
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX
Implementation Guide

Your all-in-one guide to exploring and implementing
Microsoft Dynamics AX

Yogesh Kasat

JJ Yadav

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX Implementation Guide

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1140915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-896-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Yogesh Kasat

JJ Yadav

Reviewers
Palle Agermark

Fatih Demirci

Stephanie Kroese

Ravi Shankar Kumar

Commissioning Editor
Priya Singh

Acquisition Editors
Kevin Colaco

Neha Nagwekar

Content Development Editor
Anand Singh

Technical Editor
Parag Topre

Copy Editors
Sarang Chari

Sonia Mathur

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Yogesh Kasat is a cofounder of Real Dynamics, which is one of the first Microsoft
Dynamics AX IV&Vs (Independent Verification and Validation services provider).
The goal of Real Dynamics is to help businesses and their internal IT teams to take
their Dynamics AX implementation to the next level with independent and unbiased
recommendations.

Yogesh has led a number of large Dynamics AX implementations and turned them
into success stories. He has a unique blend of knowledge of financial and supply
chain modules, technical architecture, and business process optimization, and he
has held project management, leadership, and solution architect roles. Yogesh
is one of the founding partners of Real Dynamics—an organization focused on
providing independent guidance and oversight of Dynamics AX implementations,
post-implementation reviews, and help to customers in defining a roadmap for the
Dynamics AX platform. He held a leadership role for one of the leading Dynamics
AX partners as the vice president of Dynamics AX delivery and oversaw Dynamics
AX implementations throughout North America. He was awarded the prestigious
Leadership Award twice during his tenure with the company. He has six Dynamics
AX certifications, including financials, trade and logistics, and managing Dynamics AX
implementation (Sure Step). In addition to more than a decade's experience of working
on Dynamics AX, Yogesh has earlier experience with other business applications,
including Dynamics NAV/GP and PeopleSoft. He has traveled extensively for global
projects and has had the pleasure of visiting different parts of the world.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank my mom for always being there and giving me lessons in
honesty and being truthful that have helped me at every stage of my career.

I would also like to thank my wife, Ashwini, who has supported me at every step in
life, bringing all the charm to my life. She has had the patience to allow me to take
some personal time away to work on this book, pursue challenging projects, and
travel like crazy, which have resulted in the many experiences mentioned in the
book. Big thanks also go to the rest of my family, friends, coworkers, and peers in the
industry for their input and inspiration.

My sincere thanks go to my coauthor and longtime coworker, JJ Yadav, and the
reviewer, Stephanie Kroese, for their efforts and ideas in the making of this book.
Special thanks to all the reviewers and Packt Publishing for providing valuable
feedback and comments during the making of this book.

Finally, thanks to my bosses, clients, and the people who provided guidance
in creating many success stories and helped me reach where I am in my
career—Sandeep Walia, Pankaj Kumar, Anwar Jiwani, George Van Rijn, Sri
Srinivasan, Kevin Scott, Henrik Bergholt, Paul Delahunty, Scott Ball, Petras
Petroskevicius, Vivek Garud, Rohit Kulkarni, Anil Daga, and Dwarkanath Kasat.

www.allitebooks.com

http://www.allitebooks.org

About the Author

JJ Yadav has worked on Microsoft Dynamics AX for more than a decade as a
solutions architect, project manager, technical lead, and developer. He started
working on Axapta 3.0 as a developer with Euro Info Systems in India (now Tectura
India). He has experience in leading and managing several Dynamics AX Global
implementations and upgrade projects. His core technical expertise in Dynamics AX
includes infrastructure planning, integration services, data migration, and workflow.
He has extensive functional experience in financials, procurement, accounts
payable, accounts receivable, inventory and warehouse management, and the
service modules of Dynamics AX. Currently, he works as a senior technical project
manager with Ignify in the central region of the U.S. on a leading Global AX 2012 R3
implementation project.

I would like to thank my family, friends, and coworkers for their
support and inspiration. My sincere thanks to my uncle, Radhe
Shyam, for his support during the most difficult time of my life;
without his support and inspiration, I would not be where I am today.
Finally, my beautiful wife, Khushboo, for supporting and encouraging
me at every walk of life and all the patience and support during the
hours and weekends that I spent writing this book.

My sincere gratitude to my longtime coworker and coauthor, Yogesh
Kasat, for coming up with the idea of writing this book and making
me a part of it. I would like to thank my reviewer, Stephanie Kroese,
all the other reviewers, and Packt Publishing for providing valuable
feedback and comments during the creation of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Palle Agermark has worked as a developer and technical consultant with Concorde
XAL and Microsoft Dynamics AX for more than 20 years. He worked at Microsoft
Development Center Copenhagen for a number of years, primarily developing on the
financial, accounts payable, accounts receivable, and unit test modules.

Currently, Palle works for one of Scandinavia's largest Microsoft Dynamics AX
partners, EG, in Denmark.

He has been named a Microsoft Dynamics AX MVP for 2 consecutive years and
blogs about AX at http://www.agermark.com.

Fatih Demirci (MCT) is a technical consultant, project manager, and Microsoft
Certified Trainer. He graduated in computer engineering. He has been working
professionally on Dynamics AX since 2006. During this period, he has worked for a
lot of Microsoft partners, customers, and projects. He has over 10 years of consulting
experience, playing a variety of roles, including senior software engineer, team
leader, trainer, technical consultant, and project manager at Dynamics AX. He is
a cofounder of DMR Consultancy, which is the most promising ERP consultancy
company in Turkey, and he works with some of the most experienced and creative
Dynamics AX professionals. Recently, he also reviewed another wonderful book,
Dynamics AX 2012 R3 Development Cookbook, Packt Publishing.

He runs a professional and technical blog at www.fatihdemirci.net and shares his
thoughts and readings on Twitter and LinkedIn.

I would like to thank my family and friends for motivating me and
always pushing me to do my best.

www.allitebooks.com

http://www.agermark.com
www.fatihdemirci.net
http://www.allitebooks.org

Stephanie Kroese is a solution architect and project manager with over 15
years of successful experience in managing IT organizations and leading projects,
in which she delivered significant business value. She has a broad experience in
the implementation, application, and delivery of ERP, strategic planning, and
project management. For 12 years, Stephanie was the senior IT leader for a global
battery manufacturer and was responsible for driving the strategic direction of the
organization toward supporting business growth. In addition, she has spent over 7
years implementing various ERP systems—the last 4 of which focused on Dynamics
AX—in certain global organizations as a senior consultant in project management,
functional analysis, report writing, training, and technical roles.

Ravi Shankar Kumar is a passionate professional, who is able to contribute a
unique blend of project management, delivery, sales, and exemplary problem-solving
skills, along with a commitment to excel in any job. He has an eye for detail in ensuring
that a project's mission and objectives are met within scope, budget, and schedule.
Ravi has exceptional organizational skills to coordinate with and manage multiple
stakeholders, along with the ability to work autonomously and prioritize his workload
to deal with conflicting demands. An adept understanding of business processes and
an organization's culture, combined with an aptitude for lateral thinking, enables
efficient management of project risks and deliverables.

Ravi has been working in the IT industry since 2001, and his passion at work has
been to assist companies to increase their usage of IT/ERP systems to improve
productivity, manage change, and conduct better business for their customers,
employees, and owners. He is a highly motivated and energetic person with a strong
commercial and systems background, including extensive experience in analyzing
business requirements and translating these into systems solutions. He is also
particularly strong in the project management discipline and has a very good record
of driving projects to their successful conclusion through the use of his interpersonal
and organizational skills, including negotiations at the executive management level.
Ravi has a consulting, functional, project management, and sales background and is
flexible enough to be able to maintain a sense of humor under pressure. He is poised
and competent with a demonstrable ability to easily handle cultural differences. In
addition to this, he is also passionate about providing the best solutions in order to
achieve business needs. Ravi is always keen to take up challenging assignments and
deliver solutions to the customer's satisfaction.

www.allitebooks.com

http://www.allitebooks.org

Lastly, during several DAX 2012 and 2009 projects, he practiced communication on
multiple levels, for example, from the CEO to a shop's ground staff. Ravi currently
works with one of the top Big Four firms in India.

I would like to thank my fellow authors and Packt Publishing
for giving me this opportunity. I look forward to many more
publications! I would also like to take this opportunity to thank my
mother, Shanti Sinha, and my beloved wife, Bharti Kumari, for their
continued support during the long hours of reviewing this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

For my son Neel, who brings me feeling of winning the world with his cute smile.

 – Yogesh Kasat

For my precious children, Hrehaan and Mira.

 – JJ Yadav

[i]

Table of Contents
Preface xi
Chapter 1: Preparing for a Great Start 1

Project kickoff 1
Managing customer expectations and commitments 2
Tips for customers 3
Customer environment and culture 4
Resources 4

Consulting team resource alignment 4
Customer resource alignment 5
External resources 5

Establishing the team 6
The kickoff meeting 8

Project management and governance 9
The project plan 9
Communication 10
Change control 11
Budget tracking 12
The view from the top 13

The Agile methodology 14
Summary 14

Chapter 2: Getting into the Details Early 15
The requirement gathering techniques 16

The tools to use at this stage 16
Questionnaire 16
Lead 19
Negotiate 21

Conference Room Pilot (CRP) 22
Why is CRP needed? 22
Considerations for CRP success 23

Table of Contents

[ii]

The CRP execution 23
The Fit/Gap analysis 24
The implementation strategy 25
Key deliverables from the analysis phase 26
Summary 26

Chapter 3: Infrastructure Planning and Design 27
The Dynamics AX components and architecture 28

Databases 29
The middle tier 29
Reporting and BI 30
Client 30
The Help server 30
Capacity planning and infrastructure estimation 30
Capacity planning 31

The deployment details 31
Reports 32
Operating sites and schedules 32
The ISV products 32
Customizations 33
Integrations 33
The batch process 33

Using Lifecycle Services – Usage Profiler 34
Infrastructure estimation 35

Planning the system topology 38
The production system topology 39
The nonproduction system topology 41

Cloud deployment 42
The cloud services 42
Microsoft Dynamics AX 2012 R3 on Azure 43

Industry best practices and recommendations 45
Planning 46
The SQL server 46
The AOS server 47
Reviews 47

Summary 48
Chapter 4: Integration Planning and Design 49

Integration planning 50
Integration scenarios 50
Integration requirements 51
Synchronous or asynchronous 52

Table of Contents

[iii]

Integration technologies 53
Application Integration Framework and services 53

The AIF architecture 54
Key concepts in AIF 55
Cloud-based integration 58

The Microsoft Dynamics AX 2012 Data Import/Export Framework 59
An ad hoc manual file import/export 60
Automated asynchronous integration 60
Master data management 61

.NET Framework – .NET Interop 62
The .NET Business Connector 63
The third-party integration solution 63
Connector for Microsoft Dynamics 64

Integration design and development 65
Selecting the right integration technology 65
Developing a high-level conceptual design 66
Defining field mapping 68
Development, configuration, and testing 69

Best practices and recommendations 69
Summary 70

Chapter 5: Data Migration – Scoping through Delivery 71
Managing scope – simplifying data migration through rightsizing
the scope 72

Questions to ask during the scoping exercise 72
Leading the data migration requirements sessions 73
The battle of history 75

The design and development phase 76
Data mapping and transformation 77
Planning the data migration 77
Selecting the tools for data migration 79

How do I select the right tool? 79
Data migration versus data entry 79
Data import features developed on the project 79

The Data Import/Export Framework 80
Terminologies 81
Architecture 81
A summary of key features 83
AIF 84
Custom X++ 85
Describing custom X++ 85
Excel add-in 85
Describing an Excel add-in 86

Data migration execution tips 86
Initial templates for business 86

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Extracting source data into SQL tables 87
Never rename/repurpose fields 87
Considering premigration steps 87
Considering postmigration steps 87
Changing SQL to simple recovery mode 87
Multithreading and max DOP 87
Index and statistics maintenance 87
Disabling the AX logging 88
Considering SQL updates on migrated data 88
The SQL import – through caution and expertise 88
Managing configurations 88
Configuration management simplified with DIXF 89
Reviewing and deciding on the configuration 89

Data validation 90
A classic example of a data migration issue in projects 90
Summary 92

Chapter 6: Reporting and BI 93
Gathering BI and reporting requirements 93

The top three customer issues in reporting 95
Inaccurate data and calculation 96
Performance 96
Layout and formatting 96

Knowing about reporting tools 96
SQL Server Reporting Services 97

Out-of-the-box SSRS reports 97
EP chart controls 99
Cues in Role Center 100
The AX auto-report wizard 101
Exporting to Excel from forms 102
Business intelligence/analytics – cubes 103

Accessing data from cubes 104
The Management Reporter tool 106
List pages 108
Office Add-ins 109

Word add-ins 109
Excel add-ins 110

Other add-on BI solutions 112
Mapping reports and identifying gaps 112
The custom report development 113

Development 114
Testing 115
Deployment 116

Summary 116

Table of Contents

[v]

Chapter 7: Functional and Technical Design 117
The functional design document 118

Why write FDD? 118
Fit/Gap review session 119
Project management aspects of design 119
Things to know before writing FDD 120

The party model 121
The global address book 122
The financial data 122
The reverse engineering tool 123
Key global features 123
Big picture diagrams 128
Do's and Don'ts 131

The solution design document 132
Overview and objectives 132
Guidelines for Solution Design Documents 133

Engaging ISV partners 133
Before choosing ISV solutions 134
After selecting the partner 135
Common pitfalls 135

The Technical Design Document 136
Overview and objectives 136
Guidelines for the Technical Design Document 136

Preparation 136
Execution 137
Outcome 138

Summary 138
Chapter 8: Configuration Management 139

Configuration planning 140
Collecting the configuration data 143
Configuration tools 144

The Data Import/Export Framework 144
Importing and exporting data using various formats 144
Copying and comparing data between legal entities 144
Copying data between Microsoft Dynamics AX instances 145
Creating a custom entity 145

The Microsoft Dynamics ERP RapidStart Services 146
The Excel add-in 148
Export/Import – DAT/DEF file 149

The definition group 149
Defining the export criteria 150
Finding related tables 151

The LCS configuration manager – the beta version 152

Table of Contents

[vi]

The Test Data Transfer Tool – the beta version 153
Configuration data management 154

The golden environment 155
Copying the template company 156
Building configuration templates 156

Summary 156
Chapter 9: Building Customizations 157

Getting ready for development 157
The version control 158
The development environment 158

The shared AOS topology 158
The private AOS topology 159
The TFS branching strategies 160

Ground rules for development 161
Development layers and models 161
AOT objects' naming conventions 162
Label files and language 162
Establishing the code review process 162

The development process 163
Conceptualization 163
Data design 164

Adding fields to the existing tables 164
Table Types 165
Table fields 167
Date effectivity 168
Table properties 169
Index considerations 171
Tables key considerations 174
The delete actions 175

The business logic 175
The number sequence framework 176
The FormLetter framework 176
The RunBase framework 176
The SysOperation framework 177
Services and the Application Integration Framework (AIF) 177
Other application and development frameworks 178
Best practices to customize business processes 180

The user interface 182
Client user interface guidelines 182
Enterprise portal user interface guidelines 186
Report user interface guidelines 188

Security 192
Key concepts 192

Coding best practices 194
Best practice check 194

Table of Contents

[vii]

Naming variables and objects 194
Commenting the code 194
Labels and text 194
Database 195
Transactions 195
Exception handling 195

The Application Lifecycle Management (ALM) 196
Development 196
Creating the build 197
Testing/defect fixing 197
Release to production 197
Application Lifecycle guidelines and best practices 198

Summary 199
Chapter 10: Performance Tuning 201

Performance testing and tuning 202
Preparing for the process 203
The execution stage 203
Outcome 204

Tools for performance monitoring 205
The trace parser 205
The performance monitor 206
The performance analyzer – DynamicsPerf 207
The LCS system diagnostics 208
The performance benchmark SDK 210
The SQL Server Profiler 210
The SCOM pack for Microsoft Dynamics AX 210

Factors that impact performance 211
Infrastructure 211

Issues due to inadequate hardware 212
Virtualization 212

The environment setup 213
Network bandwidth and latency 213
Setting up Windows 213
Setting up SQL Server 213
An outdated application, kernel, and missing hotfixes 214
Inappropriate AX configurations 214
Maintaining indexes 215
Batch servers 216

Code and queries 216
Data caching 216
Too many RPC calls between the client and server tiers 217
Set-based operations 217

Table of Contents

[viii]

Batch parallelism 218
Long-running queries – missing indexes 219
Displaying methods on form grid 219

Approaching performance issues 219
Understanding the issue 220
Planning and defining the analysis strategy 220
Corrective action and review 221
General scenarios and investigation strategies 222

Issue 1 222
Issue 2 223
Issue 3 223
Issue 4 223
Issue 5 224
Issue 6 224
Issue 7 225
Issue 8 225

Summary 226
Chapter 11: Testing and Training 227

Testing 228
The test planning 229
Test scenarios and test case development 230
Unit testing 231
Function testing 231
System integration testing 232
User acceptance testing 232

The UAT planning 232
UAT execution and experiences 234
The UAT outcome 236

End-to-end testing 236
End-to-end test planning 236
Execution and real-life examples 237
Training 238
A training plan 238

The change management 239
Training preparation 240
System and business readiness 240
Security roles 240
Business process flows 240
Training manuals and user guides 241
The Help system 242

Personalization 242
The training environment 243

Summary 244

Table of Contents

[ix]

Chapter 12: Go-live Planning 245
Key considerations prior to going live 246
The decision to go live 249

Business contingency planning 250
Some technical tips 252

Putting together the go-live plan 254
Executing a release 257
The importance of communication 259
Summary 260

Chapter 13: Post Go-live 261
Initial stabilization 261

Triage and prioritization 262
Bug fixes and their business impact 262
The deployment stage 263
Troubleshooting tips and FAQs 264

Proactive preparation – what's coming 264
Preparing for the first month-end 265
Reporting requests 265
Security and roles assignments 265
Form changes 265
Performance reviews 265
The data growth 265
Training opportunities 266
Engaging with Microsoft 266
A Microsoft support budget 266
Business process optimization 267
Open change requests 268

Post-implementation review 268
Why post-implementation review? 268
Key factors to get the most out of PIR 269
Preparing for PIR 269
Pain points from experience 270
Post-implementation review – an AX 2012 customer 271
Current state – key challenges 271
The unused potential of Dynamics AX 272
Improvement opportunities – processes and systems 272
New features from the next release 273

Summary 274

Table of Contents

[x]

Chapter 14: Upgrade 275
When to upgrade 276

Benefit to the business operations 276
Are operations ready for the change? 276
Stabilization of the newer version 277
Continued technical support 277
Upgrade versus reimplementation 278
Project strategy and planning 278

Upgrading options 279
Source to target 279
In-place upgrade 280

The Dynamics AX upgrade process 280
Planning the upgrade 281

Managing customization (Fit/Gap) 281
Managing the scope 282

Managing the data 283
Business engagement 283
Impact on integrations 284
Impact on reporting 284
Code freeze in the source system 285
Infrastructure planning 285
The upgrade analysis 286

The code upgrade 287
Planning for the code upgrade 287
The code upgrade process 289
The upgrade script 292
The security upgrade 293

Testing the data upgrade 294
Objectives 295
Planning 295
Execution 296
Outcome 296

Upgrade testing 297
Data validation 297
System and regression testing 297
Integration and end-to-end testing 298

End-user adoption 298
Deployment planning and execution 298

Summary 301
Index 303

[xi]

Preface
The Microsoft Dynamics AX product has evolved into a formidable ERP platform
that is suitable for large-scale and enterprise customers. Although it comes with
richer functionality and better scalability, it also has additional complexity. This has
translated into more challenging implementation cycles as many projects are now
multicompany and multinational affairs. The keys for a successful Dynamics AX
implementation in this type of complex environment revolve around strong project
management and a clear understanding of what needs to be done in each phase of
the project. Recent releases of the AX platform put many new tools in your toolbox;
you need to understand the tools and select the corresponding techniques to ensure
that your Dynamics AX implementation project is effective and successful.

Microsoft Dynamics AX Implementation Guide draws on real-life experiences from large
Dynamics AX implementation projects. This book will guide you through the entire
lifecycle of a Dynamics AX implementation, helping you avoid common pitfalls
while increasing your efficiency and effectiveness at every stage of the project. This
book focuses on providing you with straightforward techniques with step-by-step
instructions on how to follow them; this, along with real-life examples from the field,
will further increase your ability to execute the projects well. Upon reading this book,
you'll be in the position to implement Dynamics AX right the first time.

ERP implementations are complex by nature because of their many moving parts,
and leaders are expected to know of all the aspects. This book provides a summary
of the various facets of running a successful Dynamics AX project without having
to go through expensive and time-consuming training courses. The aspects covered
include management, infrastructure planning, requirement gathering, data migration,
functional and technical design with examples, go-live planning, and upgrade.

Preface

[xii]

What this book covers
Chapter 1, Preparing for a Great Start, focuses on instituting effective project management,
project governance, and resource alignment from the beginning of the project.

Chapter 2, Getting into the Details Early, focuses on the planning and execution of
requirement gathering and Conference Room Pilot (CRP) sessions.

Chapter 3, Infrastructure Planning and Design, covers infrastructure planning, the
architecture of production, non-production, and disaster recovery environments.

Chapter 4, Integration Planning and Design, covers integration planning, integration
tools and frameworks available in Dynamics AX.

Chapter 5, Data Migration – Scoping through Delivery, discusses data migration
requirements, managing data migration scope, and identifying tools and techniques
for data migration and validation.

Chapter 6, Reporting and BI, covers common reporting and BI design principles and
best practices.

Chapter 7, Functional and Technical Design, discusses planning and executing a
functional design and a technical design. It covers tips and tricks with real-life
examples of design patterns—both good and bad—to support the best practices
recommended.

Chapter 8, Configuration Management, introduces you to tools and techniques used in
managing configurations and moving them from one environment to another and
managing configurations on larger projects to minimize conflicts and rework.

Chapter 9, Building Customizations, provides you with the best practices for
customization and patterns that are recommended by Microsoft.

Chapter 10, Performance Tuning, helps you to understand architecture components
that impact performance, performance and stress testing to catch issues ahead of
time, and performance troubleshooting for post-production scenarios.

Chapter 11, Testing and Training, effectively manages and executes system testing and
user acceptance testing. Its goal is to find issues and encourage business teams to
stay engaged in spite of finding issues.

Chapter 12, Go-live Planning, defines an hour-by-hour go-live plan and reviews it
with stakeholders.

Chapter 13, Post Go-live, shows you how to survive on a new system and use it to
deliver value to the business.

Preface

[xiii]

Chapter 14, Upgrade, shows how to prepare for upgrades, upgrade planning, and
preparing the business case for an upgrade. It even discusses the execution of
upgrade projects and post-upgrade opportunities.

What you need for this book
You need to have the following knowledge to get the most out of this book:

1. A basic understanding of the ERP implementation process.
2. An understanding of IT project management and Software Development

Life Cycle (SDLC).
3. Access to Microsoft Dynamics PartnerSource / CustomerSource and the

Lifecycle Services (LCS) portal.
4. Knowledge of Microsoft Dynamics AX and the Microsoft Dynamics Sure

Step methodology would be a plus point.

Who this book is for
This book is written from the perspective of a project manager, encompassing all
the areas to create a successful Dynamics AX implementation. Solution architects,
functional and technical consultants, business Subject Matter Experts (SMEs), super
users, IT managers, and technology leaders who are in the process of planning or
undergoing a Microsoft Dynamics AX implementation will also benefit from the
insights provided in this book. The book will help you during every phase of the
implementation with what to expect, the common pitfalls to avoid, and tips and
tricks learned from our experiences. Most of these techniques are useful irrespective
of the Microsoft Dynamics AX version. The Dynamics AX product has evolved since
Microsoft acquired it, and while rich features and scalability have been added, there
is also added complexity. We have tried to provide insights into relevant information
for each phase of the project in a single resource to help manage this complexity.
This book will be especially helpful to small/medium business customers that do not
have the luxury to engage multiple resources with individual skillsets.

Every business has its unique business model and organizational culture, and that
brings unique challenges for the ERP implementation. While going through this book,
you will encounter many recommendations, guidelines, and experiences; however,
you may need to fine-tune the recommendations as per your specific need based on
the particular project size, timeline, business organization structure, and industry.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xiv]

Conventions
ERP implementations are complex by nature due to so many moving parts, and
leaders are expected to know all the aspects. This book provides a summary of
numerous aspects that you need to know (without going through expensive
learnings) to make your Dynamics AX implementation(s) successful. We will
be jumping into management, functional/business, technical—code examples,
infrastructure aspects and that is by design.

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For example, a new class created by the vendor ABC for the sales order import
process should be named as AbcSalesOrderImport."

A block of code is set as follows:

 while select * from custTmpLedger
 {
 Info(custTmpLedger.Name);
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
following screenshot displays Customer transactions grouped by customers."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

It is our honor and pleasure to present experiences throughout this book. We
hope that peers in the Dynamics AX community and customers will benefit from
this book. I would love to hear your implementation stories and any feedback for
improvements. Please write to me on yogesh.kasat@realdynamics.com or connect
with me on LinkedIn at https://www.linkedin.com/in/yogeshkasat. Visit us at
www.RealDynamics.com.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
https://www.linkedin.com/in/yogeshkasat
www.RealDynamics.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Preparing for a Great Start
Getting your project started requires a well-defined project methodology and a
strong project manager. This chapter goes over some essential elements for getting
your project set up for success.

In this chapter, we will cover the following topics:

• Project kickoff
• Project management and governance
• Agile methodology

Microsoft provides Sure Step and Lifecycle Services as the methodology for
implementing their enterprise-level software. While we will reference a few
Sure Step and LCS tools, principles, and documents, this is not a book on
How to Use Sure Step or LCS.

Project kickoff
Prepare for a great start! Projects don't fail at the end; they fail when they start.
Under this topic, we will learn how to prepare for the start of a project, which
includes resource planning, understanding expectations and the commitments
made, and engaging the stakeholders.

Preparing for a Great Start

[2]

Managing customer expectations and
commitments
To be successful, you need to understand the commitments made on your behalf
by the sales team, and have access to the scope that the customer has signed off
on. Additionally, at a high level, the project managers need to communicate these
expectations to the entire team, consultants, and the customer team members alike. The
following are some points to keep in mind for managing these expectations effectively:

• Schedule meetings with the sales and presales teams for knowledge transfer to
the rest of the resources assigned to the project; ideally, the project managers
should meet the main decision makers while the deal is being finalized.

• Document all the knowledge transfer items; you will need them for future
reference and to bring the rest of the team members on board.

• Get all the documents related to the requirements that the sales team may
have received, and have them uploaded on SharePoint (I will be referring to
SharePoint often; as for most projects, you would be using it for as a common
repository of documents).

• Understand the solution blueprint that was put together by the presales
team, including any custom or ISV solutions that were shown as part of the
solution during presales.

• Understand all the documented scope and the undocumented expectations
that were set with the client.

• Understand the statement of work in detail. Get a good idea of what is in and
out of scope, and clarify any vague areas.

• Understand the key players involved, their roles, their influence in the
company/project, and their personalities. Basically, find out who the
stakeholders of the project are.

• At this stage, everything looks very easy.

Chapter 1

[3]

Tips for customers
The customers engaging on a Dynamics AX implementation should be hands-on
and not sit back, waiting for the consultants to swoop in and do all the work. The
customers should keep in mind the following tips to be proactive in getting the
project off to a good start:

• Getting comfortable with your partner: Spend a lot of time working with
your counterpart(s) from the implementation partner; learn about their tools,
processes, and methodology.

• Evaluate your people: Skilled resources play a key role in your success.
Spend time early on to evaluate whether the team you have can make it.
Waiting too long to pull the plug on the resources is only going to burn
your budget and impact the schedule. At the very least, raise your voice and
let your partner know that you are concerned. A customer's project lead,
with whom I worked in the past, would ask me within a couple of days of
having a new resource on board, ''Yogesh, do you think XYZ will make it?
It's your call. Otherwise, you are paying for his expenses too''. That project
was very successful as the customer was always watching out and was
very demanding to get the right resources on the project. Customers pay a
premium rate for each resource and deserve to have the right resources to
make the project successful.

• Resource continuity: It is a long ride and you need to ensure that you have
resource continuity for the key resources, from beginning through to the
end. Of course, there are unavoidable situations due to which you would
have resource changes on the project—that's where the documentation plays
a role. However, it does not replace the need to have resource continuity.
To keep the good resources engaged for a longer term, be flexible with the
onsite/offsite time or look for more local resources. You don't want to burn
those resources with crazy travelling and lose them eventually.

• Consider engaging an IV&V (Independent Validation And Verification
Vendor): ERP implementations are complex, and each mistake could be
expensive if not caught early on. Whether it is solution design, not having
the right resources or methodology, or pushing back to the business on
business processes, you need to catch them soon. Having an independent
validator engaged early on would help uncover such issues and reduce the
risk on the project.

Preparing for a Great Start

[4]

Customer environment and culture
Every customer is different. Their business model, industry, and organizational
culture have a huge impact on the way you run the project. For example, some
environments move quickly, and you need to keep up with their speed. On
the other hand, if you are doing a project for a public sector organization, you
will have to slow down and go with their speed/processes. Some have a more
mature IT organization than others (mature in terms of their IT processes, IT
team, infrastructure, and so on). You need to understand the environment and the
processes, adapt, and adjust.

• Engage with your customer early on to finalize the project governance and
implementation methodology. Present them with your implementation
methodology and align it to their needs.

• Understand their methodology wherever applicable. The customer may
already have multiple scrum teams with their boards in a backlog tool, like
JIRA or the Team Foundation Server. You can't just walk in and announce
that from the next day onwards, they will be following this huge MPP project
plan. You will be shot even before you are allowed to grab a seat.

Resources
No project can be successful without having the right people on your team. You
need to have an A team to deliver on the complex project and transform the business
for your customer. This goes for both the consulting team members as well as the
client team.

Consulting team resource alignment
The following are some key points to be kept in mind while forming your
consulting team:

• Identify the key roles needed on the project. Map the key roles and the
individuals, along with their availability. You need a strong solution
architect—someone who can see the big picture, a business analyst for each
critical area (for example, if it is a retail implementation, you need to have
an experienced retail business analyst), a QA lead, and a tech lead at the
minimum to survive on the project as a project manager.

• Prepare a resource plan for the consulting team, and share it with your
management. This is crucial to getting the right people at the right time.

Chapter 1

[5]

Customer resource alignment
This is the most important project for the company, and it is one of the most complex
ones as well; you need to ensure that the team is up to the challenge.

• Provide clear guidelines to the customer on what is required of a good team
member to be assigned to the project, and what the commitment will be:

 ° The team members must be knowledgeable and respected in their
area of responsibility of the project; they must also be empowered to
make business decisions on behalf of their organization.

 ° Recommend the customers to shift responsibilities or acquire part
time help during the project to free up the best resources. Business
decisions should not be made by someone other than the core
project team. Doing so could lead to rework, as decisions are usually
reversed down the line.

• Similar to business, you need to secure the A+ resources from IT to work on
the project.

• Make sure that the team members understand that the project would be
challenging, and demand a lot of their time before they commit. Work with
the executives to come up with compensation benefits upon the successful
rollout of the project.

External resources
In addition to the consulting team and the customer resources, there are potential
external resources that need to be considered. For example, if a key requirement is
to integrate to a third-party solution, identifying and engaging resources from the
solution provider at the start of the project will help keep these integrations from
becoming roadblocks down the road. Share the high-level project plan with these
resources and include them in your communication plan as well.

Preparing for a Great Start

[6]

Establishing the team
Once all the resources have been identified, the project manager must bring them
together as a cohesive team. The following are some tips and guidelines to building
and maintaining a good, working team:

• Define clear responsibilities among the team members and document them in
an organization chart. For example, John - accounts receivable, Tom - general
ledger, Craig - accounts payable and fixed assets, and so on. Align the
customer's resources on the organization chart (internal business analysts,
business SMEs, infrastructure, project management, leadership team, and so
on). The following diagram shows a sample organization chart:

• Create a team environment and make sure that everyone is engaged. Work as
a team and mandate no BMWs on the project (here, BMW stands for bitching,
moaning, and whining).

• Start engaging with the team to understand the team assigned to the project
and to identify the strong and the weak areas; you need to know who your
problem children are so that you can pay more attention to them.

Chapter 1

[7]

• Prepare a resource-onboarding checklist for the project. It should include
getting access to the client VPN, environments, SharePoint, adding to the
distribution lists, updating the organizational charts, the assignment of the
development machines to the developers, any mandatory security trainings,
and so on. Identify who to reach out to for initiating these steps. Smooth
onboarding will help in making the resources effective as soon as they join
the team.

• Every resource should have his/her own dedicated account (no sharing of
accounts/passwords and no generic accounts like user1, user2, and so on).

• Watch out for the upcoming holiday schedules for the different locations
where your project team members are based, and plan accordingly. Create
a centralized calendar for holidays, and even vacations, for the project team.
Update the key milestones and meetings on the project calendar.

• Align the internal IT resources/SMEs on the project organization chart
prepared by the consulting PM. Ensure that you have good coverage for each
area, and start working on filling the gaps through new hires, contractors,
or by training the existing staff. This will help in smoother execution of the
project, as your internal team will be involved with the decision making for
the solutions. The team members will be able to help with the transition as
they would already know the solution.

• Training the existing staff early on will kill two birds with one stone. Your
customer knows the business already, and can add lot of value to the project
team (it will also save the consulting dollars). Moreover, it will reduce their
anxiety over job security post-implementation of the new system. It is worth
the investment.

• Provide your project team access to customer source so that your team can
go through the training material available there while the project planning is
going on.

• Create a project in Lifecycle Services and grant access to the relevant
project team.

• Build ground rules for your project in agreement with all the stakeholders.
For example, if an e-mail conversation goes on for more than 10 threads, call
for a meeting and close out.

www.allitebooks.com

http://www.allitebooks.org

Preparing for a Great Start

[8]

The kickoff meeting
The project kickoff meeting is about setting goals and expectations. At the high level,
clearly define and communicate the goals of the implementation and why the dollars
are being spent. The following points outline the requirements for a successful
kickoff meeting:

• Review goals with the key stakeholders and ensure that you have the goals
defined in the order of priority.

• You may want to create a theme and remind everyone about the goals
periodically such as in different milestone meetings. For example, protect
the core - the goal is to sell, ship, and invoice the customer. (Everything else
is negotiable).

• Communicating the goals clearly to the team will help keep everyone on
track (and avoid any change requests that are not necessary). The kickoff
meeting must convey the following to the entire team:

 ° Project goals and scope
 ° High-level solution overview
 ° Project milestones
 ° Project team structure and roles
 ° Implementation methodology and steps to success
 ° Project communication plan and risk management approach
 ° Change control process

• Have the executives from both (partner and customer) sides engaged in
the kickoff. Keep them engaged on the project as much as you can to help
remove the roadblocks.

• Have all team members attend the kickoff meeting. With teams that are
geographically diverse, you should utilize the web-conferencing technology
or repeat the meeting for each team.

Chapter 1

[9]

Project management and governance
A project manager needs to have a fifty-thousand foot view of all the moving parts
on the project, and also be ready to get into the details where necessary. The project
managers who can zoom in and zoom out are more successful than others. Those
who are unable to do this fall into the following categories and their kind of behavior
leads to project failure:

• Project managers who stay at too high a level and don't get into (or don't
understand) details fail, because they don't have a sense of what is going on
at the ground level of the project. These PMs can't assess the issues and fail to
take corrective actions in time. Hence, the project fails.

• On other hand, there are project managers who come from a technical or
consultant background, and often fall back into their comfort zone down
in the details. PMs that don't look up out of the weeds will not only get in
their team's way (affecting their morale), but will miss the unfolding bigger
picture. In such a scenario, nobody has that fifty-thousand foot view, and the
rest of the project team keeps running with no clear direction, leading to
project failure.

In the following sections, we will cover the activities and deliverables that are
important for project governance.

The project plan
Your project plan is a roadmap of the project outlining the things to be done,
when they will be done, and by whom. When developing your project plan for the
Dynamics AX implementation, the following details should be covered:

• Decide on a phased rollout over the big bang, and define your work-
breakdown structure accordingly.

• Identify external dependencies as specific tasks in your plan. For example:
 ° EDI testing with customers or vendors
 ° Credit card processors
 ° Dealing with the banks
 ° Any other third-party providers
 ° ISV solutions
 ° Any other business project/projects that would impact the ERP

rollout, such as a warehouse move, a new retail store, and so on

Preparing for a Great Start

[10]

• Put together all the constraints on the plan—resource/holidays/any blackout
dates for release (for example, you should avoid a major release for a retailer
close to Thanksgiving or any other busy holiday season).

• Define the frequency for updating and publishing the project plan. Keep
all the stakeholders posted with the updated plan and upcoming activities,
activities that are behind schedule, and the plan for catching up.

Communication
Setting up your communication plan at the beginning of the project and reviewing
it in the kickoff meeting is important for keeping the stakeholders engaged with the
project. The following are some key components of communication management on
any project:

• Weekly status report: It's extremely important to publish status reports with
an accurate summary of the project every week. Utilize this as a tool to get
attention from the sponsors for help. Share any bad news sooner and take
corrective action. Sitting on the bad news is only going to make it worse.

There is no IT project that is always green. If you are consistently
showing a green status, there is something hiding in your blind
spot. Don't be shy of marking areas red when it's time to do so.

• Steering committee meetings: Schedule them frequently to keep the
executive stakeholders engaged. Engaging the stakeholders will help
you clear the roadblocks and steer the decisions throughout the journey.
Otherwise, they will be on your back when things are not going well and the
budget has been burnt. You want them to be engaged when you want and
not when have to. At the beginning of the project, you should work with
the steering committee to set a timetable for the meetings, the format of the
meetings, and the ways in which critical path issues and risks will be debated
and resolutions defined.

• Meetings on the milestone closure: You can align the steering committee
meetings to every important milestone. However, it becomes difficult to
reschedule with any changes in the plan. You need to truly complete the
milestones. Otherwise, you will end up carrying debt from the previous
milestone into the next one. High debt means high risk to the project.
Remember, you are not the government—keep your debt in control.

• Issue log tracking: Define a tool and a process for managing your issue log,
and train the entire team on the process. Actively manage and publish the
issue log with the due dates and owners from the beginning of the project.

Chapter 1

[11]

• Scheduling (effective) meetings: Each meeting should have an agenda
outlining the purpose or objective of the meeting, the high-level topics to
be discussed with the assigned owners, and the time allotted for each topic.
Try to have more frequent, but short meetings rather than long ones. Keep
control over your meetings; ensure that they do not deviate from the topic,
and don't let others derail your meetings. Keep the number of attendees to
the meeting to the minimum—invite only those who are required to take the
decisions at hand or those who need to be part of the project updates. This
will keep the meeting under control. Use quick meetings to brief the team
about project updates: even if you have sent e-mails, it does not mean that
the message has been received; e-mails are the worst form of communication.
The meeting minutes should be published after each meeting and should be
brief, documenting the decisions and actions only.

• Use of distribution list: Set up e-mail distribution lists for communication/
updates related to the project. You may need multiple lists (project
committee, SME's, technical teams, and so on) that will allow you to
communicate with the relevant audience.

Change control
The stakeholders don't give you an open check book. To stay on track, you need to
watch out for paths derailing your project, and manage them with a clearly defined
change-control process.

• Set up a process for change request management, including the process for
approval or rejection. Multiple levels of approval may not be a bad idea (for
example, approval for estimation, approval for implementation, and so on).

• Very often, the change itself may not be big, but its impact on the overall
project may be huge. The impact on the testing and training aspects need to
be evaluated carefully in addition to actual design and development. Include
all the components in your estimation template.

The timing of change is very crucial! I had a situation where the users wanted to
change the sequence of the columns on the forms. Suggestions started coming in
towards the end of the UAT. The changes that were requested would not have
taken too much time had we received this feedback in the earlier rounds of UAT.
However, allowing the changes to be made would've encouraged the rest of the
business groups to come up with similar requests, would've required updates to
the training material, and so on. We had to cleverly push back and add them to the
business transformation list. These changes were made after the release, and by then,
the business had learnt a lot more about the system and were able to provide better
inputs on what they needed.

Preparing for a Great Start

[12]

• Your solution architects are going to play a key role in supporting you in
your decision to take on or push back the change request. Leverage them to
help push back on the requests that do not add value.

• Sometimes, you may be in a tough spot when the business asks for changes.
For the business it may be small change, but they can't envisage the big
picture and the impact of the change on the project. Leverage the steering
committee and present the cost/schedule impact.

If your developers are directly working with the business,
watch out for any new scope taken up based on the
business feedback.

Budget tracking
You have a long way to go on the project, and you should make sure that you have
enough fuel for the long ride. You can't wait till the end of your journey to check the
fuel gauge; you would definitely run out of fuel.

• Keep a close watch on the planned budget to the actual, compare your
projected burn rate, actual burn along with the projected earn, and actual earn.

• Make adjustments sooner—whether it's getting an additional budget or
resource changes.

• Watch out for scope-creep items that were not initially planned (you
don't want your project to be derailed if the person signing the check
hasn't asked for it).

• Timesheets and invoice reviews are critical to managing your budget:
 ° Carefully review your spend from the beginning, and understand

where time is being spent. If there are not enough details in
the timesheets, ask questions! It is like reviewing your credit
card statement.

Have your team break down the work done by key phase
or milestones so that you can track your budget more
granularly. That will help you make decisions on the steps
you can take to correct overspending.

Chapter 1

[13]

 ° Compare your initial projections of burn with what has
been delivered.

You will have to be extra careful if the consulting team
is incentivized based on billable hours.

• Follow up on payments/collections: Timely payments by the customer show
that they value the work you are doing for them. When there are delays in
payment, most likely there is a problem with the delivery, and the sooner
you address it, the more likely you are to put the project back on track.

The view from the top
As part of that fifty-thousand foot view of the ERP project, the project manager has
to look out on the horizon for any outside factors that could impact the project. Here
are some examples of things to be aware of for keeping your project on track:

• Use the latest service packs and cumulative updates for Microsoft Dynamics
AX application, kernel, and SQL. Get them installed (have them on the
project plan too) as soon as they are available. It will reduce your exposure to
the issues that may exist in the standard product, and sometimes, provide an
additional functionality that can be used by the business.

• Keep an eye out for upgrades or changes that are in the works for any ISV
solutions that are part of your project or for any integration partners. Also
make sure that the ISV solutions are updated to the latest cumulative updates.

• Be aware of other, competing projects that are in process at the organization,
and of any pending projects that may be waiting in the wings. These projects
could dilute your customer's focus and cause delays. Make sure that these
potential conflicts are brought up in your steering committee meetings as a
potential risk.

• Major changes to the customer's business environment: major customer
losses or gains, raw material pricing changes, and an industry shakeup are all
examples of external forces that can impact your project. Keeping a lookout for
these potential risks will allow you to react and respond more quickly to them.

Preparing for a Great Start

[14]

The Agile methodology
With Agile becoming more and more popular, many customers have adopted it as
it allows you to react quickly to changing business needs. In my experience, I have
seen Agile ERP projects being more successful than the waterfall method. Every
customer has his/her own version of Agile though. Understand the customer's
current process, and tweak it to the version that would work for the ERP project. For
example, if they are creating all the tasks on the board and physically writing them
down, you may want to switch to the electronic format for better collaboration with
remote teams.

The following are some recommendations if you plan on implementing Dynamics
AX via an Agile methodology:

• Plan the tasks 4-6 weeks ahead, and build a backlog of things to be done after
the requirements or Gap/Fit sign off.

• It is very important to have unified tools and processes across the board.
• Generally, there is misconception about Agile; Agile does not mean no

documentation. You need to enforce using standard templates for all the
deliverables (for example, functional design, technical design, and so on),
and do not take any shortcuts using the Agile methodology as an excuse.

• Schedule frequent reviews (demos) with the business owners for each
sprint cycle.

• Break the implementation team into smaller scrum teams by relevant areas.
You would have cross-functional dependencies across the teams.

Summary
As mentioned at the beginning of the chapter, projects don't fail at the end, they fail
when they start. In this chapter, you learned about the things that are essential for
a great start of your ERP-implementation journey. We discussed the importance
of understanding the customer's expectations, environment, and culture. This was
followed by learning how to plan resources and establish a team. You also learned
about common project management and governance activities and about deliverables
such as project plans, communication plans, change control, and budget tracking. In the
end, you were given some recommendations for adapting the Agile implementation
methodology and tips for project managers to keep the project on track.

In the next chapter, we will learn about the requirement gathering techniques and
Conference Room Pilot (CRP)—early validation for the completeness of your
requirements and solution.

[15]

Getting into the Details Early
We will be discussing the techniques that are helpful in the analysis phase along with
a few examples. In this chapter, you will learn the following topics:

• Requirement gathering techniques
• Conference Room Pilot (CRP): This is an early validation for completeness

of the requirements and proposed solution

You need to dive deeper to understand what you are up against. One of the common
reasons why projects fail to deliver on time is that the requirements keep on bubbling
up at a later stage. You should ensure that you have the right resources on board
before you start discussions on requirements. It is the foundation for your project.
Projects will fail if the requirements are incomplete, if the right analysis was not done
to understand them correctly, or if you neglect to push back on requirements that do
not add any value. All these cases will result in more work (often rework) and will
impact the quality and timeline of the project.

It becomes tough to fix such projects at a later stage, as things that were missed
initially keep bubbling up throughout the journey and you are always reacting to
them (of course, the business team gets frustrated with explaining the same things
over and over again).

Getting Into the Details Early

[16]

The requirement gathering techniques
Consultants use different techniques for gathering requirements. Each has value in
certain circumstances, and in many cases, you need multiple techniques to gain a
complete picture of the requirements. The following diagram shows some common
techniques used for requirement gathering for ERP systems.

Listen
Lead

Negotiate

Requirements

Listen
Lead

Negotiate

Listening is the first step in the requirements-gathering phase; you need to listen to
the customer to understand what they need. We will now talk about the tools you
can use at this stage to make listening or the information collection process smoother.

The tools to use at this stage
• Questionnaire
• Pre-existing business processes
• Calculations and examples
• Existing templates and formats
• Walkthrough of the existing system

Questionnaire
Prepare questionnaires to collect information and let the business SMEs fill them out.
At this stage, you are giving them an opportunity to provide you with the details of
what the business needs and with their view of the requirements.

• The questionnaire should be tailored for the client according to the his/her
functional area and role.

Chapter 2

[17]

• Microsoft Dynamics Sure Step provides you with a good starting point for
questionnaires. You will have to tailor them considering the client business,
scope, and the requirements knowledge based on the proposal and the client
organization structure.

Here is an example of how the quality of your questions makes a difference. Suppose
you are working with the client to understand the revenue recognition and deferrals
process, one way of doing this is to go to the client, ask them to explain the entire
process, and ask an open-ended question, such as "What would you like to have in
the new system?". Another way is to understand the topic and put together good
questions to engage the customer. The following table shows a sample of some
questions or scenarios; I will take it to the customer and ask them for clarification/
examples and more inputs:

Revenue recognition and deferral questionnaire
Give me an example of the most common revenue recognition. For example, defer revenue to 12
months, starting today.
Do you have scenarios of deferring only a portion of the revenue (that is, if the revenue consists of
60 percent license and 40 percent services, then only services should be deferred)?

Renewal with the date in the past (start date in past).
Renewal with the date in the future (Start date in future).
Selling a future-dated contract.
Upsell of the product for the remaining period of the existing contract.
Rounding off—first or last month?
Proration calculations for the first and last month.
Complexities with uneven periods? (calculations by number of days in period? Applicable if you
have 4-4-5 periods).
New sale with contract dates in the past.
Contract cancellation for the remaining period—reverse deferred revenue for the rest of the
periods?
Contract cancellation with full refund—reverse deferred revenue for future, and recognize loss for
past periods in the current period.

Batch invoicing for renewals and calculations of deferrals/recognition. Do you want every entry to
hit GL or aggregated values?
Posting of deferral and recognition of a line discount.
Allocation of total order discount at the line level for deferral/recognition.
Migration of previously sold contracts (deferrals and recognition entries).
Cancellation of contracts sold prior to migration.
Contract cancellation with full refund for contracts sold prior to migration.

www.allitebooks.com

http://www.allitebooks.org

Getting Into the Details Early

[18]

Revenue recognition and deferral questionnaire
Renewal of previously sold contracts.
Upsell on contracts sold prior to migration.
Replacement scenarios (?)—Need to cancel the previous line item and add a different line item
starting today.
Integrations with the contract management system (where do you get the plan start and end dates
from?)
Customer bought today, product launched in two months from now, for a year. Work starts in two
weeks from now. When do you start recognition?

What happens when the launch date of a planned marketing campaign moves?
Variable billing per usage? (for example, cloud scenario, number of impressions in advertising
business)
Are there any other scenarios we missed?
What are the key pain points in the current system?

1. This is something I learnt from one of my bosses; for which I must give him
credit. Going with your detailed homework shows your knowledge about
the topic and helps in gaining the customer's confidence that you understand
it. At the same time, it also reduces the chances of missing out on any areas
during discovery and the time the customer has to spend on explaining the
process to you.

2. In this process, get examples of complex calculations (for example, revenue
deferrals, royalties, commission, and pricing calculations are good candidates
where you would need examples). Understand different scenarios and all the
factors involved in calculations.

3. Understand the current business process flows (as is processes).
4. Ask for any work instructions or operations manuals that document their

current process to help in understanding the current business process.
5. Get samples of the reports, especially external facing documents like invoices

(sometimes customer invoices can become a project by themselves), checks,
customer statements, packing slip, shipping labels, and so on, as applicable).
Similarly, get samples of other templates, such as current fixed assets, import
template, positive pay.

Chapter 2

[19]

6. Schedule an existing-system walkthrough, especially for areas that are
unique for the customer's business. Take screenshots and document the
process. Clarify if any changes are to be made to the existing processes and
provide recommendations for changes.

7. In global projects, engage the business SMEs to work with their counterparts
from different locales to come up with unified processes.

Lead
Now that you have collected information from the customer, it's time to analyze and
come up with your understanding of what they need. Document the requirements,
open questions you want to discuss further and get ready to lead the requirements
discussions.

It's time for you to dive deep into the requirements by engaging the customer
and asking the right questions to extract the information that you need. Clarify
conflicting requirements across the business groups.

Get business rules defined and validated in the form of flow charts. Each functional
team should work together on the future state of a business flow. This will validate
the completeness of requirements coverage, dependencies, and business rules. For
example, the order review process will be as follows:

1. If new customer arrives, he/she will go to the new ship queue.
2. If order is for more than X dollars, it needs to go through the big order queue.
3. If the credit limit is exceeded or past due account, route to the credit queue.
4. If a special product (license purchase, and so on), it needs to go to the

merchandizing queue.
5. If there's a customer tax exemption, route it to the tax queue.
6. A credit card order should go through fraud checks and to the fraud queue,

if necessary.

Getting Into the Details Early

[20]

The following diagram describes the process flow—I will go to business after
analyzing several spreadsheets and the existing documentation about the current
budget planning process and have them provide feedback on the requirement
understanding.

1. Understand the current process and document the pain areas; ask questions
to clarify.

2. Avoid any discussion about solutions in the requirements meetings (you
don't want the business to dictate the solution).

3. Do not spend time on discussing out-of-scope areas until the client has
approved the change order. Do not let your project derail, if it is not
approved to be in scope, it is not approved by the person who is signing
the check.

4. Capture reporting, security, integration, and data migration requirements
along with other requirements discussions. Non-functional requirements
play a key role in shaping a project's success.

5. Avoid using Dynamics AX terminologies or acronyms (for example, posting
profile, value models or DAX, OB, CRP and so on) during discussions with
the business team. It may be your 10th Dynamics AX implementation, but
most likely it is the first one for the client, and you will throw them off by
using those terminologies.

Chapter 2

[21]

Negotiate
As a consultant, you need to bring in the knowledge of the best practices in the
industry, help customers improve their processes, and push back on requirements
that do not add value to the business. As part of this negotiation, you will need to
provide insights into why a specific feature is not needed anymore and what it can
be replaced with in the new process.

Often, requirements are seen from the perspective of how it works in the current
system. It does not always mean how it should work. What is worse, is that
challenges/bugs in the current system become requirements to be implemented
in Dynamics AX. Consultants accept these as requirements and provide custom
solutions. Understand the problem you are trying to solve. Get to the bottom of
the issue and provide a solution accordingly. In most cases, customization is a lazy
way of providing solutions as an analyst; you are just taking the solution from the
existing system and pushing your work to the developer in terms of customization.

Here are a few examples of requirements for which you should push back:

1. I had a customer requirement to post an out-of-balance general journal entry.
Dynamics AX doesn't support it. The reason why the users were asking for
this to be a requirement was because the previous system had a bug that
would post an out-of-balance entry in certain scenarios and then accountants
had to use this feature to correct it.

2. A customer wanted a very complex workflow to be created. Every taxi
expense greater than $30 had to go through multiple approvals, all the way
to the CEO. All of that was being done when they were handling expense
approvals on paper, and was okay till then. We had to explain the complexity
they were adding (in terms of implementation and, more importantly,
ongoing support) by building a complex workflow. The question is not
whether Dynamics AX can handle it; you need to ask what value it would
add and whether the efforts are justified. It was a tough battle to win, but it
was worth fighting for and we won it in the best interests of the customer.

3. Another customer requested changing the unit price field to 8 decimal places.
They were selling some products in the quantity of 1 million units and the
per unit price would come to 8 decimals in reporting. Hence, the person who
was writing reports in the data warehouse requested the change in the ERP
to save reporting efforts.

There are many examples like this; poor analysis will add more customization.
Every time you get a requirement that needs customization, try to think how other
Dynamics AX customers are using it. Why did Microsoft not build the feature?
You will then find the pointers to push back. Having said that, there may be some
legitimate needs for customization though.

Getting Into the Details Early

[22]

These types of requirements keep coming back hence, you should document them in
your Business Requirements Document (BRD) with the priority of Out of Scope.

In some situations, you run into strong personalities from a
customer/business SME and they might be reluctant to accept
the provided recommendations. You should document your
feedback in BRD/Gap Fit documents as Strongly not recommended.
For example, in one of the projects, I was involved in a review
capacity. The customer wanted to see on-hand information of
different variants of the product in columns (because they were
used to seeing it that way in the previous system). Dynamics AX
2009 used to store them as rows and it was going to be a major
change in the core feature of Dynamics AX. I documented all the
reasons to avoid it. Eventually, there were issues with the feature
and initial documentation of the pushback was helpful.

Your goal should be to simplify the processes and go with the industry standards.
Your efforts in this exercise are to protect the interests of your customer and the
project; don't be shy in pushing back.

Conference Room Pilot (CRP)
A picture is worth a thousand words. Similarly, a good CRP is an effective way of
communicating the solution in a language that business SMEs will understand. It
will help confirm your understanding of the requirements and get an early feedback
on the proposed solution.

Why is CRP needed?
Use Conference Room Pilots (CRP) to model business scenarios, get early feedback
on the solution, and progressively refine the scenarios through a series of CRP
workshops to gain the business SME's acceptance, as shown in the following diagram:

Build CRP
Scenarios

Validate Proposed
Solution

Work with
Business SMEs
to build 'Business
Scenarios'

Configure
Proposed Solution

Configure system
to with Sample
(real) data for the
customer, cover
scenarios in
logical sequence

Review solutions
with business,
seek their
feedback, align
the solution

Schedule multiple
rounds of CRPs
to review
customizations,
data migration,
reporting

Interative

Chapter 2

[23]

Considerations for CRP success
Followings are the key considerations for successful CRP:

1. Focus on modeling business scenarios rather than individual requirement
fit-gap.

2. Dynamics AX is a very configurable solution. You may have multiple options
to choose from in the solution. Present those options to the business and help
them pick the right solution.

3. Identify missing requirements through solution review and solution gaps.
4. Schedule multiple CRP iterations as you progress through the solution

process. This will help to get an early feedback from the business and
address training earlier and make your UAT much smoother (as the business
will see the solution multiple times before UAT).

5. CRP workshops bring business, IT, and delivery teams in sync with
the solution.

6. It helps you to keep the business engaged in the project; business
involvement is the key for success of a project.

7. Ensure that you communicate your goals for every round of CRP. The SMEs
may watch half-baked solutions in some cases; you should make sure that
expectations are set upfront.

8. Make sure that you have all the process owners (decision makers) in the CRP.
You don't want to delay the design acceptance by hearing something like, "This
looks ok to me, but I can't really sign on it without Mary in accounting saying
that this gives her the information that she needs". Make sure Mary is there too!

9. Conversely, you don't want so many people in the CRP that you get easily
taken off-track by too many opinions. Carefully evaluate who the process
owners are and limit participation to those SMEs.

The CRP execution
Consider following points during the CRP execution:

1. Scenario: Engage with business SMEs to identify critical business scenarios,
cover all key processes, and put them into logical groups and sequence.

Getting Into the Details Early

[24]

2. CRP planning: CRP is one of the most important milestones (your first key
deliverable for the business team and their first exposure to Dynamics AX
too). You need to make sure there is enough time for environment setup,
data imports, and cross functional reviews within the team before you review
with the SMEs.

 ° Define a clear agenda: Mention the topics and scenarios that need to
be presented. Organize topics in a logical sequence, so that you can
present a complete story.

 ° Data migration for the CRP and any other DEV efforts that are
required for the CRP will be on a critical path. Deploy resources and
have them started early. It is critical to use customer data, rather than
using a demo data for the CRP.

3. Basic customizations for showing UI for critical changes: This will
allow the SMEs to visualize the changes that you have proposed and to
get their feedback.

4. Prepare documentation: This contains the CRP presentations along with the
relevant screenshots or videos using an application like, Task Recorder. This is
helpful for the business team to refer to it later or to review with their teams.

5. Have business analysts review the CRPs with the respective business owners
offline to get their buy-in (they will help you drive the CRP demos and make
CRP much smoother).

The Fit/Gap analysis
One of the key deliverables from the analysis phase is a Fit/Gap document. CRP
allows you to review the business fit of the standard processes configured within
Dynamics AX and also gets the feedback on the proposed solutions for Gaps.

• You can leverage the business process modeler in Microsoft Lifecycle
Services (LCS) for complete business processes. Having this created in LCS
means that the overall business process is analyzed, and providing access to
the LCS project increases knowledge of the gap.

• It is important to remember that this is a FIT gap session and Fit should also
be analyzed.

• Often at times, you will find gaps listed that aren't really gaps, as the solution
can handle the requirement.

• Another time to revisit and negotiate items that are causing a lot of
customization work and can be avoided.

Chapter 2

[25]

The implementation strategy
On global rollouts, single-instance versus multi-instance is a key implementation
decision. Leverage the following pointers to decide:

1. Localizations / countries / legal requirements
2. Security, data privacy / SOX
3. Connectivity (network latency) / performance
4. Maintainability / deployment / downtime for maintenance
5. Risk management for solution conflicts
6. Costs: licensing, support, upgrade
7. Shared services, intercompany transactions, master data management

Getting Into the Details Early

[26]

Key deliverables from the analysis phase
Following are the key deliverables from the analysis phase:

• Business Requirements Document (BRD)
• Implementation strategy
• Solution blueprint and Fit/Gap
• List of change requests and disposition (approved versus rejected or

deferred)
• Project plan baseline: Alignment to the project plan based on the approved

changes coming out of the CRP and updated BRD

Summary
With this chapter, we started the analysis phase of the project. We learned about
requirement gathering tools and techniques. We learned how you can use the basic
principle of listen, lead, and negotiate to successfully gather the requirements. We
discussed the importance of the conference room pilot and important considerations
for planning and executing the CRP sessions. We also learned about other deliverables
from the analysis phase such as Fit/Gap analysis and implementation strategy.

In the next chapter, we will learn about another key process in an implementation
project—infrastructure planning and design.

[27]

Infrastructure Planning
and Design

The infrastructure planning and design process typically starts during the
requirements gathering phase of the implementation project. This process is led by
the solution architect, project manager, and the customer IT team.

Unless software is supported by the right hardware, it will never be able to reach its
full potential. Sizing the infrastructure is laying the groundwork for success. Sizing
the right hardware is not only important for getting an accurate budget for your
Dynamics AX project, but also vital to how the system will function and perform
after the implementation and for years to come.

This chapter will cover the following topics:

• Dynamics AX components and architecture
• Capacity planning and infrastructure estimation
• Planning system topologies
• Industry best practices and recommendations

www.allitebooks.com

http://www.allitebooks.org

Infrastructure Planning and Design

[28]

The Dynamics AX components and
architecture
The key to planning an effective design is to understand the architecture and
components of Dynamics AX. A clear understanding of the architecture will help
you decide on the different components that you will need in your implementation
and the hardware required for all the components. The following diagram from the
Microsoft TechNet System architecture page shows the high-level logical view and
various components of Microsoft Dynamics AX system architecture:

Chapter 3

[29]

Databases
There are three types of databases in Dynamics AX and are explained as follows:

• Business database: This is the transaction database for Dynamics AX.
• Model database: This database stores the application elements. These

elements include standard code and customizations.
• Other databases: These are the content and configuration database for

SharePoint, Enterprise search databases, reporting services, and analysis
services (OLAP cubes) databases for Business Intelligence (BI) and reporting.

The middle tier
The middle tier of Dynamics AX consist of following components:

• Application Object Server (AOS): This is the middle tier for a three-tier
Dynamics AX architecture. As per the implementation strategy, you might
need multiple AOS servers to balance the load. The AOS performs the
following operations:

 ° It controls the communication between AX clients, databases,
and applications

 ° It executes the business logic of the Dynamics AX application
 ° It handles the required connectivity, security, and connection

management

• Services and Application Integration Framework (AIF): This integrates
Dynamics AX with the other systems. AIF services can be hosted on AOS
or IIS.

• Workflow system: This can be used to create individual workflows and
business processes and it runs on AOS.

• Enterprise Portal: This is the web portal of AX; commonly referred to as EP,
it extends common AX functionalities for customers, vendors, and employee
self-service. An enterprise portal requires the following components:

 ° IIS
 ° Microsoft SharePoint Foundation or Microsoft SharePoint Services

Infrastructure Planning and Design

[30]

Reporting and BI
The following components provide reporting and BI capabilities for Dynamics AX
application:

• SQL Server Reporting Services: This is used as the primary reporting
platform for Dynamics AX. All the reports are deployed and executed
on SQL reporting services. Dynamics AX reporting extension provides
connectivity between AX clients, AOS, and reporting services.

• SQL Server Analysis Services: This is used as the primary BI solution. All
the Dynamics AX BI cubes are deployed and executed on the SQL Server
analysis server platform.

Client
There are three types of clients for Dynamics AX 2012 R3, explained as follows:

• The Dynamics AX client application: This is a windows application which
provides rich user interface for AX application

• Excel Add-in: This add-on allows the users to access the Dynamics AX data
through Excel

• Enterprise Portal: This provides web user interface for Dynamics AX

The Help server
The Help server does what it says, it hosts the help content. The Help server is
hosted on IIS.

Capacity planning and infrastructure
estimation
You cannot determine appropriate hardware resource requirements without
first creating a measurement standard for using that hardware resource. In this
section, we will learn the information that we need to effectively estimate hardware
requirements and how to use Microsoft Lifecycle Services (LCS) to create a usage
profile and infrastructure estimates.

Chapter 3

[31]

Capacity planning
Capacity planning or generating a usage profile is the process of collecting data
required to understand the current and the projected use of the system to be
implemented. The Microsoft Lifecycle Services portal provides a data gathering tool,
Usage Profiler, to help you describe your current and projected usage of Dynamics AX.

Before you use Microsoft Lifecycle Services to create a usage profile, you need to
gather the information in the next section for your current implementation.

The deployment details
In this section, gather the deployment-specific information as described in the
following table:

Hosting Answer
Will the deployment be in a hosted environment? No
Virtualization
Do you plan to use virtualization in the proposed deployment? Yes
Organizational structure
Does your organization's structure include multiple
organizations?

Yes

How many legal entities are present? 10
How many subsidiary entities are present? 3
The total number of concurrent users 400
Across the enterprise, what is the peak number of concurrent
users?

200

Global deployment
Will Microsoft Dynamics AX be deployed in more than one
country? List all the countries.

No, US only

Do we need to deploy it multiple languages? List all languages. No, English (US) only
Components
Will a workflow be used? Yes
Will you use the Office Add-ins for Microsoft Dynamics AX? Yes
Will Microsoft SQL Server Reporting Services (SSRS) be
used?

Yes

Will Microsoft SQL Server Analysis Services (SSAS) be used? Yes
Will any reporting solutions other than Microsoft Dynamics AX
Reporting be used?

Yes, Management
Reporter

Infrastructure Planning and Design

[32]

Reports
Describe reports on the basis of whether they are operational, management, or
offline, their complexity, frequency, and the related business process.

Name Description Type Complexity Frequency
Related
business process

Trial
balance

Trial balance Management High Daily Ledger

Purchase
order

Purchase
order report

Operational Low Ad hoc Purchase order

Purchase
receiving
log

Purchase
receiving log

Operational Medium Ad hoc Purchase order

Operating sites and schedules
Operating sites are the locations at which your organization is running Microsoft
Dynamics AX. You'll need to provide a name, whether the location is remote or
onsite, upload and download bandwidth, and your WAN connection latency. Use
the work schedule to enter peak concurrent users per hour:

Name Location

Upload
bandwidth
(Mbps)

Download
bandwidth
(Mbps)

WAN
connection
latency
(milliseconds)

Time
zone

Schedule

US –
Chicago

US –
Chicago 100 Mbps 50 Mbps 100

US
Central

8 a.m. to
6 p.m.

US –
Washington

US –
Chicago 100 Mbps 50 Mbps 100

US
Central

8 a.m. to
6 p.m.

The ISV products
Enter the ISV products in your environment, and the estimated transaction lines
per hour:

Name Estimated peak transaction lines per hour
Sales Tax Calculation and Reporting ISV 1000

Chapter 3

[33]

Customizations
This describes the planned customizations in terms of peak transaction lines per
hour, and the related business process.

Name Related business process
Estimated peak transaction
lines per hour

Revenue recognition Ledger 1000
Commission calculation Sales 1000

Integrations
This describes the planned integrations in terms of peak transaction lines per hour,
and the related business process:

Name Description Related business
process

Estimated peak
transaction lines
per hour

Sales order
integration Web orders Sales 2000
EDI Integration of
PO

Purchase orders
integration Purchase 100

The batch process
This describes the batch processes in terms of transaction lines and recurrence:

Name Transaction
lines

Recurrence
interval
value

Recurrence
type

Time
zone

Start
time

Duration
(hours)

Sales order
invoicing 1000 1 Day

US –
Central

8:00
p.m. 1

Purchase
order
confirmation 100 2 Hours

US –
Central

8:00
a.m. .5

Sub-ledger
transfer 1000 1 Day

US –
Central

9:00
p.m. .5

AIF message
processing 1500 1 Hours

US –
Central

8:00
a.m. .25

Infrastructure Planning and Design

[34]

Using Lifecycle Services – Usage Profiler
Once data is collected, you can use the Lifecycle Services Usage Profiler tool to enter
the data or download it, fill data, and upload it. Follow these steps to create a usage
profile for your project:

1. Login to the LCS portal at https://lcs.dynamics.com.
2. Select your Project.
3. Select More Tools | Usage profiler.

https://lcs.dynamics.com

Chapter 3

[35]

4. Enter the data using the tool or download the Excel template and upload
the data. Use the horizontal scroll bar to see and enter all other details in the
Usage profiler tool.

5. Mark Usage Profiler as Complete when all the details are entered.

Infrastructure estimation
The Microsoft Dynamics LCS Infrastructure estimator provides an automated, rough
first estimate of the hardware needs of an environment. Estimates can be provided
for environments that are on your premises or on the cloud. As pointed out, the LCS
Infrastructure estimator tool provides a rough estimate based on the usage profile
data entered in LCS, and these estimates need to be reviewed by the system architect
on your project. You also need to consider hardware requirements for your disaster
recovery site and any other non-production environments.

The following steps explain how to use the LCS Infrastructure estimation tool to
create an infrastructure estimation:

1. Log in to Lifecycle Services.

https://lcs.dynamics.com/

Infrastructure Planning and Design

[36]

2. Select your project; on the project home page, and click on the Infrastructure
estimator tile.

3. Click on New estimate.

Chapter 3

[37]

4. Select the type of environment that you are creating an estimate for, like for
example, Production.

5. Enter a name for the estimate, and select whether the environment will be
hosted on the premises or in the cloud.

6. Enter other information as needed. The following table describes the
additional information that you may need to provide depending on the type
of environment that you have selected:

Environment Parameters
Development • Number of developers

• Version control system
Production None
Test • Type of testing

• Number of computers
Training Number of computers

7. Create an estimate for all the environments that you need.

www.allitebooks.com

http://www.allitebooks.org

Infrastructure Planning and Design

[38]

8. The following screenshot displays the list of environments created and the
corresponding hardware estimate:

Planning the system topology
Environments for development, testing, and production should be carefully
optimized for throughput, response time, scalability, and availability. Under this
topic, we will learn about the recommended system topologies for production and
non-production environments.

Chapter 3

[39]

The production system topology
The following diagram shows a layered system topology for large-scale
implementation projects:

Infrastructure Planning and Design

[40]

In the preceding diagram, servers are divided among three main layers. The following
table explains the different layers, recommended servers, and their purpose:

Layers Server Purpose
Perimeter network
layer

Terminal service cluster This provides VPN access to
authorized users.

Internet Information Services
(IIS)

This provides access to services
for AX through the IIS feature.

Internet Information Services
cluster (IIS cluster)

This provides Enterprise Portal
Support for AX.

Applications layer AOS cluster This provides connection to the
end users using AX Windows
client. Also, it provides
functionality for AIF, workflow,
and batch processing tasks. It is
recommended that separate AOS
clusters need to be created for AX
client users, EP users, and batch
processing.

Integration server clusters This provides connection to the
internal systems.

Dedicated servers This provides internal client's
access to the Enterprise portal,
Help server, search server, and
project server.

Database and
platform layer

Microsoft SQL Server Failover
cluster

This provides storage and
support for AX databases.
Also, it provides support
for additional database
requirements.

SQL Server Failover cluster for
reporting and BI

This provides support for
deployment and execution of
Dynamics AX reports and BI
cubes.

Storage Area Network This provides support for data
backup.

System Center Operation
Manager (SCOM)

This provides support for system
monitoring.

Active Directory Domain
Controller

This provides support to deploy
AX components.

Chapter 3

[41]

The system topology shown in the preceding diagram is only an example; the
solution architect needs to work with the internal IT and network teams and design
an appropriate system topology based on the components that you need in your
project, and other requirements such as availability, throughput, and scalability.
Follow the latest recommendations and best practices from Microsoft and other
experts when working on production infrastructure design.

The nonproduction system topology
The following diagram represents non-production environments, such as the test
and training environments:

Infrastructure Planning and Design

[42]

The following table describes how the computers in this sample topology are used:

Server Purpose
Active Directory domain controller This is used to deploy the Dynamics AX

components.
Application Object Server (AOS) cluster This is used to separate server for AX client,

batch processes, and enterprise portal.
Web server This is used to deploy IIS, EP, and Help

server.
Database server This is used as a common database server for

Dynamics AX databases, Reporting services,
Analysis services, and SharePoint database.

Cloud deployment
The cloud simplifies many challenges such as lead time, scalability, disaster recovery,
and so on.

The cloud services
In general, the following cloud services are offered by the Dynamics AX partners:

Type of service Description

Software-as-a-Service (SaaS) Here, infrastructure, application, and data,
everything is managed by the vendor.

Platform-as-a-Service (PaaS) Here, the vendor manages the infrastructure and the
Operating System. You only have to worry about
managing your application and data.

Infrastructure-as-a-Service (IaaS) Here, the infrastructure is managed by the vendor
and you manage the operating system, application,
and data.

Chapter 3

[43]

The following diagram shows the difference between the various cloud services:

Several Microsoft Dynamics partners provide these services. You can review the
cloud partners and see which engagement makes more sense for you. PaaS and IaaS
are the most commonly used offerings for Dynamics AX 2012 R3.

Microsoft Dynamics AX 2012 R3 on Azure
The cloud is a key strategy for Microsoft as an organization, and the Dynamics AX
R&D team is making huge investments to simplify Microsoft Dynamics AX cloud
deployments. Microsoft Dynamics AX 2012 R3 can be deployed on Microsoft Azure
virtual machines. When you deploy Microsoft Dynamics AX on Azure, it's basically
an IaaS offering. This means that Azure provides the virtual machines, storage,
and networking capabilities. You must manage and secure the operating systems,
applications, and the data installed on the virtual machines.

Infrastructure Planning and Design

[44]

Microsoft has simplified the deployment of Dynamics AX 2012 R3 using the
Lifecycle Services (LCS) Cloud-hosted environments tool. When you use the Cloud-
hosted environments tool to deploy, you'll need to select the type of environment
that you want to deploy on Azure such as a demo or development/test environment.
Based on your selection, the Cloud-hosted environments tool provisions the
appropriate number of virtual machines on Azure. These virtual machines have AX
2012 R3 components—and all of their prerequisites—already installed on them.

Follow these steps to create cloud-hosted environments for your project:

1. Log in to the LCS portal at https://lcs.dynamics.com.
2. Select your project.
3. Select More tools | Cloud-hosted environments.
4. Provide the Azure subscription ID.
5. Download the security certificate and upload it on the Azure

management portal.
6. Select the type of environment such as demo, development/test, or

production environment and deploy.

The following screenshot shows a list of the Dynamics AX environments deployed
on Azure:

https://lcs.dynamics.com

Chapter 3

[45]

The following diagram shows the architecture of the Microsoft Dynamics AX
deployment on the cloud:

Industry best practices and
recommendations
The following are a few industry best practices and recommendations for Dynamics
AX infrastructure planning.

Infrastructure Planning and Design

[46]

Planning
• Once you have the infrastructure design in place, you need to ensure that

you have a plan to deliver the environments as per other milestones.
• There could be a long lead time in getting the budget approvals, the

procurement process including lead time from Vendor, OS installation,
and so on.

• Add tasks for infrastructure deliverables to the overall plan and have the lead
time defined for the infrastructure team to deliver those tasks for your project.

The SQL server
Most of the performance issues arise from bottlenecks on SQL:

• Utilize the latest supported SQL Server version for Dynamics AX databases
to utilize the latest SQL Server features.

• The Dynamics AX database has intense storage requirements and it
should not be mistaken for any other OLTP database. Utilize the Microsoft
recommendations on storage planning and configuration. The following
blogs at Microsoft contain useful information on this topic:

Blogs links Details
https://technet.microsoft.com/
EN-US/library/dd309734.aspx

This is a Microsoft TechNet article on SQL
Server Storage Settings.

http://blogs.msdn.com/b/axperf Microsoft Dynamics AX performance team:
This contains several blogs on storage set-
ting best practices and recommendations

http://blogs.msdn.com/b/axsup-
port/

Microsoft Dynamics AX support team: This
contains several blog topics on infrastructure
estimation and hardware sizing.

• Dynamics AX 2012 extensively uses TempDB and in-memory processing of
data for performance optimization. In SQL Server 2012, TempDB is supported
on the local drive which gives you an opportunity to store the TempDB files on
Solid State Drives (SSDs). This can improve the performance for I/O access
to TempDB and avoid any contention.

• Plan for high availability by using failover solution on the SQL Server
instance for the recovery strategy. SQL Server 2012 supports the Always on
availability group feature to synchronize the primary instance to up to four
secondary replicas.

https://technet.microsoft.com/EN-US/library/dd309734.aspx
https://technet.microsoft.com/EN-US/library/dd309734.aspx
http://blogs.msdn.com/b/axperf
http://blogs.msdn.com/b/axsupport/
http://blogs.msdn.com/b/axsupport/

Chapter 3

[47]

• Plan for future expansion. For example, leave room for expansion in case you
have to add more RAM or CPUs at a later stage.

The AOS server
• Plan the AOS servers for different purposes and redundancy. Use Windows

Load Balancer or the Dynamics AX built-in load balancer functionality and
create a cluster for user AOS, integrations, and batch processes.

You can combine some of these depending on your load.
For example, user AOS can be used a batch server for
nightly batches.

• Try to minimize the number of AOS servers by having additional resources
on the servers.

Instead of having six AOS servers for users, I would get away with two
powerful ones. In the previous versions of Dynamics AX, there was a
limitation for scaling the AOS server and customers needed multiple
AOS servers. With Dynamics AX 2012, that's not the case anymore. One
of my customers was able to downsize from 18 AOS servers to 6 with
Dynamics AX 2012. The lower number of AOS would help with the
AOS licensing cost, maintenance, and troubleshooting.

• Do not oversize the AOS server resources either. The Microsoft
recommendation is to limit the AOS server to maximum eight CPU
cores and 16 GB physical memory.

• Virtualization is recommended for AOS servers as it helps to reduce
maintenance costs and allows high availability.

• Monitor the AOS server hardware utilization during tests and performance
testing to evaluate if the performance meets the required benchmarks.

Reviews
• You need to have somebody else to review the environments (other than the

resources who built it—leverage your partner, Microsoft Premier Support
team, or external consultants) once the hardware has been procured and
set up. SQL, network, OS, AOS, hardware, storage, security, and others
are very important aspects of your environments and need to be reviewed
thoroughly.

Infrastructure Planning and Design

[48]

• You have architected the infrastructure well enough, spent enough to buy all
the high-end hardware. Now, the last thing you want to realize is that you
haven't configured it well or you are not using all of its features.

We had a funny incident during one of the projects. We brought in
a consultant to review the hardware and the network. They found
that the network speed between AOS/SQL and the other application
was slower. Getting into details, they found that all these servers
were connected through a 100 MB switch while 1 GB switches had
been bought, but were sitting on the floor at the data center since
more than five years. Isn't that funny? But it happens all the time.
The infrastructure teams have the highest number of critical projects
running all the time with firefighting situations which demand off-
hours work. There is always a possibility of missing out on such things.

Summary
In this chapter, we went through the Dynamics AX system architecture and learned
about the different components in there. We learned about the information that
we need for capacity planning and infrastructure estimation, how to use Microsoft
Lifecycle Services to create a usage profile, and to roughly estimate the hardware
requirements for your implementation project. After getting rough estimates for
the hardware, we went through the different system topologies for production and
non-production environments. Finally, we explored the industry best practices and
recommendations related to infrastructure planning.

In the next chapter, we will learn another key aspect of ERP implementation
projects—integration planning and design.

[49]

Integration Planning
and Design

ERP is in the middle of the ecosystem of business facing applications, and Microsoft
Dynamics AX will need to directly or indirectly integrate with other applications.
Accuracy and timely update of this information is very important for business
success and growth. This chapter is about integration planning, understanding
integration technologies, and integration design/development.

In this chapter, the following topics are covered:

• Integration planning
 ° Integration scenarios
 ° Integration requirements

• Integration technologies
 ° Application Integration Framework (AIF)
 ° Data Import/Export Framework (DIXF)
 ° Microsoft .NET Framework
 ° Third-party integration solutions

• Integration design and development
• Best practices and recommendations

Integration Planning and Design

[50]

Integration planning
Planning is an important part of any data integration effort. Data integration
planning requires identifying integration scenarios and the high-level requirements
of integration. This topic covers common integration scenarios and the common
questions to be asked for gathering integration requirements.

Integration scenarios
Every project is different. So, integration requirements will vary depending on the
scope and the needs of the specific project. However, there are some common areas
where most of the businesses have processes that require integration. The following
table shows the common integration points and possible scenarios:

Integrations Possible scenarios

Customers Customers need to be maintained in the CRM system which
needs to be synced with the ERP system.

Sales orders Integrating web orders with the ERP system that includes
delivery notification, invoicing, and payments or with customer
systems directly (for example, EDI integration).

Product and inventory
(on hand)

Receiving product data from a PLM system. Sending the
product-and-inventory-on-hand data to external systems or
customers. For example, e-commerce, Amazon, Marketplace,
and so on.

Price list Sending product price list to external systems or customers. For
example, e-Commerce, marketplace and so on.

Sales tax Sales tax integration with sales tax solutions (To calculate the
sales tax based on the product, customer, ship to, price, and other
relevant parameters).

Purchase orders Purchase order, including ASN and AP invoice, integration with
the vendor systems.

Employee and positions Receiving employee and reporting relationship from the HR
system or sending employee information to the payroll or
expense systems.

Chart of accounts and
financial dimensions

Sending the chart of account and financial dimension data to
other internal systems like the payroll system, expense system,
and others.

Exchange rates Downloading daily exchange rates from exchange rate providers,
such as Oanda.

Payment integration
with banks

Sending AP payments such as check, ACH, wire, and so on, to
the banking systems or automating bank reconciliations.

Chapter 4

[51]

Integrations Possible scenarios

GL integration Importing GL journal entries occurring outside of Dynamics
AX system such as expense, payroll, loan accounting systems,
or other divisions using a different accounting system
(acquisitions).

Integration requirements
In a typical integration scenario, the implementation team works with the business
users, internal IT, and in some cases, representatives of the applications identified for
integration to determine the requirements in detail. The following questions must be
answered and documented in order to have a successful integration solution. Often,
the answers to these questions are not clear-cut and will require modeling of the
different scenarios to develop the best solution. That being said, starting this process
early in the project is the key.

Questions Example values Effects on design

What type of data needs to be
integrated?

Sales orders,
purchase orders,
and so on

This will help you to determine
if you can use any existing
document services or need to
create a new one.

What kind of integration type
will the other applications
support?

XML, Web services,
flat file, .NET
Interop

This will help you to determine
the technology to use.

What is the availability of
the systems that are being
integrated?
What are the requirements of
real-time data exchanges?

Asynchronous or
synchronous

This will help you to determine
the integration technology and
configuration requirements.

Is the integration based on the
pull model or the push model?

Pull, push, event-
driven

This will help you to determine
the customization and
configuration of the exchange
event.

What is the volume of
transactions?

Number of
transactions (daily,
weekly, monthly,
yearly)

This will help you to determine
the scale of integration, suitable
integration technology, and
deployment options.

What will be the frequency of
data exchange?

Timing per second,
minute, hour

This information helps you to
determine how to configure the
integration solution.

Integration Planning and Design

[52]

Questions Example values Effects on design

What business rules are
associated with the data?

Sequence of events
and exception
handling

This will help you to determine
the customization requirement
for the document exchange.

Does the data need to be
transformed?
Will the transformations be
performed before data is sent
or when data is received?

Extent of
transformation—
field level mapping,
value mapping, and
flat file to XML or
vice versa

This will help you to determine
whether AIF value mapping,
.NET transformation, or XSLT
transformations need to be used.

If integration needs to update
Dynamics AX, how will the
changes be updated?

Full, incremental This will help you to
determine the configuration or
customization requirement on
exchange.

Is the external system an in
house system or an external
trading partner?

Security and
encryption
requirements

This will help you to determine
how the users and security need
be configured.

Synchronous or asynchronous
One of the key decisions to be made is whether integration should be real-time
(synchronous) or asynchronous. The following table analyses both the messaging
approaches and describes the scenarios when one should be selected over the other:

 Pros Cons Good for Examples

Synchronous • Fail-safe
communication

• Error/
exception
handling

• Tight
coupling
between
systems

• Block
sender until
receiver is
finished

• Network
dependency
must be
available

Transaction processing
across multiple systems

Mobile app/
handheld for PO
receiving, SO picking,
Inventory counting,
and so on.

Asynchronous • De-coupled
systems

• Does not block
sender

• Network need
not be available

• Messages can
be queued

• Reliability

• Error/
exception
handling

• Publish and
subscribe

• Request reply

• Conversation

• GL
integration

• SO/PO
Integration

• Master data
integration

Chapter 4

[53]

Asynchronous messaging architectures have proven to be the best strategy
for an enterprise integration because they allow for a loosely-coupled solution
that overcomes the limitations of a remote communication, such as latency and
unreliability. The issues of reliability and exception handling in asynchronous
messaging can be overcome by utilizing request/response and logging features in
the Microsoft Dynamics AX AIF Framework.

Integration technologies
As enterprises move toward using more and more specialized applications rather
than having an ERP do everything for them, you need a robust framework and
strategy for managing integrations within the ERP system. Dynamics AX provides
many such robust frameworks and functionalities to integrate with third-party
applications using modern techniques.

The following section outlines the commonly-used integration technologies in
Dynamics AX. It is important to make sure that the technical analysts and developers
in your project are familiar with these technologies, so that they can support the
design process and identify the best integration solution for your project.

Application Integration Framework and
services
AIF (Application Integration Framework) is the de facto integration methodology to
integrate Dynamics AX with third-party applications and is a built-in infrastructure
into the Dynamics AX platform.

AIF enables companies to integrate and communicate with the external business
processes and partners through the exchange of XML over various transport
media. AIF can be used to implement both business-to-business and application-to-
application integration scenarios.

Integration Planning and Design

[54]

The AIF architecture
The following diagram shows the high-level AIF and services architecture. As
shown in the diagram, AIF and service are based on Windows Communication
Foundation (WCF) and are hosted on AOS. AIF web services can also be hosted on
IIS. The AOS-hosted services are available to users and applications across Intranet.
To consume these services over the Internet, you must host these services on Internet
Information Services (IIS).

Chapter 4

[55]

Key concepts in AIF
The key concepts in AIF include the following:

• Services
• Adapters
• Message processing

Services
The different types of services AIF provides, are as follows:

• System services: As the name suggests, system services are used for
querying system related data and not for data integration as such.
System services include the query service, the metadata service, and
the user session service.

• Document services: Document services represent a business entity which,
is used as an integration point. For example, Sales order is considered a
document even though it comprises multiple tables such as SalesTable, Sales
line, and many others. There are around 70 standard document services in
AX which can be utilized or customized for specific integration requirements.

• Custom services: Microsoft introduced a new programing model in AX 2012
through which a developer can convert the X++ business logic to a service.
There are several custom services delivered out-of-the-box in Dynamics AX.
For example, in AX 2012 R3, the warehouse web application utilizes custom
services to interact with Dynamics AX. The custom services shipped with
Dynamics AX can be utilized as a reference for building other custom services.

Integration Planning and Design

[56]

The following table compares document services and custom services and explains
some of the example scenarios to determine the appropriate programing model for
your integration requirement:

Pros Cons Good for Examples

Document
services

• This is based on
query entity and
supports the create/
read/update/delete
queries

• This handles complex
entity requirements
like table relations,
polymorphism, date
effectivity, and so on.

• All integration stack
elements such as
pipelines, transforms,
and schema
constraints can be
applied to document
services.

• Schema validation
and data validation
is performed by the
framework.

• Performance
overhead due
to complex
framework

• Tight coupling
between
the service
contract and
the underlying
query-table
schema.

• Complex
document
exchange.

• Create/
read/
update
sales
orders.

Custom
services

• This is based on data
contract defined by
developers and the
service contract can
be controlled.

• An existing business
logic can be utilized
and exposed as a
service.

• This is good for
simple entity
requirement.

• This is good for
performance.

• This is good for an
action triggered
by third-party
applications such
as PO receiving/
posting, packing slip,
and so on.

• You need to
write a lot of
code to handle
relations,
polymorphism,
date effectivity,
and so on.

• Schema
constraints
and value
substitutions
are not
honored
for custom
services.

• Schema
validation and
data validation
need to be
handled in
code.

• This is
good for
mobile app
integration
as these
are fast
and simple
service
contracts.

• This is good
for read
operations
where
output
requirement
is simple.

• This is good
for simple
business
entities as a
service.

• This is good
to expose
custom
logic.

• Create/
update/
delete/
submit
expense
report.

• Approve/
reject
workflow.

Chapter 4

[57]

Adapters – transport mechanism
Adapters represent the transport mechanism for message transmission between
Dynamics AX and the integration application. Dynamics AX 2012 provides the
following out-of-the-box adapters for message transmission:

Adapters Protocols Good for
Synchronous HTTP

adapter
This uses an HTTP or HTTPs
transport.

Synchronous
Integration
with non .NET
Applications

NetTCP
adapter

This supports over the Transmission
Control Protocol (TCP) transport.
This adapter corresponds to the
WCF-NetTCP binding in Windows
Communication Foundation (WCF).

Synchronous
integration with
.NET-based
applications.

Windows
Azure
Service Bus
adapter

This enables to publish the AX 2012
services by using the Windows Azure
Service Bus.

Integration
with cloud
applications.

Asynchronous MSMQ
adapter

This supports queuing by using
message queuing as a means of
transport.

Asynchronous
integration using
MSMQ.

File system
adapter

This supports asynchronous exchange
of documents through file system
directories.

Asynchronous
integration using
file system.

Message processing
Generally, integrations are designed either around the source system or the target
system schema. This is basically called as adding system dependency to your
integration. The recommendation is to keep the integration schema in a generic
format. The key benefits in keeping the schema generic are as follows:

• This encapsulates the integration schema from the source or target system
• This minimizes the impact of changes (upgrade or changes) happening in the

source or target system
• This increases the extensibility of integration—if another system needs to be

integrated with the same data, the same schema can be used
• This eases troubleshooting and support—it would be easier to understand

the generic schema from troubleshooting and support perspective than
system-specific schema

Integration Planning and Design

[58]

AIF provides the following two powerful features to manage messages
transformation and value substitutions:

• Transforms: This provides the ability to transform messages using XSLT or
.NET code. Transforms apply only on asynchronous exchanges.

• Pipelines: This can be used for both synchronous and asynchronous
exchanges. Pipeline supports messages transformations using the
following transforms:

 ° XSL transforms
 ° .NET assembly transforms
 ° Value substitution

The following diagram shows how data moves through an inbound integration port
and the application of transform and pipelines:

Cloud-based integration
The AIF Service Bus adapter provides a simple process for developers to build
compelling companion applications, which are highly integrated with Dynamics
AX. To build a cloud-based application for Dynamics AX, you need the following
additional components:

• Microsoft Azure Service Bus
• Microsoft ADFS (Active Directory Federation Services)

Chapter 4

[59]

To build a cloud-based application, the following are the high-level steps that a
developer needs to perform the following steps:

1. Configure Windows Azure.
2. Publish AX services using AIF.
3. Develop client app to work with the Service Bus.

The next diagram shows a high-level system architecture outlining how Microsoft
Azure Service Bus, ADFS, and Dynamics AX AIF interact when used together for
cloud-based applications.

The Microsoft Dynamics AX 2012 Data Import/
Export Framework
The Microsoft Dynamics AX 2012 Data Import/Export Framework is an extension
that helps you import and export data in Microsoft Dynamics AX. Primarily DIXF is
designed for configuration and transaction data migration but the robust framework
and extensibility makes it a perfect fit for high-volume asynchronous integration
scenarios with small enhancements. Use of DIXF for data migration purpose is
explained in Chapter 5, Data Migration – Scoping through Delivery.

The following sections explain some common integration scenarios where DIXF can
be used as an integration solution.

Integration Planning and Design

[60]

An ad hoc manual file import/export
We often encounter integration scenarios where a particular data entity needs to
be exported or imported manually by the business users. The traditional way of
supporting such an integration is by writing X++ classes to import or export specific
data files. DIXF provides a robust framework to handle such manual integration
scenarios by extending the framework to the applicable business area. For example,
a company payroll is generated by a third-party system and at the end of the month,
the accounting team receives a consolidated GL entry file, which they want to
import in Dynamics AX. DIXF can be used for such a requirement by considering the
following scenarios:

• Create a processing group and a map source data file with the
DMFLedgerJournalEntity table

• Modify the mapping document and setting the default data mapping, such as
journal name and voucher number

• Set up the role for the processing group, and select appropriate security roles
and entities

• Now, the accounting team can use the DIXF module to import the GL entry
file as a general journal entry

Automated asynchronous integration
How this framework can be leveraged and extended is answered at a high level in
the following three steps:

1. Extend the framework to act upon the data changes only when the source
system notifies it. For this, you can customize some of the core DIXF classes
to introduce this integration concept. The framework classes that need to be
changed are DMFStagingWriter and DMFEntityWriter.

2. Extend the DIXF Framework to map the integration point with the
processing groups and entities. Here, the DIXF processing groups and
entities are to be extended to build that relationship/hierarchy.

3. Extend the DIXF to provide a feedback mechanism for the source systems to
be notified of success, failures, and error logs.

Chapter 4

[61]

The following diagram depicts the solution idea:

It is important to know that Microsoft is investing heavily in DIXF and it will be
the key integration tool for asynchronous message processing in Microsoft
Dynamics AX 7.

Master data management
Master data management (MDM) is a new feature in Dynamics AX 2012 R3 which
can be used to synchronize master data across multiple instances of Dynamics AX
2012. MDM uses Microsoft SQL Server Master Data Services (SQL MDS) as the
central data store and AX 2012 Data Import/Export Framework entities as the unit
for data synchronization. MDM is preconfigured to support synchronization of the
customers, vendors, employees, global address book, and product entities. You can
also create customizations to support other Data Import/Export Framework entities
in MDM.

Integration Planning and Design

[62]

The following diagram shows the high-level architecture of an MDM:

The following are the key features supported in MDM:

• Single-master or multi-master: Using MDM, you can configure a single-
master environment, where, only one instance can push the updated data to
SQL MDS, and all other instances are read-only. You can configure a multi-
master environment, where all AX 2012 instances can update the master data
records. In case of a conflict, SQL MDS can be used to manually resolve it.

• Synchronization scheduling: You can create a synchronization group to
manage multiple entities and define synchronization schedules.

• Data filtering: Appropriate data filters can be applied on entities to filter
the data which can be synchronized. For example, if you want to synchronize
only a subset of vendors across multiple instances, you can define such
a filter at the entity level and synchronization will happen only for the
filtered dataset.

• Customization support: MDM can be extended to any other DMXF entity
by adding a script to SQL MDS. Technically, an MDM can also be extended
to synchronize master data between Dynamics AX 2012 R3 and a third-party
application like e-Commerce solutions.

.NET Framework – .NET Interop
Dynamics AX can be used to consume the business logic developed in common
.NET programing language. You can also build business logic in other programing
languages, such as C# and Visual Basic, and use Dynamics AX objects such as tables,
classes, and enums as proxy objects.

Chapter 4

[63]

The .NET Business Connector
The .NET Business Connector enables you to build software applications that
integrate with Microsoft Dynamics AX. You can access data or start a business logic.
The .NET Business Connector is not a recommended integration technology for the
following two reasons:

1. The .NET Business Connector is deprecated from AX 7 the future version of
Dynamics AX.

2. The .NET business connector uses RPC as a communication protocol which is
considered chatty, and it is not suitable for high-volume integrations.

The third-party integration solution
There are several vendors that provide specialized integration solutions with
Dynamics AX such as EDI solutions, sales tax, and AP automation. These integration
solutions typically utilize AIF or other integration technologies supported in
Dynamics AX and extend the solution to implement common industry integration
points with various products. The following table lists a sample of third-party
integration solutions:

Vendor Category Specialized use
Data Masons EDI End-to-End EDI solution: This includes

predefined EDI maps, data transformation,
Integrations with trading partners,
Integration with Dynamics AX.

Vertex, CCH,
Avalara

Integration with Sales tax
solution

This integrates between Dynamics AX and
tax solution, transactions like sales order
inquiry, invoice posting, project invoices,
free text invoices, and so on.

Sandler Kahne
Software

Banking This includes lockbox, wire, bank
reconciliation with banking institutions.

Red Maple Credit card This includes enhanced credit card services
and integration with payment processors.

These are not necessarily the recommended solutions, but
are just a few examples of the options available at the time
of publication.

Integration Planning and Design

[64]

Connector for Microsoft Dynamics
Connector for Microsoft Dynamics is an integration tool for connecting the Microsoft
CRM application with any Microsoft Dynamics ERP system. The following diagram
shows the high-level architecture of Connector for Microsoft Dynamics. As shown
in the diagram, Connector for Microsoft Dynamics is a standalone integration
component and provides connectivity between Dynamics CRM and the Dynamics
ERP system through web services:

Connector for Dynamics, along with Dynamics AX, provides the following integration
entities out of the box. Additional entities can be added though customization:

Chapter 4

[65]

The following are the key features of the Connector for Microsoft Dynamics:

• Robust integration
• Easy installation and configuration
• Scheduling
• Logging
• Retries
• Support for customizations in source and destination systems
• SDK available for creating adapters to and from third-party systems

Integration design and development
Once you have all the detailed integration requirements, an integration specialist
works with business analysts, developers, and system administrators to create a
detailed design. The following topics in this section explain the process of designing
an integration solution.

Selecting the right integration technology
It is important to select the best suited integration technology for each of the identified
integration requirements. The following table compares integration technologies to
help you determine the suitable integration tool as per your requirements:

 Pros Cons Good for Examples

AIF • Robust
framework

• Out-of-the-box
services

• Administration
and monitoring

• Scalable

• Secure

• Framework
overhead

• Document-
based exchanges

• Transaction
processing
across system

• Create/update
sales orders

• Create
customers

• Send Product
details

• Send Price
details

• Send AP
payment data

DIXF • Robust
framework

• Future async
integration
methodology
for dynamics
AX

• Needs extension
to automate and
administer the
process

• High-volume
integrations

• Master data
synchronization

• GL Integration

• Expense report
import

• Master data
sync

Integration Planning and Design

[66]

 Pros Cons Good for Examples

.NET
Framework

• Utilizes the
power of .NET
programing
languages

• Add on
solutions

• Integration with
.NET apps

• Transformation
components

• Integrating with
specialized SDK
such as OCR*

Business
Connector

• Exposes
Dynamics AX
business logic

• Utilizes the
AX security
framework

• Phasing out

• Uses the TCP
communication
protocol

• Application
extension

• Application
for handheld
devices

Third-
party
Integration
Solution

• Specialized
end-to-end
solution

• Special scenario
only

• Specialized
third-party
applications

• Sales tax

• AP automation

• EDI Integration

• Banking

• Credit card

Developing a high-level conceptual design
Developing a high-level conceptual design diagram is important to explain the
different integration points and directions. The following diagram shows an
example of a conceptual integration design between Dynamics AX and a B2B
e-commerce application:

Chapter 4

[67]

The following table explains the integration points shown in the preceding diagram
and the recommended integration technologies:

Integration point Description Recommended solution
Product Products and attributes will be

stored in Dynamics AX and synced
nightly with an e-commerce
application as a flat file.

• DIXF
• AIF using file

system adapter

Product on-hand Product on-hand needs to be shared
with the e-commerce application in
real-time.

AIF Web Service

Price list The price list will be mastered in
AX and will be updated on the
e-commerce application on a nightly
basis as a flat file.

• DIXF export
• AIF document

services using file
system adapter

Customers The customer can be created or
updated either on the e-commerce
website (such as address) or
updated in DAX (such as credit
limit) and synced in both the
systems.

• DIXF—master data
management

• AIF document
services using
create, update, read
operations

Sales orders Sales orders will be created in
the e-commerce application and
created or updated to AX. Sales
order status updates such as
shipment confirmation, invoices,
and payment application need to be
synced to the web application.

• AIF web services
• AIF document

services using
Queue-based
adapter such as
MSMQ

Integration Planning and Design

[68]

Defining field mapping
Defining field-level mapping for each integration point includes data type, field
length, applicable values, and validation logic for each field. The ensuing table
shows customer integration between Dynamics AX and an e-commerce application
as an example:

AX Field name Data type Requirement Default
value

E-Commerce
Field

Description

CustTable.AccountNum NVARCHAR(20) Mandatory Number
sequence

Account.Id This is a unique
identifier for the
customer record

CustTable.CustGroup NVARCHAR(10) Mandatory Web NA This is used to
define accounting
setup in
Dynamics AX

DirParty.Language NVARCHAR(10) Mandatory en-us NA This stores
the customer's
language

DirParty.Name NVARCHAR(60) Mandatory Account.
Name

This stores the
customer's name

DirPartyPostalAddress.
IsPrimary

Boolean Optional Yes NA This is a Boolean
value where it
is confirmed
whether
this address
customer's
primary address.

DirPartyPostalAddress.
CountryRegionId

NVARCHAR(3) Mandatory USA Account.
Country

This stores
the customer's
country code

DirPartyPostalAddress.
State

NVARCHAR(20) Mandatory Account.
StateCode

This stores the
customer's state
code

DirPartyPostalAddress.
County

NVARCHAR(20) Optional Account.
County

This stores the
customer's county
code

DirPartyPostalAddress.
City

NVARCHAR(60) Optional Account.
CityName

This stores the
customer's city

DirPartyPostalAddress.
ZipCode

NVARCHAR(10) Mandatory Account.
PostalCode

This stores the
customer's zip
code

DirPartyPostalAddress.
Street

NVARCHAR(250) Mandatory Account.
Address 1
+ Account.
Address 2

This stores the
customer's street
address

Chapter 4

[69]

Development, configuration, and testing
The next step would be to do the required development, configuration, and
testing the integration. The following are some helpful tips for developing
integration solution:

• Utilize the existing code and functionalities for integration; extend as needed.
• Keep the message format generic as far as possible, so that the same

integration point can be used with other applications, if needed. Use the
XSLT transformation or other transformation tools to transform the messages
in an appropriate system schema.

• Build an error handling and notification mechanism to monitor the failure.
Keep a closed loop; there should be a mechanism to notify other applications
of the success or failure of message processing.

• Develop the test data and a unit test scenario; perform unit testing before
end-to-end integration testing.

• Develop test simulation, if possible, for system testing. This can save a lot of
time during the end-to-end testing.

• Perform load testing by generating a large set of data. Many times,
integration solution fails on the production load as the development or test
environment does not have sufficient data to simulate the production load.

• Prepare a test plan including the positive and negative scenarios. Test all
exceptions and boundary scenarios. Test the end-to-end business process on
integration data to avoid any fallback impact in the production environment.

• Develop a security and deployment plan for integration solutions and test
deployment and security in the test environment before moving to production.

Best practices and recommendations
Here are a few considerations to keep in mind while designing your integration
solution for Dynamics AX:

1. Simplify the overall architecture and try to reduce the number of integrations
between applications wherever possible. It is one of the areas that cause
recurring issues in production.

2. Define clearly the master system for each data element, even though you
may have it stored at multiple places. In some cases, this may have to be
defined at the field level. For example, a customer master is stored in CRM
and Dynamics AX as well. CRM might be the master for all the customer
information except credit limit.

Integration Planning and Design

[70]

3. Ideally, you should avoid duplication of data across multiple systems,
although in some cases you cannot avoid it for business reasons or for
systems to work. For example, customer records are required in both, the
CRM system and Dynamics AX. However, you can opt not to integrate the
CRM-centric customer information that may not be needed in Dynamics AX.

4. Understand and document business SLAs for each integration; think through
the impact in extreme situations.

One of my customers had the inventory getting refreshed
into their e-commerce system every 2 minutes. It was okay
until the Black Friday weekend. During that 2 minute
window, they oversold a product that was being sold below
its cost (they only wanted to get rid of the on-hand stock).
However, the customer ended up buying more to fulfill the
additional orders that were received due to the delays in
inventory updates. It is important to understand SLAs and
the business impact while designing integrations.

5. Using the AIF adapter framework, you can create a custom adapter. Several
Dynamics AX customers use custom adapters like FTP, EDI, SQL adapter,
and TIBCO adapters used with the AX AIF framework. Our recommendation
is to build any such custom adapters if that suits your integration
requirement better than these out-of-the-box adapters.

Summary
In this chapter, we learned about the tools and techniques for integration planning
and design. We started with understanding the common integration scenarios on
ERP implementations and gathering integration requirements. Subsequently, we
learned about the available integration technologies in the Dynamics AX application
and sample scenarios for recommended use. Depending on your requirements, there
are several integration options to choose from. However, AIF is the most commonly
used integration option. In the end, we learned about the common industry best
practices and recommendations related to integration planning.

In the next chapter, we will learn about another complex but underestimated area of
the ERP implementation project—data migration.

[71]

Data Migration – Scoping
through Delivery

Data migration is usually the most complex and underestimated area of any ERP
implementation. This chapter makes you understand data migration requirements,
managing the data migration scope, identifying the tools and techniques for data
migration, and data validation.

The following topics are covered in this chapter:

• Understanding data requirements and challenges
 ° Defining what data needs to be migrated
 ° Source systems involved

• Managing the scope of data migration
 ° Questions to ask during scoping
 ° Leading data migration requirements
 ° The battle of history

• Tools, techniques, and development considerations
 ° Data extraction and cleansing
 ° Using the data migration framework
 ° Building a repetitive process

• Data validation

 ° Testing scripts
 ° Engaging business for validation
 ° Using migrated data during testing

Data Migration – Scoping through Delivery

[72]

Managing scope – simplifying data
migration through rightsizing the scope
Rightsizing the scope is the first step towards successful data migration. Often,
customers have either not considered data migration at all or have unreasonable
expectations regarding the requirements. Even if the original sales proposal has
explicit data migration requirements that have been identified, many of the project
team members and stakeholders may not be aware of what was specified or may not
agree to the mentioned scope. Hence, it is important to facilitate a scoping exercise
with the project team and document the mutually agreed results.

The following section covers a few tips for the scoping of data migration and
educating the business stakeholders.

Questions to ask during the scoping exercise
The following set of questions can be asked during the scoping exercise:

1. What do I need to keep the business running? Define the business goals
with that question in mind, and then approach the issue of what information
needs to be migrated to meet these goals or what solutions can be provided
to meet the goal without migrating the data. For example, I need to be able to
collect my receivables and run aging for customers—that's the business goal.
This means you need to only migrate Open AR for the customers along with
the due date.

2. Is there an alternate way to live without bringing the existing data over?
Reporting out of legacy system or a data warehouse and defining a manual
process, if it is going to be used only for inquiries over a short period of time,
are some potential alternatives.

3. Every record that needs to be migrated comes at a cost. Is this cost justified?
It's not a question of whether it can be done. Is it worth it?

4. Do you trust the data present in the legacy systems? Do you want the
new system to have the same issues that you are trying to solve in the
current system?

5. How many records are involved? Ensure that the ball park numbers of
record counts are defined for each area during scoping/requirements (for
example, 4 million products, 200,000 customers, 2000 open orders, and so
on). This will help you select the right tools.

6. How often will you be asked to retrieve this data?

Chapter 5

[73]

7. Identify the business needs clearly. You can avoid the cascading effect and
carve out the critical pieces of data that you need frequently, to limit the
scope. For example, just migrating the open balance of each customer invoice
rather than trying to bring the complete line item detail requires less effort. If
a customer service needs the invoice line detail to research a customer issue
that happens once a month on an average, the detail generally would not be
worth the effort to try to migrate it.

With one of the best CIOs that I worked with, negotiations
always started at point zero. This strategy worked well to
condense the huge data migration requirements that the
business had come up with, to a minimum of only what they
needed (only open records).

Leading the data migration requirements
sessions
Do your homework on the proposed data migration and validate your assumptions
with the business rather than asking the open ended question "What data do you want
to migrate?" The following table is an example that you can use as a starting point to
help validate the decisions to be agreed upon in a data migration requirements session:

Functional area Guidance for scoping
General ledger history Prior years' history: periodic balances for 2 years

Current year—till date, periodic balances
Customers All the active customers (and addresses)

Has performed a transaction in the last 18 months or has an
open balance or has any open sales orders

Vendors All the active vendors (and addresses)
Has performed a transaction in the last 18 months or has an
open balance or has any open purchase orders

Products and prices All the active products and prices
Products created in the last six months or has stock in-hand or
has open purchase, sales or production orders or was sold in the
last 12 months
Prices: All active and future prices for customers and vendors
(Trade agreements and Sales / Purchase agreements in
Dynamics AX terminology)

Data Migration – Scoping through Delivery

[74]

Functional area Guidance for scoping
Open AP Migrate all open documents—invoices, payments, debit notes

Key fields: Vendor ID, open amount, description, due date,
invoice number, document number, document date (original
invoice date), method of payment, PO/reference, or any other
information that you need in order to pay the vendor
You should be able to run vendor aging and pay vendors (1099
reporting considerations)

Open AR Migrate all open documents—Invoices, payments, credit notes
Key fields: Customer ID, open amount, description, invoice
number, original date, due date, method of payment, customer
PO number, and reference to sales order number
You should be able to run customer/AR aging and collect
payments from the customers

Inventory (On Hand) Migrate on-hand inventory for each product by dimensions
Are your product's numbers changing? (That would mean
changing labels in the warehouse)
Cost for each lot and dates for batch numbers
Review the impact on inventory costing

Open Orders Open sales orders and open purchase orders—orders that are
not yet delivered
Discuss the returns (you may need to refer to the old system for
a short period of time)
Orders that are delivered but yet not invoiced

Bank Balances Last-reconciled balance
Unreconciled transactions

Fixed Assets The active assets: Assets that are in possession and in the books
Key values: Fixed asset number, acquisition price, accumulated
depreciation till date, remaining periods, acquisition date/
put-in-service date, date depreciation last run, serial number,
assigned to, dimensions, and so on
Do you need to keep track of tax book values?

Chapter 5

[75]

Additionally, you can leverage the Dynamics AX data migration requirements
spreadsheet within Microsoft Sure Step to identify and plan to migrate your data.
This spreadsheet is intended for the consulting team to use internally. However, it
can also be used as a tool to facilitate the data migration requirements gathering and
can subsequently be used throughout the project lifecycle to confirm whether each
migration data element has been identified, and that the process has been defined,
developed, and tested. The following table image shows an example of the columns
and data that are important for the scoping session. Additional columns help you
manage the development, testing, and final move to the production system:

The battle of history
As I stated at the beginning of this chapter, business stakeholders often expect their
shiny, new Dynamics AX system to have their historical data from their legacy
system. Anything less would mean that they have less information now rather
than more, right? Part of the data migration planning process is educating the
business stakeholders on the cost of that mentality and focusing the business on
the information, which is driving business decisions, servicing customers, and
providing analysis.

In principle, you should avoid migrating historical transactions, such as posted sales
invoices, posted purchase orders, individual general ledger transactions, inventory
transactions history, and so on. The effort to cleanse and transform the data for
Dynamics AX is an expensive proposition and takes the resources away from the
goal of designing and developing improved processes within Dynamics AX. More
importantly, most of this data doesn't really drive the business decisions or even
worse, it provides inaccurate views of the business due to bad data and/or processes
from the legacy system.

Data Migration – Scoping through Delivery

[76]

Certainly, the historical transactional data is needed for either regulatory, business
analysis, or customer satisfaction reasons. However, there are other solutions
available rather than agreeing to migrate the legacy data into Dynamics AX tables.
Some cheaper solutions that I have used in the past to satisfy customer needs around
history are given as follows, and can be used depending on the size of the dataset
and the requirements around how the data will be used:

• Run the reports and save them in a shared folder or on a SharePoint site as
a PDF file. This will be useful for reports that must be kept for regulatory
purposes such as financial statements.

• Export the data to Excel or Access to a read-only folder that only specific
users can access. Smaller datasets where you want to query, filter, or sort the
data in different ways are a good match for this.

• Leverage an existing data warehouse to meet the reporting/analysis
requirements.

• Set security on the legacy system to read-only and do historical lookups
there. Make sure that support contracts and an exit strategy are part of any
discussions around this option so that the customer is not paying for multiple
systems indefinitely. This is a good option for a stable legacy system where
support is still available (without paying a hefty annual support price) and
also helps ease the transaction for the legacy system support vendor.

• Create new AX tables that replicate legacy data tables and pull in the
data without having to do a mapping or cleansing process. Reports or
inquiries can be developed over this data, which is often cheaper than the
programming required to clean and normalize the data to AX requirements.

The design and development phase
During the design and development phase, you will need to work on data
migration actively. The key steps during this phase include data mapping and
transformation for the identified migration elements, creation of tests and a go-live
plan for migration as well as developing the scripts, templates, and test datasets for
migration.

Chapter 5

[77]

Data mapping and transformation
The following are the key steps for managing the data mapping of the source and
target systems:

• Select source systems to use for migration. If the data is stored at multiple
places in a legacy system, you should pick the cleanest one to extract a copy.
Consider the update timings in the source and add dependencies in the go-
live plan to get the source data updated prior to starting the extraction.

• Define field mapping between the legacy systems and Dynamics AX, along
with any transformations that need to happen between the extracts and the
import processes.

• Identify the areas that need data cleansing; have the data cleansing efforts
started early on. Define rules or have them addressed in the source systems
(for example, bad addresses, phone numbers, and so on).

Planning the data migration
During the design and development phase of the project, you should develop the
overall plan for migrating the identified data elements. The following is a list of
items to consider when developing your plan:

• The data migration environment: Plan for an environment to run data
migrations iteratively. You don't want the test environment to be messed
with every week, while the data migration team is still trying to stabilize the
data migration processes.

• Plan for multiple cycles of data migration that are a few weeks apart. This
allows time to validate the data, fix issues, and improve the performance of
the migration processes.

 ° Business resources will be required to help extract and validate the
data for each cycle. They may need to help cleanse the data if you run
into issues from the legacy data.

 ° IT resources will be required to extract, import, and validate data.
It is a good idea to train and utilize junior resources in the data
conversion execution process as it is an iterative process and have
experienced resources to focus on improving the process based on
the feedback received from data validation.

 ° Data quality in the source system has a huge impact on the number
of data migration iterations that you have to perform during tests.

Data Migration – Scoping through Delivery

[78]

• Complete a full data migration prior to starting system integration testing,
UAT, and training. These migrations should be performed by following the
data migration process documentation, and the time for each step needs to
be recorded. As part of this process, have the migrated data validated by the
business prior to starting the tests in these environments.

• Come up with iterative/automated processes, which include data extraction
from the legacy systems. This makes the cycle time for data migration shorter,
improves the quality, and provides consistent results (for extraction, you may
be lucky to get away with the reports that the business uses. For example, if a
business uses a detailed AR aging report, you can use that report as an input
for migration rather than building a separate job for data extraction).

• The team should record the timing for each process and arrange dependencies
and processes that can be run in parallel. As noted earlier, using the Sure Step
data migration requirements spreadsheet can aid in documenting this.

• Document the migration process end-to-end, from data extraction and
intermediate validation to migration (the development team that writes the
code should not be the one executing it). With a documented process,
you can engage the junior team members to execute the repetitive data
migration processes. You can save the senior resources to work on other
parts of the project.

• Visual communication for stakeholders: Demonstrate a visual presentation
of the data migration process to communicate its progress.

Chapter 5

[79]

Selecting the tools for data migration
In this section, we will talk about the most commonly used tools including Data
Import/Export Framework (DIXF) shipped with Dynamics AX. Microsoft has made
huge investments in the Data Import/Export Framework, and this has been a big
step in solving the challenges in data migration. Although the introduction of stable
and rich features in DIXF has reduced the need for other tools for migration, we will
discuss several options for migration.

How do I select the right tool?
There are several factors that you should consider:

• Do you have something to reuse (integrations, or import builds for the
project)?

• How much is the data volume? Hundreds, thousands, or millions of records?
• What kind of validation or transformation is required?
• What is the format of the source data? CSV, SQL, Flat files, and the like?
• How much downtime is available for migration? This would drive the

investments that you need to make in building additional features rather
than using the standard tools that are available.

• What is the trade-off between validations and import time, and the quality of
the source data?

Data migration versus data entry
It is often easier to simply enter the data than to migrate it, provided that the dataset
to be migrated contains only a few hundred records that can be entered in a timely
manner and with relatively few errors. Part of the consideration of whether to
manually load the data is the required timing—if you can do it ahead of time or post-
release, manually entering the data is a good method. If the data load needs to take
place during the downtime and on a critical path, then it could be tricky.

Data import features developed on the project
Going forward, you might have to use custom features for imports like the general
journal upload and fixed assets import. Try to leverage similar import programs for
data migration.

Data Migration – Scoping through Delivery

[80]

The Data Import/Export Framework
The Data Import/Export Framework (DIXF) is an extension module to help
export and import data in Dynamics AX. DIXF is now an essential part of Dynamics
AX R3. It can be installed explictly and used with Dynamics AX R2 and the RTM
release as well.

The common pattern for the use of DIXF is shown in the following diagram:

The framework is commonly used in the following areas:

• Master data, open orders, on-hand inventory, and balances
• Moderate to high numbers of records (a few thousand to a couple of hundred

thousand records)
• Low customization

The framework is not recommended in the following areas:

• Highly customized areas
• A huge volume of data (then you need to bypass the Dynamics AX

business logic)

Chapter 5

[81]

Terminologies
Let's first understand the common terms used with DIXF. They are explained
as follows:

• Source: This is the external data source from where we want to import data
into Microsoft Dynamics AX 2012.

 ° File: Text (delimited and fixed width), Microsoft Excel, and XML
 ° ODBC: Database , Microsoft Excel, Microsoft Access, and so on

• Staging: This is the intermediary table inside Microsoft Dynamics AX 2012.
• Target: This is the entity inside Microsoft Dynamics AX 2012 for which we

want to import data from an external data source. For example, customer,
vendor, and so on.

Architecture
The following diagram shows the architecture of the Data Import/Export
Framework. It can basically be understood as a Source | Staging | Target process:

The Data Import/Export Framework creates a staging table for each entity in the
Microsoft Dynamics AX database where the target table resides. Data that is being
migrated is first moved to the staging table. There you can verify the data, and
perform any cleanup or conversion that is required. You can then move the data to
the target table or export it.

Data Migration – Scoping through Delivery

[82]

The import/export process
The following diagram shows the steps that are required to import or export data in
Microsoft Dynamics AX:

1. Determine the source of the data to export or import, and create a source data
format for the data. For export, the source is AX. For import, you can use any
of the following sources:

 ° AX: This imports data from another Microsoft Dynamics AX instance
 ° ODBC: This imports data from other databases such as Microsoft

SQL Server or Microsoft Access
 ° File: This imports data from a fixed-width or delimited text file, XML

file, or Microsoft Excel file

2. Determine the entity to associate with the data. This entity can either be the
source of the export data or the target for the import data. You can also use
an existing entity or create a custom entity. There are 150 out-of-the box
entities and the list is increasing continuously.

3. Determine the entities that should be imported or exported together, and put
all these entities in a processing group. A processing group is a set of entities
that must be processed in a sequence, or that can logically be grouped
together. The entities in a processing group are exported together, or they are
imported together from source to staging and then from staging to target. In
a processing group, you also associate each entity with a source data format.

4. Use the processing group options to either import or export data.
5. For import, you first import the data to a staging table where you can clean

or transform the data as required. You should validate that the data appears
accurate and that the reference data is mapped correctly. You then migrate
the data from the staging table to the target table. You should validate that
the entity appears accurate in the target table.

file:///D:/wfh/Work%20From%20Home/WFH_30_08_15/javascript:void(0)

Chapter 5

[83]

A summary of key features
• Compare and copy entity data across legal entities.
• Entity types: The different types of entities are entity, composite entity,

and flat table.
• Mapper control: This allows flexible mapping, supports complex

transformations, and the m:n cardinality between the target entities as shown
in the following diagram:

• Parallel execution support from staging to target using task bundling.
• Folder as input for running periodic import with functionality to move the

files to different folders (in-process, error, and completed).
• Error handling: This includes skipping error rows and errors stored in

XML files.

Data Migration – Scoping through Delivery

[84]

• Merging data into a single-source column and split during transformation,
for example, financial dimensions.

• Multiple source columns can be used to create records in multiple tables, for
example, an address book.

• Use Data Import/Export Framework as an Application Integration
Framework (AIF) service to export data to a file. This feature will allow you
to leverage the data migration code for ongoing integrations.

• Set-based support from staging to target.
• Default value support.
• Number sequence support.
• External key mapping support.

 ° Source to target in a single step
 ° Multiple AOS support

AIF
This section describes the usage and description of AIF in context of data migration:

The Application Integration Framework is generally used in the following areas:

• For data from highly structured systems (XML Formatting)
• Has existing out-of-the-box data inputs

The framework is not recommended in the following situations:

• Large data sets
• Complex integration

The features of AIF
This section describes the out-of-the-box features of Dynamics AX:

• AIF can import many similar records, and repeat the same import at regular
intervals, or it can be used for ongoing integrations

• Value mapping and error handling features provided by AIF can be leveraged
• Document services must be customized if the underlying tables and entities

have been customized
• AIF uses the Dynamics AX business logic and validation

Chapter 5

[85]

Custom X++
Custom X++ is commonly used for customizations or customized actions. For example,
applying cash discount schedules to specific accounts after migrating vendor invoices
or applying custom payment schedules to break the due dates of Open AR records. It
is also used for large datasets to be migrated from SQL—a need to release 10 million
product variants as part of migration.

It is not useful for entities that are supported by DIXF and can handle the large
amount of volume.

DIXF can help you avoid building a custom code for migration.

Describing custom X++
As the name suggests, you need to write a custom code to import it from a file and
apply business rules for the import. In some cases, writing custom code/jobs to
import SQL tables and CSV/Flat files for custom processes may be an easier and a
faster way to approach data migration.

As this is a custom code, you have more control (and responsibility) over the number
of validations you want to add or bypass depending on the pre-validation of source
data; standard Dynamics AX business logic does not apply to your data.

In projects that need millions of records to be migrated, you may not be able to
afford going through the Dynamics AX business logic. Hence, you need to pick a
custom route. You can use the power of SQL to speed up the performance, directly
load data into Dynamics AX, and use custom code in Dynamics AX to further
process the data. For example, importing data in the staging table using direct SQL
statements (you can work around RecId assignment by reserving RecId for the custom
staging table through X++ and writing the X++ class, which can be multi-threaded
for further processing of data).

To use such an approach, you need a deep understanding of the Dynamics AX
processes, its data structure, and how data flows across tables.

Excel add-in
It is commonly used for the following purposes:

• Spreadsheet-based data, mostly setup tables (for example, payment terms
and dimensions)

• Available document services for AIF

Data Migration – Scoping through Delivery

[86]

• It is useful for a small or medium number of records, where performance is
not a concern (it is useful for a few hundred records; for more records, the
process would be very slow)

An Excel add-in is not useful for larger datasets.

Describing an Excel add-in
Data is validated using the business logic in Dynamics AX. End users can use this
method, and it is an opportunity to engage them in the system setup. The following
screenshot shows the payment terms set up by uploading data (publishing) through
the Excel add-in:

Data migration execution tips
This section includes the tips and tricks based on data migration experiences.

Initial templates for business
Define template spreadsheets for common data migration scenarios and collect
sample data from the business early on. Use this data for CRP. This will help to
identify problems sooner and eliminate surprises later.

Chapter 5

[87]

Extracting source data into SQL tables
If possible, extract the source data into SQL tables. It is easier to clean and transform
data using SQL queries rather than manipulating data in flat files. Data validation
can be done directly on the source staging table to avoid repeated failure due to
loading bad data and wasting time.

Never rename/repurpose fields
Even if you may never need a particular field, the future versions of AX may
eliminate or add extra functionality to that field. Creating new fields in AX is easy.

Considering premigration steps
Come up with an approach to convert the bulky data pieces ahead of time. For
example, in a project where we had to migrate 10 million products, we migrated
most of them a week earlier and ran them concurrently for the one week period for
product maintenance. This reduced our downtime over the release weekend.

Considering postmigration steps
You may have data elements that are not required at go-live (fixed assets migration);
try to push them to the following weekend.

Changing SQL to simple recovery mode
Set SQL to the Simple Recovery mode for faster performance. Make sure to set it
back when completed.

Multithreading and max DOP
Multithreading can help you speed up the process by executing it in multiple
threads. However, it can degrade the performance if you add more threads than
what your SQL or AOS can handle. Many times, the Max DOP (Maximum Degree
of Parallelism) setting on SQL needs to be changed to allow multiple CPUs per
thread in order to get an optimal number of threads that can be executed in parallel.

Index and statistics maintenance
Consider index and statistics maintenance after a bulk load of master data to speed
up the dependent processes. If you have indexes that are slowing down your inserts,
you will want to disable them during bulk load of data.

Data Migration – Scoping through Delivery

[88]

Disabling the AX logging
Turn off all database logging in AX; it will significantly slow down the process.

Considering SQL updates on migrated data
Sometimes, it is easier to perform a basic data migration of standard data in AX
and then use SQL to update the values. Ensure that your scripts and steps are well
documented.

The SQL import – through caution and expertise
Sometimes, it is faster to import high-volume data directly into SQL. You can save
your time by bypassing the Dynamics AX business logic, so you only need to run
validations on data quality. Generation of RecID in Dynamics AX can be tricky.
However, it can be done with resources that are well versed with the Dynamics AX
architecture (a number sequence is maintained in the system sequences table for each
table ID), and which can draw boundaries between importing through SQL and
running through the X++ business logic.

Managing configurations
This is another important area that can easily go out of control if not managed well.
You need to have a good change-tracking mechanism for configuring the changes
and the resources responsible for a specific area that are making changes in your
golden (stage) environment.

Once you have the golden environment set up, take a backup of your database
with all the configuration (premigration) data that can be simply restored every
time you start a new migration run. If you have the liberty to set up a production
environment ahead of time, all the configurations can be made in production. Bring
the production data into the migration environment and run migration tests on it. If
you cannot set it up and use the production environment for configurations, create
the golden box and use it.

Chapter 5

[89]

Configuration management simplified with DIXF
You can create a template legal entity and use it for setting up new legal entities. You
can also copy configurations from one environment to another:

Copy company functionality from AX 2009, and prior versions
are no longer available in AX 2012.

Reviewing and deciding on the configuration
There are certain configurations that you need to review carefully on the project,
and make decisions for these configurations considering the cross-functional
requirements. These are configurations where there is no going back, like the product
dimension group, storage dimension group, tracking dimensions, inventory model
group, and so on. Each checkbox is going to have a great impact on the outcome, and
once you have transactions that take place, you can't change these selections easily.
These configurations impact the financials and supply chain aspects, and that is why
you need cross-functional reviews.

Data Migration – Scoping through Delivery

[90]

Data validation
With every iteration of data migration, you need to get progressively better. To
achieve this, data validation needs to be a well-documented repeatable process
and needs to start early on. Do not wait until the deployment stage to engage the
business. Here are a few tips to make this process smoother:

Define validation test cases for both the business and IT validation.

• IT validation: This generally includes verifying record counts, totals, and
referential integrity by running tools such as Consistency check (Consistency
check is a tool available in Dynamics AX. It validates and fixes referential
integrity issues. It can be found in System Administration module, periodic
section). You need to acquire different types of validation scripts; it is a good
idea to have scripts for validating extracts, if there was an issue in extraction,
you can catch it sooner in the process.

• Business validation: The business owns the data, and it is critical to have the
business involved to start data validation early on.

 ° Run the reports that the business is going to use. For example,
comparing the AR aging reports between the old and the new
system, verifying financial statements, and so on.

 ° Review the data on screen and use it in the processes for which
the data is migrated. For example, running a check-run to verify
whether you can pay your vendors and print correct information on
payment advices.

 ° Usability of data for future transactions and reporting: validate
your business processes that use the migrated data. Use migrated
data in consequent rounds of CRP.

A classic example of a data migration
issue in projects
Here's background. The project required migrating over 7 years' worth of transactional
data (sales order, returns, and so on) over 7 years. The CFO was adamant about
migrating the data and wanted it to report, provide year-on-year analysis, and
undertake returns processing (they sometimes allowed returns up to 7 years).

The following were the challenges:

• The data quality in the legacy was bad (it always is due to bugs in the past
and so on. This is the reason the company was moving to the new system).

Chapter 5

[91]

• Another challenge was selling the solution. Even though the CFO was
pushing for a high volume of data migration, nobody was pushing back with
the facts of the legacy data, the impact of doing such a migration, and the
ways to meet his requirements. Just refusing to migrate so much data is not
enough; you need to convince your leaders. I would rather spend more time
on this part to get it right than spending the humongous amount of effort
required on data migration (and still come up with a messy outcome).

The impact on the project was as follows:

• Many rounds of data migration had to be done (more than ten). Each
time the team discovered more issues in the legacy data; it was a painful,
iterative process.

• The overall impact on the schedule and budget was that the data migration
stream consumed most of the key resources on the project. It also had
an impact on the overall schedule/budget as the data migration was on a
critical path.

• A lot of data migration bugs were discovered during testing, and this slowed
down the process. (In some cases, they had to redo the entire migration
before moving further with the testing).

• After the release, new issues surfaced in many cases while processing the
returns. It created a lot of noise in the returns process and impacted customer
satisfaction. Moreover, it resulted in additional work for the accounting team,
which had to analyze and post journal entries for the errors in the returns
processing (accountants can fix anything through journal entries, but they
shouldn't have to).

The customer decided to go on to the next version after a painful and expensive
lesson learned.

• This time, only open orders, and no history from the legacy data, were
migrated.

• Reports from the previous system, the data warehouse, were used to report
on the legacy data.

• We also came up with a manual process to review the initial order in legacy
prior to processing any returns as the volume of returns was not very high,
and it went down significantly as time went by.

• Unfortunately, the customer had to spend money to do it all over again;
rework can be avoided by keeping it simple the first time.

Data Migration – Scoping through Delivery

[92]

Summary
In this chapter, you learned the process of effectively scoping data migration, the
planning process, data validation, and the tools available for effective data migration.

In the next chapter, you will learn about reporting and BI.

[93]

Reporting and BI
Usually, BI/Reporting is considered as an afterthought in ERP implementations.
However, this is one of the most important outcomes of the project. Executives will
be looking for reports to run their business.

Oftentimes, the business asks, "Where is my report"? And the answer that they get is,
"Data is there…". That's not enough; you need to deliver reports or information in a
form that the business can use. It's not uncommon to hear business leaders complain,
"We are flying blind" due to the lack of reports or accuracy of reports. With cut-
throat competition against low-margin businesses, it's important to have real-time
visibility of the business for the respective business owners to react quickly in the
changing business environment.

In this chapter, we will cover the following topics:

• Gathering BI and reporting requirements
• The many reporting tools available
• Mapping reports and identifying gaps
• Custom report development

Gathering BI and reporting requirements
It is important to start working on reports and the BI stream early on, along with
the rest of the functional areas. Most of the time, reporting is not addressed as
part of the analysis state. However, one of the most important goals of a new ERP
implementation is to get better and real-time visibility into the business.

Reporting and BI

[94]

To start this process, work with the business to compile a list of reports—dashboards,
kpis, operational reports—that are currently used to run the business. Document
their use and the actions that are driven by those reports. Also, spend time to learn
about the vision of the business leaders and the information that they would like to
see, which they don't have currently. A combination of the current and future states
would help you define the BI/reporting road map.

When gathering and documenting reporting requirements, make sure you ask the
business users the following questions so that you can evaluate the need and be
prepared to offer alternate solutions. Most of the time in projects, business users
want to see all the reports that they have in their old system in the same format:

• Who's using the report?
 ° Be mindful of your customer's needs.
 ° Focus on the end-user experience. The audience would drive your

delivery methods.

• What information is needed?
 ° Avoid information overload
 ° Find the right balance

• What actions are driven by this report?
 ° Engage them with interactive solutions
 ° Use reports to help drive navigation

• Is this report even necessary in the new system?
• Can we consolidate the multiple reports?

As part of requirement gathering, collect report samples that are used in the current
system as well as manually generated reports. This will help in mapping standard
AX reports and in identifying the gaps.

All the reports identified should be documented and categorized with the report name,
the type of report, whether the report is internal or an externally used report, and
how the report will be supported in AX. Remember, "No longer needed with the new
system" is viable and, often, the preferred solution! The Sure Step Gap/Fit spreadsheet
can be used to help document the reports just as with the other requirements.

Pay extra attention to mapping each column and formatting external-facing reports,
such as invoice templates, customer statement, extracts going to banks, and so
on. Invoice templates may show different information based on the product lines,
customers, and so on.

Chapter 6

[95]

The following table shows the categorization of sample reports based on their use
and importance:

Type of report Sub type Examples
Operational External Purchase order

Sales packing slip
Sales invoice
AP check printing

Internal GL trial balance
Segment P&L
Open purchase orders
Purchase receiving log
Vendor payment history
Shipped not invoiced
Accrued Purchases

Statutory and
financial reports

Balance sheet
P&L
Tax payable
1099

Financial
consolidation

Consolidated financial statements

Analytics Internal/
Management
Reporting

Financial KPIs
Sales by Region
Spend by legal entity
Budget versus actual
P&L customer, product line
Trend analysis

The top three customer issues in reporting
When working on report requirements, it is important to understand the common
complaints or issues that business users face. Collect information early on to address
these pain points.

Reporting and BI

[96]

Inaccurate data and calculation
Work with the business users on the calculations and logic needed on the reports and
document them. Come up with scenarios and examples to explain the business logic
and formulas in the requirement document. Many times, these issues would help in
identifying the gaps in the overall design. For example, say the users want to see the
financial values/costs by batch number in a manufacturing environment. However,
if you are not set up to track financial postings by the batch number dimension, you
won't have the data to build the report.

Performance
Understand how frequently the reports will be used and the acceptable runtime.
Gather information regarding the common filter parameters that need to be added to
the report. This also ties back to the volume of data that would have to be processed
to generate the report. For example, if you are building a monthly commission
report, it needs to consider the volume of sales orders during that month, including
returns and the calculations involved in calculating the commissions.

Layout and formatting
Gather the layout and formatting information needed for the reports. Collect
sample reports and document mock screens, if required, to explain the field
positioning and formatting. As mentioned earlier, this aspect is extremely critical
for external-facing reports.

Knowing about reporting tools
Microsoft Dynamics AX provides various tools for reporting. It is important to
get familiar with all these tools in your Dynamics AX toolbox so that you can use
them appropriately.

The following diagram shows the various reporting tools available for reporting in
Dynamics AX.

Chapter 6

[97]

SQL Server Reporting Services
The Microsoft SQL Server Reporting server is the Server report platform for
Dynamics AX. Dynamics AX delivers hundreds of reports out of the box, which can
be deployed on the SQL Server reporting services. The following diagram shows
the basic architecture and the data flow between the Dynamics AX Client, Report
server, and the Application Object Server (AOS):

As shown in the preceding diagram, when a report is accessed via the AX Client, the
following events happen:

1. The AX client first opens the parameter form to gather the input criteria
for the report and makes a request to the report server for report definition
(an RDL file).

2. The Report server retrieves the report request and retrieves the metadata and
data from the AOS server.

3. AOS examines the request, validates the security, and retrieves data for the
query and returns the metadata and data to reporting services.

4. The Report server customization extension renders and formats the report
and sends a visual representation to the Dynamics AX client.

5. The AX client displays the report on the report viewer control.

Out-of-the-box SSRS reports
Dynamics AX ships with thousands of prebuilt SSRS reports, ranging from simple
master data reports to complex reports with chart controls and graphs. There are
more than a thousand out-of-the-box SSRS reports delivered with the Dynamics AX
installation. There are several hundred country-specific reports available as well for
local government and legal compliance.

Reporting and BI

[98]

The following screenshot displays a few sample SSRS reports in Dynamics AX:

The key features of SSRS reports are as follows:

• 1000-plus out-of-the-box reports
• The Dynamics AX batch framework can be utilized to schedule reports and

save the output
• Export to the Excel, PDF, CSV, and e-mail attachments

SSRS reports are useful for predefined purposes/layouts and ongoing operational
reporting, such as customer aging, vendor aging, ledger account statement, customer
statement, Subledger/GL reconciliation reports, shipped not invoiced, accrued
purchases, and inventory value reporting.

Chapter 6

[99]

SSRS reports are not useful for very large datasets and ad hoc needs, such as adding
columns and grouping by different fields. In some cases, export to Excel while using
SSRS reports may not be very user friendly.

You can refer to https://technet.microsoft.com/en-us/library/hh334471.
aspx for more details about the out-of-the-box delivered reports in Dynamics AX.

EP chart controls
EP chart controls can be used to display chart data on the Dynamics AX Enterprise
Portal (EP). Chart controls provide better performance than SSRS reports for
reporting on EP. Chart controls can display data using the report data provider class
or analysis server cubes.

EP is deployed with many predefined charts that are associated with user profiles. In
addition to this, new charts can be developed. The following chart shows an example
chart control on an EP page:

EP chart controls are useful for the light-reporting option on the enterprise portal
and Role Center pages to build dashboards for executive users.

EP chart controls are useful to perform operational reporting.

https://technet.microsoft.com/en-us/library/hh334471.aspx
https://technet.microsoft.com/en-us/library/hh334471.aspx

Reporting and BI

[100]

Cues in Role Center
Cues allow users to see their work queue and continue to execute tasks rather than run
and review reports to search for transactions that require action. It is a powerful tool
that should be leveraged to avoid the expense of creating custom-reporting solutions.

Cues can be created by the users based on the filters that they use to filter the
transactions that need their attention in List Pages. This is the best way to work on
exceptions that the business needs to manage, such as purchase orders due but not
received (buyers in purchasing need to stay on top of such POs and get new ETA
from vendors), customer invoices past their due dates, project activities assigned to
me, and back orders past due.

The following screenshot shows how simple it is to create a new queue and how the
cue information is displayed on the Role Center page:

Cues are good for building and managing work cues, adding all the cues to the home
page rather than the users going to multiple forms to track them.

Data on the cues are loaded every time the user opens the Role Center page. Cues
with complex calculations can cause performance issues on loading the page.

Chapter 6

[101]

The AX auto-report wizard
The AX auto-report wizard is an ad hoc reporting option that can be used by
business users to print the data displayed on the form. Using this option, the user
can generate an auto-report for one-time use, or you can create and save a custom
auto-report that can be reused later.

The following screenshot illustrates how to generate an auto-report from the Vendor
list page:

Reporting and BI

[102]

This is useful to perform ad hoc reporting from the AX client and printing the
data available on the form for analysis. For example, printing vendor details in
a report format.

Complex report layouts and calculations are not possible using AX auto-reports.
You can just print data in a basic, tabular report layout.

The TechNet article at https://technet.microsoft.com/en-us/library/
gg213177.aspx explains the step-by-step instructions to use the AX Auto report
wizard to generate custom ad hoc reports.

Exporting to Excel from forms
Dynamics AX allows you to apply filters and sort rows based on specific criteria.
Users can add more fields to form the layout through personalization.

Once you have all the data points on the form, export to Excel (Ctrl + T) can be used
to get the data in Excel for further review. The following screenshot shows this:

This is useful when reviewing data such as ledger account transactions, customer
transactions, and so on for ad hoc purposes.

This is not useful for large datasets and data with complex calculations—you do not
want to start using Excel to build complex macros and formulae to get the results
you are looking for.

https://technet.microsoft.com/en-us/library/gg213177.aspx
https://technet.microsoft.com/en-us/library/gg213177.aspx

Chapter 6

[103]

Business intelligence/analytics – cubes
Microsoft Dynamics AX uses the SQL Server Analysis Services (SSAS) platform
for business intelligence and analytics reporting. The Dynamics AX database has
been highly normalized with the release of Dynamics AX 2012. This helps with the
performance and scaling of OLTP databases. However, it creates challenges for
reporting. Hence, cubes are the best way to put together data in flat table formats,
making it easy for reporting.

Dynamics AX provides several default cubes out of the box, which can be used as
they are or customized as per your specific reporting needs.

The following diagram shows the high-level architecture of Dynamics AX analytics
and components to access cube data:

Here are a few considerations to note while building your cubes:

1. Full refresh versus incremental updates: Consider the frequency of updates
and the volume/projected growth of data. You don't want cube refresh
taking an exponentially longer amount of time as the data grows in volume.

2. Building new versus modifying the existing cubes provided by Microsoft:
Every business has their unique requirements of reporting. You can use
Standard Dynamics AX as a starting point and build on top of that.

Reporting and BI

[104]

3. Performance considerations: You may need a completely different set of
indexes based on the searches that would be performed by the end users.

4. Consider using 64-bit Excel for power users: Super users may end up
analyzing large volumes of data in Excel. Plan to make 64-bit Excel versions
available to them locally or through a terminal server to support high
resource utilization of Excel.

5. Cubes to reference data sources outside Dynamics AX: For example, the
CRM system, or the legacy data warehouse (and it would save the efforts
for data migration).

6. Data Security: Exposure to sensitive information stored in Cubes.

This is useful to perform analytical reporting, such as Sales by region, Sales by
quarters, Spend Analysis, and so on. This supports ad hoc reporting and the analysis
needs of marketing, sales users, and controllers especially. This is not useful for
reports that require real-time data.

For more information about the default cubes that are included with Dynamics AX,
refer to https://technet.microsoft.com/en-us/library/jj710378.aspx.

Accessing data from cubes
There are a number of ways in which you can use cubes provided with Dynamics
AX. The following are some common ways to access cube data:

SSRS reports on AX client
There are several existing standard AX SSRS reports utilizing the existing cube data
to display reports within the Dynamics AX client.

https://technet.microsoft.com/en-us/library/jj710378.aspx

Chapter 6

[105]

KPIs and chart on AX Role Center
You can add Cubes KPIs on the AX Role Center pages. The following screenshot
shows KPIs on AX Role Center:

Excel and Power BI
Business users can use Excel to import cube data and create pivot tables. They can
also use Power BI for Office 365 to build interactive reports and embed in role center
pages as shown in the following screenshot:

The Report Builder tool
The Report Builder is a tool within the SQL server reporting services and can be used
to build ad hoc reporting using the Dynamics AX analysis cube data.

Reporting and BI

[106]

Visual Studio
The Microsoft Visual Studio tools can be used to create SSRS reports that use cubes
as a data source.

The Management Reporter tool
Management Reporter is an embedded Financial reporting tool provided by
Microsoft Dynamics AX. Microsoft has made significant investments in Management
Reporter in recent years, and it has paid off with this enterprise-ready tool meant to
replace the Financial Statement setup in the General Ledger module.

The following are the key features of Management Reporter:

• Flexible report design
 ° Saves dimension combinations, and reuses the dimension for

multiple reports
 ° Controls dimension descriptions and formatting
 ° The Missing account analysis feature to identify accounts or

dimensions that have been omitted from the report building blocks
 ° Format headers to roll forecasts
 ° Default report definitions that offer predefined reports for the

balance sheet, income statement, and cash flow statement, as well
as other financial reports that can be modified to meet customer
requirements

• Interactive reporting
 ° Creates a chart based on selected report rows and columns
 ° Drills down to the original transaction in Dynamics AX
 ° Views or shares reports in a web browser
 ° End user tool: Finance team can make report designs and changes as

needed

• Tight integration with Microsoft Dynamics AX
 ° Defines rollups (reporting tree) across financial dimensions or

legal entities. You can use organizational hierarchies defined in
Dynamics AX.

 ° Supports multicurrency, multi-company reporting along with
eliminations and consolidations.

Chapter 6

[107]

 ° Has its own data warehouse and does not impact the OLTP database
for reporting. Very useful for organizations with high volume
transactions.

• Financial report collaboration

 ° Schedules reports to automatically generate on a daily, weekly,
monthly, or yearly basis

 ° Generates a report in multiple formats, such as XPS, Excel, and so on
 ° Publishes reports to SharePoint or a network drive
 ° Shares reports using e-mail with a link to report

The following diagram shows the high-level flow of financial information data in the
management reporter:

Reporting and BI

[108]

This is useful when performing financial reporting, such as generating the balance
sheet, profit and loss statement, cash flow statement, budget versus actual analysis,
and others.

This is also used to perform consolidated financial reporting (soft consolidation and
eliminations in management reporter).

This is useful when performing management reporting based on segments and
posting layers (operations and tax layers in Dynamics AX allow maintaining
multiple sets of books for management and tax reporting).

This is not useful if you want to perform sub-ledger and operational reporting.

List pages
List pages provide a quick and easy way to view a group of similar records. There are
two types of list pages—primary and secondary. Primary list pages display a set of
records and the secondary list pages display a subset of those records. List pages also
contain fact boxes that typically display information related to the selected records.

List pages are a great alternative to operational reports as they display the relevant
data on a single screen and provide the quick-filter ability.

The following screenshot shows list pages in the Account Receivable module of the
AX client. As you can see, All sales orders is a primary list page that displays all the
sales orders in the selected legal entity. There are several secondary list pages, as
shown in the image to display the subsets of the sales orders:

Chapter 6

[109]

This is useful for day-to-day operational reporting, such as list of open sales orders,
delivered sales orders/not yet invoiced, and so on.

Office Add-ins
Office Add-ins for AX 2012 is a great tool to work with Dynamics AX data. Office
add-ins provide the ability to generate documents based on the AX data and can be
used to perform ad hoc reporting by business users. Excel add-ins also provides the
ability to manipulate and import data back into Dynamics AX. The following diagram
shows the high-level architecture of Office Add-Ins with Dynamics AX:

Word add-ins
Word add-ins can be used to create a document template and can be used for light
reporting based on the templates personalized for the customer.

Reporting and BI

[110]

The following screenshot shows the use of Word add-ins to generate a personalized
sales quotation using the AX data:

This is useful for performing light manual reporting based on custom templates.

This is not useful if you want to perform high-volume reporting.

Refer to the TechNet article for a step-by-step guide to using Word Add-ins at
https://technet.microsoft.com/en-us/library/hh781090.aspx.

Excel add-ins
Excel add-ins can be used as another powerful, ad hoc reporting tool with Dynamics
AX. A user can export data from any Dynamics AX form with just a click of a single
button. AX 2012 Excel add-ins enables users to add additional columns, formatting,
and to refresh data within Excel. The following screenshot shows the use of Excel
add-ins to export the AX form data into Excel, adding additional fields, and
formatting in the design mode:

https://technet.microsoft.com/en-us/library/hh781090.aspx

Chapter 6

[111]

Using Excel Add-in, a user can also create an Excel template and share it with a
coworker. This is also useful when performing ad hoc reporting and data analysis.
This is not useful for high-volume data, complex design, and calculations.

For complete information on what the users can do using the Excel add-ins, refer
to the TechNet article at https://technet.microsoft.com/en-us/library/
hh781099.aspx.

https://technet.microsoft.com/en-us/library/hh781099.aspx
https://technet.microsoft.com/en-us/library/hh781099.aspx

Reporting and BI

[112]

Other add-on BI solutions
There are several independent and partner software vendors providing specialized
BI solutions for Dynamics AX. The following table shows vendors providing add-on
BI solutions for Dynamics AX:

Vendor Name Solution References
Microsoft Power BI https://powerbi.microsoft.com/

ZAP BI ZAP for Microsoft
Dynamics AX

http://www.zapbi.com/DiscoverZAP/
BYAPPLICATION/MicrosoftDynamicsAX.
aspx

TargIT TARGIT
Accelerators

http://www.targit.com/en/software/
accelerator/dynamics-ax

BI4Dynamics BI for Dynamics AX http://www.bi4dynamics.com/

Solver BI360 BI 360 http://www.solverusa.com/products/

Globe Software Atlas-Desktop http://www.globesoftware.com/
Atlas-Solution

These are useful for when you want to perform advanced and specialized BI reporting.

Mapping reports and identifying gaps
As described in an earlier section, there are hundreds of out-of-the-box SSRS reports,
more than 15 cubes, and hundreds of list pages and inquiry forms that come with the
Dynamics AX application. You would be surprised to know how many reports can
be delivered using just the information on the forms and the AX standard reports.
For analytical reporting, you can leverage the default cubes to deliver reporting
requirements for your project.

Work with business users to evaluate out-of-the-box reports, cubes, list pages, and EP
Role Center pages, and identify reports that can be directly replaced, reports that need
modifications, or which need to be built. For reports that need to be built, select the
correct tool set. The following table shows how to collect the required information:

Report name Standard AX
report

Fit/Gap Additional comments

Sales invoice
report

Sales invoice Gap There is a need to change the layout.
The following additional fields need to
be added to the report.
Country-specific versions need to be
created.

https://powerbi.microsoft.com/
http://www.zapbi.com/DiscoverZAP/BYAPPLICATION/MicrosoftDynamicsAX.aspx
http://www.zapbi.com/DiscoverZAP/BYAPPLICATION/MicrosoftDynamicsAX.aspx
http://www.zapbi.com/DiscoverZAP/BYAPPLICATION/MicrosoftDynamicsAX.aspx
http://www.targit.com/en/software/accelerator/dynamics-ax
http://www.targit.com/en/software/accelerator/dynamics-ax
http://www.bi4dynamics.com/
http://www.solverusa.com/products/
http://www.globesoftware.com/Atlas-Solution
http://www.globesoftware.com/Atlas-Solution

Chapter 6

[113]

Report name Standard AX
report

Fit/Gap Additional comments

Customer
statement

Customer
statement

Gap Layout changes are required.

Purchase order Purchase order Gap There is a need to minimize the header
information. There is a need to print
ship to, bill to, and vendor address in
different columns.

Customer
details

Excel Add-ins
Customer list
page

Fit

Ad hoc margin
analysis

Sales Cube Fit The controller wants to review the
margin by different dimensions, such
as product categories, product lines,
customer segments, sales divisions, and
so on

Customer P&L Management
Reporter

Fit The customer is also configured as
financial dimension (costs are tracked
and allocated in GL by customers).
Build a reporting tree in MR to combine
related accounts for reporting.

The custom report development
It's very common for any ERP implementation project that standard, out-of-the-box
reports do not meet all the reporting requirements, and that implementation will
require either modification of the existing reports or the creation of new reports
from scratch. Under this topic, we will learn the basic process of report design and
development in Dynamics AX.

Report design is one of the most challenging parts of a project. You need business
analysts who understand the business and how data is stored in the system. You
also need good collaboration with business analysts and developers. To facilitate this
process, a report specification document template should be developed and filled
out for each report modification or new report identified. This specification should
include the following information:

• Business purpose for change/addition of report
• Description of the report along with its data elements
• High-level description or picture of the layout

Reporting and BI

[114]

• Filters required (for example, select data set by date range, customer group,
and so on)

• Test plan (the scenarios to test for and the expected results)
• Report placement and security requirements
• Output medium (laser printer/PDF/Excel)
• Scheduling requirements (weekly/daily/ad hoc)

The following diagram shows the process of report development:

Development
Dynamics AX provides an extensive framework to develop custom reports as per
customer needs. A developer uses Visual Studio to create report designs. Dynamics
AX reporting extension provides easy access to the AX data source, labels (language
support), and business logic. The following are some key considerations that a
developer has to keep in mind when developing custom reports:

• Picking the right tool: Picking the right tool for report development based
on the requirement is an urgent need. Do you need an SSRS report or an EP
chart control report? If you decide to use Management Reporter and need to
design financial reports, then, definitely, you need to select the management
reporter tool to design your new report. Choice of the proper tool is very
obvious when report requirements are clearly defined.

• Deciding the source: There can be multiple places in AX from where the data
can be retrieved. Does your report need to be based on detailed transactional
data or cube data? Do you want real-time data or can it come from an
aggregate cube? Based on the requirement, the developer selects the datasets
appropriate for the report. The following types of data sets are supported on
AX 2012 SSRS reports—Query based, Report data provider, Data methods,
and AX Enum provider.

Chapter 6

[115]

• For more details on how to create an SSRS report for Dynamics AX, follow
the TechNet article at https://technet.microsoft.com/EN-US/library/
cc557922.aspx.

• Design to perform: It is important for the developer to understand the
performance requirement of the report. Design appropriate filters on
the reports to filter the data in the report. Consider some of the newest
enhancements in AX 2012 to use the TempDB table and preprocessing classes
to generate the required data for the report. Consider general best practices
and design principles to create reports that need complex calculations and
high-volume data.

• Selecting appropriate report templates: There are several predefined
report layouts and style templates available for creating a Dynamics AX
report. Layout and style templates provide consistent layout and formatting
behavior for your new custom report layout.

• Define data security: That's another important consideration while
designing reporting solutions. For example, you don't want a Sales Associate
to see the commissions of other Sales Associates. Design appropriate security
privileges and duties to secure data.

Testing
The testing process for a report is similar to any other custom development. As noted
earlier, test scripts should be a part of the report specifications so that the developer
can confirm that the report is doing what is expected before it is released to the test
environment. This will reduce rework and multiple deployments for the developer.

• Test data: Generate sample data in the development environment to verify
results. Evaluate the performance of report execution by testing it on larger
data sets.

• Verify layout and formatting: In most of the project reports, development
takes more time than anticipated most of which is spent on the layout and
formatting of data in the reports. Pay special attention to external reports,
such as customer invoices, customer statements, and purchase order reports,
and verify the layout carefully to avoid multiple iterations or rework.

• Test print medium: It does happen that the report looks great onscreen,
but looks different once printed on the printer or a PDF. Test the report by
printing it on paper and other mediums to make sure that the layout and
formatting is consistent and acceptable to the business user.

https://technet.microsoft.com/EN-US/library/cc557922.aspx
https://technet.microsoft.com/EN-US/library/cc557922.aspx

Reporting and BI

[116]

Deployment
Finally, the reports developed need to be deployed in order to be used by the
business users. For report deployment, consider the following:

• Security: Determine appropriate roles and duties that need to be assigned to
use the custom report. For analytics reports and cubes, you need to define the
appropriate role at the cube level to enable users to access the cube data.

• Scheduling and delivery: Certain reports may need to be scheduled. You can
set up batch processes in AX or configure the delivery schedule in SSRS to
deliver the reports to the users directly.

Summary
In this chapter, you started with understanding how important reporting is to run
any business. We reviewed a set of questions that need to be asked when gathering
reporting requirements. You also learned about the different tools available in
Dynamics AX for reporting and BI and how they can be used to fulfil the reporting
requirements in the project. In the end, we discussed how, in typical implementation
projects, we have to either modify or develop new reports from scratch. We also
discussed the typical process of custom report development in Dynamics AX.

In the next chapter, we will learn about the functional and technical architecture of
Dynamics AX. We will understand key design patterns and how to extend these
features when needed.

[117]

Functional and
Technical Design

The functional and technical design process begins once the analysis phase has been
completed. By now, the project plan is ready, the requirements document has been
signed off, Conference Room Pilot (CRP) has been completed, and the Fit/Gap
exercise has been completed and documented as part of the analysis phase. Now, it
is time for the implementation team to document the overall solution and produce
the functional and technical design documents.

The following diagram shows the deliverables and activities in the design phase of
the implementation project:

Functional and Technical Design

[118]

In this chapter, we will learn about the following:

• Functional Design Document (FDD)
 ° Overview and objectives
 ° Guidelines for FDD
 ° Understanding product features and limitations
 ° Common customization requests in Dynamics AX

• Solution Design Document (SDD)
• Evaluating ISV solutions
• Technical Design Document (TDD)

 ° Overview
 ° Guidelines for writing technical design

The functional design document
The functional design documentation is created after the requirements document
has been signed off and the Fit/Gap analysis is completed in conjunction with the
CRP. This documentation describes the features of the desired customizations. The
document can include things such as flowcharts, screenshots, wire frames, and so
on. At a minimum, an FDD will contain an organized list of requirements that can be
used for development, testing, and client signoff.

Why write FDD?
Functional design documents help developers, testers, and customers to
understand customizations in detail. The following are the key benefits of
functional design documents:

• FDDs help the development team to understand the feature and provide a
clear scope and definition of what to develop. Function design documents
streamline the development process. The development team working on
the feature has a clear understanding and answers to all their questions to
start development. Since this document is approved by the customer, the
developers are developing customizations which are approved.

• FDDs help the testing team to understand the feature under development
and to develop a test plan around it.

• FDDs provide the customer with a clear vision and definition of the feature
being developed.

Chapter 7

[119]

• FDDs provide the baseline of the training documentation for the application
support team and business users.

Fit/Gap review session
The Fit/Gap document is the primary input document to write the FDD. It is very
important to review the Fit/Gap document in detail before starting with the FDD.
The following are a few pointers to take note of when conducting a successful
Fit/Gap review session:

• The Fit/Gap review session should involve the functional and technical
solution architect, project manager, and customer subject matter experts (SMEs).

• It is important to remember that this is a Fit/Gap session, so Fit should also be
analyzed. Any degree of customization identified in Fit should be recorded.

• Oftentimes, you find gaps listed that aren't really gaps as the solution can
handle the requirement. The review session should discuss each requirement
in detail and discuss all possible alternate solutions.

• All gaps should be recorded and assigned a unique number. The Microsoft
LCS Business Modeler tool provides the ability to document your business
process and record gaps.

• Take a detailed look at how the gaps are going to be addressed. Outline
the testing/review process for customizations and how the testing will
be administered.

• By focusing on these topics, you will soon learn where the team stands
with regard to the appropriate documentation and its approach to the
customization process.

Project management aspects of design
The following are a few pointer for project managers, to consider during design
phase of the project:

• Fit/Gap, requirements, and the project plan need to be signed off to start the
functional design phase. You can break them up into areas and start early if
you have specific areas signed off.

• Make the team put together the overall functional architecture and the
flow-across applications; review with the respective stakeholders.

• Start with the functional design for areas on which the rest of the solution
has a dependency. For example, customer, product masters, and so on are
important for the downstream supply chain, invoicing processes, and others.

• Dedicate resources for large, complex functional areas early on.

Functional and Technical Design

[120]

• Divide responsibilities by area and try to have smaller FDDs created for each
area. This would help manage them better.

• Assign developers and a QA team to each area at this stage. Engage them in
reviewing the functional design and in supporting the respective business
analysts early on (do not start the coding).

• You need to plan for multiple iterations and reviews. Functional designs
are very crucial. Upfront reviews can save a lot of development hours and
rework and will also increase the overall quality of the deliverables.

• Identify all cross-functional requirements; the solution architect should lead
them to suitable designs.

• Cross-functional reviews are very important in larger projects. Have
recurrent meetings every week/twice a week (as needed) to review the
functional designs with all the functional team members together. Prioritize
reviews for foundational items (such as customer master and product master
changes) that would impact other functional areas.

• Cross-functional reviews will help to improve solutions (the rest of the
team may have inputs on doing the same thing in a better way or with less
customization). Also, more importantly, you will be forcing the team to
review each other's designs by pulling them together into a room.

• Engage business SMEs early on for reviews (set up a design walkthrough,
provide deadlines for getting feedback, and seek a signoff for each of the
functional designs).

• Depending upon the complexity, involve SMEs ,external to project, for an
independent review and recommendations. Their presence itself will fix
more than 50 percent of the issues. For example, when you start auditing the
financial results of the company, your accounting practices will automatically
improve as people know that they are going to get audited.

Things to know before writing FDD
FDDs speak the application language and terminology, so business analysts writing
functional design documents must understand the Dynamics AX application
and functionality. Lack of product knowledge and understanding can keep the
documents at a high level, pushing the design aspects to the developers, which
deviates from the purpose of the documents.

Microsoft Dynamics Sure Step provides good templates to write FDDs. Create your
own version with the sections relevant to your project and
have the team follow the template.

Chapter 7

[121]

Always have one or many requirements in the Requirements
Traceability Matrix (RTM) corresponding to the functional
design document. RTM is a foundational element in ERP
implementations as it ensures consistent delivery against the
contract and business requirements.

The following sections discuss topics of common features and frameworks that
business analysts need to be familiar with, while designing the solutions.

The party model
Party relations are one of the most normalized tables, and it's important to
understand relationships with the customers, vendors, and other entities. This
impacts the modelling of solutions for important business entities. The following
diagram shows this:

Functional and Technical Design

[122]

The global address book
This is the repository of people and organizations and their relationships with each
other—whether they are internal or external to the enterprise.

The financial data
The relationship between legal entities, COA, financial dimensions, and journal
entries is shown in the following diagram:

Chapter 7

[123]

The reverse engineering tool
With AX 2012, Microsoft has normalized tables to a large extent. Understanding
data models is important to designing the solutions. Reverse engineering tool in
AOT is a good resource to visualize data and classes in Microsoft Dynamics AX
by creating UML data models, UML object models, and ERX ER data models.
More information on the Reverse engineering tool can be found on MSDN at
https://msdn.microsoft.com/en-us/library/aa499193.aspx.

Key global features
In this section, we will discuss the key features that can be used across modules and
are important to understand as you work through the design phase.

• Database logging
 ° The database log is a feature that helps in auditing.
 ° It keeps track of the changes made by users. You can enable track on

specific actions, such as insert, delete, and update. For updates, you
can turn on tracking for specific fields.

 ° It keeps track of who created or modified the record and when. In
case of updates, you can see the previous value and the new value.

 ° This is typically used in areas where audit tracking is required, such
as credit limit updates.

 ° Standard Dynamics AX Reports are useful to review any changes
made. Reporting on this data outside Dynamics AX can be challenging.

 ° If changes are made directly in SQL through updates, these will
not be visible to Dynamics AX AOS and will not be available in the
Database log. It is one of the many reasons why Dynamics AX data
should not be directly modified in the SQL database.

• Document management
 ° The document management feature (also known as document

handling) enables users to attach documents to a particular
transaction or a master data record in Dynamics AX. It can be used to
attach supporting documents, such as the invoice copy received from
the vendor, purchase order quotes, contracts, and so on.

 ° Different document types can be created and configured to be
used across solution areas. Normally, separate document types are
created for use by departments as you can limit who can see notes by
document type.

https://msdn.microsoft.com/en-us/library/aa499193.aspx

Functional and Technical Design

[124]

 ° You can save notes and print them on output documents, such as
packing slip and invoices.

 ° The files that are attached can be viewed using the Attachment
option on the Dynamics AX screens.

 ° There are multiple ways of implementing this feature for storage,
such as database, file share, and SharePoint are commonly used.

 ° If you have sophisticated needs, such as workflows to save
documents, additional security or virus scans prior to saving
documents, or Optical Character Recognition (OCR), you can
integrate with an external document management system; there are
also several ISV solutions available in this area. These are especially
useful for AP invoice automation.

 ° The files can also be controlled for maximum size or file types.

• Cues
 ° Cues are visual representations of select information on transactions

and are typically displayed on the user's dashboard/Role Center.
 ° There are many purposes to use them and managing exceptions is

amongst the top ones.
 ° The foundations of cues are filtered queries that give the statistical

input to be displayed graphically.
 ° Cues can be created for different types, and some commonly used

ones are count and sum.
 ° Examples of cues include showing the sum of pending invoices that

are due as of today, count of overdue invoices, count of delayed
orders, count of POs past due that can be used by buyers, and so on.
Users can drill into individual transactions and use this as a task list
to address them.

• Alerts
 ° Alerts are one of the most popular notification features in Microsoft

Dynamics AX.
 ° They can be set up to trigger notifications delivered on the Dynamics

AX client and/or an e-mail.
 ° The alerts work on a trigger concept and are set up in the select table.
 ° They can be used for entire record-level change notifications,

including create, edit, and delete and can also be used for field-level
change notifications.

Chapter 7

[125]

 ° Alerts are not meant for broadcast use; hence, the notification is sent
to one user only. If you want a specific team to be notified, team
e-mail (e-mail distribution list in exchange) can be used.

 ° A batch job in the system administration module delivers the alerts
(usually, it is set to run every minute). Alerts tables can get very
huge; clean up batch jobs should be scheduled as well.

 ° Alerts need to be carefully set only for actionable events. Otherwise,
users often run into too many alert situations and get ignored. Alerts
set up to generate huge numbers of notifications may also impact
system performance.

• Personalization
 ° Personalization is the feature to tailor-make the screen per user or

group of users.
 ° While the user can make the screens morph the way it suits them and

helps their productivity, these personalization changes do not impact
other users or the underlying code base.

 ° Typical usage lies in rearranging the information on the Dynamics
AX screen to best suit the purpose of the user.

 ° Do not use this feature when you want to make screen changes across
the board for all users.

 ° While personalization is a powerful tool for users to use,
personalization is lost when you clear usage data for the user (it is
one of the first troubleshooting steps and may have to be performed).

• Batch jobs
 ° Batch jobs is an automated work that Dynamics AX is capable of.
 ° Any transaction that needs to be executed on the AOS server, and

in a scheduled way, can be set up in a batch job. You can set up the
frequency in terms of days, minutes, and hours. Batch jobs can have
an end date or can be scheduled for only one occurrence.

 ° If you want to run batch jobs in a specific window, for example. every
15 minutes from 7 A.M. to 6 P.M., you may want to put such jobs on
AOS Servers, which are batch servers, during a specific time window.
These AOS Servers need to be defined as batch servers; set up 0 batch
threads between 6 P.M. through 7 A.M. for the AOS server and the
batch job will be set to run every 15 minutes during the window that
you defined.

Functional and Technical Design

[126]

 ° Consider the deployment window while defining the batch job
frequency. Make all the batch servers have zero threads between 9
P.M. and 10 P.M., and don't schedule long-running batch jobs just
before 9 P.M. This will ensure that you easily put all the jobs on hold
for the deployment.

 ° Performance scaling of volume-intensive transactions or actions to
be performed periodically are typical uses of batch jobs, for example,
invoicing shipped orders every 15 minutes, daily export of positive
pay file, and inventory recalculation or close process.

 ° In batch jobs, tasks are created to perform the necessary actions,
and these tasks can be multi-threaded to fully utilize the
available resources.

 ° You can also create dependencies using batch groups. For example,
when you want products to be imported, the pricing information
is received from the Product Management system before you
start importing.

 ° Other usage of batch jobs include workflow execution, alerts trigger
checking, scheduling reports execution, and so on.

• Partitions
 ° Considerations for partitions to be used are important for global

projects with multiple legal entities. The decision for partitions to
be created needs to be made in the early part of the design phase.

 ° In the glossary for Microsoft Dynamics AX, the formal definition of
a partition is given as a division of an application's processing into
logical or functional parts.

 ° Partitions divide and isolate the business data of an installation
using special processing that the AOS applies to data queries. This
special processing occurs immediately before the queries are sent to
the underlying Microsoft SQL Server database when a system field
named Partition is present in a queried table.

 ° The purpose of a partition is to logically separate the data within
its boundaries from the data in other partitions. A partition enables
AOS to isolate the data in the partition from users who are not
authorized to access the data. For example, a holding corporation
might have several subsidiaries or other legal entities. An installation
of Microsoft Dynamics AX for the corporation can have several
partitions, perhaps one for each subsidiary.

Chapter 7

[127]

 ° Each partition contains at least one company or legal entity. A legal
entity occurs in only one partition. When you create a legal entity, the
system assigns it to the current partition. The legal entity can never
be moved to another partition.

 ° With the installation of AX, a default partition is created and the
system administrators and developers can create more as per their
need. Partitions were introduced in Dynamics AX 2012 R2. While
migrating from the previous versions, partitions need to be assigned
to legal entities as part of the upgrade process. Do not create multiple
partitions when data needs to be shared across companies, for
example, in the chart of accounts, vendors, customers, and products.

• Virtual company
 ° A virtual company allows you to specify a group of tables (table

collection) that need to be shared among a group of companies.
When users save information in one of those tables, the data is
available to the other company accounts.

 ° A virtual company is a good functional feature. However, it is
difficult to implement and can cause data inconsistencies. It should
be avoided if at all possible.

 ° Ideally, you should make decisions to define virtual companies
upfront in the design process. Defining a virtual company after you
have input data in multiple companies is tricky and may cause data
integrity issues.

 ° Virtual companies play a key role in implementations involving
a high number of legal entities.

 ° Only use virtual companies to share setup and master data across
companies. Do not use virtual companies for transactional data. Here is
a practical example of virtual companies—an implementation that has
70-80 legal entities, that is, tables for maintaining payment terms, fixed
asset groups, fixed asset posting profiles, value models, depreciation
books, and journal names can be created in a virtual company to make
creating and maintaining new legal entities much easier.

 ° Use a number sequence of the type shared if number sequences are
needed for the shared data.

Functional and Technical Design

[128]

• Workflows
 ° Workflows are the mechanism by which business rules and approval

processes are implemented in the solution. You can direct certain
transactions for approvals using workflows. Some examples of
documents for which built-in workflows can be set up are AP invoice
journals, purchase requisitions, expense reports, budget planning
processes, general journals, customer payments, free text invoices,
and so on.

 ° Always keep the workflow implementation as simple as possible. Many
organizations move from paper or manual approval processes into
systematic workflows and come up with complex rules. It becomes
difficult to build and maintain such workflows as organizational
changes occur and eventually these workflows are abandoned.

 ° While implementing workflows, show delegation functions to the
larger user community as part of training. It needs to become a
part of their out-of-office/vacation checklist to define delegates for
time-sensitive workflows.

 ° The usage of workflows includes:
Assigning a transaction for review
Assigning a transaction for approval
Automation of a business step
Conditional decisions on business data, which the next steps are
dependent upon
Multiple level of approvals
Approval type selection, such as based on role, based on position and
managerial hierarchy, and so on
Workflows can be delegated and/or escalated after a certain timeframe

Big picture diagrams
Big picture diagrams convey the entire solution map and flow in a way that is
difficult to express in words. The following are the suggested and sample big picture
diagrams that should be built and maintained for Dynamics AX and all other
applications that are a part of the solution. It also helps get new resources up to
speed with the overall functional architecture of the solution.

Chapter 7

[129]

The functional architecture
Put together the functional architecture of all the systems involved in their business
functions. Try to minimize the number of systems any specific group has to use for
their day-to-day work:

A big picture for complete business functions in one page

Functional and Technical Design

[130]

Integrations
Put together the technical architecture for the solution with all the integrations and
their directions, as shown in the following diagram:

A bird's-eye view of the entire integration

The flow of data
Provide the to-be process references in the functional design documents. Use a
business process modeler in the Lifecycle Services (LCS) portal to define the
business processes in a swimlane fashion:

Chapter 7

[131]

A process-oriented solution flow diagram (reference: LCS)

Do's and Don'ts
• Do not repurpose fields to avoid customization. You will end up causing

unforeseen issues down the road or block future use of the functionality
related to the field.

• Do not use smart numbering: You will be limiting functionality and
developing a lot of dependency on reporting, and the like, based on smart
numbering. If you have used a smart number in the past, this is the perfect
opportunity to fix it. For example, say you have product numbers such
as XXX-YYY-ZZZ, where XXX represents the category, YYY is for the
Manufacturer, and ZZZ represents the product number. You will be better
off having the product number as just a number rather than building logic
into the number itself. Instead, use three separate fields on the item master,
which will help drive business processes and reporting based on these fields.

Functional and Technical Design

[132]

• Keep the architecture simple and easy to follow. The more complexity you
add to the solution, the more difficult it will be to implement and support.

• Try to reduce duplication of data in multiple places; avoid unnecessary/
complex integrations.

• Design solutions around standard functionality, without touching the core
system. For example, say the customer wants to automate the creation of
allocation journals based on the allocation rules defined in the general ledger
module. As a functional consultant, I will design a separate customization
that will extend the functionality of the core Dynamics AX allocation process
rather than changing the standard AX forms and features.

The solution design document
A Solution Design Document (SDD) includes information about the working
elements of the overall solution, including Dynamics AX standard features (Fits),
Gaps, and integrations. It is important to get the entire solution depicted in a
pictorial representation. The business process modeler in LCS is a great tool with
which to put together the solution design document.

Overview and objectives
Solution design documents are primarily referred to by core team members of
the implementation team. The following are the key objectives of solution design
documentation:

• The details of the business flow in the future solution based on Microsoft
Dynamics AX

• Solution validation
• The single point of reference for future value additions, issues, and

troubleshooting
• Documenting the high level
• Business and solution flow diagrams

Chapter 7

[133]

Guidelines for Solution Design Documents
Solution design is a solution binder and puts together all the aspects of the solution.
The following are the suggested coverage areas that the solution design should
comprise:

• There should be an end-to-end pictorial flow for the entire business process
by organization function. For example, one end-to-end flow diagram for the
supply chain, one end-to-end flow diagram for financials, and likewise for
other business functions.

• The end-to-end flow must have starting/entry points, ending/closure points,
and handover to other process diagrams.

• There should be all the decision points that can bring in additional business
scenarios.

• There should be steps that are manual or automated.
• Roles expected to perform the function in Microsoft Dynamics in a swimlane

view should be there.
• Key security and integrations solution components should be included.
• All artifacts and configurations that would be needed to deploy the solution

in production should be included.

The key takeaway from SDD is that the implementation core team (especially
customer members) is on board with the overall solution flow and design.

Engaging ISV partners
There are a lot of great ISV solutions available in the Dynamics AX ecosystem that
can help you bridge the gap between the standard product and the required industry-
specific functionality. Usually, if someone already has a solution that has been used
by multiple customers, and has experience in that specific domain, it will be less risky
than developing your own solution—you don't want to reinvent the wheel.

Project managers and solution architects need to act as the customer's advocate in
choosing ISV solutions. Getting the right ISV solutions and holding them accountable
within their areas is important for your success.

Functional and Technical Design

[134]

Before choosing ISV solutions
Before choosing ISV solutions, consider the following points:

• Build versus buy analysis: Sometimes, going with an ISV solution may look
like a quick win. However, it may have a great cost associated with it. You
need to make sure that the team has done a good build versus buy analysis.

• Benefits and percentage of fit: Understand all the benefits that the ISV
product has to offer and identify the percentage of fit that you have with the
requirements. If you still have to customize for more than 20-30 percent of
the scenarios, you may be better off building the whole solution by yourself.

• Readiness on current version: It is very important to see a demo on the
current version of the product (that is, the version you are planning to use) or
understand how close the ISV is to delivering the solution for the version that
you will implement. Try to defer the decision to buy an ISV solution until the
product is functional for the version you need.

• Product roadmap: Understand their roadmap and features, if any, promised
as a part of the roadmap. Make sure that those deadlines are mentioned
as part of the contract. For example, ISV currently provides tax calculation
only for the U.S. However, Canada is on the roadmap. Make sure that you
understand the deadlines for Canada and have those documented as part of
the contract to ensure that your project doesn't suffer due to delays from ISV.
Also, review their roadmap for upcoming cumulative updates.

• AX roadmap: Be aware of any new functionality that Microsoft is working
on for new releases. Will these features supplant the ISV solution? And how
easy would it be to upgrade AX and take advantage of the new features?
Would it be more cost-effective? How will it affect the business if you wait
for new features versus doing a temporary customization or implementing
the ISV solution?

• Architectural review: Have high-level architectural reviews done by the
Solution architect/technical architect on the team as part of the evaluation (to
ensure that there are no architectural gaps and the solution is scalable).

• References: If you don't have an existing relationship with the ISV, ask
for customer references and have a discussion with the references prior to
making a decision.

• Company size and support: Yes, it does matter! You don't want a multibillion-
dollar organization to be dependent on the small ISV solution provider (that
will be part of the tier 1 ERP system) that has only two employees. The solution
may be great, but you need to evaluate the risk to the business if you are going
to be fully dependent on an ISV partner to support you.

Chapter 7

[135]

If there are a lot more features that are included in the ISV solution than the
customer may ever need, and if these features touch any of the core features of
Dynamics AX, you may have to reconsider the solution (more features would inject
more bugs in the overall Dynamics AX environment and may cause issues for other
standard AX features).

After selecting the partner
Consider the following after partner selection:

• Get the budget approved and have all the invoices billed through the partner.
This way, the customer doesn't have to deal with multiple parties.

• Share your project plan with the ISV partner and align their delivery dates
according to your schedule. Update your project plan to include key ISV
deliverables.

• Have them attend weekly meetings for status updates (if they are working in
parallel on building the solution).

• Install all the ISV Solutions in a specific layer other than the VAR layer.
Usually, ISV solutions are imported in the ISV layer.

• Plan the code and configuration changes from ISV that must be incorporated
into your development and other environments.

Common pitfalls
Consider the following to avoid common pitfalls during ISV selection:

• You don't want to involve too many ISV solutions as part of the overall
solution. It would increase dependencies for upgrades, and there may be
conflicts in their solutions, which would cause pain.

• Each ISV solution being envisioned in the overall solution design should
have a minimum overlap of functionality and objects.

• Upgrades (or even hotfixes) provided by Microsoft may become challenging.
You will have dependencies on an ISV solution if the hotfix provided by
Microsoft touches the areas modified by the ISV partner.

• Access to the code base and any proprietary solution components: You
must avoid any ISVs that have proprietary solution components that are not
available for you to modify (for example, DLLs for which you don't have
code. You are now dependent on the ISV Partner for every change that needs
to be made).

Functional and Technical Design

[136]

The Technical Design Document
A Technical Design Document (TDD) includes information about the programmatic
approach of how a particular requirement will be implemented.

Overview and objectives
TDDs are prepared primarily by the developer for the final development. They are
also used by the testing team to write detailed test cases. The following are the key
objectives of technical design documentation:

• Details of application architecture and design goals
• Data validation
• Documentation of the code (high level)
• Data flow diagrams

Guidelines for the Technical Design
Document
We will discuss the design patterns and things to be cognizant of while putting
together a technical design. A technical design is about the solution planning
and putting together a skeleton of the technical solution. Putting together good
design documentation will help you save development rework and improve the
quality of code by allowing you to think through several facets of the solution
before you start coding.

Preparation
Consider the following before starting to write TDDs:

• The technical design typically starts after the signoff of the functional design.
It can also, start early for a functional area where the requirements are clear.

• Engage the technical lead early on during functional designing to understand
the functional requirements and the functional flow.

• Plan brainstorming sessions amongst the team to discuss different
solution ideas.

• Plan separate technical specs for integrations and data migration.
• Plan communication among the team to handle cross-functional designs.

Chapter 7

[137]

Execution
Consider the following when writing TDDs:

• Process flow: Depict the overall process flow for the functional area so that
it's clear to the developer what the final outcome is and how to reach it.

• UI and usability: Keep in mind the users and processes that will be using
the new forms: is it workers on the floor or a person in the accounting
department? Is it a repetitive function, such as shipping sales orders or
invoicing POs, or is it a batch process, such as invoicing sales orders? Use
familiar UI patterns considering the users of the functionality.

• Scalability of solution: Think about how the solution can be scalable, such
as more controlled by parameters and data rather than code. Having it
controlled by parameters will help you in global environments. For example,
you can turn off the functionality for companies that don't want to use it.
Also, should you have an issue in production with the recently released
functionality, you might have the option to turn it off using parameters,
rather than a full rollback during business hours.

• Apply generic design patterns: Utilize solution ideas and frameworks
offered within the product. The goal is not to rewrite the Dynamics AX
product; you are just extending its capability for business use. For example,
if you have a bulk integration requirement, try to evaluate whether you can
expand the DIXF framework for this rather than building a new framework
from scratch. Follow the design patterns of the standard Dynamics AX Forms
for custom forms.

• Performance: Identify the volume of transactions in the current production
and anticipated growth in the next few years. The solution should consider
the performance requirement early on. Design a prototype and generate
sample data to test performance.

• Exception handling: Identify exceptional scenarios and document them.
Build enough controls to avoid mistakes by users (you don't want to leave
flaws that would let users hurt themselves). On the other hand, you don't
want to spend too much time on building an extremely idiot-proof system.

• Security: Consider security aspects as part of the technical design.
• Review: Review the technical design solution ideas with the solution

architect and functional leads for their input on a periodic basis to
incorporate feedback.

• Brainstorm: There are multiple ways to solve a problem—discussions and
brainstorming lead to the identification of the best possible one.

Functional and Technical Design

[138]

Outcome
Expect the following as outcomes of TDDs:

• Technical designs have been signed off by the technical solution architect.
Track signoff e-mails or scanned copies of written signoffs on SharePoint.

• The development team has a good understanding of what needs to be built
and how to build it.

Summary
In this chapter, we reviewed the key considerations for a functional design,
including global features that you need to know in order to develop a good
solution design. In addition to that, we walked through the evaluation, selection
criteria, and engagement of ISVs on the project. We concluded with the technical
aspects of the design, primarily around the generation of Technical design
documents. In the next chapter we will learn another key aspect of design process,
that is configuration management.

[139]

Configuration Management
In this chapter, we will learn about configuration planning, collecting configuration
data, the tools available to facilitate configuration, and the various approaches
towards configuration management and promoting configurations from one
environment to another.

The configuration of an ERP system is one of the most important parts of the process.
Configuration means setting up the base data and parameters to enable your product
features such as financial, shipping, sales tax, and so on.

Dynamics AX has been developed based on the generic requirements of various
organizations and contains the business processes belonging to diverse business
segments. It is a very configurable product that allows the implementation team
to configure features based on specific business needs. During the project, the
implementation team identifies the relevant components of the system and sets
up and aligns these components to meet the specific business requirements. This
process starts in the analysis phase of the project carrying on through the design,
development, and deployment phases.

Configuration management is different from data migration. Data migration broadly
covers the transactional data of the legacy system and core master data, such as
opening balances, Open AR, Open AP, customers, vendors, and so on. When we talk
about configuration management, we are referring to items like general ledger, fiscal
years and periods, chart of accounts, segments, and defining applicable rules, journal
types, customer groups, terms of payments, module-based parameters, workflows,
number sequences, and the like. In a broader sense, configuration covers the basic
parameters, master data, and reference data that you configure for the different
modules in Dynamics AX.

Configuration Management

[140]

The following diagram shows the different phases of configuration management:

Configuration planning
Configuration planning is, basically, identifying all the configurations required for
your implementation project. Most configuration requirements are known from the
solution design phase and finalized with the sign-off of the functional and technical
design specifications.

The first step towards configuration planning is to identify the modules and
functional areas which need be to be configured. The following are some pointers for
getting started with the planning:

• Create a list of configurations that are needed for the project, and identify
and assign the resources responsible for configuration. As a part of this
list, identify the cross-functional module configuration and add secondary
responsible resources. Microsoft Sure Step provides a fairly comprehensive
list of parameters and configuration data, based on the module and
functional role, in the Data Migration Requirements checklist spreadsheet.
You can use this spreadsheet as a starting point to identify all the
configurations and add the column for the resources responsible for them.

• Build a list of environment-specific configurations. Some of the
configurations, such as links between applications talking to each other, need
to have different values in different environments. For example, you need to
ensure that the test instance of Dynamics AX is pointing to the test instance
of the shipping solutions and that the payment gateways are configured in
the test mode.

Chapter 8

[141]

 ° Identifying such lists early on helps in reviewing these configurations
specifically in every environment, prior to, and after, going live
(especially with data restores).

 ° Ideally, you should automate the changes to such configurations
while moving the data across environments to avoid the risk of
human errors.

 ° The following table represents a sample list of environment-specific
configurations:

Configuration Environment Value
Web service URL
for sales tax
software

Development http://DEV.TAXServices.svc

Testing http://TEST.TAXServices.svc

Production https://Prod.TAXServices.svc

Payment gateway
setting

Development http://DEV.Paymentgateway.aspx

Testing http://DEV.Paymentgateway.aspx

Production https://Prod.Paymentgateway.aspx

File-share path
(document
management)

Development \\DEVBATCHAOS001\DocumentShare

Testing \\TESTBATCHAOS001\DocumentShare

Production \\PRODDocumentShare001\DocumentShare

• Maintain a list of company-specific configurations. When you are planning
global roll outs, define a global template and maintain a list of configurations
that needs to be revisited for every company.

 ° As far as possible, you should try and keep the same reference tables
(for example, same codes for customer groups). Of course, different
companies may require different parameters or configurations to
meet specific country or business unit requirements, but those should
be specifically evaluated to ensure that these differences do not
hamper intercompany transactions or future consolidation efforts.

 ° There may be customizations that are company-specific which you
may want to turn on or off in case of the other companies. Keep track
of such parameters in your configurations list while you are building
the functional/technical designs.

Configuration Management

[142]

 ° The number sequences and base currencies may be different.
 ° Specific GL accounts would have to be added/suspended in a

specific company.

• Maintain a list of batch jobs. Periodic processes can be scheduled using batch
jobs in Dynamics AX. Even though scheduling a batch job is also a kind
of configuration, you should have a list of all the batch jobs that you plan
to have, along with their frequencies, parameters, and so on. Maintain a
separate list of batch jobs to configured in each environment. The following
table represents a sample list of batch jobs:

Columns Description Example 1 Example 2
Batch job
name

Name of the batch job Auto-invoicing
domestic orders

Product creation
batch

Functional
area

AP, AR, Inventory, and so on. AR Product
information
management

Business
owner

Who, from business, should
be contacted for testing, errors
(If batch job fails, once you go
to Production)

AR manager PIM manager

Consulting
owner

Person responsible from the
consulting team

Yogesh Kasat JJ Yadav

IT owner Person responsible from the
internal IT team

Finance BSA PIM BSA

Frequency How often does the batch
job need to run (for example,
every 15 minutes, every day at
6 P.M.)

Every 15 minutes;
from 6 a.m. through
7 p.m. (timings are
driven by batch
group and active
AOS as batch)

Everyday at 6 p.m

Parameters Any filters or parameters to be
defined while scheduling the
batch job

Sales origin =
'Domestic'

Record status =
"Ready"

Dependencies Scheduling dependencies
between batch jobs

Path or class
name

Path from where to access the
menu or class to be used for
scheduling the batch job

AR\periodic\
update\invoice

PIM\periodic\832
item creation
(custom)

Batch group Name of the batch group DayTime* NightTime
Comments Additional comments

Chapter 8

[143]

*The DayTime batch group has AOS defined as a batch AOS only during business hours (6
a.m. through 7 p.m.).

Collecting the configuration data
ERP configuration requires coordination between the implementation and business
teams to collect master data for the key modules.

These are some key pointers to keep in mind while collecting data and configuring
the base functionality:

• Create a configuration template to collect data for the setup data of each
module

• Describe the purpose of the configuration and its use
• Provide a description for the fields and applicable values

The following screenshot shows a sample data-collection template for a vendor
group in the account-payable module:

Configuration Management

[144]

Configuration tools
Microsoft continues to add features and functionalities in every new release
of Dynamics AX. With such a broad set of functionalities and features, the
implementation projects become bigger and more complex, and thus, project teams
require tools and technologies to support configuration management.

There are several tools available with Dynamics AX for the initial configuration and
configuration management. The following sections describe some commonly used
tools for configuration management.

The Data Import/Export Framework
DIXF is a powerful tool available in Dynamics AX 2012 for data migration and
configuration. The chapter on data migration in this book has covered the basics
of the DIXF tool. DIXF provides several out-of-the-box master data and parameter
entities that can be used for configuration management directly.

The following sections define the key features of DIXF, which are useful for initial
configuration and management.

Importing and exporting data using various formats
DIXF supports importing of data using various formats such as files and ODBC.
Several file types such as CSV, Excel, and XML are supported for import and export.
DIXF can also be used for exporting entity data in any of these supported file types.

Copying and comparing data between legal entities
Using DIXF, a user can compare and copy the data between different legal entities.
The copy entity data between the company's wizard, under the Data Import/Export
Framework module, can be used for this purpose.

The following diagram shows the high-level data flow that occurs while copying the
entity data from one company to another:

Chapter 8

[145]

Copying data between Microsoft Dynamics AX
instances
You can use DIXF to copy data from one Dynamics AX instance to another. The
following diagram shows the data flow that occurs when copying the entity data
from one instance to another:

As shown in the preceding diagram, the entity data gets copied from the Target
entity to a staging table and is then exported to a file in Instance 1. Now, that file can
simply be imported into Instance 2 using the typical DIXF import process.

Creating a custom entity
There are more than 150 entities available out of the box in AX 2012 R3, which can be
used for the configuration. However, these entities are far from the complete set of
configurations, which are required in typical implementation projects. DIXF allows
the developers to create new entities if they do not exist. The developers can use the
custom entity wizard to create new entities for the data export and import processes.

The following are some additional key features of the Export/Import Framework:

• Provides error handling support such as skipping error rows and so on.
• Set-based support from staging to target
• Default value support
• Number sequence support

Configuration Management

[146]

The Microsoft Dynamics ERP RapidStart
Services
The Microsoft Dynamics ERP RapidStart Services is a cloud-based service provided
by Microsoft for its partners and customers for configuring a Dynamics AX
2012 installation using an interview-style questionnaire. After the questionnaire
is completed, the responses and information can be imported into the specific
Dynamics AX 2012 environments.

The RapidStart Services provide a framework which the partners and customers can
use to create additional questions and question groups and map them to specific
AX functionalities. They can also create a configuration template and then reuse the
configuration for other customers who in the same industry.

The following image shows the architecture of the RapidStart Services for
Dynamics AX:

Input methods in a
configuration project

Field type question
(table + field)

Response values

Workbook
processor

Cell
values

Action
sequence

Excel files

Excel workbook question
(table + field)

Service question
(service operation)

Parameter values

ADO.NET
framework

Data set

Class question
(class + method + parameter)

Chapter 8

[147]

RapidStart services is available in the Microsoft Lifecycle Services tool set. However,
a separate agreement is required in order to use the tool in your project.

The key features of The Microsoft Dynamics ERP RapidStart Services are as follows:

• Interview-style questions: RapidStart Services asks interview-style questions
for collecting the business configuration data.

• Configuration library: Microsoft provides a set of basic, ready-to-use
templates. The customer or partner can build additional templates for
specific processes and save them in the configuration library.

Configuration Management

[148]

• Cloud-based tool: This is a subscription-based tool in the cloud and can be
accessed via the Microsoft LCS portal.

• Extensible framework: Partners and ISVs can create additional templates to
support their extensions and custom solutions.

• Reusable templates: Partners can create templates and reuse them for
another customer, implementing Dynamics AX in the same business area.

It is still an early version; you may run into limitations
during practical use.

The Excel add-in
An Excel add-in is a very powerful tool available in Dynamics AX 2012, which can
reduce significant amounts of manual configuration effort. Using the Excel add-in,
implementation teams can design an Excel template by selecting the appropriate
tables or data elements, and create or update the configuration data directly via the
Excel spreadsheet.

The following screenshot shows the Excel add-in for the addition of the CustGroup
table to create a customer group in the design mode:

Chapter 8

[149]

The key features of an Excel add-in as are follows:

• It is a very useful tool for initial data configuration
• It supports, creates, or updates data by adding tables, queries, or services
• It handles the financial dimensions and reference data

The limitations of an Excel add-in as are follows:

• An Excel add-in is not useful for importing large sets of data
• Not all tables and services for inserting or updating data are supported
• It is not the best tool to migrate data between companies or to another

environment. The data on the linked fields is refreshed as soon as you change
the company or connect to another server

Export/Import – DAT/DEF file
The Export/Import tool is a legacy data export/import tool in Dynamics AX. This is
not a configuration tool but rather a tool to move the data from one AX environment
to another or between legal entities. To use this tool, you should know the list of
tables which contains the setup data.

The following sections define the key concepts of the Export/Import tool.

The definition group
The definition group is a mechanism to define a list of tables that need to be exported
from a specific legal entity. To export data from one environment to another, you
need to identify the underlying tables where the data is stored and then create a
definition group comprising those tables. You also have an option to select the tables
based on the table type properties. For example, base data tables and reference tables
contain configuration data primarily. By selecting the option of table types while
creating definition groups, the system will add all the tables containing the selected
table groups.

Configuration Management

[150]

The following screenshot illustrates the various options available for including the
different table groups:

Defining the export criteria
A user can filter the data that needs to be exported from a table by defining the
filter criteria. This can be useful when the user needs to export a subset of the data
from a table:

Chapter 8

[151]

Finding related tables
Another option in the Export/Import tool is to find the related tables from a base
table. This is useful when exporting multiple related tables such as AifInboundPort
or AifOutboundPort records. You can start a definition group by adding one table
and then finding all the related tables. The system will find all related tables which
you can select to add into the definition group. Data from the related tables is
exported only if the records are related to the primary table record.

The key features of the Export/Import tool are as follows:

• Searching related tables is useful for copying data from one legal entity
to another

• It is useful to export/import data from the master table and reference data,
such as customer group, method of payments, and so on

The limitations of the Export/Import tool are as follows:

• This tool is not suitable for data involving default dimensions and ledger
accounts

Configuration Management

[152]

• This tool is not suitable for data with multiple tables and for complex data
structures, such as customers and vendors

• This feature is deprecated in the future releases as Microsoft continues to
invest in DIXF

The LCS configuration manager – the
beta version
The LCS configuration manager is a tool that utilizes the DIXF entities and can
export the configured entities' data from one environment to another. The following
screenshot shows the configuration manager tool under the LCS project tools:

Chapter 8

[153]

The key features of the LCS configuration manager are as follows:

• This is a cloud based tool for migrating the configuration data from one
environment to another

• The user can select legal entities and partitions to export and import

Not supported for production use
This tool uses entities from the DIXF Framework. Since
these entities do not include all the functionality in AX
2012 R3, the configuration data will not be migrated.

The Test Data Transfer Tool – the beta version
The Test Data Transfer Tool (dp.exe) is a command-line tool that exports and imports
the data from one environment to another. It uses the SQL server bulk copy tool and
directly exports and imports data using the Dynamics AX transactional database.

The following diagram illustrates the export and import processes using the Test
Data Transfer Tool:

Configuration Management

[154]

The key features of the Test Data Transfer Tool are as follows:

• This is useful for exporting or importing a large, multi-company dataset
• It can migrate data between different Microsoft Dynamics AX environments
• It can store data in a version control system
• It exports or imports data without running AOS
• It can filter data during export and import
• The Test Data Transfer Tool updates the data during the import process.

This is useful for scrubbing sensitive and environment-specific data while
migrating the production data to the test environment

• The Test Data Transfer Tool (beta) does not make sure that the data that you
export is complete or coherent. It exports and imports whatever you ask it to
export or import

• It truncates all the data in the table before importing it

It is not suitable for production use due to the preceding limitations.

Who should use this tool?
Only advanced users should use the Test Data Transfer Tool.
You should be a database administrator or a developer who
has an experience in using SQL Server.

Configuration data management
In any ERP implementation project, you deal with multiple environments. For
example, you start with CRP; after the development you move to the test environment,
and then training, UAT, and production, as shown in the following diagram:

One of the biggest challenges that an implementation team faces is moving the
configuration from one environment to another. If configurations keep changing
in every environment, it becomes more difficult to manage them. Similar to code
promotion and release management across environments, configuration changes
need to be tracked through a change-control process across environments to ensure
that you are testing with a consistent set of configurations.

Chapter 8

[155]

The objective is to keep track of all the configuration changes and make sure that
they make it to the final cut in the production environment.

The following sections outline some approaches used for configuration data
management in the Dynamics AX project.

The golden environment
An environment that is pristine without any transactions—the golden
environment—is sometimes referred to as a stage or pre-prod environment. Create
the configurations from scratch and/or use various tools to create and update the
configuration data. Develop a process to update the configuration in the golden
environment once it has been changed and approved in the test environments.

The golden environment can be turned into a production environment or the data
can be copied over to the production environment using database restore.

The golden environment database can be used as a starting point for every run
of data migration. For example, if you are preparing for UAT, use the golden
environment database as a starting point. Copy to UAT and perform data migration
in your UAT environment. This would ensure that you are testing with the golden
configurations (if the configuration is missing in the golden environment, you would
be able to catch it during testing and fix your UAT and the golden environment too).

The pros of the golden environment are given as follows:

• The golden environment is a single environment for controlling the
configuration data

• You can use all the tools available for the initial configuration
• There is a lessened chance of the corruption of configuration data

The cons of the golden environment are given as follows:

• There is a risk of missing configuration updates due to not following the
processes (as the configuration updates are made directly in the testing and
UAT environments)

• There are chances of migrating the revision data into the production
environment like workflow history, address revisions, and policies versions

• There is a risk of migrating environment-specific data from the golden
environment to the production environment

• This is not useful for a project going live in multiple phases, as you will not
be able to transfer the incremental configuration data using database restore

• You must keep the environment in sync with the latest code

Configuration Management

[156]

Copying the template company
In this approach, the implementation team typically defines a template legal entity
and configures the template company from scratch. Once completed, the template
company's configuration data is copied over to the actual legal entity using the data
export/import process.

This approach is useful for projects going live in multiple phases, where a global
template is created and used across different legal entities. Whereas, in AX 2012,
a lot of configuration data is shared, and it makes it almost impossible to copy the
company data.

Building configuration templates
In this approach, the implementation team typically builds a repository of all
the configurations done in a file, and then imports them in each subsequent
environment, and finally, in the production environment.

The pros of building configuration templates are as follows:

• It is a clean approach
• You can version-control the configuration file
• This approach is very useful for projects going live in multiple phases, as you

can import the incremental configuration data in the subsequent releases

This approach may need significant development efforts to create the X+ scripts or
DIXF custom entities to import all the required configurations.

Summary
In this chapter, we started with understanding the importance of configuration
management in a Dynamics AX implementation project. We learned about
configuration planning and collecting configuration data. Then we analyzed the
different tools available for the initial configuration and moving the configuration
data from one environment to another environment. At the end, we learned the
basic concepts behind configuration data management, the various techniques for
configuration data management, and about promoting the configuration data from
one environment to another.

In the next chapter, we will learn about building customization where a lot of time
is spent in a typical AX implementation project. We will learn about the different
approaches for customizing the Dynamics AX application and the best practices and
recommendations.

[157]

Building Customizations
In most books that outline the ERP implementation best practices, customization is
a bad word. However, in reality, one can't avoid it completely in the project. Hence,
the ease of use in the development platform and the variety of tools available play
a key role in the selection of an ERP system. One of the key reasons why Microsoft
Dynamics AX is selected over the other ERP systems is the availability of the broad
variety of technology toolsets for building additional solutions. The best practices
need to be followed to ensure that the customizations are kept to a minimum,
they avoid altering the core foundation of the product, and enough thought is put
into making them 'temporary' and upgrade-friendly. I will explain the concept of
temporary later in the chapter.

Dynamics AX provides a layered-development approach, where the partners,
ISV Solutions, and the customers each have a layer where they can make the
customizations without disrupting each other's work.

In this chapter, we will learn to get ready for the development phase of the project
and understand the development environment, version control, and branching
strategies. Then we will walk through the process of customization and the best
practices. In the end, we will explore the Application Lifecycle Management (ALM)
process for code promotion and release strategies, across environments.

Getting ready for development
Before the development phase of the project starts, the Project manager and the
Technical solution architect need to set a few ground rules, such as defining the
development environment, version control, the branching strategy and coding
standards, the naming convention to be followed, and the code review process. In this
section, we will walk through these topics in brief to understand what they mean.

Building Customizations

[158]

The version control
Keeping track of the code is critical to good development practices. The following are
the version control systems commonly used with Dynamics AX 2012:

• Team Foundation Server (TFS): This is the most common version control
system used with Dynamics AX. It provides source code management,
reporting, requirements management, project management, automated
builds, testing, and release management capabilities. It covers the entire
application life cycle.

• Visual Studio Online: Visual studio online is a cloud-based service.
It utilizes the TFS integration with Dynamics AX and provides various
ALM capabilities.

• MorphX VCS: This is an inbuilt source code management capability within
the Dynamics AX application. It is suitable for small projects as it can only be
used within a shared development environment.

The development environment
The following are the two commonly-used development environment topologies for
developing customization with Dynamics AX.

The shared AOS topology
In this model, a single Dynamics AX AOS and the database are shared among the
developers. The shared AOS machine can either be configured to use the MorphX
VCS, or the TFS version control with a public profile. This topology may be cost-
effective as it requires a single development environment but it's NOT recommended
for large projects as there are many known issues when using this topology(This
model was popular prior to Dynamics AX 2012 when the project sizes were small,
and the Dynamics AX architecture supported it with fewer issues):

Chapter 9

[159]

Following are few limitations why the shared AOS topology is not recommended:

• Stale metadata or unpredictable behavior on clients.
• Problems with installing new solutions or upgrading the existing ones, which

may lead to corrupt data.
• Unresponsive AOS while another user is debugging the CIL code (The CIL

process is used to compile the X++ code into the Common Intermediate
Language (CIL) of the .NET Framework. Dynamics AX allows you to
generate a Full CIL or an Incremental CIL).

• The need to frequently restart the AOS instance.

The private AOS topology
The private AOS topology is the recommended topology for a development
environment. As shown in the following diagram, in this topology, each developer
has his/her own Dynamics AX client, AOS, business database, and model database
and is connected to the TFS. A separate build machine is also connected to the TFS,
and is used for creating a build for deployment:

� AOS 1 Connected to Model
DB 1 and Business DB 1

� AOS n Connected to Model
DB n and Business DB n

Developers 1 to n

TFS

Administrator

�
�

Microsoft Dynamics AX Client 1
TFS Workspace 1

Developer Computer 1:

�
�

Microsoft Dynamics AX Client n
TFS Workspace n

Developer Computer n:

�
�

Microsoft Dynamics AX Client
TFS Workspace
AOS Connected to Model DB�

Build Computer:

and Business DB

Building Customizations

[160]

The TFS branching strategies
Microsoft's Team Foundation Server (TFS) is the preferred and the more widely-
used version control system in the Dynamics AX development projects. One of the
main features of TFS is Branching, which can be useful in the following scenarios:

• When a stable version is needed for testing while the development work
continues in the other areas.

• When multiple development teams are working on a set of features that
are independent, but each team also depends on the features developed by
the other teams. You need to isolate the risk of the changes made by each
team; and yet, you will finally need to merge all the features together into
one product.

• When the implementation is being carried out in multiple phases, one phase
that is in production may need continuous support but the team may be
working on the next phase.

The main only strategy
This is the simplest and most basic branching methodology where one branch is
created and all the developers check in the changes to the main branch. The build
machine can be used to create a build out of the main branch to be released for
testing and later, for the production environment:

The development and main branching strategy
The development and main branching strategy introduces one or more development
branches from the main, which enables the concurrent development of the next
release, multiple projects running in parallel, experimentation, or bug fixes in an
isolated development branch:

Chapter 9

[161]

Development, main, and release
If you expect to be performing emergency break fixes outside of your normal release
schedule, create a release branch. The release branch represents the code that exists
in production:

Ground rules for development
The next thing, after getting the development environment and the version control
strategy finalized, is defining the ground rules for the development team. The
following are some basic rules which need to be defined by the solution architect and
the project manager for the development team.

Development layers and models
Dynamics AX provides a development approach of using layers and models. The
team needs to make a decision regarding the layer (CUS and USR are, typically,
the layers used by the customers) that will be used for customization. Models were
introduced in Microsoft Dynamics AX 2012 to help develop and maintain multiple
solutions side by side, in the same layer. By default, each layer has its default
model. For example, the default model for the USR layer is USR-Model. Multiple
models can be created for independent solutions. For instance, if a project involves
customization for different business streams, and they are independent, you can
create customizations in separate models for each business stream so that they can be
installed and maintained separately.

For more information on the Dynamics AX Layers, you can read the TechNet article
at https://msdn.microsoft.com/en-us/library/aa851164.aspx.

https://msdn.microsoft.com/en-us/library/aa851164.aspx

Building Customizations

[162]

AOT objects' naming conventions
Naming conventions provide consistency and make the application easier to
understand. The best practice is to use the following naming convention for the
custom objects:

{client prefix} + {business area name} + {business area description} + {action performed (for
classes) or type of contents (for tables)}

It is a good practice to add a client prefix at the beginning of the object name to get a
unique name for each object and to avoid name collision with any other ISV solution
or future upgrade.

For example, a new class created by the vendor ABC for the sales order import
process should be named as AbcSalesOrderImport.

Label files and language
The labels in Dynamics AX are localizable text resources, and they are used
throughout the product as messages to users, form captions, form controls, help text,
and so on. When developing custom features in Dynamics AX, the developers should
create new label files; they should also create labels and define the translation for each
language to be used. The label file names which will be used during the development
process should also be defined. Typically, the client prefix used for the AOT object
name or the model name are used as the label file name. If your project involves
development in multiple models, you should create label files for each model.

Establishing the code review process
Effective code review during the development phase helps identify issues earlier, and
avoids rework and bug fixes during the later phases of the project. It is important for
the project team to define the code review process and the guidelines for the project
at the beginning of the development phase. The code review should not be limited
to checking the naming conventions, indentation, and other best practices errors or
warnings, which can be easily caught by the Dynamics AX best practices tools. The
process should primarily be focused on achieving the following quality objectives:

• Solution approach: The code should be implemented in the correct way.
If the existing business logic or processes are modified, they should be
modified at the appropriate level. The code should be aligned as per the
technical design documents.

• Performance: Code performance with a high volume of data and the
production load.

• Extendibility: The solution should be extendible and appropriate.

Chapter 9

[163]

• Easy to read and follow: The code should be easy to read and follow.
• Error handling: The code should be able to handle errors appropriately. It's

easier to catch such issues during the code review process as compared to the
testing phase.

• Education for team: The code review process helps in educating the
development team members with review feedback from more senior
resources. It needs to be used as a training exercise. Set up a culture where
the code reviews and feedback sharing become a learning experience rather
than a blame game.

One of the common issues that I have seen in the field is that the code reviews are
ignored during the development phase, and are considered towards the end of the
development cycle, or close to going live. Most of the time, the code review feedback
at such later stages is just not feasible. It is difficult to make changes to the code that
is already tested and stable. The best way is to embed the code reviews as part of the
development cycle, and the learnings from the previous reviews can be used by the
developers in further coding.

The development process
The key objective of the development process is to ensure a scalable, maintainable,
and high-performing application. The following diagram shows the critical steps for
the development process while developing customizations for Dynamics AX:

Conceptualization
The first step of the development process is conceptualizing the application. You
must understand the problem that you are trying to solve. At this stage, you need
to identify the where and the what—where in the standard flow do you need to add
your code, and what code can be reused from the standard one.

Dynamics AX provides numerous application frameworks and patterns that
can be reused when developing any new functionality or extending any existing
functionalities. If you do not understand the existing application pattern and
frameworks, you may create a functionality that was not necessary, or one that
already exists in the application.

Building Customizations

[164]

Data design
Data design is the process of analyzing and defining the data structures as per your
requirement. In some cases, you may need to add additional columns to existing
tables, or you may need to create one or more new tables from scratch. The following
section describes the best practices to be followed when designing the data in
Dynamics AX.

Adding fields to the existing tables
Dynamics AX has thousands of standard tables to store the master or transactional
data. With the release of Dynamics AX 2012, the number of tables has gone higher
than the previous releases because of database normalization. It was mainly done
to reduce the redundancy of data across various tables, and also to improve the
performance. Many times, the requirement is to store or process additional data
in certain application functionalities, and so, you may need to add additional
columns to the existing SYS layer tables. Consider the following points when adding
additional columns to the existing tables:

• Do not add a large number of fields to the base tables. The guideline is to
limit the maximum number of fields in a table to 50. Normalize the tables if it
makes sense to do so.

• Database normalization is the process of organizing the attributes and tables
of a relational database to minimize data redundancy. Normalization usually
involves dividing the large tables into smaller (and less redundant) tables
and defining the relationships between them. The objective is to isolate the
data so that additions, deletions, and modifications on a field can be made in
just one table and then propagated through the rest of the database, using the
defined relationships.

• Consider adding the required fields to a new table, and add foreign keys
to the base table. Adding fields directly to a base table has the following
disadvantages:

 ° New fields may not be required in all scenarios, so the query cost
may increase with the new fields.

 ° If the base layer table is modified or removed, upgrades can be
complicated in the future versions of the table. If the fields are
added to new tables, you may have to just change the foreign key to
associate the customized table with the new table.

Chapter 9

[165]

Table Types
All the tables in Dynamics AX 2012 have a TableType property, which supports
three values:

• Regular
• In-memory
• TempDB

The value is shown in the following screenshot:

Regular
These are the regular and permanent tables created in the SQL server
transaction database.

Building Customizations

[166]

In-memory
The In-memory tables in AX 2012 are the same as the temporary tables in AX 2009
and earlier versions. The in-memory temporary tables are instantiated in the active
memory of the tier that the process is running on. The process can run on the
client tier or the server tier. The objects are held in the memory until the size reaches
128 KB. The dataset is then written to a disk file on the server tier. You can use the
In-Memory temporary tables when the amount of data is small, and the Microsoft
SQL Server round trips should be avoided.

The following example code shows how data can be inserted and retrieved
using X++:

static void TableTmpInsertRecord(Args _args)
{
 TmpCustLedger custTmpLedger;
 ;
 custTmpLedger.Name = 'NameValue';
 custTmpLedger.Balance01 = 2345000;
 custTmpLedger.insert();

 while select * from custTmpLedger
 {
 Info(custTmpLedger.Name);
 }
}

TempDB
The TempDB tables are instantiated on the TempDB database of the SQL Server
database. The TempDB tables utilize the power of the SQL tables and support joins,
aggregation, and indexes with great performance. However, they have almost the
same scoping mechanism as the in-memory temporary tables. The TempDB tables
also provide the following capabilities which are available with the regular tables:

• These tables can be company-specific or global
• They support transaction processing

The following code example shows the use of a TempDB table in X++.

Chapter 9

[167]

In the following example, all the customer accounts associated with the customer
group Corp are filtered into the TempDB table CustTableTmpFilter, and then this
table is used in join to filter CustTransOpen:

static void TableTmpDBExample(Args _args)
{

 CustTableTmpFilter custTableTmpFilter;
 CustTable custTable;
 CustTrans custTrans;
 CustTransOpen custTransOpen;

 Insert_ recordset custTableTmpFilter (CustAccount)
 Select AccountNum from CustTable
 Where custTable.CustGroup = "Corp";

 While select sum(AmountCur) from CustTransOpen
 Join AccountNum from CustTrans
 where custTransOpen.RefRecId == custTrans.RecId &&
 JOIN custTableTmpFilter
 where
 custTableTmpFilter.CustAccount == custTrans.AccountNum
 group by AccountNum
 {
 Info(strfmt("Customer:%1, Balance: %2",
 custTrans.CustAccount,
 custTransOpen.AmountCur));
 }

}

Table fields
Use the Extended Data Types (EDTs) and base enums to create fields for the tables.
The use of EDTs and Base enums reduces work and promotes consistency.

Avoid changing the existing standard base enum values. Modifying the base enum
values can have an upgrade impact in the future. In case you need to add new enum
values to a standard enum, leave a gap between the existing and the new values. The
gap can be useful in avoiding conflict if a new value is added to a standard enum in
a future version.

For adding a field to a country-specific or region-specific functionality, add the
country/region context on the EDTs and the table fields.

Building Customizations

[168]

Extended data types (EDTs): An EDT is a primitive data
type or container with a supplementary name and some
additional properties. For example, you could create a new
EDT called Name and base it on a string. Thereafter, you
can use the new EDT in variable and field declarations in
the development environment.
Base enums: X++ does not support constants but has an
enumerable type (enum), which is a list of literals. There
are hundreds of enumerable types that are built into the
standard application. For example, the enum NoYes has
two associated literals, where No has the value 0, and Yes
has the value 1.

Date effectivity
Dynamics AX 2012 introduced the Date Effectivity Framework for handling the
date-effective data. A simple example of date-effective data can be a discount table,
where the discounts can be effective and/or expired at a certain date/time. To enable
the Date effectivity on a table, you need to set ValidTimeStateFieldType to Date
or UTCDateTime. This will automatically create date-effective fields in the table.
The next thing that you need to do is add a unique index, and set the Alternate key
property and the ValidTimeStateKey property to Yes. That's it! Your table now
supports date effectivity:

Chapter 9

[169]

Table properties
When you create a new table, there are several table properties which need to
be set for efficiency and maintenance. The following sections outline some of the
key properties.

The table group
Use the following guidelines to set the table group property for the new tables:

Table Groups Description Examples
Parameters This contains the parameter

data for the module or features.
Typically contains one record per
company.

CustParameters,
VendParameters

Group This contains data to categorize
the master data.

CustGroup, VendGroup

Main This contains tables containing
the key master data.

CustTable, VendTable

Transactions Tables containing the transaction
data.

CustTrans, VendTrans

Worksheet header Tables containing the transaction
entry data headers.

SalesTable, PurchTable

Worksheet lines Tables containing the transaction
entry lines.

SalesLine, PurchLine

Miscellaneous Tables which do not fall into any
of the other categories.

Building Customizations

[170]

The table caching
Set the appropriate table caching properties for the new tables. This is one of the
most important properties of the tables. Not using caching properly can lead to
significant performance problems:

Cache lookup
property

Description When to use Suitable table
groups

None No data is cached. Use table caching none
for tables that are heavily
updated.

Transactions

NotInTTS All the successful
key selects are
cached. Select the
inside transactions'
result to database
call for retrieving
records.

CustTable is a perfect
example for NotInTTS.
Since the CustTable
data can keep changing,
it would be wise to use
real-time data inside the
transactions.

Main
WorksheetHeader
WorksheetLine
Transactions

Found All the successful
caching key selects
are cached. All the
caching key selects
are returned from
the cache if the
record exists there.
Selecting
forUpdate in a
transaction forces
reading from the
database, and
replaces the record
in the cache.

Suitable for the main
tables which do not
change, or where the data
is almost static such as
Units, PaymTerm, and
so on.

Main
Group
Parameters

Chapter 9

[171]

Cache lookup
property

Description When to use Suitable table
groups

FoundAndEmpty All the selects
on the caching
keys are cached,
including the
selects that do not
return any data.
Select forUpdate
in a transaction
forces reading from
the database and
replaces the record
in the cache.

An example of the
FoundAndEmpty record
caching is in the Discount
table in the Microsoft
Dynamics AX standard
application. By default,
the Discount table has
no records. By using a
FoundAndEmpty cache
on this table, the keys
that are queried for but
not found are stored in
the cache. Subsequent
queries for these same
non-existent records can
be answered from the
cache without a round
trip to the database.

Group
Main

EntireTable Creates a set-based
cache on the server.
The entire table is
cached as soon as
at least one record
is selected from the
table.
An EntireTable
cache is flushed
whenever an insert,
update, or delete is
made to the table.

Small tables with few
records.

Parameters
Group

Index considerations
Indexes are the database objects in the table that provide the efficient retrieval of
data. SQL Server provides two types of indexes:

• The clustered index
• The non-clustered index

Building Customizations

[172]

The clustered index
Clustered indexes represent the way the data are physically stored in the tables.
There can be only one cluster index per table. A clustered index is required in all the
permanent Microsoft Dynamics AX tables. If you don't define a cluster index, RecId
is used as one. The clustered indexes are often defined on the primary key (PK) of
a table. You can define a cluster index for a table by setting the Table Cluster Index
properties as follows:

The non-clustered index
All the other indexes in a table are non-cluster indexes. Non-cluster indexes have a
structure that is separate from the data rows. These indexes contain the non-cluster
index key values and a pointer to the data rows, called a row locator.

Both the cluster and non-cluster indexes can either be unique non-unique. In
Dynamics AX, a unique index is defined when the index's AllowDuplicates
property is set to Yes. When this property is set to No, a non-unique index is created.

Chapter 9

[173]

Best practices for indexes
Consider the following best practices when designing the indexes in Dynamics AX:

• Assign a unique index to each table. Unique indexes are important for table
caching. The Found, NotInTTS, and FoundAndEmpty caching will work only
when a unique index exists.

• The clustered index is a critical property in a table. When you create a new
table, the RecId is used as the default cluster index, but in many cases it
is not optimal. Analyze the appropriate key and designate it as the cluster
index. For example, for CustTable, most of the queries and searches will be
based on the customer account number and not on RecId. Hence, the index
on the AccountNumber field makes more sense as the cluster index rather
than the RecId index.

• For cluster indexes, do not use the columns that are subject to updates. When
a column in a clustered index is updated, the row may have to be moved to a
new page, and all the non-clustered index entries for that row will have to be
updated. This increases the I/O cost of updates.

• Clustered indexes do not necessarily have to be unique. When a clustered
index is non-unique, the SQL Server adds a 4-byte uniquifier integer to the
index entry. This happens only when a duplicate entry is detected; otherwise,
the uniquifier is NULL and consumes no space. If there are a few duplicate
entries in the clustered index, the incremental cost of a non-unique index is
low. Do not add a column to a clustered index solely to make it unique.

• Consider the size of the clustered index key. Since the clustered index key
is used as a row locator in non-clustered indexes in the same table, a long
clustered index key can increase the size of the non-clustered index keys.

• Analyze the usage and queries, and create only the indexes that are necessary.
Indexes which are not necessary add costs to the inserts and updates.

• When there are multiple keys in an index, define the fields in the same order
as they will appear in the where clause of the query. If the order is different,
the index may not be used during the query execution process.

• Design indexes to avoid index scans. An index scan requires the entire index
to be read. A scan of the clustered index is equivalent to a table scan.

• Ax 2012 has the ability to use the included columns in non-clustered indexes
for providing query coverage. Use the included columns as they may provide
better I/O results as compared to adding columns in the key. A common
example is seen in the case of date-effective tables, where the ValidTo
column is defined as an included column.

Building Customizations

[174]

Tables key considerations
Keys, as the name suggests, are a key part of a relational database and are used to
enforce data integrity and table relations. In Dynamics AX, the keys are maintained
at the application level and not in the SQL database. The following are the type of
keys used in the Dynamics AX tables.

The alternate key
An index in Dynamics AX can be set as an alternate key by setting the Alternate Key
property to Yes. An alternate key means that the other tables can create foreign key
relations that reference this key as an alternative to referencing the primary key. A
unique index with only one field can be defined as an alternate key. There can be
multiple alternate keys in one table.

The primary key
The primary key is usually the type of key that the child tables refer to when a
foreign key field in other tables need a relational identifier. There can be only one
primary key in one table. In Dynamics AX, the primary key can be defined on the
Table Primary Index property. Only a unique index with the property Alternate
Key set to Yes can be defined as a primary key.

The replacement key
A replacement key is an alternate key that the system can display on forms instead
of a meaningless numeric primary key value. Each table can have a maximum of one
replacement key. In Dynamics AX, replacement keys can be selected on the table
property as ReplacementKey.

The foreign key
In Dynamics AX, foreign keys are represented by table relations. In order to create
a foreign key in a child table, you need to add a relation node to the parent table.
Foreign keys are used to provide lookups and validation for the parent table record
when used from the child record.

The natural key
The natural key is a term used to represent the keys which are meaningful to the
users. Most of the replacement keys are natural keys.

Chapter 9

[175]

Surrogate keys
The system fields as key fields such as RecId are not meaningful to the users, but are
good to use as a primary key and a foreign key. Since surrogate keys are not attached
to the business, even if the natural key changes, the references to the surrogate key
do not need to be updated.

The delete actions
Define the delete actions on the tables to delete the related records from the child
tables. Delete actions are better than writing a code to delete the records from the
child tables.

Delete actions rely on table relations so if you create a delete action, make sure that
there is a relationship defined between the relevant tables.

The business logic
The business logic is a part of a program or code that encodes the real-world
business scenarios. In Dynamics AX, the business logic can be written at multiple
levels, such as the form UI, enterprise portal ASP.Net code, table method, classes,
SSRS reports, and so on.

While working with the customization requests for Dynamics AX, there are typically
two kinds of scenarios presented to the developers. The first scenario is a standalone
functionality, where new forms, tables, and business logic need to be developed and
later integrated into the core modules. In the second scenario, the existing processes
within the AX application need to be extended to support the requirement. In
both cases, it's important for the developers to understand how the business logic
for the core module and functionalities is implemented in the application layer.
Understanding the implementation of the core functionalities and the framework
is extremely important for the developers so that they can efficiently utilize, reuse,
or extend these functionalities in their custom solution. In any case, customizations
need to be added on a temporary basis. The customizations should be easy to isolate
and remove when they are not needed anymore, or when the required functionality
is added to the product in a later release. The following are some core technical
application frameworks that a developer may need to know when creating custom
features and functionalities.

Building Customizations

[176]

The number sequence framework
Microsoft Dynamics AX contains a number sequence framework to generate
alphanumeric number sequences. These sequences can be used for transaction
documents, such as sales orders, purchase orders, invoices, and journals, or for master
data entities such as customers, vendors, and employees. The primary purpose of
the number sequence framework is to provide unique, user-friendly identifiers while
maintaining a continuous or non-continuous alphanumeric sequence.

If your custom application needs to implement a number sequence, you can extend
or utilize the number sequence framework to enable the number sequence code for
your feature. The MSDN article at https://msdn.microsoft.com/en-us/library/
aa608474.aspx provides a detailed description of number sequences.

The FormLetter framework
The FormLetter framework is used for posting business documents such as sales
orders and purchase orders. This framework contains a number of class hierarchies
and controls for document processing.

The key features of this framework are as follows:

• It interacts with the posting forms, such as SalesEditLines
• It creates and maintains the posting data, such as records in SalesParmTable
• It can create journal data, such as records in CustPackingSlipJour or

CustPackingSlipTrans
• It enables validations
• This framework updates the sub ledgers such as ledger and inventory
• It controls the document outputs such as printing and XML export

The RunBase framework
The RunBase framework provides a standardized approach for creating processes
and batch jobs in Microsoft Dynamics AX.

The key features of this framework are as follows:

• Query to define the filter criteria
• Dialog, with persistence of the last values entered by the user
• Validation of user input
• Batch execution for the users to schedule jobs
• Progress bar
• Client/server-optimization

https://msdn.microsoft.com/en-us/library/aa608474.aspx
https://msdn.microsoft.com/en-us/library/aa608474.aspx

Chapter 9

[177]

Refer to https://msdn.microsoft.com/en-us/library/aa863262.aspx to
understand the RunBase framework in more detail.

The SysOperation framework
Use the SysOperation framework for extending Microsoft Dynamics AX by adding a
new functionality that may require batch processing. The SysOperation framework
replaces the RunBase framework. It provides the infrastructure for creating user-
interaction dialog boxes and integration with the batch server for batch processing.

The important features of the SysOperation framework include the following:

• It enables the menu-driven or batch execution of services.
• It calls the services in a synchronous or an asynchronous mode.
• It automatically creates a customizable UI based on the data contract.
• It encapsulates the code to operate on the appropriate tier (prompting on the

client tier, and business logic on the server tier).
• Combining the SysOperation framework and services creates a good

foundation for reusing the business processes for multiple user interfaces.
For example, you can use the sales order invoice service for both, the rich
client and the Enterprise Portal for Microsoft Dynamics AX, or for a custom
C# application.

• The SysOperation framework supports a dynamic UI and different execution
modes from X++, which makes the development very clean and reusable.

• For a comparison between the SysOperation and RunBase frameworks, and
to view the sample code that illustrates interactive and batch execution, refer
to the white paper, Introduction to the SysOperation Framework available at
https://technet.microsoft.com/EN-US/library/hh881828.aspx.

Services and the Application Integration
Framework (AIF)
Use services and AIF to code the business processes. The services can be used for
normal business processes as well as for integration scenarios. Microsoft Dynamics
AX 2012 supports the following three kinds of services:

• Document services are query-based services that can be used to exchange
data with the external systems by sending and receiving XML documents.
These documents represent business entities, such as customers, vendors, or
sales orders.

https://msdn.microsoft.com/en-us/library/aa863262.aspx
https://technet.microsoft.com/EN-US/library/hh881828.aspx

Building Customizations

[178]

• Custom services can be used by the developers to expose any X++ logic, such
as X++ classes and their members, through a service interface. An example
for custom services is a workflow approval via the e-mail service.

• System services provided by Microsoft Dynamics AX include the query
service, the metadata service, and the user-session service. The system services
are not customizable, and they are not mapped to any query or X++ code.

• Developers should use the existing services exposed in the Microsoft Dynamics
AX base layer. Expose any new business processes through services.

• For additional details on Services and AIF and the scenarios in which
the document services or custom services can be used, refer to Chapter 3,
Infrastructure Planning and Design.

Other application and development frameworks
There are many such features and frameworks available in Dynamics AX.
The following table lists a few of these frameworks and some useful links for
additional details:

Framework Description Useful links
The global
address book

This implements the party, association,
and the address. The developers need to
understand the global address book concept
to implement any address or party-related
functionality on custom objects.

https://technet.
microsoft.com/
en-us/library/
hh272867.aspx

Financial
account and
dimensions

The financial account and dimension
framework is core to the Shared financial
accounting model and unlimited financial
dimension architecture. The developers need
to understand the underlying data model and
the APIs available for integrating the custom
modules to the financial module of AX.

https://technet.
microsoft.com/
EN-US/library/
hh272858.aspx

The Source
Document
Framework

The Source Document Framework
(accounting framework) will provide the
functionality that is necessary for recording
business events, and create accounting for the
newly created documents, that is, accounting
distributions and sub ledger journal entries.

http://blogs.
msdn.com/b/
ax_gfm_framework_
team_blog/
archive/2012/04/26/
extending-the-
source-document-
framework.aspx

https://technet.microsoft.com/en-us/library/hh272867.aspx
https://technet.microsoft.com/en-us/library/hh272867.aspx
https://technet.microsoft.com/en-us/library/hh272867.aspx
https://technet.microsoft.com/en-us/library/hh272867.aspx
https://technet.microsoft.com/EN-US/library/hh272858.aspx
https://technet.microsoft.com/EN-US/library/hh272858.aspx
https://technet.microsoft.com/EN-US/library/hh272858.aspx
https://technet.microsoft.com/EN-US/library/hh272858.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/archive/2012/04/26/extending-the-source-document-framework.aspx

Chapter 9

[179]

Framework Description Useful links
The Product
Data
Management
Framework

This is a framework for managing the
product attributes and for releasing the
product to legal entities. It is very common
to get customization requests in the Product
management module and hence, the
developers should understand the underlying
data model and processes for customizations
in this module.

https://technet.
microsoft.com/
EN-US/library/
hh272877.aspx

The Budget
Control
Framework

The Budget control framework enables a
budget control check on the processing
of certain documents such as purchase
requisitions, purchase orders, and projects.
To extend the budget check functionality to
a new module or to customize any process
around it, the developers need to be aware of
this framework.

https://technet.
microsoft.com/
EN-US/library/
hh272864.aspx

The
Reporting
framework

The Reporting framework provides the
ability to link the Dynamics AX application
to the SQL Server reporting services. Using
the reporting framework, the developers can
define the business logic, datasets and user
interfaces for providing report parameters
and for calling the SSRS report execution
process.

https://technet.
microsoft.com/
EN-US/library/
hh500190.aspx

The Policy
framework

The Policy framework provides the ability
to define the organization policies such as
purchasing policy, security policy, centralized
payment policy, and so on. It enables the
developers to define the rules for each policy,
which can be evaluated during document
processing. The developers can extend the
existing policy by adding more rules, or they
can implement a new policy if required.

https://technet.
microsoft.com/
en-us/library/
hh272869.aspx

The
Workflow
framework

The Workflow framework provides the ability
to define the business rules and approval
process for document processing. This
framework can be extended easily to any new
custom document, or additional workflow
controls can be implemented using the
workflow framework.

https://technet.
microsoft.com/
en-us/library/
gg731908.aspx

https://technet.microsoft.com/EN-US/library/hh272877.aspx
https://technet.microsoft.com/EN-US/library/hh272877.aspx
https://technet.microsoft.com/EN-US/library/hh272877.aspx
https://technet.microsoft.com/EN-US/library/hh272877.aspx
https://technet.microsoft.com/EN-US/library/hh272864.aspx
https://technet.microsoft.com/EN-US/library/hh272864.aspx
https://technet.microsoft.com/EN-US/library/hh272864.aspx
https://technet.microsoft.com/EN-US/library/hh272864.aspx
https://technet.microsoft.com/EN-US/library/hh500190.aspx
https://technet.microsoft.com/EN-US/library/hh500190.aspx
https://technet.microsoft.com/EN-US/library/hh500190.aspx
https://technet.microsoft.com/EN-US/library/hh500190.aspx
https://technet.microsoft.com/en-us/library/hh272869.aspx
https://technet.microsoft.com/en-us/library/hh272869.aspx
https://technet.microsoft.com/en-us/library/hh272869.aspx
https://technet.microsoft.com/en-us/library/hh272869.aspx
https://technet.microsoft.com/en-us/library/gg731908.aspx
https://technet.microsoft.com/en-us/library/gg731908.aspx
https://technet.microsoft.com/en-us/library/gg731908.aspx
https://technet.microsoft.com/en-us/library/gg731908.aspx

Building Customizations

[180]

Framework Description Useful links
The Data
Export
Import
Framework
(DIXF)

The Data export and import framework
provides the ability to export and import the
configuration or initial transactional data for
data migration and configuration purposes.
This framework can be utilized to build
typical file import scenarios or asynchronous
file-based integration scenarios.

https://technet.
microsoft.com/
EN-US/library/
jj933277.aspx

Best practices to customize business processes
The following sections describe the best practices when you customize the business
logic in Dynamics AX.

Reusing the code
As explained earlier, Dynamics AX provides numerous application frameworks.
When developing the custom features, you should be able to extend the existing
frameworks or reuse the code for your customization. The suggestion is to try not to
reinvent the wheel, but investigate and utilize what is already available in the system.

Using eventing
The use of events was a new concept that was introduced in the Dynamics AX
2012 release. Using events, you can create pre- and post-events to implement
custom behavior.

Using events, you can add custom behavior to the standard business logic, without
over- layering the base layer code to your custom layer. Events has the potential to
lower the cost of upgrades to the later versions.

Events can be useful in supporting the following programming models:

• Observation: Events can be used to look for exceptional behavior, and to
generate alerts when such behavior occurs. An example of this event is to
alert the customer contact in case the customer credit limit has reached a
certain threshold.

• Information dissemination: Events can deliver the right information to the
right consumers at the right time. Information dissemination is supported by
publishing an event for anyone wishing to react to it.

https://technet.microsoft.com/EN-US/library/jj933277.aspx
https://technet.microsoft.com/EN-US/library/jj933277.aspx
https://technet.microsoft.com/EN-US/library/jj933277.aspx
https://technet.microsoft.com/EN-US/library/jj933277.aspx

Chapter 9

[181]

• Decoupling: Events produced by one part of the application can be
consumed by a completely different part of the application. There is no need
for the producer to be aware of the consumers, nor do the consumers need to
know the details about the producer. One producer's event can be acted upon
by any number of consumers. Conversely, the consumers can act upon any
number of events from many different producers.

TechNet provides detailed information on Eventing in AX 2012 at
https://technet.microsoft.com/en-us/library/hh272875.aspx.

Customizing the code
When the base layer code needs to be replicated or used in other places, it is always
better to extend the existing classes and modify the derived class for the change in
behavior, rather than creating completely new classes and then copying the entire
code from the base class.

Extending the standard business logic by extending the class will makes it easier
to upgrade the code. If you have created an extension, only the modified code must
be restructured.

Create classes and methods so that the same piece of code can be reused in multiple
places. Avoid creating long methods. They make the code difficult to read, hard to
debug, and extremely difficult to upgrade and maintain.

Do not keep the commented code if you want to avoid the upgrade and maintenance
costs. Keep the older version of the code in version control.

Where to add the custom code
Create the customizations in the appropriate location. Create the code for reuse as
much as possible, but create it at the lowest appropriate location. For example, if
something is required only in a form, do not put it at the table level.

The following examples describe the locations at which we recommend that you
place the code:

• If it is related to the UI, place the code on the appropriate UI elements, or
create classes to handle the scenarios specific to the UI. For example, you can
create classes that handle controls, number sequences in forms, dialog boxes,
and so on.

• If it is related to a business process, place the code in classes.
• If it is directly related to the tables and schemas, place the code in the tables.
• Consume the existing Microsoft Dynamics AX classes and table methods

instead of writing direct X++ queries.

https://technet.microsoft.com/en-us/library/hh272875.aspx

Building Customizations

[182]

The user interface
When designing the user interface in Dynamics AX, follow the standard AX form
templates and the UX guidelines to create familiar and consistent form patterns for
the customized features.

Client user interface guidelines
The following sections define the different form types available in standard
Dynamics AX and their usage scenarios.

The list pages
The list pages display a list of related data and provide the ability to quickly filter,
take actions, and open the detail forms. They also display related information for the
selected records as fact boxes. List pages are the starting point for performing the
bulk of daily activities for the business users, such as creating and editing customers.

The following screenshot shows the standard customer list page:

Chapter 9

[183]

The details forms
The details forms are the primary methods for data entry. Using the details forms,
the user can create, edit, and take action on data. The details forms also contain fact
boxes on the right-hand side to display any related information. The following image
shows a customer details form:

Details forms with lines
The details forms with lines have one form with a header and a line view which the
user can toggle to switch between the views. An example of the sales order details
form is seen in the following screenshot:

Building Customizations

[184]

The simple list
The simple list form is typically used to display the reference data. For example, the
customer group is shown in the following screenshot:

Chapter 9

[185]

The simple details forms
The simple details forms are forms having a single page containing the details
information. It is the recommended pattern for creating or viewing related or
referenced data, as shown in the following screenshot:

The simple list and details forms
The simple list and details forms contain the simple list and details page forms on
a single page. These forms are useful for reference data with multiple fields. For
example, payment terms, as shown in the following screenshot:

Building Customizations

[186]

The table of content forms
The table of content forms use vertical buttons on the left to navigate and display the
content on the right side of the page. The following screenshot displays the pattern
that is recommended for the parameters forms:

Enterprise portal user interface guidelines
Enterprise portal is the web interface for Dynamics AX. Enterprise portal UI
guidelines follow patterns similar to the ones described in the AX client. The
following sections define the three common page layouts in enterprise portal.

Chapter 9

[187]

List pages
The list pages in Enterprise Portal are exactly the same as the rich client list pages
and provide a similar functionality.

The details forms
The details forms in Enterprise Portal provides patterns similar to the details form in
the AX client:

Building Customizations

[188]

The two-phase create dialog
This is typically used to create a header record before creating a line record. The
following screenshot is an example of a two-phase create header creation dialog:

Report user interface guidelines
Typically, there are three types of report UI's in Dynamics AX: outgoing documents,
simple lists, and grouped lists layouts.

Chapter 9

[189]

The document type reports
The following screenshot displays the purchase order report layout in Dynamics AX.
Most of the external facing reports, such as purchase order, sales order packing slip,
sales order invoice and so on, use the same layout:

Building Customizations

[190]

The simple list
The simple list reports are usually internal production reports used for data analysis.
The following screenshot displays the On-hand Inventory reports, which display the
on-hand information about the products:

Chapter 9

[191]

The group list type
The group list type reports are also used for internal production reporting. This
report layout is used to display summarized transactional details and include sub
totals and grand totals. The following screenshot displays Customer transactions
grouped by customers:

Building Customizations

[192]

Security
Unlike the earlier versions of Dynamics AX, AX 2012 security definition is a
development task, and the ground work for the supporting security definition of the
custom objects should be done as part of the development process.

Key concepts
The Dynamics AX role-based security is based on the following key concepts:

Securable objects

User interface elements Tables and fields SSRS reports Service operations

Roles

Process cycles Duties Privileges

Security roles
The security roles that are assigned to a user determine the duties that the user can
perform and the parts of the user interface that the user can view. All users must be
assigned to at least one security role for accessing Microsoft Dynamics AX.

Duties
Duties correspond to the parts of a business process. The administrator assigns
duties to security roles. A duty can be assigned to more than one role.

The process cycle
To help the administrator locate the duties that must be assigned to roles, duties
are organized by the business processes that they are a part of. In the context of the
security model, business processes are referred to as process cycles. For example, in
the accounting process cycle, you may find the maintain ledgers and maintain bank
transactions duties.

Chapter 9

[193]

Privilege
In the security model of Microsoft Dynamics AX, a privilege specifies the level of
access that is required to perform a job, solve a problem, or complete an assignment.
Privileges can be assigned directly to roles. However, for easier maintenance, it is
recommended that you assign the privileges to duties and duties to roles.

Permissions
Each function in Microsoft Dynamics AX, such as a form or a service, is accessed
through an entry point. The menu items, web content items, and service operations
are collectively referred to as entry points.

In the security model for Microsoft Dynamics AX, permissions group the securable
objects and the access levels that are required to run a function. This includes any
tables, fields, forms, or server-side methods that are accessed through the entry point.

Policies
These are used to restrict the data that a user can see in a form or a report. This is a
new method in Dynamics AX 2012 to limit the data, similar to what you have with
record level security. With this feature, you create a query with restrictions. Then,
you create a security policy that can be applied to a security role. For example, if you
wanted to limit your accounts-payable clerks from seeing the retail vendors, you
could create a query on the vendor group table with a range that limits the retail
vendors. You would then create a policy that includes this query and the security role.

Security for custom objects
While the administrators can maintain the security role assignment for individual
users, most of the work for creating the security objects needs to be done by the
developer in the AOT. The following security related tasks need to be created by
the developers:

• Each user interface element in the AOT such as forms, menu items and
reports has a security node. The developers must define appropriate security
at the object level. In a normal scenario, the default security policy for the
object is created automatically based on the properties defined at the form
data source and control level. In advance scenarios, the developers can
override the default security permission at the control level.

• The developers should create the appropriate privileges and add entry points
(menu items and web page URL) to associate the functionality.

• Custom duties and roles should be created for custom functions, before they
can be assigned to the users.

Building Customizations

[194]

• The security policy nodes should be created by the developers to use the XDS
security models in Dynamics AX.

Coding best practices
In this section, we will learn some best practices to be followed during development
in Dynamics AX.

Best practice check
Run your code through the X++ best practices process, evaluate all the best practices
errors and warnings, and take the appropriate action.

Naming variables and objects
Begin the variable and method names with lowercase letters like custTable,
validateFields, and so on. Begin the names of the AOT elements with capital
letters such as CustTable, SalesFormLetters, and so on.

Prefix the parameters names with an underscore (Args _args). Use meaningful and
self-explanatory variable names. For example: SalesTable salesTable and not
SalesTable table1

Commenting the code
Code comments enhance the readability of the code and are very useful for those
involved in modifying or maintaining the code. Comments should be used to
describe the intent, algorithmic overview, and the logical flow.

Add XML documentation for class, class methods, and table methods. You can
generate an XML file from this documentation.

Labels and text
Use labels for all text such as labels, form caption, infolog, and so on and provide
code comments.

Chapter 9

[195]

Database
The following list provides the best practices guidelines related to the database:

• Avoid using direct SQL calls from the X++ code. Direct SQL statements do
not respect application security.

• Consider specifying a field list in select statements to increase the
performance.

• Avoid display methods whenever possible.
• Run the code on AOS whenever possible.
• Use the where clauses that align with the indexes in select statements

and queries.
• Use firstonly where applicable to increase the performance.
• Use aggregates in the selection criteria instead of letting the code do the

aggregation.
• Use table joins instead of while loops.
• Use Update_Recordset and insert_recordset wherever applicable.

Transactions
Keep the following best practices in mind when creating transactions:

• Keep the database transactions as short as possible
• Do not include user interaction inside the database transactions
• Use throw instead of ttsAbort
• On a server-side TTS block, do not call back to the client for displaying the

dialog boxes

Exception handling
The following list provides the best practices guidelines related to exceptions:

• The throw statement an exception to stop processing. It will stop the
transaction execution and rollback operations if inside the transactions.

• Use the info, warning, and error functions without a thrown exception in
cases where the X++ call stack that is being executed should not be stopped.

Building Customizations

[196]

The Application Lifecycle Management
(ALM)
Every implementation project involves separate Dynamics AX environments for
developing customizations, testing, and then finally releasing these customizations
into the production environment. The Application Lifecycle is the process of
governance, development, and maintenance of the customization process across
these environments.

The following image shows an example application life cycle scenario for
customization and code promotion across environments, using Dynamics AX:

As shown in the preceding flowchart, this example ALM process goes through the
phases described in the following sections.

Development
In this phase, the development team creates a customized solution, does unit testing,
and when the code is ready for testing, the code is checked into the development
branch of the version control system. When the changes are ready to go to the test
environment, they are merged with the main branch. A build is created out of the
main branch and released in the test environment. Any defect found during the
testing cycle is fixed and is checked into the version control system. It then goes
through the merge process and is released to the Test environment.

Chapter 9

[197]

Creating the build
The build server collects the latest XPO (.XPO is an extension for the code files
exported from Dynamics AX AOT) changes from the TFS version control main
branch and creates build for the test environment. The output of a build would
be a model store file.

In Dynamics AX 2012, the application Ids are installation-specific,
which means they can be different in different environments
if they are not initialized from the same model store. To avoid
conflict, you should initialize the build environment model from
the test environment.

Testing/defect fixing
During this phase, custom solutions are tested end-to-end, ideally by a quality
analyst. Defects are raised and assigned to the respective developers. The code
changes made by the developer are checked in into TFS, and a new build is created
and applied on the test environment. The quality analyst retests the process, and
closes the defect when satisfied.

Release to production
When all the testing efforts have been completed, there are the following options to
create the build for production:

• Export the model store for the QA environment and deploy to the
production environment

• Create a release branch in TFS and create a build out of the release branch for
production release

The ALM process explained here is only an example. ALM
processes can be different depending on the version control
system, branching strategy, and the existing customer
processes for release management.

Building Customizations

[198]

Application Lifecycle guidelines and best
practices
The following are some common guidelines and recommendations for the
ALM process:

• Use version control and appropriate branching strategy for the
development process.

• Implement a code review process to manage check-ins and control what
needs to be released to the test environment.

• Implement comments during code checking, providing a brief description of
the code, the linking feature, or defects to track the changes appropriately.

• Implement the formal release process (cadence of releases, manager
approval, and so on) to avoid destabilizing the test environment due to
frequent releases.

• Use the build server and build automation scripts to create an automated
build creation and build deployment. There may be some initial investment
to get the things in place, but it saves a lot of time during the testing phase of
the project.

• Use the Microsoft guidelines for deployment in the test and production
environments. Follow the Microsoft white paper, Deploying Customizations
Across Microsoft Dynamics AX 2012 Environments at https://www.
microsoft.com/en-us/download/details.aspx?id=26571.

• Avoid moving the code using XPO from the development to test or the
production environment. Importing new objects using XPO can lead to object
conflict during model store import.

• Do not modify the code directly in test or production environment; it's bad
practice, and can create confusion and code loss. It is easy to miss merging
the code back to version control properly and the next build deployment will
override the changes.

• If not using build automation, keep a clean development environment,
synced with the latest code, to create build manually and to promote the code
to test and other environments.

https://www.microsoft.com/en-us/download/details.aspx?id=26571
https://www.microsoft.com/en-us/download/details.aspx?id=26571

Chapter 9

[199]

Summary
In this chapter, we began with understanding the preparation needed before starting
the development process such as setting up the development environment, version
control, and setting up the process for a periodic code review. In the next section,
we learned, in detail, about the development process in Dynamics AX, starting
with conceptualizing the solution, understanding the importance of effective
data design, implementing business logic, and building custom code considering
long-term view/building for temporary use. We also learned about the different
recommendations on the UI patterns for effective and consistent user interface
design. We learned the common best practices and recommendations for coding
in X++. In the end, we reviewed an example of an application life cycle process for
Dynamics AX implementation and the common guidelines and best practices.

In the next chapter, we will learn about performance tuning and the various tools
and techniques for identifying performance issues across the environment.

[201]

Performance Tuning
Performance tuning is a wide subject with far-reaching ramifications, and should not
be limited to the performance testing and tuning exercise at the end of the project.
Instead, careful consideration should be given to performance from the beginning of
the project. We have talked about these considerations in the previous chapters. Let's
review them once again at a higher level:

• Infrastructure planning: It's important to understand the underlying
architecture and the peak workload as well as have the hardware sized
appropriately; this planning should also consider the scenarios to scale for
the expected future growth.

• Requirement gathering: Clarify and define the performance and peak-load
requirements during the analysis phase.

• Design and development: Pay attention to scalability and the performance
aspects during design. Follow the best practices and guidelines during the
design and development phase for better performance.

In the end, we have to validate all the above considerations and make sure that the
system is ready for production. Performance testing and tuning will help in defining
a baseline and getting the system ready for the production workload.

In this chapter, we will cover the following topics:

• Planning performance testing and tuning
• Tools for performance monitoring
• Factors that impact performance
• Approaching performance issues

Performance Tuning

[202]

Performance testing and tuning
Performance tuning is a methodology of identifying performance issues and solving
them. It is important to conduct performance and load testing and tuning before
going live to eliminate the issues which can impact the business negatively. It does
not matter whether you have high volumes or not; you still need performance
testing. At this stage of the project, the infrastructure has been configured and
reviewed to match the best practices. The development of custom features is
complete and functional testing is in progress. This is the time to validate the overall
performance of your Dynamics AX solution. The primary goal is to make sure that
the solution will accept peak load without any major issue.

The key objective of this exercise is to establish a baseline for the key business scenarios
and to test and execute performance tuning and optimization to achieve the following:

1. Create a baseline of your core business scenarios.
2. Simulate users and transactions in terms of concurrency and volume, and

determine the load that the system can handle.
3. Execute performance tuning and optimization.

The following flowchart illustrates the performance and load testing and
tuning process:

Chapter 10

[203]

Preparing for the process
Preparation is the key to the beginning of any process. Consider the following
scenario to prepare for performance testing and tuning:

• Define scope: Identify the potential bottlenecks and important business
scenarios for which you want to run the performance and load testing on,
such as product search, order placement, shipment posting, invoice posting,
and so on.

• Set goals: Define the acceptable benchmarks for a combination of processes
to be run in parallel.

• Set expectations with the executives: Performance testing is a process for
finding the known unknowns and for finding the obvious bottlenecks in the
solution. However, there may still be some unknown-unknowns that would
surface after the go-live. Good performance testing is like a flu vaccine—it
would address the most commonly expected flu for the season. However, it
does not guarantee that you won't get the flu.

• Identify the tools to be used: There are several different toolsets for
performance monitoring. The following section discusses the tools that
will help you to prepare for this.

• Identify the environment to be used: You need to use an environment
that is as close to the production in size and configuration as possible, so
that you don't have to make assumptions. In my experience, it pays off if
you procure the production hardware early on so that it can be used for
performance testing.

• Datasets: You should consider a good mix of scenarios from a data
perspective, such as shipments from various warehouses, different types
of customers, and so on. Identify the critical scenarios from the business
perspective and use these for testing. For example, one of my customers had
a line of credit from GE, and most of their vendor invoices were paid by GE.
It was obvious to use GE as a sample vendor for performance testing of the
AP module. Many times, the developers running the performance testing
make up their own sample data which may defeat the purpose of testing.

The execution stage
This is an iterative process, so use the tools selected and the scripts developed to run the
performance testing to easily repeat the process. Capture and analyze the performance
results, make appropriate changes, and repeat the process to evaluate the results.

1. Make sure that you are running performance testing on a set of completely
migrated data so that your starting point is as close to production as possible.

Performance Tuning

[204]

2. Get all of your latest customization code in order to see the performance
along with the custom code.

3. Run a performance test for individual areas. However, simulate multiple
business processes together (that's the way the business will be using
the system).

4. Try to find the breaking point by loading the transaction volume to know
the bottlenecks (AOS/DB or something else), and the point at which the
system would max out.

5. Analyze the DynamicsPerf (or the results of any other tools used for capturing
the performance bottlenecks) results after every run, and make changes
as necessary.

6. Document the results from every run, such as the time taken, number of
records, resource consumption, bottlenecks, and any other observations and
changes made.

7. Always make smaller changes at a time (like changing the trace flag on SQL,
adding indexes, or any code changes) and get the results again. This way,
you can see the impact of each individual change.

Outcome
Prepare and document a summary of the performance testing to be presented to the
stakeholders of the project.

• Benchmark the performance numbers for each area, like time taken to
process the sales order, number of invoices posted per minute, and the
orders created per minute through integration. Document the performance
bottlenecks identified and fixed during this process. Review the report on
what was found and fixed with the key executive and the project sponsor.
If you haven't found issues in testing, most likely, the quality of your testing
is questionable.

• This review would be a good time to remind them about the expectations.
Otherwise, with the first performance issue in production, you will hear
about concerns regarding money invested into the solution.

• They should have a good understanding of what the system can handle, and
the system behavior under peak business hours.

Chapter 10

[205]

Tools for performance monitoring
There are several tools which can be used to monitor the performance of the
Dynamics AX application. The following sections identify some useful tools, along
with their brief descriptions and how they can be used. It is important for the
technical architect on your project to be familiar with these tools to ensure that your
performance monitoring plan is effective.

The trace parser
The trace parser is a useful tool for developers and system administrators to collect
trace events produced by the Dynamics AX application. You can import the trace
events into the trace parser and analyze the results to identify performance issues
in the code. The trace parser tool comes with the Dynamics AX 2012 package, and
can be installed using the installation options. The trace parser can be installed as a
standalone tool for Dynamics AX 4.0 and AX 2009.

The trace parser is useful for the following reasons:

• The trace parser is useful in identifying the reason for a specific process
being slow (you can run the process itself in isolation and find the
performance bottleneck).

• More than 70-75 percent of the performance issues can be identified using
this tool, prior to going live. Take the traces for all the important processes
and identify the piece of code that may be running slow. Using the right set
of data (product/customer with a high number of transactions), using an
environment with the latest code, all the migrated data, and so on, would
increase the chances of catching issues early.

The trace parser is not useful for the following reasons:

• The trace parser is not useful in the case of processes that are running slow
under load

• It cannot be used for production issues that are not replicable in isolation
from other processes

Performance Tuning

[206]

The performance monitor
The performance monitor is a basic tool provided with the Windows operating
system to collect the important performance counters related to the CPU, disk,
and the memory, and which can aid in finding the performance issues. The
Dynamics AX application provides the performance objects with different
performance counters related to the Dynamics AX application, which can be traced
using the performance monitor.

The performance monitor can be used to create counters to collect information
about the performance on each component of the Dynamics AX architecture, such as
Application Object Server (AOS), the database server, and the Internet Information
Services (IIS):

The performance monitor is useful for the following reasons:

• The performance monitor is useful for giving proactive alerts to the IT
administrators when the system utilization is above the normal limits. These
alerts are helpful in getting early notifications about the issues that may
cause system-wide slowness; they may help in reducing the potential impact
to the business users.

• These are used for discovering the potential bottlenecks in the hardware,
such as the CPU, memory, and I/O by monitoring the counters during the
performance testing phase.

Chapter 10

[207]

These are also used for discovering the root cause of the issue reported, as an overall
slowness of Dynamics AX in a specific environment.

The performance analyzer – DynamicsPerf
DynamicsPerf is a performance tool for the DBAs and system administrators to
capture and analyze the performance data from SQL Server and the Dynamics AX
application. DynamicsPerf is an SQL based tool and includes SQL jobs, X++ class,
VB Script, and performance counters to collect the data. It also includes sample SQL
scripts and SSRS reports to analyze the collected data in the DynamicsPerf database.

At a higher level, DynamicsPerf captures the following set of data to aid in the
investigation of any performance problems:

• Performance data
• Database blocking
• Performance counter data

DynamicsPerf can be used in a production environment to collect and analyze the
performance data. It has very little impact in a production environment, as it is
simply collecting the DMV (Dynamic Management Views)—that the SQL server
captures about execution, indexes, OS, I/O, and so on—data that the SQL Server
already has in the memory and inserting that into the DynamicsPerf database. It
captures additional configuration information from the Dynamics AX database,
which can be scheduled to run during the non-business hours. On average, the first
data capture of the daily capture stats job runs for 3-5 minutes with the subsequent
captures taking 1-2 minutes. The hourly performance-capture job normally runs for
about 5-6 seconds.

Performance Tuning

[208]

DynamicsPerf is a tool for identifying performance issues proactively, and hence, it
is a good idea to use it in your Development, Test, or QA environments and fix the
performance issues beforehand to prevent them from getting into production.

The DynamicsPerf tool is available on the codeplex website
and can be downloaded from https://dynamicsperf.
codeplex.com/.
For additional resources on installing, configuring, and using
the DynamicsPerf tool, visit http://blogs.msdn.com/b/
axinthefield/.

DynamicsPerf is useful for the following reasons:

• It is useful in discovering the performance issues related to environment,
system setup, long running/expensive queries, missing indexes, and so on

• It is a tool for monitoring the performance proactively rather than reacting to
the performance issues

• It collects the historical performance data to compare the performance issues
over a period of time

• It provides SSRS reports for analyzing the performance issues

The LCS system diagnostics
System diagnostics is a cloud-based tool for the administrators to monitor and
understand the health of one or more Dynamics AX environments. System
diagnostics is basically a collection of rules defined by the Microsoft solution
architecture team. The LCS tools collect the data from your environment and the
basic setup data. It then runs these rules against the data collected and displays
messages if there are any deviations from the best practices defined as part of the
rules. The good thing is that Microsoft keeps adding new collectors and rules which
can be used for your project as soon as they are available in the LCS.

The LCS System diagnostics helps the administrator monitor and manage one
or more Dynamics AX environments. It provides a graphical dashboard which
administrators can use to monitor the overall system health, discover errors, and
flash warning messages. For errors and warning messages, the tool also provides
additional resources and recommendations which can be used to further investigate
and resolve the issues. The system administrators can also generate detailed reports
for the issues and send these to the development team for further analysis and
corrective actions to resolve them. The following diagram illustrates the LCS System
diagnostic capabilities and processes:

https://dynamicsperf.codeplex.com/
https://dynamicsperf.codeplex.com/
http://blogs.msdn.com/b/axinthefield/
http://blogs.msdn.com/b/axinthefield/

Chapter 10

[209]

The LCS collector collects the following data from each environment, and runs
several rules to check the health of the environment:

• Microsoft Dynamics AX: This is module-specific data, such as account
payable parameters, workflow, vendor invoices, and vendor journals

• The AOT data: This is the Dynamics AX AOT data, such as table properties,
table method, and query properties

• Environment: The environment data includes environment details from the
AOS server and the database server

LCS is useful for the following reasons:

• The LCS collector is useful for discovering the common environment
setup issues

• It helps in discovering the common best practice violations related to
configuration

• It monitors the overall health of one or more of the Dynamics AX
environments

Performance Tuning

[210]

The performance benchmark SDK
The performance benchmark SDK is a performance and load testing tool for
Dynamics AX. It leverages the load test functionality of Visual Studio and
provides the ability to develop, manage, and execute load testing by simulating
multiple-user activity on Dynamics AX. The benchmark SDK comes with several
prebuilt standard scenarios, and can be extended further by customers and partners
for custom features.

It is useful for load and performance testing by simulating multiple users' activities
simultaneously. The performance benchmark SDK can be downloaded from
http://www.microsoft.com/en-us/download/details.aspx?id=39082.

The SQL Server Profiler
The SQL Profiler is a graphical tool that allows the database administrators to
monitor the events in an instance of SQL Server. You can capture and save the data
about each event and analyze it later.

The SQL Server Profiler lets you define a trace to capture all the T-SQL scripts that
run simultaneously on the SQL Server. As you might expect, this data can be very
large and is not easy to analyze. It is important to define the objective of the trace and
define the appropriate filters and events to capture only what is needed.

Using the SQL Profiler in the production environment needs careful consideration, as
tracing can enable an overhead to the overall performance of an SQL Server instance.
To use the profiler in a production environment, you should define the appropriate
filters and events and trace for a small duration.

The SQL Server profiler is useful for the following scenarios:

• Finding activities on an SQL Server instance when performance issues
are observed

• Finding and diagnosing slow-running and blocking SQL queries

The SCOM pack for Microsoft Dynamics AX
SCOM stands for System Center for Operation Management. SCOM is a Windows
Server tool to monitor and control the Windows servers. SCOM for Dynamics AX
is a preconfigured package that you can import into SCOM to discover, monitor,
and manage your Dynamics AX environment. The Management pack automatically
discovers the entire AX environment, such as the databases, reporting servers,
analysis servers, enterprise portal server, and the application frameworks, and
monitors each component for configuration, availability, and performance.

http://www.microsoft.com/en-us/download/details.aspx?id=39082

Chapter 10

[211]

In addition to the monitoring features, SCOM can also be used to perform
maintenance tasks on the AOS instance directly, such as starting and stopping the
AOS service and draining the clients from the server.

The SCOM pack is useful for the following:

• Monitoring the Dynamics AX production environment for availability and
performance

• Monitoring the performance counters for the different server components
• Setting up alerts and warnings for the system administrators for early

warnings

Factors that impact performance
Performance bottlenecks can occur at any level, so it's important to understand the
different dimensions where things could be wrong and where to start. In a broad
sense, there are three common factors that impact performance, as illustrated in the
following image:

Infrastructure
As described in Chapter 3, Infrastructure Planning and Design, the infrastructure
plays a vital role in system performance. It is very important to select appropriate
hardware for the various components based on the usage profile of the system.
We also recommend an infrastructure design review to evaluate the hardware and
software requirements during the infrastructure planning stage.

Performance Tuning

[212]

Issues due to inadequate hardware
The following are the typical performance issues related to the hardware that are
found in the customer AX projects:

• I/O contentions issues
• Low memory on the remote desktop servers
• Low memory on AOS

There are a few tools that help you monitor performance for the hardware, which are
explained as follows:

• The Windows Performance Monitor: This monitors the performance
counters for each of the component installed for memory, I/O, and the CPU
to discover the overall hardware utilization and any potential bottleneck

• DynamicsPerf: The DynamicsPerf tool collects the SQL Server data from the
Data Management Views (DMV) related to the memory, CPU, and I/O,
which can be useful for identifying the hardware issues related to SQL Server

Virtualization
Hardware virtualization is the recommended option for Dynamics AX, as it
reduces the cost of the initial setup and maintenance, in addition to providing
high availability. The following are the common performance factors in a
virtualized environment:

• Overprovisioning (thin provisioning) for AX production servers
• There are no dedicated resource pools for the CPU and memory
• The memory balloon driver is not disabled (ballooning equivalent to

dynamic memory)
• The use of storage thin provisioning (on-demand allocation of blocks of data)
• RSS (Receive Side Scaling) is not enabled (network traffic handled

by CPU 0)
• Outdated Synthetic Device Drivers (for disk, NICs, and so on)

The following tools can be useful for viewing virtualization:

• Windows performance monitor: This uses the performance counter to
monitor and discover the hardware utilization on the various server
components in the Dynamics AX environment

• Third-party tools to monitor the virtual environments: Sometimes, the
problem could be in the virtualization layer, and hence specialized software
provided by virtual solution vendors can be used to identify any such issue

Chapter 10

[213]

The environment setup
There are several environment and application-recommended settings that, if not
done appropriately, can cause performance issues. The following sections explain a
few issues at the high level.

Network bandwidth and latency
Network bandwidth and latency plays an important role in the performance of the
system. This becomes extremely critical when you have remote sites connecting
to the Dynamics AX client. Make sure that the system requirements for network
bandwidth and latency are followed as per the Dynamics AX system requirements
recommendations.

It is highly recommended to use the Citrix or remote desktop/terminal services for
WAN access. Enable compression by enabling the setting on the AOS configuration
to minimize the size of the data packets between the AX client and AOS servers.
Consider using other user-client performance options, such as disabling the fact
boxes and the preview pane on the list pages, to improve performance.

Setting up Windows
Make sure to validate the following settings for Windows in the Dynamics AX
environment:

• Verify that the SQL Server is configured to run as a background service in
Windows. Ensure that the memory allocation is done correctly so that the OS
has enough dedicated memory.

• Set the power plan to high performance (all AX servers).

Setting up SQL Server
SQL Server is the most important component of the Dynamics AX architecture. Most
of the performance issues usually point to issues on SQL Server—setup or queries
that are not optimized. Hence, proper configuration and recommendations need to
be followed on SQL Server the optimal performance of the overall Dynamics AX
application.

The following are some key considerations for SQL Server's optimum performance:

• Review the maximum degree of parallelism setting (ideally set to 1).
• Enable only the required network protocols—AX requires only TCP/IP. Any

protocol other than TCP/IP can significantly reduce the overall performance
of the Dynamics AX application.

Performance Tuning

[214]

• Disable hyper-threading on the SQL Server services.
• The Dynamics AX application uses TempDB heavily; make sure that the

Microsoft recommendations are followed on the TempDB storage and settings.
• Run performance tests and monitor the TempDB contentions using the Wait

Stats technique.
• Make sure that the best practices and recommendations are followed for the

Dynamics AX database, which is available on the Dynamics AX Performance
Team blog at http://blogs.msdn.com/b/axperf/.

• Implement the appropriate database maintenance processes, like reindexing
and defragmentation.

• Apply the latest service packs for SQL.
• Update the firmware.
• Download and install the DynamicsPerf tool to periodically collect and

monitor the performance data and take corrective actions.
• Ideally, do not put other databases on the same SQL instance (it may

compete with the Dynamics AX database for the server resources).

An outdated application, kernel, and missing
hotfixes
It is important to maintain your Dynamics AX solution with the most current
releases and fixes available. Microsoft continuously releases hotfixes and kernel
updates for performance issues as the customers come across them. You would
rather run into issues that have already been reported by other customers and
where the fix is available from Microsoft. During the project life cycle, keep looking
for the important hotfixes/cumulative updates and evaluate if they can be applied.
At least the kernel-level hotfixes should be applied, as they do not have any code
upgrade constraint.

Inappropriate AX configurations
There are a number of settings and application configurations within Dynamics
AX which can cause performance issues if they are not used appropriately. The
following sections outline a few key configurations that require attention:

http://blogs.msdn.com/b/axperf/

Chapter 10

[215]

Number sequences
In Dynamics AX, the number sequences are used to create automatic sequences
for documents and master data, such as customer account, voucher numbers,
invoice numbers, and so on. A number sequence can be set to continuous or
non-continuous. When using a continuous number sequence, gaps are not allowed,
so a trip to the database is needed to get the next number. When the number
sequence is non-continuous, you can allow preallocation per ID, and therefore
reduce database calls and improve performance. Avoid using continuous number
sequences unless required by the application.

Database logging
Database logging is a feature in Dynamics AX that enables the logging of any data
change when enabled for a table. This is a cool feature but needs to be used with
caution, because it can cause a significant degradation in performance when used
inappropriately. The following are some guidelines for using the database logging
feature in Dynamics AX:

• Have a valid business reason for each database logging rule
• Only track what is needed (for example, track updates at the field level,

insert/delete actions, and so on)
• For large transactions, do not use tables or the information that changes

based on the transactions
• Purge or archive the sysDatabaseLog table regularly

Debugging in production
Debugging is a great tool for Dynamics AX developers to troubleshoot the ongoing
issues. However, it should not be enabled in the production environment. Even
though you are not using the debugger in the production environment and it's just
enabled on the AX Server Configuration utility, it can cause around a 10 percent
performance degradation.

Maintaining indexes
Database maintenance is important for any OLTP database. Having bad index
maintenance or no index maintenance can severely degrade the performance
of Dynamics AX. Many performance issues can be resolved if the appropriate
database maintenance processes are put into place. The following are a few index
maintenance guidelines:

• Reorganize the indexes that are larger than a thousand pages and are
between 10 percent and 30 percent fragmented.

Performance Tuning

[216]

• Rebuild the indexes that are larger than a thousand pages and more than
30 percent fragmented using a fill factor between 85 percent and 95 percent,
depending on the frequency of the job execution.

• It is also strongly recommended to run the update statistics regularly with
a full scan, or with at least a 50 percent sample, as well as having Auto_
Create_Stats and Auto_Update_Stats enabled. If you are running SQL
2008 R2 SP1 or greater, you can also enable the trace flag, 2371.

• Run the database maintenance script weekly or more frequently.

Batch servers
We often find in customer environments that there is only one AOS instance for
batch processing, and the setting on the AOS batch is the default setting with a
maximum of eight batch threads. A good way to calculate the number of threads is
to multiply the number of cores by two, but this depends on the processes running
and should be validated in the testing phase. You can also set the user AOS to act as
a batch server during the off-business hours when there are no user activities.

Code and queries
The code and queries used in the application logic can cause significant performance
issues when the proper best practices and guidelines are not followed. The following
are a few common areas where the code can cause performance issues.

Data caching
As explained in Chapter 9, Building Customizations, data caching is an important
property in the table. When the CacheLookup property on the tables is not set
correctly, it can cause performance issues due to an increase in the number of
database calls. Just as an example, set the CacheLookup property of CustParameters
to none and run a trace using the trace parser tool for the sales order invoicing
process. You will notice a database call for CustTable thousands of times. However,
when the CacheLookup property is set to EntireTable, there will be one or zero calls
to the database. This is a small but really important setting for performance. Follow
the development best practices, and set the appropriate CacheLookup property in the
custom tables.

Chapter 10

[217]

Too many RPC calls between the client and
server tiers
A code running on the wrong tier can cause too many RPC calls between the client
and the server tiers and can cause significant performance overhead. Refer to the
following guidelines to evaluate whether the code is being run on the appropriate tier:

• The code related to database operations or heavy calculations should be run
on the server tier

• Minimize the interaction between the client and server tier by grouping the
appropriate tier code into a method

• Send the information between the client and the server in a serializable
format

• Use the TempDB tables when you need to join them with the regular tables

Set-based operations
It has been discovered in code review or performance tuning that the business logic
is often implemented using loops to manipulate the transaction data. When the
number of records grows, the processes start slowing down due to the increased
number of round trips between the database and AOS.

Dynamics AX provides the following set-based operations for data manipulation
(INSERT_RECORDSET, UPDATE_RECORDSET, and DELETE_FROM), which could be
used as an alternative to the loops to complete the data manipulation in a single
round trip.

However, in a few scenarios, these set-based operations are converted into row-
based operations. Examples for such scenarios are as follows:

• When joined with the inMemory temp tables
• When the database logging or alert is enabled for these tables and the skip*

method is not used
• When the table has the delete actions defined; delete_from will turn into a

row-based operation if skipDatabaselog is not used
• When the table methods insert/update/delete are overridden, and the skip*

methods are not used

Performance Tuning

[218]

Batch parallelism
We often hear the complaint that batch processes take too much time to complete.
Often, the issue is that parallel execution or the resources available are not used
effectively. The result is less throughput, longer response time, and inefficient use of
all the hardware resources.

Depending on the nature of the workload and work, you can use the following three
techniques for parallel batch processing:

• Batch bundling: In this technique, a static number of tasks is created. The
work is split among these tasks by grouping the work items together into
bundles. Each worker thread will process a bundle of work items before
picking up the next bundle. For example, suppose you need to invoice 1,000
sales order invoices. To do so, create 10 tasks, and allocate 100 sales orders to
each task. So, 10 sales order invoices will be posted in parallel.

• Individual task modeling: In this technique, a batch task is created for each
work item. Here, you have a 1:1 relation between the batch task and the work
item, and hence a more consistent workload distribution. For example, if you
need to push the AX retail transaction data to 10 different stores, create 10
different batch tasks; each batch task will process the data for one store.

• Top picking: In this technique, you create a static number of tasks similar
to batch bundling, but do not preallocate the work items. A staging table is
created and populated with a list of work items to be processed. Each batch
thread will pick the next available task and update the current one with
the status In Progress. Each task will read the staging record data with the
PESSIMISTICLOCK hint along with the READPAST HINT to get the next
available work item without any blocking.

Parallel processing can cause a deadlock and blocking in the system, but they can be
taken care of by exception handling with the deadlock and retry mechanism.

The standard AX functionalities are a great source of information about how the
batch framework can be best utilized in different parts of the system. The best
example for this is the Data Upgrade Cockpit (read Chapter 14, Upgrade for more
info on the Data Upgrade Cockpit), which uses multiple batch processing techniques
for parallel execution.

Chapter 10

[219]

Long-running queries – missing indexes
Long-running queries are a very common cause of performance issues reported
in Dynamics AX. You can often see long-running queries in the standard business
logic, SSRS reports, and customizations; most of the time, this is due to missing or
inappropriate indexes. It's important to understand that every business has different
data composition and usage patterns, and the index usage depends on these factors.
Hence, indexes need to be designed and optimized for the usage pattern of the business.

There are various way to monitor long-running queries. For example, you
can monitor long-running queries in Dynamics AX itself by setting the AOS
configuration client tracing option and the SQL trace option for Dynamics AX user
options. You can also use the SQL Server DMVs or the DynamicsPerf tool to monitor
long-running queries.

Displaying methods on form grid
Using the display methods in Dynamics AX is a great way to show the calculated
information on forms and reports. But using display methods can cause significant
performance issues. Particularly when complex methods are used to calculate the
values being shown on grids, a visible slow-down in form performance can be
experienced. This is largely due to the fact that the methods are often run repeatedly
with no apparent reason and the values are unchanged.

The performance issues reported by end users about a particular form taking a long
time to open is quite common. Check if the form uses the display methods on the
grid; this could be one of the reasons why the form is slow. Display method caching
can be used to resolve this issue.

Approaching performance issues
Performance issues can be due to many factors, and to identify the root cause,
you may need to involve multiple groups within the organization. This makes it
challenging and, sometimes, even political. Also, performance issues are complex
and hard to reproduce. Therefore, it's important to understand the issue clearly, set
priorities, and get the appropriate people involved for the analysis.

Performance Tuning

[220]

Understanding the issue
The very first step is understanding the issue. "We are having performance issues!"
is a very broad statement. You need to identify all the symptoms, and these
symptoms may help you define the course of action. It's important to ask the right
questions, such as:

• How many users are affected and in what areas of the business?
• Is this a general performance issue or related to specific processes?
• Is there a pattern for the issue like particular users and/or times of the day?
• Can it be recreated in a test environment? If not, can it consistently be

recreated in the production environment?
• What are the expected results, such as duration, concurrent users, and so on?

Planning and defining the analysis strategy
When you have enough details and an understanding of the issue, it's time to
formulate an action plan and an analysis strategy.

• It is more important to resolve performance issues affecting the end-user
productivity earlier rather than with a nightly batch job that is taking longer
than expected (unless the nightly job is impacting the business SLAs or
making the business slow down).

• You may need resources from different teams, or you many need to
source an external/contract resource. Coordinate and find the right
people in the team.

• Identify appropriate performance monitoring tools and install and configure
them in the affected environment to collect the data.

Chapter 10

[221]

Based on the issues defined in the investigation strategy, the following diagram can
be a good starting point on where to look:

Corrective action and review
Solutions to performance issues could be as small as changing a parameter setting,
or it could be so complex that it requires design or code changes. The following are a
few tips on implementing the corrective actions:

• If the problem is not just limited to a specific process, a quick validation of
the environment setup and configuration is a good place to start.

• Validate the SQL server and AOS configurations, as recommended. Some
issues can be resolved by correcting the simple setup issues like rebuilding
indexes, updating the statistics on the affected tables, or setting the MAXDOP
setting in SQL Server to 1.

• Performance tuning is an iterative process; try one tuning at a time and verify
the result.

Performance Tuning

[222]

• Minimum effort maximum result: When analyzing a performance issue, you may
discover many factors that could be adding to the performance issue. Start
with the one that requires minimum effort and gives the maximum result.

• You should also know when to stop tuning a particular scenario and move on.
Remember the law of diminishing returns; this means that in each iteration of
performance tuning, the potential for improvement reduces exponentially.

General scenarios and investigation
strategies
The following sections define a few scenarios from my experience to help in
brainstorming the identification of the root cause for the performance issues.

Issue 1
The entire company reports slowness issues. The performance is getting worse
day by day.

Investigation:

• Check the application for the following:
 ° The number of concurrent users connected
 ° The batch jobs running at the moment

• Check the AOS utilization of:
 ° The CPU
 ° Memory

• Check the DB for symptoms like:
 ° CPU, memory, and IO
 ° Any blockage
 ° Long running queries
 ° Index statistics not being up-to-date

Root cause: After investigation, it was found that index maintenance was not put
into place. The DBA used the DynamicsPerf tool and observed bad execution plans
and several long-running queries.

Solution: Reindexing and defragmentation of the indexes resolved the issue. Index
maintenance was put into place to avoid such issues in the future.

Chapter 10

[223]

Issue 2
Operations in all warehouses are slow.

Investigation:

• Check the network for connectivity, bandwidth, and latency issues
• Check SQL server for blocking, CPU, and memory utilization

Root cause: Testing the network connectivity revealed that the bandwidth between
the warehouse locations and the headquarters was limited.

Solution: The AX AOS configuration was updated to enable the sending of smaller
data packets. This option is available under Microsoft Dynamics AX 2012 Server
configuration/performance/minimum packet size to compress (in KBs). For more
details, visit the TechNet article at https://technet.microsoft.com/en-us/
library/aa569624.aspx.

Issue 3
Operations at specific locations are slow.

Investigation:

• Check the network connectivity, bandwidth, and latency issues
• If RDP or the Citrix layer are used, check the resources on the RDP and

Citrix Servers

Root cause: It was found that the RDP Server's CPU and memory utilization was
very high. The RDP Server was over-provisioned.

Solution: Upgrading the resources on the RDP Server resolved the issue.

Issue 4
Printing in the warehouses is slow.

Investigation:

• Check the drivers on the printer
• Check the bandwidth and latency
• Check the resources on the print server

Root cause: An outdated driver on the printer.

Solution: Updating the printer driver resolved the issue.

https://technet.microsoft.com/en-us/library/aa569624.aspx
https://technet.microsoft.com/en-us/library/aa569624.aspx

Performance Tuning

[224]

Issue 5
The business users are experiencing performance issues when creating the PO
invoices. The PO invoice form takes several minutes to open. The same behavior is
observed in other environments with the same dataset.

Investigation: Since this is limited to one specific process, we used the trace parser
tool to generate a trace for the invoice posting processes with specific datasets. It was
observed that there are hundreds of receipts for each purchase order, and the system
typically matches all the receipts against a new invoice. However, as per the business
process, the customer usually gets an invoice only for a few receipts. The invoicing
clerk was facing double issues: first, he was waiting for minutes to open the invoice
form, and then he had to deselect all the receipts and then select an individual one.

Root cause: Code and business logic inappropriate as per the business process.

Solution: We created a new button on the purchase order to open the invoice
form without matching any receipt. This enabled the opening of the invoice form
within fractions of a second. Additional index was added for improving the query
performance during the posting process.

Issue 6
Nightly jobs for generating the file output for the e-commerce solution (custom
process) is taking several hours to finish when the data set is large.

Investigation:

• Check the memory and CPU utilization on the batch server
• Check the blocking processes when the batch process is running
• Check if there are enough batch threads available for all the batch tasks
• Check if we can we utilize the regular AOS during the night for extra threads

Root cause: We found that the process used multiple nested while loops to look for
different information, such as product, product dimension, trade agreement, and
inventory on-hand, and then combined them in staging to generate the final file. The
issue was too many database calls.

Solution: A development resource was assigned for investigation and performance
tuning at the code level. The nested while loops were replaced with joins and
set-based operations. The updated code was tested with a large set of data. The
performance improved from 6-7 hours to under 30 minutes.

Chapter 10

[225]

Issue 7
Users are getting kicked out (AOS is restarting).

Investigation:

• Check if this is being caused by a specific user's action. (Every time the
user tries to confirm the order, it causes the custom code to go into an
infinite loop. The system reaches 100 percent memory utilization and the
AOS restarts)

• Check the AOS server event log
• Utilize the windows AOS server memory dump if the crash happens

frequently
• Check if your AOS has the latest binary updates

Root cause: After analysis, it was found that the installed AOS sever did not have the
latest binary updates.

Solution: Installing the latest kernel version on the AOS server resolved the issue.

Issue 8
System is slow at 6 p.m. everyday.

Investigation:

• Check the scheduled backups or maintenance activities running at this time
• Check the CPU and memory utilization on the AOS and database servers
• Check blocking at the database server
• Check if you have any Dynamics AX batch processes running at 6 p.m.
• Check an anti-virus scan is running on the servers
• Check for any network issues caused by massive data transfer (unrelated to

Dynamics AX)

Root cause: An antivirus scan was scheduled to run every day at 6 p.m. causing high
utilization of the memory and the CPU.

Solution: The antivirus schedule was moved to a later time, after the business hours.

Performance Tuning

[226]

Summary
We are getting very close to go-live and making sure that we have all the ground
covered before we turn the switch on. In this chapter, we learned about performance
tuning. We started the chapter with performance testing, understanding the
importance of performance testing and tuning exercises in an implementation
project. We went through the preparation, execution, and outcome of a performance
testing and tuning exercise. Then, we looked at the various tools available for
performance monitoring, testing, and troubleshooting the performance issues. To
appropriately investigate and solve performance issues, you need to know about
the causes. We analyzed the various factors which can cause performance issues in
Dynamics AX and reviewed the guidelines and recommendations to avoid them. In
the end, we talked about approaching the performance issues by understanding the
issue in detail, creating a plan, and taking corrective action. We also talked about
some real-life examples of performance issues and the approach taken to investigate
and identify the root cause.

In the next chapter, we will talk about conducting system and user acceptance
testing, as well as preparing the users for the new system through training and the
change management process.

[227]

Testing and Training
Quality, budget (schedule and resources), and scope are the fundamental constraints
on every ERP project. Most of the time, when the scope is increased and the budget
stays constant, the quality gets compromised. One of the biggest mistakes that
people end up making, especially on fixed-bid contracts, is that they reduce the
testing budget when there is budget pressure.

I have heard this several times and would like to call it out. In many post-release
postmortem meetings, I would hear, ''If I was to do this again, I would spend a
hundred thousand dollars more on testing.'' You have the opportunity to do it right
and not having to regret it later. Let's review the different phases of testing and their
importance/execution:

• Test plan
• Unit testing and feature testing
• System integration testing
• User acceptance testing
• End-to-end testing

Similar to testing, training is another key aspect for the successful implementation
of an ERP system. Ensuring that the users are comfortable with the new platform
and understand the new business processes and their new role in the organization
is essential for attaining a good working platform. For example, usually, the
finance department is involved in journal entries for re-classing entry errors and
playing a tactical role within the organization. In their new world, after the project
implementation, they will be managing exceptions and reviewing key KPIs/trends.
Training needs to be delivered to support this cultural shift.

Testing and Training

[228]

The process of unlearning the old practices and learning new ways of doing things
may take several iterations. Hence, training and an evaluation of adopting of that
training are very essential. We will discuss the following important aspects of
training in this chapter:

• Putting together a training plan
• Training preparation
• Change management
• Training tools

While discussing this topic on testing and training, our focus will NOT be on generic
areas; we will talk about them at a higher level and focus on the Dynamics AX
specific elements.

In this chapter we will learn the following:

• Key considerations for testing a Dynamics AX solution
• Training plan and execution

Testing
Testing is the process of validating the system and processes to meet the business
requirements. It includes testing the custom as well as the standard features, along
with the migrated data, integrations, reports, and security aspects of the solution. It
is an area that is most often underestimated and, as a result, hampers the success of
your project.

A very common misconception is that testing starts after the development phase
is over. The primary goal of testing is to provide feedback on the product as soon
as possible. Identifying any issues in the requirements phase prevents them from
becoming a part of the design. Similarly, identifying any issues in the design phase
prevents them from being coded. The cost of fixing a defect depends on the phase
where it has been detected; the cost of fixing a defect in the early phases of SDLC
(Software Development Life Cycle) is much lower than in the later phases. The
farther you go with the backlog of testing/validation, the more debt you carry on
the project. Mostly, such a debt gets unmanageable and it becomes hard to predict/
commit to the schedule. Remember, you are not the government to carry high
debts—the more you add to it or the longer you carry it, the worse it gets.

Chapter 11

[229]

SCHEMATIC OF TESTING FOR ENTERPRISE PROJECTS

Performance
Testing
4.6.1

User Acceptance
Testing
4.6.2

Integration
Testing
3.6.4

Process Testing
3.6.3

Data Acceptance
Testing
3.6.5

Function Testing
3.6.2.2

Testing of Custom Code Development

Solution
Gap

Unit Testing
3.6.2.1

Solution
Fit

Sub-Process
Testing
3.6.1

Feature Testing
2.6.1

Testing of Std and ISV Solutions Configuration

The test planning
The following are some guidelines to keep in mind when planning for the
testing phase:

• During the planning phase, create a test plan to define the scope, resources,
and tools to be used for the testing, and to identify how bugs will be tracked.
Establish the criteria for defining S1/S2, P1/P2 bugs depending on the
business criticality (severity and priorities).

• Dedicate QA resources for each area in the similar way we do for the
functional analysts and developers. You need them to start on the project
right from the beginning to understand the requirements and the design that
is being put in place. Good QA resources will have very valuable inputs in
the design phase, and they can watch out for design gaps.

• Identify the external resources that need to be engaged during testing. For
example, testing with banks for checks/electronic payments, positive pay
files, EDI trading partners (customers/vendors, and any other parties to
whom you send/receive data like D&B (credit), third-party invoice printing,
and so on. Start engaging them as early as possible, and align their schedule
into the project plan.

• Plan for performance and load testing in addition to functional testing.
performance and load testing is addressed in detail in Chapter 10,
Performance Tuning.

Testing and Training

[230]

• The automation of testing is used in very large Dynamics AX deployments
that can afford to invest in the automation of testing scripts, and where you
need to verify the generic processes repeatedly during the development
and stabilization phases. Many such customers end up investing in test
automation after going live and once they have stable processes defined to
reduce the rework in test automation.

Test scenarios and test case development
Building test scenarios and cases are important for executing a good test plan. The
following tips will help you in developing effective testing scenarios:

• Prepare test scenarios and test cases while the development is in
progress. Review test cases with the business analysts and the business
SMEs, as applicable.

• Align test scenarios to the business scenarios that are put together by the
business team.

• The goal should to be identify and document each scenario in detail in the form
of test cases rather than staying at a very high level. If you don't document the
test cases, there is a high chance of missing them during execution. If you were
to hire an army of temp staff to perform the testing, they would need enough
details to execute all the test cases based on the documentation.

• Every test case must have the following sections:
Test-case ID
Test scenario
Title
Prerequisites
Role(s)
Steps
Expected result

• Maintain a traceability matrix with the number of requirements, function
specifications, technical specifications, test scenarios, and test-case ID.

• Identify the test data to be used and the specific deviations in data to
maximize the coverage of your testing. Say, for example, if a company has
four product lines and all are sold differently, you will need to have scenarios
that address each product line.

Chapter 11

[231]

Unit testing
Unit testing is the standalone testing of customizations, usually performed by the
developers to ensure that an individual customization is working as expected.
Although in software engineering terms, unit testing typically refers to automated
testing, the developers can run and execute manual tests to ensure the completeness
of the feature.

It is important for developers to perform unit testing to ensure that the feature
developed is working correctly. Most of the time, it is seen that the development
environment does not have the right data set, and this is often used as an excuse for
not testing the feature in the development environment. Plan on having appropriate
configuration and transaction data in the development environment to encourage
early unit testing.

Unit testing provides many benefits that include finding bugs earlier, providing a
safety net of tests for changes that are made later, and improving design. Over the
long term, unit testing improves customer satisfaction and developer productivity.

Function testing
Function testing, also known as feature testing, is standalone testing performed
during development by the QA resources or business analysts. As each feature is
gets developed, engage the QA resources and business analysts to use test cases for
testing it. Engage the business team members to review individual features that will
help reduce surprises during the UAT phase.

Performing feature testing in the development phase will validate that the
requirements are being met by that functionality. Testing at the features level enables a
fast turnaround on defects, which improves the efficiency of the development process.

Start testing the security roles at this stage. Ensure that the roles defined can use
the intended functionality. You can use the Security Development Tool for security
role testing without using any additional test accounts. It allows you to test a
newly created or modified security role, duty, or privilege from the development
workspace using the security permissions associated with that security artifact. The
security development tool can be downloaded from the Lifecycle Services portal.

Testing and Training

[232]

System integration testing
Testing the integrations with other systems that have been developed is just as
important as the features and functional testing of the product itself. The following are
some points to think about when planning and executing system integration testing:

• System integration testing is performed across applications to verify the
seamless flow of information. By this time, all individual features should
have been tested by the QA and business analyst resources.

• You will uncover integration issues across the streams, like data migration
and reporting, or across applications during this phase.

• The go-live plan should be used to migrate and verify the data in the system
integration test environment.

• All individual applications must be tested independently and made ready for
integration testing. You will need integrated environment across applications
to perform this testing.

• Carry out a QA team exercise for going through the UAT test cases
(including user roles) to validate readiness and a smoother UAT phase.

User acceptance testing
The goal of User Acceptance Testing (UAT) is to engage the users across business
groups who will be using the new system to run the business. This is an opportunity to
provide them with hands-on experience for learning the new system as well. The more
testing that the users perform, the more comfortable they will be using the new system.

The UAT planning
There is quite a bit of planning required to perform a successful UAT. Just throwing
the business users into a room with computers and test scripts is not going to get you
the results of an effective UAT. The following details should be considered when
planning for UAT:

• Plan multiple rounds of testing, scheduled a few weeks apart to fix issues.
It is not uncommon to find a few pieces missing once the business starts
looking at the solution. The goal should be to fix everything in between both
the cycles so that the business does not experience the same issues or the test
cases are not blocked due to those issues.

• Prepare a list of all the batch jobs, their frequency, business/IT owners,
dependencies, the path in Dynamics AX, batch group, and so on. This needs
to be well documented. All the batch jobs should be scheduled, results
validated, and errors/execution should to be monitored.

Chapter 11

[233]

• Engage the DBAs and the IT operations team to monitor UAT environment,
like they do in production. Similar to the business getting ready to use their
new system, DBAs and IT support teams need to get familiar with their new
toy for troubleshooting.

• Set up and verify the security roles assignment, access to the UAT
environment, and reports for all the users. Do not use the system
administrator roles for testing during UAT.

• You need to have the full data migration completed in the UAT environment.
Reconcile the migrated data as a first step in UAT, before you start making
changes in the environment. The Go Live plan should be in place and be used
for UAT data migration. Refer to Chapter 5, Data Migration— Scoping through
Delivery for additional tricks on data migration testing.

• Fix the test cases and their sequencing to ensure the correct flow. For
example, you start with the data migration validation and then move on
to customer/product creation, to order processing, shipping, invoicing,
processing returns, commission reports, financial postings and financial
statements, tax reporting, inventory value reports, and so on.

• You need to have the environments locked down to a few folks from IT (only
the operations team responsible for deployments and the business analysts
directly supporting the business users during testing). No changes should be
promoted without going through a change control/formal release process.

• The people who run the business should be engaged to verify the system;
the team should have cross-functional knowledge and knowledge case
scenarios. For example, your top performing, most brilliant sales talent pool
needs to be involved in testing the order entry system. They will know all the
different scenarios and gotchas from the current system, and they can help
you break the system.

 ° Avoid relying on the temporary staff for testing; you need FTEs to
review your new world. Engage the temporary staff in backfilling the
FTE jobs to run the day-to-day business tasks, not in reviewing the
future of the company.

 ° Encourage the business to bring in as many real examples as possible.
For example, the AP can bring in a day's worth of a stack of invoices
for processing, running a check run on the migrated Open AP and
newly created AP invoices to review the results and real customer
orders for order entry. This will help verify credit limits, customers/
products, on-hand inventory migration, and the related scenarios.

Testing and Training

[234]

• The key messages that should be put across during the UAT kickoff are
as follows:

 ° Finding bugs is the goal of performing UAT. If you find them in
UAT, that's a great thing. Don't get frustrated because you've find
issues and thus, get stuck in testing.

 ° Focus on first verifying all the critical business scenarios before
getting into exception scenarios that won't happen frequently.
Follow the 80-20 rule to define focus. This is also a good time to
remind everybody about the goals for the project.

 ° Review the reports from previous testing and communicate any
open areas.

 ° Communicate the schedule for testing and re-testing.
 ° Cover the tools/process to be used for logging bugs, triage, and

communication after fixing the bugs.
 ° Set the sign off and exit criteria (communicate upfront that they need

to sign off at the end of it).

• Provide templates for logging the bugs (capture screenshots, provide a
reference to the test case, the step that failed, description of the issue being
reported, any input file used for uploads, business impact, and so on for
every issue that is being submitted by the users). Users need to be educated
on bug-tracking tools and the overall triage process. The more information
you have, the less time will be required for the development team to analyze
and fix the issues.

UAT execution and experiences
During the execution of UAT, consider the following points:

• Track the testing progress along with the test cases that passed/failed. Publish
reports on progress, bugs reported, and resolved bugs (for re-testing).

• Actively manage blocking issues. You need to stay on top of the issues
that are blocking testing of certain areas; try to be creative in finding
workarounds to continue testing.

• Issue a triage and managing issue list. Have multiple reviews with the team
every day for issue statuses and resolutions. Set daily meetings with the
business leaders to discuss issues and provide updates on the progress made.
You need to hear their firsthand feedback on the issues being experienced.

Chapter 11

[235]

• Ensure that the formal release process is defined and validations are
performed to verify that the release has not broken the environment. This
will ensure that precious testing time is not lost due to the broken UAT
environment, which is especially important when you have multiple
applications integrated with Dynamics AX.

• Track dependencies between test cases. You may have a dependency
between the test cases that will need coordination among the different
business groups for testing. For example, when a sales order is created, you
need to verify with the warehouse to ship it, and then the AR can see the
invoice and collect against it.

• On larger projects with a multi-location roll out, it is a good idea to execute
testing at a central location. However, you should also perform some testing
locally. For example, we had the warehouse and all other users gathered
inside the HQ for testing for one of our clients. They tested the shipping
labels and the product labels, and it was all okay at the HQ. However, when
testing was done in the warehouse, it was terribly slow. As the print was sent
from the terminal server at the HQ to a network printer in the warehouse,
the network latency was making the process very slow. Upon making some
tweaks with the help of the network team and some code changes, we were
able to get it working in the warehouse as well.

• Poor analysis and design for complex areas will get exposed in UAT and
cause a lot of rework/continuous break-fix. Identify such critical areas and
put in dedicated resources to get extra focus on such critical path items. In
one of my large Dynamics AX implementations, a focus team was defined
for testing and fixing the revenue recognition and deferral scenarios. It was
one the most complex parts of the project, and was dependent on many
other processes like correct product and customer setup, order entry with
different combinations of products and the way billing frequency was chosen
by the customer, order entry and CRM integrations, invoice distribution and
rounding of totals, and so on. Every time one scenario was fixed, another
was broken in deferrals; issues in the upstream processes like order entry
impacted the testing of deferrals functionality. The focus group helped track
this subproject with additional visibility and helped fix issues faster.

• If complex features and processes that are dependent on several other
upstream features are not tested until the later part of UAT, it leaves you
with very little time to test the complex areas. Creating focus groups early on,
or having an additional round of testing focused on such features, can help
reduce the exposure.

Testing and Training

[236]

• Testing with the system admin role in UAT will force you to go live with a
large number of users in a system admin role. This will cause issues post go-
live and call for testing rework once you have the roles defined. One customer
insisted on continuing testing with the system admin role and went live with
many system admins. Someone accidently (I am sure it was unknowingly)
unchecked two check boxes in Production (Post Physical inventory to GL and
the Post Financial inventory GL on Inventory Model group). No inventory
transactions were posted to the GL for two weeks until the issue was
identified by the finance team. It was a project by itself to retroactively come
up with GL entries, posting of accrual entries for several months until all the
POs were invoiced, and so on. Would you like to be in a similar situation?

The UAT outcome
A successful UAT is one where the business can show that they are comfortable with
the application features, and thorough testing has been done with good involvement
of the business users across areas. The key deliverable of UAT is the business sign off
on the User Acceptance Testing (UAT) and test results. There may be cases where
items do fail, but the team agrees to a conditional sign off. Track any bugs that are
critical for going live as a part of this conditional sign off. Most importantly, all areas
should have been tested by now. There is a difference between knowing the open
issues and being unable to test specific areas due to open issues.

End-to-end testing
In addition to UAT, you need another round of testing to verify the end-to-end
execution of a business process. The key difference between UAT and end-to-end
testing is that UAT is more focused on validating individual business processes,
while end-to-end is focused on validating all of them together once each of them
have been stabilized and tested.

End-to-end test planning
You need to have the testing of individual features completed and all the areas to
be stable to truly start end-to-end testing. In reality, sometimes you end up making
some exceptions, but this is not ideal.

Pick a selected core group for end-to-end testing. Everyone involved needs to know
the end-to-end business flow. Usually, the finance team has a bigger role to play here
as they have a visibility into all the parts of the organization.

Plan for at least two rounds of end-to-end testing with some time in between to
fix the bugs.

Chapter 11

[237]

Define the exit and success criteria prior to getting into end-to-end testing (such as
100 percent test execution, more than 95 percent pass rate, no more than five critical
bugs open, and so on).

Execution and real-life examples
Similar to UAT, you need to publish reports on the test results and follow a triage
process. Areas that are blocked during testing need to be unblocked and tested again.
Assess whether you have met the exit criteria and review with the executives.

The following are few examples of areas that you should focus on during
end-to-end testing:

• The goal of end-to-end testing is to simulate real business. Right from data
migration to new product and customer creation, using this data for placing
orders, fulfillment, invoicing, receiving cash, reverse logistics, transactions
using migrated data, verify reporting, and so on. Come up with all the key
business scenarios that should be tested:

 ° Customer invoicing: The timing and accuracy of invoicing customers
is such a critical business function because it has a direct impact on
the customer and on the cash flow of the company. On the other
hand, invoicing is a downstream function—you have a dependency
on products, customers, tax, fulfillment processes, and so on—which
must work correctly before you can produce the invoices.

 ° Commission reporting: As commission reporting has an impact on
the paychecks of the sales floor, you need to verify the accuracy of
the commission reports with migrated orders and invoices. It should
be a top priority, as you want the sales team to trust the system and
focus on selling rather than tracking their orders on spreadsheets
for an expected commission or worrying whether they'll be paid.
Commission reporting could be even trickier for orders shipped in
the previous system, and you might have to pay a commission upon
receiving customer payments.

 ° Inventory costing and valuation: Each customer has a different
way of using weighted average, FIFO, and other inventory costing
methods. It impacts the P&L, their bottom line, how executives
are compensated, the inventory value on the balance sheet, and so
on. Efforts need to be put in during UAT and end-to-end testing to
validate that inventory costing is done according to the needs of the
company and understood by the financial controllers and the rest of
the stakeholders.

Testing and Training

[238]

 ° General ledger postings: You need to verify the posting for each type
of transaction, and run month-end reconciliation reports (to verify
that the general ledger and sub ledger are in balance).

 ° Key reports: Identify the key reports that are important to run the
business, and validate the data based on the transactions that were
processed in end-to-end testing.

• Engage domain experts during end-to-end testing like tax auditors for tax
integration testing. They will be able to put together a great test plan and
execute through unique scenarios to ensure that you have configured the
system correctly. I have seen great examples of bugs that the tax auditors
discovered (I don't think the internal team may have found them even after
a few weeks of release).

Training
Training drives the successful adoption of the new system and processes. The
learning capacity of the audience and the amount of changes being introduced to
them dictate the amount of time you need to spend on training and re-training. The
more people you have up to speed on the new processes and system, smaller the
chances of them making mistakes, and the volume of support calls will be highly
reduced. Ultimately, this results in a smoother adoption of the new system.

The ERP project is an opportunity for organizations to get people up to speed on
end-to-end processes and training them on cross functional areas. If you have a great
system designed but people are not able to use it, can you call it a success?

A training plan
Put together a training plan that covers the following points:

• Understanding the audience: How quickly are your users likely to catch
up with the changes? The training plan needs to be defined accordingly to
support their transition.

• Trainers: Consultants train the trainer - the business super users or internal
business analysts. Hopefully, multiple rounds of CRP will help the business
users and internal business analysts get up to speed on the system in order to
be trainers.

• Scope of training / areas to be trained: You need to account for both the
system and the process changes. There are three usual cycles of the training
process—UAT training, end user training, and post go-live (training for areas
that are struggling).

Chapter 11

[239]

• Logistics: This includes factors like meeting rooms/travel, centralized versus
location-specific, and so on.

• Training schedule and timing: Timing is key. In some areas, you may need
to train the users multiple times to ensure that they are comfortable. On the
other hand, areas that have not changed much may need light training, close
to going live, to ensure that the users don't forget.

• Training assessment: This pertains to the ways and methods that you will
use to get a feedback on the training process.

• Retraining: Build retraining into the plan, and modify it based on
the feedback.

• Training material and user manuals: Reviewed this with the business SMEs.
It may come in different forms. For example, checklists, Visio for business
processes, documents with screen shots, recorded videos, mapping between
the old versus new world, and/or a combination of multiple methods. The
development of the training materials should be agreed to at the beginning of
the project, in the planning phase, so that the appropriate time and resources
needed are built into the plan.

• Signing off: Define the sign off process and the criteria for training sign off.
It is one of the major considerations for go-live.

The change management
The usual human psychology is to resist change. In the earlier chapters, we talked
about minimizing the process changes along with the major releases to focus on
the system side of implementation. You will still be left with a good amount of
change management due to the new system. Change management may shift jobs or
workload from one department to another. The project managers of an ERP project
often end up utilizing a lot of political power to fight such battles for getting the right
decisions made. Even though you may have won the battle for driving the change,
you may have lost a few partners that you needed to champion the project. Hence,
leaving the major business process changes for the transformation phase of the
project (post go-live) can be wiser and a better way to manage the scope.

Training is a good opportunity to help prepare people for the change. The more
training you provide, the higher the confidence that the users will have in embracing
the change, and you will receive less pushback.

Testing and Training

[240]

Training preparation
A lot of preparation goes into executing a smooth and effective training. This
preparation includes validating system readiness, verifying the roles, putting
together multiple forms of training materials, creating and maintaining a stable
training environment with valid data, and so on. We will discuss these aspects
in the next section.

System and business readiness
Ensure that the system is ready and stable enough (testing complete) prior to
training a larger audience. You also need to gauge the business readiness for training
and help them prepare. The following are some tips to do so:

• If a smaller group is being trained prior to UAT, the expectation may be
different, as the system has not been tested as yet, and you may want to
communicate the known open issues. However, when training larger groups,
try to do it post UAT when the system is stable enough and the processes
have been finalized.

• Create a forum for the users to participate in and get more hands on experience
from training through go-live. Arrange Lunch n Learn or other such team
activities that will encourage more practice. From my experience, business
leaders that encourage their teams for extra practice after training, and take the
initiative to drive it, will have a lot less issues to deal with post release.

• Have a process to capture and respond to bugs/queries that are raised in
the training. Most likely, you will find some critical items that were not
known before.

Security roles
Let every user be configured with their to be production security role. Avoid the use
of the system admin role during training. Of course, roles should have been tested
prior to doing this.

Business process flows
Use the business process flows at the beginning of every session. Give a ten-thousand
feet high walkthrough of the overall business process and of the piece that you plan to
show before getting into application and details.

Chapter 11

[241]

Engage the Business SMEs or internal business analysts to do the training or to assist
in the delivery of the training:

• To train others, you need to get up to speed first; the person that learns the
most is the trainer. The trainer approach will ensure that the business SMEs
or internal business analysts have got up to speed well enough. It will reduce
the dependency on the consulting team post go-live, and internal resources
can be your tier 1 support.

• The internal SMEs can reference the current process/systems during training
and will help in delivering the training.

• Once I had the controller of an organization deliver AP training; he was
able to speak their language and relate to the screens of the existing system.
It helped the users in mapping their old versus new world easily, and the
training was very well received.

Training manuals and user guides
Training manuals and user guides are good references for the users to look at
post training. An ideal team for developing the training manuals should include
business super users, technical writers, and business analysts. Distribute them in
a medium that the users are comfortable with—putting check lists at desks, posters
in the building, or binders or electronic formats on shared drives are the commonly
used methods.

In each cycle of training, use the training manuals, and make corrections based on
the feedback. The training manuals will stay as living documents and can help on
board the new employees, process documentation.

There are a few very powerful tools available to build training manuals for Dynamics
AX, which are described in the following section:

The Task Recorder
Users can use the Task Recorder in Dynamics AX to quickly document a business
process or task for training or other purposes. You can use the Task recorder to
create videos or documents in Microsoft Word, Microsoft PowerPoint, and Microsoft
Visio. If you are using the Task Recorder in advanced mode, you can also capture
additional metadata that can be packaged and then uploaded to the business process
modeler in Microsoft Dynamics Lifecycle Services. The file that you upload includes
cross-functional flowcharts and activities that you can modify to identify the
business requirements and generate implementation artifacts.

Testing and Training

[242]

Be sure to have a script to follow for the process that you plan to document, so that
you can avoid unnecessary clicks while the recording is on. Once you are done with
the recording, generate a word document and clean up the extra steps that you do
not want in the document.

The business process modeler
In Lifecycle Services, you can use the business process modeler to create, view,
and modify the business-process libraries and flowcharts for Microsoft Dynamics
AX. Business process modeler helps you align your Dynamics AX processes with
industry-standard processes, as described by American Productivity and Quality
Center (APQC). There are more than a thousand business processes that are
available, and you can tweak them as per your needs. As referenced in the earlier
chapters, business process modeler can be used right from the Gap/Fit analysis
phase of the project to track all customizations. You can convert the process flows
in Microsoft Word or Visio for use in training.

The Help system
The Microsoft Dynamics AX Help enables you to add new documentation, update
existing documentation, and add entries to the table of contents. To customize the
documentation, you add one or more files to the Help server.

You can press F1 to get the help from any form. Microsoft ships the product with
the help documentation and the content can be added or modified according to
your requirements.

Personalization
This is a good feature in Dynamics AX. Users can personalize their screens such as
add/hide fields. However, while training the users, you need to remind them about
the side-effects of personalization which are as follows:

• If you are on a support call with the helpdesk team, they may not be seeing
the same information as you are seeing on your screen.

• It may vanish with the system updates or during troubleshooting. One of
the first troubleshooting steps from Microsoft is to delete the personalization
if the user is facing issues. Advise the users to document the screens that
were personalized or save their personalization, so those can be added back
quickly when lost.

Chapter 11

[243]

The training environment
Having a stable training environment is important for successful training. A lot
of time will be wasted in training if the training environment is not in a good
working order. Look at the following tips to keep in mind when managing your
training environment:

• You need to treat it like production; many people will be using it at the same
time and you want it to be stable while the training is going on or when the
users are practicing after training.

• Keep it updated with the latest code and data. Have a communication plan
for any downtimes for deployments to ensure that the users are aware.

• Have it available for the users to practice after training.
• It should share an integrated environment with the other applications. For

example, if you plan to use Dynamics CRM in Production for order entry
and integrate it with Dynamics AX for fulfillment, ensure that you have
the training instance of the CRM connected to the Dynamics AX training
environment. This will ensure an end-to-end training experience for the users.

Example of issues from poor training
One of my customers on-boarded the temporary staff just before
the go-live to help with the returns processing. They knew that
the returns volume was going to be high for the first two weeks,
as the returns were put on hold for a couple of weeks prior to
go-live (to avoid any in-process returns that would have to be
migrated). Also, the returns team had to go through two different
systems for a period of time to verify the original purchase in the
old system and enter the RMA in Dynamics AX. Due to lack of
training, the temporary staff made a lot of mistakes. One of them
input the per unit return cost instead of putting the extended
amount on the RMA. This impacted the inventory cost, their
pricing (was dependent on inventory cost), commissions, and
so on for every product that had issues in RMA processing.
The overall system-wide impact was negative, including
commissions/paychecks for a lot of sales reps.

Testing and Training

[244]

Summary
In this chapter, we reviewed test planning, types of testing, resources, and goals
at each stage. We discussed the ways to make UAT and end-to-end testing most
effective by uncovering issues prior to going live. We also discussed the training
plan, preparation for an effective delivery of training, and the tools that can be used
for change management and training.

[245]

Go-live Planning
Go-live planning is not like wedding planning, it is like planning a marriage.
It is not just planning for a big day; it involves planning the events prior to the
go-live phase and afterwards too. A huge amount of effort has been put into the
project—teams have been working extremely hard designing, developing, and testing,
and a lot of communication and dollars have been put into planning the release. A
well-documented go-live plan can help ensure a smooth execution of the release and
make the most of all that hard work and, of course, the dollars invested in the project.

As part of the release, you may be performing hundreds of tasks, so it is important to
track their progress, dependencies, and corrective actions. Go-live planning involves
the following:

• Putting together all the steps in the plan
• Defining the sequence and dependencies between the steps
• Determining the time needed for each step
• Defining the owners, and ensuring that all concerned parties have a clear

understanding of what is required

Multiple reviews with the IT and business teams can ensure that you have identified
every task that needs to be performed as part of the cutover, and that everyone
involved understands the big picture of all the tasks involved in the release and not
just their piece. Using such a plan for UAT, end-to-end testing, and pilot releases can
help you identify any gaps in the plan as you practice the overall release execution
process. This includes the communication required across groups such as turning off
certain integrations of the legacy system, the setup of a new system, data migration,
data validation, release testing, or a roll back process. All the steps need to be
documented in the go-live plan.

Go-live Planning

[246]

In this chapter, we will cover the following topics:

• Key considerations prior to going live
• Putting together the go-live plan
• Execution of the plan
• References to a few real examples

Key considerations prior to going live
ERP implementation is like a heart surgery for the organization. A readiness check
needs to be done carefully, prior to going live.

There is always a tremendous amount of pressure to make the go-live date,
oftentimes somebody's job(s) is on the line, and so on. However, the readiness of the
organization for the new system needs to be evaluated carefully prior to flipping the
on switch. The following table enlists a few important considerations and criteria to
evaluate if you are ready for going live:

Area Description Sign off criteria
Training sign
off

• The business teams should be
comfortable with the training that
they've received and have access
to the training documents.

• People play a key role in your ERP
success, and the end users, across
all areas, need to be comfortable
with using a new system and the
business process changes.

• All business leaders
should have signed
off on the training for
their teams.

• The IT operations
team should've
signed off for their
training.

User
Acceptance
Testing (UAT)
sign off

• As mentioned in the chapter,
business should have verified the
business scenarios, and testing
should be completed using real
life business scenarios.

• Testing of all items needed
to run the business including
functionality, integrations,
reporting, data migration, and so
on should be completed.

• All the business
leaders should have
signed off on the
testing for their areas.

• Document the open
issues and their
due dates. Review
any critical issues
that may be open
and their impact/
workarounds.

Chapter 12

[247]

Area Description Sign off criteria
Go-live plan • This is a step-by-step, hour-by-

hour plan that is reviewed with all
the IT/business teams involved in
the release, including the roll back
plan and an overall timing to fit
within the downtime window.

• Release the validation scenarios
and processes defined by the
business/IT.

• The plan that has
been used in the
previous iterations
of the simulation of
releases (including
UAT and data
validations).

• It should've been
signed off by the
business and IT
stakeholders.

Support plan • The support plan includes the
support resources per area,
their location and schedule, the
issue communication process,
(templates for providing issue
description, screen shots, business
impact, severity, and so on;
information and tools for tracking
or logging issues), Triage, and
loop back with the business teams.

• You need to ensure that there is
an adequate budget approved for
support (prior to going live). You
don't want to be in a situation
where you have to discuss dollars
with the customer/business
leaders while the business is
impacted due to system issues.
Also, you need to have a budget
to not lose the resources that
would be required for fixing
the issues.

• Review the support
plan with all the
stakeholders and
users to ensure
that the process for
logging issues and
communication is
clear.

• Set up business,
IT war rooms at
different locations;
the handing over
process between
support teams can
help with better
communication.

Go-live Planning

[248]

Area Description Sign off criteria
Operations
team readiness

• The IT operations team needs to
have enough knowledge to own
support for the new system.

• Basic items like DB backup
processes and high availability/
DR testing need to be in place
by this time. The team should be
comfortable in the monitoring
of services/processes, like
batch jobs and failure alerts from
AOS servers.

• The production support team
needs to be up to speed in code-
push procedures and additional
steps like data change requests,
configuration changes, and so on.

• Security reviews and sign off (PCI
compliance, SOX compliance
reviews as applicable) must be
completed.

• The infrastructure setup should
be based on the Infrastructure
architecture and reviewed.

• Monitoring tools (dynamics perf,
trace parser, and so on) must
be deployed and ready for use
when needed.

• Sign off from the IT
operations team.

External
sign offs and
communication

• The external sign offs as
applicable for the business. For
example, sign off from the bank
for check/electronic payments
testing, EDI customers, vendors
testing, and auditors.

• Sign offs from the
respective parties.

Any exceptions need to be documented and presented to the business team and the
management for making decisions. Discounting any of these areas could result in an
unquiet environment post go-live and negatively impact the business.

Chapter 12

[249]

The decision to go live
The decision to go live is very dependent on the quality of end-to-end testing
and user/organizational readiness, as mentioned earlier. The following are some
experiences that I would like share in this area:

• Once, I was in room full of executives, making the decision about pulling the
trigger on a new system. Everyone was under pressure from the CEO to say,
''We are ready''. However, most of them were not ready. They did not have
enough time to go through the testing due to a lack of staff, but everyone
said, ''yes''. (There was a fear of getting fired; this was way back in 2009 when
the economy wasn't doing well). I failed to push back as well. Any guess as
to what happened next? The customer went live, and it was very painful to
stabilize them. But, lesson learnt!

• A similar situation occurred again, a couple of years later. Of course, I was
smarter this time. The CIO called for a meeting to check the readiness on the
project. Everyone said they were ready (the CIO was driving the dates very
hard, and again there a was fear of getting fired). It was my turn—I bravely
stood up and said, "No", handing over a list of areas I wasn't comfortable
with and which needed more testing. The CIO called for another meeting to
understand better what was needed to finish those areas and decided not to
go live. We ended up extending the schedule by six weeks based on what
was on the list. The CIO thanked me (and still continues to) for standing
up and challenging the decision to go live based on the bugs that were
reported/fixed in those six weeks.

• On another project, I was involved in the executive reviewer capacity, where
I challenged their readiness, but the CEO did not want to listen. I told them
it was their call, and we would support the release if they signed a liability
waiver, as my team was not comfortable (due to lack of testing from the
business team) with them going live. When we gave them a piece of paper
to sign, the CEO chose to reconsider his decision. The customer ended up
delaying the release by four weeks. The CEO who was not very happy
when he received the push back, but now he feels thankful to my team for
"watching his back".

There are more instances like these that I can share. The point is that you need to
think about the client and the impact on their business. As a consultant, you are
their advocate, and you need to protect the customer from hurting themselves (even
though it's not what they wanted to hear, you are doing it in their best interest).
This is the time to utilize the relationships and the respect you have earned from the
customer to protect them. Don't be shy.

Go-live Planning

[250]

It is even trickier when you have to stand up for someone else's deliverables. For
example, say the customer owns certain deliverables internally, and those are not
production ready. You need to request the delay due to their internal deliverables,
as you don't want to project to fail due to specific areas.

Saying that you need more testing is easy. The tough part is to decide how much more
time you need. You won't get such an opportunity again. Thorough planning needs to
be done to identify all the pieces that are incomplete and to put together a plan to come
up with a realistic date. Many project managers fail in this exercise; just hitting the
snooze button and delaying this by a few weeks may cost you a job eventually.

Picking realistic dates that will work for the business is important. You don't want
to perform an ERP go-live right before or during the peak period for the business.
challenges from the go-live will have a severe impact on the business. There are
many examples of companies going out of business due to an ERP go-live during or
just before the busy holiday season.

Business contingency planning
Part of your go-live planning must address the business contingency planning.
Conduct a pre-mortem session to brainstorm areas that may go wrong, and to find
ways in which the team can reduce the likelihood or mitigate the business impact
if the issue occurs. Review the critical business functions that are important for the
organization, and develop contingency plans to run the business if you did not have
the computer systems in place momentarily. The goal of this exercise is to plan for
the unknowns that may come your way. The following are a few examples to help
with the brainstorming process:

• Third-party considerations: You have SLAs for next-day deliveries to the
customers; work with your shipping carriers, and have them stand by to
schedule a delayed pick up, in case you need it.

• Inventory levels: You have a great dependency on planning and the stock
levels; consider beefing up your inventory prior to go-live.

• Additional workforce considerations: Look at adding temporary staff or
approve overtime for areas that have changed the most or processes that
would need more hand holding. I quote one of my customers, "If I was to
make a mistake on spending here, I would rather make it by spending more
than less".

• Additional technology resources to support the go-live: You may have a lot
of things uncovered during go-live. It is like having an insurance policy: it's
good to have it but it's better if you do not have to use it.

Chapter 12

[251]

• Communication team: Have them stand by in case you need to communicate
with the outside parties (customers and vendors) or even internally. You may
not want to let the customers know ahead of time about the ERP release, as
they would consider it as an upcoming glitch and go somewhere else.

• Cash flows: It may take a little longer to get paid for a few weeks (or months)
after go-live due to system or training issues. You need to have an additional
line of credit available in case you need it.

• Key processes and proactive planning: Identify the key processes and their
first occurrence to provide some hand holding and validation. For example,
after processing the checks for the first time, ensure that you can validate
them against the checks that passed testing. The first time you are ready to
start invoicing, try a few orders first and verify the results before you open the
flood gates of batching hundreds of orders. In case of files that are supposed
to be sent out (like EDI or positive pay files for the bank), verify those that
were sent and accepted/processed faultlessly at the receiving end.

• Going back to the previous system after a few days or few hours into using
the new system: Once you move to new ERP system, it may not be possible to
go back to the previous system. It is not easy to perform a reverse migration
from new platform to legacy. Make sure everyone understands that once
you are live, there is no going back. Everybody is in it together and issues
need to be resolved on the new system. This helps in avoiding unproductive
discussion of going back to the previous system after going live.

• Running parallel: It seems like an easy solution for business contingency
planning. However, it may not be practical unless you are staffed high and
the transaction volume is not high.

 ° Running parallel usually adds more burden and stress on your staff
while they are trying to deal with new system. In general, it would
cause more issues/noise (as users would make more mistakes under
stress) than helping.

 ° If you had to go for running both the systems in parallel, the amount
of time to run parallel should be kept to a minimum.

 ° Very often, running parallel is looked at as a replacement for
inadequate testing; you think you are better off not doing testing in
production (and hoping everything would be fine).

 ° There is sometimes a belief that running parallel helps validate the
new processes against the old system processes. This is a fallacy, as
part of the point of implementing a new system is to improve the
processes that may fundamentally change the way you do business.
So it is like trying to compare apples to oranges.

Go-live Planning

[252]

• Release validation: As mentioned earlier, going back to the previous system
or running parallel is not easy. How can you verify that there are no critical
issues as part of the release itself? The following are are some ideas:

 ° Set aside a good amount of time in your release plan to allow for the
release validation.

 ° Once the business has signed off data migration in the production
environment, they can start the release validation testing. You don't
want to start creating new transactions until data validation is
complete, else the numbers won't tie.

 ° Identify the key end-to-end processes, and processes by functional
areas to be verified; keep the step-by-step validation scripts ready.

 ° It is ideal if you can hold certain transactions from the previous day.
For example, let the AP team enter real vendor invoices, perform a
check run based on what's due, orders that were received from the
customers during system downtime, incoming EDI transactions,
and so on. The goal is to have good samples and real transactions to
verify the system behavior.

 ° In one of my projects, performance was a concern. The customer
involved a good part of their sales team to validate the order entry
process after the initial validation was completed.

 ° This process enables you to identify any remaining bugs (due to
setup or code push issues) and resolve them or make a cautious
decision to go-live or rollback.

 ° Once you are live, there is no going back.

These are some ideas based on past experiences. You need to review these with
the business leaders and determine what is applicable to your business to make
appropriate arrangements.

Some technical tips
The following are some technical tips to keep in mind while planning for the go-live:

• Have tools like Dynamics Perf and Perf Monitor installed and configured in
the production environment ahead of time. You can use them when needed.

Chapter 12

[253]

• Set up an additional AOS server for troubleshooting. This is helpful when
you want to troubleshoot a specific process by a developer with the business
user. Provide an icon for connecting this AOS to the business user (an AXC
file would connect to this AOS). That way, the developer can take traces
and the like in an isolated fashion only for this user. You do not have to turn
tracing on for all other users, which would slow down the environment and
give you a lot of noise in the traces. This would reduce the effort needed
to reproduce the issue in the non-production environment and help find a
quicker resolution.

• It is not uncommon to see a high number of security requests come through
in the first few days after the go-live (for example, changing user roles,
giving them additional roles, setting up new users, allowing more access, and
so on); dedicate resources to handle such requests. Once the initial security
issues have been resolved, you may want to start looking at what you would
need to pass a system audit and ways in which you can start taking away the
privileges that may not be needed.

• Provide a heads up to the Microsoft Support team for large releases, more
importantly if you are an early adopter of a specific feature or release.
Try to get additional consulting support for the go-live. The onshore and
offshore models are very helpful to keep the ball rolling round the clock on
critical issues.

• Consider engaging the Microsoft Premier Support team to perform a
proactive health check prior to the release, and to be available on standby
during/and for a few days after release. This is especially important if you
have a high transaction-volume environment.

• Another checkpoint is to ensure that backups are being taken and indexed
and other SQL maintenance jobs are scheduled.

• Use the latest kernel version for AOS servers. Updating the latest Kernel
version does not need much effort for deployment and testing. However, it
would help you get to a more stable state.

• Check if there are any hotfixes that have been released recently and which
should be considered. You can check the hotfixes in the Lifecycle Services
portal or you can check if any cumulative update has been released recently.
Review the list of hotfixes that are critical. This is very important if you are
an early adopter of a new version/module.

Go-live Planning

[254]

• Refresh the data into the non-production environment for troubleshooting.
This would help troubleshoot and fix issues quickly. You need to do this
with caution though. Make sure that you have captured the steps (preferably
automated) needed for scrubbing the environment specific connections. I
have seen situations where these steps were missed during refresh and the
test environment charged real credit cards or printed real shipping labels,
connected to real instances of tax calculation software, and so on. The Test
Data Transfer tool can be a better solution for this instead of a data restore.
Using the Test Data Transfer tool, you can exclude specific tables containing
the system configuration data. Refer to Chapter 5, Data Migration – Scoping
through Delivery to learn more about the capabilities of the Test Data
Transfer tool.

Putting together the go-live plan
Having a detailed plan put together, which can be used for multiple simulations
prior to the go-live, is important. It gives you an opportunity to get the go-live plan
validated and address any bugs/issues due to missed steps in the release plan.
It also allows you to make changes to the plan, allows more time to review with
multiple groups and identify the missing elements, and helps educate the team about
dependencies and the big picture. The following are some guidelines for putting
together your go-live plan:

• A smaller number of manual steps and more automation is ideal to ensure
that you don't have too many steps to perform and track. As mentioned
in Chapter 5, Data Migration – Scoping through Delivery, the validation of
extraction, migration, and IT data should be automated as much as possible.

• Include a configuration checklist and any new configurations which need
to be completed in the production environment prior to the go-live. Adopt
automation or document in detail what needs to be done to complete the
required configuration.

• Minimize dependencies; if activities can be completed in the production
environment, mention that as a pre-release item. For example, if an
integration solution requires creation of a new database, and if it can be done
prior to the release, mention it as a pre-release item.

Chapter 12

[255]

• You may be implementing ISV solutions or integrations with third-party
systems, or integrating with an application managed by a different team in
the same organization. Coordinate with different teams to understand the
dependencies and activities needed to deploy or enable their solution. There
should be one single deployment plan for all the components which need to
be deployed as part of the release.

• Keep the overall deployment plan simple. Add additional attachments or
links for the detailed steps which need to be performed.

• Create a repository to collect the artifacts and documentation required
for completing individual tasks including release notes, validation plan
document, configuration checklist, code artifacts, and so on.

• Put together a visual summary of the detailed plan (as referenced in
Chapter 5, Data Migration – Scoping through Delivery). It helps in
communicating with the stakeholders.

• Every step, including logistics like booking hotel rooms and ordering pizza,
should be put on the plan with their owners.

• Ensure that you have not burnt your key resources with the release. Spread
out tasks in a way that allows for downtime for the key resources. The
real journey starts after putting the system into production, and you need
everyone to stay energized for those first few weeks of transition.

• Try to keep the plan simple and easy to follow for the team. I have used the
following table to put together a plan:

Column Description
Sr. No This is the task number
Dependency These are the task numbers that needs to be completed prior to starting.

Used to define the dependencies between tasks.

Go-live Planning

[256]

Column Description
Type • Pre-release: Identify all the tasks that can be completed prior

to getting into the system's downtime window for release. For
example, communication for the upcoming changes, installation
and preparation of the future production environments, and tasks
for tracking all the necessary sign offs.

• Release: Tasks to be completed during the system's downtime
window for release, such as taking the systems down, ensuring
all transactions are complete and your source for data migration
has the latest information, running extraction and migration tasks,
communication at specific intervals during the release, taking SQL
backups during the release, and identifying good checkpoints when
backups should be taken (in case you have to go back to previous
state). For example, before starting the posting of transactions, as
you can't un-post them easily if you found an issue.

• Validation: Tasks for validation, such as IT validation and business
validation (verify the vendors and addresses, open balances, the
validation of processes/functionality that were identified in the
release validation, and so on).

• Decisions (Go/No go): Identify the multiple check points when you
need to make Go/No go decisions with the executive/project team.

• Post release: Tasks to be performed after the final decision has
been made to go-live. These tasks may go on for multiple days
into using the new system. For example, pushing icons on user
desktops/enabling users, communication for release, turning on
automated processes, verifying acceptance of the outgoing EDI files
by customers, verifying acceptance of positive pay files by each of
the banks, and so on.

• Roll back: You may have to roll back to state prior to the release
in unfortunate events like when something goes wrong during the
release, critical issues that are identified, or external, uncontrolled
dependencies that caused the issues. In any case, you need to have
rollback steps defined and practiced in the release simulation phase
in order to have an uninterrupted availability of the systems to
the business. The time needed for the rollback procedure needs
to be considered in the release process the go/no go decisions
need to be made in a timely manner to allow completion of the
rollback procedure.

Chapter 12

[257]

Column Description
Description This is the task description.
Owner(s) This defines the owners to perform the tasks.
Start date/
time

This is planned start time for the task. It is important to keep track of the
timing on tasks that are on a critical path. Any delays in critical path items
would impact the overall schedule of the release.

Time needed This is the time needed to execute the task.

Comments These are the comments and/or additional information.

Detail steps These are the detailed steps to execute the overall task, if applicable.
Attach or link to the detailed document if required.

Status
tracking:
Status, actual
start time,
finish time

Keep track of the actuals in release simulation cycles to adjust your plan,
and work with the technical teams to reduce the time taken by critical path
items.
During production release, keep track of the actual timings for each of the
task.

Executing a release
More simulations, prior to going live, will make the final execution easy. It also helps
prepare the recipe for the no panic pill.

No matter how much preparation goes into planning a release, there may still be a
few last-minute new discoveries. It is important how you react to them and maintain
a no panic environment.

• Track the tasks as per the go-live plan and their dependencies.
• Send communications a multiple number of times (on track/ahead or

behind, and the like) during the release window (communicate the frequency
to all the stakeholders).

Go-live Planning

[258]

• The following diagram shows a visual form of communication that you can
use to show the status of the release:

• Schedule conference calls with the leadership team to provide updates
(you need to be giving them proactive updates rather than having them
at your back, chasing for updates) as well as the go/no go decisions at
specific intervals.

• Engage the IT SMEs and business SMEs for data validation. You need to
record these tests (reports from the previous system and the new system),
and save the test results. You will need them for your audit.

• Run through the release validation tests to verify that a functionality is
working as expected. If you can hold a good sample of transactions from the
previous working day, try to process them in the system and take them end-
to-end. (You can hold half a day worth of orders from a day prior to go-live,
enter them manually in the new system, and try to take them all the way
through invoicing. Verify the reverse logistics as well.)

• Verify access to reports and integrations across multiple systems.
• Stay alert for upcoming surprises, and handle them sooner.

Chapter 12

[259]

The importance of communication
Communication is a crucial part of go-live planning. The following is one of the
references I would like to provide on why communication is so important when
avoiding turning smaller issues into bigger challenges:

• In one of the upgrades, we had a very small downtime window to perform
the upgrade. It was shortened further as updates in the data warehouse were
going to take time, and we had to keep aside some time for roll back as well.
However, with multiple iterations (thanks to the great technical team that
was on the project) we were able to squeeze time to meet our requirements.
Most of the core technical team was up the whole night to perform the
upgrade and went to bed after the hand over to the team in the morning. It
was almost bug free until the users showed up at the warehouse and started
shipping. The requested delivery date printed on the shipping labels was the
same day, the warehouse couldn't start shipping.

• Multiple e-mails, phone calls were received with messages like 'Warehouse
can't ship.'', ''Warehouse is down.'', ''Need to call FedEx for delayed pickup.'',
''Should we stop picking?'', and so on. This noise went on for two hours. It
was hard to get a clear understanding of the real issue, until we reduced the
audience and got on to call.

• In AX 2009, Microsoft added multiple dates on the sales orders that is,
estimated ship date, requested shipping date, confirmed ship date, and so
on. One of these custom date fields to be printed on the shipping label was
mapped incorrectly to the default value (that is, the system date). This date
was the delivery date given to the Japan post which, obviously, couldn't be
the same date. It was just one line of code change for the developer once the
real issue was explained.

• Out of the many learnings from this experience, I would say that managing
communication after the go-live is most critical.

Go-live Planning

[260]

Summary
In this chapter, you learned how to prepare for release by making sure that all the
the prerequisites have been addressed. We discussed how to prepare for Business
Contingency Planning (BCP), how you can put together a plan, and mitigate the
risks through multiple simulations and multiple reviews. This was followed by tips
for execution of the go-live plan and the importance of managing communication.

You are now live and the business has a stable system to use. Going live is an
important milestone. Now you have a solid ERP platform in place. It opens up
the door for business transformation opportunities through the power of the new
modern ERP.

[261]

Post Go-live
The journey post go-live starts with the goal of keeping the system up, but you
ultimately need to lead it through to business transformation. While the initial focus
is to keep the lights on, eventually, the focus needs to shift on taking the business to
the next level, with the new ERP platform as its foundation. The organization needs
to start taking ownership of the new platform in this phase, and start scaling back on
consulting resources.

It is not uncommon to see firefighting situations as you fly into the storm at
go-live. The amount of preparation and testing that was done ahead of the release
will minimize the impact of the storm. Moreover, the way you react and keep control
of the situation can magnify or reduce the impact.

In this chapter, we will talk about the different phases post go-live, what to expect,
and the preparation required for these phases, along with a few real life examples.

In this chapter, we will learn about handling the key components of post go-live,
which are as follows:

• Initial stabilization
• Proactive preparation – what's coming
• Post-implementation review

Initial stabilization
Now that you are live, the first few weeks—usually until the first month-end close—
are going to be long weeks. During the initial stabilization period, it is important
to ensure that the business is not hurting due to system issues. Communication is
most critical, and investments in your support plan will pay off now by handling the
communication to all stakeholders effectively.

Post Go-live

[262]

As part of the initial stabilization process, you should be prepared to handle the
prioritization of issues, management of bug fixes (along with their deployment into
production), as well as transitioning support to the business by building a repository
of FAQ's that they can begin to manage. The following sections walk through these
key components of stabilization.

Triage and prioritization
Regularly triage the open issues with the business and IT. Prioritize issues and
provide due dates. Communication is a very important part of this process:

• Limiting the noise: Very often, there is more noise than real issues. You need
to set up a process to control any miscommunication and handle the noise.
Direct reviews with the business teams and triage can help reduce the noise
and get first-hand information.

• Don't forget about your support plan: As noted in Chapter 12, Go-live
Planning, you should develop a support plan that includes a process for the
business users to document, report, and, ultimately, track issues. It is very
important that the entire organization understands this process and abides
by it to aid in issue prioritization. This also provides another tool to help
limit the noise.

• Confidence and body language: Things may be messy initially. However,
it is important for the leaders to demonstrate that things are in control. ERP
projects are complex by nature, and you are not the first one going through
such issues. Higher stress and reduced confidence can only add to the issues.

Bug fixes and their business impact
Now that you are in production, there are multiple aspects of bugs that need to be
fixed. The business impact of each bug needs to be evaluated carefully:

• Stop the bleeding: How do you stop more damage because of an issue? Say,
for example, you know that the invoices for XYZ customers are not showing
freight. Put a hold on the invoicing process for that customer, and do not
send any more invoices until the issue is fixed. That would avoid any
further damage.

• Recovery of data: While the team is fixing the issue for future occurrences,
an analysis needs to be done to understand the scope/impact on the data
and the way in which the data that has been damaged by the issue can be
recovered/fixed.

• Fix for the issue: The issue needs to be analyzed, and the root cause needs to
be fixed, tested thoroughly, and promoted to the production environment.

Chapter 13

[263]

• What we learned and how to avoid it in the future: An analysis needs to be
done to find out the cause for this issue to reach the production environment
and the reason it was not caught in the previous rounds of testing. The
analysis should help in finding a solution so that a similar instance can be
avoided in the future.

• RCA process: Implementing the RCA process as part of bug fixes would help
reduce the repeating bugs and improve the process.

One of my customers had a very thorough process for RCA (Root Cause Analysis).
Every time that a bug was introduced in production due to any release, you had to put
together the complete RCA for the issue. It would include documenting the symptoms,
impact to business, how and when the problem was reported, steps taken, short term,
and long term resolution, and the changes made in the process due to the learnings.
They made sure that they would not have any issue because of the same/similar
mistake in the future. Moreover, it was so much work (and the team had to answer so
many tough questions in a room full of people) to put together an RCA that the team
made sure they did everything they could to avoid any issues in the future.

The deployment stage
It is important to have a formal release process and schedule. You need to reduce
the number of deployments every week. Otherwise, it will be hard to provide
a stable system to the business. The following are some components of a good
deployment process:

• The deployment process should be well-documented and automated.
• The developers should not deploy into production. Make sure that your

support team is up to speed on the deployment process prior to going live.
The customer should own this process, and to enable ownership of the
system and to save consulting dollars.

• Thorough testing and reducing deployments is important. While there
may be some low-hanging fixes, they may backfire and create issues in
production. Troubleshooting of issues becomes difficult with too many
changes going into the production environment.

• Avoid deployments close to the month-end or on peak business days.
• Have a set of scripts created to verify the common business processes

after the release. This is very important when you have multiple systems
integrated with Dynamics AX. Changes in one system (or timing issues in
deploying the related changes) may break integrations. Continue to improve
the release validation process based on the issues that come up and which
have a high business impact.

Post Go-live

[264]

I was involved in a post-implementation review, and what
triggered the review is as follows. The customer/partner had the
development team working on the deployment. On the second day
of going live, the developers made a mistake costing fifty-thousand
dollars while doing a deployment. They forgot to take a backup of
the database (they were tired due to long hours, and are human)
and deployed the new code. Unfortunately, there was some object
conflict as part of the database sync process, and Dynamics AX
ended up dropping and recreating the table for credit cards and
authorizations. Fifty-thousand dollars worth of credit cards and
authorizations were lost; B2C customers could not be charged.

Troubleshooting tips and FAQs
Now that you have seen the trend of the support issues, start adding to the FAQs
and troubleshooting techniques that can be used by the users prior to reaching out
to support.

• Clear the usage data: There will be a high number of deployments required
to stabilize the environment, and these deployments may cause conflicts with
personalization on the forms. As a result, specific user(s) may see unexpected
system behavior. Such issues may go away when the user resets their usage
data. (Tools | Options | Usage data | Reset).

• Shortcut keys: Prepare documentation for the shortcut keys that can be used.
• Execute in CIL: If you have issues with CIL, some processes that run in IL

may have issues as well. Try disabling the CIL operations as a temporary fix
(Tools | Options | Development | Execute Business logic in CIL).

• Limit the number of windows.
• Limit the inactive session time.
• Uploading or downloading files from the local computer while using the

remote desktop or a Citrix client for Dynamics AX.
• Printing from Dynamics AX to network printers.

Proactive preparation – what's coming
The following sections explain some areas that you need to think about as you begin
the transition into system stabilization and optimization.

Chapter 13

[265]

Preparing for the first month-end
The first month-end closing is a key milestone for the system. This is a good litmus
test for measuring the success of the implementation.

Reporting requests
There will always be a need for reports that are critical for the executives and may
have been missed during the previous phases. Watch out for such reports; some
requests may be due to other system issues, such as a list of the invoices that had
tax missing. Have a resource to respond to such requests. The guidelines given in
Chapter 6, Reporting and BI will help in minimizing the need for these demands and
will help you in responding to them.

Security and roles assignments
As mentioned in Chapter 12, Go-live Planning, you will need resources to respond to
the security-related issues, and then lock down access to the system.

Form changes
It is common to see requests for adding more fields on the forms, or moving them from
one from to another. Once the business has started using the system, and they have a
better understanding of it, such requests will come up for improving efficiencies.

Performance reviews
Once you are live, it is important to review usage patterns for the data. The need
for additional indexes, optimizing long-running queries, expensive queries in terms
of resource utilization, and so on should be checked regularly. It is like a new car;
you need to service it soon after using it a little bit and keep servicing it at regular
intervals rather than waiting for it to break down.

The data growth
This is another item to pay attention to. You should undertake proactive
maintenance rather than reacting to issues once they pop up. In high-volume
environments, you can review the table-level data growth and pay more attention
to the tables that are growing fast. You can also start reviewing the options for
archiving or purging.

Post Go-live

[266]

Training opportunities
Pay attention to the areas that are in pain and arrange for training to address the
training issues. It may not be training on just Dynamics AX; there may also be some
generic tools that are different. For example, the AP team did not use CSV files
before and formatting for the leading zeroes was not known to them. They would
not be able to effectively utilize the AP invoice upload functionality.

Engaging with Microsoft
Microsoft promotes the use of a partner network to engage with the customers.
However, there are some plans that allow the customers to directly log incidents
with Microsoft:

• The Business Ready Advantage Plus (BRAP) plan currently offers an
unlimited number of incidents. I have seen this plan help customers in taking
more ownership of their Dynamics AX environment and working directly
with Microsoft on the issues. It also helps them save the consulting cost to
work/coordinate on the product bugs.

• Engaging premier support is a good avenue to engage the experts from the
premier support team to help with performance optimization, and retraining
the internal resources for using the available tools.

A Microsoft support budget
Plan for annual support costs to be paid to Microsoft for staying up-to-date on the
enhancement plan. Usually, it is 16 percent of your protected list price. The following
are some of the points that you need to know about the enhancement plan:

• The customer is usually billed by the Microsoft Partner that is provided with
the implementation services (unless you have an enterprise agreement with
Microsoft). Ensure that you do not let it lapse.

• By paying the enhancement fees, you get access to the updates on the
Customer Source, Lifecycle Services (LCS) portal, unlimited online
trainings, access to product releases, service packs, hot fixes, and so on.
It also protects your list price for future license upgrades.

• Prepare a process to periodically review and keep up with cumulative
updates and hotfixes from Microsoft.

Chapter 13

[267]

Business process optimization
Now that you are live, you need to take a holistic look at the business processes and
identify the factors causing pain and the way in which it can be simplified. Break
them into smaller projects. During implementation, you should stay away from any
major business process improvements to avoid fighting any political battles and to
keep the amount of changes manageable. However, now you can start focusing on
the business process improvements. The first part is to fix the processes broken due
to the new system. The next part would be to look at strategic projects (which may
come as part of PIR, mentioned in the next section).

Once, I was given a $15 million challenge by a CFO. This was
regarding their open AR. The open AR grew from ~$15 million
to ~$35 million soon after going live. Of course, the CFO wanted
to bring it back to ~$15 million, and he promised to stand
reference for my organization if we helped in getting it back to
$15 million within the next quarter. Many issues had contributed
to the increased AR—invoice printing, delivery, user training
in the collections team, low productivity of the collections team
due to the manual processes, additional clicks, and the learning
curve for the new system. Order entry, the returns process, and
shipping issues made it even worse. Taking a holistic look at
of all of these challenges, resolving the low-hanging fruit like
training on the collection module, fixing a few invoicing bugs,
statement printing, and form changes to reduce the number of
clicks helped them get back to the $15 million mark.

The point is that reviewing specific issues/business processes in isolation can limit
your ability to get to the root cause. You need to look at the big picture and take
a holistic approach in defining the root cause of the factors contributing to the
situation. For example, if the finance team has to make a lot of journal entries for
corrections, they may want to automate the process. But the root cause of the issues
really lies in the upstream business processes that can be handled by better training.

In addition to the processes that are reported as a challenge by business, efforts
need to be put into finding the processes that are not working. Many times, several
groups/resources in the organization will not proactively report the issues. They will
simply accept them and put in more manual processes to work around those.

Post Go-live

[268]

Open change requests
It is time to review the change requests that have been tracked during the
implementation; most of the time, more than half are not needed any more, as the
business learns more about the system or because things have changed.

• Work with the business to prioritize the tactical requests (low-effort changes)
so that these can be taken up as the IT team gets a breather. Be careful in
opening up the flood gates; you need to emphasize prioritizing the requests
and planning the execution.

• Depending on the work load of the IT teams, it may be a good time to
start looking at the low-hanging fruits (and these can be taken up while the
team takes small breaks from the support issues) to help the business with
their workload.

• Committing to deadlines on these change requests may be tough at this
point, as you would have priorities changing day-to-day due to unknown
production issues. Setting up a dedicated team for new efforts may be a good
idea if these changes are needed to reduce the support issues or to improve
business efficiency.

Post-implementation review
Once the system is stable enough, it is time to review the opportunities for taking
the business to the next level. The initial implementation is phase one of the project
and you may not see the direct ROI by just going live. Many times, the initial
impetus of a new ERP system is risk avoidance of using a non-supported platform.
Many business process improvement initiatives would have to be taken up once you
have the foundation in place, and these would result in true ROI from the Dynamics
AX project.

Why post-implementation review?
A PIR is useful for the following reasons:

• It identifies the unused potential of your Dynamics AX investments
• It helps in ascertaining what could be (or could have been) done better
• It helps in discover training opportunities
• PIR is important for the analysis of the business pain points, such as

implementation issue, product gap, or process issues
• It provides opportunities for performance improvements

Chapter 13

[269]

• PIR gets the business team re-engaged
• With PIR, you can build a backlog that would help redefine your roadmap:

short term and long term
• You can prepare a long-term roadmap for what's coming (The next version

that may have already been released or any structural/foundational changes
that may need to be considered in the next upgrade)

Key factors to get the most out of PIR
The following is a list of some key factors that need to be considered for a
successful PIR:

• Business involvement is crucial.
• Reviewing everything could be expensive; you need to clearly define the

scope and stay laser-focused.
• An independent group to provide an unbiased opinion.
• Team of experts who can foresee the big picture and who have cross-

functional knowledge.
• Experts who can understand/speak business and the technical language

to get to the bottom of issues, analyze them, and make actionable
recommendations. Some industry knowledge is extremely important.

• Keep the emotions, history, and personal attacks out of it. Getting into
history and finger-pointing does not help. The goal should be to get to a
better state.

Preparing for PIR
To ensure a successful PIR, make the following preparations:

• Collect the project documentation. The following is a list of a few
key documents:

 ° Business process flows
 ° Functional and technical architecture, all other systems
 ° Customizations list and specs
 ° Requirements, Fit/Gap documents
 ° Training documents
 ° Issue list

Post Go-live

[270]

• Engage all the business groups and IT, and have them come up with the top
5-10 pain points. Provide templates and gather information.

• Arrange for access to the environments (with a relatively recent
production data).

• Install the required tools for tracing.
• Hold kickoff with business and IT. Define and clarify goals, expectations,

and so on.

Pain points from experience
The following are some examples of pain points that you would see as part of
the process:

• The inventory does not tie to the general ledger
 ° Can't explain changes in the margin with inventory close
 ° Our FIFO/weighted average is different from Dynamics AX
 ° As-of-date inventory reports do not work

• The returns process is too cumbersome
• I am flying blind; I don't have reports to run the business
• Month-end closing takes a long time

 ° Too many journal entries to post to classify the transactions that were
not posted with the correct financial dimensions

 ° Reconciliation of the sub ledger and the GL is time consuming
 ° Need as-of-date AR reports

• The sales orders are too hard to unwind after a certain stage
• Can't understand the results of master planning
• Planning takes a long time to run
• Batch processes take too long to run; sometimes, nightly batches do not finish

in time
• Performance of the sales order screen is poor
• Too many clicks in the collections module; need to see all the information in

one view
• Developers often break production

Chapter 13

[271]

Post-implementation review – an AX 2012
customer
The following diagram shows how the Business Pain points are centered
with the combination of Unused Dynamics AX potential, Customizations and
workarounds,and the noise created by the ISV add-on

Current state – key challenges
The following diagram is a summary of the key challenges from the initial
implementation, defined on the basis of the informati on gathered from the
business teams:

Post Go-live

[272]

The unused potential of Dynamics AX
Dynamics AX has a rich functionality, but you may not have been exposed to all
the features that can be helpful for your business. You would be overwhelmed to
see how much more can be achieved on your current platform itself. The following
image shows the low-hanging fruits, which can mostly be achieved through training:

Improvement opportunities – processes
and systems
There can be improvement opportunities in the business processes or the system
processes. Dynamics AX is very flexible and provides multiple ways of configuring
the system to meet the requirements. You can review whether there can be better
ways to utilize the system to meet your business process requirements, as shown in
the following table data:

Chapter 13

[273]

New features from the next release
It is very likely that by the time you go live and are ready for the post
implementation review assessment, Microsoft may have already released the next
major version of the product (like R2 and R3 of the same or the potential next
version). It is good to know about the new features that are available in the product
that can be utilized in the future (in some cases, Microsoft also releases backward
portability options). This exercise is helpful in aligning your roadmap with the
product roadmap to ensure that you don't build something (or buy another product)
that Microsoft has already added, or is in the process of adding, to the next release:

Post Go-live

[274]

Summary
In this chapter, we went over the key areas of the post go-live phase, like managing
the initial stabilization as you fly into the storm and proactively preparing for what's
coming your way, leading from stabilization to business transformation.

This is the phase of the project when you learn the most about Dynamics AX
implementation. How you overcome those challenges makes a successful
implementation. While some learnings are expensive and could be painful for the
business, ensuring that those are not repeated is important.

The real ROI from the Dynamics AX investments would usually start as part of
the business transformation phase. Stopping the project after the initial go-live and
stabilization would not give you the true ROI on your investments.

[275]

Upgrade
A Dynamics AX implementation is a big investment. Post implementation,
organizations spend thousands of dollars on maintaining and extending the
system on business process improvement projects to gain the real ROI of the new
platform. At the same time, Microsoft invests millions of dollars on its research and
development organization by using leading-edge technologies for platform and
functionality improvements, which enable new features within their core product.

An upgrade enables the customers to get these functionality and technology
improvements by moving to the latest versions. At the same time, upgrading to new
versions can be overwhelming and can cost significantly high in terms of dollars,
critical resource time, and potential business disruptions.

Dynamics AX or any ERP upgrade is not like a Windows upgrade where you start the
upgrade and your system backs up on the new platform in a few hours. Upgrading
of an ERP system requires extensive planning, preparation, and resources. It can take
a few months to several years for this project, which largely depends on the number
and type of customizations, changes in the core product (difference in the versions
that you are upgrading), and the volume of data that you have.

The decision to upgrade is not easy. On one hand, you want to keep up with
technological improvements and utilize the new features; on the other hand,
Microsoft keeps releasing new versions (with major changes) of the product every
2-3 years. The change in operations and functionalities so often makes it hard for the
business to adapt.

In this chapter, we will cover the following topics:

• When to upgrade
• The upgrade options
• The Dynamics AX upgrade process

Upgrade

[276]

When to upgrade
Upgrades aren't necessarily a good or bad idea in general, but it's important to
carefully examine and evaluate the pros and cons before embarking on an upgrade
project. The following sections mention a few considerations to keep in mind before
an upgrade.

Benefit to the business operations
You should not just upgrade or implement a new technology platform. Instead, there
should be a clear benefit to the business by upgrading to a new version. A thorough
analysis of the new features that can be useful for the business needs to be done, and
a vision scope for the upgrade should be put together. Some of these features may be
new for the business while some could replace your existing customizations or third-
party systems. The benefits could include new features and functionalities, increased
efficiency and productivity, and transparency through better reporting. The benefits
should also justify the time and cost required to execute the upgrade project. A proper
roadmap to realize the benefits and returns on the investment should be established.

Are operations ready for the change?
Change is not easy. Upgrades often bring new user interfaces, functionalities, and
processes with them and it's not easy for the business to tackle these changes. The
following are some key considerations:

• Identify the competing business projects that would have to be reprioritized
or delivered as part of the upgrade. Opportunity cost needs to be evaluated
(as you would have to redeploy the IT/business resources and run into code
freeze as part of the upgrade project).

• Upgrade is not a technology project and needs good involvement from
the business. The business should be ready to commit resources for the
upgrade project.

• Conduct an independent post-implementation review, and scope out what
you would want to fix from the initial implementation as part of the upgrade
like redoing specific customizations, redefining the product structure,
redefining the legal entity structure based on business needs (like splitting
sales and distribution companies), and so on. The lessons from the previous
project should be defined to ensure that you are doing things differently this
time for a better outcome. Changing only the VARs is not going to fix the
fundamental issues.

Chapter 14

[277]

Stabilization of the newer version
Our friends at Microsoft are not going to like this section. However, in reality, it
takes a few months for any new release to stabilize. You wouldn't want to get burned
with early-on product issues as part of the project, or let the business be affected due
to the issues in production.

• If you choose to be early adaptors, ensure you have enough support
and blessings from your partner and the Microsoft team, in case you
run into issues.

• We would strongly recommend getting a BRAP support plan. This would
allow you to open an unlimited number of tickets to resolve issues. These
issues may be due to bugs in the product, undocumented settings, or features
that are causing noise, learning curve for the consulting and implementation
team, and so on). However, getting help from Microsoft would help reduce
the implementation team's time on such issues, and ultimately, help deliver
the project on schedule.

• For newly released modules, try to defer the implementation post upgrade
until it is mature/stabilized enough. For example, when Dynamics AX 2012
R2 was released, the budgeting module was released as well. I would have
planned to implement it post upgrade rather than along with the upgrade.

• You shouldn't wait too long either, and upgrade in the later part of the
product lifecycle when Microsoft is about to release the next version.

Continued technical support
For many organizations, this is one of the key reasons for upgrade. It's important
and critical for the customer to have continued vendor support and assistance if
something goes wrong. For Dynamics AX, Microsoft provides mainstream support
for five years or two years, whichever is longer, after the successor product is
released. Microsoft also provides extended support following the mainstream
support for five or two years, whichever is longer, after the second successor product
(N+2) is released. The customer can go for extended support but you must know that
upgrading to the latest version gets more and more complicated if you skip many
major versions.

Upgrade

[278]

Upgrade versus reimplementation
Sometimes, it might be better to plan a fresh implementation of the latest version
than upgrading from the old version. The following are the scenarios where
reimplementation can be a better approach rather than upgrade:

• There is no direct upgrade path if you missed upgrading to several of the
last version releases. For example, a customer using Dynamics AX 3.0 or 4.0
cannot directly upgrade to AX 2012 R3. They need to upgrade to AX 2009
first, and then they can upgrade to AX 2012.

• Structural changes between versions and lost opportunity due to upgrade:
For example, AX 2012 had major structural changes in the Dynamics AX
data models as compared to the previous versions; a lot of normalizations
and improvements were made to support the scaling and performance
improvements. The customers upgrading from the previous versions could
not take full benefit of some of the features such as, the shared chart of
accounts and dimension structure. Considerations need to be made for any
potential limitations due to the current data and upgrade process.

• When you have heavy customizations, several of the customizations can be
eliminated and replaced by the standard features.

• If the data quality of the current system is bad and it would require too much
effort to clean the data to prepare for the upgrade.

• If there are changes in the fundamental master-data elements. For example,
moving away from smart product numbers or implementing the product
structure differently using product dimensions, changes in inventory costing,
changes in the legal entity structures due to business reasons like splitting
distribution, manufacturing, and sales companies.

Project strategy and planning
Just like an implementation project, an upgrade project needs proper project strategy
and planning. To execute a successful upgrade project, you need a proper project
plan, change management, test, training, and deployment planning.

Chapter 14

[279]

Upgrading options
If you are planning to upgrade to the latest version of Dynamics AX (Dynamics
AX 2012 R3 CU9) from one of the previous versions, take a look at the following
table, which illustrates the upgrade options depending on the source Dynamics AX
application version:

Source Version Upgrade Options
AX 4.0 SP2 This is an indirect upgrade. You must upgrade to AX

2009 SP 1 first.
AX 2009 SP 1 (without retail) This is a direct upgrade using the source-to-target model.

AX 2009 for Retail R1
AX 2009 for Retail R2

This is an indirect upgrade. You must first upgrade to
AX 2009 for a Retail R2 Refresh.

AX 2009 for Retail R2 Refresh Direct upgrade using the source-to-target model.

AX 2012 R2 Feature pack In-place upgrade on a single system. No source-to-target
workflow is used.

AX 2012 R2 In-place upgrade on a single system. No source-to-target
workflow is used.

Source to target
The source to target model is an upgrade option available for upgrading to
Dynamics AX 2012 from the previous major versions (From AX 4.0 or AX 2009). In
this model, the final data upgrade activity will move the entire database (all data,
transactions, and companies) into Microsoft Dynamics AX 2012 R3. In order to
minimize the downtime window of the upgrade, Dynamics AX 2012 provides the
ability to preprocess the data in the source system. The following diagram shows the
source to target upgrade model:

Upgrade

[280]

In-place upgrade
An in-place upgrade model is applicable when upgrading to Dynamics AX 2012
R3 from the previous Dynamics AX 2012 versions. In this model, the upgrade is
performed directly on the target system.

The Dynamics AX upgrade process
As described earlier, upgrades require detailed planning and consideration—it is
just like executing an implementation project. The following diagram represents the
typical upgrade project phases:

Chapter 14

[281]

Planning the upgrade
Once you decide to upgrade, it's important to do detailed planning and analysis,
just like what is done for the implementation phase before starting the project. An
upgrade is like moving. You don't know how much stuff you have accumulated until
you are moving. Similarly, an upgrade is when the people start realizing how many
customizations they have made in Dynamics AX and in the external applications that
are built around Dynamics AX, including reporting.

The following sections define the key areas to be considered when doing an
upgrade project.

Managing customization (Fit/Gap)
Most of the upgrade projects that I have reviewed had a common theme. The new
version was implemented in the old way, that is, all the customizations from the
previous version were ported on to the new version—as is.

As part of the analysis/planning, you need to spend a good amount of time finding
a match for the existing custom features, and deprecate the custom features. Most
likely, Microsoft may have developed a feature that you had to customize years ago.
This is your opportunity to unlock the power of a new version, and maximize your
investment in the Dynamics AX platform by tearing off customizations. While it
may sound like a no brainer, many projects fail to do so as it needs additional work
to migrate the existing data from custom tables to the standard ones. A few minor
customizations that are in place may be needed on top of a standard feature if the
standard one does not completely replace what you have. Hence, shortcuts are taken
and all of the old custom code is ported into the newer version.

For every customization you are porting to the new version, you need to think it
through as if you were going to build that feature from scratch. Assess whether it is
worth customization, or is there any feature in Dynamics AX that can be leveraged
to meet your needs. Otherwise, you will end up bringing over all the customizations
from the previous version to the new version and ultimately running the new
version in the backward compatibility mode. The business will not get much value
out of such an upgrade.

Upgrade

[282]

Also, there are customizations that may not be used anymore. Those need to be
identified and removed/left behind as part of the upgrade project. Plan what
customization can be replaced or reimplemented with new version. You should do a
detailed Fit/Gap analysis for new features and see how these features can benefit the
business, and if there are any gaps. Plan if they can be addressed during or after the
upgrade. Fit/Gap analysis is also relevant for custom features in the old system—
compare these features with any equivalent features in the new version. Identify
the gaps and plan to address them as part of the upgrade. Sometimes, such a list of
features can be overwhelming and may add significant scope to the upgrade project.
Read the following section for ideas and experiences on managing the scope.

Managing the scope
What functionality is available in the version you are upgrading to versus what is in
the scope for the upgrade project is the issue that needs to be decided.

In my experience, delivering the current functionality available to the business is
the first step towards the new platform. No one would like to go backwards on the
features they already had. However, you should negotiate for not implementing
brand new features as part of the upgrade project itself. These new features can
come as a next step after the upgrade, even if these features are available out of the
box in the new version of Dynamics AX. You need to consider the time needed for
the implementation of such features and the impact to the overall timeline of the
upgrade. I would rather run parallel projects to implement several new features once
I have moved to the latest version, than delaying the upgrade itself. This approach
allows you to divide the scope into smaller projects for the new features and is easier
to manage as well.

At the same time, you may consider enhancement to the existing features to be
included as part of the upgrade project. To take an example, on one of the upgrade
projects from AX 4.0 to AX 2009, the client wanted to add another financial
dimension. This was a very complex Dynamics AX environment, where the sales
orders were received from many sources, several applications were integrated with
Dynamics AX, and very few people knew the end-to-end processes. Due to the
overall complexity of the environment and lack of visibility to the impact, the team
did not want to make that change as part of the upgrade project.

Chapter 14

[283]

We were engaged by the finance team as this was a critical item for them. Upon 4-5
weeks of analysis of all the sales order transactions from several sources, we came up
with a list of changes that had to be made in Dynamics AX and other applications/
integrations. It ended by taking up only 40 hours of development team's effort. Doing
it with the upgrade was a big win for finance as they did not have to retest the entire
application (the changes were tested along with rest of the upgrade testing). Another
business challenge was addressed with the upgrade without much scope creep. It also
helped in getting the finance team actively involved on the project (until then, they
did not have much incentive to participate and looked at it as a technical upgrade).
The bottom line is, you need to have a thorough analysis done for deciding on what to
tackle with the upgrade, and it can help you address key strategic initiatives.

Many times, the users want everything that they are using currently to be
included as-it-is. However, somebody needs to take stock of all the areas that are
being utilized and put together the use cases of functionality that are being used.
Otherwise, you would have a testing nightmare and also run the risk of porting over
the old functionality, as noted earlier.

Managing the data
Evaluate the data in terms of quality and volume. Clean the data in the source
system if possible. Dynamics AX 2012 provides an upgrade-readiness check tool that
can evaluate your data and suggest clean-up activities that you should undertake
before upgrading to the new version.

Consider purging or archiving the source data from the production dynamics AX
environment to minimize the data upgrade time of the production environment. The
Microsoft IDMF (Intelligent Data Management Framework) tool can be utilized to
purge or archive data.

This would help reduce the time needed for each data upgrade iteration and the
downtime needed for performing a production upgrade apart from improving the
data quality in the next version.

Business engagement
Many times, upgrade projects are branded as a technology upgrade. For the
very same reason, it's hard to get the business engaged in the upgrade projects.
That might be true to some extent when you are doing a minor upgrade such
as upgrading from AX 2012 R3 CU8 to AX 2012 R3 CU9. For major version
upgrades like AX 2009 to AX 2012, business engagement is critical. You will need
business agreement on various decisions, such as identifying unused features or
customization, Fit/Gap analysis of custom features and the new features, defining
the scope, data archival and purging, training, UAT, and so on.

Upgrade

[284]

Impact on integrations
You may have a lot of other applications in your ecosystem that are integrated with
Microsoft Dynamics AX. An upgrade can impact those integrations for either the
underlying technology changes or schema changes. For example, Microsoft has
removed the business connector from AX 7. So if you are upgrading to AX 2012,
you should redo your integration using services or other integration framework
available. Any integrations built using AIF may also have to be changed if the
underlying schema is changed.

Microsoft Dynamics AX 7 is not yet available to customers.
Information provided here is as per the information
available in the public domain, and this may change.

Impact on reporting
How does the upgrade impact your reporting and BI solution? Do you have
replicated data or data marts for ad hoc and external reporting? New versions may
have significant schema change, which may require significant changes in all the
reports and BI solution. Dynamics AX 2012 had huge changes in the data schema
as compared to AX 2009; the tables were highly normalized, and several standard
features were reimplemented from scratch.

Even small changes in the schema can significantly impact the reporting solutions.
For example, one of the customers upgrading from AX 4.0 to AX 2009 had to update
hundreds of reports written out of a replicated data source due to changes in the
CreatedDateTime and ModifiedDateTime fields in AX 2009. Analyze all your reports
and the ad hoc SQL queries that the business team uses to gather data, and plan to
upgrade them. Another impact you may have to consider is the replicated data itself.
If you are replicating tables from the Dynamics AX database, these tables may have
been changed (new fields may have been added or deleted), or sometimes, the table
itself may have been replaced with a new set of tables. These replicated data sources
need to be rebuilt to support the new schema. One of my customers was feeding
LedgerTrans data into their corporate data warehouse. Many processes and KPIs
were dependent on this general ledger data. Removal of the LedgerTrans table in AX
2012 added a good amount of rework to the ETL process feeding the data warehouse.

Chapter 14

[285]

Code freeze in the source system
Upgrade projects can take several months to year(s) for customers having many
customizations and /or integrations. The customers also have continuous
improvements projects and several business initiatives that require changes in their
current Dynamics AX application. It is important to understand that these other
projects may have to stop for a period of time for a smooth code upgrade, testing,
data upgrade process, and avoiding rework in both the projects. It would also help in
getting all the IT and business resources aligned for delivery of the upgrade project.

You may be able to make continuous improvements during the upgrade planning and
analysis phase, but once the code upgrade activity is started, you should freeze the
code of your current AX environment. Set the expectations with your business team
for the code freeze start date and its impact on the existing projects that are in-flight,
or have an approved budget. Prioritize the critical issues and fixes which need to be
completed in the current AX implementation before starting the code upgrade project.

If any critical issues surface due to business priorities that cannot wait or
for regulatory reasons, ensure that the coding changes are deployed in both
environments (the current Dynamics AX Production and the code upgrade
environment for the Dynamics AX upgrade project).

Infrastructure planning
You may not realize it, but upgrade projects will often also require new
infrastructure, unless it is a small implementation with a fairly small database size
or if you are planning for an in-place upgrade. You should be able repurpose some
of your old infrastructure once the upgrade project is complete. You will need
additional hardware for the following purposes:

• The development environment: You will need a new development
environment for code upgrade and other development activities. Most of the
time, it is possible to install and run different versions of Dynamics AX in a
single box; but that can also create performance issues or other inefficiencies,
and it is advisable to have a separate environment.

• Test environments: You must not disrupt your current test environment
to test any critical production issues and hotfixes when the upgrade
project is on. Hence, you will need a separate test environment to test
the code upgrades.

• Test data upgrade: You will need a production-like environment to test your
test data upgrade process. Many customers utilize their future production
environment for the purpose of a test data upgrade.

Upgrade

[286]

• The production environment: In typical upgrade projects, your old system is
used until the final cutover. It is similar to an implementation project where
you are replacing your old legacy system. All the deployment activities will
move to the new infrastructure without disrupting your old system. You
may also want to keep your old system intact as part of the rollback plan, so
that the business can continue using the old system if anything goes wrong
with deployment. You will also need additional storage and horsepower
requirement for upgrading the data during the upgrade period.

The upgrade analysis
Microsoft provides an upgrade analysis tool through Lifecycle Services to help the
customers and vendors in planning an upgrade to Dynamics AX 2012. Upgrade
analysis uses the Rapid Data Collector (RDC) tool to analyze information about the
existing environment and helps in estimating the scale of the upgrade project. The
following chart illustrates how the service works for both full-version upgrades and
in-place upgrades:

The upgrade analysis tool analyses the source version code artefacts (AOD files or
model store files) and key metadata information, such as count of records in the
tables to create reports to identify the scale of the code upgrade.

Upgrade analysis creates an overview report in HTML, and a detailed report as a
Microsoft Excel file that you can download and review. The following are the tabs in
the Excel reports:

Tabs Description Useful for
Upgrade summary The summary list is a list of objects

impacted in each module

Chapter 14

[287]

Tabs Description Useful for
Global tables List of shared tables Data upgrade, code

upgrade
Customization statistics List of all customizations Code upgrade
Customization view Number of customized tables and

classes
Data upgrade

Modified objects List of modified objects Code upgrade
Modified object details List of what is modified in each

object
Code upgrade

Domain information Lists companies, domains, and
related users

Security upgrade

Table statistics Lists table size, properties, and
counts of rows and columns

Data upgrade,
minimizing downtime

Parameters Lists parameter values Data upgrade, code
upgrade

Tables without
DataAreaId

List of tables that do not have a
DataAreaId

Data upgrade

SysUtilElementsLog
(AX Object Usage
Summary)

Lists the usage patterns of MSDAX
objects

Code upgrade

The code upgrade
The code upgrade in Dynamics AX is the process used to port customizations from
the source environment to the target environment. The following are some key
considerations to be kept in mind during the code upgrade process:

Planning for the code upgrade
Code upgrades are different in different projects and largely depend on the level of
customization and the changes that Microsoft made between the source and target
version. Depending on your project, you should consider the following when doing
a code upgrade.

Upgrade

[288]

The code clean-up
Often, we find customizations in Dynamics AX which are not used. There can be
various reasons for not using the customizations, such as change in the business
process, development of a new advanced feature while the old version still existed,
and so on. An upgrade project is a good time to clean up such customizations.
Identify all such customizations and plan to remove them. Questions may be raised
on the feasibility of investing time and money in removing the customization: what
benefit do we gain by this clean up? Firstly, if you don't clean up old customizations,
you might have to upgrade them as per the new version. This may introduce bugs
and you will have to upgrade them again with the future upgrades; the obsolete
code adds to the cost of each new upgrade. Having less code can also reduce your
application-compile time and other application maintenance features.

New features that replace the existing ones
In some cases, you might have code which can be replaced partially or completely
with the new version code or features. You should identify such features and utilize
the new features or code instead of upgrading the old ones.

Standalone partner/customer code
Sometimes, a customer or partner might have added standalone code like creating
new forms, classes, tables, and reports. Test these to make sure that the code
compiles on the new version. It is also recommended to upgrade the UI and code
patterns to utilize the latest features of the new version.

Changes in customization due to Microsoft refactoring in a
new version
In some cases where Microsoft has changed the features, and the changes impact
your customization, you will probably get compilation or runtime errors in your
customization. You have to identify such areas and refactor your code to utilize the
new code pattern.

Chapter 14

[289]

The code upgrade process
The following diagram illustrates the typical code upgrade process:

The baseline database
The very first step of the code upgrade process is to create a baseline database
to store a read-only copy of the Microsoft Dynamics AX 4.0 or Microsoft Dynamics
AX 2009 code. The baseline database is used for reference purposes during your
code upgrade.

Selecting the upgrade checklist
The next step of the code upgrade process is selecting the appropriate code upgrade
checklist. To get the code upgrade checklist, you must select Register database for
Upgrade Mode, when you install Dynamics AX. When you open the Dynamics AX
client the first time for the upgrade, you will be presented with some options, as
shown in the following screenshot:

Upgrade

[290]

Importing AOD/model files into the baseline database
The next step is to import the license file and all the AOD or model files in the
baseline database, as shown in the following screenshot:

You should import layers from the lowest to the highest. For example, SYS first, then
SYP, and so on, until you reach the last Microsoft AOD file.

Executing the code upgrade checklist
The final step of the code upgrade process is to complete a code upgrade checklist for
each of the layers that you are upgrading. Dynamics AX provides you with multiple
layers to build a custom code. For example, CUS, BUS, USR, and VAR are generally
used for customizations and ISV solutions. For more information on layers, refer to
Chapter 9, Building Customizations. It is important that you start at the lowest layer
(for example, ISV). After the lowest layer is complete, start on the next layer up.
Perform this task sequentially, until all the layers are upgraded.

The main goal of the code upgrade checklist is to detect code conflicts and to resolve
those conflicts.

Chapter 14

[291]

The following screenshot shows the code upgrade checklist for AOD files:

Code upgrade conflict tools
Microsoft Dynamics AX 2012 includes a tool to detect code conflicts. This tool
analyses your customizations and creates a project (a project is a placeholder in AOT
to group multiple objects, related to a specific functionality, together) that contains
the application objects with conflicts. This tool is used when you upgrade from
Microsoft Dynamics AX 4.0 or from Microsoft Dynamics AX 2009.

Upgrade

[292]

Conflict objects are code objects that have been both changed in the new release and
customized in your application:

In some cases, especially on the forms, if the customizations are large, you may need
to manually apply changes to the form to upgrade it.

The other alternatives for identifying code conflicts during the code upgrade project
are the following:

• The project filter tool
• The code compare tool

The project filter tool can be used by a developer to create a project based on the
criteria supplied in the query form. Such criteria could all be objects from a relevant
layer or all objects that have a specific prefix, for example. Using the project filter, a
developer can identify and group all the customized projects into a single project.
The developer can later use the code compare tool to identify the code difference
between the various layers and resolve them manually.

The upgrade script
In some cases where you are planning to replace the customization with standard
AX features or refactoring a customization to work with a new version, you may
have to write a data upgrade script to support the changes.

For more information, refer to the Microsoft Dynamics AX 2012 white paper—How
to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012—at http://www.
microsoft.com/en-us/download/details.aspx?id=16375.

http://www.microsoft.com/en-us/download/details.aspx?id=16375
http://www.microsoft.com/en-us/download/details.aspx?id=16375

Chapter 14

[293]

If you are upgrading from AX 2009 or older versions to Dynamics AX 2012, you may
need the following type of upgrade script for your custom features:

• Readiness checks: It is very important to write a data-readiness check
script for AX 2012 for the custom tables where ledger account/ financial
dimensions, address, or inventory dimensions are used. The readiness-check
validation script checks if all the related data exists in the source system.

• Preprocessing and delta scripts: The Dynamics AX 2012 upgrade provides
the ability to preprocess the application data in the source system using
preprocessing and delta scripts. Shadow tables are created to map any new
fields and assign key relations to the standard tables.

• Single-user steps and all target-side operations: The target-side operation is
the final step of the data upgrade process. Data upgrade scripts on the target
side must include all the tables and field mapping information.

The security upgrade
The security framework in Dynamics AX 2012 has changed entirely since AX 4.0 and
AX 2009. There is no automatic path to the upgrade of security configurations from
the earlier versions to Dynamics AX 2012. However, Microsoft provides a security
upgrade advisor tool, which can be used to help simplify the process of upgrading
the security settings from the earlier versions to Microsoft Dynamics AX 2012.

The security upgrade advisor tool compares the user group access rights and roles in
the current system to privilege mapping in AX 2012, and generates a list of matching
privileges that can be used for a particular role. The following diagram shows the
steps to upgrade security settings:

Upgrade

[294]

It is important to note that this tool is designed to help in upgrading security and
developers are advised to review each suggestion carefully before making the final
changes. For more details on the security upgrade tool, follow the Microsoft TechNet
article at https://technet.microsoft.com/en-us/library/hh394895.aspx.

Testing the data upgrade
Data upgrade is the most important process of an upgrade project. As described
earlier, the data upgrade process can differ, depending on the source version of
Dynamics AX. Microsoft provides various upgrade checklists and scripts to convert
table data from the source system to the target system. Data upgrade is, basically,
executing the required checklists and the scripts necessary to transform and move
data from the source system to the target system.

Testing the data upgrade is, basically, running the data upgrade processes on the
copy of production data in a test environment. The key to having an optimal data
upgrade experience is to plan well in advance, run multiple test cycles building on
the lessons learned, and then plan the live data upgrade in complete detail, building
in time for unexpected, last minute issues.

The following diagram shows a typical data test data upgrade process:

https://technet.microsoft.com/en-us/library/hh394895.aspx

Chapter 14

[295]

Objectives
The following are the key objectives of the test data upgrade:

• Testing of the data upgrade scripts
• Identifying potential issues/bottlenecks in the data upgrade scripts
• Ensuring data integrity and completeness of the upgraded data
• Identifying the time required for each activity, and calculating the final

downtime
• Preparing the data for system and regression testing
• Planning for the final data upgrade in the production environment

Planning
The following are the key objectives to plan the test data upgrade:

• Make sure that the code upgrade and upgrade scripts are completed before
you start your test data upgrade.

• Identify an acceptable downtime window of the production data upgrade.
Talk to the business team and understand for how long the production
system can be down, without impacting the operations significantly.

• Plan multiple rounds of the data upgrade cycle to test all the data upgrade
steps consistently and to identify and tune the approximate downtime
needed for the upgrade process in a live environment.

• Plan for an evaluation and optimization window with each test data
upgrade. The objective is to reach an acceptable downtime window, agreed
upon with the business team. More effort will be required to reduce the
downtime window.

• Proper database sizing for the target database and the TempDB database is
also extremely important to avoid any possibility of database resizing during
the bulk-copy phase. Determine the correct sizing for the target Microsoft
Dynamics AX 2012 database, and set it before you begin to upgrade. A rough
estimate to use as a starting point is 30 percent larger than the expanded size
of the source database. A rough estimate for sizing your TempDB database
is 20–25 percent of the expanded Microsoft Dynamics AX 2012 database.
Optimal performance may require splitting the TempDB database into
separate files.

• Plan to use the production environment or hardware specification close to
the production environment.

Upgrade

[296]

• Use a copy of production data for testing the data upgrade process. Try to use
the latest copy of production with each round of the data upgrade testing.

Execution
The following are the key objectives to execute the test data upgrade:

• Follow the Microsoft recommendations for database and AOS configuration
for the upgrade. There are many configurations which need to be set
specifically during the data upgrade process. Follow the Microsoft white
paper—Data Upgrade Best Practices—which can be found at http://www.
microsoft.com/en-us/download/confirmation.aspx?id=28701.

• Take backups or database snapshots before each step of the upgrade process.
Backups and snapshots can improve efficiency in case of failure during a
particular step, so you don't have start the process from the beginning. It
is also recommended to take a backup or snapshot during the final, live
upgrade, in case of unexpected errors (out of disk space, network failures,
and so on).

• Monitor the performance during the data upgrade process by using
performance tools such as DynamicsPerf and the Windows Performance
Monitor. Evaluate long-running queries and bad execution plans during
batch processes and identify the areas where index tuning or code changes
are needed. In some cases, an index created on the fly, within the test
environment, can provide immediate benefit to a long-running process.

• Set the database recovery mode to simple during the data upgrade. At the
conclusion of all upgrade activity, set the recovery mode to full.

• Increase the max degree of parallelism setting for the target upgrade
processing (in the single-user mode, the bulk-copy process gains a significant
performance benefit with parallel query processing). After target upgrade
processing, return max degree of parallelism to the default setting.

• If the source database and target database are on separate servers, network
latency and performance are also important factors that should be monitored.
In some tests, multi-server environments with no network latency issues have
shown a 30 percent slowdown over a single-server environment. Extreme
slowdowns are possible if there are latency issues as well to deal with.

Outcome
The following is the outcome of the test data upgrade:

• Document the activities performed during the test upgrade process and
record the execution time for each step.

http://www.microsoft.com/en-us/download/confirmation.aspx?id=28701
http://www.microsoft.com/en-us/download/confirmation.aspx?id=28701

Chapter 14

[297]

• Identify and document the performance issues encountered and solutions
for tuning.

• Validate the outcome of the data upgrade—validate completeness and data
consistency after each data upgrade round. The upgraded data can be used
for system and regression testing and training phases.

Upgrade testing
Like any other project, testing is important for an upgrade project. However, the
nature of the testing will be different in an upgrade project. The following sections
define the key areas to test in an upgrade project.

Data validation
When upgrading using the source-to-target upgrade model, it is very important
to validate the upgraded data for completeness and data integrity. SQL scripts can
be used to compare the number of rows between the source and target databases.
Assemble a test team to plan high-level data validation for configuration as well as
transaction data between the source and target systems.

System and regression testing
It's important to perform, system and regression testing after the code and data
upgrade to identify the issues, if any. It is recommended to use the upgraded data
during the test upgrade cycle for system and regression testing.

There may be features or customizations which are re-implemented or upgraded to
the target version. Proper system and regression testing should be done to ensure
that the features are working as expected.

Test that the security roles implemented in the target system are working correctly.
Users in Microsoft Dynamics AX 2012 should have access to the data they had access
to on the source system, and they should be able to perform all the functions which
they were able to perform in the source system.

Test whether the upgraded and standard reports are working as expected in the
new system.

Upgrade

[298]

Integration and end-to-end testing
As described in the earlier sections, your upgrade project may result in changes in
integration, reporting, and so on. Testing of the upgrade must cover any such areas
which are impacted. Depending on the impacted applications and changes, you may
need to involve other departments in your organization or third-party application
teams to test end-to-end scenarios.

End-user adoption
Dynamics AX 2012 has a significantly different user interface than the previous
versions, Dynamics AX 4.0 and AX 2009. It is important to train the end users in the
new system for the new user interface as well as the new and changed features. The
following are the key considerations for end-user training.

• In the upgrade planning phase, make sure that training is provided often,
both, early in the process and after the upgrade

• Provide early access to key business users after the code and data upgrade to
familiarize them with new system

Deployment planning and execution
Just like an implementation project, it is very important to plan the final upgrade on
the live system. All activities which need to be performed during the go-live should
be well documented, including the test data upgrade steps.

Final deployment will include several activities such as stopping transaction
processing in the old system, stopping any integration points to the old system,
deploying the code, final data upgrade, data validation, and so on. The following
table shows a sample plan for the final upgrade process:

Step Description Type Owner Estimated
time

Actual
start
time

Actual
end
time

Target system
1 Build target

system – create
database, validate
storage settings,
and so on.

Pre-release Steve

2 Deploy the latest
code build on the
target system

Pre-release Steve

Chapter 14

[299]

Step Description Type Owner Estimated
time

Actual
start
time

Actual
end
time

Source system
3 Preprocessing

start
Communication

4 Run preprocessing
jobs in the source
system

Release Steve

5 Validate
preprocessing

Validation Steve

6 Run final
preprocessing

Release Steve

7 Send final
communication
for system
downtime

Communication James

8 Shut down user
access, stop all the
batch processes,
stop AOS

Release George

9 Take database
backup

Release Peter

10 Set to single-user
mode

Release George

Target system
11 Connect to the

source database
Release George

12 Presynchronize Release George
13 Create tables Release George
14 Generate table

mappings
Release George

15 Take database
snapshot

Release Peter

16 Generate upgrade
task prioritization

Release George

Upgrade

[300]

Step Description Type Owner Estimated
time

Actual
start
time

Actual
end
time

17 Set batch threads
to twice the
number of cores.
For example, with
8 cores, set the
number of batch
threads to 16.

Release George

18 Start the data
upgrade

Release George

19 Communication
– data upgrade
completed

Communication James

20 Run data
validation scripts

Validation Peter

21 Go/no go Decision Steering
committee

22 Deploy reports Release John
23 Deploy integration

solution
Release John

24 Restart all AOS Release George
25 Run IT validation Validation Joe
26 Run business

validation
Validation Tina

27 Go/no go Decision Steering
committee

28 Set Database
recovery mode to
full

Post release Peter

29 Set max degree of
parallelism to 1

Post release Peter

30 Communication-
go live

Communication James

This is an example deployment plan; the actual steps can be
different on your project.

Chapter 14

[301]

There may be many activities which need to be done after the upgrade. The
following are a few activities which may be applicable:

• After the upgrade, the indexes in the Microsoft Dynamics AX 2012 database
will be highly fragmented. Before you start with the normal processing
activities, it is strongly recommended to rebuild the indexes.

• Validate and reset the database settings, such as the max degree of
parallelism; set the database recovery mode to simple.

• Rebuild and process database replication and additional reporting and
BI solutions.

• Plan and upgrade the DR application code and data, if applicable.
• Monitor applications for performance and take corrective actions.

Summary
In this chapter, you learned about upgrading your Dynamics AX application to
a new version. A Dynamics AX or any ERP upgrade is not easy and requires lots
of planning and analysis. We started the chapter with exploring the different
considerations to evaluate if you are ready to take up an upgrade project. Then we
looked at the different options available to upgrade to Dynamics AX 2012.

Major version upgrades can be as complex as an initial implementation project.
We went through the various phases of the upgrade project. In the planning phase,
you learned about the importance of managing customizations, managing scope,
business engagement, and impact analysis. You learned about the best practices and
recommendations in various other phases, such as code upgrade, test data upgrade,
testing, and end-user training. In the end, we went through deployment planning
and looked at activities that need to be done once the upgrade process is complete.

[303]

Index
Symbols
.NET Business Connector 63
.NET Framework 62

A
Agile methodology

about 14
recommendations 14

AIF
about 29, 53, 177
adapters 57
architecture 54
cloud-based integration 58, 59
key concepts 55
message processing 57, 58
services 55

ALM
about 196
best practices 198
build, creating 197
defect, fixing 197
development 196
guidelines 198
reference link 198
testing 197

alternate key 174
American Productivity and Quality

Center (APQC) 242
analysis phase

key deliverables 26
AOS server

planning 47
AOT objects

naming conventions 162

Application Integration Framework. See AIF
Application Object Server (AOS) 29, 206
asynchronous integration 52, 53
Azure

with Microsoft Dynamics AX 2012 R3 43-45

B
batch parallelism

about 218
batch bundling 218
individual task modeling 218
top picking 218

big picture diagrams
about 128
flow of data 130
functional architecture 129
integrations 130

breaking point 204
Budget Control Framework 179
business contingency planning 250-252
Business Intelligence (BI) 29
business logic

about 175
Application Integration Framework

(AIF) 177
code, customizing 181
code, reusing 180
custom code, adding 181
customizing 180
development frameworks 178, 179
events, using 180
FormLetter framework 176
number sequence framework 176
other application 178, 179
RunBase framework 176

[304]

services 177
SysOperation framework 177

business process flows 240, 241
business process modeler 242
Business Ready Advantage Plus

(BRAP) 266
Business Requirements Document

(BRD) 22, 26

C
capacity planning

about 30, 31
batch process 33
customizations 33
deployment details 31
integrations 33
ISV products 32
operating sites 32
reports 32
schedules 32

change management
about 239
business process flows 240, 241
business readiness 240
security roles 240
system readiness 240
training manuals, using 241
training preparation 240
user guides, using 241

client
about 30
Dynamics AX client application 30
Enterprise Portal 30
Excel Add-in 30

client user interface
details forms 183
details forms, with lines 183
guidelines 182
list pages 182
simple details forms 185
simple list 184
simple list and details forms 185
table of content forms 186

cloud deployment
about 42

Microsoft Dynamics AX 2012 R3,
on Azure 43-45

cloud services
about 42, 43
Infrastructure-as-a-Service (IaaS) 42
Platform-as-a-Service (PaaS) 42
Software-as-a-Service (SaaS) 42

clustered index 172
code review process

establishing 162, 163
coding, best practices

best practice check 194
code, commenting 194
database 195
exception handling 195
labels, using 194
objects, naming 194
text, using 194
transactions, creating 195
variables, naming 194

communication
importance 259

components, Dynamics AX
about 28
capacity planning 30
client 30
databases 29
Help server 30
infrastructure estimation 30
middle tier 29
reporting and BI 30

conceptualization 163
Conference Room Pilot. See CRP
configuration data management

about 154, 155
configuration templates, building 156
golden environment 155
template company, copying 156

configuration management
about 139
configuration data, collecting 143
configuration planning 140-142
configuration tools 144
data management 154

[305]

configuration tools
about 144
Excel add-in 148
Export/Import tool 149
LCS configuration manager 152
Microsoft Dynamics ERP RapidStart

Services 146
Test Data Transfer Tool 153

Connector for Microsoft Dynamics 64, 65
CRP

about 15, 22, 117
benefits 22
considerations 23
execution 23, 24

customization code 204
custom services

versus document services 56

D
databases

about 29
business database 29
model database 29
other databases 29

data design
about 164
date effectivity 168
delete actions 175
fields, adding to existing tables 164
indexes 171
table fields 167
table properties 169
tables key 174
Table Types 165

Data Import/Export Framework. See DIXF
Data Management Views (DMV) 212
data mapping 77
data migration

planning 77, 78
Data Upgrade Cockpit 218
definition group 149
design and development, integration

solution
about 65
configuring 69
developing 69

field mapping, defining 68
high-level conceptual design,

developing 66, 67
right integration technology,

selecting 65, 66
testing 69

design and development phase
about 76, 201
data mapping 77
data migration, planning 77, 78
transformation 77

development frameworks
Budget Control Framework 179
Data Import/Export Framework

(DIXF) 180
financial account and dimensions 178
global address book 178
Policy framework 179
Product Data Management Framework 179
Reporting framework 179
Source Document Framework 178
useful links 178-180
Workflow framework 179

development phase, rules
AOT objects, naming convention 162
code review process, establishing 162, 163
development layers 161
development models 161
label files 162
language 162

development process
about 163
business logic 175
conceptualization 163
data design 164
security 192
user interface 182

DIXF
about 59, 79, 144
ad hoc manual file import/export 60
automated asynchronous integration 60, 61
custom entity creating 145
data between legal entities, comparing 144
data between legal entities, copying 144
data between Microsoft Dynamics AX

instances, copying 145
data, exporting 144

[306]

data, importing 144
master data management (MDM) 61, 62

document services
versus custom services 56

Dynamic Management Views (DMV) 207
Dynamics AX

about 139
architecture 28
components 28

DynamicsPerf
about 207, 208
advantages 208
URL 208

E
end-to-end testing

about 236
execution 237, 238
planning 236
real-life examples 237, 238

end-user adoption 298
enterprise portal user interface

details form 187
guidelines 186
list pages 187
two-phase create dialog 188

environment setup
about 213
batch servers 216
inappropriate AX configurations 214
index maintenance guidelines 215
kernel 214
latency 213
missing hotfixes 214
network bandwidth 213
outdated application 214
SQL Server, setting up 213, 214
Windows, setting up 213

events
about 180
reference link 181
usage 180

Excel add-in
about 148
features 149
limitations 149

Export/Import tool
about 149
definition group 149
export criteria, defining 150
features 151
limitations 151
related tables, finding 151

Extended Data Types (EDTs) 167

F
FDD

about 118
Fit/Gap review session 119
key benefits 118
project management aspects 119, 120

financial account and dimensions
framework 178

Fit/Gap analysis 24
foreign key 174
FormLetter framework

about 176
features 176

function testing 231

G
global address book 178
golden environment

about 155
cons 155
pros 155

go-live plan
business contingency planning 250-252
decision 249
execution 257, 258
guidelines, for putting together 254-257
key considerations 246-248
technical tips 252-254

H
Help server 30

I
implementation strategy 25

[307]

inappropriate AX configurations
about 214
database logging 215
debugging 215
number sequences 215

indexes
about 171
best practices 173
clustered index 172
non-clustered index 172

infrastructure
inadequate hardware issues 212
planning 201
virtualization 212

Infrastructure-as-a-Service (IaaS) 42
infrastructure estimation 35-38
infrastructure planning

AOS server 47
best practices 45, 46
recommendations 45
reviews 47, 48
SQL server 46, 47

initial stabilization
about 261
bug fixes 262
business impact of bugs,

evaluating 262, 263
deployment stage 263
FAQs 264
open issues, prioritization 262
open issues, triage 262
troubleshooting tips 264

In-memory tables 166
in-place upgrade model 280
integration planning

about 50
asynchronous 52, 53
requisites 51, 52
scenarios 50, 51
synchronous 52, 53

integration technologies
.NET Business Connector 63
.NET Framework 62
about 53
AIF 53
best practices 69, 70

Connector for Microsoft Dynamics 64, 65
Data Import/Export Framework 59
recommendations 69, 70
third-party integration solution 63

Intelligent Data Management Framework
(IDMF) 283

Internet Information Services
(IIS) 40, 54, 206

ISV partners
common pitfalls 135
considerations 134, 135
engaging 133

K
key global features, FDD

alerts 124
batch jobs 125
cues 124
database logging 123
document management 123
partitions 126
personalization 125
virtual company 127
workflows 128

L
label files 162
layers

about 161
reference link 161

LCS configuration manager
about 152
features 153

LCS system diagnostics
about 208
advantages 209
AOT data 209
environment 209
Microsoft Dynamics AX 209

Lifecycle Services (LCS)
about 44, 266
URL 34
Usage Profiler, using 34, 35

[308]

M
master data management (MDM)

about 61, 62
features 62

message processing 57, 58
Microsoft Dynamics AX 2012 R3

on Azure 43-45
Microsoft Dynamics ERP RapidStart

Services
about 146, 147
features 147

middle tier
about 29
Application Integration Framework

(AIF) 29
Application Object Server (AOS) 29
Enterprise Portal 29
services 29
workflow system 29

models 161

N
natural key 174
non-clustered index 172
non-production system topology 41, 42
number sequence framework

about 176
reference link 176

O
Optical Character Recognition (OCR) 124

P
performance, impacting factors

about 211
code and queries 216
environment setup 213
infrastructure 211

performance issues
about 220
analysis strategy, defining 220, 221
analysis strategy, planning 220
approaching 219

corrective actions, implementing 221, 222
root causes identification, investigation

strategies 222-225
root causes identification, scenarios 222-225

performance issues, in code and queries
about 216
batch parallelism 218
data caching 216
long-running queries 219
methods, displaying on form grid 219
RPC calls 217
set-based operations 217

performance monitor tool
about 206
advantages 206

performance testing 202
performance tuning

about 201, 202
datasets 203
environment, identifying 203
execution stage 203, 204
expectation, setting with executives 203
outcome 204
preparing 203
scope, defining 203
tools, identifying 203

personalization
training environment 243

Platform-as-a-Service (PaaS) 42
Policy framework 179
post implementation review (PIR)

about 268-271
Dynamics AX potential 272
improvement opportunities 272
key challenges 271
new release 273
obtaining, key factors 269
pain points, examples 270
preparing 269
uses 268

primary key 174
Product Data Management Framework 179
production system topology

about 39-41
applications layer 40
database and platform layer 40
perimeter network layer 40

[309]

project governance
about 9
budget tracking 12
change control 11
communication 10
project plan 9
top view 13

project management
considerations 9

project management aspects, FDD
about 119, 120
big picture diagrams 128
do's and don'ts 131, 132
financial data 122
global address book 122
key global features 123, 124
party model 121
reverse engineering tool 123
writing, considerations 120

project startup
about 1
commitments, managing 2
customer culture 4
customer environment 4
customer expectations, managing 2
kick-off meeting 8
resources 4
team, establishing 6, 7
tips, for customers 3

R
Rapid Data Collector (RDC) tool 286
Receive Side Scaling (RSS) 212
regular tables 165
reimplementation

versus upgrade 278
replacement key 174
reporting and BI

about 30
SQL Server Analysis Services 30
SQL Server Reporting Services 30

Reporting framework 179
report user interface

document type reports 189
group list type 191
guidelines 188

simple list 190
requirement gathering

about 201
techniques 16
tools 16

Requirements Traceability Matrix
(RTM) 121

resources, project startup
about 4
consulting team resource alignment 4
customer resource alignment 5
external resources 5

reverse engineering tool
URL 123

Root Cause Analysis (RCA) 263
RunBase framework

about 176
features 176
reference link 177

S
scope, of data migration

historical data transactions 75, 76
managing 72
questionnaires 72, 73
requirements sessions 73-75

scope, upgrade process
business engagement 283
code, freezing 285
data, managing 283
impact, on integrations 284
impact, on reporting 284
infrastructure, planning 285
managing 282
upgrade analysis 286, 287

SDD
about 118, 132
guidelines 133
objectives 132
overview 132

security
about 192
duties 192
for custom objects 193
key concepts 192
permissions 193

[310]

policies 193
privilege 193
process cycle 192
roles 192, 240

services 177
services, AIF

about 55
custom services 55
document services 55
system services 55

Software-as-a-Service (SaaS) 42
Software Development Life Cycle

(SDLC) 228
Solid State Drives (SSDs) 46
Solution Design Document. See SDD
Source Document Framework 178
source to target model 279
SQL server

planning 46, 47
SQL Server Master Data Services

(SQL MDS) 61
SQL Server Profiler

about 210
advantages 210

surrogate keys 175
synchronous integration 52, 53
SysOperation framework

about 177
features 177
reference link 177

System Center Operation Manager
(SCOM) 40

system integration testing 232
system stabilization and optimization,

preparing
budget 266
business process optimization 267
data growth 265
engaging, with Microsoft 266
first month-end closing 265
form changes 265
open change requests 268
performance reviews 265
requests, reporting 265
security and roles assignments 265
training opportunities 266

system topology
non-production system topology 41, 42
planning 38
production system topology 39-41

T
table fields 167
table properties

about 169
table caching 170, 171
table group 169

tables key
about 174
alternate key 174
foreign key 174
natural key 174
primary key 174
replacement key 174
surrogate keys 175

Table Types
about 165
In-memory 166
regular 165
TempDB 166

Task Recorder 241, 242
TechNet

URL 223
Technical Design Document (TDD)

about 118, 136
guidelines 136
objectives 136
outcome 138
overview 136
preparation steps 136
writing considerations 137

Test Data Transfer Tool
about 153
features 154
limitations 154

test data upgrade
execution 296
objectives 295
outcome 296
planning 295

[311]

testing
about 228
change management 239
end-to-end testing 236
function testing 231
personalization 242
planning 229
system integration testing 232
test case development 230
test scenarios, building 230
UAT 232
unit testing 231

third-party integration solution 63
tools, for performance monitoring

about 205
DynamicsPerf 207, 208, 212
LCS system diagnostics 208, 209
performance benchmark SDK 210
performance monitor 206
SCOM pack, for Microsoft

Dynamics AX 210
SQL Server Profiler 210
trace parser 205
Windows Performance Monitor tool 212

tools, requirement gathering techniques
about 16
lead 19, 20
negotiate 21, 22
questionnaires, preparing 16-19

trace parser
benefits 205
disadvantages 205

training
about 238
business readiness 240
plan 238, 239
preparation 240
system readiness 240

training manuals
about 241
business process modeler 242
Task Recorder 241, 242

transformation 77
Transmission Control Protocol (TCP) 57
troubleshooting tips, initial stabilization

CIL, executing 264

shortcut keys 264
usage data, clearing 264

U
UAT

about 232
execution 234, 235
outcome 236
planning 232-234

unit testing 231
upgradation

customization (Fit/Gap),
managing 281, 282

planning 281
upgradation, testing

about 297
data validation 297
end-to-end testing 298
integration testing 298
regression testing 297
system testing 297

upgrade, considerations
benefit, to business operations 276
continued technical support 277
operations, identifying for change 276
project planning 278
project strategy 278
stabilization, of newer version 277
versus reimplementation 278

upgrade options
about 279
in-place upgrade model 280
source to target model 279

upgrade process, Dynamics AX
about 280
deployment, execution 298-301
deployment, planning 298-301
end-user adoption 298
planning 281
scope, managing 282
upgrade, testing 297

Usage Profiler
about 31
using 34, 35

User Acceptance Testing. See UAT

[312]

user guides
using 241

user interface
about 182
client user interface 182
enterprise portal user interface 186
report user interface 188

V
virtualization, viewing

virtual environments, monitoring with
third-party tools 212

Windows performance monitor 212

W
Windows Communication Foundation

(WCF) 54, 57
Workflow framework 179

Thank you for buying
Microsoft Dynamics AX
Implementation Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Microsoft Dynamics GP 2013
Cookbook
ISBN: 978-1-84968-938-0 Paperback: 348 pages

Over 110 immediately usable and effective recipes to
solve real-world Dynamics GP problems

1. Understand the various tips and tricks to
master Dynamics GP, and improve your
system's stability in order to enable you to
get work done faster.

2. Discover how to solve real world problems
in Microsoft Dynamics GP 2013 with
easy-to-understand and practical recipes.

3. Access proven and effective Dynamics GP
techniques from authors with vast and rich
experience in Dynamics GP.

Microsoft Dynamics GP 2013
Implementation
ISBN: 978-1-78217-784-5 Paperback: 430 pages

Successfully implement Microsoft Dynamics GP 2013
with easy-to-follow instructions and examples

1. Plan, install, and implement Microsoft
Dynamics GP 2013 with real-world advice from
a Microsoft Dynamics GP MVP.

2. Learn how to set up the core modules in
Microsoft Dynamics GP effectively following
detailed, step-by-step instructions.

3. Discover additional tools and resources
available for your Dynamics GP.

Please check www.PacktPub.com for information on our titles

Developing Microsoft Dynamics
GP Business Applications
ISBN: 978-1-84968-026-4 Paperback: 590 pages

Build dynamic, mission-critical applications with this
hands-on guide

1. Make your business more efficient with fully
customizable applications.

2. Develop mission critical applications with
Microsoft Dynamics GP.

3. Learn how to enhance your application with
sanScript.

Microsoft Dynamics GP
Techniques [Video]
ISBN: 978-1-84968-932-8 Duration: 02:08 hrs

Watch and learn techniques to master Microsoft
Dynamics GP; improve know-how and maximize
your performance

1. Learn how to keep data tidy while speeding up
data entry and reducing entry errors.

2. Follow carefully organized sequences of
instructions as they're performed in an easy to
follow step-by-step video guide.

3. Learn advanced methods of enquiring,
reporting, and system maintenance.

4. Clear, concise, self-contained videos each
covering a technique, tip or feature.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing for a Great Start
	Project kickoff
	Managing customer expectations and commitments
	Tips for customers
	Customer environment and culture
	Resources
	Consulting team resource alignment
	Customer resource alignment
	External resources

	Establishing the team
	The kickoff meeting

	Project management and governance
	The project plan
	Communication
	Change control
	Budget tracking
	The view from the top

	The Agile methodology
	Summary

	Chapter 2: Getting into the Details Early
	The requirement gathering techniques
	The tools to use at this stage
	Questionnaire
	Lead
	Negotiate

	Conference Room Pilot (CRP)
	Why is CRP needed?
	Considerations for CRP success
	The CRP execution

	The Fit/Gap analysis
	The implementation strategy
	Key deliverables from the analysis phase
	Summary

	Chapter 3: Infrastructure Planning
and Design
	The Dynamics AX components and architecture
	Databases
	The middle tier
	Reporting and BI
	Client
	The Help server
	Capacity planning and infrastructure estimation
	Capacity planning
	The deployment details
	Reports
	Operating sites and schedules
	The ISV products
	Customizations
	Integrations
	The batch process

	Using Lifecycle Services – Usage Profiler
	Infrastructure estimation

	Planning the system topology
	The production system topology
	The nonproduction system topology

	Cloud deployment
	The cloud services
	Microsoft Dynamics AX 2012 R3 on Azure

	Industry best practices and recommendations
	Planning
	The SQL server
	The AOS server
	Reviews

	Summary

	Chapter 4: Integration Planning
and Design
	Integration planning
	Integration scenarios
	Integration requirements
	Synchronous or asynchronous

	Integration technologies
	Application Integration Framework and services
	The AIF architecture
	Key concepts in AIF
	Cloud-based integration

	The Microsoft Dynamics AX 2012 Data Import/Export Framework
	An ad hoc manual file import/export
	Automated asynchronous integration
	Master data management

	.NET Framework – .NET Interop
	The .NET Business Connector
	The third-party integration solution
	Connector for Microsoft Dynamics

	Integration design and development
	Selecting the right integration technology
	Developing a high-level conceptual design
	Defining field mapping
	Development, configuration, and testing

	Best practices and recommendations
	Summary

	Chapter 5: Data Migration – Scoping through Delivery
	Managing scope – simplifying data migration through rightsizing the scope
	Questions to ask during the scoping exercise
	Leading the data migration requirements sessions
	The battle of history

	The design and development phase
	Data mapping and transformation
	Planning the data migration
	Selecting the tools for data migration
	How do I select the right tool?
	Data migration versus data entry
	Data import features developed on the project

	The Data Import/Export Framework
	Terminologies
	Architecture
	A summary of key features
	AIF
	Custom X++
	Describing custom X++
	Excel add-in
	Describing an Excel add-in

	Data migration execution tips
	Initial templates for business
	Extracting source data into SQL tables
	Never rename/repurpose fields
	Considering premigration steps
	Considering postmigration steps
	Changing SQL to simple recovery mode
	Multithreading and max DOP
	Index and statistics maintenance
	Disabling the AX logging
	Considering SQL updates on migrated data
	The SQL import – through caution and expertise
	Managing configurations
	Configuration management simplified with DIXF
	Reviewing and deciding on the configuration

	Data validation
	A classic example of a data migration issue in projects
	Summary

	Chapter 6: Reporting and BI
	Gathering BI and reporting requirements
	The top three customer issues in reporting
	Inaccurate data and calculation
	Performance
	Layout and formatting

	Knowing about reporting tools
	SQL Server Reporting Services
	Out-of-the-box SSRS reports

	EP chart controls
	Cues in Role Center
	The AX auto-report wizard
	Exporting to Excel from forms
	Business intelligence/analytics – cubes
	Accessing data from cubes

	The Management Reporter tool
	List pages
	Office Add-ins
	Word add-ins
	Excel add-ins

	Other add-on BI solutions

	Mapping reports and identifying gaps
	The custom report development
	Development
	Testing
	Deployment

	Summary

	Chapter 7: Functional and
Technical Design
	The functional design document
	Why write FDD?
	Fit/Gap review session
	Project management aspects of design
	Things to know before writing FDD
	The party model
	The global address book
	The financial data
	The reverse engineering tool
	Key global features
	Big picture diagrams
	Do's and Don'ts

	The solution design document
	Overview and objectives
	Guidelines for Solution Design Documents

	Engaging ISV partners
	Before choosing ISV solutions
	After selecting the partner
	Common pitfalls

	The Technical Design Document
	Overview and objectives
	Guidelines for the Technical Design Document
	Preparation
	Execution
	Outcome

	Summary

	Chapter 8: Configuration Management
	Configuration planning
	Collecting the configuration data
	Configuration tools
	The Data Import/Export Framework
	Importing and exporting data using various formats
	Copying and comparing data between legal entities
	Copying data between Microsoft Dynamics AX instances
	Creating a custom entity

	The Microsoft Dynamics ERP RapidStart Services
	The Excel add-in
	Export/Import – DAT/DEF file
	The definition group
	Defining the export criteria
	Finding related tables

	The LCS configuration manager – the
beta version
	The Test Data Transfer Tool – the beta version

	Configuration data management
	The golden environment
	Copying the template company
	Building configuration templates

	Summary

	Chapter 9: Building Customizations
	Getting ready for development
	The version control
	The development environment
	The shared AOS topology
	The private AOS topology
	The TFS branching strategies

	Ground rules for development
	Development layers and models
	AOT objects' naming conventions
	Label files and language
	Establishing the code review process

	The development process
	Conceptualization
	Data design
	Adding fields to the existing tables
	Table Types
	Table fields
	Date effectivity
	Table properties
	Index considerations
	Tables key considerations
	The delete actions

	The business logic
	The number sequence framework
	The FormLetter framework
	The RunBase framework
	The SysOperation framework
	Services and the Application Integration
Framework (AIF)
	Other application and development frameworks
	Best practices to customize business processes

	The user interface
	Client user interface guidelines
	Enterprise portal user interface guidelines
	Report user interface guidelines

	Security
	Key concepts

	Coding best practices
	Best practice check
	Naming variables and objects
	Commenting the code
	Labels and text
	Database
	Transactions
	Exception handling

	The Application Life Cycle (ALM)
	Development
	Creating the build
	Testing/defect fixing
	Release to production
	Application life cycle guidelines and best practices

	Summary

	Chapter 10: Performance Tuning
	Performance testing and tuning
	Preparing for the process
	The execution stage
	Outcome

	Tools for performance monitoring
	The trace parser
	The performance monitor
	The performance analyzer – DynamicsPerf
	The LCS system diagnostics
	The performance benchmark SDK
	The SQL Server Profiler
	The SCOM pack for Microsoft Dynamics AX

	Factors that impact performance
	Infrastructure
	Issues due to inadequate hardware
	Virtualization

	The environment setup
	Network bandwidth and latency
	Setting up Windows
	Setting up SQL Server
	An outdated application, kernel, and missing hotfixes
	Inappropriate AX configurations
	Maintaining indexes
	Batch servers

	Code and queries
	Data caching
	Too many RPC calls between the client and
server tiers
	Set-based operations
	Batch parallelism
	Long-running queries – missing indexes
	Displaying methods on form grid

	Approaching performance issues
	Understanding the issue
	Planning and defining the analysis strategy
	Corrective action and review
	General scenarios and investigation strategies
	Issue 1
	Issue 2
	Issue 3
	Issue 4
	Issue 5
	Issue 6
	Issue 7
	Issue 8

	Summary

	Chapter 11: Testing and Training
	Testing
	The test planning
	Test scenarios and test case development
	Unit testing
	Function testing
	System integration testing
	User acceptance testing
	The UAT planning
	UAT execution and experiences
	The UAT outcome

	End-to-end testing
	End-to-end test planning
	Execution and real-life examples
	Training
	A training plan

	The change management
	Training preparation
	System and business readiness
	Security roles
	Business process flows
	Training manuals and user guides
	The Help system

	Personalization
	The training environment

	Summary

	Chapter 12: Go-live Planning
	Key considerations prior to going live
	The decision to go live
	Business contingency planning
	Some technical tips

	Putting together the go-live plan
	Executing a release
	The importance of communication
	Summary

	Chapter 13: Post Go-live
	Initial stabilization
	Triage and prioritization
	Bug fixes and their business impact
	The deployment stage
	Troubleshooting tips and FAQs

	Proactive preparation – what's coming
	Preparing for the first month-end
	Reporting requests
	Security and roles assignments
	Form changes
	Performance reviews
	The data growth
	Training opportunities
	Engaging with Microsoft
	A Microsoft support budget
	Business process optimization
	Open change requests

	Post-implementation review
	Why post-implementation review?
	Key factors to get the most out of PIR
	Preparing for PIR
	Pain points from experience
	Post-implementation review – an AX 2012 customer
	Current state – key challenges
	The unused potential of Dynamics AX
	Improvement opportunities – processes
and systems
	New features from the next release

	Summary

	Chapter 14: Upgrade
	When to upgrade
	Benefit to the business operations
	Are operations ready for the change?
	Stabilization of the newer version
	Continued technical support
	Upgrade versus reimplementation
	Project strategy and planning

	Upgrading options
	Source to target
	In-place upgrade

	The Dynamics AX upgrade process
	Planning the upgrade
	Managing customization (Fit/Gap)

	Managing the scope
	Managing the data
	Business engagement
	Impact on integrations
	Impact on reporting
	Code freeze in the source system
	Infrastructure planning
	The upgrade analysis

	The code upgrade
	Planning for the code upgrade
	The code upgrade process
	The upgrade script
	The security upgrade

	Testing the data upgrade
	Objectives
	Planning
	Execution
	Outcome

	Upgrade testing
	Data validation
	System and regression testing
	Integration and end-to-end testing

	End-user adoption
	Deployment planning and execution

	Summary

	Index

