
[1]

www.allitebooks.com

http://www.allitebooks.org

Microsoft System Center
PowerShell Essentials

Efficiently administer, automate, and manage System
Center environments using Windows PowerShell

Guruprasad HP

Harshul Patel

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft System Center PowerShell Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-714-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Guruprasad HP

Harshul Patel

Reviewers
Lee Boon Cheng

Richard Gibson

Keith Lindsay

Ashley Poole

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Sonali Vernekar

Content Development Editor
Rahul Nair

Technical Editors
Mrunmayee Patil

Manal Pednekar

Copy Editors
Sonia Michelle Cheema

Neha Vyas

Project Coordinator
Suzanne Coutinho

Proofreaders
Safis Editing

Paul Hindle

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Guruprasad HP is a technical practitioner and consultant. His technical areas of
interest include System Center Configuration Manager, System Center Operation
Manager, and automation using PowerShell scripting. He works with Microsoft and
is a Microsoft Certified Technology Specialist in SCCM and SCOM.

He has a lot of experience in creating automation frameworks for various activities in
SCCM, SCOM, and custom reporting by extending the SCCM inventory. He also has
good knowledge of all Microsoft technologies.

Currently, Guruprasad is working with Microsoft as a consultant and is involved in
various projects with different Microsoft technologies.

I would like to thank all my well-wishers who identified my skills
and encouraged and guided me whenever required. I will take this
opportunity to thank my mother for being the backbone of my life.

I would also like to thank my friend Kishora V, who stood with
me morally and without whom I would not have achieved many
things in my life. It's a great pleasure to work with my friend and
the coauthor of this book, Harshul, who always keeps my technical
spirits up with new information.

I would also like to thank each and every person who directly
or indirectly supported me in learning and practicing various
technologies.

www.allitebooks.com

http://www.allitebooks.org

Harshul Patel is a technology enthusiast from India; he is thoroughly
knowledgeable in virtualization and cloud computing techniques. He works for
Microsoft. Harshul holds multiple Microsoft certifications, including Microsoft
Certified Solutions Associate (Windows Server 2012 and Windows 8) and Microsoft
Certified Solutions Expert (private cloud). Additionally, he holds a number of
non-Microsoft certifications, such as Citrix Certified Administrator (XenApp 6.5,
XenDesktop 5.6, and XenServer 6.0) and Citrix Certified Advanced Administrator
(XenApp 6.5). He has also recently achieved an ITIL certification.

Harshul was one of the early Indian adopters of Windows PowerShell. He
frequently lectures on Windows PowerShell in user group gatherings and delivers
training (mostly on PowerShell) across various organizations. He is also a proud
recipient of multiple faculty awards and has received an innovation award from his
employer. He is a core member of the PowerShell Bangalore User Group (http://
powershellgroup.org/bangalore.india) and a member of the New Delhi
PowerShell User Group (http://powershellgroup.org/NewDelhi). He can be
contacted at http://harshulpatel.com/.

Harshul authored a book in 2013 named Instant Windows PowerShell Guide, Packt
Publishing (https://www.packtpub.com/application-development/instant-
windows-powershell-guide-instant).

I would like to thank all those who have encouraged me all the time
and made me feel that I have the potential to do whatever I want.
I am very thankful to my family members and especially to my
friends, for helping me to get things done. Without learning from
these people, there would be no chance that I would be doing what I
do today, and it is because of them and others, whom I may not have
listed here, that I feel compelled to pass my knowledge on to those
willing to learn.

I would especially like to thank Guruprasad HP (the coauthor of
this book) for his flawless support in drafting this book's chapters at
short notice. I would like to thank the Indian PowerShell community,
including MVPs Ravikanth Chaganti, Aman Dhally, and Deepak
Dhami, for their contribution and inspiration.

Finally, many thanks to the Almighty for making this possible.

www.allitebooks.com

http://powershellgroup.org/bangalore.india
http://powershellgroup.org/bangalore.india
http://powershellgroup.org/NewDelhi
http://harshulpatel.com/
https://www.packtpub.com/application-development/instant-windows-powershell-guide-instant
https://www.packtpub.com/application-development/instant-windows-powershell-guide-instant
http://www.allitebooks.org

About the Reviewers

Lee Boon Cheng is a computer engineering graduate from Nanyang Technological
University of Singapore. He is currently working as a SharePoint solution architect in
a commodity trading company in Singapore.

He has worked on and led multiple Microsoft SharePoint 2010/2013 projects for
Singapore clients ranging from schools to corporations to government departments.
He has primarily focused on the SharePoint Content Management System, workflow
and SharePoint installation, and configuration and deployment using PowerShell.

I would like to thank my wife, Kathryn Saw, for always being
supportive of what I do.

Richard Gibson lives in London and has worked as a .NET developer for 8 years.
His work has taken him into the world of DevOps, and PowerShell has become a
necessary skill for the automation of everyday tasks.

He currently works for ASOS.com as a senior developer, spending most of his
PowerShell time automating TeamCity to provide continuous deployment for
the business. Richard blogs on various issues related to .NET and PowerShell
at http://richiban.uk/.

www.allitebooks.com

http://richiban.uk/
http://www.allitebooks.org

Keith Lindsay graduated from Sacred Heart University with honors and spent
nearly a decade as a software engineer. After deciding that he wanted to explore
a new path, he moved into the field of product management for Citrix ShareFile,
where he uses his technical skills to help improve and promote the API and SDKs.
He is a big proponent of PowerShell and has helped his company to develop a
PowerShell SDK for file sharing. You can read more about using PowerShell for
file sharing on his blog at http://blogs.citrix.com/author/keithl1/.

I would like to especially thank Peter Schulz for mentoring me in the
ways of PowerShell.

Ashley Poole is a highly motivated software support analyst with over 6 years
of professional experience in the field of IT. Normally, you can find him exploring
topics such as Microsoft SQL Server, C#, PowerShell, and Dev Ops.

More recently, he can also be found exploring software development technologies
and practices, as he begins his journey into the world of software development.

Ashley can also be found blogging on various IT and software topics on his website,
www.ashleypoole.co.uk, tweeting as @AshleyPooleUK, or sharing open source
projects and scripts for the community at https://github.com/AshleyPoole.

www.allitebooks.com

http://blogs.citrix.com/author/keithl1/
www.ashleypoole.co.uk
https://github.com/AshleyPoole
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Setting up the Environment to Use PowerShell	 1

The purpose of this book	 2
The target audience	 2
Why use PowerShell?	 2
PowerShell version references	 3
Setting up the System Center Configuration Manager environment	 5

Connecting to Windows PowerShell for SCCM	 6
Connecting to Windows PowerShell from the SCCM console	 8

Setting up the System Center Operations Manager environment	 9
Connecting to Windows PowerShell for SCOM	 10

Setting up the System Center Service Manager environment	 11
Connecting to Windows PowerShell for SCSM	 11

Summary	 12
Chapter 2: Administration of Configuration Manager
through PowerShell	 13

Introducing Configuration Manager through PowerShell	 14
Hierarchy details	 15

Site details	 15
Discovery details	 16
Boundary details	 16
Distribution point details	 18
Management point details	 20
Other site role details	 21

Asset and compliance	 21
Collection details	 21
Reading Configuration Manager status messages	 23
Creating new user/device collections	 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Handling Configuration Manager objects	 26
The client settings information	 27
Alert management	 28

Software distribution	 29
Handling packages and applications	 29
Handling programs	 31
Handling deployment types	 32
Handling application or package deployment	 33

Creating an application catalog web service point and application
catalog website point roles	 34

The operating system deployment	 35
An operating system image	 35
Operating system installers	 36

Boot image details	 36
Handling drivers for deployments	 37
Gathering the task sequence	 38

Software update management	 39
Software catalog details	 39

Summary	 40
Chapter 3: Scenario-based Scripting for SCCM Administration	 41

Scenario 1 – adding multiple distribution points to a
distribution point group	 42

Prescripting activities	 42
Assumption	 43

Scenario 2 – creating multiple packages with the .csv/.txt file input	 43
Prescripting activities	 44

Scenario 3 – using PowerShell to get the Configuration
Manager installation directory	 44
Scenario 4 – checking for SCCM services	 45
Scenario 5 – operating a system deployment precheck	 46
Scenario 6 – running a ping test	 48

Prescripting activities	 48
Scenario 7 – getting a list of primary sites in the
Configuration Manager environment	 49
Scenario 8 – getting a list of all site servers in the
Configuration Manager environment	 49
Scenario 9 – getting component status in Configuration Manager	 50
Scenario 10 – installing the SCCM client agent version	 51
Summary	 52

Table of Contents

[iii]

Chapter 4: Administration of Operations Manager
through PowerShell	 53

Monitoring	 53
Knowing a management group	 54
Alert management	 54
Alert resolution	 55

Authoring	 56
Discovery management	 56
Class and instance	 57
Groups	 57

Administration	 58
Management servers	 58
Agent management	 58

Agent installation	 59
SCOM proxy agents	 60

Management pack details	 61
SCOM rules	 63
SCOM monitors	 65
Database grooming	 67
Alert notifications	 67

Summary	 69
Chapter 5: Scenario-based Scripting for SCOM Administration	 71

Resolving all SCOM alerts	 73
Listing and exporting all SCOM monitors	 73

Assumptions	 73
Listing and exporting all SCOM overrides	 73

Assumptions	 74
Listing and exporting gray agents in SCOM	 74
Finding management pack details for a particular alert	 74
Listing past alerts	 75
Backing up unsealed management packs	 76
Counting alerts created by a monitor	 76
Enabling specific SCOM monitors	 76
Listing all updated management packs	 77
Listing and exporting repeating SCOM alerts	 77
Getting SCOM alerts specific to a computer	 78
Listing all unhealthy SCOM agents	 78
Disabling SCOM alerts	 78
Listing all heartbeat failure machines	 79
Listing all management server open alerts	 79
Listing management servers in the maintenance mode	 80
Listing the health status of management servers	 80

Table of Contents

[iv]

Putting an IIS 7 application in the maintenance mode	 81
Summary	 82

Chapter 6: Administration of Service Manager
through PowerShell	 83

SMlets	 85
Incident reporting	 87
Auto closing the resolved incidents and closing the
completed changes	 88
Changing the status of a service request	 90
Summary	 91

Chapter 7: Scenario-based Scripting for SCSM Administration	 93
Adding classes to the SCSM allow list	 94
Exporting management packs	 95
Backing up unsealed management packs	 96
Manual activity and service request check	 96
Tickets status check	 97
Support group and tier queue check for multiple tickets	 98
Updating field information for a number of users	 99
Finding GUID of any SCSM template	 99
Getting queue members for SCSM	 100
Summary	 101

Chapter 8: Best Practices	 103
Integrating SQL commands with PowerShell	 103
SCCM health check activities	 105

Checking the SCCM site server availability	 106
Checking the SCCM and dependent service status	 106
Checking the site server disk space	 108
Site server memory utilization test	 109
Checking for site server CPU utilization	 109
Checking for SCCM component status	 110
Checking the management point's health	 110
SCOM health check report	 110
Checking disk space of operation database and data warehouse	 111
Querying top-event and alert-generating computers	 112
Data grooming settings	 112
Reporting all objects in the maintenance mode	 113
Changing the SCSM subscription property by PowerShell	 113

Data warehouse registration	 113
Summary	 114

Index	 115

[v]

Preface
Microsoft System Center PowerShell Essentials mainly focuses on efficiently
administering, automating, and managing System Center environments using
Windows PowerShell. This book will help you to create powerful automation scripts
for System Center products using PowerShell; PowerShell techniques efficiently
handle SCCM, SCOM, and SCSM with real-time examples and sample codes. It is a
step-by-step guide with practical examples and best practices that teaches you how
to effectively use PowerShell in a System Center environment.

Microsoft PowerShell as a scripting language has been growing strongly over the
last couple of years. It has given administrators and IT professionals much more
control over managing and implementing tasks within System Center environments.
It provides vast support for a wide range of vendor products and provides a
standardized platform for automation and administration. System Center facilitates
the configuration, monitoring, and management of the components of private cloud.
It covers products such as SCCM, SCOM, SCSM, SCVMM, and so on.

Starting with an introduction to PowerShell, this quick reference guide will enable
you to get the most out of the latest Microsoft PowerShell techniques to manage
System Center products. You will get acquainted with the enhancements in the
latest version of System Center automation through real-time examples.

By the end of this book, you will have the confidence to create a variety
of PowerShell scripts and efficiently administer and maintain your System
Center environment with PowerShell.

Preface

[vi]

What this book covers
Chapter 1, Setting up the Environment to Use PowerShell, gives you an idea about the
purpose of this book, and how to set up the environment with required modules for
three products, SCCM, SCOM, and SCSM.

Chapter 2, Administration of Configuration Manager through PowerShell, focuses on
administration activities for Configuration Manager, such as inventory, discovery,
alert management, and so on.

Chapter 3, Scenario-based Scripting for SCCM Administration, gives you an insight into
SCCM real-time applications by giving various scenarios, which are explained with
the help of the required code blocks.

Chapter 4, Administration of Operations Manager through PowerShell, focuses on
administration activities for Operations Manager, such as monitoring, authoring,
basic administration, and so on.

Chapter 5, Scenario-based Scripting for SCOM Administration, gives you an insight into
SCOM real-time applications by providing various scenarios, which are explained
with the help of the required code blocks.

Chapter 6, Administration of Service Manager through PowerShell, focuses on the
administration activities of Service Manager, such as the use of SMlets, incident
reporting, managing service requests, and so on.

Chapter 7, Scenario-based Scripting for SCSM Administration, gives you more insight
into SCSM real-time applications by providing various scenarios, which are
explained with the help of the required code blocks.

Chapter 8, Best Practices, focuses on real-time applications, which can be used to
derive best practices for these three products.

What you need for this book
You need to have these products to take full advantage of this book:

•	 Windows PowerShell (v2.0 or higher)
•	 System Center Configuration Manager (2007 or higher)
•	 System Center Operational Manager (2010 or higher)
•	 System Center Service Manager (2010 or higher)

Preface

[vii]

Who this book is for
If you are a Microsoft System Center administrator who manages System Center
environments and utilizes the console for management, then this book is ideal
for you. This book is also for System Center users who now want to learn how to
manage systems using PowerShell.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For
example, we will refer to the parent installation folder as C:\Program Files(x86)."

A block of code is set as follows:

$UserRoleArgs = @{
 UserRoleType = "ReadOnlyOperator"
 DisplayName = "restricted role"
 Queue = @()
 Group = @()
 Task = @()
 User = "PSLAB\SCSMUser01"
 }
New-SCSMUserRole @UserRoleArgs

Any command-line input or output is written as follows:

PS C :\> cd "C:\Program Files(x86)\Microsoft Configuration Manager\
AdminConsole\bin"

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
Service Manager console, click on Administration."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Setting up the Environment to
Use PowerShell

Welcome! In this introductory chapter, we will throw some light on how the idea for
this book came in to our minds. Here, we will cover topics that can help users perform
various routine tasks in the System Center environment by using legacy consoles.
A decade back, an administrator had to go with legacy Microsoft Management
Consoles, broadly known as MMC, for most of the Microsoft products. Now, with
the changes in the architecture of the Microsoft products and the birth of automation
engines such as Windows PowerShell, automation has become easy; however, many
of us are not fully aware of it. Let's start with setting up the environment.

In this chapter, we will cover:

•	 The purpose of this book
•	 The target audience
•	 Why use PowerShell?
•	 PowerShell version references
•	 Setting up the System Center Configuration Manager environment
•	 Setting up the System Center Operations Manager environment
•	 Setting up the System Center Service Manager environment

www.allitebooks.com

http://www.allitebooks.org

Setting up the Environment to Use PowerShell

[2]

The purpose of this book
This book will help you to achieve the idea of automation, especially in the System
Center environment using Windows PowerShell. The purpose of this book is to
provide you with an insight of various PowerShell techniques that can be applied
to the following three System Center products:

•	 System Center Configuration Manager (SCCM)
•	 System Center Operations Manager (SCOM)
•	 System Center Service Manager (SCSM)

We will also highlight how to use the various PowerShell cmdlets available with
these three product SDKs, along with their key tips and tricks. All guidance and
assistance will be provided to you on a high-level basis. Further exploration and
hands-on experience for these three products is required, so that you gain the most
out of this book.

The target audience
This book is aimed mainly at IT professionals who maintain or perform routine
activities in the System Center environment focusing on SCCM, SCOM, and
SCSM products. This book will be very useful for people who seek out-of-the-box
automation for their System Center infrastructure, using Windows PowerShell. You
will find real time use of Windows PowerShell with these System Center products.

Why use PowerShell?
In the last few years, the scripting world has witnessed a number of changes.
We can hardly recall the time when people used ancient mainframe machines
with green-colored text and dark, black-screen backgrounds. Times have changed
and we are living in a world where technological adoption is quicker than ever.

Nowadays, an ample number of scripting languages exist, which fulfill the needs of
an administrator. One of the questions that arise in one's mind is: why should we go
with Windows PowerShell? There are reasons why we prefer Windows PowerShell
over other scripting languages. To answer the preceding question precisely, we
would rather put a counter question in front of you: give us a valid reason why we
shouldn't go with Windows PowerShell.

Chapter 1

[3]

There are other examples of strong scripting languages, such as VBScript, Ruby,
Python, Perl, and so on, and administrators have adopted them too. VBScript became
popular because of the automation of routine, local administrator tasks, but the code
was a bit complex and hard to understand for novice users. Looking at Windows
PowerShell, we feel that the Microsoft team has worked hard to give us a powerful,
interactive scripting shell with an object-driven approach.

The important and exciting thing about this language is that it's a spitted object-based
output, which can be reused easily. It has pipeline and PSRemoting as its crucial
features, which put this language as the first priority while comparing it with other
scripting languages. Moreover, by following the Common Engineering Criteria
(CEC), Microsoft has decided that all future Microsoft products will come with
extensive Windows PowerShell support. This is also a good reason to learn and choose
Windows PowerShell. Additionally, PowerShell can be leveraged to use the massive
.Net Framework class functionality with most of the Microsoft products. We can also
achieve inventory and reporting by efficiently using the WMI functionality that lies
within PowerShell. A few Microsoft products support extensive functionality when
used with PowerShell; the best example is Exchange Server.

PowerShell version references
In this section, we shall talk about the various versions of Windows PowerShell that
are available and we will share a few notes on the latest versions v3.0 and v4.0, along
with their preinstallation requirements and dependencies.

So far, we have had four stable versions available for Windows PowerShell.
Windows PowerShell v1.0 was an extension of Command Prompt with a limited
number of cmdlets. In the second version, the team introduced pipeline and
PSRemoting concepts, which made Windows PowerShell a popular scripting shell.
Furthermore, with the release of Windows Server 2012 and Windows 8, Windows
PowerShell version 3.0 was a drastic improvement in terms of the number of
cmdlets and modules. They have also introduced the Windows PowerShell Web
Access (PWA), PowerShell Workflows, and Scheduled Jobs concept in this version.
The exciting part is that while we were drafting this book, the Microsoft team was
coming up with its next release of operating systems, named Windows Server 2012
R2 and Windows 8.1. In this release, they have introduced Windows PowerShell v4.0
embedded with extensive functionality, such as Desired State Configuration (DSC)
and so on.

While we are in the process of publishing this book, the
PowerShell team has already come up with the preview release
of Windows PowerShell 5.0 with some extensive functionality.

Setting up the Environment to Use PowerShell

[4]

By default, Windows PowerShell 3.0 comes up with Windows Server 2012 and
Windows 8. There are a number of default modules present in this version. If you are
running an operating system lower than the ones specified in the preceding section,
you need to manually install Windows Management Framework 3.0, which is also
known as WMF 3.0.

If you have installed any previous releases of Windows Management
Framework, you must uninstall them before installing Windows
Management Framework 3.0.

Windows Management Framework 3.0 can be installed only on the following
operating system versions:

•	 Windows 7 SP1
•	 Windows Server 2008 R2 SP1 (WMF 3.0 is also supported if you are running

Windows Server 2008 R2 as the server core)
•	 Windows Server 2008 SP2

Windows PowerShell 2.0 is embedded in the Windows Server 2008 R2 and
Windows 7 operating system. You don't need to separately install it on these
operating systems.

The contentions written here use the latest version of PowerShell (v 4.0). However,
most of the cmdlets are also supported in the legacy version, as well. As a minimum,
you need to have PowerShell 2.0 in your machine; however, it would be best to have
the latest version of PowerShell. You can refer to the TechNet link (https://technet.
microsoft.com/en-us/library/hh847769.aspx) for detailed information on the
prerequisites for different versions of PowerShell.

Windows Management Framework 3.0 is available for all supported versions
of Windows in the following languages: English, Chinese (simplified), Chinese
(traditional), French, German, Italian, Japanese, Korean, Portuguese (Brazil),
Russian, and Spanish.

Windows Management Framework 3.0 contains:

•	 Windows PowerShell 3.0
•	 Windows Remote Management (WinRM) 3.0
•	 Windows Management Instrumentation (WMI)
•	 Management OData IIS Extensions
•	 Server Manager CIM Provider

https://technet.microsoft.com/en-us/library/hh847769.aspx
https://technet.microsoft.com/en-us/library/hh847769.aspx

Chapter 1

[5]

Windows Management Framework 3.0 requires the following software to be
installed prior to the WMF 3.0 installation:

•	 Microsoft .Net Framework 4.0: You can install Microsoft .Net Framework at
http://go.microsoft.com/fwlink/?LinkID=212547

•	 Windows 7 Service Pack 1 on computers running Windows 7: To install
SP1, go to http://www.microsoft.com/en-in/download/details.
aspx?id=5842

•	 Windows Server 2008 R2 Service Pack 1 on computers running Windows
Server 2008 R2: To install SP1, go to http://www.microsoft.com/en-in/
download/details.aspx?id=5842

•	 Windows Server 2008 Service Pack 2 on computers running Windows
Server 2008: To install SP2, go to http://www.microsoft.com/en-in/
download/details.aspx?id=16468

In addition to the preceding software, you will need to meet the following requirements:

•	 To install Windows PowerShell Integrated Scripting Environment (ISE)
for Windows PowerShell 3.0 on computers running Windows Server 2008
R2 with Service Pack 1, use Server Manager to add the optional Windows
PowerShell ISE feature to Windows PowerShell before installing WMF 3.0.

•	 Install the latest updates before installing WMF 3.0.

WMF 4.0 has the same set of OS requirement, but it needs
Microsoft .Net Framework 4.5 as a prerequisite.

Setting up the System Center
Configuration Manager environment
This section talks about how to setup your Windows PowerShell console to start
with the SCCM activities. The traditional method of importing the SCCM module
in Windows PowerShell is supported by SCCM 2007 and its later versions.

The prerequisites to set up SCCM are as follows:

•	 SCCM 2007 or its later version infrastructure
•	 Windows PowerShell 2.0 or its later version

http://go.microsoft.com/fwlink/?LinkID=212547
http://www.microsoft.com/en-in/download/details.aspx?id=5842
http://www.microsoft.com/en-in/download/details.aspx?id=5842
http://www.microsoft.com/en-in/download/details.aspx?id=5842
http://www.microsoft.com/en-in/download/details.aspx?id=5842
http://www.microsoft.com/en-in/download/details.aspx?id=16468
http://www.microsoft.com/en-in/download/details.aspx?id=16468

Setting up the Environment to Use PowerShell

[6]

Connecting to Windows PowerShell for SCCM
The steps for connecting to Windows PowerShell for SCCM are as follows:

1.	 Start the 32-bit Windows PowerShell console from your operating
system box, as the SCCM infrastructure is only supported with the
32-bit PowerShell architecture.

2.	 If you are using Windows Server 2008 R2 or a similar operating system,
then you can click on Start, search for Windows PowerShell (x86), and
launch the console.
If you are using Windows Server 2012 or a similar operating system, then
you can press the Windows key + F, search for Windows PowerShell, and
choose Apps in the console. From the search list, select Windows PowerShell
(x86) and launch the console.

3.	 To import the Configuration Manager PowerShell module, we
need to change the console location to the Configuration Manager
Installation folder. For example, we will refer to the parent installation
folder as C:\Program Files(x86).

4.	 Type the following lines into the PowerShell console:
PS C :\> cd "C:\Program Files(x86)\Microsoft Configuration
Manager\AdminConsole\bin"

This will set the console location to the bin subfolder in the Configuration
Manager Installation folder.

Chapter 1

[7]

5.	 Now, import the ConfigurationManger.psd1 module file by using the
Import-Module cmdlet:
PS C :\> Import-Module .\ConfigurationManager.psd1

To confirm the successful import of the module, you can
type Get-Module CMDLET in the PowerShell console.
Now you will be able to see the new module added to the
ConfigurationManager list.

6.	 After successfully importing the module file, set the console location to your
site location by using your site code. For example, we have taken ABC site
code in the following command statement:
PS C :\> Set-Location ABC:

The Configuration Manager PowerShell module also includes PowerShell
Driver Provider for Configuration Manager Sites. For example, if you have a
central site administration, site ABC and two primary sites PS1 and PS2, then
you can change the connection context like this:
PS C :\> Set-Location ABC:

PS C :\> Set-Location PS1:

PS C :\> Set-Location PS2:

If you don't change the connection context, then you can't
manage the Configuration Manager Site as well.

7.	 Now you are ready to manage your Configuration Manager infrastructure
using Windows PowerShell.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Setting up the Environment to Use PowerShell

[8]

There is also another simple method available to connect SCCM using PowerShell
with the latest releases of SCCM 2012 and so on. The prerequisites for that are
as follows:

•	 System Center Configuration Manager 2012 SP1 RTM or a later
version infrastructure

•	 Windows Server 2012 or Windows Server 2008 R2 with WMF 3.0

Connecting to Windows PowerShell from the
SCCM console
The steps for connecting to Windows PowerShell from the SCCM console are
as follows:

1.	 Press the Windows key + F, search for Configuration Manager, and choose
Apps. From the search list, select Configuration Manager Console and
launch the console.

Chapter 1

[9]

2.	 In the Configuration Manager Console, click on the upper-left corner of the
console and select Connect via Windows PowerShell.

3.	 The Configuration Manager then imports the PowerShell module automatically.
4.	 Now you are ready to manage your Configuration Manager infrastructure

using the Windows PowerShell console.

Setting up the System Center Operations
Manager environment
This section discusses how to set up your PowerShell console to start with the SCOM
activities. The traditional method of importing the SCOM module in Windows
PowerShell is supported by SCOM 2012 and its later versions.

The prerequisites for this are as follows:

•	 SCOM 2012 or the later version infrastructure
•	 Windows PowerShell 2.0 or its later version

Setting up the Environment to Use PowerShell

[10]

Connecting to Windows PowerShell for SCOM
The steps for connecting to Windows PowerShell for SCOM are as follows:

1.	 Start the 32-bit Windows PowerShell console from your operating
system box.

2.	 If you are using Windows Server 2008 R2 or a similar operating system,
then you can click on Start, search for Windows PowerShell (x86), and
launch the console.

3.	 If you are using Windows Server 2012 or a similar operating system, then
you can press the Windows key + F, search for Windows PowerShell, and
choose Apps. From the search list, select Windows PowerShell (x86) and
launch the console.

4.	 To import the Operations Manager PowerShell module, we need
to change the console location to the Operations Manager Console
installation folder. For example, we will refer to the parent installation
folder as C:\Program Files(x86).
Type the following lines into the PowerShell console:
PS C :\> cd 'C:\Program Files\System Center 2012\Operations
Manager\PowerShell\'

5.	 This will set the console location to the PowerShell subfolder in the
Operations Manager Console installation folder.

6.	 Now, import the OperationsManger.psd1 module file by using the
Import-Module cmdlet:
PS C :\> Import-Module .\OperationsManager.psd1

To confirm the successful import of the module, type the Get-Module
cmdlet on the PowerShell console. Now you will be able to see the new
module added to the OperationsManager list.

7.	 Now you are ready to manage your Operations Manager infrastructure,
using the Windows PowerShell console.

Chapter 1

[11]

Setting up the System Center Service
Manager environment
In this section, we will talk about how to set up your PowerShell console to start
with the SCSM activities. The traditional method of importing the SCSM module
in Windows PowerShell is supported by SCSM 2010 and its later versions.

Here are the prerequisites to set up the SCSM environment:

•	 SCSM 2010 or its later version infrastructure
•	 Windows PowerShell 2.0 or its later version

Connecting to Windows PowerShell for SCSM
1.	 Start the Windows PowerShell console from your operating system box.
2.	 If you are using Windows Server 2008 R2 or a similar operating system,

then you can click on Start, search for Windows PowerShell (x86), and
launch the console.

3.	 If you are using Windows Server 2012 or a similar operating system, then
you can press the Windows key + F, search for Windows PowerShell, and
choose Apps. From the search list, select Windows PowerShell (x86) to
launch the console.

4.	 To import the Service Manager PowerShell module, we need to change
the console location to the Service Manager Console installation
folder. For example, we will refer to the parent installation folder as C:\
Program Files(x86).

5.	 Type the following lines into the PowerShell console:
PS C :\> cd 'C:\Program Files\Microsoft System Center 2012\Service
Manager\'

This will set the console location to the Service Manager subfolder in the
Service Manager Console installation folder.

6.	 Import the System.Center.Service.Manager.psd1 module file for SCSM
Management Servers by using the Import-Module cmdlet:
PS C :\> Import-Module .\System.Center.Service.Manager.psd1

www.allitebooks.com

http://www.allitebooks.org

Setting up the Environment to Use PowerShell

[12]

7.	 Now you are ready to manage your Service Manager infrastructure for SCSM
Management Servers using Windows PowerShell.

8.	 Import the Microsoft.EnterpriseManagement.Warehouse.Cmdlets.psd1
module file for Data Warehouse Management Servers by using the Import-
Module cmdlet:
PS C :\> Import-Module .\Microsoft.EnterpriseManagement.Warehouse.
Cmdlets.psd1

To confirm the successful import of the module, you can type the Get-
Module cmdlet on the PowerShell console. Now you will be able to see
the new module added to the System.Center.Service.Manager and
Microsoft.EnterpriseManagement.Warehouse.Cmdlets lists.

9.	 Now you are ready to manage your Service Manager infrastructure for Data
Warehouse Management Servers using Windows PowerShell.

Summary
By end of this introductory chapter, you should be able to understand the basic
terminology and setup requirement to use Windows PowerShell with several
System Center products.

Going ahead, we will specifically look at each of these products and try to explore
more functionalities that we can achieve using Windows PowerShell.

[13]

Administration of
Configuration Manager

through PowerShell
Now that we have the platform set up with Configuration Manager installed in
our environment, it's time to understand how the collaboration of Configuration
Manager and PowerShell can boost administration activities. We can always use the
Configuration Manager console for administration activities (such as the traditional
way of administration). However, there is another better and more efficient way
for the GUI administration and that is through PowerShell. When we are required
to automate a few activities in Configuration Manager, we need to use any of the
scripting languages, such as VB or PowerShell. PowerShell has its own advantages
over other scripting languages.

In this chapter, we will cover:

•	 The introduction of Configuration Manager through PowerShell
•	 Hierarchy details
•	 Asset and compliance
•	 Software distribution
•	 Operation system deployment
•	 Software update management

Administration of Configuration Manager through PowerShell

[14]

Introducing Configuration Manager
through PowerShell
The main intention of this chapter is to give you a brief idea of how to use
PowerShell with Configuration Manager and not to make you an expert with all the
cmdlets. With the goal of introducing Configuration Manager admins to PowerShell,
this chapter mainly covers how to use PowerShell cmdlets to get the information
about Configuration Manager configurations and how to create our own custom
configurations using PowerShell. Just like you cannot get complete information of
any person during the first meet, you cannot expect everything in this chapter.

This chapter starts with an assumption that we have a well-built Configuration
Manager environment. To start with, let's first understand how to fetch details from
Configuration Manager. After that, we will create our own custom configurations.
To stick on to convention, we will first learn how to fetch configuration details from
Configuration Manager followed by a demonstration of how to create our own
custom configurations using PowerShell.

PowerShell provides around 560 different cmdlets to administrate and manage
Configuration Manager.

You can verify the cmdlets counts for Configuration Manager by
using the count operation with the Get-Command cmdlet with
ConfigurationManager as the module parameter:
(Get-Command –Module ConfigurationManager).Count

It is always a good idea to export all the cmdlets to an external file that you can use
as a reference at any point of time. You can export the cmdlets by using Out-File
with the Get-Command cmdlet:

Get-Command –Module ConfigurationManager | Out-File "D:\SCCM\
PowerShellCmdlets.txt"

Chapter 2

[15]

Once we have the Configuration Manager infrastructure ready, we can start
validating the configurations through the PowerShell console. Here are the quick
cmdlets that help to verify the Configuration Manager configurations followed by
cmdlets to create custom configurations. Since PowerShell follows a verb-noun
sequence, we can easily identify the cmdlets that help to check configurations as
they start with Get. Similarly, cmdlets to create new configurations will typically
start with New, Start, or set. We can always refer to the Microsoft TechNet page at
http://technet.microsoft.com/en-us/library/jj821831(v=sc.20).aspx for
the latest list of all the available cmdlets.

Before proceeding further, we have to set the execution location from the
current drive to System Center Configuration Manager (SCCM) to avail the
benefit of using PowerShell for the administration of SCCM. To connect, we can
use the Set-Location cmdlet with the site code as the parameter or we can open
PowerShell from the Configuration Manager console. Assuming we have P01 as the
site code, we can connect to Configuration Manager using PowerShell by executing
the following command:

Set-Location P01:

Hierarchy details
This section will concentrate on how to get the Configuration Manager site details
and how to craft our own custom hierarchy configurations using PowerShell
cmdlets. This involves knowing and configuring the site details, user and device
discovery, boundary configurations, and installation of various site roles.

Site details
First and foremost, get to know the Configuration Manager architecture details.
You can use the Get-CMSite cmdlet to know the details of the Configuration
Manager site. This cmdlet without any parameters will give the details of the site
installed locally. To get the details of the remote site, you are required to give the
site name or the site code of the remote site:

Get-CMSite

Get-CMSIte –SiteName "India Site"

Get-CMSite –SiteCode P01

http://technet.microsoft.com/en-us/library/jj821831(v=sc.20).aspx

Administration of Configuration Manager through PowerShell

[16]

Discovery details
It is important to get the discovery details before proceeding, as it decides the
computer and the users that Configuration Manager will manage. PowerShell
provides the Get-CMDiscoveryMethod cmdlet to get complete details of the
discovery information. You can pass the discovery method as a parameter to the
cmdlet to get the complete details of that discovery method. Additionally, you can
also specify the site code as a parameter to the cmdlet to constrain the output of that
particular site.

In the following example, we are trying to get the information of
HeartBeatDiscovery and we are restricting our search to the P01 site:

Get-CMDiscoveryMethod –Name HeartBeatDiscovery –SiteCode P01

We can also pass other discovery methods as parameters
to this cmdlet. Instead of HeartBeatDiscovery, you can
use any of the following methods:

•	 ActiveDirectoryForestDiscovery
•	 ActiveDirectoryGroupDiscovery
•	 ActiveDirectorySystemDiscovery
•	 ActiveDirectoryUserDiscovery
•	 NetworkDiscovery

Boundary details
One of the first and most important and things to be configured in Configuration
Manager are the boundary settings. Once the discovery is enabled, we are required
to create a boundary and link it with the boundary group to manage clients through
Configuration Manager.

PowerShell provides inbuilt cmdlets to get information of the configured
boundaries and boundary groups. We also have the cmdlets to create and
configure new boundaries.

You can use Get-CMBoundary to fetch the details of boundaries configured in
Configuration Manager. PowerShell will also leverage you to use the Format-List
attribute with the * (asterisk) wild character as the parameter value to get the detailed
information of each boundary.

Chapter 2

[17]

As default, this cmdlet will return and give you the available boundaries configured
in Configuration Manager. This cmdlet will also accept parameters, such as the
boundary name, which will give the information of a specified boundary. You can
even specify the boundary group name as the parameter, which will return the
boundary specified by the associated boundary group. You can also specify the
boundary ID as a parameter for this cmdlet:

Get-CMBoundary –Name "Test Boundary"

Get-CMBoundary –BoundaryGroup "Test Boundary Group"

Get-CMBoundary –ID 12587459

Similarly, we can use Get-CMBoundaryGroup to view the details of all the boundary
groups created and configured on the console. Using the cmdlet with no parameters
will result in the listing of all the boundary groups available in the console. You can
use the boundary group name or ID as a parameter to get the information of the
interested boundary group:

Get-CMBoundaryGroup

Get-CMBoundaryGroup -Name "Test Boundary Group"

Get-CMBoundaryGroup –ID "1259843"

You can also get the information of multiple boundary groups by supplying the list
as a parameter to the cmdlet:

Get-CMBoundaryGroup –Name "TestBG1", "TestBG2", "TestBG3", "TestBG4"

Until now, we saw how to read boundary and boundary-related details using
PowerShell cmdlets. Now, let's see how to create our custom boundary in
Configuration Manager using PowerShell cmdlets.

Just like you create boundaries in console, PowerShell provides the New-CMBoundary
cmdlet to create boundaries using PowerShell. At the minimum, we are required to
provide the boundary name, boundary type, and value as a parameter to the cmdlet.

We can create boundaries based on different criteria, such as the Active Directory
site, IP subnet, IP range, and IPv6 prefix. PowerShell allows us to specify the criteria
based on which we want to create a boundary in the boundary type parameter.

The following examples show you all four ways to create boundaries. The boundary
type to be used is decided based on the architecture and the requirement:

New-CMBoundary –DisplayName "IPRange Boundary" –BoundaryType IPRange –
Value "192.168.50.1-192.168.50.99"

New-CMBoundary –DisplayName "ADSite Boundary" –BoundaryType ADSite –Value
"Default-First-Site-Name"

Administration of Configuration Manager through PowerShell

[18]

New-CMBoundary –DisplayName "IPSubnet Boundary" –BoundaryType IPSubnet –
Value "192.168.50.0/24"

New-CMBoundary –DisplayName "IPV6 Boundary" –BoundaryType IPv6Prefix –
Value "FE80::/64"

With the introduction of the boundary group concept with Configuration
Manager 2012, it is expected that every boundary created should be made a part of
a boundary group before it starts managing the clients. So, we first need to create a
boundary group (if not present) and then add the boundary to the boundary group.

We can use the New-CMBoundaryGroup cmdlet to create a new Configuration
Manager boundary group. At the minimum, we are required to pass the boundary
group name as a parameter, but also it is recommended that you pass the boundary
description as the parameter:

New-CMBoundaryGroup –Name "Test Boundary Group" –Description "Test
boundary group created from PowerShell for testing"

Upon successful execution, the command will create a boundary group named
Test Boundary Group. We will now add our newly created boundary to this newly
created boundary group. PowerShell provides an Add-CMBoundaryToGroup cmdlet
to add the existing boundary to the existing boundary group:

Add-CMBoundaryToGroup –BoundaryName "IPRange Boundary" –BoundaryGroupName
"Test Boundary Group"

This will add the IPRange Boundary boundary to the Test Boundary Group
boundary group. You can use looping to add multiple boundaries to the boundary
group in a real-time scenario. We will discuss this scenario in depth in the next
chapter of this book. We can remove a boundary from Configuration Manger using
the Remove-CMBoundary cmdlet. We can just specify the name or ID of the boundary
to be deleted as a parameter to the cmdlet:

Remove-CMBoundary –Name "Test Boundary" -force

Distribution point details
The details of the distribution points are one of the most common requirements,
and it is essential that the Configuration Manager admin knows the distribution
points configured in the environment to plan and execute any deployments. We can
do this either using the traditional way of logging in to the console or by using the
PowerShell approach. PowerShell provides the Get-CMDistributionPoint cmdlet
to get the list of distribution points configured. Distribution points in Configuration
Manager are used to store files, such as software packages, update packages,
operating system deployment related packages, and so on.

Chapter 2

[19]

If no parameters are specified, this cmdlet will list down all the distribution points
available. You can pass the site server system name and site code as parameters to
filter the result, which will restrict the results to the specified site:

Get-CMDistributionPoint –SiteSystemServerName "SCCMP01.Guru.Com" –
SiteCode "P01"

Here is a quick look of how to create and manage distribution points in
Configuration Manager through PowerShell. We can create and manage the
distribution point site system role in Configuration Manager through PowerShell
just as we did using the console. To do this, we first need to create a site system
server on the site (if not available), which we can later be upgraded as the site
distribution point. We can do this using the New-CMSiteSystemServer cmdlet:

New-CMSiteSystemServer –sitecode "P01" –UseSiteServerAccount –ServerName
"dp.guru.com"

This will use the site server account for the creation of the new site system. Next, we
will configure this site system as a distribution point. We can do this by using the
Add-CMDistrubutionPoint cmdlet:

Add-CMDistributionPoint –SiteCode "P01" –SiteSystemServerName "dp.guru.
com" –MinimumFreeSpaceMB 500 –CertificateExpirationTimeUtc "2020/12/30" –
MinimumFreeSpaceMB 500

This will create dp.guru.com as a distribution point and also reserve 500 MB of space.

We can also enable IIS and PXE support for the distribution point. We
can also configure DP to respond to the incoming PXE requests with the
following parameters. It just needs an extra effort to pass a few more
parameters for the Distribution Point creation cmdlet:
Add-CMDistributionPoint –SiteCode "P01" –
SiteSystemServerName "dp.guru.com" –
MinimumFreeSpaceMB 500 –InstallInternetServer –
EnablePXESupport –AllowRespondIncomingPXERequest –
CertificateExpirationTimeUtc "2020/12/30"

We can create the distribution point group (if not already present) for the effective
management of distribution point managements available in the environment using
the New-CMDistributionPointGroup cmdlet with the minimum distribution point
name as the parameter:

New-CMDistributionPointGroup –Name "Test Distribution Group"

Administration of Configuration Manager through PowerShell

[20]

With the distribution point group created, we can add the newly created
distribution point to the distribution point group. You can use the Add-
CMDistributionPointToGroup cmdlet with the distribution point name
and distribution point group name, at the minimum, as parameters:

Add-CMDistributionPointToGroup –DistributionPointName "dp.guru.com" –
DistributionPointGroupName "Test Distribution Group"

We can also add any device collection to the newly created distribution point group
so that whenever we deploy items (such as packages, programs, and so on) to the
device collection, the content will be auto distributed to the distribution group:

Add-CMDeviceCollectionToDistributionPointGroup –DeviceCollectionName
"TestCollection1" –DistributionPointGroupName "Test Distribution Group"

Management point details
The management point provides polices and service location information to the
client. It also receives data from clients and processes and stores it in the database.
PowerShell provides the Get-CMManagementPoint cmdlet to get the details of the
management point. Optionally, you can provide the site system server name and
the site code as the parameter to the cmdlet.

The following example will fetch the management points associated with the
SCCMP01.Guru.Com site system that has the site code P01:

Get-CMManagementPoint –SiteSystemServerName "SCCMP01.Guru.Com" –SiteCode
"P01"

When you install CAS or the primary server using the default settings, the distribution
points and management points will be automatically installed. However, if you want
to add an additional management point, you can add the role from the server or
through the PowerShell console. PowerShell provides the Add-CMManagementPoint
cmdlet to add a new management point to the site.

At the minimum, we are required to provide the site server name that we designated
as the management point, database name, site code, the SQL server name, and the
SQL instance name. The following example depicts how to create a management
point through PowerShell:

Add-CMManagementPoint –SiteSystemServerName "MP1.Guru.Com" –SiteCode
"P01" –SQLServerFqDn "SQL.Guru.Com" -SQLServerInstanceName "SCCMP01"
–DataBaseName "SCCM" –ClientConnectionType InternetAndIntranet –
AllowDevice –GenerateAlert -EnableSsl

We can use the Set-CMManagementPoint cmdlet to change any management point
settings that are already created.

Chapter 2

[21]

The following example changes the GenerateAlert property to false:

Set-CMManagementPoint –SiteSystemServerName "MP1.Guru.Com" –SiteCode
"P01" –GenerateAlert:$False

Other site role details
Like distribution points and management points, we can get the detailed information
of all other site roles (if they are installed and configured in the Configuration
Manager environment). The following command snippet lists the different cmdlets
available and their usage to get the details of different roles:

Get-CMApplicationCatalogWebServicePoint –SiteSystemServerName "SCCMP01.
guru.com" –SiteCode P01

Get-CMApplicationCatalogWebsitePoint –SiteSystemServerName "SCCMP01.guru.
com" –SiteCode P01

Get-CMEnrollmentPoint –SiteSystemServerName "SCCMP01.guru.com" –SiteCode
P01

Get-CMEnrollmentProxyPoint –SiteSystemServerName "SCCMP01.guru.com" –
SiteCode P01

Get-CMFallbackStatusPoint –SiteSystemServerName "SCCMP01.guru.com" –
SiteCode P01

Get-CMSystemHealthValidatorPoint –SiteSystemServerName "SCCMP01.guru.com"
–SiteCode P01

Asset and compliance
This section will mainly concentrates on gathering information and how to get
details of devices, users, compliance settings, alerts, and so on. It also demonstrates
how to create custom collections, add special configurations to collections, create
custom client settings, install client agents, approve agents, and so on.

Collection details
Getting the collection details from PowerShell is as easy as using the console to get
the details. You can use the Get-CMDeviceCollection cmdlet to get the details
of the available collection. We can use the basics by using Format-Table with the
autosize parameter to get the neat view:

Get-CMDeviceCollection | Format-Table –AutoSize

www.allitebooks.com

http://www.allitebooks.org

Administration of Configuration Manager through PowerShell

[22]

We can also use the grid view to get the details popped out as a grid. This will give
us a nice grid that we can scroll and sort easily:

Get-CMDeviceCollection | Out-GridView

We can use Name or CollectionID as the parameter to get the information of a
particular collection:

Get-CMDeviceCollection –Name "All Windows-7 Devices"

Get-CMDeviceCollection –CollectionId"2225000D"

You can also specify the distribution point group name as the parameter to get the
list of the collection that is associated with the specified distribution point group:

Get-CMDeviceCollection –DistributionPointGroupName "Test Distribution
Point Group"

You can also replace the DistributionPointGroupName parameter with
DistributionPointGroupID to pass the distribution point ID as a parameter
to the cmdlet.

Similarly, you can use the Get-CMUserCollection cmdlet to get
the details of the available user collection in SCCM:
Get-CMUserCollection | Format-Table –AutoSize

It is also possible to read direct members of any existing collection. PowerShell
provides cmdlets to read the direct membership of both the device and user
collection. We can use Get-CMDeviceCollectionDirectMembershipRule and
Get-CMuserCollectionDirectMembershipRule to read the direct members
of the device and user collection respectively:

CMDeviceCollectionDirectMembershipRule – CollectionName "Test Device
Collection" –ResourceID "45647936"

Get-CMUserCollectionDirectMembershipRule –CollectionName "Test User
Collection" –ResourceID 99845361

Similarly, PowerShell also empowers us to get the query membership rule by using
the Get-CMDevicecollectionQueryMembershipRule and Get-CMUsercollection
QueryMembershipRule cmdlets for the device and user collections respectively. The
collection name and rule name needs to be specified as parameters to the cmdlet.

Chapter 2

[23]

The following example assumes that there is already a collection named All
Windows-7 Machines associated with the Windows-7 Machines rule name and an
All Domain Users user collection associated with the Domain Users query rule:

Get-CMDeviceCollectionQueryMembershipRule –CollectionName "All Windows-7
Machines" –RuleName "Windows 7 Machines"

Get-CMUsercollectionQueryMembershipRule –CollectionName "All Domain
Users" –RuleName "Domain Users"

Reading Configuration Manager status
messages
We can get status messages from one or more Configuration Manager site system
components. A status message includes information of success, failure, and warning
messages of the site system components. We can use the Get-CMSiteStatusMessage
cmdlet to get the status messages. At the minimum, we are required to provide the
start time to display the messages:

Get-CMSiteStatusMessage –ViewingPeriod "2015/02/20 10:12:05"

We can also include a few optional parameters that can help us to filter the output
according to our requirement. Most importantly, we can use the computer name,
message severity, and site code as additional parameters. For Severity, we can use
the All, Error, Information, or Warning values:

Get-CMSiteStatusMessage –ViewingPeriod "2014/08/17 10:12:05" –
ComputerName XP1 –Severity All SiteCode P01

So, now we are clear on how to extract collection information from Configuration
Manager using PowerShell. Let's now start creating our own collection using
PowerShell.

Creating new user/device collections
Before you deploy any application, operating system, or client settings, you need
to create the collection that is to be targeted. Just like in the console, PowerShell
provides an easy way to create collections using cmdlets.

We can create the collection in SCCM with the New-CMDeviceCollection cmdlet. It
is recommended that you give at least the basic, such as the name of the collection
and the limiting collection ID:

New-CMDeviceCollection –Name "All Windows 8.1 Systems" –
LimitingCollectionID SMS00001

Administration of Configuration Manager through PowerShell

[24]

In the preceding example, we created the All Windows 8.1 Systems collection,
which we are limiting to All Systems, which is represented in the collection ID.

Similarly, we can use the New-CMUserCollection cmdlet to create new user
collections in Configuration Manager through PowerShell. At the minimum, we are
required to provide the collection name and the limiting collection as parameters for
the collection:

New-CMUserCollection –Name "Test User Collection" –LimitingCollectionName
"All Users"

Once the collection is created, we need to populate the collection with members.
Here, we have two choices: to go for the direct membership rule (static rule) or to
go with the query rule (dynamic membership). It depends on the scenario and the
requirement as to which rule should be used.

In the following example, we will see how to populate the collection with the query
membership rule. We can use the Add-CMDeviceCollectionQueryMembershipRule
cmdlet to add membership rules to an existing device collection. At the minimum,
you need to specify the collection name and query expression as parameters for
the cmdlet:

Add-CMDeviceCollectionQueryMembershipRule -RuleName "All Windows 8.1
Systems" -Collectionname "All Windows 8.1 Systems" -QueryExpression
"select SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.ResourceID,SMS_R_
SYSTEM.Name,SMS_R_SYSTEM.SMSUniqueIdentifier,SMS_R SYSTEM.
ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from sms_r_system where
OperatingSystemNameandVersion like '%6.3%'"

This will populate all the previously created All Windows 8.1 Systems collections
with WQL, which will select all the machines that run the operating system version
6.3, which is the latest Windows client operating system, that is, Windows 8.

Similarly, we can add a query membership rule to the user of any existing collection
using the Add-CMUserCollectionQueryMembershipRule cmdlet. At the minimum,
we are required to provide the user collection name or ID, query expression, and the
rule name as parameters to the cmdlet:

Add-CMUserCollectionQueryMembershipRule –CollectionName "Test User
Collection" –QueryExpression "Select SMS_R_User.ResourceID, SMS_R_User.
ResourceType, SMS_R_User.ResourceName, SMS_R_User.WindowsNTDomain FROM
SMS_R_User " –RuleName "All Domain Users"

Chapter 2

[25]

Adding a direct membership rule to the collection is one of the two ways to add
members to an existing collection and is a static membership type (other being the
query membership rule, which is dynamic).

PowerShell provides Add-CMDeviceCollectionDirectMembershipRulecmdlet to
add direct members to the existing collection. At the minimum, we are required to
provide the collection name and the resource ID as parameters:

Add-CMDeviceCollectionDirectMembershipRule –CollectionName "All Windows-8
Systems" –ResourceID 98574126

We can get the name of the resource ID of the Configuration Manager
object using the Get-CMDevice cmdlet and by selecting only the
resource ID parameter. In the following example, we try to get the
resource ID of the SQL01 Configuration Manager object:
(Get-CMDevice –Name SQL01).ResourceID

Similarly, we can add the direct membership rule to the existing user collection using
the Add-CMUserCollectionDirectMembershipRule cmdlet to add direct members
to the existing Configuration Manager device collection. At the minimum, we are
required to provide the user collection name and the resource ID as parameters to
the cmdlet:

Add-CMUserCollectionDirectMembershipRule –CollectionName "Test User
Collection" –ResourceID 67474126

In a lab environment, once you are done with your testing or in a production
environment, once you find that the collection is no more useful, it is recommended
that you delete the collection. This is also a part of the Configuration Manager's
maintenance job so that Configuration Manager is not overloaded with unnecessary
objects. We can use the Remove-CMDeviceCollection cmdlet to remove or to delete
the existing device collection from Configuration Manager. At the minimum, we are
required to provide the collection name as a parameter to the cmdlet.

Similarly, we can use the Remove-CMUserCollection cmdlet to delete the user
collections from Configuration Manager. Here also, we are required to pass the
collection name to be deleted as a parameter to the cmdlet:

Remove-CMUserCollection –Name "Test User Collection" -Force

Administration of Configuration Manager through PowerShell

[26]

Handling Configuration Manager objects
Before we manage any device from Configuration Manager, we need to install a
client agent on the client machine. We can install the Configuration Manager client
using the PowerShell cmdlet, as we did using the traditional command-line style.
PowerShell provides the Install-CMClient cmdlet to install the Configuration
Manager client. As bare minimum, this cmdlet takes the machine name and site code
as parameters, but requires additional parameters, such as whether to install on a
domain controller or not, whether to force client installation all the time, and so on.

The following example shows the installation of the Configuration Manager client on
the Client1 machine with the site code P01:

Install-CMClient –DeviceName "Client1" –SiteCode "P01" –
AlwaysInstallClient $True –IncludeDomainController $False –ForceReinstall
$True

When the client is from a nontrusted domain, we have to manually approve the
client in the Configuration Manager console to enable the client to join the site.
PowerShell provides a cmdlet to automate the approval process, which will ease
the administrator's life. You can use the Approve-CMDevice cmdlet to approve
Configuration Manager clients. You are required to provide the device name as
a parameter to the cmdlet. The following example shows how to approve the
Client1 machine:

Approve-CMDevice –DeviceName "Client1"

To add any object to an existing collection, it is important that we get the device
or the user details available in the configuration database. PowerShell provides
the Get-CMDevice and Get-CMUser cmdlet to get the device object and user object
details in Configuration Manager.

The Get-CMDevice cmdlet accepts a wide range of parameters, such as the device
name, device ID, collection name, and collection ID:

Get-CMDevice –Name XP1

Similarly, we can use Get-CMUser to get information of the user objects. This cmdlet
works in the same way with Get-CMDevice:

Get-CMUser –Name "Guru\SMSSD"

Chapter 2

[27]

Before we see the machine in all system collections, we are required to approve
the machine after the client-agent installation. When we add any new device to
Configuration Manager, PowerShell provisions us to approve the request without
logging in to the console. We can use the Approve-CMDevice cmdlet that will accept
one or more Configuration Manager clients join the site. The cmdlet accepts the
device name or ID as a parameter:

Approve-CMDevice –DeviceName XP1

We can also block or unblock the Configuration Manager device objects for security
reasons using the Block-CMDevice and Unblock-CMDevice cmdlets. The cmdlets
will accept the device name or the device ID as a parameter and block/unblock
the device:

Block-CMDevice –DeviceName XP1

Unblock-CMDevice –DeviceName XP1

The client settings information
We are well aware of the custom client settings and their importance in
Configuration Manager. With the evolution of new versions, Configuration Manager
provides full flexibility to control the device and user settings. Now, it is so flexible
that we can create different custom client settings for each different collection to have
maximum control over the clients. These settings will determine the way the clients
interact with the management-point-like client policy polling interval in seconds,
agent behavior, endpoint protection details, hardware and software inventory
settings, software update settings, and so on.

We can use the Get-CMClientSetting cmdlet to get the details of all the client
settings present in Configuration Manager. If no parameters are specified, the cmdlet
will retrieve details of all the client settings present in Configuration Manager. We
can pass the name of the client setting as a parameter to restrict the output to our
desired settings:

Get-CMClientSetting

Get-CMClientSetting –Name "Win-7 Client Settings"

We can also create our own custom client settings using PowerShell. The following
example will explain how to create a new custom client setting and deploy it to a test
collection. Custom client settings have higher priority over default settings. Until
the custom settings are deployed on any collection, the custom settings will have no
effect on the environment.

Administration of Configuration Manager through PowerShell

[28]

Here, we are creating a custom client setting named Custom Settings for Testing.
We can use the New-CMClientSetting cmdlet to create new custom client settings:

New-CMClientSetting –Name "Custom Settings for Testing" –Type Device –
Description "This is a custom client setting created using PowerShell"

Once you create the custom client setting, you are required to customize the settings
according to your requirements. You can use the Set-CMClientSetting cmdlet to
customize the existing custom client settings.

To do this, first we will add Client Polices to the custom settings, such as policy
polling interval, enabling and disabling policies on the client, and policy request
from Internet clients:

Set-CMClientSetting –Name "Custom Settings for Testing" –
PolicyPollingInterval 45 –EnableUserPolicyPolling $True –
EnableUserPolicyOnInternet $False

Next, we will add the Computer Agent settings to the newly created custom
client settings:

Set-CMClientSetting –Name "Custom Settings for Testing" –
PowerShellExecutionPolicy ByPass –Initial Reminder HoursInterval 50
–Interim Reminder HoursInterval 5 –Final Reminder MinutesInterval
15 –PortalUrl http://SCCMP01.guru.com/CMApplicationCatalog
-AddPortalToTrustedSite $True - DisplayNewProgramNotification $True

Once the custom client settings are created, the settings will not have any effect
until you deploy the client settings to a collection. Now, we will deploy the newly
created custom client settings to all Windows 8 machines. Before deploying the client
settings in this scenario, we are required to create a collection with all Windows 8
machines if one is not already present:

Start-CMClientSettingDeployment –ClientSettingName "Custom Settings for
Testing" –CollectionName "All Windows-8 Systems"

Alert management
 Configuration Manager is capable of self-monitoring and equipped with a dashboard,
which shows alerts whenever something goes wrong in the Configuration Manager
environment. First, let's look at the cmdlet that will get the alerts registered without
logging in to the console. PowerShell provides the Get-CMAlert cmdlet to fetch the
details of all the alerts registered.

Chapter 2

[29]

If we use the cmdlet without any parameters, the cmdlet will return the list of all
the alerts registered. We can also use a parameter-like partial name of the alert or
the alert ID to get the details of a particular alert:

Get-CMAlert

Get-CMAlert –Name "*Software*"

Get-CMAlert –id 147*

The second cmdlet will list all the alerts that have the Software keyword in them.
This will allow us to filter the alerts according to our requirements. This cmdlet
can be integrated with the pipeline option available with PowerShell for the best
utilization of the cmdlet.

To make our life easier while monitoring the alerts, we can subscribe to particular
alerts. We will discuss how to create alert subscriptions in the next chapter; for now,
let's see how to view the list of available subscription using PowerShell. PowerShell
provides the Get-CMAlertSubscription cmdlet to view the list of alert subscriptions
in Configuration Manager and its property.

We can directly use the cmdlet to get all the alerts subscribed in the console or we
can give the name of the subscription as the parameter to the cmdlet to get complete
details of that particular subscription:

Get-CMAlertSubscription

Get-CMAlertSubscription –Name "Software Distribution Failure Alerting
Group"

Get-CMAlertSubscription –ID 147*

Software distribution
This section provides detailed knowledge of how to get information of software
distribution components (including information on packages, programs, applications,
and so on) and how to create your own package, program, and applications using
PowerShell cmdlets. This section will also cover how to distribute and deploy
packages and applications using PowerShell.

Handling packages and applications
PowerShell allows you to get details of one or more packages in Configuration
Manager. You can use the package name and package ID as parameters to the
cmdlet. If no parameters are specified, the cmdlet will retrieve all the packages
available in Configuration Manager:

Get-CMPackage –Name "Adobe Reader"

Administration of Configuration Manager through PowerShell

[30]

We can use Get-CMApplication to get the details of all the applications available in
the Configuration Manager database. If no parameters are specified, the cmdlet will
retrieve all the applications available in the database:

Get-CMApplication

For any reason, if we are required to suspend the application, PowerShell provides
Suspend-CMApplication to achieve the task. We are required to send the
application ID as a parameter to cmdlet:

Suspend-CMApplication –ID "1574263"

To resume the suspended application, we can use the Resume-CMApplication cmdlet.
Once we resume the application, the clients will start downloading the application:

Resume-CMApplication –ID "1574263"

Once the package is no more of use to us, we can delete the Configuration Manager
package by using Remove-CMPackage. Once the package is deleted, all traces of
the package are removed even from child sites. We can identify the package to be
deleted by passing the package ID as a parameter to the cmdlet.

Similarly, we can remove the Configuration Manager application using the
Remove-CMApplicaton cmdlet:

Remove-CMApplication –ID "1574263"

Remove-CMPackage –ID "CM10000F"

Now that we have the basic knowledge of package and application handling, we can
proceed with the creation of package and applications through PowerShell.

PowerShell will provide the cmdlet to create applications in the same way we
created them from the console. PowerShell provides New-CMApplication to create
the Configuration Manager application through a command line. The following
example shows how to create an application through the PowerShell cmdlet:

New-CMApplication –Name "Win Zip App" –Description "Win Zip App
created through PowerShell" –LocalizedApplicationName "Win Zip App" –
LocalizedApplicationDescription "Win Zip App For Windows 8" –AutoInstall
$True –Owner "Win Zip" –SoftwareVersion "V7.2"

Once the application is created, the additional parameters can be set using the Set-
CMApplication cmdlet. In case you forget to specify the application description or
the auto-installation property during the application or if you would like to modify
the values, Set-CMApplication will assist you on this:

Set-CMApplication –Name "Win Zip App" –DistributionPriority High –Keyword
Zip

Chapter 2

[31]

Creating the package is the first step of the distribution of software in the traditional
way (as in SCCM 2007). This process is still supported in the new version of
Configuration Manager. Configuration Manager supports the New-CMPackage
cmdlet to create a new package in SCCM using PowerShell. We are required to
provide the package name and the content path as parameters to the cmdlet:

New-CMPackage –Name "Win Zip PS" –Description "Win Zip Package Created
From PowerShell" –Version "8.0" –Path "\\SCCMP01\D$\Package\SD\Win Zip"

Once the package is created, we are required to set a few of the mandatory properties
to the package. PowerShell provides the Set-CMPackage cmdlet to set the custom
settings to the package. At the minimum, the cmdlet will accept the name as the
parameter and the additional parameter to add custom settings to the package.

In this example, we have set the number of retry options and the priority for package
distribution. You can set many other options as per your requirements:

Set-CMPackage –Name "Win Zip PS" -Language "English" –
ForcedDisconnectNumberRetries 10 –DistributionPriority High

Handling programs
It is possible to get the details of one or more programs in Configuration Manager.
Configuration Manager allows you to associate multiple programs with the same
package. If no parameters are specified, the cmdlet will list all the programs available
in the console. You can associate the package ID and the program name as parameters
to the cmdlet.

In the following example, we see that the cmdlet is trying to retrieve information
from the Win Zip – 7 program in the package with the ST100026 ID:

Get-CMProgram –PackageID "ST100026" –ProgramName "Win Zip – 7"

PowerShell will also provide us the way to enable and disable the programs that are
already created. PowerShell provides Disable-CMProgram to disable one or more
Configuration Manager programs. Once the program is disabled, Configuration
Manager will stop the program on the client. When we disable the program,
Configuration Manager still pushes the program to the distribution point and
advertises this to the client. It is just that the program will fail to run at the client end.
Like Get-CMProgram, this cmdlet also accepts the package ID and program name as
parameters for execution.

www.allitebooks.com

http://www.allitebooks.org

Administration of Configuration Manager through PowerShell

[32]

You can use the Enable-CMProgram cmdlet to enable the disabled programs in
order to resume execution. This cmdlet also accepts the package ID and program
name as parameters:

Disable-CMProgram –PackageID "ST100026" –ProgramName "Win Zip -7"

Enable-CMProgram –PackageID "ST100026" –ProgramName "Win Zip -7"

PowerShell provides the Remove-CMProgram cmdlet to delete one or more
programs once the program is not useful anymore. Once the package is removed,
Configuration Manager will remove all the advertisements associated with the
program. PowerShell provides a direct way to delete the program by passing the
package ID and program name as parameters:

Remove-CMProgram –PackageID "ST100026" –ProgramName "Win Zip – 7"

Now, we are familiar with the reading program details using PowerShell cmdlets.
Let's see how to create a new package using PowerShell. We will resume from
the point where we created our custom package before; once we customize our
package, we need to create a program for our package. PowerShell provides the
New-CMProgram cmdlet to create programs in SCCM. At the minimum, the cmdlet
will accept the package name, program name, and command line as the parameters.

The following command will create a program with the run type as hidden. We
will configure the program to run it irrespective of whether the user is logged in
or not. Additionally, you can also set the program to run the administrative rights
or any other execution account and prerequisite specification, such as disk space
(-diskspaceunit), drive letter (-driveletter), and so on:

New-CMProgram –PackageName "Win Zip PS" –StandardProgramName "Win Zip
PS - Program" –CommandLine "msiexec.exe /q /norestart" –Runtype Hidden –
ProgramRunType "WhetherOrNotUserlsLoggedOn"

Handling deployment types
First, let's try reading the deployment types available and preconfigured in
Configuration Manager followed by creating our own custom deployment types.
PowerShell provides the Get-CMDeployment cmdlet to view the deployment details
of one or more deployments. Deployment is of an application or software update
packages. If no parameters are specified, the cmdlet will get all the deployments
available in the database. We can get the details of a particular deployment by
passing the deployment ID as a parameter:

Get-CMDeployment –DeploymentID "CM1000256"

Chapter 2

[33]

Also, we can use Get-CMDeploymentPackage to get the details of package
deployments of a distribution point. At the minimum, the package accepts the
distribution point name as the parameter and accepts the deployment package
name as an optional parameter:

Get-CMDeploymentPackage –DistributionPointName "SCCMDP2.Guru.Com"

You can also get the status of one or more software distribution deployments using
the Get-CMDeploymentStatus cmdlet. At the minimum, the cmdlet will accept the
deployment name or ID as a parameter:

Get-CMDeploymentStatus –Name "Test Deployment"

We can also get information of the deployment type associated with the deployment
using the Get-CMDeploymentType cmdlet. The deployment type specifies the rule
for the deployment of software. At the minimum, we are required to provide the
application name or application ID as a parameter to the cmdlet:

Get-CMDeploymentType –ApplicationName "Test Application"

Now, let's see how to create our own deployment types using PowerShell. We can
create a deployment type for the application in the same way we did for the package.
You can use the same Add-CMDeploymentType cmdlet with the application name as a
parameter instead of the package name:

Add-CMDeploymentType –ApplicationName "Test Application" –MsiInstaller –
AutoIdentifyFromInstallationFile –InstallationFileLocation "\\SCCMP01\
Softwares\Application\Webapp.msi" -ForceForUnknownPublisher 1

Once the package and program are created, we are required to distribute the
contents to the distribution point or the distribution point group. We can use the
Start-CMContentDistribution cmdlet to distribute the contents to the desired
DP or DP group:

Start-CMContentDistribution –PackageName "Win Zip PS" –
DistributionPointGroupName "Test Distribution Group"

Handling application or package deployment
Once the contents are distributed (such as an application), the next step is to deploy
the application to the collection so that all the collection members receive your
application. You can use the Start-CMApplicationDeployment cmdlet with the
collection name, application name, and other custom.

Administration of Configuration Manager through PowerShell

[34]

The following example will demonstrate how to deploy the Win Zip application to
the Test Collection collection:

Start-CMApplicationDeployment –CollectionName "Test Collection" –
Name "Win Zip" –comment "To deploy win zip for all systems in test
collections" –RebootOutsideServiceWindow $False –RaiseMomAlertsOnFailure
$True

As we can see in the preceding code, the cmdlet also accepts a few additional
configurations that help the Configuration Manager admins to exercise granular
control on the application deployment.

Creating an application catalog web service point
and application catalog website point roles
We can create SCCM site roles in Configuration Manager through PowerShell
in the same way we did from the console. In this example, we will see how to
create the application catalog web service and application catalog website point
though PowerShell.

PowerShell provides the Add-CMApplicationCatalogWebServicePoint cmdlet to
create and configure the application catalog web service point. At the minimum, you
are required to provide parameters, such as the port number for communication, site
code, site system server name, IIS website name, and communication type as HTTP
or HTTPS. The following example shows how to create an application catalog web
service point:

Add-CMApplicationCatalogWebServicePoint –PortNumber 80 –SiteCode "P01"
–SiteSystemServerName "SCCMP01.guru.com" –CommunicationType HTTP –
IISWebSite "Default Web Site"

Once the application catalog web service point is set, the next step is to create
and configure the application catalog website point. PowerShell provides the
Add-CMApplicationCatalogWebsitePoint cmdlet to create and configure the
application catalog website point. As a minimum, we are required to supply the
site system server name, site code, application catalog web server point details, port
number for communication, whether to configure as HTTP or HTTPS connection,
web application name, organization name, and the color details:

Add-CMApplicationCatalogWebSitePoint -SiteSystemServerName
"SCCMP01.guru.com" –PortForHttpConnection 80 –SiteCode "ASC" –
ConfiguredAsHTTPConnection –IISWebsite "Default Web Site" –
Organization "Guru Lab" –NetBIOSName "SCCMP01" –ColorBlue 52
-SiteSystemServerNameConfiguredForApplicationCatalogWebServicePoint
"SCCMP01.guru.com"

Chapter 2

[35]

We can delete the application catalog website point and application catalog
web service point using the Remove-CMApplicationCatalogWebsitePoint
and Remove-CMApplicationCatalogWebServicePoint cmdlet, respectively.
We are required to pass the site code and site system server name as the parameter
name to the cmdlet. The following examples demonstrate the usage of the cmdlets
in these cases:

Remove-CMApplicationCatalogWebsitePoint –SiteCode "P01" –
SiteSystemServerName "SCCMP01.guru.com"

Remove-CMApplicationCatalogWebServicePoint –SiteCode "P01" –
SiteSystemServerName "SCCMP01.guru.com"

The operating system deployment
This section will shed light on how to view details of the operating system
deployment process and configurations, such as the boot image, operating
system image files, task sequence, and so on.

An operating system image
Operating system images are the .wim files that are used for the operating system
capture and deployment process. PowerShell will provide you the mechanism to
extract the available operating system image files in Configuration Manager. We
can use the Get-CMOperatingSystemImage cmdlet to list all the images.

Without parameters, the cmdlet will list all the images available in Configuration
Manager. You can pass the image name or ID as a parameter to get details of a
particular image:

Get-CMOperatingSystemImage –Name "Boot image (x86)"

We can add a new operating system image to Configuration Manager by using the
New-CMOperationSystemImage cmdlet. At a minimum, we are required to provide
the name of the image file and the path to that file. Optionally, we can also pass the
description, which holds a short description of the image file, as a parameter. The
following example demonstrates how to import the operating system image to the
Configuration Manager database:

New-CMOperatingSystemImage –Name "Goldan Win_8" –Path "\\SCCMP01\Images\
Boot.wim"

Administration of Configuration Manager through PowerShell

[36]

Operating system installers
An operating system installer is the installation file that contains all the necessary files
that Configuration Manager needs to install on the operating system on any reference
computer. PowerShell provides the Get-CMOperatingSystemInstaller cmdlet to get
information of operating system installers. If no parameters are specified, the cmdlet
will return all the available installers present in Configuration Manger. We can pass
the installer name or ID as a parameter to streamline the output:

Get-CMOperatingSystemInstaller –Name "Win-7 Package"

We can add the operating system installer to Configuration Manager using the New-
CMOperatingSystemInstaller cmdlet. At the minimum, we need to pass the name
of the installer and the path to the installer as parameters to the cmdlet. Optionally,
we can also specify the description and version as parameters to the cmdlet. The
following example demonstrates how to import the operating system installer to
Configuring Manager using the PowerShell cmdlet:

New-CMOperatingSystemInstaller –Name "CustomInstaller" –Path "\\SCCMP01\
Win8"

We can use the Set-CMOperatingSystemInstaller cmdlet to change any
configurations of the existing operating system installer. At the minimum,
we are required to specify the name or the ID of the operating system installer
that is to be modified followed by the necessary modifications:

Set-CMOperatingSystemInstaller –Name "CustomInstaller" –NewName
"NewCustomInstaller" –Version "1.1"

We can remove the unused operating system installers from Configuration Manager
using the Remove-CMOperatingSystemInstaller cmdlet. At the minimum, we are
required to pass the name or the ID of the operating system installer image that is to
be deleted:

Remove-CMOperatingSystemInstaller –Name "CustomInstaller" -Force

Boot image details
Operating system boot images are .wim for file, which has files and folders that are
essential to install and configure an operating system. Configuration Manager will
have boot images for both X86 and X64. We can create our own custom boot images
as per our requirements. PowerShell provides the Get-CMBootImage cmdlet to view
the boot images loaded on Configuration Manager. If no parameter is specified, the
cmdlet will return all the boot images present in the database. We can pass the boot
image ID or name to get the details of a particular boot image:

Get-CMBootImage –Name "Windows-7 Gloden"

Chapter 2

[37]

PowerShell provides the Remove-CMBootImage cmdlet to delete unwanted boot
images in the console. The ID of the boot image to be deleted must be passed as
the parameter to the cmdlet:

Remove-CMBootImage –ID "Boot image (x86)"

Handling drivers for deployments
The task sequence for the operating system deployment contains device drivers. We
can use the Get-CMDriver cmdlet to get the list of the driver software present in the
console. If no parameters are specified, the cmdlet will retrieve all the driver software
uploaded to Configuration Manager. We can pass the driver name, driver package
name, or the package ID as a parameter to get complete information of a particular
driver software:

Get-CMDriver

Get-CMDriver –DriverPackageName "Print Drivers"

We can disable and enable the drivers in Configuration Manager using the Disable-
CMDriver and Enable-CMDriver cmdlets, respectively:

Disable-CMDriver –Name "cdrom.inf"

Enable-CMDriver –Name "cdrom.inf"

Also, you can delete the driver from the Configuration Manager database using the
Remove-CMDriver cmdlet. This cmdlet will accept, at a minimum, the name or the
ID of the driver to be deleted as a parameter:

Remove-CMDriver –Name "cdrom.inf"

PowerShell also enables you to get all the driver packages available in the Configuration
Manager database using the Get-CMDriverPackage cmdlet. If no parameters are
specified, the cmdlet will return all the driver packages available. We can restrict the
output by passing the package name or the package ID we are interested in:

Get-CMDriverPackage –ID "CM100027"

We can create our own custom driver package using the New-CMdriverPackage
cmdlet. At the minimum, we need to pass the package name and package source
type as parameters to the cmdlet. The PackageSourcetype parameter specifies
the method to read the package source file. We can use StorageCompress,
StorageDirect, StorageLocal, StorageNeedsSpecifying or StorageNOSource as
values to the parameter:

New-CMDriverPackage –Name "Package1" –Path "\\SCCMP01\Drivers" –
PackageSourcetype Storagelocal

Administration of Configuration Manager through PowerShell

[38]

We can change the configurations of the existing driver package using the Set-
CMDriverPackage cmdlet. We are required to provide the name or the ID of the
driver package followed by the changes to be incorporated.

We can remove any particular driver from the driver package using the Remove-
CMDriverFromDriverPackage cmdlet. At the minimum, we need to pass the driver
ID to be deleted and the package name or ID from which the driver is to be deleted:

Remove-CMDriverFromDriverPackage -DriverName "Display VGI Driver" –
DriverPackageName "Package1" –Force

Also, we can use Remove-CMDriverPackage to remove any driver package from the
Configuration Manager database. At the minimum, the cmdlet requires the name or
the ID of the package to be deleted as a parameter:

Remove-CMDriverPackage –ID "CM100027"

Gathering the task sequence
The task sequence involves a sequence of steps to be executed during the
deployment of any software or operating system. The task sequence is mainly used
in operating system deployment to execute a predefined set of tasks. PowerShell
allows us to get the task sequences available in the Configuration Manager console
through the Get-CMTaskSequence cmdlet. If no parameters are specified, the cmdlet
will return all the task sequences available within Configuration Manager. We
can specify the name or the ID of a task sequence to get the complete details of a
particular task sequence:

Get-CMTaskSequence –Name "Win-7 Deployment"

We can use the Disable-CMTaskSequance and Enable-CMTaskSequance cmdlet
to disable and enable the existing task sequences, respectively. At the minimum,
the cmdlets require the name of the task sequence to be disabled or enabled as
the parameter:

Disable-CMTaskSequence –Name "Win-7 Deployment"

Enable-CMTaskSequence –Name "Win-7 Deployment"

We can use the Remove-CMTaskSequence cmdlet to remove the unused or unwanted
task sequences from the configuration manger database:

Remove-CMTaskSequence –Name "Win-7 Deployment"

Chapter 2

[39]

Software update management
PowerShell provides you cmdlets to get the details of software updates. This section
covers cmdlets that we can use to update management activities.

Software catalog details
PowerShell provides you a way to list the software patches available in the
Configuration Manager catalog using the Get-CMSoftwareupdate cmdlet.
This will list all the updates present in the catalog with the default attributes:

Get-CMSoftwareUpdate

You can also query individual updates with the name of the patch as the attribute to
the cmdlet. By specifying the name of the update, you can get complete details of the
particular patch or update:

Get-CMSoftwareUpdate –Name "Cumulative Software Update for Internet
Explorer"

We can also save the specified software update, which is part of the particular
package, to a specified location:

Save-CMSoftwareUpdate –DeploymentPackageName "Finance Updates" –
SoftwareUpdateGroupName "Finance Package Updates" –Location "\\SCCMP01\
SP"

We can create a software update group that contains the group of updates we want
to deploy. We can get the list of update groups available in Configuration Manger
using the Get-CMSoftwareUpdateGroup cmdlet. With our parameters, the cmdlet
will list all the available software update groups in Configuration Manager. We can
specify the group name or ID to get detailed information of a particular group:

Get-CMSoftwareUpdateGroup

Get-CMSoftwareUpdateGroup –ID "P01000d"

Get-CMSoftwareUpdateGroup -Name "12"

By adopting the enhanced features in Configuration Manager, we can create automatic
deployment rules for software updates depending on the requirements. We usually
will not use automatic deployment rules to deploy security and application patches, as
in production, we usually test the patches thoroughly before we implement them on
the production servers. In some applications, such as antivirus patching, we may go for
automatic deployment rules depending on the need.

Administration of Configuration Manager through PowerShell

[40]

PowerShell provides the Get-CMSoftwareUpdateAutoDeploymentRule cmdlet to
retrieve information of auto deployment rules. If no parameters are specified, the
cmdlet will return the details of all the auto deployment rules in Configuration
Manager. We can send the name or ID of the specific auto deployment rule to get
the details of a particular rule:

Get-CMSoftwareUpdateAutoDeploymentRule

Get-CMSoftwareUpdateAutoDeploymentRule –Name "Antivirus updates"

Get-CMSoftwareUpdateAutoDeploymentRule –ID "1257625"

PowerShell will provide an additional cmdlet to get the details of the software update
packages in Configuration Manager. We can use Get-CMSoftwareUpdateDeploy
mentPackage to get the details of the software update packages. If no parameters
are specified, the cmdlet will return all the software update packages present in
Configuration Manager. As with the other cmdlets, we can pass the name or ID of the
required software update package to sharpen the output according to our requirement:

Get-CMSoftwareUpdateDeploymentPackage

Get-CMSoftwareUpdateDeploymentPackage –Name "All Security Updates"

Get-CMSoftwareUpdateDeploymentPackage –ID 1257486

Summary
By now, you should be familiar with how to use PowerShell to get the basic details
of the Configuration Manager environment, have an idea of how PowerShell
displays the output, and know how to export the output to a file, so that it is used for
reporting or is kept for later usage.

You should be familiar with how to create your own custom client settings and how
to modify existing configurations. With this assumption, we will see some real-time
scenarios that will help us to understand cmdlet's usage better. In the next chapter,
we will look at some real-time SCCM administration scenarios and the usage of
PowerShell cmdlets to handle tasks.

[41]

Scenario-based Scripting for
SCCM Administration

Now that we have a basic understanding of how to use PowerShell cmdlets with
Configuration Manager, it is time to better understand its real-time concepts. This
chapter contains a few scenario-based examples that can help you to get an idea of
the real power of PowerShell when used with Configuration Manager.

In this chapter, we will cover the following scenarios:

•	 Adding multiple distribution points to a distribution point group
•	 Creating multiple packages with the .csv/.txt file input
•	 Using PowerShell to access the Configuration Manager installation directory
•	 Checking for SCCM services
•	 Operating a system deployment precheck
•	 Running a ping test
•	 Getting a list of primary sites in the Configuration Manager environment
•	 Getting a list of all the site servers in the Configuration Manager environment
•	 Getting component status in Configuration Manager

www.allitebooks.com

http://www.allitebooks.org

Scenario-based Scripting for SCCM Administration

[42]

Installing the SCCM client agent version. The code blocks
demonstrated in this chapter will not include error-handling
mechanisms. When using the code in real-time scenarios, it is very
important to include error-handling mechanisms to handle errors in
a well-structured way.
For a better understanding of the code blocks used, you can try them
in your lab environment and analyze the output. Try to modify
the output according to your requirements. This will give you the
confidence to write and implement these codes in the production
environment. Before implementing any code block in production,
make sure you have thoroughly tested the code in the development
or test environment. Once you have satisfactorily tested the code in
the development environment, move the code to the preproduction
environment and test for its truthiness. Once you are sure that the
script is working perfectly and delivering the expected results,
implement it in the production environment.

Scenario 1 – adding multiple distribution
points to a distribution point group
This is one common scenario where Configuration Manager administrators are
required to add multiple distribution points to a distribution point group (DP group).
A text file with the distribution point list can be used as the input to the script.

Prescripting activities
Create a text file at D:\PowerShell\DPFile.txt (you can use your convenient
location) and populate the file with the distribution points to be added to the
DP group.

To show you a sample, DPFile.txt should contain DP names, as follows:

GURU.COM
DP1.GURU.COM
DP2.GURU.COM

Chapter 3

[43]

Also, it is important to note that we should enter one DP name per line. Our sample
file will look something like the following screenshot:

Assumption
We will assume the distribution point group is named Test Distribution Group
and the text file location as D:\PowerShell. Look at the following code:

$FilePath = "D:\PowerShell\DPFile.txt"
$DPNames = Get-Content –path $FilePath
ForEach($DP in $DPNames)
{
 Add-CMDistributionPointToGroup –DistributionPointName $DP –
DistributionPointGroupName "Test Distribution Group"
Write-Host "Adding $dp to Test Distribution Group"
}

Each loop will take each DP one at a time from the list and add it to the Test
Distribution Group DP group. On successful execution of the script, we can
see that the multiple boundaries captured in the text file will be added to the
Test Distribution Point DP group.

Scenario 2 – creating multiple packages
with the .csv/.txt file input
This example covers the creation of multiple packages with the details present in
the .txt file. Upon successful execution, we can see multiple packages created in
the Configuration Manager console with the details or configurations present in
the input file.

Scenario-based Scripting for SCCM Administration

[44]

Prescripting activities
We are required to create a .csv file with the details of each package that will be
created. The details include the name of the packages, the manufacturer and version,
and the description and the path of the source file, with the file located in the D:\SCCM
folder. For reference, let's name the Package.csv file. For the current example, we will
take an example file with contents, as shown in the following screenshot:

Consider the following code:

$PkgDetails = Import-csv –path "D:\SCCM\Package.csv"
Foreach($Pkg in $PkgDetails)
{
 $PkgName = $($Pkg.Name)
 $Description = $($Pkg.Description)
 $Mnfr = $($Pkg.Manufacturer)
 $Version = $($Pkg.Version)
 $Path = $($Pkg.Path)

 New-CMPackage –Name $PkgName –Description $Description –
Manufacturer $Mnfr –Version $Version –Path $Path
 Write-Host "Package $PkgName Created Successfully"
}

Scenario 3 – using PowerShell to get
the Configuration Manager installation
directory
One of the most common automation tasks that we carry out for Configuration
Manager is the Configuration Manager health check framework. This primarily
involves detecting the Configuration Manager installation directory.

Chapter 3

[45]

It is not good practice to use the installation directory variable as static, but it is
always advised that you make the variable dynamic, so that the script becomes more
flexible and reusable. This example shows how PowerShell can be used to access the
Configuration Manager installation directory:

Set-Location 'HKLM\SOFTWARE\Microsoft\SMS\Identification\ Installation
Directory'
$AllProp = Get-ItemProperty -path "HKLM\SOFTWARE\Microsoft\SMS\
Identification\ Installation Directory"
$InstallDir = $AllProp."Installation directory"
Write-Host "$InstallDir"

You can use Set-Location only if you are not specifying the full path for the Get-
ItemProperty cmdlet. Here, we use the full path for both cmdlets to ensure that we
get the required result even if we miss out setting the execution before reading the
registry property.

For SCCM 2012 R2, the registry path would be HKLM:\SOFTWARE\Microsoft\
ConfigMgr10\Setup\ and we will query for the UI Installation Directory item.

Scenario 4 – checking for SCCM services
Another common scenario when performing Configuration Manager health checks
is to check for the existence of SCCM services, including the startup type and
the status. We can create a function that receives the server name, service name,
expected status, and expected startup type as parameters. It is recommended that
you make changing variables parameters of the function so that we can make the
function universal:

Function Get-ServiceStatus($ServerList, [string]$Servicename,
[string]$Status, [string]$Startup)
{
 foreach ($Comp in $ServerList)
 {
 if($Temp = Get-WmiObject Win32_Service -ComputerName $Comp |
where {$_.Name -eq $Servicename } | select Name, StartMode, State,
Displayname)
 {
 $Sname = $Temp.Displayname
 $ServiceState = $Temp.State
 $ServiceMode = $Temp.StartMode
 if(($ServiceState -eq $Status) -and ($ServiceMode -eq
$Startup))
 {

Scenario-based Scripting for SCCM Administration

[46]

 Write-Host "service $Sname on $comp is Healthy" –
foregroundcolor "Green"
 }
 Else
 {
 Write-Host "service $Sname on $comp is not Healthy" –
foregroundcolor "Red"
 }
 }
 else
 {
 Write-Host "$ServiceName is not installed on $Comp" –
foregroundcolor "Red"
 }
 }
}

When we check for SCCM services, we can broadly classify the services into two
categories, one is SCCM services and the other is SCCM-dependent services. The list of
SCCM services depends on the roles installed, whereas the dependent services remain
the same irrespective of the roles installed. Checking for a dependent service involves
checking for the IIS service, WDS service, BITS service, and winmgmt service.

Here is the sample of how to call the function with the parameters included:

Get-serviceStatus "SCCMP01" "winMgmt" "Running" "Auto"

Scenario 5 – operating a system
deployment precheck
One of the vital uses of Configuration Manager is the deployment of an operating
system in large-scale enterprises. For successful operating system deployment,
clients should have some of the prechecks completed successfully. One of the tests
is for the existence of temp profiles in the machine. If temp profiles are present in a
client machine, the chances of operating system deployment failure are more 'in both
replace and refresh scenarios. The operating system deployment process fails even
during the user-state capture step. So, it is good practice to automate prechecks using
Configuration Manager before deploying the operating system.

One of the easiest ways to check for the existence of the temp profile is to check for
the existence of the registry key. If the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\AccountPicture\Users registry key contains any of the
sub keys with a .bkp extension, we can say that the computer has a temp profile in it,
otherwise, we can confirm that the machine does not have any temp profile in it.

Chapter 3

[47]

Pre-Scripting Activities: The following code will assume that we have a complist.
txt text file that lists all the computer names to be migrated (which is supposed to
undergo an operating system upgrade) and the text file is kept in the D drive.

Here is the sample CompList.txt file created for the script:

Check the following code:

$complist = Get-Content -Path "D:\PowerShell\Complist.txt"
foreach($comp in $complist)
{
 $sid = Invoke-Command -ComputerName $comp -ScriptBlock {

 Set-Location HKLM:

 Get-ChildItem -path "HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\AccountPicture\Users" | Where-Object {$_.Name
-contains "bkp"}
 }
 if($sid -eq 0)
 {
 Write-Output "No temp profiles found in computer - $Comp"
 }
 else
 {
 Write-Output "Temp profiles found in computer - $Comp"
 }
}

Scenario-based Scripting for SCCM Administration

[48]

This code will write on the console whether the computer has temp profiles in it
or not. However, in real time, we can export the result on to any Excel, HTML,
or CSV file for reporting. We usually integrate this code with other tests, and the
overall result is reported in Excel, HTML, or CSV files. Then, the report is sent to
deployment engineers for further actions.

Scenario 6 – running a ping test
Before doing any automation on the list of computers, the most important aspect
to be tested is whether the computer is reachable or not. If the computer is offline,
there is no point in running any automation script block on the computer. Executing
script blocks on offline computers will just increase the script execution time. So, it is
always advised that you perform a ping test on the list of computers we get as input
and run the block of automation script only on the computers that are reachable.

Sometimes, server administrators disable ping on the server. This code works only if
the ping is not disabled at the firewall level.

Prescripting activities
The following code assumes that we have a complist.txt file in the D drive, which
contains the list of all the computer names that are to be tested whether they are
reachable or not:

$CompList = Get-Content -Path "D:\PowerShell\Complist.txt"
foreach ($Comp in $CompList)
{
 If (test-Connection -ComputerName $Comp -Count 2 -Quiet)
 {
 Write-Host "server $Comp is reachable"
 }
 Else
 {
 Write-Host "server $Comp is not reachable"
 }
}

Chapter 3

[49]

Scenario 7 – getting a list of primary sites
in the Configuration Manager environment
As newbies to the Configuration Manager environment (though not new to
Configuration Manager concepts), it is essential that we familiarize ourselves with
its site design and implementation. We can list the available primary Configuration
Manager sites in the environment by querying local Windows Management
Instrumentation (WMI) of the central administrative site (CAS). The following code
will demonstrate how to query the CAS WMI to get the list of all the primary sites
available in the Configuration Manager environment:

$PrimarySites = @()
$SiteCodeList = @()

$CentralSiteCode = "ABC" # SCCM site code
$CentralSiteProvider = "SCCMCAS" # CAS server name

$Sites=Get-WmiObject -Namespace root\sms\site_$CentralSiteCode SMS_
Site -Filter "Type=2" -ComputerName $CentralSiteProvider
foreach ($site in $Sites)
{
 $SiteCode = $site.SiteCode.ToUpper()
 $SiteCodeList += $SiteCode
 $PrimarySites += $site

}

At the end of the execution, the $SiteCodeList array will have a list of the site codes
of all the primary Configuration Manager servers configured in the environment, and
the $PrimarySites variable will have a list of all the primary site servers configured.

Scenario 8 – getting a list of all site
servers in the Configuration Manager
environment
Once we know that the primary servers are installed in our environment, the next
step is to identify the site servers that are installed in our environment. The following
code demonstrates how to get the list of all site servers that are installed in our
Configuration Manager environment:

$CentralSiteCode = "ABC"

Scenario-based Scripting for SCCM Administration

[50]

$CentralSiteProvider = "SCCMCAS"

$SiteRoles = Get-WmiObject -ComputerName $CentralSiteProvider
-Namespace root\sms\site_$CentralSiteCode SMS_SystemResourceList
$Servers = new-object System.Collections.ArrayList
$ArrServers = new-object System.Collections.ArrayList
Foreach ($item in $SiteRoles)
{
 $StrFQDN = ($item.ServerRemoteName).ToUpper()

 $ArrServers.Add($StrFQDN) -
}
$Servers = $arrServers | sort | select –uniq

Upon successful execution of the code, the $Servers variable will have a list of all
the site servers installed in the environment.

Scenario 9 – getting component status in
Configuration Manager
It is always good to have a periodic check of the component status of the
Configuration Manager components. The following code demonstrates how to get
Configuration Manager components by querying WMI using PowerShell. To simplify
the code, we will display the output on the console. However, in real-time practices,
we usually capture the output in a reporting file. The following code will look for
all the installed Configuration Manager components and verify the health of each
component. The code will query the WMI for the SMS_ComponentSummarizer class
to get the status of the site components:

$TallyInterval = "0001128000080008" #Since site installation
$CentralSiteCode = "ABC"
$CentralSiteProvider = "SCCMCAS"

$ComputersWithIssues = Get-WmiObject -Namespace root\sms\
Site_$CentralSiteCode -query "Select * from SMS_ComponentSummarizer
where Status <> 0 AND TallyInterval = '$TallyInterval'" -ComputerName
$CentralSiteProvider
Foreach ($CompStatus in $ ComputersWithIssues)
{
 switch ($CompStatus.state)
 {
 0 {$strState = "STOPPED"}
 1 {$strState = "STARTED"}

Chapter 3

[51]

 2 {$strState = "PAUSED"}
 3 {$strState = "INSTALLING"}
 4 {$strState = "RE_INSTALLING"}
 5 {$strState = "DE_INSTALLING"}
 default {$strState = "UNKNOWN"}
 }

 Write-Host "---"
 Write-Host ("SiteCode:",$CompStatus.SiteCode)
 Write-Host ("MachineName:",$CompStatus.MachineName)
 Write-Host ("ComponentName:",$CompStatus.ComponentName)
 Write-Host ("Errors:",$CompStatus.Errors)
 Write-Host ("Warnings:",$CompStatus.Warnings)
 Write-Host ("Infos:",$CompStatus.Infos)
 Write-Host ("State:",$strState)
 Write-Host "---"

}

One of the parameters used for the query is TallyInterval. You can find more
details on tally intervals at https://msdn.microsoft.com/en-us/library/
cc144112.aspx.

Scenario 10 – installing the SCCM client
agent version
It is a common requirement to pull out a report of the SCCM agent version installed
on all the client machines in our Configuration Manager environment. This check can
be considered one of the health check activities. The following code demonstrates
how to get the client agent version installed on the list of computers.

Pre-Scripting Activities: Before we execute the script, we need to create a CompList.
txt text file in the D drive (in case of different path, you can update the code block
with the corresponding path) containing the list of computers on which the client
agent version is to be extracted:

$Complist = Get-Content -Path "D:\CompList.txt"
foreach($Comp in $Complist)
{
 $SCCMClientVersion = (Get-WmiObject -Namespace root\ccm -Class CCM_
Client -ComputerName $Comp).ClientVersion
 Write-Host "SMS Client Agent Version For $Comp - $SCCMClientVersion"
}

www.allitebooks.com

https://msdn.microsoft.com/en-us/library/cc144112.aspx
https://msdn.microsoft.com/en-us/library/cc144112.aspx
http://www.allitebooks.org

Scenario-based Scripting for SCCM Administration

[52]

Summary
This chapter gave a clear idea of the usage of PowerShell cmdlets in the real-time
administration of Configuration Manager. We discussed various scenarios and the
usage of PowerShell scripts to get the work done easily without human errors. You
should now have a clear idea of how to use PowerShell cmdlets with SCCM 2012.
In the next chapter, you will see how to manage another important product of the
System Center family—System Center Operations Manager through PowerShell.

[53]

Administration of Operations
Manager through PowerShell

In the last chapter, we saw the basic administration and management of
Configuration Manager through PowerShell. Now, in this chapter, we will look
at the administration and management of another very important product of the
System Centre family, which is System Center Operations Manager (SCOM).
SCOM is popularly known as Operations Manager.

In Configuration Manager, the entire content is divided in various subdivisions,
which help us to better understand the consents:

•	 Monitoring
•	 Authoring
•	 Administration

Monitoring
This section covers alert management, alert resolution, and alert filtering in depth.
It covers the real-time management of alerts and how to set up resolution states.

Administration of Operations Manager through PowerShell

[54]

Knowing a management group
It is very important to know the management group details when you get
into a new Operations Manager environment. PowerShell provides the Get-
SCOMManagementGroup cmdlet to get the details of the infrastructure management
group. We can also get the detailed information of the management servers available
in our SCOM monitoring environment. We can use this cmdlet with no argument. This
cmdlet will return the details of the current monitoring infrastructure, which includes
the monitoring management group name and group-related detailed information:

Get-SCOMManagementGroup

Alert management
As an SCOM administrator, it is one of our day-to-day activities to monitor alerts
and respond to them. One way to see all the alerts, thrown on the Operations
Manager console is to log in and check for alerts and the other way is to use
PowerShell to list all the alerts on the PowerShell console, which can be exported to
an external file for later use. PowerShell provides the Get-SCOMAlert cmdlet to list
all the alerts registered with Operations Manager.

With no arguments specified, the alert will list all the alerts registered with
Operations Manager. The following example demonstrates the usage of a
cmdlet with no arguments:

Get-SCOMAlert

However, in real time, we will not usually be interested in listing all the alerts.
Usually, we will apply some sort of filter to the alerts to narrow down the output
according to our requirement. The following example demonstrates a few of the
filtering methods:

Get-SCOMAlert –Name "*Exchange*"

The preceding cmdlet will list all the SCOM alerts that have the word Exchange in
the alert name:

Get-SCOMAlert | Where-Object {$_.ResolutionState –ne 255}

This will list only the alerts with a resolution state not equal to 255. When an alert is
generated, its resolution state is New. Operators can change the resolution state for a
new alert to Closed or to a custom resolution state that an administrator has created
for the management group. The ID for New is 0 and the ID for Closed is 255. You can
assign custom resolution states with any value from 2 through 254.

Chapter 4

[55]

The following example will show you how to list the alert related to a particular group:

$Group = Get-SCOMGroup –DisplayName "TestGroup1"

$Instance = $Group.GetRelatedMonitoringObjects('Recursive')

$Alerts =Get-SCOMAlert -instance $Instance -ResolutionState (2..254)

We can also get the history of any particular alert or the list of alerts using
PowerShell. We can use the Get-SCOMAlertHistory cmdlet to get the alert history:

$Alert = Get-SCOMAlert –Name "*Exchange*"

Get-SCOMAlertHistory –AlertName $Alert

Alert resolution
Once the issues are resolved, we are required to close the alert for tracking. As we are
aware, there will be two kinds of alerts in SCOM—auto closure and manual closure
alerts. Auto closure alerts will get closed when the SCOM detects that the issue is
resolved in the agent. The alert will be auto moved to the closed alert tab.

In case of manual closure alerts, we are manually required to close the alerts when
the issue is resolved or when the engineer resolves the ticket. The engineer has to
manually set the status of alert to resolved.

We can use the Get-SCOMAlertResolutionState cmdlet to get the list of the alert
resolution states already available in the database.

With no arguments specified, the cmdlet will list all the available resolution states.
We can also specify the resolution state code as a parameter of the cmdlet to get the
details of a particular resolution state:

Get-SCOMAlertResolutionState

Get-SCOMAlertResolutionState –ResolutionStateCode 10

PowerShell provides the Add-SCOMAlertResolutionState cmdlet to set the
custom resolution state of the existing alert. We are required to provide a name for
the new resolution state and the resolution state code as arguments to the cmdlet.
The following example will add a new resolution state, Investigating, with the
resolution state code as 20:

Add-SCOMAlertResolutionState –Name "Investigating" –ResolutionstateCode
20

Administration of Operations Manager through PowerShell

[56]

Authoring
This topic involves the management of object discovery, reading and creating a new
monitoring class, and reading and creating new groups.

Discovery management
Once the management pack is imported on the Operations Manger console, the next
step is to enable discovery of objects on any particular group:

Get-SCOMDiscovery

PowerShell also allows us to disable the discovery of objects for any management
pack. We can use the Disable-SCOMDiscovery cmdlet to disable the discovery of
objects. Once the discovery is disabled, Operations Manager will stop monitoring
the object with the rules and monitors defined in the management pack.

The following example will illustrate the usage of PowerShell to disable the
discovery of the management pack. First, we are required to get the management
pack for which we want to disable the discovery and class details. Then, we will
use the Disable-SCOMDiscovery cmdlet to disable the discovery of objects:

$MP = Get-SCOMManagementPack –Name "Test.Guru.Com"

$Class = Get-SCOMClass –Name "Test Class"

$Discovery = Get-SCOMDiscovery –Name "MyDiscovery"

Disable-SCOMDiscovery –Class $Class –Discovery $Discovery –ManagementPack
$MP

The preceding code reads the management pack by the "Test.Guru.Com" name.
It also gets the class name by the "test class" name and the discovery by the
"MyDiscovery" name. It will disable the SCOM discovery by the "MyDisovery"
name on the "Test Class" class with the "Test.Guru.Com" management
pack name.

Chapter 4

[57]

Class and instance
Class in Operations Manager represents the type of an object. All the instances of a
class share the similar set of properties. We can get the list of classes in Operations
Manager using the Get-SCOMClass cmdlet. With no parameter specified, the
cmdlet will list all the available classes. We can also pass the name of the class as
an argument to the cmdlet to get the details of that particular class. The following
example demonstrates the usage of the Get-SCOMClass cmdlet both with and
without the parameters:

Get-SCOMClass

Get-SCOMClass –Name "Test,Guru.FolderMonitor.Class1"

Every object in a class is considered as an instance of that class. All instances of
a class share a similar set of properties. PowerShell provides a way to list all the
instances of a class using the Get-SCOMClassInstance cmdlet. The following
example demonstrates the usage of this cmdlet:

$Class = Get-SCOMClass –Name "Test.Guru.Foldermonitor.Class1"

Get-SCOMClassInstance –Class $Class

Groups
In Operations Manager, groups are used to hold the list of the managed objects.
We can configure the group to be static or dynamic. PowerShell provides a way to
list all the available groups in Operations Manager. We can use Get-SCOMGroup to
list all the groups available in Operations Manager. With no parameters specified,
the cmdlet will list all the available groups. We can pass the name of the group as
a parameter to the cmdlet to get detailed information of that particular group. The
following example will demonstrate the usage of the cmdlet:

Get-SCOMGroup

Get-SCOMGroup –DisplayName "TestGroup1"

Administration of Operations Manager through PowerShell

[58]

Administration
This section deals with the management of core Operations Manager activities, such
as creating management packs, subscriptions, agent-managed and agentless-managed
entities, and many more.

Management servers
The management server is the main part of the Operations Manager architecture.
It helps the administrator to configure and administrate the Operations Manager
environment. It communicates with the agents and databases in the Operations
Manager environment.

Each management group will have multiple management servers for high
availability and load balance. A combination of multiple management servers
will form a resource pool. When any management server resource pool fails,
other management servers pick up the load to provide continuous service.

We can get the properties of any management server in the Operations Manager
environment using the Get-SCOMManagementServer cmdlet. We are required to
provide the name of the server as the parameter to the cmdlet:

Get-SCOMManagementServer –Name "Server01.guru.com"

Also, PowerShell facilitates the gathering of information of any gateway
management servers. The gateway management server helps management servers
across non-trusted domains. We can use the Get-SCOMGatewayManagementServer
cmdlet to get the details of the gateway management servers in the environment:

Get-SCOMGatewayManagementServer –ComputerName "Server2.guru.com"

We can also get the list of all the gateway servers in the Operations Manager
environment using wild characters (wildcards) in the computer name parameter:

Get-SCOMGatewayManagementServer –Name "*.guru.com"

Agent management
Like Configuration Manager, before we monitor any computer from Operations
Manager, we are required to install an agent on the machine. The agent will collect
information from the client, receive management pack monitoring rules from the
management server, and act accordingly.

Chapter 4

[59]

We can either manage computers through an agent or we can go for agentless
monitoring. We can enable any near agent to act as a proxy agent, which will
collect information from the agentless computer.

Agents will collect data from the computer and compare the sample with the
predefined values in SCOM rules or SCOM monitors. Later, depending on the
values, they will generate alerts on the Operations Manager console.

We can see the list of agent-managed computers either from the console or we can
use PowerShell cmdlets to list all the computer names. PowerShell provides the Get-
SCOMAgent cmdlet to list all the agent-managed computers in Operations Manager.

With no parameters specified, the cmdlet will list all the agent-managed computers
from the environment. We can refine the output of any particular management
server by passing the management server as a parameter to the cmdlet:

$MgmtServer = Get-SCOMManagementServer "MgmtServer1.guru.com"

Get-SCOMAgent –ManagementServer $MgmtServer

We can also get all the agent-managed computers in the guru.com domain using
wild characters (wildcards) in the DNS hostname parameter. The following cmdlet
will list all the agent-managed computers in the guru.com domain:

Get-SCOMAgent –DNSHostName "*.guru.com"

Agent installation
There are many ways in which we can install agents on computers:

•	 We can use group policies and deploy agents on the required computers
•	 We can also use the Configuration Manager software distribution method to

push the agent software on the computer
•	 We can also make the agent a part of the operating system image that will get

deployed during the deployment of the operating system

Apart from all the preceding methods, we can also manually install the agent using
Command Prompt or PowerShell. PowerShell provides the Install-SCOMAgent
cmdlet to install the SCOM agent on the target computer.

Administration of Operations Manager through PowerShell

[60]

At a minimum, we are required to provide the name of the computer and the
primary management server name as parameters to the cmdlet. The following
example will illustrate the installation of an SCOM agent on a computer by
passing the required parameters:

$PrimMgmtServer = Get-SCOMManagementServer –ComputerName
"SCOMMgmtServer1.Guru.com"

Install-SCOMAgent –DNSHostName "Client1.guru.com" –
PrimaryManagementServer $PrimMgmtServer

In addition to the primary management server and computer name, we can also
specify the installation account and client action account (the client action account is
used to gather information and run remediation actions on the client) as parameters
to the cmdlet. We can use the Get-Credential cmdlet for an installation account to
specify the installation account credentials during runtime.

When we see an SCOM agent malfunctioning, one of the basic troubleshooting
steps that we follow is to repair the client agent. PowerShell provides the Repair-
SCOMAgent cmdlet to repair the agent installed on a computer. The cmdlet will
accept the name of the computer on which the agent is to be repaired as a parameter
to the cmdlet:

Get-SCOMAgent –DNSHostName "Client1.guru.com" | Repair-SCOMAgent

This cmdlet will get the SOCM agent installed on the "Client1.guru.com"
computer and repair the agent on the computer.

We can also uninstall the agent on the computer using the Uninstall-SCOMAgent
cmdlet. This parameter will accept the name of the computer on which the agent is to
be uninstalled as a parameter. We can also specify the action account as a parameter
to the cmdlet:

$Computer = Get-SCOMAgent –DNSHostName "Client1.guru.com"

Uninstall-SCOMAgent –Agent $Computer

SCOM proxy agents
As discussed earlier, we can also make an agent act as a proxy agent. A proxy agent
can be used for agentless monitoring of objects. PowerShell provides the Enable-
SCOMAgentProxy cmdlet to enable any agent as a proxy agent, which can facilitate
agentless monitoring of the objects.

Chapter 4

[61]

We can pass a single computer or an array of computers as parameters to this
cmdlet. In case of multiple computers, the cmdlet will enable proxy monitoring
on the computer:

$SCOMAgent = Get-SCOMAgent –DNSHostName "Client1.guru.com"

Enable-SCOMAgentProxy $SCOMAgent –PassThru

Similarly, we can disable a proxy agent using PowerShell. PowerShell provides the
Disable-SCOMAgentProxy cmdlet to disable a proxy on the required SCOM agent:

$SCOMAgent = Get-SCOMAgent –DNSHostName "Client1.guru.com"

Disable-SCOMAgentProxy $SCOMAgent

When we manually install the agent on a computer, we are required to manually
approve the agent to enable monitoring and to communicate with the management
server. Unless the agent is approved, the agent software cannot communicate with
the management server and no monitoring can be performed.

We can use the Get-SCOMPendingManagement cmdlet to get the list of agents with
the agent pending action type as manual approve. Then, we can approve the list
using the Approve-SCOMPendingManagement cmdlet:

Get-SCOMPendingManagement | Where-Object {$_.AgentPendingActionType –eq
"ManualApproval"} | Approve-SCOMPendingManagement

This will get all the agents that are pending for manual approval and approve the list.
We can also specify the action account and credentials as parameters to the cmdlet.

As an administrator, for any reason, if you want to deny any agent in the pending
list to block communication with the management server, PowerShell provides the
Deny-SCOMPendingManagement cmdlet to deny the agent from being monitored:

Get-SCOMPendingManagement | Where-Object {$_.AgentPendingActionType –eq
"ManualApproval"} | Deny-SCOMPendingManagement

This will get all the agents that are pending for manual approval and deny the list.
We can also specify the action account and credentials as parameters to the cmdlet.

Management pack details
Being an Operations Manager administrator, we are well aware that management
packs are the heart and soul of monitoring activities. Management packs typically
contain monitoring settings for applications and services. Once the management
pack is imported to the Configuration Manager console, it will discover the
configured objects, and upon enabling the monitoring, it will start monitoring the
objects configured for the same.

Administration of Operations Manager through PowerShell

[62]

Management packs may contain rules, monitors, tasks, reports, and views. It
depends on the monitoring requirements to design the management packs
accordingly. Requirements may be as simple as monitoring a service or an event log,
or it may be any custom complex requirement. Usually, in real-time scenarios, we
follow script-based monitoring for any custom complex monitoring. We can use the
VB or PowerShell scripting for this purpose.

PowerShell provides the Get-SCOMManagementPack cmdlet to list all the
management packs available in the Operations Manager database. Without the
specified parameters, the cmdlet will list all of the available management packs in the
database. We can also specify the name of the management pack as the parameter to
the cmdlet to list the properties of our interested management pack:

Get-SCOMManagementPack

Get-SCOMManagementPack –Name "Test.Guru.Folder.Monitor"

We can use the Import-SCOMManagementPack cmdlet to import any management
packs on the SCOM database. Before you import any management packs, Operations
Manager will validate the correctness of the management pack file, which will be
either sealed (.mp extension) or unsealed (.xml extension).

If you are planning to refer to the management packs as a reference
management pack to some other management pack, it is always
required that you seal the management pack before you import it
to the Operations Manager console.

At a minimum, we are required to provide the full path of the management pack to
be imported as a parameter to the cmdlet. Optionally, we can also specify the name
of the management pack we will import. The following example will illustrate the
import of a management pack:

Import-SCOMManagementPack –FullName "C:\SCOM\MP\Test.Guru.FolderMonitor.
mp"

Chapter 4

[63]

Similarly, we can also export all the management packs available in the
Operations Manager database as part of the maintenance activities using the
Export-SCOMManagementPack cmdlet. At a minimum, this cmdlet will accept
the path where the management packs are to be exported as parameters. With no
parameters specified, the cmdlet will export all the management packs. We can use
the Get-SCOMManagementPack cmdlet with the name of the required management
pack, which pipelines to the Export-SCOMManagementPack cmdlet to export only the
interested management packs. The following example will illustrate the usage of the
Export-SCOMManagementPack cmdlet:

Get-SCOMManagementPack –Name "Test.Guru.FolderMonitor" |Export-
SCOMManagementPack –Path "C:\SCOM\MP\Archive"

We can also remove the unnecessary management packs for the Operations
Manager database using the Remove-SCOMManagementPack cmdlet. It is always a
good practice to remove all the unwanted management packs for the production
environment when they are not in use. To remove a management pack for the
console, we are required to provide the name of the management pack to be
removed as a parameter to the cmdlet:

Remove-SCOMManagementPack –ManagementPack "Test.Guru.FolderMonitor"

You can also use an intermediate variable to hold the name of the management pack
to be deleted:

$MP = Get-SCOMManagementPack | Where-object {$_.Name –eq "Test.Guru.
FolderMonitor"}

Remove-SCOMManagementPack –ManagementPack $MP

SCOM rules
SCOM rules are used to collect data from different sources, such as an event log, log
files, and so on, and store that data in the database. SCOM rules will duplicate data
to both the operational database and data warehouse. We usually target classes for
rules and not groups.

Rules are event-driven and are mainly used for reporting, such as getting the
availability report and performance report. Rules are also used when there is no
good or bad condition to be considered. Rules will generate an alert when the event
occurs and will not auto close. Alerts generated by rules are manually closed alerts.

Administration of Operations Manager through PowerShell

[64]

PowerShell provides the Get-SCOMRule cmdlet to get all the rules in the Operations
Manager database. To make the output more meaningful, we generally will give
the name of the rule or rule pattern to narrow down the output according to
our requirement:

Get-SCOMRule –Name "*FileMonitor*"

This cmdlet will retrieve all the SOCM rules that have FileMonitor in it. Similarly,
we can use different wild character patterns to get the required output.

We can also use the Get-SCOMManagementPack cmdlet pipelines with the
Get-SCOMrule cmdlet to list all the rules that are configured in a particular
management pack:

Get-SCOMManagementPack –Name "Test.Guru.FolderMonitor" | Get-SCOMRule

The preceding cmdlet will first search for the management pack by the "Test.Guru.
FolderMonitor" name and it will list down all the rules that are configured in the
management pack.

As discussed before, SCOM rules target a class rather than group name. We can also
get the list of all the SCOM rules targeted on a particular class. The following cmdlet
will retrieve all the SCOM rules targeted on the class with the name "TestClass":

Get-SCOMRule –Target (Get-SCOMClass –DisplayName "TestClass")

We can also directly specify the name or ID of the SCOM rule if we know how to get
the complete details of that particular SCOM rule. We can either specify the name or
ID of the SCOM rule as a parameter:

Get-SCOMRule –ID "XXXX-XXXXX-XXXXX-XXXXX"

Exampple: Get-SCOMRule –ID "6a5b9728-52de-9da2-c74c-1189582a91e5"

When we create any SCOM rule, the first thing we do is we enable the rule of any
override management pack. We can enable any SCOM rule on a particular override.
We can use the class name or the management pack name as the parameter to
the cmdlet:

$Class = Get-SCOMClass –DisplayName "TestClass"

$Rule = Get-SCOMRule –DisplayName "TestRule"

$MP = Get-SCOMManagementPack –DisplayName "TestMP"

Enable-SCOMRule –Class $Class –Rule $Rule –managementPack $MP -Enforce

Chapter 4

[65]

We can use Disable-SCOMRule to disable the existing SCOM rule and save to an
override. We are required to provide the name of the management pack or the name
of the class as the parameter to the cmdlet:

$Class = Get-SCOMClass –DisplayName "TestClass"

$Rule = Get-SCOMRule –DisplayName "TestRule"

$MP = Get-SCOMManagementPack –DisplayName "TestMP"

Disable-SCOMRule –Class $Class –Rule $Rule –managementPack $MP -Enforce

SCOM monitors
Like SCOM rules, management packs may also contain monitors. Monitors indicate
the health of the managed objects. Alerts generated by monitors are called auto close
alerts, which means that the alert generated by a monitor will be auto closed when
the managed entity comes back to normal condition at any point of time. This defines
a logic of how an SCOM agent can identify when something goes wrong with the
managed objects.

SCOM provides three kinds of monitors:

•	 A unit monitor
•	 A dependency monitor
•	 An aggregate monitor

A unit monitor measures particular aspects of an application, such as the
performance, watching registry, log files monitoring, running a script, and so on.
A dependency monitor provides the health roll up between two classes and the
aggregate monitor combines the health of multiple monitors.

PowerShell provides the Get-SCOMMonitor cmdlet to list all the available monitors
of a particular management pack or the monitors of any particular class. We can
specify the ID/name parameter to pass the ID/name of the monitor that we are
interested in to get the complete details of it.

Here are a few examples of how to use the Get-SCOMMonitor cmdlet. First, we will
see how to get the details of a particular monitor by passing the name of that monitor
as a parameter. Here, "Guru.Test.FolderMonitor.monitor" is the name of the
monitor I am interested in:

Get-SCOMMonitor –Name "Guru.Test.FolderMonitor.monitor"

Administration of Operations Manager through PowerShell

[66]

We can also list all the available monitors in a particular management pack.
The following example aims at listing all the monitors in the "Guru.Test.
FolderMonitor" management pack:

Get-SCOMManagementPack –Name "Guru.Test.FolderMonitor" | Get-SCOMMonitor

We can also list all the available monitors that have a given class that is included by
passing the class name as a parameter. The following example aims at listing all the
monitors that have the "Guru.Test.FolderMonitor.Class1" class:

Get-SCOMMonitor -Instance (Get-SCOMClassInstance -DisplayName
"Databases")

PowerShell provides us the means to enable or disable monitors. We can use
Enable-SCOMMonitor to enable any SCOM monitor. We are required to provide
the management pack name and the class name as parameters to the cmdlet.

The following example demonstrates the usage of the Enable-SCOMMonitor
cmdlet. The example aims at enabling the "Guru.Test.FolderMonitor.Monitor"
monitor of the "Guru.Test.Monitor" management pack on the "Guru.Test.
Foldermonitor.Class1" class:

$MP = Get-SCOMManagementPack –Name "Guru.Test.Foldermonitor"

$Class = Get-SCOMClass –Name "Guru.Test.Foldermonitor.Class1"

$Monitor = Get-SCOMMonitor –Name "Guru.Test.FolderMonitor.Monitor"

Enable-SCOMMonitor –Class $Class –ManagementPack $MP –Monitor $Monitor

PowerShell also provides the Disable-SCOMMonitor cmdlet to disable unused
monitors if any. The cmdlet requires the name of the monitor, management pack
name, and target class as parameters to the cmdlet. The logic works similar to how
Enable-SCOMMonitor works.

The following example demonstrates the usage of the Disable-SCOMMonitor
cmdlet. It aims at enabling the "Guru.Test.FolderMonitor.Monitor" monitor of
the "Guru.Test.Monitor" management pack on the "Guru.Test.Foldermonitor.
Class1" class:

$MP = Get-SCOMManagementPack –Name "Guru.Test.Foldermonitor"

$Class = Get-SCOMClass –Name "Guru.Test.Foldermonitor.Class1"

$Monitor = Get-SCOMMonitor –Name "Guru.Test.FolderMonitor.Monitor"

Disable-SCOMMonitor –Class $Class –ManagementPack $MP –Monitor $Monitor

Chapter 4

[67]

Database grooming
Database grooming is one of the standard maintenance activities of Operations
Manager. Database grooming will delete all the unnecessary data from the Operations
Manager database. PowerShell provides the Get-SCOMDatabaseGroomingSetting
cmdlet to see the available settings in Operations Manager. With no parameters
specified, the cmdlet will provide the settings configured on Operations Manager:

Get-SCOMDatabaseGroomingSetting

PowerShell also provides the Set-SCOMDatabaseGroomingSetting cmdlet to
modify any changes to the database grooming settings. The following example sets
the alert retention period of the operational database. The following cmdlet will also
set the availability data retention period along with the event data retention period.
For all the configurations, the value is set to 5 in the following example:

Set-SCOMDatabaseGroomingSetting –AlertDaysToKeep 5 –
AvailabilityHistoryDaysToKeep 5 –EventDaysToKeep 5

Alert notifications
For best utilization of SCOM monitoring and to help administrators take
quick action on the alerts, Microsoft has provided a notification mechanism as
a feature in SCOM. Whenever there is an alert from any particular monitor or
from any particular class, configurations in SCOM can be set so that a notification
will be sent to the administrator in the form of an e-mail or an instant message or
via a short message service.

PowerShell provides the Get-SCOMNotificationChannel cmdlet to get the list
of available notification channels for a management group. With no parameters
specified, the cmdlet will retrieve the list of the available notification channels in
the management group. We can also specify the name of the notification channel
as a parameter to the cmdlet to get more information of that particular notification
channel. The following example demonstrates the usage of the cmdlet with and
without parameters:

Get-SCOMNotificationChannel

Get-SCOMNotificationChannel –Displayname "Email Channel"

We can add our own custom notification channels as and when required. PowerShell
provides the Add-SCOMNotificationChannel cmdlet to add new notification
channels to the existing list. To deliver notifications, a notification channel uses a
delivery mechanism, such as an e-mail, instant messenger, a short message service,
or command.

Administration of Operations Manager through PowerShell

[68]

The following example demonstrates the creation of the SMTP e-mail notification
channel. For the e-mail notification channel, first, we are required to create a subject
and the body of the e-mail to be sent. The body and subject formatting of the e-mail
looks a bit tricky, but this remains standard across:

$Sub = "SCOM Alert: `$Data[Default='Not Present']/Context/DataItem/
AlertName`$"

$Body = "Owner: `$Data[Default='Not Present']/Context/DataItem/
AlertOwner`$"

Add-SCOMNotificationChannel -Name "Guru.Test" -Server "mail.guru.com"
-From "scomadmin@guru.net" -Subject $Sub -Body $Body

We can also remove any of the existing notification channels for the list whenever
required. PowerShell provides the Remove-SCOMNotificationChannel cmdlet to
remove notification channels from the list. We can use the name of the notification
channel as a parameter to the cmdlet that specifies the name of the notification channel
to be deleted for the existing list. The following example demonstrates the deletion of
the notification channel using the Remove-SCOMNotificationChannel cmdlet:

$NC = Get-SCOMNotificationChannel –DisplayName "TestNotificationChannel"

Remove-SCOMNotificationChannel –Action $NC

Using PowerShell, we can also list the registered subscribers for alert notification.
PowerShell provides the Get-SCOMNotificationSubscriber cmdlet to list all the
registered subscribers. With no parameters specified, the cmdlet will list all the
available subscribers. We can specify any subscriber name as a parameter to the
cmdlet to get detailed information of any specific subscriber:

Get-SCOMNotificationSubscriber

Get-SCOMNotificationSubscriber –Name "TestUser1"

We can also add the new subscribers using PowerShell, just like the way we did from
the console. We can use the Add-SCOMNotificationSubscriber cmdlet to add new
subscribers to the list. The following example shows how to add a new subscriber to
the list:

Add-SCOMNotificationSubscriber –Name "TestUser2" –DeviceList "TestUser2@
guru.com"

Similarly, we can remove any listed subscriber via PowerShell using the Remove-
SCOMNotificationSubscriber cmdlet. We are required to provide the name of
the subscriber to be removed as a parameter to the cmdlet. The following example
demonstrates the removal of a subscriber from the list:

$User = Get-SCOMNotificationSubscriber –Name "TestUser1"

Remove-SCOMNotificationSubscriber -Name $User

Chapter 4

[69]

Summary
By now, you should be able to understand the basic cmdlet to manage Operations
Manager. You should be comfortable in using simple cmdlets to read and update
simple SCOM configurations. In the next chapter, we will see the more advanced
usage of cmdlets to configure and manage Operations Manager.

[71]

Scenario-based Scripting for
SCOM Administration

The last chapter provided a basic understanding of how to manage System Center
Operations Manager (SCOM) operations through PowerShell. Now, it's time to look
at some of the real-time scenarios that will give us a better understanding of how to use
PowerShell to carry out some of the day-to-day SCOM activities. Here, we are trying to
cover most of the common scenarios that we, as administrators, would need to perform
on a daily basis. We can still do much more than what is covered in this chapter.

The code blocks demonstrated in this chapter will not include
error-handling mechanisms. When using code in real-time
scenarios, it is very important to include error-handling
mechanisms to avoid errors.

For a better understanding of the following code blocks, you can try them out in
your lab environment and analyze the output. Try to modify the output according to
your requirements. This will give you the confidence to write and implement your
code in the production environment.

Before implementing any code block in production, make sure that you have
thoroughly tested the code in the development or test environment. Once you have
satisfactorily tested the code in the development environment, move the code to the
pre-production environment, and test for its truthiness. Once you are very sure that
the script is working perfectly and delivering expected results, implement it in the
production environment.

Scenario-based Scripting for SCOM Administration

[72]

There are a few basic things that you should know before you start scripting the
scenarios. One of them is the resolution state and the code associated with the state.
The following table lists the alert state and the corresponding code for that state:

State Code
New 0

Closed 255

Also, it is equally important to be aware of the alert severity and its corresponding
code. The following table maps the alert severity with its corresponding code:

Alert severity Code
Information 0

Warning 1

Critical 2

With the assumption that you are familiar and comfortable with the basic exercises
that we discussed in the last chapter, let us now consider some real-time scenarios,
and how to automate those scenarios using PowerShell.

This chapter covers the following topics:

•	 Resolving all SCOM alerts
•	 Listing and exporting all SCOM monitors
•	 Listing and exporting all SCOM overrides
•	 Listing and exporting gray agents in SCOM
•	 Finding management pack details for a particular alert
•	 Listing past alerts
•	 Backing up unsealed management packs
•	 Counting alerts created by a monitor
•	 Enabling specific SCOM monitors
•	 Listing all updated management packs
•	 Listing and exporting repeating SCOM alerts
•	 Getting SCOM alerts specific to a computer
•	 Listing all unhealthy SCOM agents
•	 Disabling SCOM alerts
•	 Listing all heartbeat failure machines

Chapter 5

[73]

•	 Listing all management server open alerts
•	 Listing management servers in maintenance mode
•	 Listing health status of management servers
•	 Putting an IIS 7 application pool in maintenance mode

Resolving all SCOM alerts
This example demonstrates how an SCOM administrator can resolve all the alerts
that are older than five days. We can use the same example code to resolve all the
alerts that are older than our custom required date by changing the value from 5
to our custom requirement as shown in the following example:

$targetDate = (Get-Date).AddDays(-5)

$allAlerts = Get-SCOMAlert

$filterAlerts = $allAlerts | Where-Object {($_.ResolutionState -eq 0)
 -and ($_.LastModified -lt $targetDate) -and ($_.IsMonitorAlert -eq
 $false)}

$filterAlerts | Resolve-SCOMAlert

Listing and exporting all SCOM monitors
This example demonstrates how to list and export all the available monitors in the
specific management pack.

Assumptions
In the following example, we will extract all the monitors of the FileMonitor.Guru.
Test.MP custom management pack and store it in C:\SCOM\MP\MP.txt:

$MP = "FileMonitor.Guru.Test.MP"

$FileLocation = "C:\SCOM\MP\MP.txt"

$monitorList = Get-Monitor –ManagementPack $mp

Listing and exporting all SCOM overrides
The following example demonstrates how to list and export all the overrides for a
specific management pack using PowerShell. The same example can be used to list
overrides for any other management packs.

Scenario-based Scripting for SCOM Administration

[74]

Assumptions
In the following example, we will list overrides for the FileMonitor.Guru.Test.MP
management pack. You can replace the value with your required management
pack name:

$fileLocation = "C:\SCOM\MP\Overrides.txt"

$mp = Get-SCOMManagementPack -DisplayName "File Monitor MP"

$overrides = $mp.GetOverrides()

$overrides | Out-File $fileLocation

Listing and exporting gray agents in
SCOM
SCOM administrators need to list and troubleshoot gray agents in SCOM. You
can access the Microsoft TechNet link https://technet.microsoft.com/en-in/
library/hh212723.aspx for more details on gray agents. Here is a test code that
will list all the gray agents and export the results in a text file. We can use this file
as a reference for further troubleshooting or we can automate the troubleshooting
process by feeding this file as an input to other code that will carry on the
troubleshooting activities:

$class = Get-SCOMClass -Name "Microsoft.SystemCenter.Agent"

$mObject = $class | Get-SCOMMonitoringObject | Where-Object {
 $_.IsAvailable -eq $false}

$mObject | select DisplayName

Finding management pack details for a
particular alert
This is one of the common requirements that both SCOM administrators and
management pack developers will be interested in: the details of the management
pack responsible for a particular alert.

Here, we are trying to get the details of the alert that has File Transfer Error in
the name of the alert. We can use any wild characters of our choice to get the details
of an alert for the management pack mapping we are interested in. Also, the code
will fetch only the first alert with File Transfer Error in its name:

$alertName = "File Transfer Error"

$allAlerts = Get-SCOMAlert

https://technet.microsoft.com/en-in/library/hh212723.aspx
https://technet.microsoft.com/en-in/library/hh212723.aspx

Chapter 5

[75]

$alert = $allAlerts | Where {$_.Name -like $alertName}
 | Select -First 1

If ($alert.IsMonitorAlert -eq "True")

{

 Write-Host "This is a monitor-generated alert"

 $monitor = Get-SCOMMonitor -ID $alert.MonitoringRuleID

 $mp = $monitor.GetManagementPack()

 $infoObj = New-Object PSObject -Property @{Enabled =
 $monitor.Enabled; DisplayName = $monitor.DisplayName;
 ManagementPack = $mp}

 $infoObj | Select Enabled, DisplayName, ManagementPack

}

else

{

 Write-Host "This is a rule-generated alert"

 $rule = Get-SCOMRule -ID $alert.MonitoringRuleID

 $rule | Select Enabled, DisplayName, ManagementPack

}

Listing past alerts
The following code will list all the alerts generated a day before you run the script.
You can make it according to your custom date just by changing the value that we
add to the date (-1 in the current example) in the following script:

$AllAlerts = Get-SCOMAlert

$AlertDateYesterdayBegin = [DateTime]::Today.AddDays(-1)
 $AlertDateYesterdayEnd = [DateTime]::Today.AddDays
 (-1).AddSeconds(86399)

$YesterdayAlerts = @($AllAlertsW | where {$_.
 TimeRaised -ge $AlertDateYesterdayBegin
 -and $_.TimeRaised -lt $AlertDateYesterdayEnd})

$YesterdayAlerts

Scenario-based Scripting for SCOM Administration

[76]

Backing up unsealed management packs
As SCOM administrators, we need to take backups of the unsealed management
packs on a daily basis as part of the SCOM maintenance activities. We can use the
TechNet link https://technet.microsoft.com/en-in/library/hh212794.aspx
to get detailed information of the management pack, its parts, and types.

The following code demonstrates how to take a backup of all the unsealed
management packs that use PowerShell:

$AllMPs = Get-SCOMManagementPack

$UnsealedMPs = $AllMPs | where {$_.Sealed -eq $false}

Now $UnseledMPs contains all unsealed MPs.
 Next is to export the contents of $UnSeledMPs

$UnseledMPsExport-SCOMmanagementpack -path C:\MPBackups

Counting alerts created by a monitor
The following code will demonstrate how to count the number of alerts created
by the monitor over the last five days. This can be used for reporting. We can
change the time interval just by changing the -5 value in the following code.
Also, this code will fetch only closed alerts (code 255). We can change the
following code as per the requirement:

$PastDate =

(Get-Date).Date.AddDays(-5)

$AllAlerts = Get-SCOMAlert

$AlertCount = ($AllAlerts -criteria 'ResolutionState = "255"
 AND IsMonitorAlert = "True"| Where-Object {$_.
 LastModified -gt $PastDate }).count

$AlertCount

Enabling specific SCOM monitors
This code demonstrates how to enable a specific monitor from a specific management
pack. As we are aware, even after we import a new management pack with several
monitors configured, it will not be effective until we enable the monitor. So, here is
the sample code that will help you to enable the monitor through PowerShell.

https://technet.microsoft.com/en-in/library/hh212794.aspx

Chapter 5

[77]

Here, we will enable the TestClass.FileMonitor.TestMP.Monitor monitor in
the FileMonitor.TestMP.MP management pack on the TestClass.FileMonitor.
TestMP.CLS1 class:

$MP = Get-SCOMManagementPack -displayname
 "FileMonitor.TestMP.MP" | where {$_.Sealed -eq $False}

$Class = Get-SCOMClass -DisplayName
 "TestClass.FileMonitor.TestMP.CLS1"

$Monitor = Get-SCOMMonitor -DisplayName
 "TestClass.FileMonitor.TestMP.Monitor"

Enable-SCOMMonitor -Class $Class -ManagementPack
 $MP -Monitor $Monitor

Listing all updated management packs
The code here will get the list of all management packs updated in the last 24 hours.
We can change this interval by changing the hours (24 in this example) in the following
code to get the list of the management packs updated in the custom intervals:

$MyDate = (Get-Date).AddHours(-24)

$AllMPs = Get-SCOMManagementPack

$ModifiedMPs= $AllMPs | Where {$_.LastModified -gt $MyDate}

 | Select-Object Name, LastModified | Sort LastModified

$ModifiedMPs | Out-File –FilePath "C:\SCOM\MP\updated.txt"

Listing and exporting repeating SCOM
alerts
As an SCOM administrator, you will be asked to provide a list of the top repeating
alerts. The following example lists and exports the top 20 repeating alerts to a text
file. We can change the count of 20 to a custom number by just changing the count
in the following code:

$AllAlerts = Get-SCOMAlert

$RepeatAlert = $AllAlerts | Sort -desc RepeatCount
 | Select-Object –First 20 Name, RepeatCount,
 MonitoringObjectPath, Description

$RepeatAlert | Out-File –FilePath "C:\SCOM\MP\RepeatAlerts.txt"

Scenario-based Scripting for SCOM Administration

[78]

Getting SCOM alerts specific to a
computer
This code demonstrates how to get the alert list specific to a computer. We can
change the value of $ComputerName to list alerts from specific computer.

The following example lists the alerts generated from the Test Computer machine:

$ComputerName = "TestComputer"

$AllAlerts = Get-SCOMAlert

$MyAlerts = $AllAlerts -criteria
 "NetbiosComputerName = '$ComputerName'"
 | export-csv c:\alert.csv

Listing all unhealthy SCOM agents
The following code lists all the SCOM agents that are not healthy for various reasons.
We can use this report as a reference for further troubleshooting:

$AllAgents = Get-SCOMAgent

$UnHealthyAgents = $AllAgents | where
 {$_.HealthState -ne "Success"} | select Name,HealthState

Write-Host "Unhealthy Agent list = `n $UnHealthyAgents"

Disabling SCOM alerts
This example demonstrates how to disable multiple rules matching a certain criteria
from a particular management pack. One of the criteria selected here is to delete all
the rules that match the rule name.

Here, we are trying to delete all the rules containing FileCount in the name from the
TestFile.TestMP.MP management pack. You can change the values according to
your requirements:

$MP = Get-SCOMManagementPack -Displayname "TestFile.TestMP.MP" | `

where {$_.Sealed -eq $False}

$Class = Get-SCOMClass -Name "TestClass1.TestMP"

$Rule = Get-SCOMRule -DisplayName "*FileCount*"

Disable-SCOMRule -Class $Class -Rule $Rule -ManagementPack
 $MP –Enforce

Chapter 5

[79]

Listing all heartbeat failure machines
Heartbeat failure is one the most important alerts that should be prioritized and
handled. The following code will get you the top 20 machines that are experiencing
frequent heartbeat failure issues:

$HBAlerts = Get-SCOMAlert –Name "Health Service Heartbeat*"

$AlertList = $HBAlerts | select Name, `

MonitoringObjectDisplayName | Group-Object -Property
 MonitoringObjectDisplayName `| sort-object -Property Count
 -descending | select -first 20 count, name

Listing all management server open
alerts
One of the common requirements for the daily SCOM health check report is to list
the alerts related to management servers. The following PowerShell code lists all
the management server open alerts:

$ManagementServers = Get-SCOMManagementServer

$AlertDetails = @()

foreach ($ManagementServer in $ManagementServers)

{

$AlertDetails += get-SCOMAlert -Criteria ("NetbiosComputerName = '"
 + $ManagementServer.ComputerName + "'") | where
 {$_.ResolutionState -ne '255' -and $_.
 MonitoringObjectFullName -Match 'Microsoft.SystemCenter'} |
 select TimeRaised,Name,Description,Severity

}

$AlertDetails

Scenario-based Scripting for SCOM Administration

[80]

Listing management servers in the
maintenance mode
It is always an important daily health check requirement to list all the management
servers in the maintenance mode. The following code lists all the SCOM management
servers in the maintenance mode. This code will simply print whether the management
server is in the maintenance mode or not. We can alter it to make the output a part of
any particular report:

$MSs = get-SCOMGroup -DisplayName "Operations Manager
 Management Servers" | Get-SCOMClassInstance

 foreach ($MS in $MSs)

 {

 if($MS.inMaintenanceMode -eq "False")

 {

 Write-Host $MS.DisplayName, "is not in Maintenance Mode"

 }

 Else

 {

 Write-Host $MS.DisplayName, "is in Maintenance Mode"

 }

}

Listing the health status of management
servers
The following code demonstrates how to get the health status of management
servers. The code will read the status of all management servers in the environment
and display the status message. In an environment where all the management
servers are healthy, the code will write a generic message that all the management
servers are healthy. We can also generate the output in the form of a report:

$MSUnhealthCount = Get-SCOMManagementServer |
 where {$_.HealthState -ne "Success"} | Measure-Object

 if($MSUnhealthCount .Count -gt 0)

{

Chapter 5

[81]

 $UnHealthyMS = Get-SCOMManagementServer | where
 {$_.HealthState -ne "Success"} | select
 DisplayName,HealthState,IsGateway

 $UnHealthyMS

}

Else

{

 Write-Host "All management servers are in healthy state"

 }

Putting an IIS 7 application in the
maintenance mode
The following example demonstrates how to put an IIS 7 application in maintenance
mode. This can be used as a generic example to put any other required application in
the maintenance mode:

$ MonitoringClass = get-SCOMclass | where-object {$_.Name -eq
 "Microsoft.Windows.InternetInformationServices.ApplicationPool"}

$objPool1 = get-scomclassinstance -Class $Monitoringclass |
 where-object {($_.Path -match "webserver.domain.com")
 -and ($_.DisplayName -match "AppPoolName")}
 $CurrentTime = [DateTime]::Now

Start-SCOMMaintenanceMode -instance $objPool1 -endtime
 $CurrentTime.addHours(0.2) -reason "PlannedOther"
 -comment "Test of MM for AppPool"

In the preceding example, the IIS 7 application pool will be in the maintenance mode
for 0.2 hours with the reason as PlannedOther, and Test of MM for AppPool as
comments, all of which can be changed as per the requirements.

Scenario-based Scripting for SCOM Administration

[82]

Summary
This chapter gave you an in-depth idea of how to use PowerShell with SCOM to
perform various day-to-day activities. This should give administrators confidence
to use PowerShell for their normal tasks. In this chapter, you saw how to use
PowerShell scripts to get the work done easily in various scenarios without any
human errors. During the first read, the code may look complex, but regular practice
can ease the learning.

The easy way to start learning PowerShell with SCOM is to start using it. Try
using the PowerShell cmdlets whenever possible, instead of going for the GUI
methods. This covers most of the day-to-day activities we use on the SCOM console.
Automating the regular tasks will always help to reduce time and human error.

[83]

Administration of Service
Manager through PowerShell

In this chapter, we will focus on the third product of the System Center product
family, that is, Service Manager. Service Manager is a platform to manage your
IT services and automate the process involved in incident management for your
organization. It also helps us to identify and adapt the best practices from Microsoft
Operations Framework (MOF) and Information Technology Infrastructure Library
(ITIL). It also provides support for change control and asset lifecycle management.

When it comes to the use of Service Manager with Windows PowerShell, it includes
many PowerShell cmdlets that help you perform certain tasks without using
the traditional Service Manager console. For example, you can use the Import-
SCSMManagementPack cmdlet to import a management pack, and there are other
similar commands as well. All the Service Manager cmdlets have the SCSM prefix
to noun part.

The Service Manager cmdlets are available in two separate modules listed as follows:

•	 Administrative cmdlets: These cmdlets are available under the module
named System.Center.Service.Manager. These cmdlets are basically
used to perform common administrative tasks.

•	 Data warehouse cmdlets: These cmdlets are available under the module
named Microsoft.EnterpriseManagement.Warehouse.Cmdlets. These
cmdlets are basically used to operate SCSM data warehouse tasks.

By default, Windows PowerShell installs all the modules to the specified paths
available at $env:PSModulePath, respectively. As a special case, Service Manager
modules are not available in the default path. So, you won't be able to retrieve
Service Manager modules by running the Get-Module –List cmdlet.

Administration of Service Manager through PowerShell

[84]

It is recommended that you use data warehouse cmdlets on the data warehouse
database server, even though you can run them on both the Service Manager
Management server and the Data Warehouse Management server.

The following procedures will help you get started with the Service Manager cmdlets.

To open a Service Manager Windows PowerShell session from the Service Manager
console, perform the following steps:

1.	 In the Service Manager console, click on Administration.
2.	 On the Tasks pane, click on the Start PowerShell session.

The administrator cmdlet module is automatically preimported in this session. To
open a Service Manager Windows PowerShell session from Windows, perform the
following steps:

1.	 On the taskbar of the computer that hosts the Service Manager Management
server, click on Start, point your cursor to All Programs, and then click on
Microsoft System Center.

2.	 Click on Service Manager 2012 and then click on Service Manager Shell.

The administrator cmdlet module is automatically preimported in this session. To list
all the Service Manager cmdlets, perform the following steps:

1.	 Open a Service Manager Windows PowerShell session.
2.	 To list the cmdlets that are included in the administrator module, in the

Service Manager Windows PowerShell session, type the following command
statement in the console and then press Enter:
Get-Command -Module System.Center.Service.Manager

3.	 To list the cmdlets that are included in the data warehouse module, in the
Service Manager Windows PowerShell session, type the following command
statement in the console and then press Enter:
Get-Command –Module

 Microsoft.EnterpriseManagement.Warehouse.Cmdlets

To perform the same set of activities using the regular PowerShell console, perform
the following steps.

For SCSM Management servers, enter the following command in the console:

Import-Module 'C:\Program Files\Microsoft System Center 2012\Service
 Manager\Powershell\System.Center.Service.Manager.psd1′

Chapter 6

[85]

For Data Warehouse Management servers, place the following command in
the console:

Import-Module 'C:\Program Files\Microsoft System Center 2012\Service
 Manager\Microsoft.EnterpriseManagement.Warehouse.Cmdlets.psd1′

SMlets
Now that we have a basic understanding of how to import and get the details of
Service Manager PowerShell cmdlets, let's move toward the application of these
available cmdlets.

Before jumping to the functionality, we will get the details of the additional
external cmdlets.

There are a few open source projects available that provide an extension to
the functionality that a normal SCSM PowerShell console has. One such SMlets
codeplex project is created by James Truher. By default, the System Center
Integration pack for SCSM and Orchestrator doesn't have all the functionalities
to perform full automation. This SMlets project allows you to get some extensive
functions that get added to the existing functionality. The SMlets project can be
found at http://smlets.codeplex.com.

The following is the information to get started with the basic use of SMlets.

The default Service Manager 2012 integration pack for Orchestrator has five actions
that can be used to create objects. This is where SMlets come into play:

1.	 The first step is to download and install SMlets on your Orchestrator server.
2.	 Once you have SMlets installed properly, open up the PowerShell console on

your Orchestrator server and initialize the SMlets by running:
Import-Module SMlets

3.	 To formulate the tasks, we first need to define which classes or types of
objects we will be dealing with later for Service Manager. We will mainly
use the Get-SCSMClass and Get-SCSMEnumeration commands to set up
the variable and required class objects. Here's how you can do this:
$SMSRClass = Get-SCSMClass –Name
 System.WorkItem.ServiceRequest

The preceding statement will load the System.WorkItem.ServiceRequest
class object to the $SMSRClass variable.
$SMSRPri = Get-SCSMEnumeration –Name
 ServiceRequestPriorityEnum.Medium

http://smlets.codeplex.com

Administration of Service Manager through PowerShell

[86]

The preceding statement will help us to retrieve the priority of the
ServiceRequest object defined in the earlier step:
$SMSRUrg = Get-SCSMEnumeration –Name
 ServiceRequestUrgencyEnum.Medium

The preceding statement will help us to define the urgency of the
ServiceRequest object defined in the earlier step:
$SMSRArea = Get-SCSMEnumeration –Name
 ServiceRequestAreaEnum.Other

The preceding statement will help us to define the area of the
ServiceRequest object defined in the earlier step:
$SMSRTitle = "Service Request Title"

The preceding statement will help us to specify the title of the
ServiceRequest object defined in the earlier step. The title is an important
item to identify a service request uniquely. We would recommend you to use
a unique title value for each service request that is created.

4.	 The next step is to prepare the argument list that will be used to define the
properties for an SCSM object to create a new service request. We prefer to
use a hash or an array to make a list of arguments that are required at a later
point in time. The arguments can be gathered using the following step:
$SMSRArgs = @{ Title = $SMSRTitle;
Urgency = $SMSRUrg; Priority = $SMSRPri;
ID = "SMSR{0}"; Area = $SMSRArea;
Description = "Service Request Description"}

The Key to Value mapping is pretty self-explanatory here; however, in the line
where we are defining ID and {0}, we will make Service Manager auto-append
a number and this will end up making our ID look like SMSR1234.

5.	 Now that we have all the basic information required for our service request,
we can create it. SMlets do not have a New-SCSMServiceRequest cmdlet, so
we need to use a more generic New-SCSMObject command. The following is
the step to create a new service request:
New-SCSMObject –Class $SRSMClass –PropertyHashtable $SRSMArgs

The preceding command statement will use the service request class and
service request arguments gathered in the earlier steps. This command will
immediately create the service request.

The last thing that we can do for our service request is apply the necessary service
request template to our request. We can use a command to get the service request
we just created and the service request template that we wish to apply.

Chapter 6

[87]

Incident reporting
One more exciting thing that we can do using the Service Manager cmdlets is
incident reporting. We can create a simple report of open (active and pending)
incidents in System Center Service Manager 2012 and this can be easily done using
the SMlets discussed earlier. However, it is good to have the option for my report to
be generated by a group of users on their own machines, so it was preferable to do
this using the native SCSM 2012 cmdlets (which the users already have installed as
part of the SCSM 2012 installation):

1.	 Import the SCSM Native cmdlets:
Import-Module "C:\Program Files\Microsoft System Center
 2012\Service Manager\Powershell\
 System.Center.Service.Manager.psd1"

2.	 Get the name of your SCSM server:
$MySCSMServer = "SCSM Server Name"

New-SCSMManagementGroupConnection -ComputerName $MySCSMServer

 $objRelationshipAssignedToUser = Get-SCSMRelationship
 -Name "System.WorkItemAssignedToUser"

$objRelationshipAffectedUser = Get-SCSMRelationship
 -Name "System.WorkItemAffectedUser"

3.	 Get an object that contains all the open incidents:
$objIncidentsOpen = (Get-SCClassInstance -Class
 (Get-SCClass -Name "System.WorkItem.Incident"))
 | Where-Object {$_.Status.ToString() -ne
 "IncidentStatusEnum.Closed" -and $_.Status.ToString()
 -ne "IncidentStatusEnum.Resolved"}

4.	 Format the object with calculated properties to display the required information:
$objIncidentsOpen | Select-Object Id, Title,
 @{Name="Source";Expression={$_.Source.DisplayName}},
 CreatedDate, Priority, @{Name="Affected User";
 Expression = {$_.GetRelatedObjectsWhereSource
 ($objRelationshipAffectedUser)}},
 @{Name="Status";Expression={$_.Status.DisplayName}},
 @{Name="SupportGroup";
 Expression={$_.TierQueue.DisplayName}},
 @{Name="Assigned To"; Expression =
 {$_.GetRelatedObjectsWhereSource
 ($objRelationshipAssignedToUser)}}

Administration of Service Manager through PowerShell

[88]

This script should work on any machine that has the PowerShell and SCSM console
installed. The output consists of pure PowerShell objects and can be redirected to
CSV or HTML files if required.

The purpose of having System Center Service Manager is to implement incident,
change, and problem management and to reduce manual activities by automating
them. The tool has a strong workflow that allows us to perform various activities,
such as creating, closing, and updating tickets/changes/incidents.

There are many repetitive tasks for incident and change managers to perform on a
daily basis and it is highly recommended that you automate them. The following are
the two activities that are common for most of the environments:

•	 When the changes are completed, auto close those changes after a certain
number of days

•	 When the incidents are resolved, auto close those incidents after a certain
number of days

Auto closing the resolved incidents and
closing the completed changes
To perform these operations, we will leverage the external module available as SMlet
from CodePlex. We can perform the same using legacy modules, but SMlets have
extensive functionalities already implemented that bring ease to our task automation.
We need to download the SMlets installer from http://smlets.codeplex.com/ on
the Service Manager server along with the Service Manager authoring console from
http://www.microsoft.com/en-us/download/details.aspx?id=10639 for SCSM
2010, and http://www.microsoft.com/en-us/download/details.aspx?id=28726
for SCSM 2012.

You can implement the following two .ps1 files to auto close the completed changes
and resolved incidents after a certain number of days. For example, in the following
example, we are taking 7 days to auto close the changes and incidents. The number
of days are dynamic and can be set differently for various environments by changing
the –168 part (168/24=7 days) in the script.

http://smlets.codeplex.com/
http://www.microsoft.com/en-us/download/details.aspx?id=10639
http://www.microsoft.com/en-us/download/details.aspx?id=28726

Chapter 6

[89]

Close the resolved incidents after seven days of inactivity:

Import-Module SMlets

$DaysOld = (Get-Date).addhours(-168)

$IncidentsToClose = Get-SCSMObject -Class (Get-SCSMClass -Name
 System.WorkItem.Incident$) | where{$_.lastmodified -
 lt $DaysOld -AND $_.Status -like "*Resol*"};

$IncidentsToClose | Set-SCSMObject -property Status -Value Closed;

Close the completed changes after seven days of inactivity:

$DaysOld = (Get-Date).addhours(-168);

Import-Module SMlets;

$ChangeClass = Get-SCSMClass System.WorkItem.ChangeRequest$

$AllChanges = Get-SCSMObject -Class $ChangeClass

$ChangeToClose = $AllChanges | where {$_.lastmodified
 -lt $DaysOld -AND $_.Status -like "*Complet*"};

$ChangeToClose | Set-SCSMObject –property Status –Value Closed;

If you don't feel like setting up an SLA with Service Manager and checking the
waiting time for the incident assignment, use this quick one liner command:

Get-SCSMClassInstance -Class (Get-SCSMClass -Name
 System.WorkItem.Incident) | Where-Object {$_.
 ?FirstAssignedDate -eq $null } | select Title, ID,
 @{Name='Time';Expression = {(New-TimeSpan $_.CreatedDate).
 Hours}} | where {$_.Time -gt 0}

This will show all the incidents that don't have FirstAssignedDate then create
a time span between the current time and CreatedDate, and selecting the ones
where that time span (in hours) is more than zero-meaning one hour at least.
This, of course, can be changed at will.

Just note that if it's over 24 hours, the .Hours value is going to be back at zero. So,
either expand the criteria (to include days) or make sure you get those assigned.

Administration of Service Manager through PowerShell

[90]

Changing the status of a service request
If you need to change the status of a service request in Service Manager 2012, you
can do this with PowerShell. The following is an example:

Before running the PowerShell commands, install SMlets and import the module in
the PowerShell prompt by running the following line:

Import-Module SMLets

The next thing to do is to get the appropriate class so that we can create an object
from it. Use the following line to capture the service request class:

$Class = Get-SCSMClass -Name System.WorkItem.ServiceRequest

Other classes that can be used based on the requirement are as follows:

System.workitem.ChangeRequest
 System.workitem.Incident
 System.workitem.Problem
 System.workitem.ReleaseRecord

Now it is time to create a class object from the class that was captured in the
previous step:

Get-SCSMObject -Class $Class -filter "Id -eq SR10"
 | Set-SCSMObject -Property Status -Value InProgress

Other status values that can be used are Closed, Completed, Cancelled, Failed,
Submitted, New, Active, Resolved, Pending, Editing.

In Service Manager, we have access management that gives access to various
applications, and this can be achieved by implementing different user roles.
Application access should be given to a user role and not to specific user accounts.
The Service Manager console is capable of assigning and controlling the following
user roles for various scenarios.

A user role consists of the following elements (configured when you run the user
role wizard):

•	 User profile
•	 Queues
•	 Groups
•	 Catalog groups

Chapter 6

[91]

•	 Tasks
•	 Views
•	 Templates
•	 Users

By selecting specific queues, groups, views, or templates, you can control what a user
role will be able to see and do in Service Manager. A user role is a way to assign a
user a privileges to perform certain actions in Service Manager. By creating your own
objects of the listed types, you are flexible to assign role-based access to the user. The
following is the example that illustrates a sample scenario of how we can assign a
user role values:

$UserRoleArgs = @{
 UserRoleType = "ReadOnlyOperator"
 DisplayName = "restricted role"
 Queue = @()
 Group = @()
 Task = @()
 User = "PSLAB\SCSMUser01"
 }
New-SCSMUserRole @UserRoleArgs

The preceding command creates a new read-only operator role, which has access only
to forms and views. The PSLAB\SCSMUser01 user has been assigned this user role.

Summary
In this chapter, we covered the fundamentals and got to know how to deal with
objects for the automation of the SCSM administration. We also included a few
specific cases wherein we covered how to close the incidents and put regulations
over it.

We will cover more scenarios specific to the SCSM administration and automation in
the next chapter. We will also talk about a few of the real-time examples explaining
SCSM capabilities, and that will surely bring more clarity and understanding to the
recent chapter.

[93]

Scenario-based Scripting for
SCSM Administration

We now have a basic understanding of how to manage the System Center Service
Manager administrative tasks through PowerShell. It's time to look at some of
the real-time scenarios that will give you a better understanding of how to use
PowerShell to carry out some of the real-life SCSM day-to-day activities. Here, we
will cover most of the common scenarios we as administrators perform on a daily
basis. We can still do much more than what is covered in this chapter.

This chapter covers the following topics:

•	 Adding classes to the SCSM allow list
•	 Exporting management packs
•	 Backing up unsealed management packs
•	 Manual activity and service request check
•	 Tickets status check
•	 Support group and tier queue check for multiple tickets
•	 Updating field information for the number of users
•	 Finding the GUID of any SCSM template
•	 Getting the queue members for SCSM

Code blocks demonstrated in this chapter will not include error
handling mechanisms. When using the code in real-life scenarios,
it is very important to include error handling mechanisms in
order to avoid any errors.

Scenario-based Scripting for SCSM Administration

[94]

For a better understanding of the code blocks used, you can try them in your lab
environment and analyze the output. Try to modify the output according to your
requirements. This will give you real confidence to write and implement code in the
production environment.

Before implementing any code block in production, make sure you have
thoroughly tested the code in the development or test environment. Once
you have satisfactorily tested the code in the development environment,
move the code to the preproduction environment and test its truthiness.
Once you are very sure that the script is working perfectly and delivering
expected results, implement it in the production environment.

With the assumption that we are clear with the basic exercise that we discussed in
the last chapter, we are now good to go with some of the real-time scenarios and the
ways to automate them using PowerShell.

Adding classes to the SCSM allow list
This example demonstrates how as an SCSM administrator, we can add classes to
the SCSM default allow list. The SCSM allow list is a list of classes to be used by the
configuration item Operations Manager 2007 Connector during synchronization.
To execute this, we need to import proper management packs to sync data from
SCOM to SCSM and also, the object needs to sync to the allow list. Specific to this
scenario, at times you might need to add more than one object to the SCSM allow
list. Moreover Add-SCSMAllowListClass don't accept input from a pipe line. So, to
address this issue, we will get all the class objects required synced with the SCSM
allow list in one of the variables, and then pass on the variable to the –ClassName
parameter, which in fact accepts array values:

$DemoClassNames = Get-SCSMClass | where {$_.Displayname
 -like "*win*"}

Add-SCSMAllowListClass -ClassName $DemoClassNames

The preceding command statements get the result in the $DemoClassNames variable
using the Get-SCSMClass cmdlet with the filter provided with it. Once you have
the list of the class names in one variable, pass that variable to the -ClassName
parameter for the Add-SCSMAllowListClass cmdlet.

Chapter 7

[95]

Exporting management packs
For those who are new to Sealed and Unsealed management packs, the following is
the difference explained in a paragraph taken from

In Service Manager, most of the customization activities are performed using
management packs (MP). Customization activities can be performed for multiple
objects, such as notification templates, groups, list items, workflows, and so on. MPs
are of two types: Sealed and Unsealed.

A Sealed management pack cannot be modified, but only used as and when
required. It has a .mp extension. Unsealed management packs are just XML files
with the .xml extension and can be modified using the SCSM console, or any other
method to edit the XML file. A Sealed MP and an Unsealed MP both work best
together to achieve most of the scenarios. A Sealed MP has basic functionality added
to it, while an Unsealed MP takes care of the customization activities on top of that.

This example will demonstrate how to list and export all the available
management packs.

There are a few PowerShell cmdlets available that deal with System Center
Service Manager management packs. Before going ahead with the export required
management packs, you can use the following methods to import the required SCSM
module to avail the supported cmdlets:

1.	 Open the Windows PowerShell console with the elevated privilege and
import the SCSM administration module.
For SCSM management servers, enter the following line in the console:
Import-Module 'C:\Program Files\Microsoft System Center
 2012\Service Manager\Powershell\
 System.Center.Service.Manager.psd1′

2.	 Open the Service Manager PowerShell console with the elevated privilege.
This will indeed import the required module in the background.
After importing the SCSM module, type the following command statement
to export the required management pack.

3.	 Create a new folder (varies from user to user) C:\ExportedSCCMMP to store
the exported management packs:
Get-SCSMManagementPack | Export-SCSMManagementPack –Path C:\
ExportedSCCMMP

Scenario-based Scripting for SCSM Administration

[96]

4.	 To export only the Sealed or Unsealed management packs, you can apply a
condition using the Where-Object statement:
Get-SCSMManagementPack | Where-Object {! $_.Sealed} | Export-
SCSMManagementPack –Path C:\ExportedUnsealedSCCMMP

Get-SCSMManagementPack | Where-Object {$_.Sealed} | Export-
SCSMManagementPack –Path C:\ExportedUnsealedSCCMMP

Backing up unsealed management packs
This example will demonstrate how to take a back up of the Unsealed management
packs.

As discussed in the previous scenario, there are a few PowerShell cmdlets available
that deal with the System Center Service Manager management packs. Before
exporting the required management packs, you can use the earlier listed methods
to import the required SCSM module.

After importing the SCSM module, type the following command statement to take a
back up of the Unsealed management packs:

Get-SCSMManagementPack | Where-Object {! $_.Sealed} |
 Export-SCSMManagementPack –Path C:\ExportedUnsealedSCCMMP

To export only the Sealed management packs, you can apply a condition using the
Where-Object statement:

Get-SCSMManagementPack | Where-Object {$_.Sealed} |
 Export-SCSMManagementPack –Path C:\ExportedSealedSCCMMP

In the preceding example, the command statement will export all the Sealed
management packs.

Manual activity and service request
check
This example demonstrates how to change the status of a manual activity or service
request using PowerShell. The same example can be used to change the status of
other activities or requests.

Chapter 7

[97]

To perform this example, you need to download the external Service Manager
module, SMlets. We can leverage this module and easily change the status of
a ticket for Service Manager. The following are the code statements that can be
used to change the status of a manual activity and service request:

Importing module

Import-Module -Name smlets

Getting details of the manual activity

$ManAct = Get-SCSMObject -Class (Get-SCSMClass -Name
 System.WorkItem.Activity.ManualActivity) -Filter "ID -eq MA1234"

Changing the status of the manual activity

Set-SCSMObject -SMObject $ManAct -Property Status -Value Completed

Getting the specific service request

$SerReq = Get-SCSMObject -Class (Get-SCSMClass -Name
 System.WorkItem.ServiceRequest) -filter "ID -eq SR1234"

Changing the status of the service request to completed

Set-SCSMObject -SMObject $SerReq -Property Status -Value Completed

Tickets status check
This example demonstrates how to reopen the tickets if they were closed
automatically. We need to supply respective ticket numbers to the $tid variable. You
can get the ticket ID either from the SCSM console or the respective PowerShell cmdlet:

Import-Module SMLets

Class declaration for Service Request

$Class = Get-SCSMClass –Name System.WorkItem.ServiceRequest

$tid = 'SR123456'

Get-SCSMObject -Class $Class -filter "Id -eq $tid" |
 Set-SCSMObject -Property Status -Value "In Progress"

We can use the preceding script block for incidents by replacing the service request
declaration with the $Class = Get-SCSMClass –Name System.WorkItem.
Incident incident declaration.

We just need to provide the respective ID number with the required class declaration
based on our environment.

Scenario-based Scripting for SCSM Administration

[98]

Support group and tier queue check for
multiple tickets
The following example will help you modify the support group or tier queue for
multiple tickets. Generally, most of us tend to select the wrong support groups and
tier queues. It's very important to change the groups to the correct support group
and tier queue. For this scenario, we need a list of incidents and service requests in
any format of a file that PowerShell can understand and fetch the data from:

#Service Request – Correcting Support Group

Import-Module SMLets

Class declaration for Service Request

$Class = Get-SCSMClass –Name System.WorkItem.ServiceRequest

$TList = Get-Content 'C:\ticket_list.txt'

foreach ($T in $TList)

 {

 Get-SCSMObject -Class $Class -filter "Id -eq $T" |
 Set-SCSMObject -Property SupportGroup -Value "App Catalog"

 }

#Incident – Correcting Tier Queue

Import-Module SMLets

Class declaration for Incidents

$Class = Get-SCSMClass –Name System.WorkItem.Incident

$TList = Get-Content 'C:\ticket_list.txt'

foreach ($T in $TList)

 {

 Get-SCSMObject -Class $Class -filter "Id -eq $T" |
 Set-SCSMObject -Property TierQueue -Value "App Catalog"

 }

Chapter 7

[99]

Updating field information for a number
of users
This example demonstrates how to update the Employer field, or any other field, for
a large number of users. This can be done manually for a small number of users, but
it is very useful if you automate it for a large user base.

In this scenario, we need a user list for the users who want to change or update the
field information. A user list can be in any file format that the PowerShell console
understands, preferably a text file with one username per line:

Import-Module SMLets

Class declaration for Users

$Class = Get-SCSMClass –Name Microsoft.AD.User

$UList = Get-Content 'C:\users_list.txt'

foreach ($U in $UList)

 {

 Get-SCSMObject -Class $Class -filter "username -eq $U" |
 Set-SCSMObject -Property Company -Value "CompanyName"

 Get-SCSMObject -Class $Class -filter "username -eq $U" |
 Format-Table username, company

 }

For each user in the user list, this script block will display the updated information of
the company, along with the respective username. For this example, "CompanyName" is
a hardcoded value for the Company property and the user must change it accordingly.

Finding GUID of any SCSM template
This example demonstrates how to find the GUID of any SCSM template. This is a
one liner code but very important in certain cases. GUID is a unique value assigned
to each SCSM template for better administration:

Get-SCSMObjectTemplate | Where-Object {$_.DisplayName -eq
 "Display Name of SCSM Template from Console"} | select Id

The preceding command statement will give you an ID that represents the SCSM
template uniquely. You can use this information to retrieve or assign this template
for further operations.

Scenario-based Scripting for SCSM Administration

[100]

Getting queue members for SCSM
Many times, we need the information about which objects contain queue members.
The following are two ways to find the queue member information using PowerShell:

Using SMLets

$QueueDisplayName = "QueueName"

Import-Module SMLets

Class declaration for Group

$Class = Get-SCSMClass -Name "System.WorkItemGroup"

$Queue = Get-SCSMObject –Class $Class -Filter
 "DisplayName = '$QueueDisplayName'"

$Relation = Get-SCSMRelationshipClass |
 Where-Object {$_.Source.Class.Name -eq $Queue.ClassName }

Get-SCSMRelatedObject $Queue -Relationship $Relation

Using native CMDLETs:

$QueueDisplayName = "QueueName"

Import-Module 'C:\Program Files\Microsoft System Center\
 Service Manager 2012\Powershell\System.Center.Service.Manager.psd1'

$Queue = Get-SCSMQueue -DisplayName $QueueDisplayName

$Relation = Get-SCSMRelationship | Where-Object
 {$_.Source.Type.Id -eq $Queue.EnterpriseManagementObject.Id }

$Queue.GetRelatedObjectsWhereSource($Relation.Id)

The preceding command statement will give you queue members for a given queue
and respective relationship.

Chapter 7

[101]

Summary
In this chapter, you learnt how to use PowerShell to perform various day-to-day
activities for Service Manager. This information will give confidence to administrators
that use PowerShell to carry out their routine administrative tasks. You saw various
scenarios and the usage of PowerShell scripts to get the work done easily without any
human error. During the first read the code may look complex, but regular practice
can ease the learning.

Going forward, we will see the best practices for all three products covered in this
book with relevant scenarios.

[103]

Best Practices
As we have covered the administration and operation of three System Center
products—SCCM, SCOM, and SCSM, we now have full understanding of the
PowerShell application of these three products. Let's discuss some real-time
applications and derive best practices to use PowerShell with these three products.

This chapter covers the following topics:

•	 Integrating SQL commands with PowerShell
•	 SCCM health check activities
•	 Data warehouse registration

Integrating SQL commands with
PowerShell
Since this chapter mainly deals with how to run queries to get results, it is important
for us to know the integration of SQL commands with PowerShell. Here is a quick
example that demonstrates how to integrate SQL commands with PowerShell.

First, we will see how to create a generic function in PowerShell, which will accept a
query as a parameter, execute the query, and return the result. Let's create a generic
function by the Extract-Report that accepts $SQLCmd (which is assumed to be a
working SQL query) as a parameter.

Assuming that the $SQLServer variable is assigned the SQL server name and
$SQLDatabase is assigned the SQL instance name, we can use the following function.
The function is assuming that the login that is running this PowerShell script has
access to the SQL database and uses the Windows authentication method:

$global:Log = ".\Log.txt"
Function Extract-Reports([string]$SQLCmd)

Best Practices

[104]

{
 Set-StrictMode -Version Latest
 $authentication = "Integrated Security=SSPI;"

 [Int32]$ConnectionTimeout=15
 [int] $Timeout = 360

 ###
 ## SCCM Site variables
 $connectionString = "Provider=sqloledb; " +
 "Data Source=$SQLserver; " +
 "Initial Catalog=$SQLDatabase; " +
 "$authentication;"

 ###
 ## Making the Connection to the DB
 $connection = New-Object System.Data.OleDb.OleDbConnection
$connectionString
 $connection.Open()
 Add-Content -path $global:Log -Value 'Connected to database'
 foreach($commandString in $SQLCmd)
 {
 $command = New-Object Data.OleDb.OleDbCommand
$commandString,$connection
 $command.CommandTimeout = $timeout

 ## Fetch the results, and close the connection
 $adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
 $dataset = New-Object System.Data.DataSet
 [void] $adapter.Fill($dataSet)

 ## Return all of the rows from their query
 $dataSet.Tables | Select-Object -Expand Rows
 }
 $connection.Close()
}

This function will first establish a connection with the SQL server, execute the
command, close the connection with the SQL server, and return the result to
the call function.

Chapter 8

[105]

The next step is to build a sample SQL query and assign the query to the
$SQLCmd variable. Let's take a simple example that will extract objects from
the PartitionAndGroomingSettings table:

$SQLCmd =@"
SELECT
ObjectName,
GroomingSproc,
DaysToKeep
FROM PartitionAndGroomingSettings WITH (NOLOCK)
"@

The next step is to call the function with the SQL command as a parameter:

$Result = Extract-Reports $SQLCmd

So, now the command will call the function with the SQL query as a parameter and
get the results stored in the $Result variable.

SCCM health check activities
Being an SCCM administrator, it is very important to have a maintenance task in
place to ensure that the environment is always up and running always. There are a
few best practices that we follow to ensure the availability of the SCCM server and
we call them as health check activities to ensure the availability of the SCCM server.

We can perform the health check activities depending on the environment, activity
type, size, and other factors. There are a few tasks that can be performed once a
month, a few need to be done weekly, and some daily.

As part of the health check activities, here are the best practices we can follow that
can be tested to ensure the availability of the environment:

•	 Check the SCCM site server availability
•	 Check the SCCM and dependent service status
•	 Constantly check the space in the SCCM site server disk
•	 Constantly check for the SCCM site server memory utilization
•	 Constantly check for the SCCM site server CPU utilization
•	 Check for SCCM components availability, such as the management point and

distribution point
•	 Check for the client to management point communication
•	 Check for any package distribution failures and errors

Best Practices

[106]

Let's discuss in detail which tests are required as part of the preceding checks
individually and why.

The $Computer variable in the following examples represents
the target computer on which the test will be conducted.

Checking the SCCM site server availability
Here, as part of the SCCM site server availability test, we will perform a simple ping
test to ensure that the servers are reachable from the central CAS. We can use the
Test-Connection cmdlet to check the connectivity status of the site servers:

Test-Connection -ComputerName $Computer -Count 2 -Quiet

This cmdlet will return either true or false depending on the availability of the site
server. If the result is true, we can conclude that the server is reachable at the point
in time and if the result is false, the server can be considered to be unreachable.

Checking the SCCM and dependent service
status
The services we check as a part of this test depend on the site server roles installed
on the server. We are required to test the service status, service startup type, and
service state as part of this test. Assuming that the server is loaded with all the roles,
we generally check for the following services:

SMS_EXECUTIVE
SMS_REPORTING_POINT
SMS_SERVER_LOCATOR_POINT
SMS_SITE_BACKUP
SMS_SITE_COMPONENT_MANAGER
SMS_SITE_VSS_WRITER
SMS_Agent_Host
SMS_System_Health_Validator

To test the service status, we can use a simple function that will get the values for
each of the services for the specific computer. Depending on the result, we have to
conclude the use of the if statements whether the service is healthy or unhealthy.

Chapter 8

[107]

Here is the sample code that demonstrates the service check activities:

Function Get-ServiceStatus([string]$Computer, [String]$ServiceName)
{
 $serviceNames = Get-WmiObject Win32_Service -ComputerName $Computer
| where {$_.Name -eq $ServiceName } | select Name, StartMode, State,
Displayname
 $serviceNames = Get-WmiObject Win32_Service -ComputerName $Computer
| where {$_.Name -eq $ServiceName } | select Name, StartMode, State,
Displayname
 $serviceNames = Get-WmiObject Win32_Service -ComputerName $Computer
| where {$_.Name -eq $ServiceName } | select Name, StartMode, State,
DisplayName
 Return $serviceNames
}

You can get all these generic functions with different values for the $Computer
and $ServiceName variables and compare the value with the standard set. To
demonstrate, I will be calling the Get-ServiceStatus function to get the details
of the SMS_Agent_Host service running on the CAS.guru.com server:

$ServiceStatus = Get-ServiceStatus "CAS.Guru.Com" "SMS_Agent_Host"
Compare the results with standard configurations
If(($ServiceStatus.State –ne "Running") –or ($ServiceStatus.StartMode
–ne "Auto"))
{
 Write-Host "SMS_Agent_Host on CAS.Guru.Com is running unhealthy"
}
Else
{
 Write-Host "SMS_Agent_Host on CAS.Guru.Com is running healthy"
}

Similarly, we can test individually for all the services running across multiple site
servers. When we are creating a health check report, instead of writing on a console,
we prefer to write a note of the report.

The absence of this service really does not necessarily mean that
the site server is unhealthy. We have to check whether the role is
installed on the corresponding site server. If the role is not installed,
we cannot find the service on the list.

Best Practices

[108]

Similarly, we had to check for the existence and status of the dependent services to
ensure the functionality of the SCCM environment. The following are the dependent
services we mainly look for:

IIS Admin Service
WDSSERVER
BITS
Windows Management Instrumentation

We can reuse the function to test the service status for the dependent services.
Also, we can use similar if-else statements to make a decision on the health
of the site server.

Unlike SCCM services, we have to ensure that the dependent
services are present and running on the site servers. We cannot
ignore it if the service is not present, as these are basic services
(except for the WDS service).

Checking the site server disk space
Here, we check the available free disk space on the site server. We must to ensure
that the site server has a good amount of free disk space all the time. Depending on
best practices, we can set the threshold on the disk space, after which the server will
be considered unhealthy. As a best practice, we can consider the site server with less
than 10 GB of disk space unhealthy (the value may be set based on your environment
and requirement).

We can use a simple PowerShell code to check the disk space on the site server:

$Result = "Healthy"
$disks=Get-WmiObject Win32_Logicaldisk -ComputerName $Computer| Where-
Object {$_.DriveType -eq 3}
foreach($disk in $disks)
{
$freeSpaceGB = [Math]::Round($disk.FreeSpace / 1GB, 2);
If($freeSpaceGB –lt 10)
{
 $Result = "UnHealthy"
}
}
Write-Host "Disk Health = $Result"

Chapter 8

[109]

Site server memory utilization test
We need to consider the memory utilization of the site server as one of the main factors
in calling the site server healthy. On the production server, as an administrator, we will
be worried if we see the server memory utilization of more than 80 percent. Here is a
simple test to check the memory utilization of the site server:

$MemoryHealth = "Healthy"
$MemoryStats = Get-WmiObject -Class Win32_OperatingSystem
-ComputerName $Computer| Select-Object TotalVisibleMemorySize,
FreePhysicalMemory

$FreeMemoryinGb = [Math]::Round($MemoryStats.FreePhysicalMemory/ 1MB,
2)
#Note : The unit for the MemoryStats is measured in KB unit.
$UsedMemoryPercentage = 100 - ($MemoryStats.FreePhysicalMemory /
$MemoryStats.TotalVisibleMemorySize * 100)
if($UsedMemoryPercentage -gt 80)
{
 $MemoryHealth = "UnHealthy"
}
Write-Host "Memory Health = $MemoryHealth"

Checking for site server CPU utilization
We must always ensure that the CPU utilization of our site server is below
80 percent. Checking CPU utilization is one of our most frequent activities as
an SCCM administrator. Here is a simple PowerShell code to check the CPU
utilization percentage on the site servers:

$CPUHealth = "Healthy"

$CPUUsage = (Get-WmiObject -Class Win32_Processor -ComputerName
$Computer | Select-Object LoadPercentage).LoadPercentage

foreach($CPU in $CPUUsage)
{
 if($CPU -gt 80)
 {
 $CPUHealth = Unhealthy
 }
 else
 {
 $CPUHealth = Healthy
 }
}
Write-Host "CPU Health = $CPUHealth"

Best Practices

[110]

Checking for SCCM component status
It is very important to ensure the healthy status of all SCCM site components for
the proper functionality of the SCCM environment to ensure the healthy status
of all SCCM site components. There are many ways in which we can test the
Configuration Manager site component's status.

The best way to check the SCCM site component's status is to use the SCCM
database and the status messages stored in it. We can look for the entries in the
V_SummarizerSiteStatus and v_Site DB view to check the site component's status.

We should ensure that the Status column of the V_Site view should be equal to 1
(which indicates that the component is healthy). We can also see other values, such as
2 for pending installation, 3 for failed, 4 for deleted, and 5 for under upgrade process.

We can use the SQL query integrated with PowerShell to query the SCCM database
and get the site component's status.

Checking the management point's health
We can simply use the SCCM database data to ensure the functioning of the
management point in the Configuration Manager environment. We can check
the v_componentSummarizer view and a different calumet in the table to test
the availability of the management point.

The State column in v_componentSummarizer should reflect the value 1 indicating
that the component is stated against other values, such as 0 for stopped, 2 for
paused, 3 for installing, 4 for reinstalling, and 5 for deinstalling.

Also, the Status column of the v_componentSummarizer view should reflect as 0,
indicating that the status is good against other values, such as 1 for warning and 2
for critical.

Apart from the preceding list, we do follow many other health check activities
depending on the environment, requirement, need, and work experience of the
environment. This is just an outline of how to perform health check activities on
the Configuration Manager environment.

SCOM health check report
Like any other tool, it is very important to perform maintenance activities on the
SCOM server on a regular basis. There are a few tasks that need daily attention, some
need weekly, and a few monthly. As an Operations Manager administrator, we have
to decide how frequently the task needs attention.

Chapter 8

[111]

There are a few maintenance tasks that we perform on the SCOM server on a regular
basis to ensure the functionality of the monitoring environment. These include:

•	 Checking the disk space of the operation database and data warehouse
•	 Checking for the fast growing tables in the operation database and

data warehouse
•	 Listing top event-generating computers
•	 Top alert-by-alert count
•	 Database grooming history
•	 Maintenance mode report
•	 Management pack and overrides modification details

The list goes on depending on your environment and requirements. The main idea
here is to give a basic introduction to health check operations that we can perform on
the SCOM server. Here are a few hints on how to perform some of the listed critical
individual activities.

Checking disk space of operation database
and data warehouse
To ensure the availability and performance of Operations Manager, it is very
important to keep an eye on the operation database and data warehouse. We can
check the size of the database by querying the sysfiles table of the database. We
can also keep monitoring the TempBD size using the same table.

Though SQL installation for operation database and data warehouse is a one-time
activity, it is important to retrieve the version details of SQL in the health check
report. This gives a clear idea of the environment infrastructure to the management.
We can use the following query to get the version details from the SQL server:

SELECT SERVERPROPERTY('productversion') AS "Product Version",
SERVERPROPERTY('productlevel') AS "Service Pack", SERVERPROPERTY
('edition') AS "Edition"

Best Practices

[112]

Querying top-event and alert-generating
computers
It is important to note the top event-generating computers. This helps us to analyze
problems with the environment and sometimes they are also required to fine tune
the management packs accordingly (maybe rectifying the false alerts, suppressing
repeated alerts, and so on).

We can use a simple SQL query to get the list of, say, the top-20 event-generating
computers. We can get the details by querying the EventAllView table to log the
computer name columns:

SELECT top 20 LoggingComputer, COUNT(*) AS TotalEvents
FROM EventallView
GROUP BY LoggingComputer
ORDER BY TotalEvents DESC

Also, we can get a list of the computer-generated top alert count by number using an
SQL query. We can get this count by querying AlertView using the following query:

SELECT Top 20 AlertStringName, Name, SUM(1) AS
SumCount, SUM(RepeatCount+1) AS AlertCount
FROM AlertView WITH (NOLOCK)
GROUP BY AlertStringName, Name
ORDER BY AlertCount DESC

Data grooming settings
It is very important to track the configured data grooming settings configured to
ensure the proper maintenance of the Operations Manager environment. We can
track the grooming settings by querying the PartitionAndGroomingSettings table
from the database:

SELECT ObjectName, GroomingSproc, DaysToKeep, GroomingRunTime,DataGroo
medMaxTime FROM PartitionAndGroomingSettings

Chapter 8

[113]

Reporting all objects in the maintenance
mode
As an SCOM administrator, it is important to keep track of SCOM objects in
maintenance mode. We can get the details by querying the MaintenanceMode table
to get the object details. To get the human-readable display name, we combine the
table with the BaseManagedEntityId table:

SELECT DisplayName, ResonCode, Comments from dbo.MaintenanceMode mm
JOIN dbo.BaseManagedEntity bm on mm.BaseManagedEntityId =
bm.BaseManagedEntityId
WHERE Path is NULL and IsInMaintenanceMode = 1

Changing the SCSM subscription property by
PowerShell
Being an SCSM administrator, sometimes you might need to change the subscription
details of Service Manager. It is important for administrators to do this activity
without any error, as it is directly propositional to all other SCSM activities.
We can use the following code block to achieve this:

$SCSMSubName = Get-SCSMSubscription -ComputerName SCSM001 | where {$_.
DisplayName -eq "Name of SCSM subscription"}"}"}

$SCSMSubName.Description = "This is SCSM description"

Update-SCSMSubscription –Description $SCSMSubName

Data warehouse registration
While using Service Manager for data warehouse servers, the first and most
important thing that we perform is we register the data warehouse source. Data
warehouse registration has nothing to do with administrative functions, but this
is the essential step to perform reporting to functions for certain activities. This
step will link the Service Manager management group to the data warehouse
management group. We can use the following code block to register the data
warehouse source:

Importing required module
Import-Module "C:\Program Files\Microsoft System Center 2012\Service
Manager\Microsoft.EnterpriseManagement.Warehouse.Cmdlets.dll"
Getting proper credentials
$DWCred = Get-Credential

Best Practices

[114]

Registering Source for Data Warehouse server
Register-SCDWSource -DataSourceTypeName ServiceManager
-SourceComputerName SCSDW001 -SourceCredential $DWCred

Please provide SourceComputerName as your data
warehouse server.

To unregister the data warehouse source at any point of time, use the following
command statement with proper parameter values:

Unregistering Source for Data Warehouse server
Unregister-SCDWSource -DataSourceTypeName ServiceManager –
DataSourceName "SCSDW001"

Summary
With this chapter we are declaring the end of our book. We covered best practices
and scenarios in this particular section with respect to all the three products. In
the earlier chapters, we covered many examples and scenarios with the basic and
intermediate knowledge of these products: SCSM, SCOM, and SCSM.

Hope you have a better life with System Center products, along with the proper
PowerShell automation in place. As always, sharing is caring!

[115]

Index
Symbols
.csv/.txt file input

multiple packages, creating 43

A
administration, SCOM

about 58
agent management 58, 59
management packs 61, 62
management server 58

administrative cmdlets 83
agent management

about 58, 59
agent installation 59, 60
SCOM proxy agents 60, 61

aggregate monitor 65
alert management 54
alert notifications 67, 68
alert resolution 55
application catalog web service point

creating 34, 35
application catalog website point roles

creating 34, 35
asset and compliance

alert management 28
client settings information, obtaining 27, 28
collection details, obtaining 21-23
Configuration Manager objects,

handling 26
Configuration Manager status

messages, reading 23
information, gathering 21
new user/device collections, creating 23-25

authoring, SCOM
about 56
class 57
discovery management 56
groups 57
instance 57

B
boot images 36, 37

C
central administrative site (CAS) 49
class, SCOM 57
cmdlets, Service Manager

administrative cmdlets 83
data warehouse cmdlets 83

Common Engineering Criteria (CEC) 3
Configuration Manager

alert management 28
boundary details, obtaining 16, 17
component status, obtaining 50, 51
discovery details, obtaining 16
distribution points details, obtaining 18, 20
hierarchy details 15
installation directory getting,

PowerShell used 44
management point details, obtaining 20
new user/device collections, creating 23-25
objects, handling 26
other site role details, obtaining 21
site details, obtaining 15
status messages, reading 23
using 14

[116]

Configuration Manager environment
list of all site servers, obtaining 49
list of primary sites, obtaining 49

D
database grooming 67
data warehouse

registration 113, 114
cmdlets 83

dependency monitor 65
Desired State Configuration (DSC) 3
discovery management 56
distribution point group (DP group) 42

G
Get-CMSoftwareUpdateAutoDeployment

Rule cmdlet 40
Get-CMSoftwareupdate cmdlet 39
Get-CMSoftwareUpdateDeployment

Package cmdlet 40
Get-CMSoftwareUpdateGroup cmdlet 39
gray agents, SCOM

exporting 74
listing 74

groups, SCOM 57
GUID

about 99
searching 99

H
health check activities, SCCM

alert-generating computers, querying 112
component status, checking 110
CPU utilization, checking 109
data grooming settings, tracking 112
data warehouse, disk space checking 111
dependent service status, checking 106, 107
maintenance tasks, performing 111
management point health, checking 110
objects, reporting in maintenance mode 113
operation database, disk

space checking 111
performing 105
SCCM site server availability, checking 106
site server disk space, checking 108

site server memory utilization,
checking 109

subscription property, changing by
PowerShell 113

top-event generating computers,
querying 112

heartbeat failure machines
listing 79

I
IIS 7 application

putting, in maintenance mode 81
incident reporting 87, 88
Information Technology Infrastructure

Library (ITIL) 83
installation

SCCM client agent version 51
instance, SCOM 57

M
management group 54
management packs (MP), SCOM

about 61, 62, 95
alert notifications 67, 68
database grooming 67
reference link 76
SCOM monitors 65, 66
SCOM rules 63-65

management servers
health status, listing 80
listing, in maintenance mode 80

Microsoft .Net Framework 4.0
URL 5

Microsoft Operations Framework (MOF) 83
monitoring, SCOM

alert filtering 53
alert management 53, 54
alert resolution 53, 55
management group 54

multiple distribution points
adding, to distribution point group 42
assumption 43
prescripting activities 42

multiple packages
creating, with .csv/.txt file input 43
prescripting activities 44

[117]

O
operating system deployment

boot images 36, 37
details, viewing 35
drivers, handling 37, 38
operating system image 35
operating system installer 36
prechecking 46
pre-scripting activities 47, 48
task sequence, gathering 38

P
ping test

prescripting activities 48
running 48

pipeline 3
PowerShell

benefits 2, 3
Configuration Manager installation

directory, getting 44
SQL commands, integrating 103-105
subscription property, changing by 113
version references 3-5
with Configuration Manager 14

proxy agents, SCOM 60, 61
PSRemoting 3

R
repeating SCOM alerts

exporting 77
listing 77

resolved incidents
auto closing 88

S
SCCM

about 2, 15
client agent version, installing 51
health check activities 105
prerequisites, for setting up 5
services, checking 45, 46
setting up 5

Windows PowerShell connection,
establishing 6-9

SCOM
about 2, 53, 71
gray agents, exporting 74
gray agents, listing 74
prerequisites 9
setting up 9
Windows PowerShell connection,

establishing 10
SCOM administrators

management servers, listing in maintenance
mode 80

unhealthy SCOM agents, listing 78
unsealed management packs,

backing up 76
updated management packs, listing 77

SCOM alerts
counting, created by monitor 76
disabling 78
getting, specific to computer 78
heartbeat failure machines, listing 79
management pack details, searching 74
management server open alerts, listing 79
past alerts, listing 75
resolving 73

SCOM monitors
aggregate monitor 65
assumptions 73
dependency monitor 65
enabling 76
exporting 73
listing 73
unit monitor 65

SCOM overrides
assumptions 74
exporting 73
listing 73

SCSM
about 2
prerequisites 11
setting up 11
Windows PowerShell connection,

establishing 11, 12
SCSM administration

classes, adding to SCSM allow list 94

[118]

field information, updating for number of
users 99

GUID, searching for any SCSM template 99
management packs, exporting 95
manual activity, checking 96
queue members, getting for SCSM 100
service request, checking 96
support group, checking for

multiple tickets 98
tickets status, checking 97
tier queue, checking for multiple tickets 98
unsealed management packs,

backing up 96
Service Manager

about 83, 84
completed changes, closing 89
reference link 88
resolved incidents, auto closing 88, 89

Service Manager 2012 integration pack 85
service request

status, modifying 90, 91
SMlets

about 85, 86
installer, URL 88
URL, for project 85

software distribution
application catalog web service point,

creating 34, 35
application catalog website point roles,

creating 34, 35
application deployment, handling 33, 34
applications, handling 29, 30
deployment types, handling 32, 33
information, obtaining 29
package deployment, handling 33, 34
packages, handling 29, 30
programs, handling 31

software update management
Get-CMSoftwareUpdateAutoDeployment

Rule cmdlet, using 40

Get-CMSoftwareupdate cmdlet, using 39
Get-CMSoftwareUpdateDeployment

Package cmdlet, using 40
Get-CMSoftwareUpdateGroup

cmdlet, using 39
with cmdlets 39

SQL commands
integrating, with PowerShell 103-105

System Center Configuration
Manager. See SCCM

System Center Operations
Manager. See SCOM

System Center Service Manager. See SCSM

U
unit monitor 65

W
Windows 7 Service Pack 1

URL 5
Windows Management Framework 3.0

about 4
requisites 5

Windows Management Instrumentation
(WMI) 4, 49

Windows PowerShell
connecting, for SCCM 6-8
connecting, for SCOM 10
connecting, for SCSM 11, 12
connecting, from SCCM console 8, 9

Windows Remote Management
(WinRM) 3.0 4

Windows Server 2008 R2 Service Pack 1
URL 5

Windows Server 2008 Service Pack 2
URL 5

Thank you for buying
Microsoft System Center

PowerShell Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PowerShell 3.0 Advanced
Administration Handbook
ISBN: 978-1-84968-642-6 Paperback: 370 pages

A fast-paced PowerShell guide with real-world
scenarios and detailed solutions

1.	 Discover and understand the concept of
Windows PowerShell 3.0.

2.	 Learn the advanced topics and techniques for a
professional PowerShell scripting.

3.	 Explore the secret of building custom
PowerShell snap-ins and modules.

4.	 Take advantage of PowerShell integration
capabilities with other technologies for better
administration skills.

Microsoft System Center
Configuration Manager Advanced
Deployment
ISBN: 978-1-78217-208-6 Paperback: 290 pages

Design, implement, and configure System Center
Configuration Manager 2012 R2 with the help of
real-world examples

1.	 Learn how to design and operate Configuration
Manager 2012 R2 sites.

2.	 Explore the power of Configuration
Manager 2012 R2 for managing your
client and server estate.

3.	 Discover up-to-date solutions to real-world
problems in System Center Configuration
Manager administration.

Please check www.PacktPub.com for information on our titles

Windows PowerShell 4.0 for .NET
Developers
ISBN: 978-1-84968-876-5 Paperback: 140 pages

A fast-placed PowerShell guide, enabling you
to efficiently administer and maintain your
development environment

1.	 Enables developers to start adopting Windows
PowerShell in their own application to extend
its capabilities and manageability.

2.	 Introduces beginners to the basics,
progressing on to advanced level topics
and techniques for professional PowerShell
scripting and programming.

3.	 Step-by-step guide, packed with real
world scripts examples, screenshots,
and best practices.

Instant Windows PowerShell
Guide
ISBN: 978-1-84968-678-5 Paperback: 86 pages

Enhance your knowledge of Windows PowerShell
and get to grips with its latest features

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Understand new CMDLETs and parameters
with relevant examples.

3.	 Discover new module functionality such as
CIM, Workflow, DSC, and so on.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting up the Environment to Use PowerShell
	The purpose of this book
	The target audience
	Why use PowerShell?
	PowerShell version references
	Setting up the System Center Configuration Manager environment
	Connecting to Windows PowerShell for SCCM
	Connecting to Windows PowerShell from the SCCM console

	Setting up the System Center Operations Manager environment
	Connecting to Windows PowerShell for SCOM

	Setting up the System Center Service Manager environment
	Connecting to Windows PowerShell for SCSM

	Summary

	Chapter 2: Administration of Configuration Manager through PowerShell
	Introducing Configuration Manager through PowerShell
	Hierarchy details
	Site details
	Discovery details
	Boundary details
	Distribution point details
	Management point details
	Other site role details

	Asset and compliance
	Collection details
	Reading Configuration Manager status messages
	Creating new user/device collections
	Handling Configuration Manager objects
	The client settings information
	Alert management

	Software distribution
	Handling packages and applications
	Handling programs
	Handling deployment types
	Handling application or package deployment
	Creating an application catalog web service point and application catalog website point roles

	The operating system deployment
	An operating system image
	Operating system installers
	Boot image details

	Handling drivers for deployments
	Gathering the task sequence

	Software update management
	Software catalog details

	Summary

	Chapter 3: Scenario-based Scripting for SCCM Administration
	Scenario 1 – adding multiple distribution points to a distribution point group
	Prescripting activities
	Assumption

	Scenario 2 – creating multiple packages with the .csv/.txt file input
	Prescripting activities

	Scenario 3 – using PowerShell to get the Configuration Manager installation directory
	Scenario 4 – checking for SCCM services
	Scenario 5 – operating a system deployment precheck
	Scenario 6 – running a ping test
	Prescripting activities

	Scenario 7 – getting a list of primary sites in the Configuration Manager environment
	Scenario 8 – getting a list of all site servers in the Configuration Manager environment
	Scenario 9 – getting component status in Configuration Manager
	Scenario 10 – installing the SCCM client agent version
	Summary

	Chapter 4: Administration of Operations Manager through PowerShell
	Monitoring
	Knowing a management group
	Alert management
	Alert resolution

	Authoring
	Discovery management
	Class and instance
	Groups

	Administration
	Management servers
	Agent management
	Agent installation
	SCOM proxy agents

	Management pack details
	SCOM rules
	SCOM monitors
	Database grooming
	Alert notifications

	Summary

	Chapter 5: Scenario-based Scripting for SCOM Administration
	Resolving all SCOM alerts
	Listing and exporting all SCOM monitors
	Assumptions

	Listing and exporting all SCOM overrides
	Assumptions

	Listing and exporting gray agents in SCOM
	Finding management pack details for a particular alert
	Listing past alerts
	Backing up unsealed management packs
	Counting alerts created by a monitor
	Enabling specific SCOM monitors
	Listing all updated management packs
	Listing and exporting repeating SCOM alerts
	Getting SCOM alerts specific to a computer
	Listing all unhealthy SCOM agents
	Disabling SCOM alerts
	Listing all heartbeat failure machines
	Listing all management server open alerts
	Listing management servers in the maintenance mode
	Listing the health status of management servers
	Putting an IIS 7 application in the maintenance mode
	Summary

	Chapter 6: Administration of Service Manager through PowerShell
	SMlets
	Incident reporting
	Auto closing the resolved incidents and closing the completed changes
	Changing the status of a service request
	Summary

	Chapter 7: Scenario-based Scripting for SCSM Administration
	Adding classes to the SCSM allow list
	Exporting management packs
	Backing up unsealed management packs
	Manual activity and service request check
	Tickets status check
	Support group and tier queue check for multiple tickets
	Updating field information for a number of users
	Finding GUID of any SCSM template
	Getting queue members for SCSM
	Summary

	Chapter 8: Best Practices
	Integrating SQL commands with PowerShell
	SCCM health check activities
	Checking the SCCM site server availability
	Checking the SCCM and dependent service status
	Checking the site server disk space
	Site server memory utilization test
	Checking for site server CPU utilization
	Checking for SCCM component status
	Checking the management point's health
	SCOM health check report
	Checking disk space of operation database and data warehouse
	Querying top-event and alert-generating computers
	Data grooming settings
	Reporting all objects in the maintenance mode
	Changing the SCSM subscription property by PowerShell

	Data warehouse registration
	Summary

	Index

