
[1]

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2015
Professional Reporting

Discover tips and tricks for Dynamics NAV
report building

Steven Renders

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2015 Professional Reporting

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1110915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-473-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Steven Renders

Reviewers
Daniela Bozdoc

Alex Chow

Daniel Rimmelzwaan

Matt Traxinger

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Purav Motiwalla

Richard Brookes-Bland

Content Development Editor
Shweta Pant

Technical Editor
Saurabh Malhotra

Copy Editors
Kevin McGowan

Rashmi Sawant

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steven Renders is a Microsoft Certified Trainer with skills that span the business
and technical domains. He specializes in Microsoft Dynamics NAV and Microsoft
SQL Server. He has more than 15 years of both business and technical experience.
He provides training and consultancy that focuses on Microsoft Dynamics NAV,
Microsoft SQL Server, business intelligence solutions, Microsoft SQL Server
Reporting Services, and database performance tuning.

Furthermore, he is also an expert in Microsoft Dynamics NAV, on which he has
already delivered many training sessions. He was also the author of the official
Microsoft training material on Dynamics NAV reporting, development,
upgrading, and SQL Server performance tuning.

He is the author of the books, Microsoft Dynamics NAV 2015 Professional Reporting
and Microsoft Dynamics NAV 2009: Professional Reporting and also a reviewer of the
books, Programming Microsoft Dynamics NAV 2009, Programming Microsoft Dynamics®
NAV 2013, and Implementing Microsoft Dynamics NAV 2013.

He has also presented at various Microsoft MSDN and TechNet conferences, NAV
Techdays, communities, events, and the MCT Summit.

In 2011, he started his own company, think about IT, which specializes in training
and consultancy, helping companies learn, implement, understand, and solve
complex business requirements related to IT, both in Belgium and abroad.

His specialties are Microsoft Dynamics NAV, Microsoft SQL Server, Business
Intelligence & Reporting, and Power BI.

You can contact him at steven.renders@thinkaboutit.be and through
his website (www.thinkaboutit.be). You can also view his LinkedIn profile
at http://be.linkedin.com/in/stevenrenders, and his Twitter handle
is @srenders.

www.allitebooks.com

steven.renders@thinkaboutit.be
www.thinkaboutit.be
http://be.linkedin.com/in/stevenrenders
http://www.allitebooks.org

Acknowledgement

There are so many people I would like to thank, who kept me motivated while I was
researching and writing this second book.

First of all, a special thanks to my parents, Luc and Martine; my family, Liza, Jan,
Ben, Daan, Wout, Lukas and my close friends Merlijn, Vicky, Holbe, Liesbeth, Veerle,
Johan, Els, Gita, Niki, and Fynn who always stood behind me and allowed me to
spend so much time apart from them.

I would like to thank the team at Packt Publishing, who deserves a lot of gratitude.
It was a pleasure working with them, especially Shweta and Saurabh. They
helped me a lot and guided the book in the right direction. I'm very thankful and
appreciative of their help and guidance.

A big thank you to the team of reviewers (Matt, Daniel, Alex, and Daniela),
who volunteered their time, knowledge, and experience by reviewing every
chapter and maintaining the quality, accuracy, and flow of the book. You had
a very big contribution in making this book a great piece of work that is easy
to read and understand.

A special thanks to Vincent and Koen from Plataan. Many years ago, they
motivated me to become a Microsoft Certified Trainer and allowed me to deepen
my knowledge and experience in the Dynamics community.

Since I started my own company, think about IT, I have been lucky to have worked
with a lot of very good and interesting customers, challenging projects, and different
types of businesses, which have allowed me to broaden my horizons and expertise,
both of which I was able to apply in this book.

www.allitebooks.com

http://www.allitebooks.org

I would also like to thank Microsoft and their employees for making fantastic
products, such as Dynamics NAV and SQL Server, to come closer together. Both of
them are great applications on their own, but combining them has been one of their
biggest achievements over the last few years. The way Dynamics NAV is getting
more and more integrated with other Microsoft technologies has shaped the future
and opened up an almost unlimited window of possibilities and opportunities.

To all the individuals I mentioned earlier and to several colleagues, who have
assisted me in one way or the other, especially in challenging me with alternative
views, I feel very much indebted to you all (Roel, Steffie, Brecht, Kurt, Luc, Claus,
Tarek, Mark, Conny, Frank, Anas, and Aleksandar).

I would like to thank you all!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Daniela Bozdoc is an IT professional who has a wide experience as a business
analyst with a solid background as a software developer and data and software
architect on various technologies. The implementation projects, especially Microsoft
Dynamics NAV and Oracle EBS, have brought her excitement, new experiences,
and the opportunity to meet and work with interesting people and exceed even the
highest expectations.

She is a graduate from the Babes-Bolyai University of Cluj-Napoca, Romania,
where she received a bachelor’s degree in computer science.

She lives in Romania, where she enjoys spending time with her family and taking
pictures of beautiful landscapes and natural eye-catching pieces.

Alex Chow has been working with Microsoft Dynamics NAV, formerly Navision,
since 1999. Over the years, he has conducted hundreds of implementations across
multiple industries. The size of businesses he has worked for range from small
enterprises that earn $2 million a year to multinational corporations that earn $500
million a year.

Throughout his Dynamics NAV career, he has often been designated as the primary
person responsible for the success and failure of a Dynamics NAV implementation.
The fact that he is still in the Dynamics NAV business means that he's been pretty
lucky so far. His extensive career in the Dynamics NAV business is an evidence of
his success rate and expertise.

www.allitebooks.com

http://www.allitebooks.org

With a background in implementing all the functions and modules in and out of
Microsoft Dynamics NAV, he has encountered and resolved the most practical and
complex requirements and business rules. Through these experiences, he has learned
that sometimes you have to be a little crazy to have a competitive edge.

He strongly believes that sharing these experiences and knowledge will
benefit the Dynamics NAV community. He writes about his journey at
www.dynamicsnavconsultant.com. He is also the founder of AP Commerce,
Inc. (www.apcommerce.com) in 2005, a fullservice Dynamics NAV service center.
In addition, he has written a book on Dynamics NAV titled Getting Started with
Dynamics NAV 2013 Application Development.

He lives in Southern California with his beautiful wife and two lovely daughters.
He considers himself the luckiest man in the world.

Daniel Rimmelzwaan was born and raised in the Netherlands and moved to the
USA at the end of 1999 to be with his new American wife. In Holland, he worked as
a Microsoft Access and VBA developer. While looking for a job as a VB developer in
the USA, he was introduced to Navision by a "VB Recruiter" and was intrigued by
the simplicity of its development tools. He decided to accept a job offer as a Navision
developer with the firm intention to continue looking for a "real" developer job.

More than 15 years later, after a couple of stints in the Microsoft partner channel and
a few years as a freelancer, he currently works as the chief quality officer for KCP
Dynamics Group, an international partner serving customers all over the world, and
he enjoys his career more than ever.

Ever since he started working with NAV, he has been an active member of the online
communities for NAV, such as mibuso.com, dynamicsuser.net, and the online
forums managed by Microsoft. For his contributions to these online communities,
he received his first of eleven consecutive Microsoft Most Valuable Professional
Awards in July 2005, which was just the second year that the MVP Award was given
for NAV. Microsoft gives the MVP award to independent members of technology
communities around the world and recognizes people who share their knowledge
with other members of the community.

He lives with his wife and two kids in Arizona, USA.

www.allitebooks.com

www.dynamicsnavconsultant.com
www.apcommerce.com
mibuso.com
dynamicsuser.net
http://www.allitebooks.org

Matt Traxinger graduated from the Georgia Institute of Technology in 2005 with a
BS in computer science. After college, he took up a job as an add-on developer using
a language he was unfamiliar with for a product he had never heard of—Navision. It
turned out to be a great decision.

In the years that followed, he learned all the areas of the product and earned
certifications in multiple technical and functional areas of Microsoft Dynamics NAV.
He currently works as a development manager for ArcherPoint, a Dynamics NAV
solutions provider.

In 2012, he was recognized as a Microsoft MVP and continues to be actively involved
in the community, working closely with NAVUG and the Association of Dynamics
Professionals to educate the next generation of NAV professionals.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: How Do I Start to Create a Report? 1

What is a report? 2
The request page 6
The report viewer 7

Report development phases 9
The data model phase 9
The layout phase 11
The testing phase 12

Report development tools 12
What do I use to develop the data model? 13
How do I create the report layout? 13

Built-in and custom layouts 14
Building the data model 14

Understanding the report dataset designer 16
Building the dataset 16

Data items and columns – fields, variables, and expressions 17
Including captions and labels 20

IncludeCaption versus FIELDCAPTION 21
How is the dataset flattened? 22

Report triggers 28
What happens when a report runs? 28
The report trigger sequence 29
What is a ProcessingOnly report? 30

Creating the layout 31
Visual Studio versus Report Builder 31
Creating a simple layout in Report Builder 31

Report Builder features 32
Wizards for prototyping 33

Creating a simple layout in Visual Studio 37

Table of Contents

[ii]

Visual Studio features 40
Report formatting, toolbars, and document outline 41

Building and testing the layout 42
Testing pagination and layout in different rendering extensions 43
Testing the report in different clients – Windows, Web, and tablet 43

Reporting design guidelines 43
The request page 44
The report description 45
The report creation workflow 45
Summary 47

Chapter 2: Getting Started with the Tablix 49
Report items 49
Everything is a Tablix 50

The Document Outline 51
Changing the name of a Tablix 52

List versus Table versus Matrix 53
Filtering and sorting 56

How can I implement filters? 56
How can I implement sorting? 62

Interactive sorting 63
Grouping 66

How can I implement grouping? 66
Adding a parent-child group to a Tablix 66
How do I implement expand/collapse? 72
Adding an adjacent group to a Tablix 74

Formatting report items 82
Using placeholders 85
Important properties – CanGrow and CanShrink 92

Example – create an item dashboard report 93
Summary 97

Chapter 3: Expressions 99
Using expressions for properties 99

The expression language 104
Simple and complex expressions 104

Symbols used in expression placeholders 106
Collections 106
Understanding the scope of an expression 108

Creating custom functions 112
Typical expression examples 117

Working with dates 117
Working with strings 120

Table of Contents

[iii]

Decision functions 122
Generating page breaks in code 126
Repeating a column header on every page 131

Example – the green-bar-matrix 135
Summary 138

Chapter 4: Data Visualization Techniques 139
An introduction to data visualization 139
Recipes to implement top x filtering 139
Conditional formatting in a report 145
Analyzing your data with data bars and indicators 149
Using Sparklines to visualize trends 156
Learning how to visualize information with gauges, maps, and charts 159

Using gauges 160
Using charts 164
Using maps 170

Summary 175
Chapter 5: Document Reports 177

What is a document? 177
The data model 178

Implementing multilanguage 181
Address formatting 184
Including logos 188
The No. of Copies option 191
Totaling and VAT 197
Logging and No. Printed 201
InitializeRequest 203

The layout 203
Filtering the dataset 204
Working with headers and footers 205

GetData and SetData explained 210
Alternative solutions – the mini-document 217

How do I implement page x of y? 219
Summary 222

Chapter 6: Tips and Tricks 223
Report pagination 223
Show a footer or header on the last page 226
Place at the bottom 229
A fixed number of rows 235
Trans headers and footers 239
Creating links 242

Table of Contents

[iv]

Using a filter 244
Using a bookmark 248
Using the GETURL() function 250
Using internal bookmarks 252

Printing barcodes 253
Report templates 256
Using a report setup table 262
Report logging 263
The fixed header problem 265
Summary 268

Chapter 7: Performance Optimization Techniques 269
Performance recommendations 269

The dataset 269
Captions and labels 270
Remove unused columns 272
Avoid unnecessary rows 278
Report totals 279
Number formatting 281
Applying the correct filters 284
Recommendations according to the version of Dynamics NAV 287

The layout 287
Print layout versus print preview 287
Avoid conditional visibility on a big dataset 288
Best practices when visualizing information 289
Expressions in the page header or footer 291
Complex grouping and aggregate functions 292
Optimization for the chosen rendering format 292
Report design guidelines 293

Implementing hotfixes and rollup updates 293
Alternatives for building a faster dataset 294

Using a temporary table 294
Using a query object for the dataset 301

Summary 307
Chapter 8: Word Report Layouts 309

Introducing the Word report layout 309
Creating a Word report layout 311
Formatting the Word report layout 322

Repeating a table header 326
Using Word templates 327
Optimizing your dataset for Word reports 335

Managing report layouts 338
Custom layouts 339
Editing a Custom RDLC layout 341

Table of Contents

[v]

The report execution flow 343
The Word report execution flow 344

At design time 344
At runtime 344

Managing layouts in code 344
Scheduling reports 348
Summary 350

Chapter 9: Power BI 351
Dynamics NAV web services 351
Using Excel 354
Power Pivot 357

Activating Power Pivot in Excel 357
Building a Power Pivot data model 359

Importing data into Power Pivot 360
Creating relations in the Power Pivot data model 366

Power View 369
Power Map 376
Power Query 383
Power BI Designer 383
PowerBI.com 391
Summary 397

Chapter 10: Reporting Services 399
What are Reporting Services? 399
Installation and configuration 400
Creating a report in SSRS 404

Using SQL Server Data Tools 415
Publishing a report project 417

Implementing reusability 419
Shared data sources and datasets 419
Shared report parts 423
Creating functions 426
Using stored procedures 428

Calling a Dynamics NAV OData web service 431
The next step 434

Caching 435
Subscribing or scheduling 436

Summary 437
Chapter 11: Charts in Dynamics NAV 439

The generic chart designer 439
Text management 445
Show any list as a chart 447

Table of Contents

[vi]

Business charts 449
Creating a business chart 450
Drill down your business chart 459
Preserving the user personalization 462

Implementing cues and colored indicators 463
A typical activities page 466
A typical cue table 468
Colored indicators 469
Cue style objects in Dynamics NAV 472

Summary 472
Index 473

[vii]

Preface
The goal of this book is to introduce and explain the reporting capabilities of
Dynamics NAV in detail. Starting from the beginning, this book will introduce you
to the report designers and explain how you can create and customize reports in
Dynamics NAV. The book also looks at topics in depth to explain and demonstrate
the typical issues you may encounter in your daily life regarding reporting and
Dynamics NAV using practical real-life scenarios.

After reading this book, you will understand how to manipulate Dynamics NAV for
it to produce the reports and analytical data that you want, when you want it, and in
the format you want it.

What this book covers
Chapter 1, How Do I Start to Create a Report?, explains how to create a report in
Dynamics NAV. This chapter explains that the report development can be done
in two steps: by creating the data model and then the layout. It also explains how
to include captions and labels. Then, it dives into Visual Studio, explains how to
create the layout, and demonstrates the difference between Visual Studio and
Report Builder.

Chapter 2, Getting Started with the Tablix, covers how to use the Tablix control when
we create the layout of the report. This chapter explains how the Tablix can be used
as a List, Table, or Matrix, and demonstrates the differences between them, and also
discusses when to use each. This chapter also covers the different techniques of how
to filter, sort, and group information in the report layout. It also introduces
you to some important properties.

Chapter 3, Expressions, discusses the expressions and how they can be used to
generate values for certain properties.

Preface

[viii]

Chapter 4, Data Visualization Techniques, explains that creating a report is not difficult,
but making it easy to understand so that you can spot trends and learn from your
data takes some consideration. The main goal of a report is to communicate the
information clearly and effectively, for example, through graphical means. A report
needs to create insights by communicating its key aspects in an intuitive way. In
this chapter, you will learn about the different techniques available in Microsoft
Dynamics NAV to visualize the information.

Chapter 5, Document Reports, explains how the RDLC report layout for documents,
such as sales invoices, is created. We will explore this in detail with the most
important workarounds, how and why they are required, and explore some
alternative solutions.

Chapter 6, Tips and Tricks, contains tips, tricks, and useful things to know when
developing reports or to speed up report development. It also contains recipes, or
report design patterns, on how to show a header or footer on the last page, place it
at the bottom, use a query in the dataset, optimize the report performance, create
hyperlinks, reusable report components, or templates, report scheduling, and how to
upgrade reports.

Chapter 7, Performance Optimization Techniques, contains tips, tricks, and recipes on
how to optimize or performance tune a report.

Chapter 8, Word Report Layouts, introduces you to the built-in Word report layouts
and explains how to customize them. This chapter also explains how to build a
new Word layout reusing an existing Word invoice template, how to refactor and
upgrade datasets for Word report layouts, and how to schedule a report to execute
on the server side.

Chapter 9, Power BI, introduces you to the world of Power BI. Power BI can be
used to extract data from Dynamics NAV, via ODATA web services, so that you
can create BI reports in Excel, using simple pivot tables and charts, or you can make
use of Power Pivot to create a more complex and optimized data model. It also
covers Power View, a tool used to build interactive data visualizations on top of a
Power Pivot data model. Last but not least, it also introduces Power BI in Office 365
and Q&A, a feature of Power BI in Office 365 to generate reports by simply typing in
a question.

Chapter 10, Reporting Services, introduces you to the Reporting Services of SQL
Server. This chapter explains how you can use reporting services, as a free report
development tool, as an alternative tool to create reports on top of a Dynamics NAV
database in SQL Server.

Preface

[ix]

Chapter 11, Charts in Dynamics NAV, introduces you to the built-in chart
designer in Dynamics NAV. It's frequently used by end users to create charts
in Role Centers. This chapter also covers the business charts and how to customize
them, as a developer.

What you need for this book
Name of the
Software

Actual Name Download link

Dynamics Nav Microsoft Dynamics NAV
2015 R2 Management Pack for
System Center

https://mbs.
microsoft.com/
partnersource/global/
deployment/downloads/
product-releases/
msdnav2015download

Report Builder
2014

Microsoft® SQL Server® 2014
Report Builder

http://www.microsoft.
com/en-in/download/
details.aspx?id=6116

Report Builder 3 Microsoft SQL Server 2008 R2
Report Builder 3.0

http://www.microsoft.
com/en-in/download/
details.aspx?id=42301

Visual Studio
Community
edition

Visual Studio Community 2013 https://go.microsoft.
com/fwlink/?LinkId=5326
06&clcid=0x409

Microsoft Office
2013

Microsoft Office 2013

Visual Studio
Data Tools

Download Latest SQL Server
Data Tools

https://msdn.microsoft.
com/en-us/library/
mt204009.aspx

Who this book is for
Basically, this book is for everyone who uses Microsoft Dynamics NAV or
has an interest in the reporting capabilities of NAV. This book does not have
a lot of prerequisites, although it mainly focuses on Dynamics NAV, RDLC,
and Business Intelligence.

www.allitebooks.com

https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
https://mbs.microsoft.com/partnersource/global/deployment/downloads/product-releases/msdnav2015download
http://www.microsoft.com/en-in/download/details.aspx?id=6116
http://www.microsoft.com/en-in/download/details.aspx?id=6116
http://www.microsoft.com/en-in/download/details.aspx?id=6116
http://www.microsoft.com/en-in/download/details.aspx?id=42301
http://www.microsoft.com/en-in/download/details.aspx?id=42301
http://www.microsoft.com/en-in/download/details.aspx?id=42301
https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://msdn.microsoft.com/en-us/library/mt204009.aspx
http://www.allitebooks.org

Preface

[x]

This does not mean that this book has no technical depth and you don't require
any technical skills. On the contrary, many parts of the book will cover the technical
aspects, development techniques, and reporting tools for Dynamics NAV in
great detail.

If you want to get an impression of what's possible inside and outside the box of
Dynamics NAV, then this book will give you a great overview. If you are interested
to know how to attach other reporting or business intelligence products to Dynamics
NAV, then this book will also give you an overview of these possibilities.

You might be an application developer, a power user, or a technical decision maker.
Regardless of your role, I hope that you can use this book to discover the reporting
features in Dynamics NAV that are most beneficial to you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The report.rdlc file is imported into the report object."

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Use the
View/Layout menu to open the layout and create the RDLC file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4731EN_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com/sites/default/files/downloads/4731EN_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4731EN_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[xii]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

How Do I Start to Create a
Report?

In most implementations, the focus is on customizing the Dynamics NAV application
to meet the needs of the organization and sometimes also future needs. The effort
that is required for reporting in general is often underestimated and unfortunately
assigned to the least experienced consultants, who have to create/adapt document
reports according to customer requests.

Personally, I believe reporting is one of the most important aspects of an
implementation. It should therefore be given importance from the outset, in the
analysis phase of the project. The kind of information you want to retrieve from your
ERP system and the way you want to retrieve this information has a big impact on
the implementation of the system. Doing this correctly at the beginning of a project
can, and will, save a lot of time, money, and frustration. The unfortunate reality
is that many partners and/or customers look at reporting first when they want to
reduce the cost of an ERP implementation project.

This chapter is an introduction to creating reports in Dynamics NAV.

I will start by stating what a report is, and how standard Dynamics NAV includes
all sorts of reports. Then, I will explain that report development is always done in
three steps: creating the data model, then the layout and, last but not least, testing
the report.

When creating the data model, I will guide the user and explain how to create a
dataset, starting with a simple dataset consisting of one data item and then make it
more complex by introducing multiple data items and explaining/demonstrating
the effects on the dataset of the way you build data items.

How Do I Start to Create a Report?

[2]

I will also explain how to include captions and labels. Then, I will dive into Visual
Studio and explain how to create the layout. I will also explain and demonstrate the
difference between Visual Studio and Report Builder.

What is a report?
Reports have several purposes in Dynamics NAV. The purpose of a report is to print
or visualize information from a database in an intuitive and structured way. For
example, a report could be a list of customers, vendors or items, or a combination of
customers and items sold.

Some reports are used to communicate with third parties. These reports are called
document reports. Examples of document reports are sales invoices, credit memos,
and so on. For every document in the application, a document report is also created.

Apart from printing information, some reports have no layout and are used only
to process information. These reports are considered batch jobs or processing-only
reports. You can compare them to code units but with the advantages of the report
dataset designer and request page options.

There are many different types of reports in standard NAV. For a more
comprehensive listing of the standard reports, please have a look at:
https://msdn.microsoft.com/en-us/library/
hh174014(v=nav.80).aspx

From the users' point of view, everything starts with the Dynamics NAV application
and their experience will vary depending on the Role Center they are assigned to.
Dynamics NAV is all about the RoleTailored Client and the RoleTailored Client
always opens with a Role Center page. A Role Center is like a dashboard. It is
the starting page in Dynamics NAV and on it you will find the links to all the
information you need.

https://msdn.microsoft.com/en-us/library/hh174014(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh174014(v=nav.80).aspx

Chapter 1

[3]

This is an example of the Role Center for the Order Processor role:

Depending on the Role Center you are on, the ribbon will contain different reports.
You can also access reports on other pages. For example, you can access reports in
the menu at the top of the window on the Customer Card page:

How Do I Start to Create a Report?

[4]

When you go to Departments in the RTC, you can go to any department, for
example, Sales & Marketing. When you click on Department, different categories
appear in the content window:

Click on Reports and Analysis and you get an overview of all the reports that
are related to Sales & Marketing. As you can see, the reports are divided into
different groups.

Chapter 1

[5]

These groups correspond to the groups defined in the menu item as defined in the
MenuSuite designer for the Sales and Marketing menu. In each group, you will find
links to reports:

This kind of classification of reports is available in every section of the Departments
suite in the RTC.

How Do I Start to Create a Report?

[6]

The request page
The first thing you see when you run a report, for example the Customer Top 10
List, is the request page:

The request page allows you to decide how you would like to view the report. At
the top, there's a choice of Options. This contains options to change the type of
visualization, or the way that the report behaves. Not all reports have an Options
tab. The request page contains a tab where you can apply filters. In this example, you
can apply a filter on specific fields, or on any other field from the underlying table of
the report. If the table contains FlowFields, then you also have the option to limit the
totals of the FlowFields. In other words, limiting totals means applying FlowFilters
to the FlowFields.

Chapter 1

[7]

To summarize, a request page allows the user to specify options and filters before
generating the report layout.

You can then print or export the report to a specific format such as Word, PDF, or
Excel with the buttons at the bottom of the request page, or you can schedule the
report for it to run later.

The report viewer
When you preview a report from a client computer, the report is displayed using the
report viewer:

The report viewer is launched from the report request page,
but this is explained in a later section.

www.allitebooks.com

http://www.allitebooks.org

How Do I Start to Create a Report?

[8]

The report viewer allows reports to be embedded in Microsoft Dynamics NAV
client applications. The report viewer control is installed automatically on:

• Any client computer, for viewing reports from the Microsoft Dynamics
NAV client

• The Microsoft Dynamics NAV Server, for using the SAVEASEXCEL,
SAVEASWORD, and SAVEASPDF functions

• The computer running the development environment, for compiling reports

The report viewer is used when you preview the report if you are running a report
from the Windows client. The report viewer supports user interaction and renders
a report as an HTML page behind the scenes.

At the top of the report viewer there's a toolbar that provides navigation, search,
export, and print functionality:

You can save a report as an Excel, PDF or Word file. The same report can have
a different appearance and functionality, depending on the rendering format that
you select. For example, reports that have links, document maps, and bookmarks
might not work properly if the report is saved to a file. A report layout in a different
file format might include additional pages or white space, depending on how items
are aligned.

It's best to test the development with all render extensions
(Preview, Print, PDF, Excel, and Word)

At runtime, users can use the print commands on the ReportViewer toolbar to open
a Print dialog box, preview the report in print layout, and configure the page setup,
prior to printing.

You can also print a report from within the report viewer but note
that, if the function CurrReport.PREVIEW is used in the code,
the Print button will not be available in preview mode.

Chapter 1

[9]

Print support varies depending on whether you are using the Web server control or
Windows Forms control.

For more information about print support, refer to the following link:
https://msdn.microsoft.com/en-us/library/ms251693.aspx

Report development phases
Before you start to develop a report, you should think about what exactly you want
to achieve. Ask yourself the following questions:

• Who is the report intended for?
• What is the purpose of the report?
• How is the report going to be used?
• Where should the information come from?
• How should the information be visualized?

It doesn't matter what technology you are using, the development of a report always
boils down to two things: the data model and the layout.

The data model phase
The data model is actually the most important phase in report development, because
if you get it wrong or if you have to make fundamental changes to it, it usually
means you will have to redo the layout. So, take your time to think about the data
model thoroughly.

This means that you have to know what information is required in the layout and
where it is from. Are you going to use one or more tables? Is the same information
available in different tables, in that case, which one are you going to use?

Remember, in Dynamics NAV, information travels from the master
tables, via documents and/or journals, towards ledger entries and
posted document tables. Some information is copied from one table
to another, in order to keep track of history or changes.

https://msdn.microsoft.com/en-us/library/ms251693.aspx

How Do I Start to Create a Report?

[10]

Make a list of all the tables that contain the information and then decide which ones
you are going to use. In real life, this probably means you will have to consult an
expert or a business user and explain that the information they require resides in
multiple tables, so they can make an informed decision as to which table you should
use in the report.

Ledgers or Posted Documents?
Dynamics NAV allows posted documents to be deleted after they
have been printed. So, if confronted with the choice of using ledger
entry tables or posted document tables as data sources for a non-
document report, I recommend using ledger entries.

Once you have defined which tables you are going to use, you will need to think
about the relations between the tables, how you are going to link the tables, and also
in what order? The order will have an influence on the performance of the report, but
also on the kind of information that might be missing.

For example, if you are asked to create a report to display inventory by location, the
questions you should ask are:

• What is inventory, is it the sum of the quantities in the item ledger entry
table?

• What quantity field should I use: Quantity, Remaining Quantity…?
• What is a location? Is it the Location Code field in the Location table or

something else?
• Do I need to include items for which there is no inventory?
• Do I need to include locations for which there is no inventory?
• Do I have to display the item number or also the description?
• Should I include any translations, substitutions, variants, or cross-references?

The answers to these questions will define which tables and fields you are going to
include in the data model and in which order you are going to iterate over them.

Chapter 1

[11]

A good idea is to make a draft drawing of the layout of the report you
want to create on a piece of paper. Write down the fields that need to be
visible on the report and then find out which table they are from. After
that, if there are multiple tables, find out how the tables are related and
write that down. Having an entity relationship (ER) model helps a lot
here, especially in a customized database.
In this way, when you open the designer, you already know what you
need to do. Both novice and experienced developers make the mistake
of not thinking before they begin. It can then get confusing very quickly.

A good suggestion is to have a requirements session with the user, during
which you can create a mock-up of the report. Then you can define each field,
column, grouping, sorting and printing option. Based on this session, you can
then create the data model for the report. This mock-up is also referred to as a
format design document.

The layout phase
Although the data model is important for the reasons I just explained, the layout of
the report determines how the user will perceive it. So, if the layout is not easy to
interpret, or if you can't see the wood from the trees, however cleverly you construct
the data model, the report is not going to be used.

There are many out of the box reports in the Dynamics NAV application and most of
them are never used. One of the reasons is that they have an inadequate layout.

How do I visualize the information such that the report clearly reveals its intention
and the user quickly finds what he or she is looking for? That's the most important
question to ask when creating the layout.

Creating a report is not difficult, but making it easy to understand, so that you can spot
trends and learn from your data, takes some consideration. The main goal of a report is
to communicate information clearly and effectively, for example, graphically. A report
needs to create insights by communicating its key points in an intuitive way.

Using the example of the inventory by location report, you might consider how you
are going to visualise the inventory. Are you going to display a number, or a data
bar? Is it important to include a key performance indicator, for example compare the
current inventory with the reorder point (or some other important value)? Or are we
using items with an expiry date? If so, do items close to expiry need a different color?
Then, in what order are you going to display the locations and items?

How Do I Start to Create a Report?

[12]

The testing phase
Testing is a phase that is often neglected, for different reasons. The most frequent
excuse for the lack of tests is not having enough time. That might actually be true
when you are developing the report, but, in the end, when users complain about
bugs and missing functionality, you will wish you had tested more thoroughly.

Of course, this needs to be specified in your report's design document. Its test criteria
should mention which formats the report needs to be tested in.

Another reason tests are usually dismissed or poorly carried out is a lack of
understanding of the business case. How is the user going to use the report? Is all the
information on there, and is it correct? As a developer in the NAV world, you have
to put yourself in the shoes of the user. Only then will you truly understand if what
you developed is ready or not.

Tests should include export into different formats (PDF, EXCEL, WORD) and
actually printing the report on a printer. Test it on different clients: Windows,
web, and tablet.

Using the example of the inventory by location report, a test verifies if the inventory
is correct and corresponds to the inventory on the item card. Are there any locations
or items missing from the report?

Report development tools
The development of reports in Dynamics NAV is done with different tools. You
use the report dataset designer to create the dataset, which opens from the object
designer in the Dynamics NAV Development Environment. You can choose to use
either Visual Studio or Report Builder to create the layout.

Depending on your version of Dynamics NAV you will have to
use different versions of Visual Studio.

Chapter 1

[13]

What do I use to develop the data model?
You use Report Dataset Designer in the Microsoft Dynamics NAV Development
Environment to define the dataset of a report. This is how you open it:

1. In the development environment, on the Tools menu, choose Object
Designer.

2. In Object Designer, choose Report, and then choose New.

How do I create the report layout?
There are two types of report layouts: client report definition (RDLC) layouts and
Word layouts. To create an RDLC layout, you use Visual Studio Report Designer or
Report Builder from the Microsoft Dynamics NAV Development Environment.

The RDLC layout is the most flexible. By this, I mean that, from a technical point
of view, you have the ability to use expressions to determine how and when data
should be visualized. The Word layout is restrictive and imposes limitations on the
way you create the dataset.

In this chapter, I will focus on the RDLC layout. The Word layout is explained in
Chapter 8, Word Report Layouts.

How Do I Start to Create a Report?

[14]

Built-in and custom layouts
A report can have multiple layouts. In the development environment, a report can
have one RDLC layout and one Word layout. These are the built-in layouts, because
they are a part of the report object and are stored inside the report object. You can see
this when you export the report object to a text file, as the RDLC and Word layout
are then included.

A user can also create a custom layout with the Dynamics NAV application, which is
based on the built-in layout. The idea is that a user can customize the built-in layouts
according to their needs. In this way, a user can switch between different layouts for
the same report. These custom layouts are not stored in the report object, they are
stored in a separate table: 9650 report layouts.

In a multi-tenant Microsoft Dynamics NAV deployment, the
built-in report layouts are stored in the application database because
they are part of the report objects. Therefore, built-in report layouts
are available to all tenants. Custom report layouts are stored in the
business data database, therefore they are specific to the tenant. This
enables you to create separate report layouts for each tenant.

I recommend not creating too many report layouts. It is very convenient to have
multiple layouts but it can get confusing and difficult to manage.

Building the data model
The data model of a report is designed in the report dataset designer and will
become the dataset for the layout. The runtime dataset is flat and is generated from
the data items (tables). The layout will be rendered on top of the dataset.

Flat means that the dataset consists of rows and columns. For example, when you
combine two tables that have a one-to-many relationship, such as the sales header
and sales line, the dataset will consist of the columns from both tables and a row for
every line, in which the columns from the header table are repeated. So, at runtime,
the dataset looks different when compared to the definition of the dataset in the
report dataset designer, where data items are indented. I will explain in more detail
later in this chapter how the dataset is flattened and columns from different data
items are combined.

Chapter 1

[15]

The following screenshot is the dataset of the Report 1305 Mini Sales - Order.
As you can see, it contains many tables and columns:

The following is a screenshot of the dataset of this report at runtime:

As you can see, the dataset at runtime consists of rows and columns. There is a
column for every column in the dataset designer, and a row for every record from
the data items. This is referred to as a flat dataset, as against the data items, which
are indented.

How Do I Start to Create a Report?

[16]

To visualize the dataset of a report at runtime use Ctrl + Alt + F1, or About This
Report, as shown in the following screenshot:

When you select About This Report, the system tells you that you
have to run the report again to see the data. Actually, you have to
enable this feature before you can see the dataset. This means, of course,
that you have to run your report twice, just to be able to see the contents
of the dataset.
The information in the About This Report page can also be exported
to Microsoft Word or Excel or to an e-mail in Microsoft Outlook. A
user can then forward this information to the helpdesk or whoever is
providing support.
If you click on the About This Report feature in the request page of the
report, then it is also enabled. After that, at runtime, you can click on
About This Report and the dataset will contain data. In this way, you
don't have to run the report twice to be able to see the dataset.

Understanding the report dataset designer
In this section, I will explain how to use the report dataset designer to create a data
model for your report.

Building the dataset
Building the dataset is an important process because it determines where and how
the data becomes available in the runtime dataset and so will have an impact on how
you design the layout.

Chapter 1

[17]

Data items and columns – fields, variables, and
expressions
You design the dataset in the Report Dataset Designer, based on data items
and columns. Data items link to tables in the database and columns link to fields
or expressions:

A column can be a field in a table, but it can also be an expression, a variable or
a text constant.

Let's start with an example and create an item list report. The idea is to display a
list of items, so I will use the Item table as my data item and I will add the number,
description and inventory as columns.

In the dataset designer, add a Data Type DataItem and Data Source Item line, then
use the field menu button to select the fields from the Item table:

The Field Menu allows you to select any of the data item fields and add them to the
report without having to type in the Name of the field.

www.allitebooks.com

http://www.allitebooks.org

How Do I Start to Create a Report?

[18]

In the Field Menu window, select one or more fields that you want to
add to the report dataset. Select multiple fields by holding down the
Shift key or the Ctrl key. Choose the OK button to add the selected
fields to the dataset.

All names in the Name column must be unique and Common Language
Specification (CLS) compliant. You will notice that, when using the Field Menu,
the field name consists of the field name, an underscore, and the data item name.

More information about the Common Language Specification is
available in the MSDN Library at https://msdn.microsoft.
com/en-us/library/12a7a7h3.aspx.

After you have selected the data items and columns you want to add in the dataset,
open the properties window. Here you can set the data item and field properties.

Use Shift + F4 or the property button at the top to open the properties.
When you select a data item or a field, the property window displays the
properties of the selected data item or field. When you go to the last line in the
dataset designer, referred to as the first empty line, the property window displays
the report properties.

The following image shows the properties of a data item and of a field:

https://msdn.microsoft.com/en-us/library/12a7a7h3.aspx
https://msdn.microsoft.com/en-us/library/12a7a7h3.aspx

Chapter 1

[19]

You can also include a variable in the report dataset. Define the variable in C/AL
Globals and then add it by typing in its name or using the assist-edit button in the
data source column where you can select it from the C/AL Symbol Menu:

An example of this report is available in the object: Packt - CH01-1

A column can also be the result of an expression, here are some examples:

• FORMAT(TODAY,0,4)

• Item.Description + '-' + Item.No_

• STRSUBSTNO(DocumentCaption,CopyText)

• -("Line Amount" - "Inv. Discount Amount" - "Amount Including
VAT")

How Do I Start to Create a Report?

[20]

Including captions and labels
You are not only going to display data in the report layout but also field names
and textual information. These names and text will be displayed in the user's own
language, since Dynamics NAV is a multilanguage application. You can therefore
use captions and labels when you design the dataset. Captions and labels are sent
as parameters to the report layout. They are not actually included in the dataset,
because their value is the same for every record and we don't want this information
to repeat because that would increase the size of the dataset unnecessarily.

To include a caption:

1. Select the row in the dataset.
2. Open the properties window (Shift + F4).
3. Enter Yes in the IncludeCaption property.

Alternatively, use the IncludeCaption checkbox in the report dataset designer:

If you select a row that contains an expression or a variable, then you will get the
following error when you activate the IncludeCaption property for that row:

Chapter 1

[21]

You can only use the IncludeCaption property on table fields. For other fields,
you can define a label.

To include a label:

1. Go to View, Labels to open the Report Label Designer.
2. Add a new label in the Report Label Designer by entering a Name

and a Caption.
3. Then, in the Label properties, use the CaptionML property to translate the

label into other languages.

Alternatively, you can use the assist-edit button to open the label Multilanguage
Editor:

How to see the properties
To see the properties of a column or data item, you have to first select
it. Make sure it is selected by clicking on it with your mouse. Then, you
can click on the properties button at the top of the screen, or press Shift
and the F4 function key. Now, the property window opens and displays
the appropriate properties.

IncludeCaption versus FIELDCAPTION
Captions are sent as parameters and in the language of the user. In some cases, for
example in document reports, you may want the captions to be in the language of
the recipient, not in the language of the user. To do that, you use the FIELDCAPTION
function, and add the caption to the dataset as an extra column. Then, you can
determine the language via C/AL code.

How Do I Start to Create a Report?

[22]

Keep in mind that adding captions to the dataset with
FIELDCAPTION increases the size of the dataset, so only do this
when it is really necessary. In previous versions of Dynamics
NAV, captions were added by default in the dataset, so using
IncludeCaption and labels is a performance improvement.

An example of the use of FIELDCAPTION can be found in most document reports:

• Sales: Quote
• Order: Confirmation
• Sales: Invoice
• Sales: Credit Memo
• Sales: Shipment

Examples of the FIELDCAPTION function are shown in the following screenshot:

How is the dataset flattened?
At runtime, a report dataset consists of rows and columns. If you only have one data
item, then the columns in the dataset designer become the columns of the runtime
dataset and the rows from the data item (or table) become the rows in the dataset. In
this situation, the runtime dataset looks the same as when you simply run the table.

If you combine multiple data items, then the data items at design time can be
indented, or not, and this results in a different dataset at runtime. Since the runtime
dataset is two dimensional, consisting of rows and columns, information is repeated
over multiple rows.

In this section, I will explain and demonstrate how the runtime, flat, dataset is
generated, using indented or non-indented data items.

Using multiple data items in a report is a common pattern in most reports and
understanding how the multi-data-item dataset at design time is converted into
the flat two-dimensional dataset at runtime is very important. Understanding this
process is, in my opinion, the most important part of RDLC report development,
because it determines how you build the layout and which filters you need to apply
in the RDLC layout.

Chapter 1

[23]

Unrelated tables or multiple data items, without indentation
As an example, let's start with a dataset that consists of two data items, Vendor
and Customer:

When we run this report and display the dataset with the About This Report
feature, it shows this:

In the dataset there is a column for every column in the report dataset designer:
No_Vendor, Name_Vendor, No_Customer, Name_Customer.

When the report processes the data items it starts with the first one (on top), which
is Vendor. For all vendors, it fetches their No and Name and adds it to the dataset.
The customer columns remain empty. Then, after the Vendor data item has been
completely processed, the system starts with the Customer data item and does the
same. The result sets of the two data items then follow each other in the dataset,
stuck together.

How Do I Start to Create a Report?

[24]

Now imagine that I need to create a request page for this report to include an
option to display details. Then, I would create a variable HideDetails, add it to the
request page, and also add it to the dataset. If I added this variable to the dataset
as an extra column, then we would have a problem. Are we going to add it to the
Customer or Vendor data item? If we add it to the customer data item, it will be
available at runtime, but not in the vendor rows. Now, as this is a variable that
contains a constant value, we only need it once and there's no point in repeating
its value on every row, because that would increase the size of the dataset and so
decrease performance.

The solution is to include an extra data item that will only add one row
to the dataset. To do this, you can use the integer table, as shown in the
following screenshot:

Then the dataset becomes this:

The integer data item adds one row at the end of the dataset and this contains the
value of the HideDetails variable.

Chapter 1

[25]

The expression SORTING(Number) WHERE(Number=CONST(1))
in the DataItemTableView property of the Integer data item
makes sure that the outer data item produces exactly one row from
the Integer table.

Use the following expression to retrieve this value in the layout of the report:

=Last(Fields!HideDetails.Value, "DataSet_Result")

Unless you add the integer data item as the first data item in the report dataset
designer, the row is added to the beginning and the expression becomes this:

=First(Fields!HideDetails.Value, "DataSet_Result")

Remember that we have an extra row in the dataset containing our variable
HideDetails. This row should be filtered out in the tables in the layout that
display the Vendors and Customers.

An example of this report is available in the object: Packt - CH01-2
Using an integer data item, and filtering it to add one or more rows in
the dataset, is a common pattern in report design. Instead of filtering
on a constant value, you can also set the filter on the integer data item
via the C/AL code in the integer data item OnPreDataItem trigger.
In that way, you can set it at runtime, depending on an option in the
request page. In document reports, this is usually how the NoOfCopies
option is implemented. I will come back to this pattern in the Chapter 5,
Document Reports.

Related tables or multiple data items with indentation
Let's create a report with a dataset that contains two data items as an example:
Customer and Customer Ledger Entry.

In document reports, this pattern is applied a lot, because, in
a document report, we have many data items that need to be
visualized in different tables (or sections) of the report.

How Do I Start to Create a Report?

[26]

The Customer Ledger Entry needs to be linked to the Customer, so for each
customer we can see their individual entries. Linking data items is done by indenting
them in the report dataset designer and then, in the indented data item setting, the
link fields in the property DataItemLink, as follows:

Then, when you run the report, the dataset becomes:

Customers that don't have ledger entries are shown, but the ledger entry columns
are empty. Customers that have ledger entries are shown and, for every ledger entry,
there's a row in the resulting dataset.

As you can see, if a customer has multiple ledger entries, then, for every ledger, a
row is added to the dataset and the columns for the customers are repeated on each
of these rows. This is called the flattening of the dataset, the columns of the parent
record are repeated for every child record.

Chapter 1

[27]

To filter out customers that don't have ledger entries, you can use the
PrintOnlyIfDetail property. You need to set this on the top data item, in this
example, the Customer:

The property PrintOnlyIfDetails specifies whether to print data in a report for
the parent data item when the child data item does not generate any output. If there
are more than two data items, then the report iterates through each parent child
relationship in the same way.

An example of this report is available in the object: Packt - CH01-3

If you are going to create a layout for this dataset and you want to see the ledger
entries per customer, you do this by creating a group in the table and grouping on
Customer No.

This is a very common design for the datasets in Dynamics NAV reports. It is used
with header and line tables, master and ledger tables, and also in document reports.

www.allitebooks.com

http://www.allitebooks.org

How Do I Start to Create a Report?

[28]

If you omit the DataItemLink and DataItemLinkReference between
the Customer and Customer Ledger Entry table, which effectively
disconnects the two tables, then the resulting dataset is much larger,
since it includes all possible combinations of headers and lines, with
absolutely no regard to their possible table relations.

When using multiple data items with indentation, you can also apply the technique
of including an integer data item. In that case, investigate the resulting dataset before
you create the report layout because, depending on the result, you might want to
move the integer data item to the top or bottom to get a better dataset.

Report triggers
A report, like other objects in Dynamics NAV, contains triggers. These triggers
are fired when specific events happen and allow you, as a developer, to have code
executed at those moments. In this section, I will explain the different triggers and in
what order they are fired.

What happens when a report runs?
When you run any report, the OnInitReport trigger is called first. This trigger
performs any processing that is necessary before the report is run, and so before any
data is read, and before the request page is shown to the user.

Next, the request page for the report is run, if it is defined. Here, you select the
options that you want for this report.

If you decide to continue, the OnPreReport trigger is called. At this point, no data
has yet been processed. You can use this trigger to initialize variables or fetch
information from the database via C/AL code. The Company Information table is
usually queried in this trigger to retrieve company information like the name, VAT
number, company logo, and so on.

When the OnPreReport trigger has been executed, the first data item is processed.
When the first data item has been processed, the next data item, if there is any, is
processed in the same way.

When there are no more data items, the OnPostReport trigger is called to do any
necessary post-processing.

Chapter 1

[29]

The following is a visual representation of the report execution flow:

The report trigger sequence
The OnPreDataItem trigger is executed before any data is retrieved from the
database. This trigger is used to filter the data item dynamically.

The OnPostDataItem trigger is executed after the data item has been processed,
meaning after all records have been fetched from the table. This trigger usually
contains no code, or just code to clean up variables or filters.

In between the OnPre and OnPost DataItem triggers, the data is processed on a
record by record basis. The OnAfterGetRecord trigger is executed after a record is
fetched from the table, but before it is added to the dataset.

How Do I Start to Create a Report?

[30]

Understanding the flow of report triggers and data item triggers is crucial when
deciding where to put C/AL code. C/AL code should not be executed when it is not
necessary. For example, if you can choose between the OnAfterGetRecord trigger
and the OnPreDataItem trigger, you should choose the OnPreDateItem trigger. This
is because the OnAfterGetRecord trigger will execute for every single record that is
retrieved from the database.

What is a ProcessingOnly report?
A processing-only report is a report that does not print but just processes data or
C/AL code as in batch processes that require user input. Processing table data is not
limited to processing-only reports. Reports that print can also change records. This
section applies to those reports as well.

It is possible to specify a report to be "Processing Only" by changing the
ProcessingOnly property of the Report object. The report functions as it is
supposed to (processing data items), but it does not generate any printed output.

When the ProcessingOnly property is set, the request page for the report changes
slightly, as the Print and Preview buttons are replaced with an OK button. The
Cancel and Help buttons remain unchanged. When the ProcessingOnly property is
set, you cannot create a layout.

If you want to remove the layout from a report set the
ProcessingOnly property to yes. You will get a prompt that
the layout will be removed. Then, set the ProcessingOnly
property back to No.

There are advantages to using a report to process data rather than a code unit:

The request page functionality that allows the user to select options and filters for
data items is readily available in a report, but difficult to program in a code unit.

Using the report designer features ensures consistency. Instead of writing code to
open tables and retrieving records, report data items can be used.

Chapter 1

[31]

Creating the layout
Now it is time to see how to create a layout for a report. In Dynamics NAV, we have
a choice of either Visual Studio or Report Builder. Let's start by comparing the two.

Visual Studio versus Report Builder
In the Dynamics NAV development environment you can set the Use Report
Builder option, via Tools/Options. If set to No, then the system will use Visual
Studio to create the report layout, otherwise Report Builder will be used.

By default, the option is set to No, even when Visual Studio is not
installed. You have to manually set this to yes if you want to use
Report Builder.

Report Builder is (normally) installed together with Dynamics NAV when you install
the development environment. Visual Studio has to be installed separately. Report
Builder is free and can be downloaded from the Microsoft website. To be able to
create report layouts with Visual Studio in Dynamics NAV 2013, you need at least
the Professional edition of Visual Studio, which is not free.

More information about which version of Visual Studio is right for
your environment is available here:
http://blogs.msdn.com/b/nav/archive/2013/12/19/
microsoft-visual-studio-2013-now-supported-for-rdlc-
report-design.aspx

https://msdn.microsoft.com/en-us/library/
dd301054(v=nav.80).aspx#DevEnv

As from Dynamics NAV 2015 you can use the Visual Studio Community Edition
2013, which is free and can be downloaded from https://www.visualstudio.com/
en-us/news/vs2013-community-vs.aspx.

Creating a simple layout in Report Builder
In this section, we are going to use Report Builder to create a report layout. Make
sure you set the option Use Report Builder to Yes.

I will start with the report Packt - CH01-1, which contains a data item for the integer
table, and I will create a simple layout to display an item list.

http://blogs.msdn.com/b/nav/archive/2013/12/19/microsoft-visual-studio-2013-now-supported-for-rdlc-report-design.aspx
http://blogs.msdn.com/b/nav/archive/2013/12/19/microsoft-visual-studio-2013-now-supported-for-rdlc-report-design.aspx
http://blogs.msdn.com/b/nav/archive/2013/12/19/microsoft-visual-studio-2013-now-supported-for-rdlc-report-design.aspx
https://msdn.microsoft.com/en-us/library/dd301054(v=nav.80).aspx#DevEnv
https://msdn.microsoft.com/en-us/library/dd301054(v=nav.80).aspx#DevEnv
https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx
https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

How Do I Start to Create a Report?

[32]

From the report dataset designer, click on View, Layout to open Report Builder:

Report Builder features
On the left-hand side you can see the Report Data section in Report Builder.
It contains:

• Built-in Fields: The built in fields can be considered as constants or variables.
They are not a part of the dataset and can be used in the layout, in textboxes
or in expressions.

• Parameters: Parameters contain the labels and captions that were added via
the IncludeCaption property on a column, or via the label designer.

• Images: Images can be imported into the report layout as embedded images.
• Data Sources: In Dynamics NAV RDLC reports, there is always exactly one

data source. At runtime it links to the report dataset, generated by the report
dataset designer.

• Datasets: In Dynamics NAV RDLC reports, there is always exactly one
dataset. It has the name Dataset_Result and contains the columns that were
added in the report dataset designer.

Chapter 1

[33]

At the top you can see the ribbon. It contains three sections:

• Home: Here you can see formatting toolbars and buttons. You can use them
to format the layout of textboxes in your report.

• Insert: Here you can see the toolbox. It contains report items, which are
divided into Data Regions, Data Visualizations, Report Items, Sub Reports
and Header/Footer.

Sub Reports are not available when designing Dynamics NAV
RDLC reports. They are meant to be used with Reporting
Services and require a SQL Server Report Server.

• View: Here you can customize the Report Builder look and view. You can
disable or enable Report Data, Grouping, Properties and Ruler.

At the bottom, you can see the Grouping pane. It contains Row and Column groups.
You can use them when you want to add grouping to your report layout.

On the right you can see the Properties. Depending on what you select in the layout,
you can see and edit its properties.

Wizards for prototyping
Report Builder contains wizards to help you to create a report layout. Let's use them
to create our item list.

1. In the Insert tab in the ribbon, click on Insert, then Table, and then
Table Wizard.

2. In the Choose a Dataset window select Dataset_Result and click on Next.

How Do I Start to Create a Report?

[34]

3. In the Arrange fields window you can now see the columns on the left.
You can drag them to the right and put them into Values, Column Groups
and/or Row groups. Let's drag the fields into Values:

4. For the inventory, click on the little arrow and select Sum. Click on Next.
5. In the Choose the Layout window, you can select grouping and totaling

options, but only if you added a row and/or column group in the previous
window. Click on Next.

6. In the Choose a Style window, you can select a style template.
Click on Finish.

Chapter 1

[35]

7. The wizard has ended and it has added a table to the body of the report:

Now, we are going to save and test the layout.

In Report Builder, click on the Save button (or Ctrl + S). Then close report builder.
If you forget to save it, Report Builder displays the following message:

As you can deduce from this message, Dynamics NAV has generated a report.rdlc
file and opened it in Report Builder. Then, we made changes to it, via the wizard.
Now, it's asking us to save our modifications. This report.rdlc file will then be
imported back into the report dataset designer. This happens when you click on a
line in the report dataset designer:

How Do I Start to Create a Report?

[36]

Click on Yes (if you click on No the changes are not imported and will be lost.)
After you click on Yes, the system will parse the report.rdlc file for errors.
Some errors will be detected at this stage. Now you need to save the layout in the
report object in the Dynamics NAV database. Click on File, Save (or Ctrl + S). When
you save it, with the compile option checked, the system will parse the complete
report and some errors might be detected.

Now run the report via File, Run (or Ctrl + R). The request page opens.
Click on Preview:

Chapter 1

[37]

To further enhance the report layout, you can reopen it via View, Layout.

You don't have to close Report Builder if you know in advance the
layout is not ready and you only want to test or preview it. In that
case, save the layout in Report Builder and minimize Report Builder,
don't close it. Then, click on a data item to import the layout,
confirm and save, and run the report. If you need to make more
changes to the layout, simply return to Report Builder, make your
changes and follow the same steps to import your changes back into
the report dataset designer.

It's very easy to create a simple layout using the wizards in Report Builder. I use it a
lot for prototyping. You can then further enhance the report layout in Visual Studio.

Creating a simple layout in Visual Studio
In this section we are going to use Visual Studio to create a report layout. Make sure
you set the option Use Report Builder to No.

I will start with the Item List report I created with Report Builder, but first, I will
remove that layout by setting the processingonly property to yes. The following
message is displayed:

www.allitebooks.com

http://www.allitebooks.org

How Do I Start to Create a Report?

[38]

After confirming and deleting the current layout, don't forget to set the property
back to No.

Next, click on View, Layout to open Visual Studio:

In Visual Studio you can see similar sections to those in Report Builder.

The Report Data window needs to be opened manually by selecting
View, Report Data (or Ctrl + Alt + D). You will need to do this every
time you open Visual Studio.
If Report Data is not available in the View window, then click
somewhere in the body of the report to make it available in the
View menu. Visual Studio automatically populates the toolbars with
options depending on what you have selected in the layout.

Chapter 1

[39]

To create a table layout, I will use the Toolbox. To open the Toolbox click on
View, Toolbox:

Here, I will drag the table onto the report body. Alternatively, right-click in the
report body and select Insert, Table:

How Do I Start to Create a Report?

[40]

To populate the table I will use the captions on the first row, which is the header
row, and I will use the value fields from the dataset. From the parameters, drag the
parameter into the textbox on the header row. Then, in the corresponding textbox on
the detail row, click on the drop-down box to select the value:

There are many other ways of doing this, but I find this the easiest. Otherwise
sometimes Visual Studio might create extra columns.

Repeat this process for all the columns. Then select the first row via its handle and
make it bold. Next, we need to save our layout in Visual Studio, minimize it, and
then go back into the report dataset designer and import it into the report object,
just like we did with Report Builder. Then you can save and run the report to see
the result.

Visual Studio features
Visual Studio contains many features to make report editing a pleasant experience.
I will introduce these features in this and the following chapters.

Chapter 1

[41]

Report formatting, toolbars, and document outline
In Visual Studio, you can change the layout of the report designer. You can move
around the report data, properties and other sections. You can enable and disable
toolbars, and so on. It's much more flexible than the report builder.

There is also the Format menu:

This menu contains many formatting options. They are especially useful when you
need to align textboxes, for example in a document report.

There's also the Solution Explorer:

How Do I Start to Create a Report?

[42]

It contains the complete solution. Be careful, because only the report.rdlc file
is imported into the report object. Any changes to the other items in the Solution
Explorer are not saved. One advantage is that we can add extra template reports in
the Solution Explorer. These templates can contain tables, lists, and matrices which
you can pre-format and then copy and paste into your report layout. I will explain
later how you can create and include these templates.

Building and testing the layout
I would like to point out that there is a big difference between what you see and
experience when you print an enhanced report onscreen and what you see and
expect, when you actually print it on paper, or export it to Excel, Word or PDF.

When you run a report in the report viewer then it is fully functional. What I mean
by this is that all interactive features the report contains are available to the end user.
An enhanced report can, for example, contain hyperlink actions, expand/collapse
functionality, drilldowns, and so on. When the user prints the report on paper, that
interactivity is lost. If the main usage of a report is to print it, as document reports
usually are, then don't spend much time adding interactivity to the report, because it
will almost never be used and so will not be a very good return on investment.

Don't enhance too much
From personal experience, I have seen many customers migrate
towards enhanced reports as they are eager to implement a lot of
interactive features in reports, and because it looks like a good thing
to do. It is possible, so why not implement it?
Remember that adding functionality to reports should be based upon
business requirements and not only because it looks nice. The more
functionality you implement in reports, the more difficult it will be to
maintain these reports.

Apart from the functional reasons online reports are better than printed reports,
there's also the financial aspect. By using online reports, you will spend less on
paper, ink, storage, binding, and distribution.

The ability of RDLC to export a report to PDF and/or Excel can help, but you must
also remember that not all of the interactive features will still work in PDF and/or
Excel. For example, drill down is available in Excel, but not in the PDF format.

Chapter 1

[43]

Testing pagination and layout in different rendering
extensions
Some reports look very different in online mode as compared to being printed on
paper or exported to Excel or PDF. For example, totals at the bottom, page breaks,
running totals, headers, and footers are items to pay attention to. That's why it's
very important to test all of these scenarios and explain to the end user how to use
the report.

Even when the user specifically asks for only Excel and PDF it is important to test
other renderings and run any issues that you see by the users, to make sure they
don't come back later if they see a problem with the other rendering options.

Testing the report in different clients – Windows,
Web, and tablet
Just as you test different rendering extensions for a report, you should also test it
in different clients. The actual report content will be the same, but the request page
might be different or sometimes not shown at all.

Reporting design guidelines
Microsoft has published design guidelines you can follow when you create a layout
for a report. This is especially important when you develop document and list
reports. By following these guidelines, you can make sure that your reports are:

• Simple and clean
• Easy to scan and read
• Professional and consistent

Applying these guidelines has the advantage that you can use a minimum set of
rules, by using the default formatting options available in Visual Studio. You can
also create report layout templates that you can apply by report type so that all
your reports have a standard look and feel and give a consistent user experience.

How Do I Start to Create a Report?

[44]

More information about the report design guidelines is available here:
https://msdn.microsoft.com/en-us/library/
jj651616(v=nav.70).aspx

Microsoft followed these guidelines, in some reports, when they developed the
report layouts in Dynamics NAV 2013. In most implementations of Dynamics NAV,
document reports are customized and this process can be time-consuming. The idea
was to provide layouts that could be used out of the box in real life. I will leave it up
to you to decide if this is true.

The request page
Before a report is run in the Windows client, a request page is shown. Here, you
can enter filters, define sorting, and specify options for the report. A request page is
automatically created when you create a report. The Request Options Page tab has
to be created by the report developer.

To design the request page options tab, click on View, Request Page in the report
dataset designer. This opens the request page designer. It is actually a page designer
in which we usually create an options Fasttab.

Here's an example:

https://msdn.microsoft.com/en-us/library/jj651616(v=nav.70).aspx
https://msdn.microsoft.com/en-us/library/jj651616(v=nav.70).aspx
https://msdn.microsoft.com/en-us/library/jj651611(v=nav.70).aspx
https://msdn.microsoft.com/en-us/library/jj651611(v=nav.70).aspx

Chapter 1

[45]

The report description
The following illustration shows the components of a report and how they
are related:

The report creation workflow
Let's summarize what we have learned about how to create a report. The steps
required to create an RDLC report are:

1. Create a new report in the object designer.
2. Create the data model in the report dataset designer

1. Add a data item in the data item designer.
2. Add fields from the data item as columns in the report

dataset designer.

How Do I Start to Create a Report?

[46]

3. Create the report layout:
1. Use the View/Layout menu to open the layout and create the

RDLC file.
2. Make changes to the layout, and add new controls from the toolbox.
3. Save the changes in the layout.
4. Go back to the report dataset designer and click on one of the

data items.
5. Answer Yes to importing the RDLC file.

4. Test the report:

1. Save your report.
2. Run your report.

These steps can be visualised in the following diagram:

Chapter 1

[47]

Summary
In this chapter, we created our first report, using Report Builder and the Visual
Studio report designer. The chapter provided you with a good understanding of the
steps required to get started when creating report layouts.

Remember that developing a report can be broken down into different phases: the
data model, the layout and testing.

We can conclude that the RDLC layout is a very big step forward in regards to report
design functionality. It has enormous potential and added value and features that we
can now use and apply when designing reports in Dynamics NAV.

The choice between Report Builder and Visual Studio depends on your experience.
If you are a less experienced developer and you want to make use of wizards to
create a report layout, then Report Builder is a good starting point. Visual Studio has
a lot more features and is much more flexible. So, as you go along, you will probably
favor Visual Studio over Report Builder or, to get the best of both worlds, you can
combine the two. Of course, Report Builder is free and Visual Studio is not, so
sometimes your budget will determine which one you are going to use, depending
if you are using Dynamics NAV 2013 or 2015. But Visual Studio has so much added
value that it will have a great return on investment.

In the next chapter, we will explore the Tablix data region. I will explain what a
Tablix is and how it can be used to create a list, table or matrix.

Last, but not least, we will learn about grouping, sorting and formatting report items.

www.allitebooks.com

http://www.allitebooks.org

[49]

Getting Started with the
Tablix

In the previous chapter, we learned how to create our first report. We went
through the different report development phases and introduced the report
development tools.

This chapter is all about using the Tablix control when creating a layout for the
report. It will start by explaining that the Tablix can be used as a List, Table, or
Matrix, and then demonstrate the differences between them and when to use
which. This chapter also covers different techniques on how to filter, sort, and
group information in the report layout. The chapter also introduces some important
textbox properties.

Report items
To design the layout of a report in Visual Studio you can use the toolbox, in which
you will find all the controls you can use on your report. It's with this toolbox, by
clicking on a control and dropping (or by drag and drop or drag and draw), that you
can add to the report. You can also right-click on the layout (the body, header, or
footer) and insert a control.

There are multiple ways of achieving the same goal. In this book,
I will use and demonstrate the steps I apply on a daily basis in real
life. Keep in mind that there might be different ways to do the same
thing, but I will not document all of them.

Getting Started with the Tablix

[50]

The controls in the toolbox can be divided into report items and data regions. Report
items represent information, which might come from the dataset. Examples of these
types of report items are lines and rectangles. Images and textboxes are independent
report items that can be connected to a field from the dataset, but it's not mandatory.

Static report items are items on a report that are not connected to a dataset. A
textbox, for example, represents a text constant for labels or comments in a report.
The static report items are as follows:

• Pointer
• Textbox
• Line
• Rectangle
• Image

When you drag a field from the dataset in the report body, the system will create a
textbox that references the field from the dataset. But, when you run the report, the
textbox will not be repeated for every record in the dataset.

Data regions are areas in a report that contain data from the dataset that is repeated,
in the form of multiple records. The data regions are:

• List
• Table
• Matrix
• Chart

So, if you want to display multiple records from the dataset, you need to select one
of these data regions from the toolbox, add it to the report body and then fill it with
fields from the dataset. Only then, with a data region, will the records be repeated.

Everything is a Tablix
If you already have some experience in developing RDLC report layouts in
Dynamics NAV 2013 or later, then you will surely have noticed that when you
select a List, Table, or Matrix from the toolbox and add it to the report body, it
shows up as a Tablix in its properties, as you can see in the following screenshot:

Chapter 2

[51]

The Document Outline
To open the Document Outline window, go to View, Other Windows, and select
Document Outline, or use the shortcut: Ctrl + Alt + T:

Getting Started with the Tablix

[52]

Tablix naming
To see the difference in the properties I recommend changing the
name of your List, Table, or Matrix, as I did in this example, to reflect
the template you used to create it. An explanation of how you can do
this is available in the section, Changing the name of a Tablix.

This was not the case in earlier versions and the reason is that we are now
on RDLC version 2010. In RDLC version 2008, the Microsoft SQL Server team
decided to merge the List, Table, and Matrix data regions into a new object called
a Tablix. Of course they needed a fancy name for the new object and came up
with Tablix because:

The change you need to make in your mind is that you need to consider the List,
Table, and Matrix controls that you find in the toolbox as templates for the Tablix.

• A List is a Tablix template to display information in a free form layout
• A Table is a Tablix template to display detailed information in a grid layout
• A Matrix is a Tablix template to display grouped information in a grid layout

I find this a great improvement because you can upgrade a table into a matrix.
This means you don't have to lose any work from your layout if, during report
development, you notice that the table you created actually needs to become a
matrix. Instead of deleting the table and creating a matrix, you can simply convert
the table into a matrix. On top of that, the Tablix has some other improvements
which make it a very flexible report component.

Changing the name of a Tablix
To change the name of a Tablix, you need to click on the Tablix control so that the
gray bars become visible at the top and on the left. Then, in the corner on the left
top, right-click so that the dropdown menu appears. In the menu, select the Tablix
Properties option.

Chapter 2

[53]

The window that opens contains Tablix Properties and, in the Name property,
replace the name with a proper name, as in the following example:

The example comes from Report 1306 Mini Sales Invoice. This report was added
in Dynamics NAV 2015 and, in this report, Microsoft used proper names for the
Tablixes in the report. This is not the case in all reports.

List versus Table versus Matrix
So, let's have a closer look at the Tablix and investigate the difference between a List,
a Table, and a Matrix.

The List is actually completely different from the Table and the Matrix. When
you add a List to your report, you will see a List that contains a Rectangle. In the
following image you can see this in the Document Outline:

This example is available in the object: Packt - CH02-1

Getting Started with the Tablix

[54]

In this example, I added a List from the Toolbox to the report body. Then I dragged
and dropped three fields from the Report Data in the List, which I renamed as
List_1. Then, I dragged the captions from the Parameters on top of the List. Next, I
spent some time aligning the textboxes in the list with the textboxes above the list.

The result looks as follows:

You will probably find this a cumbersome way to create a simple list report, and
it is. Any changes in the layout require you to realign the textboxes, which is time
consuming. That is why a List data region is almost never used for these types of
reports. We will use the List for other things. In Chapter 5, Document Reports we will
see why we sometimes need the List.

The List can be used as a free form control if you need to position elements exactly,
for example when they need to be printed on preformatted paper. Unless you have a
really good reason to use a List, I would not recommend it.

Be careful
When moving textboxes around in a List with your mouse, it can happen
that you move a textbox outside of the list, where you actually don't see it
and it seems still in the list. That is why the Document Outline window
is very interesting. In there you can see what is in the List and what is
not. An alternative is to use the Parent property. It will contain the
name of the report item that is the parent of the one you selected.

Chapter 2

[55]

Usually, we want to organize our database fields in rows and columns. To achieve
that goal, the Table and Matrix are much better than the List.

In the previous chapter, when we created our first layout, there was an example on
how we use a table to create a list. Also, when you use the wizard in Report Builder,
it will use a Table in most cases to create the layout.

When you add a table from the toolbox on the layout, it contains two rows and three
columns. By using the right mouse button you can add or remove columns and rows.
There are three types of rows: Details, Header and Footer rows. The type of row that
you right-click on to add a new one is the type of row that will be added. A table can
contain multiple header, detail, and footer rows. This is especially useful when you
want to show or hide a row dynamically. You will often add multiple rows to a table
and then decide via an expression when they should be hidden or visible.

Actually, there are other types of rows, for example, group headers
and group footers. These are available when you group detail
information in a Tablix.

A table can contain detail data or aggregated data. Aggregating data means that you
will create a group in the table, for example, by Item Number, and then calculate an
aggregation of a detail value, for example the sum of the inventory by item.

Detail data is the data that you see in the report dataset about this
report feature. Grouped data is data that you will organize or group
by a field or expression, that you define. The dataset always contains
the information at the detail level. You add grouping, filtering, and
sorting in the layout of the report to organize the information.

The main difference between a Table and a Matrix is that a table can contain one or
more groups and a matrix has to contain at least one row and one column group.
This means that a Matrix allows you to create a layout with a variable number of
columns. Another difference is that, since in a Matrix data is always grouped, you
don't have the detail level, as you do in a Table. If you want to see details when using
a Matrix, I recommend including a drill-trough. You can do this with the textbox
action properties. If you click on one of the textboxes in the Matrix and link it to a
table or another report that contains the details, it would be similar to a flow field in
Dynamics NAV.

Getting Started with the Tablix

[56]

An example of how you can create links in reports is available in
Chapter 6, Tips and Tricks, in the section, Creating links.

There are different types of groups and I will discuss them in the section about
grouping in this chapter.

Filtering and sorting
Filtering and sorting are important concepts when running a report and, in many
cases, are offered to the users as options in the request page.

How can I implement filters?
For every data item in your dataset there will be a separate tab in the request page
allowing the users to apply filters on any of the fields of the tables. You can use the
following properties to manage this:

• ReqFilterFields: The fields you put in here are the default fields that will be
shown for this data item in the request page.

• DataItemTableView: If you select a key in this property then the data item
disappears from the request page, unless you have selected RegFilterFields.
The user will not be able to select a sorting order for this data item.

• ReqFilterHeading and ReqFilterHeadingML: Both can be used to change
the name FastTab for the data items in the request page. By default, the table
name is used.

Now, sorting and filtering is almost always something a developer is going to apply.
The question then is, where do we apply sorting and filtering? There are several
options, we can filter in the report dataset designer by making use of data item
properties or triggers, or we can apply filters in the report's RDLC layout.

Chapter 2

[57]

The answer to this question is that you should filter as soon as possible, which means
in the report dataset designer. This is because we don't want rows and columns to
appear in the reports dataset if they are not needed. The dataset is sent to the client,
over the network. The bigger the dataset, the more memory the client will require
and, at a certain point in time, it can run out and cause an out of memory exception.

For example, if you want to create a top ten customer list, you can use a table filter
in the table data region in the RDLC layout. Let's assume you have about 100,000
customers in the customer table. Then, at runtime, all of them will be fetched from
the customer table, sent to the dataset, and then filtered in the RDLC layout. I think
it's better to fetch only the rows that you will actually use from the database and
send them to the dataset.

When is it better to filter in the RDLC layout? I would answer, when you don't know
the filter value and/or filter field. You can use that for dynamic filtering because the
filter value and the filter field can be expressions in RDLC. Another reason is when
you want to give the user the ability to dynamically filter the dataset.

The same is valid in SQL Server side reporting services. If you filter your query,
you will get better performance than when you filter your dataset.

The only reason to filter in the layout should be to link a Tablix to a particular set of
records in the dataset. This is done a lot in document reports.

In some cases, this concept means that you might have to redevelop
your report's dataset to allow for dynamic filtering. An example is the
Customer top 10 report (111).
Top-ten filtering is done in the dataset and not in the layout, although
doing it in the layout is very easy, much easier than how it is done in
the report dataset designer. The way that this report is developed, as
well as how to apply dynamic filtering using an integer data item or
temporary table, will be explained in a later chapter.

In this section, I will focus on how you can apply sorting and filtering in the Tablix.
Examples of how you can apply filters in C/AL code in the dataset are available in
Chapter 7, Performance Optimization Techniques.

Getting Started with the Tablix

[58]

Imagine you have the following dataset:

In this dataset there are two data items: Item and Integer. The Integer data item,
which I have named Constants, contains the company name and logo. It is filtered
via its DataItemTableView property, as follows:

By applying this filter to the Integer table, I make sure that only one row is added to
the dataset. Now I'm going to create the following layout:

Instead of using an integer data item, in this example you can use
the Company Information directly as a data item, because it's a
setup table and it only contains one row. If you need to add any other
information from other setup tables to the dataset later, you will need
to redesign it, and use an integer data item. So, as a best practice, I
recommend using an integer data item at the end or at the beginning
of your dataset.

Chapter 2

[59]

Next, in the layout, select a Table from the toolbox and drop it into the report
body. Then, from the Report Data from the Parameters, drag and drop the No,
Description, and Inventory in to the first row, or header row, of the Tablix. Then, in
the second row, or detail row, click on the icon at the right top of the textbox so you
can see a dropdown menu. There you can select the corresponding field from the
dataset. Do this for all the columns, as in the following screenshot:

Save the layout in Visual Studio, import it into the dataset designer, save the
report object, and run it. Then, the result will contain all the rows from the dataset
and, because the Tablix should only show the columns with item values, the last row
doesn't make sense:

Getting Started with the Tablix

[60]

When you include multiple tables in the dataset, the Tablix will
show all of the rows, and you have to make sure each Tablix is
filtered to show only the rows that you are interested in showing.

This row at the end of the Tablix is the row from the integer data item. To filter it
out of the Tablix, you can apply a filter in the Tablix properties.

To open the Tablix properties, you first need to select the Tablix. You can select it
with the mouse or select it in the dropdown box in the property list. When the table
is selected you right-click the handle at the left top and select Tablix Properties
in the dropdown menu that appears. You will then see the Tablix properties in a
popup window, and can set the Filters, as shown in the next screenshot:

Chapter 2

[61]

Another way to access the filters is by clicking the ellipsis button next to Filters, from
the properties page, as in the following screenshot:

To see the Tablix handles, you need to select it, then the gray bars become visible.
These bars are referred to as handles. There's a handle at the top, one on the left and
a small box in the corner at the left top. If you right-click the handle in the corner
at the left top, it displays a drop-down menu. In this menu you can open Tablix
Properties..., as in the following screenshot.

If you right-click on the left top handle of the Tablix, you can open its properties and
add a filter. The filter in the preceding screenshot filters the Tablix with a condition
that says that the Item Number must not be empty, and so you filter out the rows
that don't belong to the Item Data Item.

Getting Started with the Tablix

[62]

Filtering on values
If you type the character 0 in the Value cell, by default, this evaluates to
the string 0. To compare a numeric expression with the number 0, use
the expression syntax which begins with an equal sign: =0.
When previewing a report, you may see a runtime error from data type
mismatches that may be similar to:
"The processing of FilterExpression for the [data set name] cannot be
performed. Cannot compare data of types System.Int32 and System.
String. Please check the data type returned by the FilterExpression."

This example is available in the object: Packt - CH02-2. You can run
the report to see the final result, or you can remove the filter in the
Tablix to see it with an empty row at the end.

How can I implement sorting?
Sorting can be applied in the same window where you apply filters in the Tablix.
Below Filters you can see Sorting and, in there, you can sort on any field from the
dataset, or even an expression.

To sort the table, perform the following steps:

1. Select the Sorting tab in the Tablix Properties popup.
2. Select the field you want to sort on in the drop-down box in the column

named Expression.
3. Select a Direction, ascending or descending, via the Order button

(A to Z or Z to A).
4. Click on the Ok button to apply the sorting.

Chapter 2

[63]

The following screenshot shows the sorting tab in the Tablix Properties
popup window:

You can even define multiple columns on which to sort, if it is applicable. By using
an expression to sort (or filter) you can make it dynamic. For example, you can use a
parameter in the request page to let the user decide.

The Sorting and Filters that you apply in a Tablix are valid for all its members.
This can be overridden if you are including one or more groupings in the Tablix.

If you are applying sorting in the layout of your report, there's no point in
giving the user the ability to sort in the request page via the sort button on
the data item tab, because whatever the user selects will be overridden at
runtime by the sorting you apply in the layout. In that case, it's better to
remove the sorting button from the request page by selecting a key in the
DataItemTableView. Otherwise you will be confusing the user.

Interactive sorting
With interactive sorting we enable the user to sort on any column in a Tablix by
adding sorting buttons to certain textboxes.

Getting Started with the Tablix

[64]

Open the textbox properties and activate Interactive Sorting for the selected textbox,
as shown in the following screenshot:

Usually, you activate the interactive sorting option for textboxes located in the Tablix
header. You can choose any dataset field to sort on, it can even be an expression. The
rows you will sort in this example are the Tablix detail rows. Once you have created
a group in a Tablix, you can also select the group as the sort target.

If you apply interactive sorting on all the column headers in the Tablix, the result
will look as follows:

Chapter 2

[65]

As you can see, up/down arrows are added in every column. When you run the
report, use the Shift and/or Ctrl buttons to combine multiple sorting.

Be consistent
Theoretically, it is possible to define interactive sorting for the No
field when clicked and then sort on Description. This will confuse
the user, so try to avoid it.

Interactive sorting is only available when you preview a report in the
report viewer. It is not available when you print the report or export
it to PDF, Excel, or Word.
The example report that includes filtering and interactive sorting is
available in the object: Packt - CH02-3.

To apply dynamic filtering in the report, use the request page. The following
screenshot shows how you can apply a filter on the item description field:

Getting Started with the Tablix

[66]

In the preceding example, the filter string is:

@*w*

The @ sign means it's case insensitive and the * sign means any character. So the
applied filter says, any description that contains a w.

Grouping
When you add data to a Tablix, in many cases you will add groupings to create a
different view on the data. When you add a group it is better to give it a proper
name, so you know why it is there. You can create multiple and different types
of groups in a Tablix and, in this section I will explain what a group is and the
difference between parent-child and adjacent groups.

How can I implement grouping?
Groups can be created manually, but sometimes they are created automatically, for
example when you use the wizard in report builder or when you drop a field on the
grouping pane. Groups are also structured in hierarchies. The hierarchies are defined
by the relationships and can be horizontal or vertical. When you create groups, the
rows that they contain become dynamic.

In a Tablix, there are also static rows. Static rows don't belong to a group. Static rows
are used to display totals or labels. They will only display once. A dynamic row is a
part of a group, and is usually rendered more than once. Textboxes in a dynamic row
usually contain aggregated data. The detail row in a Tablix is the innermost row and
it displays the detail data, which is not aggregated.

More in-depth information about static and dynamic rows is
available here:
https://msdn.microsoft.com/en-us/library/ee240753.aspx

Adding a parent-child group to a Tablix
When you add a group to a Tablix you can do it in two ways, you can use a parent-
child hierarchy or an adjacent one.

https://msdn.microsoft.com/en-us/library/ee240753.aspx

Chapter 2

[67]

A parent-child hierarchy can be compared to a tree structure. You organize your
data in a tree structure so that you can expand and collapse it. The idea behind it is
that you want to create a summary of your data according to a particular field. For
example, if you create a list of items and add a group to the location, you can then
create a summary of the inventory by location.

1. To get started, create a new report with the following dataset:

2. Then, in the layout add a Tablix to the body, that contains the
following fields:

Getting Started with the Tablix

[68]

Let's have a look and see how we can create this type of grouping.

1. To create a group, click on the Details arrow in the Row Groups window:

2. In the window that opens, select the field to group on, like this:

3. The option Add group header/footer adds an extra header and/or footer
row to the Tablix. As you can see, when a group is added in a Tablix, it is
made visible by the grouping line in the row handles.

Chapter 2

[69]

Row and column handles
Row and column handles become visible at the top and left side of
a Tablix when you click on them. They are gray and you can click
(or right-click) on them. The row handles also contain indicators to
show the type of row.

4. This vertical line shows where the group starts and ends and it resembles a
big bracket:

5. Now you have two extra rows, a group header, and a group footer row. In
the group footer row, below the quantity field on the detail row, select the
quantity from the dropdown:

Getting Started with the Tablix

[70]

6. Now, after you have selected the quantity field in the group footer row, make
sure you aggregate the numerical values on the footer (or header) row, as in
the following example:

7. The row group's window now shows the group and the result is as follows:

Chapter 2

[71]

If it is not already the case, I recommend changing the name of the
group to a meaningful name. This is important when you are going
to apply multiple nested groupings and makes it easier to see which
group is which.

8. We have now added a group to our Tablix and, when we run the report, it
will resemble this:

9. Next, I will remove the footer row and put the total in the header. Most
managers find it more interesting to start a report with the totals and then
the details. To do this, you can copy past the field from the footer row to the
corresponding textbox in the header row:

Getting Started with the Tablix

[72]

10. Then, select the footer row, right-click, and select Delete Rows:

How do I implement expand/collapse?
To make it even more interesting, I will now add an expand/collapse option to the
Tablix, so you can show or hide the details. To do this, you use the Hidden property.

1. Every textbox has a Hidden property which you can either set to True or
False, or to an expression. Instead of setting the Hidden property of each
individual textbox in the details to False, I will do it via the row visibility.
Right-click the detail row handle and select Row Visibility...:

2. In the row visibility window that opens, select the option, Show or Hide,
based upon an expression. I will use this as an expression:
=Last(Fields!HideDetails.Value, "DataSet_Result")

This means that the visibility of the detail row now depends on what the user
selects for the HideDetails option on the request page.

Chapter 2

[73]

The reason for the Last function is that the HideDetails field is added
as the last row in the dataset designer.

3. Then, select the Location Code field as the toggle item, as in the
following screenshot:

A toggle item is the name of a textbox on which you can click to change the
Hidden property. So, by doing this, we enable the expand/collapse option
on our group, allowing the user to show or hide details dynamically when
running the report.

4. Next, set the InitialToggleState property of the textbox that contains the
LocationCode to:

=NOT Last(Fields!HideDetails.Value, "DataSet_Result")

Getting Started with the Tablix

[74]

This will make sure that, when the user selects HideDetails (or not), the + or – icon
is correctly displayed. The InitialToggleState property of a textbox determines
the initial state of the toggle image. When you run the report, it now looks as follows:

In the request page, the user can select the HideDetails option to select the
default value of the Hidden property for the detail row. At runtime the user
can click on Location Code fields to expand or collapse the row and show or
hide the details dynamically.

An example of the finished report is available in the object:
Packt - CH02-4. An example of the starter object for this report
is available in the object: Packt - CH02-8.

Adding an adjacent group to a Tablix
Now, let's have a look at how we can use an adjacent grouping in a report. You can
start by importing the object: Packt - CH02-9.

Chapter 2

[75]

For this new report, I will use the following dataset:

To create the layout follow these steps:

1. In the layout, you start by adding a Tablix and then, in the detail row,
you add the Sales LCY and Profit LCY as fields:

Getting Started with the Tablix

[76]

2. Next, you add a parent group on [SalespersonCode_Customer], just as we
did in the previous report:

Chapter 2

[77]

3. Then you add a new group but, instead of selecting a parent-child group,
you select Adjacent After...:

4. For the group expression, use the following expression:
=Year(Fields!PostingDate_CustLedgerEntry.Value)

5. The result of the preceding expression is shown in this screenshot:

Getting Started with the Tablix

[78]

6. Then, rename the group to Year:

7. Now add a child group below the Year group, name it Month, and use the
following expression:
=Month(Fields!PostingDate_CustLedgerEntry.Value)

Chapter 2

[79]

8. The result of the preceding expression is shown in this screenshot:

Getting Started with the Tablix

[80]

9. In the group fields, select the Sum aggregation for the Sales LCY and
Profit LCY fields. You will now have a report layout that resembles this:

10. To add a row at the end of the report showing a total, go into the
Row Groups and add a total, as in this screenshot:

Chapter 2

[81]

11. Now, as in the previous report, use the row visibility and toggle properties to
create an expand/collapse option for all groupings:

Getting Started with the Tablix

[82]

12. Then run the report. It will look like the following screenshot:

In this report, we now have the details, first grouped by salesperson, and then below
it by year and month. This gives the reader a different view of the same data, all in
one Tablix. That's the power of using adjacent groupings.

Adjacent groupings also have other advantages. You can use them to offer
alternatives in document reports, for example. By combining them with
group filters you can use one Tablix to show information from different
data items, instead of using multiple tables, as in standard reports.
An example of the report with adjacent groupings is available in the
object: Packt - CH02-5

Formatting report items
Now we need to have a look at formatting because, as you will have noticed, the
amounts or quantities in the report are not formatted in the way we are used to in
Dynamics NAV. This is because the dataset that is generated by Dynamics NAV
contains the numerical values without formatting. It sends a separate field with
a format code that can be used in the format properties of a textbox in the layout.
Numerical fields have a Format property. This Format property is populated by
Dynamics NAV and contains, at runtime, an RDL format code that you can use in
the Format property of a textbox in Visual Studio.

Chapter 2

[83]

To get started with formatting, perform the following steps:

1. When you right-click on a textbox, a menu appears in which you can select
the properties of the textbox, as shown in the following screenshot:

I'm using object: Packt - CH02-4 as the example for formatting but, of
course, this can be applied in any report that has numerical fields.

2. In the Textbox Properties window, go to Number and then select Custom.
Click on the Fx button to open Expression Designer and type an expression.
The result of the expression will be the value of the property. In this case, our
expression should fetch the value from the format field from the Quantity
field. The expression will be:
=Fields!Quantity_ItemLedgerEntryFormat.Value
This means that the format of the textbox is fetched from
 the dataset field: Quantity_Item.

3. Instead of using Expression Designer, you can also just type this expression
directly into the Format code textbox or in the Format property in the
properties window of the textbox, as shown in the following screenshot:

Getting Started with the Tablix

[84]

Reporting Services and RDLC use .NET Framework formatting strings
for the Format property of a textbox. The following is a list of possible
format strings:

C: Currency
D: Decimal
E: Scientific
F: Fixed point
G: General
N: Number
P: Percentage
R: Round trip
X: Hexadecimal

4. After the format string, you can provide a number representing the amount
of digits that have to be shown to the right of the decimal point.

For example:

F2 means a fixed point with 2 digits: 1.234,00 or 1,234.00
F0 means a fixed point with no digits: 1.234 or 1,234

The thousand and comma separators (.and) that are applied, and the currency
symbol, depend on the Language property of the report.

More information about .NET Framework formatting strings can be
found here:
Custom Numeric Format Strings: http://msdn.microsoft.com/
en-us/library/0c899ak8.aspx.
Standard Date and Time Format Strings: http://msdn.
microsoft.com/en-us/library/az4se3k1.aspx.

As an alternative, you can use custom format strings to define the format value.
This is actually how Dynamics NAV populates the Format fields in the dataset.
The syntax is:

#,##0.00

http://msdn.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx

Chapter 2

[85]

You can use this to define the precision of a numeric field. The following image
provides an example:

Why does the Format property sometimes have no effect?
To apply formatting to a textbox, the textbox must contain
an expression, for example =Fields!LineTotal.Value
or =1000.
When the text in the textbox does not begin with the = sign,
then the text is interpreted as a string and formatting does
not apply.

You can also set the format in the report dataset designer, instead of in the layout.
You can do this by using the Format C/AL function. You can do this directly in
the dataset in the SourceExpression of any field, or you can do it in the data item
triggers, for example the OnAfterGetRecord() trigger. But, if you use an expression
in the SourceExpression, you lose the option to use the IncludeCaption property.

A good example of a textbox format property is available here:
http://thinkaboutit.be/2015/06/how-do-i-implement-
blankzero-or-replacezero-in-a-report

Using placeholders
If you select a textbox and right-click on it, you open the textbox properties, as you
have already seen in this chapter. But, inside the textbox, there's the placeholder. A
placeholder is the text, or expression, that becomes the information displayed in the
textbox at runtime. And the placeholder also has a set of properties that you can set.
So you can consider a placeholder as an entity inside a textbox, with its own set of
properties, which are, by default, inherited from its parent, the textbox.

http://thinkaboutit.be/2015/06/how-do-i-implement-blankzero-or-replacezero-in-a-report
http://thinkaboutit.be/2015/06/how-do-i-implement-blankzero-or-replacezero-in-a-report

Getting Started with the Tablix

[86]

The following screenshot shows that, when you right-click on the text in a textbox,
you can then select its placeholder properties:

The example report with the placeholders is available in the
object: Packt - CH02-6

A textbox can contain one or more placeholders. By using multiple placeholders
in one textbox, you can display multiple fields in one textbox, and give them
different properties.

In the following example, I will add a header to the report, and in the header,
I will display the company information.

To add a header (and/or footer) to a report, go to the Report menu and select:

• Add Page Header
• Add Page Footer

The following screenshot shows an example of this:

Chapter 2

[87]

A report can contain a maximum of one header and one footer.

As an alternative you can right-click anywhere in the body of the
report, in the empty space to the left or right of the body, and add
a page header or footer.

The page header and page footer are always shown on every page, except if you
decide not to show it for the first and/or last page by using the properties:

• PrintOnFirstPage
• PrintOnLastPage

Dynamically hiding a page header/footer
A page header and footer cannot be hidden dynamically. A workaround
would be to put a rectangle in the page header and/or footer and use
the Hidden property of the rectangle to show or hide the content of
the header/footer dynamically. You need to be aware that, even when
you hide the content of the page header/footer, the report viewer will
preserve the space. This means that the header/footer is still displayed,
but will be empty.

A page header or footer cannot contain a data region. The only controls you can add
to a page header or footer are:

• Textbox
• Line
• Rectangle
• Image

Getting Started with the Tablix

[88]

So, in the page header, I will add a textbox with a placeholder, as in the
following screenshot:

To do this, add a textbox in the page header. Then, drag a field from the
dataset into the textbox. Then, add one or more spaces and drag another field into
the same textbox. You will notice the two fields can be selected inside the textbox
and when they are, they become gray. If you right-click on the placeholder, you
can see its properties.

Chapter 2

[89]

This is how you can see that it is a placeholder.

It is interesting that the mark-up type for a placeholder can be changed to HTML.
This means that, if the placeholder contains HTML, it will be recognized by the
report viewer and rendered, as it would be by a browser. The HTML tags that are
recognized are the following:

• <A href>

•

• <H{n}>, <DIV>, ,<P>,

• <DIV>, , <HN>

• , <I>, <U>, <S>

• , ,

Getting Started with the Tablix

[90]

If you use these HTML tags in a badly organized way then they will be interpreted
as text and rendered as such.

The possibility of using HTML in placeholders creates an
opportunity for Dynamics NAV developers. What you can do, for
example, is generate the HTML tags in C/AL code and send them to
the dataset. By using this approach, you can format text and manage
it dynamically via C/AL. You could even use a special setup table in
which you let users decide how certain fields should be formatted.

In our example report, I will format the company e-mail address in two ways.
First, I will use the placeholder expression to underline the text:

Then, I will go to the C/AL code and create a function that will format the e-mail
address using a mailto hyperlink:

Chapter 2

[91]

When you run the report, the result is this:

The e-mail address is underlined and there is also a hyperlink and when you click on
it, your e-mail client opens. As you can see, the formatting in the placeholder and the
formatting in the C/AL code are combined.

Use a code unit or buffer table
In this example I used a custom function in the report
(FormatAsMailto). In real life, it is better to create these
types of functions in a separate code unit, or buffer table, so
you can reuse them in other reports.

The example report with the placeholders is available in the
object: Packt - CH02-6

Getting Started with the Tablix

[92]

Important properties – CanGrow and
CanShrink
A textbox has many properties, as you can see in the following screenshot.

If you right-click a textbox and select the textbox properties, they will open in
a separate popup window. In this window, some of the textbox properties are
available and they are divided into categories. To see all of the textbox properties,
you can use the properties window, which is usually on the right in Visual Studio.
Here you can sort the properties or group them using the buttons on top:

The first button groups the properties. The second button sorts the properties and the
third button opens the properties popup window.

I am not going to discuss all of the properties, but I would like to draw your
attention to CanGrow and CanShrink. These two properties can be set to True or
False. If you set CanGrow to True then the height of the textbox will increase if the
text, at runtime, is bigger than the width of the textbox. With CanShrink, the height
of the textbox may shrink.

Chapter 2

[93]

I do not recommend these properties, except when really necessary.
When a textbox grows, the height increases and it pushes the content
down below. This makes it difficult to predict if the content of the
report will still fit on the page. Also, the effects of CanGrow and
CanShrink are different if you run the report in Preview and export it
to PDF, Word, Excel, or if you print the report.

Example – create an item dashboard
report
In this example, I am going to create an item dashboard report. Actually, I will
create a first version of the dashboard, in later chapters I will come back to this
report and enhance it.

The result of the report looks like the following screenshot:

The report is available in the object: Packt - CH02-7

Getting Started with the Tablix

[94]

What we need to do is to show the inventory of a list of items by location. The report
also includes totals and subtotals of the inventory by location, by item and a grand
total. To start, you define a dataset, as follows:

In this dataset, I will start with the item table and, per item, fetch the item ledger
entries. The inventory is the sum of the quantities of the item in the item ledger
entry table. I have also included a filter, using the PrintOnlyIfDetail property
of the item data item. This means that, if an item does not have any ledger entries,
it will not be shown in the report. Also, I'm using the item ledger entry table to get
the location code and quantity fields. In the report layout, I will create a group and
calculate the inventory via an aggregate function.

In real life, there might be many items and ledger entries, so this
approach is not the best one. It would be better to use a buffer table
or query object, and calculate the inventory and filter in the dataset,
instead of in the layout. I will show you an example of this approach
in a later chapter. At this point, my objective is to demonstrate how
you can use a Matrix-Tablix to create a layout that has a dynamic
number of rows and columns.

1. Once you have defined the dataset, open the layout and add a matrix control
to the report body. In the data cell, use the Quantity field, on the row, use
the Item No, and on the column, use the Location Code. This will create the
following matrix and groups:

Chapter 2

[95]

2. Next, modify the expression of the textbox that contains the item number,
to the following expression:
=Fields!Description_Item.Value & " (" &
 Fields!No_Item.Value & ")"

This will display the item description and, between brackets, the item
number.

3. Next, change the sorting of the group by item number to sort on the
description:

Getting Started with the Tablix

[96]

4. Next, add totals for the two groups:

This will add an extra column and row to the matrix.

5. Select the Quantity and then select the Sum as an aggregate. Then,
select the four textboxes and, in the properties, apply the formatting
for the quantity field:

6. Next, you can use different background colors for the textboxes in the
total rows and resize the description column to resemble the layout in the
preceding screenshot. If you save and run the report, you have now created
an item dashboard.

Notice how easy it is to use the matrix control to create a dashboard. At runtime, the
number of columns depends on the number of locations. The matrix has a dynamic
number of columns. There is no detail level, because the ledger entries are grouped
on row and on column level.

Colors and background colors
When using colors in a report, pay attention to how the report is
printed. Not all printers are color printers, so you need to make sure
that your visualization has an effect. That's why I have used gray
colors in this example.
Colors are sometimes also used by developers as a trick to see
at runtime, where which textbox is displayed and to test report
rendering in different formats. If you do this, remember to remove
the colors at the end of the development phase of your report.

Chapter 2

[97]

Summary
The Tablix is a very versatile control that contains templates to create a List,
Table, and Matrix layout. It usually contains groups, which can be created with
a parent-child relationship or an adjacent one. We have seen how we can apply
sorting and filtering in a report, both in the layout and at the point of the generation
of the dataset.

Textboxes have a lot of properties and contain placeholders, so we can format
information in many ways, which we also covered in this chapter.

Expressions are frequently used to make report execution dynamic, and in the next
chapter, we will dive into the expression editor and see examples of how you can
create expressions and the syntax that you need to use to do that.

[99]

Expressions
In this chapter, we will explore the expression designer. I will explain and
demonstrate how you can use expressions to manipulate properties to create
dynamic behavior from reports at runtime. You can create simple and complex
expressions, and functions that you can reuse when you design reports. Last but
not least, I will demonstrate this with some typical real life scenarios and examples.

Using expressions for properties
Without realizing it, you might have already used expressions when designing
reports. This is because, most of the time, expressions are implicitly created
when you design the layout of your report. For example, when you drag and
drop a field on a textbox, the system creates the following expression for the
Value property of the textbox:

=Fields!ColumnName.Value

The expression gives the instruction to fetch the Value property from the dataset
Field with the name ColumnName. Fields is actually a collection that holds all
of the fields in the dataset. There are other collections that you can use.

Expressions

[100]

For example, if you right-click on a textbox and select Expression..., you will end up
in the expression designer for the Value property of that textbox, as shown in the
following screenshot:

Chapter 3

[101]

In the preceding screenshot, a field is dragged onto a textbox. In the textbox in the
Tablix, it says, [Description_Item]. When you drag or select a field from the
dataset into a textbox, the system uses the following notation:

[ColumnName]

If you open the expression you can see that it actually stands for:

=Fields!Description_Item.Value

You can also see that, in the expression designer window, we are in the expression
for the Value property. It's mentioned at the top in Set expression for: Value and,
if you look in the Category list, you will see Fields (Dataset_Result), which contains
all of the fields from our dataset.

Double-click
If you double-click on a field or function in the right column, it is added
to the expression. You can avoid typing syntax errors by doing this.

An expression will return a result and it is the result of the expression that is used,
at runtime, for the value of the property. That is why you always need to start your
expression with an equal sign (=). The data type of the result of the expression
should match the data type of the property, otherwise you will get a runtime error. If
the data types are not the same, you can use a conversion function.

Expressions

[102]

For example, if you expand Common Functions, at the bottom you will see a list of
available conversion functions:

We have already used a conversion function in a previous chapter
when we applied a filter to the Tablix to link it to specific records
in the dataset. In that example, we used the CStr() function to
compare a field from the dataset to the empty string.

Conversion functions are used when we need to convert the result of one expression
to another data type so that it can be used in a property or sent to another function
that expects a specific data type. Sometimes you don't know what the data type of an
expression is. To find it out, you can use the following expression:

=Fields!MyField.Value.GetType().ToString()

This will result in the dot net data type being returned, for example, System.
String, or something similar.

Chapter 3

[103]

Expressions can be used almost everywhere in the report layout. If you open a
property box and you see the Fx button, as in the following image, it means that
you can use an expression for this property:

When you select a property in the properties window and then click on it, you will
see Expression open the expression designer for this property in the drop-down list:

If there is no Fx button or no Expression shortcut, it means that this property
cannot be set by an expression.

There are many types of functions, operators and collections and, in the following
lessons, I will explain how you can apply them. First, let me introduce and explain
the syntax and language you need to apply and learn, and how to write your
own expressions.

Expressions

[104]

The expression language
The expression language and syntax is Visual Basic. If you have some experience
with writing macros in Excel, then you will pick it up very quickly because it is
very similar.

You can consider an expression as a formula for data that is evaluated at runtime
by the report viewer. The expression editor verifies the syntax and will underline
parts it believes that are incorrect. You will only notice if there's an error when an
expression is executed at runtime.

If you use custom functions that you create yourself, as I will
demonstrate later in this chapter, the syntax verifier will not
recognize your function and will underline it in red, even
though it might be completely correct.

The following are some general rules about the expression language:

• You can write expressions that use functions from the Visual Basic run-time
library, and from the System.Convert and System.Math namespaces.

• You can add references to functions from other assemblies or custom code.
• You can use classes from the Microsoft .NET Framework, including System.

Text.RegularExpressions.
• To include a reference to other less commonly used CLR namespaces,

you must use a fully qualified reference, for example, System.Text.
StringBuilder. IntelliSense is not supported in the code pane of the
Expression dialog box for these less commonly used functions.

For more information about Visual Basic functions supported
in expressions, see "Visual Basic Run-Time Library" at
www.msdn.microsoft.com.

Simple and complex expressions
A simple expression is a reference or a pointer to an item in one of the collections,
for example, a field from the dataset. A simple expression is visualized in the
textbox using ([]) brackets.

www.msdn.microsoft.com

Chapter 3

[105]

A complex expression is a combination of simple expressions and operators or
functions. As soon as you use a complex expression for the Value property of a
textbox, the textbox will contain <<Expr>> when you look at it in the report layout,
as you can see in the following example:

For this reason, I recommend that you give every textbox a proper name, so that you
can see in its properties what it actually contains, as in the following example:

This is especially important when you are developing a document
report. In this type of report there are many fields, and it can get
confusing to edit and customize if you are asked to change the
context of a textbox. By applying proper names, you can use the
property drop-down or document outline to quickly locate the
textbox that you are looking for.

Expressions

[106]

Symbols used in expression placeholders
The following table illustrates the symbols that are used to identify every type of
expression in a textbox:

Type Symbol Expression
Fields
(from the
Dataset)

[Quantity]

[SUM(Quantity)]

[FIRST(Quantity)]

=Fields!Quantity.Value

=Sum(Fields!Quantity.Value)

=First(Fields!Quantity.Value)

Parameters [@Parameter]

[@Parameter.Label]

=Parameters!Parameter.Value

=Parameters!Parameter.Label

Built-in fields [&PageNumber] =Globals!PageNumber

Text \[Quantity\] [Quantity]

Collections
When you drag a field from the dataset onto a textbox, its expression references the
Fields collection. There are also other collections you can reference. Some, but not all,
of the collections that you can reference in the expression designer are shown here:

The following is a list of the collections you can reference:

Collection Description
Globals Contains global variables. Not all of them can be used in RDLC.
User Contains information about the user who runs the report.

(In some versions of Dynamics NAV, it is the user under which the
Service Tier runs and not the actual user who runs the report).

Chapter 3

[107]

Collection Description
Fields Contains all of the Fields collection from the

DataSet: DataSet_Result
Parameters Contains the Parameters, created via Labels and IncludeCaption.
ReportItems Contains a list of all textboxes in the report. Textboxes are referenced

via their Name property.
Datasets Contains the DataSet: DataSet_Result. Because there's only

one dataset in Dynamics NAV reports, there's no point in using
this collection.

Variables Contains Variables you create in the Report properties.
(These are not the C/AL globals or locals that you create in the
Report Dataset Designer.)

A collection is an object. This means that, in order to access its members, you
need to apply the correct syntax. For example, when you use the expression,
Fields!FieldName in the Value property of a textbox, there will be a runtime error,
because the object cannot be converted to text. Instead, you should access the value
as follows: Fields!FieldName.Value.

When you type in the expression editor, there is an inline auto completion function
that shows the members of an object. The following screenshot demonstrates this:

Expressions

[108]

In the preceding screenshot, you can see that Value returns the actual value of
the field.

Not all collections appear in the expression dialog box. Some of them
are only available at runtime like, for example, the ReportItems
collection, which contains the list of textboxes in your report, but
that does not mean you can't reference them. You can simply type in
these collections manually in the expression designer.

Understanding the scope of an expression
It's important to understand the scope of an expression, because it will determine its
result and it might not always be what you expect. The scope is determined by two
factors. You can explicitly define a scope in your expression, this is named scope, or
the scope is determined implicitly by the system, depending on where the expression
is executed or, in other words, where your textbox is located in the report, as in, this
is the default scope.

For example the =Sum(Fields!Quantity_ItemLedgerEntry.
Value) expression does not have a value for its scope parameter so it
uses the implicit scope of the object it is in.
The =Sum(Fields!Quantity_ItemLedgerEntry.Value,
"DataSet_Result") expression has a scope parameter, which
is Dataset_Result, so it calculates the sum of the Quantity_
ItemLedgerEntry field for all of the rows in the dataset.

Chapter 3

[109]

Scope is important when you use aggregations such as, for example, when
calculating a sum, an average, and so on. Scope is determined by the container that
holds your textbox. A representation of how to understand scope is shown in the
following figure:

The default scope is determined by the container, or containers, that hold
your textbox.

If you drop a textbox in the report body and use the Sum() function, then the
implicit scope is the highest, the DataSet. If you drop a textbox in a header or
footer row of a Tablix, then the Sum() function gets the implicit scope of the group
you are in at runtime.

Expressions

[110]

In the following example, there is a Tablix that contains one group:

Items are grouped by location code. There is one row for the details (1), one footer
row for the location (2) and a footer row for the Tablix (3). On level 2 and level 3, I
have used the sum of the quantity. The expressions look exactly the same. But when I
run the report, the result looks as follows:

Chapter 3

[111]

Because level 3 is in the report footer row, its scope is different to the group footer
row and therefore the result of Sum is also different. This is an example of default
scope depending on the container that contains the textbox.

An example of this report is available in the object: Packt - CH03-1

Named scope is when you explicitly set the scope of an expression. An example is
when you create a textbox and, in the expression for its value, select a field from the
Datasets collection, as shown in the following screenshot:

The string DataSet_Result is used as the scope for the First function,
which implies fetching the value from the first row of the dataset with the
name DataSet_Result. Other aggregate functions such as, for example,
Last(), Sum(), can also accept a scope parameter.

When you select a field in the expression designer from the Fields collection,
no scope is added, but when you select a field from the Datasets collection, a
function is used, First or Sum, and a scope is automatically set to the dataset.

Expressions

[112]

If you have a look in the expression editor when you select a function, at the right
bottom, you can see how to use it with different parameters:

If you do not use a scope, then the default or implicit scope is used.

Creating custom functions
Custom functions are functions that you create yourself. You can do this in the report
properties. In the menu, open Report, Properties.

Sometimes the Report menu is not displayed, because it depends on what you have
selected in the report. If so, simply click on the report body and the report menu
will appear again. Or, you can immediately right-click on the report body and select
Report Properties from the dropdown, as in the following screenshot:

Chapter 3

[113]

You will notice a Code tab, in which there are already some custom functions
defined:

The following functions feature in this report:

• BlankZero

• BlankPos

• BlankZeroAndPos

• BlankNeg

• BlankNegAndZero

Expressions

[114]

To call a custom function from within an expression, you need to use this syntax:

=Code.NameOfFunction(Parameters,…)

Note that we use a dot (.) instead of an exclamation mark (!). The
exclamation mark is referred to as the bang operator. The difference
between the two is simply that the dot is early-bound and the bang is
late-bound. This has to do with VBA language syntax. Unfortunately,
there's almost no documentation from Microsoft on this subject, but
you will find some good examples in this blog: http://bytecomb.
com/the-bang-exclamation-operator-in-vba.

The preceding functions are used to format numbers. For example, if the
quantity for an item is zero, you can show an empty value instead of a zero
via the following expression:

=Code.BlankZero(Fields!Quantity_ItemLedgerEntry.Value)

Note that the syntax editor underlines the custom function. This is
because it does not recognize the function as a known Visual Basic
function. It does not mean that the function does not exist or that
there's a syntax error.

Apart from functions, you can also create constants and variables using standard
Visual Basic syntax. An example is in Report 206 Sales Invoice. Here, in the code
tab, you will find the following variables:

• Shared Data1 as Object

• Shared Data2 as Object

• Shared Data3 as Object

• Shared Data4 as Object

• Shared NoOfCopies as integer

In document reports, shared variables are used to store information that needs to be
available on all pages of a report in the page header or footer. Since you cannot use
data regions in a report header or footer, you add the fields from the dataset onto the
body of the report, usually in a list container, and then you store the values in the
shared variables using a Set and Get function.

http://bytecomb.com/the-bang-exclamation-operator-in-vba
http://bytecomb.com/the-bang-exclamation-operator-in-vba

Chapter 3

[115]

An example of this function is shown in the following code:

Public Function SetNoOfCopies(Value as integer)
NoOfCopies = Value
End Function

Public Function GetNoOfCopies() As integer
 Return NoOfCopies
End Function

When you type =Code.SetNoOfCopies(3 in an expression, the value 3 is stored
in the shared variable NoOfCopies. When you type =Code.GetNoOfCopies, the
expression returns the value 3, stored in the shared variable NoOfCopies.

An in depth explanation of these functions and the sales invoice
report is discussed in Chapter 5, Document Reports.

Most variants of Get and Set functions use multiple parameters to work on multiple
variables. Imagine that you have four shared variables and the following function is
used to store information in any of the four variables, using the Group parameter:

Public Function SetData(NewData as Object,Group as integer)
 If Group = 1 and NewData > "" Then
 Data1 = NewData
 End If

 If Group = 2 and NewData > "" Then
 Data2 = NewData
 End If

 If Group = 3 and NewData > "" Then
 Data3 = NewData
 End If

 If Group = 4 and NewData > "" Then
 Data4 = NewData
 End If

 Return True
End Function

Expressions

[116]

Although there are better ways to use collections, arrays, or dictionary
objects, most document reports in Dynamics NAV use these GetData
and SetData functions. In Chapter 5, Document Reports, I will explain
in detail how and why this is done.

Report 111 Customer Top 10 has the following function in its code tab:

Shared Pct as Decimal
Public Function CalcPct(Amount1 as Decimal, Amount2 as Decimal) as
Decimal
 if Amount2 <> 0 then
 Pct = Amount1 / Amount2 * 100
 else
 Pct = 0
 end if
 REM Rounding precision = 0.1
 Return ROUND(10*Pct)/10
End Function

As you can see, this function calculates a percentage, based upon 2 amounts entered
as parameters.

There are many other examples of functions available in standard Dynamics NAV
reports. RDL and RDLC technology has been around for many years; if you search
online, you will find many other examples of functions.

Although you can do almost anything you want with custom functions,
it is better to avoid functions that contain business logic. Business logic
does not belong in a report layout. Most functions you create and use in
a report layout are formatting and conditional formatting functions.

Chapter 3

[117]

Reusable custom functions
It is important to remember that custom functions are created in the
report layout and are embedded in the report layout. This means that
you cannot call them or reuse them from another report. A possible
solution is to create a template report that contains all the functions
that you have created. When you create a new report, you can then
base it on the template, or copy/paste the function from the template
into your new report. If you create a new custom function in your new
report, remember to add it to the template report.
Another solution is to store functions in a separate assembly that you
then reference in the code tab of your report. You can do this in the
report properties references tab. Personally, I don't recommend this,
because you then need to deploy this .dll to all client machines
in order for the report to work for all users. Secondly, if you use
external assemblies, then you will also need to enable this in the
report properties in the report dataset designer via the property:
EnableExternalAssemblies. Since reports are executed in the
Report Viewer, and the report viewer runs on the client, all expressions
in reports are executed on the client and you cannot therefore reference
any assemblies that are not available on the client.

Typical expression examples
Now that we know how to create expressions and custom functions, let's have a look
at some typical examples of how expressions can help us achieve our goals when
creating reports.

Working with dates
The following function can be used to display the current date:

=Today()

The following function can be used to calculate new dates based upon an
existing date:

=DateAdd(DateInterval.Month, 6, Parameters!ExpirationDate.Value)

Expressions

[118]

In this example, starting from the expiration date, you add 6 months to it to calculate
a new date. The number 6 can be any number and, when it is negative, you can
subtract periods from a date. DateInterval contains Year, Month, Day, Hour,
Minute, and so on.

The following function retrieves the year from a date:

Year(Fields!PostingDate.Value)

In this example, I have used the posting date, but it could be any date. As in the
Year() function, you can also use Month(), Day(), and other functions. To see
which functions are available for dates, you can have a look in the expression editor,
as illustrated in the following screenshot:

I find the Year(), Quarter() and Month() functions useful when I need to create
Year To Date (YTD) reports. In these types of reports, users want to see aggregated
information grouped by year, month and date. Instead of calculating different dates
in C/AL and adding multiple columns in the dataset, you can just have one date
field in your dataset and create groups with expressions. In the following example,
you can see how to do this.

Chapter 3

[119]

Start with a new report and create the following dataset:

Then, follow these steps:

1. Add a Matrix to the report.
2. Select the Location Code field as the row group.
3. Select the PostingDate field as the column group.
4. Select the Quantity field in the details and then select the Sum aggregate:

Expressions

[120]

5. Next, open the properties of the group expression for the PostingDate group
and change the expression so as to use the Year function, as in the preceding
example. Use the same expression in the textbox for the column header.

6. Then, when you run the report, you will see the quantity, per location,
per year:

Now you can add a child group below the year, where you can group by month,
amongst others.

An example of this report is available in the object: Packt - CH03-2

Working with strings
To concatenate (or glue) strings together, you can use the & (ampersand) operator, as
in the following example, where we glue the LastName after the FirstName value:

=Fields!FirstName.Value & vbCrLf & Fields!LastName.Value

The vbCrLf is a Visual Basic constant used to create a new line.

Although you can also use the plus (+) operator to concatenate strings, I
recommend the & operator because, when both terms are numerical, the
plus operator adds them instead of concatenating them. This can happen
unexpectedly when the terms are expressions instead of fields.

Chapter 3

[121]

You can use the Format() function to format strings, as shown in the following
example:

=Format(Fields!PostingDate.Value, "D")

In this example, we use the D format code to format the PostingDate field.
The D format code specifies a specific data format.

You can find other examples of date format codes here: https://msdn.
microsoft.com/en-US/library/73ctwf33(v=vs.80).aspx

You find more information about the Format() function and
links to all the format codes you can use, depending on the
data type, here: https://msdn.microsoft.com/en-us/
library/59bz1f0h(v=vs.80).aspx

In this way, you can do it in the expression for the Value expression, instead of
having to use the Format property.

Pay attention when using the Format() function in the Value
expression and when setting the Format property, as the Format
property is applied to the result of the Value expression.

There are many string (or text) functions that you can use. You will find them in the
expression editor, as shown in the following screenshot:

https://msdn.microsoft.com/en-US/library/73ctwf33(v=vs.80).aspx
https://msdn.microsoft.com/en-US/library/73ctwf33(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/59bz1f0h(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/59bz1f0h(v=vs.80).aspx

Expressions

[122]

Performance warning
Try not to use string functions for group expressions. This is because
string functions can be time and resource (CPU) consuming and will
therefore slow down report performance. If this is the case, then I
recommend C/AL code instead.

Decision functions
Sometimes, when you write an expression, you want the output to depend on a
condition. You can make use of the following decision functions to do that:

Iif()
Switch()

The syntax of the Iif (or Inline If) is as follows:

=Iif(condition,ResultIfTrue,ResultIfFalse)

You can use it to test for a specific condition and, if it's true or not, get a different
result. Let me give you an example in the following screenshot:

Chapter 3

[123]

I have used an expression that sets the color to Lime or Tomato, in the Color
property for the textbox that holds the inventory, depending on whether the
inventory is positive or not. The result is shown in the following screenshot:

You can also nest Iif conditions, as in the following example:

=Iif(Fields!PctComplete.Value >= .8, "Green",
 Iif(Fields!PctComplete.Value >= .5, "Amber", "Red"))

Nesting Iif() conditions makes your code more difficult to read and maintain.
That's why you can replace it with a Switch() condition, as follows:

=Switch(Fields!PctComplete.Value >= .8, "Green",
 Fields!PctComplete.Value >= .5, "Amber",
Fields!PctComplete.Value < .5, "Red")

A Switch() condition in Visual Basic is similar to a CASE
statement in C/AL.

You can, of course, also combine a decision statement with a date function.
The following example could be used in the Color (or BackGroundColor) property
to give the field a different color, depending on whether the expiration date is within
seven days:

=IIF(DateDiff("d",Fields!ExpirationDate.Value,
 Now())>7,"Red","Blue")

Expressions

[124]

The RowNumber (scope) function returns the number of the row, depending on the
scope you provide. If you use the word Nothing as the scope, then it returns the row
number in the Tablix, if you have a group in the Tablix, then you can use its name
as the scope. If you combine the RowNumber function with the Iif function in the
BackGroundColor property of a row in a Tablix as follows:

=Iif(RowNumber(Nothing) Mod 2, "PaleGreen", "White")

Then, when you run the report, it will look like this:

In the preceding example, every even or odd row has a different color. This is called
a green-bar effect.

If you try this in a matrix, then you will not get the expected result. This
is because, in a matrix, the RowNumber() function uses the row and
column groups as scope. See the Example – the green-bar matrix section
in this chapter for an example of how to solve this problem.

A more complex variation using a Switch() expression would be:

=Switch(
 Me.Value > 10000,"DarkOliveGreen",
 Me.Value > 1000,"OliveDrab",
 Me.Value > 100,"ForestGreen",
 Me.Value > 10,"LimeGreen",
 Me.Value > 0,"GreenYellow",
 Me.Value = 0,"Yellow",
 Me.Value < 0,"Goldenrod",
 Me.Value < -10,"DarkGoldenrod",
 Me.Value < -100,"Orange",
 Me.Value < -1000,"DarkOrange",
 Me.Value < -10000,"Red")

Chapter 3

[125]

As you can see, the Color properties of textboxes, rows, and columns are ideal
candidates for these kinds of expressions.

When you are planning to use more complex expressions, or even simple ones, for
conditional formatting, I would advise against creating and storing the expressions
in the individual properties, but advocate creating custom functions. In this way,
you can still call the custom function from wherever you want to inside the report,
and you only have to maintain the function in one location.

When to use conditional formatting
Although conditional formatting can increase the readability of a report,
it is important not to overdo it. As in the early days of the World Wide
Web, when we developed our first web pages, it was very tempting
to include a lot of colors, pictures, moving and animated texts, and so
on. But these do not necessarily improve the usefulness of a report,
rather the contrary. So, I would like to stress that conditional formatting
should be used with a purpose, and not just because it's possible.

If you have a look in the miscellaneous functions, you will see more functions that
you can use:

Expressions

[126]

Here's another example of an expression for the BackGroundColor property:

=Iif(RunningValue(Fields!Item__Inventory_Posting_Group_.Value,
 CountDistinct, Nothing) MOD 2 = 1,"LimeGreen", "White")

This expression is most useful when you have a grouping in your report, for example
the InventoryPostingGroup field. Placing the expression in the BackGroundColor
property creates an effect, so that when a new group starts it will get a different
background color, instead of with every line.

Essentially, this expression can be translated to read ''If the distinct count of unique
InventoryPostingGroup field values is 1 (and is therefore an odd number), return
the color LimeGreen; otherwise, return the color White". Remember to set this
expression for the detail row and also the group header and/or footer rows.

Conditional formatting can also be used to simulate KPIs. When a value is above or
below a threshold, for example, a green, orange, or red bullet could be shown, as
is the case in many business intelligence reports using traffic light indicators. This
could easily be achieved using embedded images and an expression. All you need to
do is embed three images in a report and display them at the correct moment.

For example, when creating a report about items and inventory, it could be
interesting to visualize when a specific item has to be reordered or is close to its
maximum inventory level.

Generating page breaks in code
You can not only create conditional formatting effects with expressions, but you can
also determine when a page break should occur.

Chapter 3

[127]

Page breaks can be generated using Tablix properties, as you can see in the following
screenshot:

Expressions

[128]

A page break can also be generated using group properties, as you can see in
the following screenshot:

You can dynamically determine when a page break needs to happen by
using following expressions:

=Int((RowNumber(Nothing)-1)/25)

Chapter 3

[129]

The expression will return 1 if the row number can be divided as a whole by 25,
otherwise it will return 0. Now you can use this function as the group expression
when you add a group to your Tablix, as shown in the following example:

Expressions

[130]

Then, in the group properties, in the Page Breaks field, you can enable a page break
between each instance of the group:

When you run the report, a page break is generated after every 25 lines, as shown in
the following image:

This page break effect is useful if your report is always going to be exported to PDF
and read on a tablet that has low resolution.

An example of this report is available in the object: Packt - CH03-3

Chapter 3

[131]

Repeating a column header on every page
In this example, you might have noticed that the column headers are not repeated
on every page. In the properties of a Tablix, there are options that you can enable:

Even when you enable these Repeat header columns on each page options, the
header row is still not repeated on every page. The reason is unknown. In fact, when
you create and run an RDL report, they work, but not in RDLC. To solve this issue,
use the following workaround.

First, open the advanced mode of the Tablix, as follows:

Expressions

[132]

In advanced mode, the static rows of the Tablix become visible in the row and
column groups pane. There, select the properties of the static row on the top in
the row groups, and you will see the RepeatOnNewPage property:

In most cases this works, but not for this report. The problem is that, when you
set RepeatOnNewPage to True for the static members of this Tablix, you get the
following error:

Error while validating RDL content:
The Tablix 'Tablix2' has an invalid TablixMember. All
TablixMember elements in a TablixColumnHierarchy must
have the RepeatOnNewPage property set to false.

The reason for this error is that, in this Tablix, we have a group without a group
header row and so the static member cannot be repeated. If the Tablix had a group
header row, then the error would not happen and the header row would be repeated
using this property.

Chapter 3

[133]

To fix the problem you need to add a group header row, move the column headers to
the group header row, and repeat this new group header row.

1. First, add a group header row. To do this, right-click on Details and select
Add Total, Before:

2. Then, copy/paste the columns from the first row onto the newly created
group header:

Expressions

[134]

3. Next, delete the first row:

4. Now, open Advanced Mode, select the Static member in the Row Groups
pane, and set RepeatOnNewPage to True:

5. Save and run the report. You will see that the header row is now repeated
on every page.

An example of this report, with repeating headers, is available in
the object: Packt - CH03-4

Chapter 3

[135]

Example – the green-bar-matrix
When we applied alternating colors in the Tablix using decision functions,
I mentioned that in a matrix, which is a Tablix with row and column groups,
the function has an undesired result.

For this demonstration you can import the object: Packt - CH03-5.
In fact, this report continues from where we left off in the object:
Packt - CH02-7.

Select the textbox under the location code in the layout of the report and, in the
BackgroundColor property, set the following expression:

Now run the report and you will see the following output:

Expressions

[136]

As you can see, the effect is not alternating green bars but it is more like a strange
checker-board. The reason for this is that the RowNumber property for this textbox
at runtime is not continuous because it depends on the row and column groups. In
order to create a green-bar effect, you need to use another expression.

Start by adding the following to the code section of the report:

Private bOddRow As Boolean

Function AlternateColor (ByVal OddColor As String, ByVal EvenColor
 As String, ByVal Toggle As Boolean) As String
 If Toggle Then
 bOddRow = Not bOddRow
 End If
 If bOddRow Then
 Return OddColor
 Else
 Return EvenColor
 End If

This function returns a color, depending on the third parameter that toggles the
colors. When you run this function in the detail and in one of the header cells of a
matrix, you can set the colors dynamically.

Now set the following expression in the BackgroundColor property of the textbox
on the first column, second row:

Chapter 3

[137]

Then, in the BackgroundColor property of the textbox in the second row, second
column, set the following expression:

Now run the report, and the effect is as follows:

An example of the green-bar report for a matrix with alternating row
colors is available in the object: Packt - CH03-6

If you change the expression for the BackgroundColor property for both textboxes
to the following:

=Code.AlternateColor("PaleGreen", "White", True)

Then you get this result:

Expressions

[138]

An example of the green-bar report for a matrix, with alternating
column colors, is available in the object: Packt - CH03-7

There are other solutions for a green-bar matrix, but the advantage of using this
function is that, by making a small change in the code, you can switch between
alternating row colors and alternating column colors.

Summary
In this chapter, I have explained and demonstrated how we can use and create
simple and complex expressions, and use them to generate values for properties.
By applying this knowledge, you can create conditional formatting effects in
your reports. The scope is an important factor in determining the result of certain
expressions. There are many different functions you can use, and also create yourself
and, in this chapter, I have looked at a couple of the possibilities.

In the following chapters, we are going to see more examples of how we can use
expressions. It is important to remember that expressions should not be too complex
due to performance and your report layout should not contain any business logic.
Business logic belongs in the report dataset designer, the expressions in the layout
should be user interface and formatting logic.

[139]

Data Visualization Techniques
Creating a report is not difficult, but making it easy to understand so you can spot
trends and learn from your data takes some consideration. The main goal of a report
is to visualize information clearly and effectively, for example by graphical means.
A report needs to create insights by communicating its key points in an intuitive
way. In this chapter, you will learn about the different techniques available in
Microsoft Dynamics NAV to visualize information.

An introduction to data visualization
Data visualization is a technique used for visual communication. The idea is to
present information clearly and in such a way that it can be easily understood and
interpreted correctly. A report in which the user does not understand the purpose or
business result in a blink of an eye presented in the report is a missed opportunity.
By using simple techniques, I will demonstrate in this chapter how to present
information more clearly and in an intuitive way.

Recipes to implement top x filtering
A technique commonly applied when developing dashboard reports is top x
filtering. You may be asked to create a report about the top five customers.

From a performance point of view, filtering should occur
as soon as possible, thus minimizing the size of the dataset.

Data Visualization Techniques

[140]

In this lesson, I will demonstrate how easy it is to create a top x filter in the layout
of the report. In Chapter 7, Performance Optimization Techniques, I will explain and
demonstrate how you can do this in order to minimize the dataset by using a query
object. In this way, you will have two examples and you can decide when to apply
which approach.

Imagine you have been asked to create a report in which you need to show the top
five customers according to their sales. The first thing to do is to create a dataset in
the report dataset designer to fetch customer and sales information. For the purpose
of this demonstration, I will fetch the information from the Customer Ledger Entry
table. It holds all the posted transactions for customers and looks like the correct
table to use for this report.

A customer is a master record. All master tables in Dynamics NAV have a
corresponding Ledger Entry table that holds the posted transactions for the master
record. The data model in Dynamics NAV looks like the following figure:

Chapter 4

[141]

So, in this example, object: Packt - CH04-1, I will use the Customer and Cust. Ledger
Entry tables as data items and build the data model as follows:

I will create the layout based on this dataset and add a table. The table contains sales
and profit grouped by customer. The result looks like this:

In the table, in the customer number group, I implemented an expand/collapse of
the details, as shown in the preceding screenshot.

Imagine that you only want the top five customers, according to their sales, to be
shown in the report. To implement such a filter, you might consider using the Tablix
filter options, but that would not produce the correct results. Let's see why.

Data Visualization Techniques

[142]

Use the Filters pane in the Tablix and add a Top N filter, as shown in the
following example:

Remember that the value for the filter is an expression and
so it must begin with an equal sign (=).

When you save the report, the result is this:

The reason for the error is that I used the Sum expression on the Sales (LCY) field in
the Tablix filter. I can remove Sum, because it's not allowed, so the report will run, but
it will be incorrect. Let me explain why this is wrong.

Chapter 4

[143]

If I remove Sum and run the report, the result is this:

The top five filter is applied to the Sales (LCY) field, which is in the dataset and
actually comes from the ledger entries. The filter works from a technical point of
view but, from a financial point of view, it's totally wrong.

A solution to this problem in this particular report would be to ignore the ledger
entries table. I can use the customer table without the Ledger Entry table because
the customer table also holds Sales (LCY) and Profit (LCY) as FlowFields, and
Salesperson has a date filter to filter on a date.

Of course, there are alternatives to consider. Another alternative is to create a query
object for this dataset and use that. Both approaches produce better performance
and results.

When you use ledger entry tables in your dataset you should
pay attention to performance because ledger entry tables can
contain thousands (or sometimes even millions) of records.
I'm not implying that you should ignore ledger entry tables
in your reports, only that you pay attention to performance
and the correctness of your report.

Data Visualization Techniques

[144]

In the object: Packt - CH04-2, I have a dataset that contains the customer number,
salesperson, and sales and profit FlowFields. The dataset and layout look as follows:

Now, when you run this report, the result looks correct:

Chapter 4

[145]

This is a typical example of testing your report. When running the report we saw
that the figures did not seem correct and the report showed the wrong top five
customers. Then, we changed the dataset to correct this problem. Remember, even
though your report seems to produce results without errors, it might still be far from
the truth.

The two example reports are available in these objects:
Packt - CH04-1 and Packt - CH04-2

Conditional formatting in a report
Conditional formatting means using expressions to determine how information is
formatted. In its simplest form, and in most common examples, it is used in the color
(and background color) properties. An example is using the following expression for
the color property of a textbox:

=Iif(Me.Value > 0,"Blue","Red")

In this example, I'm using the Me object, and Me refers to the current textbox. Another
example is this expression:

=Iif(Rownumber(Nothing) MOD 2,"PaleGreen","White")

If you use it for the background color property of a row then it means that the even
rows will become pale green and odd rows will become white.

Sometimes Me.Value is not recognized in the expression builder.
It will depend on if you use Report Builder or Visual Studio.

Let's use this now in a report. You can import the object: Packt - CH04-3 to follow
the steps.

Data Visualization Techniques

[146]

The dataset of the report is as follows:

I have used a matrix in the layout to show the inventory (Sum of Quantity)
by Location:

The result looks as follows:

Chapter 4

[147]

Now let's use the expression, =Iif(Me.Value > 0,"Blue","Red"), for the color of
the textbox:

Next, I will embed three images in the report. To do that, you can right-click on the
Images folder in the Report Data menu:

Data Visualization Techniques

[148]

Next, I will add one of the images to the Tablix:

As you can see, after adding it to the Tablix, I went into the expression for the image
and used a Switch function to determine when to show which image:

=Switch(Sum(Fields!Quantity_ItemLedgerEntry.Value)
 <Fields!ReorderPoint_Item.Value,"InvRed",
Sum(Fields!Quantity_ItemLedgerEntry.Value)
 =Fields!ReorderPoint_Item.Value,"InvCross",
Sum(Fields!Quantity_ItemLedgerEntry.Value)
 >Fields!ReorderPoint_Item.Value,"InvGreen")

When you run the report, the result looks as follows:

Chapter 4

[149]

Using expressions to show images is very useful. The user can quickly see and
analyze the results.

Use shapes and colors
It's important with images that, apart from using different colors,
you also use different shapes. Since reports aren't always printed
in color and not everyone might be able to see the colors.

Analyzing your data with data bars and
indicators
In the previous example, I used images and expressions to visualize the inventory.
There are controls in the Toolbox which are better suited to perform this type of
visualization. They are:

• Data Bar
• Sparkline
• Indicator

The following screenshot shows the controls:

Data Visualization Techniques

[150]

Let's start with the indicator. I will add an extra column to the right of our image in
our previous object: Packt - CH04-3, and I will drag an indicator into it.

When you do this, a window opens that allows you to select an Indicator Type:

You can choose between Directional, Symbols, Shapes, and Ratings indicators.
Now, regardless of which one you select, it is still possible to determine how they
will be used and also to use your own images.

Chapter 4

[151]

Next, right-click on the indicator to obtain the following menu:

Or left-click on the indicator to obtain the following menu and select the value that
determines the indicator:

Data Visualization Techniques

[152]

After you have selected the Quantity_ItemLedgerEntry field, click on the properties
button to obtain the following window:

First, you need to set the States Measurement Unit to Numeric and then you can use
start and end values or expressions to determine when each icon and color is shown.
As you can see in this example, you can also click on an icon and, in the drop-down
menu, select another icon or upload an image.

Chapter 4

[153]

When I run the report, the result is now as follows:

The indicators don't completely match the image because I used slightly different
values in the expressions.

An example of this report is available in the object:
Packt - CH04-4

Data bars are used to indicate the size of a value or, in other words, to compare
values visually. Instead of having to read through a list of values and figure out how
they compare, you can use a data bar to make it more obvious.

In the following example, object Packt - CH04-5, I will show you how to use data
bars to create the following report:

Data Visualization Techniques

[154]

In order to get started, I have used the following dataset:

Add a matrix with two data fields to the layout: Sales (LCY) and Profit (LCY),
then add Salespersoncode_CustLedgerEntry to the column groups and three
groups to the row groups: year, month, and weekday. In order to group by
year, month, and weekday, you can use the following expressions, based on the
PostingDate field:

=Year(Fields!PostingDate_CustLedgerEntry.Value)
=Month(Fields!PostingDate_CustLedgerEntry.Value)
=DatePart(DateInterval.Weekday,Fields!PostingDate_CustLedgerEntry.
 Value)

Select Data Bar from the toolbox and drag it onto the textbox that contains the
Sales (LCY) field:

Chapter 4

[155]

Next, right-click on Data Bar and activate Show Data Labels. Then, in Series
Properties, select Gradient and a Gradient style of Left right in the Fill options:

Data Visualization Techniques

[156]

You can also select a Palette in the properties window of the data bar, as follows:

Then, if you repeat this process for the Profit (LCY) field, your report is ready.

An example of this report is available in the object:
Packt - CH04-5

As you can see, data bars make it easier to read your report and compare values.
In this example, I grouped and sorted by date and you can see that most sales
are on Fridays and Tuesdays. Now, this is the demo database and it's probably a
coincidence. If you change the sorting and sort the Sales (LCY) field from top to
bottom you get a good idea of who the top selling customers are. This is best suited
to a "Customer Top X report".

Using Sparklines to visualize trends
Sparklines are used to indicate trends in your data and so provide insight into what
might happen in the future. Sparklines also make it easier to spot data that is out of
sync or that displays non-normal behavior. In statistical terms, these are referred to
as outliers. Sparklines cannot be added to the detail level in a Tablix, you have to add
them to a group header or footer row. This is because they work on aggregate values.

You can consider a Sparkline as a mini-chart. I will explain the usage of the chart
control later in this chapter.

Chapter 4

[157]

The following is an example of object: Packt - CH04-6, using Sparklines:

The dataset of the report contains the following information:

Data Visualization Techniques

[158]

In order to keep the dataset simple, I'm using the customer ledger entry table and, in
the OnAfterGetRecord trigger of the ledger, I'm fetching the customer information
so I can add the city and country to the dataset as extra columns.

Fetching the customer for every ledger entry is very bad for
performance. It is better to start with a customer data item and
indent the ledger entry below it. But, for the purpose of this
example, I'm doing it the other way. As they say on television,
please don't try this at home.

Then I created a table in the layout with a grouping of the Sales (LCY) and Profit
(LCY) by City. In order to display the cities in the proper case capitalizing the first
letter, I have used the following expression:

=StrConv(Fields!City.Value, VbStrConv.ProperCase)

I then set the row visibility of the Details to Hidden. In this report I'm not interested
in the details, I only want to see grouped data, because that is where I can add
Sparklines. Then, to the right, I added two extra columns into which I dragged a
Sparkline control from the toolbox.

Chapter 4

[159]

There are different Sparkline types to choose from. As soon as you add a Sparkline to
the Tablix, the popup window opens and you can select your Sparkline type. You can
then modify it in the Sparkline's properties. Then, when you click on the Sparkline,
the chart data drop-down menu opens, in which you can select the date you would
like to see in the mini-chart. I have used the sales and profit by PostingDate for the
first Sparkline and the sales by PostingDate for the second mini-chart:

You can change the properties of each Sparkline control by selecting a color palette
and changing the thickness of the lines, display labels, and so on.

An example of this report is available in the object:
Packt - CH04-6.

Learning how to visualize information
with gauges, maps, and charts
There are other controls in the toolbox that you can use to visualize information:

• Gauge
• Map
• Chart

Data Visualization Techniques

[160]

Using gauges
A gauge is used to display a value from your dataset and looks like the panels
you see in your car to indicate the speed and oil levels. Basically, there are two
types of gauge, the one on the left I call the speedometer, and the one on the right
I call the thermometer:

When you select a gauge from the toolbox and add it to the report layout, a window
is displayed, in which you can select the kind of gauge:

You can further customize the gauge and add elements starting from one of these
options. An element could be one of the following:

• Pointer
• Range
• Scale

Chapter 4

[161]

• Label
• Tick Marks

Each element should be used to display information and make it easier for the user
to understand and read the report. Adding too many elements will make your gauge
look like a Swiss watch, which may be very beautiful, but it will also make your
gauge too complex to understand. The idea when using a gauge in your report should
always be: keep it simple. What is the information or the message I want to convey to
the user and what are the minimum number of elements required to do so?

I recommend using indicators instead of gauges. A gauge is
nice for a dashboard or in a demo but, in order to visualize a
lot of information in a clear and intuitive way, a data bar is
often a better choice.

A typical example of how I demonstrate gauges when I deliver report trainings
is building a report that looks like the activity pane in a role center page. There is
always, or always should be, an activity pane in a role center page. The following is
an example of the sales order processor activity pane:

Data Visualization Techniques

[162]

This is how you can visualize it in a report, using gauges:

The report is available in the object: Packt - CH04-7

The dataset of the report is as follows:

Chapter 4

[163]

I have used the Sales Cue table to populate the dataset. I have copy/pasted
the code from the OnOpenPage() trigger into the OnPreDataItem() trigger of
the Sales Cue table in the report. This code will initialize the table and filter and
calculate the FlowFields. Then, in the layout, you can use the gauge to create the
layout, as follows:

The gauge has several properties that you can use to apply colors and formatting.
You can also format the needle, the scale, and so on. In this example, I have used the
gauge to display key performance indicators and single objects in the layout. You
can also put the gauge inside a group header or footer, as in the Sparkline control.
In real life, the gauge report item isn't used that much. This is because it's limited in
visualization and it takes up a lot of space. Also, there are other report items, such as
databars, indicators, sparklines, and charts, that have a slicker design than the gauge.

Convert items into a chart
Every time you use a databar, indicator, sparkline, or gauge you
will notice that you can convert them into a full chart. The chart
control is also available in the toolbox, and you could argue that
sparklines, databars, gauges, and indicators behave as templates
for charts.

Data Visualization Techniques

[164]

Using charts
Let's have a look at the chart control and see how we can use it to visualize
information.

In this example, I have used the chart control to develop a report that visualizes the
order intake, and the result looks as follows:

The Cannon Group PLC (10000):
110903.71
Lovaina Contractors (32789456):
110903.71
Selangorian Ltd. (20000):
110903.71
John Haddock Insurance Co.
(30000): 110903.71

MEMA Ljubljana d.o.o (38128456):
110903.71

100000

50000

0

0 2 4 6 8 10 12

Order Intake By Customer, By Month

Order Intake By Customer

MEMA Ljubljana d.o.o. (38128456):
110903.71

John Haddock Insurance Co. (30000):
110903.71

Selangorian Ltd. (20000): 110903.71

Lovaina Contractors (32729456):
110903.71

Other

Candoxy Nederland BV (31987987):
110903.71

The Cannon Group PLC (10000):
110903.71

Candoxy Nederland BV (31987987):
110903.71

77,000.00

1,540.44
1,612.50

628.648,581.61

4,760.00

584.00
2,336.00

7,860.52

Chapter 4

[165]

The order intake can be defined in different ways, the definition that I will use is: the
amount or quantity of sales that has not yet been posted to the ledgers. In the case
of Dynamics NAV, it means that we will fetch the information from the Sales Line
table. This information needs to be presented on a timeline. The question is, how
are we going to do that? You might think, that's easy, just take the PostingDate or
ShipmentDate and use that to create a timeline. Well, if you follow that approach
then you will get gaps or jumps in your timeline. For example, if there are sales
planned on day x and on day x+ 3, then day x+2 will not be shown on the timeline.
What you need is to have a value for every date in every month, use that as the
timeline, and show a value for the dates on which there are sales. In many systems,
for example in the business intelligence world, you can use a date or time dimension
to accomplish this. But, in Dynamics NAV, we don't have a date dimension. I will
use the integer table instead. The integer table is a virtual table in Dynamics NAV.
So, I need to use the integer table, then filter it on a specific period, loop over those
days and, for every day in that period, go and find the sales and add them to the
dataset. This will require some programming magic in C/AL.

Another approach would be to use the date table, which is also
a virtual table in Dynamics NAV, but I find it easier to use the
integer table in this example.

I will start by building my dataset, as follows:

Data Visualization Techniques

[166]

As you can see, I'm using the integer table twice as a data item, once for the dates and
once for the sales lines. Then, in the C/AL code, I have built the dataset as follows:

When the report runs, I will initialize the variables, StartDate and EndDate. I will
also add these two fields to the request page, so that the user is able to modify the
period. Then, I need to count the number of days in between the start and end date
and that will become the NoOfLoops. The number of loops value is then used to
filter the integer table from 1 to NoOfLoops. Next, I need to find the sales for every
day, returned by the dataset (integer). I will do that using another integer data item,
named SalesLineLoop, which I indented below the dataset integer data item, as
shown in the following screenshot:

Chapter 4

[167]

You see in the C/AL code here that I have filtered the Sales Lines on the Shipment
Date with the date from the dataset, and I'll count the sales to determine how many
times I need to loop in the SalesLineLoop integer data item. Then, in the inner loop,
I'll add the Sales Line information to the dataset.

When I run the report, it will produce a dataset that looks as follows:

Now we are ready to build the report layout and visualize this information
on a chart.

You can select the chart from the toolbox and drag it onto the body. A chart is
actually similar to a matrix. As in a matrix, in a chart you can display a numerical
field as the value, and group it in series and categories:

Data Visualization Techniques

[168]

In this chart, I have calculated the sum of the LineAmount and grouped on CusNo
and MonthName (=MonthName(Fields!dateLoop.Value).

A window opens when you add a chart to your report and you can select from
different chart types. In this example, I selected a 3D bar chart and, below that, I
added a second chart, a 3D pie chart:

Chapter 4

[169]

I did not add a series group to the second chart and I activated a special feature
called CollectedTreshHold in the LineAmount properties:

This property makes sure that the chart only shows five pieces of pie, the rest of the
pieces are visualized in a separate chart, to the right.

Optimizing charts
A recommendation when visualizing information in charts is
to avoid too many slices or bars. A maximum of four or five
is enough, the rest can be collected and shown as "Others", or
in a separate visualization. Otherwise, your chart will contain
too much information and become unreadable.

An example of this report is available in the object
Packt - CH04-8.

Data Visualization Techniques

[170]

Using maps
I'm going to display customer sales on a geographical map in the following example.
The result of the report is as follows:

The interesting fact about this report is that the information is shown on a map of
Belgium. In order to create the layout, you need a dataset that contains geographical
information such as cities, postal codes, or countries. I will fetch the information
directly from the customer table for this report:

Chapter 4

[171]

Select Map from the toolbox in the layout and drag it onto the report body. Then, the
following window opens in which you decide the type of map you want to add:

Data Visualization Techniques

[172]

By default, there are various maps available in the map gallery, but they are all from
the US. In some or most cases, your data will come from other regions of the world.
You can then select an ESRI shape file instead. When you click on the link in the
preceding screenshot, you are redirected to a Microsoft website, where you can find
links to other sites where you can download ESRI shape files for different countries
from all over the world:

Chapter 4

[173]

That is how I was able to find a map of Belgium. You can select the visualization type
from the following screen; then select the dataset, match fields and a visualization:

The most important element of this map wizard is linking the geographical data
from the map to the geographical data in your dataset. In this example, I used the
city names from the dataset to link to the Name_2 field in the ESRI shape file. The
problem here is that, in the shape file, the capitalization of the city names does not
match the way the names are capitalized in the dataset.

Data Visualization Techniques

[174]

You can fix this after you complete the map wizard by using an expression to
produce a better match:

I used an expression to convert the City field from the dataset into the case that is
used in the ESRI shape file to get a better link:

=StrConv(LCase(Fields!City_Customer.Value), vbProperCase)

Selecting an ESRI shape file
When you select, or create, an ESRI shape file, make sure the
size is not too big. The shape file will be imported into the RDLC
file and, if it contains too much information, it will take the
report viewer more time and resources to render it at runtime.

An example of this report is available in the object:
Packt - CH04-9.

To display geographical information, I suggest using Power View or Power Map
instead of an RDLC report. In Chapter 9, Power BI, you will see how to do this and
why it has much more potential for these types of reports.

Chapter 4

[175]

Summary
In this chapter we have seen how data can be visualized to understand and read
a report just by looking at it. When you select and implement the appropriate
visualization technique then users will not have to spend a lot of time interpreting
numerical information but they will be able to see what's going on and get a clearer
picture of the KPI in the report. As they say, a picture is worth a thousand words,
this is of course also very true in reporting. We have seen how to use images, data
bars, and indicators to create KPIs, Sparklines and charts to indicate and spot trends,
and used the map to display geographical information.

In the next chapter, I will explore another type of report, the document report.

[177]

Document Reports
In this chapter, I will introduce one of the most commonly used types of reports:
document reports. I will explain how the dataset of this type of report is built in
standard Dynamics NAV. Then, I will guide you through the layout of the report
and explain the how and why of typical report patterns for documents like the
number of copies option and how you can display information in the document
header that is linked directly to the record shown in the body of the report.

What is a document?
A typical example of a document report is the Report 206 Sales - Invoice. A
document report is a report that is printed and mainly used to communicate with
third parties. It's the kind of report that you send to your customers or vendors,
informing them of a certain transaction that requires their attention. This type of
report is also one of the most frequently customized reports in Dynamics NAV,
since every company usually applies their own house style on this report.

The Report 206 Sales - Invoice, is not used in the North America version
of Dynamics NAV; you can import it from the object: Packt - CH05-6

When performing an implementation, make sure you leave enough time to customize
the document reports, because depending on the requirements, it can take a lot of time,
starting from a couple of hours per report up to one or two days. Some companies,
when it comes down to documents such as sales invoices, credit memos, proformas,
and shipment or purchase notes, have far more issues than in other types of reports.

Document Reports

[178]

You will spend most of the time implementing exceptions or special circumstances
that need to be foreseen in the report layout. That is why it is very important to
have a clear and full understanding of what is required and to get this agreed.

In real life, I have seen it happen more than once that the developer finishes the
development of the report in time, but once the users start testing the report, they
notice that certain exceptions were not covered. Because of the complexity of the
document report, making changes to it can be time-consuming.

Then, of course, you will also need to guide your customer, because having many
exceptions in a process or report is usually an indication that something might
be missing in the implemented business processes, and having a very complex
document report will not solve those kinds of problems or gaps.

It's important that you manage the expectations with your client and explain that
it is very common that document reports take time to develop and usually more
than was planned. You will then avoid conflicts.

It's a good idea to spend time creating customizable templates for document reports
because document reports are always customized with every new implementation
and many of those customizations are repeated every time. You can then spend your
development time with advanced measures and add any missing functionality to the
standard reports later and reuse it with every implementation. Standard document
reports have a very complicated data model, and the layout is also very complex.
It could pay off to create a set of templates with simplified datasets, to be used as
a starting point for custom developed documents, rather than start with the
out-of-the-box overly complex report objects.

Although this seems like a no-brainer, in real life many companies always try to
reinvent the wheel…

The data model
The data model for a typical document report consists of many data items. You will see
the Document Header and Document Line table indented in the following screenshot
because a document stores information in a header table that is connected to multiple
lines. Because of the workaround to implement the No Of Copies option, which I will
explain later in this chapter, it also contains two integer tables. Then, depending on
the type of document report, you will also find links to other tables like, for example,
dimensions for the header, dimensions for the line, VAT information, local and actual
currency, shipment information, assembly information, and totaling. An example of
the dataset for Report 206 Sales - Invoice is shown in the following screenshot:

Chapter 5

[179]

As you can see, this is a very large and complex dataset. If you open the data items,
using the plus sign, you can see the columns. Every column in the dataset designer
becomes a column in the runtime dataset and, because of the size, performance
needs to be monitored.

In order to optimize the image to fit on one page, I have collapsed the
data items. To see the columns, open Report 206 Sales - Invoice and
expand the data items.

The dataset of this report is so large because Microsoft has foreseen every possible
piece of information in the standard document reports. In real life and most
situations this is not needed and you can reduce it. One example is dimensions.
The dataset contains the dimensions for the header and for the lines, although,
in real life, these are almost never used or required.

This is the dataset of the standard report that comes out-of-the-box in
Dynamics NAV. Needless to say, there are a few things you can do to
optimize its performance.

Now, if you compare the earlier dataset to the dataset of the Report 1306 Mini Sales
- Invoice, as shown in the following screenshot, you will notice some differences:

Document Reports

[180]

The Report 1306 Mini Sales - Invoice gives another way of creating a document
report, which I will explain later in this chapter.

The data model of a document report basically consists of two tables, the Header
and the Line table, for example, Sales Invoice Header and Sales Invoice Line.
The lines are indented below the header, because a header can contain multiple lines,
and the No. of the Header table is linked to the Document No. of the Line.
Because a document is linked to many other tables such as, for example, dimensions,
shipments, and VAT, these other tables are added as integer data items. Then, using
C/AL code, records are added to these integer data items using buffer or temporary
tables. The following screenshot shows how the shipment information is collected
via C/AL code and added to the Sales Shipment Buffer table:

The pattern that is used here with an integer (or buffer) table as a data
item will be covered in more detail in Chapter 7, Performance Optimization
Techniques.
Buffer tables are used all over Dynamics NAV and also in reports. The
advantage of using buffer tables is performance and flexibility. In the
development environment, when you apply the @*Buffer* filter to
the name field of tables, you will see a list of about 70 tables. Although
you can use any table as a buffer table, by making it temporary, these 70
buffer tables contain interesting business logic built in as functions.

Chapter 5

[181]

To summarize, the data model of document reports is complex, to say the least,
and contains a mix of normal and temporary tables. Depending on your location
(NA, W1, BE …) the data model of these reports might differ. For example, in
North America there's no VAT, as opposed to European countries such as
Belgium and Germany, where their VAT rules are sometimes very challenging.

In the following sections, I will go into detail about specific parts of the data model
and explain the how and why of each type of pattern.

When I use the word pattern, I don't mean it's a design pattern,
such as in the object-oriented world. What I mean is that the way
that it's implemented can and is reused in many other reports, and
it can be seen as a building block of a typical document report.

Implementing multilanguage
A document report is exchanged or sent to multiple third parties, so it should
be a multilanguage document. Let's investigate how you can make a report
multilanguage enabled.

Imagine that we have a report with the following dataset:

Document Reports

[182]

The report contains information from the sales header and line table. In order to
make this report multilanguage you usually enable the IncludeCaption property
of every field. Because of this, a caption will be sent to the layout as a parameter,
and you can display the column labels in the language of the user. The following
screenshot illustrates this concept:

You now have a multilanguage report with captions and labels. The printed
language is the language of the user running the application.

The problem with a document, however, is that it is typically printed and sent to
a recipient, and the document has to be generated in the language of the recipient.

Until now, we have always used captions (IncludeCaption) and labels to
implement multilanguage functionality in reports. The problem is that, when
you use captions and labels, they will be generated in the language of the user
who is running the report, and not the language of the recipient. This is a
fundamental difference.

Another problem is that, when printing multiple documents at once, the different
documents each need to be printed in the language of the recipient. For example,
when you run the Sales Invoice report for multiple customers, each customer
might use a different language.

Chapter 5

[183]

So, one report run should generate different labels in one dataset. This means that
captions and labels are not a solution, because they end up in the parameters in the
layout, and the values of the parameters are the same for every record in the dataset.

What we need are captions in the language of the recipient, and that is why you need
to add the captions to the dataset of the report. For every document that is printed
(or record in the dataset), you can then decide what the language should be.

This technique adds extra fields (captions) to the report dataset, which
decreases report execution performance. So, make sure you only do this
for the captions that are actually used, and not for all fields.

What you need to do is to add the captions to the dataset using the FIELDCAPTION
function, as shown in the following example:

Instead of using the FIELDCAPTION function, you can use text constants that you
define in Globals, and add them to the dataset.

Text constants in document reports usually get an lbl suffix in their
definition and a Cptn or Caption suffix in their name in the dataset,
as you can see in the preceding screenshot.

Then, in the OnAfterGetRecord() trigger of the Document Header, you write the
following code:

CurrReport.LANGUAGE := Language.GetLanguageID("Language Code");

This code uses Language Code in the document header to set the
language of the report. The language code in the document header is
inherited from the customer when it is added to the document.

Document Reports

[184]

When a new document is fetched, then the language of the fields added to the
dataset will change accordingly.

The choice between using a text constant and the FIELDCAPTION
function is obvious. When you add a caption for a field from a table,
use the FIELDCAPTION function. The FIELDCAPTION function
fetches the captions that are defined for the field in the table designer.
If you want to add text to a document, which is not bound to a field
in a table, then use a text constant.

An example of the report with the FIELDCAPTION function and the corresponding
layout is available in the object: Packt - CH05-7.

Address formatting
Documents also contain address fields, for example the Bill-To and Ship-To
addresses. The way that you add address fields in the dataset is an example of a report
pattern. Dynamics NAV provides functionality to format an address across an array
of eight textboxes, and this functionality is used in all standard document reports.

First, you need to know that the setup of Dynamics NAV allows you to define how
addresses need to be formatted. You can do this in the Countries page, as shown in
the following screenshot:

Here, you can decide, for example, if Post Code needs to be in front of City or not,
and if Contact needs to be before or after Company Name, and so on. When printing
an address on a document, you need to follow this protocol.

Chapter 5

[185]

An address in Dynamics NAV can consist of eight fields. We will use one variable
that holds all eight fields to put them in the dataset. This variable will be defined as
an array with eight elements and, via C/AL code, we will then populate the array
with the address fields, in the order defined in the setup.

Since the logic is the same for all reports (and pages), it is contained in a code unit:
Format Address. This code unit contains several functions, as you can see in the
following screenshot:

To get started, import object: Packt - CH05-7. This report contains a simple dataset
with fields from the Sales Invoice Header and Line table.

Define an address array in the C/AL Globals of the report, as follows:

Document Reports

[186]

Add each individual field to the dataset as a separate column, using the array notation:

You can use the code unit to populate the address fields in the array in the C/AL
code of the report:

Chapter 5

[187]

Then, you can add the fields to the report layout:

An example of this report is available in the object: Packt - CH05-8

If you are asked to modify the order in which address fields should be displayed,
then you can add a custom function to the Format Address code unit and use that
in your document reports, without having to modify the report layout.

Other examples of how to use the functions for other addresses are available in
Report 206, Sales Invoice, 208 Sales Shipment, and many other reports.

Document Reports

[188]

Including logos
In a document report, as in other reports that you exchange with third parties, you
typically want to add your company logo and information. You can define how the
logo should be positioned in all documents in Dynamics NAV. This can be done in
the Sales & Receivables Setup window:

Depending on what you select, a logo will be shown left, center, right, or it is not
shown at all.

Chapter 5

[189]

Four different variables that point to the company information table are defined in
the report because you can set up the image to be displayed in different ways. This is
the table that holds the logo and company name and address fields, and then there's
the following code in the OnInitReport() trigger:

The code in the CALCFIELDS function calculates the image depending on the value of
the Logo Position on Documents field in one of the company info variables. Then,
in the layout of the report, in the header, there are three image controls, as shown in
the following screenshot:

Document Reports

[190]

Each of the image controls is bound to one of the company information fields from
the dataset and hidden, depending on the value of the Picture field.

In the expression for the image, the Convert.FromBase64String()
function is used. This is not required. It is there because, in Dynamics
NAV 2009, the picture was stored in the body of the report in a hidden
textbox and the BLOB field from the dataset was converted to a string
with the Convert.ToBase64String()function. As you can see,
the expression here is =Convert.ToBase64String(Fields!C
ompanyInfo3Picture.Value), which means that the picture is
from the Fields collection (the dataset). You could replace this with
Fields!CompanyInfo3Picture.Value and the report would still
display the image. The reason the Convert.ToBase64String function
is there is probably because it was upgraded from a previous version.

This is overkill and I would do this using only one variable, instead of four, and
I would show or hide the image based on the value of the Logo Position on
Documents field, instead of the picture field. The dataset would then contain fewer
columns. The logo field is added to the dataset as a member of the Document Header
table because it's repeated on all rows of the dataset. This pattern can slow down
performance dramatically because an image field, which has a BLOB data type, can
potentially hold up to 2 GB of information. I would add the image fields on a separate
integer record and so only add them in one row (the first or last) of the dataset.

I once had the experience of setting up Dynamics NAV using the
standard Sales Invoice report, as described in the preceding section.
The company had a logo with a size of about 500 KB. The report took
more than a minute to run for a single invoice because this image
was repeated on every row of the dataset. I modified the dataset and
moved the image to an integer table, so that it was only added in
one row, the last one, and after that the report took only a couple of
seconds to process.

Chapter 5

[191]

Instead of moving the company picture to another data item, if you find it too
cumbersome, an alternative is to clear it after the first record is added to the dataset,
using the CLEAR() function. Otherwise, as you can see in the following screenshot,
the image will be repeated on every row:

This is not only valid for the company logo, but for all fields that have the same
constant value in every record of the dataset. You should only add them to the
dataset once. More information about performance optimization techniques,
including this one, is available in Chapter 7, Performance Optimization Techniques.

The No. of Copies option
When you print a document report in Dynamics NAV, one of the features that has
always been available is the No. of Copies option on the request page:

Document Reports

[192]

You can use it to print one copy, have extra copies printed, or multiple invoices.
Most printers also have this option in the printer settings, but when printing an
invoice you also require the copies to have a different header. In some countries,
such as Belgium, you can only legally print an invoice once. If you need to print a
copy, then it should be mentioned on the invoice. The printer settings are then
not sufficient and you will need a way to control it from within the report object.

What we need, to be able to do this, is to duplicate the dataset for every copy.
If you require two copies, for example, then you need to loop three times over
the data items in the report, once for the original and twice for the copies.

There are different ways to implement this feature, and in this chapter,
I will explain how it is done in standard document reports. This feature
has been available in many versions, back to the days when we used
the classic report designer. When the Dynamics NAV team decided to
switch over to RDLC reporting, this pattern was simply reused, to make
the upgrade process easier.

So, how can you loop multiple times over a data item, and its indented data items?

First, we need to create a dataset containing two data items, a Document Header and
a Document Line table, similar to a document report:

Chapter 5

[193]

In the preceding example, the invoice document has two lines, and they are sent to
the dataset.

To get started you can import the object: Packt - CH05-9

Now we need to implement a way for the user to ask for copies. In order to do that,
I will create a request page with a No. Of Copies field:

Now, once the user enters a value, we need to figure out a way to loop
NoOfCopies + 1 over our data items. The reason I'm adding 1 is that you also need
to print the original. The number of loops is the original plus the number of copies.

Document Reports

[194]

As you might have guessed, I'm going to use an integer data item to do this. I will
add it as the first data item, and then indent the other existing data items below it,
as in the following example:

I have named the Integer table CopyLoop and, in the OnPreDataItem() trigger, I
have used the value that the user enters as NoOfCopies to filter the data item, and
so, looped multiple times over the underlying data items, including the Document
Header and Document Line tables. In the OnAfterGetRecord() trigger of the
CopyLoop, I have incremented an integer NoOfLoops to count the iterations, which
I will add to the dataset so that you can see at runtime which are the original lines,
with NoOfLoops set to 1, and which are the copies, with NoOfLoops > 1.

Chapter 5

[195]

An example of this report is available in the object: Packt - CH05-1

In the actual document reports, for example Report 206 Sales - Invoice, Microsoft
has implemented this a bit differently, as you can see in the following screenshot:

Instead of placing CopyLoop as the first data item, they have put it in between the
header and the line, and they have also included a second integer named PageLoop.
This PageLoop dates back from the classic document reports in earlier versions and
has no added value at all here.

Also, in the C/AL code the CurrReport.PAGENO is no longer valid
in the C/AL code in RDLC because page numbers are calculated in
the layout and this function has no effect at all.

You can also define an extra number of copies per customer because it is on the
customer card in Dynamics NAV and it is also added to NoOfCopies.

Document Reports

[196]

There is a variable, CopyText, which is reset for every new document, and contains
the text COPY for every copy. This text is added to the layout, on the header, to
indicate that it is a copy and not the original. This is managed via the function
DocumentCaption(), as you can see in the following screenshot:

The DocumentCaption() function does the following:

Depending on whether it is a normal or a prepayment invoice, it returns a
Text010 or Text004 string:

The placeholder in this text string (%1) is replaced with what is in the
CopyText variable.

Chapter 5

[197]

Totaling and VAT
Many years ago, when I was learning about and exploring reports in Dynamics NAV,
I was a bit surprised about the way that VAT is calculated in the Sales Invoice report.
At the time I wasn't familiar with the data model of the application and I expected the
VAT information to come from a table where it was simply copied over to the dataset
of the report. But this is not the case. In the report, VAT is calculated when the invoice
lines are processed.

In the US, there's no VAT and so you will not see this in the US
localization. But the way it is done might still be interesting because
this is an example of using a buffer table in a report. To follow this
section please open (or import) Report 206 Sales - Invoice.

The way that this is done is via a temporary (or buffer) table VATAmountLine. The
table is defined as a temporary table in the Globals of the report:

The idea is to look for all of the VAT lines for the current invoice and store them in
this temporary table when processing the sales invoice lines. Then, later in the report,
an integer data item is used to loop over all the records stored in this temporary table
and add them to the dataset.

Document Reports

[198]

It begins with a reset or by clearing the variable, in the OnPreDataItem() trigger of the
sales invoice line. Then, while the sales lines are processed in the OnAfterGetRecord()
trigger, the VAT information from the sales lines is added to the VATAmountLine table,
as you can see in the following screenshot:

The Total fields (TotalAmount, TotalAmountVAT, and so on) are incremented after
every Invoice Line, and they are added to the sales invoice line data item. This
means that the actual total is only available in the last sales invoice line record in the
dataset, and should be retrieved as such.

Chapter 5

[199]

You might wonder why this totaling happens here in the dataset and
not in the RDLC layout. You could create columns for these fields in the
RDLC layout and let RDLC total the numbers using Sum() expressions.
Although this would probably work, it's better to do this in C/AL. The
layout, and the expressions in the layout, are processed in the Report
Viewer application, which runs on every client. Calculating these totals
in the layout would mean running it on every client, and for every
copy (NoOfCopies). That would consume a lot of memory and CPU.
Doing the calculations in C/AL means that it will run on the server
(Service Tier), which is faster and consumes less resources. Furthermore,
in Dynamics NAV 2015, there's a new buffer table, Report Totals
Buffer, which, when used as a temporary table, improves and simplifies
this process even more. It is not used in this report, but it is used in Report
1306 Mini Sales - Invoice. This is explained in Chapter 7, Performance
Optimization Techniques, in the section about using a buffer table.

The information from the sales invoice line and the information from the VAT
amount line data items is in different rows in the dataset:

Document Reports

[200]

You can see the dataset in the preceding screenshot. In the top part, I selected the
rows that contain the sales invoice line information. In the bottom part, I selected the
line that contains the VAT amount line information.

There's one table (TableLines) in the layout that needs to display the information
from the sales invoice lines, and there's another table (TableVAT) that displays the
records from the VAT amount line table:

You need to apply filters in the layout because the dataset is sent as a whole, one flat
dataset, to the layout. The TableLines Tablix needs to apply a filter to the dataset to
filter out those lines that contain the sales invoice line records and the VATTable Tablix
needs to have a filter so that it filters out the lines from the VAT amount line records.

The following screenshot shows the filter that is applied in the TableLines Tablix:

Chapter 5

[201]

The following screenshot shows the filter that is applied in the TableVAT Tablix:

This is a typical example of how you can filter a Tablix to select a subset of
records from a dataset that contains rows from multiple data items. It is also
an example of how you can use a buffer (temporary) table in a report.

The VAT is put in the dataset in a separate data item that loops over the
VATAmountLine buffer table. The VATAmtLineVATIdentifier field is then
used in the report layout, in a Tablix, to filter out and display the VAT lines.

The Tablix that displays the VAT has an expression in its hidden property to show
or hide the Tablix because VAT is not required for certain customers or invoices:

=(Fields!VATAmtLineVATIdentifier.Value = "")

There is a similar pattern used to add VAT clauses, and the VAT in
local currency (LCY), to the dataset and layout.

Logging and No. Printed
Whenever an invoice is sent to a customer, Dynamics NAV logs this as an
interaction with the customer or related contact. At the end of the sales invoice
header OnAfterGetRecord() trigger, there's code that does this, if the option
LogInteraction is enabled. This option can be set in the request page of the report.

Document Reports

[202]

Every time you print an invoice, it is also logged. There's a field in the Sales
Invoice Header table, as in most document header tables, No. Printed, that is
incremented, using the following code:

When you open the sales invoice list page, you can see it, as shown in the
following screenshot:

Now, if you look closely at the code, the counter is not incremented if you preview
the report, which is logical. You can use the function currReport.PREVIEW to detect
if a report has been previewed, printed or exported.

If you use the currReport.PREVIEW function in a report, then the
print button is removed from the report viewer toolbar. Otherwise,
you would be able to print a report without it being logged.

Chapter 5

[203]

InitializeRequest
Reports are not always run directly. What I mean is that you can run a report via
C/AL code, without any user interaction. In that case, you might want to set some
variables, which are shown in the request page. In order to do that, you have to
create a non-local function to access those variables. In most document reports
there's a function InitializeRequest, to do just that:

As you can see in the preceding example, when you create a variable of type
report and subtype 206, then you can access the InitializeRequest function to
set NoOfCopies and other variables.

This is a report design pattern that you can apply every time you
want to access, get, or set values of report variables, outside of the
report object.

The layout
Now that we have seen how the dataset of a typical document report is generated,
let's have a look at how we can create the layout.

Document Reports

[204]

Filtering the dataset
Since a document report contains several data items that contain information that
needs to be displayed in different sections of the layout, you use separate tables
(Tablix) to do that. But, by default, if you access a dataset field from a Tablix, the
Tablix will loop over and show all the dataset records. That is why you need to
assign a filter to each table, so that only those records that come from a specific
data item are shown in the Tablix.

Open the layout for Report 206 Sales - Invoice and then open Document Outline,
to see an overview:

You can see similar information in the report properties drop-down list but in the
document outline, everything is outlined in a hierarchy.

Document Outline
The document outline can be activated from the menu: View, Other
Windows, or via the shortcut: Ctrl + Alt + T. It is a really nice tool that
can help you to get a better understanding of how a report layout is
constructed, for example when you need to reverse engineer a report.
It is one of those hidden features of Visual Studio. The document
outline is not available in Report Builder.

Each of the tables in the layout of this report contains filters. An example can be seen
in the following screenshot:

Chapter 5

[205]

When applying filters in the report layout, it is important to understand that
data types in C/AL are not the same as data types in VB.NET. To make sure the
filter works, you need to convert the field in the dataset to a string via the CStr()
conversion function.

Working with headers and footers
Let's go back to the example report that I used to implement the NoOfCopies
option. To follow the steps, import the object: Packt - CH05-10.

Imagine that I am building the report layout using a Tablix to show the fields
from the line table. This layout would look like the following screenshot:

The layout contains a Tablix with the fields from the line table on the detail rows.

Document Reports

[206]

Now, add a group on the document number and, in the group header, add the fields
from the header table and, in the group footer, add the totals:

Enable the page break option in Group Properties..., to have every document printed
on a new page.

Chapter 5

[207]

The problem with this layout is the NoOfCopies option. When it is more than 0, for
example 1, then, when you run the report, the layout looks as follows:

The copies are put into the table because the table is a one-on-one mapping of the
dataset, grouped by document number. You need to have the copies printed as a
separate document, on a new page. How can you modify this report to achieve
this goal?

Well, when you think about it, it's actually very simple. The report already shows
one new page per document number, and we want to extend that so it also shows
a new page per copy. Why not put the copy (or NoOfLoops variable) inside the
group? Let's see what this does to our layout:

Document Reports

[208]

As you can see, when we print the report, the copy is shown on a new page:

So our problem is solved, or is it?

Well, if the report had a simple layout like the one shown here, then our problem
would be solved. But, in an actual document report, you have more than one table.
Usually, VAT (and other) information is printed in other tables, which are also in
the body of the report and when you add another table to the report layout, then it
will also need to be printed for every document. If I put a table below the current
table, then it would be printed after the current table, and so it would not be printed
on every page.

You might think, no problem, I will also group the second table on the NoOfLoops
variable to solve this problem. Well, if you do that, the problem is still there. If the
first table contains several rows, so that the table spans over multiple pages, then
the second (and third, fourth…) table will be pushed down and will not be shown
on the correct invoice when you print multiple invoices at the same time.

So we need another solution. We need to find a way to print every document and
every copy for every table we put onto the report body. Ideally, if we could use a
property that allowed us to group the body itself, that would solve our problem, but
this is not possible. On the other hand, we can simulate this. How can we simulate
a group on the entire body of the report and include all the tables it contains?

The solution is actually quite simple. If we can't group the body itself, then we add
something to the body that we can group. You can use data regions in the toolbox
because only data regions support grouping. The data region that I'm going to use
is the list. I could also use a table or a matrix, but a list has a simple layout that will
not even show at runtime. Then, I will put all of the tables that normally go into the
body of the report inside the list control and add the groups to the list itself. This
will allow you to simulate the NoOfCopies in the report layout because the list is
grouped and it contains the entire body content.

An example of this report is available in the object: Packt - CH05-3

Chapter 5

[209]

Let's look at an example of this solution:

When you run the report, every page looks the same, and contains the table and the
textbox below it. The textbox below the table contains text COPY if the page is a copy
and not the original document. In order to do this, you can use the following code:

Document Reports

[210]

The following screenshot displays the result when you run the report:

An example of this report is available in the object: Packt - CH05-3

Remember that, if you now add another Tablix below the first one, you need to
move the group on No_SalesInvoiceHeader from the Tablix to the list.

GetData and SetData explained
The next problem you will need to fix arises when you add a header or footer to
the report. You may have noticed that, when you drag and drop a field from the
dataset onto the header (or footer) of a report, the system uses an aggregate
function, usually First(FieldName.Value,"Dataset_Result").

Chapter 5

[211]

This expression fetches the value from FieldName from the very first row in the
dataset. In most reports, that is just fine.

But, in a document report, imagine that you are printing invoices for multiple
customers. You need to put the bill-to or send-to information of the customer in the
header of the report. This information is linked to the lines that you are invoicing,
which are in the report body. If you print two invoices for two different customers
and simply drag and drop the bill-to or any other field from the dataset onto the
report header, then the system will use the First() function and, in doing so at
runtime, every invoice will display the information from the first customer in the
header. This is definitely not what you want.

The information in the header of the report should be correct and it should be linked
to the record displayed in the body of the report. So, as a consequence, you cannot
simply drag and drop fields from the dataset onto the report header (or footer).

So, how can you solve this problem? Well, what you do is you put the data that
needs to be available on the header of every page into a global variable that's
accessible from every page, and contains the header information linked to the record
shown in the body of the report. To do that, you need to do three things:

• Declare a global variable
• Create a function to store a value in the global variable
• Create a function to retrieve a value from the global variable

Open object: Packt - CH05-4 to see how this solution is implemented.

Declaring the global variable and functions
This can be done in the Code tab of the report properties, as follows:

Shared GlobalVariable as Object

Public Function SetGlobalVariable(Value as Object) As Boolean
 If Value > "" Then
 GlobalVariable = Value
 End If
 Return True
End Function

Public Function GetGlobalVariable() As Object
 Return GlobalVariable
End Function

Document Reports

[212]

As you can see, we have two functions: Set and Get for GlobalVariable. This is a
simplified example that shows you how you can do it for one field. Once you have
defined the variable and functions, then you need to add a textbox to the header of
the report and use the following expression for it:

=Code.GetGlobalVariable

Before we can get the value from the variable, we first need to set it. This can only
be done from within the body of the report, because there we have a link to the
current record in the dataset.

You therefore add a textbox to the body, and in this textbox you call the Set
function. In order for this textbox not to show up, you also hide it, and this is where
we have a problem. In the latest version of RDLC, when a textbox is hidden, then
the expression for its Value property is no longer executed. So we can't call the Set
function in the Value expression of the textbox.

The only property for which we are sure that it is evaluated is the Hidden property.
So we will call the Set function in the Hidden property of the textbox.

In order to do that, you also need to make sure the Set function returns a True
value, because that will be used as the Value for the Hidden property of the textbox.

Implementing the Get and Set functions
Let's have a look an example which demonstrates how to implement this pattern:

An example of this report is available in the object: Packt - CH05-4

In real life, you need to add multiple fields to the report header or footer, and you
are not going to create a separate global variable, and a Get and Set function for
each field. So you need to make the function more generic. The variable needs to
be able to store more than one value.

Chapter 5

[213]

I will explain how this problem was solved in the actual document
reports you find in Dynamics NAV. Now you should realize that
there are alternative solutions.

In order to store multiple values in one variable, Microsoft decided to concatenate
all fields in the one variable. To do that, you need to do two things:

• Convert all values to strings
• Use a delimiter to concatenate the strings

Converting to strings can be done with the CStr() function and, as a delimiter, you
need to choose something which you are certain is not a part of the strings that you
are concatenating. The character that was selected for this is Chr(177):

Chr(177) is actually the +/- sign.

The SetData function, in report 206 Sales Invoice, is in the textbox named CustAddr.
To find it, use the properties window or the document outline. The textbox is hidden
behind the TableSalesInvLine:

If you have a look in the Hidden property of the CustAddr textbox in Report 206
Sales - Invoice, you will see the following:

=Code.SetData(Cstr(Fields!CustAddr1.Value) + Chr(177) +
Cstr(Fields!CustAddr2.Value) + Chr(177) +
Cstr(Fields!CustAddr3.Value) + Chr(177) +
Cstr(Fields!CustAddr4.Value) + Chr(177) +
Cstr(Fields!CustAddr5.Value) + Chr(177) +
Cstr(Fields!CustAddr6.Value) + Chr(177) +
Cstr(Fields!CustAddr7.Value) + Chr(177) +
Cstr(Fields!CustAddr8.Value) + Chr(177) +
Cstr(Fields!BilltoCustNo_SalesInvHdr.Value) + Chr(177) +
Cstr(Fields!NoText.Value) + Chr(177) +

Document Reports

[214]

Cstr(Fields!YourReference_SalesInvHdr.Value) + Chr(177) +
Cstr(Fields!No_SalesInvHdr.Value) + Chr(177) +
Cstr(Fields!HdrOrderNo_SalesInvHdr.Value) + Chr(177) +
Cstr(Fields!PostingDate_SalesInvHdr.Value) + Chr(177) +
Cstr(Fields!DueDate_SalesInvHdr.Value) + Chr(177) +
Cstr(Cstr(Fields!PricesInclVATYesNo_SalesInvHdr.Value)) + Chr(177)
 +
Cstr(First(Fields!DocDate_SalesInvHdr.Value)) + Chr(177) +
Cstr(Fields!SalesPurchPersonName.Value) + Chr(177) +
Cstr(Fields!DocumentCaptionCopyText.Value) + Chr(177) +
Cstr(Fields!PaymentTermsDesc.Value) + Chr(177) +
Cstr(Fields!ShipmentMethodDesc.Value) + Chr(177) +
Cstr(Fields!CompanyAddr1.Value) + Chr(177) +
Cstr(Fields!CompanyAddr2.Value) + Chr(177) +
Cstr(Fields!CompanyAddr3.Value) + Chr(177) +
Cstr(Fields!CompanyAddr4.Value) + Chr(177) +
Cstr(Fields!CompanyAddr5.Value) + Chr(177) +
Cstr(Fields!CompanyAddr6.Value) + Chr(177) +
Cstr(Fields!CompanyInfoPhoneNo.Value) + Chr(177) +
Cstr(Fields!OrderNoText.Value) + Chr(177) +
Cstr(Fields!EMail.Value) + Chr(177) +
Cstr(Fields!HomePage.Value) + Chr(177) +
Cstr(Fields!CompanyInfoEnterpriseNo.Value) + Chr(177) +
Cstr(Fields!CompanyInfoGiroNo.Value) + Chr(177) +
Cstr(Fields!CompanyInfoBankName.Value) + Chr(177) +
Cstr(Fields!CompanyInfoBankAccNo.Value) + Chr(177) +
Cstr(Fields!PricesInclVAT_SalesInvHdrCaption.Value) + Chr(177) +
Cstr(Fields!InvNoCaption.Value) + Chr(177) +
Cstr(Fields!SalesInvPostingDateCptn.Value) + Chr(177) +
Cstr(Fields!BilltoCustNo_SalesInvHdrCaption.Value) + Chr(177) +
Cstr(Fields!CompanyInfoBankAccNoCptn.Value) + Chr(177) +
Cstr(Fields!CompanyInfoBankNameCptn.Value) + Chr(177) +
Cstr(Fields!CompanyInfoGiroNoCaption.Value) + Chr(177) +
Cstr(Fields!CompanyInfoEnterpriseNoCptn.Value) + Chr(177) +
Cstr(Fields!CompanyInfoPhoneNoCaption.Value) + Chr(177) +
Cstr(Fields!PageCaption.Value) + Chr(177) +
Cstr(Fields!ReferenceText.Value) + Chr(177) +
Cstr(Fields!SalesPersonText.Value) + Chr(177) +
Cstr(Fields!VATNoText.Value) + Chr(177) +
Cstr(Fields!SalesInvDueDateCaption.Value) + Chr(177) +
Cstr(Fields!DocumentDateCaption.Value) + Chr(177) +
Cstr(Fields!PaymentTermsDescCaption.Value) + Chr(177) +

Chapter 5

[215]

Cstr(Fields!ShptMethodDescCaption.Value) + Chr(177) +
Cstr(Fields!EMailCaption.Value) + Chr(177) +
Cstr(Fields!HomePageCaption.Value) + Chr(177) +
Cstr(Fields!LegalNoticeText.Value) + Chr(177) +
Cstr(Fields!ShipmentDate.Value) + Chr(177) +
Cstr(Fields!ShipmentDateText.Value)
, 1)

And, if you have a look at the Value expressions of the header textboxes, you will
see this:

=Code.GetData(x,y)

In this report, there are four global variables:

• Data1

• Data2

• Data3

• Data4

Each of the variables is accessible via the Get function and each variable can contain
multiple values. That is why the Get function uses two parameters, X and Y. One
indicates the variable and the other indicates the field stored inside the variable:

Public Function GetData(Num as Integer, Group as integer) as
 Object
if Group = 1 then
 Return Cstr(Choose(Num, Split(Cstr(Data1),Chr(177))))
End If

if Group = 2 then
 Return Cstr(Choose(Num, Split(Cstr(Data2),Chr(177))))
End If

if Group = 3 then
 Return Cstr(Choose(Num, Split(Cstr(Data3),Chr(177))))
End If

if Group = 4 then
 Return Cstr(Choose(Num, Split(Cstr(Data4),Chr(177))))
End If
End Function

Document Reports

[216]

The Set function also works with two parameters, one to indicate the value to store
and another to indicate the variable in which to store it:

Public Function SetData(NewData as Object,Group as integer)
 If Group = 1 and NewData > "" Then
 Data1 = NewData
 End If

 If Group = 2 and NewData > "" Then
 Data2 = NewData
 End If

 If Group = 3 and NewData > "" Then
 Data3 = NewData
 End If

 If Group = 4 and NewData > "" Then
 Data4 = NewData
 End If

 Return True
End Function

When you customize the report and make changes, it is very important that the
report stores multiple values in one variable in a specific order, so that:

• You always add new fields at the end of the SetData function
• You do not remove any fields from the function

If you added a new field at the beginning or somewhere in the middle, then all the
fields below would get a higher number in the position of the concatenation, and so
the header would start to retrieve the wrong fields and you would need to manually
update all the GetData functions. If you remove a field from the SetData function,
the same thing would happen.

How do I remove a field from SetData?
In order to remove a field from the Setdata function, simply
replace it with an empty string: "" + Chr(177) +.

Chapter 5

[217]

Enable row numbers in the Visual Studio expression designer
In order to quickly see the number for a field in the GetData
function, you can enable Row Number in the expression designer
in Visual Studio. To do that, follow these steps:

In Visual Studio, open Tools, Options. Then, on the left-hand side, select Text
Editor, then All languages. There, enable Line Numbers.

Alternative solutions – the mini-document
An alternative solution to create a simpler document report is available in the
mini-document. Report 1306 Mini Sales – Invoice is an example of such a report.

In many cases, you don't need to implement the number of copies option, and if
that's the case, you should have a look at this report. The data model is relatively
simple and contains the Document Header and Line tables and also tables with
related information.

The problem that I described with the image that was repeated on every record of the
dataset is solved by using a variable FirstLineHasBeenOutput and by clearing the
image with the following code in the OnAfterGetRecord() trigger of the Line table:

IF FirstLineHasBeenOutput THEN
 CLEAR(CompanyInfo.Picture);
FirstLineHasBeenOutput := TRUE;

To calculate report totals, a new data item is used, called ReportTotalsLine. This
data item refers to a new buffer table called Report Totals Buffer and via the data
item Temporary property. This data item is used as a temporary table.

Document Reports

[218]

In the OnPreDataItem() trigger, you will see a call to the function
CreateReportTotalLines, which will calculate the totals:

As you can see, the data model, data item, and column names are very clear. The
names are kept simple and easy to understand. The reason is that this report is
typically used as a basis for a Word layout. The Word layout is managed and designed
by end users without much technical knowledge of Dynamics NAV. So the data
item and column names need to clearly indicate what they can be used for and what
information they contain. In general this is a principle that you should always apply.
More information about the Word layout is covered in Chapter 8, Word Report Layouts.

This report also contains an RDLC layout and there you will notice
something special:

Chapter 5

[219]

Did you see it? The report header only contains the images and page numbers, all the
rest has moved to the body of the report. This means that there is no need for the Get
and Set functions. This really simplifies the development of the report layout and it
also improves the readability. Every textbox clearly displays what it contains.

This layout simplification can be achieved by removing the Copy and Page loop data
items and indenting all data items below the header. As you can imagine, it will also
decrease design, development and maintenance time for this type of report.

What's missing from Report 1306 Mini Sales - Invoice is the number of
copies option. But, as a solution, you could create a codeunit or report
that runs this report and creates a loop to run it multiple times. You can
then simulate the number of copies by printing the report multiple times.
In order to have the word COPY on every copy you can then implement
a parameter, similar to the InitializeRequest function in report 206,
Sales Invoice, to pass along a Boolean variable that will, depending if it's
true or false, print the word COPY in the header.

How do I implement page x of y?
Implementing page x of y in a document report used to be very complicated. What
you need to do is display the current page number and total number of pages of the
document but, every time a copy starts, when NoOfCopies is used, then you need to
reset the current page number and, of course, recalculate the total number of pages.
When the user prints multiple documents at the same time and some of them span
over multiple pages with different tables being shown or hidden, this was a very
complex task.

Because of its complexity, many partners opted for another solution. That solution
usually involved adding the page number to the dataset of the report using some
kind of counter. Other solutions first printed the report, or exported it to HTML,
then counted the number of pages to use in the report, and then printed the report
again including the page numbers and total pages. As you can imagine, this is very
complex and not so good for the performance of the report.

But now, in Dynamics NAV 2013 R2 or higher, we can make use of a new property
that has become available in RDLC. Whenever you create a group in a Tablix
(List, Table, and Matrix), you can reset the page number every time a new group
is reached in the group properties, and that list is grouped on the OutPutNo and
document number because, in a document report, all the information in the body
resides in a list, and all you need to do is activate this property in the grouping of
the list. To find this property, you will need to open the correct property window.

Document Reports

[220]

Let me demonstrate how you can do this:

To do this, follow these steps:

1. Select the List control in the body of your document report.
2. Select Group in the Row Groups window.
3. Open the Properties of the Group.
4. Enable ResetPageNumber.

Now, in the actual document reports in Dynamics NAV, the text that is used to
display the page numbers contains placeholders. In C/AL, you can simply use a
STRSUBSTNO() function to update the placeholders but, in VB.NET, you can use
the Replace function, as shown in the following screenshot:

Chapter 5

[221]

An example of this report is available in object: Packt - CH05-5

Document Reports

[222]

Summary
In this chapter, we have learned how the data model and layout of a typical
document report is created. A document report contains several patterns that
you can reuse when you create other types of reports. These patterns include
implementing multilanguage functions, address formatting, company logos, totaling,
filtering the dataset, and working with headers and footers. We also had a look at an
alternative report for documents called the mini document.

In the next chapter, I will demonstrate some tips and tricks like working with
hyperlinks, displaying header or footer information on specific pages, and Trans
headers and footers. In Chapter 6, Tips and Tricks, I will demonstrate some common
real world problems and issues, and how you can solve them.

[223]

Tips and Tricks
In this chapter I will cover some well-known time-savers and workarounds;
and how you can solve problems. Sometimes a real solution is not available and
then, I will demonstrate a workaround. The chapter is rather a collection of the tips,
tricks and challenges you will encounter when you are charged with the task of
implementing report layouts.

Report pagination
Have you ever had the problem that, when you run a report in preview mode,
everything looks just fine, but, when you print the report or export it to PDF,
there are blank pages in between the pages with information? If you have, then
rest assured, this is a typical pagination problem that can be solved by selecting
the correct width properties. One of the problems with RDLC reports is that the
preview and printed versions might appear different.

First let's see what is exactly causing this blank page effect.

Basically, it's very simple. Whenever the report renderer, which is responsible
for printing a report or generating the PDF version, encounters information
that does not fit on the current page, it will print it on the next page, even if it's
blank information.

When does this happen? It happens when the width of the report body is larger
(meaning greater than or equal to) than the width of the report, minus the left and
right margins.

Tips and Tricks

[224]

The following diagram illustrates the margins:

LM

Width

Report

Body

Width RM

Import the object: Packt - CH06-9 to see the margins, and run the report in
Print Layout mode.

You need to make sure the width properties of the body and report are set correctly
to avoid the issue of having blank pages,

For example, if the width of the body is 20 cm, and the paper size is set to A4, this
means that the width of the report is set to 21 cm. When you then set the left margin
to 1 cm and the right margin to 1 cm, then the body width (20 cm) plus the left
margin (1 cm) plus the right margin (1 cm) equals 22 cm, which is greater than the
report width of 21 cm. This extra space is then printed on a new page.

Chapter 6

[225]

You can do this in the report and body properties window:

Of course, sometimes the width of the body can grow, depending on the information
it is displaying. This can happen when you use a matrix with a variable number
of columns. Another time this might happen is when controls push other controls
to the right. Typically, the scenario occurs when you set the Hidden property
of certain controls using an expression, so sometimes the control is visible, and
sometimes it's not.

Use Rectangles to keep objects together
To avoid controls pushing each other from the page I recommend
using Rectangle containers. Normally, when you put a control into
a Rectangle and the control grows, it cannot grow bigger than the
rectangle that contains it. Make sure you leave some whitespace to
the right of the rectangle.

Always make sure you test your report in different rendering formats, Word, Excel,
PDF, and Print, because each of them will render the report layout differently and
that might cause this blank page effect to occur.

Tips and Tricks

[226]

Show a footer or header on the last page
A question I get asked a lot is, how can you display information on certain pages and
not on others? I will explain in this section how you can show or hide information on
the last page of a report, and then use the same method for any page.

Let's start with a report that has a simple dataset with so many records that when
you put them in a table, the table is printed on multiple pages:

An example of this report is available in the object: Packt - CH06-4

I have added a field to this dataset named txtLastPage and, as its name suggests,
this information only needs to be visible on the last page.

• Build a layout that contains a table with the fields from the dataset and,
above the table and inside the body, add a textbox

• Add a page header in which you add a textbox

Chapter 6

[227]

• Add a page footer in which you add two textboxes, as shown in the
following screenshot:

You use expressions in each of the textboxes, as displayed on the right of the image.

Now, as you might have noticed, the first textbox executes a function =Code.SetLas
tPageInfo(ReportItems!txtLastPageInfo.Value), which uses the content of the
textbox txtLastPageInfo, which is the second textbox from the top and contains
the following expression: =First(Fields!txtLastPage.Value, "DataSet_
Result"). This expression fetches a value from the dataset and passes it as a
parameter to the SetLastPageInfo function, and this stores the value in the global
variable: LastPageInfo. The textbox at the bottom of the report, in the footer, uses
the function GetLastPageInfo() to retrieve whatever is stored in the variable
LastPageInfo.

Tips and Tricks

[228]

For this to work, you need to define the following in the Code tab of the report:

Shared LastPageInfo as Object
Public Function GetLastPageInfo() as Object
 Return Cstr(LastPageInfo)
End Function
Public Function SetLastPageInfo(NewData as Object)
 If NewData > "" Then
 LastPageInfo = NewData
 End If
End Function

This works exactly like the Get and Set functions in a
document report.

Now, when you run the report, the table is split over two pages and they are
displayed, as shown in the following screenshot:

The footer displays the text Last Page Information on the last page only. Why is
that? Well, it's because I have put that last textbox inside a Rectangle and in the
Hidden property of that rectangle I used the following expression:

=Iif(Globals!TotalPages = Globals!PageNumber,False,True)

Chapter 6

[229]

This means that the Hidden property of the rectangle is false only on the last page,
because that's the page where the number is equal to the total number of pages.

I recommend using Rectangles for Hidden Expressions because
they can contain multiple textboxes and then you only need to
set and maintain the expression on the rectangle, and not on each
individual textbox.

This example demonstrates how to hide a textbox on the last page, but it's very easy
to do on another page by changing the expression. You can also do it for textboxes on
the header of the page.

This example uses a function and global variable to store the information. That's not
really required for this report but, when you implement this in document reports
that contain several tables in the body, it's the only way to make it work properly.

Place at the bottom
In certain reports, it is necessary to place information at the bottom of the page, even
when there's still room available above it. RDLC does not have a property with this
effect. The only thing that will make sure it is placed at the bottom of the page is the
page footer.

A disadvantage of putting information in the page footer is that, when you
hide, for example, a textbox or multiple textboxes in a rectangle, the space is
still reserved in the page footer, and you end up with a lot of white space at the
bottom of your report.

A typical example of a place in bottom request is in the sales invoice report, where
you have the table containing the invoice details, header and lines, and below it the
table with the VAT information. A company usually wants the table with the VAT
information to be placed at the bottom of the page, even when the table that displays
the details only contains one, or a few, rows of information.

I must admit, there's not a good solution for this problem, or in other words,
I haven't found a good working solution. Instead, I can explain a workaround.

Tips and Tricks

[230]

The workaround consists of a way of using an expression which pushes the table
that contains the footer information down the page, until it reaches the bottom of
the page.

You see an example of the effect of this workaround in the following screenshot:

The orange textbox in the first example is placed directly under the table, while in
the second example it is placed at the bottom of the page.

It comes down to counting, and determining how many rows the table that contains
the details requires or contains, to position the table below it towards the bottom of
the page. Then, when the table contains fewer rows, you will generate empty rows
that will push everything that comes after it to the bottom of the page.

To do this, you need a way to count the rows currently displayed in a table, for
which you can use the CountRows() function. You need a function that is able to
generate empty rows, or line breaks. The easiest way to generate a line break is the
vbCrLf function, or the Visual Basic carriage return line feed.

Chapter 6

[231]

You can use this function in the following way:

Public Function GenerateVbCrLf(ByVal Count as integer)
 dim Value as String
 dim i as integer
 For i = 1 To Count Step 1
 Value = Value & " " & VbCrLf
 Next i
 Return Value
End Function

This function uses a parameter and, depending on the value of the parameter,
it generates a number of line breaks.

Imagine that you have counted, via a process of trial and error, that the number
of rows on a page is X, then used the following expression to determine how many
line breaks were required:

=Code.GenerateVbCrLf(X - cint(CountRows("Table1")))

This function allows you to generate any number of new lines dynamically.

The problem becomes even more complicated when there are multiple tables
above the table that needs to be placed at the bottom of the page. Then, you need
to count the rows in each of them and subtract them from the magic number (X).
If so, I would use a global variable that holds the total of rows in all of those tables:

Shared TotalRows as Integer
Public Function SetCountRow(RowsToAdd as integer)
TotalRows = TotalRows + RowsToAdd
End Function
Public Function GetCountRow() as Integer
Return TotalRows
End Function

Next, you need to fill the TotalRows variable with the actual number of rows in
each of the tables:

=Code.SetCountRow(cint(countrows("DimensionLoop1")))
=Code.SetCountRow(cint(countrows("SalesInvoiceLine")))

The function then generates the line breaks as follows:

=Code.GenerateVbCrLf(42 - Code.GetCountRow)

Tips and Tricks

[232]

Let's look at an example.

An example of this report is available in the object: Packt - CH06-8

I will start the report with a simple dataset, as follows:

I will then add a table to the layout to display the customer information, and a
textbox below the table with the information that needs to be shown at the bottom
of the page:

Chapter 6

[233]

If you run the report, it should look as follows:

Tips and Tricks

[234]

As you can see, the textbox is clearly not at the bottom of the page. I will now
implement the counting rows function, as shown in the following screenshot:

I added a footer row to the table to execute the SetCountRow function. This needs to
happen in the table, because the scope of the CountRows function must be an object
that is within the scope of the textbox or, in other words, the textbox needs to be
contained in the same object. The rowcount of the table needs to happen within the
scope of the table.

Then I added a textbox above the orange textbox to generate the line feeds. This is a
little hidden textbox that pushes down the elements at the bottom of the page.

The table ends with the last row in the dataset. To make sure the orange textbox is
placed at the bottom of the page, I added the other textbox before it. Then we fill
that last textbox with line feeds to expand the height of the textbox, which will push
down the orange textbox.

Chapter 6

[235]

Now that you have seen the example, you can see that it is only a workaround and
not a perfect solution. The workaround depends on counting rows and is not very
stable. In some cases it might not work or produce the desired results.

The only way to be one hundred percent sure that something is put at the bottom of
the page is to put it into the page footer. In the page footer, you will have to work
with textboxes that hold the information, and probably also with the SetData and
GetData functions to retrieve the information from the dataset linked to the record
currently displayed in the body. If you do this it is a good idea to put the information
that needs to be positioned at the bottom of the page in a separate data item. Then
you create a small textbox, within a table, in the report body, filter it on the specific
data item and then use the SetData function to store the information in a separate
variable. You use the Getdata function from the page footer to retrieve those fields.

There are better ways to solve this problem. One way would be to use
the information in the next section, A Fixed number of rows, in which
you are going to create a table that always displays a fixed number of
rows. When you put another table below it you are sure it will always
be positioned at the same location in the page.

A fixed number of rows
This section describes a trick that you can apply when you need a table to always
have the same number of rows, on every page. Normally, when you use a table and
the information is printed over multiple pages, then, on the last page, the table stops
when it runs out of data. You can avoid that with this trick, and position another
element below the table, at the bottom of the page.

An example of this report is available in the object: Packt - CH06-6

Tips and Tricks

[236]

In this example, I will start with the following dataset:

There's a customer data item to fetch records from the corresponding table, an
integer data item to add one record to the dataset that contains a RowsPerPage
variable, and some fields from the company information table.

Chapter 6

[237]

I have added a table to the body in the layout of the report. I used the caption fields
on the header row and the data fields in the detail row. I then added a report header
on which I will display the company name and logo, and a report footer on which I
display the report name, which comes from a label that I have added:

As you can see in the preceding screenshot, the table also contains several footer
rows, which is done on purpose. The footer rows will not always be shown.

Imagine that you want 10 rows per page, and each footer row is a placeholder for
when the last page has one, or two, or three, … or nine rows. If there is one row left,
then you want all nine footers to show. If there are two rows left, you want eight
footers to be visible, and so on.

I have added a group to the table to generate a page break after every ten rows,
which uses the following expression:

=Ceiling(Rownumber(Nothing) / 10)

Tips and Tricks

[238]

The Ceiling function returns the smallest integer greater than or
equal to the specified numeric expression. An alternative is the Floor
function, which returns the largest integer less than or equal to the
specified numeric expression. For example, when considering a numeric
expression of 12.9273, Ceiling returns 13 and Floor - returns 12.
The return value of both Floor and Ceiling is the same data type as
the input numeric expression.
The RowNumber function returns the number of rows in an object.
Nothing specifies the outermost context, usually the report dataset.

The name of the group is RowsPerPage, and I have removed the column that is
normally added when you add a group to a table. I have enabled page breaks
between each instance of the group in the properties of the group.

This report has so far been like any other report that you create when you want to
have a page break after every tenth row.

I have used an expression that will evaluate to true or false in the Hidden property
of each footer row to hide or show the row. The expression on every footer row is
similar, but not the same. In the row visibility of the first footer row, you can see the
following expression:

=iif(RowNumber("RowsPerPage") - 10 >= 0,true,false)

This means that the expression is true if the rownumber is bigger than 10 and, then,
the footer row is hidden. I have added the following expression to the next footer:

Chapter 6

[239]

This means that, if there are less than nine rows in the table, the footer will be shown.
I will use similar expressions for all the footer rows until the last footer row, where
the expression is =iif(RowNumber("RowsPerPage") >= 0,true,false).

When you run the report and look at the last page, the result is, as shown in the
following screenshot:

There are two customers in the first print and only one in the second but, in both
cases, the table displays the same number of rows. All the customers are there in
the third print and there is the same number of rows on every page, including on
the last page.

This means that the table is always going to have the same height and, if you
position another table below it, it will start from a fixed position, independent
of the number of rows in the first table.

Trans headers and footers
In Dynamics NAV, before version 2009, in the classic client, the report layout was
developed in what was called the Section Designer. This was a layout designer
that was optimized to create simple ERP types of reports without using data
visualizations, though it contained some nice features that we use a lot in ERP
reports. Two of these features are transheader and transfooter, sometimes also
referred to as transport or running totals.

The idea behind it is that, when report information spans over multiple pages,
you add a row (or a textbox or another report item) to the top of the next page that
contains a total of the information that was shown in the previous page. Similarly,
at the bottom of the page, you can also display a page total. You need to use an
expression in the rdlc report layout, because there are no transheader of transfooter
report items in the toolbox.

Tips and Tricks

[240]

What you need is some kind of variable that can contain a page total (one or
multiple) for every page. You could use an array because you have access to the
.NET framework in the rdlc report layout. An array is a variable that can contain
multiple values. The variable needs to support an index that can be used to indicate
the page number for which it is holding a value, and it also needs to contain a value
for each index.

Although an array provides this, in .NET a hash table might be more interesting.
A hashtable is a variable that you can use to hold multiple values based upon a
key/value pair. A hastable also uses an internal hash key to speed up lookups in
the key/value pairs, which is why it is faster to use, when compared with an array.
Another possibility is a .NET generic Dictionary type, which is even faster than a
hashtable. I will use a hashtable in this example.

An example of this report is available in the object: Packt - CH06-2

I will start with a report that has a simple dataset, as shown in the
following example:

The idea here is to select a table that contains enough rows to span over multiple
pages. You then go into the report layout, and add a Tablix to the body that contains
the dataset fields. Then, add a page header and a page footer, and put a textbox
in them.

I used an olive and blue BackgroundColor in the textboxes in this
example so you can spot them more quickly at runtime.

Chapter 6

[241]

The next thing to do is to create the HashTable variable, and the functions to work
with the table. You can use the following code and add it to the report Code:

Shared RunningTotals As New System.Collections.Hashtable

Public Function GetRunningTotal(ByVal CurrentPageNumber)
 Return IIF(CurrentPageNumber > 0,
 RunningTotals(CurrentPageNumber), 0)
End Function

Public Function SetRunningTotal(ByVal CurrentPageTotal, ByVal
 CurrentPageNumber)
 RunningTotals(CurrentPageNumber) = CurrentPageTotal +
 GetRunningTotal(CurrentPageNumber - 1)
 Return RunningTotals(CurrentPageNumber)
End Function

The RunningTotals variable is the hashtable that holds the page totals. The
GetRunningTotal function retrieves a total from the hashtable, based on the page
number you provide. The SetRunningTotal function stores and adds a page total to
the hashtable for the page number that you specify. The hashtable variable then
holds a key/value pair at runtime that becomes the page number (key) and page
total (value).

You now need to use the variable. There's a total in our table, in the footer row, for
the Sales (LCY) field. This total is shown on the last page and is a grand total of all
the rows. The textbox on the page footer holds the page total, displaying the total for
the Sales (LCY) displayed on the current page. This total is simply the sum of the
values shown in the textbox on the detail row that contains the Sales (LCY) field.
The name of this textbox is SalesLCY_Customer.

You can then use the footer textbox in the following expression:

="Transfooter subtotal = " &
 Code.SetRunningTotal(Sum(ReportItems!SalesLCY_Customer.Value),
 Globals!PageNumber)

This expression uses the ReportItems collection to refer to the SalesLCY_Customer
textbox and calculates the Sum or page total. The result, or Sum, is then sent as a
parameter to the SetRunningTotal function and linked to the PageNumber. The
function also returns this value as the total for the current page.

Tips and Tricks

[242]

You can then use the following expression for the textbox on the page header:

="Transheader subtotal = " &
 Code.GetRunningTotal(Globals!PageNumber-1)

This will retrieve the total for the previous page, which is the page where the page
number is equal to the current page number minus one.

This is how you can show page totals or transheader and transfooters in the report
rdlc layout.

Page header/footer required
The PageNumber and TotalPages, from the Globals collection, can
only be accessed from within a page header or footer. That is why
you need to add a page header and page footer to the report layout
for this solution to work.

Creating links
Sometimes, as a user, when you run a report and analyze the information that is
displayed on it, you might require more in-depth information about related subjects.
The report may show a document number, or an item or customer number and you
want to provide the user with a way to drill through to the document report or item
card or customer list page. You can do this by creating links. A link can be created in
several ways. First we will have a look at how it works in the layout and then at the
kind of links that can be used.

Links always start from inside a textbox in the layout of a report.

Remember that a chart also contains textboxes, the difference is
that a chart renders them differently. This can also be applied to
parts of a chart.

Chapter 6

[243]

When you right-click on a textbox and go to its properties, have a look in the
Action pane:

Here is where you can define an action or, in other words, a link or a hyperlink:

• The Go to report option is not available in Dynamics NAV. It is meant for
Reporting Services reports that run on the SQL Server Report Server

• The Go to bookmark is meant for internal navigation in a report
• The Go to URL is meant to navigate or link to an external object which could

be a Dynamics NAV object, a network drive, or a file or website, and so on

Enable hyperlinks
In order to compile a report that uses links in its layout, you need
to activate the report EnableHyperlinks property. Otherwise
you will get the following error: Report RDLC control 'XXX'
contains an external link. The EnableHyperlinks
property has not been set. This property is in the dataset
designer in C/SIDE, not in Visual Studio.

Tips and Tricks

[244]

You need something to link to before you can create a hyperlink in the layout.
There are three ways to create a link in Dynamics NAV:

• Using the GETURL function
• Using a bookmark
• Using a filter

Using a filter
I will start with the third option, using a filter. Although this is simple and light
on resources, I prefer not to use it, because you don't need to add anything to the
dataset. I prefer to avoid it because there's not much documentation on how to
set it up, and it does not work in all the versions of Dynamics NAV.

The idea is to build a URL that looks as follows:

• DynamicsNAV://server/instance/company/runpage?page=xx

• DynamicsNAV://server/instance/company/runreport?report=xx

• DynamicsNAV://server/instance/company/runquery?query=xx

• DynamicsNAV://server/instance/company/runxmlport?xmlport=xx

• DynamicsNAV://server/instance/company/runcodeunit?codeunit=xx

• DynamicsNAV://server/instance/company/RunTable?Table=xx

xx: stands for the ID of the object you would like to link to
server: is the server on which the service tier is running
instance: is the name of the service tier
company: is the name of the company

You can simply add this URL to the Action property as a text string via the Go To
URL option. When you create a hyperlink you normally want to link to a specific
record or filter the object that you are opening. This can be achieved by adding extra
parameters to the link. If you want to link to another report, for example, you can
append the following string:

&filter=<table>.<field>:<value>

Chapter 6

[245]

So the complete URL would be:

DynamicsNAV://server/instance/company/runreport?
 report=xx&filter=<table>.<field>:<value>

The explanation of the terms used in the URL is as follows:

• Table: is the name of the data item of the report you are linking to
• Field: is the data item field you are linking to, to which you want to apply

a filter
• Value: is the filter you want to apply to the data item field of the report

you are linking to

If the field name contains special characters such as, for example, spaces or dots,
then you must enclose it in quotation marks by using an escape character, %22

The value that you specify can also contain wildcards, as in:

• > (greater than)
• >= (greater than or equal to)
• < (less than)
• <= (less than or equal to)
• <> (not equal to)
• * (anything that begins with this)

You can also filter on multiple fields. Concatenate (or glue) the filters together in the
URL, as in the following example:

DynamicsNAV:////runreport?report=xxx&filter=Customer.
 City:A*&filter=Customer.Name:B*

We also have access to the dataset because we are building these URLs in the rdlc
layout, so the values on which we are filtering will come from the report dataset.

Tips and Tricks

[246]

The following screenshot shows an example of implementing this type of link and
filtering the link from one report to another:

In the preceding screenshot, the hyperlink was implemented in the Customer - Top
10 report (111). When you click on Sales (LCY), the report 112 is opened, filtered on
the number of the customer that was clicked.

As you can see, this is a very simple way to provide a link to a report, allowing you
to filter the report you are linking to.

When you want to link to a page and filter the page you are linking to, as in the
previous example, the syntax of the URL is a little different as DynamicsNAV:////
runpage?page=<page id>&$filter='<field>'%20IS%20'<value>'[%20AND%20
'<field>'%20IS%20'<value>'].

Chapter 6

[247]

I have implemented this in the same report as an example, behind the customer
number, as follows:

So, to summarize, you are able to create a link, containing a filter, to a report or
page by using the &filter and &$filter options. This was not possible in previous
versions of Dynamics NAV. The &filter option could not be used on page objects,
only on reports.

The difference between &filter and &$filter is when you want
to filter a report or a page. The filter to a page is similar to a filter for
an ODATA web service, which requires the $ sign. More information
about these types of filters is available at https://msdn.microsoft.
com/en-us/library/dd338628.aspx and https://msdn.
microsoft.com/en-us/library/hh169248(v=nav.80).aspx.

You need to provide a bookmark to link and apply a filter to a page object. This is
actually still an option in the current version of Dynamics NAV.

https://msdn.microsoft.com/en-us/library/dd338628.aspx
https://msdn.microsoft.com/en-us/library/dd338628.aspx
https://msdn.microsoft.com/en-us/library/hh169248(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh169248(v=nav.80).aspx

Tips and Tricks

[248]

Using a bookmark
But first you need to calculate or get the bookmark and this requires some C/AL
magic. A bookmark is no more or less than the ID of the record you want to link to,
and this ID can be retrieved with the RecordId() function. This function is only
available in a variable of type recordref, so you will need to define one and then
use the GetPosition() and SetPosition() functions to connect it to the current
record. You then need to format it using the Format() function.

An example of this report is available in the object:
Customer - Top 10 List

The following example will shed more light on this procedure.

First, I added the following code to Report 111 Customer - Top 10 List:

Chapter 6

[249]

This allows you to add the FORMAT(RecRef.RECORDID,0,10) function to the dataset
add column, CustomerBookMark.

You then add the link to the layout in Visual Studio, in the Action property of the
textbox that holds the customer name:

Tips and Tricks

[250]

Then, when you run the report and click on the name, the corresponding page opens:

The advantage of using a bookmark is that it works in all versions of Dynamics
NAV (that support RDLC). The disadvantage is that you need to use a recordref
variable, and add the bookmark to the report dataset, which might have an impact
on performance.

Using the GETURL() function
The third approach to generate URLs is by using the GETURL function. This function
was introduced in Dynamics NAV 2015 and offers a new way to generate a URL.
Furthermore, the generated URL can be linked to a specific type of client. The syntax
of the GETURL() function is as follows:

[String :=] GETURL(ClientType[, Company][, Object Type][, Object
 Id][, Record])

Chapter 6

[251]

The ClientType is also an option and can be set as Current, Default, Windows,
Web, SOAP, or OData. It is the type of client that you want the link to be opened in.
The other parameters speak for themselves. In the following example, the GETURL()
function is used to generate a URL, based on an option provided in the request page.
Then, when you click on a customer in the chart, the corresponding page is opened
in the requested client:

Tips and Tricks

[252]

When you run the report in a Windows, Web, or Tablet client, the links will work
and you can link to the Windows, Web, or Tablet client.

The Tablet client does not have a report viewer, but you can export
a report to Excel and then use the hyperlinks in Excel.

Personally, I prefer to work with the GETURL function, as opposed to the &Filter or
&BookMark options. The link is very simple in the RDLC layout and does not require
a complex expression. You can also link to different client types and, if you export a
report to Excel, the links still work. A disadvantage is that the URL is added to the
dataset and so consumes resources. I sometimes also include an extra option in the
options tab so that the user can enable/disable the links.

When you include links in reports remember that, although the user can click on
the textbox or chart, the link itself is not underlined or in blue, as in a browser. You
might therefore want to underline the text and make them blue, to make it clearer to
the user where they can click.

An example of working with the three types of URLs is available in
the object: Customer - Top 10 List

Using internal bookmarks
Another feature is internal bookmarks. You can use internal bookmarks to
create a link that points to another location in the same report.

I have added two textboxes to the Customer-Top 10 report, 111 in the
following example:

Chapter 6

[253]

I have entered some text in the Bookmark property of the two textboxes:
AboveTheTable and AboveTheChart. You can activate a Goto Bookmark link and
link to the bookmarks that you have just created in the Action properties of the two
textboxes, as follows:

Then, when you run the report and click on one of the textboxes, you will be
redirected to the other textbox and vice versa.

Bookmark and Select bookmark are strings or hardcoded text, but they can also be
expressions. For example, if you had two tables in a report, and would like to link the
detail level of one table to the detail level of another table, you could use expressions
to accomplish this.

Printing barcodes
You might need to print bar codes when you are designing reports that are used
in warehouse management, for example. Printing a barcode is actually very simple,
depending on the type of barcode, of course. In its most simple form, a barcode is
no more or less than a type of font. A barcode can be used to visualize numeric or
alpha-numeric characters using vertical stripes of different widths. This information
can then be scanned with barcode scanners.

This method of processing information can improve performance. For example,
when you are a warehouse employee and you need to pick items from different bins
in the warehouse to prepare shipments, then you also need to enter this information
in your ERP system, in our case Dynamics NAV. An item number can be made up of
many characters, and a lot of time is lost typing those numbers. You can simply scan
the number with a barcode scanner and it will be recognized by the system.

Tips and Tricks

[254]

Did you know that it's the whitespace in between the vertical
stripes that represents the barcode data and not the vertical
stripes themselves, as most people believe?

Let's have a look at an example. In Dynamics NAV you can register barcodes for
items as cross-references. In an item card, select the cross reference action, as shown
in the following screenshot:

Next, I'm going to create a new report to display items with barcodes. You can use
the following dataset to get started:

Chapter 6

[255]

I will print the barcodes in the layout as labels. You can then print them and get
more information on the page, and also print them on sticky paper so that you can
use the stickers to put on your bins. You need to go to Report properties and use the
Columns setting:

This will add three columns to the report. Only the first column is enabled in the
body. At runtime, the information will continue on the other columns.

I then added a list to the body and added four textboxes to it. I will display the
following descriptions in the textboxes:

• Item No

• Item Description

• Barcode (visually)
• Barcode (numerically)

A barcode is actually a font that you need to select in the textbox properties.

In this example I have used Font Free 3 of 9, which is a font that I
downloaded from a website: http://www.barcodesinc.com/
free-barcode-font. To use it, download it, unpack the ZIP file
and install the font. Then relaunch Dynamics NAV.

Once you have downloaded the font, you need to install it to make it available in
the list of fonts.

http://www.barcodesinc.com/free-barcode-font
http://www.barcodesinc.com/free-barcode-font

Tips and Tricks

[256]

Now, when you run the report, it will look as follows:

Note that the columns are not visible when you run the report in preview mode,
you need to select Print Layout, or export the report to PDF, Word, Excel, or Print
for the columns to be visible. You can only see two columns in this example,
although I defined three columns at design time. This is because there are not
enough items in my database that have barcodes.

Barcode fonts
You can download or purchase barcode fonts from several vendors
online. Simply perform an online search and I'm sure you will find
the font you require.

Report templates
When you are charged with building a lot of reports it typically involves a lot of
work that you always need to repeat. Having a template available that you can reuse
can drastically cut down development time. Dynamics NAV and Visual Studio both
have options available that you can use to create and reuse templates. Templates can
be report parts or even complete pre-built reports.

Chapter 6

[257]

One option, perhaps the best option, is to create a dummy report that contains the
look and feel of the reports that you need to develop, because it is in the database,
and so not bound to the filesystem or workstation that you are working on. For
example, the header and footer of most document reports always contain the same
information from the same tables, such as company information, including addresses
and logos, and/or the number of copies option. You can create one report with a
simple dataset, for example with an integer data item, and then build the report
layout based on that dataset. Then, save the report as an object in the object designer.
Then, every time you need to create a report with this basic layout, you can start
from the dummy report, design it and save it under another number and name.
After that, you only need to add the specific tables, bound to the current report,
to the dataset and finish the layout.

Although this is a very simple way to create a template report,
unfortunately I don't see a lot of companies that use this approach.
For some reason, most developers always use the start-from-scratch
method. I recommend spending a little bit of time in creating one, or
more, of these template reports and then reusing them, as it will save
time, and the time you save you can spend on the specific things you
need to create in your reports.

Another approach is to work with the report layout folder. Every time you create
a new layout for a report, Dynamics NAV uses a template for the report.rdlc
file. Why not modify this report.rdlc file and add all the necessary functions and
layout parts to it? The only downside to this approach is that this template does not
contain a dataset, so you can only use non-data bound fields or report parts.

The template is available in the folder where the Role Tailored Client and
Development Environment are installed. So, remember that this template is bound to
the workstation on which you are developing, and is not saved in the database.

Tips and Tricks

[258]

If you modify the template, you will need to manually deploy it to all the other
developers in your company if you want them to be able to use it.

You can see the template in the preceding screenshot. The folder is: C:\
Program Files (x86)\Microsoft Dynamics NAV\80\RoleTailored Client\
ReportLayout and the template is the report.rdlc file. To modify it, you can
open the ReportLayout.sln file in Visual Studio, which is the solution file.

Be careful to use the correct version of Visual Studio. If you use
a newer version of Visual Studio, it may ask you to upgrade. In
that case, don't do it, because it will cause errors whenever you
need to create a new report layout in Dynamics NAV. I therefore
recommend backing up this folder, so that you can revert back to a
stable version if something goes wrong.

Chapter 6

[259]

When you open the template in Visual Studio, you can go to Report Setup and
change the default settings for pagination such as height, width, margins, page size,
and so on. You can also open report Code tab and add your own functions to it. It's
even possible to add a page header and footer, with embedded images. You can
access the toolbox in the body and add Tablixes and other controls to it. The only
thing you don't have is a dataset. So, basically, you can prepare a default report
layout using unbound report controls and properties.

There's a third way to reuse report parts or create templates. It is actually similar to
the above mentioned method but, instead of modifying the report.rdlc file, you
need to copy/paste the file and rename it as, for example, template.rdlc. The next
time you open the layout for a report, you will then see the template.rdlc file in the
solution explorer.

Tips and Tricks

[260]

So, first you copy, paste and rename the report.rdlc file as template.rdlc:

Then you create a new report, or open an existing report and open the layout in
Visual Studio. Then, open Solution Explorer and open the Template.rdlc file.

When you try to add a Tablix to it, you will see the following window, in which you
can bind the Tablix to the dataset:

Chapter 6

[261]

Then, you can add rows, columns and apply formatting to the Tablix, as shown in
the following example:

You can add multiple tables to the report body and apply formatting properties.
For example, you can pre-set the font, font weight, font size, textbox or row height
and width, the padding (left, right, top, and bottom), and so on. Setting these
properties always takes a lot of time, so predefining them in the template will
reduce report development time.

You can also pre-set the values for dynamic properties, using expressions like
changing the background color of even and odd rows, using the following
expression:

=Iif(RowNumber(Nothing) MOD 2,"even color","odd color").

You can then define the GetData and SetData functions, variables, and so on,
for the document reports. When you are ready, save the file using Ctrl + S or the
Save button.

You will then see Template.rdlc in Solution Explorer when you are in the layout
of any report, using Visual Studio. You can then open the Template.rdlc file, copy
the Tablix and paste it into the Report.rdlc file. Now you can reuse report parts
that contain preformatted properties. You can even create multiple Template.rdlc
files and add them to the Report Layout folder.

Your template report can also contain a report header and or footer in which
you can predefine controls to hold the company logo, address and page numbers.
I recommend putting these fields into a Rectangle, so that, when you want to
copy it, you only need to copy and paste the rectangle.

There are many websites and blogs about Dynamics NAV where
you can download similar templates. This is Claus Lundstrum's
blog: http://mibuso.com/blogs/clausl.

http://mibuso.com/blogs/clausl

Tips and Tricks

[262]

Using a report setup table
Sometimes, when you create a report, you also create a request page, so that the user
can set up the report layout according to options they specify in the Options tab of
the request page. Similarly, you can also create a report setup table that contains
information about the report layout. You can then create a page so that users can
change the fields in this table, because the information is stored in a table. Then,
when you create a report, you can query this table to fetch the information that you
will use in the report layout.

There's actually already an example of this principle used in document reports.
You might remember the company logo that can be hidden or displayed on the left,
middle or top of a document. The field is stored in the Sales and Receivables
Setup table and is named Logo Position on Documents. The logo is placed in the
dataset and displayed on the left, middle or right of the report header depending on
its value, in the OnPreReport trigger of most document reports, such as Report 206
Sales - Invoice.

The idea is to assemble all of these kinds of fields into a single report setup table and
reuse it when you create a report I have also mentioned creating and using report
templates in this chapter. The information you define in this report setup table is
perfect to add to your report templates.

You can even take this idea to the next level and combine a template report with a
report setup table. Think about the report header in most document reports. It almost
always contains the same information such as the company information and logo
and address fields, and information about the document. You might create a dummy
table that contains all of those fields. For the purpose of this example let's name the
table Document Header. Add some fields to the document header table such as a
document number field and eight address fields. Then, create a report that uses the
Document Header table as a data item and create a layout for the report that displays
those fields, as in the header of a document report. Then, in the C/AL code of the
report, all you need to do is write code that fetches the data from the real table and
copies it over in our dummy document header table. After that, the layout does not
require any modification.

Chapter 6

[263]

Then, imagine, instead of using only a document header table, you also include a
document line table, and so on. The layout of the report is built upon the dummy
tables. The data is put into those tables via C/AL code. Whenever you need to create
or run a document report, you only need to modify the C/AL code, not the layout.

Then, to make the report even more flexible you might build in some options. You
can let the user decide which field needs to be displayed where in the report setup
table. You need to take into account the information stored in the report setup
table in the code that fills the buffer table. This is similar to the logo position on
documents, but for other fields. You can use C/AL code or even expressions in the
report layout to hide or show fields, rows, and tables, and so on, dynamically.

This might seem like a far-fetched idea and a lot of work, but you only need to
do this once and then you can reuse this document template report for all your
documents and all your customers. If you are a partner selling and implementing
Dynamics NAV this will have a huge return on investment. In fact, I have come
across some partners in Belgium and Denmark who have already created this type of
document template.

We will return to this principle of using a dummy table in more
detail using an example in the next chapter, where we will use it
as a performance improvement. This type of table is also referred
to as a buffer table.

Report logging
Did you know that, every time you run a report, the system executes a function in
code unit 1, application management to determine whether the report has a custom
layout or only a built-in layout? You can use this to your advantage to implement
report usage logging. In the following example, I will demonstrate how you can
implement a log table that will keep track of who is running which report at what
moment, and also which layout was used to render the report.

Tips and Tricks

[264]

First, let's create a log table. The table is named Report Execution Log:

It contains fields which log who is running which report, at what moment, and
the type of layout. The table also contains an InsertRecord() function that you can
call to insert a record. Next, you need to open Codeunit 1, Application Management
and look for the function named HasCustomLayout(). You can add the following
code there:

Chapter 6

[265]

Every time a report is executed it will be logged in this table, as you can see in the
following screenshot:

This is proof of concept implementation, but you can imagine how you could
modify this to log even more information. You can also build a report using this
table as a data source, and display the reports that are executed the most. This kind
of information is very useful when you are confronted with an upgrade and need to
determine which reports should be upgraded first.

The fixed header problem
I have seen this a couple of times and therefore wanted to mention it here briefly.
When you print a report, for example a document report, the report might be printed
for multiple records (documents, customers, and so on) at a time. If you see that all
the headers contain the same information, it could be down to two causes.

Tips and Tricks

[266]

First, you might not be using the SetData function correctly. A different version of
RDLC is used depending on the version of Dynamics NAV. In RDLC 2010, which is,
at the time of writing, the latest version, if a textbox is hidden, then the expression for
the value property is not executed. If that's the case then your header will be blank.
If the header is not blank but always contains the same information then check if the
textbox that executes the SetData function is in the correct container. The list usually
contains the groupings on the document number and output number. You can use
the document outline tool to do this. Select View, Other Windows in the menu, and
then Document Outline. The document outline will give you a tree view look at the
layout of the report:

Chapter 6

[267]

If the custaddr textbox or, in this case, TableSalesInvLine is moved outside List1,
then the SetDate function is only executed for the first record and so the header will
always contain static information. In the case of invoices this means they will all be
sent to the same customer and that's not a good idea.

Now, even if you do everything right, then it will go wrong if you export the report
to Word. Word does not support dynamic headers. The report header in the rdlc
layout is transformed into a header in the Word document that is generated. This
Word page header can only display static text and it will show the first page's
information on every page:

Tips and Tricks

[268]

This is the case when you run a report that has an rdlc layout and then export
it to Word.

I'm not sure if this is a bug or if it's by design, but it has been the case
since Dynamics NAV 2009 and it's still so in version 2015.

Summary
In this chapter we have learned some tips and tricks, such as working with
hyperlinks, displaying header or footer information on specific pages, and
transheaders and footers. I will explain how you can keep the performance
of a report as fast as possible in Chapter 7, Performance Optimization Techniques.

The next chapter covers very important concepts and recommendations on
how you should build your dataset and layout, so that your reports remain at
optimum performance at all times.

[269]

Performance Optimization
Techniques

This chapter is all about performance optimization techniques. I will start with some
recommendations about how you can build the dataset and layout of a report so that
it will remain as efficient as possible. Then I will introduce you to techniques such
as using a buffer table and query when building the dataset of your report. It will
involve some preparation but, in the end, you will benefit from the advantages that
this approach brings.

Performance recommendations
When you create a report, there are always two phases, the construction of the
dataset and the creation of the layout. I will provide some recommendations for
the report development process with performance in mind.

Although you can probably achieve your goal without following these guidelines,
you will notice that, after a while, when the database grows and more users run the
system, things get slower. That is why it is important to always have performance at
the forefront. The idea is to prevent problems occurring, instead of having to solve
them when they eventually do.

The dataset
When you create your dataset, you can make changes without major consequences.
If your report has a layout already then modifying the dataset will have a big
impact and, as a result, you will probably also need to spend some time updating
the layout accordingly.

Performance Optimization Techniques

[270]

There are a couple of techniques you will need to use:

• Optimize the C/AL code for the report. For example, use currreport.skip,
CALCSUMS, and use variables instead of data items

• Reduce the number of columns
• Reduce the number of rows
• Apply filters in the request page
• Use the job queue to generate the report on the server
• Use the report inbox/scheduling to generate the report on the server
• Use the startsession function in a separate code unit to generate the report

in a separate session on the server, and then export it to Excel, PDF, or Word
• Use a code unit to run the report and save it to PDF, Excel, or Word

Captions and labels
Using the include caption property and the labels; functionality is an easy way to
add multi-language functionality to your report.

If multi-language means generating the report in the language of the user, then use
captions and labels. If it means generating the report in the language of the recipient,
then you need to add the captions to the dataset. (Multi-language was discussed in
Chapter 5, Document Reports.)

If a field does not need to be translated or if the caption is not used
in the report layout, then don't add it. I often see reports where
all fields have the include caption property enabled, just in case.
Of course, although minimal, this will have a negative impact on
performance because the report will require more resources.

When a report is upgraded from a previous version of Dynamics NAV, then all
captions, by default, are in the dataset. You should take the time to move those
captions to the parameters of the report (using include captions and labels). This will
remove the caption fields from the dataset at runtime and so improve performance.

An example of such a report is Report 1 Chart of Accounts. Although the
version number of the report, NAVW17.10, implies it has been developed for
version 7.1, which is 2013 R2, it does not use captions or labels, but sends the
captions to the dataset.

Chapter 7

[271]

There are many more reports similar to this, In order to find
them, put a filter in the object designer, in the version list
column and look for: @*NAVW17.10*.

Also in the C/AL code of the report there's isn't any code that changes the language,
as with document reports:

CurrReport.LANGUAGE := Language.GetLanguageID("Language Code");

This is an example of the preceding code:

As you can see, the report contains text constants as columns in the dataset.

The column names contain underscores, this is an indicator that it is
an upgraded report because, column names contain underscores by
default in Dynamics NAV 2009.

Performance Optimization Techniques

[272]

When the report runs, the dataset contains values for these captions on every line,
and these are repeated on every record:

You can see the following in the RDLC layout of the report:

All textboxes use a First() expression in the table header, where the captions are
shown, for example: =First(Fields!G_L_Account___No__Caption.Value). This
means that only the captions of the first record in the dataset are used.

You can optimize this report in different ways:

• Replace the captions using labels or the include caption property
• Move the captions to a new, separate, integer data item, which is filtered to

add only one row to the dataset

By doing so, you will remove a lot of information from the runtime dataset and, as a
consequence, the report will use fewer resources and will be faster.

Remove unused columns
You always need to be aware of the columns, and only include the ones that are
displayed in the report.

An example of this is that, when you look at a report upgraded from Dynamics
NAV 2009 to a later version, you can see that there are a lot of columns in the
dataset that aren't used anywhere in the layout of the report. These fields are in the
dataset because they were used in the classic layout of the old report, but not in the
RDLC layout.

Chapter 7

[273]

You can open the layout of the report in another editor to see if a field in the dataset
is used or not.

The way to do this is to use Solution Explorer in Visual Studio. When you right-click
on the report.rdlc file, you can open it in an editor of your choice, as shown in the
following screenshot:

Then, in the editor, you can use the search and replace functions to change references
to fields that have been removed or renamed in the dataset.

Performance Optimization Techniques

[274]

For example, in Report 216 Archived Sales Order, there's a field in the dataset
named DimText_Control80, as you can see in the following screenshot:

When I open the RDLC layout in Notepad, and search for the field
DimText_Control80, I see the following:

This indicates that the field, as expected, is a part of the dataset of the layout. But
there's no other reference to this field in the RDLC file anywhere. This indicates that
this field is not used in the RDLC layout, and thus should not be in the dataset, so I
should simply remove it. This is a simple example of how you can figure out if a field
in the dataset is referenced anywhere in the layout.

You can also use Notepad, or Notepad++, which is a free alternative
with color recognition from http://notepad-plus-plus.org.

As a precaution, I recommend making a backup of your report (or report layout)
before you make modifications to the rdlc file with an external editor. If you make a
mistake in the rdlc file you will no longer be able to edit it with Visual Studio.

Optimize the usage of BLOB fields
When you add a database image to the dataset of a report, then the data type
of the field is a Binary Large Object (BLOB). A BLOB datatype can potentially
hold up to 2 GB of information. By default, a BLOB field that is added to every
record in the dataset can inflate the size of the dataset dramatically. It should
therefore not be available on every row of the dataset and you need to make
sure you only add it once.

http://notepad-plus-plus.org

Chapter 7

[275]

There are two ways of implementing a BLOB field, either you add it in the dataset
and write C/AL code to clear it, or you add/move the field to a separate integer data
item, at the beginning or the end, which only holds one row of data.

Once, when I was creating a document report for a customer, they were using a
company logo with a size of about 500 KB. You might think that this is not so big, but
when I ran the report it took about 30 seconds to render. Then I added some code to
the dataset that cleared the image field after the first record and the report rendered
in a few seconds. When you print one invoice, 30 seconds might seem acceptable, but
when you are printing multiple invoices, it is not.

Performance is all about perception. Once the users believe that the
application is slow, you can implement performance improvements
to speed up the application, but the perception will be that it is still
slow. Getting it right from the beginning is the best way to avoid
negative perceptions.

Let's look at an example of how you can optimize the usage of a BLOB field.

The idea is to have the logo, or BLOB field, only in one row in the dataset. There are
two ways of doing this. The first is to use a separate integer data item, filtered on one
row. If you are applying this technique in an existing report, however, it will involve
retesting the layout and that can take some time, especially in document reports.
Another technique is to leave the dataset as it is and add code to the triggers to clear
the BLOB field after it has been added to the dataset in the first iteration. You can use
the CLEAR() function to clear a field.

A nice example of this is available in Report 1306 Mini Sales Invoice. You will see
the following code in the OnPreDataItem() trigger of the header data item:

FirstLineHasBeenOutput := FALSE;

Then, in the OnPreDataItem() trigger of the line data item, there's this code:

FirstLineHasBeenOutput := FALSE;
CompanyInfo.CALCFIELDS(Picture);

So here the BLOB field and picture, is calculated. Next, in the OnAfterGetRecord()
trigger of the line data item you will notice the following code:

IF FirstLineHasBeenOutput THEN
 CLEAR(CompanyInfo.Picture);
FirstLineHasBeenOutput := TRUE;

Performance Optimization Techniques

[276]

The first time a line is added to the dataset the variable is false. From the second
line on, the variable is set to true and the BLOB field is cleared. The column
CompanyInfo.Picture is in the header data item of the report but, if you run the
report and open the runtime dataset, you will see it is cleared when it needs to be
and so the performance impact is reduced:

As you can see in the preceding screenshot, the field is in the dataset and contains
data for every header but not for every line. You can remove the Picture field from
the header data item and put it on a separate integer data item to further optimize
the dataset, filtered on one row.

The asterisk is used in the dataset to indicate that a BLOB field
contains a value.

Although this technique is available is some Dynamics NAV reports, it is not applied
in all reports or document reports. For example, the Reports 206 Sales Invoice or
Report 208 Sales - Shipment still use the old and expensive way of handling logos. I
strongly recommend implementing the new technique in all document reports.

Moving the BLOB field to separate tables
BLOB fields should not be created in normal tables, such as Customer,
Vendor, and so on. It's better to move BLOB fields to separate tables
so they will only be queried when required. For example, when you
run the customer card/list page or report, even when you don't put
the BLOB field on the page or in the dataset of the report, the database
drive generates a select * statement which might cause the field
to be retrieved from the database, especially when AutoCalcField
properties or functions are used in the page or report object. Moving
BLOB fields to separate tables avoids this performance penalty. This
problem might be fixed in the latest version of Dynamics NAV but, in
previous versions, I have seen this causing performance issues.

Chapter 7

[277]

Variables and setup information
As with BLOB fields, you should move all variables and setup fields to an integer
data item filtered on one row. Variables and fields that hold the same value for every
record in the dataset should not be repeated for every record.

As an example, import object: Packt - CH07-2. Here is that dataset:

As you can see, the Company Information, Sales Setup and HideDetails columns
are repeated for every customer record. You can optimize this dataset as follows:

Performance Optimization Techniques

[278]

As an example of the optimized dataset, you can import object: Packt - CH07-3.

Here, I replaced the data items for Sales & Receivables and Company
Information with variables and added them to an integer data item. The dataset of
this report looks as follows:

This dataset contains all the required information, but nothing is repeated on
multiple rows, and the size of this dataset is smaller. You can see the size of a
dataset by exporting it to an XML file. In the About This Report feature of a
report there's this button:

This exports the runtime dataset to an XML file. Simply do this before and after an
optimization and compare the file size.

Avoid unnecessary rows
When you have removed all unused columns and optimized BLOB fields then it's
time to remove all the rows that are not required in the dataset.

Then, for example in the case of a top X report, you need to apply the appropriate
filters. As you know, you can create and apply filters in the RDLC layout, but only
if that's really necessary. Filtering should be done in the report dataset designer and
you only need to send those rows to the layout that are actually required.

Chapter 7

[279]

In order to do this, you might also experiment with your data items, the way that
they are indented and in what order you put them in the report dataset designer.
Sometimes, by rearranging the data items, you will end up with a smaller dataset.
For example, if you compare Sales-Invoice (206) with Mini Sales-Invoice (1306) you
will see that the same information is available in both datasets, but the data items are
in a different order.

Report totals
You can improve report performance and decrease the size and time it takes to
generate the dataset by using buffer (or temporary) tables, An example of this is the
usage of the report totals buffer table in the Report 1306 Mini Sales - Invoice.

In the dataset of this report there's the following data item named Report Totals
Buffer:

The Temporary property is enabled in the properties of the data item. This
means that the table is used as a temporary table, in RAM memory. Then, in the
OnPreDataItem trigger, a function is called: CreateReportTotalLines. This
function contains the following code:

ReportTotalsLine.DELETEALL;
IF (TotalInvDiscAmount <> 0) OR (TotalAmountVAT <> 0) THEN
 ReportTotalsLine.Add(SubtotalLbl,TotalSubTotal,TRUE,FALSE,
 FALSE);
IF TotalInvDiscAmount <> 0 THEN BEGIN

Performance Optimization Techniques

[280]

 ReportTotalsLine.Add(InvDiscountAmtLbl,TotalInvDiscAmount,
 FALSE,FALSE,FALSE);
 IF TotalAmountVAT <> 0 THEN
 ReportTotalsLine.Add(TotalExclVATText,TotalAmount,TRUE,FALSE,
 FALSE);
END;
IF TotalAmountVAT <> 0 THEN
 ReportTotalsLine.Add(VATAmountLine.VATAmountText,TotalAmountVAT,
 FALSE,TRUE,FALSE);

The code simply adds a line to the temp table for every total that needs to be
displayed in the report. You will see the totals in the dataset, as follows:

The totals are grouped together, contain six columns and, in this example, five rows.
If you need to use these totals in the layout, you can reference them in the dataset.

Similarly, there's a data item named Totals that contains total fields (variables) that
are calculated when the lines and VAT are processed. The fields are set as columns
on a separate integer data item that add only one row at the end of the dataset, and
so the dataset is optimized for these fields.

Chapter 7

[281]

Number formatting
Every time you add a decimal field to the dataset of a report then, in the rdlc layout,
you get an extra field that contains the format string. This format string is also added
to the dataset at runtime as a column, and it always contains the same value. This is
a typical example of adding information to the dataset that is not really required and
there's a simple way to avoid this. When you add a decimal field to the dataset, you
can simply use the FORMAT function to convert the field to a string. Then, no format
code is generated or added to the dataset, and you will save resources at runtime. If
you want to have a format code available in the rdlc layout, simply add it manually
in a separate data item. Usually, all decimal fields, amounts and unit amounts use
the same format. So you can add one unit amount format code and one amount
format code to the dataset and use that in the format property in the layout.

When you apply this trick, don't forget to convert the string back
into a decimal field in the layout. Simply use the CDec() function in
order to do that.

Here's an example of how you can hide a number format. Import the object:
Packt - CH07-4 and you will see the following dataset:

In the preceding screenshot you can see the difference between the SalesLCY_
Customer and SalesLCY_Customer_AsText fields. One was added to the dataset
as a decimal field, the other with a Format() function.

Performance Optimization Techniques

[282]

When you run the report and open the dataset, you get this:

Both fields (SalesLCY_Customer and SalesLCY_Customer_AsText) contain the
same values. There's a value and a format string for the SalesLCY_Customer field in
the column named SalesLCY_CustomerFormat. For the field SalesLCY_Customer_
AsText, there's only a value. The Format() function returns a text data type, so the
value of the field SalesLCY_Customer_AsText is in a text data type.

This means that, when you use it in the RDLC layout, you need to convert it back to
a decimal data type. You use the CDec() function to do that. If you do not convert it
to a decimal then, in the report layout, you can't use the Sum() function on this field,
for example when you want to display a footer row containing the total sales.

Chapter 7

[283]

When you run the report, there's no difference between the two columns:

If you remove the SalesLCY_Customer column from the dataset designer,
there will be two fewer columns then in the runtime dataset, SalesLCY_Customer
and SalesLCY_CustomerFormat. You can use different options to format the
SalesLCY_Customer_AsText field.

Option one is to use a format constant, for example n2 or #,##0.00 in the format
property of the textbox:

Performance Optimization Techniques

[284]

Option two is when you don't want to hard code the format property, but you want
it to come from the dataset. In this case, you add a format constant to the dataset,
as follows:

You use the expression =First(Fields!FormatCodeDecimal.Value,
"DataSet_Result") in the RDLC layout in the Format property, as you can
see in this screenshot:

I recommend the second approach because you can determine, and change, the
format code via C/AL, and you can reuse the field FormatCodeDecimal in all the
textboxes that need to be formatted as a decimal.

Applying the correct filters
Making sure the dataset is not too big is the most important factor in optimizing
report performance. The dataset and the report layout are the two files that the report
viewer uses to render the report:

• Report.rdlc

• Dataset.xml

Chapter 7

[285]

The report viewer application runs on the client, not on the server. Dynamics NAV
is a three tier application and all C/AL code is executed on the service tier, on the
server. This means that, when a report is rendered, the dataset will be streamed from
the server to the client. The data is fetched from the database, the SQL server, which
generates a complete result set. This result set is then sent to the Dynamics NAV
service tier over the network. When the service tier receives the information from the
SQL server, it sends it in chunks to the report viewer (on the client). Once a packet or
chunk is received by the client, it is cleared from the memory of the service tier.

If you open the Windows task manager on the server and on the client while you are
executing a report with a big dataset, you will see that the memory consumption on
the server is pretty constant, while the memory consumption of the client keeps on
growing and growing, until it runs out of memory.

Depending on the number of columns and the data types of the columns, this will
typically happen as soon as the dataset reaches about 1 GB. At that moment, an out
of memory exception will be thrown.

To avoid this happening you need to consider reducing the size of the dataset.

Running a report on the server (the service tier) is faster because the
Dynamics NAV service tier is a 64-bit application and can therefore
consume much more RAM memory.

If you optimize the dataset of your report, you can also test the results to see the
difference. Before you apply the modifications, run your report and, in the report
viewer, export the dataset to an XML file. You can use the About This Report feature
to do this to open the runtime dataset and then use the Export as XML file option.

Performance Optimization Techniques

[286]

Then, after you have implemented the performance improvements, run your report
again, export the dataset again to an XML file and simply compare the size of the
two files:

The page file
Microsoft released a recommendation on the Dynamics NAV
Team blog a while ago, which can be seen here: http://blogs.
msdn.com/b/nav/archive/2011/03/29/designing-
reports-for-better-performance-on-rtc-ii.aspx This
article describes a method for solving or avoiding out of memory
exceptions and basically consists of making your swap file bigger.
I definitely recommend avoiding this. It is not a solution to the
problem and only fixes the symptoms and merely delays the error
and, most importantly, increases the size of the swap file which can
make your Windows operating system unstable.

http://blogs.msdn.com/b/nav/archive/2011/03/29/designing-reports-for-better-performance-on-rtc-ii.aspx
http://blogs.msdn.com/b/nav/archive/2011/03/29/designing-reports-for-better-performance-on-rtc-ii.aspx
http://blogs.msdn.com/b/nav/archive/2011/03/29/designing-reports-for-better-performance-on-rtc-ii.aspx

Chapter 7

[287]

Recommendations according to the version of
Dynamics NAV
When you use C/AL code, as you do in reports, there are several functions and
methods that you can apply when working with tables and record functions.
Depending on the version of Dynamics NAV, the recommendations on when to use
which FIND statement, are different. You can find an explanation of the differences
between Dynamics NAV versions in this article: http://blogs.msdn.com/b/nav/
archive/2011/05/12/microsoft-dynamics-nav-changes-by-version.aspx.

The layout
Once you have optimized the dataset of a report, it's time to have a look at the
layout. In this section I have made recommendations about how you can optimize
the report layout. This is important when you are upgrading a report. There
are some workarounds for document reports that are implemented differently
depending on the version of RDLC that is used.

When you are implementing performance optimizations, I recommend
including the user. The user must understand what is going on, and
feel that they have a say in what is done about it. I'd recommend
that partners create a document that explains the pros and cons of
these changes, and so make sure that users are informed about it. An
informed customer is often very reasonable in deciding what is done
about performance problems. One customer may "REALLY" want
the page x of y functionality while another may "REALLY" need the
interactive nature of print layout/preview.

Print layout versus print preview
When you run a report, the report viewer starts in interactive mode by default (print
preview). Interactive mode features such as expand/collapse, interactive sorting,
and so on, are enabled. These features can consume extra memory. If these features
are not always required, you can make sure the report runs in print layout mode by
default, instead of print preview.

http://blogs.msdn.com/b/nav/archive/2011/05/12/microsoft-dynamics-nav-changes-by-version.aspx
http://blogs.msdn.com/b/nav/archive/2011/05/12/microsoft-dynamics-nav-changes-by-version.aspx

Performance Optimization Techniques

[288]

This can be achieved using the report property:

Once you run the report and you want to switch back to interactive mode, you can
use the report viewer menu:

Avoid conditional visibility on a big dataset
Report items such as textboxes, columns, rows, tables, and so on, all have visibility
properties. You can conditionally show or hide a report item using the Hidden and
ToggleItem properties. At runtime, every time you click the toggle item, the report
viewer performs calculations and consumes resources, like RAM memory. The
bigger the report item that you toggle, the more memory it will consume, until the
report viewer runs out of RAM memory.

As an alternative, you can implement drill-through. This means using hyperlinks
to link to a report that contains the detail data, as when you click on a FlowField
in a page.

Chapter 7

[289]

Another alternative is to provide an option in the request page of the report, as in
report Customer - Top 10 List. There the user can select between a bar or pie chart.
The user still has a choice then, and the report viewer processing will be faster. You
can give the user a choice before the report is rendered, instead of a toggle after the
report is rendered, which consumes more RAM memory.

Furthermore, options in the request page can also be set using a Set function, to
expose the property outside the report object and, when you render the report via
C/AL code, for example via a code unit, you can determine which visualization
will be used.

Best practices when visualizing information
If your report contains a lot of textboxes or instances of textboxes, then you should
avoid CanGrow and CanShrink or set TextAlign to General. These properties
require processing depending on the content of the textbox and so will use more
resources. Make sure you only use them when they are absolutely necessary.

If you use a lot of images in reports, then don't set the Autosize property to Fit.
Using the Fit option increases rendering time because the report viewer needs to
resize the images.

If you use the KeepTogether property on a Tablix, the report viewer requires
additional processing when it encounters a page break.

If you are using a chart or gauge control, think about the amount of data that is
required to render it. The effectiveness of a chart decreases when you display several
pieces of pie or bars. Ideally you should show between three and eight pieces, and if
more is required, display them in a different part.

If you want to display a lot of data points in a chart, it is better to use a scatter chart
instead of a pie chart.

Performance Optimization Techniques

[290]

If you have a lot of data points, then don't display data labels. If you right-click on a
chart in Visual Studio, the following options display:

If your chart has a lot of values, you can disable Show Data Labels.

An example of displaying only five pieces of pie is available in the object:
Packt - CH07-5. If you open the RDLC layout and have a look at the properties
of the following chart, you will see this:

Chapter 7

[291]

The property CollectedTreshhold is set to 5 so that any other piece of pie is
rendered in a separate chart named other:

Expressions in the page header or footer
If you use one of the following globals in the page header or footer of a report,
the report viewer has to process the complete report to calculate the pagination:

Performance Optimization Techniques

[292]

The more pages there are in the report, the longer it takes to process the dataset,
and the longer it takes before it opens.

You can see when this happens in the toolbar of the report, where the navigation
buttons are shown. If the report has not yet been processed completely, a question
mark is shown next to the total number of pages:

If there's no reference to the page number then the report can be rendered after the
first page has been processed, without processing the rest of the report.

Of course, when you then print or export the report, the report viewer will reprocess
the complete report.

Complex grouping and aggregate functions
If you have a Tablix that contains multiple levels of adjacent or parent child
groupings, it can take a lot of resources to process, especially when you are using
complex expressions for the groups. When the expression is dependent on the
sorting of the information in the group it becomes more expensive. For example, the
Sum function does not depend on the sorting, while the Previous, First and Last
functions depend on the sorting, and are evaluated after the sorting, grouping and
filtering have been applied.

As a solution, you can use a query object that contains groupings, instead of
grouping in the layout. You can also reduce the data in the report to reduce the
performance impact.

Optimization for the chosen rendering format
Reports are rendered differently in different rendering formats, such as Excel, Word,
and PDF. For example, depending on the version of Excel, one page can contain
65,000 or one million rows. You might then have to implement page breaks so that
the information is broken up between multiple Excel sheets. The same is valid when
you render a report in PDF.

Chapter 7

[293]

Pagination and report margins might be rendered differently, so implementing page
breaks could render a report in PDF better.

Report design guidelines
Microsoft has created a document that defines the design guidelines for report items
in the report layout. Following these guidelines will make sure that the reports you
develop have a consistent and clean layout. Of course, you don't have to follow
these guidelines and can create your own. Based on the guidelines that you want to
follow, you can create templates to implement reusability. It might be interesting to
implement values for properties in your guidelines to improve report performance.

More information about the Microsoft report and user interface design
guidelines can be found at https://msdn.microsoft.com/en-
us/library/jj651616(v=nav.70).aspx.

Implementing hotfixes and rollup updates
Although it might seem obvious, I rarely see hotfixes being implemented in real life.
In the past, implementing a hotfix usually required a manual fix on all clients, and
on the server. This is a time-consuming process because you usually have to visit
the customer site to do the installation. There are also a lot of hotfixes to implement,
depending on the version of Dynamics NAV that you use.

Nowadays, with PowerShell and Click Once technology it's easier to automate this
process. Microsoft releases rollup updates about once a month. So, if you experience
performance issues, have a look at the Microsoft knowledge base to see if there's an
update that might solve the problem.

https://msdn.microsoft.com/en-us/library/jj651616(v=nav.70).aspx
https://msdn.microsoft.com/en-us/library/jj651616(v=nav.70).aspx

Performance Optimization Techniques

[294]

A good alternative to the Microsoft knowledge base is Waldo's blog,
which you can find at http://www.waldo.be. He gives an overview
of all released platform updates on a regular basis, and I find it easier
to see the wood for the trees on his blog.

Alternatives for building a faster dataset
I have always demonstrated building the dataset using data items that reference
database tables or the integer data item. I will now demonstrate two techniques
that you can apply to complex reports to improve report performance and also
make the report easier to maintain.

Using a temporary table
The first technique is using a temporary table. This technique is used a lot
in document reports and I might have mentioned it already very briefly in
previous chapters.

A buffer table is a fancy name for a temporary table, or a table that is used as a
temporary table. In Dynamics NAV, when you want to use a temporary table, you
need to declare a variable that references an existing table and then set its temporary
property to yes. You can also do that in a report, and up to version 2013 it was the
only way to use temporary tables in reports. In version 2015, it's still possible, but
there's an alternative. A data item has a new property named Temporary. You can
then use any data item as a temporary table, or buffer table, as in a page object. An
example is available in Report 1306 Mini Sales - Invoice:

http://www.waldo.be

Chapter 7

[295]

The Report Totals Buffer table is an actual table that was created specifically to
hold temporary data for reports. The data is collected on the server side, saved in
this temporary record, and then rendered in the report viewer. This minimizes the
dataset in a physical structure, which is very useful to simplify report development.

The advantage of using a buffer table is that you can fill it with data from different
sources and then simply loop over the results.

The disadvantage is that you need to have the table available or create
it in the database, and table objects are not free. So, if you create a lot
of buffer tables, you may run out of tables in your license file. When
you develop reports at a customer's site, they might not have tables
available in their license file, and it's better to know this in advance
instead of informing them afterwards.

Temporary tables and the license file
You can always reference any table as a temporary table, even when
the table is not included in your license file.

Another technique, which does not involve using a table, is to use variables and put
them into an integer data item. I prefer to work with buffer tables because they allow
me to use record variable functions.

A common element of both techniques, integer or buffer tables, is that you are first
going to loop over the source tables and then put the results either in the buffer table
or in the variables of the integer data item. The advantage is that the source tables are
created as separate data items and so can be put into the request page, and the user
can apply filters on them.

Another technique is to create a function in the source tables, which generates a
dataset that you then put in the report. When you use an integer data item, this
function is called on the OnPreDataItem() trigger, and you can use the number of
records it returns to filter the integer data item.

So, to summarize, the technique consists of two steps:

1. First you generate a temporary dataset.
2. Then you iterate over this dataset, using an integer data item.

Performance Optimization Techniques

[296]

Let's look at an example to make it clearer. I will use Report 113 Customer/Item
Sales as an example because this technique is applied in many of the existing reports
in Dynamics NAV.

When I run the report the result looks like this:

You might wonder why there are only two customers in my report.

Well, the report is filtered on a subset of customers because I applied a filter on the
request page:

Chapter 7

[297]

From the point of view of the user this is very interesting, because they can use
the request page to filter on any field from the Customer table, and also the Item
table. The goal of the report is to display an overview of which items a customer
has bought from the company, including information about the invoiced quantity,
amounts, discounts, and so on. This is reflected in the dataset of the report, as there
are two data items: Customer and Item Ledger Entry. These two data items show
up in the request page. The following is a screenshot of the dataset of the report:

Performance Optimization Techniques

[298]

By using the GetFilters() function in the OnPreReport() trigger, the filters that
the user enters are added to the dataset so that they can be shown in the layout:

CustFilter := Customer.GETFILTERS;
ItemLedgEntryFilter := "Item Ledger Entry".GETFILTERS;
PeriodText := "Item Ledger Entry".GETFILTER("Posting Date");

You can use the record.GETFILTER(FieldName) or
record.GETFILTERS() functions to retrieve the filter
criteria set on a record variable.

As you can see, the dataset of the report also contains captions/text constants.
This is an example of a report that was upgraded from a previous version of
Dynamics NAV.

Chapter 7

[299]

These text constants should be replaced by labels to optimize
the dataset.

There's an integer data item at the end of the dataset. It mostly contains fields from
the ValueEntryBuffer table. The record variable ValueEntryBuffer references the
Value Entry table, but is used as a temporary table with its Temporary property.
This means that we will be using a copy of the definition of the actual Value Entry
table as a buffer table.

What happens in this report is that there's a loop over all customers and every item
ledger entry per customer. The Item Ledger Entry table is linked to the Customer
table via Source No.=FIELD(No.),Posting Date=FIELD(Date Filter),Global
Dimension 1 Code=FIELD(Global Dimension 1 Filter),Global Dimension 2
Code=FIELD(Global Dimension 2 Filter).

The buffer table is cleared in the OnPreDataItem() trigger of the Item Ledger
Entry table and a counter (NextEntryNo) is initiated.

Performance Optimization Techniques

[300]

You can see the following code in the OnAfterGetRecord() trigger:

The code inserts an entry in the buffer table if it's the first ledger entry for a customer
if not the code will look for the entry using the Item No and will then update the
entry in the buffer table. This is because one customer record is probably linked to
multiple item ledger records. The fields in the buffer table are filled with information
from the item ledger entry table, except the Discount Amount, which comes from
the Value Entry table using a separate loop.

After all customers and related item ledgers are processed, the number of records
in the buffer table is used to filter the integer data item in the OnPreDataItem of the
Integer table:

Chapter 7

[301]

The first time you execute the FIND() function and the other iterations you need to
fetch the next record in the OnAfterGetRecord() trigger:

Now, the integer data item loops over the resulting dataset in the buffer table and
becomes the dataset of the report.

This is an example of how you can create a dataset using a buffer table.

In the example, you can see the CREATETOTALS() function.
This has no purpose in RDLC reporting, since totals will be
calculated in the layout.

Other examples of using a buffer table can be found in the following reports:

• Report 204 Sales – Quote
• Report 205 Order – Confirmation
• Report 206 Sales – Invoice
• Report 208 Sales – Shipment

There are many other reports where buffer tables are used. Another example,
which I mentioned in previous chapters, is the "Customer Top 10 report".

You can avoid complex processing or filtering in the report layout by
using a buffer table and moving this to the dataset. The report will run
faster because the dataset and all C/AL code run on the server and the
layout, which is generated on the client, requires less resources.

Using a query object for the dataset
The query object was first introduced in version 2013 and its purpose was to have an
effective way to retrieve information from the database, which is an alternative for
record variables.

Performance Optimization Techniques

[302]

The primary purpose of query objects is to provide a way for the
developer to use SQL JOIN expressions and other T-SQL attributes
that are not available in C/AL manipulations. The other purpose
is to provide the ability to specify columns in queries so that you
don't always have SELECT *, and you can reduce the amount of
data in the result set.

The query object in Dynamics NAV is built based on a typical SQL statement. The
following table summarizes the elements and properties of query objects, and how
they relate to T-SQL:

SQL statement Query object feature
SELECT Row of type Column in the query designer
FROM Row of type DataItem in the query designer
JOIN Type DataItemLinkType and SQLJoinType query properties
ON DataItemLink data item property
WHERE DataItemTableFilter data item property ColumnFilter

property of columns and filters row of type filter
HAVING ColumnFilter property of columns and filters, when

aggregation is used
GROUP BY Automatically switched on for each row of type column,

when aggregation is used
ORDER BY OrderBy query property
TOP TopNumberOfRows query property

You can fetch data from one or more tables with a query object, which you can join in
different ways. A query object supports grouping and aggregation methods. This is
an advantage for reports because you can move grouping and aggregation from the
layout to the dataset and so the report viewer only has to display the results instead
of spending resources performing groupings and aggregations.

A query object is also reusable in multiple reports, which is
another advantage.

Chapter 7

[303]

The SQL server is also optimized to execute SQL statements generated by query
objects quickly, which results in optimal performance.

Query objects can also be published as ODATA web services.
These can then be used by other applications such as Excel,
PowerPivot, and so on, as a data source. But this is the subject of
the chapter that deals with Power BI.

Let's start by having a look at how you can create a query object. I have created a
query that fetches the total Sales (LCY) and Profit (LCY) from the Ledger Entry
table in the following example, grouped by the Salesperson, Country, City, No.,
and Name from the customer table:

I have set the property TopNumberOfRows to 10 in the query properties, which means
this query will fetch only the top 10, sorted by Sum_Sales_LCY.

This is only a default value at runtime. When you execute a
query with C/AL code you can modify it via the C/AL function
TOPNUMBEROFROWS().

Performance Optimization Techniques

[304]

The result set of the query looks as follows:

Now I will use this result set as the dataset in a report. First I will create a new report
and add the following variables:

There's one variable that references the query object, and one variable per column
in the result set of the query. Next I have included a TopX variable which I will use
to enable the user to specify a top x value in the request page of the report, which
looks as follows:

Chapter 7

[305]

Then I create the report dataset, using two integer data items:

I will use the first data item, named QueryResults, to iterate over the result set of
the query object. I will use the second data item, Captions, to add the captions of the
query columns to my dataset, in one row, using the COLUMNCAPTION function.

I have used the value SORTING(Number)
WHERE(Number=CONST(1)) in the DataItemTableView property
of the Caption data item so that it's filtered on one row.

Now I need to add code to the report triggers that will run the query. I will do this in
the OnPreDataItem() trigger of the QueryResults data item, as follows:

I start by filtering the data item entered by the user in the request page from 1 to
TopX. Then I set the TopNumberOfRows property of the query to TopX using the
TOPNUMBEROFROWS() function. Next I use the OPEN() function to execute the query.

Performance Optimization Techniques

[306]

The Open() function runs the query and leaves the dataset on the
service tier.

Next I will retrieve every row from the result set of the query using the READ()
function, as follows:

If the query returns less than TopX rows, I use the currReport.SKIP function so
nothing is added to the dataset.

Then, I use the Close function in the OnPostDataItem() trigger to close the
query object:

Now you are ready. The report runs the query, adds the result set to the
report dataset and you have the captions in the last row, as you can see in the
following example:

Chapter 7

[307]

Now you can create a layout, based on the columns available in the dataset,
as with any other report.

An example of this report is available in the object: Packt - CH07-1

This demonstrates how you can use a query object to create a report dataset.
Once you know how to do this, it's very simple to create a template report that
you can reuse and modify, to link to any query that you create.

It would be better if Microsoft decided to extend the report dataset
designer to reference a query object as a data item directly, as with tables.
But because there's a working solution or workaround, as described
previously, I think this is not likely to happen in the near future.

Summary
In this chapter we have learned performance optimization techniques so that
running a report consumes fewer resources and out of memory errors can be
avoided. It's very important to optimize the dataset and layout of your report and
avoid sending unnecessary information to the dataset or layout. You can do this by
eliminating rows and columns, applying filters, formatting and sometimes by using
C/AL code to process resource-intensive tasks on the server instead of in the report
viewer, which runs on the client.

In the next chapter, I will discuss Word report layouts. You can now create a layout
in Word in Dynamics NAV as an alternative to RDLC layouts, This makes it possible
for end or non-technical users to create or maintain custom report layouts using
Microsoft Office Word for small and simple reports.

[309]

Word Report Layouts
In this chapter, you will learn how to create a report layout using Microsoft
Office Word. This is an alternative to the RDLC layouts you have created until
now. Although the Word layout is designed for quite simple reports, it's a handy
alternative and allows non-technical users to create and design custom layouts
quickly. This chapter also discusses the management of report layouts and, last but
not least, how to schedule report execution. How you create a Word report dataset
makes it easier to create and maintain RDLC reports.

Introducing the Word report layout
There are two types of layouts that you can create for a report in Dynamics
NAV: RDLC and Word. You can do this in two environments: the development
environment and the Dynamics NAV RoleTailored Client.

The layouts that you create in the development environment are built-in layouts.
You can create one built-in RDLC and one Word layout per report. One of these two
layouts is then defined as the default layout for the report.

Word Report Layouts

[310]

The default report layout is defined using the report property, DefaultLayout:

A user can create one or more custom layouts without using the development
environment. These can be RDLC and/or Word layouts.

You need to install Report Builder to create an RDLC layout. You need Microsoft
Word 2013 to create a Word layout.

One report can contain two built-in layouts (one RDLC and one Word) and multiple
custom layouts. The custom report layouts are stored in the database and, when you
run a report, the application uses code to determine which layout has to be rendered.

I will explain how to decide which report layout should be executed when you run
a specific report in the section about managing report layouts. In this section, I will
explain how you can create a built-in Word report layout. Once you understand how
to build a built-in Word report layout, the process for creating a custom layout is
very similar. The only difference is where you start from.

Chapter 8

[311]

The advantage of Word report layouts is that users can create these custom layouts
very quickly, without much technical knowledge, using the application and
Microsoft Office Word.

There are some limitations in the Word report layout, when compared
to the RDLC layout. For example, in RDLC you can use expressions to
generate values for properties. You can also use the toolbox to create
tables, lists, matrixes, charts, data visualizations, and so on. This is not
possible in the Word layout. That is why a Word report requires more
preparation and you will have to use C/AL code and reorder the data
items, so it becomes clearer how to use the dataset in Word.
The advantage of using the Word layout is that you can use Word
formatting toolbars, templates, color schemas, and so on. I recommend
the Word layout as an alternative to the RDLC layout when you need a
simple, straightforward layout that is bound directly to the dataset.

Creating a Word report layout
Let's start by creating a simple Word report layout from within the development
environment.

1. We will start with the following simple dataset:

An example of this report, with only the dataset, is available
in the object: Packt - CH08-3

Word Report Layouts

[312]

2. We then use the Tools, Word Layout menu to create a new layout:

3. When you do this, the following message confirms the creation of the
new layout:

Chapter 8

[313]

4. You can verify this by saving your report and exporting the object to a .txt
file. When you open the .txt file and scroll to the bottom you, will see a
WORDLAYOUT section:

5. Of course, this does not mean anything to me, so I will use Word to edit the
layout. To do this, go to Tools, Word Layout, Export. Then, select a location
in which to save the report, and give it a name:

Word Report Layouts

[314]

A Word document has thus been created, or should I say exported, from Dynamics
NAV. You can now open it in Word, modify it, and then import it back again into the
report object via the Dynamics NAV development environment. So we will open the
Word document in Word.

When you open the Word document, it will be empty. You have to create a layout.
This is similar to creating an RDLC layout. In Word, you use the fields from the
Report Dataset Designer to create a layout. You can visualize the dataset with the
developers tab in the ribbon in Word. If the developers tab is not visible, you will
need to activate it by customizing the ribbon as follows:

1. Right-click on the ribbon and select Customize the Ribbon.... Then, enable
the Developer tab:

Chapter 8

[315]

2. This will display the Developer tab in the ribbon. There you need to select
the XML Mapping pane to display the dataset, as follows:

3. Select the line that contains urn:Microsoft-dynamics-nav/reports/
reportname/reportnumber from the drop-down menu in the XML
Mapping pane.

4. The NavWordReportXmlPart then displays the report dataset. Every data
item is visible, with the name you used in the report dataset designer. When
you click on a data item, in this example Item, it opens and displays the
columns. Dynamics NAV translates a dataset in the report dataset designer
into a Word XML format.

Jet Reports Express for Microsoft Word for Microsoft Dynamics NAV
You can also use Jet Reports Express for Microsoft Word as an
alternative to Microsoft Dynamics NAV. It's easier and quicker to see
the dataset in Word using this add-on. The add-on also contains some
predefined templates you can use and has a search bar, allowing you
to find a field in the dataset more quickly. You can download it here:
http://www2.jetreports.com/l/3692/2014-08-28/366nvf

http://www2.jetreports.com/l/3692/2014-08-28/366nvf

Word Report Layouts

[316]

5. Next, we will add a layout to the Word document. We want to create a list
of items that displays the columns I added to the dataset. To do that, we first
need to add a table in the Word document. We will add a table with two
rows, one for the header and one for the details, and a column for each field
in the dataset:

6. We will type the names of the columns in the first row. Then, in the second
row, we need to repeat the fields that are available in the dataset. In order
to do that, I first need to add a repeater to it. As in the RDLC layout, if we
drag the fields from the dataset directly into the table, they will not repeat
for every record.

7. We need to select the whole row and then add a repeating section, as shown
in the following screenshot:

Chapter 8

[317]

The steps to follow in order to create a repeating section are as follows:

1. First, double-click in the cell, which is in the first column, second row.
Double-click multiple times until the complete row is selected, as in the
following screenshot:

When the row is selected when it becomes gray.

2. Then, with the row selected, go to the XML Mapping pane and right-click
on Item.

3. Then, select Insert Content Control, Repeating. The row in the table converts
into a repeater, as shown in the following screenshot:

Now I can add fields from the dataset into the different columns of the repeater,
as follows:

1. Click in the first textbox (first column, second row). This places the cursor
inside the cell.

2. Then, right-click on the No_Item field in the XML Mapping pane and select
Insert Content Control, Plain Text.

Word Report Layouts

[318]

Note that you do not need to drag and drop the fields from the
XML Mapping pane into the table. Always use the right-click
button and the drop-down menu option Insert Content Control.

3. I then repeat the process for the other fields and, in the header row, I simply
type in the names of the columns. The result should look as follows:

4. I then save the Word document and close it. I will import the layout using
the Tools, Word Layout, Import option in the development environment,
from the Report Dataset Designer:

Chapter 8

[319]

5. I then set the DefaultLayout property to Word, and save the report object.
Now, when I run the report, the following happens:

Word Report Layouts

[320]

6. The request page opens, as it does with an RDLC report. We can enter filters
and/or select a key for sorting. A popup window asks if we want to Open or
Save the layout and, when we select Open, the Word file opens and displays
a list of items.

7. The column captions are not multi-language because we typed them
in manually. Let's see how we can replace them with captions from
the database.

8. We will use the IncludeCaption property on the columns in the dataset
and include a Label (via View, Labels) that contains the report name.
When you do this, you will have to:

1. Save the report object.
2. Export the Word layout.
3. Open the Word layout.
4. Open the XML mapping pane.

9. You should see a Labels section at the top of the XML Mapping pane:

Chapter 8

[321]

10. Next, we will perform the following steps:

1. Replace the column headers with the labels in the dataset.
2. Save the Word layout.
3. Import it back again into the report dataset designer.
4. Save the report and run it.

This is what you will see after performing these steps:

It now displays the report title and column headers in the language of the user with
the captions that are defined in the table.

An example of this report is available in the object: Packt - CH08-1

Word Report Layouts

[322]

Formatting the Word report layout
Now I'm ready to implement some advanced formatting in my report, so I will use
the options available in Microsoft Word.

I have used a Word table because this is a report with a list or table layout and,
I can also use the Word Table Formatting options.

I will reopen the Word layout and select the table. You can see the Design and
Layout tab in the ribbon, you can select a Table Style in the Design tab and apply
it as follows:

I want to include company information and a logo, so I will first add the company
information to the dataset as an extra row:

Chapter 8

[323]

Then, I will add a page Header to the Word layout:

As you can see, Word offers different layouts for the header and you can access
an online library that contains many more examples with the More Headers from
Office.com option. Next, I will add a table to the header section. The table will hold
the address fields for the company.

Word Report Layouts

[324]

I then add Plain Text controls for the fields in the Company Information data item
to the table fields in the header, as follows:

I right-click the field in the dataset and select the Picture option to add the
company logo:

Chapter 8

[325]

Now my layout is ready and I import it back again into the report dataset designer
and save the report object. Then, when I run it, I see the following result:

Word Report Layouts

[326]

When you print the report depicted in the preceding screenshot, all pages contain
the header, and the header contains the company information, including the
company logo.

The Dynamics NAV image types need to be supported by
Microsoft Word. Word supports the following image types:
.bmp, .jpeg, and .png.

You can now go a step further and use other Word options, for example, page
numbers, quick parts, smart-arts, and so on.

An example of this report is available in the object: Packt - CH08-2

Repeating a table header
Word also has a table property that enables the repeating of the header row, which
is not possible in RDLC. When you edit a Word layout that contains a table, you can
select the header row and open its property, as shown in the following screenshot:

Chapter 8

[327]

When you enable Repeat as header row at the top of each page, it does what it
says. In the following screenshot, you can see that the header row is repeated on the
second page:

Using Word templates
When designing a layout, reusing an existing template can be a great time-saver.
When you create a new Word document, Word has built-in templates that you can
use and you can even download extra templates from the online gallery.

I will first create a Word document and import that into the custom layout that I
created in Dynamics NAV.

Word Report Layouts

[328]

To create a new Word document, I will open Word manually and then select New,
to use an existing template, as follows:

I then save the Word document and close it. I have named it InvoiceTemplate.
docx.

This Word document does not contain the dataset from report 1306. To add it, I
will now import the Word document into Dynamics NAV using the Import Layout
button. Dynamics NAV then adds the dataset to the Word document. I will then
export it again so that I can edit it in Word and map the elements from the dataset. I
will start from a report in Dynamics NAV that already has a very nice dataset, report
1306, the mini sales invoice.

Chapter 8

[329]

A user can go to Report Layout Selection and filter the page on ID 1306:

I will select the Custom Layouts action in the ribbon, followed by New:

Word Report Layouts

[330]

I have now created a new custom layout in Dynamics NAV, which you can see in the
list here:

Now I need to import the Word document, with the invoice layout, into Dynamics
NAV. I will use the Import Layout button to import the Word document that I just
created into report 1306:

Chapter 8

[331]

I will then edit the layout again, and this will make sure it contains the dataset. When
Word opens, I should see the following:

I can now select the fields from the Header data item and drop them into the
layout in the table at the top, and in the header.

I will now replace the Customer ID field with the one from the dataset,
as an example.

Word Report Layouts

[332]

Remove the current content control from the layout, as follows:

Then, insert a new content control in the XML Mapping pane:

Chapter 8

[333]

The result will look as follows:

You now need to repeat these steps for all of the fields in the header and the first
table in the Word document.

Now, go to the Lines data item and insert a repeating section, as follows:

First, select and delete all rows from the detail table, except one:

Word Report Layouts

[334]

I'm going to convert this remaining row into a repeating content control by selecting
the row (double-click until it is selected) and then selecting Insert Content Control,
Repeating in the XML Mapping pane, from the Line data item:

I can then add the fields to the repeater from the line data item as Plain Text
Controls, as I did at the beginning of this chapter.

There are also totals below the Lines data item, in the XML Mapping pane,
as you can see here:

These are special data items that contain the totals and were added to report 1306,
so that you can find them very quickly and use them in the Word layout.

Chapter 8

[335]

You can then close Word. Dynamics NAV detects this and asks the following
question:

Click Yes and your new layout will be imported into Dynamics NAV and becomes
your new custom layout for report 1306.

As you can see, there is a wide choice of simple and advanced templates in the online
gallery. It's very easy to link a template to a Dynamics NAV report and then use the
report dataset fields in your template.

If you want users to use Word templates, then I suggest spending
some time on creating similar datasets for your reports, based on how
it's done in report 1306. Give the tables and fields proper and easy to
understand names and create a similar structure of not too many data
items. For most document reports one header, lines and totals should be
enough. Keep it simple and your users will also find it easy to use.

Optimizing your dataset for Word reports
Creating a report with a Word layout is usually divided into two steps. A developer
creates the report object and the dataset in the development environment, and a user
creates the Word layout using the application. As a developer, you will need to take
performance into account, as is always the case when you create a dataset, but even
more important is that you focus on making it easy for a user to create or modify the
Word layout.

This means that you need to apply some simple guidelines to create a user-friendly
and simple dataset and, in this section, I will provide some recommendations on
how to do that.

Word Report Layouts

[336]

As a developer, you should not always reinvent the wheel, and there are many
examples of Word reports available for you to use and study. One of those stunning
examples comes from Jet Reports. You can download .fob and Word files, based
on the Dynamics NAV demo database. In the following example, I will be using the
Report 14125501 Sales Invoice - Jet Ex, which I downloaded from the Jet Reports
website, which you can find here: http://jetreports.com.

When I open the report, I can see the following dataset:

As you can see, there are two levels of indentation: the Sales Invoice Header,
which has been named Document, and the other data items. Each of the data items
has clear and intuitive names:

• Document

• Labels

• Company

• Customer

• Shipment

• Header

• Lines

• TaxAmoutLines

• ReportTotals

This makes it clear what to expect in each data item. When you expand the data
items, the fields from the document header table are divided over several data items.
This is a very good technique for grouping fields that belong together. A user can
then see them together in the Word dataset.

http://jetreports.com

Chapter 8

[337]

Labels contain all of the labels of the report. Each label has an easy to understand
name. Similarly, the company data item contains the fields from the company, which
are usually put onto the header of a report. The same is valid for Customer and
Shipto information.

It is important in a Word layout report that the lowest level of iteration of the data
items matches the report layout. In this example the lowest level is level 2 and it
contains the lines, VAT, and so on.

The totals are all in the same data item. Unlike RDLC, Word is not good at
calculating totals. So you need to do that in the dataset.

Although Word layouts create great flexibility for an end user to
create and manage report layouts, it lacks the advantage of being
able to use expressions, as in RDLC. In order to work around this
limitation, you need to make sure you prepare these things in the
dataset, via the C/AL code.

This is done here in the ReportTotals data item. The variables in the report totals
are calculated in the triggers of the other data items, as you can see when you open
the C/AL code. As an alternative, you could also use the Report Total Buffer
table as a temporary table, as in Report 1306 Mini Sales - Invoice.

The integer data items in this report are used to group fields
together. To make sure they only add one line to the dataset,
the data item property MaxIteration is set to 1.

So, to summarize, thinking about how you group and name data items and fields
produces an easy to understand dataset in Word, as you can see in this screenshot:

Word Report Layouts

[338]

This dataset is self-explanatory, and that's how it should be for all reports that you
want a non-technical user to edit.

Designing the dataset of a report such as the one in the above
example will not only make it easier in the Word layout, but also in
the RDLC layout. Using this best practice will make report design
easier and also make your reports much easier to maintain.

Managing report layouts
Managing Word report layouts can be done in the Dynamics NAV application. You
use the Report Layout Selection page, which you can find using the search box or in
Administration, IT Administration, Reports:

When this window opens, it first loads a list of all the reports available in the
application. You can filter the list on the top, as in the following example from
Report ID 1306:

Chapter 8

[339]

You can create or edit a custom layout for the selected report with the Custom
Layouts and Run Report buttons.

Custom layouts
When I select the Custom Layouts button, the Edit - Custom Report Layouts
window opens:

As you can see, when you select the New… button, you can create a new Word
and/or RDLC layout for the report. When you do this, a new line is added. You
can then select the line and use the Import Layout, Export Layout, and Edit Layout
buttons to manage the new layout.

In the previous section, Using Word templates, I used this window
to create, import and edit the Invoice template.

Word Report Layouts

[340]

After you have created or updated the layout, you can then use the Run Report
button to run the report with the new layout. There's no restriction on the number
of layouts you can create in a report. This means, of course, that one report could
potentially have several RDLC and several Word layouts.

If you select the Actions menu, you will see the following actions:

There are two actions in the Actions group, which are not, by default, in the Home
group: Export Word XML Part and Update Layout.

The Update Layout action is used when someone has changed the report dataset in
the report dataset designer. If that happens and you try to run the report, an error
message is displayed. You can then select the update layout option, or you can use
the update layout action from this window. It will try to fix the error in the report
layout, so you don't have to correct it manually.

You can use the Company Name field, to restrict the report
layout to a specific company. One database can contain multiple
companies and so you can have a different report layout for every
company. If you leave the Company field blank, then the layout is
available for all companies in the database.

Chapter 8

[341]

When you select the Export Word XML Part button, the Word report layout dataset
is exported. You can open it in Notepad:

Editing a Custom RDLC layout
You can create a new RDLC layout for a report in the Custom Report Layouts
window, using the New button:

Word Report Layouts

[342]

Once the new line has been added, you can select the Edit Layout button for the
RDLC layout. This will trigger Report Builder so that you can edit the layout. You
then need to save the layout in Report Builder and close it. Next, you need to click
on Yes to import the updated RDLC layout:

Chapter 8

[343]

The report execution flow
The application needs to determine when to run which layout because a report
can have built-in layouts (RDLC and/or Word) and custom layouts (RDLC and
Word).This is handled via several codeunits that follow a report execution flow.
The following figure visualizes this flow:

Report: Print /

Preview

Codeunit 1

Application

Management

HasCustomLayout?

MergeDocument ReportGetCustomeRDLC

WORD RDLC

This flow is executed when you run a report from the application and select Print,
Preview or when you run a report via C/AL code:

• First, the codeunit uses the HasCustomLayout() function to determine if
the report has been set up with a custom RDLC or Word layout. If not, the
default built-in layout is used.

• If the report has a custom or built-in Word layout, the MergeDocument
function manages the report execution.

• If the report has been set up to use a custom RDLC layout, the
ReportGetCustomRDLC function returns the custom RDLC layout as
an XML string and that is used to render the report.

Word Report Layouts

[344]

The Word report execution flow
When the report uses a Word layout, the execution flow is separated into two parts:
the design time and the runtime flow.

SAVEASXML

WORDXMLPART

Report

Dataset

Designer

Final

Result

XML Data

Word XML

Merge

XML

Description

Word

Layout

At design time
When a user creates a Word report layout in the application, the dataset of the report
needs to be sent to Microsoft Word. This is done via an XML file, a schema file.
This XML schema is generated by the REPORT.WORDXMLPART function. This is done
automatically by Dynamics NAV, but you could create custom functionality based
on this logic using this function.

At runtime
When a report is executed, the report data output (the XML file) is merged with the
Word layout to produce the final result. The report data output is in the XML format,
which is in the same form as the output of the REPORT.SAVEASXML function. In the
Codeunit 1 Application Management, there's a MergeWordLayout function that
handles the merge, depending on the action that the user has selected: PDF, Word,
Excel, or print.

Managing layouts in code
When I introduced the report execution flow, I mentioned that the application code
determines which layout needs to be used when. This flow starts from codeunit 1,
application management, and uses several other tables and codeunits. If you spend
a little time investigating this codeunit, then you will discover how you can use it to
your advantage when you are confronted with managing report layouts so that you
don't reinvent the wheel.

Chapter 8

[345]

In codeunit 1, application management, and in the Custom Report Layout and
Report Layout Selection tables, you will find many functions for managing
reports and report layouts.

In codeunit 1, application management, there's a HasCustomLayout function,
that determines if a report has a custom layout or not, and if so, whether it's
Word or RDLC:

// Return value:
// 0: No custom layout
// 1: RDLC layout
// 2: Word layout
IF ObjectType <> ObjectType::Report THEN
 ERROR(NotSupportedErr);

EXIT(ReportLayoutSelection.HasCustomLayout(ObjectID));

It calls a HasCustomLayout function, which is from the table 9651, Report Layout
Selection. If a report has a custom layout, it's stored in that table, so that's where
you can find it. There's a reference to the Table 9650 Custom Report Layout in this
function. When you open that table and have a look at its functions, you will see
the following:

Word Report Layouts

[346]

As you can see, there are functions that can import, export and edit layouts. Some
of these functions reference Codeunit 9651 Document Report Mgt. This codeunit
contains the following functions:

You can print a report or export it to PDF with these functions. The ConvertToPdf
function uses a dot net (.NET) variable that references the assembly:

Microsoft.Dynamics.Nav.PdfWriter.WordToPdf.'Microsoft.Dynamics.
 Nav.PdfWriter, Version=8.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35'

Chapter 8

[347]

This codeunit then also references Codeunit 419 File Management. The file
management codeunit contains functions to handle files, for example, how to send a
file from the server to the client and vice versa, how to create an archive, and so on.

Word Report Layouts

[348]

This codeunit contains functions that you can use to do almost anything with files.

It has been redesigned in Dynamics NAV 2015, and I believe it's
important to know that it exists, so you don't reinvent the wheel
when confronted with file management.

Scheduling reports
As of version 2015 of Dynamics NAV, you can schedule the execution of a report via
the request page. When you run any report, you will see the following button:

When you select Schedule..., you can determine when the report needs to be
generated and in what format:

Chapter 8

[349]

In order for this to work, you first need to set up the job queue. When the report
is executed, via the schedule, it will then show up in the Report Inbox of the user
that scheduled it. This inbox is usually on the role center page, as shown in the
following screenshot:

The information is actually stored in the Table 477 Report Inbox:

As you can see, the report is generated on a per user basis and the report inbox is
filtered on the user ID.

Word Report Layouts

[350]

Run and run modal
When a report is executed via code, you can use the RUN or
RUNMODAL functions. Reports that are executed by the RUNMODAL
function cannot be scheduled. You can only schedule reports that are
executed by the RUN function.
Some of the document reports in the application use the report
selection feature, and this uses the RUNMODAL function to run reports
in sequence. That is why, when you print a sales invoice, the user
will not see a schedule option on the request page. However, if you
run the report directly from the object designer, then the schedule
option will be visible.

Summary
In this chapter, I introduced you to the Word layout features of report design in
Dynamics NAV. You have learned how to create and maintain a Word layout
as an alternative to the more complex RDLC layouts.

In the next chapter, I will explain Power BI. I will demonstrate how you can
harness the power of Excel, PowerPivot, Power View, and the other Power BI
tools to build and share interactive and rich reports, starting from ODATA web
services in Dynamics NAV.

[351]

Power BI
In this chapter I will introduce you to the world of Power BI. Dynamics NAV can
publish pages and queries as ODATA web services so that external tools such as
Microsoft Office Excel and Power BI can use them as data sources. I will provide
an overview of the different tools available in the Power BI suite and how you can
leverage their power using Dynamics NAV.

Dynamics NAV web services
You have the option to publish page, query, and codeunit objects as web services in
Dynamics NAV when you navigate to the web services page.

Pages and queries are published as ODATA web services and
pages and codeunits are published as SOAP web services.

What is a web service?

A web service, in terms of Dynamics NAV, or a SOAP web service, is a program
that publishes business logic to the outside world and an ODATA web service can
be considered as a data source so that the outside world can access your data in a
uniform and self-described manner.

SOAP and ODATA are the protocols that are used for different types of web services.

More information about Dynamics NAV and web services is
available here: https://msdn.microsoft.com/en-us/
library/dd355398(v=nav.80).aspx

You publish Dynamics NAV business logic to the outside world with SOAP web
services so that you can reuse it in other development environments.

https://msdn.microsoft.com/en-us/library/dd355398(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/dd355398(v=nav.80).aspx

Power BI

[352]

For example, when you are developing an application using Visual Studio and .
NET or a website using PHP. you can consult Dynamics NAV information via SOAP
web servers and create, modify or delete it, using Dynamics NAV authentication,
and business logic. Although very interesting, SOAP web services are not covered in
this book.

You publish page and query objects to the outside world with ODATA web services
so that they can be accessed as data sources. Query web services are read-only, while
you can read and also modify information with page ODATA web services. I will
focus on the read-only ODATA page and query web services because the purpose of
business intelligence is not to modify information from its data source.

So how do you publish a page or query as a web service in Dynamics NAV?

All you need to do is go to the web services page. You can type in web services in
the application search box, or you can go here:

Then you use the New button to create a new web service, as shown in the
following screenshot:

Chapter 9

[353]

To publish it, simply select the Publish checkbox. Then, in the URL column, you can
see where the object is available as an ODATA web service. To verify that it works,
you can simply click on the URL, which opens in your browser:

In my example, the URL is http://nav-2015-bi:7048/NAV/OData/
Company('CRONUS%20International%20Ltd.')/Customers. In your case this will
be different, depending on your settings and the configuration of the service tier.

The generic URL is as follows:
http://<Server>:<WebServicePort>/<ServerInstance>/
OData

This URL gives you an overview of all ODATA web services published
by the instance of Dynamics NAV. To connect to a specific web service,
after /OData, simply enter the name of the web service.

The browser displays the result of the ODATA web services, which is data from your
page or query, but it renders it in a format that's not really interesting for a user. Let's
open it in Excel and display it as a table.

Power BI

[354]

Using Excel
You can import data from different sources using Microsoft Office Excel, one of
which, as from version 2010, is ODATA.

I'm using Excel version 2013 in the demonstrations and
examples. Most of it is also possible in version 2010, but I
recommend the 2013 version.

Start Microsoft Office Excel, and create a blank workbook. Then, in the ribbon, look
for DATA and select From Other Sources, then select the From OData Data Feed:

Chapter 9

[355]

You need to enter the OData web service URL and the credentials used to access
Dynamics NAV in the popup window that opens:

In the next window you will see the Customer Card web service. Select it and click
on Next. Then you will be asked to save the connection so that Excel remembers it.

Power BI

[356]

You can then decide if you want the data to be available in a table, a pivot table or a
pivot chart:

If you have Power View enabled in Excel, the Power View option is also available.
I will come back to this in the section about Power View.

In this example I selected the Table option and then clicked on OK. The result now
looks like this:

The data from the web service is imported into Excel and displayed as a table. You
can reload the data from Dynamics NAV with the Refresh button in the ribbon.

Now that you have your data in Excel, you can repeat this process to import data
from other page or query objects and build your report in Excel.

Chapter 9

[357]

Power Pivot
Power Pivot is an Excel plugin which allows you to create a data model. The
data model can use several types of data sources, including OData web services,
Windows Azure Marketplace, XML files, Excel files, databases, and so on.

I will introduce you to Power Pivot and demonstrate how you can use it to combine
several Dynamics NAV OData web services and web services from Windows Azure
Market Place into a data model. You can then use this data model to enrich your data
and use it when you create reports using pivot tables, Power Pivot reports, Power
View, and Power Map.

When you publish an object, such as a page or a query object, as an OData web
service you can use it directly to create a report in Excel. But, if you want to create
multiple reports then it's more interesting to create a data model in which you
combine the different OData web services into a more complete and rich dataset
that you can reuse.

Power Pivot allows you to do this. Power Pivot has been developed specially as
an Excel plugin in to perform calculations and manipulations on large datasets.
Depending on your version of Excel, there are limitations on the number of rows
it can use and Excel can become slow when it has to perform more complex
calculations on your data. Power Pivot has a built-in scripting language and it's very
fast with calculations, formatting and transformations on large datasets.

You can look on Power Pivot as a tool that helps you combine your Dynamics NAV
OData web services with a related data model and you can enhance it with external
data from Microsoft Azure Marketplace.

To get started in Power Pivot, you first need to activate it in Excel. Then We will
publish several pages as web services and combine them in Power Pivot. Finally,
we will add external data from Azure Marketplace.

Activating Power Pivot in Excel
In Excel, Power Pivot is available in the ribbon, as a separate tab, as shown here:

Power BI

[358]

If this is not visible, use the Customize the Ribbon... feature to activate the Power
Pivot plugin, as follows:

As you can see, the same process can be used to activate Power Map and Power
View. If the options are not available in the list of available plugins, it means you
are using a version of Excel that is not supported.

The minimum version required is Microsoft Office Professional Plus
2013. In Excel 2010, Power Pivot can be downloaded, for free, from the
Microsoft website.

Chapter 9

[359]

To see which version of Excel you are using, open the application menu and go
to Account:

Now that you know how to activate or enable Power Pivot, let's use it to create a data
model.

Building a Power Pivot data model
First, I will publish some page and query objects as OData web services in
Dynamics NAV. The process is exactly the same as before, using the web
services page in the application.

In this example, I have published the Customer Card page and a Customer
Analysis query.

The query Customer Analysis is available in the object:
CustomerAnalysis

Power BI

[360]

Importing data into Power Pivot
Create a new workbook in Excel, go to the PowerPivot tab on the ribbon, and click
the Manage button. This opens up Power Pivot. Then, select Get External Data,
From Data Service, From OData Data Feed:

I enter http://nav-2015-bi:7048/NAV/OData/Company('CRONUS%20
International%20Ltd.')/Customers in the Data Feed Url, then click
on Next and Finish, as shown in the following screenshot:

Chapter 9

[361]

You can also give your connection a friendly name in the connection name field
Friendly. In this example, I named it Customers, so I could refer back to it later.

I repeated the same steps to fetch the data feed for the Query object using the URL
http://NAV-2015-BI:7048/NAV/OData/Company('CRONUS%20International%20
Ltd.')/CustomerAnalysis.

Note that the URL in your database might be different. To be sure,
copy it to the web services page in Dynamics NAV.

Now you have two data sources imported into Power Pivot, and the data sources
show up as tabs just like in Excel, as you can see at the bottom of the window:

http://NAV-2015-BI:7048/NAV/OData/Company('CRONUS%20International%20Ltd.')/CustomerAnalysis
http://NAV-2015-BI:7048/NAV/OData/Company('CRONUS%20International%20Ltd.')/CustomerAnalysis

Power BI

[362]

The data from the web services is loaded into Power Pivot and, with the buttons
in the ribbon Formatting, and then Sort and then Filter, you can apply filters,
formatting and sorting to the OData feeds:

I would like to present the customer analysis query information on a timeline,
using the posting date. But, if I used the posting date as a time axis, it would not be
linear because there are no postings on all of the dates. I will therefore import a date
dimension from Azure Marketplace instead.

In order to connect to Windows Azure Marketplace you need
an account. Go to http://azure.microsoft.com/en-us/
marketplace to create a free account.

http://azure.microsoft.com/en-us/marketplace
http://azure.microsoft.com/en-us/marketplace

Chapter 9

[363]

Select From Data Service, and then select From Windows Azure Marketplace:

In the preceding window, on the left side I selected the Free category and in the
search bar I typed power data. I then selected Power Data from the dropdown. This
opens the next window, where you need to provide your live credentials. The service
is free but you need to authenticate with a Windows live ID.

Power BI

[364]

After you enter your ID, choose the Select Query option, and click Next, as shown in
the following window:

Chapter 9

[365]

Then click Finish. This will start to load the data from Azure Marketplace. It can take
a few minutes, depending on the query that you are importing.

The date dimension contains a lot of information, it will import
thousands of rows, that's why it takes some time to import. To
speed up the data retrieval, you can deselect columns that you don't
require, before starting the import process.

Power BI

[366]

Creating relations in the Power Pivot data model
Now that we have imported our data from Azure Marketplace and from our two
OData web services it's time to connect them by creating relations in our data model.

In the CustomerAnalysis tab, you can right-click the Customer_No column, and
then select Create Relationship...:

You can select the Customer_No field from CustomerAnalysis in the popup window
to connect to the No of the Customers datasets and click Create.

Chapter 9

[367]

Then you repeat this process to connect the Posting Date field from the
CustomerAnalysis dataset to the FullDate field from the Date dimension:

Then you can select the Diagram View button in the ribbon to visualize the relations
you have just created:

Power BI

[368]

If you want to go a step further, you can also provide synonyms for the table names
and fields here:

This will help you when you upload your data model later in Office 365 with Power
BI enabled. You can then use the Q&A feature, which uses synonyms to query your
data model.

More information about how to Add synonyms to a Power Pivot Excel data
model is available here:
https://support.office.com/en-us/article/Add-synonyms-
to-a-Power-Pivot-Excel-data-model-345f4f5b-5ec2-4998-
bc46-a26bdc0810b6?CorrelationId=9f6ae99f-75e9-4b71-
ae11-06b6d8f8c6b6&ui=en-US&rs=en-US&ad=US

You have now built your first, simple, data model in Power Pivot. Now it's time to
use this model and create a dashboard report using Power View. Of course, you
can also create a Pivot table in the same way we did at the beginning of the chapter
instead of Power View.

Before you continue, I recommend closing Power Pivot and then
saving your Excel workbook.

https://support.office.com/en-us/article/Add-synonyms-to-a-Power-Pivot-Excel-data-model-345f4f5b-5ec2-4998-bc46-a26bdc0810b6?CorrelationId=9f6ae99f-75e9-4b71-ae11-06b6d8f8c6b6&ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Add-synonyms-to-a-Power-Pivot-Excel-data-model-345f4f5b-5ec2-4998-bc46-a26bdc0810b6?CorrelationId=9f6ae99f-75e9-4b71-ae11-06b6d8f8c6b6&ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Add-synonyms-to-a-Power-Pivot-Excel-data-model-345f4f5b-5ec2-4998-bc46-a26bdc0810b6?CorrelationId=9f6ae99f-75e9-4b71-ae11-06b6d8f8c6b6&ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Add-synonyms-to-a-Power-Pivot-Excel-data-model-345f4f5b-5ec2-4998-bc46-a26bdc0810b6?CorrelationId=9f6ae99f-75e9-4b71-ae11-06b6d8f8c6b6&ui=en-US&rs=en-US&ad=US

Chapter 9

[369]

Power View
Power View is another Excel plugin which allows you to visualize information and
create rich, stunning, interactive reports and a dashboard in Microsoft Office Excel.
Power View was built by the SQL Server team, with the end user in mind. The
technology is based on reporting services but the idea is that any user, without much
technical knowledge, should be able to understand and use Power View intuitively
to create rich, interactive and stunning reports, just like you always wanted.

A couple of years ago, I was watching a presentation on TED
(www.ted.com) from Hans Rosling, who is the director of
Gapminder in Sweden. He specializes in Global Health and
statistics and presented information about the different countries
in the world, mortality rates, income, and so on. The way that
he presented the information, back in 2006, was mind-blowing.
He was able to display information on bubble charts, including a
timeline, in which he would click on play and you could see data
evolving over the last twenty years. At that time, I was thinking,
I hope one day we can do the same with our data in Dynamics
NAV. When I took my first look at Power View I understood this
was the tool that was going to make that possible.

In other words, Power View will make your data come to life.

To get started, reopen the Excel workbook where you created the Power Pivot data
model. Then select Insert, Power View:

Power View requires Silverlight. If you don't have that installed, it
will propose the installation. After installation you need to select the
enable button and then restart Power View.

www.ted.com

Power BI

[370]

In the Power View window that opens, at the right side you will see Power View
Fields. That contains the three tables from the Power Pivot data model you created
earlier. When you open CustomerAnalysis and select the Posting Date and Sales
LCY fields, they are shown by default in a table layout. Then, select Column Chart,
Stacked Column in the ribbon:

Chapter 9

[371]

This transforms the table containing numerical information into a chart which you
can move around and resize. Then you can select the Salesperson Code field and
drag it to the bottom of the Legend field:

As you can see, this converts the chart into a real stacked chart where you can see
the sales, on a timeline, by salesperson.

We are now going to add another chart to this report. To do this, first click
somewhere in the report, outside the chart, on the white space. This makes sure
nothing is selected. Then you select fields from the dataset to be added as a separate
table, which you can then convert into another chart or visualization. If you don't
click outside your chart to deselect it, and then select more fields from the dataset,
then these fields are added to the current chart, instead of becoming a new chart.

Next, select Sales LCY from the CustomerAnalysis dataset, and Country_Region_
Code from the City dataset. In the ribbon, select Bar Chart, Clustered Bar. Then,
select Sort by Sales_LCY, desc in the bar chart that is generated, on the top.

Power BI

[372]

You can do this by simply clicking on the field that is shown until it becomes
Sales_LCY:

You can also select the Profit_LCY field to make it a clustered bar:

Chapter 9

[373]

Next, select City and Amount from the CustomerAnalysis dataset. Then, select
Map in the ribbon. This displays a map control. Resize it and then click the Enable
Content button, which appears right below the ribbon. This enables the map and
immediately loads the content:

You can drag the map around with your mouse and zoom in and
out with the mouse wheel When you hover over a circle, a tooltip
is shown with the related data.

Open the Date dataset and drag Calendarmonth onto the Filters pane:

Power BI

[374]

Now you can select one or more months to filter the dashboard. When you select a
month, the three charts are updated immediately.

The dashboard is completely interactive. For example, when you click on a country
on the map (Iceland), then some parts of the other charts are greyed out:

You can then see which parts originated from the country that you selected. The
same is valid if you click on a piece of one of the other charts in the dashboard.

Chapter 9

[375]

You can further enhance the charts, for example, when you click on the map, and
then drag the customer's Name on the Color field, the map is updated accordingly:

You have now built your first interactive dashboard, in Power View. As you have
seen, it's very easy to do. There are many other visualizations to choose from in the
ribbon, so you can look at the information from the dataset in different ways. All
of the different parts of the dashboard are connected, via the data model. The data
model is using OData web services and, when you click the refresh button in the
ribbon, live data is fetched from your Dynamics NAV database.

Another demonstration on creating a similar data model and
dashboard is available here:

• How Do I: Build a Power BI Dashboard in Office 365 with
Microsoft Dynamics NAV 2015 Part I (https://www.
youtube.com/watch?v=l-kEKkzjgUw&list=PL5B63EF
419A3B59C8&index=96)

• How Do I: Build a Power BI Dashboard in Office 365 with
Microsoft Dynamics NAV 2015 Part II (https://www.
youtube.com/watch?v=tZYIIOxcc1o&list=PL5B63EF
419A3B59C8&index=95)

These are two of the many videos that I have created for Microsoft in
the How Do I series for Dynamics NAV.

You have now visualized information, including sales, on a timeline. But the timeline
cannot be played. In order to do that, you can use Power Map.

https://www.youtube.com/watch?v=l-kEKkzjgUw&list=PL5B63EF419A3B59C8&index=96
https://www.youtube.com/watch?v=l-kEKkzjgUw&list=PL5B63EF419A3B59C8&index=96
https://www.youtube.com/watch?v=l-kEKkzjgUw&list=PL5B63EF419A3B59C8&index=96
https://www.youtube.com/watch?v=tZYIIOxcc1o&list=PL5B63EF419A3B59C8&index=95
https://www.youtube.com/watch?v=tZYIIOxcc1o&list=PL5B63EF419A3B59C8&index=95
https://www.youtube.com/watch?v=tZYIIOxcc1o&list=PL5B63EF419A3B59C8&index=95

Power BI

[376]

Power Map
you can present information on a geographical map in different ways with Power
Map. Power Map is a little different to the other Power BI tools. Power Map is a tool
that is meant as an alternative to PowerPoint, for example, when you need to present
information. Instead of using a classic PowerPoint presentation, you can use Power
Map to display the information on a map with animations, and analyze and visualize
it from different angles. The result of a Power Map project is usually a video file.

Power Map, just like Power Pivot and Power View, is an Excel
plugin. When you create a Power Map, you can base it on data
you already have in Excel, or on different kinds of data sources.
But, behind the scenes, Power Map uses Power Pivot to manage
its data, so a data model in Power Pivot is, in my opinion, the
best way to get started.

A Power Map consists of tours, scenes and layers. A tour contains one or more
scenes, and a scene contains one or more layers. A scene is similar to a slide in a
PowerPoint presentation, and it displays a map. A layer is the actual geographical
mapping presented with a chosen visualization. If your data model contains a date
field, then you can link it in your layer to create a timeline, as you would create
animations in a PowerPoint slide.

Let's get started. Select Insert, Map, Launch Power Map in Excel, in the ribbon:

Chapter 9

[377]

Power Map opens, and displays a map of the world. You can see the data model on
the right side:

The first thing to do is choose a geography. That means a field that can be linked to
coordinates on the map. Choose a geography where you have to select a field from
the dataset at the right side, in Layer 1. I will use the City field from the customer
data source.

Power BI

[378]

You can do this at the bottom of the geography pane, as follows:

Chapter 9

[379]

Once selected, the data point loads immediately on the map. Then select Next. The
window updates and you can see the success rate of cities at the top of the pane, or
the mapping confidence. When you click on the percentage, you can see the details:

Power BI

[380]

Power Map will perform an educated guess even when the name of the city on
Dynamics NAV does not match exactly. For the cities that do not match, you can
try to update the data model.

Select the Amount field in the data model. It will be used as the height of the bars on
the map. Then, drag the salesperson to the category box so that different salespeople
display different colors. Select the Posting_Date field and drag it to the Time box.
This will make a timeline appear. When you click on it, the data will play, and you
can see, over time, the bars growing.

Chapter 9

[381]

You can choose themes in the Power Map ribbon to get different colours. You can
change a 3D into a 2D map, display map labels, show a legend, and more, by using
the following buttons:

You can change the bars into clustered bars, bubbles, heat indicators or regions.
You can add filters and define more layer options with the buttons on top of the
layer pane:

Power BI

[382]

If you click on SCENE OPTIONS, you can define the settings for the video effects:

You are still working in Tour1, Layer 1, Scene 1. You can add more layers and tours
if you want. For the purpose of this example I will keep it simple and produce my
video. To do that, I will use the Create video button in the ribbon.

This will open the following window:

You can now select the quality settings, import a sound track and then render the
video. You require a video card to do this.

Chapter 9

[383]

Another demonstration of how to create a similar dashboard is
available here:
How Do I: Use Power Map to Visualize Data in Microsoft Dynamics NAV
2015 at https://www.youtube.com/watch?v=ZcyG8Y_xXy0

Power Query
Power Query is a tool that you can use to create and manage different data sources.
It has been able to do this since the release of Power BI Designer and I recommend
Power BI Designer over Power Query.

Power BI Designer
Power BI Designer is a relatively new tool. It incorporates Power Pivot, Power View,
Power Query, and Power Map. You can download it for free (at the time of writing),
and it allows you to create and manage your Power BI dashboards, even when you
don't have Excel installed on your machine.

First, you need to download and install Power BI Designer, and you
can get it here:
https://powerbi.microsoft.com/designer

When you launch it, you are presented with the following splash screen:

https://www.youtube.com/watch?v=ZcyG8Y_xXy0
https://powerbi.microsoft.com/designer

Power BI

[384]

If you are new to Power BI Designer, I recommend having a look at the videos.
They provide a good introduction to what you can do with the designer.

The first thing I will do is determine which data source or data sources I will use.
To do that, select Get Data.

Chapter 9

[385]

As you can see, there are many different data sources to choose from. I will use
Dynamics NAV OData web services. When you select Connect, you have to type
or paste the URL of the OData source in the next window:

You might get an error in the next window saying that you are not authorized,
depending on the URL that you have entered. This is because Power BI Designer
tries to connect without authenticating by default. To fix this problem, select
Windows and then the user that has access to Dynamics NAV:

Power BI

[386]

Once connected to the web service, the designer can open and display the fields on
the right side:

Chapter 9

[387]

Select Query on the left hand side, at the bottom of the screen. This opens the
query, where you can rename it and, if required, you can transform, sort, and
format your data.

Every action that you perform on your data here is recorded as a step in the applied
steps window. You can then see which steps you applied and in what order. The
next time the designer connects to the data source it will repeat those steps.

Now I will get the other web service, as follows:

I have connected my two OData web services as follows:

• http://thinkaboutit:9048/Training_Development/OData/

Company('CRONUS%20BELGI%C3%8B%20NV')/CustomerAnalysis

• http://thinkaboutit:9048/Training_Development/OData/
Company('CRONUS%20BELGI%C3%8B%20NV')/Customers

I have renamed Query1 as CustomerAnalysis and Query2 as Customers. I will then
apply some transformations and connect the two.

Power BI

[388]

First I right-click on the Posting Data column in the CustomerAnalysis query. Then I
select Change Type, Date:

You should see that the format of the data has changed, and the applied steps now
contain a Changed Type entry. You can undo this by selecting the X left to it in the
applied steps column.

Now I will merge the two queries. You start by selecting Merge Queries in the
ribbon of the CustomerAnalysis query:

Chapter 9

[389]

When you click on OK, you will see that a new column has been added to the
right. You can select the icon and which columns from the Customer query you
want to include:

Now I'm ready to create a report based on the CustomerAnalysis query. To do that,
select Report at the left bottom:

Power BI

[390]

I select the City field in the dataset on the right. You can see that it has a small globe
icon next to it. This is because it has been recognized and, when you select it, it's
displayed using a map:

Then I drag Salesperson_Code to the Legend field, and the map is updated with
different columns for different salespersons. By default, Sales_LCY was selected as
the measure to display on the map.

Then, I select Posting Date in the list of fields, and a graph chart is automatically
added. Next, I select the Profit_LCY field, which is also added to it:

Chapter 9

[391]

There's a button that you can click at the left top. It allows you to change the current
visualization to another.

Then I add two more charts:

They are Profit_LCY by Salesperson_Code and Amount by Country_Region_Code,
as you can see in the preceding screenshot.

The charts are interactive as in Power View. When you select a Salesperson,
the other charts update.

Next I save the dashboard, via File, Save as.

You have now created your first dashboard using Power BI Designer. Next I will use
my Office 365 account, in which I have added a Power BI subscription, and I will
upload the dashboard we have created with Power View and Power BI Designer.

PowerBI.com
Imagine that you work in a company and the CFO, or someone in management,
asks you the following questions. Could you create me a report that shows:

• The sales and profit by customer and salesperson
• The top ten cities or countries, by sales
• Current year sales, on a timeline

Power BI

[392]

Then they mention the fact that the report should use data from the live Dynamics
NAV database, it should be able to refresh on the fly, and it should be easy to
analyze the data and, if possible make it flexible so that they can create more views
and analysis on the same data.

Well, with PowerBI.com, you will be able to do that, very quickly and without much
technical knowledge.

If you go to www.powerbi.com, you can subscribe, for free, to the preview version of
PowerBI.com:

www.powerbi.com

Chapter 9

[393]

Once you sign up, you can use the website, as an alternative to Power Bi Designer, to
create reports, dashboards, queries, and so on. You can also upload Excel files, other
types of files, and previously created Power BI Designer files, as in the following
example, where I will upload the dashboard you created with Power BI Designer:

Power BI

[394]

Once the report is uploaded, it becomes available as a dashboard:

Now I will enable Q&A for this dashboard, as follows:

Chapter 9

[395]

You can then start typing in a question in natural language, at the top, in the search
bar. You can see four charts in the following screenshot. that were created on the fly
when typing in the questions marked in red:

Power BI

[396]

Now you have a situation where the CFO of your company, or any other user, gets
what they always dreamed of. A dashboard where they can simply ask a question
and the chart is generated immediately. How cool is that!

Chapter 9

[397]

Of course, the accuracy and user friendliness of this feature depends
on how you name your fields in the dataset. You might remember, in
the section about Power Pivot, I showed you the user-friendly names
and synonyms section. Well, this is where that has its effect.

You can do much more with Power BI than what I have shown you here in this
chapter. This chapter is meant as an introduction, where I show you some of the
basic features and how you can get started.

More information about Power BI and Q&A is available here:
Power BI Q&A in Office 365: Searching and Querying with natural language:
https://support.office.com/en-za/article/Power-BI-Q-
A-in-Office-365-Searching-and-Querying-with-natural-
language-709ef848-660b-4610-9b40-9395392c38af?ui=en-
US&rs=en-ZA&ad=ZA

Summary
In this chapter I have introduced you to the world of Power BI. You have seen how
you can use Power Pivot to create a data model using Dynamics NAV web services.
You then created interactive visualizations and dashboards with Power View and
Power Map. Power BI Designer combines these tools and enables you to manage and
create reports.

In the next chapter, I will introduce you to reporting services and you will learn how
you can use it to create reports based on data from Dynamics NAV.

https://support.office.com/en-za/article/Power-BI-Q-A-in-Office-365-Searching-and-Querying-with-natural-language-709ef848-660b-4610-9b40-9395392c38af?ui=en-US&rs=en-ZA&ad=ZA
https://support.office.com/en-za/article/Power-BI-Q-A-in-Office-365-Searching-and-Querying-with-natural-language-709ef848-660b-4610-9b40-9395392c38af?ui=en-US&rs=en-ZA&ad=ZA
https://support.office.com/en-za/article/Power-BI-Q-A-in-Office-365-Searching-and-Querying-with-natural-language-709ef848-660b-4610-9b40-9395392c38af?ui=en-US&rs=en-ZA&ad=ZA
https://support.office.com/en-za/article/Power-BI-Q-A-in-Office-365-Searching-and-Querying-with-natural-language-709ef848-660b-4610-9b40-9395392c38af?ui=en-US&rs=en-ZA&ad=ZA

[399]

Reporting Services
In this chapter, I will introduce you to Reporting Services. When RDLC was
introduced to Dynamics NAV, the technology was not new. In fact, it came from SQL
Server Reporting Services, but implemented in such a way that no report server was
required. Now Reporting Services is still available as a, free, and very good reporting
tool. You can use it to create interactive reports based on Dynamics NAV data and in
this chapter, I will show you how you can get started with it.

What are Reporting Services?
When SQL Server 2000 was released, it contained a new reporting feature named
Reporting Services. Since then, it has gained enormous popularity and its technology
is currently used in Microsoft Dynamics and other applications. Dynamics NAV, AX,
GP, and CRM all use reporting engines based upon Reporting Services technology.

It's important to know what you can do with it because Reporting Services has
much more to offer than the built-in reporting tools so you can make an educated
choice when you decide to use an external reporting tool and compare it with other
third-party applications.

First of all, it's completely free; it comes with SQL Server. When you make the
investment in SQL Server, you get the reporting service (and analysis services) as
part of the package. The only investment needed is the time to develop reports.

Of course, you need to have SQL Server Edition. Since every
Dynamics NAV database (since the RoleTailored Client) runs on
SQL Server, you will already have SQL Server installed.

Reporting Services

[400]

Secondly, you can create reports with Reporting Services that visualize information
from a wide range of data sources. Apart from SQL Server, Reporting Services can
connect to OData web services, or any database that supports ODBC.

You can also use XML, Excel and text files as data sources and, if required, these
data sources can be combined. You can also create dynamic reports that display or
aggregate information from multiple databases or companies because the queries
you use to access the databases can be parameterized.

Installation and configuration
To get started with Reporting Services, you first need to install and configure a report
server. The report server executes and runs the reports while you, as a user, access
and run your reports from your browser, in an application named Report Manager.

As an alternative, you can also set up Reporting Services to
integrate with SharePoint. This is an interesting approach,
especially if you already use SharePoint in your company.
But it is beyond the scope of this chapter.

Since Reporting Services (SSRS) are a part of SQL Server, you need to start with
the installation media for SQL Server and deploy the SSRS report server. During
installation, you will get the choice between installing the report server and installing
the report server and automatically configuring it:

Chapter 10

[401]

If you don't have the installation media, you can start with the
SQL Server Evaluation version, which you can download from
here http://www.microsoft.com/en-us/evalcenter/
evaluate-sql-server-2014.

As a minimum, you require the SQL Server:

• Database Services
• Reporting Services

I recommend the Management Tools (basic or complete), so that you can then
manage databases, security, backups, and so on.

An overview of all the different tools for Reporting Services
is available here https://msdn.microsoft.com/en-us/
library/ms155792.aspx.

When you select Install and Configure, the installation procedure creates a report
server database automatically. This is the database that will store your Reporting
Services configuration, published reports and security. You can reconfigure the
settings and also have a look at the URL that was used to access the Report Manager
and report server using the Reporting Services Configuration Manager.

The following is a screenshot of the Reporting Services Configuration
Manager window:

http://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2014
http://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2014
https://msdn.microsoft.com/en-us/library/ms155792.aspx
https://msdn.microsoft.com/en-us/library/ms155792.aspx

Reporting Services

[402]

You can find the Report Server Web Service URL in the Web Service URL section:

A user will use the Report Manager to consult the Reporting Services reports.
A developer will publish reports to the report server, after which they will
become available in the Report Manager application.

Chapter 10

[403]

You can see and run the reports published to the report server in the
Report Manager:

For a detailed description of how to use the Report Manager, have a look at
https://technet.microsoft.com/en-us/library/ms157147.aspx.

For a detailed description of the installation and configuration of the Reporting
Services, have a look at https://technet.microsoft.com/en-us/library/
ms159106.aspx.

https://technet.microsoft.com/en-us/library/ms157147.aspx
https://technet.microsoft.com/en-us/library/ms159106.aspx
https://technet.microsoft.com/en-us/library/ms159106.aspx

Reporting Services

[404]

Creating a report in SSRS
To create a report with SSRS, you can use either:

• Report Builder
• SQL Server Data Tools (SSDT-BI)

Both of these tools can be downloaded, free from the Microsoft website.
The difference between the two is that with Report Builder you are working
on one report. With Data Tools you can create and manage multiple reports in
one project or solution.

SQL Server data tools for Reporting Services is abbreviated to
SSDT-BI. (Online you will also find SSDT, which only contains
templates for SQL Server project, and not the Reporting Services.)
You can download it from here: http://www.microsoft.com/
en-us/download/details.aspx?id=36843

Now, let's get started on our first report in SSRS. I would like to start with a simple
list of customers. I will create it using the Report Builder, and then use Visual Studio
data tools to further enhance the report and add it to a solution.

1. First, launch the Report Builder application. When it starts, it immediately
opens a popup window:

http://www.microsoft.com/en-us/download/details.aspx?id=36843
http://www.microsoft.com/en-us/download/details.aspx?id=36843

Chapter 10

[405]

2. Here, I will select Blank Report, because it's the first report we will create.

If there are reports already available, I might select one of the
other options, so that I can reuse some of the parts of the report I
have already created, or parts that might be available on the report
server. But I will come back to this later in this chapter.

3. When you select Blank Report, the following window opens:

Reporting Services

[406]

This will look familiar to you if you have used the Report Builder to create the RDLC
layout for a Dynamics NAV report object. The difference here is that the data source
and dataset is empty. First, you will have to create a data source, which is a reference
to the Dynamics NAV database on SQL Server, and a dataset, which is an SQL query
to fetch the customers from that database.

1. To create a data source, right-click on the Data Sources folder and select Add
Data Source.... This opens the Data Source Properties window, in which you
can create a link to the Dynamics NAV database on SQL Server:

In your case, the connection string to your database is probably different.
It contains the name of your server (or local machine, if installed locally),
SQL instance and database. Later, we will use a reference that we will
store on the report server. It's easier to maintain that way.

The name of the data source is Datasource1 by default, but I recommend
renaming it DynamicsNAV.

Use a reporting user
Windows authentication is used by default in the connection string. This
means that a user has to be created or rights have to be assigned to every
user that wants to run this report on SQL Server. I recommend only one
dedicated database user. You can give it the name ReportingUser and
only give it read rights on the tables of the Dynamics NAV database.
Security about who has which rights or roles in Reporting Manager can
be managed in the Report Manager settings, and is completely separated
from the user that is used to authenticate on the source database.

Chapter 10

[407]

2. Now that you have created a data source, you can create a dataset. Right-
click Datasets in the Report Data pane and select Add Dataset....:

3. Type Customers in the Name field of the dataset.

Reporting Services

[408]

4. Select the DynamicsNAV data source you created earlier in the Data
Source field.

5. Click on the Query Designer... button. This opens a popup window.
There, in the list of tables on the left side, expand the tables and look
for the customer table.

6. Expand the customer table and select the fields: No_, Name and City.

Chapter 10

[409]

7. Then click on Run Query to see the results. Click on Ok in the Query
Designer window and create the following query:

SELECT
 [CRONUS International Ltd_$Customer].No_
 ,[CRONUS International Ltd_$Customer].Name
 ,[CRONUS International Ltd_$Customer].City
FROM
 [CRONUS International Ltd_$Customer]

As you can see, it selects the No_, Name and City fields from the customer table in
the Dynamics NAV database.

The name of the company is usually included in the table
name because a Dynamics NAV database can contain
multiple companies. The syntax for a table name is as follows:
[CompanyName$TableName].

After you close the dataset designer, the dataset is updated in the Report Builder of
Report Data pane, and now contains the fields from the customer table:

Reporting Services

[410]

From now on, building the report layout will be very similar to building the layout
of an RDLC report.

I will use a wizard to add a table to the report body that will list the fields from the
dataset, as follows:

1. First, select Table, Table Wizard... to start the wizard. Then, select the
Customers dataset and click Next:

Chapter 10

[411]

2. Now drag and drop the City field on the Row groups and the No_ and
Name fields on Values, and click Next:

3. In the next window, you can enable or disable the Expand/collapse options
and the option to see totals and subtotals, and then click Next:

Reporting Services

[412]

4. You can select a Style in the following window:

5. When you click Finish, the table is added to the report body:

Chapter 10

[413]

6. After you follow the wizard, the table is added to the report body.
You can then run and preview the report with the Run button at the
left top, in the ribbon:

7. Now I will publish (or save) my report on the report server. You can see
the report server and Report Manager URLs in the Reporting Services
configuration manager:

 ° Report Server: http://thinkaboutit:8085/ReportServer_
SQL2014

 ° Report Manager: http://thinkaboutit:8085/Reports_SQL2014

8. You can connect to the report server at the left bottom of the Report Builder,
as follows:

Reporting Services

[414]

9. Once connected, you can use the Save or Save As options of the button in the
ribbon to save your report on the report server. Select the Recent Sites and
Servers option if it's not available in the dropdown at the top:

10. Then, go to the report viewer, in your browser, look for the report, and run it:

Chapter 10

[415]

You have now created and published your first Reporting Services report.

If you receive an error (You don't have sufficient permissions to
perform this action.) while running the Report Manager or trying to
save the report to the report server, it's usually because of User Access
Control (UAC) settings in Windows. Relaunch your browser and the
Report Builder and run it as an administrator to fix the problem.

Using SQL Server Data Tools
Now we are going to create a new reporting project in Visual Studio, using SSDT.
Go to the File menu after you launch SSDT and create a new project as follows:

Go to Business Intelligence in the templates section and select Report
Server Project.

If you don't see the Report Server Project Template here, it is probably
because you are not using the correct version of Visual Studio or don't
have SSDT installed.
You can download it from here: http://www.microsoft.com/en-
us/download/details.aspx?id=36843

http://www.microsoft.com/en-us/download/details.aspx?id=36843
http://www.microsoft.com/en-us/download/details.aspx?id=36843

Reporting Services

[416]

This creates a new empty solution. Then, I will import the report I created earlier,
customerlist.rdl, into this solution:

When you double-click the CustomerList report in the Reports folder, it opens in
Visual Studio. The report body is displayed in the middle. The data sources and
datasets are displayed on the left, in the Report Data pane.

You can now create new reports in Solution Explorer, in the reports folder. All of
them become part of this solution, so you can manage and deploy them to the report
server together.

Chapter 10

[417]

Publishing a report project
You first have to go to the report properties in SSDT and indicate where the report
server is located, so that you can publish your reports to it:

Here, you enter the address of the report server, which you can find in the Reporting
Services configuration manager, in TargetServerURL. Then, you enable Build and
Deploy using Configuration Manager....

Reporting Services

[418]

To publish your project, use the Play button, or right-click your solution and select
Build Solution, then Deploy Solution:

The output window at the bottom of Visual Studio indicates whether or not it
worked while deploying your solution:

Chapter 10

[419]

After deploying, it will launch your browser and navigate to the report server.
You can navigate to the Report Manager website manually, where you will see the
deployed reports. If you select them, they will execute:

You can specify security, for example, who can run or manage reports in the Report
Manager Site Settings and in the properties of each folder and report.

Implementing reusability
When you create reports with one or more developers, there are features available
in Reporting Services that can be reused in other places. For example, you can share
data sources, datasets, and report parts. Furthermore, when you create queries for
your reports, it is interesting to use views, functions, and stored procedures, and
reuse them in different reports or projects.

Shared data sources and datasets
Every time you create a report, you can either store the data source reference in the
report itself or store it in your project and share it among all the solution reports. You
can then publish it separately to the report server. The advantage of this is that all
reports use the same reference to the database. So, if you change the reference and
point it to another database, all reports are redirected together.

Reporting Services

[420]

The same is valid for datasets. If you have different reports that use the same
datasets, it's better to create the dataset just once, and then share and reuse it in the
other reports.

Although sharing datasets sounds like a good idea, when multiple
report developers work together, it can become messy very quickly.
That's why you should agree upon a methodology for dataset names
and where they are published. You should also document which report
uses which shared dataset. If you need to make a modification to a
shared dataset afterwards, it will impact on all the reports that use it.

Start from inside your report to convert a data source into a shared one. Go to the
Report Data pane and right-click on its data source. Then, select the option Convert
to Shared Data Source:

After that, it will become available in your project under Shared Data Sources,
and your report will point to it. Now you need to go into the other project reports
to make sure they are using the shared data source. You can do that with the data
source properties.

Chapter 10

[421]

You need to change from the embedded connection to a data source reference,
as shown in the following screenshot:

The next time that you publish your project, the shared data source will also be
published, and the reports on the server will be updated You can access and change
the shared data source in the Report Manager.

This is interesting because, when you are developing and testing your reports, you
can let them reference a development or test database. Then, when development is
completed and all tests are successful, you can update the data source on the server
and let it reference the live database, without needing to change any of the reports.

You can have one or more datasets in a report. Datasets are the queries to your data
source, the database. Some reports use the same datasets. Instead of maintaining all
of these datasets in the report definition, you can create a shared dataset, similar to a
shared data source.

Reporting Services

[422]

The following screenshot shows how you can convert a dataset from a report into a
shared dataset:

You can also start by creating a new shared dataset. You do this with a right-click in
Shared Datasets:

Chapter 10

[423]

Once it is ready, you can save it by selecting the OK button. Then, when you
create a new report, you can add a new dataset to it that references the shared
dataset, as follows:

You can create reusable reports components by sharing data sources and datasets.
You can even divide the work. For example, someone who is skilled in creating
queries can create the datasets and share them, and someone else can simply use
those shared datasets when they create a new report.

Shared report parts
Apart from sharing data sources and datasets, you can also publish certain parts of
a report to the report server. Then, when you create a new report, you can simply
reuse them.

The following are report items that you can publish as report parts:

• Charts
• Gauges
• Images and embedded images
• Maps
• Parameters
• Rectangles
• Tables
• Matrices
• Lists

Reporting Services

[424]

Report parts can be published from SSDT or Report Builder, but only Report Builder
supports the functionality to look for published report parts when you create a new
report. The following screenshot shows how you can create a report part:

Chapter 10

[425]

When you publish or deploy the report, the report parts are published to a specific
folder on the report server:

There's a Report Parts button in the ribbon in Report Builder. When you click on
it, a window opens where you can search for report parts on the report server. By
selecting and double-clicking on them, they are added to the report, and the shared
dataset is also added:

Reporting Services

[426]

This is a very interesting feature. A user without any technical knowledge can thus
connect to the report server and create a report by simply reusing parts. It's a bit like
using Lego building blocks, but for reports.

Creating functions
FlowFields in Dynamics NAV are calculated fields. When you create an RDLC
report, you reference the table definition directly via the data items, and so, you
can use FlowFields. You query the SQL Server database in Reporting Services as
FlowFields aren't stored in the database. This means that FlowFields have to be
calculated in the query. Let's look at an example, the Sales (LCY) field in the
Customer table. In the FlowField calculation formula in Dynamics NAV, the
field is calculated as follows:

Sum("Cust. Ledger Entry"."Sales (LCY)" WHERE (Customer
 No.=FIELD(No.),Global Dimension 1 Code=FIELD(Global Dimension 1
 Filter),Global Dimension 2 Code=FIELD(Global Dimension 2
 Filter),Posting Date=FIELD(Date Filter),Currency
 Code=FIELD(Currency Filter)))

To translate this into an SQL statement that you can use in a customer list, you have
to combine the Customer and Customer Ledger Entry tables using the No. field
of the Customer table and the Customer No. field of the Customer Ledger Entry
table, and then calculate the Sum of the field Sales (LCY) for each customer. The
SQL query should look like this:

SELECT
 CUS.No_,
 CUS.Name,
 SUM(CLE.[Sales (LCY)]) as Sales_LCY
FROM [CRONUS International Ltd_$Customer] CUS
 INNER JOIN [CRONUS International Ltd_$Cust_ Ledger Entry] CLE
 ON CUS.No_ = CLE.[Customer No_]
GROUP BY
 CUS.No_,
 CUS.Name

If you have to calculate this FlowField regularly, it might be better to create a
function in your SQL database that takes the customer number as a parameter
and returns the Sales_LCY value. Then you can call and reuse the function,
fGetCustomerSalesLCY, whenever you need it.

Chapter 10

[427]

Use the following code to create this function:

CREATE FUNCTION [dbo].[fGetCustomerSalesLCY]
(
 -- Add the parameters for the function here
 @CusNo nvarchar(20)
)
RETURNS decimal(10,2)
AS
BEGIN
 -- Declare the return variable here
 DECLARE @ResultVar decimal(10,2)

 -- Add the T-SQL statements to compute the return value here
 SELECT @ResultVar =
 (
 SELECT
 isnull(SUM(CLE.[Sales (LCY)]),0) as Sales_LCY
 FROM [CRONUS International Ltd_$Customer] CUS
 INNER JOIN [CRONUS International Ltd_$Cust_ Ledger Entry]
 CLE
 ON CUS.No_ = CLE.[Customer No_]
 WHERE
 CUS.No_ = @CusNo
)

 -- Return the result of the function
 RETURN @ResultVar

ENDGO

Then you could change the SQL statement to fetch the list of customers with the
Sales LCY included to:

SELECT
 CUS.No_,
 CUS.Name,
 dbo.fGetCustomerSalesLCY(CUS.No_) as Sales_LCY
FROM [CRONUS BELGIË NV$Customer] CUS

Reporting Services

[428]

Now, when you need to calculate this field, in any report, you can simply call
this function.

An example of this function is available in the object:
fGetCustomerSalesLCY.sql. You might need to change
the table name in your database.

You can also create functions to perform specific calculations, for example, if you
need to look up a dimension for a record, or calculate values over multiple tables.

What this means in practice is that you are rebuilding some of the
Dynamics NAV business logic in SQL Server. Try to keep it simple.
The more business logic you create, the more you need to maintain.
As we will see later, you can use OData web services as data sources
in Reporting Services. This is a better alternative for more complex
business logic.

Option fields are also very handy option fields. Option fields in Dynamics NAV, for
example, the document type in the sales header table, are stored as numerical values
in SQL Server. So, you need to convert the numerical value back into a string when
you use them in reports. A solution for this is to create a function.

Another solution, and probably a better one, is to create a table in SQL Server where
you store all the option fields with their option captions. You will have to create this
table yourself, and then a code unit in Dynamics NAV to populate the table.

Using stored procedures
A view in SQL Server is an SQL query that is stored in the database, so you can call
it by name and run it. When you query the view, the query behind it is executed.
So a view is no more than a virtual table in SQL Server. There's no performance
improvement. The advantage is that, if it's a complex query, you can save it as a view
and use the name, instead of having to retype the whole query over and over again.

A stored procedure is like a view but it allows you to use variables and parameters.
You can then script the behavior and how the query is executed, thus making it
very flexible and powerful. Furthermore, when you store a stored procedure on
SQL Server, it's not only compiled, but SQL Server also prepares a Query Execution
Plan (QEP) for it. The STP then runs faster because the QEP is stored with the STP
(stored procedure).

Chapter 10

[429]

The reason I usually implement stored procedures in Reporting Services for
Dynamics NAV is to work with multiple companies. You can make the company a
parameter, where a user can select one or more and then the report will present its
results with the data from multiple companies, or even databases.

Look at the following stored procedure:

CREATE PROCEDURE [dbo].[stpCustomers]
 -- Add the parameters for the stored procedure here
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 DECLARE @Company as NVARCHAR(30)
 DECLARE @SQLQuery as NVARCHAR(max)
 SET @SQLQuery = ''

 DECLARE db_cursor CURSOR FOR
 select replace(Name,'.','_') from Company
 OPEN db_cursor
 FETCH NEXT FROM db_cursor INTO @Company
 WHILE @@FETCH_STATUS = 0
 BEGIN
 SET @SQLQuery = @SQLQuery +
 ' SELECT ' +
 ' CUS.No_, ' +
 ' CUS.Name, ' +
 ' dbo.fGetCustomerSalesLCY(CUS.No_) as Sales_LCY, ' +
 '''' + @Company + ''' as Company' +
 ' FROM [' + @Company + '$Customer] CUS ' +
 ' UNION ALL '

-- PRINT 'xxx'
 FETCH NEXT FROM db_cursor INTO @Company
 END

 CLOSE db_cursor
 DEALLOCATE db_cursor

Reporting Services

[430]

 --' UNION ALL '
 SET @SQLQuery = SUBSTRING (@SQLQuery ,1, len(@SQLQuery) - 09)
 --SET @SQLQuery = @SQLQuery +

 PRINT @SQLQuery
 exec sp_executesql @SQLQuery

END

It takes no parameters, looks in the Company table for all company names in the
database, and then fetches the customers and glues them together.

An example of this stored procedure is available in the object:
stpCustomers.sql

To execute this stored procedure, you could simply write:

exec [stpCustomers]

So, in our report, you could also call this stored procedure instead of the SQL query
we created before, as follows:

Chapter 10

[431]

The advantage of this approach is that, if you need the customers in multiple reports,
all you need to do is call the stored procedure and the SQL query is maintained
in the stored procedure. Furthermore, you can make the company a parameter,
so instead of gluing (union) the results, you can make the user select for which
company they want to see the data.

An example of this report is available in the object:
CustomerList_stp.rdl

Calling a Dynamics NAV OData web
service
As you already know, you can publish page and query objects and OData web
services in Dynamics NAV. Reporting Services reports can also use OData web
services as data sources.

In Chapter 9, Power BI, there are examples of how you can
publish a query or page as a web service.

I will create the same report again, a list of customers, but this time based on an
OData web service. I will first create a new Page 90000 Customers, in which I will
add the field from the Customer table that I want to use in my report. Then, I will
publish this page as a web service:

Reporting Services

[432]

Then, I will create a new report in SSDT. I will use a new data source in this report.
I'm not going to fetch the data directly from SQL Server, but from the OData web
service. In order to do that, the data source needs to be of the type XML:

Chapter 10

[433]

The connection string is the URL of the OData web service from Dynamics NAV. I
will then create a dataset named Customers, as follows:

In summary, as a Query to an OData web service you can always use:

<Query>
 <ElementPath IgnoreNamespaces="true">
 feed{}/entry{}/content{}/properties
 </ElementPath>
</Query>

Reporting Services

[434]

There are other ways to query a web service, or to apply filters
and sorting. More information about querying XML data sources
is available here: https://technet.microsoft.com/en-us/
library/aa964129(v=sql.90).aspx

When you click the Refresh Fields button, the fields of the dataset are refreshed and
appear on the left.

Now, all you need to do is build the layout of the report, and run it:

As you can see, this is very simple and straightforward. The advantage is that the
business logic is inside Dynamics NAV. In our report, we only call the web service,
and we don't store complex queries. Instead of a Page object, you can use a Query
object in Dynamics NAV, so you can combine and aggregate information from
multiple tables.

An example of this report is available in the object:
CustomerList_odata.rdl

The next step
So far, we have created reports that query the database directly. This is not always
recommended, or possible. The most important reason for this is performance. If
you have a lot of users running reports, it creates a significant load on the database
server, which might even result in loss of performance for the users working in
Dynamics NAV. There are several techniques to avoid this.

https://technet.microsoft.com/en-us/library/aa964129(v=sql.90).aspx
https://technet.microsoft.com/en-us/library/aa964129(v=sql.90).aspx

Chapter 10

[435]

Caching
You can enable report caching mechanisms using the Report Manager application.
When a user runs a report, the information is retrieved from the source database.
This information can then be saved in the Reporting Services database so that the
next time a user runs the same report, the information is retrieved from the cache
instead of the source database. You then determine how long the information
remains in the cache.

When you select a report in the Report Manager, you can examine and manage its
caching properties, as follows:

You then have a copy of the results saved in the report server database when
someone runs the report. The next time the report is executed the data is fetched
from the cache instead of the live database, depending on the expiration options
that you select.

Reporting Services

[436]

You can use are also mechanisms called snapshots. A snapshot is a cached version of
a report that you create behind the scenes with a schedule. For long running reports,
you can generate the snapshots outside of business hours.

Subscribing or scheduling
Once you have reports published and available on the report server, you can run and
manage them via the Report Manager. Report Manager also allows you to subscribe
to a report. You can create a subscription to a report, which means that you can have
the report generated automatically in a format that you want, and with a schedule
that you create or select.

This is only possible if the credentials that the report uses are stored in the report
itself. You can do this as follows:

Chapter 10

[437]

To create a subscription, look at the following example:

You can have the report sent via email or have it created in a shared folder on
the server. Another option is to create a subscription based on information in a
subscription table. The report scheduler fetches the people that want to receive the
report from the database. You then only have to create one subscription in Report
Manager and manage it in the subscription table.

Summary
In this chapter, I gave a brief introduction to the use and of Reporting Services.
One advantage is that it is a web-based reporting solution that does not require
the presence of Dynamics NAV on the local machine. You can harvest and present
information from multiple data sources, databases, companies, and so on. Reporting
services is completely free: no license cost is involved.

Before you spend a big budget on third-party BI or reporting tools, I recommend a
look at what Reporting Services can offer you, out of the box.

In the next chapter, I will present different ways to create charts in the Dynamics
NAV application.

[439]

Charts in Dynamics NAV
In this chapter, I will explain and demonstrate the ways in which you can
implement charts in Dynamics NAV. You can use the generic chart designer
to create your own, simple charts and add them to any list page or role center. Then
there are the business charts that are managed via the C/AL code so you can make
them more complex in the way that you present information and manage how this
information is displayed at runtime. Last but not least, I will demonstrate how you
can create key performance indicators on activity pages in a role center. This is an
ideal way to see how your business is performing, since it is the first page you see
when you run the application.

The generic chart designer
Let's start by having a look at the Chart Part. You can go to the Dynamics NAV
application menu at launch and select the Customize button and Customize This
Page... on the Role Center page.

Charts in Dynamics NAV

[440]

You can add a Chart Part to the Role Center page as follows:

You can select one of the predefined charts from the chart table to display when you
run the page with the Customize button on the chart part, as shown here.

Chapter 11

[441]

To summarize, use the following steps:

1. Click Chart Part on the left.
2. Click Add >>, which adds a blank chart to the Role Center layout in the

middle.
3. Click Customize Part....
4. Select the generic chart from the list.

Then, when you select the OK button and go back to your role center, you will see
the following:

As you can see, the chart is empty. This is because I selected the Customer Sales and
Profit chart, which is based on the My Customer table. So, you need to add customers
to your My Customers page, which will then be displayed in the chart, where you
can see their sales and profit figures.

Charts in Dynamics NAV

[442]

To do this, add customers to My Customers, as follows:

Then refresh the Role Center page and the chart will be updated with the customers
you added to My Customers.

How is this possible? Well, let's have a look at the chart itself, and backwards
engineer it to see its building blocks.

Go to the Generic Charts page, and the applications search box:

Chapter 11

[443]

When you select the chart Q9150-01 and then Edit, the following window opens:

Give the chart an ID and a Name in the General tab. The IDs that Microsoft has
chosen for the default charts start with an Q or a T and then a number. This is
because, when you create a chart, you can use either a Query or a Table as the data
source. The number references the number of the Query or Table so that you can
see the data source in the name. The advantage of using a Query is, of course, that
you can combine and aggregate values from different tables, so that you can display
them in the chart.

Charts in Dynamics NAV

[444]

Select the Source Type (Table or Query) in the Data Source tab. Here you
can also define a filter. In this example, when you open Filters, you will see the
following filter:

As you can see, this is a dynamic filter, passed to the Date_Filter field, used in the
FlowFields calculation displayed in the chart. This is a very clever way to filter
a chart. Instead of fetching all of the values from the underlying query, only the
relevant information from the last year is fetched.

You have to select at least one measure in the Measures tab. A measure is a
numeric field from your data source, displayed in the chart. You can then apply an
aggregation to the measure and select a graph type.

You then select the fields to use on the X and Z axis in the Dimensions tab. In this
example, Customer No. is used, so the chart displays the sum of Sales and Profit
by customer. If you only select one measure, you can also select a field for the Z axis
and create a three dimensional chart. But this is not possible when you have more
than one measure.

You can type in a description to explain what the chart is all about in the Chart
Description tab. You can translate this description into other languages using the
assist edit button next to it.

At the bottom, in the Preview Part tab, you can get an idea of the look and feel of
the chart you are creating. This is a preview that is not based on any actual data. It is
merely there to see how the information will be visualized.

There are Export and Import buttons in the ribbon. You can use them to export a
chart definition to an XML file, so that you can import it into another database.

Once you have created a chart with the generic chart designer, it is saved in the
chart table in your database. You can then display it on a page using a Chart Page.
Typically, role center pages are used for this, although you could do it on any page
or page part.

Chapter 11

[445]

When a developer adds a chart part to a page at design time,
a user can add more of them to the page via the Customize
This Page feature at runtime.

Now you know how to use the built-in generic chart designer to create your own
charts in the application, without the need of a developer. You can base your charts
on tables or queries.

I recommend query objects for charts because they offer better
performance, and because they can combine information from
multiple tables. Furthermore, a query has a TOPNUMBEROFROWS
property, so you can use them to create TOPX charts.

Text management
There are some shortcuts that you can use when you want to apply a filter in
Dynamics NAV. For example, the %MYCUSTOMERS string is replaced with the list
id IDs of the customers you add to the My Customers table, as you can see in the
following example:

Charts in Dynamics NAV

[446]

In this example, I used the customer list page and applied a filter, but you can
also use this as a filter in a chart. This is also possible for other entities. There's a
Codeunit 41 TextManagement, in which there's a function named MakeTextFilter.
The following snippet shows the code of this function:

Position := 1;
Length := STRLEN(TextFilterText);
ReadCharacter(' ',TextFilterText,Position,Length);
IF FindText(PartOfText,TextFilterText,Position,Length) THEN
 CASE PartOfText OF
 COPYSTR('ME',1,STRLEN(PartOfText)),COPYSTR(MeText,1,
 STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 TextFilterText := USERID;
 END;
 COPYSTR('USER',1,STRLEN(PartOfText)),COPYSTR(UserText,1,
 STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 TextFilterText := USERID;
 END;
 COPYSTR('COMPANY',1,STRLEN(PartOfText)),COPYSTR(CompanyText,1,
 STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 TextFilterText := COMPANYNAME;
 END;
 COPYSTR('MYCUSTOMERS',1,STRLEN(PartOfText)),
 COPYSTR(MyCustomersText,1,STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 GetMyFilterText(TextFilterText,DATABASE::"My Customer");
 END;
 COPYSTR('MYITEMS',1,STRLEN(PartOfText)),
 COPYSTR(MyItemsText,1,STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 GetMyFilterText(TextFilterText,DATABASE::"My Item");
 END;
 COPYSTR('MYVENDORS',1,STRLEN(PartOfText)),
 COPYSTR(MyVendorsText,1,STRLEN(PartOfText)):
 BEGIN
 Position := Position + STRLEN(PartOfText);
 GetMyFilterText(TextFilterText,DATABASE::"My Vendor");
 END;
 ELSE
 EXIT(Position);

Chapter 11

[447]

 END;
EXIT(0);

As you can see, it contains code for how filters like %mycustomers, %myitems,
%myvendors, %company, %user, and %me are converted into filters with information
from the corresponding tables. You can also customize this function to include other
types of filter shortcuts, for example, %ImportantCustomers, and so on. This is a
very powerful feature, often overlooked.

Show any list as a chart
When you are on a list page in the application, such as the Customer List or the Item
List, there's a button in the ribbon, Show as Chart, that looks like this:

When you select it, a blank canvas is shown, in which you can design a quick chart:

Charts in Dynamics NAV

[448]

You then need to select a measure, on the left top, and a dimension, at the right
bottom, for the chart to display. Optionally, you can also select a second dimension,
at the left bottom. Such a chart would look like this:

The measure and dimension fields are fields from the source table of the list page
you are on. You can use your mouse to zoom in and out or to rotate the chart.
Right-click on it and you get the following menu:

Chapter 11

[449]

This allows you to print or save the chart as an image. When you select the
Customize... option, the chart is opened in the generic chart designer, where you can
customize it further, to apply filters or select another visualization. This is a quick
way to create a simple chart. Once you have created a chart in this way, the system
will remember it and every time you select the Show as Chart option again, it will
show the chart that you have created.

Business charts
Charts are built directly on top of data from either a table or a query object.
If you want to create dynamic business charts with flexible options and different
visualizations based on business logic, then you can use what is called the
business chart.

Another advantage of the business chart is that is works with both a
web and tablet client. It uses a JavaScript control in the web client, and
a .Net control to render in the Windows client. There are only minor
differences in how it is displayed in the different clients, such as the line
and chart heights and the way that the legend is presented.

An example of a business chart is shown in the following diagram:

Charts in Dynamics NAV

[450]

You can see these charts if you log on to Dynamics NAV with the profile of
the President.

To do this, follow these steps:

1. Go to User Personalisation, CRONUS International Ltd./
Departments/Administration/Application Setup/RoleTailored
Client/User Personalization, and click New.

2. Select your user ID In the User Personalization Card, and enter
PRESIDENT - SMALL BUSINESS in the Profile ID field.

3. Restart the application.

More information about Roles and Profiles is available here:
https://msdn.microsoft.com/en-us/library/
hh174139(v=nav.80).aspx

As you can see, these charts have better visualizations and more options to
customize on the fly.

When you log in as the president for the first time, the Cash Flow
chart and the Sales Performance chart are both blank. You have to
select measures to show something in there.

Let me guide you through the process of how to get started in creating your own
business chart.

Creating a business chart
Business charts are based upon a .NET add-on. This add-on is added to a page,
in the content area. The page itself could be a role center or a factbox page. The
data is shown from a table: Business Chart Buffer (485). This is a buffer or
temporary table that you need to populate with data, which is then displayed in
the chart add-on.

https://msdn.microsoft.com/en-us/library/hh174139(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh174139(v=nav.80).aspx

Chapter 11

[451]

In summary, the following diagram shows you an overview of the objects:

The explanation of the preceding diagram is as follows:

• Card:
 ° Implements events from the add-on
 ° Implements actions

• Business Chart Add-in:
 ° Events:

AddInReady: This indicates if the page is done rendering
DataPointClicked: This is a single-click on an element on the chart
DataPointDoubleClcked: This is a double-click on an element
of the chart

 ° Functions:

Update: This is used to update or refresh the chart

Charts in Dynamics NAV

[452]

• Add-in Buffer Table
 ° This is responsible for handling the data from the add-in

This handles captions and multilanguage support
This stores chart values and conversion from .NET to C/AL
This supports drilldown to handle click events

• Contains helper methods and other functionality regarding data

To get started with your first business chart, you need to create three objects:

• A page
• A codeunit
• A query

The query object is optional and I'm going to use it to fetch the
data in a more optimized fashion.

I will start by creating the following query object:

Instead of creating the query, you can import the object:
Query Business Chart.

In this query, I'm fetching the items and location codes from the Item Ledger Entry
table and the sum of the remaining quantity. The query then shows what's in stock
for every item, by location.

Chapter 11

[453]

Now I will create a codeunit that will run the query and store the results in the
Business Chart Buffer table.

You can import the object: CodeUnit GenerateDataForChart
instead of creating the codeunit.

I will create a GetInventoryByLocation function in the codeunit with the following
parameters and variables:

Write the following code in the GetInventoryByLocation function:

WITH BusinessChartBuffer DO
BEGIN
 Initialize;
 AddMeasure('Inventory',1,"Data Type"::Decimal,"Chart
 Type"::Column);
 SetXAxis('Location',"Data Type"::String);
 BusinessChartQuery.SETRANGE(Item_No,ItemNo);

 CLEAR(counter);
 BusinessChartQuery.OPEN;
 WHILE BusinessChartQuery.READ DO
 BEGIN
 counter += 1;

Charts in Dynamics NAV

[454]

 AddColumn(BusinessChartQuery.Location_Code);
 SetValue('Inventory',counter -
 1,BusinessChartQuery.Sum_Remaining_Quantity);
 END;
 BusinessChartQuery.CLOSE;
END;

The Initialize function initializes the .NET add-on. You then define the measure
that needs to be displayed on the Y axis (name, data type and chart type).

The available chart types are:

• Point
• Bubble
• Line
• Step Line
• Column
• Stacked Column
• Stacked Column 100
• Area
• Stacked Area
• Stacked Area 100
• Pie
• Doughnut
• Range
• Radar
• Funnel

The SetXAxis function defines the measure for the X axis (name and data type).

You then apply the item number from the codeunit parameter as a filter for the query
object, run the query, and loop over the results. The location code is used for the X
axis values and the SumOfRemainingQuantity is used for the Y axis values.

Chapter 11

[455]

Be sure that the name you provide in the SetValue function matches
what you defined as the name in the AddMeasure function. The name
is required because the chart add-on allows you to use and display
multiple measures.
More information about these objects is available at https://msdn.
microsoft.com/en-us/library/hh167009(v=nav.80).
aspx and https://msdn.microsoft.com/en-us/library/
hh169415(v=nav.80).aspx.

Now that you have created the query and codeunit, it's time to create the page
object that will display the chart.

You can import the object: Page Business Chart, instead of
creating the page.

Create the new page as a card part and then add a field to the content area container.
Next, go to ControlAddin in the properties of the field and select the business chart
control add-on from the list, as follows:

https://msdn.microsoft.com/en-us/library/hh167009(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh167009(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh167009(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh169415(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/hh169415(v=nav.80).aspx

Charts in Dynamics NAV

[456]

Then, when you select F9 to see the triggers, you will see that your field has three
new triggers, inherited from the business chart .NET add-on.

Create a new function in the page, named UpdateChart, with the following
variables:

Then, call this function in the OnAfterGetRecord() trigger of the page. You need
to pass the Item Number to the buffer table in the UpdateChart function. Then, the
Update function from the buffer table will update your chart.

When you add the field in the page, you need to give the field a
name so that you can use its name with the CurrPage variable to
pass it to the Update function.

Chapter 11

[457]

Our business chart page is now ready and we will now add it as a fact box in the
item list page:

When you save and run the item list, the business chart you have just created is
shown as a fact box and will be updated when you select an item in the list:

An example of the objects required for this business chart is
available in the object: Business Chart

Charts in Dynamics NAV

[458]

All you need to do to extend this chart with extra columns is to add the columns in
the query and code unit objects, as shown in the following example:

Chapter 11

[459]

Then, when you update the chart (F5), it shows the following results:

Drill down your business chart
Information is displayed in the business chart that you created as inventory by
location, for a specific item in the list. Now you will add drill-down functionality to
the chart so that when you click on it, you will see the underlying ledger entries.

Charts in Dynamics NAV

[460]

You need to add the following code in the codeunit that you created for the chart
to do this. First, in the GetInventoryByLocation function, add the code that
is marked:

Then, in the corresponding triggers, add the following code:

Chapter 11

[461]

Then, in the page, add the following code:

I have also built in a check to see if the chart is using the
IsChartAddInnReady variable. This makes sure that there are no
errors when the .NET add-on is not yet initialized, depending on the
version of Dynamics NAV and the client that you are using.

Now, when you click on a bar in the chart, a popup window opens to display the
details, or drilldown data:

Charts in Dynamics NAV

[462]

An example of the objects for the business chart including drilldown
functionality is available in the object: Business Chart with DrillDown

Preserving the user personalization
Some charts can be personalized by the user and you can also implement features
in your own charts. You should do this in a generic way so that you can apply the
personalization every time the chart is loaded. You need a table in which to store
these values to accomplish this. You can use the Business Chart User Setup
(487) table for this purpose or you can create a new table with a similar setup.

The following diagram shows the relationship between these objects:

Add-in

Buffer Table

Management

Codeunit

Applies setup record

to buffer table

Setup Page

UI to customize

Setup

Setup Table

User

Personalization

Data

Card Part

Business

Chart Add-

in

Field

Open

by

Action

Global

Variable

Source

Table

Read/Writes

Source

Table

Chapter 11

[463]

The following Dynamics NAV charts use this setup:

• Charts that use a setup record:
 ° Page 772, Inventory Performance
 ° Page 771, Purchase Performance
 ° Page 770, Sales Performance
 ° Page 762, Finance Performance

• Chart that uses the Business Chart User Setup table:
• Page 768, Aged Acc. Receivable Chart

There are other charts in the application, such as the following:

• Page 972, Time Sheet Chart
• Page 869, Cash Flow Chart
• Page 760, Trailing Sales Orders Chart

You should have a look at the code of these charts to find some
more inspiration for creating and reusing business logic when you
create your own charts.

There are also ways to use one chart object to display different charts at once.
An example of this is the Mini Generic Chart (page 1390), which uses the
MiniChartManagment CodeUnit to manage separate management codeunits for
charts and their setup records, and also the Mini Chart Definition (1310) table
which stores the last used visualization.

Implementing cues and colored
indicators
I have explained in this chapter how to create charts to visualize trends and key
performance indicators so that you can see how your business is doing, and one
thing I have to mention is that the page where all of this usually comes together is
the role center page. This is the first page you see when you launch the application,
and is an ideal place to host your charts. But a role center page also contains an
activity pane.

Charts in Dynamics NAV

[464]

Let's look at a typical example:

The preceding example comes from the role center page of the order processor.
When a user with this profile launches Dynamics NAV, they get an instant view
of their work and activities. You can see the amount of quotes, orders, returns and
credit notes and how many orders still need to be shipped or completed. There's
even an indication of the average number of days a typical sales order is delayed.
The pane automatically updates when transactions are completed in the application,
so it always displays an up-to-date view. When you click on one of the cue icons, you
are redirected to the corresponding list page and, on the right, there are shortcuts
that navigate to the pages to create new quotes, orders, returns and credit notes,
including a link to the navigation page, where you can search for posted records,
depending on a posting date, document number or reference.

Let's have a look at how such a page is constructed, so you understand the
underlying building blocks, because you can then customize or create new activity
panes based on your own business.

Chapter 11

[465]

The activity pane is in fact a subpage that is placed in the role center. You can always
find out the source information from a page or a part of a page, when you select it
and then use the About This Page feature or shortcut Ctrl + Alt + F1. In this example,
it's the SO Processor Activities (9060) page:

About This Page
The About This Page feature is very useful when you are reverse
engineering in Dynamics NAV. It gives you information about the
source table and page (or report) you are looking at, and you can also
see the table fields, source expressions, filters, URLs, and so on. The
information can also be exported to XML and Excel, which is good
when you are supporting customers (helpdesk). By asking a user to
send you this information, you know exactly which page they are
talking about, and you can provide accurate support.

If you activate the About This Page feature in the role center, it will show Order
Processor Role Center (9006) as the source. It will only show the source of the
activity in this role center page when you select the activities on the page and then
activate the About This Page feature. The activities page is a subpage in the role
center page.

Let's have a look at the SO Processor Activities (9060) page.

Charts in Dynamics NAV

[466]

A typical activities page
The design of the SO Processor Activities (9060) page is as follows:

The page contains several fields that are placed in special groups named CueGroup.
The fields display numerical data at runtime and they are visualized as cue icons
because they are in these special CueGroup containers.

Chapter 11

[467]

The exact image that is used for the cue is determined by the image property, which
can be one of the following:

You can see some code in the OnOpenPage trigger. This code initializes the source
table, which, in this case, is the Sales Cue table. It ensures there's a record to display
and flow filters are set. A function is called in the OnAfterGetRecord trigger:
CalculateCueFieldValues, which contains the following code:

IF FIELDACTIVE("Average Days Delayed") THEN
 "Average Days Delayed" := CalculateAverageDaysDelayed;

IF FIELDACTIVE("Ready to Ship") THEN
 "Ready to Ship" := CountOrders(FIELDNO("Ready to Ship"));

IF FIELDACTIVE("Partially Shipped") THEN
 "Partially Shipped" := CountOrders(FIELDNO("Partially Shipped"));

IF FIELDACTIVE(Delayed) THEN
 Delayed := CountOrders(FIELDNO(Delayed));

Charts in Dynamics NAV

[468]

This code ensures that fields displayed as cue icons are calculated using functions
from the underlying source table. Not all of the fields are calculated in this way,
some of them come directly from the table, and they are simply FlowFields. When
you create an activity page, the fields you use as cue icons need to be numerical
(decimal or integer) and they can be normal fields or FlowFields. You use functions
to calculate the value of normal fields, while you use FlowFilters to filter and
calculate the FlowFields at runtime. Let's have a look at the underlying Table 9053
Sales Cue.

A typical cue table
The following screenshot shows the design of a cue table, in this example, it's Table
9053 Sales Cue:

Chapter 11

[469]

The table has a primary key, with the name Primary Key, and contains several
FlowFields and FlowFilters. You can see in the Globals that the table also contains
several functions, used to calculate some of the fields at runtime or to set the
FlowFilters for the FlowFields. Most FlowFields use a count method, as in the Sales
Orders – Open field, which has the following CalcFormula:

Count("Sales Header" WHERE (Document
 Type=FILTER(Order),Status=FILTER(Open),Responsibility
 Center=FIELD(Responsibility Center Filter)))

This field simply counts the number of records in the Sales Header table, where the
type is Order and Status is Open. The Responsibility Center field is a FlowFilter.

The Average Days Delayed field is a normal decimal field. Its value is calculated at
runtime, in the page, via the function CountAverageDaysDelayed.

This type of table, a Cue table, is an example of the implementation of
the singleton pattern. More information about this and other patterns
is available here: https://community.dynamics.com/nav/w/
designpatterns/151.singleton-table

Colored indicators
Now that you know how the page and underlying source table are designed, the
next question is, where do the colors for the different cue icons come from?

The answer is twofold. Every field in the cue groups, or cue field, has a Style
property and a StyleExpr property. The styles determine the different colors. You
can set these properties in the page and give them a static value, in the properties
window. Or you can set the values of these properties via the C/AL code. Clearly,
this method is not used in this example, but if you would like to know how to
implement it, have a look at https://msdn.microsoft.com/en-us/library/
dn789598(v=nav.80).aspx.

Dynamics NAV 2013 and 2009 used the Style and StyleExpr
properties, and a variable, to dynamically implement colors or
styles on fields. This is implemented in an even more flexible way in
Dynamics NAV 2015.

https://community.dynamics.com/nav/w/designpatterns/151.singleton-table
https://community.dynamics.com/nav/w/designpatterns/151.singleton-table
https://msdn.microsoft.com/en-us/library/dn789598(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/dn789598(v=nav.80).aspx

Charts in Dynamics NAV

[470]

If you go back to the page SO Processor Activities (9060) and open the page actions,
you will see the following:

This shows that you can use this action to open the Cue Setup page and, at runtime,
determine, as a user, which colors should be used for the cue icons:

Chapter 11

[471]

This page uses the table Cue Setup (9701) and the codeunit Cue Setup (9701)
to store and manage the cue icons styles at runtime. At runtime, when you run an
activity page, the application uses Codeunit 1 Application Management in which
there's a GetCueStyle function. This function determines which style should be used
for every cue icon at runtime, as follows:

A user can determine, via the cue setup table, when which style (or color) should
be used. So, when you create your own activity page with cue icons and follow the
same pattern, the same is achieved.

Charts in Dynamics NAV

[472]

Cue style objects in Dynamics NAV
The following table summarizes the objects involved in determining the style, color,
and indicator, of a cue icon at runtime:

Object Description
Codeunit 9701, Cue Setup This codeunit is called from the GetCueStyle trigger in

codeunit 1 Application Management to determine and set
the color of the cue icon.

Page 9701, Cue Setup
Administration

You can use this page to set up indicators on the cues that
are available in the application. It can be per user or per
company in the database.

Page 9702, Cue Setup End
User

This page is used by the end user to personalize the
indicators that appear on a role center page.

Table 9701, Cue Setup This table stores the customization settings for the
individual cues.

Summary
In this chapter, I have explained and demonstrated the different types of charts
that you can create in Dynamics NAV. The charts can be created by a user using
the generic chart designer, or by a developer using the chart .NET add-on.
Furthermore, I introduced how a typical activity pane is constructed, which you
usually find on a role center page, and how you can set it up dynamically to
determine the colors and indicators to be used at runtime. If you put all of this
knowledge together, you will have all the building blocks required to create a
dashboard role center, where you can visualize key performance indicators and
different types of charts, giving a user an ideal starting page on which they will
have a clear overview of the state of their business.

We have reached the end of this final chapter and I hope it was interesting and that
you learned a lot. If you are interested, you can go to the following websites where
you will find more information and examples so that you can apply the knowledge
gained from this book to any project.

• My personal blog: http://thinkaboutit.be/
• The Dynamics NAV MSDN page: https://msdn.microsoft.com/en-us/

library/dd338686(v=nav.80).aspx

• The Dynamics NAV team blog: http://blogs.msdn.com/b/nav/
• The Dynamics NAV channel on YouTube: https://www.youtube.com/play

list?list=PL5B63EF419A3B59C8

• Plataan: http://www.Plataan.tv

http://thinkaboutit.be/
https://msdn.microsoft.com/en-us/library/dd338686(v=nav.80).aspx
https://msdn.microsoft.com/en-us/library/dd338686(v=nav.80).aspx
http://blogs.msdn.com/b/nav/
https://www.youtube.com/playlist?list=PL5B63EF419A3B59C8
https://www.youtube.com/playlist?list=PL5B63EF419A3B59C8
http://www.Plataan.tv

[473]

Index
A
About This Page feature 465
array 240

B
barcodes

printing 253-256
Binary Large Object (BLOB) 274
BLOB field usage

optimizing 274-276
bookmark

used, for creating links 248-250
buffer table

used, for creating dataset 301
using 91

built-in layout 14
business chart

about 449, 450
advantages 449
creating 450-459
defining 451, 452
information, displaying 459-462
types 454
user personalization, preserving 462, 463

C
caching 435
captions and labels

dataset, flattening 22-27
IncludeCaption, versus

FIELDCAPTION 21
including 20, 21

charts
optimizing 169

code unit
using 91

collections
about 106, 107
Datasets 107
Fields 107
Globals 106
Parameters 107
ReportItems 107
User 106
Variables 107

colored indicators
about 469-471
setting up, URL 469

Common Language Specification (CLS)
about 18
URL 18

complex expression 104, 105
conditional formatting

used, in report 145-149
using 125

cues and colored indicators
activities page 466-468
cue table 468, 469
implementing 463-465

cue style objects, in Dynamics NAV 472
custom functions

creating 112-116
custom layout 14
Custom Numeric Format Strings

URL 84

[474]

D
dashboard

references 375, 383
data analysis

with data bars 149-156
with indicators 149-156

data model
address formatting 184-187
building 14-16
captions and labels, including 20, 21
dataset, building 16
defining 178-181
InitializeRequest 203
logging 201, 202
logos, including 188-191
multilanguage, implementing 181-184
No. of Copies option 191-196
references 375
report dataset designer, defining 16
report triggers 28
totaling and VAT 197-201

data regions 50
dataset

building 16
building, alternatives 294
captions and labels 270-272
columns 17-19
correct filters, applying 284-286
data items 17-19
defining 269, 270
number formatting 281-284
query object, using for 301-307
recommendations, of Dynamics NAV 287
report totals 279, 280
techniques 270
temporary table, using 294-301
unnecessary rows, avoiding 278
unused columns, removing 272-274

data visualization 139
date format codes

URL 121
design guidelines

reporting 43
document

defining 177, 178

document reports 2
Dynamics NAV charts

setup, using 463
Dynamics NAV OData web service

calling 431-434
Dynamics NAV Team blog

URL 286
Dynamics NAV versions

URL 287
Dynamics NAV web services

about 351-353
URL 353

E
entity relationship (ER) model 11
ESRI shape file

selecting 174
Excel

Power Pivot, activating 357-359
using 354-356

expression examples
about 117
column header, repeating on

every page 131-134
decision functions 122-126
page breaks, generating in code 126-130
working, with dates 117-120
working, with strings 120-122

expression language
defining 104
rules 104

expression placeholders
symbols, using 106

expressions
expression language 104
using, for properties 99-103

F
FIELDCAPTION function 184
filtering 56
filters

implementing 56-62
properties 56
reference link 247
used, for creating links 244-247

[475]

fixed header problem 265-268
FLOOR function 238

G
generic chart designer

about 439-445
list, displaying as chart 447-449
text management 445-447

Get function
implementing 212-217

GETURL() function
used, for creating links 250-252

global variable and functions
declaring 211, 212

green-bar effect 124
green-bar-matrix example

defining 135-137
grouping

about 66
adjacent group, adding to Tablix 74-82
expand/collapse, implementing 72-74
implementing 66
parent-child group, adding to Tablix 66-71

H
headers and footers

GetData, defining 210, 211
SetData, defining 210, 211
working with 205-210

hotfixes
implementing 293

HTML tags 89

I
information, visualizing

charts, using 164-169
defining 159
gauges, using 160-163
maps, using 170-173

internal bookmarks
used, for creating links 252, 253

item dashboard report
creating 93-96

J
Jet Reports website

URL 336

L
layout

about 203
aggregate functions 292
building 42
complex grouping 292
conditional visibility, avoiding on

big dataset 288
creating 31
creating, in Report Builder 31
creating, in Visual Studio 37-40
dataset, filtering 204, 205
defining 287
expressions, in page header or

footer 291, 292
headers and footers, working

with 205-210
managing, in code 344-348
optimization, for rendering format 292
page x of y, implementing 219-221
print layout, versus print preview 287
report design guidelines 293
testing 42
visualizing information, best

practices 289, 290
Visual Studio, versus Report Builder 31

license file 295
links

creating 242, 243
creating, bookmark used 248-250
creating, filter used 244-247
creating, GETURL() function used 250-252
creating, internal bookmarks used 252, 253

List
versus Matrix 53-55
versus Table 53-55

[476]

M
Matrix

versus List 53-56
versus Table 53-56

Microsoft report and user interface
design guidelines

URL 293
mini-document 217-219

N
Notepad

URL 274
Notepad++

URL 274

O
objects

defining 472
URL 455

OData web services
references 387

P
pagination and layout

testing, in different rendering extensions 43
performance recommendations

about 269
dataset, creating 269, 270
layout 287

Power BI and Q&A
references 397

PowerBI.com
about 391-397
URL 392

Power BI Designer
about 383-391
URL 383

Power Map 376-382
Power Pivot

activating, in Excel 357-359
data, importing into 360-365
data model, building 359
defining 357
relations, creating 366-368

Power Pivot Excel data model
URL 368

Power Query 383
Power View 369-375
print support

URL 9
ProcessingOnly report

defining 30

Q
Query Execution Plan (QEP) 428
Query object

URL 361

R
recipes

used, for implementing top x
filtering 139-145

report
about 2-5
creating 434
creating, in SSRS 404-415
report viewer 7-9
request page 6, 7
scheduling 348-350
testing, in different clients 43

Report Builder
features 32, 33
layout, creating 31
wizards, for prototyping 33-37

report creation workflow 45, 46
report description 45
report design guidelines

URL 44
report development phases

about 9
data model phase 9-11
layout phase 11
testing phase 12

report development tools
about 12
data model, developing 13
report layout, creating 13

report execution flow
about 343
Word report execution flow 344

[477]

Reporting Services
about 399, 400
URL 401

reporting user
using 406

report items
CanGrow property 92, 93
CanShrink property 92, 93
defining 49, 50, 423
formatting 82-84
placeholders, using 85-91

report layouts
Custom Layouts button, selecting 339, 340
Custom RDLC layout, editing 341, 342
managing 338

report logging 263-265
Report Manager

about 400
URL 403, 413

report pagination 223-225
report server

configuring 400-403
installing 400-403

Report Server
URL 413

Report Server Project Template
URL 415

report setup table
using 262, 263

report templates 256-261
Report Totals Buffer 217
report triggers

about 28
report, running 28
sequence 29, 30

request page 44
reusability

datasets 419-423
functions, creating 426-428
implementing 419
shared data sources 419-423
shared report parts 423-426
stored procedures, using 428-430

reusable custom functions 117
Roles and Profiles

URL 450

rollup updates
implementing 293

RowNumber function 238
run and run modal 350

S
scheduling 436, 437
scope

defining 108-112
Section Designer 239
Set function

implementing 212-217
simple expression 104, 105
snapshots 436
sorting

about 56
implementing 62, 63
interactive sorting 63-66

Sparklines
used, for visualizing trends 156-159

SQL Server Evaluation version
URL 401

SQL statement
FROM 302
GROUP BY 302
HAVING 302
JOIN Type 302
ON 302
ORDER BY 302
SELECT 302
TOP 302
WHERE 302

SSDT-BI
URL 404

SSRS
report, creating 404-415
report project, publishing 417-419
SQL Server Data Tools, using 415, 416

standard reports
URL 2

static and dynamic rows
URL 66

static report items
defining 50

subscribing 436, 437

[478]

T
Table

versus List 53-56
versus Matrix 53-56

table header
repeating 326, 327

Tablix
about 52
defining 50
Document Outline window, opening 51, 52
name, changing 52, 53

TED
URL 369

temporary table
about 295
disadvantage 295

textbox format property
URL 85

tips and tricks, report layouts
barcodes, printing 253-256
fixed header problem 265-268
fixed number of rows 235-239
footer or header, displaying on

last page 226-229
information, placing in bottom of

page 229-235
links, creating 242, 243
report logging 263-265
report pagination 223-225
report setup table, using 262, 263
report templates 256-261
transfooter 239
transheader 239-241

top x filtering
implementing, recipes used 139-145

transfooter 239-241
transheader 239-241

U
unused columns

variables and setup information 277, 278
User Access Control (UAC) 415

V
version, of Visual Studio

URL 31
Visual Studio

document outline 41, 42
features 40
layout, creating 37-40
report formatting 41, 42
toolbars 41, 42

W
Waldo

URL 294
web service

about 351
types 351
URL 351

Windows Azure Marketplace
URL 362

Word report
dataset, optimizing for 335-337

Word report execution flow
about 344
at design time 344
at runtime 344

Word report layout
advantages 311
creating 311-321
defining 309-311
formatting 322-326
limitations 311
Word templates, using 327-335

X
XML data sources, querying

URL 434

Y
Year To Date (YTD) 118

Thank you for buying
Microsoft Dynamics NAV 2015

Professional Reporting

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Microsoft Dynamics NAV 2013
Application Design
ISBN: 978-1-78217-036-5 Paperback: 504 pages

Customize and extend your vertical applications with
Microsoft Dynamics NAV 2013

1. Set up your application for a number of vertical
industries and scenarios.

2. Get acquainted with Dynamics NAV's data
model and transaction schema with the help
of highly efficient design patterns.

3. Consists of two completely designed and
explained vertical solutions, including
application objects.

Microsoft Dynamics AX 2012
R2 Services
ISBN: 978-1-78217-672-5 Paperback: 264 pages

Harness the power of Microsoft Dynamics AX 2012
R2 to create and use your own services effectively

1. Develop your Java applications using JDBC
and Oracle JDeveloper.

2. Explore the new features of JDBC 4.0.

3. Use JDBC and the data tools in
Oracle JDeveloper.

Please check www.PacktPub.com for information on our titles

Programming Microsoft
Dynamics® NAV 2013
ISBN: 978-1-84968-648-8 Paperback: 360 pages

A comprehensive guide to NAV 2013 development
and design

1. A comprehensive reference for development in
Microsoft Dynamics NAV 2013, with C/SIDE
and C/AL.

2. Brimming with detailed documentation
that is additionally supplemented by
fantastic examples.

3. The perfect companion for experienced
programmers, managers and consultants.

Microsoft Dynamics NAV 7
Programming Cookbook
ISBN: 978-1-84968-910-6 Paperback: 312 pages

Learn to customize, integrate and administer NAV 7
using practical, hands-on recipes

1. Integrate NAV with external applications,
using the C/AL or SQL server.

2. Develop .NET code to extend NAV
programming possibilities.

3. Administer the Microsoft NAV 7 server
and database.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: How Do I Start to Create a Report?
	What is a report?
	The request page
	The report viewer

	Report development phases
	The data model phase
	The layout phase
	The testing phase

	Report development tools
	What do I use to develop the data model?
	How do I create the report layout?
	Built-in and custom layouts

	Building the data model
	Understanding the report dataset designer
	Building the dataset
	Data items and columns – fields, variables, and expressions

	Including captions and labels
	IncludeCaption versus FIELDCAPTION
	How is the dataset flattened?

	Report triggers
	What happens when a report runs?
	The report trigger sequence
	What is a ProcessingOnly report?

	Creating the layout
	Visual Studio versus Report Builder
	Creating a simple layout in Report Builder
	Report Builder features
	Wizards for prototyping

	Creating a simple layout in Visual Studio
	Visual Studio features
	Report formatting, toolbars, and document outline

	Building and testing the layout
	Testing pagination and layout in different rendering extensions
	Testing the report in different clients – Windows, web, and tablet

	Reporting design guidelines

	The request page
	The report description
	The report creation workflow
	Summary

	Chapter 2: Getting Started with the Tablix
	Report items
	Everything is a Tablix
	Document Outline
	Changing the name of a Tablix

	List versus Table versus Matrix
	Filtering and sorting
	How can I implement filters?
	How can I implement sorting?
	Interactive sorting

	Grouping
	How can I implement grouping?
	Adding a parent-child group to a Tablix
	How do I implement expand/collapse?
	Adding an adjacent group to a Tablix

	Formatting report items
	Using placeholders
	Important properties – CanGrow and CanShrink

	Example – create an item dashboard report
	Summary

	Chapter 3: Expressions
	Using expressions for properties
	The expression language

	Simple and complex expressions
	Symbols used in expression placeholders
	Collections
	Understanding scope of an expression

	Creating custom functions
	Typical expression examples
	Working with dates
	Working with strings
	Decision functions
	Generating page breaks in code
	Repeating a column header on every page

	Example – the green-bar-matrix
	Summary

	Chapter 4: Data Visualization Techniques
	An introduction to data visualization
	Recipes to implement top x filtering
	Conditional formatting in a report
	Analyzing your data with data bars and indicators
	Using Sparklines to visualize trends
	Learning how to visualize information with gauges, maps, and charts
	Using gauges
	Using charts
	Using maps

	Summary

	Chapter 5: Document Reports
	What is a document?
	The data model
	Implementing multilanguage
	Address formatting
	Including logos
	The No. of Copies option
	Totaling and VAT
	Logging and No. Printed
	InitializeRequest

	The layout
	Filtering the dataset
	Working with headers and footers
	GetData and SetData explained
	Alternative solutions – the mini-document

	How do I implement page x of y?

	Summary

	Chapter 6: Tips and Tricks
	Report pagination
	Show a footer or header on the last page
	Place in bottom
	A fixed number of rows
	Trans headers and footers
	Creating links
	Using a filter
	Using a bookmark
	Using the GETURL() function
	Using internal bookmarks

	Printing barcodes
	Report templates
	Using a report setup table
	Report logging
	The fixed header problem
	Summary

	Chapter 7: Performance Optimization Techniques
	Performance recommendations
	The dataset
	Captions and labels
	Remove unused columns
	Avoid unnecessary rows
	Report totals
	Number formatting
	Apply the correct filters
	Recommendations according to the version of Dynamics NAV

	The layout
	Print layout versus print preview
	Avoid conditional visibility on a big dataset
	Best practices when visualizing information
	Expressions in the page header or footer
	Complex grouping and aggregate functions
	Optimization for the chosen rendering format
	Report design guidelines

	Implementing hotfixes and rollup updates
	Alternatives for building a faster dataset
	Using a temporary table
	Using a query object for the dataset

	Summary

	Chapter 8: Word Report Layouts
	Introducing the Word report layout
	Creating a Word report layout
	Formatting the Word report layout
	Repeating a table header

	Using Word templates
	Optimizing your dataset for Word reports

	Managing report layouts
	Custom layouts
	Editing a Custom RDLC layout

	The report execution flow
	The Word report execution flow
	At design time
	At runtime

	Managing layouts in code
	Scheduling reports
	Summary

	Chapter 9: Power BI
	Dynamics NAV web services
	Using Excel
	Power Pivot
	Activating Power Pivot in Excel
	Building a Power Pivot data model
	Importing data into Power Pivot
	Create relations in the Power Pivot data model

	Power View
	Power Map
	Power Query
	Power BI Designer
	PowerBI.com
	Summary

	Chapter 10: Reporting Services
	What are Reporting Services?
	Installation and configuration
	Creating a report in SSRS
	Using SQL Server Data Tools
	Publishing a report project

	Implementing reusability
	Shared data sources and datasets
	Shared report parts
	Creating functions
	Using stored procedures

	Calling a Dynamics NAV OData web service
	The next step
	Caching
	Subscribing or scheduling

	Summary

	Chapter 11: Charts in Dynamics NAV
	The generic chart designer
	Text management
	Show any list as a chart

	Business charts
	Creating a business chart
	Drill down your business chart
	Preserving user personalization

	Implementing cues and colored indicators
	A typical activities page
	A typical cue table
	Colored indicators
	Cue style objects in Dynamics NAV

	Summary

	Index

