
www.allitebooks.com

http://www.allitebooks.org

Mockito Cookbook

Over 65 recipes to get you up and running with unit testing
using Mockito

Marcin Grzejszczak

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mockito Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1170614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-274-5

www.packtpub.com

Cover image by Poonam Nayak (pooh.graphics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Marcin Grzejszczak

Reviewers
Esfandiar Amirrahimi

Brice Dutheil

Ivan Hristov

Carlo Micieli

Tim Perry

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Meeta Rajani

Content Development Editors
Nadeem N. Bagban

Ruchita Bhansali

Technical Editors
Arwa Manasawala

Anand Singh

Copy Editors
Janbal Dharmaraj

Dipti Kapadia

Sayanee Mukherjee

Aditya Nair

Stuti Srivastava

Project Coordinator
Sanchita Mandal

Proofreaders
Ameesha Green

Paul Hindle

Joel Johnson

Kevin McGowan

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Marcin Grzejszczak is an experienced Java programmer. He is enthusiastic about
clean coding and good design. He has contributed to several open source projects
(Drools, Moco, Mockito, Spock, and so on) and to Groovy core. He is the co-organizer
of the Warsaw Groovy User Group. He is a member of the Most Valuable Blogger program
at DZone and Java Code Geeks.

Marcin is the author of Instant Mockito, Packt Publishing, and Drools Refcard at DZone.
You can visit his blog, http://toomuchcoding.blogspot.com, or his home page,
http://www.marcin.grzejszczak.pl. Or, you can follow him on Twitter at
http://twitter.com/MGrzejszczak.

I would like to thank my beloved Marta for showing extreme support,
understanding, and encouragement during the creation of this book. I would
also like to thank Tomasz Kaczanowski for the indispensable guidelines
that allowed me to put the book on the right track. All the discussions with
Brice Dutheil helped to deepen my understanding of the philosophy behind
Mockito and testing as such. I would like to thank Jakub Nabrdalik, Maciej
Zieliński, Kamil Trepczyński, and Michal Pasiński for the brainstorming
sessions and reviews. Last but not least, I would like to express my gratitude
to all of the official reviewers who helped to increase the quality of this book.

www.allitebooks.com

http://toomuchcoding.blogspot.com/
http://www.marcin.grzejszczak.pl/
http://twitter.com/MGrzejszczak
http://www.allitebooks.org

About the Reviewers

Esfandiar Amirrahimi, born in 1984, started programming while he was still in high
school, when his father bought him his first computer. He attended Glasgow Caledonian
University in Scotland and graduated with a BSc in Computer Science in 2004. He pursued
graduate studies at Concordia University in Montreal and completed his Masters of Applied
Computer Science. He is currently a software developer at Hybris, an SAP company. He mainly
works on enterprise systems in the JVM world. He has a taste for functional programming and
a passion to further dive into the functional world by learning, using, and promoting Scala.

Brice Dutheil is a Java and technology enthusiast. He is an independent contractor who
has worked with several clients on projects where it was critical to the application to handle
heavy load while ensuring that business development goes on. More recently, he got involved
in Devoxx France as the Java Track Lead of the program committee.

He has been a regular committer on the Mockito project for several years, as he believes that
the TDD approach is enabling the industry to build better software and that Mockito is a good
fit in the development approach.

Ivan Hristov has been working in the software industry since 2003. His experience covers
multiple projects in different branches and industries, such as telecommunications, banking,
research and development, and social networks. At present, he is a technical lead at Hortis—a
consulting and software service provider based in Geneva, Switzerland. In his free time, he
is an open source committer, blogger (http://ingini.org), and Geneva MongoDB User
Group leader (http://genevamug.ch).

www.allitebooks.com

http://ingini.org/
http://genevamug.ch/
http://www.allitebooks.org

Carlo Micieli has been working as a software engineer for over 10 years now. His choice
of programming languages are Java and C#. His main area of interest is application life cycle
management with a strong focus on topics such as software design and testing.

Tim Perry is a technical lead and the open source champion at Softwire (softwire.com),
a bespoke software development company in North London. He guides teams, builds a variety
of great software at every scale for his clients, and pushes Softwire to engage with and give
back to the wider software development community. He daily works with a huge range of
tools, from Java, Spring, and JUnit to JavaScript web components to SQL analytics engines.

He's a frequent technical speaker and a prolific open source contributor on a wide variety
of projects, including JUnit, Mockito, Knockout, and Lodash, and some of his own, such as
loglevel and grunt-coveralls. He is feverishly keen on all things related to automated testing,
polyglot persistence, and good old-fashioned, high-quality software development.

I'd like to thank my wonderful girlfriend, Rachel, for her endless patience
and support and for genuinely appearing delighted when I signed up for yet
another side project.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Mockito 5

Introduction 5
Adding Mockito to a project's classpath 7
Getting started with Mockito for JUnit 9
Getting started with Mockito for TestNG 14
Mockito best practices – test behavior not implementation 16
Adding Mockito hints to exception messages (JUnit) (Experimental) 19
Adding additional Mockito warnings to your tests (JUnit) (Experimental) 22

Chapter 2: Creating Mocks 23
Introduction 23
Creating mocks in code 25
Creating mocks with annotations 27
Creating mocks with a different default answer 30
Creating mocks with different default answers with annotations 34
Creating mocks with custom configuration 37
Creating mocks of final classes with PowerMock 40
Creating mocks of enums with PowerMock 44

Chapter 3: Creating Spies and Partial Mocks 49
Introduction 49
Creating spies in code 50
Creating spies with custom configuration 53
Creating spies using annotations 56
Creating partial mocks 59
Creating partial mocks of final classes with delegatesTo() 63
Creating spies of final classes with PowerMock 66

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Stubbing Behavior of Mocks 71
Introduction 71
Using argument matchers for stubbing 73
Stubbing methods that return values 76
Stubbing methods so that they throw exceptions 80
Stubbing methods so that they return custom answers 83
Stubbing methods so that they call real methods 86
Stubbing void methods 89
Stubbing void methods so that they throw exceptions 90
Stubbing void methods so that they return custom answers 92
Stubbing void methods so that they call real methods 95
Stubbing final methods with PowerMock 97
Stubbing static methods with PowerMock 101
Stubbing object instantiation using PowerMock 105

Chapter 5: Stubbing Behavior of Spies 109
Introduction 109
Stubbing methods that return values 110
Stubbing methods so that they throw exceptions 114
Stubbing methods so that they return custom answers 117
Stubbing void methods 121
Stubbing void methods so that they throw exceptions 124
Stubbing void methods so that they return custom answers 126
Stubbing final methods with PowerMock 130

Chapter 6: Verifying Test Doubles 135
Introduction 135
Verifying the method invocation count with times() 136
Verifying the method invocation count with atLeast() 139
Verifying the method invocation count with atMost() 141
Verifying that interactions never happened 143
Verifying that interactions stopped happening 146
Verifying the order of interactions 148
Verifying interactions and ignoring stubbed methods 153
Verifying the method invocation within the specified time 155

Chapter 7: Verifying Behavior with Object Matchers 159
Introduction 159
Using Hamcrest matchers for assertions 161
Creating custom Hamcrest matchers 166
Using Hamcrest matchers for stubbing and verification 170
Using AssertJ for assertions 174

iii

Table of Contents

Creating custom AssertJ assertions 179
Capturing and asserting the argument 182

Chapter 8: Refactoring with Mockito 185
Introduction 185
Removing the problems with instance creation 186
Refactoring classes that do too much 193
Refactoring the classes that use the class casts 198
Refactoring the classes that use static methods 203
Refactoring the tests that use too many mocks 206

Chapter 9: Integration Testing with Mockito and DI Frameworks 213
Introduction 213
Injecting test doubles instead of beans using Spring's code configuration 214
Injecting test doubles instead of beans using Spring's XML configuration 220
Injecting test doubles instead of beans using Springockito 224
Injecting test doubles instead of beans with Guice 230
Injecting test doubles instead of beans with Guice using Jukito 235

Chapter 10: Mocking Libraries Comparison 241
Introduction 241
Mockito versus EasyMock 242
Mockito versus JMockit 247
Mockito versus JMock 251
Mockito versus Spock 256

Index 263

Preface
According to Google Trends, Mockito, compared to its main Java mocking framework
competitors, EasyMock and jMock, has been the most widely used since 2011 and this trend
has been upward ever since. Given its extremely simple and elegant API, Mockito gives you
the possibility to test your application in a readable manner. Furthermore, it's syntax is so
intuitive that you'll learn it in no time at all.

The very concept behind this book is to give the reader the possibility to use Mockito in order
to write beautiful and comprehensive tests. The Mockito documentation as such is of very
high quality, so you should always, regardless of the tool you are using, refer to it when in
doubt. This book is an extension to this documentation since it covers its content but puts it
in a real-life example. Where the Mockito documentation proves that the library, as such, is
doing what it is supposed to do, you can come to a point where you don't actually know how
to use it versus your production code. Worry not! Mockito Cookbook comes to the rescue.
This book contains solutions to more than 60 problems that you may encounter throughout
your Mockito testing endeavor. You will learn how to write tests that become the living
documentation of your code. You will become A Mockito expert. (Since the book also explains
some Mockito internals you might even be tempted to become its contributor!) And hopefully,
your tests will become an example to be followed by your colleagues.

What this book covers
Chapter 1, Getting Started with Mockito, covers the Mockito configuration for JUnit and
TestNG and some of its experimental features.

Chapter 2, Creating Mocks, presents numerous ways to create mocks.

Chapter 3, Creating Spies and Partial Mocks, covers the process of instantiating spy objects
and partial mocks.

Preface

2

Chapter 4, Stubbing Behavior of Mocks, shows how to stub the method executions of
mock objects.

Chapter 5, Stubbing Behavior of Spies, presents ways to stub the method executions of spies.

Chapter 6, Verifying Test Doubles, covers the process of behavior verification of test doubles.

Chapter 7, Verifying Behavior with Object Matchers, shows how to confirm that your
application works as it should using Hamcrest or AssertJ.

Chapter 8, Refactoring with Mockito, covers the process of easily refactoring your production
and test code, thanks to Mockito.

Chapter 9, Integration Testing with Mockito and DI Frameworks, presents ways to inject mocks
into your Spring– or Guice–based applications.

Chapter 10, Mocking Libraries Comparison, shows the differences and similarities between
several mocking libraries and Mockito.

What you need for this book
In order to run the code presented in this book, you will need Java Development Kit 1.6
or newer, Mockito Version 1.9.5 appended to your classpath, and in the majority of the
presented tests, AssertJ Version 1.6.0. The GitHub repository that contains the code has a
configuration ready for use with Gradle and Maven, so you need either of these installed on
your machine to run the tests.

Who this book is for
If you are a developer who either has never used Mockito or want to extend your knowledge
about this framework, this the book for you. This book not only shows you how to solve issues
with Mockito, but also dives into the internals of Mockito in order to help you understand the
tool better. The book can also be addressed by test enthusiasts who want to see another
approach to the tests that are behavior-driven.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Preface

3

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Where NewIdentityCreator contains the logic for generating new identity."

A block of code is set as follows:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.packtpub.com/authors

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to
you. The project setup for usage with Maven or Gradle with all of the code from the book and
some additional tests and use cases is also present on GitHub at https://github.com/
marcingrzejszczak/mockito-cookbook.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/marcingrzejszczak/mockito-cookbook
https://github.com/marcingrzejszczak/mockito-cookbook
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Getting Started

with Mockito

In this chapter, we will cover the following recipes:

 f Adding Mockito to a project's classpath

 f Getting started with Mockito for JUnit

 f Getting started with Mockito for TestNG

 f Mockito best practices - test behavior, not implementation

 f Adding Mockito hints to exception messages in JUnit (Experimental)

 f Adding additional Mockito warnings to your tests in JUnit (Experimental)

Introduction
For those who don't know Mockito at all, I'd like to write a really short introduction about it.

Mockito is an open source framework for Java that allows you to easily create test
doubles (mocks). What makes Mockito so special is that it eliminates the common
expect-run-verify pattern (which was present, for example, in EasyMock—please refer to
http://monkeyisland.pl/2008/02/24/can-i-test-what-i-want-please
for more details) that in effect leads to a lower coupling of the test code to the production
code as such. In other words, one does not have to define the expectations of how the mock
should behave in order to verify its behavior. That way, the code is clearer and more readable
for the user.

On one hand, Mockito has a very active group of contributors and is actively maintained;
on the other hand, unfortunately, by the time this book is written, the last Mockito release
(Version 1.9.5) have been in October 2012.

http://monkeyisland.pl/2008/02/24/can-i-test-what-i-want-please

Getting Started with Mockito

6

You may ask yourself the question, "Why should I even bother to use Mockito in the first
place?" Out of many choices, Mockito offers the following key features:

 f There is no expectation phase for Mockito—you can either stub or verify the
mock's behavior

 f You are able to mock both interfaces and classes

 f You can produce little boilerplate code while working with Mockito by means
of annotations

 f You can easily verify or stub with intuitive argument matchers

Before diving into Mockito as such, one has to understand the concept behind System Under
Test (SUT) and test doubles. We will base our work on what Gerard Meszaros has defined
in the xUnit Patterns (http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20
and%20Dummies.html).

SUT (http://xunitpatterns.com/SUT.html) describes the system that we are testing.
It doesn't have to necessarily signify a class or any part of the application that we are testing
or even the whole application as such.

As for test doubles (http://www.martinfowler.com/bliki/TestDouble.html), it's
an object that is used only for testing purposes, instead of a real object. Let's take a look at
different types of test doubles:

 f Dummy: This is an object that is used only for the code to compile—it doesn't have
any business logic (for example, an object passed as a parameter to a method)

 f Fake: This is an object that has an implementation but it's not production ready
(for example, using an in-memory database instead of communicating with a
standalone one)

 f Stub: This is an object that has predefined answers to method executions made
during the test

 f Mock: This is an object that has predefined answers to method executions made
during the test and has recorded expectations of these executions

 f Spy: These are objects that are similar to stubs, but they additionally record how
they were executed (for example, a service that holds a record of the number of
sent messages)

An additional remark is also related to testing the output of our application. Throughout
the book, you will see that the tests (in general, all of them apart from the chapter
related to verification) are based on the assertion of behavior instead of the checking of
implementation. The more decoupled your test code is from your production code, the better,
since you will have to spend less time (or even none) on modifying your tests after you change
the implementation of the code.

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/SUT.html
http://www.martinfowler.com/bliki/TestDouble.html

Chapter 1

7

Coming back to the chapter's content—this chapter is all about getting started with Mockito.
We will begin with how to add Mockito to your classpath. Then, we'll see a simple setup of
tests for both JUnit and TestNG test frameworks. Next, we will check why it is crucial to assert
the behavior of the system under test instead of verifying its implementation details. Finally,
we will check out some of Mockito's experimental features, adding hints and warnings to the
exception messages. The very idea of the following recipes is to prepare your test classes to
work with Mockito and to show you how to do this with as little boilerplate code as possible.

Due to my fondness for the behavior driven development (http://dannorth.net/
introducing-bdd/ first introduced by Dan North), I'm using Mockito's BDDMockito and
AssertJ's BDDAssertions static methods to make the code even
more readable and intuitive in all the test cases. Also, please read Szczepan Faber's
blog (author of Mockito) about the given, when, then separation in your test methods—
http://monkeyisland.pl/2009/12/07/given-when-then-forever/—since
these are omnipresent throughout the book.

Even though some of the previous methods might sound not too clear to you or the test
code looks complicated—don't worry, it will all be explained throughout the book. I don't want
the book to become a duplication of the Mockito documentation, which is of high quality—I
would like you to take a look at good tests and get acquainted with Mockito syntax from the
beginning. What's more, I've used static imports in the code to make it even more readable,
so if you get confused with any of the pieces of code, it would be best to consult the repository
and the code as such.

Adding Mockito to a project's classpath
Adding Mockito to a project's classpath is as simple as adding one of the two jars to your
project's classpath:

 f mockito-all: This is a single jar with all dependencies (with the hamcrest
and objenesis libraries—as of June 2011).

 f mockito-core: This is only Mockito core (without hamcrest or objenesis).
Use this if you want to control which version of hamcrest or objenesis is used.

How to do it...
If you are using a dependency manager that connects to the Maven Central Repository,
then you can get your dependencies as follows (examples of how to add mockito-all
to your classpath for Maven and Gradle):

www.allitebooks.com

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/
http://www.allitebooks.org

Getting Started with Mockito

8

For Maven, use the following code:

 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.9.5</version>
 <scope>test</scope>
 </dependency>

For Gradle, use the following code:

testCompile "org.mockito:mockito-all:1.9.5"

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

If you are not using any of the dependency managers, you have to either download mockito-
all.jar or mockito-core.jar and add it to your classpath manually (you can download
the jars from https://code.google.com/p/mockito/downloads/list). To see
more examples of adding Mockito to your classpath, please check the book, Instant Mockito,
Marcin Grzejszczak, Packt Publishing, for more examples of adding Mockito to your classpath
(it includes Ant, Buildr, Sbt, Ivy, Gradle, and Maven).

See also
 f Refer to Instant Mockito, Marcin Grzejszczak, Packt Publishing for an introduction

to Mockito together with examples of Mockito configuration in several build tools at
http://www.packtpub.com/how-to-create-stubs-mocks-spies-using-
mockito/book

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://code.google.com/p/mockito/downloads/list
http://www.packtpub.com/how-to-create-stubs-mocks-spies-using-mockito/book
http://www.packtpub.com/how-to-create-stubs-mocks-spies-using-mockito/book

Chapter 1

9

Getting started with Mockito for JUnit
Before going into details regarding Mockito and JUnit integration, it is worth mentioning a few
words about JUnit.

JUnit is a testing framework (an implementation of the xUnit framework) that allows you
to create repeatable tests in a very readable manner. In fact, JUnit is a port of Smalltalk's
SUnit (both the frameworks were originally implemented by Kent Beck). What is important
in terms of JUnit and Mockito integration is that under the hood, JUnit uses a test runner
to run its tests (from xUnit—test runner is a program that executes the test logic and reports
the test results).

Mockito has its own test runner implementation that allows you to reduce boilerplate in order
to create test doubles (mocks and spies) and to inject them (either via constructors, setters,
or reflection) into the defined object. What's more, you can easily create argument captors.
All of this is feasible by means of proper annotations as follows:

 f @Mock: This is used for mock creation

 f @Spy: This is used to create a spy instance

 f @InjectMocks: This is used to instantiate the @InjectMock annotated field and
inject all the @Mock or @Spy annotated fields into it (if applicable)

 f @Captor: This is used to create an argument captor

By default, you should profit from Mockito's annotations to make your code look neat and
to reduce the boilerplate code in your application.

Getting ready
In order to add JUnit to your classpath, if you are using a dependency manager that connects
to the Maven Central Repository, then you can get your dependencies as follows (examples
for Maven and Gradle):

To add JUnit in Maven, use the following code:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

Getting Started with Mockito

10

To add JUnit in Gradle, use the following code:

testCompile('junit:junit:4.11')

If you are not using any of the dependency managers, you have to download the following jars:

 f junit.jar

 f hamcrest-core.jar

Add the downloaded files to your classpath manually (you can download the jars from
https://github.com/junit-team/junit/wiki/Download-and-Install).

For this recipe, our system under test will be a MeanTaxFactorCalculator class that will
call an external service, TaxService, to get the current tax factor for the current user. It's
a tax factor and not tax as such, since for simplicity, we will not be using BigDecimals but
doubles, and I'd never suggest using doubles to anything related to money, as follows:

public class MeanTaxFactorCalculator {

 private final TaxService taxService;

 public MeanTaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double currentTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 double anotherTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 return (currentTaxFactor + anotherTaxFactor) / 2;
 }

}

How to do it...
To use Mockito's annotations, you have to perform the following steps:

1. Annotate your test with the @RunWith(MockitoJUnitRunner.class).

2. Annotate the test fields with the @Mock or @Spy annotation to have either a mock
or spy object instantiated.

https://github.com/junit-team/junit/wiki/Download-and-Install

Chapter 1

11

3. Annotate the test fields with the @InjectMocks annotation to first instantiate
the @InjectMock annotated field and then inject all the @Mock or @Spy annotated
fields into it (if applicable).

4. Annotate the test fields with the @Captor annotation to make Mockito instantiate
an argument captor (refer to Chapter 6, Verifying Test Doubles, for more details).

The following snippet shows the JUnit and Mockito integration in a test class that verifies
the SUT's behavior (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods; refer to Chapter 7, Verifying Behavior with
Object Matchers, for how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...) method):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10;

 @Mock TaxService taxService;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor(any(Person.class)))
.willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 }

}

To profit from Mockito's annotations using JUnit, you just have to annotate
your test class with @RunWith(MockitoJUnitRunner.class).

Getting Started with Mockito

12

How it works...
The Mockito test runner will adapt its strategy depending on the version of JUnit. If there
exists a org.junit.runners.BlockJUnit4ClassRunner class, it means that
the codebase is using at least JUnit in Version 4.5.What eventually happens is that the
MockitoAnnotations.initMocks(...) method is executed for the given test, which
initializes all the Mockito annotations (for more information, check the subsequent There's
more… section).

There's more...
You may have a situation where your test class has already been annotated with a
@RunWith annotation and, seemingly, you may not profit from Mockito's annotations.
In order to achieve this, you have to call the MockitoAnnotations.initMocks method
manually in the @Before annotated method of your test, as shown in the following code:

public class MeanTaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10;

 @Mock TaxService taxService;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Before
 public void setup() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor
(Mockito.any(Person.class))).willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 }

}

Chapter 1

13

To use Mockito's annotations without a JUnit test runner, you have to
call the MockitoAnnotations.initMocks method and pass the
test class as its parameter.

Mockito checks whether the user has overridden the global configuration of
AnnotationEngine and, if this is not the case, the InjectingAnnotationEngine
implementation is used to process annotations in tests. What is done internally is that the test
class fields are scanned for annotations and proper test doubles are initialized and injected
into the @InjectMocks annotated object (either by a constructor, property setter, or field
injection, in that precise order).

You have to remember several factors related to the automatic injection
of test doubles as follows:

 f If Mockito is not able to inject test doubles into the
@InjectMocks annotated fields through either of the
strategies, it won't report failure—the test will continue
as if nothing happened (and most likely, you will get
NullPointerException).

 f For constructor injection, if arguments cannot be found, then
null is passed

 f For constructor injection, if nonmockable types are required in
the constructor, then the constructor injection won't take place.

 f For other injection strategies, if you have properties with the
same type (or same erasure) and if Mockito matches mock
names with a field/property name, it will inject that mock
properly. Otherwise, the injection won't take place.

 f For other injection strategies, if the @InjectMocks annotated
object wasn't previously initialized, then Mockito will instantiate the
aforementioned object using a no-arg constructor if applicable.

See also
 f JUnit documentation at https://github.com/junit-team/junit/wiki

 f Martin Fowler's article on xUnit at http://www.martinfowler.com/bliki/
Xunit.html

 f Gerard Meszaros's xUnit Test Patterns at http://xunitpatterns.com/

 f @InjectMocks Mockito documentation (with description of injection strategies)
at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
InjectMocks.html

https://github.com/junit-team/junit/wiki
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
http://xunitpatterns.com/
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/InjectMocks.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/InjectMocks.html

Getting Started with Mockito

14

Getting started with Mockito for TestNG
Before going into details regarding Mockito and TestNG integration, it is worth mentioning
a few words about TestNG.

TestNG is a unit testing framework for Java that was created, as the author defines it on the
tool's website (refer to the See also section for the link), out of frustration for some JUnit
deficiencies. TestNG was inspired by both JUnit and TestNG and aims at covering the whole
scope of testing—from unit, through functional, integration, end-to-end tests, and so on.
However, the JUnit library was initially created for unit testing only.

The main differences between JUnit and TestNG are as follows:

 f The TestNG author disliked JUnit's approach of having to define some methods as
static to be executed before the test class logic gets executed (for example, the @
BeforeClass annotated methods)—that's why in TestNG you don't have to define
these methods as static

 f TestNG has more annotations related to method execution before single tests,
suites, and test groups

 f TestNG annotations are more descriptive in terms of what they do, for example,
the JUnit's @Before versus TestNG's @BeforeMethod

Mockito in Version 1.9.5 doesn't provide any out-of-the-box solution to integrate with TestNG in
a simple way, but there is a special Mockito subproject for TestNG (refer to the See also section
for the URL) that should be part one of the subsequent Mockito releases. In the following
recipe, we will take a look at how to profit from that code and that very elegant solution.

Getting ready
When you take a look at Mockito's TestNG subproject on the Mockito GitHub repository,
you will find that there are three classes in the org.mockito.testng package, as follows:

 f MockitoAfterTestNGMethod

 f MockitoBeforeTestNGMethod

 f MockitoTestNGListener

Unfortunately, until this project eventually gets released, you have to just copy and paste
those classes to your codebase.

Chapter 1

15

How to do it...
To integrate TestNG and Mockito, perform the following steps:

1. Copy the MockitoAfterTestNGMethod, MockitoBeforeTestNGMethod,
and MockitoTestNGListener classes to your codebase from Mockito's
TestNG subproject.

2. Annotate your test class with @Listeners(MockitoTestNGListener.class).

3. Annotate the test fields with the @Mock or @Spy annotation to have either a mock
or spy object instantiated.

4. Annotate the test fields with the @InjectMocks annotation to first instantiate the
@InjectMock annotated field and inject all the @Mock or @Spy annotated fields
into it (if applicable).

5. Annotate the test fields with the @Captor annotation to make Mockito instantiate
an argument captor (check Chapter 6, Verifying Test Doubles, for more details).

Now let's take a look at this snippet that, using TestNG, checks whether the mean tax factor
value has been calculated properly (remember that I'm using the BDDMockito.given(...)
and AssertJ's BDDAssertions.then(...) static methods—refer to Chapter 7, Verifying
Behavior with Object Matchers, on how to work with Hamcrest assertThat(...) method):

@Listeners(MockitoTestNGListener.class)
public class MeanTaxFactorCalculatorTestNgTest {

 static final double TAX_FACTOR = 10;

 @Mock TaxService taxService;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor(any(Person.class)))
.willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 }

}

Getting Started with Mockito

16

How it works...
TestNG allows you to register custom listeners (your listener class has to implement the
IInvokedMethodListener interface). Once you do this, the logic inside the implemented
methods will be executed before and after every configuration, and test methods get called.
Mockito provides you with a listener whose responsibilities are as follows:

 f Initialize mocks annotated with the @Mock annotation (it is done only once)

 f Validate the usage of Mockito after each test method

Remember that with TestNG all mocks are reset (or initialized
if it hasn't already been done) before any TestNG method!

See also
 f The TestNG homepage at http://testng.org/doc/index.html

 f The Mockito TestNG subproject at https://github.com/mockito/mockito/
tree/master/subprojects/testng

 f The Getting started with Mockito for JUnit recipe on the @InjectMocks analysis

Mockito best practices – test behavior not
implementation

Once you start testing with Mockito you might be tempted to start mocking everything that gets
in your way. What is more, you may have heard that you have to mock all of the collaborators
of the class and then verify whether those test doubles executed the desired methods. Of
course, you can code like that, but since it is best to be a pragmatic programmer, you should
ask yourself the question whether you would be interested in changing the test code each time
someone changes the production code, even though the application does the same things.

It's worth going back to distinguishing stubs from mocks. Remember that, if you create a
mock, it's for the sake of the verification of its method execution. If you are only interested in
the behavior of your test double—if it behaves as you tell it to—then you have a stub. In the
vast majority of cases, you shouldn't be interested in whether your test double has executed
a particular method; you should be more interested in whether your application does what it
is supposed to do. Also, remember that there are cases where it makes no sense to create a
stub of an external dependency—it all depends on how you define the system under test.

It might sound a little confusing but, hopefully, the following recipe will clear things up. We
will take a look at the simple example of a tax factor summing class that changes in time
(whereas its tests should not change much).

http://testng.org/doc/index.html
https://github.com/mockito/mockito/tree/master/subprojects/testng
https://github.com/mockito/mockito/tree/master/subprojects/testng

Chapter 1

17

Getting ready
Let's assume that we have the following tax factor calculator that calculates a sum of two
tax factors:

public class TaxFactorCalculator {

 public double calculateSum
(double taxFactorOne, double taxFactorTwo) {
 return taxFactorOne + taxFactorTwo;
 }

}

After some time, it turned out that we read about a library that allows you to hide the
implementation details of summing and you decided to rewrite your calculator to use
this library. Now your code looks as follows:

public class TaxFactorCalculator {

 private final Calculator calculator;

 public TaxFactorCalculator(Calculator calculator) {
 this.calculator = calculator;
 }

 public double calculateSum
(double taxFactorOne, double taxFactorTwo) {
 return calculator.add(taxFactorOne, taxFactorTwo);
 }

}

How to do it...
Since you want to test whether your system under test works fine, you should focus on the
following points:

 f Start by writing a test—not with an implementation. That way, you will constantly
ask yourself the question of what you want to do and only then will you think about
how to do it.

 f Focus on asserting the result—what you want to verify in most cases is whether your
system under test works as it is supposed to. You shouldn't care much how exactly
it is done.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Mockito

18

Let's take a look at a test of the first version of the class (I'm using the BDDMockito.
given(...) and AssertJ's BDDAssertions.then(...) static methods—refer to Chapter 7,
Verifying Behavior with Object Matchers, for how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...) method):

 @Test
 public void should_calculate_sum_of_factors() {
 // given
 TaxFactorCalculator systemUnderTest =
 new TaxFactorCalculator();
 double taxFactorOne = 1;
 double taxFactorTwo = 2;
 double expectedSum = 3;

 // when
 double sumOfFactors = systemUnderTest.
calculateSum(taxFactorOne, taxFactorTwo);

 // then
 then(sumOfFactors).isEqualTo(expectedSum);
 }

As you can see, we are testing a class that should add two numbers and produce a result.
We are not interested in how it is done—we want to check that the result is satisfactory. Now,
assuming that our implementation changed—having a good test would require only to comply
to the new way that our system under test is being initialized and the rest of the code remains
untouched. In other words, change TaxFactorCalculator systemUnderTest = new
TaxFactorCalculator() to TaxFactorCalculator systemUnderTest = new
TaxFactorCalculator(new Calculator()). Moreover, since we are checking behavior
and not the implementation, we don't have to refactor the test code at all.

See also
 f Martin Fowler on TDD at http://martinfowler.com/bliki/

TestDrivenDevelopment.html

 f Kent Beck's Test Driven Development on Amazon at http://www.amazon.com/
Test-Driven-Development-By-Example/dp/0321146530

 f Mockito's wiki page concerning how to write good tests at https://github.com/
mockito/mockito/wiki/How-to-write-good-tests

http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530
http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530
https://github.com/mockito/mockito/wiki/How-to-write-good-tests
https://github.com/mockito/mockito/wiki/How-to-write-good-tests

Chapter 1

19

Adding Mockito hints to exception messages
(JUnit) (Experimental)

When a JUnit test fails, an exception is thrown and a message is presented. Sometimes,
it is enough to find a reason for this mistake and to find the solution. Mockito, however, goes
a step further and tries to help the developer by giving him additional hints regarding the
state of the stubbed methods.

Remember that this feature is experimental and the API, name, or anything
related to it may change in time. What is more, the whole feature may get
deleted in time!

Getting ready
For this recipe, let's assume that our system is the MeanTaxFactorCalculator
class that calculates tax through TaxService, which has two methods—
performAdditionalCalculation() and getCurrentTaxFactorFor(...). For the
sake of this example, let's assume that only the latter is used to calculate the mean value:

public class MeanTaxFactorCalculator {

 private final TaxService taxService;

 public MeanTaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double currentTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 double anotherTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 return (currentTaxFactor + anotherTaxFactor) / 2;
 }

}

Getting Started with Mockito

20

We wanted to check whether our system under test is calculating the proper result, so
we wrote the following test but made a mistake and stubbed a wrong method (I'm using
the BDDMockito.given(...) and AssertJ's BDDAssertions.then(...) static
methods—refer Chapter 7, Verifying Behavior with Object Matchers, for how to work with
AssertJ or how to do the same with Hamcrest's assertThat(...) method):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 static final double UNUSED_VALUE = 10;

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 TaxService taxService = given(Mockito.mock(TaxService.class).
performAdditionalCalculation()).willReturn(UNUSED_VALUE)
.getMock();
 MeanTaxFactorCalculator systemUnderTest =
 new MeanTaxFactorCalculator(taxService);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(UNUSED_VALUE);
 }

}

The test fails and what we can see is the standard JUnit comparison failure being thrown
(presenting only the most important part of the stack trace) as follows:

org.junit.ComparisonFailure:
Expected :10.0
Actual :0.0

Now let's take a look at how to use Mockito's experimental features to get more Mockito
related information appended to the error message.

Chapter 1

21

How to do it...
If you want to have more information presented in your error message, you have to perform
the following steps:

1. Annotate your JUnit test with @RunWith(VerboseMockitoJUnitRunner.class).

2. Define your mocks and perform stubbing inside the test method (unfortunately, you
can't use annotations or initialize fields outside test methods).

What happens next is that additional exception messages can be seen in the exception that
is thrown as follows:

org.mockito.internal.exceptions.
ExceptionIncludingMockitoWarnings:
 contains both: actual test failure *and* Mockito warnings.
This stubbing was never used -> at ...MeanTaxFactorCalculatorTest.
should_calculate_mean_tax_factor
(MeanTaxFactorCalculatorTest.java:30)

 *** The actual failure is because of: ***

Expected :10.0
Actual :0.0

How it works...
When the test is run, VerboseMockitoJUnitRunner appends a listener. When the test is
started, this listener finds all the stubs through WarningsCollector, including the unused
stubs for given mocks.

As the Mockito developers state it in the code, they are indeed using a very hacky way to
append a message to the thrown exception after the test fails. The JUnitFailureHacker
class is instantiated and, by means of the Whitebox class, the internal state of a private field
of the JUnit's Failure object is modified with additional Mockito messages.

Getting Started with Mockito

22

Adding additional Mockito warnings to your
tests (JUnit) (Experimental)

If you would like Mockito to append some additional warning messages to the console, which
would help you when your test fails, then this recipe is perfect for you. It's very much related
to the previous one so, in order to understand the background, please refer to the introductory
part of the previous recipe.

Remember that this feature is experimental and the API, name, or anything
related to it may change in time. What's more, the whole feature may get
deleted in time!

How to do it...
If you want to have more information presented in your error message, you have to perform
the following steps:

1. Annotate your JUnit test with @RunWith(ConsoleSpammingMockitoJUnitRunn
er.class).

2. Define your mocks and perform stubbing inside the test method (unfortunately, you
can't use annotations or initialize fields outside test methods).

What happens then is that additional exception messages gets printed on the console after
the exception that is thrown:

This stubbing was never used -> atMeanTaxFactorCalculatorTest
.should_calculate_mean_tax_factor
(MeanTaxFactorCalculatorTest.java:25)

How it works...
When the test is run, ConsoleSpammingMockitoJUnitRunner appends a listener that
finds all the stubs through WarningsCollector, including the unused stubs for given
mocks. When all of the warnings get collected, the ConsoleMockitoLogger class prints
them to the console after the test has failed.

2
Creating Mocks

In this chapter, we will cover the following recipes:

 f Creating mocks in code

 f Creating mocks with annotations

 f Creating mocks with a different default answer

 f Creating mocks with different default answers with annotations

 f Creating mocks with custom configuration

 f Creating mocks of final classes with PowerMock

 f Creating mocks of enums with PowerMock

Introduction
Mockito, as the name suggests, is all about working with mocks. It is worth mentioning
that before you go and start mocking every class that is in your codebase, it's good to really
understand the idea behind mocking and when to mock an object.

While performing unit testing, you will want to test your system in isolation. You're doing it
because you want to test a part of the system as a unit and control any external interactions.
Remember that in new, well-designed code, your system should follow the SOLID principles
(for more details, check out Uncle Bob's blog at http://butunclebob.com/ArticleS.
UncleBob.PrinciplesOfOod and read Agile Software Development, Principles, Patterns,
and Practices, Robert C. Martin, which is available at http://www.amazon.com/
Software-Development-Principles-Patterns-Practices/dp/0135974445).
The complete description about what SOLID stands for is given as follows:

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445

Creating Mocks

24

 f (S) Single responsibility principle: A class should have only a single responsibility.
In other words, your class should be dedicated to doing only one thing and should
have only one reason to change.

 f (O) Open/closed principle: Your code should be open for extension but closed for
modification. If you want it to be possible to change the behavior of your code, don't
force other developers into changing the source code; instead, give them a chance
to extend it.

 f (L) Liskov substitution principle: Let's assume that you have a class B that extends
a class A. When treated like class A, class B is expected to behave in the same way
as an instance of class A would.

 f (I) Interface segregation principle: You don't want your classes to be forced to be
dependent on methods they don't need to use. In other words, the ISP suggests that
you should split large interfaces into smaller ones that are highly specific (these
interfaces are called role interfaces)

 f (D) Dependency inversion: The concept behind this rule is to decouple your classes
from one another. To put it simply, try to depend on abstractions rather than concrete
implementations. (In other words, once you change the implementation, for example,
some third-party library to another, you will have to change the whole code of your
application instead of its single part.)

Assuming that we follow the SOLID principles, we have a class that is dependent on some
other components where each component is responsible for a single functionality. When
testing that class (if it makes sense, of course), we can create test doubles (to check out
the differences between different types of test doubles (refer to Chapter 1, Getting Started
with Mockito) for the components that are passed as collaborators (most probably through
constructors). Here, Mockito comes to the rescue and helps you easily create mocks for
those components.

The next chapter focuses on showing tests created to test some real-life examples
of production code simplified for the sake of readability). We will focus on numerous
ways of creating mocks (in the majority of cases, you should be using only the default
annotation-based approach).

A standard reminder that you will see throughout the book is as follows:
Because I am very fond of behavior-driven development (http://
dannorth.net/introducing-bdd/ first introduced by Dan North),
I'm using Mockito's BDDMockito and AssertJ's BDDAssertions static
methods in all the test cases to make the code even more readable and
intuitive. Also, please read Szczepan Faber's blog (author of Mockito) about
the given, when, then separation in your test methods, from http://
monkeyisland.pl/2009/12/07/given-when-then-forever/,
since these separation methods are omnipresent throughout the book.

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/

Chapter 2

25

Even though some of the mentioned methods might sound not too clear to you, or the
test code will look complicated, don't worry, it will all be explained through the course of this
book. I don't want the book to become a duplication of the Mockito documentation. I would
like you to take a look at nice tests and get acquainted with Mockito syntax from the very
beginning. I have used static imports in the code to make it even more readable, so if you get
confused with any of the pieces of code, it would be best to refer to the repository and the
code as such.

Creating mocks in code
Before a mock is interacted with, it needs to be created. Mockito gives you several overloaded
versions of the Mockito.mock method. Let's take a look at a few of them:

 f mock(Class<T> classToMock): This method creates a mock of a given class
with a default answer set to returning default values (if not overriden by a custom
Mockito configuration). When creating mocks in code, you will most likely be using
this method.

 f mock(Class<T> classToMock, String name): This method creates a mock of
a given class with a default answer set to returning default values. It also sets a name
to the mock. This name is present in all verification messages. That's very useful in
debugging, since it allows you to distinguish the mocks.

 f mock(Class<T> classToMock, Answer defaultAnswer): This method
creates a mock of a given class with a default answer set to the one passed as the
method's argument. In other words, all of the nonstubbed mock's method will act as
defined in the passed answer.

 f mock(Class<T> classToMock, MockSettings mockSettings): This method
creates a mock of a given class with customizable mock settings. You should hardly
ever need to use that feature.

Getting ready
In the following code, our system under test is a class that calculates a mean value of tax
factors retrieved through a web service:

public class MeanTaxFactorCalculator {

 private final TaxService taxService;

 public MeanTaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

Creating Mocks

26

 public double calculateMeanTaxFactorFor(Person person) {
 double currentTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 double anotherTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 return (currentTaxFactor + anotherTaxFactor) / 2;
 }

}

Let's now write a test for the system that will check whether it can properly calculate the
mean value of the tax factor. We have to create a stub of TaxService and stub its behavior
(we don't want it to send any real requests).

How to do it...
To create a mock of a given class using the Mockito static method, you have to call
the static Mockito.mock(Class<T> classToMock) method with the type of class
to mock.

The following test is written for JUnit. For the TestNG configuration, refer to Chapter 1,
Getting Started with Mockito (I'm using the BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Refer to Chapter 7, Verifying Behavior
with Object Matchers, on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)).

public class MeanTaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10;

 TaxService taxService = mock(TaxService.class);

 MeanTaxFactorCalculator systemUnderTest = new MeanTaxFactorCalculato
r(taxService);

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor(any(Person.class))).
willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

Chapter 2

27

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 }

}

You can statically import the method to increase readability, as
presented in the following example:

import static org.mockito.Mockito.mock;
TaxService taxService = mock(TaxService.class);

How it works...
Internally, Mockito calls the overloaded mock method that takes the MockSettings
argument and executes it with a default answer set to the RETURNS_DEFAULT value
(in other words, returns zeroes, empty collections, null values, and so on.) Next, by means
of the MockitoCore class, a custom CGLIB proxy is created and returned to the user.

See also
 f Refer to Martin Fowler's article on mocks and stubs from http://martinfowler.

com/articles/mocksArentStubs.html

 f Refer to the xUnit pattern's comparison of test doubles from http://
xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

Creating mocks with annotations
In the previous recipe, we saw how to create a mock by means of the Mockito.mock static
method. It's much better, however, to use Mockito's annotations to make your tests look even
nicer. Before going into the details of how to do it, let's take a closer look at the system under
test (it's the same as in the previous recipe, but in order for you not to jump around pages,
let's take a look at it here).

www.allitebooks.com

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://www.allitebooks.org

Creating Mocks

28

Getting ready
In this recipe, our system under test is a class that calculates a mean value of tax factors
retrieved through a web service, as shown in the following code:

public class MeanTaxFactorCalculator {

 private final TaxService taxService;

 public MeanTaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double currentTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 double anotherTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 return (currentTaxFactor + anotherTaxFactor) / 2;
 }

}

Let's now write a test for the system that will check whether it can properly calculate the
mean value of the tax factor. We have to create a stub of TaxService and stub its behavior
(we don't want it to send any real requests).

How to do it...
Since Mockito integrates very nicely with JUnit (refer to Chapter 1, Getting Started with
Mockito, for more details regarding both JUnit and TestNG configuration), let's remove the
unnecessary code and make the test more readable. To do that, you have to perform the
following steps:

1. Annotate your test with @RunWith(MockitoJUnitRunner.class).

2. Define the collaborators that you would like to mock.

3. Annotate those dependencies with @Mock annotation.

Of course, this JUnit approach will work only if you haven't already annotated your test class
with another @RunWith annotation.

Chapter 2

29

Now, let's take a look at the test written for JUnit (remember that I'm using the BDDMockito.
given(...) and AssertJ's BDDAssertions.then(...) static methods. Refer to
Chapter 7, Verifying Behavior with Object Matchers, to learn how to work with AssertJ or how
to do the same with Hamcrest's assertThat(...)). Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10;

 @Mock TaxService taxService;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor(any(Person.class))).
willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 }

}

How it works...
A more precise description of how MockitoJUnitRunner works and how it creates mocks
is provided in Chapter 1, Getting Started with Mockito. So please refer to it for more details.

See also
 f Refer to Martin Fowler's article on mocks and stubs from http://martinfowler.

com/articles/mocksArentStubs.html

 f Refer to the xUnit pattern's comparison of test doubles from http://
xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

Creating Mocks

30

Creating mocks with a different default
answer

If not changed by the custom configuration, Mockito sets the mock ReturnsEmptyValues
answer by default (for details on that answer, please check the subsequent There's more...
section). Note that in Chapter 4, Stubbing Behavior of Mocks, where we deal with stubbing
of particular methods, you can learn how to stub particular methods with a custom answer.

In the following recipe, we will see how to change the default answer to a custom or a
predefined one.

Getting ready
It is more than probable that you will not ever need to create a custom answer for
Mockito—there are plenty of them already bundled in Mockito and there is no need to
reinvent the wheel. Why would you want to create a custom answer anyway? Let's take
a look at a couple of possible answers to that question:

 f It is possible that for debugging purposes, you would like to log the arguments that
were passed to the stubbed method

 f You could also want to perform some more complex logic on the passed argument
rather than just return some fixed value

 f You want to stub asynchronous methods that have callbacks (you provide those
callbacks in the custom Answer implementation)

 f Believe me, you don't want to capture the arguments and check them! Check
Chapter 6, Verifying Test Doubles, for more information

If you thought it over and still want to create a custom answer, please check if there isn't
one already existing in Mockito.

In the provided Mockito API, you can find the following answers in the AdditionalAnswers
class (check the Javadoc of that class for examples):

 f returnsFirstArg: This answer will return the first argument of the invocation

 f returnsSecondArg: This answer returns the second argument of the invocation

 f returnsLastArg: This answer returns the last argument of the invocation

 f returnsArgAt: This answer returns the argument of the invocation provided
at the given index

 f delegatesTo: This answer delegates all methods to the delegate (you will in fact
call the delegate's method if the method hasn't already been stubbed)

 f returnsElementsOf: This answer returns the elements of the provided collection

Chapter 2

31

There is also the Mockito class itself that contains some Answer interface implementations
(they are static final fields, thus their names are in uppercase). These are RETURNS_
DEFAULT, RETURNS_SMART_NULLS, RETURNS_MOCKS, RETURNS_DEEP_STUBS, and
CALLS_REAL_METHODS; they all delegate to answers described in more depth in the
There's more... section.

If you feel that none of these answers satisfy your requirements, you have to create your own
implementation of the Answer interface. The next part of this recipe will show how to pass
the answer to the created mock. Our system under test is a class that calculates a mean
value of tax factors retrieved through a web service. Have a look at the following code:

public class MeanTaxFactorCalculator {

 private final TaxService taxService;

 public MeanTaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double currentTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 double anotherTaxFactor = taxService.
getCurrentTaxFactorFor(person);
 return (currentTaxFactor + anotherTaxFactor) / 2;
 }

}

How to do it...
To set a different default answer without annotations, you have to use the overloaded
Mockito.mock(Class<T> classToMock, Answer defaultAnswer) static method.

The following snippet shows an example of a test that uses the ThrowsExceptionClass
answer set on a mock as its default answer:

public class MeanTaxFactorCalculatorTest {

 TaxService taxService = mock(TaxService.class, new ThrowsExceptionCl
ass(IllegalStateException.class));

 MeanTaxFactorCalculator systemUnderTest = new MeanTaxFactorCalculato
r(taxService);

Creating Mocks

32

 @Test
 public void should_throw_exception_when_calculating_mean_tax_
factor() {
 // expect
 try {
 systemUnderTest.calculateMeanTaxFactorFor(new Person());
 fail("Should throw exception");
 } catch (IllegalStateException exception) {}
 }

}

How it works...
Mockito takes the passed answer type argument and creates MockitoSettings from it
as follows:

public static <T> T mock(Class<T> classToMock, Answer defaultAnswer) {
 return mock(classToMock, withSettings().
 defaultAnswer(defaultAnswer));
 }

In this way, the default mock's answer is changed to the custom one. In this way, if not
previously stubbed, all of the mock's methods will, by default, execute the logic from the
passed Answer implementation.

There's more...
Here is the list of additional, interesting Mockito Answer implementations together with a
short description (mind you, they are part of the Mockito internals, so I'm presenting them
for you to understand what happens under the hood while using Mockito. Be cautious when
using them):

 f Returns: It always returns the object passed in the constructor of this Answer
implementation.

 f ReturnsEmptyValues: When creating a mock, all of its methods are stubbed
as follows based on the method's return type:

 � For primitives: It returns default Java-appropriate primitive values
(0 for integer, false for boolean, and so on)

 � For primitive wrappers: It returns the same values as for primitives

 � For most commonly used collection types: It returns an empty collection

 � For the toString() method: It returns the mock's name

Chapter 2

33

 � For Comparable.compareTo(T other): It returns 1 (meaning that the
objects are not equal to each other)

 � For anything else: It returns null

 f ReturnsMoreEmptyValues: This implementation extends the
ReturnsEmptyValues functionality with the following additional
default return types:

 � For arrays: It returns an empty array

 � For strings: It returns an empty string ("")

 � Returns an empty array for methods that return arrays

 � Returns an empty string ("") for methods returning strings

 f ReturnsSmartNulls: If a NullPointerException gets thrown on mock, Mockito
catches it and rethrows SmartNullPointerException with additional helpful
messages. Additionally, it acts like ReturnsMoreEmptyValues.

 f DoesNothing: This method always returns null for objects (non-primitive types) and
default values for primitives.

 f CallsRealMethods: This method creates a partial mock by default, unstubbed
methods delegate to real implementations.

 f ReturnsArgumentAt: This method returns an argument at a specified position of
an array (for -1, it returns its last element).

 f ReturnsElementsOf: This method keeps returning subsequent elements of the
collection that is passed in the constructor. Once it arrives at the tail of the collection,
it will always return that value.

 f ReturnsDeepStubs: This method allows easy nested mock creation and method
chain stubbing. Check Chapter 8, Refactoring with Mockito, for usage examples and
suggestions why you should not use it.

 f ThrowsExceptionClass: This method throws the exception passed as the
argument to the constructor of Answer for each method. Mockito will instantiate the
exception for you.

 f ThrowsException: This method throws an instantiated exception passed to the
constructor of Answer.

 f ReturnsMocks: First, this method tries to return values such as the ones defined in
ReturnsMoreEmptyValues and, if that fails, it tries to return a mock. Eventually, if
this attempt fails at either of them, ReturnsMocks returns null. Please think twice
before using this answer (or use it only to refactor some legacy code), since it clearly
means that something is wrong with your design.

Creating Mocks

34

Another interesting feature is that if you create a class called
MockitoConfiguration that implements IMockitoConfiguration
or extends the DefaultMockitoConfiguration class in the
org.mockito.configuration package. You can then set a global
answer for all your mocks. The following snippet shows what a Mockito
configuration class should look like in order to change the default answer of
any mock to ReturnsSmartNulls:

public class MockitoConfiguration extends
DefaultMockitoConfiguration {

 public Answer<Object> getDefaultAnswer() {
 return new ReturnsSmartNulls();
 }

}

See also
 f Refer to the Mockito AdditonalAnswers API from http://docs.mockito.

googlecode.com/hg/1.9.5/org/mockito/AdditionalAnswers.html

 f Refer to the Google testing blog on when and how to use Mockito Answer from
http://googletesting.blogspot.com/2014/03/whenhow-to-use-
mockito-answer.html

Creating mocks with different default
answers with annotations

In the previous recipe, you have seen how to pass an implementation of the Answer interface
to your mock to change its default behavior. In this recipe, we will focus on doing the same
when creating mocks using annotations.

All versions of Mockito up until version 1.9.5 allow you to pass only elements of the Answers
enum that delegate to answers present in the public Mockito API, as the arguments of the
annotation. In the next Mockito release, there should be a possibility of passing a custom
answer too, but until then it's not possible to do that.

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/AdditionalAnswers.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/AdditionalAnswers.html
http://googletesting.blogspot.com/2014/03/whenhow-to-use-mockito-answer.html
http://googletesting.blogspot.com/2014/03/whenhow-to-use-mockito-answer.html

Chapter 2

35

Getting ready
In the following code, our system is a class that, based on the person's country, collects
his Internal Revenue Service (IRS) address and formats it properly:

public class TaxFactorInformationProvider {

 private final TaxService taxService;

 public TaxFactorInformationProvider(TaxService taxService) {
 this.taxService = taxService;
 }

 public String formatIrsAddress(Person person) {
 String irsAddress = taxService.getInternalRevenueServiceAddres
s(person.getCountryName());
 return "IRS:[" + irsAddress + "]";
 }

}

Let's now write a test for the system that will check whether the address will be properly
formatted if the IRS address is an empty string. We will create a stub of TaxService and
stub its behavior (we don't want it to send any real requests).

How to do it...
If you want to pass a nondefault answer to the @Mock annotated field you have to set the
answer property with a proper value of the Answers enum on the @Mock annotation.

Now, let's take a look at the test written for JUnit. For the TestNG configuration, please refer
to Chapter 1, Getting Started with Mockito (I'm using the BDDMockito.given(...) and
AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)).

@RunWith(MockitoJUnitRunner.class)
public class TaxFactorInformationProviderTest {

 @Mock(answer = Answers.RETURNS_SMART_NULLS) TaxService taxService;

Creating Mocks

36

 @InjectMocks TaxFactorInformationProvider systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor() {
 // when
 String parsedIrsAddress = systemUnderTest.formatIrsAddress(new
Person());

 // then
 then(parsedIrsAddress).isEqualTo("IRS:[]");
 }

}

By passing Answers.RETURNS_SMART_NULLS, we've managed to define that if an
unstubbed method returns a string, then from now on it will return an empty string by
default. In that way, at the end, we get an empty value of the address.

How it works...
When the Mockito's MockitoJUnitRunner runner logic is executed at the end of
the day, it calls the MockitoAnnotations.initMocks method. That is where the
default AnnotationEngine is used, which, if not overriden in the global Mockito
configuration, is InjectingAnnotationEngine. This engine delegates the processing
of annotated elements to the DefaultAnnotationEngine that has different
FieldAnnotationProcessors for different types of Mockito-related annotations. In this
case, the MockAnnotationProcessor is called, which instantiates a MockSettings
object on which the code calls methods matching the annotation parameters, such as
extraInterfaces(...), name(...), and defaultAnswer(...). In the previous
example, the ReturnsSmartNulls answer coming from the passed Answers.RETURNS_
SMART_NULLS was passed to the aforementioned defaultAnswer(...) method of
MockSettings. That is why the code eventually behaves as we expected it to.

See also
 f Refer to Chapter 1, Getting Started with Mockito, for additional information on the

annotation-based Mockito configuration for both TestNG and JUnit

 f Refer to Chapter 4, Stubbing Behavior of Mocks, to see how to stub the mock's
method so that they return custom answers

Chapter 2

37

Creating mocks with custom configuration
Even though in the majority of cases you will not need the feature discussed in the preceding
recipe, sometimes you may want your mock to satisfy some additional prerequisites. Thanks
to Mockito's Mockito.withSettings fluent interface, you can easily set up your custom
MockitoSettings object that you can pass to the Mockito.mock method that will create
your mock. When you check out the Javadoc of MockitoSettings, you will see a note
that you shouldn't use that class too often. That's good advice, because you should make
it a practice to write your code and tests in such a way that it is either of high quality or low
complexity. In other words, in real life, you shouldn't need to configure your mocks in such a
complex way.

Getting ready
Let's take a look at the following MockitoSettings interface methods:

 f extraInterfaces(...): This method specifies which additional interfaces the
mock should implement. It can be quite useful when dealing with legacy code. Check
out Chapter 8, Refactoring with Mockito (you shouldn't need to ever have to use it in
well-written code).

 f name(...): By calling this method, you define a custom mock name. It can be
useful when debugging your test since the provided name will be omnipresent
in the verification errors.

 f spiedInstance(...): This method specifies the instance to spy on
(refer to Chapter 3, Creating Spies and Partial Mocks, for more details on spies).

 f defaultAnswer(...): This method is used by the mock if not defined otherwise by
explicit method stubbing (in other words, if you don't stub a method here, you define
what should happen when you execute it).

 f serializable(): This method makes the mock serializable; however, generally
speaking, you shouldn't have the need to call this method in well-designed code.

 f verboseLogging(): This method logs method invocations on the mock; it might
be useful for debugging to verify which interaction was unnecessary on the mock.

 f invocationListeners(...): If you want to perform some additional debugging
actions on your mocks each time a method gets executed on it, you have to
implement your own listener and register it on the mock via this method.

www.allitebooks.com

http://www.allitebooks.org

Creating Mocks

38

In the following code, our system under test is a class that collects a person's IRS address
and formats it properly based on his or her country:

public class TaxFactorInformationProvider {

 private final TaxService taxService;

 public TaxFactorInformationProvider(TaxService taxService) {
 this.taxService = taxService;
 }

 public String formatIrsAddress(Person person) {
 String irsAddress = taxService.getInternalRevenueServiceAddres
s(person.getCountryName());
 return "IRS:[" + irsAddress + "]";
 }

}

Let's now write a test for the system under test that will check whether the address will be
properly formatted if the IRS address would be an empty string. We have to create a stub of
TaxService and stub it's behavior (we don't want it to send any real requests).

How to do it...
To customize your mock's configuration via the MockitoSettings interface, you have to
perform the following steps:

1. Create the mock(Class<T> classToMock, MockSettings mockSettings)
method.

2. Pass the MockSettings object via the static withSettings() method as the
second method's parameter.

Now let's take a look at the test written for JUnit. For the TestNG configuration, refer to
Chapter 1, Getting Started with Mockito (I'm using the BDDMockito.given(...) and
AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)).

public class MeanTaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10;

 TaxService taxService = mock(TaxService.class, withSettings().
serializable());

Chapter 2

39

 MeanTaxFactorCalculator systemUnderTest = new MeanTaxFactorCalculato
r(taxService);

 @Test
 public void should_calculate_mean_tax_factor() {
 // given
 given(taxService.getCurrentTaxFactorFor(any(Person.class))).
willReturn(TAX_FACTOR);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(TAX_FACTOR);
 then(taxService).isInstanceOf(Serializable.class);
 }

}

How it works...
What Mockito does internally is that it calls the MockitoCore class that is the point of entry
for creating mocks. Then, a mock is created using the provided MockitoSettings object.

There's more...
If you are using annotations to create your mock, you also have some possibilities of
customization. Take a look at the following @Mock annotation's additional parameters:

 f answer: This parameter is one of the predefined answers present in the
Answers enum

 f name: This parameter is the name of the mock

 f extraInterfaces: This parameter specifies which additional interfaces the mock
should implement

The following is an example of a @Mock annotated field containing all of the previously
mentioned parameters (the probability that you will use more than one parameter, if any,
is very small):

@Mock(answer = Answers.RETURNS_SMART_NULLS, extraInterfaces =
{Iterable.class, Serializable.class}, name = "Custom tax service
mock")
 TaxService taxService;

Creating Mocks

40

See also
 f Refer to the Mockito documentation on MockitoSettings class from http://docs.

mockito.googlecode.com/hg/1.9.5/org/mockito/MockSettings.html

Creating mocks of final classes with
PowerMock

Although these situations should not take place in a well-written and test-driven system, there
are cases in which it is necessary to mock some legacy code or third-party libraries that are
impossible to be mocked only by means of Mockito. In this recipe, we will see how to deal with
those abnormal situations using the PowerMock library. Remember, however, that this tool is
extremely powerful and the very need to use it suggests that something may really be wrong
with your code. The best outcome of using this library would be to use it as means to refactor
the bad code and, at the end of the day, remove the PowerMock dependency from the system
since it is no longer needed.

Getting ready
In order to use PowerMock with Mockito, you need to include the following library in your
classpath. If you are using a dependency management system such as Gradle or Maven,
you can add it to the code as follows:

The dependency definition for Gradle is as follows:

testCompile 'org.powermock:powermock-api-mockito:1.5.2'

The dependency definition for Maven is as follows:

<dependency>
 <groupId>org.powermock</groupId>
 <artifactId>powermock-api-mockito</artifactId>
 <version>1.5.2</version>
 <scope>test</scope>
</dependency>

Now, depending on the integration with JUnit or TestNG, there is an additional JAR file needed.

If you are using JUnit, then provide either of the following dependencies:

The dependency definition for Gradle is as follows:

testCompile 'org.powermock:powermock-module-junit4:1.5.2'

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/MockSettings.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/MockSettings.html

Chapter 2

41

The dependency definition for Maven is as follows:

<dependency>
 <groupId>org.powermock</groupId>
 <artifactId>powermock-module-junit4</artifactId>
 <version>1.5.2</version>
 <scope>test</scope>
</dependency>

Assuming that you are using TestNG, configure your dependencies as follows:

The dependency definition for Gradle is as follows:

testCompile 'org.powermock:powermock-module-testng:1.5.2'

The dependency definition for Maven is as follows:

<dependency>
 <groupId>org.powermock</groupId>
 <artifactId>powermock-module-testng</artifactId>
 <version>1.5.2</version>
 <scope>test</scope>
</dependency>

You can also download the JAR files from PowerMock's website at https://code.google.
com/p/powermock/wiki/Downloads?tm=2.

Our system under test will be a class whose responsibility it is to calculate the tax factor
for the current person. It interacts with TaxService, which happens to be a final class
(we'll omit its implementation since it's irrelevant for this recipe; what's important to
remember is that it's a final class). Have a look at the following code:

public class TaxFactorCalculator {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorCalculator(TaxService taxService) {
 this.taxService = taxService;
 }

 public double calculateTaxFactorFor(Person person) {
 try {

https://code.google.com/p/powermock/wiki/Downloads?tm=2
https://code.google.com/p/powermock/wiki/Downloads?tm=2

Creating Mocks

42

 return taxService.calculateTaxFactorFor(person);
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

How to do it...
To use PowerMock with JUnit, you have to perform the following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all the classes that need to be prepared for testing (most likely bytecode
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(TaxService.class) since TaxService is a final
class). In general, classes that need to be prepared for testing will include classes
with final, private, static or native methods; classes that are final and that should be
mocked; and also classes that should be returned as mocks on instantiation.

Let's take a look at the JUnit test that will verify whether the tax factor is properly calculated
(I'm using the BDDMockito.given(...) and AssertJ's BDDAssertions.then(...)
static methods. Check out Chapter 7, Verifying Behavior with Object Matchers, on how to work
with AssertJ or how to do the same with Hamcrest's assertThat(...)). Have a look at the
following code:

@RunWith(PowerMockRunner.class)
@PrepareForTest(TaxService.class)
public class TaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10000;

 @Mock TaxService taxService;

 @InjectMocks TaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_tax_factor() {
 // given
 given(taxService.calculateTaxFactorFor(Mockito.any(Person.
class))).willReturn(TAX_FACTOR);

Chapter 2

43

 // when
 double taxFactorForPerson = systemUnderTest.
calculateTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(TAX_FACTOR);
 }

}

To use PowerMock with TestNG, you have to perform the following steps:

1. Make your class extend the PowerMockTestCase class.

2. Implement a method annotated with the @ObjectFactory annotation that returns
an instance of the PowerMockObjectFactory class (this object factory will be
used for the creation of all object instances in the test).

3. Provide all the classes that need to be prepared for testing (most likely bytecode
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(TaxService.class) since TaxService is a final
class). This includes classes with final, private, static, or native methods; classes
that are final and that should be mocked; and also classes that should be returned a
mock on object instantiation.

Let's take a look at the following JUnit test that will verify whether the tax factor is properly
calculated (consult the introduction to the analogous JUnit example discussed earlier in terms
of BDDMockito and BDDAssertions usage):

@PrepareForTest(TaxService.class)
public class TaxFactorCalculatorTestNgTest extends PowerMockTestCase {

 static final double TAX_FACTOR = 10000;

 @Mock TaxService taxService;

 @InjectMocks TaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_tax_factor() {
 // given
 given(taxService.calculateTaxFactorFor(any(Person.class))).
willReturn(TAX_FACTOR);

Creating Mocks

44

 // when
 double taxFactorForPerson = systemUnderTest.
calculateTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(TAX_FACTOR);
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }

}

How it works...
The internals of PowerMock go far beyond the scope of this recipe but the overall concept is
that part of the logic of PowerMockRunner is to create a custom classloader and bytecode
manipulation for the classes defined using the @PrepareForTest annotation in order
to mock them and to use these mocks with the standard Mockito API. Due to bytecode
manipulations, PowerMock can ignore a series of constraints of the Java language, such
as extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use PowerMock to
refactor bad code

Creating mocks of enums with PowerMock
Believe it or not, in some legacy systems you can find solutions where the business logic is
implemented inside an enum. What we will discuss here is how to mock and stub (you will learn
about stubbing more in Chapter 4, Stubbing Behavior of Mocks) an enum using PowerMock
(since it's impossible to do it in Mockito). The PowerMock library setup has been described in
the previous recipe, so we'll skip it. I will, however, repeat that the best outcome of using the
PowerMock library would be to use it as a means to refactor the code, and, at the end of the
day, remove the PowerMock dependency from the system since it is no longer needed.

https://code.google.com/p/powermock/

Chapter 2

45

Getting ready
Let's assume that we have the following enum containing business logic:

public enum Country implements TaxRateCalculator {
 POLAND {
 @Override
 public double calculateTaxFactorFor(Person person) {
 return new PolishWebService().doLongOperation(person);
 }
 },
 OTHER {
 @Override
 public double calculateTaxFactorFor(Person person) {
 return new OtherWebService().doLongOperation(person);
 }
 };

 public static Country fromCountryName(String countryName){
 if(POLAND.name().equalsIgnoreCase(countryName)){
 return POLAND;
 }
 return OTHER;
 }
}

The system under test changes in a way that it can use the enum to perform computations.
The enum is chosen based on the person's country name via the execution of the enum's
fromCountry(...) static method. Have a look at the following code:

public class TaxFactorCalculator {

 public static final double INVALID_TAX_FACTOR = -1;

 public double calculateTaxFactorFor(Person person) {
 Country country = Country.fromCountryName(person.
getCountryName());
 try {
 return country.calculateTaxFactorFor(person);
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

Creating Mocks

46

How to do it...
To mock an enum using PowerMock, you have to perform the following steps:

1. Set up PowerMock for your test runner (please refer to the How to do it... section of
the previous recipe for JUnit and TestNG).

2. Mock it like any other final class, since enum is a type of a final class (please refer
to the previous recipe on how to mock a final class).

The following code shows a JUnit test (for a TestNG setup, please refer to the previous recipe,
Creating mocks of final classes with PowerMock) that verifies whether the system under test
properly calculates the tax factor. The mockStatic(...) method is statically imported
from PowerMockito and is used for stubbing static methods. Don't worry if you don't entirely
understand the concept of stubbing, because you can learn more about it in Chapter 4,
Stubbing Behavior of Mocks.

As for the test itself, please remember that I'm using the BDDMockito.given(...) and
AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...). Have a look at the following code:

@RunWith(PowerMockRunner.class)
@PrepareForTest(Country.class)
public class TaxFactorCalculatorTest {

 static final double TAX_FACTOR = 10000;

 @Mock Country country;

 @InjectMocks TaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_tax_factor() {
 // given
 mockStatic(Country.class);
 given(Country.fromCountryName(anyString())).
willReturn(country);
 given(country.calculateTaxFactorFor(any(Person.class))).
willReturn(TAX_FACTOR);

 // when
 double taxFactorForPerson = systemUnderTest.
calculateTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(TAX_FACTOR);
 }

}

Chapter 2

47

How it works...
As seen in the previous example, the internals of PowerMock go far beyond the scope of
this recipe, but the overall concept is such that part of the PowerMockRunner logic is to
create a custom classloader and bytecode manipulation for the classes defined using the
@PrepareForTest annotation in order to mock them and to use these mocks with the
standard Mockito API. Due to bytecode manipulations, PowerMock can ignore a series of
constraints of the Java language, such as extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use PowerMock to
refactor legacy code

www.allitebooks.com

https://code.google.com/p/powermock/
http://www.allitebooks.org

3
Creating Spies and

Partial Mocks

In this chapter, we will cover the following recipes:

 f Creating spies in code

 f Creating spies with custom configuration

 f Creating spies using annotations

 f Creating partial mocks

 f Creating partial mocks of final classes with delegatesTo()

 f Creating spies of final classes with PowerMock

Introduction
Before going into the details regarding how to create a spy, let's first consider what a spy really
is. It's an object that may have predefined answers to its method executions, whereas by
default it calls the real implementation. It also records the method calls for further verification.
So how does it differ from any other test double? Well, apart from the fact that you can stub
its methods, you can also verify its behavior. From the theoretical point of view, a spy is
nothing but a partial mock, whose advantages and risks have been described in greater depth
in the introduction to the previous chapter.

In general, you should use neither spies nor partial mocks in a well-designed code base. If
you do use them, it most likely means that you are violating the S in the SOLID principles
(described in more depth in the previous chapter). Let's have another look at that principle
as a reminder.

Creating Spies and Partial Mocks

50

(S) Single responsibility principle: a class should have only a single
responsibility. In other words, your class should be dedicated to
doing only one thing and should have only one reason to change.

If you are stubbing only some methods from the mock and you'd prefer that the rest of
them execute their real implementations, then it is most likely that your object is doing
too much. Consider splitting it into pieces. There are some cases where you would like the
real computation to take place by default but you might, however, want to verify whether a
particular method was executed. (Imagine the business requirements where your company
pays a lot of money for each web service call. I will talk about cases in which the verification
of implementation does make sense in Chapter 6, Verifying Test Doubles.)

In this chapter, we will take a closer look at spies and partial mock creation.

A standard reminder that you will see throughout the book is
as follows:

Because I am very fond of behavior-driven development
(http://dannorth.net/introducing-bdd/ first
introduced by Dan North), I'm using Mockito's BDDMockito
and AssertJ's BDDAssertions static methods in all of the
test cases to make the code even more readable and intuitive.
Also, please read Szczepan Faber's blog (author of Mockito)
about the given, when, then separation in your test methods,
from http://monkeyisland.pl/2009/12/07/given-
when-then-forever/, since these separation methods are
omnipresent throughout the book.

Some of the methods mentioned might not sound too clear, or the test code may look
complicated, but don't worry – it will all be explained throughout the book. I don't want the
book to become a duplication of the Mockito documentation. I would like you to take a look
at nice tests and get acquainted with Mockito syntax from the very beginning. What is more,
I'm using static imports in the code to make it even more readable, so if you get confused with
any of the pieces of code, it would be best to consult the repository and the code.

Creating spies in code
In the following recipe, we will learn how to create a spy using Mockito code only (without
annotations). As a reminder, you should have very legitimate reasons to use a spy in your
code, otherwise it most likely signifies that there is something wrong with your code's design.

http://dannorth.net/introducing-bdd/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/

Chapter 3

51

Getting ready
Our system under test for this recipe will be TaxFactorProcessor, which interacts with
TaxService. Let's assume that the latter is part of some legacy system that, for the time
being, you don't want to refactor. Also assume that TaxService does two things. First, it
performs calculations of a tax factor, and second it sends a request via a web service to
update tax data for a given person. If the person's country is not specified explicitly (and by
default it's not in our examples), then a default tax factor value is returned from TaxService.
In a proper code base, one should separate these two functionalities (calculation and data
update) into separate classes, but for the sake of this example, let's leave it as it is. Have a
look at the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;
 }

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor = taxService.
calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred
while trying to calculate tax factor for person
 [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

We will test our system to check that TaxService performs computations but does not call a
web service in our unit test.

Creating Spies and Partial Mocks

52

How to do it...
To create a spy of a given object using the Mockito API, you need to call the static
Mockito.spy(T object) method with the instantiated object for which you want
to create a spy.

The following test is written for JUnit. For a TestNG configuration, please refer to Chapter 1,
Getting Started with Mockito (remember that I'm using the AssertJ's BDDAssertions.
then(...) static method. Refer to Chapter 7, Verifying Behavior with Object Matchers,
to know how to work with AssertJ or how to do the same with Hamcrest's assertThat(...)).
Have a look at the following code:

public class TaxFactorProcessorTest {

 TaxService taxService = spy(new TaxService());

 TaxFactorProcessor systemUnderTest = new
TaxFactorProcessor(taxService);

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

 // when
 double taxFactor = systemUnderTest
.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo(TaxService.DEFAULT_TAX_FACTOR);
 }

}

What happens in the test is that we first create a spy for the TaxService instance (via the
statically imported Mockito.spy(...) method), and next we create the system under
test. In the body of our test, in the //given section, we are stubbing our spy so that it does
nothing when the updateTaxData(...) method is called (don't worry if you haven't seen the
stubbing syntax of spies before. You can read more about it in Chapter 5, Stubbing Behavior of
Spies). In the //when section, we are executing the application logic, and in the //then part,
we are verifying whether the processed tax factor is the default one from the application.

Chapter 3

53

How it works...
Mockito internally runs the following when you execute the static spy method:

 public static <T> T spy(T object) {
 return mock((Class<T>) object.getClass(), withSettings()
 .spiedInstance(object)
 .defaultAnswer(CALLS_REAL_METHODS));
 }

You can see that a spy is in fact a mock that by default calls real methods. Additionally, the
MockitoSpy interface is added to that mock.

There are some gotchas regarding spy initialization with Mockito. Mockito creates a shallow
copy of the original object so that tested code won't see or use the original object. That's
important to know since any interactions on the original object will not get reflected on the
spy, and vice versa (if you want to interact directly with the original object, you need to use
the AdditionalAnswers.delegateTo(...) answer. To check how to stub methods
with a custom answer, check Chapter 4, Stubbing Behavior of Mocks, or Chapter 5, Stubbing
Behavior of Spies, for an explanation of a mock or spy's method stubbing.)

Another issue is final methods. Mockito can't stub final methods, so when you try to stub
them, you will not even see a warning message and a real implementation will be called.
Refer to Chapter 5, Stubbing Behavior of Spies, for more information on this. PowerMock
related recipes to see how to deal with those methods (remember that using PowerMock
suggests that there is most likely something really wrong with your code base, so you should
use it with extreme caution).

See also
 f The xUnit pattern's comparison of test doubles at http://xunitpatterns.com/

Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

 f Mockito documentation on spying real instances at http://docs.mockito.
googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13

Creating spies with custom configuration
There might be some cases in which you would like to provide some additional configuration
to your spy (for example, making the spy serializable or turning on Mockito logging). Even
though Mockito doesn't provide a straightforward solution to do it, it is possible to pass such a
configuration to the spy. As a reminder, you should have very legitimate reasons to use a spy
in your code. Otherwise, it most likely signifies that there is something wrong with the design
of your code.

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13

Creating Spies and Partial Mocks

54

Getting ready
As presented in the previous recipe, the Mockito.spy method has only a single parameter:
the spied instance. But as we can see, internally, it's a mock that by default calls real
methods. So what we can do is create the spy by ourselves together with some additional
configuration (refer to the Creating mocks with a custom configuration recipe in Chapter 2,
Creating Mocks, for a description of all possible configurations).

For this recipe, we will reuse the example from the previous recipe, but let's take another
look at it. Our system under test for this recipe will be a TaxFactorProcessor class that
interacts with TaxService in order to calculate the tax factor and update the tax data of a
given person, as shown in the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;
 }

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor =
taxService.calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax factor for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

We will test our system to check that TaxService performs computations but does not call a
web service in our unit test.

Chapter 3

55

How to do it...
To create a spy with a custom configuration, you need to perform the following steps:

1. Call the static Mockito.mock(...) method and provide a custom configuration.

2. As for the custom configuration, add MockSettings.spiedInstance(T object)
and MockSettings.defaultAnswer(Mockito.CALLS_REAL_METHODS) to
create a spy of the given object.

3. To add more configurations, call additional MockSettings methods.

The following test is written for JUnit. For a TestNG configuration, please refer to Chapter 1,
Getting Started with Mockito (remember that I'm using the AssertJ's BDDAssertions.
then(...) static method. Refer to Chapter 7, Verifying Behavior with Object Matchers, to
know how to work with AssertJ or how to do the same with Hamcrest's assertThat(...)).
Have a look at the following code:

public class TaxFactorProcessorTest {

 TaxService taxService = mock(TaxService.class, withSettings().
serializable().spiedInstance(new TaxService()).defaultAnswer(CALLS_
REAL_METHODS));

 TaxFactorProcessor systemUnderTest = new
TaxFactorProcessor(taxService);

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

 // when
 double taxFactor =
systemUnderTest.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo(TaxService.DEFAULT_TAX_FACTOR);
 then(taxService).isInstanceOf(Serializable.class);
 }

}

Mockito doesn't provide a standard way of spying with a custom
configuration for a reason. In the vast majority of cases, you
shouldn't have the need to do it.

Creating Spies and Partial Mocks

56

How it works...
The body of the test is pretty straightforward and self-explanatory. The last assertion,
regarding verification whether the mock implements the serializable interface, is done
only to prove that the mock works as it is supposed to (don't write that in the real test code).
The most interesting part, however, is the mock creation part, as follows:

TaxService taxService = mock(TaxService.class,
 withSettings().serializable().spiedInstance
(new TaxService()).defaultAnswer(CALLS_REAL_METHODS));

Since a spy is nothing but a mock that calls real implementations by default, we can create it
manually, as presented in the test. The additional configuration in our case was to make the
mock serializable.

See also
 f The xUnit pattern's comparison of test doubles at http://xunitpatterns.com/

Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

 f Mockito documentation on spying real instances at http://docs.mockito.
googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13

Creating spies using annotations
As usual, Mockito offers you the chance to remove a number of lines of code to make your tests
more readable and clear. In this recipe, we will remove unnecessary code and convert it into
annotations. As a reminder, you should have very legitimate reasons to use a spy in your code.
Otherwise, it most likely signifies that there is something wrong with the design of your code.

Getting ready
For this recipe, we will reuse the example from the previous recipe. However, let's take another
look at it. Our system under test for this recipe will be a TaxFactorProcessor class that
interacts with a TaxService class in order to calculate the tax factor and update the tax data
of a given person. Have a look at the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#13

Chapter 3

57

 }

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor = taxService.
calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax factor for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

We will test our system to check that TaxService performs computations but does not call
a web service in our unit test.

How to do it...
To profit from Mockito's annotations, you need to perform the following steps:

1. For JUnit, annotate your test class with @RunWith(MockitoJUnitRunner.
class). For TestNG, copy the necessary TestNG listeners and annotate your test
class with @Listeners(MockitoTestNGListener.class). Refer to Chapter 1,
Getting Started with Mockito, for more details on the TestNG setup.

2. Annotate the object you want to create a spy for with the @Spy annotation.

For both scenarios, remember that I'm using the AssertJ's BDDAssertions.then(...)
static method. Refer to Chapter 7, Verifying Behavior with Object Matchers, to know how to
work with AssertJ or how to do the same with Hamcrest's assertThat(...).

Now, let's take a look at the test written for JUnit. Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class TaxFactorProcessorTest {

 @Spy TaxService taxService;

 @InjectMocks TaxFactorProcessor systemUnderTest;

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {

www.allitebooks.com

http://www.allitebooks.org

Creating Spies and Partial Mocks

58

 // given
 doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

 // when
 double taxFactor =
systemUnderTest.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo(TaxService.DEFAULT_TAX_FACTOR);
 }

}

For TestNG, the test is written as follows:

@Listeners(MockitoTestNGListener.class)
public class TaxFactorProcessorTestNgTest {

 @Spy TaxService taxService;

 @InjectMocks TaxFactorProcessor systemUnderTest;

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

 // when
 double taxFactor =
systemUnderTest.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo(TaxService.DEFAULT_TAX_FACTOR);
 }

}

How it works...
The creation of spies based on annotations works exactly the same as the mocks presented
in the Creating Mocks with annotations recipe of Chapter 2, Creating Mocks. Please refer to
that chapter for more details.

Chapter 3

59

There's more...
Let's take another look at the @Spy annotated field from our test:

@Spy TaxService taxService

What if you want to create a spy of an object that you want to instantiate in a special way?
What if, in our example, TaxService doesn't have a default constructor and we need to
provide some explicit value to initialize it?

Before we answer that question, let's check how Mockito works for spy initialization. If you
annotate a field with @Spy, Mockito will initialize it if its zero argument constructor can be
found. The scope of the constructor doesn't need to be public; it can be private too. What
Mockito can't do is instantiate local or inner interfaces and classes.

Coming back to the question, how can we create a spy and provide its initialization
parameters? You need to explicitly call the object's constructor as follows:

@Spy TaxService taxService = new TaxService("Some value");

See also
 f Chapter 1, Getting Started with Mockito, for annotation-based JUnit and

TestNG configurations

 f The @Spy annotation described in the Mockito documentation at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#21

 f Automatic instantiation of @Spies and @InjectMocks in the Mockito documentation
at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#23

Creating partial mocks
Using partial mocks generally should be considered a code smell. When writing good and
clean code, you want it to be modular and follow all of the best practices, including the SOLID
principles (please refer to the Introduction section of Chapter 2, Creating Mocks, for an
elaborate explanation). When working with complex code, as a refactoring process, one tries
to split the largest tasks into more modular ones. During that process, you may want to mock
external dependencies of the system under test. You might come across a situation in which
you do not want to mock the entire dependency but only a part of it while leaving the rest
unstubbed. Such a mocked class is called a partial mock and creating one means that a class
that you are mocking most likely does more than one thing, which is a pure violation of the
single-responsibility principle.

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#21
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#21
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#23
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#23

Creating Spies and Partial Mocks

60

Let's consider the example from the current chapter – the TaxService class. It has two
responsibilities:

 f Calculation of the tax factor for a person

 f Updating the tax data for the person via a web service

The class both computes and updates data, so all-in-all it's not responsible for a single action,
but two. If we split these responsibilities into two classes, since we don't want to really call a
web service, we could create a mock only for the class responsible for updating the tax data.
At the end of the day, that's how we will eliminate the need for creating a partial mock.

So why would you want to create a partial mock? You definitely would not need to do it in your
new code base (because you are following the SOLID principles). However, there are cases
where you will want to create partial mocks: when dealing with legacy code or third-party
libraries. This would be code that you can't easily change or you can't change at all.

In this recipe, we will describe how to create partial mocks, but before that, let's have another
look at the concept of a test double known as stub (based on Gerard Meszaros's definitions
from the xUnit patterns). Stub is an object that has predefined answers to method executions
made during the test.

The process of predefining those answers is called stubbing (refer to Chapter 4, Stubbing
Behavior of Mocks, and Chapter 5, Stubbing Behavior of Spies, for more details), and you
have already seen it being used with the following syntax throughout the book (an example
for stubbing a method that returns a value using first the BDDMockito and then the
Mockito syntax):

BDDMockito.given(...).willReturn(...)
Mockito.when(...).thenReturn(...)

Getting ready
For this recipe, we will reuse the example from the previous recipe, but let's take another
look at it. Our system under test for this recipe will be a TaxFactorProcessor class that
interacts with a TaxService class in order to calculate the tax factor and update the tax data
of a given person. Have a look at the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;
 }

Chapter 3

61

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor = taxService.
calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax factor for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

We will test our system to check that TaxService performs computations but does not call a
web service in our unit test.

How to do it...
In order to create a partial mock, you need to perform the following steps:

1. Create a mock (either via code or annotations).

2. Stub the method execution so that it calls a real method (we want to execute the
real logic).

The following tests illustrate the case for JUnit. For a TestNG configuration, please refer
to Chapter 1, Getting Started with Mockito, (remember that I'm using the BDDMockito.
given(...) and AssertJ's BDDAssertions.then(...) static methods. Refer to
Chapter 7, Verifying Behavior with Object Matchers, to know how to work with AssertJ, or
how to do the same with Hamcrest's assertThat(...)). Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class TaxFactorProcessorTest {

 @Mock TaxService taxService;

 @InjectMocks TaxFactorProcessor systemUnderTest;

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 given(taxService.calculateTaxFactorFor
(any(Person.class))).willCallRealMethod();

Creating Spies and Partial Mocks

62

 // when
 double taxFactor =
systemUnderTest.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo(TaxService.DEFAULT_TAX_FACTOR);
 }

}

What happens in the test is that we create a mock and inject it to our system under test via
annotations. Next, we are stubbing the mock's calculateTaxFactorFor(...) method
execution in the test itself so that it calls a real method of the TaxService class. The rest
of the test is self-explanatory. First, we execute the system under a test method and then we
assert that the behavior of the system is the same as we would expect it.

How it works...
The explanation of the internals related to stubbing the mocked object with the execution of a
real implementation is covered in more depth in the next chapter, related to stubbing.

There's more...
You can make the mock call real methods by default by changing its default answer (check
the corresponding recipe in Chapter 2, Creating Mocks, for more details), as presented in the
following snippet:

@Mock(answer = Answers.CALLS_REAL_METHODS) TaxService taxService;

However, because each method will by default call a real method right now, coming back to
our example, we need to stub the execution of the method that calls a web service so that it
doesn't do it and the rest of the test remains the same. Have a look at the following code:

// given
doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

See also
 f The xUnit pattern's comparison of test doubles at http://xunitpatterns.com/

Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

 f Mockito's documentation on partial mocks at http://docs.mockito.
googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16

Chapter 3

63

Creating partial mocks of final classes with
delegatesTo()

The previous recipe showed an example of working with code that is not very trivial to mock.
The obstacles might be as follows:

 f There are cases where the classes to mock are final

 f The object to be mocked is an already proxied object (Mockito will have issues with
dealing with those)

The main feature described in this recipe focuses on the process of delegation of a method
execution from a method of the implemented interface to the instantiated class (as you
can see, there is a catch – the class to be mocked needs to implement an interface). As
a reminder, you should have very legitimate reasons to use a partial mock in your code.
Otherwise, it most likely signifies that there is something wrong with the design of your code.

Getting ready
For this recipe, we will reuse the example from the previous recipe, but let's take another
look at it. Our system under test for this recipe will be a TaxFactorProcessor class that
interacts with a TaxService class in order to calculate the tax factor and update the tax data
of a given person. The difference between this and other examples is that TaxService is
now an interface with the following API:

public interface TaxService {

 double calculateTaxFactorFor(Person person);

 void updateTaxData(double taxFactor, Person person);

}

The implementation of this interface is the FinalTaxService final class that performs
some logic (for purposes of readability, we will not go into the details regarding the
implementation). Have a look at the following code:

public final class FinalTaxService implements TaxService {
…
}

Our system under test, the TaxFactorProcessor class, as shown in the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

Creating Spies and Partial Mocks

64

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;
 }

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor = taxService.
calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax factor for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

We will test our system to check that TaxService performs computations but does not call
a web service in our unit test.

How to do it...
To delegate all method executions to the provided object, you need to perform the
following steps:

1. Instantiate the object that you want to delegate calls to.

2. Create a mock whose default answer will be
AdditionalAnswers.delegatesTo(T delegate).

The following tests illustrate the case for JUnit. For a TestNG configuration, refer to Chapter
1, Getting Started with Mockito (remember that I'm using the BDDMockito.given(...)
and AssertJ's BDDAssertions.then(...) static methods. Refer to Chapter 7, Verifying
Behavior with Object Matchers, to know how to work with AssertJ, or how to do the same with
Hamcrest's assertThat(...)). Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class TaxFactorProcessorTest {

 FinalTaxService finalTaxService = new FinalTaxService();

Chapter 3

65

 TaxService taxService = mock(TaxService.class,
 delegatesTo(finalTaxService));

 TaxFactorProcessor systemUnderTest =
new TaxFactorProcessor(taxService);

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doNothing().when(taxService)
.updateTaxData(anyDouble(), any(Person.class));

 // when
 double taxFactor =
systemUnderTest.processTaxFactorFor(new Person());

 // then
 then(taxFactor).isEqualTo
(FinalTaxService.DEFAULT_TAX_FACTOR);
 }

}

How it works...
To put it briefly, what happens under the hood of Mockito is that AdditionalAnswers.
delegatesTo(...) internally uses the ForwardsInvocations answer that delegates
the method invocation to the delegate object (in our case, to FinalTaxService).

There's more...
You may ask yourself this question: how does this solution differ from the standard spy?
When Mockito creates a spy, this is what occurs:

 f The object that is wrapped with the spy is used only when the mock is created.
Next, the spied instance state gets copied to the spy.

 f The spy contains all states from the spied instance.

 f When you invoke a method on the spy, it gets invoked on the spy and not on the
spied instance.

 f When you call a method on a spy, and internally that method calls another method of
the spy, both of them can be stubbed or you can perform the verification of execution
of those methods.

Creating Spies and Partial Mocks

66

If you use the delegatesTo(...) solution, then what happens is that you just delegate
the execution from the mock to the real object. When you call a method on that mock, and
internally that method calls another method of the mock, you can neither stub nor verify the
method execution of that mock.

In other words, the mock with the default answer set to delegatesTo(...) can do less
than a spy. On the other hand, if you have a final class, then you will not be able to create a
spy using just Mockito. To achieve this, you will need to use PowerMock, and we will discuss
those cases in the next recipe.

See also
 f The Mockito documentation on delegating calls to a real instance at

http://docs.mockito.googlecode.com/hg/latest/org/mockito/
Mockito.html#delegating_call_to_real_instance

 f The Mockito documentation on the delegatesTo(...) answer at
http://docs.mockito.googlecode.com/hg/latest/org/mockito/
AdditionalAnswers.html#delegatesTo(java.lang.Object)

Creating spies of final classes with
PowerMock

Before going into the details of this recipe, if you haven't already done so, please read
the Creating mocks of final classes with PowerMock recipe of Chapter 2, Creating Mocks.
PowerMock is a powerful (thus dangerous) tool, that in the hands of an inexperienced
developer, can lead to the creation of really bad test and production code.

Why would you want to use PowerMock? Mockito can't create mocks for classes that are final.
The same problem exists when trying to create spies. If you have a properly written test-driven
code, you shouldn't have the need to use either spies or partial mocks, nor have PowerMock
in your project. If you need to use PowerMock to create spies of final classes, do it only as a
last resort in order to refactor your code, and at the end remove PowerMock dependencies
and only use Mockito. Refer to Chapter 8, Refactoring with Mockito, for examples of how
to use PowerMock as a mean to refactor your code (and at the end of the day, remove
PowerMock from your classpath).

Getting ready
Speaking of classpaths, in order to use PowerMock with Mockito, you need to add it to your
classpath. Please refer to the Creating Mocks of final classes with PowerMock recipe of
Chapter 2, Creating Mocks, to know how to add PowerMock to your project.

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#delegating_call_to_real_instance
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#delegating_call_to_real_instance
http://docs.mockito.googlecode.com/hg/latest/org/mockito/AdditionalAnswers.html#delegatesTo(java.lang.Object)
http://docs.mockito.googlecode.com/hg/latest/org/mockito/AdditionalAnswers.html#delegatesTo(java.lang.Object)

Chapter 3

67

Our system under test will be a class whose responsibility is to calculate the tax factor for a
given person. It interacts with TaxService, which happens to be a final class. (We'll omit its
implementation since it's irrelevant for this recipe. The important thing is to remember that it's
a final class.) Have a look at the following code:

public class TaxFactorProcessor {

 public static final double INVALID_TAX_FACTOR = -1;

 private final TaxService taxService;

 public TaxFactorProcessor(TaxService taxService) {
 this.taxService = taxService;
 }

 public double processTaxFactorFor(Person person) {
 try {
 double taxFactor = taxService.
calculateTaxFactorFor(person);
 taxService.updateTaxData(taxFactor, person);
 return taxFactor;
 } catch (Exception e) {
 System.err.printf("Exception [%s] occurred while trying to
calculate tax factor for person [%s]%n", e, person.getName());
 return INVALID_TAX_FACTOR;
 }
 }

}

How to do it...
To use PowerMock with JUnit to create a spy for final classes, you need to perform the
following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all of the classes that need to be prepared for testing (most likely byte-code
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(TaxService.class) since TaxService is a final
class). In general, the classes that need to be prepared for testing would include
those with final, private, static, or native methods. These are classes that are final
and should be spied on, and are also classes that should be returned as spies
on instantiation.

Creating Spies and Partial Mocks

68

3. Annotate the field to be spied with the @Spy annotation and instantiate that object
(it differs from the standard Mockito approach, where if the spy has a default
constructor, you wouldn't need to instantiate it).

Let's take a look at the JUnit test which will verify whether the tax factor is properly calculated
(remember that I'm using the BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods. Refer to Chapter 7, Verifying Behavior with Object Matchers, to
know how to work with AssertJ, or how to do the same with Hamcrest's assertThat(...)).
Have a look at the following code:

@RunWith(PowerMockRunner.class)
@PrepareForTest(TaxService.class)
public class TaxFactorProcessorTest {

 static final double TAX_FACTOR = 10000;

 @Spy TaxService taxService = new TaxService();

 @InjectMocks TaxFactorProcessor systemUnderTest;

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doReturn(TAX_FACTOR).when(taxService)
.calculateTaxFactorFor(Mockito.any(Person.class));

 // when
 double taxFactorForPerson = systemUnderTest.
processTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(TAX_FACTOR);
 }

}

To use PowerMock with TestNG to create a spy for final classes, you need to perform the
following steps:

1. Make your class extend the PowerMockTestCase class.

2. Implement a method annotated with the @ObjectFactory annotation that returns
an instance of the PowerMockObjectFactory class (this object factory will be
used for the creation of all object instances in the test).

Chapter 3

69

3. Provide all of the classes that need to be prepared for testing (most likely byte-code
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(TaxService.class) since TaxService is a final
class). This includes classes with final, private, static, or native methods. These are
classes that are final and that should be spied on; and are also classes that should
return a spy on object instantiation.

4. Annotate the field to be spied with the @Spy annotation and instantiate that object
(it differs from the standard Mockito approach, where if the spy has a default
constructor, you wouldn't need to instantiate it).

Let's take a look at the TestNG test that will verify whether the tax factor is properly calculated
(refer to the introduction to the preceding analogous JUnit example for more information on
BDDMockito and BDDAssertions usage):

@PrepareForTest(TaxService.class)
public class TaxFactorProcessorTestNgTest extends PowerMockTestCase {

 static final double TAX_FACTOR = 10000;

 @Spy TaxService taxService = new TaxService();

 @InjectMocks TaxFactorProcessor systemUnderTest;

 @Test
 public void should_return_default_tax_factor_for_person
_from_undefined_country() {
 // given
 doReturn(TAX_FACTOR).when(taxService)
.calculateTaxFactorFor(Mockito.any(Person.class));

 // when
 double taxFactorForPerson = systemUnderTest.
processTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(TAX_FACTOR);
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }

}

Creating Spies and Partial Mocks

70

How it works...
The internals of PowerMock go far beyond the scope of this recipe, but the overall concept
is such that a part of the PowerMockRunner logic is to create a custom classloader and
byte-code manipulation for the classes defined using the @PrepareForTest annotation in
order to mock them and to use these mocks with the standard Mockito API. Due to byte-code
manipulations, PowerMock can ignore a series of constraints of the Java language, such as
extending final classes.

See also
 f The PowerMock website: https://code.google.com/p/powermock/

 f Chapter 8, Refactoring with Mockito, to see how to use different approaches and
tools like PowerMock to refactor bad code

https://code.google.com/p/powermock/

4
Stubbing Behavior

of Mocks

In this chapter, we will cover the following recipes:

 f Using argument matchers for stubbing
 f Stubbing methods that return values
 f Stubbing methods so they throw exceptions
 f Stubbing methods so they return custom answers
 f Stubbing methods so they call real methods
 f Stubbing void methods
 f Stubbing void methods so they throw exceptions
 f Stubbing void methods so they return custom answers
 f Stubbing final methods with PowerMock
 f Stubbing static methods with PowerMock
 f Stubbing object instantiation with PowerMock

Introduction
As explained in the previous chapters, Mockito is all about creating mocks and stubbing
their behavior. It's worth taking another look at the differences between mocks and stubs in
order to properly distinguish possible actions that can be taken on either of them. In his xUnit
patterns (http://xunitpatterns.com/Test%20Double%20Patterns.html), Gerard
Meszaros describes stubs and mocks as follows:

 f Stub: This is an object that has predefined answers to method executions made
during the test

http://xunitpatterns.com/Test%20Double%20Patterns.html

Stubbing Behavior of Mocks

72

 f Mock: This is an object that has predefined answers to method executions made
during the test and that has recorded expectations of these executions

Mockito does not distinguish this separation, so each test double, regardless of its purpose,
is considered to be a mock. This chapter will focus on showing you numerous ways of the
stubbing behavior of mocks in order to simulate real interactions. We'll cover stubbing
methods that return values and those that are void. We'll simulate returning results, throwing
exceptions, and execution of custom logic. We'll also go down the path of dealing with static,
final method, and object-initialization stubbing. (Hopefully you'll never need to use stubbing.
Otherwise it means that something is wrong with your code or you're integrating it with some
third-party piece of software that does not follow object-oriented principles.)

Before going further, let's take a closer look at two definitions: behavior of the application and
its interactions.

Your system should be split into modules that have limited responsibilities. These
responsibilities may be related to some computation, data storing or processing, and so on.
You can compare the behavior to the outcome of these actions, so when you're testing the
behavior, you will mostly be interested in whether your system has altered the input data
or stored some values and not in how it was done (for instance, a particular method was
executed). Often, it might not even involve a mock—you just want to test the output for the
given input. (If you are writing a piece of software that adds two numbers, then why would you
want to mock any collaborators? Just check whether by providing 1 and 1 as arguments, you
get 2 as the result.)

Interactions are concrete calls between different parts of your system. In Chapter 6, Verifying
Test Doubles, I will describe with greater depth the situations in which it is worth checking
whether some particular piece of code was called. It's all about a sense of security and the
business requirements.

In the forthcoming recipes, we will not verify interactions. Instead, we will verify whether the
system under the test's logic does what it is supposed to do. You might ask why we are not
performing such verifications on the mocked object. The reason is that what we want to test
in the aforementioned examples is not whether a method has been called on a mock but
whether the logic that was executed by the system under test works as we expect it to work.

Imagine that you change some algorithm inside the collaborating object but at the end of
the day, you want the system under test to work in exactly the same manner. If you test your
implementation and not the behavior, your test will fail. In other words, in the majority of
cases, you don't want to know exactly how something is done. Instead, you want to know
what its outcome is. You can check the Google testing article at http://googletesting.
blogspot.com/2013/08/testing-on-toilet-test-behavior-not.html to see
nice examples of why you should be interested in it and not how your system under test
does what it is supposed to do.

http://googletesting.blogspot.com/2013/08/testing-on-toilet-test-behavior-not.html
http://googletesting.blogspot.com/2013/08/testing-on-toilet-test-behavior-not.html

Chapter 4

73

If possible, verify the behavior and not the implementation.

While going through the examples in this chapter, you will see that there is some repetition
and similarity of content. This is done on purpose to make the examples look alike so that
the reader memorizes them fast. Since this is a cookbook, it is written in such a way that
each recipe can be addressed separately in terms of the examples and solutions. This is why
I always want to give you the business background of the tested system. You will not always
read this book chapter by chapter. You might want to find a particular solution to your problem
and then you wouldn't have to search through the book to check whether the system under
test looks like some other system.

The following is a standard reminder that you will see throughout the book:
As I am very fond of the Behavior Driven Development in all of the test
cases, I'm using Mockito's BDDMockito and AssertJ's BDDAssertions
static methods to make the code even more readable and intuitive. Also,
please read Szczepan Faber's blog (the author of Mockito) about the given,
when, then separation in your test methods; http://monkeyisland.
pl/2009/12/07/given-when-then-forever/, since these
methods are omnipresent throughout the book.

Even though you might not understand some of the preceding explanations, or the test code
might look complicated, don't worry as it will all get explained throughout the book. I don't
want the book to become a duplication of the Mockito documentation that is of high quality.
Instead, I would like you to take a look at nice tests and get acquainted with the Mockito
syntax from the early beginning. What is more, I'm using static imports in the code to make it
even more readable, so if you get confused with any of the pieces of code, it would be best to
refer to the repository and the code as such.

Using argument matchers for stubbing
Before going into detail regarding the different ways of stubbing method calls, we have to
define the concept of argument matchers. When passing arguments to the mock's methods
during the stubbing process, Mockito verifies argument values using the equals() method.
In other words, when calling the following code:

Person smith = new Person();
given(taxFactorFetcher.getTaxFactorFor(smith).willReturn(10);

Mockito will check whether the person passed as an argument to the
getTaxFactorFor(...) method equals to our person (in this case, Mr. Smith).
If that is the case, only then will Mockito return 10 as the output of the
getTaxFactorFor(...) method.

http://monkeyisland.pl/2009/12/07/given-when-then-forever/
http://monkeyisland.pl/2009/12/07/given-when-then-forever/

Stubbing Behavior of Mocks

74

There are cases where you want to perform more complex verification of the passed
argument. Mockito already gives you quite a few predefined argument matchers and also
provides you with the integration with Hamcrest to create custom argument matchers
(check Chapter 7, Verifying Behavior with Object Matchers, for more details on Hamcrest).

In general, you should use equality or pass a matcher that starts with any
prefix, which means you don't care about the passed value. If you are using
more complex examples, then ensure your code isn't too complicated.

Getting ready
Let's take a look at the existing Mockito argument matchers that are present in the
Matchers class:

 f Examples of argument matchers that start with the any prefix are any(),
any(Person.class), anyDouble(), anyList(), and so on.

 f Examples of argument matchers that end with the That suffix are argThat(...),
booleanThat(...), doubleThat(...), and so on. You can provide a custom
Hamcrest matcher that matches the argument of the given type.

 f The startsWith(...) and endsWith(...) argument matchers are used for
string comparison.

 f The eq(...) argument matcher checks for equality.

 f The isNotNull(), isNull(), and notNull() argument matchers provide
verification against null values.

 f The refEq(...) argument matcher is used for reflection-equal verification
(checks via reflection whether two objects are equal).

There is also the AdditionalMatchers class that contains some matchers, but it's better
that you don't use it since it's only there to maintain compatibility with EasyMock.

Since using argument matchers is pretty straightforward, intuitive, and we have already
been profiting from them throughout the book, we'll skip the business context of the test and
move through a quick syntax example to a reminder regarding common mistakes while using
argument matching.

How to do it...
To use Mockito's argument matchers, you have to ensure that when calling any method on
a mock, you pass a matcher from the Matchers class instead of passing an argument.

Chapter 4

75

Let's take a look at a couple of snippets that show us some of the possible matchers that
Mockito has in the Matchers class in the example of a method that takes two parameters:
an object of the Person type and a string:

/* match the method for any person and for the city of Warsaw */
given(irsDataFetcher.isIrsApplicable(any(Person.class),
eq("Warsaw"))).willReturn(true);

/* match the method for any person and for the city starting with 'W'
*/
given(irsDataFetcher.isIrsApplicable(any(Person.class),
startsWith("W"))).willReturn(true);

/* match the method for any Person and for the city ending with 'w' */
given(irsDataFetcher.isIrsApplicable(any(Person.class),
endsWith("w"))).willReturn(true);

/* match the method for any person and for any city */
given(irsDataFetcher.isIrsApplicable(any(Person.class), anyString())).
willReturn(true);

/* match the method for a person that equals another person and for
any city */
given(irsDataFetcher.isIrsApplicable(refEq(new Person()),
anyString())).willReturn(true);

/* match the method for the same reference of the person and for any
city */
given(irsDataFetcher.isIrsApplicable(same(person), anyString())).
willReturn(true);

/* match the method for a person called Lewandowski and for any city
(using Hamcrest matcher) */
given(irsDataFetcher.isIrsApplicable(argThat(new
ArgumentMatcher<Person>() {

 @Override
 public boolean matches(Object argument) {
 return "Lewandowski".equalsIgnoreCase(((Person)
argument).getName());
 }

 }), anyString())).willReturn(true);

Stubbing Behavior of Mocks

76

How it works...
All of the methods of the Matchers class return dummy values so that the code gets
compiled. Internally, Mockito places a matcher on a stack for further verification when
a method gets executed on a mock or a method verification takes place.

There's more...
One of the most common mistakes when using argument matchers is that people tend to
forget that if you are using a matcher for at least one argument, then you have to provide
matchers for all of the arguments. In other words, the following example will result in
InvalidUseOfMatchersException (notice that there is an any(...) matcher for
the first argument and no matcher for the second argument):

given(irsDataFetcher.isIrsApplicable(any(Person.class), "Warsaw")).
willReturn(true);

The following code will work like a charm (notice the any(...) and eq(...) matchers):

given(irsDataFetcher.isIrsApplicable(any(Person.class),
eq("Warsaw"))).willReturn(true);

See also
 f Refer to the Mockito documentation in terms of argument matchers at http://

docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#3

 f Refer to the GitHub account of the book for more examples on argument matchers at
https://github.com/marcingrzejszczak/mockito-cookbook

Stubbing methods that return values
In this recipe, we will stub a method that returns a value so that it returns our desired result.

Getting ready
For this recipe, our system under test will be MeanTaxFactorCalculator, which calls
TaxFactorFetcher twice to get a tax factor for the given person and then calculates a
mean value for those two results as follows:

public class MeanTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public MeanTaxFactorCalculator(TaxFactorFetcher taxFactorFetcher)
{

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#3
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#3
https://github.com/marcingrzejszczak/mockito-cookbook

Chapter 4

77

 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

How to do it...
To stub nonvoid methods so they return a given value, you have to perform the following steps:

1. For the BDD approach, call BDDMockito.given(mock.methodToStub()).
willReturn(value), or in the standard way, call Mockito.when(mock.
methodToStub()).thenReturn(value).

2. Regardless of the chosen approach in the given(...) or when(...) methods,
you have to provide the mock's method call, and in the willReturn(...) or
thenReturn(...) methods, you have to provide the desired output.

3. Remember that the last passed value during the stubbing will be for each stubbed
method call. In other words, say that you stub the mock as follows:
given(taxFetcher.getTax()).willReturn(50, 100);

Then, regardless of the number of taxFetcher.getTax() method executions, you
will first return 50 and then, you will always receive 100 (until it's stubbed again).

Let's check the JUnit test. Refer to Chapter 1, Getting Started with Mockito, for the
TestNG configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for more details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor() {
 // given

Stubbing Behavior of Mocks

78

 double expectedTaxFactor = 10;
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willReturn(expectedTaxFactor);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedTaxFactor);
 }

}

How it works...
What Mockito does internally when you stub methods is that it executes two main actions,
validation and answer construction. When you call the given(...) or when(...)
methods, the validation takes place for the following situations:

 f Stubbing is not complete (when you forget to write thenReturn(...) or
willReturn(...))

 f Argument matchers are misplaced (you can't use them outside of verification
or stubbing)

 f Stubbing is performed on an object that is not a mock
 f Invalid checked exception is being thrown

As for the answer construction phase, it takes place on the execution of the willReturn(...)
or thenReturn(...) method calls. Eventually, Mockito constructs the Returns answer with
the passed value and then delegates the execution to it.

There's more...
Mockito allows for providing a series of possible stubbed results either by using the fluent
interface API, or by means of varargs. The following snippet shows you how to stub a method
and provide subsequent results by means of fluent API using JUnit (see Chapter 1, Getting
Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

Chapter 4

79

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_mean_tax_factor_for_two_different_
tax_factors() {
 // given
 double taxFactor = 10;
 double anotherTaxFactor = 20;
 double expectedMeanTaxFactor =
(taxFactor + anotherTaxFactor) / 2;
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willReturn(taxFactor).willReturn(anotherTaxFactor);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedMeanTaxFactor);
 }

}

To achieve the same result using varargs, take the following code:

given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willReturn(taxFactor).willReturn(anotherTaxFactor);

Then, change it to the following code:

given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willReturn(taxFactor, anotherTaxFactor);

See also
 f Refer to the Mockito documentation (especially, check argument matchers and

stubbing consecutive calls) at http://docs.mockito.googlecode.com/
hg/1.9.5/org/mockito/Mockito.html

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html

Stubbing Behavior of Mocks

80

Stubbing methods so that they throw
exceptions

In this recipe, we will stub a method that returns a value so that it throws an exception of our
choice. This way, you can simulate scenarios in which some connection issues might occur or
some business exceptions have been thrown in your application.

In the behavior verification part of our test, we will check the thrown exception and
since our goal is to write beautiful tests, we will use the catch-exception library
(https://code.google.com/p/catch-exception/) to assert the caught exceptions.
(We will use this library even though it's not maintained any more since in JDK 8, you can
profit from the lambda expressions to achieve a similar goal.)

Getting ready
First, we have to add catch-exception to the classpath. To do that, let's use
either Maven or Gradle (for manual installation, you can download the JAR files from
https://code.google.com/p/catch-exception/downloads/list).

The following is the configuration for Gradle:

testCompile 'com.googlecode.catch-exception:catch-exception:1.2.0'

The following is the configuration for Maven:

<dependency>
 <groupId>com.googlecode.catch-exception</groupId>
 <artifactId>catch-exception</artifactId>
 <version>1.2.0</version>
 <scope>test</scope>
 </dependency>

For this recipe, our system under test will again be MeanTaxFactorCalculator, which calls
TaxFactorFetcher twice and calculates a mean value out of the received tax factor values
as follows:

public class MeanTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public MeanTaxFactorCalculator(TaxFactorFetcher taxFactorFetcher)
{
 this.taxFactorFetcher = taxFactorFetcher;
 }

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/downloads/list

Chapter 4

81

 public double calculateMeanTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

How to do it...
To make the mock's nonvoid method throw an exception, you have to perform the
following steps:

1. For the BDD approach, call BDDMockito.given(mock.methodToStub()).
willThrow(exception), or in the standard way, call Mockito.when(mock.
methodToStub()).thenThrow(exception).

2. Regardless of the chosen approach in the given(...) or when(...) method,
you have to provide the mock's method call, and in the willThrow(...) or
thenThrow(...) method, provide the desired exception to throw.

3. Remember that the last passed value during the stubbing will be thrown for each
stubbed method call. In other words, you stub the mock as follows:
given(taxFetcher.getTax()).willThrow(new Exception1(),
 new Exception2());

Then, regardless of the number of taxFetcher.getTax() method executions, first
Exception1() will be thrown and then you will always have Exception2() thrown
(until it's stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior
with Object Matchers, for more details on how to work with AssertJ or how to do the
same with Hamcrest's assertThat(...)). The when(...) method comes from the
CatchExceptionAssertJ class. This way, I can use CatchExceptionAssertJ.
thenThrown(...) without any unnecessary code in between, as shown in the following code:

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_throw_exception_when_calculating_mean_tax_
factor() {
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willThrow(new TaxServiceUnavailableException());

Stubbing Behavior of Mocks

82

 when(systemUnderTest).calculateMeanTaxFactorFor(new Person());

 thenThrown(TaxServiceUnavailableException.class);
 }

}

It's worth taking a look at what happens in this test. Assuming that we have all of
the mocks set up and injected, let's move to the test's body. Over there, first, we stub
the taxFactorFetcher.getTaxFactorFor(...) method execution so that
it throws a TaxServiceUnavailableException exception. Then, we use the
CatchExceptionAssertJ.when(...) method to allow the catch-exception
library to catch the thrown exception (if there is one). Finally, we use the
CatchExceptionAssertJ.thenThrown(TaxServiceUnavailableException.
class) method to check whether the thrown exception was of a proper type.

How it works...
Please refer to the Stubbing methods that return values recipe for more information on the
Mockito internals related to stubbing methods so that they throw exceptions.

It's worth mentioning that eventually, when the willThrow(...) or thenThrow(...) code
is called, Mockito constructs the ThrowsException answer with the passed exception and
delegates the execution to it.

There's more...
Mockito allows for providing a series of possible stubbed exceptions either by using the fluent
interface API or by means of varargs. The following snippet shows you how to stub a method and
provide subsequent exceptions to be thrown by means of fluent API using JUnit (see Chapter 1,
Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_throw_exception_when_calculating_mean_tax_
factor() {
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willThrow(new TaxServiceUnavailableException()).
willThrow(new InvalidTaxFactorException());

Chapter 4

83

 when(systemUnderTest).calculateMeanTaxFactorFor(new Person());

 thenThrown(TaxServiceUnavailableException.class);

 when(systemUnderTest).calculateMeanTaxFactorFor(new Person());

 thenThrown(InvalidTaxFactorException.class);
 }

}

To achieve the same result using varargs, take the following code:

given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willThrow(new TaxServiceUnavailableException()).
willThrow(new InvalidTaxFactorException());

Then, change it to the following code:

given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willThrow(new TaxServiceUnavailableException(), new
InvalidTaxFactorException());

See also
 f Refer to the catch-exception library home page at https://code.google.

com/p/catch-exception/

 f Refer to JUnit ExpectedException Rule vs. Catch-Exception by Tomasz Kaczanowski
at http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-
exception-rule-vs-catch-exception

Stubbing methods so that they return
custom answers

In this recipe, we will stub a method that returns a value so that it returns a custom answer of
our choice.

Getting ready
For this recipe, our system under test will again be MeanTaxFactorCalculator, which
calls TaxFactorFetcher twice to get a tax factor for the given person, and then calculates
a mean value for those two results as follows:

public class MeanTaxFactorCalculator {

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception

Stubbing Behavior of Mocks

84

 private final TaxFactorFetcher taxFactorFetcher;

 public MeanTaxFactorCalculator(TaxFactorFetcher taxFactorFetcher)
{
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

Let's assume that depending on whether the person is from a defined or undefined country,
the logic of calculating the factor by TaxFactorFetcher is different.

How to do it...
To stub nonvoid methods so they execute the logic from the custom answer, you have to
perform the following steps:

1. For the BDD approach, call BDDMockito.given(mock.methodToStub()).
willAnswer(answer), or in the standard way, call Mockito.when(mock.
methodToStub()).thenAnswer(answer).

2. Regardless of the chosen approach in the given(...) or when(...) method,
you have to provide the mock's method call, and in willAnswer(...) or
thenAnswer(...), you have to provide the desired Answer implementation.

3. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, you stub the mock as follows:
given(taxFetcher.getTax()).willAnswer(new Answer1(), new
Answer2());

Then, regardless of the number of taxFetcher.getTax() method executions, first
Answer1 will be executed, and then you will always have Answer2 executed (until it
is stubbed again).

Now, let's move to the JUnit test. See Chapter 1, Getting Started with Mockito, for the
TestNG configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods; check out Chapter 7, Verifying Behavior with
Object Matchers, to learn how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

Chapter 4

85

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_return_tax_factor_incremented_by_additional_
factor_when_calculating_mean_tax_factor() {
 // given
 final double additionalTaxFactor = 100;
 final double factorForPersonFromUndefinedCountry = 200;
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class)))
.willAnswer(new Answer<Object>() {
 @Override
 public Object answer(InvocationOnMock invocation) throws
Throwable {
 if (invocation.getArguments().length > 0) {
 Person person = (Person) invocation.getArguments()
[0];
 if (!person.isCountryDefined()) {
 return additionalTaxFactor +
factorForPersonFromUndefinedCountry;
 }
 }
 return additionalTaxFactor;
 }
 });

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(additionalTaxFactor +
factorForPersonFromUndefinedCountry);
 }

}

Another thing to remember is that most likely, you won't have the need to
create any special answers. If that is the case, it's highly probable that your
scenario is getting too complicated. For additional information regarding
Answers, please refer to Chapter 2, Creating Mocks.

Stubbing Behavior of Mocks

86

How it works...
Please refer to the Stubbing methods that return values recipe for more information on the
Mockito internals related to stubbing methods so that they throw exceptions.

It's worth mentioning that eventually, when the willThrow(...) or thenThrow(...) code
is called, Mockito constructs the ThrowsException answer with the passed exception and
then delegates further execution to it.

There's more...
Mockito provides a series of possible answers to be executed either by using the fluent
interface API, or by means of varargs.

You can perform stubbing via a fluent API as follows:

given(...).willAnswer(answer1).willAnswer(answer2)
...willAnswer(answer3)

Or, with the varargs style, you can perform the stubbing as follows:

given(...).willAnswer(answer1, answer2, …. answerN)

Please refer to the There's more... section of the Stubbing methods so that they throw
exception recipe from this chapter for analogous test examples.

See also
 f Refer to the Mockito documentation regarding stubbing with callbacks (answers)

at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#11

Stubbing methods so that they call real
methods

In this recipe, we will stub a method that returns a value so that it calls a real method.
This way, we will construct a partial mock (to read more about partial mocking, please
refer to Chapter 2, Creating Mocks).

Getting ready
For this recipe, our system under test will be MeanTaxFactorCalculator, which calls
TaxFactorFetcher twice to get a tax factor for the given person and then calculates a
mean value for those two results as follows:

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11

Chapter 4

87

public class MeanTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public MeanTaxFactorCalculator(TaxFactorFetcher taxFactorFetcher)
{
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

Unlike the previous recipes, TaxFactorFetcher will not be an interface but a concrete class.

How to do it...
To stub nonvoid methods so that they execute the logic from the custom answer, you have to
perform the following steps:

1. For the BDD approach, call BDDMockito.given(mock.methodToStub()).
willCallRealMethod(), or in the standard way, call Mockito.when(mock.
methodToStub()).thenCallRealMehod().

2. Regardless of the chosen approach in the given(...) or when(...) method,
you have to provide the mock's method call.

3. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, say that you stub the mock as follows:
given(taxFetcher.getTax()).willReturn(2). willCallRealMethod()

Then, regardless of the number of taxFetcher.getTax() method executions,
first 2 will be returned, and then you will always have the real logic executed
(until it is stubbed again).

Now, let's move to the JUnit test. See Chapter 1, Getting Started with Mockito, for the
TestNG configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for more details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class MeanTaxFactorCalculatorTest {

Stubbing Behavior of Mocks

88

 @Mock TaxService taxService;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_return_mean_tax_factor() {
 // given
 double taxFactor = 15000;
 double expectedMeanTaxFactor = (TaxService.NO_COUNTRY_TAX_
FACTOR + taxFactor) / 2;
 given(taxService.getTaxFactorFor(any(Person.class))).
willCallRealMethod().willReturn(taxFactor);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedMeanTaxFactor);
 }

}

Another thing to remember is that if you need to create a partial mock, and if
you really don't have some strong arguments to back that decision up, then
you should rethink the architecture of your program or your tests since it is
not of the best quality, most likely.
It's always crucial to remember the boy scout rule and the process of
refactoring. You should work on your code and the code of your colleagues
in an iterative manner, trying to make small improvements each time you
operate on it.

See also
 f Refer to the Mockito documentation on partial mocks at http://docs.mockito.

googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16

 f Refer to Chapter 3, Creating Spies and Partial Mocks, for more details on partial mocks

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#16

Chapter 4

89

Stubbing void methods
In this recipe, we will stub a void method that doesn't return a value. The trick with void
methods is that Mockito assumes that they do nothing by default, so there is no need to
explicitly stub them (although you may do it).

How to do it...
If you do not want your void method to execute logic, you need to perform the following steps:

1. Do nothing: Mockito stubs the method for you so that it does nothing.

2. Explicitly tell Mockito that the void method does nothing; for the BDD approach,
call BDDMockito.willNothing().given(mock).methodToStub(), or in the
standard way, call Mockito.doNothing().when(mock).methodToStub().

3. Regardless of the chosen approach in the given(...) or when(...) method, you
have to provide the mock object (and not the method call in the case of methods that
return values).

4. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, say that you stub the mock as follows (the
willThrow answer will be described in more detail in the next recipe):
willThrow(new Exception1()).willNothing().given(personSaver).
savePerson(smith);

Then, regardless of the number of personSaver.savePerson(...) method
executions, first an exception will be thrown, and then you will always have no action
taken (until it is stubbed again).

How it works...
What Mockito does internally when you start stubbing using the methods starting with do...
(...) or will...(...) is that the MockitoCore.doAnswer(...) method is executed
with a proper answer, which, in the case of void methods that don't do anything, is the
DoesNothing answer.

It's worth mentioning that as a result of the execution of the doAnswer(...) method, we
have the Stubber interface returned, which has several fluent API methods (that return
Stubber itself), for example, the following one:

Stubber doNothing();

It also provides us with a method that returns the stubbed object, the when method
(BDDMockito delegates method execution to the when method as well).

<T> T when(T mock);

Stubbing Behavior of Mocks

90

This is why you can profit from Mockito's fluent API, and when you call the when method, you
have access to the mocked object's methods.

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer(

)|doNothing()|doCallRealMethod() family of methods from http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Stubbing void methods so that they throw
exceptions

In this recipe, we will stub a void method that doesn't return a value, so it throws an exception.

Getting ready
For this recipe, our system under test will be a PersonProcessor class that, for simplicity,
does only one thing: it delegates the process of saving person to the PersonSaver class. As
shown in the following code, in case of success, true is returned; otherwise, false is returned:

public class PersonProcessor {

 private final PersonSaver personSaver;

 public PersonProcessor(PersonSaver personSaver) {
 this.personSaver = personSaver;
 }

 public boolean process(Person person) {
 try {
 personSaver.savePerson(person);
 return true;
 } catch (FailedToSavedPersonDataException e) {
 System.err.printf("Exception occurred while trying save
person data [%s]%n", e);
 return false;
 }
 }

}

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Chapter 4

91

How to do it...
If you want your void method to throw an exception upon calling, you need to perform the
following steps:

1. Explicitly tell Mockito that the void method should throw an exception. For the
BDD approach, call BDDMockito.willThrow(exception).given(mock).
methodToStub(), or in the standard way, call Mockito.doThrow(exception).
when(mock).methodToStub().

2. Regardless of the chosen approach in the given(...) or when(...) method, you
have to provide the mock object (and not the method call in the case of methods that
return values).

3. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, say that you stub the mock as follows:
willThrow(new Exception1()).willThrow(new Exception2()).
given(personSaver).savePerson(smith);

Then, regardless of the number of personSaver.savePerson(...) method
executions, first Exception1 will be thrown, and then you will always have
Exception2 thrown (until it is stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for more details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class PersonProcessorTest {

 @Mock PersonSaver personSaver;

 @InjectMocks PersonProcessor systemUnderTest;

 @Test
 public void should_fail_to_save_person_data_when_exception_
occurs() {
 // given
 willThrow(FailedToSavedPersonDataException.class)
.given(personSaver).savePerson(any(Person.class));

 // when
 boolean updateSuccessful =
systemUnderTest.process(new Person());

 // then

Stubbing Behavior of Mocks

92

 then(updateSuccessful).isFalse();
 }

}

How it works...
Please refer to the Stubbing void methods recipe for more information on the Mockito
internals that are related to stubbing void methods.

What's worth mentioning is that the answers that take part in the Mockito internal delegation
process are either ThrowsExceptionClass or ThrowsException answers.

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Stubbing void methods so that they return
custom answers

In this recipe, we will stub a void method that doesn't return a value, so it returns a
custom answer.

Getting ready
For this recipe, our system under test will be the same class as the one in the previous recipe,
but let's take another look at it so that you don't need to scroll around to see the source code.
The PersonProcessor class does only one thing for simplicity: it delegates the process
of saving person to the PersonSaver class. As shown in the following code, in case of
success, true is returned; otherwise, false is returned:

public class PersonProcessor {

 private final PersonSaver personSaver;

 public PersonProcessor(PersonSaver personSaver) {
 this.personSaver = personSaver;
 }

 public boolean process(Person person) {
 try {

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Chapter 4

93

 personSaver.savePerson(person);
 return true;
 } catch (FailedToSavedPersonDataException e) {
 System.err.printf("Exception occurred while trying save
person data [%s]%n", e);
 return false;
 }
 }

}

How to do it...
If you want your void method to throw an exception upon calling, you need to perform the
following steps:

1. Explicitly tell Mockito that the void method does nothing. For the BDD approach, call
BDDMockito.willAnswer(answer).given(mock).methodToStub(), or in the
standard way, call Mockito.doAnswer(answer).when(mock).methodToStub().

2. Regardless of the chosen approach in the given(...) or when(...) method, you
have to provide the mock object (and not the method call like in the case of methods
that return values).

3. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, say that you stub the mock as follows:
willAnswer(answer1).willAnswer(answer2).given(personSaver).
savePerson(smith);

Then, regardless of the number of personSaver.savePerson(...) method
executions, first answer1 logic will be executed, and then you will always have the
answer2 logic executed (until it is stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for more details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class PersonProcessorTest {

 @Mock PersonSaver personSaver;

 @InjectMocks PersonProcessor systemUnderTest;

 @Test

Stubbing Behavior of Mocks

94

 public void should_fail_to_save_person_data_due_to_having_
undefined_country() {
 // given
 willAnswer(new Answer() {
 @Override
 public Object answer(InvocationOnMock invocation) throws
Throwable {
 if (invocation.getArguments().length > 0) {
 Person person = (Person) invocation.getArguments()
[0];
 if (!person.isCountryDefined()) {
 throw new FailedToSavedPersonDataException("Un
defined country");
 }
 }
 return null;
 }
 }).given(personSaver).savePerson(any(Person.class));

 // when
 boolean updateSuccessful =
systemUnderTest.process(new Person());

 // then
 then(updateSuccessful).isFalse();
 }

}

How it works...
Please refer to the Stubbing void methods recipe for more information on the Mockito
internals related to stubbing void methods.

As you can see, the Answer interface has the following method:

public Object answer(InvocationOnMock invocation) throws Throwable

Note that since we have a void method to stub, we don't care about the answer's returned
value. That is why we return null in the answer's body.

Chapter 4

95

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

 f Refer to the Mockito documentation on the stubbing with callbacks at
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#11

Stubbing void methods so that they call
real methods

In this recipe, we will stub a method that is a void method. It doesn't return a value, so it calls
a real method. This way, we will construct a partial mock (to read more about partial mocking,
please refer to Chapter 2, Creating Mocks).

Getting ready
For this recipe, our system under test will be the same class as in the previous recipe, but
let's take another look at it so that you don't need to scroll around to see the source code.
The PersonProcessor class, for simplicity, does only one thing: it delegates the process
of saving person to the PersonSaver class. As shown in the following code, in case of
success, true is returned; otherwise, false is returned:

public class PersonProcessor {

 private final PersonSaver personSaver;

 public PersonProcessor(PersonSaver personSaver) {
 this.personSaver = personSaver;
 }

 public boolean process(Person person) {
 try {
 personSaver.savePerson(person);
 return true;
 } catch (FailedToSavedPersonDataException e) {
 System.err.printf("Exception occurred while trying save
person data [%s]%n", e);
 return false;
 }
 }

}

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11

Stubbing Behavior of Mocks

96

Contrary to the previous recipe, PersonSaver is a class and not an interface.
This verifies whether the person's origin is defined. If that is not the case, then
FailedToSavedPersonDataException will be thrown.

How to do it...
If you want your void method to call real methods upon calling the void method, you need to
perform the following steps:

1. Explicitly tell Mockito that the void method should call the real implementation. For
the BDD approach, call BDDMockito.willCallRealMethod().given(mock).
methodToStub(), or in the standard way, call Mockito.doCallRealMethod().
when(mock).methodToStub().

2. Regardless of the chosen approach in the given(...) or when(...) method, you
have to provide the mock object (and not the method call like in case of methods that
return values).

3. Remember that the last passed value during the stubbing will be returned for each
stubbed method call. In other words, say that you stub the mock as follows:
willCallRealMethod().willNothing().given(personSaver)
.savePerson(smith);

This example shows you how to make your void method call the real method only
once, and then do nothing, by default. Regardless of the number of personSaver.
savePerson(...) method executions, first the real implementation will be called,
and then you will always have no further execution (until it is stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for more details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)):

@RunWith(MockitoJUnitRunner.class)
public class PersonProcessorTest {

 @Mock PersonSaver personSaver;

 @InjectMocks PersonProcessor systemUnderTest;

 @Test
 public void should_fail_to_save_person_data_due_to_having_
undefined_country() {
 // given
 willCallRealMethod().given(personSaver).
savePerson(any(Person.class));

 // when

Chapter 4

97

 boolean updateSuccessful = systemUnderTest.
updatePersonData(new Person());

 // then
 then(updateSuccessful).isFalse();
 }

}

Remember that if you need to create a partial mock, and if you really
don't have some strong arguments to back that decision up, then you
should rethink the architecture of your program or your tests since it
most likely is not the best quality. Please refer to Chapter 3, Creating
Spies and Partial Mocks, for more details.

How it works...
Please refer to the Stubbing void methods recipe for more information on the Mockito
internals related to stubbing void methods.

What's worth mentioning is that the answer-taking part in the Mockito internal delegation
process is the CallsRealMethod answer.

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Stubbing final methods with PowerMock
In this recipe, we will stub a final method and verify the behavior of the system under test.
Since Mockito can't stub methods that are final, we'll use PowerMock to do it.

Remember that it absolutely isn't good practice to use PowerMock in your well-written code.
If you follow all of the SOLID principles (please refer to Chapter 2, Creating Mocks, for the
explanation of each of these principles), then you should not resort to stubbing final methods.
PowerMock can come in hand when dealing with the legacy code or stubbing third-party
libraries (you can check Chapter 8, Refactoring with Mockito, to see how to use PowerMock
to refactor the badly written code).

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

Stubbing Behavior of Mocks

98

Getting ready
To use PowerMock, you have to add it to your classpath. Please check the Creating mocks of
final classes with PowerMock recipe in Chapter 2, Creating Mocks, for more details on how to
add PowerMock to your project.

For this recipe, our system under test will be MeanTaxFactorCalculator, which calls a
TaxFactorFetcher object twice to get a tax factor for the given person and then calculates
a mean value for those two results:

public class MeanTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public MeanTaxFactorCalculator(TaxFactorFetcher taxFactorFetcher)
{
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateMeanTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

Let's assume that TaxFactorFetcher is a class that returns a proper tax factor
(for readability purposes, we'll omit going through its implementation since it's
irrelevant for this recipe) based on the person's origin. One thing worth noting is that
TaxFactorFetcher.getTaxFactorFor(...) is a final method.

How to do it...
To use PowerMock with JUnit to stub a final method, you have to perform the following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all of the classes that need to be prepared for testing (most likely, bytecode
manipulated classes) in the @PrepareForTest annotation (in the case of our
scenario, it would be @PrepareForTest(TaxFactorFetcher .class) since
TaxFactorFetcher has a final method that we want to stub). In general, the class
that needs to be prepared for testing would include classes with final, private, static
or native methods, classes that are final and that should be spied, and also classes
that should be returned as spies on instantiation.

3. Use Mockito annotations in a standard way to set up test doubles.

Chapter 4

99

Let's take a look at the JUnit test which will verify whether the tax factor is properly calculated
(remember that I'm using BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods. Check out Chapter 7, Verifying Behavior with Object
Matchers, for details on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)):

@RunWith(PowerMockRunner.class)
@PrepareForTest(TaxFactorFetcher.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_tax_factor_for_a_player_with_
undefined_country() {
 // given
 double expectedMeanTaxFactor = 10;
 given(taxFactorFetcher.
getTaxFactorFor(any(Person.class))).willReturn(5.5, 14.5);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedMeanTaxFactor);
 }

}

To use PowerMock with TestNG to create a spy for final classes, you have to perform the
following steps:

1. Make your class extend the PowerMockTestCase class.

2. Implement a method annotated with the @ObjectFactory annotation that returns
an instance of the PowerMockObjectFactory class (this object factory will be
used for the creation of all object instances in the test).

3. Provide all of the classes that need to be prepared for testing (most likely bytecode
manipulated classes) in the @PrepareForTest annotation (in the case of our
scenario, this would be @PrepareForTest(TaxFactorFetcher .class)
since TaxFactorFetcher has a final method that we want to stub).

4. Use Mockito annotations in a standard way to set up test doubles.

Stubbing Behavior of Mocks

100

5. Let's take a look at the TestNG test which will verify whether the tax factor is properly
calculated (refer to the introduction to the analogous JUnit example in terms of the
BDDMockito and BDDAssertions usage):
@PrepareForTest(TaxFactorFetcher.class)
public class MeanTaxFactorCalculatorTestNgTest extends
PowerMockTestCase {

 @Mock TaxFactorFetcher taxFactorFetcher;

 @InjectMocks MeanTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_tax_factor_for_a_player_with_
undefined_country() {
 // given
 double expectedTaxFactor = 10;
 given(taxFactorFetcher.getTaxFactorFor(any(Person.class))).
willReturn(5.5, 14.5);

 // when
 double taxFactorForPerson = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(expectedTaxFactor);
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }
}

In the majority of cases, if working on a well-written code base, you should
not have the need to use PowerMock at all. There are cases, however, when
dealing with the legacy code or third-party dependencies that you would like
to mock where using PowerMock comes in handy.
The best approach with using PowerMock is to make it a mean to refactor
your codebase into one that doesn't need any of PowerMock's tweaking.

Chapter 4

101

How it works...
The internals of PowerMock go far beyond the scope of this recipe. However, the overall
concept is such that part of the PowerMockRunner's logic is to create a custom classloader
and byte-code manipulation for the classes defined using the @PrepareForTest annotation
in order to mock them and use these mocks with the standard Mockito API. Due to bytecode
manipulations, PowerMock can ignore a series of constraints of the Java language, such as
extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use different approaches
and tools such as PowerMock to refactor bad code

Stubbing static methods with PowerMock
The current recipe will be about stubbing a static method in order to properly verify the
behavior of the system under test. Unfortunately, Mockito can't stub static methods, and
that's why we will use PowerMock to do that.

I'd like to yet again remind you that it absolutely isn't good practice to use PowerMock in your
well-written code. If you follow all of the SOLID principles (please refer to Chapter 2, Creating
Mocks, for the explanation of each of these principles), then you should not resort to stubbing
static methods. PowerMock can come in hand when dealing with legacy code or stubbing
third-party libraries (you can check Chapter 8, Refactoring with Mockito, to see how to use
PowerMock to refactor the badly written code).

Getting ready
To use PowerMock, you have to add it to your classpath. Please check the Creating mocks of
final classes with PowerMock recipe in Chapter 2, Creating Mocks, for more details on how to
add PowerMock to your project.

For this recipe, our system under test will be MeanTaxFactorCalculator, which calls a
TaxFactorFetcher object's static methods twice to get a tax factor for the given person
and then calculates a mean value for these two results, as follows:

public class MeanTaxFactorCalculator {

 public double calculateTaxFactorFor(Person person) {
 double taxFactor = TaxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = TaxFactorFetcher.
getTaxFactorFor(person);

https://code.google.com/p/powermock/

Stubbing Behavior of Mocks

102

 return (taxFactor + anotherTaxFactor) / 2;
 }

}

Let's assume that TaxFactorFetcher is a class that checks what country the person is
from, and depending on that piece of information, it returns a proper tax factor (for readability
purposes, we will not go into any details regarding this). Note that TaxFactorFetcher.
getTaxFactorFor(...) is a static method.

How to do it...
To use PowerMock with JUnit to stub a static method, you have to perform the following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all of the classes that need to be prepared for testing (most likely, bytecode
manipulated classes) in the @PrepareForTest annotation (in the case of our
scenario, this would be @PrepareForTest(TaxFactorFetcher .class) since
TaxFactorFetcher has a static method that we want to stub).

3. Before stubbing a static method, you have to call the PowerMockito.
mockStatic(...) method to start the stubbing of static methods in the class.

4. Stub static methods in a standard way as you would while using objects.

5. Use Mockito annotations in a standard way to set up test doubles.

Let's take a look at the JUnit test which will verify whether the tax factor is properly calculated
(remember that I'm using BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods. Check out Chapter 7, Verifying Behavior with Object Matchers,
for more details on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)):

@RunWith(PowerMockRunner.class)
@PrepareForTest(TaxFactorFetcher.class)
public class MeanTaxFactorCalculatorTest {

 MeanTaxFactorCalculator systemUnderTest =
new MeanTaxFactorCalculator();

 @Test
 public void should_calculate_tax_factor_for_a_player_with_
undefined_country() {
 // given
 double expectedMeanTaxFactor = 10;
 mockStatic(TaxFactorFetcher.class);
 given(TaxFactorFetcher.getTaxFactorFor
(any(Person.class))).willReturn(5.5, 14.5);

Chapter 4

103

 // when
 double taxFactorForPerson = systemUnderTest.
calculateTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).
isEqualTo(expectedMeanTaxFactor);
 }

}

To use PowerMock with TestNG to create a spy for final classes, you have to perform the
following steps:

1. Make your class extend the PowerMockTestCase class.
2. Implement a method annotated with the @ObjectFactory annotation that returns

an instance of the PowerMockObjectFactory class (this object factory will be
used for the creation of all object instances in the test).

3. Provide all of the classes that need to be prepared for testing (most likely, bytecode
manipulated classes) in the @PrepareForTest annotation (in the case of our
scenario, this would be @PrepareForTest(TaxFactorFetcher .class) since
TaxFactorFetcher has a final method that we want to stub).

4. Before stubbing a static method, you have to call the PowerMockito.
mockStatic(...) method to start the stubbing of static methods in the class.

5. Stub static methods in a standard way as you would while using objects.
6. Use Mockito annotations in a standard way to set up test doubles.

Let's take a look at the TestNG test which will verify whether the tax factor is properly
calculated (refer to the introduction to the analogous JUnit example, as discussed earlier,
in terms of the BDDMockito and BDDAssertions usage):

@PrepareForTest(TaxFactorFetcher.class)
public class MeanTaxFactorCalculatorTestNgTest extends
PowerMockTestCase {

 MeanTaxFactorCalculator systemUnderTest = new
MeanTaxFactorCalculator();

 @Test
 public void should_calculate_tax_factor_for_a_player_with_
undefined_country() {
 // given
 double expectedMeanTaxFactor = 10;
 mockStatic(TaxFactorFetcher.class);
 given(TaxFactorFetcher.
getTaxFactorFor(any(Person.class))).willReturn(5.5, 14.5);

Stubbing Behavior of Mocks

104

 // when
 double taxFactorForPerson = systemUnderTest.
calculateTaxFactorFor(new Person());

 // then
 then(taxFactorForPerson).isEqualTo(expectedMeanTaxFactor);
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }

}

In the majority of cases, if working on a well-written codebase, you should
not need to use PowerMock at all. There are cases, however, when dealing
with legacy code or third-party dependencies that you would like to mock
where using PowerMock can be handy.
The best approach when using PowerMock is to make it a mean to refactor
your codebase into the one that doesn't need any of PowerMock's tweaking.

How it works...
The internals of PowerMock go far beyond the scope of this recipe. However, the overall
concept is such that part of the logic of PowerMockRunner is to create a custom classloader
and bytecode manipulation for the classes defined using the @PrepareForTest annotation
in order to mock them and use these mocks with the standard Mockito API. Due to bytecode
manipulations, PowerMock can ignore a series of constraints of the Java language, such
as extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use different approaches
and tools such as PowerMock to refactor bad code

https://code.google.com/p/powermock/

Chapter 4

105

Stubbing object instantiation using
PowerMock

In some badly written code, you can find cases in which the system under test's collaborators
are not passed into the object in any way (for example, by the constructor), but the object itself
instantiates them via the new operator. The best practice would be to not write like this in the
first place. But let's assume that you have inherited such a code and, since we follow the boy
scout rule, that you should leave the code that you've encountered in a better state than you
the one in which you have found it in the first place. We have to do something about this.

The very step of the refactoring of such a scenario is presented in Chapter 8, Refactoring with
Mockito. This is why, in the current recipe, we will just learn how to stub object initialization
in such a way that instead of creating a new instance of an object, a mock will be returned.
Unfortunately, Mockito can't perform such stubbing, and that's why we will use PowerMock
to do that.

Even though you might have already seen this warning, I'd like to yet again remind you that it
absolutely isn't a good practice to use PowerMock in your well-written code. If you follow all of
the SOLID principles (please refer to Chapter 2, Creating Mocks, for the explanation of each
of those principles), then you should not resort to stubbing static methods. PowerMock can
come in handy when dealing with the legacy code or stubbing third-party libraries (you can
check Chapter 8, Refactoring with Mockito, to see how to use PowerMock to refactor the
badly written code).

Getting ready
To use PowerMock, you have to add it to your classpath. Please check the Creating mocks of
final classes with PowerMock recipe in Chapter 2, Creating Mocks, for more details on how to
add PowerMock to your project.

For this recipe, our system under test will be MeanTaxFactorCalculator, which calls a
TaxFactorFetcher object's static methods twice to get a tax factor for the given person
and then calculates a mean value for those two results as follows:

public class MeanTaxFactorCalculator {

 public double calculateMeanTaxFactorFor(Person person) {
 TaxFactorFetcher taxFactorFetcher = new TaxFactorFetcher();
 double taxFactor = taxFactorFetcher.getTaxFactorFor(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

Stubbing Behavior of Mocks

106

Let's assume that TaxFactorFetcher is a class that calculates a person's tax factor in a
different way depending on his or her origin.

How to do it...
To use PowerMock with JUnit to stub object instantiation, you have to perform the
following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all of the classes that need to be prepared for testing (most likely, bytecode
manipulated classes) in the @PrepareForTest annotation (in the case of our
scenario, this would be @PrepareForTest(MeanTaxFactorCalculator.
class) since that class needs to be manipulated in order to stub the execution
of the TaxFactorFetcher constructor).

3. Stub object initialization by calling the PowerMockito.whenNew(ClassToStub.
class) method together with additional stubbing configuration (whether the
constructor has no arguments or has precisely provided parameters, and so on).

4. Use Mockito annotations in a standard way to set up test doubles.

Let's take a look at the JUnit test which will verify whether the tax factor is properly calculated
(remember that I'm using BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods. Check out Chapter 7, Verifying Behavior with Object Matchers,
for more details on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)):

@RunWith(PowerMockRunner.class)
@PrepareForTest(MeanTaxFactorCalculator.class)
public class MeanTaxFactorCalculatorTest {

 @Mock TaxFactorFetcher taxFactorFetcher;

 MeanTaxFactorCalculator systemUnderTest = new
MeanTaxFactorCalculator();

 @Test
 public void should_calculate_tax_factor_for_a_player_from_
undefined_country() throws Exception {
 // given
 double expectedMeanTaxFactor = 10;
 whenNew(TaxFactorFetcher.class).withNoArguments()
.thenReturn(taxFactorFetcher);
 given(taxFactorFetcher.getTaxFactorFor
(any(Person.class))).willReturn(5.5, 14.5);

 // when

Chapter 4

107

 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedMeanTaxFactor);
 }

}

To use PowerMock with TestNG to create a spy for final classes, you have to perform the
following steps:

1. Make your class extend the PowerMockTestCase class.

2. Implement a method annotated with the @ObjectFactory annotation that returns
an instance of the PowerMockObjectFactory class (this object factory will be
used for the creation of all object instances in the test).

3. Provide all of the classes that need to be prepared for testing (most likely bytecode
manipulated) in the @PrepareForTest annotation (in the case of our scenario,
this would be @PrepareForTest(MeanTaxFactorCalculator.class)
since that class needs to be manipulated in order to stub the execution of the
TaxFactorFetcher constructor).

4. Stub object initialization by calling the PowerMockito.whenNew(ClassToStub.
class) method together with the additional stubbing configuration (whether the
constructor has no arguments or has precisely provided parameters, and so on).

5. Use Mockito annotations in a standard way to set up test doubles.

Let's take a look at the TestNG test which will verify whether the tax factor is properly calculated
(refer to the introduction to the analogous JUnit example discussed earlier in terms of the
BDDMockito and BDDAssertions usage):

@PrepareForTest(MeanTaxFactorCalculator.class)
public class MeanTaxFactorCalculatorTestNgTest extends
PowerMockTestCase {

 @Mock TaxFactorFetcher taxFactorFetcher;

 MeanTaxFactorCalculator systemUnderTest = new
MeanTaxFactorCalculator();

 @Test
 public void should_calculate_tax_factor_for_a_player_from_undefined_
country() throws Exception {
 // given
 double expectedMeanTaxFactor = 10;
 whenNew(TaxFactorFetcher.class).withNoArguments()
.thenReturn(taxFactorFetcher);

Stubbing Behavior of Mocks

108

 given(taxFactorFetcher.getTaxFactorFor
(any(Person.class))).willReturn(5.5, 14.5);

 // when
 double meanTaxFactor = systemUnderTest.
calculateMeanTaxFactorFor(new Person());

 // then
 then(meanTaxFactor).isEqualTo(expectedMeanTaxFactor);
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }

}

Please remember that you should resort to stubbing object instantiation
only if you absolutely know what you are doing: you are familiar with
the SOLID principles and you are going to follow them. There are cases
(dealing with the legacy code or third-party dependencies) that you
would like to mock where using PowerMock can be handy.
Use PowerMock to write the tests for the bad code and then refactor it
so that you no longer need to have PowerMock on the classpath.

How it works...
The internals of PowerMock go far beyond the scope of this recipe, but the overall concept
is such that part of the logic of PowerMockRunner is to create a custom classloader and
bytecode manipulation for the classes defined using the @PrepareForTest annotation in
order to mock them and use these mocks with the standard Mockito API. Due to bytecode
manipulations, PowerMock can ignore a series of constraints of the Java language, such as
extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use different approaches
and tools such as PowerMock to refactor bad code

https://code.google.com/p/powermock/

5
Stubbing Behavior

of Spies

In this chapter, we will cover the following recipes:

 f Stubbing methods that return values

 f Stubbing methods so that they throw exceptions

 f Stubbing methods so that they return custom answers

 f Stubbing void methods

 f Stubbing void methods so that they throw exceptions

 f Stubbing void methods so that they return custom answers

 f Stubbing final methods with PowerMock

Introduction
As presented in previous chapters, Mockito is all about creating mocks and stubbing their
behavior. In comparison to the previous chapter, which focused on mocks, in this chapter we
will take a look at partial mocks, also known as spies. Spies are mocks that by default call real
implementations. Additionally, you can also perform verification on such objects.

Stubbing Behavior of Spies

110

Remember that usually you shouldn't have the need to create a spy. You might want to create
a spy as an exception to the rule because partial mocks do not fit into the paradigm of single
responsibility—the S from SOLID principles that we described in depth in Chapter 2, Creating
Mocks. In other words, you should only use that technique when there is no other option. If
you need to create a partial mock and stub a part of its logic, it most likely means that your
architecture is wrong. In the vast majority of cases, for a new, well designed, test-driven system,
there should be no need to create spies. I encourage you to check Chapter 3, Creating Spies
and Partial Mocks, to see the danger related to using spies and partial mocks. The need to
create a partial mock most likely signifies that your class is doing too much work; check out the
Refactoring classes that do too much recipe of Chapter 8, Refactoring with Mockito, to see an
example of how to refactor a class.

After reading this chapter, you will be able to stub spy methods that either return values or
are void. You will learn how to provide stubbed results or how to throw exceptions. We will also
show how to stub final methods of spies (hopefully, you'll never need to use this; if you do,
it means that something is wrong with your code or you're integrating with some third-party
piece of software that is badly written).

The purpose of all these examples is to show how to work with spies, but the tests could and,
in fact, should be written without them. Let's assume that what we are trying to achieve is a
partial mock for functional tests where we don't want to set up a database; instead, we'll stub
the responses from the database and the rest of the object until test functionalities work as
they should. The test should be rewritten keeping in mind that an in-memory database is used.

As done in the previous chapter, we will not verify implementation (check if a method on
a mock has been executed a defined number of times or in a given sequence) but verify
whether the object under the test's logic does what it is supposed to do. Imagine that you
change some algorithm inside the collaborator but at the end of the day you want the object
under test to work in exactly the same manner; if you test the implementation of your methods
and not the behavior of your system, your test will fail. In other words, in the majority of cases,
you don't want to know exactly how something is done; you want to know what is its outcome.

Remember, whenever possible, verify behavior and
not implementation.

Stubbing methods that return values
In this recipe, we will stub a method that returns a value so that it returns our desired result.

Chapter 5

111

Getting ready
For this recipe, our system under test will be AverageTaxFactorCalculator along with
the TaxFactorFetcher class. Together, they form a unit whose purpose is to calculate the
average factor. The TaxFactorFetcher class is called twice: once to get a tax factor from
DB and once to get a tax factor for a given person. Then, it calculates an average out of those
values. Have a look at the following code:

public class AverageTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public AverageTaxFactorCalculator(TaxFactorFetcher
taxFactorFetcher) {
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateAvgTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.
getTaxFactorFromDb(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

The implementation of the TaxFactorFetcher looks as follows:

public class TaxFactorFetcher {

 static final double NO_COUNTRY_TAX_FACTOR = 0.3;
 static final double DEFAULT_TAX_FACTOR = 0.5;
 static final double DB_TAX_FACTOR = 0.8;

 public double getTaxFactorFor(Person person) {
 if (person.isCountryDefined()) {
 return DEFAULT_TAX_FACTOR;
 }
 return NO_COUNTRY_TAX_FACTOR;
 }

 public double getTaxFactorFromDb(Person person) {
 // simulation of DB access
 return DB_TAX_FACTOR;
 }
}

Stubbing Behavior of Spies

112

How to do it...
We would like to test our system as a whole without calling the database, so we will have to
only partially stub TaxFactorFetcher. To do this, perform the following steps:

1. For the BDD approach, call BDDMockito.willReturn(value).given(spy).
methodToStub(). Or, in the standard manner, call Mockito.doReturn(value).
when(spy).methodToStub().

2. Whichever approach you've chosen, you have to provide the desired output in the
willReturn(...) or thenReturn(...) method, and pass the spy itself in the
given(...) or when(...) method.

3. Remember that the last passed value during stubbing will be returned for each
stubbed method call. Have a look at the following code:
willReturn(50,100).given(taxFetcher).getTax();

As shown in the preceding line of code, regardless of the number of taxFetcher.
getTax() method executions, you will first return 50 and then always receive 100
(until stubbed again).

You have to bear in mind that if you try to stub a method with
the BDDMockito.given(...).willReturn(...)
call or in the standard manner—with the Mockito.
when(...).thenReturn(...) call—then you will
actually call the spy's method that you want to stub!

The following snippet depicts the aforementioned scenario for JUnit. See Chapter 1, Getting
Started with Mockito, for the TestNG configuration (I'm using the BDDMockito.given(...)
and AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, for more details on how to work with AssertJ or how to do the
same with Hamcrest's assertThat(...)). Have a look at the following snippet:

@RunWith(MockitoJUnitRunner.class)
public class AverageTaxFactorCalculatorTest {

 @Spy TaxFactorFetcher taxFactorFetcher;

 @InjectMocks AverageTaxFactorCalculator systemUnderTest;

 @Test
 public void should_calculate_avg_tax_factor_for_person_without_a_
country() {
 // given
 double storedTaxFactor = 10;
 double expectedAvgTaxFactor = 12;

Chapter 5

113

 willReturn(storedTaxFactor).given(taxFactorFetcher).
getTaxFactorFromDb(any(Person.class));

 // when
 double avgTaxFactor = systemUnderTest.
calculateAvgTaxFactorFor(new Person());

 // then
 then(avgTaxFactor).isEqualTo(expectedAvgTaxFactor);
 }

}

How it works...
A spy is a special case of a mock. Refer to the Stubbing methods that return values recipe of
Chapter 4, Stubbing Behavior of Mocks, for more information.

There's more...
Mockito allows you to provide a series of possible stubbed results either by using the fluent
interface API or by means of varargs.

If you need to pass a series of return values to the stubbed spy's method using the fluent API,
you will have to stub the method invocation as follows:

willReturn(obj1).willReturn(obj2).given(spy).methodToStub()

Or, if you want to use varargs, you will have do it as follows:

willReturn(obj1, obj2).given(spy).methodToStub()

See also
 f Refer to the xUnit pattern's comparison of test doubles at

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20
Dummies.html

 f Refer to the Mockito documentation on spying real instances at
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#13

http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#13
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#13

Stubbing Behavior of Spies

114

Stubbing methods so that they throw
exceptions

In this recipe, we will stub a method that returns a value so that it throws an exception. Since
we want our code to be beautiful, we'll use the catch-exception library to catch and check
the exceptions thrown in our system.

Getting ready
Ensure that you have the catch-exception library on your classpath; refer to the Stubbing
methods so that they throw exceptions recipe of Chapter 4, Stubbing Behavior of Mocks, for
details on how to add catch-exception to your project.

This recipe will reuse the example from the previous recipe. We have a class that
calculates an average value of tax factors (AverageTaxFactorCalculator) and
TaxFactorFetcher is the provider of those values. One of the values is picked from the
database (and we'll stub that method). We will test those two classes as a unit. For your
convenience (so that you don't scroll around the book too much), I'm showing you the classes
here (don't worry, they're really small):

public class AverageTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

 public AverageTaxFactorCalculator(TaxFactorFetcher
taxFactorFetcher) {
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateAvgTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.
getTaxFactorFromDb(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

And its collaborator, TaxFactorFetcher, is as follows:

public class TaxFactorFetcher {

 static final double NO_COUNTRY_TAX_FACTOR = 0.3;

Chapter 5

115

 static final double DEFAULT_TAX_FACTOR = 0.5;
 static final double DB_TAX_FACTOR = 0.8;

 public double getTaxFactorFor(Person person) {
 if (person.isCountryDefined()) {
 return DEFAULT_TAX_FACTOR;
 }
 return NO_COUNTRY_TAX_FACTOR;
 }

 public double getTaxFactorFromDb(Person person) {
 // simulation of DB access
 return DB_TAX_FACTOR;
 }
}

How to do it...
To make your spy throw an exception instead of executing the real logic, you have to follow
these simple steps:

1. For the BDD approach, call BDDMockito.willReturn(value).given(spy).
methodToStub(). Or, in the standard manner, call Mockito.doReturn(value).
when(spy).methodToStub().

2. Whichever approach you've chosen, you have to provide the desired output
in willReturn(...) or thenReturn(...), and pass the spy itself in the
given(...) or when(...) method.

3. Remember that the value that was passed last during stubbing will be returned for
each stubbed method call. Have a look at the following line of code:
willThrow(exception1, exception2).given(taxFetcher).getTax();

As shown in the preceding line of code, regardless of the number of taxFetcher.
getTax() method executions, you will first throw exception1 and then always
throw exception2 (until stubbed again).

You have to bear in mind that if you try to stub a method with the
BDDMockito.given(...).willReturn(...) call or in
the standard manner—you stub a method with the Mockito.
when(...).thenReturn(...) call—then you will actually
call the spy's method that you want to stub!

Stubbing Behavior of Spies

116

Let's check the JUnit test; see Chapter 1, Getting Started with Mockito, for the TestNG
configuration (I'm using the BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods. Check out Chapter 7, Verifying Behavior with Object Matchers,
for more details on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)). The when(...) method comes from the CatchExceptionAssertJ
class; you can use CatchExceptionAssertJ.thenThrown(...) without any
unnecessary code in between, as follows:

@RunWith(MockitoJUnitRunner.class)
public class AverageTaxFactorCalculatorTest {

 @Spy TaxFactorFetcher taxFactorFetcher;

 @InjectMocks AverageTaxFactorCalculator systemUnderTest;

 @Test
 public void should_throw_exception_while_trying_to_calculate_mean_
tax_factor() {
 willThrow(new TaxFactorFetchException()).
given(taxFactorFetcher)
.getTaxFactorFor(any(Person.class));

 when(systemUnderTest).calculateAvgTaxFactorFor
(new Person());

 thenThrown(TaxFactorFetchException.class);
 }

}

How it works...
A spy is a special case of a mock. Refer to the Stubbing methods so that they throw
exceptions recipe of Chapter 4, Stubbing Behavior of Mocks, for more information.

There's more...
Mockito allows you to provide a series of possible thrown exceptions to the stubbed method,
either by using the fluent interface API or by means of varargs.

If you need to throw a series of exceptions from the stubbed spy's method using the fluent API,
you will have to stub the method invocation as follows:

willThrow(ex1).willThrow(ex2).given(spy).methodToStub()

Chapter 5

117

Or, if you want to use varargs, you have do it as follows:

willThrow(ex1, ex2).given(spy).methodToStub()(ex1, exj2).given(spy).
methodToStub()

Note that we are not passing an additional expected
parameter to the @Test annotation (the expected parameter
suggests that if a test ends by throwing an exception of
the given type, then the test has ended successfully). In
the majority of cases, you would want to control where the
exception is thrown from (otherwise, your test could pass when
it shouldn't). That is why, either you should use the try-catch
approach (if an exception has not been thrown, the test should
fail with a given message), the ExpectedException JUnit
rule, or the catch-exception library.

See also
 f Refer to the catch-exception library homepage at https://code.google.com/p/

catch-exception/

 f Refer to the article JUnit ExpectedException Rule vs. Catch-Exception
by Tomasz Kaczanowski, at http://www.kaczanowscy.pl/tomek/2013-03/
junit-expected-exception-rule-vs-catch-exception

Stubbing methods so that they return
custom answers

In this recipe, we will stub a method that returns a value so that it returns a custom answer of
our choice.

Getting ready
This recipe is the last that will reuse the example from the previous recipe, which is
related to a class that calculates an average value of tax factors. The starting point is the
AverageTaxFactorCalculator class and its collaborator is TaxFactorFetcher, which
is the provider of those values. The latter class picks one of the tax factors from the database
(we'll stub that method). We will test those two classes as a unit. For your convenience, even
though it violates the don't repeat yourself (DRY) principle, we will see the classes as follows
so that you don't have to scroll around the book too much:

public class AverageTaxFactorCalculator {

 private final TaxFactorFetcher taxFactorFetcher;

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception

Stubbing Behavior of Spies

118

 public AverageTaxFactorCalculator(TaxFactorFetcher
taxFactorFetcher) {
 this.taxFactorFetcher = taxFactorFetcher;
 }

 public double calculateAvgTaxFactorFor(Person person) {
 double taxFactor = taxFactorFetcher.
getTaxFactorFromDb(person);
 double anotherTaxFactor = taxFactorFetcher.
getTaxFactorFor(person);
 return (taxFactor + anotherTaxFactor) / 2;
 }

}

You can find the TaxFactorFetcher collaborator class in the following code:

public class TaxFactorFetcher {

 static final double NO_COUNTRY_TAX_FACTOR = 0.3;
 static final double DEFAULT_TAX_FACTOR = 0.5;
 static final double DB_TAX_FACTOR = 0.8;

 public double getTaxFactorFor(Person person) {
 if (person.isCountryDefined()) {
 return DEFAULT_TAX_FACTOR;
 }
 return NO_COUNTRY_TAX_FACTOR;
 }

 public double getTaxFactorFromDb(Person person) {
 // simulation of DB access
 return DB_TAX_FACTOR;
 }
}

How to do it...
We'll stub the method that accesses the database in such a way that we will register a
callback (an answer) that will check if the person has provided information about his country
of origin. Based on that piece of data, we will return a specific value. To do this, you have to
perform the following steps:

1. For the BDD approach, call BDDMockito.willAnswer(answer).
given(spy).methodToStub(). Or, in the standard manner, call Mockito.
doAnswer(answer).when(spy).methodToStub().

Chapter 5

119

2. Whichever approach you've chosen, you have to provide the answer to be executed in
willAnswer(...) or doAnswer(...), and pass the spy itself in the given(...)
or when(...) method.

3. Remember that the exception that was passed last during stubbing will be thrown for
each stubbed method call. Have a look at the following line of code:
willAnswer(answer1, answer2).given(taxFetcher).getTax();

As shown in the preceding line of code, regardless of the number of taxFetcher.
getTax() method executions, you will first throw exception1 and then always
throw exception2 (until stubbed again).

You have to bear in mind that if you try to stub a method with
the BDDMockito.given(...).willReturn(...)
call or in the standard manner—you stub a method with the
Mockito.when(...).thenReturn(...) call—then you
will actually call the spy's method that you want to stub!

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (I'm using the BDDMockito.given(...) and AssertJ's BDDAssertions.
then(...) static methods; check out Chapter 7, Verifying Behavior with Object Matchers,
on how to work with AssertJ or how to do the same with Hamcrest's assertThat(...)).
Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class AverageTaxFactorCalculatorTest {

 @Spy TaxFactorFetcher taxFactorFetcher;

 @InjectMocks AverageTaxFactorCalculator systemUnderTest;

 @Test
public void should_return_incremented_tax_factor_while_trying_to_
calculate
_mean_tax_factor_for_a_person_from_undefined_country() {
 // given
 final double expectedTaxFactor = 107;
 willAnswer(withTaxFactorDependingOnPersonOrigin())
.given(taxFactorFetcher).getTaxFactorFromDb(any(Person.class));

 // when
 double avgTaxFactor = systemUnderTest.
calculateAvgTaxFactorFor(new Person());

 // then

Stubbing Behavior of Spies

120

 then(avgTaxFactor).isEqualTo(expectedTaxFactor);
 }

 private Answer<Object> withTaxFactorDependingOnPersonOrigin() {
 return new Answer<Object>() {
 @Override
 public Object answer(InvocationOnMock invocation) throws
Throwable {
 double baseTaxFactor = 50;
 double incrementedTaxFactor = 200;
 if (invocation.getArguments().length > 0) {
 Person person = (Person) invocation.getArguments()[0];
 if (!person.isCountryDefined()) {
 return incrementedTaxFactor;
 }
 }
 return baseTaxFactor;
 }
 };
 }

}

How it works...
A spy is a special case of a mock. Refer to the Stubbing methods so that they return custom
answers recipe of Chapter 4, Stubbing Behavior of Mocks, for more information.

There's more...
Mockito allows you to provide a series of possible answers to the stubbed method, either by
using the fluent interface API or by means of varargs.

If you need to execute a series of answers from the stubbed spy's method using the fluent API,
you will have to stub the method invocation as follows:

willAnswer(answer1).willAnswer(answer2).given(spy).methodToStub()

Or, if you want to use varargs, you'd have do it as follows:

willAnswer(answer1, answer2).given(spy).methodToStub()

Chapter 5

121

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

 f Refer to the Mockito documentation on stubbing with callbacks at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11

Stubbing void methods
In this recipe, we will stub a void method. A void method is one that doesn't return a value.
Remember that since we want to partially stub a mock, it most likely means that our class is
doing too much, and that is quite true for this scenario. It is best practice to not write such
code – always try to follow the SOLID principles.

Getting ready
For this recipe, our system under test will be the PersonDataUpdator class, which delegates
most of the work to its collaborator, TaxFactorService. The latter calculates the mean value
of the tax factor (for simplicity, it's a fixed value) and then updates the person's tax data via a
web service (since it's a simple example, we do not have any real web service calls):

public class PersonDataUpdator {

 private final TaxFactorService taxFactorService;

 public PersonDataUpdator(TaxFactorService taxFactorService) {
 this.taxFactorService = taxFactorService;
 }

 public boolean processTaxDataFor(Person person) {
 try {
 double meanTaxFactor = taxFactorService.
calculateMeanTaxFactor();
 taxFactorService.updateMeanTaxFactor(person, meanTaxFactor);
 return true;
 } catch (ConnectException exception) {
 System.err.printf("Exception occurred while
trying update person data [%s]%n", exception);
 throw new TaxFactorConnectionException(exception);
 }
 }

}

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#11

Stubbing Behavior of Spies

122

The TaxFactorService class is shown in the following code (note that
updateMeanTaxFactor is throwing a checked exception, ConnectException):

public class TaxFactorService {

 private static final double MEAN_TAX_FACTOR = 0.5;

 public void updateMeanTaxFactor(Person person,
double meanTaxFactor) throws ConnectException {
 System.out.printf("Updating mean tax factor [%s] for
person with defined country%n", meanTaxFactor);
 }

 public double calculateMeanTaxFactor() {
 return MEAN_TAX_FACTOR;
 }

}

How to do it...
To stub a spy's void method in such a way that it does nothing, you have to perform the
following steps:

1. For the BDD approach, call the BDDMockito.willDoNothing().given(spy).
methodToStub(). Or, in the standard manner, call Mockito.doNothing().
when(spy).methodToStub().

2. Whichever approach you've chosen, willDoNothing() or doNothing(), you will
pass the spy itself in the given(...) or when(...) method.

3. Remember that the exception that was passed last during stubbing will be thrown for
each stubbed method call. Have a look at the following code:
willDoNothing().willThrow(exception).given(taxFetcher)
.getTax();

As shown in the preceding code, regardless of the number of taxFetcher.
getTax() method executions, the method will first do nothing and then always throw
an exception (until stubbed again).

The following snippet depicts the aforementioned scenario for JUnit. See Chapter 1, Getting
Started with Mockito, for the TestNG configuration (I'm using the BDDMockito.given(...)
and AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...)). Have a look at the following snippet:

@RunWith(MockitoJUnitRunner.class)
public class PersonDataUpdatorTest {

Chapter 5

123

 @Spy TaxFactorService taxFactorService;

 @InjectMocks PersonDataUpdator systemUnderTest;

 @Test
 public void should_successfully_update_tax_factor_
for_person() throws ConnectException {
 // given
 willDoNothing().given(taxFactorService).
updateMeanTaxFactor(any(Person.class), anyDouble());

 // when
 boolean success = systemUnderTest.
processTaxDataFor(new Person());

 // then
 then(success).isTrue();
 }

}

How it works...
A spy is a special case of a mock. Refer to the Stubbing void methods recipe of
Chapter 4, Stubbing Behavior of Mocks, for more information.

There's more...
Say you want to make a method first throw an exception and do that only once; after that,
you want the method to do nothing. Take a look at the following snippet, which shows how
to achieve this:

willThrow(exception).willNothing().given(spy).methodToSpy();

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#12

Stubbing Behavior of Spies

124

Stubbing void methods so that they
throw exceptions

In this recipe, we will stub a void method. It doesn't return a value, so it throws an exception.

Getting ready
We'll reuse the example from the previous recipe, but let's take a fast look at it again. We have
a system under test that combines two classes: a PersonDataUpdator class that delegates
work to TaxFactorService. The latter is a nice example of violating the single responsibility
principle (S from SOLID; refer to Chapter 2, Creating Mocks, for more details) and it does too
much, it calculates a mean value of tax factors (in our case, it's fixed) and then it updates the
person's information via a web service. In this scenario, we will verify how our system works
when an exception related to connectivity issues occurs:

public class PersonDataUpdator {

 private final TaxFactorService taxFactorService;

 public PersonDataUpdator(TaxFactorService taxFactorService) {
 this.taxFactorService = taxFactorService;
 }

 public boolean processTaxDataFor(Person person) {
 try {
 double meanTaxFactor = taxFactorService.
calculateMeanTaxFactor();
 taxFactorService.updateMeanTaxFactor(person, meanTaxFactor);
 return true;
 } catch (ConnectException exception) {
 System.err.printf("Exception occurred while trying update person
data [%s]%n", exception);
 throw new TaxFactorConnectionException(exception);
 }
 }

}

In the following code snippet, you can find the internals of TaxFactorService.
It's important to remember that the updateMeanTaxFactor method is throwing
a checked exception, ConnectException.

public class TaxFactorService {

 private static final double MEAN_TAX_FACTOR = 0.5;

Chapter 5

125

 public void updateMeanTaxFactor(Person person, double
meanTaxFactor) throws ConnectException {
 System.out.printf("Updating mean tax factor [%s] for person with
defined country%n", meanTaxFactor);
 }

 public double calculateMeanTaxFactor() {
 return MEAN_TAX_FACTOR;
 }

}

How to do it...
To stub a spy's void method in such a way that it throws an exception, you have to perform the
following steps:

1. For the BDD approach, call BDDMockito.willThrow(exception).
given(spy).methodToStub(). Or, in the standard manner, call Mockito.
doThrow(exception).when(spy).methodToStub().

2. Whichever approach you've chosen, you have to provide the exception to be thrown in
willThrow(...) or doThrow(...), and pass the spy itself in the given(...) or
when(...) method.

3. Remember that the last passed exception during stubbing will be thrown for each
stubbed method call. Have a look at the following line of code:
willThrow(ex1).willThrow(ex2).given(taxFetcher).getTax();

As shown in the preceding line of code, regardless of the number of taxFetcher.
getTax() method executions, first exception1 will be thrown and then always
exception2 will be thrown (until stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using the BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior
with Object Matchers, for details on how to work with AssertJ or how to do the same
with Hamcrest's assertThat(...)). The when(...) method comes from the
CatchExceptionAssertJ class; this way, I can use CatchExceptionAssertJ.
thenThrown(...) without any unnecessary code in between. Last but not least, the
CatchException.caughtException() method gives you access to the exception that
was thrown last. Have a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class PersonDataUpdatorTest {

 @Spy TaxFactorService taxFactorService;

Stubbing Behavior of Spies

126

 @InjectMocks PersonDataUpdator systemUnderTest;

 @Test
 public void should_fail_to_update_tax_factor_for_person_due_to_
connection_issues() throws ConnectException {
 willThrow(ConnectException.class).given(taxFactorService)
.updateMeanTaxFactor(any(Person.class), anyDouble());

 when(systemUnderTest).processTaxDataFor(new Person());

 then(caughtException()).hasCauseInstanceOf
(ConnectException.class);
 }

}

How it works...
A spy is a special case of a mock. Refer to the Stubbing methods so that they return custom
answers recipe of Chapter 4, Stubbing Behavior of Mocks, for more information.

As for the assertion part of the test, we use AssertJ to work on Throwables and we check
whether the cause of the exception is indeed ConnectException. To do that, we can use
AssertJ's ThrowableAssert assertions.

See also
 f Refer to the catch-exception library home page at https://code.google.com/p/

catch-exception/

 f Refer to the article JUnit ExpectedException Rule vs. Catch-Exception by Tomasz
Kaczanowski at http://www.kaczanowscy.pl/tomek/2013-03/junit-
expected-exception-rule-vs-catch-exception

Stubbing void methods so that they return
custom answers

In this recipe, we will stub a void method. It doesn't return a value, so it returns a
custom answer.

https://code.google.com/p/catch-exception/
https://code.google.com/p/catch-exception/
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception
http://www.kaczanowscy.pl/tomek/2013-03/junit-expected-exception-rule-vs-catch-exception

Chapter 5

127

Getting ready
In this recipe, we'll reuse the example from the previous recipes. A quick reminder
again – we have a system under test that consists of two objects: a PersonDataUpdator
class that delegates work to TaxFactorService. The output of the system is a calculation
of a mean value of tax factors (we have a fixed value for that). The person's data then gets
updated via a web service. In this scenario, we will verify how our system works when an
exception related to connectivity issues occurs. Have a look at the following code:

public class PersonDataUpdator {

 private final TaxFactorService taxFactorService;

 public PersonDataUpdator(TaxFactorService taxFactorService) {
 this.taxFactorService = taxFactorService;
 }

 public boolean processTaxDataFor(Person person) {
 try {
 double meanTaxFactor = taxFactorService.
calculateMeanTaxFactor();
 taxFactorService.updateMeanTaxFactor(person, meanTaxFactor);
 return true;
 } catch (ConnectException exception) {
 System.err.printf("Exception occurred while trying update person
data [%s]%n", exception);
 throw new TaxFactorConnectionException(exception);
 }
 }

}

Its collaborator, TaxFactorService, whose updateMeanTaxFactor method throws a
checked exception, ConnectException, is shown in the following code:

public class TaxFactorService {

 private static final double MEAN_TAX_FACTOR = 0.5;

 public void updateMeanTaxFactor(Person person, double
meanTaxFactor) throws ConnectException {
 System.out.printf("Updating mean tax factor [%s] for person with
defined country%n", meanTaxFactor);
 }

 public double calculateMeanTaxFactor() {

Stubbing Behavior of Spies

128

 return MEAN_TAX_FACTOR;
 }

}

How to do it...
To stub a spy's void method in such a way that it executes your callback, you have to perform
the following steps:

1. For the BDD approach, call BDDMockito.willAnswer(answer).
given(spy).methodToStub(). Or, in the standard manner, call Mockito.
doAnswer(answer).when(spy).methodToStub().

2. Whichever approach you've chosen, you have to provide the answer to be executed in
willAnswer(...) or doAnswer(...), and pass the spy itself in the given(...)
or when(...) method.

3. Remember that the answer that was passed last during stubbing will be executed for
each stubbed method call. Have a look at the following line of code:
willAnswer(answ1).willAnswer(answ2).given(taxFetcher).getTax();

As shown in the preceding line of code, regardless of the number of taxFetcher.
getTax() method executions, first answ1 will be executed and then always answ2
will be called (until stubbed again).

Let's check the JUnit test. See Chapter 1, Getting Started with Mockito, for the TestNG
configuration (remember that I'm using the BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying Behavior with
Object Matchers, for details on how to work with AssertJ or how to do the same with Hamcrest's
assertThat(...)). The when(...) method comes from the CatchExceptionAssertJ
class; this way, I can use CatchExceptionAssertJ.thenThrown(...) without
any unnecessary code in between. Last but not least, the CatchException.
caughtException() method gives you access to the exception that was thrown last, as
shown in the following code:

@RunWith(MockitoJUnitRunner.class)
public class PersonDataUpdatorTest {

 @Spy TaxFactorService taxFactorService;

 @InjectMocks PersonDataUpdator systemUnderTest;

 @Test
 public void should_fail_to_update_tax_factor_for_person_due_to_
having
_undefined_country() throws ConnectException {

Chapter 5

129

 willAnswer(withExceptionForPersonWithUndefinedCountry())
.given(taxFactorService).updateMeanTaxFactor
(any(Person.class), anyDouble());

 when(systemUnderTest).processTaxDataFor(new Person());

 then(caughtException()).isInstanceOf
(UndefinedCountryException.class);
 }

 private Answer withExceptionForPersonWithUndefinedCountry() {
 return new Answer() {
 @Override
 public Object answer(InvocationOnMock invocation) throws
Throwable {
 if (invocation.getArguments().length > 0) {
 Person person = (Person) invocation.getArguments()[0];
 if (!person.isCountryDefined()) {
 throw new UndefinedCountryException
("Undefined country");
 }
 }
 return null;
 }
 };
 }

}

Another thing to remember is that you most likely won't
need to create any special answers; if that is the case, it's
highly probable that your scenario is getting too complicated.
For additional information regarding both Answers and
the AdditionalAnswers—classes that hold quite a few
predefined answers—refer to Chapter 2, Creating Mocks.

How it works...
A spy is a special case of a mock. Refer to the Stubbing methods so that they return custom
answers recipe of Chapter 4, Stubbing Behavior of Mocks, for more information.

Stubbing Behavior of Spies

130

See also
 f Refer to the Mockito documentation on the doReturn()|doThrow()|doAnswer

()|doNothing()|doCallRealMethod() family of methods at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#12

 f Refer to the Mockito documentation on stubbing with callbacks at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#11

Stubbing final methods with PowerMock
In this recipe, we will stub a final method and verify the object under test's behavior using
JUnit. Since Mockito can't stub final methods, we'll use PowerMock to do it.

As usual, when dealing with PowerMock, you have to be really sure of what you are doing. You
shouldn't need to use it with well-written code. Just follow the SOLID principles (see Chapter 2,
Creating Mocks, for more information) and you shouldn't have the need to use this library.

PowerMock can be useful when dealing with legacy code or stubbing third-party libraries (you
can check Chapter 8, Refactoring with Mockito, to see how to use PowerMock to refactor
legacy code).

Getting ready
To use PowerMock, you have to add it to your classpath. Check the Creating mocks of final
classes with PowerMock recipe in Chapter 2, Creating Mocks, for details on how to add
PowerMock to your project.

As shown in the following code, for this recipe, our system under test will be a unit of a
PersonProcessor class and its collaborator, the PersonSaver class. The latter is
responsible for logging warnings while validating the person and for persisting the person
in the database:

public class PersonProcessor {

 private final PersonSaver personSaver;

 public PersonProcessor(PersonSaver personSaver) {
 this.personSaver = personSaver;
 }

 public boolean process(Person person) {
 try {
 personSaver.validatePerson(person);

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#12
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#11

Chapter 5

131

 personSaver.savePerson(person);
 return true;
 } catch (Exception exception) {
 System.err.printf("Exception occurred while trying save
person [%s]%n", exception);
 return false;
 }
 }

}

Now, let's take a look at the PersonSaver class that has a single final method that we want
to stub:

public class PersonSaver {

 public void validatePerson(Person person) {
 if (!person.isCountryDefined()) {
 System.out.printf("Warning person [%s] has undefined
country%n", person.getName());
 }
 }

 public final void savePerson(Person person) {
 // simulating web service call
 System.out.println("Storing person in the db");
 }

}

How to do it...
To use PowerMock with JUnit to stub a final method, you have to perform the following steps:

1. Annotate your test class with @RunWith(PowerMockRunner.class).

2. Provide all the classes that need to be prepared for testing (most likely byte-code
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(PersonSaver.class) since PersonSaver has a
final method that we want to stub). In general, the class that needs to be prepared for
testing will include classes with final, private, static, or native methods; classes that
are final and that should be spied on; and also classes that should be returned as
spies on instantiation.

3. Since we are creating a PowerMock spy, we can't profit from Mockito's annotations
and need to create a spy using the PowerMockito.spy(…) method.

Stubbing Behavior of Spies

132

The following snippet depicts the aforementioned scenario for JUnit. See Chapter 1, Getting
Started with Mockito, for the TestNG configuration (I'm using the BDDMockito.given(...)
and AssertJ's BDDAssertions.then(...) static methods. Check out Chapter 7, Verifying
Behavior with Object Matchers, for details on how to work with AssertJ or how to do the same
with Hamcrest's assertThat(...)). Have a look at the following code:

@RunWith(PowerMockRunner.class)
@PrepareForTest(PersonSaver.class)
public class PersonProcessorTest {

 PersonSaver personSaver = PowerMockito.spy(new PersonSaver());

 PersonProcessor systemUnderTest = new
PersonProcessor(personSaver);

 @Test
 public void should_successfully_proces_person_with_defined_
country() {
 // given
 willDoNothing().given(personSaver).savePerson(any(Person.
class));

 // when
 boolean result = systemUnderTest.process(new
Person("POLAND"));

 // then
 then(result).isTrue();
 }

}

Now, let's see how to configure our class to work with TestNG:

1. Make your class extend the PowerMockTestCase class.

2. Implement a method annotated with @ObjectFactory that returns an instance
of the PowerMockObjectFactory class (this object factory will be used for the
creation of all object instances in the test).

3. Provide all the classes that need to be prepared for testing (most likely bytecode
manipulated) in the @PrepareForTest annotation (in the case of our scenario, it
would be @PrepareForTest(PersonSaver.class) since PersonSaver has a
final method that we want to stub). In general, the class that needs to be prepared for
testing would include classes with final, private, static or native methods; classes that
are final and that should be spied on; and also classes that should be returned as
spies on instantiation.

Chapter 5

133

4. Since we are creating a PowerMock spy, we can't profit from Mockito's annotations
and need to create a spy using the PowerMockito.spy(…) method.

Let's check the following TestNG test (see the JUnit example for the warnings in terms of static
imports and the BDD approach):

@PrepareForTest(PersonSaver.class)
public class PersonProcessorTestNgTest extends PowerMockTestCase {

 PersonSaver personSaver;

 PersonProcessor systemUnderTest;

 @BeforeMethod
 public void setup() {
 personSaver = PowerMockito.spy(new PersonSaver());
 systemUnderTest = new PersonProcessor(personSaver);
 }

 @Test
 public void should_successfully_proces_person_with_defined_
country() {
 // given
 willDoNothing().given(personSaver).savePerson(any(Person.
class));

 // when
 boolean result = systemUnderTest.process(new
Person("POLAND"));

 // then
 then(result).isTrue();
 }

 @ObjectFactory
 public IObjectFactory getObjectFactory() {
 return new PowerMockObjectFactory();
 }

}

Stubbing Behavior of Spies

134

How it works...
The internals of PowerMock go far beyond the scope of this recipe, but the overall concept is
that a part of the PowerMockRunner logic is to create a custom classloader and bytecode
manipulation for the classes defined using the @PrepareForTest annotation in order
to mock them, and to use these mocks with the standard Mockito API. Due to bytecode
manipulations, PowerMock can ignore a series of constraints of the Java language, such as
extending final classes.

See also
 f Refer to the PowerMock website at https://code.google.com/p/powermock/

 f Refer to Chapter 8, Refactoring with Mockito, to see how to use different approaches
and tools such as PowerMock to refactor bad code

https://code.google.com/p/powermock/

6
Verifying Test Doubles

In this chapter, we will cover the following topics:

 f Verifying the method invocation count with times()

 f Verifying the method invocation count with atLeast()

 f Verifying the method invocation count with atMost()

 f Verifying that interactions never happened

 f Verifying that interactions stopped happening

 f Verifying the order of interactions

 f Verifying interactions and ignoring stubbed methods

 f Verifying the method invocation within the specified time

Introduction
In the previous two chapters, you've been shown how to stub the mocked object's behavior
in a number of ways. You can also see the verification approach that favors the assertion of
what should happen instead of how it should happen, by telling you to verify the behavior, if
possible, and not the implementation.

The preceding suggestion always starts heated discussions. Martin Fowler, in his article,
Mocks aren't Stubs (http://martinfowler.com/articles/mocksArentStubs.html)
defines that in general, there are two approaches in terms of verification: verifying state and
verifying behavior. A part of this article is about coupling tests to the implementation. Fowler
talks about one of the key problems behind such a binding of tests to the actual code—the
interference in refactoring. Having such brittle tests could make them fail each time you
refactor, even though the final behavior remains the same.

http://martinfowler.com/articles/mocksArentStubs.html

Verifying Test Doubles

136

The importance of refactoring as an indispensable process in software development
should not be put under any discussion or doubt. It increases the code quality, readability,
and understandability. There are numerous ways to improve the actual code to make
it more modular and clear for the developer. The same approach can be applied to the
testing code. Throughout the book, I'm promoting the approach of asserting behavior
instead of implementation. One may ask the question whether the book follows the most
advantageous approach.

The answer to this is not trivial and, in fact, I'd say that the answer is quite subjective. From
my experience, I have rarely seen cases in which I wanted to verify whether a certain piece of
code was actually called, but still there were such scenarios. I was told by a software architect
that you should pick such test types (unit, integration, and so on) so that you feel confident
that your application does what it is supposed to do. Of course, you should also follow the
concept of the test pyramid presented in Succeeding with Agile, Mike Cohn (the essential
point of this concept is to have many more unit tests than high-level, end-to-end ones that go
through the UI). It's crucial to remember this since developers often tend to think that if their
tools show a high degree of code coverage, it will automatically mean that their code does
what it should do. Josh Bloch once wrote that coverage won't ensure that an application works
correctly, only what is expected from tests.

The complexity of business problems that software developers have to solve on a daily
basis doesn't make it any easier for the programmers to choose proper ways of testing their
software. Summing it all up, one must not say that only one approach is good and the other
is bad—it's not a black or white approach—it all depends on your experience, your approach to
testing, and when you feel that your code is properly tested. Like Andrew Hunt said, "Context is
king!". As developers, we have to take responsibility to test our software. It's up to us to define
whether the execution of precisely defined methods is essential to say that the application
works in a correct manner or is it just an implementation detail.

Throughout this book, I'm suggesting that it is better not to tightly couple your testing code to
the actual implementation. My hint contained the "if possible" part that we will deal with in
more depth in the upcoming recipes. Sometimes, you might feel much more certain if some
part of your code gets verified in terms of method invocation count and order. You may even
want to check whether an argument passed to a method of your mock contains precisely
defined values. At the end of the day, you just want your application to work fine, right?

Verifying the method invocation count
with times()

In this recipe, we will verify whether a method on a mock was executed for exactly the given
number of times.

Chapter 6

137

Getting ready
For this recipe, our system under test will be TaxUpdater, which calls TaxService
(let's assume that it is a web-service client) to update the mean tax factor for two people.
Unfortunately, this system is old and can accept a single call at a time. For simplicity, the
calculateMeanTaxFactor() method, shown in the following code, returns a fixed value
but in reality, there could be some complex logic:

public class TaxUpdater {

 static final double MEAN_TAX_FACTOR = 10.5;

 private final TaxService taxService;

 public TaxUpdater(TaxService taxService) {
 this.taxService = taxService;
 }

 public void updateTaxFactorFor(Person brother, Person sister) {
 taxService.updateMeanTaxFactor(brother,
 calculateMeanTaxFactor());
 taxService.updateMeanTaxFactor(sister,
 calculateMeanTaxFactor());
 }

 private double calculateMeanTaxFactor() {
 return MEAN_TAX_FACTOR;
 }

}

How to do it...
To verify whether the mocked object's method was called the exact number of times as
specified in the code, you have to call Mockito.verify(mock, VerificationMode.
times(count)).methodToVerify(...).

Let's check the JUnit test that verifies whether the web service's method has been called
exactly twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxUpdaterTest {

 @Mock TaxService taxService;

Verifying Test Doubles

138

 @InjectMocks TaxUpdater systemUnderTest;

 @Test
 public void should_send_exactly_two_messages_through_the_web_
service() {
 // when
 systemUnderTest.updateTaxFactorFor(new Person(),
 new Person());

 // then
 verify(taxService, times(2))
.updateMeanTaxFactor(any(Person.class), anyDouble());
 }

}

How it works...
When you run the verify method, Mockito internally delegates its call to MockitoCore.
verify(T mock, VerificationMode mode). The verification mode in our example
is the Times object that is the result of the execution of the static VerificationMode.
times(2) method. In general, the Times object has two responsibilities:

 f It stores the expected number of invocations

 f It delegates the verification of whether the verified method got executed for the
expected number of times

You may get negative results for the following reasons (a proper exception will be thrown
by Mockito):

 f Too few actual invocations

 f Never wanted but invoked

 f Too many actual invocations

Otherwise, the method invocation gets marked as verified. It's pretty important in terms of
greedy verification. (We'll go back to this in more detail in the later parts of the chapter.)

There's more...
To verify whether the method has been called once, you can write it in the following way
(because Mockito assumes a single method execution by default):

verify(taxService).updateMeanTaxFactor
(any(Person.class), anyDouble());

Chapter 6

139

See also
 f Refer to the Mockito documentation on Verifying number of method invocations

at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#4

 f Refer to Test Driven Development: By example, Kent Beck, available at
http://books.google.co.uk/books/about/Test_driven_Development.
html?id=gFgnde_vwMAC

Verifying the method invocation count with
atLeast()

In this recipe, we will verify whether a method on a mock was executed for at least a specified
number of times.

Getting ready
For this recipe, our system under test will be the same, TaxUpdater, as presented in the
previous recipe; let's take another look at it:

public class TaxUpdater {

 static final double MEAN_TAX_FACTOR = 10.5;

 private final TaxService taxService;

 public TaxUpdater(TaxService taxService) {
 this.taxService = taxService;
 }

 public void updateTaxFactorFor(Person brother, Person sister) {
 taxService.updateMeanTaxFactor
(brother, calculateMeanTaxFactor());
 taxService.updateMeanTaxFactor
(sister, calculateMeanTaxFactor());
 }

 private double calculateMeanTaxFactor() {
 return MEAN_TAX_FACTOR;
 }

}

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC

Verifying Test Doubles

140

How to do it...
To verify whether the mocked object's method was called at least a given number of
times, call Mockito.verify(mock, VerificationMode.atLeast(count)).
methodToVerify(...).

Let's check the JUnit test that verifies whether the web service's method has been called at
least twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxUpdaterTest {

 @Mock TaxService taxService;

 @InjectMocks TaxUpdater systemUnderTest;

 @Test
 public void should_send_at_least_two_messages_through_the_web_
service() {
 // when
 systemUnderTest.updateTaxFactorFor
(new Person(), new Person());

 // then
 verify(taxService, atLeast(2))
.updateMeanTaxFactor(any(Person.class), anyDouble());
 }

}

How it works...
Since the atLeast(…) verification works in a similar way to the times(…) verification,
please refer to the How it works... section of the previous recipe for more details.

The difference between the two is that in this recipe, we have the AtLeast VerificationMode
that first stores the expected number of method invocations and then, on verification, checks
if that method actually got executed at least that many times. If that isn't the case, an
exception will be thrown.

There's more...
To verify whether the method has been executed at least once, you can write it as follows:

verify(taxService, atLeastOnce())
.updateMeanTaxFactor(any(Person.class), anyDouble());

Chapter 6

141

See also
 f Refer to the Mockito documentation on Verifying number of method invocations

at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#4

 f Refer to Test-Driven Development: By example, Kent Beck available at
http://books.google.co.uk/books/about/Test_driven_Development.
html?id=gFgnde_vwMAC

Verifying the method invocation count with
atMost()

In this recipe, we will verify whether a method on a mock was executed, at most, a specified
number of times.

Getting ready
As shown in the following code, our system under test is TaxUpdater (the same as that
presented in the previous recipes):

public class TaxUpdater {

 static final double MEAN_TAX_FACTOR = 10.5;

 private final TaxService taxService;

 public TaxUpdater(TaxService taxService) {
 this.taxService = taxService;
 }

 public void updateTaxFactorFor(Person brother, Person sister) {
 taxService.updateMeanTaxFactor
(brother, calculateMeanTaxFactor());
 taxService.updateMeanTaxFactor
(sister, calculateMeanTaxFactor());
 }

 private double calculateMeanTaxFactor() {
 return MEAN_TAX_FACTOR;
 }

}

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC

Verifying Test Doubles

142

How to do it...
To verify whether the mock's method was invoked at most a given number of
times, call Mockito.verify(mock, VerificationMode.atMost(count)).
methodToVerify(...).

Let's check the JUnit test that verifies whether the web service's method has been called at
most twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxUpdaterTest {

 @Mock TaxService taxService;

 @InjectMocks TaxUpdater systemUnderTest;

 @Test
 public void should_send_at_most_two_messages_through_the_web_
service() {
 // when
 systemUnderTest.updateTaxFactorFor
(new Person(), new Person());

 // then
 verify(taxService, atMost(2))
.updateMeanTaxFactor(any(Person.class), anyDouble());
 }

}

How it works...
Since the atMost(…) verification works in a similar way to the times(…) verification, please
refer to the How it works... section of the Verifying the method invocation count with times()
recipe for more details.

The difference between the two is that in this recipe, we have the AtMost VerificationMode
that first stores the expected number of method invocations and then, on verification, it
checks whether that method actually got executed at most that many times. If that isn't the
case, an exception will be thrown.

Chapter 6

143

See also
 f Refer to the Mockito documentation on Verifying number of method invocations

at http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#4

 f Refer to Test-Driven Development: By example, Kent Beck available at
http://books.google.co.uk/books/about/Test_driven_Development.
html?id=gFgnde_vwMAC

Verifying that interactions never happened
In this recipe, we will verify the following two cases:

 f A specified method on a mock was never executed

 f The methods on the mock were executed

You might wonder whether there is any reason to check that a method on a mock was never
executed. Well, imagine that your company is paying plenty of money for a bank transfer
(let's assume that it's done via a web service). Having such business requirements where if
some initial conditions were not met the bank transfer should not take place, you can check
whether the method was executed.

If you actually need to verify that no more interactions took place on the mock, then
perhaps you shouldn't actually have done this (check the link, http://monkeyisland.
pl/2008/07/12/should-i-worry-about-the-unexpected/, for Szczepan Faber's
article on that topic). If it's not a business requirement, you should not worry about the
unexpected; perhaps, some additional methods of the mock can actually be executed if it
doesn't change the way the application works. If you do a TDD, then you won't have this issue
since you would write only the piece of code that is really necessary.

Getting ready
Our system under test will be a TaxTransferer class that will transfer tax for a non-null
person as follows:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#4
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected/
http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected/

Verifying Test Doubles

144

 public void transferTaxFor(Person person) {
 if (person == null) {
 return;
 }
 taxService.transferTaxFor(person);
 }

}

How to do it...
To verify whether the mock's method was not invoked, call Mockito.verify(mock,
VerificationMode.never()).methodToVerify(...).

Let's check the JUnit test that verifies whether the web service's method has been called at
most twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_not_call_web_service_method_if_person_is_null()
{
 // when
 systemUnderTest.transferTaxFor(null);

 // then
 verify(taxService, never()).transferTaxFor(any(Person.class));
 }

}

How it works...
Since the never() verification works in the same way as the times(0) verification, please
refer to the How it works... section of the Verifying the method invocation count with times()
recipe for more details.

Chapter 6

145

There's more...
You can use the Mockito.verifyZeroInteractions(...) method to specify that you do
not wish interactions to take place with a mock.

However, it will involve all the existing calls on the mock (even those from the setup phase
of your test). So, we could rewrite the aforementioned test in another, less user friendly and
readable way; for example, for JUnit, you can use the following code:

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_not_interact_with_web_service_in_any_way_if_
person_is_null() {
 // when
 systemUnderTest.transferTaxFor(null);

 // then
 verifyZeroInteractions(taxService);
 }
}

You can call either the verifyZeroInteractions(...) or
verifyNoMoreInteractions(...) method and get the same result since both do the
same task (they call the same methods under the hood).

See also
 f Refer to the Mockito documentation on Making sure interaction(s) never happened

on mock at http://docs.mockito.googlecode.com/hg/1.9.5/org/
mockito/Mockito.html#7

 f Refer to Test-Driven Development: By example, Kent Beck available at
http://books.google.co.uk/books/about/Test_driven_Development.
html?id=gFgnde_vwMAC

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#7
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#7
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC

Verifying Test Doubles

146

Verifying that interactions stopped
happening

In this recipe, we will verify that a specified method on a mock was executed and then any
interactions stopped taking place.

Getting ready
For this recipe, our system under test will be a TaxTransferer class that will transfer tax for
a non-null person. If the passed person value is null, then an error report is sent:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public void transferTaxFor(Person person) {
 if (person == null) {
 taxService.sendErrorReport();
 return;
 }
 taxService.transferTaxFor(person);
 }

}

How to do it...
To verify that the only method executed on a mock is the one provided by us, you have to call
Mockito.verify(mock, VerificationMode.only()).methodToVerify(...).

Let's check the JUnit test that verifies whether the web service's method has been called at
most twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

Chapter 6

147

 @Test
 public void should_only_send_error_report_if_person_is_null() {
 // when
 systemUnderTest.transferTaxFor(null);

 // then
 verify(taxService, only()).sendErrorReport();
 }
}

How it works...
When using the only() verification mode in the Mockito.verify(…) method, we are
delegating the verification to the class named Only. This class verifies whether there was a
single invocation of the verified method and no other interactions with the mock took place.
Mockito will throw a verification exception under the following conditions:

 f An interaction with a mock took place even though it shouldn't

 f A method that we wanted to be executed has never been called

If neither of these cases are applicable, then the method invocation gets marked as verified.
It's pretty important in terms of greedy verification. (We'll go back to this in more detail in the
later parts of this chapter.)

There's more...
You can also define that interactions should stop happening by using a less elegant approach.
The following code sample is presented only for you to know that you can refactor it to the one
presented earlier:

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_only_send_error_report_if_person_is_null_in_an_
ugly_way() {
 // when
 systemUnderTest.transferTaxFor(null);

Verifying Test Doubles

148

 // then
 verify(taxService).sendErrorReport();
 verifyNoMoreInteractions (taxService);
 }
}

See also
 f Refer to the Mockito documentation on Making sure interaction(s) never happened

on mock at http://docs.mockito.googlecode.com/hg/1.9.5/org/
mockito/Mockito.html#7

 f Refer to Test-Driven Development: By example, Kent Beck available at
http://books.google.co.uk/books/about/Test_driven_Development.
html?id=gFgnde_vwMAC

 f Refer to Szczepan Faber's article Should I worry about the unexpected? at http://
monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected

Verifying the order of interactions
In this recipe, we will verify that a set of methods get executed in the specified order.

Getting ready
For this recipe, our system under test will be TaxUpdator which is a simplified version of
a facade that calls the TaxService methods (let's assume that it is a web service) to
update tax-related data and perform a series of tax transfers. Let's assume that this web
service is a legacy, a badly-written system, and we have to synchronously call it in a precisely
defined sequence.

Let's take a look at the implementation of the TaxUpdator class:

public class TaxUpdator {

 public static final int TAX_FACTOR = 100;

 private final TaxService taxService;

 public TaxUpdator(TaxService taxService) {
 this.taxService = taxService;
 }

 public void transferTaxFor(Person person) {
 taxService.updateTaxFactor(person, calculateTaxFactor(1));

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#7
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#7
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://books.google.co.uk/books/about/Test_driven_Development.html?id=gFgnde_vwMAC
http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected
http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected

Chapter 6

149

 taxService.transferTaxFor(person);
 taxService.transferTaxFor(person);
 taxService.updateTaxFactor(person, calculateTaxFactor(2));
 taxService.transferTaxFor(person);
 }

 private double calculateTaxFactor(double ratio) {
 return TAX_FACTOR * ratio;
 }

}

How to do it...
To verify whether the mock's method execution took place in a specified order, perform the
following steps:

1. Start the verification in order using InOrder inOrder = Mockito.
inOrder(mock1, mock2, … , mockn);, where mock1, mock2, and
mockn are the objects that might be used in the verification process.

2. Then, you can call either of the following presented methods in a specified sequence
to verify that their execution took place in the specified order:
inOrder.verify(mock).method(...);
inOrder.verify(mock, verificationMode).method(...);
inOrder.verifyNoMoreInteractions()

Let's check the JUnit test that verifies whether the web service's method has been called at
most twice (see Chapter 1, Getting Started with Mockito, for the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxUpdaterTest {

 @Mock TaxService taxService;

 @InjectMocks TaxUpdater systemUnderTest;

 @Test
 public void should_update_tax_factor_and_transfer_tax_in_
specified_order() {
 // given
 Person person = new Person();

 // when
 systemUnderTest.transferTaxFor(person);

Verifying Test Doubles

150

 // then
 InOrder inOrder = Mockito.inOrder(taxService);
 inOrder.verify(taxService)
.updateTaxFactor(eq(person), anyDouble());
 inOrder.verify(taxService, times(2)).transferTaxFor(person);
 inOrder.verify(taxService)
.updateTaxFactor(eq(person), anyDouble());
 inOrder.verify(taxService).transferTaxFor(person);
 }
}

How it works...
When you create the InOrder object and define the desired order of execution, Mockito
stores the expected order and then verifies it against the actual execution. During the iteration
over the actual method invocations, depending on the passed verification mode (times(…),
atLeast(…), and so on), Mockito marks either a single or multiple actual method executions
as verified.

Let's try to depict this scenario using our test example. Having the inOrder.
verify(taxService, times(2)).transferTaxFor(person); verification in
order means that we are asking Mockito to mark two subsequent invocations of the
transferTaxFor(…) method as verified and throw an exception if there were no
such two subsequent calls.

The times(…) method returns a verification mode that is not greedy, which means that it will
verify subsequent calls only. Take a look at the following code:

inOrder.verify(taxService, times(2)).transferTaxFor(person);
inOrder.verify(taxService).updateTaxFactor(eq(person), anyDouble());
inOrder.verify(taxService).transferTaxFor(person);

When Mockito goes past the first line, it will mark only two methods of transferTaxFor(…)
as verified. If there are any other transferTaxFor(…) methods, Mockito will not mark them
as verified. This will happen in the third line, where an additional verification takes place.

There is an interesting case of the calls(…) method that behaves in a different manner
from the analogous times(…) and atLeast(…) methods that return VerificationMode.
Let's have a look at the examples:

 f times(2): This method verifies that a method was executed exactly two times (it will
fail if a method was invoked once or, for example, three times).

Chapter 6

151

 f atLeast(2): This method verifies that the method was executed at least twice
(it will fail if a method was invoked once. It marks all the subsequent method executions
as verified).

 f calls(2): This method allows a non-greedy verification (check the There's more...
section of this recipe for more information). If a method is executed three times, then
calls(2) will not fail, unlike the analogous times(3). Also, it will not mark the third
invocation as verified, unlike atLeast(2).

There's more...
As stated in the previous section, there are verification modes that are greedy; they will mark
all the matching method executions as verified.

Let's imagine the following scenario (the test is based on the previous example):

@Test
 public void should_fail_at_updating_second_tax_factor_in_
specified_order_due_to_greedy_at_least() {
 // given
 Person person = new Person();

 // when
 systemUnderTest.transferTaxFor(person);

 // then
 InOrder inOrder = Mockito.inOrder(taxService);
 inOrder.verify(taxService)
.updateTaxFactor(eq(person), anyDouble());
 inOrder.verify(taxService, atLeastOnce()).
transferTaxFor(person);
 inOrder.verify(taxService)
.updateTaxFactor(eq(person), anyDouble());
 inOrder.verify(taxService).transferTaxFor(person);
 }

As you can see, the only difference between the tests is the following line (the difference is
that we had times(2) and now we have atLeastOnce()):

inOrder.verify(taxService, atLeastOnce()).transferTaxFor(person);

This test won't succeed, which can seem very odd at first glance.

Verifying Test Doubles

152

Let's have a look at the execution sequence of the system under the test's method in which
we have all the mocked object's method executions:

taxService.updateTaxFactor(person, calculateTaxFactor(1));
taxService.transferTaxFor(person);
taxService.transferTaxFor(person);
taxService.updateTaxFactor(person, calculateTaxFactor(2));
taxService.transferTaxFor(person);

You may think that when we provide the atLeastOnce() method, Mockito will mark all
the subsequent executions of the transferTaxFor method (in our case, there are two
subsequent executions: lines two and three of the snippet) and then, the next verification
step will be of the updateTaxFactor method, in line four of the snippet.

Since atLeastOnce() is greedy (atLeast() is always greedy in the InOrder verification),
the following tasks take place:

1. When the first transferTaxFor method is verified against the AtLeast verification
mode, it marks all three transferTaxFor methods as verified (lines two, three,
and five).

2. Then, it starts the next step of verification after the last line (after line five) of
our snippet (moving over line four). In our test code, the next step of verification
is inOrder.verify(taxService).updateTaxFactor(eq(person),
anyDouble()).

3. Bear in mind that due to the greedy nature of the AtLeast verification mode,
we moved to the last execution of the transferTaxFor method.

4. Now, we need to execute the updateTaxFactor method.

5. We will get a Mockito VerificationInOrderFailure exception since there is no
such method. The message will look more or less like the one shown as follows:
Wanted but not invoked:
taxService.updateTaxFactor(
 Person@183b1e8b,
 <any>
);
-> at ExplainingTheGreedyAlgorithm.should_fail_at_updating
_second_tax_factor_in_specified_order_due_to_greedy
_at_least(ExplainingTheGreedyAlgorithm.java:56)
Wanted anywhere AFTER following interaction:
taxService.transferTaxFor(
 Person@183b1e8b
);

Chapter 6

153

If you are only interested in the fact that a given method gets executed
in a precise order and you don't care about the rest, you just have to
explicitly define only those interactions that you are interested in. In
other words, you must use the following methods:

taxService.transferTaxFor(person);
taxService.updateTaxFactor(person, taxFactor);
taxService.transferTaxFor(person);

If you are only interested in the fact that the transferTaxFor
methods get executed one after another (ignore the
updateTaxFactor method), you would just have to write the
following code:

InOrder inOrder = Mockito.inOrder(taxService);
inOrder.verify(taxService).transferTaxFor(person);
inOrder.verify(taxService).transferTaxFor(person);

See also
 f Refer to the Mockito Wiki on the greedy algorithm at https://github.com/

mockito/mockito/wiki/Greedy-algorithm-of-verfication-InOrder

 f Refer to the Mockito documentation on the Verification in order at http://docs.
mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#6

Verifying interactions and ignoring stubbed
methods

In this recipe, we will perform the verification of the interaction with a mock, but at the same
time, we will ignore the stubbed methods from this verification.

Getting ready
For this recipe, our system under test will be a TaxTransferer class that will transfer tax
through the web service for the given person if this person is not null. It will send a statistics
report regardless of the fact whether the transfer took place or not:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

https://github.com/mockito/mockito/wiki/Greedy-algorithm-of-verfication-InOrder
https://github.com/mockito/mockito/wiki/Greedy-algorithm-of-verfication-InOrder
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#6
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#6

Verifying Test Doubles

154

 public boolean transferTaxFor(Person person) {
 if(person != null) {
 taxService.transferTaxFor(person);
 }
 return taxService.sendStatisticsReport();
 }

}

How to do it…
To verify a mock's behavior in such a way that Mockito ignores the stubbed methods,
you have to either call Mockito.verifyNoMoreInteractions(Mockito.
ignoreStubs(mocks...)); or InOrder.verifyNoMoreInteractions(Mockito.
ignoreStubs(mocks...));.

Let's test the system under test using JUnit; see Chapter 1, Getting Started with Mockito,
for the TestNG configuration (I'm using the BDDMockito.given(...) and AssertJ's
BDDAssertions.then(...) static methods; check out Chapter 7, Verifying Behavior
with Object Matchers, for details on how to work with AssertJ or how to do the same with
Hamcrest's assertThat(...) method):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_verify_that_ignoring_stubbed_method_there_was_a
_single_interaction_with_mock() {
 // given
 Person person = new Person();
 given(taxService.sendStatisticsReport()).willReturn(true);

 // when
 boolean success = systemUnderTest.transferTaxFor(person);

 // then
 verify(taxService).transferTaxFor(person);
 verifyNoMoreInteractions(ignoreStubs(taxService));
 then(success).isTrue();
 }
 }

Chapter 6

155

How it works...
When you call Mockito.ignoreStubs(Object... mocks), Mockito goes through all the
provided mocks and then marks invocations on their methods so that if they get stubbed,
then they should be ignored for verification.

See also
 f Refer to the Mockito documentation on Verification ignoring stubs at http://docs.

mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#25

Verifying the method invocation within the
specified time

Testing asynchronous code is a very broad topic, and we will not go into great details here. The
fact is that the best way to test this kind of code is to make it synchronous and test it separately;
this is crucial in terms of performance and execution time of unit tests. Imagine having quite
a few such cases where you have to wait for a second or so for the test to complete. It would
definitely increase the overall time of your tests and you wouldn't want that to happen.

You might, however, have a business requirement where it is crucial to verify whether some
particular business feature was executed within the specified time (for example, a request has
been sent within one second). In this recipe, we will take a closer look at what Mockito offers
in this regard, and we'll do the same using the Awaitility library.

Getting ready
We will test the PersonProcessor class that performs some data processing and then
delegates the saving of the person to a PersonSaver class.

Let's imagine that PersonProcessor is an endpoint that receives a Person request. We'll
assume that the business requirement is to save a person within one second from the time
of receiving a request. We would like to write a test that will ensure that the savePerson(…)
method is executed within this specified time boundary.

All the logic done by PersonProcessor is done in a separate thread. For simplicity, we will
not use any ExecutorServices; instead, we will start a thread manually. Also, we are not
doing any real computations; instead, we are making the thread sleep for some time as shown
in the following code:

public class PersonProcessor {

 private final PersonSaver personSaver;

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#25
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#25

Verifying Test Doubles

156

 public PersonProcessor(PersonSaver personSaver) {
 this.personSaver = personSaver;
 }

 public void process(final Person person) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 // simulating time consuming actions
 Thread.sleep(500);
 } catch (InterruptedException e) {
 System.err.printf("The thread got interrupted
[%s]%n", e);
 }
 personSaver.savePerson(person);
 }
 }).start();
 }

}

How to do it…
To verify whether a method was executed within the given time, you have to call
Mockito.verify(mock, Mockito.timeout(millis)).methodToVerify();.

You can find a JUnit test of our system under test in the following code; see Chapter 1,
Getting Started with Mockito, for the TestNG configuration:

@RunWith(MockitoJUnitRunner.class)
public class PersonProcessorTest {

 @Mock PersonSaver personSaver;

 @InjectMocks PersonProcessor systemUnderTest;

 @Test
 public void should_process_person_within_specified_time() {
 // when
 systemUnderTest.process(new Person());

 // then
 verify(personSaver, timeout(1000)).savePerson(any(Person.class));
 }

}

Chapter 6

157

How it works...
The timeout(…) method instantiates the Timeout object that implements the
VerificationWithTimeout interface. By default, when you call timeout(…),
you set the expectation that the method will be executed only once.

What about the situations in which you would like to check whether the method got invoked,
for example, at least twice? VerificationWithTimeout gives you additional methods to
do this: times(…), never(), atLeastOnce(), atLeast(…), and only(). So, to check
whether the method was executed twice, you would have to write the following code:

verify(personSaver, timeout(1000)
.atLeast(2)).savePerson(any(Person.class));

There's more...
The preceding example is a very simple one, and Mockito doesn't offer you too much flexibility
in terms of providing more advanced time conditions for the verification. There are libraries
that are dedicated to this purpose. We'll have a look at the Awaitility library (https://
code.google.com/p/awaitility/). To put it briefly, Awaitility is an open source
library founded by JayWay, which gives you a Domain Specific Language (DSL) that allows
you to define the expectations of an asynchronous system in a very elegant manner.

Before going further, we have to add Awaitility to the classpath. To do this, let's use
either Maven or Gradle (for manual installation, you can download the JAR files from
https://code.google.com/p/awaitility/wiki/Downloads).

The following is the configuration for Gradle:

testCompile 'com.jayway.awaitility:awaitility:1.6.0'

The following is the configuration for Maven:

<dependency>
 <groupId>com.jayway.awaitility</groupId>
 <artifactId>awaitility</artifactId>
 <version>1.6.0</version>
 <scope>test</scope>
</dependency>

Although there is no special integration of Awaitility and Mockito, you can use it for the
sake of verification. Let's try to rewrite our previous test using Awaitility (we have statically
imported the Awaitility.await() method):

@RunWith(MockitoJUnitRunner.class)
public class PersonProcessorTest {

https://code.google.com/p/awaitility/
https://code.google.com/p/awaitility/
https://code.google.com/p/awaitility/wiki/Downloads

Verifying Test Doubles

158

 @Mock PersonSaver personSaver;

 @InjectMocks PersonProcessor systemUnderTest;

 @Test
 public void should_process_person_within_specified_time() {
 // when
 systemUnderTest.process(new Person());

 // then
 await().atMost(1, SECONDS).until(personIsSaved());
 }

 private Callable<Boolean> personIsSaved() {
 return new Callable<Boolean>() {
 @Override
 public Boolean call() throws Exception {
 try {
 verify(personSaver).savePerson(any(Person.class));
 return true;
 } catch (AssertionError assertionError) {
 return false;
 }
 }
 };
 }

}

In this example, Awaitility will execute the body of the instantiated Callable's call()
method each 100 ms (the default poll value) and wait for a positive result for, at most, one
second. In Callable, we have to catch the Mockito AssertionError because Awaitility
will re-throw this exception and the test will fail. In that case, we just need to return false
so that Awaitility knows that it should retry the method execution until it receives a
positive result.

See also
 f Refer to the Mockito documentation on Verification with timeout at http://docs.

mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#22

 f Refer to the Awaitility project's home page at https://code.google.com/p/
awaitility/

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#22
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#22
https://code.google.com/p/awaitility/
https://code.google.com/p/awaitility/

7
Verifying Behavior

with Object Matchers

In this chapter, we will cover the following recipes:

 f Using Hamcrest matchers for assertions

 f Creating custom Hamcrest matchers

 f Using Hamcrest matchers for stubbing and verification

 f Using AssertJ for assertions

 f Creating custom AssertJ assertions

 f Capturing and asserting the argument

Introduction
In this chapter, you will learn how to use both Hamcrest matchers (https://github.
com/hamcrest/JavaHamcrest) and AssertJ assertions (http://joel-costigliola.
github.io/assertj/assertj-core.html) in order to properly check the output of your
system under test. Now, let's take a quick look at both of the libraries and check their pros
and cons.

https://github.com/hamcrest/JavaHamcrest
https://github.com/hamcrest/JavaHamcrest
http://joel-costigliola.github.io/assertj/assertj-core.html
http://joel-costigliola.github.io/assertj/assertj-core.html

Verifying Behavior with Object Matchers

160

Hamcrest is a library that is incorporated inside one of the most frequently used testing
libraries: JUnit. More importantly, it is used by plenty of other libraries and thus, makes it easy
to re-use your current custom assertions in various tools. It allows you to construct domain-
specific language (DSL) like statements to combine assertions and make your tests such that
they can be read nicely and intuitively. They become a living documentation of your code and
become much easier to maintain. As for the disadvantages, unfortunately, the latest version
of Hamcrest is 1.3 (April 2014) and the latest release took place in 2012. The Hamcrest
community is not too active in comparison to the AssertJ community. The real drawback of
Hamcrest is the fact that your IDE will not help you much with code completion in order to pick
the matchers that are acceptable for the current type of the passed argument. You need to
find all of them yourself.

AssertJ (created by Joel Costigliola) is a fork of the FEST (created by Alex Ruiz; see
https://code.google.com/p/fest/) library of assertions, and it is as its authors
state: community driven. The release of Version 1.0.0 took place in 2013, and there have
been releases of new versions more or less every two months, with Version 1.6.0 released
in March 2014. The core version of AssertJ contains more assertions than the core version
of Hamcrest. Also, the IDE will help you with code completion since it's based on the fluent
interface API. AssertJ allows you to create fantastic DSL-like test code and very intuitively
extends the assertions by providing your custom implementations. To show that AssertJ is
gaining more and more users, I can say that Mockito developers are planning to move their
tests' assertions to AssertJ (part of Issue 459). As for the cons of AssertJ, it is still not a library
that is heavily incorporated into other frameworks, and you might end up with both Hamcrest
and AssertJ on your classpath.

AssertJ and Hamcrest differ in syntax and in the ease of using the language of the domain
(the so-called ubiquitous language—this notion comes from domain-driven design (DDD);
please refer to Domain-Driven Design: Tackling Complexity in the Heart of Software,
Eric Evans, at http://www.amazon.com/Domain-Driven-Design-Tackling-
Complexity-Software/dp/0321125215). Now that we generally know how AssertJ and
Hamcrest differ, we can move on to looking at each of them in more depth.

We will start off by showing you how to add Hamcrest to your project (if you are using JUnit, it's
most likely to be there already). We will then create some custom examples of a unit test that
uses some of the matchers that you can find in the Hamcrest core and Hamcrest's additional
libraries. Then, we will create a custom Hamcrest matcher that will hide the assertion logic
and will make the test code readable, like in a book.

Next, we will see a similar project setup and test, but we will perform the resulting object's
assertions using AssertJ. We will then go through the most elementary examples of its core
features in two ways: the standard approach that uses the assertThat static method and the
one based on the behavior-driven development (BDD) approach that uses the then syntax.
Next, we will create a custom AssertJ assertion and bind it to the globally available ones.

https://code.google.com/p/fest/
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Chapter 7

161

The system under test for all of the presented recipes in this chapter will be a system that
grants a person a new identity (it will create a person with a new name, age, and siblings). Of
course, the presented assertions are exaggerated to present the possibilities of both libraries.
I'm testing far too many details that could be easily merged into a smaller and more readable
version. Please do not write assertions such as these in your codebase.

Using Hamcrest matchers for assertions
In this recipe, we will add Hamcrest to your classpath (or check if it's already there) and look
at a test that shows the concept that lies behind the Hamcrest library.

Getting ready
First, let's check the differences between the various Hamcrest JAR files:

 f hamcrest-core.jar: This file contains the core functionality and a set of
common matchers

 f hamcrest-library.jar: This file contains a set of additional Hamcrest matchers

 f hamcrest-generator.jar: This file generates code that combines many matcher
implementations into a single class with static methods

 f hamcrest-integration.jar: This file contains the integration of Hamcrest and
other testing toolsrary.jar files

 f hamcrest-all.jar: This file contains one JAR file containing all other JAR files

Most likely, you will use either hamcrest-core or hamcrest-all, depending on
your needs.

If you are using JUnit 4 (from at least 4.9), you have the core version of Hamcrest already
bound to JUnit. If you are using a dependency manager that connects to Maven's central
repository, then you can get your dependencies as follows (an example for hamcrest-all
for Maven and Gradle):

The following is the code for hamcrest-all (Maven):

 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-all</artifactId>
 <version>1.3</version>
 <scope>test</scope>
 </dependency>

The following is the code for hamcrest-all (Gradle):

testCompile('org.hamcrest:hamcrest-all:1.3')

Verifying Behavior with Object Matchers

162

If you are not using any of the dependency managers, you have to download either of the
aforementioned JARS and add them to your classpath.

For this recipe, our system under test will be a NewPersonGenerator class that will call an
external service, NewIdentityCreator, to generate a new identity for the current person,
as shown in the following code:

public class NewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public NewPersonGenerator(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }
}

How to do it...
To use Hamcrest matchers to assert the behavior of your system under test, you have to
perform the following steps for JUnit:

1. Use either JUnit's Assert.assertThat(T object, Matcher<? super
T> matcher) or Hamcrest's MatcherAssert.assertThat(T object,
Matcher<? super T> matcher) (if you don't want to depend on JUnit's classes).
For TestNG, you will need to use Hamcrest's MatcherAssert.assertThat(T
object, Matcher<? super T> matcher).

2. The previous step shows how to solve the first part of the puzzle, whereas the
following snippet depicts its second part (for readability purposes, I've left only the
imports related to Hamcrest):
import static org.hamcrest.CoreMatchers.*;
import static org.hamcrest.CoreMatchers.endsWith;
import static org.hamcrest.CoreMatchers.startsWith;
import static org.hamcrest.beans.HasPropertyWithValue.*;
import static org.hamcrest.number.OrderingComparison.*;
import static org.junit.Assert.*;

Chapter 7

163

@RunWith(MockitoJUnitRunner.class)
public class NewPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks NewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity() {
 // given
 Person person = new Person("Robert", 25, asList(new
Person("John", 10), new Person("Maria", 12)));
 given(newIdentityCreator.createNewName(person))
.willReturn("Andrew");
 given(newIdentityCreator.createNewAge(person))
.willReturn(45);
 given(newIdentityCreator.createNewSiblings(person))
.willReturn(asList(new Person("Amy", 20),
 new Person("Alex", 25)));

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 // core matchers - comes with JUnit 4.9+
 assertThat(newPerson, allOf(notNullValue(),
 is(not(person))));
 assertThat(newPerson.getName(),
 both(startsWith("And")).and(endsWith("rew")));
 assertThat(newPerson.getSiblings(),
 hasItems(new Person("Amy", 20), new Person("Alex", 25)));
 // for more matchers attach
org.hamcrest:hamcrest-all
 assertThat(newPerson.getAge(), greaterThan(25));
 assertThat(newPerson, hasProperty
("name", equalTo("Andrew")));
 }

}

Verifying Behavior with Object Matchers

164

How it works...
First, we'll check out how Hamcrest works internally. Then, we will check out the code. Each
Hamcrest matcher interface implementation needs to implement the following two methods:

 f boolean matches(Object item): This method executes the matching algorithm
and returns with the response as to whether the item matches our assumptions (for
example, if the item is equal to another one)

 f void describeMismatch(Object item, Description
mismatchDescription): This method defines why the object didn't successfully
pass the matching algorithm

 � What can seem odd is that this method is void. The
mismatchDescription object is not returned but it's mutated.

 � The Description interface has several methods out of which you most
probably will use either appendText(…) and appendValue(…). The first
method will append the given text to the exception description. The latter
takes an object as a parameter and the result of its toString() method
will be put inside the < and > characters.

When calling JUnit's Assert.assertThat() version, what happens under the hood is
that the Hamcrest's MatcherAssert.assertThat() method is executed. The latter first
executes the passed matcher's matching logic via the matches(...) method. If the result
of its execution is false, then the following takes place:

 f The Description object is built. It contains the default Expected... but
was... message filled with the logic defined in the describeMismatch(...)
method of the matcher.

 f An AssertionError message is thrown with this description.

Now, since we know how Hamcrest matchers work, let's go through the test code and check
each matcher.

The following matchers are present in the core version of the Hamcrest library:

 f CoreMatchers.allOf(...): This matcher checks whether all of the passed
matcher's execution of the matches method result to true. An example of this
matcher is given as follows:
assertThat(newPerson, allOf(notNullValue(), is(not(person))));

 f CoreMatchers.notNullValue(): This matcher checks if the asserted object
is not null.

 f CoreMatchers.is(...): This matcher adds syntactic sugar—does nothing but
makes the code more intuitive to read.

Chapter 7

165

 f CoreMatchers.not(...): This matcher checks whether the asserted object is not
equal to the given object.

 f CoreMatchers.both(...).and(...): This matcher evaluates whether both of
the passed matchers's execution of the matches method result to true. An example
of this matcher is given as follows:
assertThat(newPerson.getName(),
 both(startsWith("And")).and(endsWith("rew")));

 f CoreMatchers.startsWith(...): This matcher checks if the passed string
starts with the provided one.

 f CoreMatchers.endsWith(...): This matcher checks if the passed string ends
with the provided one.

 f CoreMatchers.hasItems(...): This matcher evaluates whether the passed
collection contains the passed items, as shown in the following code:
assertThat(newPerson.getSiblings(), hasItems
(new Person("Amy", 20), new Person("Alex", 25)));

The following matchers are present in the additional Hamcrest libraries (all of them are there
in hamcrest-all):

 f OrderingComparison.greaterThan(...): This matcher evaluates whether the
asserted comparable is greater than the passed item, as shown in the following code:
assertThat(newPerson.getAge(), greaterThan(25));

 f HasPropertyWithValue.hasProperty(...): This matcher finds the passed
property on the asserted object and calls the passed matcher's logic on its value
as follows:
assertThat(newPerson, hasProperty("name", equalTo("Andrew")));

 f CoreMatchers.equalTo(...): This matcher evaluates whether the asserted
object is equal to the passed parameter. If neither are arrays, then the equals
method is called to compare those objects. If they are arrays, then lengths and
elements are checked for equality.

There's more...
Hamcrest contains numerous matchers for different types and logic, so if you can't find the
matcher that suits your needs, please double check that you are not reinventing the wheel as
there is a probability that it exists already.

Verifying Behavior with Object Matchers

166

See also
 f Refer to the Hamcrest home page at http://hamcrest.org/

 f Refer to the Java Hamcrest on GitHub at https://github.com/hamcrest/
JavaHamcrest

 f Refer to the Hamcrest tutorial at https://code.google.com/p/hamcrest/
wiki/Tutorial

 f Refer to the Hamcrest Java User Group at https://groups.google.com/
forum/?fromgroups#!forum/hamcrest-java

 f Refer to the Hamcrest API reference documentation at http://hamcrest.org/
JavaHamcrest/javadoc/1.3/

Creating custom Hamcrest matchers
In this recipe, we will create a custom Hamcrest matcher. Please refer to the previous recipe
in terms of the presented assertions in the test because in the current recipe, we will combine
them in our custom matchers.

Getting ready
For this recipe, our system under test will be a NewPersonGenerator class that will call an
external service, NewIdentityCreator, to generate a new identity for the current person,
as shown in the following code:

public class NewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public NewPersonGenerator(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }
}

http://hamcrest.org/
https://github.com/hamcrest/JavaHamcrest
https://github.com/hamcrest/JavaHamcrest
https://code.google.com/p/hamcrest/wiki/Tutorial
https://code.google.com/p/hamcrest/wiki/Tutorial
https://groups.google.com/forum/?fromgroups#!forum/hamcrest-java
https://groups.google.com/forum/?fromgroups#!forum/hamcrest-java
http://hamcrest.org/JavaHamcrest/javadoc/1.3/
http://hamcrest.org/JavaHamcrest/javadoc/1.3/

Chapter 7

167

How to do it...
If you want to create a custom Hamcrest matcher, you have to attach your Hamcrest
dependencies (if necessary). Depending on your needs, you can extend either of the
classes (BaseMatcher, TypeSafteMatcher, TypeSafeDiagnosingMatcher, or
DiagnosingMatcher).

The following snippet shows the test of our system using JUnit. It calls static methods that
return custom Hamcrest matchers (please refer to Chapter 1, Getting Started with Mockito,
and the previous recipe for information on how to configure your test for TestNG):

@SuppressWarnings("unchecked")
@RunWith(MockitoJUnitRunner.class)
public class NewPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks NewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity() {
 // given
 Person person = new Person("Robert", 25, asList
(new Person("John"), new Person("Maria")));
 given(newIdentityCreator.createNewName(person)).
willReturn("Andrew");
 given(newIdentityCreator.createNewAge(person)).willReturn(45);
 given(newIdentityCreator.createNewSiblings(person))
 .willReturn(asList(new Person("Amy", 20), new Person
 ("Alejandro Gonzales", 25)));

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 assertThat(newPerson, allOf(is(not(equalTo(person))),
 hasNameEqualTo("Andrew"),
 hasAgeGreaterThan(25),
 containsSiblings
(new Person("Amy", 20), new Person("Alejandro Gonzales", 25))));
 }

}

Verifying Behavior with Object Matchers

168

The class that contains the static methods that create Hamcrest matchers is shown in the
following code:

public class PersonMatchers {

 public static Matcher hasNameEqualTo(final String name) {
 return new BaseMatcher() {
 @Override
 public boolean matches(Object item) {
 if (!(item instanceof Person)) {
 return false;
 }
 Person person = (Person) item;
 return bothNamesAreNull(person) || bothNamesMatch(person);
 }

 private boolean bothNamesMatch(Person person) {
 return (name != null && name.equals(person.getName()));
 }

 private boolean bothNamesAreNull(Person person) {
 return (name == null && person.getName() == null);
 }

 @Override
 public void describeTo(Description description) {
 description.appendText
("Name should be equal to ").appendValue(name);
 }
 };
 }

 public static Matcher<Person> hasAgeGreaterThan(final int age) {
 return new TypeSafeMatcher<Person>() {
 @Override
 protected boolean matchesSafely(Person person) {
 return person.getAge() > age;
 }

 @Override
 public void describeTo(Description description) {
 description.appendText
("Age should be greater than ").appendValue(age);
 }

Chapter 7

169

 };
 }

 public static Matcher<Person> containsSiblings
(final Person... siblings) {
 return new TypeSafeDiagnosingMatcher<Person>() {
 @Override
 public void describeTo(Description description) {
 description.appendText
("Person should have siblings ").appendValue(siblings);
 }

 @Override
 protected boolean matchesSafely
(Person person, Description mismatchDescription) {
 if (!person.getSiblings().containsAll(Arrays.
asList(siblings))) {
 mismatchDescription.appendText
("The person has size of siblings equal to ")
 .appendValue(person.getSiblings().size())
 .appendText(" and the person has siblings ")
 .appendValue(person.getSiblings());
 return false;
 }
 return true;
 }
 };
 }
}

There are three main ways of creating custom Hamcrest matchers:

 f Extend the BaseMatcher class as follows:

1. Verify the types and casting (check the hasNameEqualTo(...) method
from the preceding example).

2. Provide the matching logic and the description that will be appended to the
core Hamcrest assertion error message.

 f Extend the TypeSafeMatcher class as follows:

1. You don't have to take care of the casting (check the
hasAgeGreaterThan(...) method from the previous example).

2. Provide the matching logic and the description that will be appended to the
core Hamcrest assertion error message.

Verifying Behavior with Object Matchers

170

 f Extend the TypeSafeDiagnosingMatcher or DiagnosingMatcher class
as follows:

1. Provide the matching logic.

2. What differs from TypeSafeMatcher is that you have access to the
Description object that you can already manipulate at this point
(check the containsSiblings(...) method from the previous example).

3. Provide the description that will be appended to the core Hamcrest
assertion error.

How it works...
To check how Hamcrest works internally, please check the previous recipe.

Remember, before you start writing your custom matcher,
do not implement the Matcher interface. Instead, always
extend the abstract BaseMatcher class or another class
that has already implemented it.

There's more...
Hamcrest allows you to create a class that combines all of your matchers in one place. If you
are interested in this feature, please refer to the documentation at https://code.google.
com/p/hamcrest/wiki/Tutorial#Sugar_generation.

See also
 f Refer to the Hamcrest home page at http://hamcrest.org/

 f Refer to the Hamcrest creating custom matchers at https://code.google.
com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers

Using Hamcrest matchers for stubbing and
verification

In this recipe, we will use Hamcrest matchers in the stubbing and verification phases.

https://code.google.com/p/hamcrest/wiki/Tutorial#Sugar_generation
https://code.google.com/p/hamcrest/wiki/Tutorial#Sugar_generation
http://hamcrest.org/
https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers
https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers

Chapter 7

171

Getting ready
In this recipe, the system under test will be the NewPersonGenerator class that generates
new identities for the given list of people. Also, we will send a web service message with the
generated list of people, so their data gets updated, as shown in the following code:

public class NewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public NewPersonGenerator
(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public List<Person> generateNewIdentities
(List<Person> people) {
 List<Person> newPeople = new ArrayList<Person>();
 for(Person person : people) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 Person newPerson = new Person
(newName, newAge, newSiblings);
 newPeople.add(newPerson);
 }
 newIdentityCreator.updateDataFor(newPeople);
 return newPeople;
 }

}

How to do it...
If you want to create a custom Hamcrest matcher, you have to perform the following steps:

1. Attach your Hamcrest dependencies (if necessary).

2. If method arguments are objects, just pass the Mockito.argThat(…) method
as a stubbed/verified method parameter. If method arguments are primitives, pass
the respective intThat(…) or booleanThat(…) method as a stubbed/verified
method parameter.

3. Pass Hamcrest matchers as arguments to the Mockito.argThat(…) method,
regardless of the fact that you are stubbing or verifying methods.

Verifying Behavior with Object Matchers

172

The following snippet shows the test of our system using JUnit. It calls static methods that
return custom Hamcrest matchers (please refer to Chapter 1, Getting Started with Mockito,
and the previous recipe for information on how to configure your test for TestNG):

@RunWith(MockitoJUnitRunner.class)
public class NewPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks NewPersonGenerator systemUnderTest;

 @Test
 public void should_update_data_for_a_single_generated_mature_
person() {
 // given
 Person robert = new Person("Robert", 25);
 Person anna = new Person("Anna", 35);
 List<Person> oldPeople = asList(robert, anna);
 given(newIdentityCreator.createNewAge
(argThat(hasAgeGreaterThan(30)))).willReturn(18);

 // when
 systemUnderTest.generateNewIdentities(oldPeople);

 // then
 verify(newIdentityCreator).updateDataFor(numberOfMaturePeop
le(1));
 }

}

The hasAgeGreaterThan(…) method is shown in the following code:

public static Matcher<Person> hasAgeGreaterThan(final int age) {
 return new TypeSafeMatcher<Person>() {
 @Override
 protected boolean matchesSafely(Person person) {
 return person.getAge() > age;
 }

 @Override
 public void describeTo(Description description) {
 description.appendText
("Age should be greater than ").appendValue(age);
 }
 };
 }

Chapter 7

173

The peopleNotContaining(…) method is shown in the following code
(Mockito.argThat(…) is statically imported):

 public static List<Person> numberOfMaturePeople(int count) {
 return argThat(containsNumberOfMaturePeople(count));
 }

 static Matcher<List<Person>> containsNumberOfMaturePeople
(final int count) {
 return new TypeSafeMatcher<List<Person>>() {
 @Override
 protected boolean matchesSafely(List<Person> item) {
 return count == countMaturePeople(item);
 }

 @Override
 public void describeTo(Description description) {
 description.appendText
("Number of mature people should be equal to ")
 .appendValue(count);
 }

 private int countMaturePeople(List<Person> people) {
 int maturePeopleCount = 0;
 for(Person person : people) {
 if (person.getAge() >= 18) {
 maturePeopleCount = maturePeopleCount + 1;
 }
 }
 return maturePeopleCount;
 }
 };
 }

What happens in this test can be summarized as follows:

1. We stub the creation of age only for people whose age is greater than 30.

2. The code gets executed.

3. We verify that the newIdentityCreator.updateDataFor(…) method gets
executed with a list of people containing only one person who has an age greater
than or equal to 18.

Verifying Behavior with Object Matchers

174

How it works...
When you pass a matcher as an argument of the verified method, then behind the scenes,
Mockito delegates it to the ArgumentMatcher class. The ArgumentMatcher class in turn
extends Hamcrest's BaseMatcher.

The internals of Hamcrest have been described in more depth in the Using Hamcrest
matchers for assertions recipe.

There's more...
Remember to think twice when creating very complicated argument matchers. You want
your tests to be very elegant and readable, so sometimes, it's just better to implement the
equals() method for arguments that are passed to the mocks. Mockito matches arguments
using the equals() method by default, so you can hide the implementation inside the
matched class.

See also
 f Refer to the Hamcrest home page at http://hamcrest.org/

 f Refer to the Hamcrest creating custom matchers at https://code.google.
com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers

Using AssertJ for assertions
In this recipe, we will add AssertJ to your classpath (or check if it's already there) and take a
look at a test that should show the concept that lies behind the AssertJ library.

Getting ready
First, let's check the differences between the different AssertJ JAR files:

 f assertj-core: This file contains the vast majority of assertions (there is rarely a
need to have any additional dependencies)

 f assertj-guava: This file contains additional assertions for some of the Guava
library related classes

 f assertj-neo4j: This file contains additional assertions for the Neo4j graph
database related classes

 f assertj-joda-time: This file contains additional assertions for the JodaTime
library related classes

 f assertj-assertions-generator-maven-plugin: This is a Maven plugin for
generating AssertJ assertions

http://hamcrest.org/
https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers
https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers

Chapter 7

175

In most cases, all you need is assertj-core since it already has plenty of useful assertions.

Regardless of the fact that you are using JUnit or TestNG, you still have to add assertj-core
to your classpath since it isn't embedded into either of them.

The following is the dependency for AssertJ core (Maven):

<dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>1.6.0</version>
 <scope>test</scope>
</dependency>

The following is the dependency for AssertJ core (Gradle):

testCompile('org.assertj:assertj-core:1.6.0')

If you are not using any of the dependency managers, you have to download one of the
aforementioned JAR files and add them to your classpath.

For this recipe, our system under test will be a NewPersonGenerator class that will call an
external service, NewIdentityCreator, to generate a new identity for the current person,
as shown in the following code:

public class NewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public NewPersonGenerator(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }
}

Verifying Behavior with Object Matchers

176

How to do it...
In order to use the AssertJ assertions in your tests, you have to perform the following steps:

1. Add the AssertJ dependencies to your classpath.

2. Call Assertions.assertThat(T object).someAssertionMethod(...) to
perform assertion.

The following snippet depicts the aforementioned scenario for JUnit (refer to Chapter 1,
Getting Started with Mockito for information on the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class NewPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks NewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity() {
 // given
 Person person = new Person("Robert", 25, asList
(new Person("John", 10), new Person("Maria", 12)));
 given(newIdentityCreator.createNewName(person))
.willReturn("Andrew");
 given(newIdentityCreator.createNewAge(person)).willReturn(45);
 given(newIdentityCreator.createNewSiblings(person))
.willReturn(asList(new Person("Amy", 20), new Person
("Alex", 25)));

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 assertThat(newPerson).isNotNull().isNotEqualTo(person);
 assertThat(newPerson.getName()).isNotNull()
.startsWith("And").endsWith("rew");
 assertThat(newPerson.getSiblings())
.contains(new Person("Amy", 20), new Person("Alex", 25));
 assertThat(newPerson.getAge()).isGreaterThan(25);
 assertThat(newPerson.getSiblings()).extracting
("name", "age").contains(tuple("Amy", 20), tuple("Alex", 25));
 }

}

Chapter 7

177

How it works...
When you call Assertions.assertThat(T object), you can benefit from AssertJ's
overloaded assertThat(…) methods that can be used with different types of classes.
The examples of such classes are given as follows:

 f public static BigDecimalAssert assertThat(BigDecimal actual);

 f public static BooleanAssert assertThat(boolean actual);

 f public static FileAssert assertThat(File actual);

 f public static <T> ObjectAssert<T> assertThat(T actual);

Each of the overloaded assertThat(…) methods delegates to the instantiation of the proper
implementation of the AbstractAssert class that contains all of the basic assertions that
come from implementing the Assert interface. You also have access to the actual field called
actual that contains the object you are performing assertion against (which allows you to
create your custom assertions quickly).

Due to the fact that AssertJ operates on overloaded methods that are always type-specific,
your IDE will instantly help you find all of the matching assertion methods. For example, in
the previous code snippet, we presented assertions for Files as assertThat(File actual). The
execution of this method will return FileAssert that is file-specific and allows you to use such
methods as follows (to mention only a few):

exists(), isDirectory(), isRelative(), hasParent(...),
 hasExtension(...)

Since AssertJ's main concept is to operate on fluent interfaces, and each assertion returns
the assertion implementation itself, you do not have to combine several assertions into a
single one as done in Hamcrest. Instead, you can just execute a chain of methods as follows:

assertThat(newPerson).isNotNull().isNotEqualTo(person);

AssertJ also proves to be extremely powerful in terms of performing assertions over iterables
as follows:

assertThat(newPerson.getSiblings()).extracting
("name", "age").contains(tuple("Amy", 20), tuple("Alex", 25));

You can easily extract (using the extracting method) certain properties of each of the iterables
and check their state in comparison to specially created objects called tuples (check AssertJ
examples of asserting iterables at https://github.com/joel-costigliola/assertj-
examples/blob/master/assertions-examples/src/test/java/org/assertj/
examples/IterableAssertionsExamples.java).

https://github.com/joel-costigliola/assertj-examples/blob/master/assertions-examples/src/test/java/org/assertj/examples/IterableAssertionsExamples.java
https://github.com/joel-costigliola/assertj-examples/blob/master/assertions-examples/src/test/java/org/assertj/examples/IterableAssertionsExamples.java
https://github.com/joel-costigliola/assertj-examples/blob/master/assertions-examples/src/test/java/org/assertj/examples/IterableAssertionsExamples.java

Verifying Behavior with Object Matchers

178

Tuples allow you to create a structure matching your extracted elements. In other words,
for the aforementioned siblings that are of a Person type, we extract two strings from the
properties name and age Next, we compare them against a structure having name equal
to Amy and age equal to 20 and then against name equal to Alex and age equal to 25. Of
course, this is only a small portion of AssertJ possibilities, but it should give you a clue of how
powerful and readable AssertJ is.

There's more...
From AssertJ version 1.6.0, you can make your tests look even more readable and follow the
BDD naming by changing the assertThat(...) method into the then(...) method. You
can rewrite the test to follow that approach, as shown in the following code:

 @Test
 public void should_return_person_with_new_identity() {
 // given
 Person person = new Person("Robert", ROBERT_AGE,
 newArrayList(new Person("John", 10), new Person("Maria", 12)));
 given(newIdentityCreator.createNewName(person))
.willReturn("Andrew");
 given(newIdentityCreator.createNewAge(person)).willReturn(45);
 given(newIdentityCreator.createNewSiblings(person))
.willReturn(newArrayList(new Person("Amy", 20),
 new Person("Alex", 25)));

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getName()).isNotNull().startsWith("And")
.endsWith("rew");
 then(newPerson.getSiblings()).contains
(new Person("Amy", 20), new Person("Alex", 25));
 then(newPerson.getAge()).isGreaterThan(25);
 then(newPerson.getSiblings()).extracting
("name", "age").contains(tuple("Amy", 20), tuple("Alex", 25));
 }

Chapter 7

179

See also
 f Refer to the AssertJ home page at http://joel-costigliola.github.io/

assertj/assertj-core.html

 f Refer to the repository containing AssertJ assertions' examples at
https://github.com/joel-costigliola/assertj-examples/

 f Refer to the AssertJ features highlight at http://joel-costigliola.github.
io/assertj/assertj-core-features-highlight.html

Creating custom AssertJ assertions
In this recipe, we will create a custom AssertJ assertion. Please refer to the previous recipe for
the presented assertions in the test because in the current recipe, we will combine them into
our custom assertions:

Getting ready
For this recipe, our system under test will be a NewPersonGenerator class that will call an
external service, NewIdentityCreator, to generate a new identity for the current person,
as shown in the following code:

public class NewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public NewPersonGenerator(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }
}

http://joel-costigliola.github.io/assertj/assertj-core.html
http://joel-costigliola.github.io/assertj/assertj-core.html
https://github.com/joel-costigliola/assertj-examples/
http://joel-costigliola.github.io/assertj/assertj-core-features-highlight.html
http://joel-costigliola.github.io/assertj/assertj-core-features-highlight.html

Verifying Behavior with Object Matchers

180

How to do it...
To create and use a custom AssertJ assertion in your tests, you have to perform the
following steps:

1. Attach your AssertJ dependencies.

2. Create a class that extends the AbstractAssert class, which takes two bounds of
generics: one is the assertion's class and the other is the asserted object's class.

3. Implement a constructor that has two parameters: one that passes the actual object
and the other that passes the assertion's class.

4. Define custom methods that perform assertions and return the assert itself (in order
to construct a fluent iterable interface).

5. Create a class that extends the Assertions class (in order to access core
assertions). You will put your custom assertion factory method here.

6. Create an assertThat(T object)/then(T object) static factory method that
will instantiate your custom assertion.

7. Call your custom AssertJ assertion in the assertion phase of your test.

The following snippet depicts the aforementioned scenario for JUnit (refer to Chapter 1,
Getting Started with Mockito, for information on the TestNG configuration):

@RunWith(MockitoJUnitRunner.class)
public class NewPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks NewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity() {
 // given
 Person person = new Person
("Robert", 25, asList(new Person("John"), new Person("Maria")));
 given(newIdentityCreator.createNewName(person))
.willReturn("Andrew");
 given(newIdentityCreator.createNewAge(person)).willReturn(45);
 given(newIdentityCreator.createNewSiblings(person))
.willReturn(asList(new Person("Amy"), new Person
("Alejandro Gonzales")));

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

Chapter 7

181

 // then
 then(newPerson).isNotEqualTo(person)
 .hasNameEqualTo("Andrew")
 .hasAgeGreaterThan(25)
 .containsSiblings
(new Person("Amy"), new Person("Alejandro Gonzales"));
 }

}

The class shown in the following code contains all of the assertThat methods from
the Assertions class and a then(…) method that instantiates our custom
PersonAssert assertion:

public class MyBddAssertions extends BDDAssertions {

 public static PersonAssert then(Person actual) {
 return new PersonAssert(actual);
 }

}

The implementation of the custom assertion is shown as follows:

public class PersonAssert extends AbstractAssert
<PersonAssert, Person> {

 protected PersonAssert(Person actual) {
 super(actual, PersonAssert.class);
 }

 public PersonAssert hasNameEqualTo(String name) {
 String actualName = actual.getName();
 assertThat(actualName).isEqualTo(name);
 return this;
 }

 public PersonAssert hasAgeGreaterThan(int age) {
 int actualAge = actual.getAge();
 assertThat(actualAge).isGreaterThan(age);
 return this;
 }

 public PersonAssert containsSiblings(Person... siblings) {
 List<Person> actualSiblings = actual.getSiblings();
 assertThat(actualSiblings).contains(siblings);
 return this;
 }

}

Verifying Behavior with Object Matchers

182

How it works...
The flow regarding the creation of a custom AssertJ assertion is rooted deeply in the core of
AssertJ that is described in greater depth in the previous recipe, so please refer to it for more
information on how it exactly works.

It's beneficial to have a custom class grouping your assertThat(…)/then(…) methods that
extend the Assertions class. You will have a single static import statement and will access
all of the Assertions static methods.

There's more...
AssertJ allows you to easily create assertions for your classes. It comes with a command-line
tool and a Maven plugin. You have to pass the fully-qualified names of classes or the entire
packages of classes for which you want to create assertions. Once the generator finishes its
job, you will have the assertion classes generated with all of the assertion methods for each
of the fields present.

For more information on this feature, please refer to the documentation at http://joel-
costigliola.github.io/assertj/assertj-assertions-generator.html

See also
 f Refer to the AssertJ home page at http://joel-costigliola.github.io/

assertj/assertj-core.html

 f Refer to the AssertJ features highlight at http://joel-costigliola.github.
io/assertj/assertj-core-features-highlight.html

Capturing and asserting the argument
In this recipe, we will capture an argument passed to the mock's method to perform
further verification.

Getting ready
For this recipe, our system under test will be a TaxTransferer class that will prepare the
person to be sent through the web service by marking him a Polish citizen. Only if the person
is not null, the transfer of tax will take place. Let's also assume that it is absolutely crucial for
us to make sure that the person that we send via the web service contains very specific data:

public class TaxTransferer {

 static final String POLAND = "Poland";

http://joel-costigliola.github.io/assertj/assertj-assertions-generator.html
http://joel-costigliola.github.io/assertj/assertj-assertions-generator.html
http://joel-costigliola.github.io/assertj/assertj-core.html
http://joel-costigliola.github.io/assertj/assertj-core.html
http://joel-costigliola.github.io/assertj/assertj-core-features-highlight.html
http://joel-costigliola.github.io/assertj/assertj-core-features-highlight.html

Chapter 7

183

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public void transferTaxFor(Person person) {
 if (person == null) {
 return;
 }
 taxService.transferTaxFor(makePersonPolish(person));
 }

 private Person makePersonPolish(Person person) {
 return new Person(person, POLAND);
 }

}

How to do it...
To create ArgumentCaptor that will contain the captured argument, you have to perform the
following steps:

1. Annotate your test with @RunWith(MockitoJUnitRunner.class) for JUnit or
@Listeners(MockitoTestNGListener.class) for TestNG (check Chapter 1,
Getting Started with Mockito, for more details on the TestNG configuration).

2. Create a field of the ArgumentCaptor type and annotate it with the
@Captor annotation.

3. To use the capturing of arguments, you have to verify a method and provide the
capture() method of ArgumentCaptor as its parameter, as shown in the
following code:
verify(mock).methodToVerify(argumentCaptor.capture());

If this procedure is followed, your captor will contain the captured arguments.

4. Now you can retrieve the last passed value with the following code:
argumentCaptor.getValue()

5. You can get all of the captured values (if the method was executed multiple times)
by calling the following method:
argumentCaptor.getAllValues()

Verifying Behavior with Object Matchers

184

The following code represents the JUnit test with an example of ArgumentCaptor (I'm using
the BDDMockito.given(...) static import):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Captor ArgumentCaptor<Person> personCaptor;

 @Test
 public void should_change_persons_country_before_sending_data_
through_ws() {
 // when
 systemUnderTest.transferTaxFor
(new Person("Lewandowski", "UK"));

 // then
 verify(taxService).transferTaxFor(personCaptor.capture());
 then(personCaptor.getValue()).hasName("Lewandowski")
.hasCountry("Poland");
 }

}

How it works...
When you call argumentMatcher.capture(), Mockito registers a special implementation
of the Mockito ArgumentMatcher—the CapturingMatcher. This matcher stores
the passed argument values for later use. When you call either getAllValues() or
getValue(), Mockito retrieves the data stored in that matcher.

See also
 f Refer to the Mockito documentation on argument captors at http://docs.

mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#15

 f Refer to the Mockito documentation on argument captors via annotations at
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/
Mockito.html#21

http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#15
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#15
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#21
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#21

8
Refactoring

with Mockito

In this chapter, we will cover the following recipes:

 f Removing the problems with instance creation

 f Refactoring the classes that do too much

 f Refactoring the classes that use the class casts

 f Refactoring the classes that use static methods

 f Refactoring the tests that use too many mocks

Introduction
Programmers rarely have the opportunity to work with code that they create from scratch.
Often, we have to support systems that have been there for several years and were written at
the time when programmers were paid for the number of typed lines of code. However, this is
not always the case. Nowadays, when there are so many start-up companies emerging, people
tend to sacrifice quality for money. It's all about faster delivery of new features. How you write
your code is not that important until the application works fine.

Refactoring with Mockito

186

This leads to maintaining legacy systems (take a look at Working Effectively with Legacy Code,
Martin Feathers, available at http://www.amazon.com/Working-Effectively-Legacy-
Michael-Feathers/dp/0131177052, for details on how to work with such systems).
Such code monster-like classes are also called god classes. Most likely, their names end with
a manager or helper suffix since they do everything and have access to all the possible
dependencies in the system. Methods have hundreds of lines and there are no unit tests (not
to mention integration or acceptance tests). Sometimes, the scenario we find once we start
working on a project is not that bad, but the concept may be alike. Usually, there is no quality
control and the project managers require the teams to deliver more. We have to make the code
operational for now without having any broader strategic vision of how to run a project.

Working in such an environment may be frustrating and scary in terms of making any changes
to the code—without the tests, how can you be sure that you didn't break anything? Well, you
can't—that's why this chapter will show you how to deal with some of the most horrific coding
practices I've seen in my career.

I'd like to highlight that some of the code presented in the subsequent recipes is written
terribly on purpose; if you find a similar snippet in your codebase, you will already know how
to refactor it. We are assuming a case in which we work in a system without tests. In this way,
we'll try to first write tests for the existing functionality and then remove the bad design while
already having some tests.

I'd also like to emphasize that there are whole books written about refactoring (for example,
Refactoring: Improving the Design of Existing Code, Martin Fowler with Kent Beck, John Brant,
William Opdyke, and Don Roberts, available at http://martinfowler.com/books/
refactoring.html), and in this chapter, I'll only touch on the subject. The aim of these
recipes is to show you how to use Mockito features and Mockito-based tools to test your code.

We'll start off by dealing with quite a common issue that has an instantiation of an object
inside our method. We'll see how to mock it, and refactor it immediately after that. Then, we'll
try to refactor classes that do not follow the SOLID principles (please refer to the Introduction
section of Chapter 2, Creating Mocks, for more information) in order for them to be fully
testable. Next, we will move through terrible features such as basing code on class casts—we'll
use Mockito to deal with this and to change this preposterous concept into nice code. We will
also test and improve code that operates using unnecessary static method execution. Finally,
we will take a closer look at test classes that use too many mocks.

Removing the problems with instance
creation

In this recipe, we will first test an existing class that uses new to instantiate an object which
performs complex logic; then, we'll refactor it. The problem with the new operator is that it's
very difficult to mock the created instance. An object's collaborators should be passed as
parameters of the constructor or somehow injected via the dependency injection system.

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html

Chapter 8

187

Getting ready
Let's assume that our system under test is a system that generates a new identity for a given
person who can have a name, an age, and siblings. Note that the following snippet presents a
poorly designed class:

public class BadlyDesignedNewPersonGenerator {

 public Person generateNewIdentity(Person person) {
 NewIdentityCreator newIdentityCreator = new
NewIdentityCreator();
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }

}

In the preceding code, the NewIdentityCreator class performs the following logic (for
simplicity, we only write that part of the code where we are accessing external resources):

class NewIdentityCreator {

 static final String DEFAULT_NEW_NAME = "NewName";

 public String createNewName(Person person) {
 System.out.printf("Calling web service and
creating new name for person [%s]%n", person.getName());
 return DEFAULT_NEW_NAME;
 }

 public int createNewAge(Person person) {
 System.out.printf("Calling db and
creating new age for person [%s]%n", person.getName());
 return person.getAge() + 5;
 }

 public List<Person> createNewSiblings(Person person) {
 System.out.printf("Making heavy IO operations and
 creating new siblings for person [%s]%n", person.getName());
 return Arrays.asList(new Person("Bob"),
 new Person("Andrew"));
 }

}

Refactoring with Mockito

188

How to do it...
In order to test the preceding implementation and then refactor it, we have to perform the
following steps:

1. Write a test that verifies the behavior of the system under test (in this case, we want
to be sure that the person has a new identity at the end of the day).

2. Mock out all of the collaborators, if necessary (if you know what you are doing, you
can move to the next point without performing this intermediary step).

3. Refactor the code so that it follows good coding practices, including the
SOLID principles.

How it works...
We start by writing a test which will verify that our application works as expected. This will give
us confidence for further refactoring. Object instantiation in the method's body leads to heavy
coupling between the BadlyDesignedNewPersonGenerator and NewIdentityCreator
classes. What we want to achieve is component isolation, decoupling in other words. Once
both the classes are decoupled, they can be tested in isolation, which makes the tests smaller
and less complex.

In the following code snippet, you will find a test for your system that verifies whether the
BadlyDesignedNewPersonGenerator class will generate a new identity for the given
person. It references step 1 of the How to do it... section of this recipe. All the examples are
presented for JUnit and AssertJ; please refer to Chapter 1, Getting Started with Mockito, for
TestNG configuration and Chapter 7, Verifying Behavior with Object Matchers, for AssertJ
configuration and the BDDAssertions static imports:

public class BadlyDesignedNewPersonGeneratorTest {

 BadlyDesignedNewPersonGenerator systemUnderTest =
new BadlyDesignedNewPersonGenerator();

 @Test
 public void should_return_person_with_new_identity() {
 // given
 List<Person> siblings = asList(new Person
("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

Chapter 8

189

 // then
 then(newPerson).isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings())
.doesNotContainAnyElementsOf(siblings);
 }

}

Now that we have the test, let's move to step 2 of the How to do it... section of this recipe. We
have to stub the method interactions that access external resources. We will try to mock out
the existing object initialization and replace it with a mock by using PowerMock, as shown in
the following code (remember that this should never happen in properly written code):

@RunWith(PowerMockRunner.class)
@PrepareForTest(BadlyDesignedNewPersonGenerator.class)
public class BadlyDesignedNewPersonGeneratorPowerMockTest {

 BadlyDesignedNewPersonGenerator systemUnderTest =
 new BadlyDesignedNewPersonGenerator();

 @Test
 public void should_return_person_with_new_identity() throws
Exception {
 // given
 List<Person> siblings = asList
(new Person("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);
 NewIdentityCreator newIdentityCreator =
Mockito.mock(NewIdentityCreator.class);
 PowerMockito.whenNew(NewIdentityCreator.class)
.withAnyArguments().thenReturn(newIdentityCreator);

 // when
 Person newPerson = systemUnderTest.
generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings()).
doesNotContainAnyElementsOf(siblings);
 }
}

Refactoring with Mockito

190

As you can see in the previous code, we do not stub methods
on the NewIdentityCreator class so that they return any
particular values. The default Mockito ones are okay for us—we
just want to be sure that the input and resulting person are not
the same. The YAGNI principle (the You Aren't Gonna Need it
principle defined in Extreme Programming Installed, Ronald E.
Jeffries, Ann Anderson, and Chet Hendrickson) makes sense
here. We don't care about concrete values; we only want to be
sure that the person's identity has changed.

Now that we have the test, we can refactor the code and remove any PowerMock occurrence
since it only proves that our code is full of bad ideas. The following is the snippet that shows the
refactored version of our BadlyDesignedNewPersonGenerator class. We perform step 3
of the How to do it... section of this recipe. This time, NewIdentityCreator is injected through the
constructor as a dependency. Check the Inversion of Control Containers and the Dependency
Injection pattern article by Martin Fowler, available at http://www.martinfowler.com/
articles/injection.html, for more information on dependency injection.

public class RefactoredNewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public RefactoredNewPersonGenerator
(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }
}

Finally, we can refactor the test by removing all of the PowerMock dependencies and
by proper injection of the RefactoredNewPersonGenerator collaborator,
NewIdentityCreator. Remember that the actual logic of the test hasn't changed at
all. Take a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class RefactoredPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks RefactoredNewPersonGenerator systemUnderTest;

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Chapter 8

191

 @Test
 public void should_return_person_with_new_identity() {
 // given
 List<Person> siblings = asList
(new Person("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings())
.doesNotContainAnyElementsOf(siblings);
 }
}

There's more...
Here's another example of the same type of refactoring. You may have had issues with
mocking time in your applications. You had to see this new Date() instantiation passed
around in your code, and you wondered how to deal with it in your test. Let's assume that
we have a class which logs the time of a visit of a person and returns that time, as shown
in the following code:

public class BadlyDesignedVisitLogger {

 public Date logUsersVisit(){
 Date dateOfLogging = new Date();
 System.out.printf("User visited us at [%s]%n", dateOfLogging);
 return dateOfLogging;
 }

}

Since you already know how to extract responsibilities to separate classes, you can think of the
new Date() instantiation as a responsibility of a certain class presented as follows (of course,
at some point you will have to test that extracted class, but it will be a relatively trivial test):

public class RefactoredVisitLogger {

 private final TimeSource timeSource;

Refactoring with Mockito

192

 public RefactoredVisitLogger(TimeSource timeSource) {
 this.timeSource = timeSource;
 }

 public Date logUsersVisit(){
 Date dateOfLogging = timeSource.getDate();
 System.out.printf("User visited us at [%s]%n", dateOfLogging);
 return dateOfLogging;
 }

}

The TimeSource class can be mocked, as shown in the following code:

public class TimeSource {

 static final String DATE_FORMAT = "dd-MM-yyyy";

 public Date getDate() {
 return new Date();
 }

 public static Date on(String date) {
 SimpleDateFormat formatter = new SimpleDateFormat(DATE_FORMAT);
 try {
 return formatter.parse(date);
 } catch (ParseException e) {
 throw new InvalidDateFormatException(e);
 }
 }

}

Now, the test for such a class for JUnit will look as follows (please refer to Chapter 1, Getting
Started with Mockito, for the TestNG configuration and Chapter 7, Verifying Behavior with
Object Matchers, for AssertJ configuration and BDDAssertions static imports):

@RunWith(MockitoJUnitRunner.class)
public class VisitLoggerTest {

 @Mock TimeSource timeSource;

 @InjectMocks RefactoredVisitLogger refactoredVisitLogger;

Chapter 8

193

 @Test
 public void should_return_users_logging_time() {
 // given
 Date currentDate = new Date();
 given(timeSource.getDate()).willReturn(currentDate);

 // when
 Date dateOfLogging = refactoredVisitLogger.logUsersVisit();

 // then
 then(dateOfLogging).isSameAs(currentDate);
 }

}

See also
 f Refer to Chapter 2, Creating Mocks, for an introduction on the SOLID principles

 f Refer to Working Effectively with Legacy Code, Martin Feathers, available at
http://www.amazon.com/Working-Effectively-Legacy-Michael-
Feathers/dp/0131177052

 f Refer to Martin Fowler's catalog of refactoring methods at http://refactoring.
com/catalog/

Refactoring classes that do too much
In this recipe, we will refactor a class that does not follow the S (Single responsibility) from the
SOLID principles.

Getting ready
Let's assume that our system under test is a system that generates a new identity for a given
person who can have a name, an age, and siblings, and who sends a JSON message over a web
service. Note that the following snippet presents a poorly designed class (please refer to Chapter
1, Getting Started with Mockito, for the TestNG configuration and Chapter 7, Verifying Behavior
with Object Matchers, for the AssertJ configuration and the BDDAssertions static imports):

public class GodClassNewPersonGenerator {

 static final String DEFAULT_NEW_NAME = "NewName";

 public Person generateNewIdentity(Person person) {
 String newName = createNewName(person);

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://refactoring.com/catalog/
http://refactoring.com/catalog/

Refactoring with Mockito

194

 int newAge = createNewAge(person);
 List<Person> newSiblings = createNewSiblings(person);
 Person newPerson = new Person
(newName, newAge, newSiblings);
 updatePersonData(newPerson);
 return newPerson;
 }

 private String createNewName(Person person) {
 System.out.printf("Calling web service and
 creating new name for person [%s]%n", person.getName());
 return DEFAULT_NEW_NAME;
 }

 private int createNewAge(Person person) {
 System.out.printf("Calling db and
creating new age for person [%s]%n", person.getName());
 return person.getAge() + 5;
 }

 private List<Person> createNewSiblings(Person person) {
 System.out.printf("Making heavy IO operations
and creating new siblings for person [%s]%n", person.getName());
 return asList(new Person("Bob"), new Person("Andrew"));
 }

 private void updatePersonData(Person person) {
 String json = buildJsonStringToPerformTheUpdate(person);
 System.out.printf("Calling web service to update
 new identity for person [%s] with JSON String [%s]%n",
 person.getName(), json);
 }

 private String buildJsonStringToPerformTheUpdate(Person person) {
 return "{\"name\":\""+person.getName()+"\",\"age\":\""+person
.getAge()+"\"}";
 }
}

If you are unsure about whether your class or method does too much, there is a quick solution
to your problem. The best way to verify it is to check the name of the class or method name. In
our case, the class name is exaggerated for you to remember not to write code this way but, in
general, it turns out that this class does plenty of things; for example, it generates objects and
updates data via a web service. The system under test does it all by itself, whereas it should
delegate these responsibilities to its collaborators (separate classes).

Chapter 8

195

How to do it...
In order to refactor a class, you have to perform the following steps:

1. Check whether the class follows common programming principles such as the
SOLID principles.

2. Ensure that the functionality you are about to refactor is covered by a test (unit,
integration, and so on).

3. Refactor the code by extracting the additional responsibilities to separate classes.

4. Write a test that verifies the behavior of the system under test.

Since the class does everything (it contains the
implementation of different responsibilities), we can't create
a mock of any of its parts. Stubbing private methods is not
an option since it violates the principles of object-oriented
design and visibility of methods. It is extremely difficult to
write a unit test that checks whether a new identity has been
created and verifies whether a web service has been called
once. In fact, it is much easier to test this system by means
of an integration test. We can use an in-memory database
(for example, http://www.h2database.com/html/
main.html) and a stub of a web service (for example,
http://wiremock.org/) to help us with this.

Assuming that we have some tests already covering the functionality that we will refactor, let's
refactor the code by extracting the additional responsibilities to separate classes. We need to
separate the responsibilities of the class as follows:

public class RefactoredNewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 private final PersonDataUpdater personDataUpdater;

 public RefactoredNewPersonGenerator
(NewIdentityCreator newIdentityCreator,
 PersonDataUpdater personDataUpdater) {
 this.newIdentityCreator = newIdentityCreator;
 this.personDataUpdater = personDataUpdater;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);

http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html
http://wiremock.org/

Refactoring with Mockito

196

 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings = newIdentityCreator.
createNewSiblings(person);
 Person newPerson = new Person(newName, newAge, newSiblings);
 personDataUpdater.updatePersonData(newPerson);
 return newPerson;
 }
}

The NewIdentityCreator class, shown in the following code, contains the logic for
generating new identity:

class NewIdentityCreator {

 static final String DEFAULT_NEW_NAME = "NewName";

 public String createNewName(Person person) {
 System.out.printf("Calling web service and
 creating new name for person [%s]%n", person.getName());
 return DEFAULT_NEW_NAME;
 }

 public int createNewAge(Person person) {
 System.out.printf("Calling db and
creating new age for person [%s]%n", person.getName());
 return person.getAge() + 5;
 }

 public List<Person> createNewSiblings(Person person) {
 System.out.printf("Making heavy IO operations and
creating new siblings for person [%s]%n", person.getName());
 return asList
(new Person("Bob"), new Person("Andrew"));
 }

}

The PersonDataUpdater class knows how to communicate and update data via
a web service. The JavaScript Object Notation (JSON) message is created by a
UpdatePersonJsonBuilder class as follows:

public class PersonDataUpdater {

 private final UpdatePersonJsonBuilder updatePersonJsonBuilder;

 public PersonDataUpdater
(UpdatePersonJsonBuilder updatePersonJsonBuilder) {
 this.updatePersonJsonBuilder = updatePersonJsonBuilder;

Chapter 8

197

 }

 public void updatePersonData(Person person) {
 String json = updatePersonJsonBuilder.build(person);
 System.out.printf("Calling web service to update
 new identity for person [%s] with JSON String [%s]%n",
 person.getName(), json);
 }

}

The UpdatePersonJsonBuilder class is shown in the following code:

class UpdatePersonJsonBuilder {

 public String build(Person person) {
 return "{\"name\":\"" + person.getName() +
"\",\"age\":\"" + person.getAge() + "\"}";
 }

}

Now, the test looks much better. We create a mock for the collaborators and can verify them
if necessary. We will be able to see the test only for RefactoredNewPersonGenerator,
but thanks to our refactoring, we can easily write a series of tests to the newly created
components, testing them in isolation as follows:

@RunWith(MockitoJUnitRunner.class)
public class RefactoredPersonGeneratorTest {

 @Mock NewIdentityCreator newIdentityCreator;

 @Mock PersonDataUpdater personDataUpdater;

 @InjectMocks RefactoredNewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity () {
 // given
 List<Person> siblings = asList
(new Person("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then

Refactoring with Mockito

198

 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings())
.doesNotContainAnyElementsOf(siblings);
 }

}

See also
 f Refer to Refactoring: Improving the Design of Existing Code, Martin Fowler

(with Kent Beck, John Brant, William Opdyke, and Don Roberts), available at
http://martinfowler.com/books/refactoring.html

 f Refer to Working Effectively with Legacy Code, Martin Feathers, available at
http://www.amazon.com/Working-Effectively-Legacy-Michael-
Feathers/dp/0131177052

Refactoring the classes that use the class
casts

In this recipe, we will focus on fixing the wrong design of an application that performs logic
based on the types of passed objects. The instanceof operator distinguishes the types,
and then class casting takes place.

Getting ready
As we did in the previous recipe, let's assume that our system under test is a system that
generates a new identity for a given person who can have a name, an age, and siblings, and
who sends a JSON message over a web service. Note that the following snippet presents a
poorly designed class (all the test examples are written for JUnit; please refer to Chapter 1,
Getting Started with Mockito, for the TestNG configuration and Chapter 7, Verifying Behavior
with Object Matchers, for the AssertJ configuration and the BDDAssertions static imports):

public class AwefullyCastingNewPersonGenerator {

 private final IdentityCreator identityCreator;

 public AwefullyCastingNewPersonGenerator
(IdentityCreator identityCreator) {

http://martinfowler.com/books/refactoring.html
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052

Chapter 8

199

 this.identityCreator = identityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = identityCreator.createNewName(person);
 int newAge = identityCreator.createNewAge(person);
 List<Person> newSiblings =
identityCreator.createNewSiblings(person);
 Person newPerson = new Person(newName, newAge, newSiblings);
 if (identityCreator instanceof PersonDataUpdater) {
 ((PersonDataUpdater)
identityCreator).updatePersonData(newPerson);
 }
 return newPerson;
 }

}

The IdentityCreator interface has only three methods: createNewName(...),
createNewAge(...), and createNewSiblings(...). There is also another interface
called PersonDataUpdater that has the updatePersonData(...) method. Let's assume
that there is a class that implements both of these interfaces, as shown in the following code:

public class SingleResponsibilityBreakingNewIdentityCreator
implements PersonDataUpdater, IdentityCreator {

 public static final String DEFAULT_NEW_NAME = "NewName";

 @Override
 public String createNewName(Person person) {
 System.out.printf("Calling web service
and creating new name for person [%s]%n", person.getName());
 return DEFAULT_NEW_NAME;
 }

 @Override
 public int createNewAge(Person person) {
 System.out.printf("Calling db and
creating new age for person [%s]%n", person.getName());
 return person.getAge() + 5;
 }

 @Override
 public List<Person> createNewSiblings(Person person) {
 System.out.printf("Making heavy IO operations and
 creating new siblings for person [%s]%n", person.getName());

Refactoring with Mockito

200

 return asList(new Person("Bob"), new Person("Andrew"));
 }

 @Override
 public void updatePersonData(Person person) {
 String json = buildJsonStringToPerformTheUpdate(person);
 System.out.printf("Calling web service to update
 new identity for person [%s] with JSON String [%s]%n",
person.getName(), json);
 }

 private String buildJsonStringToPerformTheUpdate(Person person) {
 return "{\"name\":\""+person.getName()+"\",\"age\":\""+person
.getAge()+"\"}";
 }

}

How to do it...
In order to test the preceding implementation and then refactor it, we have to perform the
following steps:

1. Write a test that verifies the behavior of the system under test (in this case, we want
to be sure that the person has a new identity at the end of the day).

2. Mock out all of the external dependencies (if you know what you are doing, you can
move to the next point without performing this intermediary step).

3. Refactor the code so that it follows good coding practices, including the
SOLID principles.

Our system under test uses the instanceof operator and
class casting. To write a test for the system, we have to tell
Mockito that our mock should implement extra interfaces.

Let's first write a test for the current implementation that tests the behavior (the person's got
a new identity), using the following code:

@RunWith(MockitoJUnitRunner.class)
public class AwfullyCastingNewPersonGeneratorTest {

 @Mock(extraInterfaces = PersonDataUpdater.class) IdentityCreator
identityCreator;

 @InjectMocks AwefullyCastingNewPersonGenerator systemUnderTest;

Chapter 8

201

 @Test
 public void should_return_person_with_new_identity () {
 // given
 List<Person> siblings = asList(new Person("John", 10),
 new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings())
.doesNotContainAnyElementsOf(siblings);
 }

}

Now, since we wrote the missing test, we can refactor the code with a greater sense of
confidence. We have to clearly split the system under test in such a way that it does not
use class casts but proper injected dependencies. Take a look at the following code:

public class RefactoredNewPersonGenerator {

 private final IdentityCreator identityCreator;

 private final PersonDataUpdater personDataUpdater;

 public RefactoredNewPersonGenerator(IdentityCreator
identityCreator, PersonDataUpdater personDataUpdater) {
 this.identityCreator = identityCreator;
 this.personDataUpdater = personDataUpdater;
 }

 public Person generateNewIdentity(Person person) {
 String newName = identityCreator.createNewName(person);
 int newAge = identityCreator.createNewAge(person);
 List<Person> newSiblings =
identityCreator.createNewSiblings(person);
 Person newPerson = new Person(newName, newAge, newSiblings);

Refactoring with Mockito

202

 personDataUpdater.updatePersonData(newPerson);
 return newPerson;
 }

}

Check the current test pass when it uses class casts, when it is possible to clean up the test.
Now, the test looks simpler. Take a look at the following code:

@RunWith(MockitoJUnitRunner.class)
public class RefactoredPersonGeneratorTest {

 @Mock IdentityCreator identityCreator;

 @Mock PersonDataUpdater personDataUpdater;

 @InjectMocks RefactoredNewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity () {
 // given
 List<Person> siblings = asList
(new Person("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings()).doesNotContainAnyElementsOf
(siblings);
 }

}

See also
 f Refer to Refactoring: Improving the Design of Existing Code, Martin Fowler

(with Kent Beck, John Brant, William Opdyke, and Don Roberts), available at
http://martinfowler.com/books/refactoring.html

http://martinfowler.com/books/refactoring.html

Chapter 8

203

 f Refer to Working Effectively with Legacy Code, Martin Feathers, available at
http://www.amazon.com/Working-Effectively-Legacy-Michael-
Feathers/dp/0131177052

 f Refer to Martin Fowler's catalog of refactoring methods at http://refactoring.
com/catalog/

Refactoring the classes that use
static methods

In this recipe, we will refactor classes that call static methods to execute business logic
instead of having their external dependencies properly defined.

Getting ready
Similar to the previous examples, our system under test is a system that generates a new
identity for a given person. Each person can have a name, an age, and siblings. Please
remember that the following class is very poorly designed (all the test examples are written
for JUnit; please refer to Chapter 1, Getting Started with Mockito, for the TestNG configuration
and Chapter 7, Verifying Behavior with Object Matchers, for the AssertJ configuration and the
BDDAssertions static imports):

public class BadlyDesignedNewPersonGenerator {

 public Person generateNewIdentity(Person person) {
 String newName = StaticIdentityCreator.createNewName(person);
 int newAge = StaticIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
StaticIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }

}

The StaticIdentityCreator class has the following implementation:

class StaticIdentityCreator {

 static final String DEFAULT_NEW_NAME = "NewName";

 public static String createNewName(Person person) {
 System.out.printf("Calling web service and
creating new name for person [%s]%n", person.getName());
 return DEFAULT_NEW_NAME;
 }

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://refactoring.com/catalog/
http://refactoring.com/catalog/

Refactoring with Mockito

204

 public static int createNewAge(Person person) {
 System.out.printf("Calling db and creating
new age for person [%s]%n", person.getName());
 return person.getAge() + 5;
 }

 public static List<Person> createNewSiblings(Person person) {
 System.out.printf("Making heavy IO operations and
creating new siblings for person [%s]%n", person.getName());
 return asList(new Person("Bob"), new Person("Andrew"));
 }

}

How to do it...
In order to test this implementation and then refactor it, we have to perform the following steps:

1. Write a test that verifies the behavior of the system under test (in this case,
we want to be sure that the person has a new identity at the end of the day).

2. Stub the static method execution.

3. Refactor the code so that it follows good coding practices, including the
SOLID principles.

To feel comfortable with any refactoring, we will first try to write
a test for our system. The problem is that Mockito can't stub
static methods. This is why we will use PowerMock. The next
step will be to refactor the code and the test.

Let's first write a test for the current implementation that tests the behavior
(the person's got a new identity), using the following code:

@RunWith(PowerMockRunner.class)
@PrepareForTest(StaticIdentityCreator.class)
public class BadlyDesignedNewPersonGeneratorPowerMockTest {

 BadlyDesignedNewPersonGenerator systemUnderTest =
 new BadlyDesignedNewPersonGenerator();

 @Test
 public void should_return_person_with_new_identity()
throws Exception {
 // given
 List<Person> siblings = asList(new Person("John", 10),
 new Person("Maria", 12));

Chapter 8

205

 Person person = new Person("Robert", 25, siblings);
 PowerMockito.mockStatic(StaticIdentityCreator.class);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings()).doesNotContainAnyElementsOf
(siblings);
 }

}

Now, since we wrote the missing test, we can refactor the code with a greater sense of
confidence. We have to clearly split the system under test in such a way that it's not using
the static method execution but using the proper injected dependency. Take a look at the
following code:

public class RefactoredNewPersonGenerator {

 private final NewIdentityCreator newIdentityCreator;

 public RefactoredNewPersonGenerator
(NewIdentityCreator newIdentityCreator) {
 this.newIdentityCreator = newIdentityCreator;
 }

 public Person generateNewIdentity(Person person) {
 String newName = newIdentityCreator.createNewName(person);
 int newAge = newIdentityCreator.createNewAge(person);
 List<Person> newSiblings =
newIdentityCreator.createNewSiblings(person);
 return new Person(newName, newAge, newSiblings);
 }

}

Now, the test looks much better (we create a mock for the collaborator). Take a look at the
following code:

@RunWith(MockitoJUnitRunner.class)
public class RefactoredPersonGeneratorTest {

Refactoring with Mockito

206

 @Mock NewIdentityCreator newIdentityCreator;

 @InjectMocks RefactoredNewPersonGenerator systemUnderTest;

 @Test
 public void should_return_person_with_new_identity() {
 // given
 List<Person> siblings = asList(new Person
("John", 10), new Person("Maria", 12));
 Person person = new Person("Robert", 25, siblings);

 // when
 Person newPerson =
systemUnderTest.generateNewIdentity(person);

 // then
 then(newPerson).isNotNull().isNotEqualTo(person);
 then(newPerson.getAge()).isNotEqualTo(person.getAge());
 then(newPerson.getName()).isNotEqualTo(person.getName());
 then(newPerson.getSiblings()).doesNotContainAnyElementsOf
(siblings);
 }

}

See also
 f Refer to Chapter 2, Creating Mocks, for an introduction to SOLID principles

 f Refer to Working Effectively with Legacy Code, Martin Feathers, available at
http://www.amazon.com/Working-Effectively-Legacy-Michael-
Feathers/dp/0131177052

 f Refer to Martin Fowler's catalog of refactoring methods at http://refactoring.
com/catalog/

Refactoring the tests that use too
many mocks

In this recipe, we will take a look at a test that uses too many Mockito mocks. In this way,
the test code becomes unreadable and unmaintainable. Since your test code is your living
documentation, you should always remember to put a lot of effort into refactoring it until you
can read it like a book.

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://refactoring.com/catalog/
http://refactoring.com/catalog/

Chapter 8

207

Getting ready
For this recipe, we will again generate a new identity for a given person. Each person has
an address, and that address has a street number. Since we are performing unit testing,
we will check in isolation whether NewIdentityCreator properly executes its logic. It is
responsible for creating a new name, new street number, and new siblings for the current
person, as shown in the following code:

class NewIdentityCreator {

 public String createNewName(Person person) {
 return person.getName() + "_new";
 }

 public int createNewStreetNumber(Person person) {
 return person.getAddress().getStreetNumber() + 5;
 }

 public List<Person> createNewSiblings(Person person) {
 List<Person> newSiblings = new ArrayList<Person>();
 for(Person sibling : person.getSiblings()) {
 Person newPerson = new Person();
 person.setName(createNewName(sibling));
 person.setAddress(sibling.getAddress());
 person.setSiblings(sibling.getSiblings());
 newSiblings.add(newPerson);
 }
 return newSiblings;
 }

}

Let's assume that we already have a test that verifies this functionality. We will not go through
all of the test cases, but we will focus on the functionality of generating new siblings as follows:

public class OverMockingNewIdentityCreatorTest {

 NewIdentityCreator systemUnderTest = new NewIdentityCreator();

 @Test
 public void should_generate_new_siblings() {
 // given
 Person person = mock(Person.class);
 List<Person> oldSiblings = mock(List.class);
 given(person.getSiblings()).willReturn(oldSiblings);

Refactoring with Mockito

208

 Iterator<Person> personIterator = mock(Iterator.class);
 given(oldSiblings.iterator()).willReturn(personIterator);
 given(personIterator.hasNext()).willReturn
(true, true, true, false);
 given(personIterator.next()).willReturn
(createPersonWithName("Amy"),
 createPersonWithName("John"),
 createPersonWithName("Andrew"));

 // when
 List<Person> newSiblings =
systemUnderTest.createNewSiblings(person);

 // then
 then(newSiblings).isNotSameAs(oldSiblings);
 }

 private Person createPersonWithName(String name) {
 Person person = new Person();
 person.setName(name);
 return person;
 }

}

The preceding test is badly written because it violates a few of the good practices related to
Mockito and testing such as:

 f Don't mock a type you don't own: There are mocks of the Person and List classes
created in the code that don't concern us. Imagine a case where the library that has
either of those classes changes. Since we have its classes mocked, we will not see
any difference and the tests will pass. Imagine what could happen on production
once the real interactions take place instead of interactions between mocks—your
application could crash. Another matter is that in order to use List by using mocks,
you have to perform plenty of stubbing. Once you look at such a test, you don't
actually know what's going on any longer.

 f Don't mock everything: The idea behind unit tests is to test in isolation. It does
not mean that we have to mock everything out. The NewIdentityCreator class
interacts with Person and performs iteration over its elements (via the iterator of the
list). As you can see in the test, we've mocked all collaborating objects and stubbed
all possible interactions. The question that arises now is: do we really test production
code if there are no real interactions any longer? Change your viewpoint and try not to
mock if possible.

Chapter 8

209

 f Don't mock value objects: Of course, it all depends on the context, but in the vast
majority of cases, you should not mock value objects. Being structures, they don't
have any logic that could be stubbed, apart from getters and setters. Why would you
want to stub them? You can use the builder or factory method pattern (check out
Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, available at http://www.
amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/
dp/0201633612), you can ask your IDE to help you, or you can use project Lombok
(http://projectlombok.org/) to create value objects for you.

How to do it...
To properly rewrite a test that uses too many mocks, you have to perform the following steps:

1. Identify all the types that were unnecessarily mocked (in our case, these are Person,
List, and Iterator classes)

2. Change mock creation to object creation where applicable (we will initialize the
Person class and create an ordinary List)

3. If your object creation seems complex or unreadable, it's worth creating a builder or a
method that will build that object for you

Let's assume that we want to extract the Person object creation into a separate class
to make the test code more readable (see the code repository on GitHub for exact
implementation details). Take a look at the following code:

public class PersonBuilder {
 private String name;
 private Address address;
 private List<Person> siblings;

 public PersonBuilder name(String name) {
 this.name = name;
 return this;
 }

 public PersonBuilder address(Address address) {…}

 public PersonBuilder streetNumber(int streetNumber) {…}

 public PersonBuilder siblings(List<Person> siblings) {… }

 public Person build() {
 Person person = new Person();
 person.setName(name);
 person.setAddress(address);

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://projectlombok.org/

Refactoring with Mockito

210

 person.setSiblings(siblings);
 return person;
 }

 public static PersonBuilder person() {
 return new PersonBuilder();
 }
}

How it works..
As you can see in the previous code, the PersonBuilder class has a static factory method
to instantiate itself. It allows you to use less code and more ubiquitous language (check
Domain-Driven Design: Tackling Complexity in the Heart of Software, Eric Evans, available
at http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-
Software/dp/0321125215) in your tests. It has fields that are filled up with data during
the building process. The Person class is created upon the build() method execution. For
the sake of readability, we will not go into the details of AddressBuilder, but it follows the
same pattern and sets a street address on the Address object.

Now that we have the builder ready, we can use it to rewrite the test as follows:

public class NewIdentityCreatorTest {

 NewIdentityCreator systemUnderTest = new NewIdentityCreator();

 @Test
 public void should_generate_new_siblings() {
 // given
 List<Person> oldSiblings = createSiblings();
 Person person =
createPersonWithStreetNumberAndSiblingsAndName(oldSiblings);

 // when
 List<Person> siblings = systemUnderTest.createNewSiblings(person);

 // then
 then(siblings).doesNotContainAnyElementsOf(oldSiblings);
 }

 private Person
createPersonWithStreetNumberAndSiblingsAndName
(List<Person> siblings) {
 return person().streetNumber(10)
 .siblings(siblings)

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Chapter 8

211

 .name("Robert")
 .build();
 }

 private List<Person> createSiblings() {
 return asList(
 person().name("Amy").build(),
 person().name("John").build(),
 person().name("Andrew").build()
);
 }
}

Now, the test looks much better and it can be used as a living documentation of
your application.

There's more…
When working with legacy code or third-party software, you can come across very deeply
nested structures that row in hundreds of lines of code. You don't own these value objects,
so you can't change it in any way. Using these objects may be tedious, so it's important to
have proper factory methods/builders to create them.

Of course, context is king and there might be cases in which a more pragmatic approach will be
to not build the whole object using builders but to stub a very precisely defined chain of method
execution. In Mockito, such stubbing is called deep stubbing, and the Answer implementation
that allows you to set up such stubbing behavior is called Mockito.RETURNS_DEEP_STUBS.
The chain violates the Law of Demeter (see Object-Oriented Programming: An Objective
Sense of Style, K. Lieberherr, I. IIolland, A. Riel, available at http://www.ccs.neu.edu/
research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf)
since we're breaking the the friend of my friend is not my friend rule. Remember that you really
need some legitimate reasons to use deep stubbing. In a well-designed codebase, you will
not need to perform such actions. For educational purposes, let's take a look at the usage of
deep stubs. We test the creation of a street number, where, in order to get it, we have to pass it
through the Person.getAddress().getStreetNumber() chain of method execution, as
shown in the following code:

public class DeepStubbingNewIdentityCreatorTest {
 NewIdentityCreator systemUnderTest = new NewIdentityCreator();
 @Test
 public void should_generate_new_address_with_street_number() {
 // given
 Person person = mock(Person.class, RETURNS_DEEP_STUBS);
 given(person.getAddress().getStreetNumber()).willReturn(10);

 // when

http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf

Refactoring with Mockito

212

 int newStreetNumber =
systemUnderTest.createNewStreetNumber(person);

 // then
 then(newStreetNumber).isNotEqualTo
(person.getAddress().getStreetNumber());
 }
}

When calling given(person.getAddress().getStreetNumber()).willReturn(10)
under the hood, Mockito creates all the intermediary mocks. In this case, since Person is
already a mock, Address is also created as a mock. In this way NullPointerException
is not thrown when moving down the chain of method invocations. Remember that it is not a
sign of good design when you need to use this feature of Mockito.

See also
 f Refer to the Mockito wiki on how to write good tests at https://github.com/

mockito/mockito/wiki/How-to-write-good-tests

 f Refer to Working Effectively with Legacy Code, Martin Feathers, available at
http://www.amazon.com/Working-Effectively-Legacy-Michael-
Feathers/dp/0131177052

 f Refer to Growing Object-Oriented Software, Guided by Tests, Steve Freeman and Nat
Pryce, available at http://www.amazon.com/Growing-Object-Oriented-
Software-Guided-Tests/dp/0321503627

 f Refer to the Mockito documentation on deep stubbing at http://docs.mockito.
googlecode.com/hg/1.9.5/org/mockito/Mockito.html#RETURNS_DEEP_
STUBS

https://github.com/mockito/mockito/wiki/How-to-write-good-tests
https://github.com/mockito/mockito/wiki/How-to-write-good-tests
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Growing-Object-Oriented-Software-Guided-Tests/dp/0321503627
http://www.amazon.com/Growing-Object-Oriented-Software-Guided-Tests/dp/0321503627
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#RETURNS_DEEP_STUBS
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#RETURNS_DEEP_STUBS
http://docs.mockito.googlecode.com/hg/1.9.5/org/mockito/Mockito.html#RETURNS_DEEP_STUBS

9
Integration Testing

with Mockito and
DI Frameworks

In this chapter, we will cover the following recipes:

 f Injecting test doubles instead of beans using Spring's code configuration

 f Injecting test doubles instead of beans using Spring's XML configuration

 f Injecting test doubles instead of beans using Springockito

 f Injecting test doubles instead of beans with Guice

 f Injecting test doubles instead of beans with Guice using Jukito

Introduction
Dependency Injection (DI) and Inversion of Control (IOC) are the terms that you have to
understand to get the most out of the contents of this chapter (for more information, refer to
Martin Fowler's article at http://martinfowler.com/articles/injection.html). We
will not elaborate on the importance of those two concepts here. We will focus on using them
together with Mockito and two Mockito based tools. We'll do that to inject test doubles instead
of real beans in our application.

http://martinfowler.com/articles/injection.html

Integration Testing with Mockito and DI Frameworks

214

The idea behind integration tests with DI frameworks is that we want the application to have
its dependencies already instantiated and injected. We may have fragments of code where
we want to send or retrieve data via a web service or a system where a connection to another
server is necessary. When performing integration testing, we do not want to have such
connections set. Since integration tests are run from our local machines, we want to limit
the need for configuring access to those external servers. You may also want to verify that a
particular method was executed on a component. That is why we would have to either stub
those connections or set up a test double for our external data provider (check out projects
such as Moco at https://github.com/dreamhead/moco or WireMock at http://
wiremock.org/ for examples of HTTP server mocks). It all depends on the context, but in
my opinion the latter approach gives you more reliable integration with external systems.
For example, if it's a HTTP server mock, then you will send a real request and receive a real
response—you will be able to test how your production code really works.

In the following recipes, we will focus on the first approach—we will create mocks of our
dependencies in order to stub the call and to verify that we made that call only once (let's
assume that we pay a lot of money for each call, thus we want to be sure that those method
executions do not happen too often).

We will play around with two most famous and widely used DI frameworks—Spring and Guice.
First, we will try to set up test doubles just by using internals of either of those frameworks
and then we will check out two libraries. Springockito (https://bitbucket.org/kubek2k/
springockito/wiki/Home) for Spring (http://projects.spring.io/spring-
framework/) and Jukito (https://github.com/ArcBees/Jukito) for Guice
(https://code.google.com/p/google-guice/). This chapter assumes that you
already have either Spring or Guice on your classpath, so please consult the respective
websites for more information. The whole setup (Maven and Gradle) is also present in the
Mockito Cookbook's Github repository (https://github.com/marcingrzejszczak/
mockito-cookbook).

All of the examples in this recipe will deal with transferring tax for a person via a web service.
Since we don't want to send any real data, we will mock the web service, stub the method
execution, and verify whether the call took place only once (because we pay plenty of money
for each call). We will further check whether the message sending took place successfully.

Injecting test doubles instead of beans
using Spring's code configuration

In this recipe, we will replace an existing bean with a test double using Spring's
code configuration.

https://github.com/dreamhead/moco
http://wiremock.org/
http://wiremock.org/
https://bitbucket.org/kubek2k/springockito/wiki/Home
https://bitbucket.org/kubek2k/springockito/wiki/Home
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
https://github.com/ArcBees/Jukito
https://code.google.com/p/google-guice/
https://github.com/marcingrzejszczak/mockito-cookbook
https://github.com/marcingrzejszczak/mockito-cookbook

Chapter 9

215

Getting ready
Let's assume that our system under test is the tax transferring system for a given person,
as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }
 taxService.transferTaxFor(person);
 return true;
 }

}

Where TaxService is a class that makes the web service call, as shown in the following
code (for simplicity, we are only writing that we are performing such data exchange):

class TaxService {

 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service for person
with name [%s]%n", person.getName());
 }

}

Let's assume that we have an annotation-based configuration, as shown in the following code:

@Configuration
class TaxConfiguration {

 @Bean
 public TaxService taxService() {
 return new TaxService();
 }

Integration Testing with Mockito and DI Frameworks

216

 @Bean
 public TaxTransferer taxTransferer(TaxService taxService) {
 return new TaxTransferer(taxService);
 }

}

How to do it...
In order to perform an integration test of the system and replace the bean with a mock, you
have to perform the following steps:

1. Write an integration test that sets the application context of the system under test.

2. Create an additional @Configuration annotated class.

3. Override the existing beans (method names have to match) that you want to mock
with @Bean methods that return a mock or a spy.

The following snippet depicts the aforementioned scenario (the example is written for
JUnit—for TestNG, consult the next information box following the snippet. Note that
BDDAssertions static imports are used—please refer to Chapter 7, Verifying Behavior
with Object Matchers, for AssertJ configuration).

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {TaxConfiguration.class,
MockTaxConfiguration.class})
public class TaxTransfererCodeConfigurationTest {

 @Autowired TaxTransferer taxTransferer;

 @Autowired TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

Chapter 9

217

For TestNG, the only thing that changes is that you do not use
the @RunWith(SpringJUnit4ClassRunner.class)
annotation but instead you make the test class extend the
AbstractTestNGSpringContextTests class.

The additional test configuration is as follows:

@Configuration
class MockTaxConfiguration {

 @Bean
 public TaxService taxService() {
 return Mockito.mock(TaxService.class);
 }

}

There might be cases where you do want your component to
perform real logic. However, you want to confirm that a particular
method was executed. Let's imagine a business case where you
want to ensure that a particular web service method was called.
In that case, you should return a spy instead of a mock by using
return Mockito.spy(new TaxService());.

How it works...
How Spring internally works is a subject for several books, so we will not go deep into details
but what is worth mentioning is that by providing the context configuration with the production
and test configuration, we are overriding the initial bean definition as follows (note that
method names have to match):

@ContextConfiguration(classes = {TaxConfiguration.class,
MockTaxConfiguration.class})

In the logs, you will then see the following code:

INFO: Overriding bean definition for bean 'taxService': replacing […
cropped for redability purposes...; defined in class com.blogspot.
toomuchcoding.book.chapter9.InjectingWithSpring.TaxConfiguration] with
[… cropped for redability purposes...; defined in class com.blogspot.
toomuchcoding.book.chapter9.InjectingWithSpring.MockTaxConfiguration]

In the integration test example, we had a single test and we didn't explicitly stub the mock's
methods. If we had several tests, we most probably would like to stub the mock's behavior in a
different manner in each test.

Integration Testing with Mockito and DI Frameworks

218

Remember that since such a created mock is a singleton bean (refer to
http://docs.spring.io/spring/docs/4.0.5.RELEASE/
spring-framework-reference/html/beans.html#beans-
factory-scopes-singleton), then once stubbed it will be reused
in all of your tests that use the same configuration.

To change that behavior, you would have to reset the mock by calling Mockito.reset(mock1,
mock2…mockn) and then stub the mock again.

There's more...
You may observe different behavior when having a @Configuration class that is annotated
with @ComponentScan. If you scan for components, then each @Component annotated class
will be treated as a singleton bean. Let's assume that our TaxService is annotated as
@Component and that it's injected through the field and not the constructor. The following is
the application context configuration:

@Configuration
@ComponentScan("com.blogspot.toomuchcoding.book.chapter9.
InjectingWithSpringComponentScan")
class TaxConfiguration { }

Next, you can find the @Component annotated TaxService class definition:

@Component
class TaxService {

 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service from
@Component annotated class for person with name [%s]%n", person.
getName());
 }

}

The Following is the TaxTransferer class that is the point of entry of our integration test:

@Component
public class TaxTransferer {

 @Autowired private TaxService taxService;

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }

http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton

Chapter 9

219

 taxService.transferTaxFor(person);
 return true;
 }

}

Under the hood, Spring is instantiating beans by using BeanPostProcessors. Even if you
create your mock configuration like the one presented in the previous snippets, it will not work
and you will get the following log message:

INFO: Skipping bean definition for [BeanMethod:name=taxServi
ce,declaringClass=com.blogspot.toomuchcoding.book.chapter9.
InjectingWithSpringComponentScan.MockTaxConfiguration]: a definition
for bean 'taxService' already exists. This top-level bean definition
is considered as an override.

If possible, you should not annotate your classes with @Component since you will limit the
possibility of configuring your application. Imagine that components are building blocks and
the @Configuration annotated classes are blueprints of your application. In part of your
applications, you will need some components that are not necessary in others. If you share
the @Component annotated beans in jars where you have component scanning, then most
likely you will have in your Spring application context plenty of beans that you don't really
need. You should only use classes that you really need. Please consult Spring's source code
to verify that Spring itself doesn't use @Component to instantiate its beans.

Let's assume that the @Component annotated beans are already there and before refactoring
you would like to test your application. There is a possibility of using Spring's internals to
manage and mock the bean. Since the @Component annotated class has been instantiated
using BeanPostProcessors, you can create your own class that will create a mock of the
object we are interested in (the test will look exactly the same as in the previous test—the
implementation of MockTaxConfiguration will differ) as follows:

@Configuration
class MockTaxConfiguration {

 @Bean
 public BeanPostProcessor taxServiceBeanPostProcessor() {
 return new BeanPostProcessor(){

 @Override
 public Object postProcessBeforeInitialization(Object bean,
String beanName) throws BeansException {
 if(bean instanceof TaxService) {
 return Mockito.mock(TaxService.class);
 }
 return bean;
 }

Integration Testing with Mockito and DI Frameworks

220

 @Override
 public Object postProcessAfterInitialization(Object bean,
String beanName) throws BeansException {
 return bean;
 }
 };
 }

}

See also
 f Spring Framework homepage at http://projects.spring.io/

spring-framework/

 f Spring Framework documentation at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html

 f Spring java based configuration at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/
beans.html#beans-java

 f Spring documentation on testing at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html

 f Mockito Cookbook Github repository for more examples of Mockito and Spring
integration at https://github.com/marcingrzejszczak/mockito-cookbook

Injecting test doubles instead of beans
using Spring's XML configuration

In the following recipe, we will replace an existing bean with a test double using Spring's
XML configuration.

Getting ready
Let's assume that our system under test is the tax transferring system for a given person, as
shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

http://projects.spring.io/ spring-framework/
http://projects.spring.io/ spring-framework/
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/ beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/ beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/ beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html
https://github.com/marcingrzejszczak/mockito-cookbook

Chapter 9

221

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }
 taxService.transferTaxFor(person);
 return true;
 }

}

As shown in the previous example, TaxService is a class that will perform a web service
call. For readability purposes, we are simulating that we have such data exchanged as follows:

class TaxService {

 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service for person
with name [%s]%n", person.getName());
 }

}

Let's assume that we have an XML-based configuration of the application, as shown in the
following code:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="taxService" class="com.blogspot.toomuchcoding.book.
chapter9.InjectingWithSpring.TaxService" />

 <bean id="taxTransferer" class="com.blogspot.toomuchcoding.book.
chapter9.InjectingWithSpring.TaxTransferer">
 <constructor-arg ref="taxService"/>
 </bean>

</beans>

Integration Testing with Mockito and DI Frameworks

222

How to do it...
To write an integration test for the system and replace the bean with a mock, you have to
perform the following steps:

1. Write an integration test that sets the application context of the system under test.

2. Create an additional XML configuration of your application context.

3. Override existing beans (IDs have to match) with proper Mockito class factory
methods (depending on mock or spy).

Let's try to test our system (the example is written for JUnit—for TestNG, refer to the
next information box following the snippet. Note that the BDDAssertions static
imports are used—please refer to Chapter 7, Verifying Behavior with Object Matchers,
for AssertJ configuration):

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations =
{"/chapter9/InjectingWithSpring/application-context.xml",
"/chapter9/InjectingWithSpring/mock-application-context.xml"})
public class TaxTransfererXmlConfigurationTest {

 @Autowired TaxTransferer taxTransferer;

 @Autowired TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

Chapter 9

223

For TestNG, the only thing that changes is that you do not use
the @RunWith(SpringJUnit4ClassRunner.class)
annotation but instead, you make the test class extend the
AbstractTestNGSpringContextTests class.

The following is the additional XML configuration that overrides the bean with a mock:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="taxService" class="org.mockito.Mockito" factory-
method="mock">
 <constructor-arg value="com.blogspot.toomuchcoding.book.
chapter9.InjectingWithSpring.TaxService"/>
 </bean>

</beans>

The following is the additional XML configuration that overrides the bean with a spy:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="spiedTaxService" class="com.blogspot.toomuchcoding.book.
chapter9.InjectingWithSpring.TaxService" />

 <bean id="taxService" class="org.mockito.Mockito" factory-
method="spy">
 <constructor-arg ref="spiedTaxService"/>
 </bean>

</beans>

If you do not want to execute the real logic of your component,
you should use a mock. If however you want to execute the real
logic and are only interested in verifying whether interactions
took place, then you should use a spy.

Integration Testing with Mockito and DI Frameworks

224

How it works...
We will not go deep into details of how Spring works internally. What is worth mentioning is
that by providing the context configuration with the production XML configuration and the test
XML configuration, we are able to override bean definitions, as shown in the following code:

@ContextConfiguration(locations =
{"/chapter9/InjectingWithSpring/application-context.xml",
"/chapter9/InjectingWithSpring/mock-application-context.xml"})

In the logs, you will then see the following message:

INFO: Overriding bean definition for bean 'taxService': replacing
[Generic bean: class [com.blogspot.toomuchcoding.book.chapter9.
InjectingWithSpring.TaxService]; … cropped for readability purposes...
defined in class path resource [chapter9/InjectingWithSpring/
application-context.xml]] with [Generic bean: class [org.mockito.
Mockito]; … cropped for redability purposes... factoryMethodName=mock;
defined in class path resource [chapter9/InjectingWithSpring/mock-
application-context.xml]]

See also
 f Spring Framework homepage at http://projects.spring.io/

spring-framework/

 f Spring Framework documentation at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html

 f Spring XML-based configuration at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/beans.
html#beans-factory-metadata

 f Spring documentation on testing at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html

 f The Mockito Cookbook Github repository for more examples of Mockito and Spring
integration at https://github.com/marcingrzejszczak/mockito-cookbook

Injecting test doubles instead of beans
using Springockito

In this recipe, we will replace an existing bean with a test double using Springockito's
annotations. (refer to Springockito core at https://bitbucket.org/kubek2k/
springockito/wiki/Home, Springockito annotations at https://bitbucket.org/
kubek2k/springockito/wiki/springockito-annotations).

http://projects.spring.io/ spring-framework/
http://projects.spring.io/ spring-framework/
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-metadata
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-metadata
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-metadata
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/testing.html
https://github.com/marcingrzejszczak/mockito-cookbook
https://bitbucket.org/kubek2k/springockito/wiki/Home
https://bitbucket.org/kubek2k/springockito/wiki/Home
https://bitbucket.org/kubek2k/springockito/wiki/springockito-annotations
https://bitbucket.org/kubek2k/springockito/wiki/springockito-annotations

Chapter 9

225

Getting ready
To add Springockito annotations to your classpath, refer to the following dependency
configurations. The configuration for Gradle is as follows:

testCompile 'org.kubek2k:springockito-annotations:1.0.9'
and Maven
<dependency>
 <groupId>org.kubek2k</groupId>
 <artifactId>springockito-annotations</artifactId>
 <version>1.0.9</version>
</dependency>

Our system under test is the person's tax transferring system, as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }
 taxService.transferTaxFor(person);
 return true;
 }

}

The TaxService class is responsible for making the web service call, as shown in the
following code (in this example, we are only printing some information to the console instead
of calling the real web service):

class TaxService {

 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service for person
with name [%s]%n", person.getName());
 }

}

Integration Testing with Mockito and DI Frameworks

226

Let's assume that we have an annotation-based configuration, as shown in the following code:

@Configuration
class TaxConfiguration {

 @Bean
 public TaxService taxService() {
 return new TaxService();
 }

 @Bean
 public TaxTransferer taxTransferer(TaxService taxService) {
 return new TaxTransferer(taxService);
 }

}

How to do it...
In order to integration test the system and replace the bean with a mock using Springockito,
you have to perform the following steps:

1. Write an integration test that sets up the system under test's application context
(annotate your class with @RunWith(SpringJUnit4ClassRunner.class) and
provide the necessary configuration locations to @ContextConfiguration.

2. Add SpringockitoAnnotatedContextLoader as the loader of the
@ContextConfiguration annotation.

3. Annotate those beans that you want replaced with Springockito's annotations.

The following snippet depicts the aforementioned scenario (the example is written for
JUnit—for TestNG, refer to the information box following the snippet. Note that the
BDDAssertions static imports are used—please refer to Chapter 7, Verifying Behavior of
Object Matchers, for AssertJ configuration):

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(loader = SpringockitoAnnotatedContextLoader.
class, classes = TaxConfiguration.class)
public class TaxTransfererSpringockitoAnnotationsCodeConfigTest {

 @Autowired TaxTransferer taxTransferer;

 @ReplaceWithMock @Autowired TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given

Chapter 9

227

 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

For TestNG, the only thing that changes is that you do not use
the @RunWith(SpringJUnit4ClassRunner.class)
annotation but instead you make the test class extend the
AbstractTestNGSpringContextTests class.

In order to wrap the bean with a spy, you have to annotate it with a @WrapWithSpy
annotation (example for JUnit):

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(loader = SpringockitoAnnotatedContextLoader.
class, classes = TaxConfiguration.class)
public class TaxTransfererSpringockitoAnnotationsCodeConfigSpyTest {

 @Autowired TaxTransferer taxTransferer;

 @WrapWithSpy @Autowired TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();
 doNothing().when(taxService).transferTaxFor(person);

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

Integration Testing with Mockito and DI Frameworks

228

How it works...
As a parameter of @ContextConfiguration, you can provide a loader—a class that is
responsible for loading ApplicationContext to your test. Springockito comes together
with its own SpringockitoAnnotatedContextLoader that does the following actions in
two different phases as follows:

 f The Context Configuration processing phase:

 � Scans the test class to find all fields annotated with Springockito annotations

 � Maps target bean names to their corresponding SpringockitoDefinition

 f The Context customization phase:

 � Registers the bean definition of the mocked beans in the Application Context

After that logic has been executed, you can see that the configuration present in the
@Configuration annotated class in the logs gets ignored:

INFO: Skipping bean definition for [BeanMethod:name=taxServi
ce,declaringClass=com.blogspot.toomuchcoding.book.chapter9.
InjectingWithSpringockito.TaxConfiguration]: a definition for bean
'taxService' already exists. This top-level bean definition is
considered as an override.

There's more...
To use Springockito's XML configuration, you have to create an XML application context
configuration file that obeys the following rules:

 f Add the namespace and provide proper schema location (let's assume that we used
the mockito namespace)

 f Use <mockito:mock> to replace a bean with a Mockito mock
 f Use <mockito:spy> to wrap the bean with a Mockito spy

Since in this book we are using Mockito in version 1.9.5, it's worth mentioning that Springockito
(in version 1.0.9) fails to cooperate with Mockito in any version higher than 1.9.0 in terms of
defining mocks in Spring's XML configuration. That's because one of Mockito's classes was
removed and Springockito still references it. The following snippets from this recipe are showing
a scenario that fails. In other words, having an application context configuration as the following:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mockito="http://www.mockito.org/spring/mockito"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/
beans/spring-beans-4.0.xsd

Chapter 9

229

 http://www.mockito.org/spring/mockito
 http://www.mockito.org/spring/mockito.xsd">

 <mockito:mock id="taxService" class="com.blogspot.toomuchcoding.
book.chapter9.InjectingWithSpringockito.TaxService" />

</beans>

A test that uses that configuration to create a mock of TaxService, as shown in the
following code:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations =
{"/chapter9/InjectingWithSpringockito/application-context.xml",
"/chapter9/InjectingWithSpringockito/mock-application-context.xml"})
public class TaxTransfererSpringockitoNotCompatibleWithMockito1_9_5_
XmlConfigurationTest {

 @Autowired TaxTransferer taxTransferer;

 @Autowired TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

This will result in the following exception:

java.lang.NoClassDefFoundError: org/mockito/internal/
MockitoInvocationHandler
 at java.lang.Class.getDeclaredConstructors0(Native Method)
 at java.lang.Class.privateGetDeclaredConstructors(Class.java:2493)
 at java.lang.Class.getDeclaredConstructors(Class.java:1901)
...

Integration Testing with Mockito and DI Frameworks

230

For more information, please refer to Issue#46 at https://bitbucket.org/kubek2k/
springockito/issue/46/springockito-fails-to-compile-with-mockito since
a ticket regarding this problem has already been created. Nonetheless, if you downgrade to
Mockito 1.9.0, your test will pass successfully.

See also
 f Spring java-based configuration at http://docs.spring.io/spring/

docs/4.0.5.RELEASE/spring-framework-reference/html/beans.
html#beans-java

 f Spring Framework documentation at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html

 f Spring XML-based configuration at http://docs.spring.io/spring/
docs/4.0.5.RELEASE/spring-framework-reference/html/beans.
html#beans-factory-metadata

 f Spring testing documentation at http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/testing.html

 f Springockito homepage at https://bitbucket.org/kubek2k/springockito/
overview

 f Springockito wiki at https://bitbucket.org/kubek2k/springockito/
wiki/Home

Injecting test doubles instead of beans
with Guice

In this recipe, we will replace an existing bean with a test double using Guice's
(https://code.google.com/p/google-guice/) module configuration.

Getting ready
Let's assume that our system under test is the tax transferring system for a given person,
as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

https://bitbucket.org/kubek2k/springockito/issue/46/springockito-fails-to-compile-with-mockito
https://bitbucket.org/kubek2k/springockito/issue/46/springockito-fails-to-compile-with-mockito
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton
http://docs.spring.io/spring/docs/4.0.5.RELEASE/spring-framework-reference/html/beans.html#beans-factory-scopes-singleton
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html
https://bitbucket.org/kubek2k/springockito/overview
https://bitbucket.org/kubek2k/springockito/overview
https://bitbucket.org/kubek2k/springockito/ wiki/Home
https://bitbucket.org/kubek2k/springockito/ wiki/Home
https://code.google.com/p/google-guice/

Chapter 9

231

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }
 taxService.transferTaxFor(person);
 return true;
 }

}

Where the TaxService class is an interface that has an implementation called
TaxWebService, which makes the web service call, as shown in the following code
(for simplicity, we are only writing that we are performing such data exchange):

class TaxWebService implements TaxService {

 @Override
 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service for person
with name [%s]%n", person.getName());
 }

}

The following is a snippet with Guice's module configuration:

class TaxModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(TaxService.class).to(TaxWebService.class);
 }

}

How to do it...
In order to integration test the system and replace the bean with a mock, you have to perform
the following steps:

1. Ensure that the component that you are going to mock is in a separate Guice module.

2. Create an additional test module (by extending the AbstractModule class) that will
bind the class to be mocked with an actual mock or spy.

3. In your integration test, remember to reference all the necessary production modules.

4. Instead of providing the production module with the component to mock, pass the
test module with the mocked version of that component.

Integration Testing with Mockito and DI Frameworks

232

The following snippet shows the separate Guice test module:

public class MockModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(TaxService.class).toInstance(Mockito.mock
(TaxService.class));
 }

}

It is feasible to override an existing binding by calling
Guice.createInjector(Modules.override(new
ProductionModule()).with(new TestModule()));.

However, the javadoc for Modules.overrides(..)
recommends that you design your modules in such a way that
you don't need to override bindings. The solution to this is to
move the classes to be mocked to separate modules.

Now let's take a look at the JUnit test (note that both tests are using the BDDAssertions
static imports—please refer to Chapter 7, Verifying Behavior with Object Matchers, for the
AssertJ configuration):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 TaxTransferer taxTransferer;

 TaxService taxService;

 @Before
 public void setup() {
 Injector injector = Guice.createInjector(new MockModule());
 taxTransferer = injector.getInstance(TaxTransferer.class);
 taxService = injector.getInstance(TaxService.class);
 }

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when

Chapter 9

233

 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }
}

If using pure JUnit, you have to get the instances from Injector
yourself—as we do here in the @Before part of your test by calling
the Guice.createInjector(...) static method. You can
also create your own TestRunner or use a library that will do all
of the previous for you—for example Jukito.

The corresponding TestNG test is, as shown in the following code:

@Guice(modules = MockModule.class)
public class TaxTransfererTestNgTest {

 @Inject TaxTransferer taxTransferer;

 @Inject TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

Integration Testing with Mockito and DI Frameworks

234

You can see that the test for TestNG looks much nicer in
comparison to JUnit—thanks to the special @Guice TestNG
annotation. It accepts as one of the parameters the modules
that should be taken into consideration while setting up the
context of the application.

How it works...
How Guice internally works is beyond the scope of this book, but let's take at least a high
overview of what has happened in the previous snippets.

For JUnit, we have called the Guice.createInjector(...) static method that takes as
arguments the modules from which it should build the Injector. The Injector, as the javadoc
states, builds the graphs of objects that make up your application but should extremely
rarely be called in the production code. It breaks the concept of DI and goes towards a
Service Locator pattern (refer to http://martinfowler.com/articles/injection.
html#UsingAServiceLocator). Anyway, we are calling it in the test environment since
we want to perform integration testing, thus we want our dependencies to be initialized by
Guice. Behind the scenes, Guice builds the graph of objects in such a way that when we call
the injector.getInstance(...) method, it has all the binding information and returns
the properly instantiated objects—that's why it takes into consideration our test binding of the
TaxService interface to the mock of that interface.

For TestNG, the situation is much clearer—it produces far less boilerplate code. Guice has its
own @Guice annotation that as one of the parameters accepts the modules that make up for
the application. Behind the scenes, TestNG in the ClassImpl class instantiates or reuses
the Guice injector in exactly the same way as we manually do it for JUnit—it passes the Guice
modules classes to the Guice.createInjector(...) static method and then caches it in
a map whose keys contain the aforementioned modules and the value is the injector as such.
This map is present in the TestRunner class.

In the previous examples, we had a single test and we didn't explicitly stub any of the mock's
methods. For the JUnit example, before each test we are creating a new injector so that a new
mock is created. That means if you had two tests and you stubbed a mock's method in the first
one, then the second one wouldn't see that stubbing. For TestNG, the situation is different.

Remember that for TestNG the modules are shared between
tests. In other words, once stubbed, your mock will be
reused in all of your tests!

To change that behavior, you would have to reset the mock by calling Mockito.reset
(mock1, mock2…mockn) and then stub the mock again.

http://martinfowler.com/articles/injection.html#UsingAServiceLocator
http://martinfowler.com/articles/injection.html#UsingAServiceLocator

Chapter 9

235

See also
 f Google Guice homepage at https://code.google.com/p/google-guice/

 f Google Guice wiki at https://code.google.com/p/google-guice/w/list

 f Google Guice mailing list at https://groups.google.com/forum/#!forum/
google-guice

 f TestNG and Google Guice at http://testng.org/doc/documentation-main.
html#guice-dependency-injection

 f Mockito Cookbook Github repository for more examples of Mockito and Guice
integration at https://github.com/marcingrzejszczak/mockito-cookbook

Injecting test doubles instead of beans with
Guice using Jukito

In the following recipe, we will replace an existing bean with a test double using Jukito
annotations (since this library has a specially defined JUnit runner, it integrates perfectly
with JUnit—there is no official support for TestNG).

Getting ready
In order to profit from Jukito, you have to add it to your build. The following is the configuration
for Gradle:

testCompile 'org.jukito:jukito:1.4'

A sample Maven dependency configuration is given as follows:

<dependency>
 <groupId>org.jukito</groupId>
 <artifactId>jukito</artifactId>
 <version>1.4</version>
</dependency>

We will reuse the previous example of the tax transferring system for a given person, as shown
in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

https://code.google.com/p/google-guice/
https://code.google.com/p/google-guice/w/list
https://groups.google.com/forum/#!forum/google-guice
https://groups.google.com/forum/#!forum/google-guice
http://testng.org/doc/documentation-main.html#guice-dependency-injection
http://testng.org/doc/documentation-main.html#guice-dependency-injection
https://github.com/marcingrzejszczak/mockito-cookbook

Integration Testing with Mockito and DI Frameworks

236

 public boolean transferTaxFor(Person person) {
 if (person == null) {
 return false;
 }
 taxService.transferTaxFor(person);
 return true;
 }

}

Where the TaxService is an interface that has an implementation called TaxWebService
that makes the web service call, as shown in the following code (for simplicity, we are only
writing that we are performing such data exchange):

class TaxWebService implements TaxService {

 @Override
 public void transferTaxFor(Person person) {
 System.out.printf("Calling external web service for person
with name [%s]%n", person.getName());
 }

}

The following is a snippet with Guice's module configuration:

public class TaxModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(TaxService.class).to(TaxWebService.class);
 }

}

How to do it...
To integrate JUnit with Guice using Jukito, you have to perform the following steps:

1. Annotate your test class with @RunWith(JukitoRunner.class).

2. In your integration test, if required, reference all the required production modules
using the @UseModules Jukito annotation.

3. To mock a component, you have to either pass the interfaces to be mocked as test
methods arguments or pass a test module to the @UseModules annotation (note
that Jukito needs the module to be publicly accessible) and @Inject those fields
to the test.

Chapter 9

237

4. To create a spy of a component, you have to pass a test module to the
@UseModules annotation.

To test our system using Jukito, you have to do the following (it's not using a separate module
but passes the dependencies to be mocked as test method parameters):

@RunWith(JukitoRunner.class)
public class TaxTransfererTest {

 @Inject TaxTransferer taxTransferer;

 @Test
 public void should_transfer_tax_for_person(TaxService taxService)
{
 // given
 Person person = new Person();

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

If you have some more complex logic in your test module configuration, then you can provide it
as a parameter of the @UseModules annotation, as shown in the following code:

@RunWith(JukitoRunner.class)
@UseModules({MockModule.class})
public class TaxTransfererUseModuleTest {

 @Inject TaxTransferer taxTransferer;

 @Inject TaxService taxService;

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();

 // when

Integration Testing with Mockito and DI Frameworks

238

 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

The test module configuration may look like the following:

public class MockModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(TaxService.class).toInstance(Mockito.mock
(TaxService.class));
 }

}

You can also provide the configuration in the inner static class that extends JukitoModule— in
this way, you will access some handy helper methods such as bindMock(…), bindSpy(…),
and so on). The following is an example depicting that and assuming that TaxService is a
class and not an interface (to show how to deal with spies):

@RunWith(JukitoRunner.class)
public class TaxTransfererUseInnerJukitoModuleTest {

 @Inject TaxTransferer taxTransferer;

 @Inject TaxService taxService;

 public static class Module extends JukitoModule {

 protected void configureTest() {
 bindSpy(TaxService.class).in(TestScope.SINGLETON);
 }

 }

 @Test
 public void should_transfer_tax_for_person() {
 // given
 Person person = new Person();
 doNothing().when(taxService).transferTaxFor(person);

Chapter 9

239

 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }

}

How it works...
Jukito comes along with JukitoRunner, which is a JUnit runner—that's why all the magic is
done behind the scenes for you as follows:

 f Retrieving all the passed modules to the @UseModules annotation. If applicable,
Jukito creates JukitoModule with those modules.

 f If there is no @UseModules annotation, Jukito checks if you provided a static inner
class that extends JukitoModule and provides a test configuration for your test.
If that is the case, Jukito creates JukitoModule with the test module.

 f If there is no such JukitoModule extension class in your test, Jukito instantiates
a default JukitoModule implementation (extension of Jukito's TestModule).

 f Jukito creates an Injector using the Guice.createInjector(...) method and
passes the instantiated JukitoModule (by one of the aforementioned approaches).

 f Jukito then goes through test methods and checks whether there are objects passed
to the test methods and verifies if either of them is @All annotated (more about this
annotation in the There's more section)

 f Jukito together with Guice injects all the necessary objects into the @Inject annotated
fields and create mocks for objects passed as arguments of the test methods.

There's more...
Jukito allows you to go further with testing Guice based applications—you can perform
parameterized tests. The following is a test in which we verify that regardless of the country
from which the person originates, the application sends a single message via a web service:

@RunWith(JukitoRunner.class)
public class TaxTransfererParametrizedTest {

 @Inject TaxTransferer taxTransferer;

 public static class Module extends JukitoModule {

Integration Testing with Mockito and DI Frameworks

240

 protected void configureTest() {
 bindManyInstances(Person.class,
 new Person(),
 new Person("Poland"),
 new Person("France"),
 new Person("Germany"));
 }

 }

 @Test
 public void should_transfer_tax_for_person(TaxService taxService,
@All Person person) {
 // when
 boolean transferSuccessful = taxTransferer.
transferTaxFor(person);

 // then
 then(transferSuccessful).isTrue();
 verify(taxService).transferTaxFor(person);
 }
}

What Jukito does while executing the test is that it searches for the @All annotated objects
and it collects all bindings matching the type of the annotated argument. In the case of the
previous snippet, it will collect four bindings of the person instances from the static Module
class. Next, Jukito checks if there are more @All annotated arguments. If that is the case, it
will run the test as many as the size of the set resulting from the cartesian product. In the case
of the previous test class, the should_transfer_tax_for_person test will be executed
four times. Please check Jukito's documentation for further details on the @All annotation.

See also
 f Google Guice homepage at https://code.google.com/p/google-guice/

 f Jukito homepage at https://github.com/ArcBees/Jukito

 f Jukito documentation at https://github.com/ArcBees/Jukito/wiki

 f Jukito Google group at https://groups.google.com/forum/#!forum/jukito

 f Mockito Cookbook Github repository for more examples of Mockito and Jukito
integration at https://github.com/marcingrzejszczak/mockito-cookbook

https://code.google.com/p/google-guice/
https://github.com/ArcBees/Jukito
https://github.com/ArcBees/Jukito/wiki
https://groups.google.com/forum/#!forum/jukito
https://github.com/marcingrzejszczak/mockito-cookbook

10
Mocking Libraries

Comparison

In this chapter, we will cover the following recipes:

 f Mockito versus EasyMock

 f Mockito versus JMockit

 f Mockito versus jMock

 f Mockito versus Spock

Introduction
In this chapter, we will take a look at other mocking frameworks that are quite well known
in the Java world. The idea of this chapter is not to state whether one mocking framework
is better than Mockito, but to point out differences in both their syntax and approach.

Remember that the examples presented in this chapter are very simple and do not show all
of the possible ways of using the mocking frameworks, since you could write books about
any of them.

Before moving forward, it's worth mentioning the difference between a strict mock and a
non-strict one:

 f Strict mock: This is a mock that will fail the moment anything differs from the
expectations. In other words, if you expect your mock to call some methods and
that doesn't happen, then your test will fail.

 f Non-strict mock: This is a mock that will ignore any methods that were expected and
were not executed. Your test won't fail even when an unexpected method is called.
Mockito's mocks are non-strict.

Mocking Libraries Comparison

242

It's important to understand the difference because EasyMock, JMockit, and JMock allow you
to create either of those mocks.

Let's come back to the chapter's structure. We will start off by taking a look at EasyMock,
which is Mockito's predecessor (in fact, Mockito began as the EasyMock's fork). Next, we will
take a look at JMockit and JMock, which are similar to some extent. Finally, we will see how
you can do things the Groovy way using Spock.

In all cases, we will use the tax transferring system which will throw an exception during the
transfer of tax.

Mockito versus EasyMock
In this recipe, we will write a simple test using EasyMock that verifies the behavior of the
system under test when an exception is thrown.

Getting ready
In order to profit from EasyMock, you need to add it to your classpath. This is the configuration
for Gradle:

testCompile 'org.easymock:easymock:3.2'

The following is how you add the EasyMock dependency in Maven:

<dependency>
 <groupId>org.easymock</groupId>
 <artifactId>easymock</artifactId>
 <version>3.2</version>
 <scope>test</scope>
</dependency>

Let's assume that our system under test is the tax transferring system for a given person,
as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public boolean transferTaxFor(Person person) {
 if (taxService.hasAlreadyTransferredTax(person)) {
 return false;

Chapter 10

243

 }
 try {
 taxService.transferTaxFor(person);
 } catch (Exception exception) {
 System.out.printf("Exception [%s] caught while trying to
 transfer tax for [%s]%n", exception, person.getName());
 return false;
 }
 return true;
 }

}

How to do it...
In order to test the system using EasyMock, you need to perform the following steps:

1. Record the mock's behavior (tell the mock how it should behave).

2. Replay the mock's behavior (stops recording).

3. Execute the logic of the system under test.

4. Verify the behavior of the system under test.

The following is an example of a JUnit test with EasyMock:

@RunWith(EasyMockRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 TaxTransferer systemUnderTest;

 @Test
 public void
 should_return_false_when_tax_was_not_transfered_
 and_connection_to_irs_was_refused() {
 // expect
 systemUnderTest = new TaxTransferer(taxService);
 Person person = new Person();
 expect(taxService.hasAlreadyTransferredTax
 (anyObject(Person.class))).andReturn(false);
 taxService.transferTaxFor(same(person));
 expectLastCall().andStubThrow(new RuntimeException
("Connection refused"));
 replay(taxService);

Mocking Libraries Comparison

244

 // act
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // assert
 then(transferSuccessful).isFalse();
 verify(taxService);
 }

}

EasyMock integrates very nicely with JUnit. You need to annotate your
test class with @RunWith(EasyMockRunner.class). Only then
can you profit from the @Mock annotation that will create the mock for
you; @TestSubject will inject proper mocks for you. Unfortunately,
as you can see in our example, our system under test wasn't
annotated with @TestSubject. That's because TaxTransferer
fields are final and we inject their collaborators via constructor.
EasyMock doesn't support constructor injection, it only supports field
injection. This is why we need to inject the collaborator manually.

The following is how you can integrate EasyMock with TestNG:

public class TaxTransfererTestNgTest {

 @Mock TaxService taxService;

 TaxTransferer systemUnderTest;

 @BeforeMethod
 public void setup() {
 EasyMockSupport.injectMocks(this);
 systemUnderTest = new TaxTransferer(taxService);
 }

 @Test
 public void should_return_false_when_tax_was_not_transfered_and_
connection_to_irs_was_refused() {
 // expect
 Person person = new Person();
 expect(taxService.hasAlreadyTransferredTax(anyObject(Person.
class))).andReturn(false);
 taxService.transferTaxFor(same(person));
 expectLastCall().andStubThrow(new RuntimeException
("Connection refused"));
 replay(taxService);

Chapter 10

245

 // act
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // assert
 then(transferSuccessful).isFalse();
 verify(taxService);
 }

}

How it works...
We will not discuss how EasyMock works internally, but focus on what happens in the test
itself, and what the EasyMock approach is. EasyMock's approach towards mocks is captured
in the following steps:

1. You need to record the mock's behavior, that is, teach it how it should react. By
default, EasyMock creates strict mocks so their default behavior is such that if
a method on a mock was called and you didn't expect it, then your test will fail.

2. Once you're done, you need to replay the mock (stop recording by calling the
replay(T mock) static method). Afterwards, you can act and assert the results.

3. Finally, you can verify the mock's behavior. Verifying means EasyMock will check
whether the methods you expected were actually called as many times as you
defined in the record section.

As for stubbing, you can call the static expect(T mock) method to stub a method execution
that returns a value. To stub void methods, you need to first execute the void method and then
call the static expectLastCall() method. Only then can you define exactly how the mock
should behave.

There's more...
Mockito's test code of the system would look like the following (example for JUnit):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_return_false_when_tax_was_not_transfered_and_
connection_to_irs_was_refused() {

Mocking Libraries Comparison

246

 // given
 Person person = new Person();
 given(taxService.hasAlreadyTransferredTax(person)).
 willReturn(false);
 willThrow(new TaxServiceConnectionException("Connection
refused")).given(taxService).transferTaxFor(person);

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 verify(taxService).hasAlreadyTransferredTax(person);
 verify(taxService).transferTaxFor(person);
 }

}

The primary similarities between EasyMock and Mockito are as follows:

 f The same level of verification (in terms of unexpected, redundant invocations,
and verification in order)

 f Similar approach to argument matching (like same(...), anyObject(...),
and so on)

The primary differences between EasyMock and Mockito are as follows:

 f Mockito doesn't have the record replay mode since it can only stub or verify mocks.
The former happens before execution and the latter after the execution.

 f By default, Mockito creates "nice" mocks, thus if not stubbed, mocks will return a set
of default values. In EasyMock, you need to create such a mock explicitly because all
mocks are strict by default.

 f Verification in Mockito is optional. In EasyMock, you would need to create a nice
mock and then not call the verify() method.

 f Mockito's custom argument matchers use Hamcrest matchers so you can reuse them
in different parts of the application.

 f EasyMock is a better tool for verification in order than Mockito. Let's assume that we
have a method that is executed twice and mutates the input parameter like in the
following pseudo code:

 collaborator.execute(mutate(object));
 collaborator.execute(mutate(object));

Chapter 10

247

In EasyMock, since you define expectations at the beginning, you are able to verify the value
of the argument of the execute(…) method at each step. In Mockito, you will only be able to
check that at the second execution, thus having inOrder.verify(mockedCollaborator).
execute(objectAtStep1()); and inOrder.verify(mockedCollaborator).
execute(objectAtStep2()); would make only the second line pass whereas the first
would fail. EasyMock's way to test it would be as follows:

 mockedCollaborator.execute(mutate(object));
 mockedCollaborator.execute(mutate(object));
 replay(mockedCollaborator);

See also
 f EasyMock documentation at http://easymock.org/EasyMock3_2_

Documentation.html

 f The Mockito versus EasyMock comparison at https://code.google.com/p/
mockito/wiki/MockitoVSEasyMock

 f The Mockito Cookbook Github repository with test examples at
https://github.com/marcingrzejszczak/mockito-cookbook

Mockito versus JMockit
In this recipe, we will write a simple test using JMockit that verifies the behavior of the system
under test when an exception is thrown.

Getting ready
In order to profit from JMockit, you need to add it to your classpath. The following is the
JMockit configuration for Gradle:

testCompile 'com.googlecode.jmockit:jmockit:1.7'

The following is how you can add JMockit to your classpath using Maven:

<dependency>
 <groupId>com.googlecode.jmockit</groupId>
 <artifactId>jmockit</artifactId>
 <version>1.7</version>
 <scope>test</scope>
</dependency>

http://easymock.org/EasyMock3_2_Documentation.html
http://easymock.org/EasyMock3_2_Documentation.html
https://code.google.com/p/mockito/wiki/MockitoVSEasyMock
https://code.google.com/p/mockito/wiki/MockitoVSEasyMock
https://github.com/marcingrzejszczak/mockito-cookbook

Mocking Libraries Comparison

248

If you do not use @RunWith(JMockit.class), then you need
to define the JMockit dependency before the JUnit one! Please
refer to http://jmockit.googlecode.com/svn/trunk/
www/gettingStarted.html for more information.

Let's assume that our system under test is the tax transferring system for a given person,
as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public boolean transferTaxFor(Person person) {
 if (taxService.hasAlreadyTransferredTax(person)) {
 return false;
 }
 try {
 //taxService.transferTaxFor(person);
 } catch (Exception exception) {
 System.out.printf("Exception [%s] caught while trying to
 transfer tax for [%s]%n", exception, person.getName());
 return false;
 }
 return true;
 }

}

How to do it...
In order to test the system using JMockit, you need to perform the following steps:

1. Create mocks by passing them as the test method's parameters.

2. Stub the mock's behavior in the initialization block.

3. Stub Expectations instance for strict stubbing.

4. Stub NonStrictExpectations instance for non-strict stubbing.

5. Execute the logic of the system under test.

http://jmockit.googlecode.com/svn/trunk/www/gettingStarted.html
http://jmockit.googlecode.com/svn/trunk/www/gettingStarted.html

Chapter 10

249

6. Assert the behavior of the system under test.

7. If you used NonStrictExpectations for stubbing, then you can define
your verification logic in the initialization block of the Verifications
instance. Otherwise, it's not needed since all verification takes place via the
Expectations instance.

The following snippet depicts the aforementioned scenario for JUnit:

@RunWith(JMockit.class)
public class TaxTransfererTest {

 @Test
 public void
 should_return_false_when_tax_was_not_transfered_and_connection_
 to_irs_was_refused(@Mocked final TaxService taxService) {
 // given
 TaxTransferer systemUnderTest = new TaxTransferer(taxService);
 final Person person = new Person();
 new NonStrictExpectations() {
 {
 taxService.hasAlreadyTransferredTax(person);
 result = false;
 taxService.transferTaxFor(person);
 result = new RuntimeException("Connection refused");
 }
 };

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 new Verifications() {
 {
 taxService.hasAlreadyTransferredTax(person);
 taxService.transferTaxFor(person);
 }
 };
 }

}

Mocking Libraries Comparison

250

JMockit integrates very nicely with JUnit. You need to annotate
your test class with @RunWith(JMockit.class). Only then
can you profit from the @Mock annotation that you can place as
an argument of the test method.

To use JMockit with TestNG, you just need to replace @RunWith(JMockit.class) from the
JUnit example with @Listeners(mockit.integration.testng.Initializer.class).

How it works...
We will not discuss how JMockit works internally, but focus on what happens in the test itself,
and what JMockit's approach is.

JMockit's approach regarding mocks is such the stubbing occurs via the code block inside
the implementation of the Expectations or NonStrictExpectations class. Each line
executed by the mocked instance followed by the assignment to the result variable leads
to the stubbing of the aforementioned call.

The explicit verification occurs in the code block inside the implementation of the
Verifications class. Since we use the NonStrictExpectations class, we need to
perform that verification through the Verifications instance to verify our mock's behavior.
If we used the Expectations block, then the stubbing gets automatically verified.

There's more...
Mockito's test code of the system would look like the following (example for JUnit):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void
 should_return_false_when_tax_was_not_transfered_and
 _connection_to_irs_was_refused() {
 // given
 Person person = new Person();
 given(taxService.hasAlreadyTransferredTax(person)).
 willReturn(false);
 willThrow(new TaxServiceConnectionException("Connection
 refused")).given(taxService).transferTaxFor(person);

Chapter 10

251

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 verify(taxService).hasAlreadyTransferredTax(person);
 verify(taxService).transferTaxFor(person);
 }

}

The primary similarities are as follows:

 f The possibility of having no explicit record or replay of the mock's methods
(only possible through stubbing with NonStrictExpectations)

 f The possibility of explicit verification (via the Verifications instance)

The primary differences are as follows:

 f JMockit contains functionalities more similar to PowerMock than Mockito (it can stub
object instantiation and final and static methods)

 f JMockit supports strict mocks

 f JMockit has a built-in coverage report

 f Stubbing and verifying through the code block during code implementation

See also
 f JMockit documentation at https://code.google.com/p/jmockit/

 f The Mockito versus JMockit comparison at http://stackoverflow.com/
questions/4105592/comparison-between-mockito-vs-jmockit-why-is-
mockito-voted-better-than-jmockit

 f The Mocking tool comparison matrix at https://code.google.com/p/jmockit/
wiki/MockingToolkitComparisonMatrix

 f The Mockito Cookbook Github repository with test examples using JMockit at
https://github.com/marcingrzejszczak/mockito-cookbook

Mockito versus JMock
In this recipe, we will write a simple test using JMock that verifies the behavior of the system
under test when an exception is thrown.

https://code.google.com/p/jmockit/
http://stackoverflow.com/questions/4105592/comparison-between-mockito-vs-jmockit-why-is-mockito-voted-better-than-jmockit
http://stackoverflow.com/questions/4105592/comparison-between-mockito-vs-jmockit-why-is-mockito-voted-better-than-jmockit
http://stackoverflow.com/questions/4105592/comparison-between-mockito-vs-jmockit-why-is-mockito-voted-better-than-jmockit
https://code.google.com/p/jmockit/wiki/MockingToolkitComparisonMatrix
https://code.google.com/p/jmockit/wiki/MockingToolkitComparisonMatrix
https://github.com/marcingrzejszczak/mockito-cookbook

Mocking Libraries Comparison

252

Getting ready
To profit from JMock, you need to add it to your classpath. There are three factors that you
must take into consideration when adding JMock to your project, as follows:

 f Jmock: This contains the core of JMock (pick it if you want to use TestNG)

 f jmock-junit4: This is to integrate JUnit with JMock (pick this one if you want to
use JUnit 4+)

 f jmock-legacy: This allows you to create mocks of classes

The following is the JMock configuration for Gradle for a JUnit-based project:

testCompile "org.jmock:jmock-junit4:2.6.0"
testCompile "org.jmock:jmock-legacy:2.6.0"
testCompile "org.jmock:jmock:2.6.0"

The following are the JMock dependencies for Maven:

<dependency>
 <groupId>org.jmock</groupId>
 <artifactId>jmock</artifactId>
 <version>2.6.0</version>
<scope>test</scope>
</dependency>
<dependency>
 <groupId>org.jmock</groupId>
 <artifactId>jmock-legacy</artifactId>
 <version>2.6.0</version>
<scope>test</scope>
</dependency>
<dependency>
 <groupId>org.jmock</groupId>
 <artifactId>jmock-junit4</artifactId>
 <version>2.6.0</version>
<scope>test</scope>
</dependency>

Let's assume that our system under test is the tax transferring system for a given person, as
shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

Chapter 10

253

 public boolean transferTaxFor(Person person) {
 if (taxService.hasAlreadyTransferredTax(person)) {
 return false;
 }
 try {
 taxService.transferTaxFor(person);
 } catch (Exception exception) {
 System.out.printf("Exception [%s] caught while trying to
 transfer tax for [%s]%n", exception, person.getName());
 return false;
 }
 return true;
 }

}

How to do it...
To test the system using JMock, you need to perform the following steps:

1. Initialize the Mockery context (for JUnit, you can try to use JUnitRuleMockery, but
you will not be able to mock classes. You can either create the Mockery context by
yourself or create a class that extends JUnitRuleMockery that will call setImpost
eriser(ClassImposteriser.INSTANCE) on the Mockery object).

2. Stub the mock's behavior through the Mockery's checking method.

3. Execute the logic of the system under test.

4. Verify the behavior of the system under test.

The following is an example of JMock's test for either JUnit or TestNG:

public class TaxTransfererTest {

 /**
 * To allow creating mocks of classes
 */
 private Mockery context = new Mockery() {{
 setImposteriser(ClassImposteriser.INSTANCE);
 }};

 TaxService taxService = context.mock(TaxService.class);

 TaxTransferer systemUnderTest = new TaxTransferer(taxService);

 @Test

Mocking Libraries Comparison

254

 public void
 should_return_false_when_tax_was_not_transfered_and
 _connection_to_irs_was_refused() {
 // given
 final Person person = new Person();
 context.checking(new Expectations(){
 {
 oneOf(taxService).hasAlreadyTransferredTax(person);
 will(returnValue(false));
 oneOf(taxService).transferTaxFor(person);
 will(throwException(new TaxServiceConnectionException
 ("Connection refused")));
 }
 });

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 context.assertIsSatisfied();
 }

}

In order to use JMock to mock classes instead of interfaces,
you need to provide the setImposteriser(ClassI
mposteriser.INSTANCE) method execution for the
Mockery implementation. That's why we are not using
the JUnitRuleMockery JUnit rule, because you can't
explicitly change that imposteriser.

How it works...
We will not discuss how JMock works internally, but focus on what happens in the test
itself, and what JMock's approach is. JMock's approach regarding mocks is such that the
stubbing occurs via proper method execution inside the code block of the Expectations
class implementation. You can call methods that add syntactic sugar to your tests (such as
oneOf(...), will(...), and so on).

The verification of the stubbed methods (whether they got executed) happens through the
calling of the Mockery's assertIsSatisfied() method.

Chapter 10

255

There's more...
Mockito's test code of the system would look like the following (example for JUnit):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_return_false_when_tax_was_not_transfered_and_
connection_to_irs_was_refused() {
 // given
 Person person = new Person();
 given(taxService.hasAlreadyTransferredTax(person)).
willReturn(false);
 willThrow(new TaxServiceConnectionException("Connection
refused")).given(taxService).transferTaxFor(person);

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 verify(taxService).hasAlreadyTransferredTax(person);
 verify(taxService).transferTaxFor(person);
 }

}

The primary similarities between Mockito and JMock are as follows:

 f Similar syntax for stubbing (not the stubbing configuration, but both stub
specific methods)

 f Both Mockito and JMock provide argument matchers

The primary differences between Mockito and JMock are as follows:

 f JMock's mocked objects are strict by default.

 f JMock uses context for creating mocks whereas Mockito has static methods.

 f For JMock, you need to provide an explicit configuration in order to mock classes and
not only interfaces. Mockito provides it out of the box.

Mocking Libraries Comparison

256

 f In JMock, verification happens in the Mockery's checking method when you explicitly
call a mock's method. In Mockito, you need to explicitly call the verify method. In
other words, when using JMock, remember that when verifying you check only those
methods that you stubbed in the checking method.

See also
 f The JMock homepage at http://jmock.org/

 f The JMock Cookbook at http://jmock.org/cookbook.html

 f The JMock cheetsheet at http://jmock.org/cheat-sheet.html

 f JMock's mailing list at http://jmock.org/mailing-lists.html

 f The Mockito versus JMock comparison (not the recent versions) at
http://zsoltfabok.com/blog/2010/08/jmock-versus-mockito/

Mockito versus Spock
In this recipe, we will write a simple test using Spock that verifies the behavior of the system
under test when an exception is thrown. Before going into details, it's worth mentioning that
Spock is a Groovy-based (http://groovy.codehaus.org/) tool. Therefore, in order
to use it, you need to know at least the basics of the Groovy language. Spock is based on
JUnit and is much more than a mocking framework. It gives you a beautiful BDD (Behavior
Driven Development) syntax that will convert your tests to Specifications (capital S since
Specification is a class that you need to extend to work with Spock).

If you want to try out Spock without installing it on your machine, check out the Spock Web
Console at http://meetspock.appspot.com/, where you can write your tests online!

Spock is a perfect tool for you if you want to introduce Groovy into your project. You can start
off with writing tests and then gradually progress towards production code (if that is what you
want, of course). Spock's beautiful BDD approach, combined with the power of Groovy, makes
it a perfect addition to your codebase.

Getting ready
To start working with Spock, you need to add it to your classpath. Remember that you also
need to have Groovy attached. The following is the Groovy and Spock configuration for Gradle:

apply plugin: 'groovy'
compile "org.codehaus.groovy:groovy-all:2.3.1"
testCompile "org.spockframework:spock-core:0.7-groovy-2.0"

http://jmock.org/
http://jmock.org/cookbook.html
http://jmock.org/cheat-sheet.html
http://jmock.org/mailing-lists.html
http://zsoltfabok.com/blog/2010/08/jmock-versus-mockito/
http://groovy.codehaus.org/
http://meetspock.appspot.com/

Chapter 10

257

The following is how you can add Groovy and Spock to your classpath using Maven (please
see the Mockito Cookbook Github repo at https://github.com/marcingrzejszczak/
mockito-cookbook for the exact setup for both Gradle and Maven):

<project>
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.gmaven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>
 <artifactId>gmaven-runtime-api</artifactId>
 <version>1.5</version>
 <exclusions>
 <exclusion>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all-minimal</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>2.3.1</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.spockframework</groupId>
 <artifactId>spock-core</artifactId>
 <version>0.7-groovy-2.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

https://github.com/marcingrzejszczak/mockito-cookbook
https://github.com/marcingrzejszczak/mockito-cookbook

Mocking Libraries Comparison

258

As in previous recipes, the system under test will be the tax transferring system for a given
person, as shown in the following code:

public class TaxTransferer {

 private final TaxService taxService;

 public TaxTransferer(TaxService taxService) {
 this.taxService = taxService;
 }

 public boolean transferTaxFor(Person person) {
 if (taxService.hasAlreadyTransferredTax(person)) {
 return false;
 }
 try {
 taxService.transferTaxFor(person);
 } catch (Exception exception) {
 System.out.printf("Exception [%s] caught while trying to
transfer tax for [%s]%n", exception, person.getName());
 return false;
 }
 return true;
 }

}

How to do it...
To test the system using Spock, you need to perform the following steps:

1. Make your test class extend the Specification class.

2. Stub the mock's behavior through the static Stub() or Mock() method. If you want
to verify the mock's behavior, then use Mock(). If you wish to only stub the execution,
then use Stub().

3. Execute the logic of the system under test.

4. Verify the behavior of the system under test using the multiply operator (*) and the
count of wanted executions.

Chapter 10

259

The following snippet shows an example of a test with Spock (Spock as a dependency requires
JUnit, and it's using a JUnit runner):

class TaxTransferrerSpec extends Specification {

 TaxService taxService = Mock()

 TaxTransferer systemUnderTest = new TaxTransferer(taxService);

 def 'should return false when tax was not transfered and
connection to irs was refused'() {
 given:
 Person person = new Person()
 when:
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person)
 then:
 !transferSuccessful
 1 * taxService.hasAlreadyTransferredTax(person) >> false
 1 * taxService.transferTaxFor(person) >> { throw new
RuntimeException("Connection refused") }

 }

 @Unroll
 def "should return [#transferSuccessful] when tax wasn't already
transferred and connection to irs was refused [#throwsException]"() {
 given:
 Person person = new Person()
 when:
 boolean transferSuccessfulResult = systemUnderTest.
transferTaxFor(person)
 then:
 transferSuccessfulResult == transferSuccessful
 1 * taxService.hasAlreadyTransferredTax(person) >> false
 1 * taxService.transferTaxFor(person) >> {
if(throwsException) { throw new RuntimeException("Connection refused")
} }
 where:
 throwsException || transferSuccessful
 true || false
 false || true

 }

}

Mocking Libraries Comparison

260

Remember that Spock is a Groovy tool and the test code is written
in Groovy. That's why the syntax differs from Java-based tests.

How it works...
We will not discuss how Spock works internally, but focus on what happens in the test itself,
and what Spock's approach is.

Spock forces its users to follow the BDD approach (with the given, when, then, expect, and
where clauses), thus the tests become very clear and automatically separated into sections.
As for the stubbing strategy, Spock has separate methods for stubbing and mocking. This is
also to show explicitly the difference between the two. What is more, it's a Groovy framework
(already a main testing framework for Grails), so you can profit from all of the Groovy magic,
which should make your tests become really clean.

Let's take a look at the second Spock test that shows how easily you can define parameterized
tests. The @Unroll annotation makes Spock insert values that are named according to the
columns in the where table, for each row of the where part. In fact, throughout the test, you
can refer to those values by the names of the columns. The >> operator (right-shift operator)
allows you to stub values with the result of the closure (the function defined within the curly
braces). As you can see, we can even provide some more complex answers (like in the case of
the transferTaxFor(…) method stubbing). The 1 * notation means that you want to verify
that there was a single method execution.

There's more...
Mockito's test code of the system would look like the following (example for JUnit):

@RunWith(MockitoJUnitRunner.class)
public class TaxTransfererTest {

 @Mock TaxService taxService;

 @InjectMocks TaxTransferer systemUnderTest;

 @Test
 public void should_return_false_when_tax_was_not_transfered_and_
connection_to_irs_was_refused() {
 // given
 Person person = new Person();
 given(taxService.hasAlreadyTransferredTax(person)).
willReturn(false);
 willThrow(new TaxServiceConnectionException("Connection
refused")).given(taxService).transferTaxFor(person);

Chapter 10

261

 // when
 boolean transferSuccessful = systemUnderTest.
transferTaxFor(person);

 // then
 then(transferSuccessful).isFalse();
 verify(taxService).hasAlreadyTransferredTax(person);
 verify(taxService).transferTaxFor(person);
 }

}

The primary similarities between Mockito and Spock are as follows:

 f Similar BDD approach as in Mockito (for example, the methods from BDDMockito)

 f When used properly, both can produce very clear and readable code

 f You can use Hamcrest matchers in either of the frameworks

The primary differences between Mockito and Spock are as follows:

 f Spock forces you to use BDD, whereas in Mockito it's optional.

 f Spock is a Groovy-based tool, whereas Mockito is Java based.

 f Since Spock operates on Groovy when stubbing, you provide the desired behavior
in closures (refer to http://groovy.codehaus.org/Closures for more
information). You don't need any additional methods, which is contrary to Mockito.

 f You need to extend a Specification class to use Spock, whereas in Mockito you
can use it straight away.

 f If you want to both stub a method and verify it, in Spock, you need to do that in the
verification phase (in the then or expect block), which is really unintuitive.

See also
 f Ten reasons why you should start using Spock, at https://code.google.com/p/

spock/wiki/WhySpock

 f Spock interactions at https://code.google.com/p/spock/wiki/
Interactions

 f Incubating Spock documentation at http://docs.spockframework.org/
en/latest/

 f Old Spock documentation at https://code.google.com/p/spock/w/list

 f Spock Google group at https://groups.google.com/forum/#!forum/
spockframework

 f Spock basics at https://code.google.com/p/spock/wiki/SpockBasics

http://groovy.codehaus.org/Closures
https://code.google.com/p/spock/wiki/WhySpock
https://code.google.com/p/spock/wiki/WhySpock
https://code.google.com/p/spock/wiki/Interactions
https://code.google.com/p/spock/wiki/Interactions
http://docs.spockframework.org/ en/latest/
http://docs.spockframework.org/ en/latest/
https://code.google.com/p/spock/w/list
https://groups.google.com/forum/#!forum/spockframework
https://groups.google.com/forum/#!forum/spockframework
https://code.google.com/p/spock/wiki/SpockBasics

Index
Symbols
@Captor annotation 9
@Guice annotation 234
@InjectMocks annotation 9
@Mock annotation 9
@Spy annotation 9
@Unroll annotation 260

A
AdditionalAnswers class

delegatesTo 30
returnsArgAt 30
returnsElementsOf 30
returnsFirstArg 30
returnsLastArg 30
returnsSecondArg 30

annotations
used, for creating mocks 27-29
used, for creating mocks with different default

answer 34-36
used, for creating spies 56-59

Answer implementation
Returns 32
ReturnsEmptyValues 32
ReturnsMocks method 33
ReturnsMoreEmptyValues 33

argument
asserting, for verification 182, 184
capturing, for verification 182, 184

argument matchers
reference links 76
used, for stubbing methods 73-76

AssertJ
about 160
custom AssertJ assertions, creating 179-182

using, for assertions 174-178
AssertJ assertions

URL 159
assertj-assertions-generator-

maven-plugin 174
AssertJ JAR files

assertj-core file 174
assertj-guava file 174
assertj-joda-time file 174
assertj-neo4j file 174

atLeast() method
used, for verifying method invocation

count 139, 140
atLeastOnce() method 152
atMost() method

used, for verifying method invocation
count 141, 142

Awaitility library
about 157
URL 157
URL, for downloading 157

B
Behavior Driven Development

(BDD) 160, 256, 260
boolean matches(Object item) method 164

C
calls() method 150
CallsRealMethods method 33
catch-exception library

URL 80
URL, for downloading 80
using 114

264

class
refactoring, for object instantiation 186-193
refactoring, that do not follow SOLID

principles 193-198
refactoring, that use class casts 198-202
refactoring, that use static methods 203-206

CoreMatchers.allOf(...) matcher 164
CoreMatchers.both(...).and(...) matcher 165
CoreMatchers.endsWith(...) matcher 165
CoreMatchers.equalTo(...) matcher 165
CoreMatchers.hasItems(...) matcher 165
CoreMatchers.is(...) matcher 164
CoreMatchers.not(...) matcher 165
CoreMatchers.notNullValue() matcher 164
CoreMatchers.startsWith(...) matcher 165
custom AssertJ assertions

creating 179-182
custom Hamcrest matchers

creating 166-170
customization, mocks 37-39

D
defaultAnswer(...) method 37
delegatesTo answer 30
delegatesTo() method

used, for creating partial mocks 63-66
Dependency Injection (DI)

about 213
Guice 214
Spring 214

Dependency inversion 24
DoesNothing method 33
domain-driven design (DDD) 160
Domain Specific Language (DSL) 157, 160
don't repeat yourself (DRY) principle 117
Dummy object 6

E
EasyMock

about 242
and Mockito, similarities 246
URL, for documentation 247
versus Mockito 242-247

endsWith(...) argument matcher 74
eq(...) argument matcher 74
expected parameter 117

extraInterfaces(...) method 37

F
Fake object 6
FEST

URL 160

G
Guice

about 214
URL 230, 235

Guice's module configuration
used, for injecting test doubles 230-234

H
Hamcrest

about 160
URL 166

Hamcrest JAR files
hamcrest-all.jar file 161
hamcrest-core.jar file 161
hamcrest-generator.jar file 161
hamcrest-integration.jar file 161
hamcrest-library.jar file 161

Hamcrest library
CoreMatchers.allOf(...) matcher 164
CoreMatchers.both(...).and(...) matcher 165
CoreMatchers.endsWith(...) matcher 165
CoreMatchers.equalTo(...) matcher 165
CoreMatchers.hasItems(...) matcher 165
CoreMatchers.is(...) matcher 164
CoreMatchers.not(...) matcher 165
CoreMatchers.notNullValue() matcher 164
CoreMatchers.startsWith(...) matcher 165
HasPropertyWithValue.hasProperty(...)

matcher 165
OrderingComparison.greaterThan(...)

matcher 165
Hamcrest matchers

custom Hamcrest matchers,
creating 166-170

URL 159
using, for assertions 161-165
using, for stubbing methods 171-174
using, for verification 171-174

265

HasPropertyWithValue.hasProperty(...)
matcher 165

hints
adding, to exception messages

in Mockito 19-21

I
instanceof operator 198
Interface segregation principle 24
Internal Revenue Service (IRS) 35
Inversion of Control (IOC) 213
invocationListeners(...) method 37
isNotNull() argument matcher 74
isNull() argument matcher 74

J
JAR files

URL, for downloading 41
Java Hamcrest

URL 166
JavaScript Object Notation (JSON)

message 196
JMock

about 242
and Mockito, similarities 255
URL 256
versus Mockito 251-255

JMockit
about 242
and Mockito, similarities 251
URL, for documentation 251
versus Mockito 247-251

Jukito
URL 214, 240

Jukito annotations
used, for injecting test doubles 235-239

JukitoRunner 239
JUnit

about 9
differentiating, with TestNG 14
integrating, with Mockito 9-13
URL, for documentation 13

L
Liskov substitution principle 24

M
method invocation

verifying, for order of interactions 148-153
verifying, that it never happened 143, 145
verifying, that it stopped happening 146-148
verifying, while ignoring stubbed

methods 153, 155
verifying, within time 155-158

method invocation count
verifying, with atLeast() method 139, 140
verifying, with atMost() method 141, 142
verifying, with times() method 136-139

mock(Class<T> classToMock, Answer
defaultAnswer) method 25

mock(Class<T> classToMock) method 25
mock(Class<T> classToMock, MockSettings

mockSettings) method 25
mock(Class<T> classToMock, String name)

method 25
Mockito

about 5-7
adding, to project's classpath 7
and EasyMock, similarities 246
and JMockit, similarities 251
and JMock, similarities 255
and Spock, similarities 261
best practices, for testing 16, 18
features 6
hints, adding to exception messages 19-21
integrating, with JUnit 9-13
integrating, with TestNG 14-16
versus EasyMock 242-247
versus JMock 251-255
versus JMockit 247-251
versus Spock 256-261
warning messages, adding to JUnit test 22

mockito-all.jar
about 7
URL, for downloading 8

Mockito annotations
@Captor 9
@InjectMocks 9
@Mock 9
@Spy 9
using 10

266

mockito-core.jar
about 7
URL, for downloading 8

Mockito.mock method
about 25
mock(Class<T> classToMock, Answer

defaultAnswer) method 25
mock(Class<T> classToMock) method 25
mock(Class<T> classToMock, MockSettings

mockSettings) method 25
mock(Class<T> classToMock, String name)

method 25
MockitoSettings interface methods

defaultAnswer(...) method 37
extraInterfaces(...) method 37
invocationListeners(...) method 37
name(...) method 37
serializable() method 37
spiedInstance(...) method 37
verboseLogging() method 37

mocks
creating 25-27
creating, with annotations 27-29
creating, with different default answer 30-33
creating with different default answer,

annotations used 34-36
customization 37, 38, 39
non-strict mock 241
strict mock 241
stubbing methods 72, 73

mocks of enums
creating, PowerMock used 44-47

mocks of final classes
creating, PowerMock used 40-44

mockStatic(...) method 46
Mock object 6, 72
Moco

URL 214

N
name(...) method 37
non-strict mock

about 241
differentiating, with strict mock 241

notNull() argument matcher 74

O
object instantiation

stubbing, PowerMock used 105-108
Open/closed principle 24
OrderingComparison.greaterThan(...)

matcher 165

P
partial mocks

creating 59-62
creating, delegatesTo() method used 63-66

PersonProcessor class 155
PersonSaver class 131
PowerMock

URL 104
used, for creating mocks of enums 44-47
used, for creating mocks of final

classes 40-44
used, for creating spies 66-70
used, for stubbing final methods 97-101
used, for stubbing final methods

of spies 130-134
used, for stubbing object

instantiation 105-108
used, for stubbing static methods 101-104
used with JUnit, for stubbing final methods

of spies 131
used with TestNG, for stubbing final methods

of spies 132, 133
using, with JUnit 42
using, with TestNG 43

R
refactoring 136
refactoring, class

for object instantiation 186-193
that do not follow SOLID principles 193-198
that use class casts 198-203
that use static methods 203-206

refactoring, test class
that use too many mocks 206-212

refEq(...) argument matcher 74
returnsArgAt answer 30
ReturnsArgumentAt method 33
ReturnsDeepStubs method 33

267

returnsElementsOf answer 30
ReturnsElementsOf method 33
returnsFirstArg answer 30
returnsLastArg answer 30
ReturnsMocks method 33
returnsSecondArg answer 30
role interfaces 24

S
serializable() method 37
Single responsibility principle 24, 50
SOLID principles

about 23, 24
Dependency inversion 24
Interface segregation 24
Liskov substitution 24
Open/closed 24
Single responsibility 24

spiedInstance(...) method 37
spies

about 49, 50
creating 50-53
creating, annotations used 56-59
creating, PowerMock used 66-70
creating, with custom configuration 53-56
stubbing methods 110

Spock
about 242, 256
and Mockito, similarities 261
reference link 261
versus Mockito 256-261

Spock Web Console
URL 256

Spring
about 214
URL 220, 224, 230

Springockito
URL 214

Springockito's annotations
URL 224
used, for injecting test doubles 224-229

Spring's code configuration
used, for injecting test doubles 214-220

Spring's XML configuration
used, for injecting test doubles 220-224

Spy object 6

startsWith(...) argument matcher 74
static expectLastCall() method 245
static expect(T mock) method 245
strict mock

about 241
differentiating, with non-strict mock 241

stubbing final methods, mocks
with PowerMock 97-101

stubbing final methods, spies
with PowerMock 130-134

stubbing methods, mocks
about 72, 73
argument matchers, used for 73-76
to call real methods 86-88
to return custom answers 83-86
to return value 76-79
to throw exceptions 80-83

stubbing methods, spies
about 110
to return custom answers 117-120
to return value 111-113
to throw exceptions 114-117

stubbing, object instantiation
PowerMock used 105-108

stubbing static methods, mocks
with PowerMock 101-104

stubbing void methods, mocks
about 89, 90
to call real methods 95-97
to return custom answers 92-94
to throw exception 90-92

stubbing void methods, spies
about 121-123
to return custom answers 126-130
to throw exceptions 124-126

Stub object 6, 71
System Under Test (SUT)

about 6
URL 6

T
TaxFactorFetcher class 111
TaxFactorProcessor class 56
TaxService class 51
TaxTransferer class 153

268

test class
drawbacks 208
refactoring, that use too many

mocks 206-212
test doubles

about 6
injecting, Guice's module configuration

used 230-234
injecting, Jukito annotations used 235-239
injecting, Springockito's annotations

used 224-229
injecting, Spring's code configuration

used 214-220
injecting, Spring's XML configuration

used 220-224
URL 6

test doubles, types
Dummy object 6
Fake object 6
Mock object 6
Spy object 6
Stub object 6

TestNG
about 14
differentiating, with JUnit 14
integrating, with Mockito 14-16
URL 16

ThrowsExceptionClass method 33
ThrowsException method 33
timeout() method 157
times() method

used, for verifying method invocation
count 136-138

toString() method 32

V
verboseLogging() method 37
verify method 138

W
warning messages

adding, to JUnit test in Mockito 22
WireMock

URL 214

Thank you for buying

Mockito Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Mockito
ISBN: 978-1-78216-797-6 Paperback: 66 pages

Learn how to create stubs, mocks, and spies and verify
their behavior using Mockito

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Stub methods with callbacks.

3. Verify the behavior of test mocks.

4. Assert the arguments passed to functions
of mocks.

5. Create custom argument matchers.

Test-Driven Development
with Mockito
ISBN: 978-1-78328-329-3 Paperback: 172 pages

Learn how to apply Test-Driven Development and the
Mockito framework in real life projects, using realistic,
hands-on examples

1. Start writing clean, high quality code to apply
Design Patterns and principles.

2. Add new features to your project by applying
Test-first development- JUnit 4.0 and
Mockito framework.

3. Make legacy code testable and clean up
technical debts.

Please check www.PacktPub.com for information on our titles

TestNG Beginner's Guide
ISBN: 978-1-78216-600-9 Paperback: 276 pages

Write robust unit and functional tests with the power
of TestNG

1. Step-by-step guide to learn and practice any
given feature.

2. Detailed understanding of the features and
core concepts.

3. Learn about writing custom reporting.

Instant Mock Testing with
PowerMock
ISBN: 978-1-78328-995-0 Paperback: 82 pages

Discover unit testing using PowerMock

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Understand how to test unit code using
PowerMock, through hands-on examples.

3. Learn how to avoid unwanted behavior of code
using PowerMock for testing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Mockito
	Introduction
	Adding Mockito to a project's classpath
	Getting started with Mockito for JUnit
	Getting started with Mockito for TestNG
	Mockito best practices – test behavior not implementation
	Adding Mockito hints to exception messages (JUnit) (Experimental)
	Adding additional Mockito warnings to your tests (JUnit) (Experimental)

	Chapter 2: Creating Mocks
	Introduction
	Creating mocks in code
	Creating mocks with annotations
	Creating mocks with a different default answer
	Creating mocks with different default answers with annotations
	Creating mocks with custom configuration
	Creating mocks of final classes with PowerMock
	Creating mocks of enums with PowerMock

	Chapter 3: Creating Spies and Partial Mocks
	Introduction
	Creating spies in code
	Creating spies with custom configuration
	Creating spies using annotations
	Creating partial mocks
	Creating partial mocks of final classes with delegatesTo()
	Creating spies of final classes with PowerMock

	Chapter 4: Stubbing Behavior
of Mocks
	Introduction
	Using argument matchers for stubbing
	Stubbing methods that return values
	Stubbing methods so that they throw exceptions
	Stubbing methods so that they return custom answers
	Stubbing methods so that they call real methods
	Stubbing void methods
	Stubbing void methods so that they throw exceptions
	Stubbing void methods so that they return custom answers
	Stubbing void methods so that they call real methods
	Stubbing final methods with PowerMock
	Stubbing static methods with PowerMock
	Stubbing object instantiation using PowerMock

	Chapter 5: Stubbing Behavior
of Spies
	Introduction
	Stubbing methods that return values
	Stubbing methods so that they throw exceptions
	Stubbing methods so that they return custom answers
	Stubbing void methods
	Stubbing void methods so that they
throw exceptions
	Stubbing void methods so that they return custom answers
	Stubbing final methods with PowerMock

	Chapter 6: Verifying Test Doubles
	Introduction
	Verifying the method invocation count with times()
	Verifying the method invocation count with atLeast()
	Verifying the method invocation count with atMost()
	Verifying that interactions never happened
	Verifying that interactions stopped happening
	Verifying the order of interactions
	Verifying interactions and ignoring stubbed methods
	Verifying the method invocation within time

	Chapter 7: Verifying Behavior
with Object Matchers
	Introduction
	Using Hamcrest matchers for assertions
	Creating custom Hamcrest matchers
	Using Hamcrest matchers for stubbing and verification
	Using AssertJ for assertions
	Creating custom AssertJ assertions
	Capturing and asserting the argument

	Chapter 8: Refactoring
with Mockito
	Introduction
	Removing the problems with instance creation
	Refactoring classes that do too much
	Refactoring the classes that use the class casts
	Refactoring the classes that use statics
	Refactoring the tests that use too
many mocks

	Chapter 9: Integration Testing
with Mockito and
DI Frameworks
	Introduction
	Injecting test doubles instead of beans using Spring's code configuration
	Injecting test doubles instead of beans using Spring's XML configuration
	Injecting test doubles instead of beans using Springockito
	Injecting test doubles instead of beans
with Guice
	Injecting test doubles instead of beans with Guice using Jukito

	Chapter 10: Mocking Libraries Comparison
	Introduction
	Mockito versus EasyMock
	Mockito versus JMockit
	Mockito versus JMock
	Mockito versus Spock

	Index

