
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2013
Application Design

Customize and extend your vertical applications with
Microsoft Dynamics NAV 2013

Mark Brummel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2013 Application Design

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Second edition: September 2014

Production reference: 1150914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-036-5

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Mark Brummel

Reviewers
Danilo Capuano

Alex Chow

Stefano Demiliani

Tony Hemy

Daniel Rimmelzwaan

Acquisition Editor
Nikhil Karkal

Content Development Editor
Poonam Jain

Technical Editor
Shashank Desai

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexers
Hemangini Bari

Priya Sane

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Production Coordinators
Kyle Albuquerque

Aparna Bhagat

Melwyn D'sa

Adonia Jones

Manu Joseph

Nilesh R. Mohite

Komal Ramchandani

Alwin Roy

Nitesh Thakur

Shantanu N. Zagade

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Most books on Microsoft Dynamics NAV are about the tooling and the platform,
but this book is different. It describes the building blocks, the code, and the metadata
patterns that the application is made up of. The foundation for the patterns was created
many years ago when we developed the first versions of Microsoft Dynamics NAV.
Since then, they have been reused over and over again by us and every developer in
the partner channel through the copy-paste mechanism. However, it was not until
Mark and his friends in PRS, Gary and Waldo, rediscovered the patterns and started to
write books, blog, teach, and speak at conferences that they became well known. Over
time, this has evolved into a larger effort in collaboration with the Microsoft Dynamics
NAV developer community, which has improved the overall quality of customization
projects and reduced the implementation time. This book is important because it
describes the patterns that are most used and explores how to leverage them when
you modify Microsoft Dynamics NAV to suit industry-specific needs. It also contains
examples on how to create add-ons and other enhancements that are easily upgraded.
Everything is based on Mark's extensive experience of designing Microsoft Dynamics
NAV implementations over almost two decades and expresses Mark's dedication
to the Microsoft Dynamics NAV product and the various passionate people in the
Microsoft Dynamics NAV community.

Michael Nielsen
Director of Engineering for NAV at Microsoft

www.allitebooks.com

http://www.allitebooks.org

Mark Brummel is the person other Microsoft Dynamics NAV experts go to when
they have a really hard problem to solve. In this book, Mark shares the knowledge
he has gained over the past two decades. In my own work as a Microsoft Dynamics
NAV consultant/developer and as an author (writing three texts on programming
in different versions of Microsoft Dynamics NAV), I've had the opportunity to draw
on Mark's expertise many times. By reading this book, you now have a chance to
do the same.

I've known Mark since we met at TechEd in Boston in 2006. Mark was already an
accomplished analyst and developer—an expert in Microsoft Dynamics NAV and
an MVP. Mark had been invited to that conference by Microsoft to help represent
Microsoft Dynamics NAV to the other attendees who were technical experts.
Since then, Mark has gained considerable experience and broadened his knowledge,
particularly in the areas of business application problem solving using Microsoft
Dynamics NAV.

Microsoft Dynamics NAV is a very special business software product. Included
in the product is a set of IDE tools designed for the development of business
applications and tailored to Microsoft Dynamics NAV. This makes it easier to create
enhancements to fit the needs of specific businesses. As an integrated, full-featured
ERP system, Microsoft Dynamics NAV includes functionalities for accounting, order
processing, inventory control, manufacturing, distribution, service management,
materials planning, and asset management. This book provides you with examples
on how to choose from and apply these in a variety of business situations.

Each new version of Microsoft Dynamics NAV has delivered both new application
functionalities and new technical capabilities. Upcoming versions are becoming
more compatible with the cloud, mobile users, and various user interface devices.
Each of these new capabilities expands the types of business applications to which
Microsoft Dynamics NAV can be appropriately applied. With a worldwide-installed
base already of well over 1,000,000 users, we know the uses of Microsoft Dynamics
NAV are only limited by how creatively we apply our knowledge. Read on,
let Mark expand your knowledge, and then use your own creativity to apply
Microsoft Dynamics NAV to the needs of your businesses.

David Studebaker
Co-author, Programming Microsoft Dynamics NAV 2013

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mark Brummel works as a freelancer. His main area of focus is helping out end
users in Microsoft Dynamics NAV implementations all over the world. He has
worked on over 100 projects in almost 20 years.

Mark is an all-round specialist, who excels in both functional consultancy
and development. He started in 1997 as an end user and started working for
the implementing partner in 1999. During these years, he has worked for
resellers where designing and maintaining add-on systems were his specialization.
Coaching colleagues and troubleshooting impossible problems are his passion
and part of his day-to-day work. Mark has trained most of the experienced NAV
developers for the NAV 2009 product in the Netherlands and Belgium, and he has
worked with almost every NAV reseller in Benelux.

In 2010, Mark co-initiated Partner-Ready Software, a community-driven think tank
that comes up with new and innovative ideas to improve the product. In 2011,
Partner-Ready Software presented their ideas to Microsoft and have been working
closely together ever since.

A special project has been design patterns. Together with Microsoft, a community
website was created that contains dozens of frequently used patterns for Microsoft
Dynamics NAV.

When he has time, Mark maintains his blog on www.brummelds.com. This blog
contains a wide range of articles about Microsoft Dynamics NAV, SQL Server,
and Visual Studio. He is also a frequent speaker at Microsoft events and writer
for independent Dynamics NAV websites and user groups. Since 2006, Mark has
been rewarded by Microsoft with the Most Valuable Professional award for his
contribution to the online and offline communities, nine times in a row.

www.allitebooks.com

www.brummelds.com
http://www.allitebooks.org

Acknowledgments

After I wrote my first book about application design in Microsoft Dynamics NAV,
a lot has happened because of the book. I co-initiated Partner-Ready Software and
worked closely together with Microsoft to improve the awareness of the great way
Dynamics NAV is designed. This has been an amazing journey working together
with some of the best people I've met in my professional life.

One of the best results is the awareness of design patterns in the application.
In a team, more than 50 patterns have been documented.

I tried my best to implement the patterns in this book. A lot of the patterns were
already there in the first edition. In this book, the patterns come together as
applications, which give end users a great ERP system to use every day.

Since my previous book, my son Daan was born in 2010. The other kids, Josefien,
Wesley, and Saskia, got older too, and I hope that one day they will understand
the books and the beauty of software architectures. I'd like to thank them and my
wife, Dionel, for giving me the freedom to explore my creativity, writing down
my thoughts, and travel the world to share them. Because of my job, I have the
opportunity to raise my kids in a great place where they can grow up in peace
and become great people. I am very thankful for that.

A lot of people have helped me in writing and publishing this book, and I would like
to thank them all for their help and patience as I am aware I am not always easy to
work with.

Software architecture is more than database tables and code lines. Like any
architecture, every piece should be well balanced and fit together in the complete
structure. Unlike buildings and infrastructure, software is a lot more abstract, and the
architecture is harder to see from outside. Together with Gary Winter, Eric Wauters,
and Vjeko Babic, we have created a framework of patterns and best practices on how
to put software together that is easy to understand, maintain, and upgrade, which are
the cornerstones in applications such as Microsoft Dynamics NAV.

Special thanks go to David and Karen Studebaker. I met them in 2006 at TechEd in
Boston, USA. Their help has been invaluable in bringing structure to my business
and personal life. They have a very special place in my heart.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Danilo Capuano is a software engineer with over 8 years' experience. He lives
in Naples, Italy, where he earned a degree in Computer Science. He currently
works as a consultant on Microsoft Dynamics NAV in an IT company where
he also completed the MCTS certification. You can refer to his website at
www.capuanodanilo.com and his Twitter handle is @capuanodanilo.

Alex Chow has been working with Microsoft Dynamics NAV, formerly Navision,
since 1999. Over the years, Alex has conducted hundreds of implementations across
multiple industries. His customers range from $2 million a year small enterprises to
$500 million a year multinational corporations.

Over the course of his Dynamics NAV career, he has often been designated as
the primary person responsible for the success and failure of a Dynamics NAV
implementation. The fact that Alex is still in the Dynamics NAV business means
that he's been pretty lucky so far. His extensive career in the Dynamics NAV
business is evidence of his success rate and expertise.

With a background of implementing all the functions and modules in and outside of
Microsoft Dynamics NAV, Alex has encountered and resolved the most practical to
the most complex requirements and business rules. Through these experiences, he
has learned that sometimes you have to be a little crazy to have a competitive edge.

Believing that sharing these experiences and knowledge would benefit the Dynamics
NAV community, Alex writes about his journey at www.dynamicsnavconsultant.
com. He is also the founder of AP Commerce, Inc. (www.apcommerce.com), a full
service Dynamics NAV service center founded in 2005. In addition, Alex has
written a book about Dynamics NAV titled Getting Started with Dynamics NAV 2013
Application Development, Packt Publishing.

Alex lives in Southern California with his beautiful wife and two lovely daughters.
He considers himself as the luckiest man in the world.

www.allitebooks.com

www.capuanodanilo.com
www.dynamicsnavconsultant.com
www.dynamicsnavconsultant.com
www.apcommerce.com
http://www.allitebooks.org

Stefano Demiliani is a Microsoft Certified Solution Developer (MCSD), MCAD,
MCTS on Microsoft Dynamics NAV; MCTS on SharePoint; MCTS on SQL Server;
and an experienced expert on other Microsoft-related technologies.

He has a Master's degree in Computer Engineering from Politecnico di Torino.

He works as a senior project manager and solution developer for EID
(http://www.eid.it), a company of the Navlab group (http://www.navlab.it)
and one of the biggest Microsoft Dynamics groups in Italy. His main activity is
architecting and developing enterprise solutions based on the entire stack of
Microsoft technologies (Microsoft Dynamics NAV, Microsoft SharePoint,
and .NET applications in general).

He has written many articles and blogs on different Microsoft-related topics, and
he's frequently involved in consulting and teaching. He has worked with Packt
Publishing in the past for other books related to Microsoft Dynamics NAV.

You can get more details and keep in touch with him by reaching him
via Twitter, @demiliani.

Tony Hemy has been deeply rooted in Microsoft Dynamics NAV from the age of
16. He started as an enthusiastic apprentice and now, more than a decade later, is an
accomplished software development manager for Encore Business Solutions. Over
the years, he has architected and customized Microsoft Dynamics NAV solutions for
global organizations such as Warner Brothers and Viacom, earning an outstanding
reputation and a role as the technical reviewer for two books published on Dynamics
NAV. Tony has also served more than 5 years as a reserve soldier with the British
Army, where he expanded not only his technical skills, but also the personal skills
that have attributed to his disciplined work ethic and his determination to always
do things right.

Tony's hands-on development experience with Microsoft Dynamics has given him
an exceptional ability to help clients define the proper requirements that enable them
to achieve their objectives. He has delivered extended capabilities through every
version, every module, and every feature of Dynamics NAV, building thousands
of unique configurations along the way. Tony also oversees software development,
where he manages and mentors a talented development team and facilitates the
best practices and standards that ensure clients receive the highest quality solutions
and services. Tony is well traveled, well rounded, and well liked for his personable
nature and "no shortcuts" approach, whether he is writing complex code or coaching
his team.

http://www.eid.it
http://www.navlab.it

Daniel Rimmelzwaan was born and raised in the Netherlands and moved to the
USA at the end of 1999 to be with his new American wife. In Holland, he worked as
a Microsoft Access and VBA developer. When looking for a job as a VB developer in
the USA, he was introduced to Navision by a VB recruiter and was intrigued by the
simplicity of its development tools. He decided to accept the job offer as a Navision
developer with the firm intention to continue looking for a real developer job.

Almost 15 years later, a couple of stints with Microsoft's partner channel, a few years
as a freelancer, Daniel is still working with NAV. He currently works with KCP
Dynamics Group, an international partner that provides services to customers all
over the world, and he is enjoying his career more than ever.

Daniel has had the opportunity to work in a wide variety of roles such as developer,
analyst, designer, team lead, project manager, consultant, and more. Although he
has a versatile experience with all things related to NAV, his main focus is designing
custom solutions and business analysis.

Ever since he started working with NAV, Daniel has been an active member
of the online communities for NAV, such as http://mibuso.com/, http://
dynamicsuser.net/, and the online forums managed by Microsoft. For his
contributions to these online communities, Daniel received his first of ten consecutive
Microsoft Most Valuable Professional awards in July 2005, which was just the second
year that the MVP award was given out for NAV. The MVP award is given out by
Microsoft to independent members of technology communities around the world
and recognizes people that share their knowledge with other members of
the community.

Daniel lives with his wife and two kids in Arizona in the USA.

http://mibuso.com/
http://dynamicsuser.net/
http://dynamicsuser.net/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Introduction to Microsoft Dynamics NAV	 9

Versions and history	 9
What is this book about	 10
Setup versus customization	 11
The beauty of simplicity	 12

Horizontal versus vertical solutions	 12
Open source	 12

Design patterns	 13
Architectural patterns	 13
Design patterns	 13
Implementation patterns	 13
APIs	 13

Structure of this book	 13
The Role Tailored concept	 14
The building blocks	 16

Tables as user interface and business logic	 18
Dynamics NAV in throughout supply chain	 20
Some basic design patterns	 21

Number series	 21
Extended text	 22
Navigate	 23
Setup tables	 24
Posting groups	 26
Pricing	 26
Dimensions	 27

Table of Contents

[ii]

Architectural design patterns	 29
Master data	 29
Journals	 30
The general ledger	 31

Balancing	 33
Flow fields and flow filters	 35
More journals and entries	 36

Posting schema	 38
Sub and detailed entries	 38

Combining the journals into processes	 39
Document structure	 40
Document transactions	 40

Other patterns	 40
Relationship management	 41
Jobs	 41
Manufacturing	 42

Summary	 43
Chapter 2: A Sample Application	 45

Fit-gap analysis	 45
Designing a squash court application	 46
Look, learn, and love	 46

Drawing the table and posting schema	 47
The project approach	 47
Interfacing with the standard application	 47

Design patterns	 48
Getting started	 48

Creating squash players	 48
CreateVendor versus CreateCustomer	 51
Reverse engineering	 52

Designing a journal	 62
Squash court master data	 62
Chapter objects	 63
Reservations	 64
The journal	 68

Reservation	 68
Invoicing	 69

Time calculation	 71
Price calculation	 73

Squash prices	 74
Price Calc Mgt. codeunit	 74
Inherited data	 76

Table of Contents

[iii]

Dimensions	 77
Master data	 77
Journal	 79

The posting process	 80
Check line	 81
Post line	 82

Invoicing	 83
Invoice document	 84

Sales header	 85
Sales line	 86
Dialog	 87

Posting process	 89
Analyze the object	 89
Making the change	 92

Navigate	 94
FindRecords	 94
ShowRecords	 95

Testing	 96
Summary	 96

Chapter 3: Financial Management	 97
Chart of accounts	 97

Posting accounts	 99
VAT versus sales tax	 101
The entry tables	 101

Sub accounting	 101
Working with general journals	 103

Entry application	 106
Posting groups	 107
Dimensions	 111
Budgeting	 113

Creating budget entries	 114
Accounting periods	 114

Closing dates	 116
Currencies	 116
Consolidation	 118
VAT statement	 120
Data analysis	 120

Account schedules	 122
Analysis by dimensions	 123

The setup	 126
Customizing financial management	 129

Sales line description to G/L Entries	 129
Extra fields in the G/L Entries	 134

Table of Contents

[iv]

Integrating with financial management	 135
Creating a G/L transaction	 136

The C/AL code	 136
Advanced entries	 138

Look, learn, and love	 139
Chapter 4: Relationship Management	 141

How companies work	 141
Contacts	 142

Salutation codes	 146
Alternative addresses	 148
Relationships with customer and vendor	 149
Duplicates	 149

Profiles	 150
Automatic profiles	 152

Interactions	 154
Automatic interactions	 157
Finished interactions	 158

To-do's	 158
Opportunities	 160

Workflow	 160
Sales stages	 162
Creating an opportunity	 164

Creating segments	 171
Adding contacts	 172
Refine/reduce contacts	 173
Segment criteria	 174
Mailing groups	 174
Log segment	 175

Campaigns	 176
Pricing	 177
Segments	 177
Activate	 178

Outlook integration	 178
E-mail logging	 178

The setup	 179
Customizing relationship management	 180

Salutation formula types	 181
Support the formula	 181
The GetSalutation function	 182
Setup the salutation formula	 184
Test the solution	 184

Customer and vendor numbering	 185
Disabling the direct creation of customers and vendors	 185

Sharing contact information across companies	 186
Share tables	 186
Business relation	 187

Table of Contents

[v]

C/AL code modifications	 188
Number Series	 189
Final steps	 190
Alternative approaches	 190

Adding contacts to segments	 191
Expanding report	 191
Implementing criteria filters	 193
Test solution	 194

Summary	 195
Chapter 5: Production	 197

What is production?	 198
Production methodologies	 198
Raw materials	 199

Basic production principles	 199
Bill of materials	 199
Material requirements planning	 199

Garbage In Garbage Out	 200
Master Production Schedule	 200
Item costing	 200
Item tracking	 200
Quality control	 200
Energy and waste	 201
Association for Operations Management	 201

Getting started	 201
Assembling	 202

Design patterns	 202
The items	 203
Item costing	 203
Item tracking	 204
The bill of materials	 206
Calculating the standard cost	 206
Creating the inventory	 207
Adjusting cost item entries	 208
Posting inventory cost to G/L	 209
Check, check, and double check	 209
Recalculating the standard unit cost	 210
Assembly orders	 210
Check costing (again)	 212
Recalculating the unit cost (again)	 213
Standard cost worksheet	 213
Item Revaluation Journal	 214
The result	 215

Summarizing item costing in 10 steps	 215

Table of Contents

[vi]

Manufacturing	 216
The items, machines, and work centers	 218
Capacity	 218
Production bill of materials	 219
Routing	 221
Testing and low-level code	 221
Simulation, sales orders, or inventory	 223
Calculating MPS and MRP	 224
Inventory profile offsetting	 225
Atomic coding	 226
Calculating a plan	 227
Production order workflow	 228
Purchase orders	 229
Finishing production	 230

Specialized production	 231
Jobs	 231

Vertical industry implementation	 231
Fashion	 232

Bill of materials	 232
Shipping worksheet	 232

Automotive	 233
Tooling and amortization	 233
Item tracking	 233

Medicines	 233
Lot numbers and expiration dates	 233
Quality control	 234

Food	 234
Zero inventory	 234
Ordering schedules	 235

Furniture	 235
Calculations	 236
Inventory	 236

Summary	 237
Chapter 6: Trade	 239

The process	 240
Wholesale versus retail	 240

Sales and purchasing	 240
Transaction mirroring	 242
Sales	 244

Orders	 244
Quote to order and blanket order to order	 245

Creating a new sales order	 245
Sales header	 246
Sales lines	 246
Sales line fields	 247
Validation flow	 248

Table of Contents

[vii]

VAT calculation	 252
Invoicing	 252

Prepayments	 252
Combined invoicing	 253
Credit memo and return orders	 255

Purchasing	 255
Resources	 255
Drop shipments	 256

Document releasing and approval process	 258
Status	 258
Releasing a document	 258
Manual versus automatic releasing	 259
Document approval	 260

Deleting sales and purchase documents	 260
Data deletion	 260
Deletion of shipments and invoices	 261

Inventory management	 262
Items	 263
Locations	 264
Variants	 265
Stock keeping units	 266

Creating a SKU function	 267
Sales pricing	 268
Item ledger entry application	 268

Item application C/AL routine	 268
Requirements to apply an item ledger	 270

Value entries	 271
Direct cost	 271
Value entries and general ledger entries	 272

Transfer orders	 272
Example	 273

Requisition worksheets	 274
Reordering policy	 274
Extending the reordering policy	 275
Virtual inventory	 275

Warehouse management	 275
Warehouse strategy levels	 276
Location setup	 276

Warehouse employees	 277
Bin code | level 1	 277

Example	 278
Bin content	 279

Receipt and shipment | level 2	 280
Warehouse request	 280
Limitations	 281

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Put-away and Pick | level 3	 282
Warehouse request	 282
Warehouse activities	 283
Level 2 and level 3 comparison	 283

Level 4 – receipt with Put-away worksheet	 284
Whse.- activity register versus whse.-activity-post	 285

Level 5 – directed put-away and pick	 285
Zones and default bins	 285
Bin calculation	 286

Implementing and customizing warehouse management	 288
Reservations	 289

Check-avail. period calc.	 290
Always versus optional reservation	 291
Reservation entries	 291
Creating a reservation	 292
Order tracking policy	 295

Example	 295
Replenishment	 296

Auto increment	 297
Trade in vertical industries	 297

Fashion	 298
Sales orders	 298
Reservations	 298

Automotive	 299
Vehicle information	 299
Parts management	 299

Pharmaceuticals/medicines	 300
Medication card	 300
Contribution invoicing	 300

Food	 300
Assortment	 301
Fast order entry	 301

Furniture	 302
Variant configuration	 302
One-off items	 302

Summary	 303
Chapter 7: Storage and Logistics	 305

How to read this chapter	 306
Chapter objects	 306
The process	 307
Using standard features	 308
Defining the modules	 308

Storage	 309

Table of Contents

[ix]

Logistics	 309
Invoicing	 309

The storage application	 309
Documents	 311
Look, learn, and love	 311
Drawing the design pattern	 313

Sharing tables	 313
Getting started	 314
Opening balance	 315
Products	 315

Warehouse	 316
Regions	 316
Shelves	 317

Registration worksheet	 317
Storage documents	 318

Receipt	 318
Put-away	 319
Shipment	 322
Picks	 322

The logistics application	 325
Drawing the design patterns	 326
Getting started	 327
Shipments	 327
Routes	 327

Combining shipments	 328
Route optimizer	 329

Route follow up	 331
Incidents	 332

Follow up	 333
The invoicing application	 333

Income and expense	 334
Invoicing	 336

Sales Line	 336
Codeunit Sales-Post (80)	 337

Pricing methodology	 337
Storage prices	 338
Calculation	 338
Result	 340

Periodic invoicing	 340
Processing the buffer	 342

Combined invoicing	 343
Add-on flexibility	 344

Value-added logistics	 344

Table of Contents

[x]

Item tracking	 345
Third- and fourth-party logistics	 345

Summary	 347
Chapter 8: Consulting	 349

The process	 350
Fits	 351
Gaps	 351

Resource groups	 351
Item calculation	 351
Issue registration	 351

Getting started	 352
How many jobs	 352

Job Card	 353
Job task and planning lines	 354
Job journal	 356
Job examples	 357

Chapter objects	 357
The new implementation	 357
The infrastructure	 359
The upgrade	 360
The support team	 361

Time sheets	 362
Design pattern	 362

Purchasing	 364
Item costing versus work in progress	 365

Invoicing	 365
Calculating work in progress	 366

WIP post to general ledger	 368
Changing jobs	 368

Quantity budgeting	 368
Resource Groups	 370
Calculations	 371
Issue registration	 375

Summary	 376
Chapter 9: Interfacing	 377

Interface types	 378
Import and export	 378

Manual	 379
Data pulling	 379
Data pushing	 379

Event-driven versus timer-driven	 379

Table of Contents

[xi]

Interfacing technologies	 379
File	 380
Automation control	 380
DotNet interoperability	 381
Client extensibility	 381
Open Database Connectivity (ODBC)/ADO	 381

Reading from Microsoft Dynamics NAV	 382
Writing to Microsoft Dynamics NAV	 384
Talking to other databases	 384

SQL Server interfacing	 384
Microsoft Message Queue	 385

Application server	 385
Web services	 386

Exposing a NAV web service	 386
Consuming a Microsoft Dynamics NAV web service	 387

Standard application interfaces	 387
Office integration	 388

Word and Excel integration	 388
Advanced Excel integration	 390
Outlook integration	 393

Outlook part	 393
ExtendedDatatype property	 394
Mail and SMTP mail codeunits	 395
Outlook synchronization	 395
Exchange integration	 396
Office 365	 396

SharePoint	 397
Client add-ins	 397

Interface methodologies	 399
The scenario	 399
The design	 400

The mapping	 400
The gaps	 401
What if it does not work	 402

The scenario	 402
The interface type	 403
The interface technology	 403
Logging	 404
The design pattern	 404
The solution	 405
Testing	 412
Viewing the results	 413

Interfacing into the future	 415
Cloud-enabled Microsoft Dynamics NAV	 415

Summary	 416

Table of Contents

[xii]

Chapter 10: Application Design	 417
Application life cycle	 417

Design to use	 419
Pages	 419
Role centers	 421
Reports	 424

Design to Maintain	 424
Naming	 425
Quantity versus quality	 426

Design to support	 427
Second-level support	 428

Design to upgrade	 429
Has Microsoft changed my (referenced) object	 429
Documentation	 431
Split operational and financial information	 431

Design to perform	 431
OLTP versus OLAP	 432
Fast transaction posting	 432
Job Queue	 434
Date compressing and cleanup	 434
Locks, blocks, and deadlocks	 436
Impact on development	 440

Design to analyze	 440
Report design	 441

Version and object management	 442
What is a version	 442
Version numbering	 442

Combining versions	 443
Creating a version	 443

Tracking object changes	 443
Saving older versions	 444

Development methodology	 444
A sample approach	 445

Fit/gap analysis	 446
Prototyping	 446
Development	 446
Implementation	 449
Maintenance and support	 449

The project	 449
Standard, customized, or both	 449

Add-on products	 450
Customizing	 451
Total cost of ownership	 451
The Road to Repeatability program	 451

Roadmap to success	 451
Summary	 452

Table of Contents

[xiii]

Appendix: Installation Guide	 453
Licensing	 453

Installing Microsoft Dynamics NAV	 453
Changing the license	 454

Restarting service tier	 455
Installing the objects	 455

Importing a FOB file	 456
Installing the Dynamic Link Library files	 457

Registering NavMaps.dll	 457
Registering VEControl.dll	 458

Index	 459

Preface
In 1997, the company I worked for was looking to replace their MS-DOS-based
software package. We were very fortunate in finding Navision Financials 1.1 as a
software package that supported the upcoming Windows platform and was flexible
enough to be implemented, supporting our demands.

Even though the standard functionality was nowhere near what we have today,
the structure of the application design was simple and solid and has not changed
since then.

In the years after that, more companies embraced Navision as their answer to the
changing demands in the market, and many vertical solutions that still exist today
started their life cycle. With the acquisition of Navision by Microsoft, the interest of
new partners grew into the channel we know today.

Microsoft Dynamics NAV offers a unique development experience that can only be
fully used once you understand how the standard application parts are designed.

When properly licensed, everyone can change how the application works. With this
great possibility comes great responsibility as this means that we can also easily
break important business logic.

This results in a unique need for a designer of applications that run inside Microsoft
Dynamics NAV to know more about the application without going into deep
functional details.

The balance in this book will be between learning and understanding how the
standard application features of Microsoft Dynamics NAV are designed, and
how to use this knowledge when designing our own solutions. The area between
understanding the application functionality and technical design is very thin.

Preface

[2]

In this book, we will make both changes to the standard application and create
new solutions. We will also discuss how Microsoft Dynamics NAV can work
with other applications.

What this book covers
Chapter 1, Introduction to Microsoft Dynamics NAV, will introduce you to Microsoft
Dynamics NAV. We will briefly talk about the history of the application and talk
about the concepts. We will cover some of the basic design patterns such as Number
Series and Navigation. Then we will discuss the data model principles used by
Microsoft Dynamics NAV using master data, journals, and ledger entries covered
by documents.

Chapter 2, A Sample Application, will implement the theory you learned in the first
chapter in a sample application. The goal of this chapter is to better understand
how Journals and Ledger entries work throughout the system, and how to create
your own Journal application. You will learn how to reverse engineer the standard
application to learn from it and apply this to your own customizations. We will
integrate the application with relationship management and sales in Microsoft
Dynamics NAV, and extend Navigation and Dimensions for our solution.

Chapter 3, Financial Management, will explore how the financial management part
of the application can be used and how it is designed. This is the heart of Microsoft
Dynamics NAV. You will learn important concepts such as VAT and TAX, posting
groups, closing dates, entry application, and financial data analysis. We will make
some changes in the core application, adding new information to the general ledger,
and learn how to integrate financial management into our add-on solution.

Chapter 4, Relationship Management, will help you to analyze the sales data in our
system and be more productive towards your customers. We will explore the unique
design of this part of the application and integrate this with the sample application
we created in Chapter 2, A Sample Application.

Chapter 5, Production, will show us how to set up Microsoft Dynamics NAV for
production companies. These companies are at the start of the supply chain.
We will discuss the assembly management and manufacturing. Item Costing
and Item Tracking are the key elements when using this part of the application.
We will look at the planning worksheet, and how to create production orders using
Make-to-Order and Make-to-Stock policies. We will reverse engineer the Inventory
Profile Offsetting codeunit and see how this leads to planning and purchase orders.
At the end of this chapter, we will look at ten ways to customize production for
vertical industries.

Preface

[3]

Chapter 6, Trade, will discuss the relationship between sales, inventory management,
and purchasing, and how warehousing can be involved using different levels of
complexity. Without sales, most companies will not survive. We will learn how
reservation entries are used in the system from a technical perspective.

Chapter 7, Storage and Logistics, will design and build a solution for planning routes
for shipments, a feature that is not available in Microsoft Dynamics NAV. We will
design a solution that can be used by trading companies not only for their own
shipments but also for storage companies. The solution is seamlessly integrated with
the Dynamics NAV product. We will extend the Journal knowledge that we learned
in Chapter 2, A Sample Application and Chapter 3, Financial Management, with new
document structures we learned in Chapter 5, Production and Chapter 6, Trade.

Chapter 8, Consulting, will discuss how to implement the Job functionality using four
example jobs, and extend jobs with an issue registration and timesheet application
using resource groups and calculations. The Jobs functionality in Microsoft
Dynamics NAV can be compared to an add-on solution. It was designed outside
financial management and trade but is still integrated into the product.

Chapter 9, Interfacing, will discuss how to design a rock solid business-to-business
interface. In the last decade, interfacing has become a crucial part of designing and
implementing ERP systems. We will show you which technologies are available
to use for interfacing and how these technologies are implemented in the standard
product. We will discuss all the built-in interfaces with other Microsoft applications
such as Office, SharePoint, BizTalk, and Exchange.

Chapter 10, Application Design, will focus on the concepts of application design
and how they apply to Microsoft Dynamics NAV. We will focus on design to use,
maintain, support, upgrade, perform, and analyze. This includes concepts for the
user interface, version management, and the development methodology.

Appendix, Installation Guide, will cover installation procedures associated with objects
of Dynamics NAV.

What do you need for this book
To successfully follow the examples in this book, you will need the following:

•	 The Microsoft Dynamics NAV 2013 product CD to install the application.
•	 A full developer's license, which can be obtained by being registered or

register as a Microsoft Dynamics NAV partner. Alternatively, most of
the example code can be explored using a demo license, which can be
downloaded from MSDN.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

•	 Microsoft Office and SQL Server Management Studio for the interface
examples in Chapter 9, Interfacing.

The Appendix, Installation Guide, describes how to install these prerequisites.

Who this book is for
Basically, this book is for:

•	 NAV consultants and developers
•	 Designers of business applications
•	 Application managers at end users
•	 Business owners and influencers

This book assumes that you have a basic understanding of business management
systems, application development, with a working knowledge of Microsoft
Dynamics NAV or another ERP system.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We need to copy the CreateVendor function."

A block of code is as follows:

Currency Code - OnValidate()
IF "Currency Code" <> xRec."Currency Code" THEN
IF NOT JobLedgEntryExist THEN
CurrencyUpdatePlanningLines
ELSE
ERROR(Text000,FIELDCAPTION("Currency Code"),TABLECAPTION);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

UpdateSquashPlayer()
WITH SquashPlayer DO BEGIN
GET(ContBusRel."No.");
xRecRef.GETTABLE(SquashPlayer);
NoSerie := "No. Series";

Preface

[5]

TRANSFERFIELDS(Cont);
"No." := ContBusRel."No.";
"No. Series" := NoSerie;
MODIFY;
RecRef.GETTABLE(SquashPlayer);
ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"We can add functions in the Globals menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Where to find the screens in this book
Most of the screens in the book were created using the Windows Client with
Microsoft Dynamics NAV 2013 Release 2. Wherever possible and necessary, the
Role Center that was used is mentioned. Some chapters had new or modified
Role Centers.

To find a screen, type the name in the search window on the upper-right corner of
Role Center, as shown in the following screenshot. This will lead you there and tell
where to find it in the menu.

Search window

Preface

[6]

Screenshots
All the screenshots in this book are taken from Windows client, which was
introduced with Microsoft Dynamics NAV 2013 Release 2.

For most the images, the Action Pane and FactBox Pane were turned off to save
space. This can be done using the Customize option on each page.

Customize option

How to read the application schemas
Most of the chapters in this book have schemas to clarify the flow of data though the
system. They are specially designed for this book.

Table Object
(Object Number)

Codeunit or
Report

(Object Number)

Page
(Object Number)

To read the schemas, follow the arrows. Wherever possible, the functional areas are
grouped using boxes. Some schemas might have more starting and ending points
as this is how the application is designed. Multiple master data tables are processed
using normalized business logic.

Number and date punctuation
This book is written by a Dutch author, which means that all the number and date
formatting is done in Dutch formats, for example 1.000,00 instead of 1,000.00 and
18-10-10 for October 18, 2010.

Preface

[7]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[8]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Microsoft
Dynamics NAV

Once upon a time; this is how fairytales often start and even though the story of
Microsoft Dynamics NAV is everything but a fairytale, it sure has some magic.

With more than 100,000 installations, it is one of the most popular ERP packages in
the mid-market. In this book, we will go through the magic of the Dynamics NAV
application. We'll see how Dynamics NAV will give better information on how our
business is doing and provide a better insight where processes can be optimized or
need to be changed.

In this chapter, we'll discuss the basic principles of the Microsoft Dynamics NAV
application, how it's structured, and why. After reading this chapter, you will have
a better understanding of what to expect when implementing and designing for
Microsoft Dynamics NAV.

Versions and history
At the time of publishing this book, Microsoft Dynamics NAV 2013R2, is the most
recent version of the product. When the Windows version was first introduced in
1995, the product was called Navision Financials 1.0. The Danish software company
that originally developed the product, Navision Software A/S, was not yet acquired
by Microsoft and it was a revolution. It was a full Windows product and had all
basic functionality that small companies needed. It is important to understand that
the original version was targeted at smaller companies.

Introduction to Microsoft Dynamics NAV

[10]

Since then, we have had many (20+) versions. All new versions contained new
functionality and with it the product has become more mature and suitable for
bigger companies as well. This was especially empowered with the support of
the Microsoft SQL Server platform, allowing more concurrent users to work in
the same application areas.

Until Version 5.0, the technology of the product did not change. The original
intention of Microsoft was to release a new technology platform together with
new functional changes. This turned out to be a very difficult task so they decided
to split the technology into two releases. Version 5.0 contained new functionality
and improvements while Version 2009, or 6.0, which is the technical release number,
was a technology release.

The technical challenge was to migrate from the old C++ platform to .NET and
to move from a two tier to a three tier technology. This was also the first release
with a drastic change in the user interface. Microsoft Dynamics NAV 2009 contains
an entirely new user interface, the Role Tailored Client, which is built new from
the ground up — the existing (classic) user interface is the same with no changes.
During this migration process, all application functionality was frozen although
small improvements and bug fixes were made in 2009 SP1.

With Microsoft Dynamics NAV 2013, we have entered a new era where the
transformation is complete. The product is converted to .NET and even supports
limited use of DotNet Interoperability directly from the C/AL programming
language. The classic user interface is discontinued as is the native database.

This book supports functionality from the 2013 release although most concepts
relate back to the older versions.

What is this book about
The title of the book is Microsoft Dynamics NAV 2013 Application Design. What does
application design mean? And what does it mean in Microsoft Dynamics NAV 2013?

Microsoft Dynamics NAV 2013 is a complete ERP package, but unlike other ERP
packages, it has a design capable of providing an open structure and a development
platform. The idea is to provide 80 percent of the solution out of the box and allow
the other 20 percent to be designed by qualified business application developers.

The partner channel is a unique part of Microsoft Dynamics NAV. From the moment
Navision was introduced, company management decided that it would only make
sense to have an indirect selling model and to let the resellers (called partners) have
the availability to change the product and add new functionalities.

Chapter 1

[11]

This book is about both the 80 percent and the 20 percent. We'll see that the
percentages differ per industry where it is applied. Some industries have close
to a 100 percent fit while others have a need for an 80 percent development.

So there is a very thin line in this book between using the standard application and
designing changes and expanding the product. Although this is not a development
book, we'll dive into code and objects in almost every chapter.

Reading this chapter will be more than enough to understand the code but if you
want to know more, we highly recommend reading Programming Microsoft Dynamics
NAV 2013, David A. Studebaker, Christopher D. Studebaker, Packt Publishing.

This book is not a manual for Microsoft Dynamics NAV 2013. It will give you a clear
idea of how the structure of the application is laid out and about its possibilities.
We do not want to replace or rewrite the Microsoft documentation but rather want
to provide ideas that you might not have thought about.

Setup versus customization
In Microsoft Dynamics NAV, the line between implementing and developing is
very thin. Where you would perform a lot of setup in other ERP packages, you'll
see that it often makes more sense in Dynamics NAV to make a change with the
development tools.

The standard package is very complete in its functionality but does not support
all industries. It is more a framework for partners to work with. In this book, we
will explain this framework and what philosophy it is built on. Understanding
this philosophy is critical to knowing how to expand the functionality.

However, expanding the functionality means customizing the application. Do end
users in 2013 still want customized applications? Mostly, they will say they don't
want their software customized, but in the next breath, they will say that the software
should change to match their way of doing business, and that they should have to
change their business to fit the software.

This is why Microsoft pushes their partners to create horizontal and vertical
solutions on top of the standard product and release these solutions as products
with their own versions as if they were a part of the standard applications. This
way of using the partner channel is a unique concept that has proven to be very
successful and make Microsoft Dynamics NAV useable in almost any industry.

Most companies, however, have such a unique way of working that they will always
require more or less customized solutions. The total cost of ownership depends on
the level of customizations and how these customizations are designed.

Introduction to Microsoft Dynamics NAV

[12]

The key is in knowing when to do a setup and when to do a customization. Only a
solid understanding of the application will help you determine which is correct.

After reading this book, you will know how to design your application best to have
a good balance between cost of ownership and functionality.

The beauty of simplicity
As discussed earlier, the application is designed to be expanded and changed by
external partners. When this partner program was created, a decision was made that
partners could only do a proper job if the application was completely open for them
to add and change. This philosophy is very important to understand when you first
start implementing or changing Microsoft Dynamics NAV.

Partners can change all business logic in the application. They can add new fields to
tables and create their own tables. The only thing they cannot do is delete fields from
the tables in the base application.

As you can see, Microsoft Dynamics NAV is an extremely flexible and open product
with a lot of freedom. But with freedom comes responsibilities. In Dynamics NAV,
you are responsible for the housekeeping in your system.

Horizontal versus vertical solutions
Because of this open system, partners have created thousands of smaller and larger
changes to the system. Some of these changes were bundled into new functional
pieces and called add-ons. These add-ons are often solutions that change Dynamics
NAV into a product for a specific industry rather than a generic ERP system.
Other add-ons are specific features that can be used in all industries such as EDI
or workflow. Microsoft calls the industry specific add-ons verticals and the generic
add-ons horizontals.

Open source
Even though Dynamics NAV has an open source for their partners, it does not
come fully equipped with a development environment like most developers are
used to. It has a customization tool that lets you customize the application like
you would customize another ERP system with settings. This customization tool
is a basic tool that is nice to work with but misses some development features
such as version control or IntelliSense. This makes it more difficult to keep track
of your changes. We will discuss how to use Team Foundation Server for Object
Versioning in Chapter 10, Application Design.

Chapter 1

[13]

Design patterns
When customizing Microsoft Dynamics NAV, you can use proven concepts in the
application. These proven concepts are called design patterns. There are three types
of design patterns.

Architectural patterns
Architectural patterns are the main data processes and table structures. Examples are
master data, singleton tables, documents, and posting and archiving processes.

Design patterns
Although this is the name that people use for the entire concept, design patterns are
reusable elements to solve specific problems, such as number series and blocked entity.

Implementation patterns
Different development techniques are called implementation patterns. Examples are
proxy, façade, temporary datasets, and hooks.

APIs
Application programming interfaces (APIs) are reusable blocks of code that
generally do not change. They are as important to know to work with Dynamics
NAV as .NET libraries are to work in C#. Within Microsoft Dynamics NAV,
we have several building blocks that are reused but not changed. Examples
are address formatting and the navigate page.

Structure of this book
This book will cover most functional elements of Dynamics NAV in a number of
vertical industries. We will do this in a supply chain matrix. The specific industries
we will look at are fashion, automotive, medicines, food, and furniture. For production
and trade, we will look at the general process, and we will see how consultancy and
distribution companies help in this process.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Microsoft Dynamics NAV

[14]

The following diagram shows how this book is structured:

S
to

ra
ge

 a
nd

 L
og

is
tic

s
C

ha
pt

er
 7

C
on

su
lti

ng
C

ha
pt

er
 8

Automotive Medicines Food FurnitureFashion

Production | Chapter 5

Trade |Chapter 6

Wholesale and Retail

Relationship Management | Chapter 4

Financial Management |Chapter 3

Raw Materials and Manufacturing

For all these industries, we will look at what parts of the standard product can
be utilized and where we need vertical solutions. We'll discuss how these vertical
solutions will interface with the standard package or maybe even change the
behavior of the standard product.

Two parts of the product, however, are so general in their use and usability for
all industries that we'll discuss them in their own chapter. These are Financial
Management and Relationship Management.

To emphasize the strength of the vertical concept, we'll design and create a
vertical solution for a distribution company.

Now, we will look at some of the basic concepts of the application.

The Role Tailored concept
With the NAV 2009 release, Microsoft marketing decided to introduce the concept of
Role Tailored ERP. Until now, most ERP systems were module driven, meaning the
application has an area for finance, CRM, sales, purchasing, and so on. The access to
the individual modules was separated. A purchaser needs to switch to sales in order
to see the sales orders.

Chapter 1

[15]

Most people in a company have specialized tasks that the ERP system should
support. In a classic ERP interface, the users would have to decide themselves
the location of the parts that they need. This has changed with the introduction
of the Role Tailored concept.

This screenshot shows a purchasers' Role Center. As you can see, all information for
this person in the organization is in one place and usable in a workflow-like way.
Also, the Sales Orders are accessible from the Main Menu window. It is completely
different to the menu found in Version 5.0 or before.

Introduction to Microsoft Dynamics NAV

[16]

However, the Role Tailored concept is not new. Dynamics NAV partners have
been implementing it for many years. In the classic menu, as seen in the preceding
screenshot, it was extremely easy to create new menus and most companies
implemented their own menus per role. When the Microsoft Outlook style menu was
introduced in Version 4.0, end users could create shortcut Menu Suites, which also
quickly became role centers. You can clearly see that the Role Tailored concept is like
coming home for Dynamics NAV.

In Microsoft Dynamics NAV 2013, the Windows Client is no longer referred to as the
Role Tailored Client as it was in Version 2009. All available clients are Role Tailored.

The building blocks
To understand the development examples in this book, we will discuss some of the
basic building blocks of Microsoft Dynamics NAV 2013.

Like all database applications, it starts with tables. They contain all the information
displayed in a structured way. It is important to understand that the tables of Microsoft
Dynamics NAV are not completely normalized. The tables are structured in the way
the user interface works. This makes it easy for nontechnical people to understand
the data model. We'll discuss the unique structure of the application in Chapter 2,
A Sample Application.

Chapter 1

[17]

Tables, however, not only contain data, but they contain business logic as well.
As they are structured like the functionality in the database, tables contain simple
functions like address validation and more complex functions for VAT and
discount calculation.

Whenever functionality gets more complex or can be shared across the application,
it is better to move them to the codeunit object. These are containers of business
logic for a special purpose. Tables can also be used as a class without storing data.
This allows more structured programming.

For the user interface, there are two object types: reports and pages. Reports are
originally intended to be printed on paper but with the current status of technology,
they are more and more used as information dashboards, combining management
information with drill-through possibilities.

As the tables are structured in the way the application works, the pages are bound
to one table. For people new to this concept, it sometimes takes a while to get used
to this.

The Menu Suite defines the way the navigation is structured when people leave
their Role Centers and go to the department pages. The Menu Suite is used for the
Search window.

The last object type is an external interface object. XML ports make it possible to
import and export data in and out of the system.

Query objects are introduced in Microsoft Dynamics NAV 2013 and allow developers
to define SQL Server SELECT statements on the metadata level that can be used in
C/AL code. It is possible to join multiple tables into one query. Query objects can
also be exposed as OData web services.

For this book, the table and page objects are the most important to understand.
Most of this book, however, can also be applied to older versions but then forms
should be applied wherever this book addresses pages.

Introduction to Microsoft Dynamics NAV

[18]

Tables as user interface and business logic
The table object in Microsoft Dynamics NAV is very important. Since it is not
normalized, it contains a lot of information about how the database works.

For example, the Job Card (88) is built on one table, the Job (167). This table contains
all the fields required for this screen.

In a traditional development environment, this screen would have a transaction
GetJobData and UpdateJobData. These transactions would read the information from
the database, map them to the screen, and save the information in the database if the
user is finished. However, in Microsoft Dynamics NAV, all fields that are displayed
in the interface are stored in one table. This makes it possible for the screen to have
built-in triggers to get the data and update the database.

Chapter 1

[19]

The table object then contains the business logic required for this document.
Let's have a look at some of the fields in this table:

In the preceding screenshot, we can see a lot of fields such as WIP Method, Currency
Code, and so on, which are required for a job.

When we click on the C/AL Code icon and we focus on currency code, we get the
following result:

Currency Code - OnValidate()
IF "Currency Code" <> xRec."Currency Code" THEN
 IF NOT JobLedgEntryExist THEN
 CurrencyUpdatePlanningLines
 ELSE
 ERROR(Text000,FIELDCAPTION("Currency Code"),TABLECAPTION);

This contains business logic that gets executed every time something happens with
this field. In this case, the currency factor is recalculated and updated in the sales lines.

So the tables in Microsoft Dynamics NAV are not just data containers, they are the
foundation for both the business logic and the application workflow.

Introduction to Microsoft Dynamics NAV

[20]

Dynamics NAV in throughout supply chain
The Dynamics NAV product is used almost everywhere in the business supply chain.
This is mainly because it is a highly customizable ERP system. Dynamics NAV is used
in the classical supply chain companies, such as manufacturing plants, wholesale
companies, and in retail with or without many changes. But with an add-on, the
product is also used in transportation companies or in the recycling industry.

In order to understand this better, it is important to know how companies work.
A company is a person or a group of persons using materials and resources to
deliver a product or a service to other companies or end consumers. A group of
companies working together is called a supply chain. Dynamics NAV can be used
in all these companies, although it is traditionally used in companies with five to
250 concurrent users.

In order to serve this process, Dynamics NAV has a list of the following basic modules:

•	 Financial management: Traditionally, this was used in companies to comply
with federal regulations of bookkeeping. For entrepreneurs starting their
business, this is usually the part they least like. However, good bookkeeping
can give a clear view on the company's wellbeing and support strategic
decisions with good financial information.

•	 Inventory: Every company that grows will reach a certain point where it is
no longer possible to handle inventory without a system. Keeping too much
inventory is very expensive. A good inventory system can help you keep
your stock as efficient as possible.

•	 Relationship management (RM): When it comes to people, a company is
not only dealing with customers and vendors. RM will help you keep track
of every company and person your company is dealing with.

•	 Sales: The sales process is usually the place where businesses make money.
The system will help you keep track of orders that your customers place.

•	 Purchasing: The purchasing department is usually split in two pieces. One
piece is the purchasing of goods the company needs for itself. This facility
management can grow into a business of its own at large companies. The
other purchasing part is buying the materials and resources you need for
your sales process. For some trading companies, this can even be a drop
shipment process where you never have the purchased goods in house.

•	 Warehouse management: Warehouses are getting bigger and bigger, making
the need for a system that supports the picking and put-away process even
greater. This is usually tightly connected to the sales and purchase process.

Chapter 1

[21]

•	 Manufacturing: When you make products yourself, you need a system
that helps you create a new item from one or more purchased materials
and resources.

•	 Jobs: In some companies, the process of delivering a service is so complex
that it requires its own administration process. Time and billing is usually
a very important process for these companies.

•	 Service management: This supports the service process handling warranty
and necessary periodical maintenance of your items.

Some basic design patterns
Microsoft Dynamics NAV has some basic design patterns that are reused throughout
the application and are necessary to understand the concepts of this book.

Number series
Databases need unique records. The application has two ways of making this happen.

Some tables have automatic incremental numbering that cannot be influenced.
These are often accounting tables that have auditable purposes. Examples of these
tables are G/L entries, G/L registers, and VAT entries.

The other way is using a flexible alphanumeric code. In some setup tables, users are
free to create their own numbers like in the location table but most of the time, number
series functionality is used. These can be influenced by the end user depending on
their access rights. Let's have a closer look at them:

Introduction to Microsoft Dynamics NAV

[22]

Users can define their own numbering, usually starting with an alphanumeric
character. Numbering can be done automatically, manually, or a combination of
the two. Numbers can have a starting date and incremental number. This way you
can number your Sales Invoices SI11-0001. SI means Sales Invoice, 11 means 2011,
and 0001 is the incremental number.

For example, number series can be linked to each other making it possible to
have a different number series for national and international customers.

Extended text
Most master data tables in Microsoft Dynamics NAV have two description fields,
but it is possible to add extra text.

The text can be defined for all languages in the system and made valid for a
specific period.

We can enable or disable using the text for most documents available in the system,
so we can have some long text for the Sales Quote and some shorter text for the
Sales Invoice, as shown in the following screenshot:

Chapter 1

[23]

Navigate
The main reason Microsoft Dynamics NAV consultants like you to use numbers
like SI11-0001 is because of the Navigate functionality. This functionality makes it
possible to find all information in the database linked to this document. If you name
your Sales Invoice 110001 and your Purchase Invoice the same, the system would not
be able to find the information at a detailed level.

When navigating to Posted Sales Invoice 103006 in the CRONUS Demo database,
we get all the information that is linked to this number.

Navigation shows both documents and entries. Using the Show option, we can
drill down into the records and go even deeper into the information. Navigation
is present at most pages that show posted transactions and historical data.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Microsoft Dynamics NAV

[24]

Setup tables
An ERP application can be used in many different ways and to make it work in the
way we want, we need to set it up correctly. We already discussed that Dynamics
NAV has far less setup than other ERP packages and is more likely to be changed,
but nonetheless there is setup work to do.

Every part of the application has its own setup table. There are also some
application-wide or cross-application setup tables. During the implementation,
we need to make sure to touch all of these tables. Changing these setups after
the implementation should be done with great care.

The setup tables use the singleton table design pattern. The following table shows
all Microsoft Dynamics NAV setup tables grouped by type:

Specific setup tables Application-wide setup tables
General ledger setup
Sales & receivables setup
Purchases & payables setup
Inventory setup
Resources setup
Jobs setup
Marketing setup
Human resources setup
Production schedule setup
FA setup
Nonstock item setup
Warehouse setup
Service Mgt. setup
Manufacturing setup

Source code setup
Change log setup
SMTP mail setup
Approval setup
Job queue setup
Online map setup
Interaction template setup
Employee portal setup
Notification setup
Order promising setup
BizTalk management setup

Chapter 1

[25]

When we open a setup from the application, we see some options, including the
numbering we discussed earlier:

Introduction to Microsoft Dynamics NAV

[26]

Posting groups
Microsoft Dynamics NAV is very flexible in its posting to the General Ledger. This is
set up in posting groups. These form a matrix that is filtered out by the application.

Most application areas have one or more posting group tables:

•	 Customer posting group
•	 Vendor posting group
•	 Inventory posting group
•	 Job posting group
•	 Gen. business posting group
•	 Gen. product posting group
•	 Bank account posting group
•	 VAT business posting group
•	 VAT product posting group
•	 FA posting group

We'll discuss posting groups in more detail in
Chapter 3, Financial Management.

Pricing
When it comes to pricing and discounts, Microsoft Dynamics NAV has a very simple
yet effective way of calculating.

All sales and purchase prices are stored in four simple tables:

•	 7002 – Sales Price
•	 7004 – Sales Line Discount
•	 7012 – Purchase Price
•	 7014 – Purchase Line Discount

The system finds the appropriate price by filtering down in these tables. The narrower
the filter, the more likely the price is applied.

Chapter 1

[27]

For example, the normal price of item 1972-W on the item card is 97,480, but from
1-1-2011 it is 843,345.

The filtering is done in codeunits Sales Price Calc. Mgt. (7000) and Purch. Price Calc.
Mgt. (7010). We'll discuss this structure in Chapter 2, A Sample Application, where we
will also create such a structure for our own application.

Dimensions
Throughout the application, an unlimited number of dimensions can be used to
analyze the data. These dimensions are inherited from master data tables.

Introduction to Microsoft Dynamics NAV

[28]

The application has two global dimensions that are directly posted into each
transaction. Six other dimensions can be defined as shortcut dimensions to be
directly used in journals and documents. An unlimited number of additional
dimensions can be added but need to be accessed with additional effort.

The preceding screenshot shows how Global and Shortcut Dimensions can be used
in a Sales Document.

Microsoft Dynamics NAV has built in OLAP possibilities. It allows us to create cubes
to be analyzed within the application or in SQL Server analysis services.

Chapter 1

[29]

Although the cubes can be updated real time during posting, it is highly recommended
to update them periodically in a batch. Also, the number of dimensions has an impact
on the performance of the system.

Dimensions were redesigned in Microsoft Dynamics NAV 2013. The redesign
has a huge impact on application performance and can reduce database size
up to 30 percent.

Architectural design patterns
Microsoft Dynamics NAV has some specific architectural design patterns principles
that are very important to understand before you can create your own structure.
The building blocks are layered and reused and rely on each other in order to
secure data integrity.

Master data
The data model starts with master data. There are three types or levels of master
data. They are all used in transactions. We differentiate supplemental, normal,
and subsidiary master data.

Examples of supplemental data are currencies, locations, and payment terms.
They often do not use a number series but allow us to create our own unique codes.

Examples of master data are G/L Accounts, customers, vendors, items, resources,
and fixed assets. They are numbered using number series and have their own
journal structure.

An example of a supplemental table is the item vendor table.

Introduction to Microsoft Dynamics NAV

[30]

Journals
Every transaction starts with a journal. Each journal can contain a number of
sub-transactions that are treated by the system as one. This way the system is able
to check, for example, whether the integrity of the system is maintained after the
transaction is completed.

The following diagram shows how a journal is structured. PK means Primary Key,
which is the unique identifier of the table:

PK
PK

Description
Source Code
Reason Code

Journal Template Name
Name

Journey BatchJourney Template

NamePK

Description
Source Code
Reason Code

From Entry No.
To Entry No.
Creation Date
Source Code
User ID
Journal Batch Name

PK

Register

Entry No.

No.
Quantity
Amount
Journal Batch Name
Journal Template Name
Source Code
Reason Code

PK Entry No.

Entry

No.
Quantity
Amount
Entry No.
Source Code
Reason Code

PK

PK
PK

Journal Template Name
Journal Batch Name
Line No.

Journal Line

Every journal can contain one or more templates with one or more batches, allowing
multiple users to have multiple templates and batches. A journal line has a source
number field that refers to, for example, the G/L Account number or the item number
we are changing. When we post the journal, the changes are stored in the entry table
and all the lines. For the journal, a register is maintained allowing auditors to check if
the transactions are consistent.

Chapter 1

[31]

The general ledger
To see how this works in the application, we can go to the Chart of Accounts
and the General Journals, as shown in the following screenshot:

If we select G/L Account 1140 and drill down, we will see the details of this record.

Introduction to Microsoft Dynamics NAV

[32]

These are created through journals, so let's open a journal:

This journal contains two documents on the same posting date and the balance is zero.
When we post this journal, the system will create the ledger entries and a register.

Chapter 1

[33]

This is the basic building block for Dynamics NAV. Everything in Dynamics NAV is
built on top of a journal, registers, and entries.

G/L Account
(Table 15)

G/L Entry
(Table 17)

Gen. Journal Line
(Table 81)

G/L Register
(Table 45)

SIFT

Balancing
In any ERP system, totaling and balancing is crucial, and whether you are totaling
the general ledger, customer payments, or inventory, it is important to know the
balance of each account, customer, or item.

Traditionally, this requires calculating these balances and deciding a place to store
the totals and subtotals. In Dynamics NAV, the system has built-in technology that
will handle balancing and totaling for you.

This built-in technology is called Sum Index Field Technology (SIFT). For Dynamics
NAV, it is the key feature to its success.

The way it works is that, as a developer, you define your totaling on an index level.
By associating the totaling fields with a key, the system knows that it has to maintain
the totals for you.

In the original proprietary database, this technique was built in and invisible for the
user, but in the SQL Server database, we can see how this works.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Microsoft Dynamics NAV

[34]

If we go in the CRONUS database and open the G/L Entry table with its keys, we see
this information, as shown in the following screenshot:

Let's take key number two as an example. The key contains the fields G/L Account
number and posting date. If we take a closer look at the SumIndexFields column,
we see the following fields listed:

Notice that these are all fields of type decimal. This is mandatory for SumIndexfields.

From the SQL Server Management studio, you can see the
generated data from the SumIndexField definition. Each key with
SumIndexField generates a view in the database. In older versions
(prior to 5 SP 1), the SumIndexFields are saved in tables.

Chapter 1

[35]

So, now we know that we do not have to worry about maintaining the totals,
we can spend our time on what's really important.

Flow fields and flow filters
As discussed earlier, screens in Microsoft Dynamics NAV are built directly on one
table. These table definitions contain all fields including the totals. However, these
totals are not real database fields.

This can be illustrated by comparing the table definition in Microsoft Dynamics
NAV to the table definition in SQL Server:

The fields Date Filter (28) to Budgeted Amount (33) are not actual fields in the
database. They are helper fields to show data on screen.

Introduction to Microsoft Dynamics NAV

[36]

Flow filters can have seven types; Sum, Average, Exist, Count, Min, Max, and
Lookup and contain a query to the database. For example, Balance at Date (31)
shows the following:

Sum("G/L Entry".Amount
 WHERE (G/L Account No.=FIELD(No.),
 G/L Account No.=FIELD(FILTER(Totaling)),
 Business Unit Code=FIELD(Business Unit Filter),
 Global Dimension 1 Code=FIELD(Global Dimension 1 Filter),
 Global Dimension 2 Code=FIELD(Global Dimension 2 Filter),
 Posting Date=FIELD(UPPERLIMIT(Date Filter))))

This creates the sum of the field amount in the G/L Entry table (17) filtering on
G/L Account, G/L Account No., Business Unit Code, Global Dimension 1 & 2
Code, and Posting Date.

Some of these filters are actual fields in the G/L Account table, but others are
flow filters. Non-existing fields can be used as a runtime filter to limit the results
of the query.

We will use and discuss more of these flow filters and flow fields later in this book.

More journals and entries
So now that we know how a journal works, it might be interesting to build a posting
diagram of Dynamics NAV. Dynamics NAV has a number of journals, registers, and
entries built on top of each other.

The following table shows the most important journals, registers, and entries:

Journals Registers Entries
Gen. Journal Line (81)
Item Journal Line (83)
Res. Journal Line (207)
Job Journal Line (210)

G/L Register (45)
Item Register (46)
Resource Register (240)
Job Register (241)

G/L Entry (17)
Cust. Ledger Entry (21)
Vendor Ledger Entry (25)
Item Ledger Entry (32)
Job Ledger Entry (169)
Res. Ledger Entry (203)
VAT Entry (254)
Bank Account Ledger Entry (271)

Chapter 1

[37]

Please notice that when you look in the database, you'll find more of these tables,
but these are the main building blocks.

Each journal is responsible for creating its own entries but may run another journal
if that is required. For example, an Item Journal may generate G/L entries if required
using a General Journal and a Job Journal may create Item Ledger Entries using the
Item Journal.

We already discussed the G/L Entry table, which is used to store the basic financial
information. This is the basic administration table.

The other entry tables are sub ledger tables. They store redundant information but
have extra information for their specific use. A total of a sub ledger should always
balance with the G/L. We'll see how that works in Chapter 3, Financial Management.
Here are some more tables:

•	 The Customer and Vendor Ledger Entry tables are used to store specific
information about the accounts receivables. They are linked to Customer
and Vendor master data tables.

•	 The VAT Entry table stores specific information to make registration easier.
Most companies do monthly or quarterly VAT registrations with one or
more governmental agencies. VAT is different in many countries and could
be different from what this book describes in localized country systems.

•	 The bank account entries should show exactly what transactions we do on
our bank accounts.

The logistical part of the ERP package is handled by the Item Journal. Every item
that is purchased, produced, or sold is handled though this journal. Services are
handled through the Resource Journal. A resource can either be a person or a piece
of equipment like a lift.

The Job Journal is an umbrella overlaying the entire application. It allows you to
group transactions making it easier to analyze cost and profit for larger projects.

Introduction to Microsoft Dynamics NAV

[38]

Posting schema
When we combine all this information in a schema, we can create the following basic
Microsoft Dynamics NAV posting schema:

Gen. Journal Line
(Table 81)

G/L Register
(Table 45)

G/L Entry
(Table 17)

Cust. Ledger Entry
(Table 21)

General Journal Ledger Entries

Gen. Jnl.-Post
Line

(Codeunit.12)

Item Journal Line
(Table 83)

Item Register
(Table 45)

Item Ledger Entry
(Table 32)

Vendor Ledger
Entry

(Table 21)

Item Journal

Item Jnl.-Post
Line

(Codeunit.212)

Res. Journal Line
(Table 207)

Resource Register
(Table 240)

Job Ledger Entry
(Table 203)

VAT Entry
(Table 254)

Resource Journal

Res. Jnl.-Post
Line

(Codeunit.12)

Job. Journal Line
(Table 230)

Job Register
(Table 261)

Job Ledger Entry
(Table 169)

Bank Account
Ledger Entry

(Table 271)

Job Journal

Job Jnl.-Post
Line

(Codeunit.1012)

Here you can clearly see which journal is responsible for creating what entry.
An entry table is always maintained by one process.

The General Journal is the heart of the application where the basic financial
information is created in the ledger entries. All the basic information is in the
G/L Entry table which is grouped in the G/L Register, which is then always
balanced. The Customer, Vendor, VAT, and Bank Account Ledger entries are
sub tables that always refer to a G/L register. We can never create one of these
entries without touching this part of the application.

Sub and detailed entries
When an entry is created, its basic structure should not be changed for audit ability.
This is why most entries in Microsoft Dynamics NAV have sub or detailed entries.

The Customer and Vendor Ledger Entry have details for application, unrealized loss
and gain, various discounts, and corrections. This way, we are able to keep track of
what happens with an entry without changing the original information.

Chapter 1

[39]

Customer
(Table 18)

Cust. Ledger Entry
(Table 22)

Detailed Cust.
Ledg. Entry
(Table 379)

G/L Register
(Table 45)

Gen. Journal Line
(Table 82)

SIFT

SIFT

The Item Ledger Entries have a wide variety of sub entries depending on what you
are doing with the items.

One of the most important tables in Microsoft Dynamics NAV is the Value Entry
table. Each Item Ledger Entry has one or more of these. This table is the soft bridge
between the inventory and the financial part of the application.

Warehouse entries enable moving items within our organization without touching
the basic inventory or financial application.

Combining the journals into processes
The journal and entry tables make it possible for us to do the basic balancing in our
company but people in companies are not used to working with journals.

Traditionally, companies work with documents. This was also the case before
ERP applications were introduced. A sales representative would travel through
the country with a paper order block and then come back to the back office.
The back office then ships the orders with shipping documents and invoices.

Microsoft Dynamics NAV supports working with documents. Traditionally, we
divide the documents in sales and purchasing documents but the later versions
of Microsoft Dynamics NAV also have warehouse documents. Other supported
documents are reminders and service documents.

Introduction to Microsoft Dynamics NAV

[40]

Document structure
A document in Microsoft Dynamics NAV always has a header and lines.
The header contains the basic information about the transaction, such as
shipment dates, addresses, and payment terms.

The lines contain information about what is sold or purchased. This can be
a variety of G/L Accounts, items, and resources.

A document can have different stages depending on the type of the transaction.
A quote is a typical starting point in the sales or purchasing process. When a quote
is approved, it can be promoted to an order, which is then shipped and invoiced.
The process can be also reversed via a return order resulting in a credit memo.

Quote
(Table 36)

Order
(Table 36)

Shipment
(Table 110)

Posted Invoice
(Table 112)

Combined
Invoice
(Table 36)

Document transactions
Transactions in the database can be started via documents. When a document is
processed, the necessary journals are automatically populated. For example, when
an order is shipped, the goods leave the warehouse, then an Item Journal is created
and posted to handle this. When the invoice is posted, a General Journal is generated
to create G/L Entries and a Customer or Vendor Ledger Entries.

Other patterns
The previously discussed pattern with journals and documents is by far the
most important transaction structure. But Microsoft Dynamics NAV also has
other structures as well.

The three most important other patterns are CRM, jobs, and manufacturing.
These areas are all umbrella structures for other processes.

Chapter 1

[41]

Relationship management
Microsoft Dynamics NAV RM helps you to maintain master data and analyze
transactional data. It is both at the very start of the data process and at the end.

We have already seen the customer, vendor, and bank master data records.
But what if a vendor is also a customer, or vice versa. We don't want to maintain
the same data twice. We might also want to keep extra information such as contact
persons and the interests of our customers and vendors. We'll see more of that in
Chapter 4, Relationship Management.

There is also a need to analyze the data we have created with the document and
journal structure.

Contact
Company
(Table 5050)

Contact
Person

(Table 5050)

Customer
(Table 1B)

Blank
(Table 270)

Vendor
(Table 23)

Jobs
Sometimes, a project can be more comprehensive than just a purchase and/or a
sales document. A project can take from several weeks to over a year and requires
multiple documents.

The job structure in Dynamics NAV allows you to handle this. Every document and
journal transaction can be attached to a job, making it easy to analyze profit and loss
and even schedule your jobs.

Introduction to Microsoft Dynamics NAV

[42]

The jobs module also allows you to do a calculation before you start the project and
balance this calculation throughout the process.

Job
(Table 167)

Job Task
(Table 1001)

Job Planning Line
(Table 1009)

Purchase
Document

(Table 38)

Sales
Document

(Table 36)

Manufacturing
When you produce your own items, you have different needs in your ERP process
than when you only purchase the items you sell.

The manufacturing module of Microsoft Dynamics NAV allows you to handle this
process. Basically what it does is create an item out of one or more other items
and resources.

Production
Order

(Table 5405)

Prod. Order Line
(Table 5406)

Output Journal
(Table 83)

Prod. Order
Component
(Table 5407)

Consumption
Journal
(Table 83)

Chapter 1

[43]

Summary
In this chapter, we have covered the basic structure of Microsoft Dynamics NAV.
We talked about the design philosophy, application objects, and the unique table
structure. We discussed the Role Tailored Concept and its reflection to older versions
of the product. We talked about some basic functions of the product-like number
series and application setup. We also talked about the important basic posting
structure and the way SIFT works. We discussed how the document structure
overlays the journal structure and how the umbrella structure is on top of that.

In the next chapter, we will look at a sample industry application and its effect on
the standard functionality.

www.allitebooks.com

http://www.allitebooks.org

A Sample Application
Let's create a structure of our own in Microsoft Dynamics NAV. To do this, we must
think of something that is not already available in the standard package but can be
built on top of it.

For our example application, we will run a squash court. Running a squash court is
simple to understand but something we cannot do without changing and expanding
the product. In order to define our changes, we first need to make a fit-gap analysis.

After this chapter, you will have better understanding on how to reuse the framework
of the Microsoft Dynamics NAV application. We will show how to reverse engineer
the application and to study its functionality by going into the application code.

For this example, some new and changed objects are required. The Appendix,
Installation Guide, describes where to find the objects and how to install and
activate them.

In the first part, we will look at how to reverse engineer the standard application to
look at and learn how it works and how to reuse the structures in our own solutions.

In the second part of the chapter, we will learn how to use the journals and entries
in a custom application.

Lastly, we will look at how to integrate our solution with the standard application;
in our case, sales invoicing.

Fit-gap analysis
When we do a fit-gap analysis, we look at the company's processes and define what we
can and cannot do with the standard package. When a business process can be handled
with the standard software we call this a Fit. When this cannot be done it's called a
Gap. All gaps have to be either developed or we need to purchase an add-on.

A Sample Application

[46]

However, even when something could be done with standard software features it
does not necessarily mean that doing this is wise. The standard application should
be used for what it is designed for. Using standard features for something else might
work in the current version but if it changes in a new version it might no longer
fit. For this reason it is better to design something new instead of wrongly using
standard features.

Designing a squash court application
The basic process of a squash court company is renting the courts to squash players;
both members and non-members. There is a reservation and invoicing process
handling different rates for members and non-members.

Although this could be implemented using items as squash courts and customers as
players, this would be a typical example of using standard features wrongly. Instead
of doing this, we will look at how items and customers are designed and use this to
create a new squash court application.

Designing a specific application using standard NAV features is a matter of total
cost of ownership (TCO). If only one customer would use this solution, it would
be better to use the standard application in a creative way. However, if we deploy
the design from this chapter on a multi-tenant architecture and let thousands of
companies run it, it would be economically possible to make the best application
for the job. Keep this in mind each time you make a decision to design.

Look, learn, and love
To determine the design for this application, we will first look at the parts of the
standard application, which we can use to learn how they work. We will use this
knowledge in our own design.

In Microsoft Dynamics NAV, customer and vendor master data are maintained
using relationship management (RM). For our solution, we will create a new master
data for squash players being the business part of the application. This will also be
integrated with RM.

To design the squash court, we will look at the design of items in the standard
package. The squash court will be the product part of our application with a
journal to create reservation entries, which we can invoice.

For this invoicing process, we will use and integrate with the sales part of Microsoft
Dynamics NAV.

Chapter 2

[47]

Drawing the table and posting schema
After we have decided on the design of our application, we can draw the tables and
post the routines as we did in the previous chapter. This will clarify the design for
others and guide us through the development process.

Squash Journal Line
(Table 123456706)

Squash Jnl.-
Post Line

(C.unit. 123456703)

Squash Application

Squash Player
(Table 123456701)

Squash Court
(Table 123456702)

Squash Ledger
Entry

(Table 123456706)

Squash Register
(Table 123456707)

Sales Line
(Table 37)

Sales

Customer
(Table 18)

Sales Post
(Codeunit: 80)

Contact
(Table 9090)

CustVendBank
-Update

Codeunit (5055)

Contact Business
Relation

(Table 5054)

Relationship Management

In the preceding diagram, the objects in Relationship Management and Sales are
standard objects that we will possibly need to modify. The objects for the Squash
Application are new objects but based on similar objects in the standard application.

The project approach
In order to keep track of our project, we'll cut the changes into smaller tasks. The
first task will be to do the changes in relationship management to be able to create
a squash player from a contact. The second part is to create squash courts. The
reservation and invoice processes are part three and four.

Interfacing with the standard application
In our schema, we can see that we have two processes where we need to work on the
standard Microsoft Dynamics NAV processes, which are Relationship Management
and Sales.

A Sample Application

[48]

Design patterns
To create the squash court application, we can use proven design patterns. This will
limit the risk of our development's success and make it easy to communicate with
others who are familiar with the patterns.

Examples of the patterns we will use are master data, number series, and journals.

Not everything that you need will be documented in patterns. Sometimes it is
necessary to innovate. If you do this, it is important to still imagine your design
as a pattern and document it for future use.

Getting started
In the first part of the design process, we will look at how to reverse engineer the
standard application in order to learn and reuse the knowledge in our own solution.

Creating squash players
For the administration of our squash players, we use the data from the contact table.
In the standard product, it is possible to create a customer or vendor with the contact
data. We require the same functionality to create squash players so let's have a look
at how this is done by Microsoft.

Open Contact Card and try to find this function, as shown in the following screenshot:

Chapter 2

[49]

We want a function like this for our squash players. So let's get in and see what it
does. For this, we need to design the page and look at the actions. The page number
in this case is 5050, which we can find by clicking on About this Page in the top-right
corner of the page, as shown in the following screenshot:

This option can be very useful to find information about the fields that are not on the
page, the filters, or the source table.

A Sample Application

[50]

To open the page, we need to open Object Designer in Development Environment
(Shift + F12), as shown in the following screenshot:

Here, we can find 5050 Contact Card in Page:

We are looking for Actions on this page. They are kind of difficult to find if you are
unfamiliar with Page Designer. To open Actions, the cursor should be on the blank
line below the last populated line. Then click on the right mouse button and Actions
or select Actions from the View drop-down menu.

Chapter 2

[51]

Alternatively, you can also use the Preview option from the View
drop-down menu to find the action.

Now, we are in the Action Designer and we can search for the Create as option.
To see what it does, we need to go into the C/AL code by pressing F9 or by selecting
C/AL Code from the View drop-down menu:

CreateVendor versus CreateCustomer
In Microsoft Dynamics NAV, there is a small difference between creating a customer
and a vendor from a contact. When creating a customer, the system will ask us to
select a customer template. The Vendor option does not have that. To keep things
simple, we will look at and learn from the Vendor function in this chapter.

A Sample Application

[52]

The customer and vendor table are almost identical in structure and fields are
numbered similarly in both tables. This is called transaction mirroring between sales
and purchasing, which we will discuss further in Chapter 6, Trade. We will mirror
our new table in a similar way to the other Microsoft Dynamics NAV tables.

The C/AL code in Action tells us that when clicking on the Menu option, the
function CreateVendor in the contact table is started. To copy this feature, we need
to create a new function, CreateSquashPlayer. Let's keep that in mind while we
dive further in this code.

Open the contact table (5050) and search for the function CreateVendor. You
can find functions in a table by going into the C/AL code (F9) from anywhere
in the table designer, and by using the Find [Ctrl+F] function, as shown in the
following screenshot:

Reverse engineering
We need to reverse engineer this code in order to see what we need to create for our
CreateSquashPlayer function. We will look at each part of the C/AL code in order
to decide whether we need it or not.

Chapter 2

[53]

What does the following piece of code do?

TESTFIELD("Company No.");

This tests the current record for a valid Company No. If this fails, we cannot continue
and the end user gets a runtime error.

RMSetup.GET;
RMSetup.TESTFIELD("Bus. Rel. Code for Vendors");

This reads the Marketing Setup table from the system and tests whether the Bus.
Rel. Code for Vendors is valid. We need a new code for squash players here,
which will be added as a new field to the setup table:

CLEAR(Vend);
Vend.SetInsertFromContact(TRUE);
Vend.INSERT(TRUE);
Vend.SetInsertFromContact(FALSE);

Here, the Vendor table is cleared and a function is called within that table, then a
new record is inserted in the database while activating the necessary business logic.
Then the same function is called again with another parameter. Since the Vendor
table is what we are copying, we will write down that we might need a similar
function as SetInsertFromContact:

IF Type = Type::Company THEN
 ContComp := Rec
ELSE
 ContComp.GET("Company No.");

A Sample Application

[54]

This code checks whether the current contact is a company. If so, it populates the
ContComp variable with this record. If not, it populates ContComp with the company
our current contact is related to:

ContBusRel."Contact No." := ContComp."No.";
ContBusRel."Business Relation Code" := RMSetup."Bus. Rel. Code for
Vendors";
ContBusRel."Link to Table" := ContBusRel."Link to Table"::Vendor;
ContBusRel."No." := Vend."No.";
ContBusRel.INSERT(TRUE);

The ContBusRel function refers to the table Contact Business Relation (5054) and is a
linking table in the Microsoft Dynamics NAV data model. Technically, a contact can
be connected to multiple customers and vendors although this does not make sense.
This table is populated here. Let's write down that we need to look into this table and
see if it needs changes:

UpdateCustVendBank.UpdateVendor(ContComp,ContBusRel);

UpdateCustVendBank is an external codeunit that is used with the function
UpdateVendor. We might need a copy of this function for our Squash players.

MESSAGE(Text009,Vend.TABLECAPTION,Vend."No.");

The preceding code gives a message box for the end user that the record is created
with the new number. Now, we have a number of things on our to-do list:

1.	 Create a master data table that looks like the Vendor table.
2.	 We need to copy the CreateVendor function.
3.	 Look at the Contact Business Relation table and the

CustVendBank-Update (5055) codeunit.

Let's look at the latter to learn something important before we start with the first:

UpdateVendor()
WITH Vend DO BEGIN
 GET(ContBusRel."No.");
 xRecRef.GETTABLE(Vend);
 NoSerie := "No. Series";
 PurchaserCode := Vend."Purchaser Code";
 TRANSFERFIELDS(Cont);
 "No." := ContBusRel."No.";
 "No. Series" := NoSerie;
 Vend."Purchaser Code" := PurchaserCode;
 MODIFY;

Chapter 2

[55]

 RecRef.GETTABLE(Vend);
 ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

This code synchronizes the contact table with the vendor table. It does that by
using the TRANSFERFIELDS function. This function transfers all fields with the same
number from one table to another. This means that we cannot be creative with our
field numbering. For example, in the contact table, the Name field is number 2. If we
were to use a different number for the Name field, TRANSFERFIELDS would not copy
the information.

Using this information, our table should look like this:

Notice that we use field 19 for our Squash Player specific field. This is because field
19 was used for Budgeted Amount in the vendor table. We can therefore safely
assume that Microsoft will not use field 19 in the contact table in future.

An alternative approach for this if we wanted to be even safer is to add the fields
that are specific to our solution as fields in our add-on number series. In our case,
it would be 123.456.700.

You can copy and paste fields from one table to another table.
Note that table relations and C/AL code in the OnValidate and
OnLookup trigger is copied as well. If the table we want to create
is similar to an existing table, we could also use the Save As option
from the File drop-down menu.

A Sample Application

[56]

The next step is to add some business logic to the table. We want this table to
use number series functionality just like the vendor table. This requires some
standard steps:

1.	 First we create the setup table. A number series is defined in a setup table.
As the Squash Court module will be quite sophisticated, we'll create
our own.

On MSDN, you can watch a video about the singleton pattern
at http://msdn.microsoft.com/en-us/dynamics/
nav/dn722393.aspx.

A setup table always has a single Primary Key field, as shown in the
preceding screenshot, and the necessary setup fields. This table is
designed to only have one single record.

2.	 Then, we create a link to the number series. Our Squash Player table is now
required to have a link to the number series. We can copy this field from the
vendor table and can make a table relation to the No. Series table, as shown
in the following screenshot:

http://msdn.microsoft.com/en-us/dynamics/nav/dn722393.aspx
http://msdn.microsoft.com/en-us/dynamics/nav/dn722393.aspx

Chapter 2

[57]

3.	 Now, we add the C/AL business logic to our table, but first we need to
define the variables that are required. These are our new Squash Setup
table and the Number Series Management codeunits.

We can define the variables in the specially created C/AL Globals menu.

It is highly recommended to use the Microsoft naming
standard, which allows you to copy and paste a lot of code
and makes it easier for others to read your code.

Number Series require three places of code. This code makes sure that the business
logic of the Number Series functionality is always followed:

1.	 The following code goes into the OnInsert trigger. It populates the No.
field with the next value of the Number Series:
OnInsert()
IF "No." = '' THEN BEGIN
 SquashSetup.GET;

A Sample Application

[58]

 SquashSetup.TESTFIELD("Squash Player Nos.");
 NoSeriesMgt.InitSeries(SquashSetup."Squash Player Nos.",
 xRec."No. Series",0D,"No.","No. Series");
END;

2.	 The OnValidate trigger of the No. field tests when a user manually enters a
value if that is allowed:
No. - OnValidate()
IF "No." <> xRec."No." THEN BEGIN
 SquashSetup.GET;
 NoSeriesMgt.TestManual(SquashSetup."Squash Player Nos.");
 "No. Series" := '';
END;

3.	 Lastly, we create a new AssistEdit function. This function is for readability
and others reading your code afterwards. The code is used in the page or
form and allows users to switch between linked number series:
AssistEdit() : Boolean
SquashSetup.GET;
SquashSetup.TESTFIELD("Squash Player Nos.");
IF NoSeriesMgt.SelectSeries(SquashSetup."Squash Player Nos.",
 xRec."No. Series","No. Series")
THEN BEGIN
 NoSeriesMgt.SetSeries("No.");
 EXIT(TRUE);
END;

When the Number Series are in place, we can make the necessary change in the
Contact Business Relation table.

In this table, we need to add the possibility to link squash players to contacts. This is
done in the Properties window of Table Designer that can be accessed by pressing
(Shift + F4) or by using the Properties option from the View drop-down menu,
as shown in the following screenshot:

Chapter 2

[59]

First, we add the Squash player option to the Link to Table field, as shown in the
following screenshot:

Options are converted to SQL Integer data types. Make sure
to add some blank options so when Microsoft releases other
functionality we are not impacted. Changing the integer value of
an existing option field requires a lot of work.

Then, we create a table relation with our new table, as shown in the
following screenshot:

A Sample Application

[60]

The next step is to expand the CustVendBank-Update codeunit with a new
UpdateSquashPlayer function. This is a copy of the UpdateVendor function
that we discussed before. We can add functions in the Globals menu.

There are two ways to copy a function. We can create a new function manually and
copy the C/AL code and variables, or we can select a function from the list and use
copy and paste and then rename the function.

When you add the --- line to the function, others can see that it
is not a Microsoft function. You can also include the project name
like ---Squash. This also makes the code easier to upgrade or
to merge with other code.

This code also requires a new global variable, SquashPlayer:

UpdateSquashPlayer()
WITH SquashPlayer DO BEGIN
 GET(ContBusRel."No.");
 xRecRef.GETTABLE(SquashPlayer);
 NoSerie := "No. Series";
 TRANSFERFIELDS(Cont);
 "No." := ContBusRel."No.";
 "No. Series" := NoSerie;
 MODIFY;
 RecRef.GETTABLE(SquashPlayer);
 ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

Chapter 2

[61]

The final piece of preparation work is to add the Bus. Rel. Code for Squash Players
field to the Marketing Setup table, as shown in the following screenshot:

We use the same numbering in our fields as in our objects. This
makes it easier in the future to see what belongs to what if more
functionality is added.

With all this preparation work, we can now finally go ahead and make our function
in the contact table (5050) that we can call from the user interface:

CreateSquashPlayer()
TESTFIELD(Type, Type::Person);

RMSetup.GET;
RMSetup.TESTFIELD("Bus. Rel. Code for Squash Pl.");

CLEAR(SquashPlayer);
SquashPlayer.INSERT(TRUE);

ContBusRel."Contact No." := Cont."No.";
ContBusRel."Business Relation Code" :=
 RMSetup."Bus. Rel. Code for Squash Pl.";
ContBusRel."Link to Table" :=
 ContBusRel."Link to Table"::"Squash Player";
ContBusRel."No." := SquashPlayer."No.";
ContBusRel.INSERT(TRUE);

UpdateCustVendBank.UpdateSquashPlayer(Cont,ContBusRel);

MESSAGE(Text009,SquashPlayer.TABLECAPTION,SquashPlayer."No.");

A Sample Application

[62]

Please note that we do not need the SetInsertFromContact function. This function
enables users to create a new vendor first and create a contact using the vendor
information. We do not want to support this method in our application.

Now, we can add the function to the page and test our functionality:

Designing a journal
Now, it is time to start on the product part of the squash application. In this part, we
will no longer reverse engineer in detail. We will learn how to search in the standard
functionality and reuse parts in our own software.

For this part, we will look at resources in Microsoft Dynamics NAV. Resources
are similar to using as products as items but far less complex making it easier to
look and learn.

Squash court master data
Our company has 12 courts that we want to register in Microsoft Dynamics NAV.
This master data is comparable to resources so we'll go ahead and copy this
functionality. Resources are not attached to the contact table like the vendor/squash
player tables. We need the number series again so we'll add a new number series to
our Squash Setup table.

Chapter 2

[63]

The Squash Court table should look like this after creation:

Chapter objects
With this chapter some objects are required. A description of how to import these
objects can be found in the Appendix, Installation Guide.

A Sample Application

[64]

After the import process is completed, make sure that your current database is the
default database for the Role Tailored Client and run page 123456701, Squash Setup.

From this page, select the action Initialize Squash Application. This will execute the
C/AL code in the InitSquashApp function of this page, which will prepare the demo
data for us to play with. The objects are prepared and tested in a Microsoft Dynamics
NAV 2013 R2 W1 database.

Reservations
When running a squash court, we want to be able to keep track of reservations.
Looking at standard Dynamics NAV functionality, it might be a good idea to create
a squash player journal. The journal can create entries for reservations that can
be invoiced.

A journal needs the object structure. The journal is prepared in the objects delivered
with this chapter. Creating a new journal from scratch is a lot of work and can easily
lead to making mistakes. It is easier and safer to copy an existing journal structure
from the standard application that is similar to the journal we need for our design.

Chapter 2

[65]

In our example, we have copied the Resource Journals:

You can export these objects in text format and then rename
and renumber the objects to be reused easily. The Squash
Journal objects are renumbered and renamed from the
Resource Journal.

As explained in Chapter 1, Introduction to Microsoft Dynamics NAV, all journals have
the same structure. The template, batch, and register tables are almost always the
same whereas the journal line and ledger entry table contain function-specific fields.
Let's have a look at all of them one by one.

A Sample Application

[66]

The Journal Template has several fields, as shown in the following screenshot:

Let's discuss these fields in more detail:

•	 Name: This is the unique name. It is possible to define as many templates
as required but usually one template per form ID and one for recurring
will do. If you want journals with different source codes, you need to
have more templates.

•	 Description: A readable and understandable description for its purpose.
•	 Test Report ID: All templates have a test report that allows the user to

check for posting errors.
•	 Form ID: For some journals, more UI objects are required. For example,

the General Journals have a special form for bank and cash.
•	 Posting Report ID: This report is printed when a user selects Post and Print.
•	 Force Posting Report: Use this option when a posting report is mandatory.
•	 Source Code: Here you can enter a trail code for all the postings done via

this journal.
•	 Reason Code: This functionality is similar to Source Code.

Chapter 2

[67]

•	 Recurring: Whenever you post lines from a recurring journal, new lines
are automatically created with a posting date defined in the recurring
date formula.

•	 No. Series: When you use this feature the Document No. in the journal line
is automatically populated with a new number from this Number Series.

•	 Posting No. Series: Use this feature for recurring journals.

The Journal Batch has various fields, as shown in the following screenshot:

Let's discuss these fields in more detail:

•	 Journal Template Name: The name of the journal template this batch
refers to

•	 Name: Each batch should have a unique code
•	 Description: A readable and explaining description for this batch
•	 Reason Code: When populated this Reason Code will overrule the Reason

Code from the Journal Template
•	 No. Series: When populated this No. Series will overrule the No. Series

from the Journal Template
•	 Posting No. Series: When populated this Posting No. Series will overrule

the Posting No. Series from the Journal Template

A Sample Application

[68]

The Register table has various fields, as shown in the following screenshot:

Terms from the Journal Register tab that you need to know would be:

•	 No.: This field is automatically and incrementally populated for each
transaction with this journal and there are no gaps between the numbers

•	 From Entry No.: A reference to the first ledger entry created is with
this transaction

•	 To Entry No.: A reference to the last ledger entry is created with
this transaction

•	 Creation Date: Always populated with the real date when the transaction
was posted

•	 User ID: The ID of the end user who has posted the transaction

The journal
The journal line has a number of mandatory fields that are required for all journals
and some fields that are required for their designed functionality.

In our case, the journal should create a reservation which then can be invoiced.
This requires some information to be populated in the lines.

Reservation
The reservation process is a logistical process that requires us to know the number
of the squash court, the date, and the time of the reservation. We also need to know
how long the players want to play. To check the reservation, it might also be useful
to store the number of the squash player.

Chapter 2

[69]

Invoicing
For the invoicing part, we need to know the price we need to invoice. It might also be
useful to store the cost to see our profit. For the system to figure out the proper G/L
Account for the turnover, we also need to define a General Product Posting Group.
We will see more of how that works later in Chapter 3, Financial Management.

Let's discuss these fields in more detail:

•	 Journal Template Name: This is a reference to the current Journal Template.
•	 Line No.: Each journal has a virtually unlimited number of lines; this

number is automatically incremented by 10000 allowing lines to be created
in between.

•	 Entry Type: This is the reservation or invoice.
•	 Document No.: This number can be used to give to the squash player

as a reservation number. When the Entry Type is Invoice, it is the
invoice number.

•	 Posting Date: This is usually the reservation date but when the Entry Type
is Invoice, it might be the date of the invoice, which might differ from the
posting date in the general ledger.

•	 Squash Player No.: This is a reference to the squash player who has made
the reservation.

•	 Squash Court No.: This is a reference to the squash court.

A Sample Application

[70]

•	 Description: This is automatically updated with the number of the squash
court, reservation date, and times, but can be changed by the user.

•	 Reservation Date: This is the actual date of the reservation.
•	 From Time: This is the starting time of the reservation. We only allow whole

and half hours.
•	 To Time: This is the ending time of the reservation. We only allow whole and

half hours. This is automatically populated when people enter a quantity.
•	 Quantity: This is the number of hours' playing time. We only allow units

of 0.5 to be entered here. This is automatically calculated when the times
are populated.

•	 Unit Cost: This is the cost to run a squash court for one hour.
•	 Total Cost: This is the cost for this reservation.
•	 Unit Price: This is the invoice price for this reservation per hour.

This depends on whether or not the squash player is a member or not.
•	 Total Price: This is the total invoice price for this reservation.
•	 Shortcut Dimension Code 1 & 2: This is a reference to the dimensions used

for this transaction.
•	 Applies-to Entry No.: When a reservation is invoiced, this is the reference

to the Squash Entry No. of the reservation.
•	 Source Code: This is inherited from the journal batch or template and used

when posting the transaction.
•	 Chargeable: When this option is used, there will not be an invoice for

the reservation.
•	 Journal Batch Name: This is a reference to the journal batch that is used

for this transaction.
•	 Reason Code: This is inherited from the journal batch or template and used

when posting the transaction.
•	 Recurring Method: When the journal is a recurring journal, you can use this

field to determine if the Amount field is blanked after posting the lines.
•	 Recurring Frequency: This field determines the new posting date after the

recurring lines are posted.
•	 Gen. Bus. Posting Group: The combination of general business and

product posting group determines the G/L Account for turnover when we
invoice the reservation. The Gen. Bus. Posting Group is inherited from the
bill-to customer.

Chapter 2

[71]

•	 Gen. Prod. Posting Group: This will be inherited from the squash player.
•	 External Document No.: When a squash player wants us to note a reference

number, we can store it here.
•	 Posting No. Series: When the Journal Template has a Posting No. Series,

it is populated here to be used when posting.
•	 Bill-to Customer No.: This determines who is paying for the reservation.

We will inherit this from the squash player.

So now we have a place to enter reservations but we have something to do before we
can start doing this. Some fields were determined to be inherited and calculated:

•	 The time field needs calculation to avoid people entering wrong values
•	 The Unit Price should be calculated
•	 The Unit Cost, Posting groups, and Bill-to Customer No. need to

be inherited
•	 As the final cherry on top, we will look at implementing dimensions

Time calculation
When it comes to the time, we want only to allow specific start and end times.
Our squash court can be used in blocks of half an hour. The Quantity field
should be calculated based on the entered times and vice versa.

To have the most flexible solution possible, we will create a new table with allowed
starting and ending times. This table will have two fields: Reservation Time
and Duration.

The Duration field will be a decimal field that we will promote to a SumIndexField.
This will enable us to use SIFT to calculate the quantity.

A Sample Application

[72]

When populated the table will look like this:

The time fields in the squash journal table will now get a table relation with this
table. This prevents a user entering values that are not in the table, thus entering
only valid starting and ending times. This is all done without any C/AL code and
is flexible when times change later.

Now, we need some code that calculates the quantity based on the input:

From Time - OnValidate()
CalcQty;

To Time - OnValidate()
CalcQty;

CalcQty()
IF ("From Time" <> 0T) AND ("To Time" <> 0T) THEN BEGIN

Chapter 2

[73]

 IF "To Time" <= "From Time" THEN
 FIELDERROR("To Time");
 ResTime.SETRANGE("Reservation Time", "From Time",
 "To Time");
 ResTime.FIND('+');
 ResTime.NEXT(-1);
 ResTime.SETRANGE("Reservation Time", "From Time",
 ResTime."Reservation Time");
 ResTime.CALCSUMS(Duration);
 VALIDATE(Quantity, ResTime.Duration);
END;

When a user enters a value in the From Time or To Time fields, the CalcQty
function is executed. This checks if both fields have a value and then checks
whether To Time is larger than From Time.

Then we place a filter on the Reservation Time table. Now, when a user makes a
reservation from 8:00 to 9:00, there are three records in the filter making the result
of the Calcsums (total of all records) of duration 1,5. Therefore, we find the previous
reservation time and use that.

This example shows how easy it is to use the built-in Microsoft Dynamics NAV
functionality such as table relations and Calcsums instead of complex time
calculations, which we could have also used.

Price calculation
As discussed in Chapter 1, Introduction to Microsoft Dynamics NAV, there is a special
technique to determine prices. Prices are stored in a table with all possible parameters
as fields and by filtering down on these fields, the best price is determined. If required,
extra logic is need to find the lowest (or highest) price, if more prices are found.

To look, learn, and love this part of the standard application, we have used table
Sales Price (7002) and codeunit Sales Price Calc. Mgt. (7000), even though we only
need a small part of this functionality. This mechanism of price calculation is used
throughout the application and offers a normalized way of calculating sales prices.
A similar construction is used for purchase prices with the table Purchase Price
(7012) and codeunit Purch. Price Calc. Mgt. (7010).

A Sample Application

[74]

Squash prices
In our case, we have already determined that we have a special rate for members, but
let's say we have also a special rate for daytime and evening in winter and summer.

This could make our table look as follows:

We can make special prices for members on dates for winter and summer and make
a price valid only until a certain time. We can also make a special price for a court.

This table could be creatively expanded with all kinds of codes until we end up
with table Sales Price (7002) in the standard product, which was the template for
our example.

Price Calc Mgt. codeunit
To calculate the price, we need a codeunit similar to the standard product. This
codeunit is called with a squash journal line record and stores all valid prices in
a buffer table and then finds the lowest price if there is any overlap:

FindSquashPrice()
WITH FromSquashPrice DO BEGIN
 SETFILTER("Ending Date",'%1|>=%2',0D,StartingDate);
 SETRANGE("Starting Date",0D,StartingDate);

 ToSquashPrice.RESET;
 ToSquashPrice.DELETEALL;

 SETRANGE(Member, IsMember);

 SETRANGE("Ending Time", 0T);
 SETRANGE("Squash Court No.", '');
 CopySquashPriceToSquashPrice(FromSquashPrice,ToSquashPrice);

Chapter 2

[75]

 SETRANGE("Ending Time", 0T);
 SETRANGE("Squash Court No.", CourtNo);
 CopySquashPriceToSquashPrice(FromSquashPrice,ToSquashPrice);

 SETRANGE("Squash Court No.", '');
 IF StartingTime <> 0T THEN BEGIN
 SETFILTER("Ending Time",'%1|>=%2',000001T,StartingTime);
 CopySquashPriceToSquashPrice(FromSquashPrice,
 ToSquashPrice);
 END;

 SETRANGE("Squash Court No.", CourtNo);
 IF StartingTime <> 0T THEN BEGIN
 SETFILTER("Ending Time",'%1|>=%2',000001T,StartingTime);
 CopySquashPriceToSquashPrice(FromSquashPrice,
 ToSquashPrice);
 END;
END;

If there is no price in the filter, it uses the unit price from the squash court,
as shown here:

CalcBestUnitPrice()
WITH SquashPrice DO BEGIN
 FoundSquashPrice := FINDSET;
 IF FoundSquashPrice THEN BEGIN
 BestSquashPrice := SquashPrice;
 REPEAT
 IF SquashPrice."Unit Price" <
 BestSquashPrice."Unit Price"
 THEN
 BestSquashPrice := SquashPrice;
 UNTIL NEXT = 0;
 END;
END;

// No price found in agreement
IF BestSquashPrice."Unit Price" = 0 THEN
 BestSquashPrice."Unit Price" := SquashCourt."Unit Price";

SquashPrice := BestSquashPrice;

A Sample Application

[76]

Inherited data
To use the journal for the product part of the application, we want to inherit some
of the fields from the master data tables. In order to make that possible, we need to
copy and paste these fields from other tables to our master data table and populate it.

In our example, we can copy and paste the fields from the Resource table (156).
We also need to add code to the OnValidate triggers in the journal line table.

The squash court table, for example, is expanded with the fields Unit Code, Unit
Price, Gen. Prod. Posting Group, and VAT Prod. Posting Group, as shown in the
preceding screenshot.

We can now add code to the OnValidate of the Squash Court No. field in the
Journal Line table.

Squash Court No. - OnValidate()
IF SquashCourt.GET("Squash Court No.") THEN BEGIN
 Description := SquashCourt.Description;
 "Unit Cost" := SquashCourt."Unit Cost";
 "Gen. Prod. Posting Group" := SquashCourt."Gen. Prod. Posting
Group";
 FindSquashPlayerPrice;
END;

Please note that unit price is used in the Squash Price Calc. Mgt. codeunit that is
executed from the FindSquashPlayerPrice function.

Chapter 2

[77]

Dimensions
In Microsoft Dynamics NAV, dimensions are defined in master data and posted
to the ledger entries to be used in analysis view entries. In Chapter 3, Financial
Management, we will discuss how to analyze the data generated by dimensions.
In between that journey they move around a lot in different tables as follows:

•	 Table 348 | Dimension: This is where the main dimension codes are defined.
•	 Table 349 | Dimension Value: This is where each dimension can have an

unlimited number of values.
•	 Table 350 | Dimension Combination: In this table, we can block certain

combinations of dimension codes.
•	 Table 351 | Dimension Value Combination: In this table, we can block

certain combinations of dimension values. If this table is populated,
the value Limited is populated in the dimension combination table
for these dimensions.

•	 Table 352 | Default Dimension: This table is populated for all master data
that has dimensions defined.

•	 Table 354 | Default Dimension Priority: When more than one master
data record in one transaction have the same dimensions, it is possible
here to set priorities.

•	 Table 480 | Dimension Set Entry: This table contains a matrix of all used
dimension combinations.

•	 Codeunit 408 | Dimension Management: This codeunit is the single point in
the application where all dimension movement is done.

In our application, dimensions are moved from the squash player, squash court,
and customer table via the squash journal line to the squash ledger entries. When
we create an invoice, we move the dimensions from the ledger entries to the sales
line table.

Master data
To connect dimensions to master data, we first need to allow this changing codeunit
408 dimension management.

SetupObjectNoList()
TableIDArray[1] := DATABASE::"Salesperson/Purchaser";
TableIDArray[2] := DATABASE::"G/L Account";
TableIDArray[3] := DATABASE::Customer;
...

A Sample Application

[78]

TableIDArray[22] := DATABASE::"Service Item Group";
TableIDArray[23] := DATABASE::"Service Item";

//* Squash Application
TableIDArray[49] := DATABASE::"Squash Player";
TableIDArray[50] := DATABASE::"Squash Court";
//* Squash Application

Object.SETRANGE(Type,Object.Type::Table);

FOR Index := 1 TO ARRAYLEN(TableIDArray) DO BEGIN
 ...

The TableIDArray variable has a default number of 23 dimensions. This we have
changed to 50.

By leaving gaps we allow Microsoft to add master data tables in future
without us having to change our code.

Without this change, the system would return the following error message when we
try to use dimensions:

Next change is to add the Global Dimension fields to the master data tables.
They can be copied and pasted from other master data tables.

When these fields are validated, the ValidateShortcutDimCode function is executed
as follows:

ValidateShortcutDimCode()
DimMgt.ValidateDimValueCode(FieldNumber,ShortcutDimCode);
DimMgt.SaveDefaultDim(DATABASE::"Squash Player","No.",
 FieldNumber,ShortcutDimCode);
MODIFY;

Chapter 2

[79]

Journal
When we use the master data records in the journal table, the dimensions are copied
from the default dimension table to the dimension set entry table. This is done
using the folowing piece of code that is called from OnValidate of each master
data reference field:

CreateDim()
TableID[1] := Type1;
No[1] := No1;
TableID[2] := Type2;
No[2] := No2;
TableID[3] := Type3;
No[3] := No3;

"Shortcut Dimension 1 Code" := '';
"Shortcut Dimension 2 Code" := '';

"Dimension Set ID" :=
 DimMgt.GetDefaultDimID(TableID,No,"Source Code",
 "Shortcut Dimension 1 Code",
 "Shortcut Dimension 2 Code",0,0);

To decide which dimensions to inherit, we should first analyze which master data is
used in our Journal that is using default dimensions.

Squash Court No. - OnValidate()
CreateDim(
 DATABASE::"Squash Court","Squash Court No.",
 DATABASE::"Squash Player","Squash Player No.",
 DATABASE::Customer,"Bill-to Customer No.");

In our case, Table[1] is Squash Player, Table[2] is Squash Court, and Table[3]
is Customer. The dimension management codeunit makes sure everything is copied.
We can use standard Microsoft Dynamics NAV functions.

Posting
When we post a journal using Codeunit Squash Jnl.-Post Line (123456703),
the dimensions are copied using the dimension set ID as follows:

Code()

...
SquashLedgEntry."Dimension Set ID" := "Dimension Set ID";
...

A Sample Application

[80]

SquashLedgEntry.INSERT;

NextEntryNo := NextEntryNo + 1;

This field is also used from our combine invoicing report, which we will create later
in this chapter in the Invoicing section.

CreateLn()
...
SalesLn.INIT;

SalesLn."Dimension Set ID" := "Dimension Set ID";

SalesLn.INSERT(TRUE);

The posting process
Our journal is now ready to be posted. We've implemented all business logic,
except the posting code.

The posting process of a journal in Microsoft Dynamics NAV has several codeunits
for the structure:

•	 Jnl.-Check Line: This codeunit checks if the journal line is valid
for posting.

•	 Jnl.-Post Line: This codeunit does the actual creation of the ledger entry
and register tables and calls other Jnl.-Post Line codeunits if necessary
to provide the transaction structure in Chapter 1, Introduction to Microsoft
Dynamics NAV.

•	 Jnl.-Post Batch: This codeunit loops though all journal lines in a journal
batch and posts all the lines.

•	 Jnl.-Post: This is the codeunit that is called from the page. It calls the
Jnl.-Post Batch codeunit and takes care of some user messaging.

Chapter 2

[81]

•	 Jnl.-Post+Print: This is the codeunit that is called when you click on Post
+ Print. It does the same as the Jnl.-Post codeunit but with the additional
printing of a report defined in the journal template.

•	 Jnl.-B.Post: This posts all the journal lines that have no errors and marks
the ones that have errors.

•	 Jnl.-B.Post+Print: This does the same as Jnl.-B.Post but with the
additional printing of a report defined in the journal template.

Check line
Let's have a look at the check line codeunit. When it comes to testing, Microsoft
Dynamics NAV has a simple rule:

Test near, Test far, Do it, Clean up

First, we need to test the field in the journal line table, then read external data
tables to check if all is good, and then post the lines and delete the data from the
journal table.

It does not make sense to read the G/L setup table from the database if the document
no. in our own table is blank, or to start the posting process and error out because the
posting date is outside of a valid range. This would cause a lot of unnecessary I/O
from the database to the client.

RunCheck()
WITH SquashJnlLine DO BEGIN
 IF EmptyLine THEN
 EXIT;

 TESTFIELD("Squash Player No.");
 TESTFIELD("Squash Court No.");
 TESTFIELD("Posting Date");
 TESTFIELD("Gen. Prod. Posting Group");
 TESTFIELD("From Time");
 TESTFIELD("To Time");
 TESTFIELD("Reservation Date");
 TESTFIELD("Bill-to Customer No.");

 IF "Entry Type" = "Entry Type"::Invoice THEN
 TESTFIELD("Applies-to Entry No.");

 IF "Applies-to Entry No." <> 0 THEN
 TESTFIELD("Entry Type", "Entry Type"::Invoice);

A Sample Application

[82]

 IF "Posting Date" <> NORMALDATE("Posting Date") THEN
 FIELDERROR("Posting Date",Text000);

 IF (AllowPostingFrom = 0D) AND (AllowPostingTo = 0D) THEN
 ...
 END;

 ...

 IF NOT DimMgt.CheckDimIDComb("Dimension Set ID") THEN
 ...
 TableID[1] := DATABASE::"Squash Player";
 No[1] := "Squash Player No.";
 ...
 IF NOT DimMgt.CheckJnlLineDimValuePosting(JnlLineDim,
 TableID,No)
 THEN
 IF "Line No." <> 0 THEN

In the preceding code, we can clearly see that fields in our table are checked first,
and then the date validation, and lastly the dimension checking.

Post line
The actual posting code turns out to be quite simple. The values are checked and
then a register is created or updated.

Code()
WITH SquashJnlLine DO BEGIN
 IF EmptyLine THEN
 EXIT;

 SquashJnlCheckLine.RunCheck(SquashJnlLine,TempJnlLineDim);

 IF NextEntryNo = 0 THEN BEGIN
 SquashLedgEntry.LOCKTABLE;
 IF SquashLedgEntry.FIND('+') THEN
 NextEntryNo := SquashLedgEntry."Entry No.";
 NextEntryNo := NextEntryNo + 1;
 END;

 IF SquashReg."No." = 0 THEN BEGIN
 SquashReg.LOCKTABLE;

Chapter 2

[83]

 IF (NOT SquashReg.FIND('+') OR ... THEN BEGIN
 SquashReg.INIT;
 SquashReg."No." := SquashReg."No." + 1;
 ...
 SquashReg.INSERT;
 END;
 END;
 SquashReg."To Entry No." := NextEntryNo;
 SquashReg.MODIFY;

 SquashPlayer.GET("Squash Player No.");
 SquashPlayer.TESTFIELD(Blocked,FALSE);

 IF (GenPostingSetup."Gen. Bus. Posting Group" <>
 "Gen. Bus. Posting Group") OR
 (GenPostingSetup."Gen. Prod. Posting Group" <>
 "Gen. Prod. Posting Group")
 THEN
 GenPostingSetup.GET("Gen. Bus. Posting Group",
 "Gen. Prod. Posting Group");

 SquashLedgEntry.INIT;
 SquashLedgEntry."Entry Type" := "Entry Type";
 SquashLedgEntry."Document No." := "Document No.";
 ...
 SquashLedgEntry."No. Series" := "Posting No. Series";

 SquashLedgEntry.INSERT;

All the fields are simply moved to the ledger entry table. This is what makes
Microsoft Dynamics NAV simple and powerful.

Here, we can clearly see how easy it is to add a field to a posting process. Just
add the fields to the journal line, the ledger entry, and add one line of code to
the posting process.

Invoicing
The last issue on our to-do list is the invoicing process. For this, we use a part of the
standard application.

As explained in Chapter 1, Introduction to Microsoft Dynamics NAV, invoicing is done
using a document structure with a header and a line table. This has a posting routine
that will start the journal transactions.

A Sample Application

[84]

For our application, we need to create the invoice document and make sure that
when posted, it updates our sub administration.

Invoice document
The sales invoice documents in Microsoft Dynamics NAV are stored in the Sales
Header (36) and Sales Line (37) tables. We will create a report that will combine the
outstanding reservation entries into invoices allowing the user to filter on a specific
entry or any other field value in the squash ledger entry table.

Reports in Microsoft Dynamics NAV are not just for printing documents; we can also
use its dataset capabilities to start batch jobs.

To enable this, our batch job needs to have a special property, ProcessingOnly,
so let's start a blank report and do this.

The report will browse through the squash ledger entries filtered on entry type
Reservation and open Yes. The sorting is Open, Entry Type, Bill-to Customer No.,
and Reservation Date. To use sorting, the fields must be defined together as a key in
the table definition.

Chapter 2

[85]

As Bill-to Customer No. is the first non-filtered value in the sorting, we can assume
that if this value changes, we need a new sales header.

For every squash ledger entry, we will generate a sales line as follows:

Squash Ledger Entry - OnAfterGetRecord()
IF "Bill-to Customer No." <> SalesHdr."Bill-to Customer No."
THEN
 CreateSalesHdr;

CreateLn;

Sales header
The code to create a sales header is as follows:

CreateSalesHdr()
CLEAR(SalesHdr);
SalesHdr.SetHideValidationDialog(TRUE);
SalesHdr."Document Type" := SalesHdr."Document Type"::Invoice;
SalesHdr."Document Date" := WORKDATE;
SalesHdr."Posting Date" := WORKDATE;
SalesHdr.VALIDATE("Sell-to Customer No.",
 "Squash Ledger Entry"."Bill-to Customer No.");
SalesHdr.INSERT(TRUE);

NextLineNo := 10000;
CounterOK := CounterOK + 1;

A Sample Application

[86]

The SetHideValidationDialog function makes sure we don't get pop-up messages
while validating values. This is a standard function in Microsoft Dynamics NAV,
which is designed for this purpose.

The TRUE parameter to the INSERT statement makes sure that the Number Series
are triggered.

Sales line
To create a sales line, we need a minimum of the following code. Please note that we
added the field Applies-to Squash Entry No. to the sales line table.

CreateLn()
WITH "Squash Ledger Entry" DO BEGIN
 GenPstSetup.GET("Gen. Bus. Posting Group",
 "Gen. Prod. Posting Group");
 GenPstSetup.TESTFIELD("Sales Account");

 SalesLn.INIT;
 SalesLn."Document Type" := SalesHdr."Document Type";
 SalesLn."Document No." := SalesHdr."No.";
 SalesLn."Line No." := NextLineNo;
 SalesLn."Dimension Set ID" := "Dimension Set ID";

 SalesLn."System-Created Entry" := TRUE;

 SalesLn.Type := SalesLn.Type::"G/L Account";
 SalesLn.VALIDATE("No.", GenPstSetup."Sales Account");
 SalesLn.Description := Description;

 SalesLn.VALIDATE(Quantity, Quantity);
 SalesLn.VALIDATE("Unit Price", "Unit Price");
 SalesLn.VALIDATE("Unit Cost (LCY)", "Unit Cost");

 SalesLn."Applies-to Squash Entry No." := "Entry No.";
 SalesLn.INSERT(TRUE);

END;
NextLineNo := NextLineNo + 10000;

Chapter 2

[87]

When you add fields to the sales and purchase document tables, make
sure to also add these to the posted equivalents of these tables with the
same number. This way you make sure that the information is copied to
the historic data. This is done using the TRANSFERFIELDS command.
We will discuss these tables in Chapter 6, Trade.

Dialog
If the combined invoicing takes some time, it might be good to show the user a
process bar. For this, Microsoft Dynamics NAV has a standard structure.

The window shows the bill-to customer no. it is currently processing and a bar going
from 1 percent to 100 percent. This is calculated by keeping a counter.

At the end of the process, we show a message telling the user how many invoices
were created out of the number of squash ledger entries.

Squash Ledger Entry - OnPreDataItem()
CounterTotal := COUNT;
Window.OPEN(Text000);

Squash Ledger Entry - OnAfterGetRecord()
Counter := Counter + 1;
Window.UPDATE(1,"Bill-to Customer No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

...

Squash Ledger Entry - OnPostDataItem()
Window.CLOSE;
MESSAGE(Text001,CounterOK,CounterTotal);

A Sample Application

[88]

To do this, we need some variables. The Window variable is of type Dialog
whilst Counter, CounterTotal, and CounterOK are integers, as shown in the
following screenshot:

The constant Text000 has the special values #1########## and
@2@@@@@@@@@@@@@. The first allows us to show and update some
text; the latter is used to create the process bar.

The result will look like what is shown in the following screenshot:

There is a best practice document about using progress bars in
combination with the impact on performance at http://www.mibuso.
com/howtoinfo.asp?FileID=17.

http://www.mibuso.com/howtoinfo.asp?FileID=17
http://www.mibuso.com/howtoinfo.asp?FileID=17

Chapter 2

[89]

Posting process
Now, our Sales Invoice is ready so we can start making the necessary changes to the
posting process. Posting a sales document is done using a single posting codeunit
and some helper objects.

•	 Report 297: This report can be used to post more than one document at the
same time with a filter.

•	 Codeunit 80: This is the actual posting routine we are going to change.
•	 Codeunit 81: This codeunit is called from the user interface and has a dialog

if the user wants to ship, invoice, or both if the document is an order and a
yes/no if the document is an invoice or credit memo.

•	 Codeunit 82: When the user chooses post and print, this codeunit is
executed, which does the same as Codeunit 81 plus printing a report.

So we will make a change to Codeunit 80. This codeunit has a specific structure that
we need to understand before we go in and make the change.

Analyze the object
The codeunit also has the Test Near, Test Far, Do it, and Clean up strategy so the first
step is to make sure everything is in place before the actual posting starts. Let's have
a look at how this codeunit is structured.

The Sales-Post codeunit is too long to discuss in detail. We will
focus on the most important parts and learning how to read this
type of code routine.

This first part does the test near step and a part of the test far step. The Ship,
Invoice, and Receive fields are set in codeunit 81 and 82 but checked and
completed to make sure.

Code()
...
WITH SalesHeader DO BEGIN
 TESTFIELD("Document Type");
 TESTFIELD("Sell-to Customer No.");
 TESTFIELD("Bill-to Customer No.");
 TESTFIELD("Posting Date");
 TESTFIELD("Document Date");
 IF GenJnlCheckLine.DateNotAllowed("Posting Date") THEN
 FIELDERROR("Posting Date",Text045);

A Sample Application

[90]

 CASE "Document Type" OF
 "Document Type"::Order:
 Receive := FALSE;
 "Document Type"::Invoice:
 BEGIN
 Ship := TRUE;
 Invoice := TRUE;
 Receive := FALSE;
 END;
 "Document Type"::"Return Order":
 Ship := FALSE;
 "Document Type"::"Credit Memo":
 BEGIN
 Ship := FALSE;
 Invoice := TRUE;
 Receive := TRUE;
 END;
 END;

 IF NOT (Ship OR Invoice OR Receive) THEN
 ERROR(...);

 WhseReference := "Posting from Whse. Ref.";
 "Posting from Whse. Ref." := 0;

 IF Invoice THEN
 CreatePrepaymentLines(...);
 CheckDim;

The next step is moving the sales header information to the history tables for
shipment, invoice, credit memo, or return receipt header. These sections are
commented like this:

 // Insert invoice header or credit memo header
 IF Invoice THEN
 IF "Document Type" IN ["Document Type"::Order,
 "Document Type"::Invoice]
 THEN BEGIN
 SalesInvHeader.INIT;
 SalesInvHeader.TRANSFERFIELDS(SalesHeader);

We will discuss the relation between a sales header and the sales
shipment, sales invoice, sales credit memo, and return receipt in
Chapter 6, Trade.

Chapter 2

[91]

When this is done, the sales lines are processed. They are also moved to the various
posted line tables. This is all part of the Do it section of the posting routine.

 // Lines
 InvPostingBuffer[1].DELETEALL;
 DropShipPostBuffer.DELETEALL;
 EverythingInvoiced := TRUE;

 SalesLine.RESET;
 SalesLine.SETRANGE("Document Type","Document Type");
 SalesLine.SETRANGE("Document No.","No.");
 LineCount := 0;
 RoundingLineInserted := FALSE;
 MergeSaleslines(...);

If there is a drop shipment in a purchase order, this is handled here. We will discuss
drop shipments in Chapter 6, Trade.

 // Post drop shipment of purchase order
 PurchSetup.GET;
 IF DropShipPostBuffer.FIND('-') THEN
 REPEAT
 PurchOrderHeader.GET(
 PurchOrderHeader."Document Type"::Order,
 DropShipPostBuffer."Order No.");

Then there is a section that creates the financial information in the general journal.
We will go deeper into this section in Chapter 3, Financial Management.

 IF Invoice THEN BEGIN
 // Post sales and VAT to G/L entries from posting buffer
 LineCount := 0;
 IF InvPostingBuffer[1].FIND('+') THEN
 REPEAT
 LineCount := LineCount + 1;
 Window.UPDATE(3,LineCount);

 GenJnlLine.INIT;
 GenJnlLine."Posting Date" := "Posting Date";
 GenJnlLine."Document Date" := "Document Date";

Then the Clean up section starts by calculating remaining quantities, VAT,
and deleting the sales header and sales lines if possible.

IF ("Document Type" IN ["Document Type"::Order,
 "Document Type"::"Return Order"]) AND

A Sample Application

[92]

 (NOT EverythingInvoiced)
THEN BEGIN
 MODIFY;
 // Insert T336 records
 InsertTrackingSpecification;

 IF SalesLine.FINDSET THEN
 REPEAT
 IF SalesLine.Quantity <> 0 THEN BEGIN
 IF Ship THEN BEGIN
 SalesLine."Quantity Shipped" :=
 SalesLine."Quantity Shipped" +
 SalesLine."Qty. to Ship";
 SalesLine."Qty. Shipped (Base)" :=
 SalesLine."Qty. Shipped (Base)" +
 SalesLine."Qty. to Ship (Base)";
 END;

The Clean up section ends by deleting the sales document and related information
and clearing the variables used.

IF HASLINKS THEN DELETELINKS;
DELETE;
...

SalesLine.DELETEALL;
DeleteItemChargeAssgnt;
...

CLEAR(WhsePostRcpt);
CLEAR(WhsePostShpt);
...
CLEAR(WhseJnlPostLine);
CLEAR(InvtAdjmt);
Window.CLOSE;

Making the change
The change we are going to make is in the section where the lines are handled:

// Squash Journal Line
IF SalesLine."Applies-to Squash Entry No." <> 0 THEN
 PostSquashJnlLn;

Chapter 2

[93]

IF (SalesLine.Type >= SalesLine.Type::"G/L Account") AND
 (SalesLine."Qty. to Invoice" <> 0)
THEN BEGIN
 // Copy sales to buffer

We will create a new function, PostSquashJnlLn. This way we minimize the impact
on standard code and when we upgrade to a newer version, we can easily copy and
paste our function and only need to change the calling place if required.

Always try to design for easy upgrading whenever possible.
Remember that Microsoft might change this code in newer
versions so the more flexible we are and the more we manage
to minimize the impact on standard code, the better.

PostSquashJnlLn()
WITH SalesHeader DO BEGIN
 OldSquashLedEnt.GET(
 SalesLine."Applies-to Squash Entry No.");
 OldSquashLedEnt.TESTFIELD(Open);
 OldSquashLedEnt.TESTFIELD("Bill-to Customer No.",
 "Bill-to Customer No.");

 SquashJnlLn.INIT;
 SquashJnlLn."Posting Date" := "Posting Date";
 SquashJnlLn."Reason Code" := "Reason Code";
 ...
 SquashJnlLn."Document No." := GenJnlLineDocNo;
 SquashJnlLn."External Document No." := GenJnlLineExtDocNo;
 SquashJnlLn.Quantity := -SalesLine."Qty. to Invoice";
 SquashJnlLn."Source Code" := SrcCode;
 SquashJnlLn."Dimension Set ID" :=
 SalesLine."Dimension Set ID";
 SquashJnlLn.Chargeable := TRUE;
 SquashJnlLn."Posting No. Series" := "Posting No. Series";
 SquashJnlPostLine.RunWithCheck(SquashJnlLn);
END;

Our new function first gets the squash ledger entry it applies to and tests if it's still
open and the bill-to customer no. has not changed. Then, we populate the squash
journal line with the help of the sales line and the old squash ledger entry.
Then dimensions are handled and the squash journal line is posted.

A Sample Application

[94]

The journal lines are never actually inserted into the database.
This is for performance and concurrency reasons. All journal
transactions here are handled in the service tier cache. A journal
is also never populated using Validate. This makes it very clear
for you to see what happens.

Now when we post an invoice, we can see that the invoice entries are created:

Navigate
We have now covered everything that is necessary for our squash court application
to run but there is one special function of Microsoft Dynamics NAV that needs
changing when we add new documents and ledger entries: the Navigate function.

The functionality was already discussed in Chapter 1, Introduction to Microsoft
Dynamics NAV. The object is a single page (344) in the application that requires
two changes.

FindRecords
The first function we change is FindRecords. This browses through the database
finding all possible combinations of document no. and posting date.

FindRecords()
...
// Squash Ledger Entries
IF SquashLedgEntry.READPERMISSION THEN BEGIN

Chapter 2

[95]

 SquashLedgEntry.RESET;
 SquashLedgEntry.SETCURRENTKEY("Document No.",
 "Posting Date");
 SquashLedgEntry.SETFILTER("Document No.",DocNoFilter);
 SquashLedgEntry.SETFILTER("Posting Date",PostingDateFilter);
 InsertIntoDocEntry(
 DATABASE::"Squash Ledger Entry",0,
 SquashLedgEntry.TABLECAPTION,SquashLedgEntry.COUNT);
END;
// Squash Ledger Entries

DocExists := FINDFIRST;

The function first checks if we have permission to read the squash ledger entry table.
If our system administrator does not allow us to see this table, it should not show up.

The filtering is done on the document no. and posting date. When ready, the system
inserts the number of found records in the result table.

ShowRecords
The second function to change is ShowRecords. This makes sure we see the squash
ledger entries when we click on the Show action.

ShowRecords()
...
 DATABASE::"Warranty Ledger Entry":
 FORM.RUN(0,WarrantyLedgerEntry);
//* Squash Ledger Entries
 DATABASE::"Squash Ledger Entry":
 FORM.RUN(0,SquashLedgEntry);
 END;
END;

A Sample Application

[96]

Testing
Now when we navigate from an invoice we posted that was generated from our
combine invoicing report, we get the following result:

Summary
In this chapter, we created our own vertical add-on application for Microsoft
Dynamics NAV. We used similar data model and posting structures and reused
parts of the standard application where appropriate but never wrongly used
standard features.

We saw how to reverse engineer Microsoft Dynamics NAV code in order to find out
what similar standard functionality to copy, paste, and change for our application.

We also found out how a journal and document posting code unit works and how to
structure using Test near, Test far, Do it, and Clean up.

In the next chapter, we will explore the financial functionality of Microsoft Dynamics
NAV and even make some changes to this part of the application.

Financial Management
Whether you run a company, a non-profit organization, or an educational institute,
doing proper bookkeeping is mandatory and required by the government.

This makes the financial management the most used part of Microsoft Dynamics
NAV and the least obvious place to make changes, as federal regulations do not
allow much creativity in this part of the application.

The first part of this chapter is all about the look, learn, and love principle that we
discussed in the previous chapter. We cannot integrate our application with financial
management without knowing the basic functionality and structure of the tool.

In the second part of the chapter, we will look at some examples of how to change
or expand the way financial management works.

Lastly, we will look at how to create a posting in the general ledger from a newly
designed posting routine.

After reading this chapter, you should be able to set up financial management in
a new database and create basic postings to the general ledger and understand
how to integrate financial management with your application.

Chart of accounts
A chart of accounts (COA) is a list of the accounts used by an organization to
define each class of items for which money or the equivalent is spent or received.
It is used to organize the finances of the entity and to segregate expenditures,
revenue, assets, and liabilities in order to give interested parties a better
understanding of the financial health of the entity.

Financial Management

[98]

Every financial system starts with a COA and although the numbering might differ
from country to country, we all have income statements and balance accounts.

Microsoft Dynamics NAV also has some other special accounts: Heading,
Begin-Total, and End-Total accounts.

With these accounts, you can make the COA more readable. The accounts within
the total accounts are automatically indented.

Chapter 3

[99]

Posting accounts
When creating a new posting account, there are several options to choose. Most of
them are not mandatory but they make it easier to push the end users to using the
correct account while generating entries.

Let's have a look at the options by opening a G/L Account Card:

Financial Management

[100]

The first and most important decision to make is the type of account to be created.
It can be either Income Statement or Balance Sheet. Income statement accounts
are reset to zero every new fiscal year, while balance sheet accounts continue
indefinitely. The total of the balance sheet accounts should always match the
total of the income statement accounts.

You can create two total accounts to check whether the balance in
your G/L is accurate. Take a total of all income statements and all
balance sheets.

You can also force an account to only accept debit or credit postings. The No. Of
Blank Lines and New Page fields are used when printing reports and have no effect
on the system. Reconciliation Account is hardly used anymore unless, you do not
use sub accounting.

Automatic Ext. Texts creates the extra texts discussed in Chapter 1, Introduction to
Microsoft Dynamics NAV, automatically when you use this account in a sales or
purchasing document.

Direct Posting is a very important option. It is highly recommended to disable this
option when an account is used in one of the posting setups. When Direct Posting
is enabled, an end user can create entries in this account, disrupting the balance
between the general ledger and the sub administration. We'll discuss this in more
detail later in this chapter.

When you do allow Direct Posting, the fields on the Posting tab are very important.

Gen. Posting Type determines whether the account is used for purchase and/or
sales for the VAT calculation and filtering in the VAT statements. A more detailed
VAT specification is determined by the VAT business and product posting group.
The general business and product posting groups can be used to automatically
populate these fields, when this account is used.

In the Consolidation tab, you can populate the consolidation accounts used when
consolidating two or more companies. We'll discuss consolidation later in this chapter.

Chapter 3

[101]

Microsoft Dynamics NAV allows an additional reporting currency to be used. This is
an inheritance from the days before the Euro in Europe and was very popular in the
years of Euro introduction. Today, it is used by international companies, for example,
a company based in the USA with a Dutch Parent company. In the Reporting tab,
you can determine how you want to handle exchange rate adjustments when using
this functionality.

VAT versus sales tax
Microsoft Dynamics NAV allows the calculation of both European VAT and
North American Sales Tax. The examples in this book are based
on European VAT.

For sales tax, the Tax Area Code and Tax Group Code fields are used instead of the
VAT Business Posting Group and the VAT Product Posting Group.

The entry tables
As discussed in Chapter 1, Introduction to Microsoft Dynamics NAV, the entries for
the general ledger are created in the general journals when you post a sales or
purchase document. So, let's have a closer look at this functionality and see what
we can do with it.

Sub accounting
In theory, you could run Microsoft Dynamics NAV with just the G/L Entry table,
but in accounting, we have invented sub administrations.

Sub administrations are very old. Before computers were invented, people would
have cards for all customers and vendors to keep track of their balance. Updating
these cards was a manual and time-consuming process with a high probability of
making mistakes.

In Microsoft Dynamics NAV, this is taken care of automatically. In the general
ledger, we have four sub administrations:

•	 Bank: For every transaction on a bank account, a bank ledger entry is
created. The total of all bank ledger entries should match your bank
account's balance. It allows you to quickly find payments.

•	 Customer: Whenever you sell something to a customer or a customer pays
a customer ledger, an entry is created. It allows you to analyze payment
history and send out reminders.

Financial Management

[102]

•	 Vendor: When you buy something using a vendor, the system creates a
vendor ledger entry. We can use the vendor ledger entries to determine
which invoice needs to be paid. The vendor ledger entries are the opposite
of the customer ledger entries.

•	 VAT/TAX: These entries help us to easily create clear VAT/TAX statements.

As discussed earlier, it is very important that the total of the sub administration
matches the general ledger. For example, when your bank account balance is
2.846,54, the G/L Account should also have that amount.

For this, you can disable the Direct Posting option we discussed earlier.

Chapter 3

[103]

Working with general journals
When we open a general journal, we can start making transactions. Let's discuss
the possibilities.

The most important fields of a general journal are the Posting Date and the
Document No. The total of amounts for each combination of these fields should
always be in balance. In other words, all journal lines for any particular combination
of Posting Date and Document No. should always add up to zero.

There are different account types we can post to. When we post directly to a G/L
Account, it is clear what will happen; a new G/L Entry will be created for that
amount. When we choose another Account Type, the sub administrations will start
to work. For example, when we choose Customer, a Customer Ledger Entry will
be created as well as a G/L Entry. Which G/L account is used is determined by the
posting group, which we will discuss later in this chapter.

Here, we also see the Gen. Posting Type, General Business and Product Posting
groups and VAT Business and Product Posting groups come back. These are
inherited from the G/L Account we discussed earlier, but you can choose a
different one if you want.

Financial Management

[104]

The VAT options determine the VAT calculation that is done automatically. A VAT
entry is created with the VAT amount and additional G/L Entries are created.

There are two ways of balancing a general ledger. We can create two lines with the
same debit and credit amount or we can use the balance fields.

Let's see some of this in an example. We have made a purchase somewhere at an
irregular vendor. All we have is a small cash receipt with the amount and the VAT,
which we want to bring into our company.

The amount is 440 including 10 percent VAT, so we want to create the
following transaction:

Cost VAT Current account
400,00 40,00 440,00

The transaction can also be seen in the following screenshot:

We can see that Microsoft Dynamics NAV calculates the VAT Amount and by
populating the balance account, we only need one line, which is always in balance.

Chapter 3

[105]

When we Navigate this transaction, we see that we have three G/L Entries and one
VAT Entry.

Opening the G/L Entries shows the correct amounts.

In another example, we'll create a customer payment via the bank journal.

Financial Management

[106]

Entry application
A bank journal is a general journal with a specific page ID. This allows the application
to have a different user interface based on the same business logic. A specific feature of
a bank journal is the possibility to easily apply payments to invoices.

The bank journal does not directly post to a G/L Account but uses other account
types. In this case, the Account Type is Customer and the Balance Account Type is
Bank Account. Instead of a list with G/L Accounts, the Account No. field now refers
to the Customers and the Balance Account No. fields refer to the Bank Account.
The latter is automatically populated from the Journal Batch definition.

We'll use the Apply Entries feature to determine which invoice this payment applies
to. If we did not do this, the system would not know which invoice is paid.

Another option would be to automatically apply entries, but when a customer
decides to skip a payment, the system might get confused, so it is highly
recommended to apply entries manually.

Chapter 3

[107]

When we post this journal and navigate the entries, we see that all necessary sub
administrations are updated:

Posting groups
In the previous section, we talked about using customer numbers and bank account
numbers as an account number in the general journal. The system can then figure out
what G/L Account numbers to use. But how does that work?

This is done using the various posting group matrices. Most application parts that
post to the general ledger have their own posting group table. There are two types
of posting groups: single layer and matrix layer.

The single layer has direct G/L Account columns and the matrix layer has an
additional setup table:

Single layer Matrix layer
Customer posting group
Vendor posting group
Inventory posting group
Job posting group
Bank account posting group
FA posting group

Gen. business posting group
Gen. product posting group
VAT business posting group
VAT product posting group
Inventory posting setup

Financial Management

[108]

Each country uses different account schedules and regulations. The G/L
Accounts in this book are used for the CRONUS example database. These
can be different in each country and implementation.

Let's have a look at Customer Posting Groups:

We see three different codes with their own accounts. So where is this code used?
Let's open Customer Card:

On the Invoicing tab, we see the customer posting group. So this is what determines
the customer G/L Accounts.

We also see other posting groups on Customer Card. There is a Gen. Bus. Posting
Group and a VAT Bus. Posting Group.

Chapter 3

[109]

In our list, they are matrix layers. So they don't directly point to a G/L Account.
When we open Gen. Bus. Posting Group, we see this:

Just a simple table connecting it to a Default VAT Business Posting Group. To see
where the G/L Accounts are defined, we need to go to the General Posting Setup.

Financial Management

[110]

Here we can see that, when combined with a Gen. Prod. Posting Group, the G/L
Accounts can be determined. So where does the Gen. Prod. Posting Group come
from? To find out, we need to go to Item Card:

Here we can see the same tab, Invoicing, with the product posting groups.

Our journey ends here, as we can see the last matrix posting group, Inventory.
When we open this setup, we see that it is determined by the combination of
Inventory Posting Group and Location Code:

Chapter 3

[111]

Dimensions
Apart from the general ledger and sub administrations, Microsoft Dynamics NAV
allows a third level of posting. An unlimited number of dimensions can be attached
to every posting and used to cross-analyze the system.

Using more dimensions results in increased database activity during the
processing of transactions and a more complex setup of the system.
This should be carefully considered during the implementation.

Dimensions originated from the old project code and department code functionality,
allowing you to consolidate or differentiate costs and profits. The dimensions
are determined via a filtering mechanism. Every master data record can have
dimension definitions.

Financial Management

[112]

Let's look at the sample dimension codes and values:

The Dimension Code Area has several Dimension Values. Here, you can also have
total records, just as in the general ledger.

When more than one master data record has the same dimension code with
different values, it is able to set priorities. It is also possible to block combination
of dimensions to be posted.

Dimensions are a powerful tool for analyzing data and structuring the system
to avoid incorrect entries. However, it requires a lot of time and special skills to
determine these combinations and maintain the setup.

We'll see more of dimensions as we discuss the reporting possibilities.

Chapter 3

[113]

Budgeting
Microsoft Dynamics NAV allows budgeting as well. We can create our own
budgeting codes. A budgeting code can be a year, or a department, or just some
budget we want to try and throw away later.

Budgeting can be done on G/L Accounts but also on any dimension.

The decision of budgeting periods is very important. If you want to compare
monthly budgets with real figures, it does not make sense to create a yearly budget.
Most companies use monthly budgets. It is also most likely that we want to create
budgets for income statement accounts, not for balance sheets.

Importing and exporting budgets to Excel is a very important feature. Here, we
can easily copy and paste and, for example, automatically have the same values
each month.

Financial Management

[114]

Creating budget entries
Budget entries are created by simply entering new amounts in the columns.
In previous versions of Microsoft Dynamics NAV, a built-in mechanism would
handle the creation of the entry based on deltas between the previous value and
the newly entered value.

In Microsoft Dynamics NAV 2009, this was changed from the Role Tailored Client to
C/AL Code. The matrix page object that handles the amount is Budget Matrix (9203).
This page uses the Matrix Management Codeunit (9200) to simulate the classic
built-in algorithms.

Accounting periods
While most companies have accounting periods from January 1 to December 31
divided into months, there can be exceptions to this.

This is supported by Microsoft Dynamics NAV and set up in Accounting Periods:

Chapter 3

[115]

We are completely free to set up our own desired posting periods as long as there is
a date algorithm.

A posting period should also be closed when appropriate. When closing a posting
period, all Income Statement G/L Accounts are set to zero and the profit/loss is
posted to a balance account.

Financial Management

[116]

When we run this batch, a general journal is populated with the postings. It is not
recommended to make changes here.

Closing dates
After closing the income statement, it is still possible to make transactions but with
special posting dates called closing dates. When putting a C character in front of the
posting date, the system will accept this as a special transaction and allow you to
post it.

When filtering on 01-01-2013..31-12-2013, the system will not include the entries
on the closing dates. Filtering on 01-01-2013..C31-12-2013 and 01-01-2013..31-
01-2014 will include the entries on the closing dates.

Currencies
Besides having the possibility of the extra reporting currency, every transaction in
Microsoft Dynamics NAV can have its own currency. The transaction is transformed
into Local Currency (LCY) with the current currency exchange rates.

Handling currency is simple, as long as the exchange rates do not change. After
that, it can get complex. The exchange rate can change as often as you want but
with a maximum of one per day. Before you consider implementing a daily change
of exchange rates, you should look at the consequences.

Chapter 3

[117]

When you change the currency exchange rate, everything in the system gets
adjusted, which can lead to a huge number of transactions in your system.
Changing the currency exchange rate requires the following two steps:

1.	 Enter new values. In our case, the new USD rate in 2010 is 60:

2.	 Implement the value and generate the entries.

Financial Management

[118]

Consolidation
Consolidation means taking (part of) the general ledger of two or more companies
together in one consolidated company. To handle consolidation in Microsoft
Dynamics NAV, first the consolidation accounts have to be populated in the
G/L Accounts. These consolidation accounts have to be valid accounts in the
consolidation company.

A consolidation company is a "dummy" company in the database that just exists for
consolidation purposes. The consolidation company has a business unit for each
consolidated company.

The data can be exported out of the database via an XML or TXT format.

Chapter 3

[119]

The data is imported via the Business Unit list in the consolidation company.

The other option is to import it from within the database with the Import
Database function.

Financial Management

[120]

VAT statement
Most companies can issue VAT statements to get back the VAT they paid to
vendors and pay the VAT they've received from customers. This is done in the VAT
statement. This is a straightforward list where we can filter on the VAT entries.

Every country has its own VAT statement and many countries have localizations in
this application area.

Data analysis
Some companies do bookkeeping because it is mandatory and do very little with
the generated information, but there is a lot you can do with the information the
system creates.

In bigger companies, using analysis tools is often the only way to get a clear view on
the company's assets.

Chapter 3

[121]

Chart of accounts
The chart of accounts is a reporting tool. The total accounts give a lot of information
and by applying limit totals (flow filters), we can narrow down this information.

This example filters on G/L Account no. larger than or equal to 6000 and limits
totals to 2014 and Department PROD.

You can save these views by clicking on the page name Chart of
Accounts and then Save View As. By choosing a name that makes
sense like Income Statement 2010 Production, it is easy to find.

Financial Management

[122]

Account schedules
For advanced reporting requirements, we can use the account schedules. Like the
VAT statement, it allows us to filter on the G/L Entries in this case. We can filter on
individual G/L Accounts or use the total filter. If the filter gets complex, we can sum
individual rows and hide the source rows. We can also apply up to four dimensions
to each account schedule.

The account schedules also let you define your column layout. You can use multiple
column layouts per schedule and reuse Column Layouts across other schedules.

Chapter 3

[123]

The column layout can contain formulas and date filters. We can show either the
budget or G/L Entries per column.

For very valuable information on how to use account schedules,
refer to http://dynamicsnavfinancials.com/

Analysis by dimensions
As discussed earlier in this chapter, Microsoft Dynamics NAV allows an unlimited
number of dimensions to be posted in the general ledger. To analyze this information,
we need to tell the system what to compare. This is done in analysis by dimensions.

http://dynamicsnavfinancials.com/

Financial Management

[124]

Each analysis view gets a unique code. An analysis view can be generated for an ad
hoc requirement and thrown away afterwards or be in the system permanently for
periodical reporting. Analysis views generate redundant information that can always
be discarded and regenerated.

It is recommended to use a copy of the database on a separate system to
use with analysis views and to update them during the night.

Chapter 3

[125]

When updated, the analysis view contains all data within the filters in the analysis
view entries. When not properly maintained, this can be a gigantic table with data.

The result of an analysis view can be viewed in a matrix where all values can be used
as rows, columns, and filters.

In this example, we view the results of a sales campaign per area and sales person.

Financial Management

[126]

The setup
Financial management has a single general ledger setup table, which is important
as many of these setup fields will determine how the core of Microsoft Dynamics
NAV behaves.

Chapter 3

[127]

We will discuss the setup options to find out what they do and to explore the
possibilities of creating a flexible setup for an application:

•	 Allow Posting From and Allow Posting To: These limit the freedom of
people to choose posting dates while posting to the general ledger. It is
highly recommended to enable this feature to avoid posting dates like
01012090 instead of 01012009.

•	 Register Time: This allows you to create an entry in the time register each
time a user logs in and out.

•	 Local Address Format and Local Cont. Addr. Format: This refers to how the
address should be printed for the local country. In Microsoft Dynamics NAV,
it is best practice to leave Country Code and Currency Code blank for
local values.

•	 Inv. Rounding Precision (LCY) and Inv. Rounding Type (LCY): These
define how the rounding on your invoices is calculated. Nearest is a best
practice and allows your customers to easily register your invoice in
their system.

•	 Allow G/L Acc Deletion Before: This allows you to clean up closed fiscal
years. It is hardly ever used and you should consult your partner before
using this feature.

•	 Check G/L Account Usage: This checks whether the G/L Account is used in
setup tables before it is deleted.

•	 EMU Currency: This is the currency that has a fixed conversion rate to the
Euro in the European Union. The LCY Code field is used when printing
reports to indicate the companies' local currency.

•	 Pmt. Disc. Excl. VAT: This indicates whether or not VAT is calculated when
you apply payment discounts. When you check this field, you need to think
about the Adjust for Payment Disc. field, as this will recalculate the VAT.

•	 Unrealized VAT: This should only be checked if your company has to deal
with this issue. Otherwise, it will lead to unnecessary postings. This is VAT
that is only valid when the customer pays the invoice rather than when the
invoice is issued.

•	 Prepayment Unrealized VAT: This should only be checked if your company
handles Unrealized VAT and if you want to implement this for the
prepayment features.

•	 Max. VAT Difference Allowed: This field determines the maximum amount
of VAT differences. Most of the time, the VAT difference will be not more
than 0, 01.

Financial Management

[128]

You can post VAT differences by selecting FULL VAT in the
VAT Calculation Type for the VAT business posting group.

•	 VAT Rounding Type: This determines how the VAT remainder is calculated.
It recommended Nearest.

•	 Bill-to/Sell-to VAT Calc.: This allows you to change what the source for the
VAT business posting group is, whether it is the Bill-to Customer or Sell-to
Customer and Pay-to Vendor or Buy-from Vendor.

•	 Print VAT specification: This field allows VAT on your invoices to always
be in your local currency.

•	 Bank Account Nos.: This is almost always number series that is manually
determined. Most companies have up to 10 bank accounts.

•	 Global Dimensions: This determines which dimensions are posted directly
to the G/L Entries and sub administrations. These you can most often use
when limiting totals and should be considered carefully.

•	 Shortcut Dimensions: These are easier to access when you enter journals
and documents. They can easily be switched later.

•	 Additional Reporting Currency: This is a useful feature for international
companies. Remember that it requires extra effort if the exchange rates
change. You can change this later but a batch job will start, which might
take a long time if you have a large database.

•	 VAT Exchange Rate Adjustment: This makes it possible to recalculate
VAT if the reporting currency exchange rates changes. Think about this
thoroughly before you activate it. It is most likely to generate information
that is difficult to analyze and use.

•	 Appln Rounding Precision: This can be used to allow rounding differences
when applying different currencies.

•	 Pmt. Disc. Tolerance Warning: This field when checked, a warning will
appear whenever a difference is posted.

•	 Pmt. Disc. Tolerance Posting: This determines if the payment tolerance
amount is posted to a special account or to the normal discount account.

•	 Payment Discount Grace Period: This can be used whether you want to be
tolerant when people are one or two days late with their payment and still
deduct the discount amount.

•	 Payment Tolerance Warning: This option will show a warning whenever
there is a tolerance amount posted to the general ledger.

•	 Payment Tolerance Posting: This determines if a special G/L Account is
used to post this amount.

Chapter 3

[129]

•	 Payment Tolerance %: This determines the tolerance percentage. To change
this, a batch function is used that updates open entries.

•	 Max. Payment Tolerance Amount: This field sets a maximum value to
the amount so an invoice that is issued for 100.000 cannot have a tolerance
amount of more than 5.000 if the percentage is set to 5 percent.

Customizing financial management
As financial management is regulated by the government and the standard
functionality is already very complete, this application area is unlikely to have many
changes, even though we have some examples of where the functionality is changed.

The examples in this chapter are included in the objects we used in
Chapter 2, A Sample Application.

Sales line description to G/L Entries
When we post a sales invoice, the system will generate the G/L Entries based
on the sales lines. To avoid creating too many entries, they are compacted.
This is done using a buffer table, the Invoice Post. Buffer:

Financial Management

[130]

Only for the combination of the preceding listed fields, a G/L Entry record is created.
As we can see, the description is not one of these. This results in G/L Entries with
the posting description of the sales header, which is often confusing for accountants
when looking at the G/L Entries.

As an example, we will generate a sales invoice with one G/L Account line selling
one of these books.

When we post this invoice, we will get these G/L Entries. Note that the description
has gone.

Chapter 3

[131]

To change this behavior, we have to change the Invoice Post. Buffer table. The
description field needs to be part of the unique combination since the grouping is
done using a FIND command in the UpdInvPostingBuffer function in Sales-Post
Codeunit (80):

UpdInvPostingBuffer()
...
InvPostingBuffer[2] := InvPostingBuffer[1];
IF InvPostingBuffer[2].FIND THEN BEGIN
 InvPostingBuffer[2].Amount :=
 InvPostingBuffer[2].Amount + InvPostingBuffer[1].Amount;
 ...
 InvPostingBuffer[2].MODIFY;
END ELSE
 InvPostingBuffer[1].INSERT;

This requires the following two steps:

1.	 We need to add the description field to the table.

Financial Management

[132]

2.	 We need to add this new field to the key.

A key in Microsoft Dynamics NAV can only contain 252 bytes, so be
careful not to add too many fields to this table.

When this is done, a change is required in populating the buffer table. This is done in
the PrepareSales function in the table Invoice Post. Buffer (49) itself:

PrepareSales()
CLEAR(Rec);
Type := SalesLine.Type;
"System-Created Entry" := TRUE;
...
"Job No." := SalesLine."Job No.";
"VAT %" := SalesLine."VAT %";
"VAT Difference" := SalesLine."VAT Difference";
//* Description >>>
Description := SalesLine.Description;
//* Description <<<
IF Type = Type::"Fixed Asset" THEN BEGIN
 ...
END;

Chapter 3

[133]

The last change we are going to make is in the posting routine of the sales
documents. This is the Sales-Post codeunit (80) we discussed in Chapter 2,
A Sample Application:

IF Invoice THEN BEGIN
 // Post sales and VAT to G/L entries from posting buffer
 LineCount := 0;
 IF InvPostingBuffer[1].FIND('+') THEN
 REPEAT
 LineCount := LineCount + 1;
 Window.UPDATE(3,LineCount);

 GenJnlLine.INIT;
 GenJnlLine."Posting Date" := "Posting Date";
 GenJnlLine."Document Date" := "Document Date";
//* Posting Description now from buffer table >>>
// GenJnlLine.Description := "Posting Description";
 GenJnlLine.Description :=
 InvPostingBuffer[1].Description;
//* Posting Description <<<
 GenJnlLine."Reason Code" := "Reason Code";

Instead of the posting description of the sales header, we will now use the new field
in the buffer table. When we post the same invoice again, this is the changed result:

This makes it a lot easier to read the general ledger.

Making this change might cause our system to create more G/L Entries
if we have large invoices with different descriptions. Creating extra G/L
Entries takes more time during a posting routine, resulting in longer
running posting transactions and a larger database.

Financial Management

[134]

Extra fields in the G/L Entries
Although the G/L Entry table has a lot of information, some companies want to add
extra fields to it and populate these in the posting process.

For this example, we will use the database with the squash court application from
Chapter 2, A Sample Application. For this business, it might be very useful to have the
Squash Court No. as a field in the G/L Entries to analyze.

The first step is to add the field to the G/L Entry table and make sure we have a table
relation with the source table.

We have learned that the G/L Entries are generated from the general journal so we
need to add this field there as well. This can be done with copy and paste.

The last step is to make sure we move the information from the journal to the
ledger entry table. Like in our sample squash application, this is done in the
Gen. Jnl.-Post Line Codeunit (12) only this codeunit has much more code.

Chapter 3

[135]

We need to find the place where the G/L Entries are created and add our field there.
This is done in the InitGLEntry function, as follows:

InitGLEntry()
...

GLEntry.INIT;
GLEntry."Posting Date" := GenJnlLine."Posting Date";
GLEntry."Document Date" := GenJnlLine."Document Date";
GLEntry."Document Type" := GenJnlLine."Document Type";
GLEntry."Document No." := GenJnlLine."Document No.";
...
GLEntry."Source Code" := GenJnlLine."Source Code";
//* Squash App. >>>
GLEntry."Squash Court No." := GenJnlLine."Squash Court No.";
//* Squash App. <<<
IF GenJnlLine."Account Type" = ...

This is all that is required in Microsoft Dynamics NAV to add a field to the financial
posting process. Of course, it does not make sense to do this unless we use it, so a
logical next step could be to add this new field to the Invoice Post. Buffer table from
our previous example.

This shows how easy it is to combine solutions in Microsoft Dynamics NAV.

Integrating with financial management
Although it is not likely to make big changes in financial management, it might be
necessary to create G/L Entries in a new posting routine.

In the previous chapter, we already pointed out briefly that during posting
transactions in Microsoft Dynamics NAV, the actual journal line records are never
really inserted in the database. They are used as temporary containers to hold the data
during posting. Doing an actual INSERT would require defining a journal template
name, journal batch name, and line no. and could cause locking in the database.

Let's create a new codeunit that will create a G/L transaction.

Financial Management

[136]

Creating a G/L transaction
After creating the codeunit, we need to set up the two variables that are the
minimum requirement to post something to the general ledger.

The preceding screenshot shows two variables:

•	 GenJnlLine: This is a reference to the General Journal Line table (81).
•	 GenJnlPostLine: The Gen. Jnl.-Post Line Codeunit (12) creates the

G/L Entries, the register, and the other financial entries.

The C/AL code
Creating a new G/L Entry requires some of mandatory fields. All the other fields
in the general journal line are either optional for basic entries or mandatory in
combination with more advanced postings, as we will find out later.

We will start by writing this code to the OnRun trigger, as follows:

OnRun()
GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT';
GenJnlLine."Account No." := '6120';
GenJnlLine.Amount := 100;
GenJnlPostLine.RunWithCheck(GenJnlLine);

If we execute this C/AL code, we will receive the following error message,
which indicates that our transaction will result in an unbalanced chart of accounts:

Chapter 3

[137]

We can fix this by creating a balance transaction for -100 in the same OnRun trigger,
as follows:

GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT';
GenJnlLine."Account No." := '6120';
GenJnlLine.Amount := -100;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

After executing the codeunit, we can navigate on our document no. to see the G/L
Entries we created:

Financial Management

[138]

This was a very simple example of how to integrate with financial management;
let's create a more advanced example.

Advanced entries
We will create a new customer ledger entry with dimensions. To do this, we should
change one of the C/AL parts we created to the following code:

GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT2';
GenJnlLine."Account Type" := GenJnlLine."Account Type"::Customer;
GenJnlLine."Account No." := '10000';
GenJnlLine.Amount := 100;
GenJnlPostLine.RunWithCheck(GenJnlLine);

But when we execute this C/AL code, we receive the following error message:

This means we need to implement dimensions. Let's add the following C/AL code to
the routine:

...
GenJnlLine.Amount := 100;
GenJnlLine."Dimension Set ID" := 3;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

This will use dimension set entry 3, which contains the dimensions that are required
for this transaction.

This article on MSDN at http://msdn.microsoft.com/en-us/
library/jj552498(v=nav.71).aspx explains how dimension sets
are used in the Microsoft Dynamics NAV 2013 architecture.

http://msdn.microsoft.com/en-us/library/jj552498(v=nav.71).aspx
http://msdn.microsoft.com/en-us/library/jj552498(v=nav.71).aspx

Chapter 3

[139]

Now, when we navigate on PACKT, we see that the system has created a Customer
Ledger entry and a Detailed Cust. Ledg. Entry.

Look, learn, and love
In Microsoft Dynamics NAV, there are many examples of how to integrate with
financial management. The following is a list of interesting codeunits that create
general journal lines:

•	 Sales-Post (80)

•	 Purch.-Post (90)

•	 Job Calculate WIP (1000)

•	 CheckManagement (367)

•	 Sales-Post Prepayments (442)

•	 Inventory Posting To G/L (5802)

•	 Serv-Posting Journals Mgt. (5987)

Go ahead and have a look inside these codeunits to learn how Microsoft does
the integration.

Financial Management

[140]

Summary
In this chapter, we looked at the financial heart of Microsoft Dynamics NAV.
Understanding the flow of the entries is important as it is the way the posting groups
are set up. It is important to regularly check whether the sub administrations are
balanced with the general ledger.

The reporting possibilities offer great insight if the system is set up correctly.
Be careful with changing the setup options on a running system.

In the next chapter, we will look at the opposite of this module; relationship
management. While the financial management system is strict, relationship
management system is flexible and expandable.

Relationship Management
Relationship management software is typically a result of what ERP applications
have achieved.

In earlier days, everyone had a rolodex on their desk with phone numbers and
addresses and salespeople would always know by heart who was a good customer
and which customers were always late paying or had bad margins.

The introduction of RM software completely changed that, allowing us to maintain
all companies' contacts in a single place and analyze sales data very easily.

Relationship management has been part of Microsoft Dynamics since Version 2.0
and was dramatically changed and improved in Version 3.0. The current Microsoft
Dynamics NAV RM software is mostly the same as in that version, except for the
Microsoft Outlook integration that keeps changing in every version.

In this chapter, we will deep dive into this module, which is very complete. After
reading this chapter, you will have a good understanding of the concepts and how
to maintain master data and analyze transaction data.

We will also perform some application changes in the relationship management part.

How companies work
In traditional accounting software, we differentiate customers and vendors as
business relations for invoices, but companies have many more relations we
would like to register in our system.

Relationship Management

[142]

Also, a company or person can have multiple relations with our company. The best
example is my relationship with Microsoft. As everyone, I use the software so I am a
customer, both in my business and personal life. On the other hand, Microsoft hires
me to teach workshops and do presentations, which makes me a vendor. As an MVP,
I have a totally different relationship with them. They give me an award and invite
me to special events and allow me to access the company store. They also ask for my
advice in future versions, so to them, I am their consultant.

So one person or company can have different roles in RM. Microsoft Dynamics
NAV is able to handle all that while maintaining a single point of data entry
and maintenance.

Unlike financial applications, RM is much more flexible. The functionality and rules
of financial applications are defined by government regulations and are mandatory
for companies to comply with. Companies are not forced to use RM but once
implemented, everyone understands the benefits and never want to do without it.

Contacts
The starting point of the RM application is the Contact table. This is where we store
the address, phone numbers, e-mail addresses, and so on of everyone we know.

When we open the Contact list, we see that companies and persons are grouped for
an easy overview.

The cut-off text is not important for reference in this screenshot

Chapter 4

[143]

As we learned in the previous chapters, a page in Microsoft Dynamics NAV is based
on a single table, so that must mean that companies and persons are stored in the
same table.

When we open the contact card, we can clearly see that this is the case. The Type field
indicates whether the contact is a business or a person and whether the person belongs
to a company. The Company No. field refers to a contact with type Company. This is
a one-to-many relationship meaning that if a physical person has a relationship with
more than one company, he or she needs to be maintained for each company with
a relation.

The following screenshot is from the contact card in Microsoft Dynamics NAV:

Let's step through the tabs and look at some important fields:

•	 No.: This is a unique key value determined by a Number Series.
Companies and persons have the same numbering.

•	 Type: This indicates whether this contact is a person or a company.
•	 Company Name: When the contact is a person and connected to

a company, it is automatically populated with that company's name.

Relationship Management

[144]

•	 Name: This is the name of the contact. If the contact is a person, we can
click on the AssistEdit button next to the name to open the name details.
The name is automatically broken down in to first, middle, and last name
depending on the number of words we enter. However, if our contact
has a more complex name like "Walter van den Broek", which is typical
for Dutch people, the system is unable to break it down.

•	 Address: Enter the street where the contact lives or has an office.

It is always best practice to enter the postal address here
since this will be used on all documents. For a visiting
address, use the Alternative Address feature.

Chapter 4

[145]

•	 Post Code & City: These fields are connected via the Post Code table
and one can populate the other if that table is maintained, which is an
optional feature.

Most companies maintain the Post Code table for their country and
manually enter the post codes for foreign countries. Most countries
offer a post code/city list for sale or as a web service, which will speed
up data entry and keep people from entering the wrong master data.

•	 Search Name: This is automatically populated with the Name field and lets
you search for contacts faster, as you can enter this field instead of the No.
field when referencing to a contact.

•	 (Mobile) Phone, Fax, and Telex No.: This is a reference to the phone and fax
numbers of this company. The (mobile) phone field also allows you to start
an interaction with this contact.

•	 Sales Person: This is the main salesperson for this contact. If this contact is
promoted to a customer, the salespersons' name will be printed on the order
form and invoices.

•	 Salutation Code: This special field refers to how this contact should be
addressed. The salutation code table allows you to build phrases such
as "Dear Mrs. Brown". We'll see more about salutation codes in segments.

•	 E-Mail: This field contains the e-mail address of the contact. By pressing
the E-Mail button [], we can send an e-mail directly.

•	 Homepage: Here is where the URL of the contacts website goes.
We can access the website by clicking on the URL button [].

•	 Correspondence Type: This field is used when we create a Microsoft
Word document in an interaction. It indicates whether we send a
hardcopy, e-mail, or fax.

•	 Currency Code & VAT Registration No.: When this contact is promoted
to a customer or vendor, the currency code and VAT registration no. are
inherited from here.

•	 Territory Code: This field can be used in segments to filter on
geographic regions.

Relationship Management

[146]

Salutation codes
When we perform mail merge, we want the letters to start nicely with "Dear Harry"
or dear "Mrs. Brown". This can be done using salutation codes.

We can create as many codes as we like but a contact can only use one. This is the list
in the CRONUS demo database.

Chapter 4

[147]

There is one salutation code for companies but most are for persons. When we look
at the formulas for Female Married or Unmarried, we see this screen:

We can enter a formal and informal code. The salutation can have up to five
variables pointing to Job Title, First Name, Middle Name, Surname, Initials,
and Company Name.

When we look at the result for Karen Friske, it will be "Dear Ms. Karen Friske"
or "Hi Karen".

At the end of this chapter, we will look at how to create extra salutation types.

Relationship Management

[148]

Alternative addresses
Like we said earlier in this chapter, it is best practice to use the address fields in the
contact table for the postal address since this will be printed on all documents.

In the Contact Alt. Address Card table, we can add as many other addresses to a
contact as we want.

Although the codes are not related to anything, it is best practice
to have a rule here. Always use the same code for home or office
addresses. We can later use this when printing labels or segments.

Chapter 4

[149]

An alternative address can also have a valid to and valid end date to control which
alternative address is currently active.

Relationships with customer and vendor
In Chapter 2, A Sample Application, you saw that the contact table is the umbrella
data of the customer, vendor, and bank account master data tables.

Each contact of the type Company can be promoted as one of these tables. The benefit
is that all address information fields have a single place of maintenance and are
inherited. It also allows us to analyze sales data into relationship management as
we will see later in this chapter when discussing segments.

When we create master data, a different Number Series is used. At the end of
this chapter, we will look at how to change that in the code.

A contact of Type: Person cannot be created as the Customer, Vendor,
or Bank Account.

Duplicates
When entering new contacts, the system can search for duplicate contacts. In the
Duplicate Search String Setup table, we can enable the filtering on eight fields: Name,
Name2, Address, Address2, Post Code, City, Phone No., and VAT Registration No.

For each field, we can set up which part should be used when searching for a
duplicate. We can use the option First and Last and a length, which is useful for
the Name, Address, and City fields. Using First with the full length of the field
will search for an exact match, which is useful for Post Code, Phone No., and VAT
Registration No.

Relationship Management

[150]

In the Marketing Setup table, we can specify the percentage of matching criteria that
should result in a warning, as shown in the following screenshot:

For each contact, the system will save these values in Cont. Duplicate Search
String table (5086).

When we enter a new contact, the system will also generate the same strings and
compare these to the ones in the database. When there is a match, the system will
show a warning with the duplicate contacts.

Profiles
The contact table has a very limited number of fields and does not allow much
creativity for us to add flexible information. This is where profiles are used.

Profiles allow the users to create an unlimited number of extra information sources
that can be manually or automatically populated.

Chapter 4

[151]

Let's have a look at an example profile:

This profile is for contacts of type Company. It has Question and Answer lines.
A question can have one or multiple answers and we can define as many questions
and answers as we want. The last column shows how many contacts have this
profile answer.

A profile is used from the Contact Card.

Relationship Management

[152]

When we click on this, a new page opens where we can select the required profile
and answer the questions.

The answers are displayed in the Lines subpage of the Contact Card window.

Automatic profiles
Profiles can also be automatically answered based on formulas. This is done using
the Auto Contact Classification option and setting up the Question Details.

Chapter 4

[153]

The Profile Question Details are fixed and hardcoded. They depend on the
relationship between a contact and a customer or vendor as discussed earlier
in this chapter.

We will not describe all the possibilities as this is very well covered in the online help.

When the questions are set up, the answers should have a From Value and To Value
to allow the system to pick the right one.

Relationship Management

[154]

To generate the answers, a batch job is used called Update Contact Classification
where we can filter on a profile.

Interactions
We have all kinds of interaction moments with our contacts. Whether they are
phone calls, mailings, or sending an invoice, we can register them in Microsoft
Dynamics NAV.

As with profiles, there are interactions that are generated automatically and manually.
Manual interactions are created using a wizard.

All interactions relate to an Interaction Template Code. The system allows an
unlimited amount of code we can define ourselves. The interaction code will also
determine how the rest of wizard will behave.

Chapter 4

[155]

Interactions can be Inbound or Outbound and initiated by us or them. These are
informative fields.

The Wizard Action field determines whether the wizard will generate a mail merge
document, allow us to attach a previously created document, or do nothing. Mail
merge allows us to create a Word document with all fields from the contact table.

Let's create an interaction and look at how that is done. To create an interaction,
we choose Create Interaction on the contact card or list and click on the Create
Interaction button from the Process Actions. This will open the following wizard:

Relationship Management

[156]

The first page asks us what type of interaction we would like to start. Let's make
a memo:

This is the next step as our interaction code defines that we will generate a mail merge:

We can now create the memo in Microsoft Word with all necessary fields already
filled in.

Chapter 4

[157]

After closing Microsoft Word, we move on to the next step and when we populate
all fields, we can finish the wizard. This will save the interaction in the database and
print the memo since we choose Hard Copy as Correspondence Type.

It is also possible to postpone interactions and restart them later.

Automatic interactions
Some interactions can also be automatically generated, for example, each time we
print an invoice or shipment.

Which interaction code is used for each transaction is defined in the Interaction
Template Setup. For every print, we want an interaction log entry to be generated
and we need to set up a code.

Relationship Management

[158]

Be careful when printing a lot of documents, as the interaction log
entry table can be locked for a longer period forcing other users in
the database to wait until the process is completed. To avoid this,
enable auto-increment on this table as described in this blog at
http://markbrummel.wordpress.com/2014/05/25/tip-
14-autoincrement-interaction-log-entries/.

Other automatically created interaction log entries are created by segments,
which we will look at later in the chapter.

Finished interactions
When completed, the interactions are connected to a contact and can be used for
analysis purposes. It is also possible to start a To-do from an interaction. We'll look
at that in the next paragraph.

To-do's
The To-do's are the lowest level of activities in the relationship management model.
They are best compared to Masks or Meetings in Microsoft Outlook.

To-do's can be created directly in the system or from another event. We can create
a To-do from the interaction we just created. Let's do this.

The reference here is the tab, Create To-do, and hence the cut-off text at the side is fine

When we click on Create To-do form the Interaction Log Entries, the system shows
us a wizard that will guide us through the process, just like the Interaction wizard.

http://markbrummel.wordpress.com/2014/05/25/tip-14-autoincrement-interaction-log-entries/
http://markbrummel.wordpress.com/2014/05/25/tip-14-autoincrement-interaction-log-entries/

Chapter 4

[159]

There are three types of To-do's, Standard (blank), Meeting, and Phone Call.
The steps in the wizard depend on the type we select. Let's select a Meeting.

The next step asks the attendees for the meeting and allows a template for the
invitation, which then again will create an Interaction Log Entry.

Relationship Management

[160]

To perform this step, the To-do organizer should have a valid
e-mail address. This can be set up in the sales persons.

The next step only asks for a location so we will click on Finish.

When we now open the To-do's from the Sales & Marketing Department, we can
open the Sales Person per day matrix, which shows us the meeting we just created.

The cut-off text is not a part of the referenced section in the screenshot

We'll see more of To-do's when we discuss Opportunities and Outlook Integration.

Opportunities
When we discussed profiles, we could already see that relationship management
is tightly integrated with the ERP part of the application. This is also the case
for opportunities.

Opportunities allow us to manage all the quote requests we get from our prospects,
creating a workflow that will guide us to a deal that is won or lost. This then allows us
to analyze the win and lose deals and change our business based on this information.

We can analyze the sales pipeline and make a proper judgement of our future order
position allowing us to schedule capacity in time.

Workflow
Each opportunity we create will follow a sales cycle in the system. This will guide us
step by step though the process.

Let's have a look at the sales cycles in the CRONUS database.

Chapter 4

[161]

There are four sales cycles defined. The most important field is the Probability
Calculation formula. This will determine how the system calculates the current
value of all opportunities with this code. We can see the Calculated Current Value by
opening the Statistics window of a sales cycle, as shown in the following screenshot:

There are four options to choose from: Multiply, Add, Chances of Success %, and
Completed %. The function UpdateEstimates in the Opportunity Entry (5093)
table calculates this:

UpdateEstimates()
IF SalesCycleStage.GET("Sales Cycle Code","Sales Cycle Stage")
THEN BEGIN
 SalesCycle.GET("Sales Cycle Code");
 CASE SalesCycle."Probability Calculation" OF
 SalesCycle."Probability Calculation"::Multiply:
 BEGIN
 "Probability %" := "Chances of Success %" *
 SalesCycleStage."Completed %" / 100;
 END;
 SalesCycle."Probability Calculation"::Add:
 BEGIN
 "Probability %" := ("Chances of Success %" +
 SalesCycleStage."Completed %") / 2;
 END;
 SalesCycle."Probability Calculation"::"Chances of Success %":

Relationship Management

[162]

 BEGIN
 "Probability %" := "Chances of Success %";
 END;
 SalesCycle."Probability Calculation"::"Completed %":
 BEGIN
 "Probability %" := SalesCycleStage."Completed %";
 END;
 END;
 "Completed %" := SalesCycleStage."Completed %";
 "Calcd. Current Value (LCY)" := "Estimated Value (LCY)" *
 "Probability %" / 100;
END;

The Probability Calculation first calculates a Probability % field, which will
then lead to the required Calculated Current Value.

Sales stages
Each sales cycle has different stages that will guide us through the sales process.

Chapter 4

[163]

The current sales stage of an opportunity defines the Completed % field. We can
decide with Allow Skip option whether a sales stage is mandatory. The quote
required will force us to assign a sales quote to this opportunity as we will see
later when we create an opportunity.

Activity codes
Each sales stage has an activity code. This will define which To-do's are created to
support us in the sales process.

This is a very powerful tool, enabling sales people to create a workflow for each
sales process.

Let's create an opportunity and see what happens in the system.

Relationship Management

[164]

Creating an opportunity
An opportunity starts by selecting an existing contact or creating a new one.
From the Contact Card, we can navigate to Related Information | Contact |
Opportunities | List.

This leads us to a filtered lists of opportunities linked to this contact.

1.	 Here we can select Create Opportunity.

2.	 This opens the wizard that will guide us though the process. In the first
window, we enter the description Sell Chairs and click on Next to take
us to the second step.

Chapter 4

[165]

3.	 In this step, we choose Sales Cycle code FIRSTSMALL and select Finish.
4.	 Selecting Next will allow us to enter additional information, such as

assigning a sales campaign, and activating the first stage. We will skip
that now and discuss campaigns later in this chapter.
When we now open the created opportunity, the information should look
like the following screenshot. There are no activity lines as we have not yet
activated the first stage.

The cut-off text is not a part of the reference in this screenshot

5.	 Let's activate the first stage and see what happens. We do that by navigating
to Actions | Functions | Update. We enter a wizard where we select First.

Relationship Management

[166]

6.	 We'll click on Next twice and enter step three of the wizard.
7.	 In this step, we should enter the estimated sales value and chance

of success (%) of getting this deal. This is important to calculate the
calculated estimated value we discussed earlier.

8.	 When we click on Finish, we come back to the Opportunity page and see
that the current value is 260,00.

The cut-off text is not a part of the reference in this screenshot

Since the probability calculation of this sales cycle is Add, the formula is:
"Probability %" := ("Chances of Success %" +
 SalesCycleStage."Completed %") / 2;

"Calcd. Current Value (LCY)" := "Estimated Value (LCY)" *
 "Probability %" / 100;

This will lead to (50 + 2) / 2 = 26 and 1000 * 26 / 100 = 260.

9.	 Now we navigate to Related Information | Opportunity | To-Dos and see
that the system has created two To-do's for us that we have to complete.

Chapter 4

[167]

The cut-off text is not a part of the reference in this screenshot

10.	 This will help us remember our daily tasks and allow management to see
nothing is forgotten. The next stages in this sales cycle are Qualification
and Presentation.

11.	 We can enter these stages by entering the wizard again and selecting Next.

Relationship Management

[168]

12.	 After selecting the Next button twice, we hit step three. Since one of our
To-do's was verifying the quality of the opportunity, we can now say for
example that the chance of success is 80 percent.

13.	 We'll select the Cancel existing open to-dos Checkbox to make sure our
workflow is updated. You will see that the Calculated Current Value has
increased to 425,00:

14.	 When we enter the next stage, we will get the following error message telling
us that assigning a quote is mandatory to enter the next step:

Chapter 4

[169]

Sales quote
To assign a sales quote to an opportunity, we navigate to Actions | Functions |
Assign Sales Quote from the Opportunity Card. This will open a new sales quote
with all fields populated from the opportunity.

To assign a quote to a contact without a Sell-to Customer No.,
we need to use the Sell-to Customer Template Code. This can
be used when the Show more fields option is activated on the
General fast tab.

We will select two furniture items and populate the Quantity and Line Discount
% fields.

When we now update the opportunity, we can use the quote amount of 796,80
which will lead to a Calculated Current Value of 478,08 in step three and 557,76
in step four.

To update the opportunity to step 4, the sales person should have
a valid e-mail address, which can be set up in the sales persons.

Relationship Management

[170]

Closing the deal
Step five is the final step in the sales cycle stages we used in our example.
Now we need to tell the system whether the deal is won or lost. To do this,
we navigate to Actions | Functions | Close from the Opportunity Card.
We will select Won and click on Next.

After selecting a valid reason and the sales amount, we can close the deal.

Chapter 4

[171]

The system now creates a customer for this contact and updates the quote with this
number. We need to promote the quote to an order manually.

Creating segments
Segments allow us to slice and dice the data in our system to create a filtered list of
contacts. This information can then be used to create an interaction such as a mailing
or start a sales campaign.

Since Microsoft Dynamics NAV relationship management is integrated with the ERP
system, we can filter on both RM and ERP data.

Let's create a new segment and look at the possibilities:

The segment has a No. and Description field. The no. can be defined using the
Number Series.

On the Interaction tab, we select Interaction Template Code. We will select
an interaction that generates a Word document so we can use the mail merge
capabilities of segments.

The Unit Cost (LCY) is important to determine the total cost of this segment
especially when we use it with campaigns, as we will see later in the chapter.

Relationship Management

[172]

Adding contacts
With our segment defined, we can now start filtering the system for contact
information by navigating to Actions | Functions | Contacts | Add Contacts.

This opens a selection window, allowing us to filter on different parts of
the application:

•	 Options: This is further divided into four categories:
°° Allow Existing Contacts: If you run multiple selections and

check this option, the system will create new segment lines
each time a contact is within the selection.

°° Expand Companies: When you select this option, the system will
add the persons related to the companies in the selection.

Chapter 4

[173]

°° Allow Related Companies: When Expand Companies is selected,
this option will delete the company record if a company has one or
more persons in the filter.

°° Ignore Exclusion: A contact can be ignored on segments.
Checking this flag will ignore this field.

•	 Contact: Here we can filter directly on all fields in the contact table.
For example, all contacts in the country NL.

•	 Profile: This allows us to filter on any profile answer. When we use
automatic profile answers, we can for example filter on customers
with a specific turnover or profit value.

•	 Mailing Group: We can save any segment to a mailing group allowing
easy reuse of previously generated filters.

•	 Interaction Log Entry: We can filter on contacts who have had specific
interaction codes. For example, everyone who had a sales invoice in the
last year.

•	 Job Responsibility: If we want to send out a mail to all managers, we select
the matching job responsibility code.

•	 Industry Group: This allows us to filter out companies in specific industries.
•	 Business Relation: This is by default used to integrate with customers,

vendors, and bank accounts but can also be expanded with extra information.
•	 Value Entry: This is probably the most powerful filter where we can filter on

specific item numbers and posting dates from the related contact.

Refine/reduce contacts
After adding all contacts from The Netherlands, we might want to refine or reduce
this, which can be done with the same filtering as adding contacts. Refining will
check whether the contacts in the segments match the specific filter criteria and
reducing will remove all contacts in the segment that match the criteria.

We will reduce the segment with City Waalwijk.

Relationship Management

[174]

Segment criteria
We can now ask the system what criteria we used by navigating to Related
Information | Segments | Criteria.

This allows us to see what we did, but also to undo the last actions or save the criteria.

Mailing groups
Another option to reuse a segment is to apply a mailing group to all contacts in a
segment. To start this, we click on Apply Mailing Group in the ACTIONS tab from
the Segment Card.

Chapter 4

[175]

This will create a record in the Contact Mailing Group table for each contact in
the segment.

Log segment
When the segment is finished, it should be logged. Logging the segment will start
the mail merge process in our segment and create the.

Using this option will also print the letters in this example.
For an exercise it might be useful to enable a PDF printer or
turn of your printer and remove the print job.

If required, the system can directly generate a follow up segment if we wanted to
use this segment with a campaign.

Relationship Management

[176]

Campaigns
Most big companies with marketing departments have sales campaigns to improve
their sales. These are typically periods where some items are more interesting for
customers to buy.

With the campaigns in Microsoft Dynamics NAV, we can manage the sales prices
and see the results of a specific campaign both from a cost and profit viewpoint.

Let's open a campaign and see what information it contains:

Each campaign has a unique No. field that can be created using Number Series
and Description. The No. field should be carefully chosen since it will be used
throughout the application where this campaign is used.

The Status Code options can be custom defined but do not impact business logic.
The Starting Date and Ending Date fields are important for the pricing information.
The special price and discounts will only be valid within these periods.

Via the Invoicing tab, we can see that campaigns are integrated with dimensions.
This gives us the powerful option to define a dimension code for each campaign
and create an analysis view to analyze the results in the financial part of Microsoft
Dynamics NAV, like we discussed in the previous chapter.

Chapter 4

[177]

Pricing
Microsoft Dynamics NAV allows special item pricing for campaigns. If a sales order
is generated from a campaign, the system will use the special price automatically.

By navigating to Related Information | Campaign | Sales Prices, we can enter the
pricing information for this campaign.

This price table is filtered exactly the same way as discussed in our example
application in Chapter 2, A Sample Application.

Segments
To select customers or prospects for a campaign, we need to create one or
more segments. These segments should be connected to the campaign using
the Campaign No. field. Everyone related to these segments will get the
specific prices and discounts.

The segments are also used to create the interaction log entries and To-do's for
this campaign. We need to make our target group aware that this campaign
exists by sending them a letter, fax, e-mail, or even a phone call.

Relationship Management

[178]

Activate
By activating the campaign, the system will add all contacts to the campaign
group and create interaction log entries.

The interaction log entries will be used to calculate the cost of a campaign.
Each interaction has a specific cost and all costs add up to the total amount
on the campaign.

When an opportunity comes in, we can point this to a specific campaign. The value
of this opportunity is also used in estimating the success of the campaign.

The campaign is also copied into the sales documents using the dimensions attached
to the campaign. This allows us to further analyze the results.

Outlook integration
Salespeople are often on the road without online access to the ERP system, and
Microsoft Dynamics NAV does not have an offline mode. To solve this problem,
Microsoft Dynamics NAV is integrated with Microsoft Outlook. This allows
salespeople to view contacts and tasks offline and replicate with the back office
system when possible.

If salespeople use a Windows Mobile phone with Microsoft Outlook, they can
even have all their Microsoft Dynamics NAV information on their device.

Using user-defined views will also enable us to synchronize other Microsoft
Dynamics NAV data to Microsoft Outlook, for example, the customer table with
the current value of the Balance field or the item table with the current inventory.

We will discuss the possibilities of interfacing with Microsoft Outlook in
Chapter 9, Interfacing.

E-mail logging
Microsoft Dynamics NAV also has a capability to read exchange shared folders
such as info@ mailboxes. For each e-mail, the system can generate Interaction
Log Entries and To-do's.

Chapter 4

[179]

The setup
Before implementing relationship management, we should properly set up the options.
This can be done in the Marketing Setup.

Relationship Management

[180]

Let's take a look at all the fields:

•	 Attachment Storage Type: The attachments in the interaction log entries can
either be stored in the database (embedded) or on the filesystem (disk file).
It is highly recommended to store them on the filesystem.

•	 Attachment Storage Location: If we chose to store the attachments on file
system, this is where we specify the path.

•	 Index Mode: When using a contact search, this should be set to Auto.
It might have a small drawback on performance and cause the database
to become bigger.

•	 Inheritance: When entering a person's profile, it can inherit the salesperson
code, territory code, country/region code, language code, address details,
and communication details from the company it belongs to.

•	 Defaults: A new contact can get a default salesperson code, territory code,
country/region code, language code, or correspondence type. There is a
different default salutation code for companies and persons.

•	 Default Sales Cycle Code: Every new opportunity will automatically get
this code.

•	 Mergefield Language ID: This defines if the Word merge fields are in
the local language or in English.

•	 Synchronization: Here, we enter the default business relation code for
customers, vendors, and bank accounts.

•	 Maintain Dupl. Search strings: Check this field if duplicate contact
functions are used.

•	 Autosearch for Duplicates: Use this option if the system should
automatically search when entering new contacts.

•	 Search Hit %: This determines the percentage of matching lines from the
duplicate search string setup should have to qualify as a duplicate contact.

Customizing relationship management
RM is a complete module that is not often highly customized or verticalized.
However, we will describe some possible changes and how to integrate an
add-on, in our case the squash application with relationship management.

All examples in this chapter are part of the objects downloaded for Chapter 2,
A Sample Application.

Chapter 4

[181]

Salutation formula types
By default, the system has two salutation formula types, formal and informal,
allowing us to print Dear Mrs. Brown, or Dear Angela, but what if we want to
print Attn. Mrs. Brown?

For this, we need to first add an option to the Salutation Type field in the
Salutation Formula table.

Support the formula
Next, we want to use the formula when printing a Contact Cover Sheet. This uses the
Format Address functionality from codeunit 365.

This codeunit is the single point in Dynamics NAV where all the address formatting
is done.

The formatting of contact persons is done in the ContactAddrAlt function. We should
make the following change:

ContactAddrAlt()
...
 ContIdenticalAddress:
 WITH ContAltAddr DO BEGIN
 GET(Cont."Company No.",CompanyAltAddressCode);
 FormatAddr(
 AddrArray,"Company Name","Company Name 2",
 Cont.Name,Address,"Address 2",
 City,"Post Code",County,"Country/Region Code");
 END;
 (Cont.Type=Cont.Type::Person) AND
 (Cont."Company No." <> ''):

Relationship Management

[182]

 WITH Cont DO
 FormatAddr(
// AddrArray,ContCompany.Name,ContCompany."Name 2",
// Name,Address,"Address 2",
 AddrArray,ContCompany.Name,ContCompany."Name 2",
 GetSalutation(5, Cont."Language Code"),Address,
 "Address 2",City,"Post Code",County,
 "Country/Region Code")

Always comment out the original line of code before you make
a change. This will enable you to always go back to standard
code and help when upgrading this solution to a newer version.
Most NAV partners and developers have their own way of
documenting and commenting. The example in here is the
minimum comment requirement. We will discuss versioning
objects in Chapter 10, Application Design.

The GetSalutation function
In our modification, we use the GetSalutation function in Contact table (5050)
instead of the Name field. Let's have a look at that function and analyze what it does:

GetSalutation()
IF NOT SalutationFormula.GET("Salutation Code",LanguageCode,
 SalutationType)
THEN
 ERROR(Text021,LanguageCode,"No.");

SalutationFormula.TESTFIELD(Salutation);

CASE SalutationFormula."Name 1" OF
 SalutationFormula."Name 1"::"Job Title":
 NamePart[1] := "Job Title";
 SalutationFormula."Name 1"::"First Name":
 NamePart[1] := "First Name";
 SalutationFormula."Name 1"::"Middle Name":
 NamePart[1] := "Middle Name";
 SalutationFormula."Name 1"::Surname:
 NamePart[1] := Surname;
 SalutationFormula."Name 1"::Initials:
 NamePart[1] := Initials;

Chapter 4

[183]

 SalutationFormula."Name 1"::"Company Name":
 NamePart[1] := "Company Name";
END;

CASE SalutationFormula."Name 2" OF
 ...
END;
...
FOR i := 1 TO 5 DO
 IF NamePart[i] = '' THEN BEGIN
 SubStr := '%' + FORMAT(i) + ' ';
 IF STRPOS(SalutationFormula.Salutation,SubStr) > 0 THEN
 SalutationFormula.Salutation :=
 DELSTR(SalutationFormula.Salutation,STRPOS(SalutationFormula.
Salutation,SubStr),3);
 END;

EXIT(STRSUBSTNO(SalutationFormula.Salutation,NamePart[1],
 NamePart[2],NamePart[3],NamePart[4],NamePart[5]))

The function uses two parameters: SalutationType and LanguageCode. With these
values and the salutation code of the contact, it checks whether there is a valid
formula. Since we only added a new option, the code still works because at
database level, the Option field is translated to an Integer.

For documentation purposes, we could also implement the new
option value in this function. The downside of this would be that
we do a modification that is not technically necessary but needs
to be maintained and upgraded.

Depending on the order of the formula, the necessary name fields are combined and
used as the return value of the function.

Relationship Management

[184]

Setup the salutation formula
If we want to use our new salutation formula, we need to set it up first. We will do this
for F-MAR to test it with CT100191 Megan Sherman from American Wood Exports.

Test the solution
After adding the new formula, we print a cover sheet from the contact card using the
Contact Cover Sheet option from the Report actions. The result will look like this:

Chapter 4

[185]

Customer and vendor numbering
Another common requirement from end users is to maintain the same number when
creating a customer or vendor from a contact.

This can be done by adding one line of code to the CreateCustomer function in the
contact table:

CreateCustomer()
...

CLEAR(Cust);
Cust.SetInsertFromContact(TRUE);
//* Maintain Contact No. >>>
Cust."No." := "No.";
//* Maintain Contact No. <<<
Cust.INSERT(TRUE);
Cust.SetInsertFromContact(FALSE);

This works because by populating the No. field, the Number Series functionality in
the OnInsert trigger does not start:

OnInsert()
IF "No." = '' THEN BEGIN
 SalesSetup.GET;
 SalesSetup.TESTFIELD("Customer Nos.");
 NoSeriesMgt.InitSeries(SalesSetup."Customer Nos.",
 xRec."No. Series",0D,"No.","No. Series");
END;
...

Disabling the direct creation of customers and
vendors
When using this option, it should be disabled to directly create a customer or vendor.
This can be done easily by removing the No. Series from the Sales & Receivables
Setup and Purchases & Payables Setup. This results in a runtime error message
when creating the customer or vendor.

Relationship Management

[186]

Sharing contact information across companies
When more companies have their administration in Microsoft Dynamics NAV, they
most often have the same owner or group of owners that want their contact data to
span across their companies.

This can be achieved by sharing some tables across all companies and changing some
business logic.

Share tables
By default, Microsoft Dynamics NAV will create a separate instance of each table
for each company. This can be changed with the DataPerCompany property in the
table designer.

The following lists should be shared across the database since they contain the main
contact information and the link to the customer and vendor data:

•	 5050 - Contact
•	 5051 - Contact Alt. Address
•	 5052 - Contact Alt. Addr. Date Range
•	 5053 - Business Relation
•	 5054 - Contact Business Relation

This will allow us to reuse contact data in all companies. Other tables are optional to
share but might be useful.

Chapter 4

[187]

By sharing the Contact Profile Answer table, other companies can see how a
customer is doing within the group.

The segment tables could be shared in order to slice and dice information across the
company. This also requires the criteria tables to be shared.

When you share the profile or segment tables, the reports
that calculate them should be started for each company
individually in the database.

Campaigns and opportunities should not be shared since that interfaces with the
ERP system. Never share financial tables such as the value entry or document tables.

Interaction log entries could be shared but we should realize that most table relations
to sales and purchase documents will not work when we are in the wrong company.

Business relation
When sharing the contacts across the companies, we are interested to see in which
company contacts are customer and vendor. We also want to maintain those tables
when the contact information changes.

This means that besides sharing the Contact Business Relation table, we should also
add a field indicating the company and add this field to the primary key.

Relationship Management

[188]

C/AL code modifications
To make this customization work, we need the C/AL code to understand what we
want to do. It needs to understand that we added the company. Let's go through all
the functions we need to change to make this work.

The functions that create the customer and vendor records we saw in Chapter 2,
A Sample Application, should also be checked, for example, the function
CreateCustomer in the contact table.

CreateCustomer()
...

ContBusRel.RESET;
ContBusRel.SETRANGE("Contact No.","No.");
ContBusRel.SETRANGE("Link to Table",ContBusRel."Link to
Table"::Customer);
//* Company Sharing >>>
ContBusRel.SETRANGE(Company, COMPANYNAME);
//* Company Sharing <<<
IF ContBusRel.FIND('-') THEN
 ERROR(
 Text019,

...

And a little bit further up in the C/AL code:

ContBusRel."Contact No." := ContComp."No.";
ContBusRel."Business Relation Code" := RMSetup."Bus. Rel. Code for
Customers";
ContBusRel."Link to Table" := ContBusRel."Link to Table"::Customer;
//* Company Sharing >>>
ContBusRel.Company := COMPANYNAME;
//* Company Sharing <<<
ContBusRel."No." := Cust."No.";
ContBusRel.INSERT(TRUE);

We should also check the code that maintains data integrity, which is the
CustVendBank-Update Codeunit (5055) that we discussed in Chapter 2,
A Sample Application:

UpdateCustomer()
WITH Cust DO BEGIN
//* Company Sharing >>>

Chapter 4

[189]

 CHANGECOMPANY(COMPANYNAME);
//* Company Sharing <<<
 GET(ContBusRel."No.");
 ...
END;

Here, we use the CHANGECOMPANY C/AL command to change the company for a
specific instance of a variable.

There are more functions impacted such as the UpdateQuotes
function in the contact table. Analyze your database before
implementing this feature.

Number Series
The last change we should do for a properly working system is create a new instance
of the Number Series functionality.

This can be achieved relatively easily since the Number Series are an isolated set
of objects.

In the object designer, we should filter on this set of objects and export them to
a .txt file.

•	 Table (308): No. Series
•	 Table (309): No. Series Line
•	 Table (310): No. Series Relationship
•	 Report (21): No. Series
•	 Report (22): No. Series Check
•	 Codeunit (396): NoSeriesManagement
•	 Page (456): No. Series
•	 Page (457): No. Series Lines
•	 Page (458): No. Series Relationships

In this file, we can renumber them and rename them so we get something like this:

•	 Table (123456721): No. Series (Shared)
•	 Table (123456722): No. Series Line (Shared)
•	 Table (123456723): No. Series Rel. (Shared)
•	 Report (123456721): No. Series (Shared)
•	 Report (123456722): No. Series Check (Shared)

Relationship Management

[190]

•	 Codeunit (123456721): NoSeriesManagement (Shared)
•	 Page (123456721): No. Series (Shared)
•	 Page (123456722): No. Series Lines (Shared)
•	 Page (123456723): No. Series Rel. (Shared)

Where, the tables should be DataPerCompany No.

Final steps
When we have shared Number Series functionality, we can implement this in the
existing objects.

1.	 The Contact Nos. field in the marketing setup table should change the
table relation to the Shared No. Series table as well as the No. Series field
in the contact table.

2.	 The NoSeriesMgt variable in the contact table should move from
NoSeriesManagement to SharedNoSeriesMgt.

Alternative approaches
Sharing the contact information across companies is a change that has been
implemented by many companies and can be considered safe. Other tables in
Microsoft Dynamics NAV are more difficult to share because of financial or
operational information.

A typical example in the standard application is Item table (27). This contains a
field Cost is Adjusted (29), which is used when running cost adjustment. If this
table will be shared across all companies, it would create a major issue with running
this function. We will discuss cost adjustment in Chapter 5, Production.

For this issue, there are two commonly implemented solutions:

•	 Shared Master Items: We can create a new table called master item.
This table is shared across all companies and contains the information we
share like descriptions and pricing. When the data in this table is changed,
it should enable a mechanism comparable to the CustVendBank-Update
Codeunit (5055), which updates the items in the other companies using
the CHANGECOMPANY C/AL function.

•	 External Synchronization: We could implement something that will export
the changes done in one company into an XML file. An Application Server
can run in the background and read this xml file and implement these
changes to other companies in the database or even other databases.

Chapter 4

[191]

The first solution with master items looks a lot like the way contacts work in the
standard application and is a perfect example of look, learn, and love using proven
data structures in customized solutions.

Adding contacts to segments
The last change we are implementing in relationship management is adding a table
to the Add Contacts functionality in segments.

We have seen that it is already complete but a vertical solution might want to
integrate its ledger entry tables here.

For this example, we will make it possible to filter in the squash ledger entries from
the example application in Chapter 2, A Sample Application.

Expanding report
The first step is to add the squash ledger entries as DataItem to the Add Contacts
report (5198). We will copy the functionality from the Value Entries as this is
comparable functionality.

Always find comparable standard application functionality to
learn from. Never just copy and paste this but learn how it's
done and apply your own knowledge.

Relationship Management

[192]

We cannot copy and paste the table relation from the other contact business relation
DataItem since squash players are contact persons, not companies. Our table relation
should be Contact No.=FIELD(No.).

The code in our Contact Business Relation table tells us that we need two new
variables or the type Boolean, SquashFilters and SkipSquashLedgerEntry:

ContactBusinessRelation2 - OnPreDataItem()
IF ContactOK AND ((GETFILTERS<>'') OR SquashFilters) THEN
 ContactOK := FALSE
ELSE
 CurrReport.BREAK;

ContactBusinessRelation2 - OnAfterGetRecord()
SkipSquashLedgerEntry := FALSE;
IF NOT SquashFilters THEN BEGIN
 ContactOK := TRUE;
 SkipSquashLedgerEntry := TRUE;
 CurrReport.BREAK;
END;

The SquashFilters is determined in the OnPreReport trigger:

Report - OnPreReport()
ItemFilters := "Value Entry".HASFILTER;

//* Squash >>>
SquashFilters := "Squash Ledger Entry".HASFILTER;
//* Squash <<<
...

The code in the Squash Ledger Entry DataItem should look like this:

Squash Ledger Entry - OnPreDataItem()
IF SkipSquashLedgerEntry THEN
 CurrReport.BREAK;

CASE ContactBusinessRelation2."Link to Table" OF
 ContactBusinessRelation2."Link to Table"::"Squash Player":
 BEGIN
 SETRANGE("Squash Player No.",
 ContactBusinessRelation2."No.");
 END;
 ELSE
 CurrReport.BREAK;
END;

Chapter 4

[193]

Squash Ledger Entry - OnAfterGetRecord()
ContactOK := TRUE;

IF ContactOK THEN
 CurrReport.BREAK;

Make sure we filter on our instance of Contact Business Relation and that we filter
on our link to the squash player table.

The ContactOK indicates that all contact persons connected to this squash ledger
entry will be inserted.

Implementing criteria filters
To support the criteria filter functionality, we need to make two changes, one to the
Add Contacts report and the other to the SegCriteriaManagement codeunit.

In the Add Contacts report, we add this C/AL code to the OnPreReport trigger.
This will make a call to the SegCriteriaManagement Codeunit (5062):

OnPreReport()
...
SegCriteriaManagement.InsertCriteriaFilter(
 "Segment Header".GETFILTER("No."),DATABASE::"Value Entry",
 "Value Entry".GETFILTERS,"Value Entry".GETVIEW(FALSE));
//* Squash >>>
SegCriteriaManagement.InsertCriteriaFilter(
 "Segment Header".GETFILTER("No."),
 DATABASE::"Squash Ledger Entry",
 "Squash Ledger Entry".GETFILTERS,
 "Squash Ledger Entry".GETVIEW(FALSE));
//* Squash <<<

In the SegCriteriaManagement codeunit, we add this code to the SegCriteriaFilter
function, which will require a new local variable for Squash Ledger Entry:

SegCriteriaFilter()
...

CASE TableNo OF
 ...
//* Squash Ledger Entry >>>
 DATABASE::"Squash Ledger Entry":
 BEGIN
 SquashLedgEntry.SETVIEW(View);

Relationship Management

[194]

 EXIT(SquashLedgEntry.GETFILTERS);
 END;
//* Squash Ledger Entry <<<
END;

Test solution
Now, we can test the solution by trying to add all squash player of type Member to
a Segment:

The result is a segment with the required squash players.

Chapter 4

[195]

This change also needs to be implemented to the reduce/refine
functionality, which works similar to the add contacts report.

Summary
In this chapter, we took a deep dive into the Microsoft Dynamics NAV relationship
management functionality. We learned how it is integrated with the ERP part of the
system. Relationship management can be very useful to analyze sales data. With
profiles, we can filter on turnover and profit figures and use them in segments.

Interaction Log Entries allow us to keep track of all the contact moments with the
people we do business with. Outlook integration can be used for salespeople to
work remotely and synchronize with the system.

Campaigns and opportunities help us to keep track of the quote process and
make our sales working more efficient.

Lastly, we looked at some common requirements to change the relationship
management system to meet our company's specific requirements.

In the next chapters, we will look at the ERP part of Microsoft Dynamics NAV
starting with the process in Chapter 5, Production, and Chapter 6, Trade.

Production
The previous chapters introduced the key concepts of Microsoft Dynamics NAV as
well as the details of the financial application and CRM. These horizontal modules
can be implemented in most industries without big structural changes.

In this chapter, we will discuss three ways of implementing production in
Microsoft Dynamics NAV using the standard functionality and customized features.

We'll discuss item tracking and item costing and what procedures and objects are
used to get this working correctly in the application. For manufacturing, we will
discuss the general concepts and data model rather than going into the details of
each and every functional possibility.

We will also discuss kitting, which is only available in a limited number of countries
such as North America, France, and Australia, but will most likely be moved to the
worldwide version in future versions.

At the end of the chapter, we will look at the five different vertical industries and
highlight two specific features of these industries that are not implemented in the
standard product and discuss how the problems could be solved.

After reading this chapter, you will have a better understanding about the
concepts of production in Microsoft Dynamics NAV, how this fits together
with the rest of the application, and how to think out of the box if it does not
immediately fit your process.

Production

[198]

What is production?
Production is the process of creating a new product using raw materials or
prefabricated items and resources.

Production as we know it today started centuries before the industrial revolution
with craftsmen and assistants creating products using raw materials produced by
nature and farmers. Today, this method of production still exists for many luxury
items such as custom-made furniture or clothes.

The industrial revolution changed production into manufacturing, with the
introduction of machines and mass production. This allowed production to
grow by being less dependent on craftsmen and manual labor.

Purchase

Raw
Materials

Finished
Products

Production
Process

Sales

The introduction of computers in manufacturing companies allows the production
of more sophisticated items and has made manufacturing more flexible.

To implement Microsoft Dynamics NAV for production companies, it is crucial to
understand which level of production is being used in your company.

Production methodologies
In this chapter, we will differentiate between the following three production
methodologies:

•	 Assembling production: When production is combining items into one new
item without changing the items or scrap, we will refer to it as assembling.

•	 Manufactured production: This is the most complex production method to
be implemented in Microsoft Dynamics NAV. Raw materials are combined
into one or more products leaving scrap.

•	 Specialized production: These are often one off items or items produced
in small numbers. The system should support the basics of the production
process but should still be flexible enough to fit the company.

Chapter 5

[199]

Raw materials
Each product we consume starts out as raw materials, such as cotton, iron ore, logs,
and oil, which are then processed to be used in a production process. Other raw
materials are water and air or fruits and vegetables. All raw materials are produced
by mother nature. The production of some raw materials such as logs, cotton, fruits,
and vegetables, can be influenced by humans. Other raw materials are more limited
such as iron ore, oil, and water.

Basic production principles
Before going into Microsoft Dynamics NAV, we will discuss some terminology that
is important to understand the concepts of production in ERP.

Bill of materials
The bill of materials defines what components are used to assemble or manufacture
one item. The components in the bill of materials are also items, so before creating a
new bill of materials, all component items must be created in the system.

In Microsoft Dynamics NAV, there are two separate bill of material
definitions, one for assembling and the other for manufacturing.

Material requirements planning
Material requirements planning (MRP) was introduced in the 1960s as a calculation
method for production scheduling and was quickly replaced by Manufacturing
Resource Planning (MRP II).

While ERP replaces MRP, MRP is still a crucial part of ERP applications.

Microsoft Dynamics NAV has a built-in MRP algorithm but also allows developers to
create their own algorithms using the built-in data model. MRP analyzes dependent
demand, which is demand that comes from production orders for components.

Production

[200]

Garbage In Garbage Out
The biggest risk in running MRP algorithms is the Garbage In Garbage Out (GIGO)
principle. To plan well, the data in the system must be absolutely correct or the
planning will contain errors.

If, for example, the shipment dates in the sales orders are not entered correctly,
the planning algorithm has no chance of giving correct results. The garbage in
(wrong dates) will result in garbage out (wrong planning).

Master Production Schedule
Master Production Schedule (MPS) is the term used for production planning and
scheduling. An MPS is used for decision making, linking supply and demand.
It analyzes independent demand, that is, demand that comes from sales orders,
service orders, and the production forecast.

Item costing
For manufacturing companies, it is crucial to be able to calculate real item costing
and profitability. The cost of an item consists of the costs of all the components it
was created from, as well as the production time and cost of any machinery used.

In production companies, high costs are incurred before an item can be even
manufactured and sold. Machines need to be purchased and installed and new
manufacturing plants may need to be built.

Item tracking
Item tracking is a relatively new concept that was introduced due to the need to
be able to trace back an item to its original production batch in the supply chain.
Whenever something is wrong with a specific item, it is interesting to see whether
other items that were produced in the same batch have the same issue and maybe
even require a recall of all items.

Quality control
During the production process and especially at the end, quality control is a crucial
stage. Items can be rejected completely or may require extra handling.

Chapter 5

[201]

In quality control, items are checked for mistakes. The way this is done depends on
the production process. In the automobile industry, all cars are checked individually,
while in the chemical industry, parts of batches are taken out and checked, assuming
that the rest of the batch has the same quality.

Quality control is always at the end of the production process but can also be
in between each of the main production processes. Sometimes, the item that is
manufactured depends on the result of quality control. In this case, each level
of quality is represented by a special item number.

Energy and waste
When manufacturing an item, the obvious components are the items in the bill of
materials. It is becoming exceedingly crucial to use less energy and leave less waste
materials in this process as our environment is becoming more and more vulnerable.
As recycling is becoming increasingly important, these components have a bigger
pressure on production cost and planning.

Association for Operations Management
To learn more about production, it is interesting to study the materials provided by
the Association for Operations Management (APICS). APICS is the organization
that is recognized worldwide as the leading authority on manufacturing standards,
similar to how the W3C is considered the authority on XML standards.

More information about APICS can be found at
http://www.apics.org/.

Getting started
Let's walk through two scripts to generate a new item with a bill of materials: one for
an assembling process and the other for manufacturing.

We will set up both, item costing and item tracking for these products.

The examples are created using a CRONUS W1 Microsoft
Dynamics NAV 2013 Release 2 database without changes.

http://www.apics.org/

Production

[202]

Assembling
In our company, we want to start producing office chairs. These chairs consist of five
wheels, a pedestal, a seat, and two arm rests. We will create these four components
as a new item and one new item for the end product.

All the items will have a different costing method to demonstrate the effect of cost
changes. The end product will support serial number item tracking with a one year
warranty period.

Design patterns
Before going into the application, we will have a look at how this process is solved in
Microsoft Dynamics NAV. The following diagram illustrates the process:

ResourceFinancial

Assembly Management

Res. Ledger Entry
(Table 203)

Resource Register
(Table 240)

Gen. JnI.-Post
Line

(Codeunit 12)

Inventory
Posting To G/L
(Codeunit 5802)

Child Resource
(Table 156)

Res. Jnl.-Post
Line

(Codeunit 212)

G/L Register
(Table 45)

G/L Entry
(Table 17)

Value Entry
(Table 5802)

G/L-Item Ledger
Relation

(Table 5823)

BOM Component
(Table 90)

Child Item
(Table 27)

Parent Item
(Table 27)

Item

Item JnI. Post
Line

(Codeunit 22)

Item Register
(Table 46)

Item Ledger Entry
(Table 32)

BOM Component
(Table 90)

Assembly Header
(Table 900)

Assembly-Post
(codeunit 900)

Posted Assembly
Header

(Table 910)

It starts with creating the components and end products as items in the database
and connecting them using the BOM Component table. A BOM Component can
also contain Resources.

Chapter 5

[203]

If the components are in stock, we can use the assembly documents to create the
products. When posting the assembly document, the components are consumed and
the product is created. During this process, the system will create Resource Ledger
Entries, Item Ledger Entries, and Value Entries.

The Value Entries can be posted in the general ledger using the Inventory Posting to
G/L routine, either manual or in real time. This completes the process.

The items
For this example, we will need to create five items, four components, and one end
product. We will assign an estimated unit cost to the components and a unit price to
the end product, as shown in the following table:

No. Description Base
UOM

Unit cost Unit price Costing

CHAPTER5-C1 Chapter 5 | Wheel PCS 5 FIFO
CHAPTER5-C2 Chapter 5 | Pedestal PCS 60 LIFO
CHAPTER5-C3 Chapter 5 | Seat PCS 120 Average
CHAPTER5-C4 Chapter 5 | Arm Rest PCS 35 Standard
CHAPTER5-P1 Chapter 5 | Office

Chair
PCS 500 Specific

In a real implementation, we would never set up a bill of materials
with so many different costing methods for each item. This is strictly
for the purpose of explaining what each costing method does and that
Microsoft Dynamics NAV is technically capable of dealing with this.

Item costing
Item costing determines the calculation method of the item costs. We will assign
a different costing method to each Item. Let's briefly discuss the available costing
methods in Microsoft Dynamics NAV:

•	 FIFO: First in First out. The cost of the oldest item ledger entry is used.
•	 LIFO: Last in First out. The cost of the newest item ledger entry is used.

When using FIFO or LIFO, the cost is applied within Lot No. if item
tracking is used with Lot numbering. That is, the cost associated with
the specific Lot No. is used.

Production

[204]

•	 Average: Each time we purchase items, the total costs are divided by the
total quantity. The result is used as unit cost.

•	 Standard: The user will define the unit cost manually. All deviations in
purchase pricing are posted as profit or loss when invoicing.

•	 Specific: This is always combined with item tracking and serial numbers.
Each serial number uses its own unique unit cost.

The costing methods are not related to the warehouse picking
method but only apply to financial costing calculations.

Item tracking
All our chairs will get a serial number with a one year warranty period. This enables
us to track all individual chairs when they come back to the factory with issues.

Chapter 5

[205]

Item tracking in Microsoft Dynamics NAV can be done both on individual Serial
numbers and Lot numbers for a group of items.

Serial Numbers and Lot Numbers are fields in the Item Ledger Entry table (32). The
consequence of this will be that for each serial number or Lot number, an individual
record will be created in the table. When using serial numbers, this can lead to a
massive increase in the table size.

The Lot numbers and item numbers are saved in the Reservation Entry table (337)
during the document entry process. A reservation entry can be assigned to any
table in Microsoft Dynamics NAV, for example, sales lines, item journal lines,
or production order.

When a document is posted and the item ledger entry is created, the reservation
entry is removed and replaced by a tracking specification record that has the same
value in the Entry No. field as the corresponding item ledger entry.

A reservation entry used for item tracking should not be confused
with normal reservation entries in the sales and purchase process.

The process of item tracking in Microsoft Dynamics NAV works as drawn in the
following schema:

Sales Line
(Table 37)

Production
(Table 54xx)

Purchase Line
(Table 39)

...

...

Other Documents

Item Tracking

Management
(Codeunit 6500)

Sales Line-

Reserve
(Codeu. 9900832)

Prod. Order

Line-Reserve
(Codeun. 9900817)

Purch. Line-

Reserve
(Codeu. 9900834)

Codeunits

9900832

.

9900844

Create Reserv

Entry

.

(Codeu 99000830)

Item Jnl.-Post

Line
(Codeunit 83)

Reservation Entry
(Table 337)

Reservation

Engine Mgt.
(Codeun. 99000831)

Item Entry Relation
(Table 6507)

Item Ledger Entry
(Table 32)

Tracking

Specification
(Table 336)

...

...

Posted Documents

Technically, item tracking in Microsoft Dynamics NAV is very complex and should
only be changed by experienced developers after careful analysis.

We will discuss the reservation process in more detail in Chapter 6, Trade.

Production

[206]

The bill of materials
When the items are created, the costing method is defined and item tracking is set up.
The next step is to create the bill of materials for the office chair. This can be done using
the Bill of Materials option in the Assembly List in the Item List or Card page.

The bill of materials defines the component items and resources that will be used to
create one new end product.

We set up the components as discussed earlier using five wheels, one pedestal,
and seat and two arm rests.

Calculating the standard cost
The components we selected for the bill of materials have a unit cost. Together these
items can determine the unit cost of our end product.

Chapter 5

[207]

We can calculate the standard cost of the office chair by selecting Calc. Standard
Cost in the same Assembly menu we used for the bill of materials.

The name Calc. Standard Cost in the calculation option is not to
be confused with the costing method. This function should be
executed for all costing methods.

The standard cost is now calculated using the unit cost of the components and the
overhead rate and indirect cost percent. We will not use the latter in our example.

((5*5) + (1*60) + (1*120) + (2*35)) = 275

Creating the inventory
Before we can assemble the chairs, we need to purchase the components. For this,
we will create a purchase order with eight purchase lines. We will purchase the
components for other prices than the unit cost in the system, allowing us to show
what the impact of the costing methods is.

Production

[208]

The purchase order will be received and invoiced.

If the purchase order is only received and not invoiced, the example
might not work because expected cost posting to G/L is not activated
in the CRONUS database.

Adjusting cost item entries
The purchase order we just created, received, and invoiced has a different unit cost
compared to the unit cost we initially set up in our items.

Depending on the costing method of the items, this will have an impact on the unit
cost. When we take a look at the new unit cost of the items we created, we can see
that this was impacted by the purchase order. However, the values are not correct.
The system only adopts the first change of unit cost.

To correct this, we need to run the Adjust Cost Item Entries (Report 795) batch.
This will determine the new unit cost based on the costing method.

The unit cost for FIFO, LIFO, and average have been recalculated while the standard
cost has not been impacted by the transactions.

The Adjust Cost Item Entries report should be scheduled to run
periodically in your database. Even if the database is set to use
Expected Cost Posting and Auto Cost Posting.

Chapter 5

[209]

Posting inventory cost to G/L
Microsoft Dynamics NAV supports posting the inventory cost to the general ledger.
This enables accountants to have a single point for data analysis rather than printing
an inventory report and using the figures manually for reports to the management.

This can be done using the Post Inventory Cost to G/L function (report 1002),
as shown in the following screenshot:

Check, check, and double check
To check whether the value entries and the general ledger are synchronized, we can
run Inventory Valuation (Report 1001). This will show us the inventory value versus
the amount posted to the general ledger.

Production

[210]

Recalculating the standard unit cost
The standard unit cost we calculated for our office chair was 275. This was based
on our assumption of purchase prices. Now that we have really purchased and
received the components, we can calculate a new unit cost based on the real prices.

In this example, the price will still be 275 since the total price of all purchased items
is 550. The inventory allows us to make two chairs with these materials:

(550 / 2) = 275

With this calculation method, it is possible to check the results of
the Calculate Unit Cost algorithm.

Assembly orders
Now that we have the components in stock and the unit cost correct, we can create
a chair. We will do this using an assembly order.

In the assembly order, we need to create one line for each item we want to assemble.
The components are automatically used when posting the order. We will use the
Purchasing Agent Role Center (9007) for this.

Assembly orders

After creating a document for the office chair, while trying to post the document,
we will receive an error message because we first need to specify the serial numbers.

Chapter 5

[211]

Specifying Serial Number

Serial numbers and Lot numbers can be set up using the Item Tracking Lines
option. This opens the Item Tracking Line page (6510). This page is able to show
both the reservation entries during the registration process as well as the tracking
specification if the item ledger entry is already created.

We will manually create a new serial number. Microsoft Dynamics NAV also
supports system generated serial numbers.

We can now post this assembly order and will have one office chair in stock with a
serial number.

Production

[212]

Check costing (again)
Creating the office chair changed the inventory of the component items and therefore
might have affected the costing of our items. However, when we now check our
items, the unit cost has not changed.

Even so, with the current inventory, the unit cost might be different. Remember we
used 5 wheels using FIFO costing 4 and one seat using LIFO costing 70.

Let's run Adjust Cost Entries using the Posting to G/L option:

The unit cost has changed and now shows us that we have used the first five wheels
using FIFO, leaving the other five wheels in the inventory for a value of 5. We used
the last seat using LIFO, leaving the first seat in the inventory for a value of 70.

When we run the Inventory Valuation, we can see that producing the first chair
actually costs 267,50 but we posted 275.

Chapter 5

[213]

Recalculating the unit cost (again)
When we run Calculate Unit Cost for our office chair, we can see that the new
cost will be 282,50.

(5*5) + (1*70) + (1* 117,50) + (2*35) = 282,50

Together with the first chair worth 267,50, we match our purchase invoice
worth 550.

Standard cost worksheet
We need to correct the cost of the first chair, which is currently on inventory to
have a correct inventory value. We can do this using the Standard Cost Worksheets,
as shown in the following screenshot:

Production

[214]

This worksheet allows us to correct old value entries by creating an entry in the Item
Revaluation Journal when we select the Implement Standard Cost Change option.
This will create a new value entry with the delta values to keep track of changes.

Item Revaluation Journal
The last step is to post the Item Revaluation Journal and run the Post Inventory
Cost to G/L routine.

We also need to run the Calculate Standard Cost for the office chair
since this batch will reset the unit cost to 267,50.

Chapter 5

[215]

The result
When we now run the Inventory Valuation Report, we can see that the Office Chair
on stock is worth 267,50 and the remaining inventory is 282,50:

Summarizing item costing in 10 steps
All the steps we performed in the example can be summarized in this 10 step
process diagram:

Preparation

1. Create & Check Items

2. Create Bill of Materials

3. Calculate Standard Cost

4. Post Purchase Order

Production

5. Adjust Cost Item Entries

6. Post Cost to General Ledger

7. Calculate Standard Cost

8. Post the Assembly Order

9. Standard Cost Worksheet 10. Item Revaluation Journal

Correction

Production

[216]

Let's have a look at the steps briefly:

1.	 We start by creating new items and setting up the costing method.
2.	 Then we create the bill of materials for the production item.
3.	 Run the Calculate Standard Cost routine to get a unit cost for the

production item.
4.	 Purchase the necessary items for production.
5.	 Run the Adjust Cost Item Entries routine.
6.	 Synchronize the value entries with the G/L Entries using the Post Inventory

Cost to G/L routine.
7.	 Recalculate the standard cost if desired.
8.	 Create an assembly order and post the document.
9.	 Run Standard Cost Worksheet to change the standard cost.
10.	 Run the Item Revaluation Journal to implement the standard cost for old

value entries.

Manufacturing
The assembly management module was added to the Microsoft Dynamics
NAV product in Version 2013 and replaced the BOM Journal that existed since
the introduction of the Windows version in 1995. Both enable us to create a new
item out of other items.

In Version 2.01, Navision introduced the first version of Navision manufacturing.
This was a separate product from Navision financials and only available for certified
partners because of its complexity.

With Version 3.00, manufacturing became part of the standard Navision attain
package and available for all partners. Manufacturing offers Microsoft Dynamics
NAV users much more functionality than just creating an item from a bill of
materials. Production orders can be scheduled using work centers, machine
centers, tools, and a capacity calendar.

The items can be scheduled for production using either a Make-To-Stock or a
Make-To-Order policy in a planning run.

Chapter 5

[217]

The system calculates the required BOM components and can create purchase orders
if the inventory is insufficient using a complex demand and supply process. If we
put this into a design pattern, it looks like this:

Production BOM
()Table 99000773

Child Item
()Table 27

Routing
()Table 99000753

Machines
()Table 99000758

Parent Item
()Table 27

Prod. Order Line
()Table 5406

Production Order
()Table 5405

Capacity Ledger
Entry

()Table 9832

Purchase Order
()Table 38 & 39

Workcenters
()Table 99000754

Sales Orders
()Table 36 & 37

Output Journal
()Table 83

Requisition Line
()Table 246

Planning
Workstation -

Calculation Plan

Reservation Entry
()Table 337

Prod. Order
Routing Line
()Table 5409

Consumption
Journal
()Table 83

Item Register
()Table 46

Item Ledger Entry
()Table 32

Prod. Order
Component
()Table 5407

The Production Order is the center of the process, which is created by items having a
Production BOM that are either on sales order or low on inventory.

The Planning Run populates the Planning Worksheet, which is based on the
Requisition Line table (246). The planning worksheet can be used to create the
production orders and purchase orders.

During the production process, the Consumption Journal is used to record the
use of the child items from Production BOM and the Output Journal creates the
new item once it is finished. Alternatively, these steps can be combined in the
Production Journal.

Let's demonstrate this with the next example using the Production Planner
role center (9010).

We will create mahogany English desks using raw materials, machines,
and resources.

Production

[218]

The items, machines, and work centers
For the desks, we need mahogany wood, green leather, glue, lacquer, and handles.
To create one desk, the carpenter needs four days and one carpentry unit with tools.
The painter needs one day to varnish the desk in the paint booth and the assembly
department wraps up the components in boxes and needs four hours.

We need the following items for this example:

No. Description Base
UOM

Replenishment
System

Unit
Cost

Unit
Price

Manufacturing
Policy

CHAPTER5-P1 Mahogany
English Desk

PCS Prod. Order 286,25 999 Make-to-Order

CHAPTER5-C1 Mahogany Log PCS Purchase 100 -

CHAPTER5-C2 Green Leather PCS Purchase 60 -

CHAPTER5-C3 Glue CAN Purchase 15 -

CHAPTER5-C4 Mahogany
Lacquer

CAN Purchase 25 -

CHAPTER5-C5 English Desk
Handles

PCS Purchase 10 -

The following list is for machine centers:

No. Name Work Center No. Capacity Efficiency
01-CARP Std. Carpentry Unit w. Tools 400 1 100
02-PAINT Paint Booth 300 1 100
03-PACK Packaging Department 200 1 100

Capacity
The planning run and the requisition worksheets will use capacity if it is defined.
The capacity is defined for each Work Center and Machine Center.

Chapter 5

[219]

The capacity is stored in the Calendar Entries, which are created using codeunit
CalendarManagement (99000755) and reports Calculate Work Center Calendar
(99001046) and Calc. Machine Center Calendar (99001045). Capacity is based on
the concurrent capacity, from either the machine or work center, and the assigned
shop calendar.

Just like the interaction log entries, the calendar entries are directly inserted instead
of going through a journal first.

Calendar entries

When properly configured, the Planning Worksheet will calculate the starting
and ending dates for the production order and each operation in order to meet
the shipment date on the sales order line.

Production bill of materials
Setting up the Production bill of materials for manufacturing is not much different
from the assembly functionality but it contains extra functionality.

Production

[220]

The Production BOM uses its own header record with a number series, description,
and search description. The Status field is used to determine whether the product
is new, certified, under development, or closed. Together with the versioning,
it enables us to maintain multiple BOMs during the product's life cycle.

The components of the bill of materials are saved as lines and support using scrap.
The Scrap % is calculated when running the MRP and calculating the unit cost.

Chapter 5

[221]

Routing
The Routing Setup determines how long it will take to produce one item and which
work centers and machine centers are used in the process.

The Routing Setup gives you advanced features such as parallel and serial planning,
and setup time. For our example, we will keep it simple and only use the Run Time.

Testing and low-level code
We are now almost set to start testing our manufacturing item. We have set up the
items and machine centers, calculated the calendar entries, and set up a routing.

The last step in the process is to calculate the low-level code. This field, which is
stored both in the item and production BOM table, determines how low the item is in
the BOM ranking. Low-level code zero means this is a parent item and one or higher
is a child item or a child of a child item.

Production

[222]

The maximum value of the low-level code can be 50, but in reality this
will be very difficult to work with and bad for system performance.

If you received an error that you have exceeded 50 levels, check
the production BOMs to ensure that there is no circular reference.
It is possible to have a parent item consume a child item that consumes
the parent.

The low-level codes can be calculated automatically or manually. For automatic
calculation, the Dynamic Low Level Code feature should be activated.

Due to NAV ability to create a production BOM before it is attached to an item,
the dynamic low-level code is not always accurate. Prior to a planning run, it is
good practice to run the Calculate Low Level Code (Codeunit 99000793).

Activating Dynamic Low Level Code can however impact the performance of your
system, so for most installations, it is preferable to periodically calculate this using
Codeunit Calc. Low-level code (99000853).

Chapter 5

[223]

Simulation, sales orders, or inventory
There are three ways in Microsoft Dynamics NAV to create a production order.
The easiest way is to manually enter them one by one. This can even be a simulation
production order to test whether everything is set up as required.

Manual order entry is very time-consuming and is not often used by manufacturing
companies. Most of them use MRP programs to plan the orders. When this is done
using an external application, the interface will then create the production orders.

The MRP algorithm in Microsoft Dynamics NAV supports two policies,
Make-To-Stock and Make-To-Order.

Make-To-Stock
Make-To-Stock, also called Build-To-Stock is often used for high volume items, which
are sold to trading companies. When this manufacturing policy is used, the reordering
policy should be used. Reordering policies will be discussed in Chapter 6, Trade.

Make-To-Order
Make-To-Order is often used in demand-driven items such as automobiles.
Keeping these items in the inventory is very expensive. The manufacturing
process is started after the item is sold.

However, most companies that use Make-To-Order have reserved time slots
where these items can be scheduled, so the production capacity is already
reserved but the item is not yet determined.

When using Make-To-Order, the MRP run will create production orders for all sales
orders. We will use this manufacturing policy in our example.

The sales order
For our example, we need a sales order for one or more English desks.

Production

[224]

Be careful when picking a location since this will be the location
where the desk will be manufactured.

Calculating MPS and MRP
The planning run in Microsoft Dynamics NAV creates lines in the requisition
or planning worksheets. This worksheet structure is very important in the
sales/purchase/production process. This worksheet can create purchase
orders and production orders for sales orders.

Requisition versus planning versus subcontracting
worksheets
The Requisition Worksheet can show different user interfaces (pages) allowing
users to do different tasks.

Chapter 5

[225]

The Requisition Worksheet does not have a general post line routine like the other
journals. Each worksheet type uses a different process. The following schema shows
how the requisition process ties together:

Sales Order Purchase Order Production Order

Get Sales
Orders

()Table 99000773

Calculate Plan
- Req. Wksh
()Report 699

Get Sales
Subcontracts

()Report 99001015

Order
Planning Mgt.
()Codeunit 5522

Get Action
Messages

()Report 99001023

Calc. Item Plan
- Plan Wksh

()Codeunit 5434

Calculate Plan
- Plan. Wksh.
()Codeunit 5434

MPS - MRP

ManufacturingTrade

Prepare Data

Req. Worksheet
()Report 291

Subcontracting
Worksheet

()Report 99000886

Order Planning
()Page 5522

Planning Worksheet
()Report 99000852

Requisition Line
-

Worksheet

Carry Out
Action Msg. -

Rqst.
()Report 493

Make Supply
Order

(Yes/No)
()Codeunint 5521

Carry Out
Action Msg. -

Plan.
()Report 99001010

Req. Wksh.-
Make Order
()Codeunit 333

Carry Out
Action

()Codeu. 99000813Process Worksheet
&

Create Orders

The Trade section will be discussed in Chapter 6, Trade. In this chapter, we will focus
on the planning (MPS and MRP) process and the manufacturing part.

The requisition worksheet process allows us to create our own process
to prepare data using custom settings to generate the worksheet lines
and even to build our own planning algorithm in a new C/AL object
that will create requisition lines.

Inventory profile offsetting
The actual heart of the MRP calculation in Microsoft Dynamics NAV is codeunit
Inventory Profile Offsetting (99000854), which is called from codeunit Calc.
Item Plan - Plan Wksh. (5431) in our schema.

Production

[226]

This codeunit is not easy to understand and should only be changed by specialized
developers after careful analysis. The process uses the inventory profile buffer
table during the calculation to build up information and starts with the function
CalculatePlanFromWorksheet:

Atomic coding
The code unit in this image in the standard Microsoft Dynamics NAV application is a
perfect example of atomic coding, also known as workflow coding. With this style of
programming, you break down the code into functions that have functional naming
and leave out any programming while calling the functions one by one. This makes
your code easier to read for others and cheaper to maintain.

Let's look at the functions in this code unit:

•	 InitVariables: This function is used to clear and initialize variables used
in this codeunit.

•	 DemandtoInvProfile: Here, the system creates records in the Inventory
Profile table for Sales Orders, Service Orders, and Production Orders that
may require items.

•	 ForecastConsumption: If Use Forecast on Locations is used in the
manufacturing setup, additional demand lines are created in the inventory
profile buffer based on the production forecast.

•	 BlanketOrderConsump: Additional demand is inserted for all blanket
sales orders with a Shipment Date and Outstanding Qty. within the
calculation period.

•	 SupplytoInvProfile: The current inventory, purchase orders, and
production orders are added to the Inventory Profile as possible supply.

•	 UnfoldItemTracking: If the item uses Item Tracking, this function makes
sure that Lot numbers and serial numbers match.

Chapter 5

[227]

In this function, Microsoft developers use a trick that when a
temporary table with more dimensions, the values in both tables are
identical. This blog entry at https://markbrummel.wordpress.
com/2014/06/01/tip-27-using-temp-tables-in-arrays/
explains how this works.

•	 FindCombination: This function creates temporary Stock Keeping Unit
records for each SKU that requires replenishment. If the item does not have
any SKU, the system will create a temporary SKU record.

•	 PlanItem: This is where the actual requisition lines are created for the item,
based on the information in the Inventory Profile table and the setup.

•	 CommitTracking: This function saves information stored in temporary
record variables to actual data in the database for reservation entries and
action messages.

Calculating a plan
Let's run the Planning Worksheet for our English desk and see what planning
lines we get.

https://markbrummel.wordpress.com/2014/06/01/tip-27-using-temp-tables-in-arrays/
https://markbrummel.wordpress.com/2014/06/01/tip-27-using-temp-tables-in-arrays/

Production

[228]

The MPS and MRP run is started from the Planning Worksheet. We need to enter
a starting date and an ending date. In the CRONUS database using our example,
we can use the current workdate.

When the MPS and MRP run is finished, we can start the process to Carry Out
Action Message to create the Production Order.

Production order workflow
The production order is now created and ready to be started. The first status is
Planned or Firm Planned. During the planned status, Microsoft Dynamics NAV
can automatically change the production order.

Once the production order is released, it can no longer be automatically changed.

Chapter 5

[229]

To release a production order, the components need to be available. In our
test scenario, this is not yet true since we created new items, which have not
been purchased.

Let's see how we can do this.

Purchase orders
To create the purchase orders, we'll use the Order Planning worksheet to illustrate
another method of planning. This will create requisition lines for the production
order we just released.

Production

[230]

Once the requisition lines are created, we need to specify a vendor number in
the Supply From field and then start the Make Orders process to generate the
Purchase Orders.

The Purchase Order can be received. This allows us to release the Production Order.

Finishing production
When the production order is finished, the end product should be in the inventory and
the components should be consumed. This consumption process is called flushing.

This is done using the Consumption Journal and Output Journal and can be done
automatically and manually.

An alternative to the Consumption and Output Journal is the
Production Journal that combines the functionality into one journal.

Chapter 5

[231]

The Consumption Journal is automatically posted when the flushing method in the
item card is set to Forward, Backward or Pick + Forward, Pick + Backward.

When using Forward, the Consumption Journal is posted when the production
order is released, Backward will post when the production order is set to finished.
Pick + Forward and Pick + Backward can be used in combination with
Warehouse Management Locations.

Specialized production
The last production methodology we discussed at the beginning of the chapter is
specialized production.

These are items produced in small numbers or items that have very different
specifications each time they go into production. For these companies, creating a
bill of materials each time an item changes is just too much work compared to the
extra information they would get.

Jobs
Still, these companies want to register their production orders and get a clear view
of their inventory. Most companies doing this kind of production are using the jobs
functionality of Microsoft Dynamics NAV.

We will discuss this in Chapter 8, Consulting, where we will assemble custom-made
computer systems with different components as an example.

Vertical industry implementation
Microsoft Dynamics NAV is used in many different vertical industries. Vertical
industries often require specific features. Rather than trying to implement all these
features in the standard product, Microsoft Dynamics NAV supports the framework
and allows developers to design and create vertical features.

For these features, the 80/20 rule applies; Microsoft delivers 80 percent of the
framework, which costs 20 percent of our time to implement. The missing 20 percent
of the functionality is developed costing 80 percent of the budgeted time.

In this chapter, we will discuss how Microsoft Dynamics NAV is used for production
in five different vertical industries. For each industry, we will discuss two specific
vertical features and how they could be solved.

Production

[232]

Most industries have solid add-on solutions available designed
by certified Microsoft Dynamics NAV partners that have been
implemented at multiple sites. It is highly recommended to look
at those add-on solutions instead of reinventing the wheel and
rewriting an add-on that already exists.

Fashion
The general challenge in the fashion industry is sizes and colors. Each item can
be produced and sold from XXS to XXXL and from pink to orange to green while
remaining the same item.

This calls for the creative use of variants, which are heavily used by the available
vertical solutions on the market.

Bill of materials
To use manufacturing with variants, the bill of material structure should be changed
since this exists by default on the item level. However, each size uses different
quantities of fabric and the different colors of fabric are often represented by
another item number in the raw materials.

A solution for this might be to move the bill of materials from Item level to Stock
Keeping Unit level. An SKU supports variants for costing and the inventory.

Shipping worksheet
Fashion companies produce items for a collection. Customers have the possibility
to reserve on a collection in order for the production manager to determine how
many to produce. Based on these numbers and an extra safety inventory, the
production orders are created. Once the production orders are finished, the
company needs to decide who gets the first items. This can be best described
as a reversed make-to-order mechanism.

To enable this in Microsoft Dynamics NAV, we could create a worksheet that will
create lines for each combination of production orders and sales orders. For each
sales order that will be shipped, we could create a Warehouse Pick and Shipment
from the Shipping Worksheet.

We will discuss stock keeping units, warehouse picks, and shipments in
Chapter 6, Trade.

Chapter 5

[233]

Automotive
In the automotive industry, Microsoft Dynamics NAV is mostly used by car
manufacturing suppliers, the companies that make prefabricated parts out of
raw materials.

Tooling and amortization
In these companies, the Production Part Approval Process (PPAP) is very important
as well as the tooling amortization since the initial investments in tooling before the
production process starts is high.

To support this, extra functionality needs to be developed for the tooling and BOM
process. For example, the table Routing Tool (table 99000802) can be connected to a
Fixed Asset (table 5600).

Item tracking
When something is wrong with a component of a car, it is important to be able to see
what other cars have, the same components built by the same factory and tools using
the same base materials.

In Microsoft Dynamics NAV, it is possible to use a single Lot no. for a component or
an end product and to trace this back. It is not possible to simply move the Lot no. of
the component to the end product or copy information from the component's Lot no.
such as a container no. or a quality code to the end product.

To support this, we need to change the item tracking process. A good place to
start would be the item journal where the reservation entry is moved to the item
ledger entry.

Medicines
When used by companies that manufacture medicines, using the expiration date for
Lot numbers correctly is highly important.

Lot numbers and expiration dates
In Microsoft Dynamics NAV, expiration dates are defined in the Item Ledger Entries
and the Warehouse Entries.

It is not possible to define a single expiration date for a Lot. This can be changed by
adding this field to the Lot No. Information table (6505). This table allows companies
to predefine Lot numbers to be used in the production process.

Production

[234]

By default, the expiration date is calculated based on the document date multiplied
with the Expiration Calculation field in the Item table (27).

The Lot No. Information table can be used to save additional information about the
specific production batch.

Quality control
Quality control is important in most production processes but maybe extra
important when dealing with medicines. Usually a small part of a Lot is taken
for quality control.

In Microsoft Dynamics NAV, we can define quality measures in the Prod. Order
Rtng Qlty Meas. Table (5413). However, these values are only saved as information
for the production order.

To enhance quality control, we could add a document structure where a quality
check document is created from a production order. The information should be
saved in the Lot No. Information table.

When a Lot does not have the required quality, a workflow should be started.
This workflow will lead the user through a process where decisions can be made.
Sometimes, the quality can be improved and the items can still be used. Sometimes
the item number even depends on the quality of the product.

Quality control is in between the Consumption Journal and the Output Journal.
During the final quality check, the BOM items are used, but the final item is not
yet available.

Food
In the food industry, everything is about expiration dates and fresh products.
Inventory is never very high and the rate of circulation is very high.

Zero inventory
For this reason, it should be possible for fresh food companies to zero the inventory
of certain Lot numbers once the expiration date is closing or has expired.

Chapter 5

[235]

This could normally be done using the Physical Inventory Journal. Doing this
manually with Lot numbers can be quite a job for someone to do this every day so
for this vertical solution, we could create a function to do this. This function would
create an Item Journal Line (83) with the field Phys. Inventory (56) activated and also
create the Reservation entry for tracking and post the line automatically.

Ordering schedules
Fresh food companies use daily production processes that start on scheduled times.
Each day, the factory starts the production process but the production numbers can
be different based on the orders.

This can be done using the Make-To-Order policy but we need to make sure that
there will be no new sales orders when the calculation process starts.

This can be achieved by creating an order schedule policy. New sales lines can be
created for each item until a certain time. When the time has elapsed, the salespeople
will get an error message. This allows the production planner to start the calculation
process at a fixed time each day, knowing the sales orders quantities can be trusted.

Furniture
The furniture industry is a large and very old industry that existed long before the
industrial revolution and the introduction of computers.

We can roughly split the furniture industry into two parts. The first part has moved
production to be standardized using size and color matrixes, which we can compare
to the fashion industry. When buying a table or kitchen, the customer can choose
from different sizes and colors. Depending on the number of choices, the products
are either Made-To-Stock (IKEA) or Made-To-Order.

The second part is furniture manufacturers who still produce custom-made items.
A desk or kitchen at these manufacturers can have any size or color. For these
companies, it is next to impossible to create a bill of material for each custom
item so they use predefined calculations with item categories.

For the examples in this book, we will discuss the second category.

Production

[236]

Calculations
Companies building custom-made furniture need the possibility to calculate the use
of materials and resources, both at the item category and real item level. For this,
we can create a calculation module with this data and posting model.

Item Calculation Generate
Demand

Req. Wksh. -
Make Order
()Codeunit 333

Purchase Order

Resource Calculation Line Req. Worksheet

Carry Out
Action Msg. -

Req.
()Report 493

Purchase Line

The basic structure of this calculation module is explained in Chapter 8, Consulting,
where we have combined this into the jobs functionality of Microsoft Dynamics NAV.

Inventory
Our furniture company uses a combination of product-specific items that are one
of a kind and inventory items that are used in most of the products.

These items are combined into the end product and should be consumed when
the product is finished. When the calculation module is integrated with jobs, for
example, it would be possible to flush the components when the job is completed.
This functionality can be compared to the posting of the Consumption Journal when
a production order is finished.

The inventory items can be updated weekly using the Physical Inventory Journal and
inventory counting. This enables us to use the requisition worksheet and reordering
policy we will discuss in Chapter 6, Trade.

Chapter 5

[237]

Summary
In this chapter, we discussed how three production methodologies can be
implemented in the Microsoft Dynamics NAV product. We introduced the concepts
of item tracking and item costing. We took a tour through the manufacturing process
using different requisition worksheets and talked about the solution for MRP.

Lastly, we looked at how production can be implemented for different vertical
industries. In the next chapter, we will have a closer look at the trade process in
Microsoft Dynamics NAV.

Trade
In the previous chapter, we discussed how Microsoft Dynamics NAV can help us
to streamline our production process using both the standard application as well
as customized solutions. We talked about five vertical industries and how to fit the
application for them.

In this chapter, we will discuss how to use Microsoft Dynamics NAV for these
companies using sales and purchase documents and how to integrate this with
the built-in Warehouse Management and Reservation processes.

The primary focus of this chapter is on how the application is designed, and where
to go to change or enhance the design. Basic knowledge of how to create and process
sales and purchase documents in Microsoft Dynamics NAV is a prerequisite.

We will use examples from the same vertical industries—automotive, fashion,
medicines, food, and furniture—which we discussed in the previous chapters.
After reading this chapter, you will have a good understanding of how to
implement Microsoft Dynamics NAV in trading companies.

Trade

[240]

The process
A trading company purchases and sells items without changing them. The main
activities are purchase, storage, packaging, sales, and shipping, as shown in the
following screenshot:

Purchasing & Receiving Shipping

SalesStorage (Re)
Packaging

Managing the inventory is very important in these companies. Having inventory is
crucial for delivering on time and not having to say "no" to customers.

Wholesale versus retail
Traditionally, trading companies are divided into wholesale and retail companies.
Wholesale companies sell to business and retail companies sell to consumers.
Microsoft Dynamics NAV supports both and from the perspective of design
(table and posting structure), there is not much difference.

The biggest difference between wholesale and retail for the application is the
transaction volume. While the total turnover of a wholesale company can be much
higher compared to a retailer, the retailer often has more, smaller transactions.
It can be a challenge from an application design perspective to retain a solution
that performs well.

Another issue with high volume transaction systems is traceability of the data.
Whenever something goes wrong, it is very important to see where this has started
and how much data was impacted by the mistake. In low transaction systems, it is
easier to find this manually.

Sales and purchasing
Traditionally, salespersons used to work with paper order forms. They would write
down the customer name and address and the items or services required.

Chapter 6

[241]

Paper order form

In Microsoft Dynamics NAV, the paper document is replaced by a sales and
purchase document using a header for the general order information and lines
to register the items and services.

The posting process breaks down the information in the document into the journals
and posts them, so the end user does not have to worry about this. The application
reuses the same posting routines as we discussed in earlier chapters.

Let's look at how the documents and journals tie together by drawing the table and
transaction scheme for this:

Sales Line
()Table 37

Sales Header
()Table 36

Sales Document

Item Journal Line
()Table 83

Sales Post
()Codeunit 80

Posting Process

Res. Journal Line
()Table 207

Job Post-Line
()Codeunit 1001

Invoice Posting
Buffer

()Table 49

General Journal
Line

()Table 81

Posted Document

Sales Shipment
Header

()Table 110

Sales Shipment
Line

()Table 111

Sales Cr. Memo
Header

()Table 114

Return Receipt
Header

()Table 6660

Sales Cr. Memo
Line

()Table 115

Return Receipt Line
()Table 6661

Sales Invoice
Header

()Table 112

Sales Invoice Line
()Table 113

Trade

[242]

The first step is creating the document. When we create this Sales Document (Sales
Header and Sales Line), nothing is posted. We are only entering the information into
the system that can be changed at any time.

When we start the Codeunit Sales-Post (80), the system will create all the journals
for us and post them. When we sell an item, the system will create an Item Journal
Line, and when we sell a resource, the system creates a Resource Journal Line, and
so on.

The Invoice Posting buffer is used to create the entries in the General Journal Line.
We already discussed this feature in Chapter 3, Financial Management.

Microsoft Dynamics NAV allows us to create four different kinds of posted sales
documents: invoices, shipments, credit memos, and return receipts. We will discuss
all these types later in this chapter.

Transaction mirroring
The unique concept of sales and purchase in Microsoft Dynamics NAV is
the mirroring of the transaction structure. Once we understand how the
sales transactions fit together, it will be easy to understand the structure
of a purchase.

Let's demonstrate this by comparing the first fields in Table 37 Sales Line
and Table 39 Purchase Line, as shown in the following screenshot:

Chapter 6

[243]

The fields in both tables are equally numbered and serve the same process even
though they use different terminology, for example, field 18, Qty. to Ship (sale)
and Qty. To Receive (purchase).

Some fields are different because they don't make sense to be in both processes,
for example, Unit Price (LCY) (field 31) in purchase and Customer Price Group
(field 42) in sales.

The purchase process also uses the same posting methodology. The purchase header
(38) and purchase line (39) tables are posted using the codeunit Purch.-Post (90) in
the purchase receipt, invoice, credit memo, and return shipment documents.

Let's have a closer look at the sales process.

Trade

[244]

Sales
The sales process supports six document types that are normalized into two tables,
sales header (36) and sales line (37).

Each process can have its own Number Series and has a special card and list page,
but they all share the same business logic. Let's discuss the document types:

•	 Quote: When a customer would like to know the terms and conditions of
making a purchase, we can make a quote. This will show all the calculations
such as pricing and VAT.

•	 Blanket Order: This is a pre-order status. When used, we have an agreement
with the customer without knowing the exact shipment date.

•	 Order: This is used for the actual order document.
•	 Invoice: This can be used in two ways; directly, without a sales order if the

company only invoices directly on G/L Accounts, or we can use the invoices
to invoice one or more shipments.

•	 Credit Memo: We can use a credit memo when we credit on a G/L Account.
•	 Return Order: If a customer returns an item, we can use a return order to

reverse the inventory process.

Orders
The main process is the order. The other document types are designed to support
this. Sales orders can be created directly or via a quote or blanket order. There are
two differences between a quote and a blanket order:

•	 Quotes can only be fully transferred into a sales order, not in parts.
For example, a blanket order of 100 items can be split into 10 deliveries
of 10 items with different shipping dates.

•	 A customer with a quote has the possibility to say yes or no. When the
answer is no, there will be no transaction. Therefore, quotes are not used in
the supply and demand calculation, as we discussed in the previous chapter.
A blanket order is a real order. The customer should eventually purchase the
complete quantity that was agreed. Therefore, the blanket orders are used in
the supply and demand calculation.

Chapter 6

[245]

Quote to order and blanket order to order
Although the quotes and blanket to orders are stored in the same table, the records
are physically deleted from the table and inserted using another document type. This
is done in codeunits sales-quote to order (86) and blanket sales order to order (87).

When comparing these codeunits in compare tools, such as Beyond Compare or
Araxis, we can see that there is a lot of similarity. They both create a new sales order.

Quote to order
When moving a quote to an order, the complete quote is copied and then deleted.
A quote can be created from an opportunity in CRM as we discussed in Chapter 4,
Relationship Management. Therefore, the opportunity is updated when this happens.

Blanket order to order
A blanket order can be moved in parts. Therefore, business logic is implemented to
calculate the remaining quantity. There is no link between blanket orders and CRM
and it is also not possible to create a blanket order from a quote.

Creating a new sales order
In order to understand the examples in this chapter, we will discuss the most
important fields of the sales order. A sales document contains one header and
multiple lines.

While the sales header table contains more static registration of information, the sales
line has more real business logic, such as price calculation, inventory availability,
and VAT. We will discuss how this business logic is normalized.

Trade

[246]

Sales header
All document types are uniquely numbered. The primary key fields of the sales
header table are Document Type and No..

It is very useful to use Number Series code that makes sense to the
end users, for example, SO13-0012 for sales order 12 in the year 2013
and SQ14-0312 for sales quote 312 for 2014.

The sales document contains the following two different customer no. fields:

•	 Sell-to Customer No.: This is the primary customer no. field, which defines
the customer who requested the order to be created. This customer number is
used to calculate the discounts.

•	 Bill-to Customer No.: By default, the Sell-to Customer No. will also receive
the invoice. By changing this field to another customer, this will make the
invoice print out containing other customer details.

A sales document contains some dates that are used for different purposes:

•	 Posting Date: This date is used for posting to the various ledgers
•	 Document Date: This date is used for the accounts receivable
•	 Shipment Date: This date is for the calculation or the inventory availability
•	 Due Date: This date is the last date at which the bill-to customer is expected

to pay the invoice

Sales lines
Each sales document can contain an almost unlimited number of sales lines.
By default, the sales lines are numbered 10000, 20000, 30000, and so on.

The numbering is done using the AutoSplitKey property on the sales line page and
the increment cannot be changed. When a user inserts new records between two
existing lines, the program will calculate the new number to be exactly between the
old values, for example, 10000, 15000, 17500, 18750, 19375, 19687, 19843, 19921, 19960,
19980, 19990, 19995, 19997, 19998, 19999, and 20000. If there is no more room, the
system will generate a runtime error message, as shown in the following screenshot:

Chapter 6

[247]

Master data options
A sales line can contain a reference to six types of master data defined by the Type
field. These types are: Text (blank option), G/L Account, Item, Resource, Fixed
Asset, and Charge (item).

The type that we specify here determines which journal will be used later when
we post this sales document. However, each line can contain financial information,
which will be processed to the general ledger via the posting buffer table.

In the next chapter, we will discuss how to add a new type to this process.

Sales line fields
To create a new sales line and start the important business logic in Microsoft
Dynamics NAV, we need to know about the following fields:

•	 Type: This defines the master data type the sales line uses and eventually the
journal that will be used during posting

When the Type field changes after the sales line was
created, the record is cleared and the fields get their
default values.

•	 No.: This is the actual reference to the unique number of the master data
type that is used

When the No. field is changed, the previous quantity is
used to recreate the sales line with the new master data.

Trade

[248]

•	 Quantity: This is used to calculate the sales amounts for the invoicing and in
the case of an item, and also the physical quantity of the changes in inventory

•	 Outstanding Quantity, Qty. to Invoice, and Qty. to Ship: These fields are
designed to use for partial shipping and invoicing of an order

•	 Unit Price and Unit Cost (LCY): The fields are used to calculate the sales
amount and profit

•	 Line Discount % and Line Discount Amount: These fields are used to
determine the discounts

Validation flow
The sales line table has a specific validation flow of functions that is important to
understand before making changes to the table. This flow is based on the normal
way an end user creates a sales line.

To create a sales line, only four fields are populated and the line is ready to use.
After setting the type and choosing a no., the end user types in the Quantity field
and if necessary, the Unit Price field.

Let's analyze the C/AL code in the OnValidate trigger of the three fields that can
calculate the sales line.

When changing these C/AL routines, make sure to use the Test near,
Test far, Do it, and Clean up methods that we discussed in Chapter 1,
Introduction to Microsoft Dynamics NAV.

No. | field 6
The C/AL code in the OnValidate trigger starts by doing the initial testing, if the
change is allowed. After this, the record is cleared and the old values for the No. field
and Quantity fields are applied, as follows:

TempSalesLine := Rec;
INIT;
Type := TempSalesLine.Type;
"No." := TempSalesLine."No.";
IF "No." = '' THEN
 EXIT;
IF Type <> Type::" " THEN
 Quantity := TempSalesLine.Quantity;

Chapter 6

[249]

Then, the sales line inherits the values from the sales header, if required, and the date
fields are calculated, as follows:

"Sell-to Customer No." := SalesHeader."Sell-to Customer No.";
"Currency Code" := SalesHeader."Currency Code";
...

"Promised Delivery Date" := SalesHeader."Promised Delivery Date";
...

UpdateDates;

The sales header information is not present in the sales line when
an end user picks a value for the No. field. We cannot use the
customer information for table relations.

When this is done, we see a CASE statement where the master data is acquired.
This would be the place where we would move newly added fields from master
data to the sales line table.

CASE Type OF
 Type::" ":
 ...
 Type::"G/L Account":
 ...
 Type::Item:
 ...
 Type::Resource:
 ...
 Type::"Fixed Asset":
 ...
 Type::"Charge (Item)":
 ...
END;

When this is done, the quantities are calculated and the unit price is calculated.

IF Type <> Type::" " THEN BEGIN
 IF Type <> Type::"Fixed Asset" THEN
 VALIDATE("VAT Prod. Posting Group");
 VALIDATE("Unit of Measure Code");
 IF Quantity <> 0 THEN BEGIN
 InitOutstanding;

Trade

[250]

 IF "Document Type" IN ["Document Type"::"Return Order","Document
Type"::"Credit Memo"] THEN
 InitQtyToReceive
 ELSE
 InitQtyToShip;
 UpdateWithWarehouseShip;
 END;
 UpdateUnitPrice(FIELDNO("No."));
END;

The latter is very important for our analysis. After this function, other code is
executed but this is not important for this example.

Quantity | field 15
Just like the No. field, the Quantity field also first checks whether the change is
allowed. When this is done, the following section of C/AL code is important:

IF Type = Type::Item THEN BEGIN
 UpdateUnitPrice(FIELDNO(Quantity));
 ...
 CheckApplFromItemLedgEntry(ItemLedgEntry);
END ELSE
 VALIDATE("Line Discount %");

In the preceding C/AL code, we should notice again the UpdateUnitPrice function
and also the validation of the Line Discount % field.

Unit price | field 22
This field has little C/AL code. When changing the unit price manually, the C/AL
code will trigger the Line Discount % field:

TestStatusOpen;
VALIDATE("Line Discount %");

Before going to this field, let's first have a look at the UpdateUnitPrice function we
noticed earlier in the Quantity and No. field.

UpdateUnitPrice
The UpdateUnitPrice function executes the following C/AL code:

IF (CalledByFieldNo <> CurrFieldNo) AND (CurrFieldNo <> 0) THEN
 EXIT;

GetSalesHeader;

Chapter 6

[251]

TESTFIELD("Qty. per Unit of Measure");

CASE Type OF
 Type::Item,Type::Resource:
 BEGIN
 PriceCalcMgt.FindSalesLineLineDisc(SalesHeader,Rec);
 PriceCalcMgt.FindSalesLinePrice(SalesHeader,Rec,
 CalledByFieldNo);
 END;
END;
VALIDATE("Unit Price");

After doing the checks, the sales price calculation routines we discussed in Chapter 2,
A Sample Application, are executed. This is codeunit Sales Price Calc. Mgt. 7000.

When this is done, it validates the field Unit Price that we already analyzed.
This leads us to one single point; the OnValidate trigger of Line Discount %.

Line Discount % | field 27
The C/AL code in this OnValidate trigger first calculates the line discount amount
based on the unit price and then starts the UpdateAmounts function, as follows:

TestJobPlanningLine;
TestStatusOpen;
"Line Discount Amount" :=
 ROUND(
 ROUND(Quantity * "Unit Price",Currency."Amount Rounding
Precision") *
 "Line Discount %" / 100,Currency."Amount Rounding Precision");
"Inv. Discount Amount" := 0;
"Inv. Disc. Amount to Invoice" := 0;
UpdateAmounts;

UpdateAmounts
The UpdateAmounts function completes the creation of the sales line and this is
where our quest ends.

The two most important other functions that are executed in this function are the
UpdateVATAmounts for VAT calculation and the credit limit check for the customer
in CustCheckCreditLimit.SalesLineCheck(Rec).

Trade

[252]

VAT calculation
The VAT calculation in Microsoft Dynamics NAV is not normalized in one
application area but redeveloped everywhere. This makes VAT calculation
one of the most complex application areas to make changes to.

Code cloning
The VAT calculation is not only done in the sales line, purchase line, and general
journal line table, but also in more specific function tables such as the service line.
This is done by making a full copy of the C/AL code.

This phenomenon is known as code cloning in computer science. Although code
cloning simplifies application design, it is considered bad practice and should be
avoided at all times. In this case, it would have been better if VAT would have been
calculated in a generic engine.

It is therefore highly recommended not to change VAT calculation in Microsoft
Dynamics NAV.

If VAT calculation is required in a customized solution, it can be done
using the general journal line as a temporary table. By populating the
necessary fields and starting the calculation, we can use the results
without copying the VAT calculation to our own solution.

Invoicing
In Microsoft Dynamics NAV, a sales order can be shipped and invoiced directly from
the document.

However, not all companies have a combined shipping and invoicing process.
Some companies ship the goods first and send the invoice later, most of the time
using combined invoicing.

Prepayments
Besides separating the invoice moment from the shipping moment, Microsoft
Dynamics NAV also allows a prepayment process. This prepayment process is
designed to work on top of the normal invoicing process. This means it does not
replace the invoice but instead creates an extra invoice.

Chapter 6

[253]

Sales Line
()Table 37

Sales Header
()Table 36

Sales-Post
Prepayments
()Codeunit 442

Prepayment Inv.
Line Buffer
()Table 461

Gen. Journal Line
()Table 81

Sales Invoice
Header

()Table 112

Sales Invoice Line
()Table 113

This invoice is not created in codeunit sales-post (80) but in codeunit sales-post
prepayments (461).

Using prepayments in Microsoft Dynamics NAV will always generate
a minimum of two invoices per sales order.

When the order is eventually invoiced, the prepayment invoice is deducted from the
invoice amount.

The design of this solution by Microsoft teaches us and demonstrates
that to generate a posted sales invoice, it is not specifically necessary
to start codeunit sales-post 80.

Combined invoicing
Combined invoicing of shipments can be done manually or using a batch report.

Trade

[254]

Manual
To manually combine shipments on a sales invoice, we can use the Sales-Get
Shipment Codeunit (64).

This codeunit can be started from the actions on a sales invoice subpage (47) and
displays the sales shipment lines that are not yet completely invoiced.

Sales Line
()Table 37

Sales Header
()Table 36

Get Shipment Lines
()Page 5708

Sales-Get
Shipment

()Codeunit 64

The C/AL code, however, is not completely within the codeunit; the process starts in
the codeunit and runs the page. The page then again starts a function in the codeunit.

Batch
The Combine Shipments report (295) can be used to create one invoice for multiple
shipments in batch. It works in a similar way as the Combine Invoice report we
created in Chapter 2, A Sample Application.

The C/AL code that creates the sales line for the invoice is normalized and
used in both codeunit sales-get shipment (64) and combine shipments report
(295). The function is located in the sales shipment line table (111) and is called
InsertInvLineFromShptLine.

Chapter 6

[255]

To enable combined shipments, the Boolean field Combine Shipments
(87) should be set to Yes in the customer table. This value is inherited
into the sales header for the sales order document.

Credit memo and return orders
The credit memo and return order document types are used to reverse the
order process.

Purchasing
Before we can ship the items we sold, we first need to purchase or produce them.
We discussed the production process in the previous chapter, so let's focus on the
purchasing process.

Technically, the sales and purchase process are mirrored transactions and the
application design is similar. The purchase header table has the same document
types: quote, order, invoice, credit memo, blanket order, and return order, and the
same posting process.

So instead of going into the similarities, we will discuss the differences.

Resources
In Microsoft Dynamics NAV, it is not possible to purchase resources. When we take
a closer look at the Type field (5), we can see that the option is left blank:

Trade

[256]

Drop shipments
When selling items that are not in the inventory, it is possible to purchase the items
from a vendor and have them directly shipped to the customer. This process is called
drop shipments.

This process can be handled manually and using the requisition worksheet.

Manual
To create a drop shipment manually, the purchase order should first be created using
the Sell-to Customer No. from the corresponding sales order as the shipping address:

When this is done, we can start the codeunit Purch.-Get Drop Shpt. (76) from
ACTIONS on the purchase order. This function will show a list of all sales orders
for this Sell-to Customer No. regardless of whether drop shipment is possible.

If we select a sales order without sales lines that are marked for drop shipment,
we get the following error message:

Chapter 6

[257]

After retrieving the sales information, the sales line and purchase line table are
connected to each other by populating the Purchase Order No., Purch. Order Line
No., Sales Order No., and Sales Order Line No. fields.

Sales Line
()Table 37

Sales Header
()Table 36

Purch.-Get
Drop Shpt.
()Codeunit 76

Purchase Header
()Table 38

Purchase Line
()Table 39

These fields are numbered 71 and 72 in the sales line and purchase line table.

Requisition worksheet
We introduced the requisition worksheet in the previous chapter when we discussed
the planning process. The requisition worksheet can also be used for the Drop
Shipment functionality:

This will start the Get Sales Orders report (698), which will filter on all sales lines
marked for drop shipment and creates a line in the requisition worksheet table.

This line can be processed by carrying out the action messages. This function will
also connect the sales order to the purchase order using fields 71 and 72.

The C/AL code for manual drop shipment and using the requisition
worksheet is not normalized (code cloning). This means that changes
done in one method should also be done in the other method and
maintained twice.

Trade

[258]

Document releasing and approval process
Within the sales and purchase document process, there is a workflow available for
releasing and approving a document. This is taken care of by a single status field
and two processes.

Status
The Status field (120) in the sales header and purchase header table indicates the
status of the process. There are four options: Open, Released, Pending Approval,
and Pending Prepayment.

Two of these status fields, Open and Released, are mandatory to use. Pending
Approval and Pending Prepayment are optional.

We have already discussed prepayments earlier in this chapter.

Releasing a document
Before a document can be posted, it is mandatory to release it. This is done by the
codeunits Release Sales Document (414) and Release Purchase Document (415).
These codeunits are, as you may have guessed, almost identical.

The codeunit performs a number of tests before setting the status to Released.
Let's discuss some of these checks:

•	 A typical example of Test Near, the customer number should not be blank:
TESTFIELD("Sell-to Customer No.");

•	 There should be at least one sales line with a Quantity:
SalesLine.SETRANGE("Document Type","Document Type");
SalesLine.SETRANGE("Document No.","No.");
SalesLine.SETFILTER(Type,'>0');
SalesLine.SETFILTER(Quantity,'<>0');
IF NOT SalesLine.FIND('-') THEN
 ERROR(Text001,"Document Type","No.");

•	 When the testing is done, some final calculations are implemented.
These calculations are document calculations that span over the
individual sales lines:
SalesSetup.GET;
IF SalesSetup."Calc. Inv. Discount" THEN BEGIN
 CODEUNIT.RUN(CODEUNIT::"Sales-Calc. Discount",SalesLine);
 GET("Document Type","No.");
END;

Chapter 6

[259]

•	 The following codeunit calculates the invoice discount:
SalesLine.SetSalesHeader(Rec);
SalesLine.CalcVATAmountLines(0,Rec,SalesLine,TempVATAmountLine0);
SalesLine.CalcVATAmountLines(1,Rec,SalesLine,TempVATAmountLine1);
SalesLine.UpdateVATOnLines(0,Rec,SalesLine,TempVATAmountLine0);
SalesLine.UpdateVATOnLines(1,Rec,SalesLine,TempVATAmountLine1);

•	 At the end of the releasing process, the VAT calculation is completed.
•	 Releasing a document also calculates the Amount and Amount Including

VAT fields on the sales line.

Manual versus automatic releasing
By default, Microsoft Dynamics NAV releases the document automatically.
The posting codeunits sales-post (80) and purchase-post (90) contain the
following C/AL code:

IF (Status = Status::Open) OR (Status = Status::"Pending Prepayment")
THEN BEGIN
 TempInvoice := Invoice;
 TempShpt := Ship;
 TempReturn := Receive;
 GetOpenLinkedATOs(TempAsmHeader);
 CODEUNIT.RUN(CODEUNIT::"Release Sales Document",SalesHeader);
 TESTFIELD(Status,Status::Released);
 Status := Status::Open;
 Invoice := TempInvoice;
 Ship := TempShpt;
 Receive := TempReturn;
 ReopenAsmOrders(TempAsmHeader);
 MODIFY;
 COMMIT;
 Status := Status::Released;
END;

This code temporarily releases the document by starting the release codeunit but
then sets the status back to Open, modifies the records, and commits the transaction.
Then, the status is set to Released.

Whenever there is an error afterwards, the status will still be Open since that was the
status before the COMMIT.

Trade

[260]

Document approval
On top of the release process is a document approval workflow. This feature is
designed to work on top of the functionality we already discussed and is optional.

Deleting sales and purchase documents
During the life cycle of our application, many documents will be created. There might
come a day when this exceeds the point where some maintenance is required.

Data deletion
In the IT Administration section of the Departments Role Center, we can find a
Data Deletion section, which is designed for IT administrators to clean up data,
as shown in the following screenshot:

Chapter 6

[261]

When a sales order is invoiced using Get Shipment Lines or Combined Invoicing,
the sales order is not automatically deleted, nor are completely handled blanket orders.

Leaving old orders in the database may lead to large tables. Since these document
tables are heavily inserted and modified throughout the working day by many
people, this may lead to unnecessary overhead in the database.

Deletion of shipments and invoices
Microsoft Dynamics NAV allows users to delete posted shipments and invoices
when they are printed.

Although it should be considered carefully, it might be necessary for some
companies to periodically clean up this data. Most companies never look
at the shipments once the items are delivered to their customers.

Cleaning up these tables will have a positive impact on the performance and
maintainability of your system if it reaches the size of roughly 50-100 GB.

When designing business analysis reports, never use data from the
sales shipment header or line table since they might get deleted.
Always use the ledger entry tables instead.

Trade

[262]

Inventory management
In Microsoft Dynamics NAV, inventory is kept for items in locations using Item
Ledger Entries and Value Entries. On top of this, we can use Stock Keeping Units
to have different inventory settings per item, location, and variant.

Let's start by looking at the design patterns of the inventory in Microsoft
Dynamics NAV:

Item Variant
()Table 5401

Stock Keeping Unit
()Table 5700

Location
()Table 14

SKU

Zone
()Table 7300

Item
()Table 27

Item Ledger Entry
()Table 32

Value Entry
()Table 5802

Item Journal Line
()Table 83

Item Jnl.-Post
Line

()Codeunit 22

Item Register
()Table 46

Warehouse Journal
Line

()Table 7321

Whse. Jnl.-
Register Line
()Codeunit 7301

Warehouse Register
()Table 7313

Bin
()Table 7354

Bin Content
()Table 7302

Warehouse Entry
()Table 7312

Basic Item Inventory

Warehouse

SIFT

Chapter 6

[263]

Keeping inventory can be extended with the use of warehouse management. This is
designed to run on top of the Basic Item Inventory functionality.

Items
The item table hosts the master data for inventory management like a G/L Account
does for financial management.

In this table, we can do the set up for each individual item such as pricing, inventory
and production strategies, and tracking options.

Trade

[264]

Locations
The location table defines which level of inventory management is done. A location
can either be a physical warehouse somewhere or a part of a warehouse, if one
warehouse uses different warehouse strategies.

If we look at the Location Card, we see what we can set up:

Chapter 6

[265]

Let's see these settings in detail:

•	 General: Here, we can specify the physical location of the warehouse.
We can also specify Use As In-Transit. When this is specified, we can
only use transfer orders to move inventory to this location.

•	 Warehouse: On this tab, we specify which level of warehouse management
functionality we want to use. If everything is left blank, no warehouse entries
are created when this location is used.

•	 Bins: This tab contains the default bins for most inventory activities, such
as Receipt and Shipment. These values can be changed when creating the
warehouse documents.

•	 Bin Policies: This tab contains some more advanced options for
warehouse management.

Variants
Item variants is a powerful feature in Microsoft Dynamics NAV. It enables us to split
an item into different categories without having to create a new item.

The variant code is maintained in the item ledger entries and used when applying
them. Let's see an example of how this can be used.

Our company sells t-shirts. We have three sizes; small, medium, and large, and four
colors; white, black, red, and blue. This enables us to create the following twelve
unique variant codes:

Size and color

S-WHITE S-BLACK S-RED S-BLUE

M-WHITE M-BLACK M-RED M-BLUE

L-WHITE L-BLACK L-RED L-BLUE

When we purchase or produce these t-shirts, we need to specify the variant code,
which is inherited into the item ledger entry.

Trade

[266]

If we sell or transfer one of these items, we can specify the same variant code. Microsoft
Dynamics NAV will then use this variant code when searching for inventory.

Stock keeping units
Sometimes, the same item can have more than one unit cost, replenishment system,
or production method. To support this, we can use stock keeping units.

A stock keeping unit refers to an existing item, location, and variant. These three
fields are the unique primary key. Let's see an example of how this can be used.
Our t-shirts need to have different unit costs. In order to do this, we need to create
a SKU for each variant we just created:

Chapter 6

[267]

When we now create two purchase order lines for the same item with a different
variant code, we can see that the Last Direct Cost is different for each variant.

Stockkeeping Units is a very powerful feature of Microsoft
Dynamics. It enables you to change the settings for an item after
it is created, using variant codes for each setting. Make sure the
code of the variant is self-explanatory.

Creating a SKU function
When an item has many variants and locations, creating the SKU for each
combination can be quite a challenge. To help in this process, we can use
the Create Stockkeeping Unit report (5706).

The newly created SKU will inherit all the necessary fields from the item. After this,
we can go in and make necessary changes to the individual SKU records:

Trade

[268]

Sales pricing
The basic unit price of an item can be set in the Item table. This is a static field,
which is used when a new sales document is created. To use more flexible unit
prices, we can use the Sales Prices and Sales Discounts functionality:

More information about pricing can be found in Chapter 1, Introduction to Microsoft
Dynamics NAV, and Chapter 2, A Sample Application.

Item ledger entry application
When the inventory is created and used, the system will apply and close positive and
negative item ledger entries with each other. This enables us to trace inventory.

The application is saved in Item Application Entry table (339). Let's have a look at
the C/AL code that handles the item application.

Item application C/AL routine
Item application is done in codeunit Item Jnl.-Post Line (22) in the
ApplyItemLedgEntry function. The function starts with checking whether
reservations are used. Using reservations changes the way inventory application
is used. We'll discuss reservations later in this chapter.

ApplyItemLedgEntry
...

CLEAR(OldItemLedgEntry);

Chapter 6

[269]

...
REPEAT
 ItemJnlLine.CALCFIELDS("Reserved Qty. (Base)");
 IF ItemJnlLine."Assemble to Order" THEN BEGIN
 ItemJnlLine.TESTFIELD("Reserved Qty. (Base)");
 ItemJnlLine.TESTFIELD("Applies-to Entry");
 END ELSE
 IF ItemJnlLine."Reserved Qty. (Base)" <> 0 THEN BEGIN
 IF ItemLedgEntry."Applies-to Entry" <> 0 THEN
 ItemLedgEntry.FIELDERROR(
 "Applies-to Entry",Text99000000);
 END;
 ...
 END ELSE
 StartApplication := TRUE;

If there are no reservations made, the system will start the application code.
This allows two possibilities: manual application and automatic application.

Manual application is done when the user populates the Applies-to Entry field in the
item journal line. This is also used when users change the application.

IF StartApplication THEN BEGIN
 ItemLedgEntry.CALCFIELDS("Reserved Quantity");
 IF ItemLedgEntry."Applies-to Entry" <> 0 THEN BEGIN
 IF FirstApplication THEN BEGIN
 FirstApplication := FALSE;
 OldItemLedgEntry.GET(ItemLedgEntry."Applies-to Entry");
 OldItemLedgEntry.TESTFIELD("Item No.",ItemLedgEntry."Item No.");
 OldItemLedgEntry.TESTFIELD("Variant Code",ItemLedgEntry."Variant
Code");

 OldItemLedgEntry.TESTFIELD(Positive,NOT ItemLedgEntry.Positive);
 OldItemLedgEntry.TESTFIELD("Location
Code",ItemLedgEntry."Location Code");

In this case, the system checks whether the Item Ledger Entry we have specified
matches the requirements. When the application is done automatically, the system
will search for the best item ledger entry based on the same requirements.

END ELSE BEGIN
 IF FirstApplication THEN BEGIN
 FirstApplication := FALSE;
 ItemLedgEntry2.SETCURRENTKEY("Item No.",Open,"Variant Code",
 Positive,"Location Code","Posting Date");

Trade

[270]

 ItemLedgEntry2.SETRANGE("Item No.",ItemLedgEntry."Item No.");
 ItemLedgEntry2.SETRANGE(Open,TRUE);
 ItemLedgEntry2.SETRANGE("Variant Code",ItemLedgEntry.
 "Variant Code");
 ItemLedgEntry2.SETRANGE(Positive,NOT ItemLedgEntry.Positive);
 ItemLedgEntry2.SETRANGE("Location Code",
 ItemLedgEntry."Location Code");

 IF ItemLedgEntry."Job Purchase" = TRUE THEN BEGIN
 ItemLedgEntry2.SETRANGE("Job No.",ItemLedgEntry."Job No.");
 ItemLedgEntry2.SETRANGE("Job Task No.",
 ItemLedgEntry."Job Task No.");
 ...
 END;
 IF ItemTrackingCode."SN Specific Tracking" THEN
 ItemLedgEntry2.SETRANGE("Serial No.",
 ItemLedgEntry."Serial No.");
 IF ItemTrackingCode."Lot Specific Tracking" THEN
 ItemLedgEntry2.SETRANGE("Lot No.",ItemLedgEntry."Lot No.");

 IF Location.GET(ItemLedgEntry."Location Code") THEN
 IF Location."Use As In-Transit" THEN
 ItemLedgEntry2.SETRANGE("Transfer Order No.",
 ItemLedgEntry."Transfer Order No.");

 IF Item."Costing Method" = Item."Costing Method"::LIFO THEN
 EntryFindMethod := '+'
 ELSE
 EntryFindMethod := '-';
 IF NOT ItemLedgEntry2.FIND(EntryFindMethod) THEN
 EXIT;

The actual application entry is created in the InsertApplEntry function.

Requirements to apply an item ledger
In order to apply an item ledger entry to another item ledger entry, certain
requirements should be taken into account. We can read these requirements
from the C/AL code:

•	 The Item No. should be the same for both the entries.
•	 The old item ledger entry should be Open. When an item ledger entry is

fully applied, the Boolean field Open is set to False.

Chapter 6

[271]

•	 The variant code and location code should be the same.
•	 The Boolean field Positive should have a reverse sign. This results in

the limitation of not being able to apply one negative entry to another
negative entry.

Other requirements are conditional based on system setup. For example, if the item
uses a Lot No. or Serial No., this should also match.

When the system has defined the filter, it tries to find the first record. The search
method depends on the costing method. If the cost method is LIFO, the system
will try to find the last record in the filter. For all other costing methods, it will
find the first.

We can also see that when using Lot numbers, the application and the costing is
done within the Lot number.

Value entries
In Microsoft Dynamics NAV, the physical information for Inventory is stored
separately from the financial information. This information is stored in a one-to-
many relation, meaning one Item Ledger Entry can have multiple Value Entries.

This enables us to specify the value information in detail in a time dimension and
cost type dimension.

Direct cost
Each item ledger entry starts with at least one value entry of the type direct cost.
This defines the initial value of the inventory. During the inventory lifetime,
the item ledger entry can get the following four other types of value entries:

•	 Revaluation: This entry type is used when the item revaluation batch is
started and the value of the item is different compared to the direct cost.

•	 Rounding: Sometimes, the inventory adjustment leads into rounding issues.
The rounding is stored as a special entry type for traceability.

•	 Indirect Cost: When Indirect Cost % is used on the item card the system will
create additional value entries for the indirect cost amount.

•	 Variance: When the item uses standard cost, the difference between the
invoiced amount and the standard cost is saved as an entry type variance.

Trade

[272]

Value entries and general ledger entries
The value entries and general ledger entries are linked through the G/L - Item
Ledger Relation table (5823). Each general ledger entry is linked to one or more
value entries. This enables traceability and helps auditors to analyze the system.

Transfer orders
To move inventory from one location to another location, it is possible to do a
negative and a positive adjustment in the Item Journal Line, but we can also use
a Transfer Order, as shown in the following screenshot:

The Transfer Order creates the item ledger entries for each location and maintains
the link for the value entries.

This means that if we move 100 items from location blue to green without having
received the purchase invoice yet, the system will create value entries for the moved
inventory when the invoice is posted. Let's try this for a new item.

Chapter 6

[273]

Example
The item we will use is Jeans. The first step is to create the item as follows:

1.	 We only define the No., Description, Base UOM, and the Posting Groups.
2.	 Now, we create a new purchase order with quantity 10 in location BLUE.
3.	 We receive the purchase order.
4.	 Using a new transfer order, we move the inventory from BLUE to RED.

This will result in five Item Ledger Entries with five Value Entries but the
total cost is zero since we have not yet received the purchase invoice.

5.	 Now, we create a new purchase invoice and get the receipt lines. We use a
Unit Cost of 10.

This results in a value entry for the original item ledger entry.

Trade

[274]

6.	 To create the value entries for the transfers, we need to run the Adjust
Cost - Item Entries report (795). This results in all item ledger entries
having the same value entries:

Requisition worksheets
For trading companies, it is very important to have just enough inventories; not too
many, not too few. In order to do this, we can use the requisition journals together
with the reordering policy on the item.

Reordering policy
The reordering policy tells the system how to calculate the moment and the quantity
for item ordering. Microsoft Dynamics NAV uses the following four different
reordering policies:

•	 Fixed Reorder Qty.: Each time we run the requisition journal, the system will
purchase the same, fixed quantity of items. This quantity is specified in the
Reorder Quantity field.

•	 Maximum Qty.: The system will purchase as many items to meet the value of
the Maximum Inventory field.

•	 Order: For each sales order, a purchase order will be created.
This automatically enables the reservation process for this item.

•	 Lot-for-Lot: This option will calculate the required inventory necessary to
deliver the outstanding sales orders.

The quantity is calculated in the codeunit Inventory Profile Offsetting (99000854) in
the CalcReorderQty function.

Chapter 6

[275]

Extending the reordering policy
The ordering policy algorithms in Microsoft Dynamics NAV are very static and some
trading companies need more flexibility.

One example is seasonal and depends on the weather. Toy stores need extra
inventory during Christmas and garden tool stores have their peak in spring.
During these peaks, the delivery times and availability is also different compared
to the other times of the year.

Virtual inventory
An upcoming trend in trading companies is virtual inventory. This is the inventory
that we do not control but is available to sell to our customers. The computer
industry uses this frequently. Everyone can start a website for computer equipment
and use the inventory of large wholesale companies.

In order for this to work, the information should always be real time
and reliable. In Microsoft Dynamics NAV, we could solve this using
web services.

Warehouse management
With inventory management, we can use the locations to see where the inventory is.
For some trading companies, this is good enough but some would like to be more
specific in where the items are in the warehouse.

For this, we can use the Warehouse Management Systems (WMS) functionality
in Microsoft Dynamics NAV. WMS enables us to specify zones and bins within
each location.

Another feature in warehouse management is the possibility of combining sales
shipments and purchase receipts in warehouse documents. Using these documents,
warehouse employees can pick or put away for more than one order at the same time
resulting in a more efficient way of doing logistics.

Trade

[276]

Warehouse strategy levels
Warehouse management can be used and implemented from very simple to highly
advanced. To demonstrate the application design of WMS in Microsoft Dynamics
NAV, we will discuss the following five possible levels of implementation. For each
level, we will show the table and posting models.

•	 Bin Code: Using this field in the sales and purchase document enables the
system to start creating warehouse entries.

•	 Warehouse Receipt and Shipment: This allows us to combine sales
shipments and purchase receipts in one warehouse document.
We cannot use the Pick and Put-Away activities.

•	 Warehouse Put-Away and Pick: For each purchase receipt or sales shipment,
we can create a Put-Away or Pick journal.

•	 Warehouse Receipt and Shipment + Use Put-away Worksheet: This allows
us to implement a real two-step warehouse process and receive the items on
a staging location and creating put-away documents to move the items to
their storage location in the warehouse.

•	 Directed Put-Away and Pick: This is the full option of WMS functionality
in Microsoft Dynamics NAV. We use Receipts, Shipments, Put-aways, and
Picks. Microsoft Dynamics NAV will suggest the Bin Codes. We can also use
Zones, Cross Docking, and so on.

Location setup
The setup options in the Location table (14) enable or disable the WMS options in
Microsoft Dynamics NAV. This is done on the Warehouse tab, as shown in the
following screenshot. Each level requires a special combination of settings.

Chapter 6

[277]

Let's have a look at the different levels:

•	 Level 1: Enable Bin Mandatory
•	 Level 2: Enable Require Receive, Require Shipment, and Bin Mandatory
•	 Level 3: Enable Require Put-away, Require Pick, and Bin Mandatory
•	 Level 4: Enable Require Receive, Shipment, Require Put-away, Require Pick,

Bin Mandatory, and Use Put-away Worksheet
•	 Level 5: Enable Require Receive, Require Shipment, Require Put-away,

Require Pick, Bin Mandatory, and Directed Put-away and Pick

Warehouse employees
Before we can start, the current user should be set up as a warehouse employee.

This can be done by creating a new record in the Warehouse Employee table (7301).

Each user can be a warehouse employee in each location and can only
do warehouse actions in the locations that they are assigned to.

Bin code | level 1
The starting level of implementing WMS is using the Bin table. This is done by
enabling the Bin Mandatory field on the location. The Bin Code field is available
in all the necessary tables, such as Purchase Line, Sales Line, and Item Journal Line.

When the Bin Code is used, codeunit Item Jnl.-Post Line (22) will create a Warehouse
Journal Line and start the Whse. Jnl.-Register Line Codeunit (7301). This will result in
the creation of Warehouse Entries (7312) and a Bin Content (7302).

Trade

[278]

Example
We will create a new location, ORANGE, with a bin of BIN1. The location uses the
Bin Mandatory option, as shown in the following screenshot:

Bin Mandatory

In a new purchase order, we can now select this new Bin Code and post a receipt.
The system now creates a new record in the Bin Content table, which enables us to
see the created Warehouse Entries.

Chapter 6

[279]

Bin content
Whenever a Bin is used for the first time, Microsoft Dynamics NAV will create a Bin
Content record. A Bin Content record is neither master data nor a ledger entry or
document. It is a special kind of table in the philosophy of Microsoft Dynamics NAV.

The C/AL code for the Bin Content handling can be found in codeunit Whse.
Jnl.-Register Line (7301). To see which Bins are used for an item at any moment, we
can open the Bin Content from the Item Card, as shown in the following screenshot:

Trade

[280]

The warehouse entries can be displayed by clicking on the Quantity (Base) field.

Receipt and shipment | level 2
When we enable Require Receive and Require Shipment in the location, we can
start using the warehouse receipt and shipment documents. These documents allow
us to receive or ship multiple purchase or sales orders in one document.

Let's have a look at how this is done in the application:

Sales Header
()Table 36

Release Sales
Document

()Codeunit 424

Release
Purchase
Document

()Codeunit 415

Purchase Header
()Table 38

Whse. Sales
Release

()Codeunit 5772

Warehouse
Shipment Line

()Table 7321

Warehouse Receipt
Line

()Table 7327

Warehouse Request
()Table 5765

Warehouse Receipt
Header

()Table 7316

Whse.-Create
Source

Document
()Codeunit 5750

Get Source
Documents
()Report 5753

Warehouse
Shipment Header

()Table 7320

Whse.-Post
Shipment

()Codeunit 5763

Whse.-Post
Receipt

()Codeunit 5760

Purch.-Post
()Codeunit 90

Sales-Post
()Codeunit 80

Whse.-Purch.
Release

()Codeunit 5772

Warehouse request
All warehouse documents start with a record Warehouse Request table (5765).
These records are created when a sales or purchase document is released.

The warehouse receipt or shipment can be created in the following three ways:

•	 Using the Create Whse. Receipt or Create Whse. Shipment option from the
purchase and sales order

•	 Using the Get Source Documents report (5723)
•	 Using the Get Source Documents option on the Warehouse Receipt or

Shipment Card

The first two options will create a new warehouse document for each sales or purchase
document. The latter allows us to combine orders in one warehouse document.

Chapter 6

[281]

Limitations
Using only the warehouse receipt and shipment document is basically just adding
one layer on top of the sales and purchase document. The posting routines Whse.
Post Shipment (5763) and Whse. Post Receipt (5760), do not actually post something
to the warehouse; they just write back the Bin code to the Sales Line and Purchase
Line table. Technically, this uses the same C/AL code as level 1.

We can see how this is done by looking at the InitSourceDocumentLines function
of, for example, Codeunit Whse. Post Receipt (5760):

InitSourceDocumentLines
WhseRcptLine2.COPY(WhseRcptLine);
WITH WhseRcptLine2 DO BEGIN
 CASE "Source Type" OF
 DATABASE::"Purchase Line":
 BEGIN
 PurchLine.SETRANGE("Document Type","Source Subtype");
 PurchLine.SETRANGE("Document No.","Source No.");
 IF PurchLine.FIND('-') THEN
 REPEAT
 ...
 IF PurchLine."Bin Code" <> "Bin Code" THEN BEGIN
 PurchLine."Bin Code" := "Bin Code";
 ModifyLine := TRUE;
 END;
 ...
 IF ModifyLine THEN
 PurchLine.MODIFY;

When the source tables are updated, the system creates a normal purchase receipt or
sales shipment using codeunits sales-post (80) and Purch. Post (90).

Trade

[282]

Put-away and Pick | level 3
Instead of creating a warehouse receipt or shipment, we can also directly create a
Put-away or Pick from the sales or purchase order.

To enable this, we need to activate the Require Put-away and Require Pick options
on the Location Card.

Sales Header
()Table 36

Release Sales
Document

()Codeunit 414

Release
Purchase
Document

()Codeunit 415

Whse. Sales
Release

()Codeunit 5771

Create
Inventory Put-

away
()Codeunit 7321

Warehouse Request
()Table 5765

Warehouse Journal
Line

()Table 7311

Create Invt.
Put-away /

Pick
()Report 7323

Warehouse Activity
Line

()Table 5767

Whse.
Activity-Post
()Codeunit 7324

Warehouse Activity
Header

()Table 5766

Whse.-Purch.
Release

()Codeunit 5772

Purchase Header
()Table 38

Purchase-Post
()Codeunit 90

Sales-Post
()Codeunit 80

Warehouse request
The warehouse request record is exactly the same as in level 2, but instead of creating
a warehouse receipt or shipment, the system directly creates a warehouse activity
header and line.

Chapter 6

[283]

Warehouse activities
The warehouse activity header and line table are the internal Microsoft Dynamics
NAV warehouse documents. There are five types of warehouse activity documents,
they are as follows:

•	 Put-away: This document is used to move items from the receipt bin to a
put-away bin. The document is generated from a warehouse receipt.

•	 Pick: This document is used to move items from a storage bin to a shipment
bin. The document is generated from a warehouse shipment.

•	 Movement: This is an internal document that is used to move items
internally in the warehouse.

•	 Invt. Put-away: This document is used to receive items and put them directly
into the warehouse on their permanent bin. The document is created from a
warehouse request.

•	 Invt. Pick: This document is used to ship items directly from the warehouse
in one step. The document is created from a warehouse request.

When only using the Require Put-away and Require Pick option on a location,
document types Invt. Put-Away and Invt. Pick are used. This will also make sure
that the purchase order and sales order will be processed by starting codeunit
sales-post (80) and Purch. Post (90).

Level 2 and level 3 comparison
Both level 2 and level 3 setup options are one-step warehouse implementations.
When receiving an item, we must provide the storage bin where the item will be
stored until it is sold. There is no additional step.

Using the warehouse receipt and shipment documents allows us to combine sales
and purchase documents on one warehouse document. This cannot be done using
direct Put-away and Pick. Using direct Put-away and Pick, we can split one sales line
or purchase line into multiple bins. This cannot be done using warehouse receipt and
shipment documents.

The reason for this is the way the warehouse entries are created. Level 2 uses the Bin
field in the Item Journal Line to create the warehouse entries.

Using level 3, the warehouse entries are created using codeunit Whse.-Activity-
Post (7324). The Bin code is not written back into the sales line or purchase line.
This means we also cannot use the Bin code field in the purchase receipt and sales
shipment documents.

Trade

[284]

Level 4 – receipt with Put-away worksheet
Most warehouses use a two-step receipt and shipment process. The first step is
receiving the items on a receipt location, which is often close to the unloading docks.
Then, the items are stored in their warehouse location until they are required for the
production or sales process. This is step 2.

To enable this two-step process, we can combine level 2 and 3 by using the options
Require Receive, Shipment, Put-away and Pick + Bin Mandatory + Use Put-away
worksheet in the Location Card.

This allows us to first perform the warehouse receipt and shipment as discussed
in level 2. When we process this document, it will not only post the sales order
and purchase order but it will also generate a record in the Whse. Put-away
Request table (7324).

Purchase Header
()Table 38

Warehouse Request
()Table 5765

Get Source
Documents
()Report 9753

Warehouse Receipt
Line

()Table 7317

Purch.-Post
()Codeunit 90

Release
Purchase
Document

()Codeunit 419

Whse.-Create
Source

Document
()Codeunit 5790

Warehouse Receipt
Header

()Table 7316

Whse.-Post
Receipt

()Codeunit 5760

Whse.-Purch.
Release

()codeunit 5772

Receipt

Whse.-
Activity-
Register

()Codeunit 7307

Warehouse Activity
Line

()Table 5767

Whse.-Source
- Create

Document
()Report 7305

Whse. Worksheet
Line

()Table 7326

Whse. Put-away
Request

()Table 7324

Werehouse Journal
Line

()Table 7311

Create Put-
away

()Codeunit 7313

Get Inbound
Source

Documents
()Report 7306

Get Source
Doc. Inbound
()Codeunit 5752

Werehouse Activity
Header

()Table 5766

Put-Away

Chapter 6

[285]

Whse.- activity register versus whse.-activity-post
When the whse. put-away request is processed using the warehouse worksheet, it
will result in a warehouse activity header and line. In this context, the system will
use the Put-away and pick document type that we discussed in the previous section
about level 3.

Technically, the documents for level 3 and level 4 are equal, but there are the
following two differences:

•	 In a two-step warehouse setup, the items are already in a warehouse entry.
This means we have to move them. This results in two new warehouse
entries but also two lines in the warehouse document.

•	 The two-step warehouse documents are not posted but registered. This
means that the system will only create warehouse entries and no longer
updates the sales and purchase documents.

Level 5 – directed put-away and pick
Combining warehouse receipts and shipments with put-aways and picks completes
the table and posting diagram of WMS in Microsoft Dynamics NAV. But there are
additional options to enrich the functionality.

One of these options is directed put-away and pick. When this option is activated,
the system can and will help us in finding the correct bins for each warehouse activity.

Zones and default bins
Let's start with defining zones and default bins. A zone is a group of bins.
Usually, they are located near each other physically but more importantly,
they share some properties.

For each zone, we need to specify if it is allowed to receive, ship, put-away,
and pick. This is done in the Bin Type list.

Trade

[286]

When defining the bins, it is recommended to use a logical name such as R-01-001 for
Receipt row one shelf one:

The default bins are set up in the Location Card on the Bin tab. These bins can
always be changed on each document.

Bin calculation
The bin calculation is done for the put-away documents using templates.
This template defines the rules for finding the correct bin to store the items:

Chapter 6

[287]

The find options are stored in the put-away template line table (7308); they are
as follows:

•	 Find Fixed Bin: The system will try to find a bin, which is fixed. A fixed bin
is usually reserved for a specific item.

•	 Find Floating Bin: This will try to find the first available bin.
•	 Find Same Item: This will filter on an available bin that already contains

this item.
•	 Find Unit of Measure Match: This option can be used if parts of the

warehouse are designed to handle a specific kind of carrier such as
Euro or US pallet.

•	 Find Bin w. Less than Min. Qty: Use this option to find bins that are not
fully used. If this option is not used with the Find Same Item, it might result
in two items in the same bin.

•	 Find Empty Bin: This option will make sure we find an empty bin.

The C/AL code that handles the bin calculation is located in codeunit create
put-away (7313). Let's have a look:

Code()
IF Location."Directed Put-away and Pick" THEN BEGIN
 BinType.CreateBinTypeFilter(BinTypeFilter,2);
 REPEAT
 QtyToPutAwayBase := RemQtyToPutAwayBase;
 IF NOT (PutAwayTemplLine."Find Empty Bin" OR
 PutAwayTemplLine."Find Floating Bin") OR
 PutAwayTemplLine."Find Fixed Bin" OR
 PutAwayTemplLine."Find Same Item" OR
 PutAwayTemplLine."Find Unit of Measure Match" OR
 PutAwayTemplLine."Find Bin w. Less than Min. Qty"
 THEN BEGIN
 //Calc Availability per Bin Content
 IF FindBinContent("Location Code","Item No.",
 "Variant Code",WarehouseClassCode)
 THEN
 REPEAT
 ...
 UNTIL (BinContent.NEXT(-1) = 0) OR EverythingHandled
 END ELSE BEGIN

 //Calc Availability per Bin

Trade

[288]

 IF FindBin("Location Code",WarehouseClassCode) THEN
 REPEAT
 IF Bin.Code <> "Bin Code" THEN BEGIN
 ...
 END;
 UNTIL (Bin.NEXT(-1) = 0) OR EverythingHandled
 END
 UNTIL (PutAwayTemplLine.NEXT = 0) OR EverythingHandled;

For each record in the put-away template line table, the system will try to find a
bin. This means that if the rules of the first template line fail, it will use the second
template line and so forth.

The two options Find Empty Bin and Find Floating Bin eliminate using the
others. If these are true, the system will call the FindBin function. For the other
options, it will use the FindBinContent function.

Implementing and customizing warehouse
management
Since there are many ways to set up WMS in Microsoft Dynamics NAV, it is very
important to make the correct decisions at the start of the implementation. Moving
the system from one strategy to another is quite a challenge.

It is therefore very important to discuss all possibilities and compare them to the way
your company works.

A common mistake when implementing WMS software is trying to solve
procedural issues with a computer system. The simple rule is: "If it does
not work without a computer system, it will most certainly not work with
a computer system".

Customizing and changing WMS should be done very carefully since the data flow is
very complex, especially for Microsoft Dynamics NAV standards.

Chapter 6

[289]

Reservations
In Microsoft Dynamics NAV, it is possible to do reservations on inventory. This can
help us manage our inventory more effectively. Let's discuss the reservation process
with a customer scenario.

One of our customer orders 100 black t-shirts size M on January 22, 2015.
Currently, we have 120 in our inventory so we can ship them without any problems.
The customer wants to have them delivered on November 18. We enter a sales order
with the shipping date and release the order.

The next day, another customer calls for 40 black t-shirts size M. Our inventory is
still 120. This customer wants to have them delivered on May 31. We enter the
sales order without a warning. Lastly, we will create a new sales order for 90
of the same t-shirts with a delivery date on July 25. Now, we get the following
error message:

And if we now go back to the second sales order and re-enter the quantity, we get a
similar message.

Trade

[290]

Check-avail. period calc.
The reason this happens lies in the way Microsoft Dynamics NAV calculates the
gross requirement:

This is a two-step method where first, the requirement is calculated until the
shipment date of the sales line and secondly, a Lookahead function is called
using a date formula that is defined in the company information table.

The C/AL code that is used to calculate the Lookahead can be found in the
QtyAvailabletoPromise function in codeunit Available to Promise (5790).

QtyAvailabletoPromise
Item.CALCFIELDS(Inventory,"Reserved Qty. on Inventory");
ScheduledReceipt := CalcScheduledReceipt(Item);
GrossRequirement := CalcGrossRequirement(Item);

IF FORMAT(LookaheadDateFormula) <> '' THEN BEGIN
 GrossRequirement :=
 GrossRequirement +
 CalculateLookahead(
 Item,PeriodType,
 AvailabilityDate + 1,

If this Lookahead functionality is not detailed enough, we can start using the
reservation process.

Chapter 6

[291]

Always versus optional reservation
The Reservation option can be activated on the item level and customer level and
can be set to Never, Optional, and Always, as shown in the following screenshot:

Let's see what these options signify:

•	 Never: Reservations on this item or customer are impossible. If the item is
Reserve as Always and the Customer as Never, the item wins.

•	 Optional: It is possible to reserve items for this customer; however,
salespersons and warehouse employees can decide to overrule
the reservation.

•	 Always: Shipping is not possible without a proper reservation. If the demand
is larger than the supply, the salespersons and warehouse employees must
make manual decisions of who gets what.

Reservation entries
Microsoft Dynamics NAV uses the Reservation Entry (337) table to store the
reservation entries. Reservation entries can be connected to all outstanding documents
and journals and posted entries. This is done using the following source fields:

•	 Source Type: This is an integer field representing the table the record is
linked to, for example, 37 means sales line and 5406, prod. order line.

•	 Source Subtype: This is an option field, which is linked to the Document
Type field when the record is linked to a sales line, purchase line record,
or the status of a production order.

•	 Source ID: This is the link to the document no. of the record this line is
linked to.

Trade

[292]

•	 Source Batch Name: If the record is linked to a journal, this field represents
the journal batch name. If this field is used, the source ID is empty and
vice versa.

•	 Source Prod. Order Line: When the record is used for a production order
line or component, this field represents the production order line number.

•	 Source Ref. No.: This is an integer field, which is used to link the record to
a line no. in a document, journal, or the production component. If the line is
linked to a ledger entry, this field represents the entry no. field.

There are four types of Reservation Entries in Microsoft Dynamics NAV represented
by the Reservation Status field:

•	 Reservation: These are real reservation entries, which means that a part of
the current or future inventory is reserved for a production order or sales
order. If the item uses the Always reservation option, it is not possible to
work around this. If the reservation is optional, it is possible that someone
else might still use these items in another process.

•	 Tracking: This option is used by the Order Tracking Policy option in
Microsoft Dynamics NAV. This is an "underwater" process that can link
supply and demand automatically. The status Tracking means that there
is a supply as well as a demand.

•	 Surplus: This option is used for both item tracking as discussed in
Chapter 5, Production, and the Order Tracking policy. The records can be
identified by using the value of the item tracking field. This is set to None
for Order Tracking policy records and Serial No., Lot No., and Lot and
Serial No. for item tracking.

•	 Prospect: When item tracking is used, a prospect reservation record indicates
an internal journal action, for example, assigning a serial number to an item
journal line.

Creating a reservation
Let's go into the application and create a reservation to see what entries we get in
the database.

We will do this using a new item. The item should have a Description, Base Unit of
Measure, and a Gen. Prod., VAT Prod., and an Inventory Posting Group. The default
value for Reserve is Optional, which we will use for this example. The default
costing method is FIFO, which we will also use.

Chapter 6

[293]

1.	 To demonstrate the real value of reservations, we should create two purchase
orders with different dates and unit costs. With FIFO, the system would
normally apply the sales order to the first item ledger entry. We will reserve
on the second item ledger entry to demonstrate the impact on item costing
and application.

2.	 When this is done, we can create a new sales order with one sales line
containing the item and half the inventory and select Reserve from the
Functions tab.

3.	 In this screen, we can take a look at the available inventory by clicking on
Available to Reserve:

4.	 Here, we select the second receipt and navigate to Actions | Functions |
Reserve. Then, we close the screen.

5.	 In Sales Order Lines, we can now see the Reserved Quantity as 50:

Trade

[294]

Let's have a look at the Reservation Entries created in the database by running the
table from the Object Designer:

A reservation entry of the type Reservation always uses to lines with the same entry
no. The Source Type for the first entry links to the Sales Line table (37) and the
second uses the Item Ledger Entry Table (32).

We ship and invoice the sales order and look at the Item Ledger Entries for our item:

We see that Microsoft Dynamics NAV has used the second item ledger entry, but the
cost is 500, not the 600 from the second entry.

To correct this, we run the report Adjust Cost - Item Entries (795) and have another
look at the Item Ledger Entries and the Value Entries to see that it is corrected.

Chapter 6

[295]

Order tracking policy
We have seen that reservation entries are not only used for the reservation
process of inventory and item tracking but also for balancing supply and demand.
This is an internal option within Microsoft Dynamics NAV that allows us to link
inventory internally.

The entries are used in the supply and demand calculation to create the
requisition worksheets.

Example
Let's create a copy of our reservation test item to see the differences between
reservations and item tracking. This new item should have the Order Tracking
Policy Tracking and Action Msg.

We will create two purchase orders with both a quantity of 50 without receiving
them and create a sales order for the same item with a quantity of 80.

Trade

[296]

If we now select Order Tracking from the Sales Line Functions, we see that the
system matches supply and demand.

Let's have a look at the Reservation Entries:

We can see that Microsoft Dynamics NAV is now using the Surplus and Tracking
types. The 20 items we have left are not linked to a demand.

Let's start the Requisition Worksheet for this item and see what Microsoft Dynamics
NAV can do with this information.

Replenishment
Let's change the reordering policy of the item to Lot-for-Lot and run the Requisition
Worksheet for this item:

This will result in the suggestion to combine both purchase orders into one document
with a different quantity.

Chapter 6

[297]

Auto increment
In Microsoft Dynamics NAV 2013, the Reservation Entry table was redesigned to
use the Auto increment feature to determine unique numbering. This improves
application performance and reduces locking.

Trade in vertical industries
Microsoft Dynamics NAV is used in many different vertical industries that often
require specific features. Rather than trying to implement all these features in the
standard product, Microsoft Dynamics NAV supports the framework and allows
developers to design and create the vertical features.

For these features, the 80/20 rule applies. Microsoft delivers 80 percent of the
framework which costs 20 percent of our time to implement. The missing 20
percent of the functionality is developed costing 80 percent of the budgeted time.

In this section, we will discuss how Microsoft Dynamics NAV is used for trade in
five different vertical industries. For each industry, we will discuss two specific
vertical features and how they could be solved.

Most industries have solid add-on solutions available designed by
certified Microsoft Dynamics NAV partners that have been implemented
at multiple sites. It is highly recommended to look at those add-on
solutions instead of reinventing the wheel and rewriting an add-on that
already exists.

Trade

[298]

Fashion
The fashion industry has trade periods within the seasons. During spring, shops
need to order the collection for the next winter and during autumn they buy
summer clothes.

Sales orders
The sales orders for each collection are created as normal sales orders but with a
shipment date in the future, sometimes six months or more ahead. When using
variants, there should be a separate sales line for each variant, meaning, size,
and color.

This can be quite a hassle to enter for sales people, so we could speed this up using a
template sales line for the main item and hide the individual sizes.

Using a matrix where the x axis represents the size and y axis the color, sales people
can quickly enter the quantities. When the matrix is closed, we can update the
hidden sales lines. These hidden sales lines are used to calculate the production
orders as discussed in Chapter 5, Production.

Reservations
When the production orders return from the factory, the warehouse and sales people
need to decide which customer gets the items first. This can be done using the
shipment date but that might not be completely fair if one customer orders in time,
meaning six months ahead, and another customer orders too late with an earlier or
the same shipment date.

This is where we can start using reservations. The reservations already support
variants but the auto reserve functionality of Microsoft Dynamics NAV might not
just do what we like.

Changing this functionality is a complex task. The C/AL code for AutoReserve
can be found in codeunit Reservation Management (99000845) but should only be
changed by experienced developers.

Fortunately, reservations are layered on top of the normal inventory, production,
purchase, and sales process. If we change the algorithm, we can remove the current
reservations and retest the code to see if the newly created reservation entries are
good. This testing process should be done very carefully, on a dataset that is small
enough to analyze using Microsoft Excel.

Chapter 6

[299]

Automotive
Microsoft Dynamics NAV is used by many car dealer companies and garages
because there are some strong add-on products available for this vertical industry.

On top of the normal trade process supported by Microsoft Dynamics NAV, these
companies have additional business requirements. Let's discuss two of them.

Vehicle information
Each vehicle that is sold needs to be configured and ordered. The configuration
should be stored in the database for future maintenance and warranty.

We can compare this to serial numbers or the lot number information table in the
standard product. We could create a new master data table called Vehicle and create
a record in this table for each car we configure or sell. The number we create for the
Vehicle can be used as a serial number in the Item Ledger Entry.

For maintenance, we could have a vehicle journal that creates vehicle ledger entries
each time the car comes back for servicing. This helps us keep track of the history and
should include information such as mileage. The technical design of this solution can
be compared to the squash application we created in Chapter 2, A Sample Application.

Parts management
In the automotive industry, using the right part is crucial. Different parts can be used
on different types of cars and are often even brand independent.

Many vendors offer their assortment in digital formats allowing us to create
interfaces with them. Parts should be defined as items, using standard features such
as substitutions. As many parts can be expensive and have a low turnover speed,
keeping them in the inventory can be very expensive, thus a minimum inventory
should be maintained.

Parts can be connected to vehicle types. For example, a car interior mirror could be
used for five types of cars. When a service engineer wants to replace such a mirror,
he/she can use a filtered item list of all available parts.

Trade

[300]

Pharmaceuticals/medicines
In a pharmacy or at another medicine supplier, it is normal that not just every
customer is allowed to purchase any item. They cannot sell medicines against
cardiac arrhythmia to a healthy person.

Even when someone is allowed to use a certain medication, it is often limited to
certain doses. People are often insured for the cost of these medicines but most
insurance companies require a contribution.

Medication card
Microsoft Dynamics NAV does not support item regulation. To support this,
we should create new functionality that links items to customers but also allows
us to enter the doses and frequency.

From this template, we could periodically create sales orders and shipments.
Whenever we ship the medicines, we need to update the template.

Contribution invoicing
When customers need to pay a part of the medication as an own contribution,
we require the system to create two sales invoices for one sales order.

This is possible using the standard pre-payment functionality in Microsoft Dynamics
NAV. We could send a pre-payment invoice to the customer and handle the other
invoices to the insurance companies using combined invoicing. The pre-payments
will be automatically deducted from the invoice amount but the value entries on the
items will remain intact.

However, the standard system does not allow us to create a pre-payment invoice to
another Bill-to Customer No. This would have to be designed and developed.

Food
Where fashion companies have two or three large ordering moments per year where
customers carefully consider what to order, most food companies have a daily
ordering process of high volume items.

This ordering process is often done by phone or fax where the retailer calls and tells
the call center employees what to ship the next day.

Chapter 6

[301]

Assortment
Most food companies use an assortment of products. This assortment can change
from season to season or contain special action items but is usually stable since that
is what most consumers want; meatballs on Monday, pork chops on Tuesday,
and so on.

To save valuable time creating a new sales order with the same items each day,
we could have the system do this at night.

This could be done using Standard Customer Sales Codes. This standard function
in Microsoft Dynamics NAV allows us to create template sales orders with multiple
items or other master data supported by the sales process. It also supports fixed
quantities that can be adjusted when the sales orders are created.

The sales order can be created from the Customer Sales Codes using the Get. Std.
Cust Sales Codes function, as shown in the following screenshot:

Sales order creation

This function could be scheduled in the Job Scheduler to create new sales order each
night for the next day. We will discuss the job scheduler in Chapter 9, Interfacing.

Fast order entry
When the retailer contacts the call center to complete the sales order, the order entry
person should be able to quickly find the correct sales line. If the assortment contains
150 items, this can be quite challenging.

This can be solved by implementing a fast order entry functionality that enables
users to key in an item number and quantity on the sales header. The values will
be updated in the correct sales line and blanked for the next entry.

With this functionality, the end user can always work from the same place without
searching for the correct sales line.

Trade

[302]

Furniture
The furniture trading companies have similar issues with variants like fashion
companies, with some key differences.

Items like office chairs and desks have far more options compared to clothes and
when sold, most consumers buy few with the same specifications rather than a
collection of different sizes.

Variant configuration
The price of furniture is dependent of the configuration, which fabric we want for
the seat, the type of armrest, or even the type of wheel. This configuration also
determines the item number.

An office chair or desk can have as much as 1200 possible combinations. We do not
want to register all these combinations as items or even as variants.

Most furniture suppliers offer online systems or small external software packages to
determine the combination. Once the combination is identified, we can create a new
variant code or see if the variant already exists and create the sales order.

One-off items
Furniture retailers often have many collections they can sell with thousands of items.
Most of the items in these collections will never be sold, or get sold as one-off items
that are only sold once to one customer.

In this case, it does not make sense to create an item with an item cost and
inventory value, but we still want to have some traceability of the item.
This calls for two solutions:

•	 We could create a collection item, which we can reuse each time we sell an
item that is similar to another item but not exactly the same, for example, a
lamp with a different foot color. On the sales line, we create the possibility
for sales people to enter the vendor/collection and an item category. The
system should then search for the template item.

•	 Another solution is to create a new item runtime from the sales order. The
sales person will also select the vendor/collection and item category and
the system should show a list with items already in the database. If the item
is not created, the system should create the item using a template for the
posting groups. The sales person can immediately use it and we then have
traceability of the items we sold.

Chapter 6

[303]

Summary
With this chapter, we end our quest exploring the production and trade functionality
around the items in Microsoft Dynamics NAV. We discussed the application design
of sales and purchase documents in Microsoft Dynamics NAV and how they are
mirrored. We talked about the different document types and how they work together
from quote or blanket order to order, and invoice or return order, and credit memo.

The sales and purchase line validation methodology helps us to calculate the pricing,
inventory and VAT using a special structure of functions that is linked to the way
end users create these lines.

Sales and purchase orders have a mandatory release process that can be extended
with document approval and prepayments. The items have a two-layer inventory
process using item ledger entries on locations and warehouse entries on bins and
zones. We can use transfer orders to move items from one location to another and
warehouse documents to move items from bin to bin and zone to zone. A warehouse
is set up in the location and can have different levels. The setup level should match
the physical process in the warehouse.

Item application and costing is tied together with the reservation process in
Microsoft Dynamics NAV. The Reservation Entry table adds a new level to the
inventory process linking documents, journals, and entries together to level supply
and demand. When used, the reservation process can overrule the costing method.

At the end of the chapter, we talked about different ways to implement this
in vertical solutions and what gaps would have to be solved and how. This
demonstrates the flexibility and the power of the standard transaction structure
in Microsoft Dynamics NAV.

In the next chapter, we will take this to a new level where we will design and build a
real-world vertical solution for Microsoft Dynamics NAV that will enable us to create
combine sales shipment in routes for trucks. We will also create a new solution on top
of Microsoft Dynamics NAV using the application as a development environment to
build something new with respect to the methodology of the application.

Storage and Logistics
In the previous chapters, we looked at how companies work with ERP in production
and trade businesses. All these companies work together to bring finished products
to the stores where end consumers can buy them.

During this process, the products move around between the companies. This is done
using different kinds of transportation, such as trucks, ships, trains, and airplanes.
It may also be necessary to store the products in a warehouse until they are sold or
moved to the shops.

More and more companies make a decision to outsource logistics rather than having
their own transportation. When this is the case, logistics can be a separate part of the
supply chain. This chapter discusses the process and the effects on the ERP system.

One of the specific aspects of logistics companies is that the products they handle are
not their property. Although they are a part of the total cost of the consumer product,
they don't care about the detailed value of their inventory. Logistics companies sell
warehouse handling, storage, and transportation as services.

Microsoft Dynamics NAV does not have built-in functionality to handle this so,
in this chapter, we will discuss how to design an application to do this.

There are several add-on solutions for this business and in a real-world situation
those add-ons should be evaluated as potential solutions. In this chapter, we will
discuss how to design and create a basic framework for such an add-on application
that can be easily extended without adding too much complexity.

Storage and Logistics

[306]

The objects provided with this chapter should never be
implemented at a real-customer scenario. They are for the
purpose of this chapter's examples only.

After reading this chapter, you will have a better understanding of how to design a
solid add-on solution and how to integrate it into the standard Microsoft Dynamics
NAV product.

How to read this chapter
In this chapter, we will demonstrate how an add-on for Microsoft Dynamics
NAV should be designed. In this example, we create a solution for a Storage &
Logistics company. This is chosen because the functionality is similar to the existing
functionality in Microsoft Dynamics NAV (warehousing) and is a good example of
building on top of standard application features.

We will start by analyzing the business process and then discuss the reasons why
we won't use standard application features and explain the modules our new
application will have.

The next step is to go deeper into these modules and define the design patterns for
each of them. We will then walk through the application like we did in the previous
chapters and reverse engineer it to explain how all the pieces were designed.

To do this, we need to download and install the application. As we progress in the
chapter, we will discuss most of the objects that can be opened and analyzed in the
Microsoft Dynamics NAV development environment.

Open the objects as we move along in the chapter to learn more.
The objects are rich in functionality, which cannot all be discussed
in detail in this book.

Chapter objects
With this chapter, some objects and Dynamic-link library (DLL) files are required.
The Appendix, Installation Guide, describes how to import and activate them.

After the import process is complete, make sure that your current database is the
default database for the Role Tailored Client and run Page 123456701, Storage &
Logistics Setup from the Object Designer in the Classic Client.

Chapter 7

[307]

From this page, select the Initialize Storage & Logistics option, as shown in the
following screenshot:

The process
To design a solid solution for a specific market, we first need to analyze the
business processes and see where the fits and gaps are with the standard product.

The companies that will be using this solution are logistics providers.
These companies do not buy and sell products but sell logistics services
such as transportation and storage.

There can be various moments in the supply chain where these companies are
required. Products are often manufactured in companies all over the world and
shipped to consumers elsewhere. Products can cover great distances, as shown in
the following diagram:

Raw Materials Manufacturing Process

Storage Services

Wholesale Services Retailers
&

Customers

Storage and Logistics

[308]

Using standard features
Microsoft Dynamics NAV, like many ERP systems, is designed for people to
handle their own products and supports the process of costing as we have seen in
the previous chapters. For logistics service providers, this inventory control and
valuation functionality is not necessary since the products are not their property.
This means that they would want to use the warehouse functionality without the
item ledger entries, which is very difficult in Microsoft Dynamics NAV.

Logistics service providers also offer transportation solutions. They will pick up
the products and deliver them to the customer. The process includes combining
different stops in routes resulting in a more cost-efficient way of transportation.
This functionality is not available in Microsoft Dynamics NAV.

Defining the modules
In this chapter, we will design three new modules on top of Microsoft Dynamics NAV
that integrate with each other and could still be used separately. These modules also
integrate with the standard application through Sales & Purchase Documents.

Financial Mgt.

Invoicing

Sales & Purchase
Document

Income & Expense
Entry

Income & Expense

Analysis
Logistics

Registration
Logistics Shipment

Document
Logistics
Route

Logistics

Storage
Registration

Storage Receipt
Document

Receipt Storage Shipping

Movement
Storage

Shipment
Document

Pick

Put-Away Storage
Registration

Chapter 7

[309]

Storage
The first part of the application is the storage module. This allows us to receive and
ship products and move them internally in the warehouse. The design of this module
is very similar to the warehouse documents in the standard application that we
discussed in Chapter 6, Trade.

Logistics
The logistics module supports the planning of routes, delivering the products to the
consumers. This is integrated into the storage module but can also be used from sales
shipment documents in the standard application.

For the design of this module, we have looked at the production orders in Microsoft
Dynamics NAV that we discussed in Chapter 5, Production. The routes and shipments
have a Status field that indicates the progress, similar to a production order.

Invoicing
The storage and transportation services are then invoiced to the customer
periodically or when the products leave the warehouse.

For this, we will use the standard Microsoft Dynamics NAV invoicing solutions
but we will add a new Income & Expenses module in between the logistical
solution and the invoicing functionality.

We have looked at the design of Job Ledger Entries and how they are invoiced.
This will be discussed in the next chapter.

The storage application
In a storage warehouse, products come and go all the time. A big difference between
a storage company and a production plant is that the storage company does not
care about what exact products they have; they care about the amount of space
they require for storage. The business is selling storage handling, storage space,
and transportation.

Storage and Logistics

[310]

For our application, we'll assume that our warehouse has a receipt and a shipping
region, an in-between staging region and a bulk storage region. If we simplify the
warehouse, it might look like the following floor plan:

Staging
&

Cross
Dock

BULK
Receipt

Shipment

Office

Let's look at the various sections in detail:

•	 Receipt: When products come in, they are first unloaded from the truck onto
a receipt region. This is often located close to the unloading dock, so the truck
can quickly move on to its next stop after the products are unloaded and the
loading documents are checked. From the receiving location, the products
should be stored away as quickly as possible since another truck might come
and we need the space. The products can now go to either the staging region
or the bulk region.

•	 Staging: The staging region is an in-between region where products can be
stored but will leave the warehouse quickly when it is too busy to properly
store in the bulk area and we need the space in the receipt region.

Chapter 7

[311]

•	 Shipment: When products leave the warehouse, they will first be moved to
the shipment region. This allows us to quickly load the trucks when they
arrive and easily compare the loading documents with the real products.

•	 Bulk: When we expect products to be in the warehouse for a longer period,
they will be stored in the bulk area where we can define shelves. A shelf
can have a capacity for one or more products depending on the setup in
the system.

Documents
The first step is to have a registration of what will be coming to our warehouse
by creating the receipt documents. In the old days, we would often receive this
information by phone or fax, but today most companies use interfaces, such as EDI and
web portals for this. This keeps us from making mistakes when typing the information
in the system and allows us to automatically populate the receipt document.

The receipt documents will be combined into put-away documents that register the
transfer from one region to the other. The software will also suggest a shelf to store
the products.

When the products leave the warehouse, our customers will also register a shipment
document. On their call, we will start the order picking process and combine the
shipments. The pick documents will tell us on which shelf the products are stored.

Incidentally, it may also be necessary to move the products in the warehouse.
This will be registered in internal movement documents.

The storage documents are connected to the logistics document structure, which we
will see later in this chapter, while discussing logistics.

Look, learn, and love
In Chapter 2, A Sample Application, we learned how to use a journal and entry design
patterns to register usage. In this chapter, we will continue with this and add some
document design pattern structures.

To design our application, we will look at how existing pieces of Microsoft Dynamics
NAV are designed and reuse them.

Storage and Logistics

[312]

On https://community.dynamics.com/nav/w/designpatterns/
default.aspx, you'll find dozens of design patterns for Microsoft
Dynamics NAV including many used in this chapter.

Journal
The core of our application is the Storage Journal, which is created from the same
template as the Squash Journal earlier. The difference is that people in a warehouse
use documents rather than journals.

Documents
We will support the five types of documents we discussed earlier, namely, Receipt,
Shipment, Put-away, Pick, and Movement. The documents can be created manually
by end users or created automatically. We will also provide an interface structure to
allow customers to register receipts and shipments.

As all the documents have the same structure and mostly the same fields, they are in
the same table to share business logic.

Sharing the same table for multiple document types allows easier sharing
of business logic across the application.

This is also done in the standard Microsoft Dynamics NAV application for sales and
purchase documents as we discussed in Chapter 6, Trade.

Master data
To define what we are storing in the warehouse, we will use a new table called
Product, which is similar to the Item table in the standard system. By creating a new
table, we will improve upgradability of our solution, which will help us be more in
control of our own application or in other words, less likely to be impacted by the
changes Microsoft implements in the standard product.

https://community.dynamics.com/nav/w/designpatterns/default.aspx
https://community.dynamics.com/nav/w/designpatterns/default.aspx

Chapter 7

[313]

Drawing the design pattern
If we combine this information into a table and transaction structure, it would look
like the following diagram:

Storage
Registration

Register
(Codeu. 123456722)

Storage Header
(Table 123456722)

Storage
Registration
Worksheet

(Report 123456726)

Storage Line
(Table 123456722)

Storage Post
(Table 123456723)

Storage Journal
Line

(Table 123456716)

Registered Storage
Header

(Table 123456725)

Registered Storage
Line

(Table 123456726)

Product
(Report 123456711)

Bill-to Customer
(Table18)

Storage
Journal Post

Line
(Codeu. 123456713)

Storage Registered
(Table 123456717)

Warehouse
(Report 123456710)

Region
(Table 123456713)

Self
(Table 123456712)

Storage Entry
(Table 123456719)

The actual inventory is kept in Storage Entries. By filtering on a warehouse code,
region code, or shelf number, the inventory can be calculated.

Sharing tables
The Storage & Logistics add-on application also has some shared tables. It does
not make sense to have a product or warehouse table for each part of the add-on.
We choose to also share the setup and the cue tables for the Role Center definition.
The Storage & Logistics application has four Role Centers.

By sharing the cue table, it is much easier to place the same cues on
different Role Centers. If we were to create one table for each Role
Center, we would need to copy and paste the cue definition to the
table for each change request.

Storage and Logistics

[314]

Getting started
In our scenario, we'll ship and receive products for a company called CRONUS
International Ltd. for whom we do shipping. We have warehouses in Austria,
Belgium, Czech Republic, Denmark, Germany, Great Britain, Iceland, Netherlands,
Norway, Sweden, Slovenia, Slovakia, and the USA.

Each warehouse has the same basic layout as explained earlier in this chapter.
From the warehouse, we plan routes to transport the products to the consumer.
After initializing the application and restarting the application, the Role Center
should look like this:

Let's look at the various sections in detail:

•	 Activities: This window shows the workflow for the warehouse floor
•	 My Products: This contains all customer products we have on inventory
•	 My Regions: This allows us to see what inventory is where in

our warehouses

Chapter 7

[315]

Opening balance
The opening balance was created using the Storage Journal. By using the journal to
create opening entries, we are sure that business rules are followed.

In our design, we have decided that end users are not allowed to directly register
inventory on the bulk location. We start by receiving it, and then we create a
put-away document to move it to the bulk location. We'll see how this is done
later in this chapter when we discuss the storage documents.

Have a look on the Storage & Logistics Setup (123456701) page to see
how this was done in the CreateOpeningBalance() function.

Products
Products are references to the items of our customers that we keep in inventory.
They contain a Bill-to Customer No. and a Customer Item No. This allows us,
for example, to keep the item with number 70000 for two different customers.

We can also see and set up Storage Prices for this product, which we will later use
for the invoicing.

Storage and Logistics

[316]

Warehouse
A warehouse is a physical building with an address. To move products from one
warehouse to another warehouse, we would need to ship them, create a route,
and then physically receive them in the other building.

Regions
A region is a part of the warehouse that is used for a specific storage activity.
In our example, we have a receipt, staging, bulk, and shipment region. To move
products from one region to another, we should create a put-away, movement,
or pick document.

Chapter 7

[317]

Shelves
A shelf is a specific part of a region. The specific code of a shelf often indicates its
position in the warehouse. For example, our warehouses have two rows, A and B,
with 18 lines and 8 levels where each shelf can contain one pallet.

Registration worksheet
The warehouse process starts with receiving products. To save time when the
products arrive on the dock, we ask our customers to register their products in
advance. This is done in the storage registration worksheet.

In our application, we have simulated an interface with our customer CRONUS
International Ltd. We can start the interface from the Role Center directly.

1.	 We start the CRONUS Storage Import Receipt report from the Role Center,
as shown in the following screenshot:

2.	 The system pops up and asks for a Storage Registration Code.
3.	 We will choose CRONUS from the list and start the import process.
4.	 After this, we open Registration Worksheets.

Storage and Logistics

[318]

5.	 When we now open the registration worksheet, we see what CRONUS will
send us today. This allows us to prepare our business, maybe move around
some products, and schedule resources.

6.	 We can now register this worksheet, which will create the receipt documents
for us.

Storage documents
We use documents to determine which product goes where. Creating those
documents in the system manually requires a large amount of work, so in our
application, this is done automatically.

Receipt
By default, all products that are received are stored in the RECEIPT region.
This region does not have shelves. If required, we can change the region code.

After we register the receipt document, we have inventory on the RECEIPT location:

Since this is a relatively small region, we need to move the products to the bulk
location as quickly as possible. This is done using a put-away document.

Chapter 7

[319]

Put-away
A put-away document is used to move products from the receipt region into the
bulk region. The storage entries tell us what is in the receipt region, so we copy
that information into a new put-away document. These documents can be created
manually, and based on the warehouse information on the document, we can pull
the data into the document.

Another requirement is to have an automated process that creates put-away
documents based on the entire content of the receipt region.

1.	 To provide for this functionality, we have created the Receipts to Put-Away
(123456715) report. This processing-only report reads the storage entries for
the receipt region, and creates the put-away documents based on certain
predefined rules.

2.	 The report filters down the storage entries-based regions of type Receipt and
with inventory.

3.	 It creates a put-away document for each warehouse suggesting the first
put-away region in the warehouse. For each StorageEntry, the CreateLine
function is started. Let's have a look at the C/AL code for this:
CreateLineCreateLine()

FindOrCreateStorageHdr;

Storage and Logistics

[320]

Region2.SETRANGE("Warehouse Code");
Region2.SETRANGE("Put-Away", TRUE);
Region2.FINDFIRST;

WITH StorageEntry DO BEGIN
 NextLineNo := NextLineNo + 10000;
 StorageLn."Document Type" := StorageHdr."Document Type";
 StorageLn."Document No." := StorageHdr."No.";
 StorageLn."Line No." := NextLineNo;
 StorageLn."No." := "Product No.";
 StorageLn."Warehouse Code" := "Warehouse Code";
 StorageLn."Region Code" := Region2.Code;

4.	 The first step is to check whether it's necessary to create a new storage
document. We create a new document for each Warehouse and StorageDate.

5.	 Then, the system filters on the region table to find a put-away region.
For each StorageEntry, a StorageLine is created.

6.	 After running the report, our put-away document looks like this:

7.	 The suggested Region Code is BULK and the Apply-to Region Code
is RECEIPT.

8.	 If we now try to register this document, we will receive an error since we did
not enter any Shelves because this is mandatory on this region.

This check is done in the codeunit Storage Jnl.-Check Line.
By moving these checks into this codeunit, we make sure these
rules are mandatory in each posting.

Chapter 7

[321]

9.	 Since we rely on the system to keep track of our inventory, we can also
have it suggest available shelves for us. This is also done using batch report
123456716 Generate Put-Away Shelves. Let's design the report and look at
the C/AL code in StorageLineDataItem:
Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1,"Document No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Shelf.SETRANGE("Warehouse Code", "Storage Line"."Warehouse Code");
Shelf.SETRANGE("Region Code", "Region Code");
Shelf.SETRANGE(Inventory, 0);
Shelf.SETRANGE("Blocked by Storage", FALSE);
Shelf.FINDFIRST;

"Shelf No." := Shelf."No.";
MODIFY;

10.	 For each StorageLine in the put-away document, it finds another shelf by
filtering on availability based on Inventory and BlockedByStorage.

11.	 The BlockedByStorage field is a flow field that returns true if the shelf is
used on a warehouse document preventing two forklift trucks from stopping
at the same shelf.

12.	 When this report is executed, we can register this put-away document and
we can see the Storage Entries that are generated from the Product Card
using the Ledger Entries action:

Here, we can see that the put-away document has applied its entries to the receipt
entries. Since we moved everything, the original entry is closed and the remaining
quantity is set to zero.

This functionality is similar to what we created in Chapter 2, A Sample Application,
when applying an invoice entry to a reservation.

Storage and Logistics

[322]

Shipment
After a while when the products are in inventory, the customer may send a request
to ship them. The shipping documents are sent using the same interface as the
receipt documents.

CRONUS Storage Import Shipment option

Running the CRONUS Storage Import Shipment report will create the Storage
Registration Worksheet, which we can check and register to a shipment document,
the same way as the receipt documents earlier.

The system creates a shipment document for each Ship-to Address.

We now have to start the process of moving the products from the storage region to
the shipment region.

Picks
The products that will be shipped need to be picked from the bulk or staging region
using a pick document. As with the put-away functionality, our application design
provides an automated process that supports this process.

Chapter 7

[323]

To create the document, we use batch Report 123456717 Shipments to Pick,
as shown in the following screenshot:

This report can combine shipments into one or more pick documents:

Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1,"Document No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Product.GET("No.");
Product.SETRANGE("Warehouse Filter Code", "Warehouse Code");
Product.CALCFIELDS(Inventory);
IF Quantity > Product.Inventory THEN
 ERROR(Text001, Quantity, Product.Inventory, "No.");

QtyToPick := Quantity;

StorageEntry.SETCURRENTKEY("Product No.");
StorageEntry.SETRANGE("Warehouse Code", "Storage Header"."Warehouse
Code");
StorageEntry.SETRANGE("Product No.", "No.");
StorageEntry.SETRANGE(Open, TRUE);
IF StorageEntry.FINDSET(TRUE) THEN REPEAT
 StorageEntry.CALCFIELDS("Blocked by Storage");
 IF NOT StorageEntry."Blocked by Storage" THEN BEGIN
 IF QtyToPick >= StorageEntry.Quantity THEN
 QtyToPick := QtyToPick - StorageEntry.Quantity
 ELSE BEGIN
 StorageEntry.Quantity := QtyToPick;
 QtyToPick := 0;
 END;
 CreateLine(StorageEntry);
 END;
UNTIL (StorageEntry.NEXT = 0) OR (QtyToPick = 0);

IF QtyToPick > 0 THEN
 ERROR(Text002, "No.");

Storage and Logistics

[324]

First, the system checks whether the products are in inventory in this warehouse.
If they are here, it starts browsing through the storage entries to look for available
shelves. Here, we also use the Blocked by Storage flow field to avoid two employees
fighting over the same product.

One of the functional requirements in our application is to avoid having half a
shipment to be picked and block the SHIPMENT region being incomplete. If there
are not enough inventories available for the pick, the system will display an error.

After the pick is created, we update the Pick Status on the Shipment field.
In the following screenshot, we can see that there are three Pick Lines attached
to this shipment:

When we click on 3, the system opens the lines. Double-clicking on the lines will
open the pick document.

To influence the double-click event, assign the RETURN shortcut to
one of the actions on a page.

Chapter 7

[325]

After registration of the pick document, the status of the shipment moves to
Completely Picked. We can see that the Pick Lines are registered:

The last step before the shipment can be registered is updating the storage lines
with the Apply-to Storage Entry No. from the pick document. For this step, we
have designed a dedicated report Update Storage Shipment (123456718) that can be
started from the Storage Shipment Document, as shown in the following screenshot:

After this, the shipment can be registered. The products have now left our warehouse
and are on the road to the customer.

The logistics application
Similar to production orders in the standard application, the processes in our
logistics application are status-driven rather than transaction-driven. This is why
this part of the application does not have a journal with entries. The tables can have
archived copies but they are not part of a normal registering or posting routine.

Storage and Logistics

[326]

For the examples in this part of the chapter, we should change
the default Role Center to Logistics Role Center (123456700) in
the Profile table (2000000072).

Drawing the design patterns
If we look at the structure of the logistics application, we can see that the typical
posting transactions are missing. The application uses a status-driven workflow
based on events that are defined in the triggers of the tables.

Combine
Shipments
Logistics

(Report 123456700)

Shipment
(Table 123456701)

Combine
Storage &
Logistics

(Report 123456702)

Shipment Details
(Table 123456702)

Route Stop
(Table 123456704)

Route
(Table 123456703)

Optimizer
Distances

(Table 123456707)

Route
Optimizer

(Codeu. 123456700)

The logistics shipment and shipment details have a lot of similarity with the
shipments from the warehouse. We have chosen to move them into new tables
for the following reasons:

•	 Security: In Microsoft dynamics NAV, the table level is most important for
security. If we share this table, it would be impossible to set up users to have
access to logistics and not to the warehouse or vice versa.

•	 Locking: If two departments use the same table for different purposes,
they will most likely have a different locking mechanism. For example, in
logistics, shipments are bound to the route object. The warehouse shipments
are bound to other shipment documents. Filtering the same table in main
processes in different ways will significantly increase the probability of
blocks and deadlocks.

•	 Table size: The storage documents are registered shortly after they are
created. Most documents are deleted and moved to registered tables on the
same day that they are created. Logistics shipments have a longer life cycle.
It takes longer to take the products from our warehouse to the customer and
during this process, many things can go wrong because of outside events.
The transport tables may be periodically cleaned up like manufacturing or
jobs in the standard Microsoft Dynamics NAV product.

Chapter 7

[327]

Getting started
To start the logistics process, we can create some shipments manually
but the application also provides an interface to the sales shipments and
warehouse shipments.

Let's start the Combine Shipments (Sales) option from Activities on the
Logistics Role Center to generate some data to work with.

Shipments
Logistics shipments are products moving from one physical address to another
physical address.

In our example, the shipments are created from our warehouse to the customer but
a shipment can also be from another address to a customer. Tracking the status of
a shipment is very important for the planners. A shipment starts with the Ready to
Ship status as soon as all mandatory fields are checked.

When the shipments are combined into routes, the shipment moves to shipping and
the status is changed to Shipping. During this stage, the products are picked up
from the warehouse. When this happens, the Pickup Date Time is populated.
This is done from the route.

After delivery, the Delivery Date Time is populated and the status is set to Shipped.

The planners can follow the shipments from their Role Centers in a workflow.

Routes
Shipments are combined into a route. For the planners to make a product planning,
it is very important that the shipment details are correct. The length, width, height,
and weight of the products determine whether they can fit in a truck, ship, airplane,
or train.

Storage and Logistics

[328]

Our example add-on system has a report to combine shipments into a route.
The shipments in a route will be combined into stops if they have the same
address information.

Combining shipments
Combined shipping is done in the Shipment To Route & Warehouse (123456701)
report. The shipments are grouped per warehouse. For each warehouse, a new
route is created.

For each shipment, the system creates a route stop. The stops have different types,
Pickup, Delivery, Pickup Group, and Delivery Group. Each shipment then gets a
Pickup and Delivery stop:

Shipment - OnAfterGetRecord()

IF Route.Description <> Warehouse.Name THEN BEGIN
 Route."No." := '';
 Route.Description := Warehouse.Name;
 Route."Shipment Date" := WORKDATE;
 Route.Status := Route.Status::Planned;

 Route."Bill-to Customer No." := "Bill-to Customer No.";
 Route."Bill-to Name" := "Bill-to Name";

 Route.INSERT(TRUE);
 i := 0;
END;

i := i + 10000;

RouteStop."Route No." := Route."No.";
RouteStop."Line No." := i;
RouteStop.Type := RouteStop.Type::Pickup;
RouteStop.VALIDATE("Shipment No.", "No.");
RouteStop.INSERT;

i := i + 10000;

RouteStop."Route No." := Route."No.";
RouteStop."Line No." := i;
RouteStop.Type := RouteStop.Type::Delivery;
RouteStop.VALIDATE("Shipment No.", "No.");
RouteStop.INSERT;

Chapter 7

[329]

After the routes are created and the shipments are assigned to a stop, a grouping and
optimizing algorithm is started. This is codeunit Route Optimizer (123456700).

Route optimizer
The algorithm in our example is designed to find the optimal route to deliver the
products to the addresses by calculating the distance of each address from the
warehouse. The route starts from the address that is closest to our warehouse
and ends at the address that is the farthest away.

This is just an example of a simple algorithm. Each company will have its own
algorithm that needs to be implemented:

RouteStopPickup.SETRANGE("Route No.", Route."No.");
RouteStopPickup.SETRANGE(Type, RouteStopPickup.Type::Pickup);
RouteStopPickup.FINDFIRST;

RouteStopDelivery.SETRANGE("Route No.", Route."No.");
RouteStopDelivery.SETRANGE(Type, RouteStopDelivery.Type::Delivery);
RouteStopDelivery.FINDSET;
REPEAT
 Window.UPDATE(2, RouteStopDelivery."Shipment No.");

 IF NOT Optimizer.GET(RouteStopDelivery.Name) THEN BEGIN
 CLEAR(BingMapMgt);
 BingMapMgt.CalculateRoute('', RouteStopPickup.Latitude,
RouteStopPickup.Longitude,'', RouteStopDelivery.Latitude,
 RouteStopDelivery.Longitude, Optimizer."Distance
(Distance)",Optimizer."Activity Time", Optimize::Distance);

 Optimizer.Name := RouteStopDelivery.Name;
 Optimizer.Latitude := RouteStopDelivery.Latitude;
 Optimizer.Longitude := RouteStopDelivery.Longitude;
 Optimizer.INSERT;
 END;

UNTIL RouteStopDelivery.NEXT = 0;

The calculation of the distance is done by calling a web service from Bing Maps.
This is explained in Chapter 9, Interfacing.

Each distance is stored as a record into the Optimizer table, which is a helper table.
This table is a temporary variable in this codeunit.

Storage and Logistics

[330]

Temporary tables have multiple benefits that make them interesting to use. As they
are not stored in the database, they have much better performance compared to real
tables. This also has a benefit for concurrency since there can be no locking.

Temporary tables are free to use. They are not checked in the license
file when used. To create and modify the definition, a valid license
is still required. The video at https://www.youtube.com/
watch?v=QHn5oEOJv0Q shows how to use temporary datasets.

After generating the distances, all Pickup shipments are combined into one stop by
assigning them all to the same Sequence No. value:

RouteStopGroup.INIT;
RouteStopGroup."Route No." := Route."No.";
RouteStopGroup."Line No." := 10;
RouteStopGroup.Type := RouteStopGroup.Type::"Pickup Group";
RouteStopGroup."Sequence No." := 10;
RouteStopGroup.Name := RouteStopPickup.Name;
RouteStopGroup.INSERT;

RouteStopPickup.MODIFYALL("Sequence No.", 10);

By sorting the distance helper table on distance, we can easily assign the correct
Sequence No. to the delivery stops. For each Sequence No. value, we will also
generate a group record in the stop table:

Optimizer.SETCURRENTKEY("Distance (Distance)");
Optimizer.ASCENDING(FALSE);
Optimizer.FIND('-');
REPEAT
 RouteStopGroup.INIT;
 RouteStopGroup."Route No." := Route."No.";
 RouteStopGroup."Line No." := Sequence;
 RouteStopGroup.Type :=
 RouteStopGroup.Type::"Delivery Group";
 RouteStopGroup."Sequence No." := Sequence;
 RouteStopGroup.Name := Optimizer.Name;
 RouteStopGroup.INSERT;

 RouteStopDelivery.SETRANGE(Name, Optimizer.Name);
 RouteStopDelivery.MODIFYALL("Sequence No.", Sequence);

https://www.youtube.com/watch?v=QHn5oEOJv0Q
https://www.youtube.com/watch?v=QHn5oEOJv0Q

Chapter 7

[331]

 Sequence := Sequence + 10;
 IF (xLongitude <> Optimizer.Longitude) OR
 (xLatitude <> Optimizer.Latitude)
 THEN BEGIN
 IF xLongitude + xLatitude <> 0 THEN BEGIN
 CLEAR(BingMapMgt);
 BingMapMgt.CalculateRoute('', xLatitude, xLongitude,'',
 Optimizer.Latitude, Optimizer.Longitude,
 RouteStopGroup.Distance, RouteStopGroup.Time,
 Optimize::Distance);
 RouteStopGroup.MODIFY;
 END;
 xLongitude := Optimizer.Longitude;
 xLatitude := Optimizer.Latitude;
 END;
UNTIL Optimizer.NEXT = 0;

After optimizing the route, it should look something like what is shown in the
following screenshot. We pick up two shipments at the warehouse and drive
them to two addresses in the country.

Route follow up
During the route, the planner needs to follow up with the driver. This will result in
the status update of the shipment.

In our solution, the planner should populate the Date Time Completed field.
This field is automatically updated in the shipment using a flow field.

Storage and Logistics

[332]

Incidents
A special status for a shipment is an incident. If, for any reason, we cannot deliver
the shipment, it should be taken back to the warehouse and shipped again. Based
on the reason of the incident, we might need to invoice extra services.

The incident can be on a stop group or on an individual shipment and can have
status Undeliverable, Closed, or Other. The planner can add extra comments.

The other shipments that do not have incidents get the new status, while the
incidents move to another place on the Role Center.

Chapter 7

[333]

Follow up
The incidents can be followed up by the planner via the Role Center. Incidents
that have not been handled, keep the status open until someone decides what
to do with it.

The invoicing application
In Chapter 2, A Sample Application, we introduced invoicing for an add-on solution.
For the solution in this chapter, we'll take this one step further.

Our company is invoicing different logistics services, such as:

•	 Handling costs for storage receipt and shipments
•	 Storage costs for the period we keep the inventory
•	 Costs for transporting the products to the end consumer

Storage and Logistics

[334]

All these costs need to be combined in one invoice. Some customers may require
monthly invoicing or some weekly and for incidental customers, we invoice directly.
This requires a special module to handle the invoicing.

For the examples in this part of the chapter, the Default Role
Center in the Profile table (2000000072) should be changed to
Income & Expenses Role Center (123456761).

Let's have a look at the process to see where the invoicing is required:

Calculation

Storage Price
Calc, Mgt,

(Codeu.123456710)

Shipment
Price Cala.

Mgt.
(Codeu. 123456703)

Route Price
Cala. Mgt.

(Codeu. 123456704)

Staging

Storage Invoice
Entry

(Table 123456727)

Income & Expense

Storage
Invoicing

(Report 123456703)

History

Income & Expense
Journal

Income & Expense
Entry

Income & Exp.
Jnl. Post Line

Sales/Purchase
Lines

Sales/
Purchase Post

Combined
Invoicing

InvoicingDocuments

Storage Line
(Table 123456722)

Route
(Table 123456703)

Shipment Details
(Table 123456702)

Income and expense
Everything that we want to invoice at one time to a customer, we store in a new table
that we will call Income & Expense. This is a container where they will be kept until
the periodical invoicing is done for this customer.

Chapter 7

[335]

The Income & Expense records can be created manually by end users or
automatically by the system. Let's have a look at them:

To create a new Income & Expense record, we need to fill in the following fields:

•	 Income & Expense Code: This is a reference to the group of Income
& Expense.

•	 Type: This can be either Income or Expense. The former will be used on sales
invoices and the latter is reserved for future use on purchase invoices if we
decide to hire other companies to handle our logistics.

•	 Description: This is the description that will be printed on the sales invoice.
•	 Quantity: This is the number of services that we have done. For example,

the number of storage days or number of kilometers or miles in a route.

Storage and Logistics

[336]

•	 Unit Cost/Total Cost: This can be used to calculate the profit of a service.
•	 Unit Price/Total Price: This is the price the customer will see on the

sales invoice.
•	 Unit of Measure Code: This is a reference to the calculation method such

as BOX, KM, MILES, or DAY.
•	 Applies-to Document Subtype: This is a reference to Storage Header,

Registered Storage Header, Logistics Shipment, or Logistics Route.
If necessary, this can be expanded to accommodate other add-ons.

•	 Applies-to Document (Line) No.: This is a reference to the Storage and
Logistics documents that this Income & Expense record belongs to.

•	 Applies-to Entry No.: This is a reference to the Storage Invoice Entry.

Invoicing
After the Income & Expenses are created, we can start the invoicing process.
To support this, some minor changes are done in the invoicing part of Microsoft
Dynamics NAV and as an example, we choose a slightly different approach
compared to Chapter 2, A Sample Application.

Sales Line
The Sales Line table (37) has gotten some minor modifications. We have added an
extra type for Income and implemented a table relation for the No. field:

This enables us to also create new entries on a sales invoice without having to create
an Income & Expense first.

The Sales Line also has a reference to the Income & Expense Entry No. and the
Apply-to fields. This enables us to create the Income & Expense Journal Lines
in the Sales Post Code Unit.

Chapter 7

[337]

Codeunit Sales-Post (80)
The sales post code unit has only one change to populate the Income &
Expense Journal:

OnRun()

 ...
 SalesLine.Type::Income: //* Chapter 7
 PostIncome;

PostIncome()

IF SalesLine."Qty. to Invoice" = 0 THEN
 EXIT;

WITH IncExpJnlLn DO BEGIN
 INIT;
 "Posting Date" := "Posting Date";
 ...
 "Source Code" := SrcCode;
 "Posting No. Series" := "Posting No. Series";
 "Dimension Set ID" := SalesLine."Dimension Set ID";
 IncExpJnlPostLine.RunWithCheck(IncExpJnlLn);
END;

This is done in the same way as the Resource Journal, however, we moved the
code that creates the journal line to a function, and this improves readability and
upgradability of our code.

As the Sales Line has all the Posting Group and Amount fields
populated, the General Ledger Entries, VAT Entries, and Customer
Ledger Entries are automatically generated by the standard application.

Pricing methodology
Our add-on solution has three levels of automatic price calculation that are more
or less identical. We can calculate prices for storage documents, logistics shipments,
and routes.

Let's look at the storage prices as an example of how this is done.

Storage and Logistics

[338]

Storage prices
In the Storage Price table, we can register prices for different storage activities.

When the price is calculated, the system will filter down in this table to find the
price that matches best. For example, if a product has a price for receipt without a
warehouse code, this price is used in all warehouses, but if one warehouse code is
populated, this warehouse has a special price.

Prices can be differentiated to receipt, shipment, pick, put-away, movement,
and storage. The first options are used on the storage documents, the latter
when calculating storage cost.

The Income & Expense Code determines which type of Income & Expense will be
created for this combination. A storage document can have more than one Income &
Expense, for example, a normal receipt line and a customs surplus.

Calculation
The Income & Expenses are created using a Price Calc. Mgt. Codeunit, which we are
familiar with from Chapter 2, A Sample Application, only this time we will not update
the Unit Price but create the Income & Expenses.

The calculation for storage is done in codeunit 123456710:

FindStorageLinePrice

WITH StorageLine DO BEGIN
 Product.GET("No.");
 StorageLinePriceExists(StorageHeader, StorageLine);
 CreateIncExp(StorageHeader,StorageLine,TempStoragePrice);

END;

Chapter 7

[339]

The FindStorageLinePrice function will call the standard StorageLinePriceExists
function to find the storage prices that match the criteria. For all the storage prices in
the filter, it calls the CreateIncExp function:

CreateIncExp()

IncExp.SETRANGE("Applies-to Document Type", IncExp."Applies-to
Document Type"::"Storage Header");
IncExp.SETRANGE("Applies-to Document No.", StorageHeader."No.");
IncExp.SETRANGE("Applies-to Document Line No.", StorageLine."Line
No.");
IncExp.DELETEALL;

WITH StoragePrice DO BEGIN
 FoundStoragePrice := FINDSET;
 IF FoundStoragePrice THEN BEGIN
 REPEAT
 IncExpCode.GET(StoragePrice."Income & Expense Code");
 IncExp.INIT;
 IncExp."Entry No." := 0; //* For Autoincrement
 IncExp.Type := IncExpCode.Type;
 IncExp."Income & Expense Code" :=
 "Income & Expense Code";
 IncExp.Description := Description;
 IncExp.Quantity := StorageLine.Quantity;
 IncExp."Unit Cost" := IncExpCode."Unit Cost";
 IncExp."Total Cost" := IncExp.Quantity *
 IncExp."Unit Cost";
 IncExp."Unit Price" := StoragePrice."Unit Price";
 IncExp."Total Price" := IncExp.Quantity *
 IncExp."Unit Price";
 IncExp."Applies-to Document Type" :=
 IncExp."Applies-to Document Type"::"Storage Header";
 IncExp."Applies-to Document No." := StorageHeader."No.";
 IncExp."Applies-to Document Line No." :=
 StorageLine."Line No.";
 IncExp."Bill-to Customer No." :=
 StorageHeader."Bill-to Customer No.";
 IncExp."Gen. Prod. Posting Group" :=
 IncExpCode."Gen. Prod. Posting Group";
 IncExp."VAT Prod. Posting Group" :=
 IncExpCode."VAT Prod. Posting Group";
 IncExp.INSERT;
 UNTIL NEXT = 0;
 END;
END;

Storage and Logistics

[340]

Each price will create a separate Income & Expense record.

The Income & Expense table is set to Auto Increment. This means
that SQL Server will generate the entry number for us. This enables
multiple users to generate entries in this table at the same time
without blocking each other.

Result
When new documents are generated by the system or end users, the prices are
automatically calculated. The user can see the total cost and price on the Fact Box and
change, remove, or add records if necessary, as shown in the following screenshot:

Periodic invoicing
One of the services we are providing is storage. This means that sometimes products
can be in our warehouse for several days or even weeks or months. Our customers
will be invoiced for the time they use our warehouse space.

Each time we receive a product in our warehouse or move a product to another
region or shelf, a storage entry is created to keep track. For invoicing, we also create
a Storage Invoice Entry. This is mainly because the inventory handling and invoicing
are done on different moments by different persons. The products can be shipped to
the customer when we start the invoicing process.

Chapter 7

[341]

The Storage Invoice Entry is created with a From Storage Date that is inherited from
the Storage Date of the Storage Entry. The Storage Invoice Entry also has a To Storage
Date that maintains blank until the product leaves the warehouse or moves to another
location that might have another price. The Income & Expense Code determines which
price will be invoiced and is determined when posting a Storage Document.

The batch report Storage Invoicing (123456703) is used for the creation of the Income
& Expenses. Let's have a look at how this is done.

The report only has one Storage Invoice Entry DataItem, which is filtered on
Open=Yes.

In the report, all the Storage Invoice Entries are moved to a buffer table first and
handled later. There are two important reasons for implementing a solution like this:

•	 Changing Record Set: This report filters on Storage Invoice Entries,
which are open for invoicing. When the Storage Invoice Entry is completely
invoiced, we want to change this value. This means that the record set we use
is changing during the process. This is something the SQL Server backend
cannot handle and this will result in very poor performance. By first moving
all records to a buffer table, the filtering will be done on a virtual table that is
maintained on the Service Tier rather than SQL Server.

Storage and Logistics

[342]

•	 Locking: If we were to filter on open entries and modify our dataset, it would
result in locking more records than necessary. Filtering on a non-clustered
index will result in SQL Server moving to Range Locks rather than Row
Locks. By reading the actual Storage Invoice Entry one by one using the
clustered index, we will make sure that SQL Server only locks the records we
use for this process, allowing other users to keep creating new records at the
end of this table.

Processing the buffer
When processing the buffer, we first check whether this entry has been invoiced
before. If this is the case, we start invoicing from the previous date, if not; we use
the From Storage Date.

Then, we check whether the products have already left the warehouse or have
been moved. If this is the case, we can close this entry by invoicing until this date;
otherwise, we will invoice until the Workdate.

Users can change the systems Workdate and influence the systems
behavior this way and invoice until another date.

ProcessBuffer()

StorageInvEntry.LOCKTABLE;

WITH TempStorageInvEntry DO
 IF FIND('-') THEN REPEAT
 StorageInvEntry.GET("Entry No.");

 IF "Last Invoice Date" <> 0D THEN
 FromDate := "Last Invoice Date"
 ELSE
 FromDate := "From Storage Date";

 IF "To Storage Date" <> 0D THEN
 StorageInvEntry."Last Invoice Date" := "To Storage Date"
 ELSE
 StorageInvEntry."Last Invoice Date" := WORKDATE;

 Date.SETRANGE("Period Type", Date."Period Type"::Datum);
 Date.SETRANGE("Period No.", 1, 5);
 Date.SETRANGE("Period Start", FromDate,
 StorageInvEntry."Last Invoice Date");

Chapter 7

[343]

 IncExp."Entry No." := 0;
 IncExp."Income & Expense Code" := "Income & Expense Code";
 IncExp.Type := IncExp.Type::Income;
 IncExp.Description := STRSUBSTNO(Text000, FromDate,
 StorageInvEntry."Last Invoice Date");
 IncExp.Quantity := Date.COUNT;
 IncExp."Unit Cost" := "Unit Cost";
 IncExp."Total Cost" := IncExp.Quantity * "Total Cost";
 IncExp."Unit Price" := "Unit Price";
 IncExp."Total Price" := IncExp.Quantity * "Unit Price";
 IncExp."Global Dimension 1 Code" :=
 "Global Dimension 1 Code";
 IncExp."Global Dimension 2 Code" :=
 "Global Dimension 2 Code";
 IncExp."Bill-to Customer No." := "Bill-to Customer No.";
 IncExpCode.GET(IncExp."Income & Expense Code");
 IncExp."Gen. Prod. Posting Group" :=
 IncExpCode."Gen. Prod. Posting Group";
 IncExp."VAT Prod. Posting Group" :=
 IncExpCode."VAT Prod. Posting Group";
 IncExp."Unit of Measure Code" :=
 IncExpCode."Unit of Measure Code";
 IncExp."Applies-to Entry No." := "Entry No.";
 IncExp.INSERT;

 StorageInvEntry.Open := "To Storage Date" <> 0D;
 StorageInvEntry.MODIFY;
 UNTIL NEXT = 0;

The next step in our code is to calculate the number of workdays between the two
dates. This will prevent our customer from paying for storage on Saturday and
Sunday. We do this by using the virtual date table. This table contains all dates,
weeks, months, quarters and years between January 1 0000 and December 31 9999
and can be very useful in date calculations.

With this result, we can now create the Income & Expense records that will
be invoiced later. If the To Storage Date is populated, we close the Storage
Invoice Entry.

Combined invoicing
The data model we use allows us to combine invoicing on all the services we provide
for our customers. We can create one invoice that contains handling, storage, and
transportation costs for our customers.

This is done by batch report 123456704 Combine Storage & Logistics, which works
exactly the same as the report in Chapter 2, A Sample Application.

Storage and Logistics

[344]

Add-on flexibility
The add-on we have created in this chapter is definitely not ready to be used by a
real company but it demonstrates how to create a flexible solution that can be easily
expanded by others.

Most modern logistic service providers offer other services to customers, such as
value-added logistics, item tracking, and third- and fourth-party logistics.

Value-added logistics
When a company offers value-added logistics services, they not only keep products
on inventory but they also offer services around this, such as display packaging.

This can be best compared with manufacturing in Microsoft Dynamics NAV. A list
of items called a bill of materials is combined into a new product. This new product
is then shipped to the customer.

When the displays are no longer necessary, for example, when a marketing
campaign is finished, the displays need to be picked up from the customer
and disassembled into the original products.

Storage Pick

VAL Consumption
Line

Income & Expense

Storage Put-AwayVAL Product Line

VAL Order

In our solution, this could be implemented by creating a VAL region where the
products are moved to.

Chapter 7

[345]

Item tracking
Our customers also want to know the whereabouts of their products, which
warehouse they are in, and which product was shipped to which customer. This is
especially important in the food and medicine industry to be able to call back a lot,
if something is wrong.

To implement this in our solution, it requires some changes. First, we need to
implement a Tracking Code in the Storage Entries, and secondly, we need to
implement some kind of Tracking Entries when we ship a product outside our
warehouse since our logistics solution currently does not have any entries,
only status fields.

Storage Line

Storage Entry Track & Trace Entry Route Stop Entry

Route Stop

Web Service

Third- and fourth-party logistics
In our example database, we plan shipments on routes and drive them to the end
customer with our own trucks. This is called second-party logistics. First-party
logistics would be if we were to handle our own products with our own trucks.

Storage and Logistics

[346]

The following figure shows the increasing complexity of logistics if it gets outsourced
and combined:

Low Information Sharing High

S
in

gl
e

S
er

vi
ce

 L
ev

el
M

ul
tip

le

1PL

2PL

3PL

4PL

If we provide third-party logistics, we would use other companies to offer parts of
the services to our customers. We will then tell them which part of the service to
handle and report back to us when it is finished. The third party involved does not
know the details of the complete transaction.

If we offer fourth-party logistics, we would outsource a complete warehouse or route
to another company. We would only tell them which product should be moved
where and they would handle it, without us knowing the details.

Very often, third- and fourth-party logistics are mixed but they are usually handled
by interfaces between different companies.

Chapter 7

[347]

Summary
In this chapter, we looked at the Microsoft Dynamics NAV product from a
completely different viewpoint compared to the previous chapters.

The goal was not to design a rock-solid storage and logistics add-on solution for
Microsoft Dynamics NAV as this would require much more than one chapter.
The information in this chapter is intended to demonstrate how to integrate new
functionality on top of Microsoft Dynamics NAV. We analyzed business processes
and designed new data and transaction models to handle them in the product and
implemented this.

For our solution, we designed two new document structures and two new journals
and entry structures. We stayed close to the standard methodology of Microsoft
Dynamics NAV by creating a framework that can easily be expanded. We also spend
some time looking at how to prevent unnecessary locking in the database and how to
avoid changing a filtered dataset.

Finally, we looked at some examples of how our add-on solution can be enhanced to
better suit other demands in the market.

This chapter does not end here. The C/AL objects provided with this chapter can be
studied in order to understand even better how the pieces are put together.

In the next chapter, we will design an application inside Microsoft Dynamics NAV.
We will look at how it can be used for a consultancy company using the Jobs module
and extending this with new functionality to meet specific requirements.

Consulting
In this chapter, we will learn how Microsoft Dynamics NAV fits a consultancy
company. Most consultancy companies have project-related processes. They take
on larger projects that take a certain time to complete. Some consultancy companies
also purchase and sell items.

For the projects, the consultancy company needs to keep track of used resources
and items. Sometimes they can invoice the resource hours they spend one-on-one
but most of the time they will also take a risk in doing fixed price projects. In this
case, it is even more important to know if the project was budgeted well and
ensure money is not lost on the way.

There are many types of companies working this way. Examples are accountancy
firms and lawyers, but also many companies in the construction business work
like this.

For this chapter, we will use an example, a company we are all very familiar with,
either because of working as an employee, a customer, or maybe even an owner.
We will look at the business process of a Microsoft Dynamics NAV Partner.

The partner in our case sells Microsoft Dynamics NAV licenses for new projects.
They also help existing customers in upgrades and support. Lastly, they are selling
infrastructure solutions, assembling servers, and desktop systems in house.

Consulting

[350]

We will discuss four different project scenarios and see how Microsoft Dynamics
NAV can be used to support those. To do this, we will create some modifications
along the way. The objects required for this chapter can be downloaded from
http://ftp.packtpub.com/chapter8.fob. After reading this chapter, you will
have a good understanding of the possibilities and limitations of the Job Module
in Microsoft Dynamics NAV, how it fits in with the rest of the product, and how
it can be expanded safely.

The process
The two main processes for Microsoft Dynamics NAV partners are implementing
new projects and providing services such as supporting and upgrading to existing
customers. A third process is selling infrastructure and assembling computer
systems but this is an extra service, not the core business.

To support the projects (jobs), the company needs people, software licenses, and
hardware. The people (resources) need to be carefully planned on the projects as
they are the least flexible part of the company. Hardware (items) and software
licenses (G/L Accounts) will be purchased from vendors like Microsoft.

The projects can be divided into large and small projects. The larger projects are
new implementations and upgrades. Smaller projects are usually implementing
small features and helping users with regular support issues.

Invoicing can be done in various ways. New implementations and small projects
can be invoiced per billable hour while upgrades are sold at a fixed price. For
hardware, we will use items. Licenses are invoiced directly to the general ledger.

Large projects also have budgets and planning that needs to be maintained.
If the budget is fully used and the planning milestones have not been reached,
there should be a new budget created in order to complete the project.

To support this process, we will use the Jobs functionality with some customizations.
Projects are called Jobs in Microsoft Dynamics NAV so we will use that term from
now on.

The Jobs module has been completely redesigned by Microsoft for
Version 5. In this chapter, we will use a lot of the new functionality
where we would have done customizations in the older versions of
Microsoft Dynamics NAV.

http://ftp.packtpub.com/chapter8.fob

Chapter 8

[351]

Fits
The registration of the Jobs module can be done using the standard functionality
of Microsoft Dynamics NAV as well as the budgeting and planning.

The standard software also allows us to invoice Jobs both fixed price and on time
and materials. We can also purchase items for our Jobs. In Microsoft Dynamics NAV
2013, a timesheet module has been added to the application, which we will use and
explain in this chapter.

Gaps
The Jobs module in Microsoft Dynamics NAV is often referenced as a framework
that almost always needs some changes. Fortunately, it is designed to be easily
changed and we will do so to support our processes.

Resource groups
Although many companies work this way, budgeting for resource groups is not
possible. We will create a solution for that. We will also make it possible to see the
total number of planned, used, and invoiced hours.

Item calculation
We will create a solution calculating the system assembling. As hardware
specifications are changing very rapidly, we do not want to create a new item
for each system we may only sell once or twice.

Issue registration
Our support team needs a single point for registration of all support issues for all
customers and to follow up their workflow. For this, we will also create functionality
to register and followup issues.

Consulting

[352]

Getting started
Before we start creating any new jobs, we should have a look at the following data
and posting model of the Microsoft Dynamics NAV Jobs module:

Job G/L Account
Price

(Table 1014)

Job Journal Line
(Table 220)

Job Item Price
(Table 1013)

Sales - Post
(Codeunit 80)

Job Resource Price
(Table 1012)

Job Create
Sales Invoice
(Report 1093)

Job Ledger Entry
(Table 169)

Sales Document
(Table 36 & 37)

Job Task
(Table 1001)

Job Planning Line
(Table 1003)

Job
(Table 167)

Job Jnl.-Post
Line

(Codeunit.1012)

The starting point is the job table that has Job Tasks and Job Planning Lines that we
can use for budgeting and planning. Each job can have its own prices.

The Job Planning Lines get invoiced through the standard Microsoft Dynamics
NAV Sales functionality, which then creates Job Ledger Entries.

How many jobs
The first step is setting up a new job. There can be different angles on setting up jobs.
This depends on how we want to work with the system. The minimum requirement
is to have at least one job per bill to customer. This enables us to do the invoicing.
Some companies use jobs this way to use it as a pre-invoice engine.

Another angle can be to set up new jobs nicely for each project that we do for the
customer. In our case, this starts with the basic Dynamics NAV implementation.
When this is finished, we close the job. If the customer has any new requirements,
we need to start a new job. This way we can keep better track of what issues we
have outstanding with each customer. The downside of this methodology is that
it requires some work to set up a new job every time.

Most companies end up with a solution in the middle. It is common to set up a
new job for larger jobs and to have a job for support issues. This also allows us
to set up different invoicing strategies for each job. We will use this strategy.

Chapter 8

[353]

Job Card
Let's have a look at the Job Card and the important fields there:

Let's see these fields in more detail:

•	 No.: This is the unique number of a job. We can use different Number
Series strategies for this, from simple sequential numbering to linked
Number Series for different job types or manual numbering.

•	 Description: This field should contain a logical description of the job
for internal use. Most people will search in this field so make sure to
have certain rules for naming. This will make searching for old jobs
easier in the future.

•	 Bill-to Customer No.: Each job has one bill-to customer. If we want
to invoice multiple customers for one job, we need to customize
the application.

Consulting

[354]

•	 Search Description: By default, this will be populated with the value
of the description field but can be changed to another value if required.

•	 Person Responsible: This is an informative field indicating who is
responsible for this job.

•	 Blocked: If this field is checked, it is not possible to make new entries
for this job. We use this for closed jobs.

•	 Job Posting Group: This refers to the G/L Accounts that are used for the
Work In Progress (WIP) postings. There can be different G/L Accounts
for different types of Jobs or WIP methods.

•	 WIP Method: Each job can have one WIP method. We will discuss this
briefly later in this chapter.

•	 Status: The jobs have a limited set of status fields. The only available status
values are Planning, Quote, Order, and Completed.

Most companies want to have more sub statuses for
the order phase. The best approach for this is to add
a new status field that maps with the standard status
field. This requires minimum changes to the application
while creating new workflow possibilities.

•	 Allow Schedule/Contract Lines: If this field is not checked, it is not possible
to create planning lines that have the options Both Schedule and Contract.
When planning lines are created they will be split into a schedule and a
contract line.

•	 Starting Date and Ending Date: These are informative fields that are only
used to calculate the currency exchange rates for the job.

•	 Foreign Trade: In the Jobs module, it is possible to send calculate and create
invoices in another currency than the local currency. This will multiply the
complexity of the implementation and should be used carefully.

Job task and planning lines
When the job is created, the next step is to create Job Tasks and Planning Lines.
These can be used in different ways.

Using Job Task lines, we can divide the job into smaller pieces, which we can then
schedule and invoice. The more detailed the Job Tasks, the better we can measure
the progress of the job. But the amount of work required to maintain them would
also be more. Balance is a keyword for success here.

Chapter 8

[355]

Creating Job Tasks and Planning Lines

The Job Tasks can be created with the same structure as the Chart of Accounts,
meaning the actual Task Lines can be grouped using Begin and End Total lines.
Each level can be indented for better readability.

The Job Planning Lines are the detail lines of each Job Task. This defines what we
will do and how this will be invoiced. A Job Planning Line can be linked to the
master data types Resource, Item, G/L Account, or Text.

Job Tasks and Job Planning Lines can be copied very easily from
other jobs. This allows us to reuse them and even create template
jobs for frequently used combinations.

The Line Type in the Job Planning Line defines how it will be invoiced. There are
three types:

•	 Schedule: The amounts on this line will only be used for budgeting
purposes. When invoicing, we need to post one or more job journal lines that
will be invoiced or we can create another Job Planning Line with the invoice
amount. Schedule lines should be used when billing for time and materials.

Consulting

[356]

•	 Contract: This line will be invoiced with the exact amounts. However, the
amounts do not show up in the budget. This can be used when invoicing
fixed price jobs in a schedule, for example, 50 percent when signing the
contract and 50 percent on job completion.

•	 Both Schedule and Contract: This line will be invoiced in exactly the same
way as the contract lines but the amount will also show up in the budget.

Job journal
When the Job Tasks and Job Planning Lines are set up, we can start the job. During
the job, we will consume resources and items from our company. This should be
registered using the Job journal. The Job Journal is the lowest level of the Journal
Posting diagram we drafted in Chapter 1, Introduction to Microsoft Dynamics NAV,
and uses the other journals to create the resource, item, and general ledger entries.

When creating a Job Journal Line, the following few fields are particularly important
for the process:

Let's have a look at the fields in more detail:

•	 Line Type: This has the same options as the Job Planning Line, Schedule,
Contract, and Both Schedule and Contract. When the job journal line should
be invoiced, the type should be Contract. When the job journal line is part of a
fixed price, the Line Type should be left blank. Then the Line Type is Schedule,
the system will create additional Job Planning Lines of this type, which may
corrupt our budget for the customer since they are already created.

•	 Unit Cost and Unit Price: These fields will determine the cost of the job
and price that will be invoiced to the customer if the Line Type is Contract.
This information is also used in the calculation of the work in progress.

Chapter 8

[357]

Job examples
Let's go through some different job scenarios to see how we can use this functionality.

Chapter objects
The chapter objects contain both the changes that we will discuss in this chapter as
well as the example jobs we will use. After importing chapter8.fob as described
in Appendix, Installation Guide, run page 123.456.700 Jobs Add-on Setup and
run Initialise Application.

When this completes, restart the Role Tailored Client. You should now see the Project
Manager Role Center.

The new implementation
Implementing Microsoft Dynamics NAV 2013 is not an easy task and many things
need to be taken care of before we can use the product. We will implement Microsoft
Dynamics NAV for Packt Publishing. The Job for this example is EXAMPLE1.

For the implementation, we will create various Job Task groups. Each part of the
implementation gets a code. As the sorting is done on this field, we will create code
using numbers and a logical name, for example, 0200. SETUP and 0210. FIN.

Leave enough space in the numbers to add additional lines
if required. This will avoid renaming, which is an expensive
task for the database engine and users will have to wait
until it is completed.

Consulting

[358]

Our consultants will help the customer to install the system, help with the setup,
and convert the data from the old system. When this is done we will help them with
testing and train them using Microsoft Dynamics NAV. The consultants will be set
up in the system as Resources, which are in turn entered into the Job Planning Lines.

When everything is working as expected, we can schedule a go-live weekend and
help them in the first period using the system.

Invoicing a job like this is done using a budget. We will make a precalculation of the
number of hours we think are necessary and start with that. During the job we need
to measure the used budget and compare it with the progress.

Chapter 8

[359]

Budgeting
The budget is created using the Job Planning Lines. During this phase of the job,
we do not yet know which resource will be used for the Job Tasks and it might
even be done by more than one resource. This is why we want to use Resource
Groups in our budget.

This is not possible in the standard application so we have created
a modification, which we will discuss at the end of this chapter.

The Line Type of these Job Planning Lines is Schedule. This means that these lines
are just for budgeting and schedule purposes. The system will invoice the actual
consumption posted in the Job Journal.

The infrastructure
To use Microsoft Dynamics NAV 2013, Packt Publishing needs a new infrastructure.
Their current systems do not meet the requirements for Microsoft Dynamics
NAV 2013.

For this job, we could create new Job Task Lines in the implementation job, but for
a clearer overview, we will create a new job, EXAMPLE2.

Our company builds and sells its own computer systems. We can build both
servers and desktop systems. As none of the systems are exactly the same and
available components switch regularly, we do not want to create an item and a
bill of materials for each system. Instead we use a calculation system, which we
add as a customization to Dynamics NAV that allows us to determine a price for
a system. For other products like switches, routers, printers, and laptops, we use
items that we purchase from vendors.

Consulting

[360]

The Job Tasks and Job Planning Lines for this job look like this:

Job Tasks and Job Planning Lines

The installation costs in this job are Resource Groups with Line Type Schedule,
just as in the previous job, so we invoice actual hours spent on the Job.

The other lines are of type Both Schedule and Contract. This means we will invoice
exactly what is in the budget. The Job Journal Lines for these tasks should be posted
with a blank Line Type.

The upgrade
Our customer requests an upgrade from Navision Version 3.70 to Microsoft Dynamics
NAV 2013. We can do this for a fixed price but we require a fee to analyze the system.

For the EXAMPLE3 job, we can start with a limited number of Job Task Lines, just for the
quote. When the customer agrees to do the upgrade, we can add new Job Task Lines.

Both the quote and the upgrade are a fixed price and posted directly to the general
ledger. This does not mean we cannot have our resources register the actual
hours using the Job Journal but the Line Type should be blank.

Chapter 8

[361]

Another part of the upgrade is not done at a fixed price. The system needs a
redesign, a conversion to SQL Server 2014, and the customer wants additional
training and support.

Upgrading for re-design

The fixed price part of the upgrade is invoiced in three phases. When the job starts,
we invoice 50 percent, and when we deliver the test system, we invoice 40 percent,
and finally 10 percent is invoiced three months after go-live.

This is done using lines of Both Schedule and Contract Line Type.

The support team
For the support team, our policy is to create one job per fiscal year per customer.
We will use this job, EXAMPLE4, to invoice the maintenance of the license and
all support issues.

The support issues can be both little questions customers call us for, like changing a
report or a page, or implementing new features that requires only a few days' work.

Each issue and new feature will be created as a Job Task Line. The new features
will be created by the account manager who sells the feature. We can then decide
if the invoicing is done at a fixed price, using contract lines, or on time and materials
using schedule lines.

Consulting

[362]

Our support team also needs to use the job system, but we do not want them to
manually create a new Job Task Line for each support call and we also want them
to view all outstanding issues for all customers easily. For this, we have created a
new issue registration system, which we will discuss at the end of this chapter.

Each issue in the system is linked to a Job Task. When support engineers create
a new issue, the Job Task Line is automatically generated for them and they can
use it in our time and billing system.

Time sheets
For all the jobs in our examples, it is critical to have a solid registration of resource
hours. In the standard Microsoft Dynamics NAV Job application resources need
either to post a Job Journal for each combination of job, Job Task and Posting Date
or we can use the new Time Sheet application introduced in Version 2013.

On the MSDN page at http://msdn.microsoft.com/
en-us/library/hh175112(v=nav.71).aspx, you can
find more information on how to set up and use Time Sheets
in Microsoft Dynamics NAV.

Design pattern
The Time Sheet application is layered above the Resource Journal Line and is
created using Resources and Job Tasks.

http://msdn.microsoft.com/en-us/library/hh175112(v=nav.71).aspx
http://msdn.microsoft.com/en-us/library/hh175112(v=nav.71).aspx

Chapter 8

[363]

There is an approval process for the person responsible for the job allowing them to
make corrections.

Job Journal Line
(Table 210)

Res. Journal Line
(Table 207)

Resource
(Table 156)

Job Task
(Table 1001)

Job Planning Line
(Table 1003)

Job Ledger Entry
(Table 169)

Res. Ledger Entry
(Table 203)

Job Jnl. Post
Line

(Codeunit 1012)

Res. Jnl. Post
Line

(Codeunit 212)

Time Sheet ApplicationPlanning

Job Journal

Resource Journal

Time Sheet
Registration

(Codeu. 123456700)

Time Sheet Line
(Table 123456704)

Time Sheet
(Table 123456703)

Corrections

Approved

Approved

Consulting

[364]

The time sheet is designed to be created for each week. The time sheets are generated
using a process, not by the user. After that the resource can create Time Sheet Line
for each Job Task Line and populate the number of hours each day of the week.

If we look at the preceding time sheet, we can see after it updated that Wednesday is
missing 2 hours.

Purchasing
For some jobs, it might be necessary to purchase items specifically for that job.
In Microsoft Dynamics NAV 2013, the Jobs module was integrated with the
Requisition Worksheet we looked at in Chapter 5, Production and Chapter 6, Trade.
However, in this example, we will create the purchase orders manually like this:

Chapter 8

[365]

When purchasing for a job, the Job No. and Job Task No. fields should be used. If we
set the Job Line Type to contract this item will be invoiced to the customer. Usually,
this is not required since it should have been in the Job Planning Lines already.

Item costing versus work in progress
After we post this purchase document and navigate from the purchase invoice,
we can see that the system has created two value entries for this item:

This is very important for the costing as we discussed in the previous chapters.

Purchased items for jobs are not calculated as inventory
but used for the work in progress calculation.

Invoicing
When everything in our jobs is set up as required and the Job Journal is used to
post the usage, creating the invoices is a simple task.

In the Job Manager Role Center, we can see if a job is due to be invoiced. This is done
using a flow filter on the Planning Date field of the Job Planning Lines.

Each Job Planning Line has a planning date. This can be used to schedule our resources
but is far more useful for invoice scheduling. Each Job Planning Line that is ready to be
invoiced should get the invoice date in the Planning Date field.

Consulting

[366]

The invoices can then be created using the batch report Job Create Sales Invoice
(1093) but we can also preview the invoice by using the report Job Suggested Billing
(1011). This report can be started from each job.

Job-Suggested Billing

The sales invoice lines are created using the same description as the Job Planning Lines.
To clarify information for the customer on the invoice we can use extra text lines.

When the invoice is created and posted, the Job Task is updated with the actual
invoicing information.

Calculating work in progress
Since most jobs are not completed in a day or a week, it is important to know
the status of each job in time. This can be measured in quantity and financially.
In quantities, we can see how much of the budget is being used by looking at
the Job Task page. For financial progress, we can calculate the WIP.

WIP calculates the cost we made and the sales we invoiced on the job and creates
Job WIP Entries for this. This can then be posted to the general ledger if required.
The WIP amounts depend on the WIP method.

In Microsoft Dynamics NAV, WIP is calculated based on a combination of costs
and sales as set up in the Job WIP method table.

Let's create an example and calculate the WIP for five example methods.

Code Recognized costs Recognized sales

COMPLETED CONTRACT At completion At completion
COST OF SALES Cost of sales Contract (invoiced price)
COST VALUE Cost value Contract (invoiced price)

Chapter 8

[367]

Code Recognized costs Recognized sales
PERC. OF COMPLETION Usage (total cost) Percentage of completion
SALES VALUE Usage (total cost) Sales value

We created a job with a total price of 1000 and total cost of 500. We used 4 resource
hours' worth 500 and cost 250. We invoiced nothing.

Recog. cost Recog. sales WIP cost WIP sales
Cost value 125 0 125 0
Sales value 250 250 0 250
Cost of sales 250
Percentage of
completion

250 250 0 250

Completed
contract

250

Now, we send an invoice to the customer for the hours spent. We invoice 500.

Recog. cost Recog. sales WIP cost WIP sales
Cost value 375 500 -125 0
Sales value 250 250 0 -250
Cost of sales 500 500 -250
Percentage of
completion

250 250 0 -250

Completed
contract

250 -500

In the last example, we will use an item that costs 250 that we cannot invoice.
We now have 500 costs and 500 sales.

Recog. cost Recog. sales WIP cost WIP sales
Cost value 500 500 0 0
Sales value 250 250 0 -250
Cost of sales 500 500 0
Percentage of
completion

500 500 0 0

Completed
contract

500 -500

Consulting

[368]

When the WIP is positive, it means that we have done more than we invoiced.
When the WIP is negative, we have invoiced more than we have done.

Each company that uses Microsoft Dynamics NAV should make their own decision
about what WIP method to use. WIP methods can change for each job and even
change during a job.

WIP post to general ledger
Some accountants want to post the WIP amounts to the general ledger. The benefit
of doing this is to have all the financial information in one place for easier reporting.

The G/L Accounts for the WIP posting are set up in the Job Posting Group. When
posting WIP to the general ledger, there is always a reversal posting. When a company
does monthly reporting, the WIP is posted on the last day of the month and reversed
on the first day of the next month.

Changing jobs
In this chapter, we have used some changes to the Job functionality in order to make
it work for CRONUS International Ltd. to sell Microsoft Dynamics NAV.

Quantity budgeting
For some companies, it is very important to know the total number of hours required
for a job and the number of hours used rather than the exact amounts.

For this, we have created new flow fields in the Job Task table:

Chapter 8

[369]

The flow field definition is quite special.

Sum("Job Planning Line"."Quantity (Base)"
 WHERE (Job No. = FIELD(Job No.),
 Job Task No. = FIELD(Job Task No.),
 Job Task No. = FIELD(FILTER(Totaling)),
 Contract Line = CONST(Yes),
 Planning Date = FIELD(Planning Date Filter)))

The Totaling field is for the lines of type End-Total. The ValueIsFilter property
ensures that the field will be interpreted as a filter instead of a value.

The result is visible in the Job Task page (1002).

Result of ValueIsFilter property

Consulting

[370]

Resource Groups
For scheduling, we have implemented the possibility of using Resource Groups in
the Job Planning Lines as well as Calculations. This is done by adding two new
fields, Add-on Type and Add-on No.:

These fields replace the standard Type and No. fields on the pages allowing users to
select these new options. The caption of the new fields matches the replacement fields.

Add-on No. - OnValidate()
CASE "Add-on Type" OF
 "Add-on Type"::Resource, "Add-on Type"::Item, "Add-on Type"::"G/L
Account", "Add-on Type"::Text:
 BEGIN
 VALIDATE(Type, "Add-on Type");
 VALIDATE("No.", "Add-on No.");
 END;
 "Add-on Type"::"Resource Group":
 BEGIN
 TESTFIELD("Line Type", "Line Type"::Schedule);
 VALIDATE(Type, Type::Text);
 VALIDATE("No.", '');
 ResGroup.GET("Add-on No.");
 Description := ResGroup.Name;
 "Resource Group No." := ResGroup."No.";

Chapter 8

[371]

 GetJob;
 ResCost.SETRANGE(Type,
 ResPrice.Type::"Group(Resource)");
 ResCost.SETRANGE(Code, ResGroup."No.");
 IF ResCost.FINDFIRST THEN BEGIN
 "Unit Cost" := ROUND(
 CurrExchRate.ExchangeAmtLCYToFCY(
 "Currency Date","Currency Code",
 ResCost."Unit Cost","Currency Factor"),
 UnitAmountRoundingPrecision);

In the C/AL code, we can make sure that when users select the values available
in the standard product, the normal code is executed. If a user selects a Resource
Group, we execute our own business logic.

To make sure everything works as expected we use the Type Text in the
background. Line Type is set to Schedule because we do not want to invoice
Resource Groups, we just want them to be budgeted.

The Unit Cost and Unit Price are calculated using the Resource Cost and Resource
Price tables, which support the use of Resource Groups. This is an inheritance from the
previous Job functionality prior to Version 5.0.

The page Job Planning List (1007) is changed to show our add-on fields instead of the
normal fields.

To completely finish this functionality, we would also need to change the reports
that show the Job Planning Lines and the C/AL code that creates the Job Planning
Lines when posting a Job Journal Line. This is not done in the example code for
this chapter.

Calculations
Some companies using the Job functionality have a need for flexible calculations.
In our example, we use it to calculate the price of a computer system but other
examples are book publishers or construction companies.

They want to know what it costs to create a product without exactly knowing which
screws, hinges, or color of chipboard is used. For these companies, we designed a
simple but effective calculation module.

Consulting

[372]

In our database, there are two example calculations: a server, and a desktop system.

The calculation is designed using a header/line construction with a Number Series
and a Line Number. The calculation lines are items.

When a new calculation is created some lines are automatically inserted. This is
done in a C/AL function that is called from the OnInsert trigger.

The OnInsert trigger will also copy the default Unit Price for Hours from our
setup table.

OnInsert()
CalcSetup.GET;

IF "No." = '' THEN BEGIN
 CalcSetup.TESTFIELD("Calculation Nos.");

Chapter 8

[373]

 NoSeriesMgt.InitSeries(CalcSetup."Calculation Nos.",xRec."No.
Series",0D,"No.","No. Series");
END;

"Unit Price Hours (LCY)" := CalcSetup."Unit Price Hours";
InitLines;

The InitLines function creates a calculation line for each item marked as
Calculation Item. This is a new field that we added to the item table:

InitLines()
CalcLn.RESET;

i := 0;
Item.SETRANGE("Calculation Item", TRUE);
IF Item.FINDSET THEN REPEAT
 i += 10000;
 CalcLn."Calculation No." := "No.";
 CalcLn."Line No." := i;
 CalcLn.VALIDATE("Item No.", Item."No.");
 CalcLn.INSERT;
UNTIL Item.NEXT = 0;

In the calculation, we can choose how many we will use from each item and the system
will calculate the cost and price but also the required number of Hours that is required.
The Unit Cost and Unit Price are used from the item table. Hours is calculated from
a new field, and we added Minutes on the item table as well.

Calculate()
CalcLn.RESET;
CalcLn.SETRANGE("Calculation No.","No.");
CalcLn.CALCSUMS("Unit Cost", "Unit Price", Profit, Hours);
CalcLn.FIND('-');
CalcLn.MODIFYALL(Changed,Calculated::Calculated);

CalcLn.CALCSUMS("Unit Cost", "Unit Price", Hours);

"Unit Cost" := CalcLn."Unit Cost";
"Unit Price" := CalcLn."Unit Price";
Profit := "Unit Price" - "Unit Cost";
Hours := CalcLn.Hours;

Correct;

Consulting

[374]

"Total Price Hours (LCY)" := "Hours (After Correction)" * "Unit Price
Hours (LCY)";
"Total Price" := "Total Price Hours (LCY)" +
 "Unit Price (After Correction)";
Calculated := Calculated::Calculated;
MODIFY;

Correct()
"Unit Price (After Correction)" := "Unit Price" + ("Unit Price" *
("Correction % Items" / 100));
"Profit (After Correction)" :=
 "Unit Price (After Correction)" - "Unit Cost";
"Hours (After Correction)" :=
 Hours + (Hours * ("Correction % Hours" / 100));

When we now use the Calculate function, the system will generate a total Unit
Cost, Unit Price, and Hours for this product to be created. Flexibility is added
to the system by allowing users to correct hours and usage with a percentage.

The calculation can be used in a Job Planning Line the same way as the Resource
Groups earlier; the only difference is that we use the G/L Account type in the
background to invoice a calculation fixed price. Let's look at the C/AL code in
the OnValidate trigger of the Add-On No. field in the Job Planning Line:

Add-on No. - OnValidate()
CASE "Add-on Type" OF
 "Add-on Type"::Resource ... "Add-on Type"::Text:
 ...
 "Add-on Type"::"Resource Group":
 ...
 "Add-on Type"::Calculation:
 BEGIN
 Calc.GET("Add-on No.");
 IF Calc."Turnover Account No." = '' THEN BEGIN
 TESTFIELD("Line Type", "Line Type"::Schedule);
 VALIDATE(Type, Type::Text);
 VALIDATE("No.", '');
 END ELSE BEGIN
 TESTFIELD("Line Type",
 "Line Type"::"Both Schedule and Contract");
 VALIDATE(Type, Type::"G/L Account");
 VALIDATE("No.", Calc."Turnover Account No.");

 END;
 Description := Calc.Description;
 GetJob;

Chapter 8

[375]

To complete this functionality, we will create a method to use the hours in the
calculation for the Resource planning. This can be done using Job Planning Lines
of line type Schedule with no unit cost and unit price.

Issue registration
For our support team, we have implemented an issue registration solution.
This allows them to have a simple application where they can register issues for
all customers and keep track of the status without going in and out of each job.

The issue registration is a header/line construction with a Number Series and a line
number. The lines can be used to phrase questions and answers.

When a support engineer creates a new issue, the system will create the Job Task
automatically. Let's have a look at the C/AL code that does that:

CreateJobTask()
TESTFIELD("Job No.");
TESTFIELD("Job Task No.", '');

OldJobTask.SETRANGE("Job No.", "Job No.");
OldJobTask.SETRANGE("Job Task Type",
 OldJobTask."Job Task Type"::Posting);
IF OldJobTask.ISEMPTY THEN
 OldJobTask.SETRANGE("Job Task Type",

Consulting

[376]

 OldJobTask."Job Task Type"::"Begin-Total");
OldJobTask.FINDLAST;

JobTask."Job No." := "Job No.";
JobTask."Job Task No." := INCSTR(OldJobTask."Job Task No.");
JobTask.Description := Description;
JobTask."Job Task Type" := JobTask."Job Task Type"::Posting;
JobTask.INSERT(TRUE);
CODEUNIT.RUN(CODEUNIT::"Job Task-Indent Direct", JobTask);

"Job Task No." := JobTask."Job Task No.";

The system searches for the last Job Task of the type Posting in the Job. If that cannot
be found, it searches for the last Begin-Total line.

Assuming this line exists, we create a new Job Task line using the INCSTR function
to increment the number. The description is copied to the Job Task. The support
engineers can now register their hours on this Job Task.

This piece of C/AL code is very simple but shows how effective a small solution
can be without even touching any of the standard Microsoft Dynamics NAV objects.
This is a very safe way of developing.

Summary
In this chapter, we have learned how to implement the Job functionality of Microsoft
Dynamics NAV. We also discussed different strategies of setting up Jobs and Job Tasks.

We created several examples with different invoicing methods using the Job Planning
Lines in a creative way. When purchasing items for jobs, the items are not used for
costing but in the work in progress calculation we discussed in detail.

Invoicing is done automatically when everything is done as it should be done. Lastly,
we designed some small enhancements for the Job module without doing big changes
in the standard application. This was the last chapter about the functionality of
Microsoft Dynamics NAV. We have discussed all possibilities of the application
and how they should be changed without risking or breaking anything.

In the next chapter, we will look at how Microsoft Dynamics NAV can interface with
other applications.

Interfacing
When the first version of Microsoft Dynamics NAV for Windows was released in
1995, the system was very closed. It was possible to import and export data using flat
text files and that was basically it. These flat text files were placed on a floppy disk
and sent by postal mail. Internet and e-mail were just coming, large USB sticks were
a dream, and when the previous version of this book was released in 2009, OneDrive
and Azure where being invented.

Since then, the world has changed tremendously. Internet, e-mail, SQL Server,
.NET, and Azure changed the way we think about interfacing with applications and
we are still changing. Today Microsoft Dynamics NAV 2013 has a completely open
database and supports a wide range of interfacing possibilities, which we will learn
in this chapter.

Version 1.0 of Navision ran on Windows 95, which later became an industry
standard and for more than a decade, Windows was the only serious platform.
Today, business people use iPads and Android tablets. Microsoft Dynamics NAV
2013 is one of few ERP platforms that can run cross-platform on all devices, even
supporting login using Google or Facebook credentials.

In this chapter, we will first discuss the available interfacing technologies and the
interfaces available in the standard product. Then we will talk about interfacing
methodology and how to create reliable interfaces.

At the end of the chapter, we will create some sample interfaces and see how the
future will further improve interfacing.

After reading this chapter, you will have a good understanding of what interfaces
the product supports out of the box, what interfacing technologies to use, and how
to design a solid business to business interface.

Interfacing

[378]

Interface types
When discussing an interface, we usually start with the technology, but before that,
some other basic questions need answering, such as the following:

•	 Does it need to import, export, or both?
•	 Is it started manually or automatically?
•	 Is the interface timer or event driven?

Let's discuss these questions.

Import and export
The first question is whether the interface should only export data from Microsoft
Dynamics NAV or whether it would also import data to the system that then needs
to be processed.

When importing and exporting, the data process can be started manually by an end
user using data pulling or data pushing. The interface can also be event- (real time)
or timer-driven (asynchronous).

Microsoft Dynamics NAV

Data

Microsoft Dynamics NAV

Manual
Data Pulling
Data Pushing
Events
Timer

External Application

External Application

External Application

Data

Manual
Data Pulling
Data Pushing
Events
Timer

Microsoft Dynamics NAV

Data

Import Interface

Export Interface

Interface

Data

Chapter 9

[379]

Manual
When an interface is manual, the first application has an export process and another
application has an import process. The end user first manually starts the export
process and then manually starts the import process in another application, usually
saving the data to a flat file. This is a classic approach to interfacing.

An example of manual interfacing is exporting telebanking information from
Microsoft Dynamics NAV or sending XBRL files to your accountant.

Data pulling
When using data pulling to export data, the interface is started from an external
application. This application will read the data from the database and process it.

When using data pulling to import data, the interface is started from the application,
which reads and processes data from another application.

Data pushing
If an interface uses data pushing, the exporting application writes the data to the
other data source. This method is used when the data in the other application does
not need further processing. A typical example is exporting data from Microsoft
Dynamics NAV to Microsoft Office applications such as Word or Excel.

Event-driven versus timer-driven
When data pushing or data pulling is combined with the use of events or timers, there
is no longer a need for end user interference. The interface will then run automatically.

We will discuss these methods in detail later in this chapter when we discuss
interface methodologies.

Interfacing technologies
In Microsoft Dynamics NAV, there are a wide range of methods to interface.
Each method is useful for certain types of interfacing and less useful for other
types. We will discuss all available methods in the C/SIDE development platform.

Interfacing

[380]

File
Flat files and XML files are both supported by Microsoft Dynamics NAV. Flat files
have been available since the introduction of the product in 1995 using data ports
for the classic clients.

XML support was introduced in Version 3.60 as an extra option for data ports.
Version 4.0 introduced the XMLPort object that replaced the data port for importing
and exporting XML files.

Currently in Microsoft Dynamics NAV 2013, XMLPort objects are used both for XML
and flat files. Additionally, C/AL has a FILE object that can be used to access files
directly without using XMLPort objects.

Automation control
The implementation for Microsoft COM and ActiveX in Microsoft Dynamics NAV
is referred to as automation control.

Automation control or ActiveX allows software applications to be reused as an
embedded part of another application. Most Microsoft applications support being
used in such a way. Examples are Microsoft Office, Windows Scripting Host, and
ActiveX Data Objects (ADO).

Microsoft Dynamics NAV has support for automation control. Consuming
automation control is done using interfaces exposing methods and properties.

The most commonly used and generic interface is iUnknown. This is also the
only automation control interface supported by Microsoft Dynamics NAV. If the
automation control uses other interfaces, a wrapper should be created in Visual
Studio transforming the interface to iUnknown. We should also create a wrapper
when the automation control needs to be embedded using a form control.

More information about the iUnknown interface and COM technology
can be found at http://en.wikipedia.org/wiki/IUnknown.

Events
Most automation controls allow data to be pushed. Using events for automation
control, it is also possible to start business logic in Microsoft Dynamics NAV when
something happens in the other application.

http://en.wikipedia.org/wiki/IUnknown

Chapter 9

[381]

Limitations
In Microsoft Dynamics NAV 2013, automation control can only be used from the client
side. All code that runs on the server side cannot use automation control objects.

DotNet interoperability
The support of .NET was introduced as a replacement for automation control.
It is possible to use a wide range of .NET objects directly in C/AL programming
language. They can be used in both server side and client side.

Within the standard application, most automation interfaces are replaced with .NET
interfaces such as the Excel interface, which we will discuss later in this chapter.

There are limitations using .NET in Microsoft Dynamics NAV, which are typically
solved by creating wrapper DLL objects in C#. The Excel interface is an example of
that too.

A good place to start learning about .NET in C/AL is www.
vjeko.com. The limitations are discussed at http://
vjeko.com/blog/top-10-things-i-miss-in-net-
interoperability-in-nav-2013.

Client extensibility
Using the page objects, the level of allowed creativity in the user interface is very
limited since the page objects do not provide WYSIWYG capabilities or allow the
developer to determine control positions. Each client determines how the UI is
rendered and the developer has no control. This is solved using client extensibility.
This technology allows using all UI capabilities that Visual Studio and .NET offer,
however, when developing for cross-platform, JavaScript should be used.

Refer to https://www.youtube.com/
watch?v=WErBd1mlZFM to learn how to get started with
JavaScript add-ins for Microsoft Dynamics NAV.

Open Database Connectivity (ODBC)/ADO
Open Database Connectivity (ODBC) was developed in 1992 with the goal of
allowing all types of databases to exchange data in a unified way. ADO is the
successor of ODBC and was developed in 1996.

www.vjeko.com
www.vjeko.com
http://vjeko.com/blog/top-10-things-i-miss-in-net-interoperability-in-nav-2013
http://vjeko.com/blog/top-10-things-i-miss-in-net-interoperability-in-nav-2013
http://vjeko.com/blog/top-10-things-i-miss-in-net-interoperability-in-nav-2013
https://www.youtube.com/watch?v=WErBd1mlZFM
https://www.youtube.com/watch?v=WErBd1mlZFM

Interfacing

[382]

ADO and ODBC for Microsoft Dynamics NAV allows both reading and writing in
the application database as well as reading and writing to other databases.

Using ADO and ODBC more advanced requires basic
knowledge of T-SQL Statements. Refer to http://www.
differencebetween.com/difference-between-odbc-
and-vs-ado/ for the differences between ADO and ODBC.

Reading from Microsoft Dynamics NAV
To read data from the database, you only need to have a valid ODBC driver installed
on the Windows machine that you are using and credentials to log in to the database.

Let's create an example to import data from Microsoft Dynamics NAV using Excel.

1.	 Open Microsoft Excel and select Data and then select From SQL Server form
From Other Sources, as shown in the following screenshot:

From SQL Server

2.	 Select a Server name and valid Credentials:

http://www.differencebetween.com/difference-between-odbc-and-vs-ado/
http://www.differencebetween.com/difference-between-odbc-and-vs-ado/
http://www.differencebetween.com/difference-between-odbc-and-vs-ado/

Chapter 9

[383]

3.	 Select a database and the table that you want to view. In our example,
we will select the Customer table. Then select Finish and OK.

4.	 We now have the Microsoft Dynamics NAV Data in Excel.

Since flow fields are not actual fields in the SQL Server database,
we cannot use them in ODBC/ADO.

Interfacing

[384]

Writing to Microsoft Dynamics NAV
Directly writing data to the Microsoft Dynamics NAV database using ODBC is not
recommended as best practice. The reason for this is the missing business logic at
this interface level.

When writing via ODBC, we directly address SQL Server without allowing the
C/AL business logic to validate the data we create. The C/AL data normally
ensures data integrity for the business rules we develop. The same applies
when using the C/ODBC driver for the native database.

To work around this issue, the data can be saved in a special
interface buffer table and processed by a C/AL transaction
using an application server or started from the user interface.

Talking to other databases
To use ODBC to read and write data from Microsoft Dynamics NAV to other
databases, it is recommended to use ActiveX Data Objects (ADO). ADO is a
Microsoft technology that allows using an ActiveX interface to connect using ODBC.
Using ADO allows us to both read and write to the database on the other end.

We could even use ADO to connect to the Microsoft Dynamics NAV SQL Server
database and run SQL Statements from C/AL code.

We will use ADO in the interface methodology section
of this chapter.

SQL Server interfacing
Since Microsoft Dynamics NAV runs on top of a SQL Server database, we can use all
available technologies in SQL Server to get data in and out. This offers a wide range of
options that go beyond the scope of this book, but let's briefly discuss some of them:

•	 Linked Servers: In SQL Server, it is possible to set up linked servers. This
allows us to send queries to other databases such as other SQL Servers,
MS Access, or Oracle and create views based on this data.

•	 Views: A view in SQL Server is a saved query with a fixed result set that can
be interpreted as a table. In C/Side, we can use a view as a data source for a
table using the Linked Object property and create a page or report based on
this data source.

Chapter 9

[385]

•	 SQL Server Integration Services: This replaces DTS Packages as the primary
component for SQL Server to integrate with other databases. Using SSIS
requires good knowledge and skills of both SQL Server and Microsoft
Dynamics NAV.

•	 Reporting Services: This is a server-based reporting platform that can be
integrated with SharePoint allowing users to design RDL reports based on
T-SQL queries.

•	 Analysis Services: This is Microsoft's answer to the OLAP, BI, and data
mining requirements of their customers.

Another SQL Server component we can use is the SQL Server
Agent. This component allows us to schedule interface tasks
that run directly on the database.

Microsoft Message Queue
Microsoft Message Queue (MSMQ) allows applications to integrate that run
asynchronously with an unreliable connection. This interfacing technology is very
popular for websites that use information from Microsoft Dynamics NAV and send
information back to the database.

The introduction of .NET Interoperability made using MSMQ in combination with
Microsoft Dynamics NAV much easier. Using System.Messaging.MessageQueue
only a few lines of C/AL code are required to post a message on a queue.

Application server
MSMQ is always combined with using an application server to handle the requests
sent back by the website.

NAS

SQL Server

MSMQ WEBUSERS

Internet

Interfacing

[386]

The web users can be employees from the company using a web solution for
timesheet registration or a PDA or customers using a web shop.

This blog entry at http://mibuso.com/blogs/
ara3n/2011/01/10/using-ado-on-rtc-in-nav/
explains how to get started with MSMQ using .NET.

Web services
When it comes to real-time interfacing, web services is the first technology of
choice. Web services allows you to use function libraries from applications inside
other applications.

Microsoft Dynamics NAV 2013 allows you to expose all C/AL code as a web service
using SOAP and OData protocols.

Consuming web services is a lot more difficult than exposing one. There is no
standard framework of doing so. The two most commonly used solutions are
consuming using XMLDOM .NET interop objects or wrapping the web service
inside a Visual Studio .dll using service references.

Exposing a NAV web service
In Microsoft Dynamics NAV 2013, every Page object and most codeunits can be
exposed as a web service. This can be done using the Web Service Table (2000000076).

To publish a web service, select the object type and object ID and find a unique
service name. Then select the Published checkmark.

When publishing a web service, the URL is displayed making it easier to find it.

http://mibuso.com/blogs/ara3n/2011/01/10/using-ado-on-rtc-in-nav/
http://mibuso.com/blogs/ara3n/2011/01/10/using-ado-on-rtc-in-nav/

Chapter 9

[387]

Consuming a Microsoft Dynamics NAV web service
To consume the web service, an address, http://<Server>:<WebServicePort>
/<ServerInstance>/WS/<CompanyName>/, is generated that is called from the
other application.

The SystemService web service is always available and
returns a list of available company names.

Standard application interfaces
We discussed all the available interface technologies for Microsoft Dynamics NAV.
Let's have a look at how this has been implemented in the standard product.

In this book, we will not explore each interface in depth since that would almost
require another book. We will just briefly discuss where to find all technologies we
discussed in the standard application and indicate where a white paper or website
can be found.

An example of flat file is Exporting Contacts. Microsoft Dynamics NAV allows us to
export our contacts using an XMLPort.

The XMLPort for this functionality has number (5050) and uses the Format Variable
Text. Other options are Xml and Fixed Text, as shown in the following screenshot:

Interfacing

[388]

XMLPorts have a node structure like pages. The XMLPort starts with integer table as
the first data type followed by the Contact table fields.

More information about programming XMLPorts can be found
in Programming Dynamics NAV 2013, David A. Studebaker,
Christopher D. Studebaker, Packt Publishing.

Office integration
Microsoft Dynamics NAV and Microsoft Office are integrated to use with Word,
Excel, and Outlook. We will first discuss the standard Word and Excel integration
and discuss alternatives later. Lastly, we will briefly discuss the possibilities for
Outlook integration.

Word and Excel integration
In Microsoft Dynamics NAV, each form or page can be exported to Word and Excel.
This built-in technology is automatically provided by the user interface and requires
no effort from developers.

Default presence of Excel and Word

Style sheet tool
To be more flexible in the layout, Microsoft has released a style sheet tool for Microsoft
Dynamics NAV and Word. This tool allows users to easily generate style sheets.

The style sheet tool Version 3.0 can be downloaded from
http://www.mibuso.com/dlinfo.asp?FileID=1543.

http://www.mibuso.com/dlinfo.asp?FileID=1543

Chapter 9

[389]

The manual provided with the style sheet tool gives a good description about how to
create the style sheets.

Add the action to the action designer (under the appropriate group) with the
following properties:

Expanded Type SubType Name Caption
0 Action <Action680> Style Sheets

The OnAction trigger should contain the following line:

StyleSheetDataMgt.LoadStylesheetDataRTC(GETPOSITION,
 CURRENTKEY,PAGE::"<<PageName>>");

Here, StyleSheetDataMgt is a variable of type codeunit, 682 (Style Sheet
Data Management).

When this action is done for one page, it can be easily copied and
pasted to other pages. Make sure you change the page name.

Interfacing

[390]

Advanced Excel integration
When exporting information to Excel that needs to be combined from different parts
of the application, using style sheets is not the ideal way.

To support this, the Excel Buffer table (370) can be used. This table can be populated
with data and then sent to Excel using a simple C/AL command.

This is used in several parts of the application, for example, to import and export the
budgets we discussed in Chapter 3, Financial Management.

Let's create a sample codeunit that exports data to Excel using the Excel Buffer table:

1.	 Create a new codeunit and define a global variable of type record Excel
buffer. This needs to be a temporary variable. Also, define the other variables
as displayed in the following screenshot:

Temporary record variables are not stored in the database; they're
stored in the client memory. This allows multiple users to create
the same records without blocking each other. It is also faster since
all handling is done without the network and database.

Chapter 9

[391]

2.	 Create a new EnterCell function with the parameters displayed in the
following screenshot:

3.	 Put the C/AL code in place that will handle the interface:
OnRun()
ExcelBufTemp.CreateBook(Cust.TABLECAPTION);

Cust.FIND('-');
REPEAT
 RowNo := RowNo + 1;
 EnterCell(RowNo, 1, Cust."No.", FALSE, FALSE, '');

 FormAddr.Customer(Addr, Cust);
 EnterCell(RowNo, 2, Addr[1], FALSE, FALSE, '');
 EnterCell(RowNo, 3, Addr[2], FALSE, FALSE, '');
 EnterCell(RowNo, 4, Addr[3], FALSE, FALSE, '');
 EnterCell(RowNo, 5, Addr[4], FALSE, FALSE, '');
 EnterCell(RowNo, 6, Addr[5], FALSE, FALSE, '');
 EnterCell(RowNo, 7, Addr[6], FALSE, FALSE, '');
 EnterCell(RowNo, 8, Addr[7], FALSE, FALSE, '');
 EnterCell(RowNo, 9, Addr[8], FALSE, FALSE, '');

UNTIL Cust.NEXT = 0;

ExcelBufTemp.WriteSheet(Cust.TABLECAPTION,COMPANYNAME,USERID);
ExcelBufTemp.CloseBook;
ExcelBufTemp.OpenExcel;
ExcelBufTemp.GiveUserControl;

Interfacing

[392]

EnterCell()
ExcelBufTemp.INIT;
ExcelBufTemp.VALIDATE("Row No.",RowNo);
ExcelBufTemp.VALIDATE("Column No.",ColumnNo);
ExcelBufTemp."Cell Value as Text" := CellValue;
ExcelBufTemp.Formula := '';
ExcelBufTemp.Bold := Bold;
ExcelBufTemp.Underline := UnderLine;
ExcelBufTemp.NumberFormat := NumberFormat;
ExcelBufTemp.INSERT;

This C/AL code will browse the customers in the database and format the addresses
using the Address Format (365) codeunit.

The Customer No. field and the result array Addr[] are saved in the Excel buffer
table. Lastly, we start the C/AL functions to generate the Excel spreadsheet based
on the data.

C/AL functions result

Chapter 9

[393]

Outlook integration
Microsoft Dynamics NAV 2013 allows different levels of interfacing with
Microsoft Outlook:

1.	 The Outlook part on the Role Center.
2.	 Sending e-mails from pages using the ExtendedDatatype property.
3.	 Using the Mail (397) or SMTP Mail (400) codeunits to send e-mails.
4.	 Synchronize contacts and to-do's using the Outlook integration web service.
5.	 Reading e-mail from exchange using the E-Mail – Logging functionality.
6.	 Microsoft Dynamics NAV 2013 R2 can be connected to Office 365.

Outlook part
On a Role Center it is possible to activate the Outlook System Part. This allows users
to see their e-mail, agenda, and tasks directly on the Role Center.

This functionality is built in the Windows client and cannot be changed using
C/AL Code.

Interfacing

[394]

ExtendedDatatype property
When a Text field in a table uses the ExtendedDatatype property, E-Mail the
Windows client will automatically allow the users to directly send an e-mail to
the address specified in the field.

This is also built-in functionality in the Windows client that cannot be influenced by
C/AL code.

Chapter 9

[395]

Mail and SMTP mail codeunits
Before the introduction of the ExtendedDatatype property, the e-mails from
Microsoft Dynamics NAV were sent using an Automation Control wrapper DLL
to Microsoft Outlook. This is handled in codeunit 397 and can still be used to send
e-mails directly From C/AL code.

Codeunit SMTP Mail (400) allows us to send e-mails directly to an SMTP server.

Outlook synchronization
Microsoft Outlook can be used as an offline client for Microsoft Dynamics NAV.
Every table can be synchronized to Microsoft Outlook when a connection with both
systems is available. Using the Offline functionality in Outlook, users can view the
data when they are on the road and even change the information or create new data.

This is done using the Outlook Synchronization web service that we discussed earlier
this chapter.

The functionality is well documented by Microsoft.

Interfacing

[396]

Exchange integration
To read incoming e-mails, Microsoft Dynamics NAV offers integration with
Exchange Public folders. Information in these mailboxes can be read and used
in Microsoft Dynamics NAV.

The handling of the interface is done using the Job Queue and the Application
Server (NAS).

In the Marketing Setup, which we discussed in Chapter 4, Relationship Management,
we can set up the parameters for the exchange integration.

Interaction log entries
Each e-mail read from Microsoft Exchange is displayed in Microsoft Dynamics NAV
as an interaction log entry.

Office 365
Starting from version 2013 R2, Microsoft Dynamics NAV can be integrated into
Office 365. This is a cosmetic integration, which means from an end-user perspective
the applications are one and the same; however, the applications do not share data.

Microsoft Dynamics NAV can be set up to accept the Office 365 credentials,
which makes it very easy for users to log in only once and use both platforms.

Chapter 9

[397]

Login with the Office 365 credentials

SharePoint
Microsoft Dynamics NAV 2013 RTM was shipped with a special SharePoint client.
However, since this was directly discontinued in R2 we will not discuss this.

In Microsoft Dynamics NAV 2013 R2, the web client is SharePoint-compliant. To use
Microsoft Dynamics NAV 2013 R2 in combination with SharePoint, it is possible to
add web parts that connect to the web client.

It is possible to connect to both the on premise version of SharePoint and
SharePoint Online.

Client add-ins
Microsoft Dynamics NAV 2013 ships with one client add-in for Microsoft Connect.
An example page object that uses the Connect control is Connect (9175).

Interfacing

[398]

Let's have a look at how this done.

The page type of this page is CardPart and it has no source table. The only control on
the page is Parameters, which is a function with a Text (350) return value.

The ControlAddIn property points to the add-in that will be used when this page is
started. This add-in will replace the original control on the page.

In the Parameters function, a string is created to feed information into the connect
add-in enabling it to show information that is interesting for the current role. This is
done using a combination of other C/AL functions:

Parameters()
InitCurrentRoleValues;

EXIT(Add(Version) + Add(Locale) + Add(Role) + Add(RoleID) +
 Add(Serial));

Add()
EXIT(Parameter + Separator);

Version()
EXIT('version=' + FORMAT(ApplicationManagement.ApplicationVersion +
':' +
 ApplicationManagement.ApplicationBuild,0,XMLFormat));

Locale()
// Windows Language ID
EXIT('locale=' + FORMAT(CurrentLanguageID,0,XMLFormat));

Role()
// Profile ID (Any text entered in Profile ID)

Chapter 9

[399]

EXIT('role=' + FORMAT(DELCHR(CurrentRole,'=',Separator),0,
 XMLFormat));

RoleID()
// Role Center ID (Page ID)
EXIT('roleid=' + FORMAT(CurrentRoleID,0,XMLFormat));

Serial()
// License ID
EXIT('serial=' + FORMAT(SERIALNUMBER,0,XMLFormat));

Separator()
EXIT(';');

XMLFormat()
EXIT(9);

InitCurrentRoleValues()
CurrentLanguageID := GLOBALLANGUAGE;
CurrentRoleID := ApplicationManagement.DefaultRoleCenter;
CurrentRole := FORMAT(CurrentRoleID);
...

In Chapter 7, Storage and Logistics, Client Extensibility and Bing Maps are used to
show the stops of a route on a map.

The available libraries are stored in the client add-in table (2000000069).

Interface methodologies
So now we have discussed interface types, interface technologies, and the built-in
interfaces in Microsoft Dynamics NAV.

Let's design and develop a new business to business interface. We will use the objects
from Chapter 7, Storage and Logistics, to create the interface.

The scenario
One of our customers wants to e-mail the shipments from now on instead of faxing.
The e-mail will contain an Excel file in a predefined format.

Interfacing

[400]

The design
Let's bring back the data model we designed for the logistics part of the solution in
Chapter 7, Storage and Logistics.

Registration Shipment
(Table 123456701)

Route Stop
(Table 123456704)

Shipment Details
(Table 123456702)

Route
(Table 123456703)

The process starts in the registration table. From a registration, we generate
shipments and shipments are combined into a Route with stops.

So we need to move the data from the Excel sheet to the registration table.

The mapping
When a customer delivers us an Excel sheet with information, it seldom happens that
they exactly use the same fields as our table. Therefore, we need to create a mapping.
Each field in the Excel sheet needs to be mapped to a field and missing fields need to
be identified and discussed.

The Excel Sheet we get from the customer looks like this:

Chapter 9

[401]

Let's try to map this information to our Logistics Registration Worksheet table,
as follows:

Field
number

Field name Data type Length Mapped field

1 Registration Batch Code 10 -
2 Line No. Integer -
6 Shipment Date Date Date
8 Product No. Code 20 Goods Code
10 Description Text 50 Description
12 Unit of Measure Text 10 -
16 Quantity Decimal Pallets
20 Length Decimal Length
21 Width Decimal Width
22 Height Decimal Height
31 Gross Weight Decimal -
32 Net Weight Decimal Weight
36 Units per Parcel Decimal -
37 Unit Volume Decimal -
53 Ship-to Name Text 50 Delivery At
55 Ship-to Address Text 50 Address
57 Ship-to City Text 30 City
58 Ship-to Contact Text 50 -
59 Ship-to Post Code Code 20 Postal Code
60 Ship-to County Text 30 -
61 Ship-to Country/Region Code Code 10 -

Most of the fields in the Excel sheet can be mapped to a field in our table.

The gaps
Some fields that are needed in NAV are not populated by the Excel sheet. For some
fields this is okay, for example, the Registration Batch and Line No. fields are
determined by the import.

Some other fields are more difficult. Unit of Measure, Gross Weight, Units per
Parcel, and Unit Volume are left blank in the Excel sheet, but they are all needed
in NAV.

Interfacing

[402]

For these fields, we need to come to an agreement with the customer. They need to
either specify these fields or tell us whether they have default values. Let's look at
our gaps and fill them in:

•	 Unit of Measure: For this customer it is always "PALLET"
•	 Volume: This can be calculated using Length x Width x Height
•	 Gross Weight: We agree that this is equal to net weight
•	 Units per Parcel: This is always 1

What if it does not work
Reading the external data into the database is just one step in creating a
reliable interface.

But what happens if the customer contacts us and says, "We sent you a file with 10
lines and the shipment document shows 9 lines". When we check our database the
shipment does show 9 lines, but there is no way to check whether we imported the
original 10 lines. At this stage, the imported Registration lines are deleted and the
shipments are generated.

If this happens, we need traceability. In a well-designed interface, we should always
create a table that exactly matches the imported data. This allows us to first check
whether everything matches.

The data from this table can be processed but should not be deleted from the
database and periodically cleaned up. This allows us to check whether things
go wrong.

We will demonstrate this in a more advanced example.

The scenario
The implementation of our storage and logistics add-on requires a real-time interface
with a Radio Frequency application. The RF scanners are used for the pick process.
The RF application uses its own database system with tables we should populate and
read afterwards.

Chapter 9

[403]

Storage Header Storage Post Registered Storage
Header

Storage Line Storage Journal
Line

Storage
Journal Post

Line

Registered Storage
Header

Storage Register

Storage Entry

SQL Server

Microsoft Dynamic NAV RF Application

Pick Lines

Finished Picks

Exceptions

SQL Server

Internet

The RF application has three tables. Our interface needs to export data to the Pick
Lines table, and it needs to import data from the two remaining tables, Finished
Picks and Exceptions.

The interface type
This is an import and export interface that will use data pushing for the Pick
Lines and data pulling for the Finished Picks and Exceptions. The interface
will be timer-driven. Every minute we will poll for new data.

The interface technology
For this interface, we will use a combination of technologies that we discussed in this
chapter. The main technology is DotNet interoperability.

Active data objects
The Picking database runs on SQL Server so we will use ADO to connect to the
database and send T-SQL Statements to read and write data.

Interfacing

[404]

Logging
In this interface, we will enable two types of logging. The first log will be to duplicate
the RF tables in Microsoft Dynamics NAV and use them as a buffer. A second log
will be maintained where we will save a copy of all T-SQL statements we generate.
This will enable us to see what we generated if something goes wrong.

The design pattern
Let's look at the design of the interface we will be developing for this project:

Storage Header

Storage Line RF Pick Lines

RF Finished Picks

RF Exceptions

Microsoft Dynamics NAV

RF Interface
Mgt.

SQL Statement

Application
Server

RF Application

Pick Lines

Finished Picks

Exceptions

The interface will be controlled from an Application Server. Each minute it will
execute a codeunit that checks whether there are new Storage Lines that need to
be exported. These lines will first be moved to the RF Pick Lines buffer table and
then moved to the RF database using ADO and T-SQL. New Finished Picks and
Exceptions from the RF database will be moved to Microsoft Dynamics NAV using
the same technology and can then be processed.

Chapter 9

[405]

The solution
To run the interface, we have created three codeunits and a table. The SQL Statement
table is used to log each interface session.

RF Helper
(Code 123456732)

RF Interface
(Codeunit 123456731)

SQL Statement
(Table 123456731)

RF NAS Timer
(Codeunit 123456730)

NAS

The RF NAS Timer (123.456.730) codeunit is started from the NASHandler function
in codeunit ApplicationManagement. It uses an indefinite loop.

Let's look at the C/AL code that is required to make this work:

OnRun()

RFInt.CreateConnectionString;
RFLoop(600000);

RFLoop(MilisecondsBetweenPolls : Integer)
WHILE TRUE DO BEGIN
 IF NOT CODEUNIT.RUN(CODEUNIT::"RF Helper") THEN
 ParseError;
 COMMIT;
 MaxMilisecondsSleep := 10000;
 FOR Count := 1 TO MilisecondsBetweenPolls DIV MaxMilisecondsSleep DO
 SLEEP(MaxMilisecondsSleep);

Interfacing

[406]

 SLEEP(MilisecondsBetweenPolls MOD MaxMilisecondsSleep);
END;

ParseError()
SELECTLATESTVERSION;
RFIntSetup.GET;
SynchID := RFIntSetup."Synchronization ID";

SQLStat.INIT;
SQLStat."SQL Statement 1" := 'ERROR : ' + GETLASTERRORTEXT;

SQLStat.Bold := TRUE;
SQLStat.SessionID := SynchID;
SQLStat.Type := SQLStat.Type::Error;
SQLStat.INSERT(TRUE);
COMMIT;

The SLEEP function is used to make sure the interface only runs each minute.
By breaking the SLEEP function into smaller intervals it is possible to stop the
Windows Service that executes this C/AL code in between the SLEEP command.

GETLASTERRORTEXT is a C/AL function that returns the
last error message that was generated by the system. It can
be used in combination with IF CODEUNIT.RUN syntax to
catch runtime errors.

The RF Helper (123.456.732) codeunit is a wrapper codeunit that is used for error
catching and maintaining readability.

During each run of the interface we create a new SQL Statement ID, which we can
filter on to trace any errors:

OnRun()
SELECTLATESTVERSION;
RFIntSetup.GET;
RFIntSetup."Synchronisation ID" := RFIntSetup."Synchronisation ID" +
1;
RFIntSetup.MODIFY;
SynchID := RFIntSetup."Synchronisation ID";

SQLStat.INIT;
SQLStat."SQL Statement 1" :=
 '-SYNCHRONISATION STARTED- ID = ' + FORMAT(SynchID) + ' -';
SQLStat.Bold := TRUE;

Chapter 9

[407]

SQLStat.SessionID := SynchID;
SQLStat.Type := SQLStat.Type::StartStop;
SQLStat.INSERT(TRUE);

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchID);

StorageLn.LOCKTABLE;
IF StorageLn.FINDSET THEN REPEAT
 RFInterface.CreatePickLines(StorageLn);
UNTIL StorageLn.NEXT = 0;

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchID);
RFInterface.ReadFinishedPicks;

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchID);
RFInterface.ReadExceptions;

COMMIT;

SQLStat.INIT;
SQLStat."SQL Statement 1" :=
 '-SYNCHRONISATION STOPPED- ID = ' + FORMAT(SynchID) + ' -';
SQLStat.Bold := TRUE;
SQLStat.SessionID := SynchID;
SQLStat.Type := SQLStat.Type::StartStop;
SQLStat.INSERT(TRUE);

COMMIT;

Then the three interface functions are triggered to synchronize the three
required tables.

Interfacing

[408]

COMMIT
After each command we execute the COMMIT statement. This will make sure that
everything in the database is stored up to that point. This is necessary since the
ADO statements we create are outside our transaction. If our interface run rolls
back, it might synchronize data that is already synchronized.

The RF Interface (123.456.731). Here, the actual ADO synchronization is done in this
codeunit. This codeunit is SingleInstance. This will keep the ADO connection alive
during the NAS session:

CreateConnectionString()
IF ConnActive THEN EXIT;

RFIntSetup.GET;
Database := RFIntSetup."Database Name";
Server := RFIntSetup."Server Name";

ConnString := 'Data Source=' + Server + ';' + 'Initial Catalog=' +
Database + ';Trusted_Connection=True;';

SaveReadSQL('Connection ' + ConnString + ' opened on ' + FORMAT(CURREN
TDATETIME),TRUE,0,0,0, '');

SQLCon := SQLCon.SqlConnection(ConnString);

SQLCon.Open;
ConnActive := TRUE;

CloseConnectionString()
SQLCon.Close;

SaveReadSQL('Connection closed on ' + FORMAT(CURRENTDATETIME),TR
UE,0,0,1, '');

CLEAR(SQLReader);
CLEAR(SQLCommand);
CLEAR(SQLCon);
ConnActive := FALSE;

Chapter 9

[409]

For the interface we use three DotNet variables.

Let's have a look at the three DotNet variables in more detail:

•	 SQLConnection: This is used for the connection with the database and to
execute the T-SQL statements

•	 SQLCommand: The result sets of a SELECT statement can be read using this
•	 SQLReader: The reader is used to read the data and convert data types

between ADO and C/Side

Writing data
The RF application needs data from the Storage Line table. We first create a mapping
to the RF application as we did with the Excel interface earlier in this chapter.

This mapping is saved in a buffer table for traceability:

CreatePickLines()
CreateConnectionString;

SaveReadSQL('CreatePickLines',TRUE, 1, 8388608, 3, '');

PickID := COPYSTR(StorageLn."Document No." + FORMAT(StorageLn."Line
No."), 1, 20);

SaveReadSQL('Pick Document : '+PickID,TRUE,3,16711680,7,'');

WITH RFPickLines DO BEGIN
 "Pick Code" := PickID;
 Quantity := StorageLn.Quantity;
 "Terminal ID" := 1;
 "Display 1" := StorageLn.Description;
 "Display 2" := 'Warehouse ' + StorageLn."Warehouse Code";
 "Display 3" := 'Region ' + StorageLn."Region Code";
 "Display 4" := 'Shelf ' + StorageLn."Shelf No.";
 INSERT;

Interfacing

[410]

 SQLStatement := 'INSERT INTO [RF Pick Lines]' +
 '([Pick Code],'+
 '[Quantity],'+
 '[Terminal ID],'+
 '[Display 1],'+
 '[Display 2],'+
 '[Display 3],'+
 '[Display 4])'+
 'VALUES('+
 Quote + PickID + Quote +','+
 FORMAT(Quantity) +','+
 '1' +','+
 Quote + "Display 1" + Quote +','+
 Quote + "Display 2" + Quote +','+
 Quote + "Display 3" + Quote +','+
 Quote + "Display 4" + Quote + ')';
END;

ExecuteSQL(SQLStatement);

StorageLn.Exported := CURRENTDATETIME;
StorageLn.MODIFY;

The actual data is moved to the RF database using an INSERT command.

To avoid exporting the same data twice we need to keep track of
what we exported. The simplest way to do this is to create a new
field called Exported. Making this field a DateTime also enables
the traceability of the application.

Reading data
When reading data from the RF database, we also send a T-SQL SELECT query for
the data. We use the SQLReader.Read to browse through the records that are in the
result set.

For each record in the result set, we create a record in our buffer table, which we
then can use to update the information in the Storage Lines.

When reading data we do not want to import the same data twice. To avoid this,
we need to store a unique identifier in a table that enables us to remember where
we left in the last run:

ReadFinishedPicks()
CreateConnectionString;

SaveReadSQL('ReadFinishedPicks',TRUE, 1, 8388608, 3, '');

Chapter 9

[411]

RFIntSetup.GET;
LastSync := RFIntSetup."Last Finished Pick";

SQLCommand := SQLCon.CreateCommand();
SQLCommand.CommandText := SaveReadSQL('SELECT ' +
 '[Reference Entry No],' +
 '[Terminal ID],' +
 '[Duration],' +
 '[Ready Date Time]' +
 ' FROM [RF Finished Pick] WHERE [Reference Entry No] > ' +
 LastSync,FALSE,2,0,2, ''));

WHILE SQLReader.Read() DO BEGIN
 RFFinishedPick.INIT;
 RFFinishedPick."Reference Entry No." :=
 ReadInteger('Reference Entry No');
 RFFinishedPick."Terminal ID" := ReadInteger('Terminal ID');
 RFFinishedPick.Duration := ReadInteger('Duration');
 RFFinishedPick."Ready Date Time" :=
 ReadDateTime('Ready Date Time');
 RFFinishedPick.INSERT;
END;

RFIntSetup."Last Finished Pick" := Quote + FORMAT(RFFinishedPick."Refe
rence Entry No.") + Quote;
RFIntSetup.MODIFY;

AdoRecordSet.Close;

In our example, this unique identifier is Reference Entry No.

Log, log, and log more
Although much of the logging is done using the buffer tables, we also want to store
the general process of the interface each time it runs. This is done using the SQL
Statement table. Both the SQL Statements as well as the other events are stored there.

By using the COMMIT functionality, we can exactly see where it stopped by looking
at the last record in this table. We can solve the problem that caused the interface to
stop and restart the interface without losing data.

Never use the COMMIT statement unless there is a very good
reason for it. C/SIDE will normally handle the transactions for
you, enabling a full role back when things go wrong. Creating a
COMMIT statement in a normal C/SIDE transaction will prevent
C/SIDE from rolling back.

Interfacing

[412]

Testing
Let's test the interface we have just designed and developed. In order to do this,
we need to have records in the Storage Line table and the RF database needs to
exist somewhere.

The RF database
To test the objects we have created for this solution, the RF database should exist
on your system. This database can be created using a T-SQL script and should be
executed on a Microsoft SQL Server machine.

The script RF database.sql is part of the object files
downloaded for this book.

Open the script in SQL Server Management Studio and click on Execute.

Chapter 9

[413]

The test
Even though the C/AL code can run in the Windows client, we will run the test in
the classic client. The reason for this is that the interface will run in the NAS, which
will execute the C/AL code the same way as the classic client. Another reason to use
the classic client is that this is the interface for the DBA to perform all their tasks.

To start a test run, open page RF Interface Setup (123.456.780) from the
Object Designer.

Make sure that the Database and Server are correct. The server should be the SQL
Server instance where the SQL Script was executed.

The ADO connection uses the Windows Account NT
AUTHORITY\NETWORK SERVICE with Trusted connection.
This user should have enough rights to insert and read data
from the RF database.

To start a test run, click on the Test button.

Viewing the results
If everything went well, the results should show both in the log and in the buffer
tables and the RF database. Let's check them all.

Interfacing

[414]

SQL Statements
The SQL Statement log can be opened by either pushing the Log button on the
RF Interface Setup form or opening the SQL Statements (123.456.781) form from
the Object Designer.

SQL statements

The information on the form shows us exactly what the interface did during this run.

The buffer tables
When we open the buffer tables from the Object Designer, we can see that the
interface moved the data from the Storage Line table into the RF Pick Lines table.

The RF Finished Pick and RF Exceptions are also populated with the records from
the RF database.

Chapter 9

[415]

The RF database
The last thing to check is the data in the RF database. The data in both databases
should now be exactly the same.

This can be checked from the SQL Server Management Studio.

Interfacing into the future
Interfacing will become more and more important in the future as technology
evolves. Newer technologies and faster Internet connections will allow us to
integrate our applications better but will also make it more accessible for
end users.

Cloud-enabled Microsoft Dynamics NAV
With the release of version 2013 R2, Microsoft Dynamics NAV is now cloud-enabled.
This means that the product is officially supported to run on the Microsoft
Azure platform.

Interfacing

[416]

Summary
In this chapter, we looked at how Microsoft Dynamics NAV can interface with
other applications.

We discussed the basics of interfacing, import versus export, and data pulling versus
data pushing. An interface can be executed manually or by a timer or event.

Microsoft Dynamics NAV supports a wide range of interfacing technologies, such as
files, automation control, .NET, ODBC, ADO, and web services.

It is also possible to integrate using SQL Server technologies. The Application Server
(NAS) is often used for interfacing with other systems, for example, using Microsoft
Message Queuing or Active Data Objects (ADO).

The wide range of interfaces that come with the product have been discussed
including all interfaces with Microsoft Office, Exchange, and SharePoint.

We designed and developed two business-to-business interfaces; one to import data
manually from Microsoft Excel and the other to automatically import and export
data to another database using ADO and a timer.

When designing an interface, reliability and traceability are the key elements. In the
next chapter, we will talk about application design methodologies and principles.

Application Design
In Microsoft Dynamics NAV, technology and functionality go hand in hand. It is
impossible to design a good change or enhancement to the application without
thorough knowledge of how the standard pieces fit together. With this knowledge
now available, we can start designing our own applications.

In this book, we talked about application design for Microsoft Dynamics NAV.
We discussed the design patterns, how it works, and why it works that way. We
designed several small and large changes to the system both in detailed examples
and on a conceptual level.

For this chapter, we will fit all the pieces together that we have learned in this book
and turn them into concepts for good application design.

We will also discuss how to approach a Microsoft Dynamics NAV implementation
project and how to maintain the application. This requires a different approach
depending on the level of customization the project contains.

Application life cycle
Designing an application is more than just analyzing processes and developing new
objects. These phases are just the tip of the iceberg.

Application Design

[418]

Once your application has been designed and developed, it is most likely that one
or more companies will start using it. When this happens, your software will start a
new phase in its life cycle. Let's have a look at the life cycle of a Microsoft Dynamics
NAV application:

Development

Maintenance

Microsoft Dynamics NAV | Application Lifecycle

Fit/Gap

Production

Implement

Optimize

Design

Build

The Development phase of the application starts with the Fit/Gap analysis,
followed by the Design and Build steps we did in the earlier chapters. When
that is completed, the Maintenance phase of your application will start.

The Maintenance phase starts with the implementation and taking the software into
Production. The first time this will happen, it will be the Microsoft Dynamics NAV
implementation in your company. Once this is done, your system will enter the real
life cycle where constant improvements will be made to the application.

With the flexibility of the Microsoft Dynamics NAV product, this is a very special
procedure where it is easy to encounter the many pitfalls there are along the way.

We will discuss some guidelines that are important to follow. There are six
categories: Design to use, Maintain, Support, Upgrade, Perform, and Analyze.

Chapter 10

[419]

Design to use
Designing software is not a goal, it's a way to support companies doing their
business. This makes usability one of the most important focus areas when
designing your application.

The first thing that pops in mind when talking about usability is the user interface.
Microsoft Dynamics NAV 2013 has two interfaces that are commonly used,
the Windows Client and the new Web Client.

Pages
Page objects are used to define the user interface. They are very strict in how they
are displayed. However, they have a lot of advantages. Let's go through some of
the design options:

•	 Tabs: Pages have vertical tabs that can be opened at the same time, making it
less desirable to move fields to the first tab.

•	 Embedded Lists: Another advantage of pages is that the users always get to
see an embedded list page first and then continue to the card, which opens in
a new Windows control after selecting a record.

•	 Importance: On pages, it is possible to promote controls to be displayed
when the tab is closed or made additional so the end users have to
specifically make them visible. Use this functionality carefully when
designing your application.

•	 Personalization: If not restricted, all pages can be personalized by the end
users, even card pages. This makes it easier to customize pages during an
implementation for a company, department, or end user. Personalization
does not change the object definition and does not require a developer.

Application Design

[420]

Let's walk through the elements of a page as shown in the following screenshot taken
from the example add-on solution in Chapter 7, Storage and Logistics:

Chapter 10

[421]

Let's have a look at the fields in more detail:

•	 Actions: All transactions that can be performed on a page are actions. Some
actions are generated by the system while other actions are defined by the
developer. Users can select which actions they want to emphasize, making
it easier for them to get started with the application.

•	 Fact Boxes: Each page can have an unlimited number of fact boxes attached.
Fact boxes can be used to show detailed information about a record. The
Route page in Chapter 7, Storage and Logistics, is a good example where we
can see the route in Bing maps and the details of the stops.

•	 Emphasis: A control on a page can be emphasized to a limited combination
of colors, bold, and italics.

•	 Client extensibility: A control on a page can be taken over by a .net dll.
The .NET control will use the content of the .dll and render the information.
We discussed Client extensibility in Chapter 9, Interfacing.

•	 Web Services: All pages can be exposed as a web service. This makes it
possible to create your own user interface in Visual Studio, Borland Delphi,
or another development tool that can consume web services.

Role centers
When it comes to usability in Microsoft Dynamics NAV 2013, the Role Centers are
the heart of the application. The Role Center is the place where the end users starts
their working day and returns to regularly. Let's discuss the Role Centers we created
in this book.

Application Design

[422]

Squash application
The Squash Court Role Center was created in Chapter 2, A Sample Application,
and looks like this:

The purpose of the screenshot is to just familiarize with the different sections in an application

The Application screen has two sections, the Menu section and the Role
Center section.

The Menu section is created by merging actions from the Role Center with the main
menu. By clicking on Departments in the left-hand side corner, an end user can
access the entire application depending on the security setup.

More information about the home items can be found on the blog at
https://markbrummel.wordpress.com/2014/07/02/tip-
26-grouping-in-the-homeitems/.

https://markbrummel.wordpress.com/2014/07/02/tip-26-grouping-in-the-homeitems/
https://markbrummel.wordpress.com/2014/07/02/tip-26-grouping-in-the-homeitems/

Chapter 10

[423]

The Role Center has a left and right part. The left part usually contains the activities
and a shortcut to Microsoft Outlook. The right part contains shortlists to the My List
pages that show frequently used records and notes. An end user can customize the
Role Center and move the parts around.

Storage and Logistics
This application has four different Role Centers. We will discuss the Storage Role
Center (123.456.726). Other Role Centers are Logistics Role Center (123.456.700),
Manager Log. and St. Role Center (123.456.756) Income and Expenses Role Center
(123.456.761).

On the Activities Storage page, employees can directly go to the documents filtered
on dates from the stacks. From the Menu options, users can create new documents or
open worksheets and journals.

Application Design

[424]

We have designed two shortlist pages, My Products and My Regions. My Products
can be changed by the user by clicking on the small lightning button and select
Manage List, as shown in the following screenshot:

The My Region page is built on the Region table. Users cannot change this list.
The page uses the SourceTableTemporary property and ShowAsTree. This allows
users to expand and collapse warehouses.

Reports
The reports in the standard Microsoft Dynamics NAV application are typical ERP
reports that show the required information and that's it.

Designing reports requires special skills and is not as easy as it seems. When
changing a report layout from the standard application, it is best practice to
leave the original report as it is and modify the saved copy.

We will discuss more about reports in the Design to analyze section.

Design to Maintain
It seldom happens that software is designed and developed, never to be changed.
The objects created are usually changed many times in the lifetime of the application.

The changes to an existing object may be done quite a while after the object's original
development. At this time, even if the changes are done by the original developer,
it will be difficult to remember how and why some changes are done.

Hence, it is important to develop in a unified way. This will make it easier for
developers to read each other's code or to understand their own code after months
or years.

Chapter 10

[425]

Written external documentation is a no brainer at this point but we should realize
that this is not always done and focus on more obvious and easier ways. A well
designed and built application should be self-documenting. This is done by
following some simple guidelines.

Naming
While creating new objects, it is important to follow the naming guidelines of the
product. Field and variable names should explain themselves.

This MSDN article at http://msdn.microsoft.com/en-us/
library/ee414213.aspx describes more details on naming
conventions in Microsoft Dynamics NAV.

Singular and plural
Table names should be singular. This will make the C/AL TABLECAPTION command
return a usable value. Let's look at an example in the Item table (27):

OnDelete()
...
ItemJnlLine.SETRANGE("Item No.","No.");
IF ItemJnlLine.FIND('-') THEN
 ERROR(Text023,TABLECAPTION,"No.",ItemJnlLine.TABLECAPTION);

The preceding command will generate the following error message with the table
caption singular:

List pages should be plural as they contain more than one record while card pages
are singular.

Reserved words
Reserved words should not be used in objects as name for fields, variables,
and functions.

Microsoft has published a list of reserved words at
http://msdn.microsoft.com/en-us/library/ee414230.aspx.

http://msdn.microsoft.com/en-us/library/ee414213.aspx
http://msdn.microsoft.com/en-us/library/ee414213.aspx
http://msdn.microsoft.com/en-us/library/ee414230.aspx

Application Design

[426]

One very important reserved word, which is missing in that list is Action. This is
reserved for using IF Page.RUNMODAL = ACTION::OK then.

Names and abbreviations
Using standard naming and abbreviations is one of the strong points of the
application that makes it easy to learn for new developers.

Here are some examples:

•	 <<Table name>> No.: This is the standard reference to a field in a table
relation. If the field has a relation with the customer, the field is called
Customer No. and if the relation is with vendor, we use Vendor No.
In our example application, we have used Product No., Squash
Player No., and so on.

•	 Line No.: This fieldname is always used in the popular Header/Line and
Journal constructions. This field always uses the auto split key property
in pages.

•	 Entry No.: This fieldname is always used for entry and register tables such
as G/L Entry and Customer Ledger Entry.

•	 Name and Description: This is the standard naming for persons or products.
•	 Quantity/Qty.: This is the standard name and abbreviation to

measure quantity.
•	 (LCY): This is the abbreviation for Local Currency.
•	 Duty Due %: When the field represents a percentage, this sign should be in

the field name.

A list of naming conventions can be found on MSDN at
http://msdn.microsoft.com/en-us/library/ee414213.aspx.

Quantity versus quality
There is a general rule that can be applied to the quantity and quality of software
that says that when more functionality is added to the product, it is difficult to
maintain a certain level of quality.

http://msdn.microsoft.com/en-us/library/ee414213.aspx

Chapter 10

[427]

To avoid this in your solution, make sure you don't just add all the requirements
from your prospects into the product in one release and instead use a release policy
that ensures small pieces of functionality to be developed, tested, and implemented
each time.

Loosely coupled
When developing an add-on product, it is important to divide it into smaller parts.
This will make it easier to have several developers work on the application and
release parts of the application. Each part of the add-on has its own framework
that interacts with other pieces of the add-on or the standard product.

This is exactly what we did in the storage and logistics example add-on application.
The add-on has three main functional areas: Storage, Logistics, and Income and
Expenses. These three areas share the same master data.

Each area interacts with other parts of the application using mini interfaces. Using
this concept will also have great benefits when upgrading to newer versions, which
we will discuss in the Design to upgrade section.

Design to support
There are different levels of providing support. First-level support is usually done by
someone at the customer site that works in the IT department or someone that has a
feeling for IT. The general first line support questions are about filters, missing data,
and so on.

Application Design

[428]

Second-level support is usually a small bug in the software or something missing
in the setup or master data. Depending on the customer, this will be solved by the
internal IT department or escalated to the partner.

As a developer, you will most likely employ third-line support where something
needs to be debugged or reverse engineered in order to find the bug.

So before a bug reaches the developer, other people have already spent time in
analyzing the issue without success. The development of the software should be
done in such a way that third-line support makes a minimum change or occurrence.

When the guidelines discussed in the Design to use and Design to maintain sections are
used, it will already be easier for the second-level support to analyze the issue.

Second-level support
Most problems in support occur in the second level. The first-level support engineers
are often very familiar with the system and the third-level support engineers are
often the original developers of the software.

Second-level support people need to be able to go in a database and analyze the issue
without having to change their way of thinking.

Let's briefly summarize the general guidelines for this specific topic:

•	 Shortcuts: Use standard shortcuts as much as possible. For example,
use F9 for posting and registering, and Ctrl + F7 for ledger entries.
Avoid using reserved shortcuts such as F8 (copy previous) and
Alt + F3 (filter to this value).

•	 Screen Layout: Avoid screen layouts that are too creative. Too much
information on a screen is often an indication of a bad design and will be
difficult to support. Typical examples are multiple subpages and hiding
elements based on business logic subpages.

•	 Variable Naming: As discussed in the Design to maintain section, good
naming will make a huge difference when looking at someone else's design.
This starts with trying to use Microsoft's naming conventions for the
standard application.

•	 C/AL Placement: Microsoft Dynamics NAV is very flexible when it comes
to placing C/AL code in objects. Pages support using C/AL code to the
extent that it is possible to write an entire posting routine there. C/AL
coding should be done in tables or codeunits unless this is not possible.

Chapter 10

[429]

•	 Using Functions: When your C/AL code exceeds the size of your screen,
it is best practice to create a function. This will make the original code more
readable for others. Use a name for your function that makes sense so the
code will document itself. An example for this can be found in the codeunit
Register Time Sheet (75000) we discussed in Chapter 8, Consulting.

•	 Global versus Local Variables: Variables can be both global and local in
C/AL. Microsoft does not have strict guidelines on which to use when.
The general rule when looking at the standard application is to use global
variables unless the variable is only used in a function—then it can be local.

The compiler does not give a warning when using a local variable
with the same name as the global variable. The system will always
use the local variable first.

Design to upgrade
It might not be the first thing to realize when designing your application but there
will come a time when it needs to be upgraded to a newer version.

When upgrading your application, we can split this task into two parts. Part one is
the part of the add-on that is written on top of the standard application, that is, new
tables, pages, and codeunits that are loosely coupled with the standard application.
This part is often easily upgraded. The other part is the changes done in the base
application. These changes are often more difficult to move to a newer version.

Has Microsoft changed my (referenced) object
Whether or not Microsoft has changed your referenced objects is the question it
comes down to when analyzing the upgrade task. If the object you modified has not
been changed by Microsoft, the upgrade is easy. If Microsoft has changed the object
slightly, we might need to analyze the changes to see whether we need to change
something as well.

With each release, Microsoft tends to redesign a part of the application. If your
solution is integrated with the part Microsoft has redesigned, it will be a bigger
task to bring the add-on forward.

To see the design changes made by Microsoft in a new release, analyze
the upgrade toolkit objects to see what it hits.

Here are a few examples of some common redesigns.

Application Design

[430]

CRM (Version 2.0)
In Version 2.0, Navision introduced the current CRM application we discussed
in Chapter 4, Relationship Management. The most important change was to merge
company contacts and persons into one table while implementing new functionality.

Dimensions (Version 3.x)
In Version 3.0, Navision introduced the dimension solution that we know today.
Before this, the current Global Dimensions 1 and 2 were called Department Code
and Project Code.

Bin code (Version 3.x)
With the introduction of WMS, the usage of the Bin Code field changed.
The Bin Code used to be a field in the Item Ledger Entry table (32) and
moved to the Warehouse Entries.

Inventory valuation (Version 3.x)
No single piece of code in Microsoft Dynamics NAV has changed as many
times as the inventory valuation solution. Try to avoid changing this in your
add-on application.

Item tracking (Version 3.6 and 4.0)
As with inventory valuation, item tracking has been changed many times. Where
older versions had Item Tracking Entries and Item Ledger Entries, they are merged
into one table in newer versions as discussed in Chapter 6, Trade.

MenuSuite (Version 4.0)
Although it is not a functional change, the introduction of MenuSuite in Version 4.0
caused a lot of work to upgrade to.

MenuSuite do not support C/AL code. This means that all Journals need to be
changed for this version.

Jobs (Version 5.0)
As discussed in Chapter 7, Storage and Logistics, the Jobs functionality has been
changed in Version 5.0. The budgeting in the previous version was done
differently using Budget Entries and Phase, Task, and Step tables.

The Job Journal Line and Job Ledger entries have not changed, but the new Job Task
table has become a mandatory field when posting on a job.

Chapter 10

[431]

When there is no other way, it is possible to take out the Job Objects and renumber
them to be customized tables. This allows you to upgrade to a newer version with
minimum impact. After the upgrade, a new project can be started to move to the new
Job functionality completely.

Dimensions (Version 2013)
Version 2013 introduced a new design pattern for storing dimensions. Although
the design is a much better one, it requires a lot of redesign to implement this
new pattern.

Item costing (almost all versions)
The item costing has been improved in almost every new version of Microsoft
Dynamics NAV. Changes in item costing is difficult to upgrade to newer versions
and almost always need to be redesigned.

Documentation
While many parts of the application will have no issue in the upgrade, it is useful to
have external documentation when there is a need to redesign.

This documentation should contain information about the business reason
for implementing the feature. With that information, it is possible to do a new
fit/gap analysis.

External documentation such as Microsoft Word and Visio files can be
linked to C/Side objects. This way it is easy to find the documentation
when a developer needs it.

Split operational and financial information
In the Storage and Logistics application, we chose a data and transaction model that
can be easily upgraded to a newer version of Microsoft Dynamics NAV.

This is achieved by creating separate modules that move data to each other.

Design to perform
All good applications are useless if the performance is not adequate. Performance is
very important to keep in mind when designing your application.

Application Design

[432]

When talking about performance, there are two typical issues. The first issue is an
application with an overall slow performance, and the latter is an application with
good performance but where users block each other or create deadlocks.

Both issues have their own approach to be analyzed and solved. We will not talk in
detail about this process but rather explain how to avoid these situations in general.

OLTP versus OLAP
In any ERP system, it is important to balance Online Transaction Processing (OLTP)
with Online Analytical Processing (OLAP). This is especially important when
working with Microsoft Dynamics NAV. The reason for this is its unique data and
posting model, which creates the analytical data while processing the transaction.

Creating this analytical information in real time can have advantages, but when
posting the transactions take too much time, it might not be worth it.

Examples of analytical information are dimension information and analysis view
entries, but also VAT Entries and Value Entries. Although they give us important
information about the business, we do not always need them instantly when
processing the transaction.

Other examples of analytical information are secondary keys and SumIndexFields.
All this information will be created when creating the master record. If a Ledger
Entry table has 32 secondary keys and 15 SumIndexFields, it will take a considerable
amount of time to write this information to the database.

Fast transaction posting
Good performance starts with fast transactions. There are several ways to achieve
this. The major ones being: cleanup unused indexes and application setup.

Cleanup unused indexes
Each secondary SumIndexFields field in the database needs to be maintained
whether it is used or not. Microsoft Dynamics NAV allows end users to create
their own schedule to maintain this.

Chapter 10

[433]

Creating such an index schedule is quite a complex task and so should be done by
experienced functional developers.

In versions prior to Microsoft Dynamics 5 SP 1, the overhead of
unused SumIndexFields was substantially higher compared to
newer versions.

Application setup
It all starts with a solid application setup. Some setup features in Microsoft
Dynamics NAV will cause the system to create more analytical information
when posting transactions.

An example is Update On Posting for Analysis Views. This feature will update the
Analysis View Entries at the same time as the General Ledger Entries are created.

Application Design

[434]

Other examples are the Automatic Cost options in the inventory setup. When they
are activated, the cost is adjusted each time an Item Ledger Entry is created.

Job Queue
Microsoft Dynamics NAV is shipped with an excellent multithreaded Job Queue
system. This process is called an Application Server and can execute C/AL code in
report and codeunit objects.

Examples of Job Queue tasks are creating the Analysis View Entries, Posting the
Adjust Cost for Inventory Valuation or even Posting Sales, and Purchase documents.

Background posting
Background posting was introduced in Microsoft Dynamics NAV 2013 and allows
you to post documents using a Job Queue. This means that the user who starts the
posting routine does not need to wait until this process has been completed before
starting a new task.

Date compressing and cleanup
When the number of records in a table exceeds normal proportions, it might be
useful to start thinking about doing data maintenance. This is a normal procedure
in all ERP systems, and Microsoft Dynamics NAV has the capability to do that.

Chapter 10

[435]

Date compression
Most Entry tables in Microsoft Dynamics NAV can be compressed by date.
This means that all entries with the same values will be replaced by one new
entry. The detailed information is lost afterwards.

Data compression

Saving the detailed information can be easily implemented by changing the
compression report. The detailed information can be saved in a copy of the
original table.

The total size of the database has minimal impact on the
performance. More important is the size of the tables we are
writing to during a transaction.

Application Design

[436]

Data cleanup
Microsoft Dynamics NAV allows most data to be deleted when the fiscal year it was
created is closed.

Examples of data that can be deleted are Sales Shipments and Purchase Receipts.
They can be either deleted or moved to copy tables.

Cleaning up data will prevent the transactions to be slower when your company uses
Microsoft Dynamics NAV for a longer time. Data cleanup generally starts after using
the product for 5 years and when the database exceeds 100 gigabytes in size.

Locks, blocks, and deadlocks
The Microsoft Dynamics NAV product is very sensitive for blocking and deadlocks.
This has everything to do with the posting model, the inheritance of the Native
database, and the numbering used in entry tables.

Blocks and Deadlocks are caused primarily by Locks in the database. Locking is a
mechanism databases use to ensure consistency of the data.

Native server versus SQL Server
Originally, Microsoft Dynamics NAV had a proprietary (Native) database.
This database did not support row-level locking, only table locking.

Microsoft Dynamics NAV 2013 no longer supports this database and only runs on
SQL Server, which does support row-level locks. However, the current data and
transaction model is designed for table locking.

The benefit of row-level locking on SQL Server is best experienced in systems with
many users creating documents in the same database. Most posting transactions in
the database are isolated, meaning only one user at a time can post a document from
anywhere in the application.

Locking is always done for a single company; unless tables are shared as explained
in Chapter 4, Relationship Management, a user from company A cannot lock a user in
company B.

Locking principles
In Microsoft Dynamics NAV, locking starts with the LOCKTABLE command.
Using this command will generate the T-SQL statements that are generated by
the application to issue a UPDLOCK hint where without the statement,
READUNCOMMITED is issued.

Chapter 10

[437]

Let's create an example that shows how locking is done.

1.	 For this example, we create a new codeunit Locking A (60000). The codeunit
has a global variable Cust of type Record 18:
OnRun()
Cust.LOCKTABLE;
Cust.GET('10000');
IF CONFIRM('Maintain Lock in database') THEN;

2.	 We start this codeunit and leave the confirmation window open.

3.	 Now, we go to the Windows client, open the Customer Card for customer
10000 and try to change the name. After 10 seconds, we will get the
following message:

The reason for this error message to pop up is that the other user issued an exclusive
lock on the record. If we move to customer 20000, which is the next record in the
database, we can safely change the name. This record is not locked.

Application Design

[438]

Deadlocks
Let's take this example one step further and simulate a deadlock. Deadlocks happen
if users try to lock each other's record in a different order.

Blocking!

No Blocking

Deadlock!

USER A

1
Customer
10000

3
Customer
20000

USER B

2
Customer
20000

4
Customer
10000

Let's see this in more detail:

•	 User A reads and locks Customer 10000
•	 User B reads and locks Customer 20000
•	 User A tries to read and lock Customer 20000, a blocking event starts
•	 When user B now tries to lock Customer 10000, a deadlock occurs

To demonstrate a deadlock, we have created two Codeunits Deadlock A (60001) and
Deadlock B (60002). We need two sessions on the same SQL Server database to do
this. Start Deadlock A on one client:

OnRun()
Cust.LOCKTABLE;
Cust.GET('10000');
IF CONFIRM('Start another client and run codeunit 60002') THEN
 LockOtherCust;

LockOtherCust()
Cust2.GET('20000');
IF CONFIRM('Maintain Lock') THEN;

Start Deadlock B on the other:

OnRun()
Cust.LOCKTABLE;
Cust.GET('20000');
IF CONFIRM('Select Yes on the other client') THEN

Chapter 10

[439]

 LockOtherCust;

LockOtherCust()
Cust2.GET('10000');
IF CONFIRM('Did the deadlock happen?') THEN;

Then, select Yes on both the confirmation boxes. One of the clients should
now deadlock.

SQL Server checks for deadlocks every 5 seconds and kills the
transaction that has the lowest roll back impact on the database.
This is why users will experience deadlocks as slow sometimes
and fast other times.

The error message is confusing since it lets us to believe we have locked the entire
table, which is not true.

The LockOtherCust function reads a record from the customer table with another
variable. This new variable Cust2 does not explicitly issues a LOCKTABLE command.
This proves that LOCKTABLE is a transaction command that is valid for all variables of
this type.

Blocking and deadlocks in Microsoft Dynamics NAV
The standard application has several built-in blocking events by design. This is to
ensure the database integrity and to avoid deadlocks.

The two main isolating tables in Microsoft Dynamics NAV are the G/L Entry table
(17) and the Item Ledger Entry table (32).

Codeunit 12 shows these lines of code before creating G/L Entries:

StartPosting(GenJnlLine : Record "Gen. Journal Line")
WITH GenJnlLine DO BEGIN
 GlobalGLEntry.LOCKTABLE;
 IF GlobalGLEntry.FINDLAST THEN BEGIN

Application Design

[440]

Both Codeunit Sales-Post 80 and Purch.-Post 90 that we discussed earlier have
optional isolation on the G/L Entry table.

LOCAL LockTables()
SalesLine.LOCKTABLE;
ItemChargeAssgntSales.LOCKTABLE;
PurchOrderLine.LOCKTABLE;
PurchOrderHeader.LOCKTABLE;
GetGLSetup;
IF NOT GLSetup.OptimGLEntLockForMultiuserEnv THEN BEGIN
 GLEntry.LOCKTABLE;
 IF GLEntry.FINDLAST THEN;
END;.

In real life, this means that no one in a company can post to the general ledger at the
same time. The same applies to the item ledger.

This blog entry at https://blogs.msdn.com/b/nav/
archive/2012/10/17/g-l-entry-table-locking-redesign-
in-microsoft-dynamics-nav-2013.aspx explains the usage of
the optional G/L locking while posting documents.

This emphasizes the importance of fast transactions and generating analysis data in
separate batches.

Impact on development
If we summarize the impact of all this knowledge on your development,
it emphasizes the importance of designing your own application structures
that interface with the standard application.

When changing and implementing the standard application, try to reduce the
overhead during posting as much as possible.

Create compression routines and allow end users to periodically clean up records.
In the next section, we will talk about how to design to analyze and allow end users
to generate analysis data in batches separate from the posting transactions.

Design to analyze
Analysis in Microsoft Dynamics NAV should always be done on (ledger) entry
records. There are many types of entry records that are either created during a
transaction or in batches.

https://blogs.msdn.com/b/nav/archive/2012/10/17/g-l-entry-table-locking-redesign-in-microsoft-dynamics-nav-2013.aspx
https://blogs.msdn.com/b/nav/archive/2012/10/17/g-l-entry-table-locking-redesign-in-microsoft-dynamics-nav-2013.aspx
https://blogs.msdn.com/b/nav/archive/2012/10/17/g-l-entry-table-locking-redesign-in-microsoft-dynamics-nav-2013.aspx

Chapter 10

[441]

Avoid building analysis on document tables. It should always be possible to delete
old data in the database without losing the essential information for data analysis.

Report design
Designing a report in Microsoft Dynamics NAV starts with generating a Data Set.
This is built using table relations and can get quite complex.

When the Data Set is defined, the second step is to define the layout. Creating report
layouts is beyond the scope of this book.

Reports with a large Data Set are complex to maintain and have a risk of being slow
in performance since the database engine needs to read all the information before
combining the information into a view.

This can be solved by preparing the data first and running the report afterwards.
This approach is quite common in data warehousing. The preparation of the data
can be done in scheduled batches running in the Job Queue.

Application Design

[442]

Version and object management
When doing software development, discussing version management is unavoidable.
Microsoft Dynamics NAV is flexible in this and allows developers to make their own
decisions on this subject rather than forcing them to one way of versioning.

What is a version
In Microsoft Dynamics NAV, there are two ways of determining what a version
is. The first and easiest approach is to change the version of an object each time it
changes. The initial released Version is 1.00 and each change increments to 1.01, 1.02,
and so on. A big change will lead to Version 2.00.

Another more common approach in Microsoft Dynamics NAV is to group version
numbers in releases of a group of objects together. When this is applied, the
application gets a version number that is incremented each time we release.
This means that an object with version number 1.01 can jump to 1.04 if it was
not changed in releases 1.02 and 1.03.

Version numbering
There are rules in Microsoft Dynamics NAV for version numbering, although the
rules have changed over the years.

The current version principle allows us to use letters and digits. The letters indicate
the product and country code, the digits the version, subversion, and service
pack number.

Let's look at an example object to clarify this. Codeunit Whse.-Printed (5779):

NAV W1 3. 70. 01
The last service pack this object was changed

The last subversion this object was changed
The last version this object was changed

The Localization Version
The Product Name

If Microsoft change this object in Service pack 1 for 2013, the new version number
would be NAVW17.00.01.

Chapter 10

[443]

Combining versions
An object can have multiple versions, but only one version for each product or
country. A localized object gets version NAVW13.70.01, NAVNL6.00.01. This
means that although the global product team has not changed the object, it has
been changed by the Dutch localization team.

Creating a version
Versioning in Microsoft Dynamics NAV is done manually. The version number is an
editable field in the Object table (2000000001) that can be freely changed. Developing
a tool to do this is easy and has been done by many partners in the channel.

The Data and Transaction model of such a solution should look something like this:

Object
Released

Object

Change RequestChanged Object Release

Generate
Release

The process starts with a change request. This can be fixing a small bug or creating a
new functionality. For this change request, objects need to be modified.

Each modified object is attached to the change request. We can release several change
requests at the same time. All objects in the release will get the version number from
the release, which can be automatically updated in the object table.

By saving the change request and release information in the database, we will also
generate documentation that will help future developers to find information on why
objects were changed.

Tracking object changes
Object changes can be tracked using triggers in SQL Server. All the C/Side objects
are stored in the Object table (2000000001).

To connect an object change to a change request, the developer should tell the system
the request they are currently working on. This will enable us to have a failsafe
tracking mechanism to perform version management.

Application Design

[444]

To view the complete solution for tracking object changes
visit http://dynamicsuser.net/blogs/stryk/
archive/2009/05/18/object-auditing.aspx.

Saving older versions
In order to look at the changes, saving a copy of a version can be very useful. Besides
the obvious possibility of saving the files on a disk, we can also use an external tool.
One of these tools is Microsoft Team Foundation Server. This is a part of the Visual
Studio family and from Version 2013, it is available in the cloud, making it very easy
to set up and use in combination with Microsoft Dynamics NAV.

The video blog at https://www.youtube.com/user/
SorenKlemmensen/video demonstrates how to start using
Visual Studio online combined with Microsoft Dynamics NAV.

Development methodology
To develop software, there are many methodologies such as Prince2, Extreme
Programming, or the Microsoft Solutions Framework.

http://dynamicsuser.net/blogs/stryk/archive/2009/05/18/object-auditing.aspx
http://dynamicsuser.net/blogs/stryk/archive/2009/05/18/object-auditing.aspx
https://www.youtube.com/user/SorenKlemmensen/video
https://www.youtube.com/user/SorenKlemmensen/video

Chapter 10

[445]

Most of these methodologies are suitable to be applied to Microsoft Dynamics NAV
but they should be used properly. Because of the flexibility of the product, it is easy
to leave out steps in the process that should be there.

In Microsoft Dynamics NAV, it is easy to quickly create and modify business software.
This is by far the strongest selling point for the solution, but also the biggest pitfall.

A sample approach
When an end user requests a change to the application, it is tempting for most
experienced developers to go into the application and create it, preferably in the
production database without documentation. This is not the desired way of
doing software development.

However, Microsoft Dynamics NAV is a very suitable design environment for
prototyping and Rapid Application Design. All the example applications in this
book are first built with prototyping and later finalized using testing.

If we design a suitable development methodology for Microsoft Dynamics NAV,
we can see that the application life cycle perfectly fits our methodology.

When implementing Microsoft Dynamics NAV, it is very important to involve the
end users in each step of the development process.

Maintenance & Support

Prototyping

Working
&

Testing

Build
Prototype

Implementation

Fit/ Gap Analysis

User Change
Request

Quick Spec

Development

Software
Development

Full Specification

Working
&

Testing

Documentation

Training

Application Design

[446]

Fit/gap analysis
At the fit/gap phase, usually a quick specification is enough to describe what
the user would like the system to do and a possible solution is generated in the
application. This document should not count more than two or three pages. During
the prototyping phase, it is very normal to come across advanced understanding. It
would be a waste of valuable time to find this during the initial analysis with the risk
of not finding them anyway.

Prototyping
With the Quick Spec, a developer creates the solution as a draft without going into
too much detail. This should be enough to show the end user what the solution will
look like when it is finished. Very often, this will lead to new questions and ideas
that should be carefully considered and put into the full specification, or a new
prototype should be built first.

Development
Depending on the amount of changes after the prototype, development can often
start with the work done already. At this stage, all the details should be worked out
and tested.

There is no complete checklist for developers to use when developing in Microsoft
Dynamics NAV, but let's try to create one with the following fields:

•	 Captions/Translations: Make sure all objects have the required captions and
translations populated.

•	 Table Relations: Make sure all Table Relations are in place, and check the
Ledger Entry and Line tables as well since they are frequently forgotten.

•	 Modify And Delete Triggers: What happens if a user modifies or deletes the
record. Make sure that everything is nicely handled in the OnModify and On
Delete C/AL triggers. OnRename should be automatically handled by C/Side.
Renaming a table with many table relations may cause severe locking in the
database. If users should not rename a record, this can be blocked by placing
an ERROR command in the OnRename trigger.

•	 LookupPageID and DrillDownPageID: Even when running the Windows
client, it is important to assign a Lookup and Drilldown page ID. Lookup
pages are used for table relations and Drilldown pages are used when
drilling down from a SUM flow field.

•	 CardPageID: The Windows client always starts a list page when a user
selects a menu item or a cue. Double-clicking a row will open the associated
card page. This is controlled by the CardPageID property on a list page.

Chapter 10

[447]

•	 Field Groups: To show records from a table relation when entering values,
the Windows client does not directly use LookupPageID but first shows
a DropDown list. The fields in this list are defined in the associated tables
Field Groups. Each table can only have one Field Group called DropDown,
as shown in the following screenshot:

•	 Actions: Actions should make sense to end users. Make sure you use logical
names and avoid creating menu buttons and actions that are solely for super
users and just confuse end users. Actions should be placed in the correct
container. Only promote actions that will be frequently used by all end users.

•	 Shortcuts: Always assign ampersand (&) shortcuts and avoid double
shortcuts. When using function keys such as F3 and F9, follow the Microsoft
standard conventions.

•	 Compression and Posting: If your solution will generate a potentially large
amount of data, be sure to provide compression, posting, or cleaning up
routines so end users can periodically maintain the data.

•	 Permissions: Does your solution require additional permissions to be set up
in the system? Make sure to document this when delivering the solution.

•	 Unused Variables: Make sure you don't leave unused variables in the
C/AL objects. Although they won't break the functionality, it will make
future maintenance of the software more complex.

•	 FIND Commands and Locking: Double check the usage of the correct find
commands before you ship the software. Using the wrong commands and
leaving locking to the database engine may cause extra performance overhead.

More detailed information about these features is explained in the book
Programming Microsoft Dynamics NAV 2013, David A. Studebaker, Christopher D.
Studebaker, Packt Publishing.

Testing
Testing is probably one of the most important but undervalued tasks of
application design.

Application Design

[448]

Testing involves the following three conditions:

•	 Does the software meet the original requirements? If this is not the case,
it does not make sense to continue testing.

•	 Does it work as expected? This includes trying to deliberately break the
solution. If the software is not monkey proof, things will certainly go wrong
when using it. Here Murphy's Law is applicable, "What can go wrong, will
go wrong."

•	 Does it fit the rest of the application? Is the software usable and intuitive?
A solution that is bug free but difficult to use will be expensive to maintain.

Testing should be automated using the Testability Framework. This allows
developers to rerun complete application tests each time they make a change.

The blog at http://blogs.msdn.com/b/nav/
archive/2012/11/07/application-test-toolset-for-
microsoft-dynamics-nav-2013.aspx explains how to install and
use the Testability Framework for Microsoft Dynamics NAV 2013.

The testing should be also done manually, performed by someone who likes doing it
and has the available time. If someone is asked to test the software who is buried in
normal work, the chance of bugs slipping in is quite high.

Testing using the Testability Framework is a mandatory part of the
Certified for Microsoft Dynamics process.

The cost of fixing a bug increases as the software evolves. The sooner a bug is fixed,
the better.

http://blogs.msdn.com/b/nav/archive/2012/11/07/application-test-toolset-for-microsoft-dynamics-nav-2013.aspx
http://blogs.msdn.com/b/nav/archive/2012/11/07/application-test-toolset-for-microsoft-dynamics-nav-2013.aspx
http://blogs.msdn.com/b/nav/archive/2012/11/07/application-test-toolset-for-microsoft-dynamics-nav-2013.aspx

Chapter 10

[449]

Implementation
When the changes are developed and tested, the documentation should be finalized.
This can be either a manual for end users or a technical reference for future
developers and support engineers.

The end users should be trained to use the software.

Maintenance and support
After the software is implemented and users are trained, the solution goes into
the maintenance and support stage. During this stage, the application manager
needs to take care of the data generated by the solution, analyze it, and clean up
the data periodically.

If the end users request a change on the solution, the cycle starts again.

The project
Implementing an ERP product like Microsoft Dynamics NAV is not just installing a
software package and starting to use it. Each part of your company will have to make
decisions how to integrate their work with the software. This very often leads to an
interesting new look with respect to your company's way of work.

Standard, customized, or both
There are several ways of implementing Dynamics NAV. It is highly important
to make a decision what kind of implementation you want and adjust the
implementation accordingly.

Application Design

[450]

Compared to when it was introduced in 1995, Microsoft Dynamics NAV 2013 is
a mature ERP package with all the built-in functionalities we discussed in this
book. On top of this standard product, resellers have built horizontal and vertical
solutions called add-on products. These two combined offer powerful solutions for
companies that cannot work with the standard product but are flexible enough to
use a vertical solution.

Add-on products
Vertical solutions have started years ago as a customized solution for a company
who decided to implement Microsoft Dynamics NAV. Together with the
implementation partner, these companies have customized the product to
meet their requirements.

Many of these add-on products are now grown up software solutions that fit a
vertical industry.

When buying an add-on solution, it is good to ask the reseller some questions:

•	 What is the release procedure? A solid add-on solution has a release
procedure. Most resellers have periodical release every half year or maybe
sooner. If a bug is found in the software, there should be a hot fix. Most
resellers have releases they support. Make sure to know what versions are
still supported.

•	 How do I upgrade to a new version of the vertical solution? If a new version
of the vertical solutions is released, there should be an upgrade procedure.
This should be clearly documented and tested by the reseller.

•	 Am I allowed to make changes to the software? Most add-on resellers do not
recommend their customers to change the software. The reason for this is the
increased complexity of bug fixing and upgrading.

•	 What if I do change the software? If an add-on solution is customized
anyway, it is basically downgraded from being a supported add-on solution
to a customized database. For most resellers, it is difficult to support these
customized solutions.

Chapter 10

[451]

Customizing
Although customizing an add-on solution is not always recommended, customizing
Microsoft Dynamics NAV should not be considered a bad practice.

The impact of customization in Microsoft Dynamics NAV can make a difference that
can be compared to a suit that is confection or tailored to fit. The benefits of having
an ERP package that exactly fits the organization can be more important than the
increased cost of ownership of the solution.

Total cost of ownership
The total cost of ownership of Microsoft Dynamics NAV depends highly on the level
of customizations. A non-customized implementation with one or two good add-on
products done by experienced consultants will have a low impact on your company
and will be easy to maintain and support.

The higher the level of customizations, the more it will cost to keep the application
running. This is not a bad thing per se. If your company has a unique way of doing
business, it might need an ERP package that supports this uniqueness.

The Road to Repeatability program
The Road to Repeatability (R2R) was introduced by Microsoft to help partners
to be more repeatable. Although the program is primarily marketing-focused,
it illustrates the trend of reselling the same Microsoft Dynamics NAV package
to multiple customers.

Roadmap to success
Designing a solid application in Microsoft Dynamics NAV starts with a thorough
knowledge of the standard application functionality and its design philosophy.

Secondly, we need to carefully analyze the business process we want to support and
implement new functionality step by step to ensure good quality, as the solution
grows bigger and mature.

Use data and posting models that are similar to Microsoft Dynamics NAV and try to
maintain a similar user interface. This will make it easier for end users to adopt your
solution and more likely for the software to be easy to maintain and support.

Last but not least, carry out good housekeeping in your database. Compress and
clean up data periodically to guarantee a stable performance of the system now and
in the future.

Application Design

[452]

Summary
In this book, we have covered functional and technical design of both standard
Microsoft Dynamics and how to extend the application to succeed.

This book is not finished. After the publication, we will periodically
write articles, tips, and tricks based on the information in this book on
http://www.brummelds.com.

Any questions or comments regarding the information published in this book
can be posted and discussed there as well.

http://www.brummelds.com

Installation Guide
With this book, we provide development examples that can be installed using the
demo version of Microsoft Dynamics NAV 2013 Release 2 W1.

This demo version can be downloaded from msdn.microsoft.com.

Licensing
Microsoft has very strict licensing regulations for using and developing in Microsoft
Dynamics NAV.

For educational purposes, you are allowed to use the MSDN license to develop new
objects with number 123.456.700 to 123.456.799.

Installing Microsoft Dynamics NAV
After downloading the product CD from the MSDN website, start the
setup.exe file. From the installation options, select Install Demo, as shown
in the following screenshot:

msdn.microsoft.com

Installation Guide

[454]

Changing the license
After the installation, we can use both the Development Environment and the
Windows client. We use the Development Environment for administration purposes
and development. The user interface is created using the Windows client.

Each server instance of Microsoft Dynamics NAV runs on a license file. This file
determines what access we have in the system. The demo license that is installed
allows us to access all functionality but not the C/AL code.

To access all the C/AL code, we need an official partner development license. To get
this license, we would have to register as a partner and start being a reseller. If this is
not what we want, we can use the MSDN license.

The MSDN license will allow access to all the new objects developed for the book.
Access to the base application change examples is not possible with this license.

To change the license, navigate to Classic Client, open the Tools menu, and select
License Information, as shown in the following screenshot:

License Information

This opens the License Information screen where we can select Upload, which
opens a file dialog box where we can select the MSDN license.

To enable the license file on the Classic client, restart the application.

Appendix

[455]

Restarting service tier
To enable the license file on the Role Tailored Client, we need to restart the Service
Tier. This can be done from the Services window in the Windows Control Panel,
as shown in the following screenshot:

Installing the objects
This book has three Microsoft Dynamics NAV object files, two DLL files, a SQL
Server script, and some helper files for the installation. They are as follows:

•	 Chapter2-4.fob: This file contains the squash court examples used
in Chapter 2, A Sample Application, Chapter 3, Financial Management,
and Chapter 4, Relationship Management.

•	 Chapter7-9.fob: This file contains the Storage and Logistics application
used in Chapter 7, Storage and Logistics, and the sample interfaces for
Chapter 9, Interfacing. We need the additional SQL Server scripts to get
the ADO examples to run.

•	 Chapter8.fob: This file contains the Job extensions for Chapter 8, Consulting.
This chapter also requires the additional DLL files to be installed.

•	 RF database.sql: This is the SQL Server script that is used in
Chapter 9, Interfacing, to create the RD Database and create the demo data.

•	 MSDN.flf: This is the MSDN license we can use to access the custom objects
numbered from 123.456.700 to 123.456.799.

•	 NavMaps.dll and VEControl.dll: These are the Dynamic Link Library
files we need for Chapter 7, Storage and Logistics.

•	 Pin1.gif – Pin5.gif: These are the icons displayed on the Bing Map.

Installation Guide

[456]

Importing a FOB file
To install the objects, first open the Object Designer in the Classic Client by selecting
the Object Designer (Shift + F12) option from the Tools menu, as shown in the
following screenshot:

When the Object Designer is active, the File menu shows some additional options:

File menu options

We select Import, which opens a file dialog window. Now, select the .fob file you
want to import.

If everything is as it should be, the following dialog should appear:

Select Yes and this dialog box confirms the import.

Appendix

[457]

Installing the Dynamic Link Library files
To support the Bing Maps Client Add-in, Geocoding, and the distance calculation
we ship the following two DLL files, five GIF files, and some supporting files for
the installation:

•	 NavMaps.dll

•	 VEControl.dll

•	 pin1.gif

•	 pin2.gif

•	 pin3.gif

•	 pin4.gif

•	 pin5.gif

•	 RegisterDll.bat

These files should now be placed in this folder:

Registering NavMaps.dll
To register this DLL we use RegAsm. The command is predefined in the
RegisterDll.bat file that we can execute.

Installation Guide

[458]

Registering VEControl.dll
To register the visual map control, we add the reference to the Client Add-in table
(2000000069). To do this, we can run the table from Object Designer, as shown in
this screenshot:

Running table from Object Designer

Index
A
accounting periods

about 114-116
closing dates 116

account schedules 122
Active data objects 403
ActiveX Data Objects. See ADO
add-on

about 344
fourth-party logistics 345, 346
item tracking 345
third-party logistics 345, 346
value-added logistics 344

ADO 380, 384
advanced Excel integration 390-392
alternatives approaches,

for information sharing
External Synchronization 190
Shared Master Items 190

analysis by dimensions 124, 125
analysis tools

account schedules 122
analysis by dimensions 123
chart of accounts 121

application design
about 417
application life cycle 417
development methodology 444
object management 442
version management 442

application life cycle
about 418
design to analyze guidelines 440, 441
design to maintain guidelines 424
design to perform guidelines 431

design to support guidelines 427
design to upgrade guidelines 429
design to use guidelines 419
Development phase 418
Maintenance phase 418

application server
using 385

architectural design patterns
about 29
general ledger 31-33
journals 30
master data 29

assembling
about 202
assembly order 210, 211
bill of materials 206
costing, checking 212
cost item entries, adjusting 208
design patterns 202
inventory cost to G/L, posting 209
inventory, creating 207, 208
item costing 203
Item Revaluation Journal 214
items 203
item tracking 204, 205
result 215
standard cost, calculating 206
standard cost worksheet 213
standard unit cost, recalculating 210
unit cost, checking 213

assembling production 198
Association for Operations Management

(APICS)
about 201
URL 201

[460]

auto increment, enabling on table
reference 158

Automatic Ext. Texts 100
automatic interactions 157, 158
automatic profiles 152, 153
automation control

about 380
events 380
limitations 381

automotive industry
about 233, 299
amortization 233
item tracking 233
parts management 299
tooling 233
vehicle information 299

B
balancing 33-35
bank account ledger entry 38
bank journal 106
bank ledger entry 101
basic design patterns

dimensions 27, 28
extended text 22
Navigate 23
Number series 21, 22
posting groups 26
pricing 26, 27
setup tables 24

Basic Item Inventory functionality 263
basic modules, Microsoft Dynamics NAV

financial management 20
inventory 20
jobs 21
manufacturing 21
purchasing 20
relationship management (RM) 20
sales 20
service management 21
warehouse management 20

basic production principles
Association for Operations Management

(APICS) 201
bill of materials 199
energy and waste 201

Garbage In Garbage Out (GIGO) 200
item costing 200
item tracking 200
Master Production Schedule (MPS) 200
Material requirements planning (MRP) 199
quality control 200

bill of materials 199
blanket order document 244
BlanketOrderConsump function 226
BOM Component 202
budgeting

about 113
budget entries, creating 114

buffer tables 414
building blocks,

Microsoft Dynamics NAV 2013
about 16, 17
business logic 19
table object 18, 19

bulk region, storage application 311

C
C/AL code 136
campaigns

about 176
activating 178
pricing 177
segments, creating 177

chart of accounts (COA)
about 97, 98, 121
entry tables 101
posting account, creating 99, 100
sub accounting 101, 102
VAT versus sales tax 101

check line codeunit 81, 82
client add-ins 397-399
client extensibility 381
closing dates 116
cloud-enabled

Microsoft Dynamics NAV 415
Codeunit Sales-Post (80) 242
combined invoicing

about 253
batch 254
manual 254

[461]

combined invoicing,
invoicing application 343

COMMIT 408, 409
CommitTracking function 227
consolidation 118, 119
consulting process

about 350
fits 351
gaps 351

Consumption Journal 217
contact card, Microsoft Dynamics NAV

fields 143-145
contact information,

sharing across companies
about 186
alternative approaches 190
business relation 187
C/AL code modifications 188
Number Series functionality 189
objects, implementing 190
tables, sharing 186, 187

contacts
about 142
alternative addresses 148, 149
duplicates 149, 150
mailing groups, applying to 174
relationships with customer

and vendor 149
salutation codes 146, 147

contacts, adding to segments
about 191
criteria filters, implementing 193
report, expanding 191-193
solution, testing 194

ContBusRel function 54
ControlAddIn property 398
costing methods

average 204
FIFO 203
LIFO 203
specific 204
standard 204

CreateIncExp function 339
credit memo document 244
currencies 116
Customer and Vendor Ledger

Entry tables 37

customer ledger entry 38, 101
customers

direct creation, disabling 185
customization, relationship management

contact information,
sharing across companies 186

contacts, adding to segment 191
customer numbering 185
salutation formula types 181
vendor numbering 185

D
data

reading 410, 411
reading, from

Microsoft Dynamics NAV 382, 383
writing 409, 410
writing, to Microsoft Dynamics NAV 384

data analysis 120
data and posting model, Jobs module

Job Ledger Entries 352
Job Planning Lines 352
Job Tasks 352

data pulling, import and export 379
data pushing, import and export 379
date cleanup 436
date compression 434
DemandtoInvProfile function 226
design, interface methodologies

about 400
gaps 401
mapping 400, 401
working 402

design patterns, Microsoft Dynamics NAV
about 13
Application programming

interfaces (APIs) 13
architectural patterns 13
implementation patterns 13
types 13

design to analyze guidelines
about 440, 441
report design 441

design to maintain guidelines
about 424, 425
naming 425

[462]

quantity versus quality 426
design to perform guidelines

about 431
blocking 439, 440
blocks 436
date cleanup 434-436
date compression 435
deadlocks 436-439
fast transaction posting 432
impact, on development 440
Job Queue 434
locking principles 436, 437
locks 436
Native server versus SQL Server 436
OLTP versus OLAP 432

design to support guidelines
about 427, 428
second-level support 428

design to upgrade guidelines
about 429
documentation 431
referenced objects changes, checking 429

design to use guidelines
about 419
pages 419
reports 424
Role Centers 421

development methodology
about 445
sample approach 445

Development phase
about 418
Build step 418
Design step 418

dimensions 111, 112
dimensions, basic design patterns 27, 28
dimensions, squash court application

about 77
journal 79
journal, posting 79
master data 77, 78

Direct Posting 100
documents, storage application 312
document structure 40
document transactions 40

document types, sales
blanket order 244
credit memo 244
invoice 244
order 244
quote 244
return order 244

DotNet interoperability 381
drop shipments

about 256
creating, manually 256, 257
requisition worksheet, using 257

Dynamic Link Library files
installing 457
NavMaps.dll, registering 457
VEControl.dll, registering 458

E
energy and waste 201
entries 36
event driven

versus timer driven 379
events, automation control 380
Excel integration 388
Exchange integration

about 396
interaction log entries 396

ExtendedDatatype property 394
extended text, basic design patterns 22

F
fashion industry

about 232, 298
bill of materials 232
reservations 298
sales orders 298
shipping worksheet 232

fast transaction posting
about 432
application setup 433
unused indexes, cleaning 432, 433

file 380
financial management

chart of accounts (COA) 97
customizing 129

[463]

general journals, working with 103-105
integrating with 135
setting up 97

financial management, customizing
about 129
extra fields, in G/L Entries 134
sales line description to

G/L Entries 129-133
financial management, integrating with

about 135
G/L transaction, creating 136

financial management module 20
FindCombination function 227
FindRecords function 94
FindStorageLinePrice function 339
Fit 45
fit-gap analysis

about 45, 46
squash court application, designing 46

flow fields 35, 36
flow filters 35, 36
food industry

about 234, 300
assortment 301
fast order entry 301
schedules, ordering 235
zero inventory 234

ForecastConsumption function 226
furniture industry

about 235, 302
calculations 236
inventory 236
one-off items 302
variant configuring 302

G
Gap 45
Garbage In Garbage Out (GIGO) 200
general journals

accounting periods 114
budgeting 113
consolidation 118
currencies 116
data analysis 120
dimensions 111

entry application 106
posting group 107
setup 126
VAT statement 120
working with 103-105

general ledger,
architectural design patterns 31-33

general ledger entries 272
Gen. Posting Type 100
GETLASTERRORTEXT 406
GetSalutation function

about 182
parameters 183

G/L Entry table 37
G/L transaction

advanced entries 138
C/AL code 136-138
creating 136
GenJnlLine variable 136
GenJnlPostLine variable 136

I
import and export

data pulling 379
data pushing 379
manual 379

Income & Expense records,
invoicing application

about 335
creating 335
fields 335, 336

Income & Expenses module 309
InitGLEntry function 135
InitLines function 373
InitVariables function 226
interaction log entries 396
interactions

about 154-157
automatic interactions 157, 158
finished interactions 158

interface methodologies
about 399
design 400
scenario 399, 402

interface technology
about 403

[464]

Active data objects 403
interface type 403
interface types

about 378
event driven, versus timer driven 379
export 378
import 378

interfacing 377
interfacing technologies

about 379
automation control 380
client extensibility 381
DotNet interoperability 381
file 380
MSMQ 385
ODBC/ADO 381
SQL Server interfacing 384
web services 386

inventory management, trade
about 262
item ledger entry application 268
items 263
locations 264, 265
orders, transferring 272
requisition worksheets 274
sales pricing 268
stock keeping units 266
value entries 271
variants 265

inventory module 20
Inventory Posting to G/L routine 203
invoice document 244
invoice document, squash court application

about 84
Dialog 87, 88
sales header, creating 85
sales line, creating 86

Invoice Posting buffer 242
invoicing

about 252
combined invoicing 253
credit memo 255
prepayment process 252, 253
return order 255

invoicing application
about 333, 334
combined invoicing 343

Income & Expense records 335
invoicing process 336
periodic invoicing 340-342
pricing methodology 337

invoicing, jobs 365, 366
invoicing module 309
invoicing posting process,

squash court application
about 89
modifying 92-94
object, analyzing 89-92

invoicing process, invoicing application
about 336
Codeunit Sales-Post (80) 337
Sales Line table 336

invoicing, squash court application
about 83
invoice document 84
posting process 89

item costing
about 200
summarizing 215, 216

Item Journal 37
item ledger

requisites, for applying 270, 271
Item Ledger Entries 39
item ledger entry application

about 268
item application C/AL routine 268-270

item tracking 200
iUnknown interface

URL 380

J
Jnl.-B.Post codeunit 81
Jnl.-B.Post+Print codeunit 81
Jnl.-Check Line codeunit 80
Jnl.-Post Batch codeunit 80
Jnl.-Post codeunit 80
Jnl.-Post Line codeunit 80
Jnl.-Post+Print codeunit 81
Job Card

about 353
fields 353, 354

job examples
about 357

[465]

budgeting 359
chapter objects 357
infrastructure 359
Microsoft Dynamics NAV,

implementing 357, 358
support team 361, 362
upgrade 360

Job Journal 37
Job Journal Line

creating 356
fields 356

Job Planning Lines
creating 355
Line Type 355

Job Queue
about 434
background posting 434

jobs
changing 368
invoicing 365, 366
Job Card 353
Job Journal Line, creating 356
Job Planning Lines 355
Job Task Lines 354
purchasing 364, 365
setting up 352
WIP, calculating 366, 367

jobs, changing
calculations 371
example calculations 372-374
issue registration solution,

implementing 375, 376
quantity budgeting 368, 369
Resource Groups, using 370, 371

Jobs module
about 21, 42, 351
data and posting model 352
issue registration 351
item calculation 351
resource groups 351

Job Tasks Lines
creating 354

journal designing, squash court application
about 62
chapter objects 63, 64
dimensions 77
invoicing 69

journal line 68
price calculation 73
reservation process 68
reservations 64, 65
squash court master data 62
time calculation 71-73

journals
about 36
combining, to processes 39

journals, architectural design patterns 30
journal, storage application

about 312
Squash Journal 312
Storage Journal 312

L
licensing

about 453
license, changing 454
Microsoft Dynamics NAV, installing 453
Service Tier, restarting 455

Line Type, Job Planning Lines
contract line 356
schedule and contract line 356
schedule line 355

Local Currency (LCY) 116
LockOtherCust function 439
logging 404
logistics application

about 325
design patterns, drawing 326
incident 332
incident follow up 333
logistics process, starting 327
reasons, for design pattern 326
route follow up 331
route optimizer 329-331
routes 327
shipments 327
shipments, combining 328, 329

logistics module 309

M
mail codeunit 395
mailing groups

applying, to contacts 174

[466]

Maintenance phase 418
Make-To-Order policy 223
Make-To-Stock policy 223
manual, import and export 379
manufactured production 198
manufacturing

about 42, 216, 217
atomic coding 226
capacity 218
inventory profile offsetting 225, 226
items 218
low-level code, calculating 221, 222
machines 218
Make-To-Order policy 223
Make-To-Stock policy 223
MPS, calculating 224
MRP, calculating 224
plan, calculating 227, 228
Production bill of materials,

setting up 219, 220
production, finishing 230, 231
production order workflow 229
production order workflow, creating 228
purchase orders, creating 229, 230
requisition worksheet, versus

subcontracting worksheets 224, 225
Routing Setup 221
sales orders 223
simulation production 223
work centers 218

manufacturing module 21
Manufacturing Resource

Planning (MRP II) 199
Marketing Setup, relationship management

Attachment Storage Location 180
Attachment Storage Type 180
Autosearch for Duplicates 180
Defaults 180
Default Sales Cycle Code 180
Index Mode 180
Inheritance 180
Maintain Dupl. Search strings 180
Mergefield Language ID 180
Search Hit % 180
Synchronization 180

master data, architectural design patterns 29
master data, storage application 312
Master Production Schedule (MPS) 200
medicines industry

about 233
expiration dates 234
Lot numbers 233
quality control 234

Microsoft Dynamics NAV
about 20
architectural design patterns 29
balancing 33, 34
basic design patterns 21
basic modules 20
consulting process 350
design patterns 13
features 12
flow fields 35, 36
flow filters 35, 36
history 9, 10
horizontal versus vertical solutions 12
modules 308
objects, installing 455
open source 12
Role Tailored concept 14-16
setup, versus customization 11
standard features, using 308
versions 9, 10

Microsoft Dynamics NAV 2013
about 10
building blocks 16, 17
URL, for demo version 453

Microsoft Dynamics NAV web service
consuming 387

Microsoft Message Queue. See MSMQ
Microsoft SQL Server platform 10
modules

about 308
invoicing 309
logistics module 309
storage module 309

MSMQ
about 385
application server, using 385

[467]

N
naming conventions

URL 426
naming guidelines

naming and abbreviations 426
plural 425
reserved words 425, 426
singular 425

Navigate functionality 23
navigation, squash court application

about 94
FindRecords 94, 95
ShowRecords 95
testing 96

Navision 10
Navision Financials 1.0 9
Navision Software A/S 9
NavMaps.dll

registering 457
NAV web service

exposing 386
Number series, basic design patterns 21, 22

O
object management

about 442
object changes, tracking 443

objects installation
about 455
Dynamic Link Library files, installing 457
FOB file, importing 456

ODBC
about 381
data, reading from Microsoft

Dynamics NAV 382, 383
data, writing to Microsoft

Dynamics NAV 384
interacting, with other databases 384

Office 365 396
Office integration

about 388
Excel integration 388
Word integration 388

Online Analytical Processing (OLAP) 432

Online Transaction Processing (OLTP) 432
Open Database Connectivity. See ODBC
opportunities

about 160
deal, closing 170, 171
sales quote, assigning to 169
sales stages 162
workflow 160-162

opportunity
creating 164-168

Order 244
Outlook integration

about 178, 393
e-mail logging 178
Exchange integration 396
ExtendedDatatype property 394
mail codeunit 395
Office 365 396
Outlook part 393
Outlook synchronization 395
SMTP mail codeunit 395

Outlook part 393
Outlook synchronization 395
Output Journal 217, 230

P
pages

about 419
actions 421
advantages 419
client extensibility 421
embedded lists 419
emphasis 421
fact boxes 421
importance 419
personalization 419
tabs 419
web services 421

periodic invoicing, invoicing application
about 340-342
buffer, processing 342, 343

pharmaceuticals/medicines industry
about 300
invoicing, contributing 300
medication card 300

[468]

pick document 322-325
PlanItem function 227
Planning Run 217
Planning Worksheet 217
posting accounts

creating 99, 100
posting group

about 107
Customer Posting Groups 108
Invoicing tab 108

posting groups, basic design patterns 26
posting period 115
posting process, squash court application 80
posting schema

creating 38
post line 82, 83
PrepareSales function 132
price calculation, squash court application

about 73
inherited data 76
Price Calc Mgt. codeunit 74
squash prices 74

pricing, basic design patterns 26, 27
pricing methodology, invoicing application

about 337
calculation 338-340
result 340
Storage Price table 338

Primary Key (PK) 30
Product 312
production

about 198
assembling 202
basic production principles 199
item costing, 10 step process 215
manufacturing 216
production methodologies 198
raw materials 199
specialized production 231

Production BOM 217
Production Journal 217
production methodologies

assembling production 198
manufactured production 198
specialized production 198

Production Order 217

Production Part Approval
Process (PPAP) 233

Production Planner 217
products, storage application

about 315
regions 316
shelves 317
warehouse 316

profiles
about 150-152
automatic profiles 152, 153

project
about 449
add-on products 450
cost of ownership 451
customized 449
customizing 451
roadmap to success 451
Road to Repeatability (R2R) program 451
standard 449

purchasing, jobs
about 364, 365
item costing, versus work in progress 365

purchasing, trade
about 255
drop shipments 256
resources 255

purchasing module 20
put-away document 319-321

Q
quality control 200
quantity, versus quality

about 426, 427
loosely coupled 427

Quick Spec 446
Quote 244

R
raw materials 199
receipt document 318
receipt region, storage application 310
redesigns examples

Bin code (Version 3.x) 430
CRM (Version 2.0) 430
dimensions (Version 3.x) 430

[469]

dimensions (Version 2013) 431
inventory valuation (Version 3.x) 430
item costing 431
item tracking (Version 3.6 and 4.0) 430
Jobs (Version 5.0) 430
MenuSuite (Version 4.0) 430
split operational and

financial information 431
registers 36
relationship management 46

campaigns 176
contacts 142
customizing 180
interactions 154-157
Marketing Setup 179
opportunities 160
Outlook integration 178
profiles 150-152
segments 171
To-do's 158-160

relationship management 14, 41
relationship management (RM) module 20
reordering policy

about 274
extending 275
Fixed Reorder Qty 274
Lot-for-Lot 274
Maximum Qty 274
Order 274

Reporting tab 101
reports 424
Requisition Line table 217
requisition worksheets

about 274
reordering policy 274
virtual inventory 275

reservation entries
Prospect 292
Reservation 292
Surplus 292
Tracking 292

reservations, trade
about 289
always versus optional reservation 291
auto increment 297
Check-avail. period calc. 290

order tracking policy 295
order tracking policy, example 295, 296
order tracking policy, replenishment 296
reservation, creating 292-294
reservation entries 291, 292

Resource Ledger Entries 203
results, viewing

about 413
buffer tables 414
RF Database 415
SQL Statements 414

retail
versus wholesale 240

return order document 244
reverse engineering 52-60
RF database 412, 415
RF Interface (123.456.731) 408
RF NAS Timer (123.456.730) codeunit 405
RF Pick Lines 404
RM. See relationship management
Role Centers 17

about 421
Logistics Role Center 423, 424
Squash Court Role Center 422
Storage Role Center 423, 424

Role Tailored concept 14-16

S
sales and purchase documents

about 308
data, deleting 260
deleting 260
invoices, deleting 261
shipments, deleting 261

sales and purchasing, trade
about 240-242
document approval process 258-260
document release process 258, 259
documents, deleting 260
invoicing 252
purchasing 255
sales 244
sales order, creating 245
transaction mirroring 242, 243

sales document 246

[470]

Sales-Get Shipment Codeunit (64) 254
sales header 246
sales line fields 247, 248
sales lines

about 246
master data options 247

sales module 20
sales order

creating 245
validation flow 248

sales process
blanket order to order 245
document types 244
orders 244
quote to order 245

sales quote
assigning, to opportunities 169

sales stages, opportunities
about 162
activity codes 163

salutation codes 146, 147
salutation formula

setting up 184
salutation formula types

about 181
formula, supporting 181, 182
GetSalutation function 182, 183
salutation formula, setting up 184
solution, testing 184

sample application
fit-gap analysis 45

sample approach,
development methodology

about 445
development 446, 447
fit/gap analysis 446
implementation 449
maintenance and support 449
prototyping 446
testing 447, 448

scenario, interface methodologies
about 399-403
design pattern 404
interface technology 403
interface type 403
logging 404
results, viewing 413

solution 405, 406
testing 412

second-level support guidelines
C/AL placement 428
functions, using 429
global variables, versus local variables 429
screen layouts 428
shortcuts 428
variable naming 428

segments
contacts, adding 172, 173
contacts, reducing 173
contacts, refining 173
creating 171
criteria 174
logging 175
mailing group, applying to contacts 174

service management module 21
SetHideValidationDialog function 86
SetInsertFromContact function 62
setup, financial management 126
setup options, financial management

Additional Reporting Currency 128
Allow G/L Acc Deletion Before 127
Allow Posting From 127
Allow Posting To 127
Appln Rounding Precision 128
Bank Account Nos. 128
Bill-to/Sell-to VAT Calc. 128
Check G/L Account Usage 127
EMU Currency 127
Global Dimensions 128
Inv. Rounding Precision (LCY) 127
Inv. Rounding Type (LCY) 127
Local Address Format 127
Local Cont. Addr. Format 127
Max. Payment Tolerance Amount 129
Max. VAT Difference Allowed 127
Payment Discount Grace Period 128
Payment Tolerance Posting 129
Payment Tolerance Warning 128
Pmt. Disc. Excl. VAT 127
Pmt. Disc. Tolerance Posting 128
Pmt. Disc. Tolerance Warning 128
Prepayment Unrealized VAT 127
Print VAT specification 128
Register Time 127

[471]

Shortcut Dimensions 128
Unrealized VAT 127
VAT Exchange Rate Adjustment 128
VAT Rounding Type 128

setup tables, basic design patterns 24
SharePoint 397
shipment region, storage application 311
shipping document 322
ShowRecords function 95
SKU function

creating 267
SMTP mail codeunit 395
solution, scenario

about 405, 406
COMMIT statement 408, 409
data, reading 410, 411
data, writing 409, 410
logging 411

specialized production
about 198, 231
jobs 231

SQLCommand 409
SQLConnection 409
SQLReader 409
SQL Server interfacing

about 384
Analysis Services 385
Linked Servers 384
Reporting Services 385
SQL Server Integration Services 385
views 384

SQL Server SELECT statements 17
SQL Statements 414
squash court application

designing 46
design patterns 48
invoicing process 83
journal, designing 62
navigation 94
posting process 80
project approach 47
schema, posting 47
squash players, creating 48-51
standard application, interfacing with 47
table, drawing 47

Squash Journal Batch
fields 67

Squash Journal Line
fields 69-71

Squash Journal Template
about 66
fields 66

squash players
CreateVendor, versus CreateCustomer 51
creating 48-51
reverse engineering 52-62

Squash Register table
fields 68

staging region, storage application 310
standard application interfaces

about 387
advanced Excel integration 390-392
client add-ins 397-399
Office integration 388
Outlook integration 393
SharePoint 397

stock keeping units
about 266
SKU function, creating 267

storage application
about 309
bulk region 311
design pattern, drawing 313
documents 311, 312
initializing 314
journal 312
opening balance 315
products 315
receipt region 310
registration worksheet 317, 318
restarting 314
shared tables 313
shipment region 311
staging region 310
storage documents 318

storage documents, storage application
about 318
pick document 322-325
put-away document 319-321
receipt document 318
shipping document 322

StorageLinePriceExists function 339
Storage & Logistics company

process 307

[472]

storage module 309
style sheet tool 388
style sheet tool Version 3.0

URL 388
sub administrations

about 101
bank ledger entry 101
customer ledger entry 101
VAT/TAX statements 102
vendor ledger entry 102

sub and detailed entries 38, 39
Sum Index Field Technology (SIFT) 33
supply chain 20
SupplytoInvProfile function 226

T
testing, scenario

about 412
RF database 412
test 413

time calculation,
squash court application 71-73

timer driven
versus event driven 379

Time Sheet application
about 362
design pattern 362-364

To-do's 158-160
total cost of ownership (TCO) 46
trade

process 240
wholesale versus retail 240

trade, vertical industries
about 297
automotive 299
fashion 298
food 300
furniture 302
pharmaceuticals/medicines 300

transaction mirroring 242, 243
TRANSFERFIELDS function 55
transfer orders

about 272
example 273

U
UnfoldItemTracking function 226
UpdateCustVendBank codeunit 54
UpdInvPostingBuffer function 131

V
validation flow, sales order

about 248
Line Discount % | field 27 251
No. | field 6 248-250
Quantity | field 15 250
Unit price | field 22 250
UpdateAmounts function 251
UpdateUnitPrice function 250

value entries
about 271
direct cost 271

ValueIsFilter property 369
VAT

versus, sales tax 101
VAT Business Posting Group 101
VAT calculation, sales order

about 252
code cloning 252

VAT entry 38
VAT Entry table 37
VAT Product Posting Group 101
VAT statement 120
VAT/TAX statements 102
VEControl.dll

registering 458
vendor ledger entry 38, 102
vendors

direct creation, disabling 185
version management

about 442
older versions, saving 444
version 442
version, creating 443
version numbering 442
versions, combining 443

version numbering 442
vertical industry implementation

about 231
automotive 233

[473]

fashion 232
food 234
furniture 235
medicines 233

virtual inventory 275

W
warehouse activity documents

about 283
Invt. Pick 283
Invt. Put-away 283
Movement 283
Pick 283
Put-away 283

warehouse management module 20
Warehouse Management

Systems (WMS) functionality 275
warehouse management, trade

about 275
bin calculation 286-288
Bin code | level 1 277
Bin code | level 1, example 278
Bin content 279, 280
customizing 288
directed put-away and pick 285
directed put-away and pick,

default bins 285
directed put-away and pick, zones 285
implementing 288
level 2 and level 3 comparison 283
location setup 276, 277
Put-away and Pick | level 3 282
Put-away and Pick | level 3,

warehouse activities 283

Put-away and Pick | level 3,
warehouse request 282

Receipt and shipment | level 2 280
Receipt and shipment | level 2,

limitations 281
Receipt and shipment | level 2,

warehouse request 280
receipt with Put-away worksheet 284
strategy levels 276
whse.- activity register versus

whse.-activity-post 285
warehouse strategy levels

about 276
Bin Code 276
Directed Put-away and Pick 276
Warehouse Put-away and Pick 276
Warehouse Receipt and Shipment 276
Warehouse Receipt and Shipment + Use

Put-away Worksheet 276
web services

about 386
Microsoft Dynamics NAV web service,

consuming 387
NAV web service, exposing 386

wholesale
versus retail 240

Windows Client 16
Word integration 388
work in progress (WIP), jobs

calculating 366, 367
posting to general ledger 368

Thank you for buying
Microsoft Dynamics NAV 2013

Application Design

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Implementing Microsoft
Dynamics NAV 2013
ISBN: 978-1-84968-602-0 Paperback: 554 pages

Discover all you need to know to implement
Dynamics NAV 2013, from gathering the
requirements to deployment

1.	 Successfully handle your first Dynamics NAV
2013 implementation.

2.	 Explore the new features that will help you
provide more value to your customers.

3.	 Full of illustrations and diagrams with clear
step-by-step instructions and real-world tips
extracted from years of experience.

Getting Started with Dynamics
NAV 2013 Application
Development
ISBN: 978-1-84968-948-9 Paperback: 230 pages

A simple and practical guide to creating a
relevant application for your company using
Dynamics NAV 2013

1.	 Understanding user requirements and drawing
inspiration from existing functions.

2.	 Creating the application and integrating it into
standard Dynamics NAV.

3.	 Presented in a simple tutorial style with a
resource to get a free trial full version to help
you get started.

Please check www.PacktPub.com for information on our titles

Programming Microsoft
Dynamics® NAV 2013
ISBN: 978-1-84968-648-8 Paperback: 630 pages

A comprehensive guide to NAV 2013 development
and design

1.	 A comprehensive reference for development in
Microsoft Dynamics NAV 2013, with C/SIDE
and C/AL.

2.	 Brimming with detailed documentation
that is additionally supplemented by
fantastic examples.

3.	 The perfect companion for experienced
programmers, managers, and consultants.

Microsoft Dynamics NAV 7
Programming Cookbook
ISBN: 978-1-84968-910-6 Paperback: 312 pages

Learn to customize, integrate and administer NAV 7
using practical, hands-on recipes

1.	 Integrate NAV with external applications,
using the C/AL or SQL Server.

2.	 Develop .NET code to extend NAV
programming possibilities.

3.	 Administer the Microsoft NAV 7 server
and database.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Introduction to Microsoft Dynamics NAV
	Versions and history
	What is this book about
	Setup versus customization
	The beauty of simplicity
	Horizontal versus vertical solutions
	Open source

	Design patterns
	Architectural patterns
	Design patterns
	Implementation patterns
	APIs

	Structure of this book
	The Role Tailored concept
	The building blocks
	Tables as user interface and business logic

	Dynamics NAV in throughout supply chain
	Some basic design patterns
	Number series
	Extended text
	Navigate
	Setup tables
	Posting groups
	Pricing
	Dimensions

	Architectural design patterns
	Master data
	Journals
	The general ledger

	Balancing
	Flow fields and flow filters
	More journals and entries
	Posting schema
	Sub and detailed entries

	Combining the journals into processes
	Document structure
	Document transactions

	Other patterns
	Relationship management
	Jobs
	Manufacturing

	Summary

	Chapter 2:
A Sample Application
	Fit-gap analysis
	Designing a squash court application
	Look, learn, and love
	Drawing the table and posting schema
	The project approach
	Interfacing with the standard application

	Design patterns

	Getting started
	Creating squash players
	CreateVendor versus CreateCustomer
	Reverse engineering

	Designing a journal
	Squash court master data
	Chapter objects
	Reservations
	The journal
	Reservation
	Invoicing

	Time calculation
	Price calculation
	Squash prices
	Price Calc Mgt. codeunit
	Inherited data

	Dimensions
	Master data
	Journal

	The posting process
	Check line
	Post line

	Invoicing
	Invoice document
	Sales header
	Sales line
	Dialog

	Posting process
	Analyze the object
	Making the change

	Navigate
	FindRecords
	ShowRecords
	Testing

	Summary

	Chapter 3:
Financial Management
	Chart of accounts
	Posting accounts
	VAT versus sales tax
	The entry tables
	Sub accounting

	Working with general journals
	Entry application
	Posting groups
	Dimensions
	Budgeting
	Creating budget entries

	Accounting periods
	Closing dates

	Currencies
	Consolidation
	VAT statement
	Data analysis
	Account schedules
	Analysis by dimensions

	The setup

	Customizing financial management
	Sales line description to G/L Entries
	Extra fields in the G/L Entries

	Integrating with financial management
	Creating a G/L transaction
	The C/AL code
	Advanced entries

	Look, learn, and love

	Chapter 4:
Relationship Management
	How companies work
	Contacts
	Salutation codes
	Alternative addresses
	Relationships with customer and vendor
	Duplicates

	Profiles
	Automatic profiles

	Interactions
	Automatic interactions
	Finished interactions

	To-do's
	Opportunities
	Workflow
	Sales stages
	Creating an opportunity

	Creating segments
	Adding contacts
	Refine/reduce contacts
	Segment criteria
	Mailing groups
	Log segment

	Campaigns
	Pricing
	Segments
	Activate

	Outlook integration
	E-mail logging

	The setup

	Customizing relationship management
	Salutation formula types
	Support the formula
	The GetSalutation function
	Setup the salutation formula
	Test the solution

	Customer and vendor numbering
	Disabling the direct creation of customers and vendors

	Sharing contact information across companies
	Share tables
	Business relation
	C/AL code modifications
	Number Series
	Final steps
	Alternative approaches

	Adding contacts to segments
	Expanding report
	Implementing criteria filters
	Test solution

	Summary

	Chapter 5:
Production
	What is production?
	Production methodologies
	Raw materials

	Basic production principles
	Bill of materials
	Material requirements planning
	Garbage In Garbage Out

	Master Production Schedule
	Item costing
	Item tracking
	Quality control
	Energy and waste
	Association for Operations Management

	Getting started
	Assembling
	Design patterns
	The items
	Item costing
	Item tracking
	The bill of materials
	Calculating the standard cost
	Creating the inventory
	Adjusting cost item entries
	Posting inventory cost to G/L
	Check, check, and double check
	Recalculating the standard unit cost
	Assembly orders
	Check costing (again)
	Recalculating the unit cost (again)
	Standard cost worksheet
	Item Revaluation Journal
	The result

	Summarizing item costing in 10 steps
	Manufacturing
	The items, machines, and work centers
	Capacity
	Production bill of materials
	Routing
	Testing and low-level code
	Simulation, sales orders, or inventory
	Calculating MPS and MRP
	Inventory profile offsetting
	Atomic coding
	Calculating a plan
	Production order workflow
	Purchase orders
	Finishing production

	Specialized production
	Jobs

	Vertical industry implementation
	Fashion
	Bill of materials
	Shipping worksheet

	Automotive
	Tooling and amortization
	Item tracking

	Medicines
	Lot numbers and expiration dates
	Quality control

	Food
	Zero inventory
	Ordering schedules

	Furniture
	Calculations
	Inventory

	Summary

	Chapter 6:
Trade
	The process
	Wholesale versus retail

	Sales and purchasing
	Transaction mirroring
	Sales
	Orders
	Quote to order and blanket order to order

	Creating a new sales order
	Sales header
	Sales lines
	Sales line fields
	Validation flow
	VAT calculation

	Invoicing
	Prepayments
	Combined invoicing
	Credit memo and return orders

	Purchasing
	Resources
	Drop shipments

	Document releasing and approval process
	Status
	Releasing a document
	Manual versus automatic releasing
	Document approval

	Deleting sales and purchase documents
	Data deletion
	Deletion of shipments and invoices

	Inventory management
	Items
	Locations
	Variants
	Stock keeping units
	Creating a SKU function

	Sales pricing
	Item ledger entry application
	Item application C/AL routine
	Requirements to apply an item ledger

	Value entries
	Direct cost
	Value entries and general ledger entries

	Transfer orders
	Example

	Requisition worksheets
	Reordering policy
	Extending the reordering policy
	Virtual inventory

	Warehouse management
	Warehouse strategy levels
	Location setup
	Warehouse employees

	Bin code | level 1
	Example
	Bin content

	Receipt and shipment | level 2
	Warehouse request
	Limitations

	Put-away and Pick | level 3
	Warehouse request
	Warehouse activities
	Level 2 and level 3 comparison

	Level 4 – receipt with Put-away worksheet
	Whse.- activity register versus whse.-activity-post

	Level 5 – directed put-away and pick
	Zones and default bins
	Bin calculation

	Implementing and customizing warehouse management

	Reservations
	Check-avail. period calc.
	Always versus optional reservation
	Reservation entries
	Creating a reservation
	Order tracking policy
	Example
	Replenishment

	Auto increment

	Trade in vertical industries
	Fashion
	Sales orders
	Reservations

	Automotive
	Vehicle information
	Parts management

	Pharmaceuticals/medicines
	Medication card
	Contribution invoicing

	Food
	Assortment
	Fast order entry

	Furniture
	Variant configuration
	One-off items

	Summary

	Chapter 7:
Storage and Logistics
	How to read this chapter
	Chapter objects
	The process
	Using standard features
	Defining the modules
	Storage
	Logistics
	Invoicing

	The storage application
	Documents
	Look, learn, and love
	Drawing the design pattern
	Sharing tables

	Getting started
	Opening balance
	Products
	Warehouse
	Regions
	Shelves

	Registration worksheet
	Storage documents
	Receipt
	Put-away
	Shipment
	Picks

	The logistics application
	Drawing the design patterns
	Getting started
	Shipments
	Routes
	Combining shipments
	Route optimizer

	Route follow up
	Incidents
	Follow up

	The invoicing application
	Income and expense
	Invoicing
	Sales Line
	Codeunit Sales-Post (80)

	Pricing methodology
	Storage prices
	Calculation
	Result

	Periodic invoicing
	Processing the buffer

	Combined invoicing

	Add-on flexibility
	Value-added logistics
	Item tracking
	Third- and fourth-party logistics

	Summary

	Chapter 8:
Consulting
	The process
	Fits
	Gaps
	Resource groups
	Item calculation
	Issue registration

	Getting started
	How many jobs
	Job Card

	Job task and planning lines
	Job journal
	Job examples
	Chapter objects
	The new implementation
	The infrastructure
	The upgrade
	The support team

	Time sheets
	Design pattern

	Purchasing
	Item costing versus work in progress

	Invoicing
	Calculating work in progress
	WIP post to general ledger

	Changing jobs
	Quantity budgeting
	Resource Groups
	Calculations
	Issue registration

	Summary

	Chapter 9:
Interfacing
	Interface types
	Import and export
	Manual
	Data pulling
	Data pushing

	Event-driven versus timer-driven

	Interfacing technologies
	File
	Automation control
	DotNet interoperability
	Client extensibility
	Open Database Connectivity (ODBC)/ADO
	Reading from Microsoft Dynamics NAV
	Writing to Microsoft Dynamics NAV
	Talking to other databases

	SQL Server interfacing
	Microsoft Message Queue
	Application server

	Web services
	Exposing a NAV web service
	Consuming a Microsoft Dynamics NAV web service

	Standard application interfaces
	Office integration
	Word and Excel integration

	Advanced Excel integration
	Outlook integration
	Outlook part
	ExtendedDatatype property
	Mail and SMTP mail codeunits
	Outlook synchronization
	Exchange integration
	Office 365

	SharePoint
	Client add-ins

	Interface methodologies
	The scenario
	The design
	The mapping
	The gaps
	What if it does not work

	The scenario
	The interface type
	The interface technology
	Logging
	The design pattern
	The solution
	Testing
	Viewing the results

	Interfacing into the future
	Cloud-enabled Microsoft Dynamics NAV

	Summary

	Chapter 10:
Application Design
	Application life cycle
	Design to use
	Pages
	Role centers
	Reports

	Design to Maintain
	Naming
	Quantity versus quality

	Design to support
	Second-level support

	Design to upgrade
	Has Microsoft changed my (referenced) object
	Documentation
	Split operational and financial information

	Design to perform
	OLTP versus OLAP
	Fast transaction posting
	Job Queue
	Date compressing and cleanup
	Locks, blocks, and deadlocks
	Impact on development

	Design to analyze
	Report design

	Version and object management
	What is a version
	Version numbering
	Combining versions

	Creating a version
	Tracking object changes
	Saving older versions

	Development methodology
	A sample approach
	Fit/gap analysis
	Prototyping
	Development
	Implementation
	Maintenance and support

	The project
	Standard, customized, or both
	Add-on products
	Customizing
	Total cost of ownership
	The Road to Repeatability program

	Roadmap to success

	Summary

	Appendix:
Installation Guide
	Licensing
	Installing Microsoft Dynamics NAV
	Changing the license
	Restarting service tier

	Installing the objects
	Importing a FOB file
	Installing the Dynamic Link Library files
	Registering NavMaps.dll
	Registering VEControl.dll

	Index

