
service is a conduit to. This is less desirable, but also an option. I say less desirable
because the service will likely need to carry through information that really has
nothing to do with the service itself; perhaps a session ID or token of some sort.
If you must go down this route, you should really consider using a custom SOAP
header for this information, rather than simply placing it in your request message
bodies. The reason is twofold: first, this information has nothing to do with the
operation you are providing, it is a technical detail. Second, it is likely to be needed
on all your operations, so creating a SOAP header for it saves you from having to put
this information into every one of your operation input messages.

Appendix

[359]

Often the best approach is to simply design your services to not need state at all.
This can be done by making messages more coarsely grained and requiring them to
carry more information in their payload than would be the case of stateful services.
This can be paired with bunching operations together and thinking in more coarse
grained terms.

Where does all this fit into services?
Statelessness is critical to service orientation because of the unpredictable nature
of networks and distributed computing in general. We may take this for granted;
especially on smaller scales, but large distributed systems feel this impact as
transient errors, slow performance, and difficulty in change.

Services of all flavors are built on the premise and success of HTTP (that is, the
web). HTTP is perhaps the most successful protocol ever created. It can effectively
be argued that the very success of the Internet is largely due to the HTTP protocol's
stateless nature. This has allowed the web to grow in the way that it has.

This can really throw off a lot of people, even technical people, because almost
everything we do on the Internet these days appears to have state. The best designed
and most scalable services and applications actually do not really have much state.

Index
Symbols
-bs (body schema) 255
-ts (trailer schema) 255
<xs$any /> function 328

A
activity, BAM

creating 160-162
adapter, BizTalk architecture 19
advanced correlations 345
aggregation results

viewing 276, 277
aggregations

processing, by running SSIS package 275
AlphaInventory database 280
AlphaOrders 197
AlphaSales database 198, 199, 205
application servers 24
approval physical ports

creating 298
atomic, transaction type 190
attribute, XML document 348

B
backup, BizTalk 97
BAM

about 49, 50
activity, creating 50, 51
alerts 53
concepts 50
tracking profile, creating 51, 52
view, creating 51

BAM, concepts
continuation 52
document reference URL 53
relationship 52, 53

BAM, creating for solution
about 159
activity, creating 160-162
BAM profile, creating 160
tracking profile, creating 163-166
view, creating 162, 163

BAM activities
updating 269

BAMAlertsApplication 23
BAMAlertsNSMain 23
BAMArchive 23
BAMArchive database 169
BAM continuation, leveraging 274, 275
BAM database infrastructure

about 167
BAM maintenance 169
BAM tables 167, 168
BAM views 168

BAM features
about 269
aggregation results, viewing 276, 277
BAM activities, updating 269
BAM continuation, leveraging 274, 275
BAM milestones, groups defining for 270
dimensions, creating 270-272
improved view, exploring 275
measures in BAM view, defining 272-274
SSIS package, running to process

aggregations 275

[362]

BAM maintenance
analysis 170
data maintenance 169

BAM milestones
groups, defining for 270

BAM portal 53
BAM profile

creating 160
BAMPrimaryImport 23
BAMStarSchema 23
bindings, BizTalk solution

about 259
creating, for environment 264
DistributionListCollection 263
exporting 259, 260
modifying 263
ModuleRefCollection 260, 261
PartyCollection 263
ReceivePortCollection 263
SendPortCollection 261-263

BizTalk
deployment process 103-105
operational architecture 83, 84

BizTalk, types
about 43, 44
context types 45, 46
message types 44
resolution 46

BizTalk configuration, best practices
about 105
BizTalk hosts, separating 105
host-specific, settings 106
HTTP performance optimization, settings

107
BizTalk databases

BAMAlertsApplication 23
BAMAlertsNSMain 23
BAMArchive 23
BAMPrimaryImport 23
BAMStarSchema 23
BizTalkDTADb 23
BizTalkMgmtDb 23
BizTalkRuleEngineDb 23
SSODB 23

BizTalk development
XML 347

BizTalkDTADb 23
BizTalk group 26, 27
BizTalk installation

topologies 98
BizTalk issues, troubleshooting

about 108, 110
configuration over 108
EDIINT status reports 108
EDI status reports 108
grouped suspended service instances 108
tracked service instances / tracked message

events 108
work in progress / suspended items 108

BizTalk message flow
about 20, 21
BizTalk databases 23
message box 21, 22

BizTalkMgmtDb 23
BizTalkRuleEngineDb 23
BizTalk runtime environment

application servers 24, 25
database servers 25
Enterprise Single Sign-On Servers 25
servers and services 24
web servers 25

BizTalk Server
about 9, 10
administering 84-86
administration, improving 13
architecture, exploring 15
development time, decreasing 12
fitting, in enterprise 15
goals 10, 11
reliability, increasing 11
reuse, providing 12
rich information, providing to business

consumers 12
rich information, providing to technical

consumers 12
scalability 87
systems, decoupling 11
using 13-15

[363]

BizTalk solutions
at runtime 46-48
developing 31
developing, steps 31-33
development process, components 32
layers 35-37
partitioning 33
structure, requisites 33-35
Test-driven development (TDD) 34
troubleshooting 351, 352

BizTalk Visual Studio solution structure.
See Visual Studio solution, structure

BizUnit framework
URL 151

BizUnit test
cleaning up 156
creating 172
execution stage 157, 158
harnessing 158
setting up 156
solution 154

BizUnitTests class 158
Boolean property 286
BRE

about 222
Actions 222
business, working 229
Conditions 222
Explorers 222
looping 230
orchestration, updating 227
policies, deploying 233-235
policy, creating 226, 227
values, adding 223, 224
vocabulary, creating 223

BRE, looping in
about 230
BRE product class, using 231-233
GAC 231
library project, building 231

broker
about 306
approach, assessing 307
decide shape, using 306, 307
extensible solution, creating 308

orchestration, diagram 307
parties 308
roles 308

broker, improving with role-based links
about 308
new vendor, creating 313-315
parties, creating 310-313
role party links, implementing 309, 310

BTS.LastInInterchange property 286
business rules

about 57
used, for improving process 221

Business Rules Composer. See BRE
By delimiter symbol radio button 240

C
call orchestration

versus start orchestration 318
Call Orchestration shape 63
checkpoint, orchestration outline 184
clustered BizTalk hosts

HA with 94, 95
Comma Separated Value (CSV) 237
composite operation map

creating 293-295
CompositeOperation operation 298
composite operation schema

creating 292, 293
constant value 223
Content Based Routing (CBR) 68
context types 45, 46
continuation, BAM

about 274
leveraging 274, 275

continuation, BAM concept 52
Continuous integration (CI) 35
convoy correlation, sequential convoy

creating 332
core guidance 55
correlated data, parallel convoy

promoting 337
correlation, orchestration

creating 291

[364]

correlation, parallel convoy
creating 342

coupling
about 353, 354
continuum 355
examples 353
loose coupling 355
untyped messages 354

customer service
consuming 217
data query, adding to orchestration 219
discount calculation, enhancing 220
logical port, creating 219
map, creating 218
receive shapes, adding 219
send shapes, adding 219
WCF-SQL Send Port, updating 220, 221

D
database servers 25
data query

adding, to orchestration 219
discount calculation, enhancing 220
logical port, creating 219
new send and receive shapes, adding 219

DebugView 316
DebugView window 318
declaration, XML document 348
dehydration 59
delimited flat files

about 237, 238
flat file schema, using 245, 246
mapping 244
schema, creating 238-244
solution, compiling 246

deployment process, BizTalk 103-105
design patterns, BizTalk architecture

about 16
adapter 19
messaging 16, 17
publish subscribe 17-19
streaming 20

dimensions
creating 270-272

direct bound port 69
disaster recovery

about 96
BizTalk backup 97
BizTalk environment 98

Distributed Transaction Coordinator (DTC)
context 74

DistributionListCollection 263
document reference URL, BAM concept 53
Document schema 245
Document Type Definition (DTD) 155

E
EDIINT status reports 108
EDI status reports 108
element, XML document 348
elements, parallel convoy

promoting 338, 339
Enlist button 312
Enterprise Single Sign-On Servers 25, 26
envelope, sequential convoy

creating 328
envelopes. See envelopes and pipelines
envelopes and pipelines

Flat file disassembler 255
testing 253, 256
XML assembler / flat file assembler 255,

256
XML Disassmbler 253, 254

Event Tracing for Windows (ETW) 316
Extensible Markup Language. See XML
external schema, WCF-SQL Adapter

creating, for service request 207
External Schemas (.xsd files) project 38

F
failed message routing

implementing 195, 196
failover clustering 92
flat file

headers 250
schema concepts 249, 250
trailer 250

[365]

Flat file disassembler 255
Flat file disassembler component 245
FOR XML

used, for constructing XML 198, 200

H
HA

about 92
in BizTalk server 92
in SQL server 92, 93
with clustered BizTalk hosts 94, 95

High Availability. See HA
host instance 28, 29
hosts 27, 28

I
IIS AppPool

changing 213, 214
IMySchema MyMessage 62
in process hosts

isolated 29
internal schema, WCF-SQL Adapter

creating, for service
request 208, 209

Internal Schemas (.xsd files) project 39
InternalSchemas project 283
inventory

composite operation map, creating 293-295
composite operation schema, creating

292-293
updating 291

Inventory Management Solution
about 279, 280
notification schema, creating with WCF

SQL adapter 280, 281
SQL table operations, using 282-284
vendor order service, consuming 284

InventoryNotification message 284
isolated

vs. in process hosts 29

J
justification 249

L
layers

versus tiers 37
layers, BizTalk solution 35-37
Legacy Order format

receiving 170, 171
Libraries (C#, resources, and so on) project

40
Link by Name feature 244
Log Database File (LDF) 96
logical comparison, orchestration outline

implementing 182-184
logical ports, orchestration

creating 288-291
long running, transaction type 190
loose coupling 355
LotSize 320

M
maintenance, BAM

about 169
analysis 170
data maintenance 169

map, WCF-SQL Adapter
creating, for website orders 202

maps
about 56
creating 132, 296
creating, from canonical PurchaseOrder to

SalesOrder 140, 141
creating, from external PoPurchaseOrder to

PurchaseOrder 132-138
receive port, creating 142
send port, creating 142, 143
solution, testing 143
solution, wiring up 141
testing 138-140

Maps (.btm files) project 39
maps, order discount service

creating 185, 186
maps, WCF-SQL Adapter

creating, for service 209-211
Master Data File (MDF) 96

[366]

measures
in BAM views, defining 272-274

Mega value 324
message box, BizTalk message flow 21, 22
messages, orchestration

creating 284, 285
message types 44
messaging, BizTalk architecture 16, 17
Microsoft InfoPath 170
missed notifications

querying for 301
ModuleRefCollection 260, 261
monitoring

about 49
BAM 49

MSI
building, manually 264-266
builds, automating 266-268
examining 266

multicasting messages
about 147
new send port, adding 148, 149

N
namespaces, XML document 349
non-Serializable class 65
non-uniform sequential convoy

creating 343, 344
none, transaction type 190
Normal Order Routing 154
notification bindings

importing 297
Number element 349

O
OP_Receive_PurchaseOrders port 258
operational architecture, BizTalk 83, 84
orchestration

about 56, 59, 175
atomic scopes to call .NET methods,

avoiding 64, 65
basics 176, 177

content based routing, using 68, 69
correlation, creating 291
creating 284
direct bound ports, using 68, 69
distinguished fields, using instead of xpath

71-73
filters, leveraging 70, 71
large orchestrations, avoiding 63
loading messages into classes avoiding,

XmlSerializer used 67
logical ports, creating 288-291
message box (persistence points),

tips minimizing 63, 64
messages, creating 284, 285
multipart messages, using 62
outline, creating 177, 178
overuse, avoiding 60, 61
shapes, laying out 285, 286
unnecessary looping on collections, avoid-

ing 73-75
XmlDocument 66, 67

orchestration, parallel convoy
creating 339-341

orchestration, sequential convoy
creating 329-332

orchestration development 345
orchestration outline

checkpoint 184
logical comparison, implementing 182-184
ports, adding to canvas 180, 181
PurchaseOrder message, creating 179

orchestration ports, parallel convoy
wiring up 342

Orchestrations (.odx files) project 40
Orchestration View window 177
order discount service

consuming 184
distinguished fields 187, 188
maps, creating 185-187
new send port, creating 188, 189
service artifacts, adding to solution 185

Order element 348
OrderSchema MyMessage 62

[367]

P
pad character 249
parallel convoy

correlated data, promoting 337
correlation, creating 342
creating 336
elements, promoting 338, 339
orchestration, creating 339-341
orchestration ports, wiring 342
promoted property, creating 337
running 343
solution, binding 343
VendorInformation schema, creating

336, 337
parallel processing

enabling 315-319
parallel shape 319
parties 308

creating 310-313
PartyCollection 263
pass thru messaging

about 113-117
second receive location, adding 118, 119
solution, examining 118
transport properties 119-121

pipeline, sequential convoy
creating 328

Pipeline components (.cs files) project 40
pipelines. See also envelopes and pipelines
pipelines

about 57, 75
components 57, 78
metadata and message context 79, 80
receive pipeline, stages 76, 77
send pipeline, stages 78
stream processing 80

Pipelines (.btp files) project 39
policy

calling, by updating orchestration 227
creating 226, 227
deploying 233-235
expanding 229
simple update, performing 228

PolledDataAvailableStatement parameter
302

polling, working in WCF-SQL adapter
PolledDataAvailableStatement parameter

302
PollingIntervalInSeconds parameter 302
PollingStatement parameter 302
PollWhileDataFound parameter 302
UseAmblientTransaction 302

PollingIntervalInSeconds parameter 302
polling method

settings 302
using 301, 302
using, steps 301

PollingStatement parameter 302
PollWhileDataFound parameter 302
port level

mapping at 58
ports, orchestration outline

adding, to canvas 180, 181
positional flat files

working with 246-249
Priority Order Routing 154
ProductInventoryQuote schema 291
profile, BAM

creating 160
project, Visual Studio solution

External Schemas (.xsd files) 38
Internal Schemas (.xsd files) 39
Libraries (C#, resources, and so on) 40
Maps (.btm files) 39
non project artifacts 41
Orchestrations (.odx files) 40
Pipeline components (.cs files) 40
Pipelines (.btp files) 39
Testing (.xml, .dtd, .cs files) 40

promoted properties 144, 145
promoted property, parallel convoy

creating 337
publish subscribe, BizTalk architecture

17-19
PurchaseOrder message, orchestration

outline
creating 179

[368]

R
range of values 223
readme document 355
readStatus column 200
receive pipeline stage 76, 77
receive port

creating 142
ReceivePortCollection 263
relationship, BAM concept 52
ReorderCalculations orchestration 319, 323
RetrieveAs method 67
Role Link Properties dialog 312
role party links

implementing 309, 310
roles 308
root element, XML document 349

S
scalability, BizTalk Server

about 87
SQL server, scaling 87-89

scaling, BizTalk Server
about 89
host instances, adding 90, 91
hosts, adding 90, 91
servers, adding to group 92

scatter gather
about 319-322
improving 322

schema 350
schemas, WCF-SQL Adapter

creating, for database communication 206,
207

publishing, as WCF service 211, 212
schemas, XML messaging

creating 125-132
second receive location, pass thru

messaging
adding 118, 119

select statement 198
SendPipelineInputMessages class 329
send pipeline stage 78
send port

creating 142, 143

send port, order discount service
creating 188, 189

send port, WCF-SQL Adapter
creating, for SQL request 214

sequential convoy
about 327
convoy correlation, creating 332
envelope, creating 328
orchestration, creating 329-332
pipeline, creating 328
running 333, 334
solution, binding 333
solution, improving 334, 335
zombies, dealing with 335

Serializable attribute 64
service, WCF-SQL Adapter

testing 214, 215
service artifacts, order discount service

adding, to solution 185
set of values 224
shapes, orchestration

laying out 285, 286
SOAP Action 188
SOAP faults

catching, scope used 192, 193
encountering 190-192
handling 189
loop, using to retry request 193, 194
retry loop, breaking out of 194, 195
scopes and exceptions, using 189, 190

SoapUI
URL 214

solution
MSI, building manually 264-266
MSI, examining 266
MSI builds, automating 266-268

solution, binding
about 296
approval physical ports, creating 298, 299
notification bindings, importing 297
orchestration, binding 300
WCF-SQL send bindings, importing 297
WCF-SQL send port, manual creation 298
web service send port, manual creation 299

[369]

solution, parallel convoy
binding 343
requisites, revising 305

solution, pass thru messaging
examining 118

solution, sequential convoy
improving 334, 335

solution routing
updating 116, 117, 146, 147

SQL message schema, WCF-SQL Adapter
creating 200, 201

SQL Server
HA 92, 93
scaling 87-89

SQL Server Integration Services (SSIS) 14
SQL table operations

using 282-284
SSIS package

running, to process aggregations 275
SSODB 23
standard order output folder 156
Standard Purchase Order test

about 155
clean up 156
execution stage 157, 158
setting up 156
structure 156

start orchestration
about 63
versus call orchestration 318

state
about 356, 357
avoiding 358, 359
need for 358
relating, to coupling 357

streaming, BizTalk architecture 20
stream processing 80
subscriptions, transport properties 123-124

T
tables, BAM 167
Test-driven development (TDD) 34
TestablePipeline class 256
Testing (.xml, .dtd, .cs files) project 40

tests
Visual Studio Project Settings 159

tiers
versus layers 37

TimeSpan variable 330
Toolbox. Orchestration 176
topologies, BizTalk installations

about 98
dual application, with dual database 100
dual application, with dual database

(active/active) 101
dual application, with dual database

(active/passive) 100
Enterprise topology, sample 102, 103
single application, with single database

99, 100
TrackedSchemas element 260
tracking profile, BAM

creating 51, 52
tracking profile, BAMcreating 163-166

Tracking Profile Editor (TPE) 32, 50
transport properties 119-121
troubleshooting, BizTalk solutions 351

U
UNICODE text encoding 347
unit test, WCF-SQL Adapter

creating, for website order 203-205
unit tests

about 151, 152
composition 152, 153
current solution, test for 155
good test, features 152
steps 153

untyped messages, coupling 354
update

performing 228
UseAmblientTransaction parameter 302

V
VendorInformation schema, parallel convoy

creating 336, 337
vendor order service

consuming 284

[370]

VendorRoleLink 310
view, BAM

about 168
creating 162, 163

Visual Studio Project Settings 159
Visual Studio solution, structure

about 37, 38
External Schemas (.xsd files) 38
Internal Schemas (.xsd files) 39
Libraries (C#, resources, and so on) 40
Maps (.btm files) 39
motivations 42
non project artifacts 41
Orchestrations (.odx files) 40
Pipeline components (.cs files) 40
Pipelines (.btp files) 39
projects 38
Testing (.xml, .dtd, .cs files) 40

vocabulary, BRE
constant value 223
creating 223
range of values 223
set of values 224
values, adding 223, 224
XML definitions, creating 225, 226

W
WCF-SQL Adapter

database, polling with 197, 198
map, creating for website orders 202
new WCF-SQL receive location, creating

202, 203
SQL message schema, creating 200, 201
unit test, creating for website order 203-205
XML constructing from SQL, FOR XML

used 198, 200
WCF-SQL Adapter, queries performing

with
external schema, creating for serrvice re-

quest 207
IIS AppPool, changing 213, 214
internal schema, creating for serrvice

request 208, 209
maps, creating for service 209-211

schemas, creating for database
communication 206, 207

schemas, publishing as WCF service
211, 212

send port, creating for SQL request 214
service, testing 214, 215

WCF-SQL receive location, WCF-SQL
Adapter

creating 202
WCF-SQL send bindings

importing 297
WCF-SQL Send Port

creating, manually 298
updating 220, 221

WCF SQL Adapter
notification schema, creating 280, 281

web servers 25
web service clients

new one-way receive location, creating
258, 259

process, exposing to 257
schema, exposing as service endpoint 258

web service send port
creating, manually 299

WebSiteOrders schema 252
Workflow Foundation (WF) 59, 175
wrap character 250

X
XLANGMessage class 67
XLANGs 59
XML

about 350
constructing from XML, FOR XML used

198, 200
document, parts 348
for BizTalk development 347
history 347

XML assembler / flat file assembler 255, 256
XmlAssemblerSend pipeline 329, 331
xmldata statement 201
XML Disassmbler 253, 254
XmlDocument 66

[371]

XML document, parts
attribute 348
declaration 348
element 348
namespaces 349
root element 349

XmlDocument. XmlReader class 67
XML envelopes

processing 251-253
XML messaging

map, creating from external PoPurchaseOr-
der to PurchaseOrder 132-138

maps, creating 132

schemas, creating 125-132
XML messagingwith maps 124, 125

XPath 350
XPath expression 71
xpath function 71
XPath shorthand 71
XPath statement 73
XSD 350

Z
zombies, sequential convoy

dealing with 335

Thank you for buying
Microsoft BizTalk Server 2010 Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SOA Patterns with BizTalk Server
2009
ISBN: 978-1-847195-00-5 Paperback: 400 pages

Implement SOA strategies for Microsoft BizTalk
Server solutions

1. Discusses core principles of SOA and shows
them applied to BizTalk solutions

2. The most thorough examination of BizTalk and
WCF integration in any available book

3. Leading insight into the new WCF SQL Server
Adapter, UDDI Services version 3, and ESB
Guidance 2.0

Applied Architecture Patterns on
the Microsoft Platform
ISBN: 978-1-849680-54-7 Paperback: 544 pages

An in-depth scenario-driven approach to architecting
systems using Microsoft technologies with this
Applied Architecture Patterns

1. Provides an architectural methodology for
choosing Microsoft application platform
technologies to meet the requirements of your
solution

2. Examines new technologies such as Windows
Server AppFabric, StreamInsight, and Windows
Azure Platform and provides examples of how
they can be used in real-world solutions

3. Considers solutions for messaging, workflow,
data processing, and performance scenarios

Please check www.PacktPub.com for information on our titles

Microsoft BizTalk 2010: Line of
Business Systems Integration
ISBN: 978-1-84968-190-2 Paperback: 536 pages

A practical guide to integrating Line of Business
systems with Microsoft BizTalk Server 2010

1. Deliver integrated Line of Business solutions
more efficiently with BizTalk Server 2010

2. Obtain pre-requisite ERP and CRM knowledge
that will make your integration project successfu

3. Examine ways to integrate with leading
Enterprise Resource Planning (ERP) systems like
SAP and Microsoft Dynamics AX 2009

4. Study techniques used to integrate with leading
Customer Relationship Management (CRM)
systems like SalesForce.com and Dynamics
CRM 2011

Business Process Execution
Language for Web Services
2nd Edition
ISBN: 978-1-904811-81-7 Paperback: 372 pages

An Architect’s and Developer’s book and eBook
guide to BPEL and BPEL4WS

1. Architecture, syntax, development and
composition of Business Processes and Services
using BPEL

2. Advanced BPEL features such as compensation,
concurrency, links, scopes, events, dynamic
partner links, and correlations

3. Oracle BPEL Process Manager and BPEL
Designer Microsoft BizTalk Server as a
BPEL server

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing BizTalk Server 2010
	Understanding what is BizTalk Server
	Stating the goals of BizTalk Server
	Increasing reliability
	Decoupling systems
	Providing reuse
	Decreasing development time
	Providing rich information to technical as well as business consumers
	Improving administration

	When to use BizTalk Server
	Where does BizTalk fit into the Enterprise?
	Exploring the architecture of BizTalk Server
	Design patterns within the BizTalk architecture
	Messaging
	Publish Subscribe
	Adapter
	Streaming

	Understanding BizTalk message flow
	The Message Box
	Other BizTalk databases

	Presenting the BizTalk runtime environment
	Servers and services
	Application servers
	Database Servers
	Web Servers
	Enterprise Single Sign-On Servers

	Understanding roles and relationships
	The BizTalk group
	Hosts
	Host instances
	Isolated vs. in-process hosts

	Summary

	Chapter 2: Introduction to BizTalk Development
	Developing BizTalk solutions
	Partitioning the BizTalk solution
	Specifying the requirements of solution structure

	Understanding the layers of a BizTalk solution
	Visual Studio solution structure
	Projects
	External Schemas (.xsd files)
	Internal Schemas (.xsd files)
	Maps (.btm files)
	Pipelines (.btp files)
	Pipeline components (.cs files)
	Orchestrations (.odx files)
	Libraries (C#, resources, and so on)
	Testing (.xml, .dtd, .cs files)
	Non-project artifacts

	Motivations for solution structure

	Understanding types in BizTalk
	Message types
	Types in contexts
	Type resolution

	Understanding the solution at runtime
	Monitoring
	Why BAM?
	Understanding BAM concepts
	Creating a BAM activity
	Creating a BAM view
	Creating a BAM tracking profile
	Advanced BAM concepts
	Continuation
	Relationship
	Document reference URL

	Introducing the BAM portal
	Presenting BAM alerts

	Summary

	Chapter 3: BizTalk Development Guidelines
	Core guidance
	Determining where to place different types of logic
	Maps
	Orchestrations
	Business rules
	Pipelines and pipeline components
	General concept

	Mapping at the port level

	Orchestration best practices
	Avoid overuse of orchestration
	Always use multipart messages in orchestrations
	Avoid large orchestrations
	Minimize trips to the message box (persistence points)
	Avoid using atomic scopes to call .NET methods
	Don't use XmlDocument for a message type… ever
	Avoid loading messages into classes via the XmlSerializer
	Use direct bound ports and Content Based Routing
	Leverage filters in orchestrations
	Use distinguished fields instead of xpath
	Avoid unnecessary looping on collections

	Pipelines
	What are pipelines?
	Stages in a receive pipeline
	Stages in a send pipeline
	Pipeline components
	Metadata and message context
	Stream processing

	Summary

	Chapter 4: Operating BizTalk
	Understanding BizTalk operational architecture
	Administering BizTalk Server
	Scalability in BizTalk Server
	Scaling SQL Server
	Scaling BizTalk Server
	Adding more hosts and host instances
	Adding more servers to the group

	Exploring high availability in BizTalk
	High availability in SQL Server
	High availability with clustered BizTalk hosts

	Understanding disaster recovery
	The BizTalk backup job
	Standing the new BizTalk environment up

	Examining sample installation topologies
	A single application with a single database
	Dual application with dual database (active/passive)
	Dual application with dual database (active/active)
	Sample Enterprise topology

	Walking through the BizTalk deployment process
	Presenting the best practices for BizTalk configuration
	Separating BizTalk hosts
	Host-specific settings
	HTTP performance optimization settings

	Troubleshooting BizTalk issues
	Summary

	Chapter 5: Basic Messaging Solution
	Pass thru messaging scenario
	Examining the solution
	Adding a second receive location
	Transport properties
	Basic subscriptions

	Simple XML messaging with maps
	Creating schemas
	Creating maps
	Creating a map from external PoPurchaseOrder to PurchaseOrder
	Creating a map from canonical PurchaseOrder to SalesOrder

	Wiring up the solution
	Creating the receive port
	Creating the send port

	Testing the solution

	Content-based routing and promoted properties
	Property promotion
	Updating the solution routing

	Multicasting messages
	Adding the new send port

	Summary

	Chapter 6: Unit Tests and BAM
	What are unit tests?
	Tenets of a good test
	Composition of a test
	Test steps

	Tests for the current solution
	Standard Purchase Order test
	Test setup and cleanup
	The test execution stage

	Harnessing a test
	Visual Studio Project Settings for tests

	Creating BAM for a solution
	Creating a basic BAM profile
	Creating an Activity
	Creating a view
	Creating the Tracking Profile

	Examining the BAM database infrastructure
	BAM tables
	BAM views
	BAM maintenance
	Data maintenance
	Analysis

	Receiving a new Legacy Order format
	Creating a BizUnit test

	Summary

	Chapter 7: Leveraging Orchestration
	Introducing orchestration
	Orchestration basics

	Creating the orchestration outline
	Creating the PurchaseOrder message
	Adding ports to the canvas
	Implementing the logical comparison
	Checkpoint

	Consuming the order discount service
	Adding the service artifacts to the solution
	Creating the maps
	Distinguished fields
	Creating new send port

	Handling SOAP Faults
	Using scopes and exceptions
	Encountering a SOAP Fault
	Why is this happening?

	Using a scope to catch the fault
	Using a loop to retry the request
	Breaking out of retry loop

	Implementing Failed Message Routing
	Summary

	Chapter 8: The WCF-SQL Adapter and WCF Services
	Polling a database with the WCF-SQL Adapter
	Constructing XML from SQL using FOR XML
	Creating the SQL message schema
	Creating the map for the website orders
	Creating the new WCF-SQL receive location

	Creating the unit test for website order
	Performing imperative queries with the WCF-SQL Adapter
	Creating the schemas to communicate with the database
	Creating the external schema for the service request
	Creating the internal schema for the service request
	Creating maps for the service
	Publishing the schemas as a WCF service
	Changing the IIS AppPool
	Creating the send port for the SQL request
	Testing the service

	Summary

	Chapter 9: Expanding the Solution with Services and Rules
	Consuming the customer service
	Creating a new map
	Adding the data query to the orchestration
	Creating the logical port
	Adding the new send and receive shapes
	Enhancing the discount calculation

	Updating the WCF-SQL Send Port

	Using Business Rules to improve our process
	Introduction to the Business Rules Editor
	Creating a vocabulary
	Adding a new set of values called definition
	Creating XML definitions in a vocabulary

	Creating a policy
	Updating the orchestration to call this policy

	Performing a simple update to the policy
	Understanding how business rules work

	Expanding the policy
	Looping in BRE
	Building the Library project
	Using the product class from BRE

	Deploying policies
	Summary

	Chapter 10: Envelopes, Flat Files, and Batching
	Understanding delimited flat files
	Creating the delimited flat file schema
	Mapping the delimited flat file
	Using the flat file schema
	Compile and deploy the solution

	Working with positional flat files
	Grasping important flat file schema concepts
	Using flat file headers and trailers

	Processing XML envelopes
	Testing envelopes and pipelines
	XML Disassmbler
	Flat file disassembler
	XML assembler / flat file assembler
	Pipeline testing

	Summary

	Chapter 11: Completing the Order Processing Solution
	Exposing the process to web service clients
	Expose the schema as a service endpoint
	Creating a new one-way receive location

	Examining the solution bindings
	Exporting the bindings
	Understanding bindings
	Modifying bindings
	Creating bindings for each environment

	Building and deploying the solution
	Building an MSI manually
	Examining how the MSI is built
	Automating MSI builds

	Using advanced BAM features
	Updating BAM Activities
	Defining groups for BAM milestones
	Creating dimensions
	Defining measures in BAM views
	Leveraging BAM Continuation
	Exploring the improved view
	Running the SSIS package to process aggregations
	Viewing the aggregation results

	Summary

	Chapter 12: Asynchronous Solutions
	Introducing the inventory management solution
	Inventory notification with approval
	Creating the notification schema with the WCF SQL adapter
	Using SQL table operations
	Consuming the vendor order service

	Creating the orchestration
	Creating messages
	Laying out the shapes
	Creating the logical ports
	Creating the correlation

	Updating the inventory
	Creating a composite operation schema
	Creating the composite operation map

	Creating the other maps
	Binding the solution
	Importing the notification bindings
	Importing the WCF-SQL send bindings
	Manually creating a WCF-SQL send port
	Creating the approval physical ports
	Manually creating a web service send port
	Binding the orchestration

	Exploring other approaches
	Querying for missed notifications
	Using the polling method
	Polling settings

	Summary

	Chapter 13: Performing Parallel Processing and Branching
	Revising solution requirements
	Implementing the broker pattern
	Using the decide shape
	Assessing this approach
	Creating a more extensible solution
	Understanding roles
	Understanding parties

	Improving the broker with role-based links
	Implementing role party links
	Creating parties
	Adding a new vendor

	Enabling parallel processing
	Understanding the parallel shape
	Implementing scatter gather
	Improving scatter gather

	Summary

	Chapter 14: Processing Message Convoys
	Creating a sequential convoy
	Creating the envelope
	Creating the pipeline
	Creating the orchestration
	Creating the convoy correlation
	Binding the solution
	Running the sequential convoy
	Improving our solution
	Dealing with zombies

	Creating a parallel convoy
	Creating the VendorInformation schema
	Creating the promoted property
	Promoting the elements

	Creating the orchestration
	Wiring up the orchestration ports
	Creating the correlation
	Binding the solution
	Running the parallel convoy

	Creating a non-uniform sequential convoy
	Using advanced correlations
	A note about orchestration development
	Summary

	Appendix
	XML for BizTalk development
	A brief history of XML
	Understanding parts of an XML document
	Declaration
	Elements
	Attributes
	Root elements
	Namespaces

	Understanding XPath
	The rest of XML
	Understanding equivalence

	Troubleshooting guide
	Nothing happened—what now?
	I dropped my message and it didn't get picked up
	I dropped my message and it disappears, but does not go where I expect

	What is coupling?
	Untyped messages
	Implicitly ordered operations
	The continuum of coupling
	Definition of loose coupling
	State
	What is state?
	Why is state expensive?
	How does state relate to coupling?
	Why do people feel like they need state?
	How can you avoid state?
	Where does this all fit into services?

	Index

