
More

iPhone Development
 with Swift

Exploring the iOS SDK
David Mark | Jayant Varma | Jeff LaMarche | Alex Horovitz | Kevin Kim

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ...xix

About the Technical Reviewer ..xxi

Acknowledgments ..xxiii

Chapter 1: Here We Go Round Again ■ .. 1

Chapter 2: Core Data: What, Why, and How ■ ... 9

Chapter 3: A Super Start: Adding, Displaying, and Deleting Data ■ 43

Chapter 4: The Devil in the Detail View ■ ... 89

Chapter 5: Preparing for Change: Migrations and Versioning ■ 127

Chapter 6: Custom Managed Objects ■ .. 137

Chapter 7: Relationships, Fetched Properties, and Expressions ■ 171

Chapter 8: Behind Every iCloud ■ ... 219

Chapter 9: Peer-to-Peer Using Multipeer Connectivity ■ 239

Chapter 10: Map Kit ■ ... 281

Chapter 11: Messaging: Mail, Social, and iMessage ■ ... 311

Chapter 12: Media Library Access and Playback ■ .. 329

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

Chapter 13: Lights, Camera, and Action ■ .. 383

Chapter 14: Interface Builder and Storyboards ■ ... 405

Chapter 15: Unit Testing, Debugging, and Instruments ■ 425

Chapter 16: The Road Goes Ever On . . . ■ .. 453

Index ... 459

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Here We Go Round Again

So, you’re still creating iPhone applications, huh? Great! iOS and the App Store have
enjoyed tremendous success, fundamentally changing the way mobile applications are
delivered and completely changing what people expect from their mobile devices. Since
the first release of the iOS Software Development Kit (SDK) way back in March 2008, Apple
has been busily adding new functionality and improving what was already there. It’s no less
exciting a platform than it was back when it was first introduced. In fact, in many ways, it’s
more exciting because Apple keeps expanding the amount of functionality available to third-
party developers like us.

Since the last release of this book, More iOS 6 Development (Apress, 2012), Apple has
released a number of frameworks, tools, and services. These include, but aren’t limited to,
the following:

	Core frameworks: Core Motion, Core Telephony, Core Media, Core View,
Core MIDI, Core Image, and Core Bluetooth

	Utility frameworks: Event Kit, Quick Look Framework, Assets Library,
Image I/O, Printing, AirPlay, Accounts and Social Frameworks, Pass Kit,
AVKit

	Services and their frameworks: iAds, Game Center, iCloud, Newsstand

	Developer-centric enhancements: Blocks, Grand Central Dispatch (GCD),
Storyboards, Collection Views, UI State Preservation, Auto Layout,
UIAutomation

Obviously, there are too many changes to cover completely in a single book. But we’ll try our
best to make you comfortable with the ones that you’ll most likely need to know.

www.allitebooks.com

http://www.allitebooks.org

2 CHAPTER 1: Here We Go Round Again

What This Book Is
This book is a guide to help you continue down the path to creating better iOS applications.
In Beginning iPhone Development with Swift, the goal was to get you past the initial learning
curve and to help you get your arms around the fundamentals of building your first iOS
applications. In this book, we’re assuming you already know the basics. So, in addition to
showing you how to use several of the new iOS APIs, we’re also going to weave in some
more advanced techniques that you’ll need as your iOS development efforts grow in size
and complexity.

In Beginning iPhone Development with Swift, every chapter was self-contained, each
presenting its own unique project or set of projects. We’ll be using a similar approach in the
second half of this book, but in Chapters 2 through 8, we’ll focus on a single, evolving Core
Data application. Each chapter will cover a specific area of Core Data functionality as we
expand the application. We’ll also be strongly emphasizing techniques that will keep your
application from becoming unwieldy and hard to manage as it gets larger.

What You Need To Know
This book assumes you already have some programming knowledge and that you have
a basic understanding of the iOS SDK, either because you’ve worked through Beginning
iPhone Development with Swift or because you’ve gained a similar foundation from other
sources. We assume you’ve experimented a little with the SDK, perhaps written a small
program or two on your own, and have a general feel for Xcode. You might want to quickly
review Beginning iPhone Development with Swift.

COMPLETELY NEW TO IOS?

If you are completely new to iOS development, there are other books you probably should read before this

one. If you don’t already understand the basics of programming and the syntax of the C language, you should

check out Learn C on the Mac for OS X and iOS by David Mark and James Bucanek, which is a comprehensive

introduction to the C language for Macintosh programmers.

If you already understand C but don’t have any experience programming with objects, check out Learn

Objective-C on the Mac, an excellent and approachable introduction to Objective-C by Mac programming

experts Scott Knaster, Waqar Malik, and Mark Dalrymple.

If you also need to learn Swift, there is a book for that too; you can refer to Learn Swift on the Mac by

Waqar Malik

There is a comprehensive list of resources in Chapter 16 of this book in case you want to read and learn more

before you continue with this book.

www.allitebooks.com

http://www.allitebooks.org

3CHAPTER 1: Here We Go Round Again

What You Need Before You Can Begin
Before you can write software for iOS devices, you need a few things. For starters, you need
an Intel-based Macintosh running Yosemite (Mac OS X 10.10 or newer). Any Macintosh
computer—laptop or desktop—that has been released since 2009 should work just fine, but
make sure your machine is Intel-based and is capable of running Yosemite.

This may seem obvious, but you’ll also need an iPhone (5S/5C or newer) or an iPad (iPad 2
or newer) capable of running iOS 8.x. While much of your code can be tested using
the iPhone/iPad simulator, not all programs will run in the simulator. And you’ll want to
thoroughly test any application you create on an actual device before you ever consider
releasing it to the public.

Finally, you’ll need to sign up to become a Registered iOS Developer. If you’re already
a Registered iOS Developer, go ahead and download the latest and greatest iPhone
development tools; then skip ahead to the next section.

If you’re new to Apple’s Registered iOS Developer programs, navigate to http://developer.
apple.com/ios/, which will bring you to a page similar to that shown in Figure 1-1. Just
below the iOS Dev Center banner, on the right side of the page, you’ll find links labeled Log
in and Register. Click the Register link. On the page that appears, click the Continue button.
Follow the sequence of instructions to use your existing Apple ID or create a new one.

www.allitebooks.com

http://developer.apple.com/ios/
http://developer.apple.com/ios/
http://www.allitebooks.org

4 CHAPTER 1: Here We Go Round Again

At some point, as you register, you’ll be given a choice of several paths, all of which will lead
you to the SDK download page. The three choices are free, commercial, and enterprise. All
three options give you access to the iOS SDK and Xcode, Apple’s integrated development
environment (IDE). Xcode includes tools for creating and debugging source code, compiling
applications, and performance-tuning the applications you’ve written. Please note that
although you get at Xcode through the developer site, your Xcode distribution will be made
available to you via the App Store.

Figure 1-1. Apple’s iOS Dev Center web site

www.allitebooks.com

http://www.allitebooks.org

5CHAPTER 1: Here We Go Round Again

The free option is, as its name implies, free. It lets you develop iOS apps that run on a
software-only simulator but does not allow you to download those apps to your iPhone, iPod
touch, or iPad, nor sell your apps on Apple’s App Store. In addition, some programs in this
book will run only on your device, not in the simulator, which means you will not be able to
run them if you choose the free solution. That said, the free solution is a fine place to start if
you don’t mind learning without doing for those programs that won’t run in the simulator.

The other two options are to sign up for an iOS Developer Program, either the Standard
(commercial) Program or the Enterprise Program. The Standard Program costs $99. It
provides a host of development tools and resources, technical support, distribution of
your application via Apple’s App Store, and, most important, the ability to test and debug
your code on an iPhone rather than just in the simulator. The Enterprise Program, which
costs $299, is designed for companies developing proprietary, in-house applications for
the iPhone, iPod touch, and iPad. For more details on these two programs, check out
http://developer.apple.com/programs/. (Prices are in USD and might vary based on the
country that you reside in along with the formalities that Apple might require to enroll in the
developer program.)

Note If you are going to sign up for the Standard or Enterprise Program, you should go do it right

now. It can take a while to get approved, and you’ll need that approval to be able to run applications

on your iPhone. Don’t worry, though—the projects in the early chapters of this book will run just

fine on the iPhone simulator.

Because iOS devices are connected mobile devices that utilize a third party’s wireless
infrastructure, Apple has placed far more restrictions on iOS developers than it ever has on
Macintosh developers, who are able to write and distribute programs with absolutely no
oversight or approval from Apple except when selling on the App Store. Apple is not doing
this to be mean but rather to minimize the chances of people distributing malicious or poorly
written programs that could degrade performance on the shared network. It may seem like
a lot of hoops to jump through, but Apple has gone through quite an effort to make the
process as painless as possible.

What’s In This Book
As we said earlier, Chapters 2 through 7 of this book focus on Core Data, Apple’s primary
persistence framework. The rest of the chapters cover specific areas of functionality either
that are new with iOS SDK or that were simply too advanced to include in Beginning iPhone
Development with Swift.

www.allitebooks.com

http://developer.apple.com/programs/
http://www.allitebooks.org

6 CHAPTER 1: Here We Go Round Again

Here is a brief overview of the chapters that follow:

	Chapter 2, “Core Data: What, Why, and How”: In this chapter, we’ll
introduce you to Core Data. You’ll learn why Core Data is a vital part
of your iPhone development arsenal. We’ll dissect a simple Core Data
application and show you how all the individual parts of a Core Data–
backed application fit together.

	Chapter 3, “A Super Start: Adding, Displaying, and Deleting Data”: Once
you have a firm grasp on Core Data’s terminology and architecture,
you’ll learn how to do some basic tasks, including inserting, searching
for, and retrieving data.

	Chapter 4, “The Devil in the Detail View”: In this chapter, you’ll learn
how to let your users edit and change the data stored by Core Data.
We’ll explore techniques for building generic, reusable views so you can
leverage the same code to present different types of data.

	Chapter 5, “Preparing for Change: Migrations and Versioning”: Here,
we’ll look at Apple tools that you can use to change your application’s
data model, while still allowing your users to continue using their data
from previous versions of your application.

	Chapter 6, “Custom Managed Objects”: To really unlock the power
of Core Data, you can subclass the class used to represent specific
instances of data. In this chapter, you’ll learn how to use custom
managed objects and see some benefits of doing so.

	Chapter 7, “Relationships, Fetched Properties, and Expressions”: In this
final chapter on Core Data, you’ll learn about some mechanisms that
allow you to expand your applications in powerful ways. You’ll refactor
the application you built in the previous chapters so that you don’t need
to add new classes as you expand your data model.

	Chapter 8, “Behind Every iCloud”: The iCloud Storage APIs are among
the coolest features of iOS. The iCloud APIs will let your apps store
documents and key-value data in iCloud. iCloud will wirelessly push
documents to a user’s device automatically and update the documents
when changed on any device—automatically. You’ll enhance your Core
Data application to store information on iCloud.

	Chapter 9, “Peer-to-Peer Over Bluetooth Using Multipeer Connectivity”:
The Multipeer Connectivity framework makes it easy to create programs
that communicate over Bluetooth and WiFi, such as multiplayer games
for the iPhone and iPad. You’ll explore Multipeer Connectivity by
building a simple two-player game.

	Chapter 10, “MapKit”: This chapter explores another great new piece
of functionality added to the iOS SDK: an enhanced CoreLocation.
This framework now includes support for both forward and reverse
geocoding location data. You will be able to convert back and forth
between a set of map coordinates and information about the street, city,

www.allitebooks.com

http://www.allitebooks.org

7CHAPTER 1: Here We Go Round Again

and country (and so on) at that coordinate. Plus, you’ll explore how all
this interoperates with enhanced MapKit.

	Chapter 11, “Messaging: Mail, Social, and iMessage”: Your ability to
get your message out has gone beyond e-mail. In this chapter, we’ll
take you through the core options of Mail, the Social Framework, and
iMessage, and you’ll see how to leverage each appropriately.

	Chapter 12, “Media Library Access and Playback”: It’s now possible to
programmatically get access to your users’ complete library of audio
tracks stored on their iPhone or iPod touch. In this chapter, you’ll look at
the various techniques used to find, retrieve, and play music and other
audio tracks.

	Chapter 13, “Lights, Camera and Action”: In this chapter, you’ll be taking
a detailed look into the AVFoundation framework, which provides a
standard set of APIs and classes for iOS applications to play audio and
video and even capture the same. In addition to the basic interfaces of
this framework, you will utilize some additions for managing capturing,
saving images, and audio.

	Chapter 14, “Interface Builder and Storyboards”: The new additions
to Interface Builder allow you to have live previews and create custom
controls to use in your projects. You will create custom transitions
between your views and view controllers.

	Chapter 15, “Unit Testing, Debugging, and Instruments”: No program
is ever perfect. Bugs and defects are a natural part of the programming
process. In this chapter, you’ll learn various techniques for preventing,
finding, and fixing bugs in iOS SDK programs.

	Chapter 16, “The Road Goes Ever On. . .”: Sadly, every journey must
come to an end. We’ll wrap up this book with fond farewells and some
resources we hope you’ll find useful.

iOS is an incredible computing platform, an ever-expanding frontier for your development
pleasure. In this book, we’re going to take you further down the iPhone development road,
digging deeper into the SDK, touching on new and, in some cases, more advanced topics.

Read the book and be sure to build the projects yourself—don’t just copy them from the
archive and run them once or twice. You’ll learn most by doing. Make sure you understand
what you did, and why, before moving on to the next project. Don’t be afraid to make
changes to the code. Experiment, tweak the code, and observe the results. Rinse and
repeat.

Got your iOS SDK installed? Turn the page, put on some iTunes, and let’s go. Your
continuing journey awaits.

9

Chapter 2
Core Data: What, Why,

and How

Core Data is a framework and set of tools that allow you to save (or persist) your
application’s data to an iOS device’s file system automatically. Core Data is an
implementation of something called object-relational mapping (ORM). This is just a fancy
way of saying that Core Data allows you to interact with your Swift objects without having
to worry about how the data from those objects is stored and retrieved from persistent data
stores such as relational databases (such as SQLite) or flat files.

Core Data can seem like magic when you first start using it. Core Data objects are, for the
most part, handled just like plain old objects, and they seem to know how to retrieve and
save themselves automagically. You won’t create SQL strings or make file management calls,
ever. Core Data insulates you from some complex and difficult programming tasks, which is
great for you. By using Core Data, you can develop applications with complex data models
much, much faster than you could using straight SQLite, object archiving, or flat files.

Technologies that hide complexity the way Core Data does can encourage “voodoo
programming,” that most dangerous of programming practices where you include code in
your application that you don’t necessarily understand. Sometimes that mystery code arrives
in the form of a project template. Or, perhaps you download a utilities library that does a task
for you that you just don’t have the time or expertise to do for yourself. That voodoo code
does what you need it to do, and you don’t have the time or inclination to step through it
and figure it out, so it just sits there, working its magic...until it breaks. As a general rule, if
you find yourself with code in your own application that you don’t fully understand, it’s a sign
you should go do a little research, or at least find a more experienced peer to help you get a
handle on your mystery code.

The point is that Core Data is one of those complex technologies that can easily turn into a
source of mystery code that will make its way into many of your projects. Although you don’t
need to know exactly how Core Data accomplishes everything it does, you should invest
some time and effort into understanding the overall Core Data architecture.

10 CHAPTER 2: Core Data: What, Why, and How

This chapter starts with a brief history of Core Data, and then it dives into a Core Data
application. By building a Core Data application with Xcode, you’ll find it much easier to
understand the more complex Core Data projects you’ll find in the following chapters.

A Brief History of Core Data
Core Data has been around for quite some time, but it became available on iOS with the
release of iPhone SDK 3.0. Core Data was originally introduced with Mac OS X 10.4 (Tiger),
but some of the DNA in Core Data actually goes back about 15 years to a NeXT framework
called Enterprise Objects Framework (EOF), which was part of the toolset that shipped with
NeXT’s WebObjects web application server.

EOF was designed to work with remote data sources, and it was a pretty revolutionary
tool when it first came out. Although there are now many good ORM tools for almost every
language, when WebObjects was in its infancy, most web applications were written to use
handcrafted SQL or file system calls to persist their data. Back then, writing web applications
was incredibly time- and labor-intensive. WebObjects, in part because of EOF, cut the
development time needed to create complex web applications by an order of magnitude.

In addition to being part of WebObjects, EOF was also used by NeXTSTEP, which was the
predecessor to Cocoa. When Apple bought NeXT, the Apple developers used many of the
concepts from EOF to develop Core Data. Core Data does for desktop applications what EOF
had previously done for web applications: it dramatically increases developer productivity by
removing the need to write file system code or interact with an embedded database.

Let’s start building your Core Data application.

Creating a Core Data Application
Fire up Xcode and create a new Xcode project. There are many ways to do this. When you
start Xcode, you may get the Xcode startup window (Figure 2-1). You can just click “Create a
New Xcode project.” Or you can select File ➤ New ➤ Project. Or you can use the keyboard
shortcut ÒN—whatever floats your boat. Going forward, we’re going to mention the
options available in the Xcode window or the menu options, but we won’t use the keyboard
shortcut. If you know and prefer the keyboard shortcuts, feel free to use them. Let’s get back
to building your app.

11CHAPTER 2: Core Data: What, Why, and How

Xcode will open a project workspace and display the Project Template sheet (Figure 2-2).
On the left are the possible template headings: iOS and OS X. Each heading has a bunch
of template groups. Select the Application template group under the iOS heading and then
select Master-Detail Application template on the right. On the bottom right, there’s a short
description of the template. Click the Next button to move the next sheet.

Figure 2-1. Xcode startup window

Figure 2-2. Project Template sheet

12 CHAPTER 2: Core Data: What, Why, and How

The next sheet is the Project Configuration sheet (Figure 2-3). You’ll be asked to provide a
product name; enter CoreDataApp. The Organization Name and Company Identifier fields
will be set automatically by Xcode; by default these will read MyCompanyName and com.
mycompanyname. You can change these to whatever you like, but for Company Identifier,
Apple recommends using the reverse domain name style (such as com.oz-apps).

Figure 2-3. Project Configuration sheet

Note that the Bundle Identifier field is not editable; rather, it’s populated by the values from
the Company Identifier and Product Name fields.

The Devices drop-down field lists the possible target devices for this project: iPad, iPhone,
or Universal. The first two are self-explanatory. Universal is for applications that will run on
both the iPad and iPhone. It’s a blessing and a curse to have to a single project that can
support both iPads and iPhones. But for the purposes of this book, you’ll stick with iPhone.
You obviously want to use Core Data, so select its check box. Finally, make sure that you
have Swift selected as the language.

Click Next and choose a location to save your project (Figure 2-4). The check box on the
bottom will set up your project to use Git (www.git-scm.com), a free, open source version
control system. We won’t discuss it, but if you don’t know about version control or Git, we
suggest you get familiar with them. Click Create. Xcode should create your project, and it
should look like Figure 2-5.

http://www.git-scm.com/

13CHAPTER 2: Core Data: What, Why, and How

Figure 2-4. Choose a location to put your project

Figure 2-5. Voilà, your project is ready!

14 CHAPTER 2: Core Data: What, Why, and How

Build and run the application. Either press the Run button on the toolbar or select Product
➤ Run. The simulator should appear. Press the Add (+) button in the upper right. A new
row will insert into the table that shows the exact date and time the Add button was pressed
(Figure 2-6). You can also use the Edit button to delete rows. Exciting, huh?

Figure 2-6. CoreDataApp in action

Under the hood of this simple application, a lot is happening. Think about it: without adding
a single class or any code to persist data to a file or interact with a database, pressing the
Add button created an object, populated it with data, and saved it to a SQLite database
created for you automatically. There’s plenty of free functionality here.

Now that you’ve seen an application in action, let’s take a look at what’s going on behind
the scenes.

15CHAPTER 2: Core Data: What, Why, and How

Core Data Concepts and Terminology
Like most complex technologies, Core Data has its own terminology that can be a bit
confusing to newcomers. Let’s break down the mystery and get your arms around Core
Data’s nomenclature.

Figure 2-7 shows a simplified, high-level diagram of the Core Data architecture. Don’t expect
it all to make sense now, but as you look at different pieces, you might want to refer to this
diagram to cement your understanding of how they fit together.

There are five key concepts to focus on here. As you proceed through this chapter, make
sure you understand each of the following:

Data model	
Persistent store	
Persistent store coordinator	
Managed object and managed object context	
Fetch request	

Persistent

Store

Data

Model

Persistent

Store

Coordinator

Entity

Description

Based on

Managed Objects Context

Retrieves

Fetch Request

PredicatesManaged

Objects

Figure 2-7. The Core Data architecture

Once again, don’t let the names throw you. Follow along and you’ll see how all these pieces
fit together.

The Data Model
What is a data model? In an abstract sense, it’s an attempt to define the organization of data
and the relationship between the organized data components. In Core Data, the data model
defines the data structure of objects, the organization of those objects, the relationships
between those objects, and the behavior of those objects. Xcode allows you, via the model
editor and inspector, to specify your data model for use in your application.

If you expand the CoreDataApp group in the Navigator content pane, you’ll see a file
called CoreDataApp.xcdatamodel. This file is the default data model for your project. Xcode
created this file for you because you selected the Use Core Data check box in the Project
Configuration sheet. Single-click CoreDataApp.xcdatamodel to bring up Xcode’s model editor.
Make sure the Utility pane is visible (it should be the third button on the View bar) and select
the inspector. Your Xcode window should look like Figure 2-8.

16 CHAPTER 2: Core Data: What, Why, and How

When you selected the data model file, CoreDataApp.xcdatamodel, the Editor pane changed
to present the Core Data model editor (Figure 2-9). Along the top, the jump bar remains
unchanged. Along the left, the gutter has been replaced by a wider pane, the Top-Level
Components pane. The Top-Level Components pane outlines the entities, fetch requests,
and configurations defined in the data model (we’ll cover these in detail in a little bit).
You can add a new entity by using the Add Entity button at the bottom of the Top-Level
Components pane. Alternately, you can use the Editor ➤ Add Entity menu option. If you
click and hold the Add Entity button, you will be presented with a pop-up menu of choices:
Add Entity, Add Fetch Request, and Add Configuration. Whatever option you choose, the
single-click behavior of the button will change to that component, and the label of the button
will change to reflect this behavior. You can find the menu equivalents for adding fetch
requests and configurations under the Editor ➤ Add Entity menu item.

Figure 2-8. Xcode with the model editor and inspector

17CHAPTER 2: Core Data: What, Why, and How

The Top-Level Components pane has two styles: list and hierarchical. You can toggle
between these two styles by using the Outline Style selector group found at the bottom
of the Top-Level Components pane. Switching styles with the CoreDataApp data model
won’t change anything in the Top-Level Components pane; there’s only one entity and one
configuration, so there’s no hierarchy to be shown. If you had a component that depended
on another component, you’d see the hierarchical relationship between the two with the
hierarchical outline style.

The bulk of the Editor pane is taken up by the Detail editor. The Detail editor has two editor
styles: table and graph. By default (and pictured in Figure 2-9), the Detail editor is in table
style. You can toggle between these styles by using the Editor Style selector group on the
bottom right of the Editor pane. Try it. You can see the difference in the two styles.

Figure 2-9. A close look at the model editor

www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 2: Core Data: What, Why, and How

When you select an entity in the Top-Level Components pane, the Detail editor will display,
in table style, three tables: Attributes, Relationships, and Fetched Properties. Again, we’ll
cover these in detail in a little bit. You can add a new attribute by using the Add Attribute
button below the Detail editor. Similar to the Add Entity button, a click-and-hold will reveal
a pop-up menu of choices: Add Attribute, Add Relationship, and Add Fetched Property.
Again, the single-click behavior of this button will change depending on your choice, with
its label reflecting that behavior. Under the Editor menu there are three menu items: Add
Attribute, Add Relationship, and Add Fetched Property. These are active only when an entity
is selected in the Top-Level Components pane.

If you switch the Detail editor to graph style, you’ll see a large grid with a single rounded
rectangle in the center. This rounded rectangle represents the entity in the Top-Level
Components pane. The template you used for this project creates a single entity, Event.
Selecting Event in the Top Level Components pane is the same as selecting the rounded
rectangle in the graph view.

Try it. Click outside the entity in the Detail editor grid to deselect it and then click the Event
line in the Top-Level Components pane. The entity in the graph view will also be selected.
The Top Level Components pane and the graph view show two different views of the same
entity list.

When unselected, the title bar and lines of the Event entity square should be pink. If you select
the Event entity in the Top-Level Components pane, the Event entity in the Detail editor should
change color to a blue, indicating it’s selected. Now click anywhere on the Detail editor grid,
outside the Event rounded square. The Event entity should be deselected in the Top Level
Components pane and should change color in the Detail editor. If you click the Event entity in
the Detail editor, it will be selected again. When selected, the Event entity should have a resize
handle (or dot) on the left and right sides, allowing you to resize its width.

You are currently given the Event entity. It has a single attribute, named timeStamp, and no
relationships. The Event entity was created as part of this template. As you design your own
data models, you’ll most likely delete the Event entity and create your own entities from scratch.
A moment ago, you ran your Core Data sample application in the simulator. When you pressed
the + icon, a new instance of Event was created. Entities, which we’ll look at more closely in a
few pages, replace the Swift data model class you would otherwise use to hold your data. We’ll
get back to the model editor in just a minute to see how it works. For now, just remember that
the persistent store is where Core Data stores its data, and the data model defines the form of
that data. Also remember that every persistent store has one, and only one, data model.

The inspector provides greater detail for the items selected in the model editor. Since each
item could have a different view in the inspector, we’ll discuss the details as we discuss
the components and their properties. That being said, let’s discuss the three top-level
components: entities, fetch requests, and configurations.

19CHAPTER 2: Core Data: What, Why, and How

Entities
An entity can be thought of as the Core Data analog to a Swift class declaration. In fact,
when using an entity in your application, you essentially treat it like a Swift class with some
Core Data–specific implementation. You use the model editor to define the properties that
define your entity. Each entity is given a name (in this case, Event), which must begin with a
capital letter. When you ran CoreDataApp earlier, every time you pressed the Add (+) button,
a new instance of Event was instantiated and stored in the application’s persistent store.

Make sure the Utility pane is exposed, and select the Event entity. Now look at the inspector
in the Utility pane (make sure the inspector is showing by selecting the Inspector button in
the Inspector selector bar). Note that the Inspector pane now allows you to edit or change
aspects of the entity (Figure 2-10). We’ll get to the details of the inspector later.

Figure 2-10. The inspector for the Event entity

20 CHAPTER 2: Core Data: What, Why, and How

Properties

While the Editor pane lists all the data model’s entities, the Inspector pane allows you to
“inspect” the properties that belong to the selected entity. An entity can consist of any
number of properties. There are three different types of properties: attributes, relationships,
and fetched properties. When you select an entity’s property in the model editor, the
property’s details are displayed in the Inspector pane.

Attributes

The property that you’ll use the most when creating entities is the attribute, which serves the
same function in a Core Data entity as an instance variable does in a Swift class: they both
hold data. If you look at your model editor (or at Figure 2-10), you’ll see that the Event entity
has one attribute named timeStamp. The timeStamp attribute holds the date and time when
a given Event instance was created. In your sample application, when you click the + button,
a new row is added to the table displaying a single Event’s timeStamp.

Just like an instance variable, each attribute has a type. There are two ways to set an
attribute’s type. When the model editor is using the table style, you can change an attributes
type in the Attributes table in the Detail editor (Figure 2-11). In your current application,
the timeStamp attribute is set to the Date type. If you click the Date cell, you’ll see a pop-
up menu. That pop-up menu shows the possible attribute types. You’ll look at the different
attribute types in the next few chapters when you begin building your own data models.

Figure 2-11. Attributes table in the model editor, table style

Make sure that the timeStamp attribute is still selected, and take a look at the inspector
(Figure 2-12). Notice among the fields there is an Attribute Type field with a pop-up button.
Click the button, and a pop-up menu will appear. It should contain the attribute’s types you
saw in the Attribute table. Make sure the attribute type is set to date.

21CHAPTER 2: Core Data: What, Why, and How

A date attribute, such as timeStamp, corresponds to an instance of NSDate. If you want to
set a new value for a date attribute, you need to provide an instance of NSDate to do so.
A string attribute corresponds to an instance of NSString, and most of the numeric types
correspond to an instance of NSNumber.

Figure 2-12. Inspector for the timeStamp attribute

Tip Don’t worry too much about all the other buttons, text fields, and check boxes in the model

editor. As you make your way through the next few chapters, you’ll get a sense of what each does.

22 CHAPTER 2: Core Data: What, Why, and How

Relationships

As the name implies, a relationship defines the associations between two different entities.
In the template application, no relationships are defined for the Event entity. We’ll begin
discussing relationships in Chapter 7, but here’s an example just to give you a sense of how
they work.

Suppose you created an Employee entity and wanted to reflect each Employee’s employer
in the data structure. You could just include an employer attribute, perhaps an NSString,
in the Employee entity, but that would be pretty limiting. A more flexible approach would
be to create an Employer entity, and then create a relationship between the Employee and
Employer entities.

Relationships can be to one or to many, and they are designed to link specific objects.
The relationship from Employee to Employer might be a to-one relationship, if you assume
that your Employees do not moonlight and have only a single job. On the other hand, the
relationship from Employer to Employee is to many since an Employer might employ many
Employees.

To put this in Swift terms, a to-one relationship is like using an instance variable to hold a
pointer to an instance of another Swift class. A to-many relationship is more like using a
pointer to a collection class like NSMutableArray or NSSet, which can contain multiple objects.

Fetched Properties

A fetched property is like a query that originates with a single managed object. For example,
suppose you add a birthdate attribute to Employee. You might add a fetched property called
sameBirthdate to find all Employees with the same date of birth as the current Employee.

Unlike relationships, fetched properties are not loaded along with the object. For example,
if Employee has a relationship to Employer, when an Employee instance is loaded, the
corresponding Employer instance will be loaded, too. But when an Employee is loaded,
sameBirthdate is not evaluated. This is a form of lazy loading. You’ll learn more about
fetched properties in Chapter 7.

23CHAPTER 2: Core Data: What, Why, and How

Fetch Requests
While a fetched property is like a query that originates with a single managed object, a fetch
request is more like a class method that implements a canned query. For example, you
might build a fetch request named canChangeLightBulb that returns a list of Employees who
are taller than 80 inches (about 2 meters). You can run the fetch request any time you need
a lightbulb changed. When you run it, Core Data searches the persistent store to find the
current list of potential lightbulb-changing Employees.

You will create many fetch requests programmatically in the next few chapters, and you’ll
be looking at a simple one a little later in this chapter in the “Creating a Fetched Results
Controller” section.

Configurations
A configuration is a set of entities. Different configurations may contain the same entity.
Configurations are used to define which entities are stored in which persistent store. Most of
the time, you won’t need anything other than the default configuration. We won’t cover using
multiple configurations in this book. If you want to learn more, check the Apple Developer
site or Pro Core Data for iOS.

The Data Model Class: NSManagedObjectModel
Although you won’t typically access your application’s data model directly, you should be
aware of the fact that there is a class that represents the data model in memory. This class
is called NSManagedObjectModel, and the template automatically creates an instance of
NSManagedObjectModel based on the data model file in your project. Let’s take a look at the
code that creates it now.

In the Navigation pane, open the CoreDataApp group and AppDelegate.swift. In the Editor
jump bar, click the last menu (it should read No Selection) to bring up a list of the methods
in this class (see Figure 2-13). Select managedObjectModel in the Core Data Stack section,
which will take you to the method that creates the object model based on the CoreDataApp.
xcdatamodel file.

24 CHAPTER 2: Core Data: What, Why, and How

F
ig

u
re

 2
-1

3
.

S
et

ti
n

g
 t

h
e

ed
it

or
 p

an
e

to
 s

h
ow

 c
ou

n
te

rp
ar

ts
 w

ill
 a

llo
w

 y
ou

 t
o

se
e

th
e

d
ec

la
ra

ti
on

 a
n

d
 im

p
le

m
en

ta
ti

on

25CHAPTER 2: Core Data: What, Why, and How

The method should look like this:

lazy var managedObjectModel: NSManagedObjectModel = {
 // The managed object model for the application. This property is not optional.

It is a fatal error for the application not to be able to find and load its model.
 let modelURL = NSBundle.mainBundle().URLForResource("CoreDataApp",

withExtension: "momd")
 return NSManagedObjectModel(contentsOfURL: modelURL)
}()

Using the lazy construct of Swift, the managedObjectModel variable is created of type
NSManagedObjectModel when required. The variable is instantiated the first time it is called.

Tip The data model class is called NSManagedObjectModel because, as you’ll see a little later

in the chapter, instances of data in Core Data are called managed objects.

While it creates the managedObjectModel, it also sets the modelObject with the contents of the
data model called CoreDataApp.momd as the default with the following code:

Let modeURL = NSBundle.mainBundle().URLForResource("CoreDataApp", withExtension:"momd")

Remember how we said that a persistent store was associated with a single data model?
Well, that’s true, but it doesn’t tell the whole story. You can combine multiple .xcdatamodel
files into a single instance of NSManagedObjectModel, creating a single data model that
combines all the entities from multiple files. If you are planning on having more than one
model, you can use the mergedModelFromBundles class method of the NSManagedObjectModel.

This function will take all .xcdatamodel files that might be in your Xcode project and combine
them into a single instance of NSManagedObjectModel:

return NSManagedObjectModel.mergedModelFromBundles(nil)

So, for example, if you create a second data model file and add it to your project, that new
file will be combined with CoreDataApp.xcdatamodel into a single managed object model that
contains the contents of both files. This allows you to split up your application’s data model
into multiple smaller and more manageable files.

The vast majority of iOS applications that use Core Data have a single persistent store and a
single data model, so the default template code will work beautifully most of the time. That
said, Core Data does support the use of multiple persistent stores. You could, for example,
design your application to store some of its data in a SQLite persistent store and some
of it in a binary flat file. If you find that you need to use multiple data models, remember
to change the template code here to load the managed object models individually using
mergedModelFromBundles.

26 CHAPTER 2: Core Data: What, Why, and How

The Persistent Store and Persistent Store Coordinator
The persistent store, which is sometimes referred to as a backing store, is where Core Data
stores its data. By default, on iOS devices Core Data uses a SQLite database contained in
your application’s Documents folder as its persistent store. But this can be changed without
impacting any of the other code you write by tweaking a single line of code. We’ll show you
the actual line of code to change in a few moments.

Caution Do not change the type of persistent store once you have posted your application to the

App Store. If you must change it for any reason, you will need to write code to migrate data from the

old persistent store to the new one, or else your users will lose all of their data—something that will

almost always make them quite unhappy.

Every persistent store is associated with a single data model, which defines the types of
data that the persistent store can store.

The persistent store isn’t actually represented by a Swift class. Instead, a class called
NSPersistentStoreCoordinator controls access to the persistent store. In essence, it takes
all the calls coming from different classes that trigger reads or writes to the persistent store
and serializes them so that multiple calls against the same file are not being made at the
same time, which could result in problems because of file or database locking.

As is the case with the managed object model, the template provides you with a method
in the application delegate that creates and returns an instance of a persistent store
coordinator. Other than creating the store and associating it with a data model and a location
on disk (which is done for you in the template), you will rarely need to interact with the
persistent store coordinator directly. You’ll use high-level Core Data calls, and Core Data will
interact with the persistent store coordinator to retrieve or save the data.

Let’s take a look at the method that returns the persistent store coordinator. In
AppDelegate.swift, select persistentStoreCoordinator from the function pop-up menu.
Here’s the method:

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = {
 // The persistent store coordinator for the application. This implementation creates and

return a coordinator, having added the store for the application to it. This property is
optional since there are legitimate error conditions that could cause the creation of
the store to fail.

 // Create the coordinator and store
 var coordinator: NSPersistentStoreCoordinator? = NSPersistentStoreCoordinator

(managedObjectModel: self.managedObjectModel)
 let url = self.applicationDocumentsDirectory.URLByAppendingPathComponent

("CoreDataApp.sqlite")
 var error: NSError? = nil
 var failureReason = "There was an error creating or loading the application's

saved data."

27CHAPTER 2: Core Data: What, Why, and How

 if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,
 URL: url,
 options: nil,
 error: &error) == nil {
 coordinator = nil
 // Report any error we got.
 let dict = NSMutableDictionary()
 dict[NSLocalizedDescriptionKey] = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey] = failureReason
 dict[NSUnderlyingErrorKey] = error
 error = NSError.errorWithDomain("YOUR_ERROR_DOMAIN", code: 9999, userInfo: dict)
 // Replace this with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 NSLog("Unresolved error \(error), \(error!.userInfo)")
 abort()
 }

 return coordinator
}()

As with the managed object model, this persistentStoreCoordinator accessor method
uses lazy loading and doesn’t instantiate the persistent store coordinator until the first time
it is accessed. It is prefixed with the lazy keyword. Then it creates a path to a file called
CoreDataApp.sqlite in the Documents directory in your application’s sandbox. The template
will always create a filename based on your project’s name. If you want to use a different
name, you can change it here, though it generally doesn’t matter what you call the file since
the user will never see it.

Caution If you do decide to change the filename, make sure you don’t change it after you’ve posted

your application to the App Store, or else future updates will cause your users to lose all of their data.

Take a look at this line of code:

if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,
 URL: url,
 options: nil,
 error: &error) == nil {

The first parameter to this method, NSSQLiteStoreType, determines the type of the persistent
store. NSSQLiteStoreType is a constant that tells Core Data to use a SQLite database for
its persistent store. If you want your application to use a single, binary flat file instead
of a SQLite database, you could specify the constant NSBinaryStoreType instead of
NSSQLiteStoreType. The vast majority of the time, the default setting is the best choice, so
unless you have a compelling reason to change it, leave it alone.

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2: Core Data: What, Why, and How

Note A third type of persistent store supported by Core Data on iOS devices is called an

in-memory store. The primary use of this option is to create a caching mechanism, storing the data

in memory instead of in a database or binary file. To use an in-memory store, specify a store type of

NSInMemoryStoreType.

Reviewing the Data Model
Before you move on to other parts of Core Data, let’s quickly review how the pieces you’ve
looked at so far fit together. You might want to refer to Figure 2-7.

The persistent store (or backing store) is a file on an iOS device’s file system that can be either
a SQLite database or a binary flat file. A data model file, contained in one or more files with
an extension of .xcdatamodel, describes the structure of your application’s data. This file can
be edited in Xcode. The data model tells the persistent store coordinator the format of all data
stored in that persistent store. The persistent store coordinator is used by other Core Data
classes that need to save, retrieve, or search for data. Easy enough, right? Let’s move on.

Managed Objects
Entities define the structure of your data, but they do not actually hold any data themselves.
The instances of data are called managed objects. Every instance of an entity that you
work with in Core Data will be an instance of the class NSManagedObject or a subclass of
NSManagedObject.

Key-Value Coding
The NSDictionary class allows you to store objects in a data structure and retrieve an object
using a unique key. Like the NSDictionary class, NSManagedObject supports the key-value
methods valueForKey and setValue(_:forKey:) for setting and retrieving attribute values. It
also has additional methods for working with relationships. You can, for example, retrieve an
instance of NSMutableSet representing a specific relationship. Adding managed objects to this
mutable set or removing them will add or remove objects from the relationship it represents.

If the NSDictionary class is new to you, take a few minutes to fire up Xcode and read about
NSDictionary in the documentation viewer. The important concept to get your head around
is key-value coding (KVC). Core Data uses KVC to store and retrieve data from its managed
objects.

In your template application, consider an instance of NSManagedObject that represents
a single event. You could retrieve the value stored in its timeStamp attribute by calling
valueForKey, like so:

var timeStamp = managedObject.valueForKey("timeStamp") as NSDate

29CHAPTER 2: Core Data: What, Why, and How

Since timeStamp is an attribute of type date, you know the object returned by valueForKey:
will be an instance of NSDate. The function returns type AnyObject! and to convert
it to a particular type, we need to specify the type. Similarly, you could set the value
using setValue(_:forKey:). The following code would set the timeStamp attribute of
managedObject to the current date and time:

managedObject.setValue(NSDate(), forKey:"timeStamp")

KVC also includes the concept of a keypath. Keypaths allow you iterate through object
hierarchies using a single string. So, for example, if you had a relationship on your Employee
entity called whereIWork, which pointed to an entity named Employer, and the Employer
entity had an attribute called name, then you could get to the value stored in name from an
instance of Employee using a keypath like so:

var employerString = managedObject.valueForKeyPath("WhereIWork.name") as String

Notice that you use valueForKeyPath instead of valueForKey, and you provide a dot-separated
value for the keypath. KVC parses that string using the dots, so in this case, it would parse it
into two separate values: whereIWork and name. It uses the first one (whereIWork) on itself and
retrieves the object that corresponds to that key. It then takes the next value in the keypath
(name) and retrieves the object stored under that key from the object returned by the previous
call. Since Employer is a to-one relationship, the first part of the keypath would return a
managed object instance that represented the Employee’s employer. The second part of the
keypath would then be used to retrieve the name from the managed object that represents
the Employer.

Note If you’ve used bindings in Cocoa, you’re probably already familiar with KVC and keypaths.

If not, don’t worry—they will become second nature to you before long. Keypaths are really quite

intuitive.

Managed Object Context
Core Data maintains an object that acts as a gateway between your entities and the rest
of Core Data. That gateway is called a managed object context (often just referred to as
a context). The context maintains state for all the managed objects that you’ve loaded
or created. The context keeps track of changes that have been made since the last time
a managed object was saved or loaded. When you want to load or search for objects,
for example, you do it against a context. When you want to commit your changes to the
persistent store, you save the context. If you want to undo changes to a managed object,
you just ask the managed object context to undo. (Yes, it even handles all the work needed
to implement undo and redo for your data model).

When building iOS applications, you will have only a single context the vast majority of
the time. However, iOS makes having more than one context easy. You can create nested
managed object contexts, in which the parent object store of a context is another managed
object context rather than the persistent store coordinator.

30 CHAPTER 2: Core Data: What, Why, and How

In this case, fetch and save operations are mediated by the parent context instead of by a
coordinator. You can imagine a number of usage scenarios, including things like performing
background operations on a second thread or queue and managing discardable edits from
an inspector window or view. A word of caution: nested contexts make it more important
than ever that you adopt the “pass the baton” approach of accessing a context (by passing
a context from one view controller to the next) rather than retrieving it directly from the
application delegate.

Because every application needs at least one managed object context to function, the
template has very kindly provided you with one. Click AppDelegate.swift again, and select
managedObjectContext from the Function menu in the Editor jump bar. You will see a method
that looks like this:

lazy var managedObjectContext: NSManagedObjectContext? = {
 // Returns the managed object context for the application (which is already bound to the

persistent store coordinator for the application.) This property is optional since there
are legitimate error conditions that could cause the creation of the context to fail.

 let coordinator = self.persistentStoreCoordinator
 if !coordinator {
 return nil
 }
 var managedObjectContext = NSManagedObjectContext()
 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
}()

This method is pretty straightforward. Using lazy loading, it gets the
persistantStoreCoordinator, returning a nil if the current persistantStoreCoordinator
does not exist. Next, it creates a new managedObjectContext and then sets the
persistentStoreCoordinator to tie to the current coordinator to your managedObjectContext.
When you’re finished, you return managedObjectContext.

Note Managed object contexts do not work directly against a persistent store; they go through a

persistent store coordinator. As a result, every managed object context needs to be provided with a

pointer to a persistent store coordinator in order to function. Multiple managed object contexts can

work against the same persistent store coordinator, however.

Saves On Terminate
While you’re in the application delegate, scroll up to another method called
applicationWillTerminate which saves changes to the context if any have been made.
The changes are saved to the persistent store. As its name implies, this method is called
just before the application exits.

31CHAPTER 2: Core Data: What, Why, and How

func applicationWillTerminate(application: UIApplication!) {
 // Called when the application is about to terminate. Save data if appropriate.

See also applicationDidEnterBackground:.
 // Saves changes in the application's managed object context before the application

terminates.
 self.saveContext()
}

This is a nice bit of functionality, but there may be times when you don’t want the data to be
saved. For example, what if the user quits after creating a new entity but before entering any
data for that entity? In that case, do you really want to save that empty managed object into
the persistent store? Probably not. You’ll look at dealing with situations like that in the next
few chapters.

Load Data from the Persistent Store
Run the Core Data application you built earlier and press the plus button a few times
(see Figure 2-6). Quit the simulator, and then run the application again. Note that the
timestamps from your previous runs were saved into the persistent store and loaded back
in for this run.

Click MasterViewController.swift so you can see how this happens. As you can probably
guess from the filename, MasterViewController is the view controller class that acts as your
application’s, well, master view controller. This is the view controller for the view you can see
in Figure 2-6.

Once you’ve clicked the filename, you can use the Editor jump bar’s Function menu to find
the viewDidLoad method, although it will probably be on your screen already since it’s the
first method in the class. The default implementation of the method looks like this:

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 self.navigationItem.leftBarButtonItem = self.editButtonItem()

 let addButton = UIBarButtonItem(barButtonSystemItem: .Add,
 target: self,
 action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton
}

The first thing the method does is call super. Next, it sets up the Edit and Add buttons.
Note that MasterViewController inherits from UITableViewController, which in turn inherits
from UIViewController. UIViewController provides a function named editButtonItem,
which returns an Edit button of type UIBarButtonItem. Using the function, you retrieve
the editButtonItem and pass it to the leftBarButtonItem property of the navigationItem
property. Now the Edit button is the left button in the navigation bar.

32 CHAPTER 2: Core Data: What, Why, and How

Now let’s focus on the Add button. Since UIViewController does not provide an Add button,
create one from scratch using the UIBarButtonItem and then add it as the right button in the
navigation bar. The code is fairly straightforward.

let addButton = UIBarButtonItem(barButtonSystemItem: .Add,
 target: self,
 action: "insertNewObject:")
self.navigationItem.rightBarButtonItem = addButton

So, with the basic user interface set up, it’s time to look at how the fetched results
controller works.

The Fetched Results Controller
Conceptually speaking, the fetched results controller isn’t quite like the other
generic controllers you’ve seen in the iOS SDK. If you’ve used Cocoa bindings and the
generic controller classes available on the Mac, such as NSArrayController, then you’re
already familiar with the basic idea. If you’re not familiar with those generic controller
classes, a little explanation is probably in order.

Most of the generic controller classes in the iOS SDK (such as UINavigationController,
UITableViewController, and UIViewController) are designed to act as the controller
for a specific type of view. View controllers, however, are not the only types of
controller classes that Cocoa Touch provide, although they are the most common.
NSFetchedResultsController is an example of a controller class that is not a view controller.

NSFetchedResultsController is designed to handle one specific job, which is to manage
the objects returned from a Core Data fetch request. NSFetchedResultsController makes
displaying data from Core Data easier than it would otherwise be because it handles a
bunch of tasks for you. It will, for example, purge any unneeded objects from memory when
it receives a low-memory warning and reload them when it needs them again. If you specify
a delegate for the fetched results controller, your delegate will be notified when certain
changes are made to its underlying data.

Creating a Fetched Results Controller

You start by creating a fetch request and then use that fetch request to create a fetched
results controller. In your template, this is done in MasterViewController.swift, in the
fetchedResultsController method. fetchedResultsController starts with checking to see
whether there is already an active instantiated _fetchedResultsController and returns if it
exists. If that is not there (resolves to nil), it sets out to create a new fetch request. A fetch
request is basically a specification that lays out the details of the data to be fetched. You need
to tell the fetch request which entity to fetch. In addition, you want to add a sort descriptor to
the fetch request. The sort descriptor determines the order in which the data is organized.

Once the fetch request is defined appropriately, the fetched results controller is created.
The fetched results controller is an instance of the class NSFetchedResultsController.
Remember that the fetched results controller’s job is to use the fetch request to keep its
associated data as fresh as possible.

33CHAPTER 2: Core Data: What, Why, and How

Once the fetched results controller is created, you do your initial fetch. You do this in
MasterViewController.swift at the end of fetchedResultsController by calling the
performFetch function.

Now that you have your data, you’re ready to be a data source and a delegate to your
table view. When your table view wants the number of sections for its table, it will call
numberOfSectionsInTableView. In your version, you get the section information by
calling the sections.count of the fetchResultsController. Here’s the version from
MasterViewController.swift:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return self.fetchedResultsController.sections.count
}

The same strategy applies in the function tableView that you override

 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 let sectionInfo = self.fetchedResultsController.sections[section] as

NSFetchedResultsSectionInfo
 return sectionInfo.numberOfObjects
}

You get the idea. You used to need to do all this work yourself. Now you can ask your
fetched results controller to do all the data management for you. It’s an amazing time-saver!

Let’s take a closer look at the creation of the fetched results controller. In
MasterViewController.swift, use the function menu to go to the method
-fetchedResultsController. It should look like this:

var fetchedResultsController: NSFetchedResultsController {
 if _fetchedResultsController != nil {
 return _fetchedResultsController!
 }

 let fetchRequest = NSFetchRequest()
 // Edit the entity name as appropriate.
 let entity = NSEntityDescription.entityForName("Event",
 inManagedObjectContext: self.managedObjectContext)
 fetchRequest.entity = entity

 // Set the batch size to a suitable number.
 fetchRequest.fetchBatchSize = 20

 // Edit the sort key as appropriate.
 let sortDescriptor = NSSortDescriptor(key: "timeStamp", ascending: false)
 let sortDescriptors = [sortDescriptor]

 fetchRequest.sortDescriptors = [sortDescriptor]

34 CHAPTER 2: Core Data: What, Why, and How

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".
 let aFetchedResultsController = NSFetchedResultsController(
 fetchRequest: fetchRequest,
 managedObjectContext: self.managedObjectContext,
 sectionNameKeyPath: nil,
 cacheName: "Master")
 aFetchedResultsController.delegate = self
 _fetchedResultsController = aFetchedResultsController

 var error: NSError? = nil
 if !_fetchedResultsController!.performFetch(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 //println("Unresolved error \(error), \(error.userInfo)")
 abort()
 }

 return _fetchedResultsController!
}

As discussed earlier, this method uses lazy loading. The first thing it does is check if _
fetchedResultsController exists, i.e. not nil. If _fetchedResultsController already exists, it
is returned; otherwise, the process of creating a new fetchedResultsController is started.

As the first step, you need to create an NSFetchRequest and NSEntityDescription and then
attach the NSEntityDescription to the NSFetchRequest.

let fetchRequest = NSFetchRequest()
// Edit the entity name as appropriate.
let entity = NSEntityDescription.entityForName("Event",
 inManagedObjectContext: self.managedObjectContext)
fetchRequest.entity = entity

Remember, you’re building a fetched results controller, and the fetch request is part of that.
Next, set the batch size to 20. This tells Core Data that this fetch request should retrieve its
results 20 at a time. This is sort of like a file system’s block size.

// Set the batch size to a suitable number.
fetchRequest.fetchBatchSize = 20

Next, build an NSSortDescriptor and specify that it use timeStamp as a key, sorting the
timestamps in descending order (earlier dates last).

// Edit the sort key as appropriate.se
let sortDescriptor = NSSortDescriptor(key: "timeStamp", ascending: false)

let sortDescriptors = [sortDescriptor]

fetchRequest.sortDescriptors = [sortDescriptor]

35CHAPTER 2: Core Data: What, Why, and How

Try this experiment: change ascending:false to ascending:true and run the application
again. What do you think will happen? Don’t forget to change it back when you are finished.

Tip If you need to restrict a fetch request to a subset of the managed objects stored in the

persistent store, use a predicate. The default template does not use predicates, but you’ll be

working with them in the next several chapters.

Now you create an NSFetchedResultsController using your fetch request and context.
You’ll learn about the third and fourth parameters, sectionNameKeyPath and cacheName, in
Chapter 3.

// Edit the section name key path and cache name if appropriate.
// nil for section name key path means "no sections".
 let aFetchedResultsController = NSFetchedResultsController(
 fetchRequest: fetchRequest,
 managedObjectContext: self.managedObjectContext,
 sectionNameKeyPath: nil,
 cacheName: "Master")

Next, you set self as the delegate and set fetchedResultsController to the fetched results
controller you just created.

aFetchedResultsController.delegate = self
_fetchedResultsController = aFetchedResultsController

Finally, you perform the fetch and, if there are no errors, you assign the results to your
private instance variable _fetchedResultsController and return the results.

var error: NSError? = nil
if !_fetchedResultsController!.performFetch(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 //println("Unresolved error \(error), \(error.userInfo)")
 abort()
}

return _fetchedResultsController!

Don’t worry too much about the details here. Try to get your head around the big picture.
As you make your way through the next few chapters, the details will come into focus.

36 CHAPTER 2: Core Data: What, Why, and How

The Fetched Results Controller Delegate Methods

The fetched results controller must have a delegate, and that delegate must provide four
methods, which we will describe in the pages that follow. These four methods are defined in
the protocol NSFetchedResultsControllerDelegate. The fetched results controller monitors
its managed object context and calls its delegates as changes are made to its context.

Will Change Content Delegate Method

When the fetched results controller observes a change that affects it—such as an object it
manages being deleted or changed or when a new object is inserted that meets the criteria
of the fetched results controller’s fetch request—the fetched results controller will notify its
delegate before it makes any changes, using the method controllerWillChangeContent.

The vast majority of the time a fetched results controller will be used along with a table view,
and all you need to do in that delegate method is to inform the table view that updates about
to be made might impact what it is displaying. This is the method that ensures it gets done:

func controllerWillChangeContent(controller: NSFetchedResultsController) {
 self.tableView.beginUpdates()
}

Did Change Contents Delegate Method

After the fetched results controller makes its changes, it will then notify its delegate using
the method controllerDidChangeContent. At that time, if you’re using a table view (and you
almost certainly will be), you need to tell the table view that the updates you told it were
coming in controllerWillChangeContent are now complete. This is handled for you like so:

func controllerDidChangeContent(controller: NSFetchedResultsController) {
 self.tableView.endUpdates()
}

Did Change Object Delegate Method

When the fetched results controller notices a change to a specific object, it will notify its delegate
using the method controller(_:didChangeObject:atIndexPath:forChangeType:newIndexPath:).
This method is where you need to handle updating, inserting, deleting, or moving rows in your
table view to reflect whatever change was made to the objects managed by the fetched results
controller. Here is the template implementation of the delegate method that will take care of
updating the table view for you:

 func controller(controller: NSFetchedResultsController, didChangeObject anObject: AnyObject,
atIndexPath indexPath: NSIndexPath, forChangeType type: NSFetchedResultsChangeType,
newIndexPath: NSIndexPath) {
 switch type {
 case .Insert:
 tableView.insertRowsAtIndexPaths([newIndexPath],
 withRowAnimation: .Fade)

37CHAPTER 2: Core Data: What, Why, and How

 case .Delete:
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation: .Fade)
 case .Update:
 self.configureCell(tableView.cellForRowAtIndexPath(indexPath),
 atIndexPath: indexPath)
 case .Move:
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation: .Fade)
 tableView.insertRowsAtIndexPaths([newIndexPath],
 withRowAnimation: .Fade)
 default:
 return
 }
}

Most of this code is fairly straightforward. If a row has been inserted, you receive a type of
NSFetchedResultsChangeTypes.Insert usable as .Insert (Swift allows for the enumerated
members to be accessed without using the entire type and their members) and you insert a
new row into the table. If a row was deleted, you receive a type of .Delete and you delete
the corresponding row in the table. When you get a type of .Update, it means that an object
was changed and the code calls configureCell to ensure that you are looking at the right
data. If a type of .Move was received, you know that a row was moved, so you delete it from
the old location and insert it at the location specified by newIndexPath.

Did Change Section Delegate Method

Lastly, if a change to an object affects the number of sections in the table, the fetched
results controller will call the delegate method controller(_:didChangeSection:atInde
x:forChangeType:). If you specify a sectionNameKeyPath when you create your fetched
results controller, you need to implement this delegate method to take care of adding and
deleting sections from the table as needed. If you don’t, you will get runtime errors when the
number of sections in the table doesn’t match the number of sections in the fetched results
controller. Here is the template’s standard implementation of that delegate method that
should work for most situations:

func controller(controller: NSFetchedResultsController,
 didChangeSection sectionInfo: NSFetchedResultsSectionInfo,
 atIndex sectionIndex: Int,
 forChangeType type: NSFetchedResultsChangeType) {
 switch type {
 case .Insert:
 self.tableView.insertSections(NSIndexSet(index: sectionIndex),
 withRowAnimation: .Fade)
 case .Delete:
 self.tableView.deleteSections(NSIndexSet(index: sectionIndex),
 withRowAnimation: .Fade)
 default:
 return
 }
}

www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 2: Core Data: What, Why, and How

Using these four delegate methods, when you add a new managed object, the fetched
results controller will detect that, and your table will be updated automatically. If you delete
or change an object, the controller will detect that, too. Any change that affects the fetched
results controller will automatically trigger an appropriate update to the table view, including
properly animating the process. This means that you don’t need to litter your code with calls
to reloadData every time you make a change that might impact your dataset. Very nice!

Retrieving a Managed Object From the Fetched Results Controller

Your table view delegate methods have become much shorter and more straightforward,
since your fetched results controller does much of the work that you previously did in those
methods. For example, to retrieve the object that corresponds to a particular cell, which
you often need to do in tableView(_:cellForRowAtIndexPath:) and tableView(_:didSelec
tRowAtIndexPath:), you can just call the function objectAtIndexPath on the fetched results
controller and pass in the indexPath parameter, and it will return the correct object.

let object = self.fetchedResultsController.objectAtIndexPath(indexPath) as NSManagedObject

Creating and Inserting a New Managed Object
From the function menu in the Editor pane, select insertNewObject, which is the method that
is called when the + button is pressed in the sample application. It’s a nice, simple example
of how to create a new managed object, insert it into a managed object context, and then
save it to the persistent store.

func insertNewObject(sender:AnyObject){
 let context = self.fetchedResultsController.managedObjectContext
 let entity = self.fetchedResultsController.fetchRequest.entity
 let newManagedObject = NSEntityDescription.insertNewObjectForEntityForName(entity.name,
 inManagedObjectContext: context) as NSManagedObject
 // If appropriate, configure the new managed object
 // Normally you should use accessor methods, but using KVC here avoids the need to add a

custom class to the template.
 newManagedObject.setValue(NSDate.date(), forKey: "timeStamp")

 // Save the context
 var error: NSError? = nil
 if !context.save(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a cash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 // println("Unresolved error \(error), \(error.userInfo)")
 abort()
 }
}

39CHAPTER 2: Core Data: What, Why, and How

Notice that the first thing the code does is to retrieve a managed object context from the
fetched results controller. In this simple example where there’s only one context, you could
also have retrieved the same context from the application delegate. There are a few reasons
why the default code uses the context from the fetched results controller. First, you already
have a method that returns the fetched results controller, so you can get to the context in
just one line of code.

let context = self.fetchedResultsController.managedObjectContext

More important, though, a fetched results controller always knows which context its
managed objects are contained by, so even if you decide to create an application with
multiple contexts, you’ll be sure that you’re using the correct context if you pull it from the
fetched results controller.

Just as you did when you created a fetch request, when inserting a new object, you need
to create an entity description to tell Core Data which kind of entity you want to create an
instance of. The fetched results controller also knows what entity the objects it manages are,
so you can just ask it for that information.

let entity = self.fetchedResultsController.fetchRequest.entity

Then it’s simply a matter of using a class method on NSEntityDescription to create the new
object and insert it into a context.

let newManagedObject = NSEntityDescription.insertNewObjectForEntityForName(entity.name,
 inManagedObjectContext: context) as NSManagedObject

It does seem a little odd that you use a class method on NSEntityDescription, rather than
an instance method on the context you want to insert the new object into, but that’s the way
it’s done.

Though this managed object has now been inserted into the context, it still exists in the
persistent store. To insert it from the persistent store, you must save the context, which is
what happens next in this method:

// Save the context
var error: NSError? = nil
if !context.save(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a cash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 // println("Unresolved error \(error), \(error.userInfo)")
 abort()
}

As the comment says, you need to handle the error more appropriately than calling abort.
We’ll cover this more in the ensuing chapters. Also, notice that you don’t call reloadData on
your table view. The fetched results controller will realize that you’ve inserted a new object that
meets its criteria and will call the delegate method, which will automatically reload the table.

40 CHAPTER 2: Core Data: What, Why, and How

Deleting Managed Objects
Deleting managed objects is pretty easy when using a fetched results controller. Use the
function menu to navigate to the method called tableView(_:commitEditingStyle:forRowAt
IndexPath:). That method should look like this:

Override func tableView(tableView: UITableView, commitEditingStyle:
UITableViewCellEditingStyle, forRowAtIndex indexPath: NSIndexPath){
 if editingStyle == .Delete {
 let context = self.fetchedResultsControlled.managedObjectContext
 context.deleteObject(self.fetchedResultController.objectAtIndexPath(indexPath) as

NSManagedObject)

 var error: NSError? = nil
 if !context.save(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a cash log and terminate. You

should not use this function in a shipping application, although it may be
useful during development.

 // println("Unresolved error \(error), \(error.userInfo)")
 abort()
 }
 }
}

The method first makes sure that you’re in a delete transaction (remember that this same
method is used for deletes and inserts).

if editingStyle == .Delete {

Next, you retrieve the context.

let context = self.fetchedResultsControlled.managedObjectContext

Then the context is asked to delete that object.

 context.deleteObject(self.fetchedResultController.objectAtIndexPath(indexPath) as
NSManagedObject)

Next, the managed object context’s save: method is called to cause that change to be
committed to the persistent store.

var error: NSError? = nil
if !context.save(&error) {
 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a cash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 // println("Unresolved error \(error), \(error.userInfo)")
 abort()
}

41CHAPTER 2: Core Data: What, Why, and How

No need to admonish you again about the call to abort, as we discussed this previously.

And that’s all there is to deleting managed objects.

Putting Everything in Context
At this point, you should have a pretty good handle on the basics of using Core Data. You’ve
learned about the architecture of a Core Data application and the process of using entities
and properties. You’ve seen how the persistent store, managed object model, and managed
object context are created by your application delegate. You learned how to use the data
model editor to build entities that can be used in your program to create managed objects.
You also learned how to retrieve, insert, and delete data from the persistent store.

Enough with the theory! Let’s move on and build some Core Data applications, shall we?

43

Chapter 3
A Super Start: Adding,

Displaying, and Deleting Data

Well, if that previous chapter didn’t scare you off, then you’re ready to dive in and move
beyond the basic template you explored in Chapter 2.

In this chapter, you’ll create an application designed to track some superhero data. Your
application will start with the Master-Detail Application template, though you’ll be making
lots of changes right from the beginning. You’ll use the model editor to design your
superhero entity. Then you’ll create a new controller class derived from UIViewController
that will allow you to add, display, and delete superheroes. In Chapter 4, you’ll extend your
application further and add code to allow the user to edit her superhero data.

Take a look at Figure 3-1 to get a sense of what your app will look like when it runs. It looks a
lot like the template app. The major differences lie in the entity at the heart of the application
and in the addition of a tab bar at the bottom of the screen. Let’s get to work.

44 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Setting Up the Xcode Project
It’s time to get your hands dirty. Launch Xcode if it’s not open and bring up your old friend,
the new project assistant (Figure 3-2).

Figure 3-1. The SuperDB application as it will look once you’ve finished this chapter

45CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

In the previous chapter, you started with the Master-Detail Application template. When
you’re creating your own navigation applications, it’s a good template to use because it
gives you a lot of the code you’re likely to need in your application. However, to make it
easier to explain where to add or modify code and also to reinforce your understanding of
how applications are constructed, you’ll build the SuperDB application from scratch, just as
you did throughout most of Beginning iPhone Development with Swift.

Select Single View Application and click Next. When prompted for a product name (Figure 3-3),
enter SuperDB. Select iPhone for the device family and make sure that the Use Core Data check
box is selected. Set the language to Swift. After clicking Next again, use the default location to
save the project and click Create.

Figure 3-2. Your dear old friend, Xcode’s new project assistant

Figure 3-3. Entering project details

46 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

First, click the Main.storyboard file; it should appear in the Navigator pane. Click the file
name, rename this Main.storyboard to SuperDB.storyboard, and save it.

Finally, you need to tell Xcode that you want to use the new SuperDB.storyboard file. Select
the SuperDB project at the top of the Navigator pane. When the project editor appears,
select the SuperDB target and go to the project summary editor (Figure 3-4). In the section
titled iPhone/iPod Deployment Info, select the name SuperDB for the Main Storyboard field.

Figure 3-4. Project editor

Now you need to set up your storyboard. Find and select SuperDB.storyboard in the
Navigation pane. The editor pane should transform into the storyboard editor (Figure 3-5).
There is a button on the bottom left; click it.

47CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The storyboard document outline (Figure 3-6) should appear on the left of the storyboard
editor. Right now this view is empty with no scenes (we’ll define scenes in a little bit).
Normally, the storyboard document outline provides a hierarchical view of the scenes,
including their view controllers, views, and UI components.

Figure 3-5. The storyboard editor

48 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Adding a Scene
You want your scene to support navigation, so drag a Navigation Controller from the Object
Library (which should be at the bottom of the Utility pane) to the storyboard editor and then
delete this default view controller by selecting it and pressing Delete. You can click the View
Controller Scene (provided by default) and delete it. Your storyboard editor should look
something like Figure 3-7.

Figure 3-6. The storyboard document outline and disclosure button

www.allitebooks.com

http://www.allitebooks.org

49CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Note In case you find that you have slightly larger and squarer scenes than those that resemble

an iPhone, press the ⌥⌘1 Cmd+Opt+1 shortcut; then under Interface Builder Document, deselect

the use Auto Layout check box. In the dialog that appears, make sure that the drop-down displays

iPhone and then click the Disable Size Classes button.

Figure 3-7. Storyboard editor with a navigation controller

Scenes and Segues
Interestingly, Xcode decided that along with the navigation controller, you wanted a table
view controller and set it up. What you see now are two scenes, Navigation Controller Scene
and Root View Controller Scene. Between the two scenes is a segue. It’s the arrow pointing
from the Navigation Controller to the Root View Controller. It has an icon in the middle of it
that tells you this is a manual segue.

A scene is basically a view controller. The leftmost scene is labeled Navigation Controller;
the rightmost is the Root View Controller. The navigation controller is used to manage the
other view controllers. In Chapter 2, the navigation controller managed the master and detail
view controllers. The navigation controller also provided the navigation bar that allowed you
to edit and add events in the master view controller and provided the Back button in the
detail view controller.

50 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

A segue defines the transition from a scene to the next scene. In the application from
Chapter 2, when you selected an event in the master view controller, you triggered the segue
to transition to the detail view controller.

One more thing that we almost forgot: if you were to simply run the project now, it would
display a black screen because it would fail to instantiate the default view controller. Each
storyboard requires a starting point, which is the view controller that is displayed first. The
arrow to the left specifies this, and since there is no view controller that is set at the initial
view controller, it would display nothing but a black screen. Select the Navigation Controller,
and open the Attributes Inspector by pressing ⌥⌘4 (Cmd+Opt+4). Select the check box
“is Initial View Controller” to display the arrow to the left of the view controller.

Storyboard Document Outline
Now that you have something in your storyboard editor, let’s take a look at the storyboard
document outline. Open it (if it is not showing). Now you can see the hierarchical view of the
scenes described earlier (Figure 3-8), with their view controllers, views, and UI components.

Figure 3-8. The story document outline, populated

51CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Let’s take a look at your work so far. Build and run the SuperDB app. You should see
something like Figure 3-9.

Figure 3-9. The SuperDB app so far

Application Architecture
There’s no single right architecture for every application. One obvious approach would be
to make the application a tabbed application and then add a separate navigation controller
for each tab. In a situation where each tab corresponds to a completely different view
showing different types of data, this approach would make perfect sense. In Beginning
iPhone Development with Swift, you used that exact approach because every single tab
corresponded to a different view controller with different outlets and different actions.

In this case, however, you’re going to implement two tabs (with more to be added in later
chapters), but each tab will show exactly the same data, just ordered differently. When
one tab is selected, the table will be ordered by the superhero’s name. If the other tab is
selected, the same data will be shown but ordered by the superhero’s secret identity.

52 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Regardless of which tab is selected, tapping a row on the table will do the same thing; it
will drill down to a new view where you can edit the information about the superhero you
selected (which you will add in the next chapter). Regardless of which tab is selected,
tapping the Add button will add a new instance of the same entity. When you drill down to
another view or edit a hero, the tabs are no longer relevant.

For your application, the tab bar is just modifying the way the data in a single table is
presented. There’s no need for it to actually swap in and out other view controllers. Why have
multiple navigation controller instances all managing identical sets of data and responding
the same way to touches? Why not just use one table controller and have it change the way it
presents the data based on which tab is selected? This is the approach you’re going to take
in this application. As a result, your application won’t be a true tabbed application.

Your root view controller will be a navigation controller, and you’ll use a tab bar purely to
receive input from the user. The end result that is shown to users will be identical to what
they’d see if you created separate navigation controllers and table view controllers for each
tab. Behind the scenes you’ll be using less memory and won’t have to worry about keeping
the different navigation controllers in sync with each other.

Your application’s root view controller will be an instance of UINavigationController. You’ll
create your own custom view controller class, HeroListController, to act as the root view
controller for this UINavigationController. HeroListController will display the list of
superheroes along with the tabs that control how the heroes are displayed and ordered.

Here’s how the app will work. When the application starts, an instance of HeroListController
is loaded from the storyboard file. Then an instance of UINavigationController is
created with the HeroListController instance as its root view controller. Finally, the
UINavigationController is set as the application’s root view controller. The view associated
with the HeroListController contains your tab bar and your superhero table view.

In Chapter 4, you’ll add a table view controller into the mix to implement a detail
superhero view. When the user taps a superhero in the superhero list, this detail controller
will be pushed onto the navigation stack, and its view will temporarily replace the
HeroListController’s view in the UINavigationController’s content view. There’s no need
to worry about the detail view now; we just wanted you to see what’s coming.

Designing the View Controller Interface
Your application’s root view controller is now a stock UINavigationController. You didn’t
need to write any code for it; you just dropped a navigation controller object into your
storyboard. Xcode also gave you a UITableViewController as the root of the navigation
controller’s stack. Even though you will be using a table to display the list of heroes, you’re
not going to subclass UITableViewController. Because you also need to add a tab bar
to your interface, you’re going to create a subclass of UIViewController and create your
interface in the storyboard editor. The table that will display the list of heroes will be a
subview of your view controller’s content pane.

If it’s not already selected, select the SuperDB.storyboard file in the Navigation pane.
Also make sure the Utility pane is exposed. The storyboard should have two scenes: the
Navigation Controller and the Root View Controller. Select the Root View Controller.

53CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Only the Root View Controller scene and label should be highlighted in blue. Delete this view
controller by hitting the Delete key or by selecting Edit ➤ Delete. You should now have only
the navigation controller.

From the bottom of the Utility pane, select a view controller from the Object Library and
drag it to the storyboard editor. A view controller should appear; place it to the right of the
navigation controller (Figure 3-10).

Figure 3-10. The storyboard with a new view controller scene

Before you lay out the new view controller, let’s connect it to the navigation controller. Select
the navigation controller. Hover the pointer over the leftmost icon (Figure 3-11). A pop-up
window should appear with the words Navigation Controller. Control-drag from the navigation
controller icon to the view of the view controller. When you release the pointer, you should
see a pop-up menu of possible segue assignments (Figure 3-12). Select “root view controller”
in the Relationship Segue section. You should see a segue appear between the navigation
controller and the view controller. Also, the view controller should now have a navigation bar
along the top.

54 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Now you can design the view controller’s interface. Let’s add the tab bar first. Look in the
library for a Tab Bar. Make sure you’re grabbing a tab bar and not a tab bar controller.
You want only the user interface item. Drag a tab bar from the library to the scene called
View Controller and place it snugly in the bottom of the window, as shown in Figure 3-13.

Figure 3-11. Navigation controller label icons

Figure 3-12. Possible segue assignments

Figure 3-13. The tab bar placed snugly against the bottom of the scene

55CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The default tab bar has two tabs, which is exactly the number you want. Let’s change the
icon and label for each. With the tab bar still selected, click the star above Favorites. Then
click the Attributes Inspector button in the Utility pane selector bar (the fourth button from
the left). Alternately, you can select View ➤ Utilities ➤ Show Attributes Inspector. The
menu shortcut is ⌥⌘4.

If you’ve correctly selected the tab bar item, the Attributes Inspector pane should say
Tab Bar Item, and the Identifier pop-up should say Favorites. In the Attributes Inspector, give
this tab a title of By Name and an image of name_icon.png (Figure 3-14). Now click the three
dots above the word More on the tab bar to select the right tab. Using the inspector, give
this tab a title of By Secret Identity and an image of secret_icon.png.

Figure 3-14. Setting the attributes of the left tab

Note You can find the files name_icon.png and secret_icon.png in the download for

this book.

Back in the Object Library, look for a table view. Again, make sure you’re getting the user
interface element, not a table view controller. Drag this to the space above the tab bar.
It should resize automatically to fit the whole space available; you might have to reposition it
and size it accordingly to fit from below the top navigation bar to just up to the top of the tab
bar. After you drop it, it should look like Figure 3-15.

56 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Finally, grab a table view cell and drag it on top of the table view (Figure 3-16).

Figure 3-15. The table view in the scene

57CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Select the table view cell and expose the Attributes Inspector in the Utility pane. You need
to change some of the attributes to get the behavior you want. First, set the style to Subtitle;
your Attributes Inspector should look like Figure 3-17. This gives a table view cell with a
large title text and a smaller subtitle text below the title. Next, give it an identifier value of
HeroListCell. This value will be used later when creating table view cells. Finally, change the
selection from Default to None. This means when you tap a table view cell, it won’t highlight.

Figure 3-16. The table view cell on the table view

58 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Your interface is complete. Now you need to define your view controller interface in order to
make the outlet, delegate, and data source connections.

Creating HeroListController
Click the SuperDB group in the Navigator pane. Now create a new file (N or File ➤ New
➤ File). When the New File Assistant appears (Figure 3-18), select Cocoa Touch Class from
under the iOS heading in the left pane and click the Next button.

Figure 3-17. The table view cell attributes

www.allitebooks.com

http://www.allitebooks.org

59CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

On the second file assistant pane (Figure 3-19), give the class a name of HeroListController
and make it a subclass of UITableViewController. Make sure “Also create XIB file” is
unchecked. With that done, ensure that the language is set to Swift and then click the Next
button. The file dialog should be set to the SuperDB project folder, so just click Create.
A new file should have been added to the project view: HeroListController.swift.

Figure 3-18. Selecting the Cocoa Touch Class template in the new file assistant

Figure 3-19. Selecting the UITableViewController in the file assistant

60 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Wait a minute. When you made the interface in MainStoryboard.storyboard, you used a
plain UIViewController, not a UITableViewController. And we said earlier that you didn’t
want to use a UITableViewController. So, why did we have you make HeroListController a
subclass of UITableViewController?

If you look back at Figure 3-1, you can see that your application displays a list of heroes in
a table view. That table view will need a data source and delegate. The HeroListController
will be that data source and delegate. By asking the New File Assistant to make a subclass
of UITableViewController, Xcode will use a file template that will predefine a bunch of table
view data source and delegate methods. Select HeroListController.swift in the Navigator
pane and take a look at the file in the Editor pane. You should see the methods Xcode gave
you for free. These methods are mostly commented out and are a good starting point to use
as a stub rather than figuring out what functions to implement.

However, you do need to make the HeroListController a subclass of UIViewController.
Click HeroListController.swift in the Navigator pane. Find the class declaration, and
change it from this:

class HeroListController : UITableViewController {

to the following:

class HeroListController : UIViewController, UITableViewDataSource, UITableViewDelegate {

Now you need to connect to the table view data source and delegate to the
HeroListController. While you’re at it, create the outlets needed for the tab bar and table
view. You could add them manually, but we assume you know how to do that. Let’s try using
an alternate method.

Select SuperDB.storyboard in the Navigator pane and expose the storyboard editor. Scroll
the view controller such that the three icons above are visible. Hover the pointer over the
leftmost icon, which is a yellow circle with a white square. Xcode should pop up a label
that reads View Controller. Single-click to select it. In the Utility pane, select the Identity
Inspector ⌥⌘3 (Cmd+Opt+3), as shown in Figure 3-20. Change the Class field (under the
Custom Class header) to HeroListController.

61CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

What have you done here? You’ve told Xcode that your view controller is not a plain old
UIViewController, but now a HeroListController. If you hover the pointer over the view
controller icon, the pop-up will be Hero List Controller now.

Making the Connections and Outlets
First, make the HeroListController the table view data source and delegate. Control-drag
from the Table View area to the HeroListController (Figure 3-21). When you release, an
Outlets pop-up window should appear (Figure 3-22). Select dataSource. Repeat the Control-
drag, this time selecting delegate.

Figure 3-20. View Controller’s Identity Inspector

62 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Figure 3-21. Control-drag from the table view to the HeroListController

Figure 3-22. Table view Outlets pop-up window

Now you’re going to add the outlets for the tab bar and table view. On the toolbar, change
the editor from the Standard editor to the Assistant editor. The Editor pane should split into
two views (Figure 3-23). The left view will have the storyboard editor; the right view will have
a Code editor showing the interface file of HeroListController.

63CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Again, Control-drag from the Table View area, but this time go to the Code editor, just after
the class definition (Figure 3-24). Once you release, a Connection pop-up window should
appear (Figure 3-25). Enter heroTableView in the Name field and leave the rest of the fields
at their default settings. Click the Connect button.

Figure 3-23. The Assistant editor

Figure 3-24. Control-drag from the table view to the HeroListController interface file

64 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The following line will be added after the @interface declaration:

@IBOutlet weak var heroTableView: UITableView!

Repeat the process, this time Control-dragging from the tab bar to just underneath the
new @IBOutlet declaration. Use heroTabBar for the name. You should get the following new
@IBOutlet declaration for the tab bar:

@IBOutlet weak var heroTabBar: UITabBar!

You will see that Xcode is flagging some errors; you might wonder how that is possible since
you have not even started writing code yet. Look in the editor for HeroListController.swift;
there are three places that Xcode has marked with an error. Delete the override keyword
where Xcode has flagged an error. Now you will be down to just one error, near the class
declaration. This is because you have not implemented the UITableView delegate functions.
Look for the function called tableView:cellForRowAtIndexPath (it is commented out, i.e.,
in between /* and /), which should be around line 45. Uncomment it by deleting the line /*
above the function and the */ just after the return cell and the closing brace. Also delete
the override keyword before func. The errors that Xcode was flagging will all go away.

Navigation Bar Buttons
If you build and run the SuperDB app, you should get something like Figure 3-26.

Figure 3-25. The Connection pop-up window

65CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Let’s add the Edit and Add (+) buttons. Make sure the Standard Editor toggle is selected in
the toolbar and then select HeroListController.swift in the Navigator pane. In the Editor
pane, find the following method:

override func viewDidLoad() {

At the bottom of the method, you should see the following lines:

// Uncomment the following line to display an Edit button in the navigation bar for this
view controller.
// self.navigationItem.rightBarButtonItem = self.editButtonItem()

Uncomment the second line, like so:

// Uncomment the following line to display an Edit button in the navigation bar for this
view controller.
self.navigationItem.rightBarButtonItem = self.editButtonItem()

Figure 3-26. SuperDB so far. Looking good!

66 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

To add the Add (+) button, you need to go back to the storyboard editor. Select SuperDB.
storyboard in the Navigator pane. Drag a bar button item from the Object Library to the left
side of the navigation bar in the Hero view controller. In the Utility pane, select the Attributes
Inspector ⌥⌘4 (Cmd+Opt+4). You should see the Attributes Inspector for a bar button item
(Figure 3-27). If not, make sure the bar button item you just added is selected. Change the
Identifier field to Add. The bar button item’s label should change from Item to +.

Figure 3-27. Bar button item’s Attributes Inspector

Toggle back to the Assistant editor. Control-drag from the bar button item to just below the
last @IBOutlet in the HeroListController.swift file. When the connection pop-up window
appears, add a connection named addButton. Control-drag from the bar button item again
to just above the last closing curly brace, }. This time, when the connection pop-up appears,
change the connection value to Action and set the name to addHero (Figure 3-28). Click
Connect. You should see a new method declaration.

@IBAction func addHero(sender: AnyObject) {
}

Figure 3-28. Adding the addHero: action

Build and run the app. Everything looks like it’s in place (Figure 3-29). Click the Edit button.
It should turn into a Done button. Click the Done button, and it should go back to Edit. Press
the Add (+) button. Nothing happens. That’s because you haven’t written the -addHero:
method to do anything. You’ll get to that soon.

67CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

However, right now the tab bar does not have either tab button selected. When you start
the app, both buttons are off. You can select one and then toggle between the two. But
shouldn’t one of the buttons be selected at launch? You’ll implement that next.

Tab Bar and User Defaults
You want the application to start with one of the tab bar buttons selected. You can do that
pretty easily, by adding something like the following to the viewDidLoad method of the
HeroListController:

//Selet the TabBar button
let item = heroTabBar.items?[0] as UITabBarItem
heroTabBar.selectedItem = item

Try it. The application starts, and the By Name tab is selected. Now, select the By Secret
Identity tab and stop the app in Xcode. Restart the app. The By Name tab is selected.
Wouldn’t it be nice if the application remembered your last selection? You can use user
defaults to do that remembering for you.

Figure 3-29. Everything is in the right place

68 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

In the HeroListController.swift file, add the following lines before the class declaration:

let kSelectedTabDefaultsKey = "Selected Tab"

enum tabBarKeys: Int {
 case ByName
 case BySecretIdentity
}

The kSelectedTabDefaultsKey is the key you’ll use to store and retrieve the selected tab
bar button index from the user defaults. The enumeration is just a convenience for the
values 0 and 1.

Switch to the HeroListController.swift file, and add the following to the end of the
viewDidLoad() method:

//Selet the TabBar button
let defaults = NSUserDefaults.standardUserDefaults()
let selectedTab = defaults.integerForKey(kSelectedTabDefaultsKey)
let item = heroTabBar.items?[selectedTab] as UITabBarItem
heroTabBar.selectedItem = item

(If you entered the earlier tab bar selection code, make sure you make the changes correctly.)

Build and run the app. Toggle the tab bar. Quit the app, and make sure the By Secret
Identity button is selected. Quit the app, and start it again. It should remember the selection,
right? Not yet. You haven’t written code to write the user default when the tab bar selection
changes. You’re only reading it at launch. Let’s write the default when it changes.

Select SuperDB.storyboard, and Control-drag from the tab bar to the Hero view controller.
When the Outlets pop-up appears, select “delegate” (it should be your only choice). Next,
add the protocol to handle UITabBarDelegate as follows:

class HeroListController : UIViewController, UITableViewDataSource, UITableViewDelegate {

to the following:

class HeroListController : UIViewController, UITableViewDataSource, UITableViewDelegate,
UITabBarDelegate {

Now UITabBarDelegate has a required method called tabBar:didSelectItem:. Select
HeroListController.m and navigate the editor to just above the -addHero: method. Add
these lines:

//MARK: - UITabBarDelegate Methods

func tabBar(tabBar: UITabBar, didSelectItem item: UITabBarItem!) {
 let defaults = NSUserDefaults.standardUserDefaults()
 let items: NSArray = heroTabBar.items!
 let tabIndex = items.indexOfObject(item)
 defaults.setInteger(tabIndex, forKey: kSelectedTabDefaultsKey)
}

www.allitebooks.com

http://www.allitebooks.org

69CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Now when you quit and launch the application, it remembers your last tab bar selection.

Note Before you complain that it did not work, if you add a protocol to your viewController,

you need to also set the delegate. In this case, change to the storyboard, click-drag from the tab bar

to the yellow icon on the left, like you did for the TableView, and select “delegate” from the pop-up.

Designing the Data Model
Now you need define the application’s data model. As we discussed in Chapter 2, the Xcode
model editor is where you design your application’s data model. In the Navigator pane, click
SuperDB.xcdatamodel. This should bring up the model editor (Figure 3-30).

Figure 3-30. The empty model editor awaiting your application’s data model

Unlike the data model from Chapter 2, you should be starting with a completely empty data
model. So, let’s dive right in and start building. The first thing you need to add to your data
model is an entity. Remember, entities are like class definitions. Although they don’t store
any data themselves, without at least one entity in your data model, your application won’t
be able to store any data.

70 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Adding an Entity
Since the purpose of your application is to track information about superheroes, it seems
logical that you’re going to need an entity to represent a hero. You’re going to start off simple
in this chapter and track only a few pieces of data about each hero: name, secret identity,
date of birth, and sex. You’ll add more data elements in future chapters, but this will give you
a basic foundation upon which to build.

Add a new entity to the data model. A new entity, named Entity, should appear in the
Top-Level Components pane. This entity should be selected, and the text Entity should be
highlighted. Rename this entity to Hero.

Editing the New Entity
Let’s verify that your new Hero entity has been added to the default configuration. Select the
Default Configuration in the Top-Level Configuration pane. The Data Editor Detail pane to the
right should have changed with a single table named Entities. There should be one entry in
this table, the entity you just named Hero.

Next to Hero is a check box called Abstract. This check box allows you to create an entity
that cannot be used to create managed objects at runtime. The reason why you might create
an abstract entity is if you have several properties that are common to multiple entities. In
that case, you might create an abstract entity to hold the common fields and then make
every entity that uses those common fields a child of that abstract entity. Thus, if you
needed to change those common fields, you’d need to do it in only one place.

Next, the Class field should blank. This means the Hero entity is a subclass of NSManagedObject.
In Chapter 6, you’ll see how to create custom subclasses of NSManagedObject to add
functionality.

You can see more detail by selecting this row and then exposing the Utility pane. Let’s
expose the Utility pane. Once the Utility pane appears, select the Data Model Inspector (the
third button on the inspector selector bar). The Utility pane should be similar to Figure 3-31.

71CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The first three fields (Name, Class, and Abstract Entity) mirror what you saw in the Data
Detail pane. Below the Abstract Entity check box is a Parent Entity pop-up menu. Within a
data model, you have the ability to specify a parent entity, which is similar to subclassing
in Objective-C. When you specify another entity as your parent, the new entity receives all
the properties of the parent entity along with any additional ones you specify. Leave the
parenting pop-up set to No Parent Entity.

Figure 3-31. The Utilities pane for the new entity

Note You may be wondering about the additional areas in the Data Model Inspector, titled User

Info, Versioning, and Entity Sync. These settings give you access to more advanced configuration

parameters that are only rarely used. You won’t be changing any of the configurations.

If you’re interested in finding out more about these advanced options, you can read more about

them in Pro Core Data for iOS. Apple has the following guides online as well: the Core Data

Programming Guide at http://developer.apple.com/library/ios/#documentation/

Cocoa/Conceptual/CoreData/cdProgrammingGuide.html and the Core Data Model

Versioning and Data Migration Guide at http://developer.apple.com/library/

ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/

Introduction.html.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/Introduction.html

72 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Adding Attributes to the Hero Entity
Now that you have an entity, you must give it attributes in order for managed objects based
on this entity to be able to store any data. For this chapter, you need four attributes: name,
secret identity, birth date, and sex.

Adding the Name Attribute

Select the Hero entity in the data component pane and add an attribute. Once added, an
entry named Attribute should appear in the Attributes Property table in the detail pane.
Just as when you created a new entity, the newly added attribute has been automatically
selected for you. Enter name, which will cause the name of the new attribute to be updated.
The Attributes Property pane should look like Figure 3-32.

Figure 3-32. Attributes detail

Tip It’s not an accident that you chose to start your entity Hero with a capital H but your attribute

name with a lowercase n. This is the accepted naming convention for entities and properties.

Entities begin with a capital letter; properties begin with a lowercase letter. In both cases, if the

name of the entity or property consists of more than one word, the first letter of each new word is

capitalized.

The Type column of the table specifies the data type of the attribute. By default, the data
type is set to Undefined.

Now, let’s expose the Utilities pane again (if it’s not already open). Make sure the name
attribute is selected in the detail pane and choose the Data Model Inspector (Figure 3-33).
The first field should be titled Name, and it should have the value of name.

73CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Below the Name field are three check boxes: Transient, Optional, and Indexed. If Optional
is checked, then this entity can be saved even if this attribute has no value assigned to it.
If you uncheck it, then any attempt to save a managed object based on this entity when
the name attribute is nil will result in a validation error that will prevent the save. In this
particular case, name is the main attribute that you will use to identify a given hero, so you
probably want to require this attribute. Click the Optional check box to uncheck it, making
this field required.

The Transient check box allows you to create attributes that are not saved in the persistent
store. They can also be used to create custom attributes that store nonstandard data. For
now, don’t worry too much about Transient. Just leave it unchecked; you’ll revisit this check
box in Chapter 6.

The final check box, Indexed, tells the underlying data store to add an index on this attribute.
Not all persistent stores support indices, but the default store (SQLite) does. The database
uses an index to improve search speeds when searching or ordering based on that field. You
will be ordering your superheroes by name, so check the Indexed check box to tell SQLite to
create an index on the column that will be used to store this attribute’s data.

Figure 3-33. The Data Model Inspector for the new name attribute

Caution Properly used, indices can greatly improve performance in a SQLite persistent store.

Adding indices where they are not needed, however, can actually degrade performance. If you don’t

have a reason for selecting Indexed, leave it unchecked.

74 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Attribute Types

Every attribute has a type, which identifies the kind of data that the attribute is capable
of storing. If you single-click the Attribute Type drop-down (which should currently be set
to Undefined), you can see the various data types that Core Data supports out of the box
(Figure 3-34). These are all the types of data that you can store without having to implement
a custom attribute, like you’re going to do in Chapter 6. Each of the data types corresponds
to an Objective-C class that is used to set or retrieve values, and you must make sure to use
the correct object when setting values on managed objects.

Figure 3-34. The data types supported by Core Data

Table 3-1. Integer Type Minimums and Maximums

Data Type Minimum Maximum

Integer 16 −32,768 32, 767

Integer 32 −2,147,483,648 2,147,483,647

Integer 64 −9,223,372,036,854,775,808 9,223,372,036,854,775,807

The Integer Data Types

Integer 16, Integer 32, and Integer 64 all hold signed integers (whole numbers). The only
difference between these three number types is the minimum and maximum size of the
values they are capable of storing. In general, you should pick the smallest-size integer that
you are certain will work for your purposes. For example, if you know your attribute will never
hold a number larger than a thousand, make sure to select Integer 16 rather than Integer 32
or Integer 64. The minimum and maximum values that these three data types are capable of
storing are shown in Table 3-1.

At runtime, you set integer attributes of a managed object using instances of NSNumber
created using a factory method such as numberWithInt: or numberWithLong:.

75CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The Decimal, Double, and Float Data Types

The decimal, double, and float data types all hold decimal numbers. Double and float hold
floating-point representations of decimal numbers similar to the C data types of double
and float, respectively. Floating-point representations of decimal numbers are always an
approximation because they use a fixed number of bytes to represent data. The larger
the number to the left of the decimal point, the fewer bytes there are available to hold the
fractional part of the number. The double data type uses 64 bits to store a single number,
while the float data type uses 32 bits of data to store a single number. For many purposes,
these two data types will work just fine. However, when you have data, such as currency,
where small rounding errors would be a problem, Core Data provides the decimal data type,
which is not subject to rounding errors. The decimal type can hold numbers with up to 38
significant digits stored internally using fixed-point numbers so that the stored value is not
subject to the rounding errors that can happen with floating-point numbers.

At runtime, you set double and float attributes using instances of NSNumber created using the
NSNumber factory method numberWithFloat: or numberWithDouble:. Decimal attributes, on the
other hand, must be set using an instance of the class NSDecimalNumber.

The String Data Type

The string data type is one of the most common attribute types you will use. String attributes
are capable of holding text in nearly any language or script since they are stored internally
using Unicode. String attributes are set at runtime using instances of NSString.

The Boolean Data Type

Boolean values (true or false) can be stored using the Boolean data type. Boolean attributes
are set at runtime using instances of NSNumber created using numberWithBOOL:.

The Date Data Type

Dates and timestamps can be stored in Core Data using the date data type. At runtime, date
attributes are set using instances of NSDate.

The Binary Data Type

The binary data type is used to store any kind of binary data. Binary attributes are set at
runtime using NSData instances. Anything that can be put into an NSData instance can be
stored in a binary attribute. However, you generally can’t search or sort on binary data types.

The Transformable Data Type

The transformable data type is a special data type that works along with something called
a value transformer to let you create attributes based on any Objective-C class, even those
for which there is no corresponding Core Data data type. You would use transformable data
types to store a UIImage instance, for example, or to store a UIColor instance. You’ll see how
transformable attributes work in Chapter 6.

76 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Setting the name Attribute Type

A name, obviously, is text, so the obvious type for this attribute is string. Select String from
the Attribute Type drop-down. After selecting it, a few new fields will appear in the Detail
pane (Figure 3-35). Just like Interface Builder’s inspector, the Detail pane in the model
editor is context-sensitive. Some attribute types, such as the string type, have additional
configuration options.

Figure 3-35. The Detail pane after selecting the string type

The Min Length and Max Length fields allow you to set a minimum and maximum number
of characters for this field. If you enter a number into either field, any attempt to save a
managed object that has fewer characters than Min Length or more characters than Max
Length stored in this attribute will result in a validation error at save time.

Note that this enforcement happens in the data model, not in the user interface. Unless you
specifically enforce limitations through your user interface, these validations won’t happen
until you actually save the data model. In most instances, if you enforce a minimum or
maximum length, you should also take some steps to enforce that in your user interface.
Otherwise, the user won’t be informed of the error until they go to save, which could be quite
a while after they’ve entered data into this field. You’ll see an example of enforcing this in
Chapter 6.

77CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

The next field is labeled Default Value. You can use this to, well, set a default value for this
property. If you type a value into this field, any managed object based on this entity will
automatically have its corresponding property set to whatever value you type in here. So, in
this case, if you were to type Untitled Hero into this field, any time you created a new Hero
managed object, the name property would automatically get set to Untitled Hero. Heck, that
sounds like a good idea, so type Untitled Hero into this field.

The last field is labeled Reg. Ex., which stands for regular expression. This field allows you
to do further validation on the entered text using regular expressions, which are special text
strings that you can use to express patterns. You could, for example, use an attribute to store
an IP address in text and then ensure that only valid numerical IP addresses are entered by
entering the regular expression \b\d{1,3}\.\d{1,3}\.\d{1,3}\. \d{1,3}\b. You’re not going
to use regular expressions for this attribute, so leave the Reg. Ex. field blank.

Note Regular expressions are a complex topic on which many full books have been written.

Teaching regular expressions is way beyond the scope of this book, but if you’re interested in using

regular expressions to do data model–level validation, a good starting point is the Wikipedia page

on regular expressions at http://en.wikipedia.org/wiki/Regular_expression, which

covers the basic syntax and contains links to many regular expression-related resources.

Finally, for good measure, save.

Adding the Rest of the Attributes

Your Hero entity needs three more attributes, so let’s add them now. Click the Add Attribute
button again. Give this one a name of secretIdentity and a type of string. Since, according
to Mr. Incredible, every superhero has a secret identity, you’d better uncheck the Optional
check box. You will be sorting and searching on secret identity, so check the Indexed box.
For Default Value, enter Unknown. Because you’ve made the field mandatory by unchecking
the Optional check box, it’s a good idea to provide a default value. Leave the rest of the
fields as is.

Caution Be sure to enter default values for the name and secretIdentity attributes. If you don’t,

the program will behave badly. If your program crashes, check to make sure you’ve saved your

source code files and your storyboard files.

Click the plus button a third time to add yet another attribute, giving it a name of birthDate
and a type of date. Leave the rest of the fields at their default values for this attribute. You
may not know the birthdate for all of your superheroes, so you want to leave this attribute
as optional. As far as you know now, you won’t be doing a lot of searching or ordering on
birthDate, so there’s no need to make this attribute indexed. You could do some additional

http://en.wikipedia.org/wiki/Regular_expression

78 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

validation here by setting a minimum, maximum, or default date, but there really isn’t much
need. There’s no default value that would make sense, and setting a minimum or maximum
date would preclude the possibility of an immortal superhero or a time-traveling one, which
you certainly don’t want to do!

This leaves you with one more attribute for this first iteration of your application: sex. There
are a number of ways that you could choose to store this particular piece of information. For
simplicity’s sake (and because it will help us show you a few helpful techniques in Chapter 6),
you’re just going to store a character string of either Male or Female. Add another attribute
and select a type of string. Let’s leave this as an optional setting; there might just be an
androgynous masked avenger or two out there. You could use the regular expression field
to limit inputs to either Male or Female, but, instead, you’re going to enforce that in the user
interface by presenting a selection list rather than enforcing it here in the data model.

Guess what? You’ve now completed the data model for the first iteration of the SuperDB
application. Save it and let’s move on.

Declaring the Fetched Results Controller
To populate the table view, you need to fetch all the Hero entities stored in your persistent
store. The best way to accomplish this is to use a fetched results controller inside the
HeroListController. To use a fetched results controller, you need to define its delegate
to be notified when the fetched results change. To make things easy, you’ll make the
HeroListController the fetched results controller delegate.

Select HeroListController.swift and add the line import CoreData just after import UIKit
and then change the class declaration to this:

import UIKit
import CoreData

class HeroListController : UIViewController, UITableViewDataSource, UITableViewDelegate,
UITabBarDelegate, NSFetchedResultsControllerDelegate {

Now that you’ve declared the NSFetchedResultsControllerDelegate, you need the controller.
You could declare the property in HeroListController.swift, but you don’t actually need
this property to be public. You’re only going use it within the HeroListController. So, you’ll
make this a private property.

Scroll the editor to the top of the file, if necessary. Right after the class declaration, you
should add this line:

private var _fetchedResultsController: NSFetchedResultsController!

79CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Implementing the Fetched Results Controller
Let’s add the code for the fetchedResultsController.

// MARK:- FetchedResultsController Property

private var fetchedResultsController: NSFetchedResultsController {
 get {
 }
}

Like they use to say, where’s the beef? Well, we wanted to step through this line by line and
explain the code. The full listing is available at the end of the chapter if you want to look
ahead.

First, we said the fetched results controller was going to be lazily loaded, so here’s the
code to handle that; all of this code comes in between the curly brackets following the get
keyword.

if _fetchedResultsController != nil {
 return _fetchedResultsController
}

If you get past this point, it means that the _fetchResultsController variable is nil, so you’ll
have to create one. First, you need to instantiate a fetch request.

let fetchRequest = NSFetchRequest()

Now you get the entity description for your Hero entity and set the fetch request entity.
While you’re at it, set the fetch batch size, which breaks up the fetch into batches for
performance reasons.

let appDelegate = UIApplication.sharedApplication().delegate as AppDelegate
let context = appDelegate.managedObjectContext
let entity = NSEntityDescription.entityForName("Hero", inManagedObjectContext: context!)
fetchRequest.entity = entity
fetchRequest.fetchBatchSize = 20

The order of the fetch results is going to depend on which tab you’ve selected, so you’ll get
that value. As a sanity check, read the user defaults if no tab is selected.

let array:NSArray = self.heroTabBar.items!
var tabIndex = array.indexOfObject(self.heroTabBar.selectedItem!)
if tabIndex == NSNotFound {
 let defaults = NSUserDefaults.standardUserDefaults()
 tabIndex = defaults.integerForKey(kSelectedTabDefaultsKey)
}

Now you set the fetch request’s sort descriptors. A sort descriptor is a simple object that
tells the fetch request what property (attribute) should be used to compare instances of
entities and whether it should be ascending or descending. A fetch request expects an array

80 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

of sort descriptors, and the order of sort descriptors determines the order of priority when
comparing.

var sectionKey: String!
switch (tabIndex){
 case tabBarKeys.ByName.rawValue:
 let sortDescriptor1 = NSSortDescriptor(key: "name", ascending: true)
 let sortDescriptor2 = NSSortDescriptor(key: "secretIdentity", ascending: true)
 var sortDescriptors = NSArray(objects: sortDescriptor1, sortDescriptor2)
 fetchRequest.sortDescriptors = sortDescriptors
 sectionKey = "name"
 case tabBarKeys.BySecretIdentity.rawValue:
 let sortDescriptor2 = NSSortDescriptor(key: "name", ascending: true)
 let sortDescriptor1 = NSSortDescriptor(key: "secretIdentity", ascending: true)
 var sortDescriptors = NSArray(objects: sortDescriptor1, sortDescriptor2)
 fetchRequest.sortDescriptors = sortDescriptors
 sectionKey = "secretIdentity"
 default:
 ()
}

If the By Name tab is selected, you ask the fetch request to sort by the name attribute and
then the secretIdentity. For the By Secret Identity tab, you reverse the sort descriptors.
You set a sectionKey string, which you’ll use next.

Now you finally instantiate the fetched results controller. Here’s where you use the
sectionKey and assign it a cache name of Hero. You assign the fetched results controller
delegate to the HeroListController.

let aFetchResultsController = NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: context!, sectionNameKeyPath: sectionKey,
 cacheName: "Hero")
aFetchResultsController.delegate = self
_fetchedResultsController = aFetchResultsController
return _fetchedResultsController

Finally, you return the fetched results controller.

Fetched Results Controller Delegate Methods
Since you assigned the fetched results controller delegate to the HeroListController, you
need to implement those methods. Add the following after the fetchedResultsController
method you just created:

// MARK: - NSFetchedResultsController Delegate Methods

func controllerWillChangeContent(controller: NSFetchedResultsController) {
 self.heroTableView.beginUpdates()
}

81CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

func controllerDidChangeContent(controller: NSFetchedResultsController) {
 self.heroTableView.endUpdates()
}

func controller(controller: NSFetchedResultsController, didChangeSection
 sectionInfo: NSFetchedResultsSectionInfo, atIndex
 sectionIndex: Int, forChangeType type: NSFetchedResultsChangeType) {
 switch(type) {
 case .Insert:
 self.heroTableView.insertSections(NSIndexSet(index: sectionIndex),
 withRowAnimation: .Fade)
 case .Delete:
 self.heroTableView.deleteSections(NSIndexSet(index: sectionIndex),
 withRowAnimation: .Fade)
 default:
 ()
 }
}

func controller(controller: NSFetchedResultsController, didChangeObject anObject: AnyObject,
 atIndexPath indexPath: NSIndexPath?, forChangeType
 type: NSFetchedResultsChangeType, newIndexPath: NSIndexPath?) {
 switch(type) {
 case .Insert:
 self.heroTableView.insertRowsAtIndexPaths([newIndexPath!], withRowAnimation: .Fade)
 case .Delete:
 self.heroTableView.deleteRowsAtIndexPaths([indexPath!], withRowAnimation: .Fade)
 default:
 ()
 }
}

For an explanation of these methods, refer to the “The Fetched Results Controller Delegate
Methods” section of Chapter 2.

Making It All Work
You’re almost done. You still need to do the following:

Implement the Edit and Add (+) buttons	
Code the table view data source and delegate methods correctly	
Make the tab bar selector sort the table view	
Run the fetch request at launch	
Handle errors.	

It seems like a lot, but it’s not. Let’s start with the error handling.

82 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Error Handling
You’ll make things simple by using a simple alert view to display errors. To use an alert view,
you need to implement an alert view delegate. Like the fetched results controller, you’ll
make the HeroListController the alert view delegate. Edit the HeroListController class
declaration to read as follows:

class HeroListController: UIViewController, UITableViewDataSource, UITableViewDelegate,
UITabBarDelegate, NSFetchedResultsControllerDelegate {

Implementing Edit and Add
When you click the Add (+) button, the application does more than just add a row to the
table view. It adds a new Hero entity to the managed object context.

@IBAction func addHero(sender: AnyObject) {
 let managedObjectContext = fetchedResultsController.managedObjectContext as
 NSManagedObjectContext
 let entity:NSEntityDescription = fetchedResultsController.fetchRequest.entity!
 NSEntityDescription.insertNewObjectForEntityForName(entity.name!,
 inManagedObjectContext: managedObjectContext)

 var error: NSError?

 if !managedObjectContext.save(&error) {
 let title = NSLocalizedString("Error Saving Entity", comment: "Error Saving Entity")
 let message = NSLocalizedString("Error was : \(error?.description), quitting",
 comment: "Error was : \(error?.description), quitting")
 showAlertWithCompletion("title", message:"message",
 buttonTitle:"Aw nuts", completion:{_ in exit(-1)})
 }
}

You can declare the function showAlertWithCompletion as follows:

func showAlertWithCompletion(title:String, message:String,
 buttonTitle:String = "OK", completion:((UIAlertAction!)->Void)!) {
 let alert = UIAlertController(title: title, message: message, preferredStyle: .Alert)
 let okAction = UIAlertAction(title: buttonTitle, style: .Default, handler: completion)
 alert.addAction(okAction)
 self.presentViewController(alert, animated: true, completion: nil)
}

When the Edit button is clicked, the setEditing:animated: method is automatically called.
So you just need to add that method to your HeroListController.m without having declare it
in the interface file.

override func setEditing(editing: Bool, animated: Bool) {
 super.setEditing(editing, animated: animated)
 addButton.enabled = !editing
 heroTableView.setEditing(editing, animated: animated)
}

83CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

All you do here is call the super method, disable the Add (+) button (you don’t want to be
adding heroes while editing!), and call setEditing:animated: on the table view.

Coding the Table View Data Source and Delegate
Using the CoreDataApp from Chapter 2 as an example, you need to change the following
table view data source methods:

// MARK: - Table view data source

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // #warning Potentially incomplete method implementation.
 // Return the number of sections.
 return fetchedResultsController.sections?.count ?? 0
}

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // #warning Incomplete method implementation.
 // Return the number of rows in the section.
 let sectionInfo = fetchedResultsController.sections![section] as
 NSFetchedResultsSectionInfo
 return sectionInfo.numberOfObjects
}

Next, you handle the table view cell creation, like so:

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell {
 let cellIdentifier = "HeroListCell"
 let cell = tableView.dequeueReusableCellWithIdentifier(cellIdentifier,
 forIndexPath: indexPath) as UITableViewCell

 // Configure the cell...

 let aHero = fetchedResultsController.objectAtIndexPath(indexPath) as NSManagedObject
 let tabArray = self.heroTabBar.items as NSArray!
 let tab = tabArray.indexOfObject(self.heroTabBar.selectedItem!)

 switch (tab){
 case tabBarKeys.ByName.rawValue:
 cell.textLabel?.text = aHero.valueForKey("name") as String!
 cell.detailTextLabel?.text = aHero.valueForKey("secretIdentity") as String!
 case tabBarKeys.BySecretIdentity.rawValue:
 cell.detailTextLabel?.text = aHero.valueForKey("name") as String!
 cell.textLabel?.text = aHero.valueForKey("secretIdentity") as String!
 default:
 ()
 }

 return cell
}

84 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Finally, you uncomment tableView:commitEditingStyle:forRowAtIndexPath: to handle
deleting rows.

 // Override to support editing the table view.
func tableView(tableView: UITableView, commitEditingStyle editingStyle:
 UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {

 let managedObjectContext = fetchedResultsController.managedObjectContext as
 NSManagedObjectContext!
 if editingStyle == .Delete {
 // Delete the row from the data source
 //tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: .Fade)
 managedObjectContext.deleteObject(
 fetchedResultsController.objectAtIndexPath(indexPath) as NSManagedObject)
 var error:NSError?
 if managedObjectContext?.save(&error) == nil {
 let title = NSLocalizedString("Error Saving Entity",
 comment: "Error Saving Entity")
 let message = NSLocalizedString("Error was : \(error?.description), quitting",
 comment: "Error was : \(error?.description), quitting")
 showAlertWithCompletion(title, message: message, buttonTitle: "Aw Nuts",
 completion: {_ in exit(-1)})
 }
 } else if editingStyle == .Insert {
 // Create a new instance of the appropriate class, insert it into the array, and

add a new row to the table view
 }
}

Sorting the Table View
Finally, you need to make the table view order change when you toggle the tab bar. You
need to add the following code to the tabBar:didSelectItem: delegate method:

func tabBar(tabBar: UITabBar, didSelectItem item: UITabBarItem!) {
 let defaults = NSUserDefaults.standardUserDefaults()
 let items: NSArray = heroTabBar.items!
 let tabIndex = items.indexOfObject(item)
 defaults.setInteger(tabIndex, forKey: kSelectedTabDefaultsKey)

 NSFetchedResultsController.deleteCacheWithName("Hero")
 _fetchedResultsController = nil

 var error: NSError?
 if !fetchedResultsController.performFetch(&error) {
 let title = NSLocalizedString("Error performing fetch", comment: "Error performing fetch")
 let message = NSLocalizedString("Error was : \(error?.description), quitting",
 comment: "Error was : \(error?.description), quitting")

85CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

 showAlertWithCompletion("title", message:"message", buttonTitle:"Aw nuts",
 completion:{_ in exit(-1)})
 } else {
 self.heroTableView.reloadData()
 }
}

Loading the Fetch Request at Launch
Add the following to the HeroListController viewDidLoad method:

//Fetch any existing entities
var error: NSError?
if !fetchedResultsController.performFetch(&error) {
 let title = NSLocalizedString("Error Fetching Entity", comment: "Error Fetching Entity")
 let message = NSLocalizedString("Error was : \(error?.description), quitting",
 comment: "Error was : \(error?.description), quitting")
 showAlertWithCompletion(title, message: message, buttonTitle: "Aw nuts",
 completion: { _ in exit(-1)})
}

That’s pretty much everything.

Note There are about four places where we are calling the same piece of code for showAlert.

We could further create a function and simply pass it the error code to display the alert, but we’ll

leave that to you; it’s really simple.

Let ’Er Rip
Well, what are you waiting for? That was a lot of work; you deserve to try it. Make sure
everything is saved and then build and run the app.

If everything went OK, when the application first launches, you should be presented with
an empty table with a navigation bar at the top and a tab bar at the bottom (Figure 3-36).
Pressing the right button in the navigation bar will add a new unnamed superhero to the
database. Pressing the Edit button will allow you to delete heroes.

86 CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Note If your app crashed when you ran it, there’s a couple of things to look for. Also, make sure

you have defaults specified for your hero’s name and secret identity in your data model editor.

If you did that and your app still crashes, try resetting your simulator. Here’s how: bring up the

simulator, and from the iPhone Simulator menu, select Reset Contents and Settings. That should do

it. In Chapter 5, we’ll show you how to ensure that changes to your data model don’t cause such

problems.

Figure 3-36. The SuperDB application at launch time

Add a few unnamed superheroes to your application and try the two tabs to make sure the
display changes when you select a new tab. When you select the By Name tab, it should
look like Figure 3-1, but when you select the By Secret Identity tab, it should look like
Figure 3-37.

87CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data

Figure 3-37. Pressing the By Secret Identity tab doesn’t change the order of the rows yet, but it does change which

value is displayed first

Done, but Not Done
In this chapter, you did a lot of work. You saw how to set up a navigation-based application
that uses a tab bar, and you learned how to design a basic Core Data data model by
creating an entity and giving it several attributes.

This application isn’t done, but you’ve now laid a solid foundation upon which to move
forward. When you’re ready, turn the page and start creating a detail editing page to allow
the user to edit their superheroes.

89

Chapter 4
The Devil in the Detail View

In Chapter 3, you built your application’s main view controller. You set it up to display heroes
ordered by their name or their secret identity, and you put in place the infrastructure needed
to save, delete, and add new heroes. What you didn’t do was give the user a way to edit
the information about a particular hero, which means you’re limited to creating and deleting
superheroes named Untitled Hero. We guess you can’t ship your application yet.

That’s OK. Application development is an iterative process, and the first several iterations
of any application likely won’t have enough functionality to stand on its own. In this chapter,
you’ll create an editable detail view to let the user edit the data for a specific superhero.

The controller you’ll write will be a subclass of UITableViewController, and you’re going
to use an approach that is somewhat conceptually complex but one that will be easy to
maintain and expand. This is important because you’re going to be adding new attributes
to the Hero managed object, as well as expanding it in other ways, so you’ll need to keep
changing the user interface to accommodate those changes.

After you’ve written your new detail view controller, you will then add functionality to allow
the user to edit each attribute, in place.

View Implementation Choices
In Beginning iPhone Development with Swift, you learned how to build a user interface using
Interface Builder. Building your editable detail views in Interface Builder is definitely one way to
go. But another common approach is to implement your detail view as a grouped table. Take
a look at your iPhone’s Contacts application or the Contacts tab of the Phone application
(Figure 4-1). The detail editing view in Apple’s navigation applications is often implemented
using a grouped table rather than using an interface designed in Interface Builder.

90 CHAPTER 4: The Devil in the Detail View

Since you’ve chosen to use storyboards for your SuperDB application, you’ll be using the
storyboard editor. For all intents and purposes, it’s the same as building your interface with
Interface Builder.

The iOS Human Interface Guidelines (http://developer.apple.com/library/
ios/#documentation/UserExperience/Conceptual/MobileHIG) do not give any real guidance
as to when you should use a table-based detail view as opposed to a detail view designed
in Interface Builder, so it comes down to a question of which feels right. Here’s our take: if
you’re building a navigation-based application and the data can reasonably and efficiently be
presented in a grouped table, it probably should be. Since your superhero data is structured
much like the data displayed in the Contacts application, a table-based detail view seems
the obvious choice.

The table view shown in Figure 4-2 displays data from a single hero, which means that
everything in that table comes from a single managed object. Each row corresponds
to a different attribute of the managed object. The first section’s only row displays the
hero’s name, for example. When in editing mode, tapping a specific row will display the
appropriate subview to modify that attribute. For a string, it will present a keyboard; for a
date, a date picker.

Figure 4-1. The Contacts tab of the iPhone application uses a table-based detail editing view

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG

91CHAPTER 4: The Devil in the Detail View

The organization of the table view into sections and rows is not determined by the managed
object. Instead, it is the result of design decisions you, as the developer, must make by
trying to anticipate what will make sense to your users. You could, for example, put the
attributes in alphabetical order, which would put birth date first. That wouldn’t have been
very intuitive because the birth date is not the most important or defining attribute of a hero.
In our minds, the hero’s name and secret identity are the most important attributes and thus
should be the first two elements presented in your table view.

Creating the Detail View Controller
Find your SuperDB project folder from Chapter 3 and make a copy of it. This way, if things
go south when you add your new code for this chapter, you won’t have to start at the very
beginning. Open this new copy of your project in Xcode.

Next, create the detail view controller. Remember that you’re creating a table-based editing
view, so you want to subclass UITableViewController. Select SuperDB.storyboard and
open the storyboard editor. Open the Utility pane, if it’s not already open, and find the table
view controller in the Object Library. Drag it onto the storyboard editor, to the right of the
HeroListController (Figure 4-3).

Figure 4-2. The detail view that you’ll be building in this application, the editing and view modes

92 CHAPTER 4: The Devil in the Detail View

Click this new table view (the gray area of the view) and switch the Utility pane to the
Attributes Inspector (Figure 4-4).

Figure 4-3. The layout of your storyboard

93CHAPTER 4: The Devil in the Detail View

Let’s look at the Figure 4-2 again. Your detail view has two sections, so let’s configure the
table view that way. Change the Style field from Plain to Grouped. Once that’s done, the
Separator field should have changed itself to Default. Next, you know the number of rows
in each section, one and three, respectively. Since that number is fixed, you can change
the Content field from Dynamic Prototypes to Static Cells. Again, the field right below the
Content field automatically changed from Prototype Cells to Sections. You know the number
of sections is two, so enter 2 in that field. Finally, you don’t want to have the cells highlight
on selection, so change the Selection field to No Selection. The Attributes Inspector for the
table view should look like Figure 4-5.

Figure 4-4. Table view’s attributes

94 CHAPTER 4: The Devil in the Detail View

Your table view should have two sections of three cells each (Figure 4-6). Section 1 has
too many cells. You only need only one cell. Select the second cell in section one. It should
highlight. Delete the cell (press the Delete key, or Edit ➤ Delete). Section 1 should now have
two cells, with the bottom cell highlighted. Delete that cell, too.

Figure 4-5. The final state of your table view attributes

95CHAPTER 4: The Devil in the Detail View

Select the table view cell in the first section. Open the Attributes Inspector. Change the style
from Custom to Left Detail. Set the identifier to HeroDetailCell. Finally, set the selection to
None. The Attributes Inspector should look like Figure 4-7. Repeat the settings for the three
table view cells in the second section.

Figure 4-6. Table view

Figure 4-7. Table view cell’s attributes

96 CHAPTER 4: The Devil in the Detail View

The second section needs a header label, General. Select the area right above or right below
the three cells in the second section. The Attributes Inspector should change to table view
section (Figure 4-8). In the Header field, enter General. Now the second section should have
the correct header label.

Figure 4-9. Table view layout complete

Figure 4-8. Table view section’s attributes

By the way, notice that the first field in the table view section’s Attributes Inspector is Rows.
You could have used this to change the first section’s row count from three to one.

So, your table view should look like Figure 4-9. It looks like the layout is all set.

97CHAPTER 4: The Devil in the Detail View

Wiring Up the Segue
When the user taps a cell in the HeroListController, you want the application to transition
to your detail table view. Control-drag from the table view cell in the HeroListController to
your detail table view (Figure 4-10). When the Segue pop-up appears (Figure 4-11), select
push under the Selection Segue header.

Figure 4-10. Control-drag to create the segue

Figure 4-11. Segue pop-up selector

Now you need to create your table view subclass in order to populate your detail
table view cells.

98 CHAPTER 4: The Devil in the Detail View

HeroDetailController
Click the SuperDB group in the Navigation pane. Create a new file. In the New File
Assistant, select Cocoa Touch Class and click Next. On the next screen, name the class
HeroDetailController, making it a subclass of UITableViewController. Make sure that the
“Also create XIB file” is unchecked and ensure that Swift is selected as the language. Click
Next. Create the file. Add the import CoreData line before the class declaration.

Moving on, select SuperDB.storyboard. In the storyboard editor, select your detail table
view. Make sure that you see three icons in the detail table view label. Select the table view
controller icon, and bring up the Identity Inspector in the Utility pane. In the Custom Class
section, change the Class field to HeroDetailController.

One more thing. When you subclassed UITableViewController, Xcode gave your
HeroDetailController implementations of table view data source and delegate methods.
You don’t need them right now (but will later), so you’ll comment them out. Find the following
methods and comment them out (the method bodies, too):

override func numberOfSectionsInTableView(tableView: UITableView) -> Int
override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int

You’ve created your HeroDetailController and set your detail view controller in your
storyboard to be an instance of HeroDetailController. Now you’ll create the property list
that will define the table sections.

Detail View Challenges
The table view architecture was designed to efficiently present data stored in collections.
For example, you might use a table view to display data in an NSArray or in a fetched results
controller. When you’re creating a detail view, however, you’re typically presenting data from a
single object, in this case an instance of NSManagedObject that represents a single superhero.
A managed object uses key-value coding but has no mechanism to present its attributes in
a meaningful order. For example, NSManagedObject has no idea that the name attribute is the
most important one or that it should be in its own section the way it is in Figure 4-2.

Coming up with a good, maintainable way to specify the sections and rows in a detail editing
view is a nontrivial task. The most obvious solution, and one you’ll frequently see in online
sample code, uses an enum to list the table sections, followed by additional enums for each
section, containing constants and a count of rows for each section, like so:

enum HeroEditControllerSections:Int {
 case Name
 case General
 case Count
}

enum HeroEditControllerName:Int {
 case Row
 case Count
}

99CHAPTER 4: The Devil in the Detail View

enum HeroEditControllerGeneralSection:Int {
 case SecretIdentityRow
 case BirthdateRow
 case SexRow
 case Count
}

Then, in every method where you are provided with an index path, you can take the
appropriate action based on the row and section represented by the index path, using
switch statements, like this:

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:NSIndexPath){
 var section = indexPath.section
 var row = indexPath.row

 switch section {
 case HeroEditControllerSection.Name.rawValue:
 switch row{
 case HeroEditControllerName.Row :
 // Create a controller to edit name
 // and push it on the stack
 //...
 ()
 default:
 ()
 }
 case HeroEditControllerSections.General.rawValue:
 switch row {
 case HeroEditControllerGeneralSection.SecretIdentityRow.rawValue:
 // Create a controller to edit secret identity
 // and push it on the stack
 //...
 ()
 case HeroEditControllerGeneralSection.BirthdateRow.rawValue:
 // Create a controller to edit birthdate and
 // push it on the stack
 //...
 ()
 case HeroEditControllerGeneralSection.SexRow:
 // Create a controller to edit sex and push it
 // on the stack
 //...
 ()
 default:
 ()
 }
 default:
 ()
 }
}

100 CHAPTER 4: The Devil in the Detail View

The problem with this approach is that it doesn’t scale very well at all. A nested set of switch
statements like this will need to appear in almost every table view delegate or data source
method that takes an index path, which means that adding or deleting rows or sections
involves updating your code in multiple places.

Additionally, the code under each of the case statements is going to be relatively similar. In
this particular case, you will have to create a new instance of a controller or use a pointer to
an existing controller, set some properties to indicate which values need to get edited, and
then push the controller onto the navigation stack. If you discover a problem in your logic
anywhere in these switch statements, chances are you’re going to have to change that logic
in several places, possibly even dozens.

Controlling the Table Structure with Property Lists
As you can see, the most obvious solution isn’t always the best one. You don’t want to have
similar chunks of code scattered throughout your controller class, and you don’t want to
have to maintain multiple copies of a complex decision tree. There’s a better way to do this.

You can use property lists to mirror the structure of your table. As the user navigates down
the app, you can use the data stored in a property list to construct the appropriate table.
Property lists are a simple but powerful way to store information.

Let’s quickly review property lists here.

Property Lists Explained
Property lists are a simple way to represent, store, and retrieve data. Both Mac OS X and
iOS make extensive use of property lists. Within property lists, two kinds of data types can
be used: primitive and collections. The primitive types available are strings, numbers, binary
data, dates, and Boolean values. The available collection types are arrays and dictionaries.
The collections types can contain both primitive types and additional collections. Property
lists can be stored in two file types: XML and binary data. Xcode provides a property list
editor to make management of property lists easier for you. We’ll discuss that in a little bit.

Property lists start with a root node. Technically, the root node can be of any type, primitive
or collection. However, a property list of a primitive type has limited usefulness because it
would be a “list” of one value. More common is a root node of a collection type: an array
or a dictionary. When you create a property list with the Xcode property list editor, the root
node will be a dictionary.

Note To learn more detail about property lists, read Apple’s documentation at

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/

PropertyLists/Introduction/Introduction.html.

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html

101CHAPTER 4: The Devil in the Detail View

Modeling Table Structure with a Property List
So, how can you use a property list to describe your table? Refer to Figure 4-2. Looking
at the table, you can see two sections. The first section has no header, but the second
section has a header of General. Each section has a certain number of rows (one and
three, respectively) where each row represents a specific attribute of your managed object.
Additionally, each row also has a label, which tells you what value is being displayed.

To start, you represent the table as an array, with each item in the array representing a
section of the table. Each section, in turn, will be represented by a dictionary. You have a
header key in the section dictionary, which stores the string value of the header. Note that the
first section of the table does not have a header; you just use an empty string to represent it.

Figure 4-12. Graphical representation of your property list

Note If you recall, there are only five primitive data types in a property list: string, numbers, binary

data, dates, and Booleans. That doesn’t leave you with a way to represent nil values. So, you must

rely on an empty string to represent nil.

The second key of the section dictionary will be rows. The value for this key will be another
array, where each item of the rows array will represent the data to render the row. To
represent a row, you’ll use another dictionary. This row dictionary will have a key of label,
referencing a string that will be used as the row label plus a key of attribute, which will be a
string of the managed object’s attribute to render in the row.

Confused? Don’t worry, it’s difficult to model things descriptively. Figure 4-12 tries to explain
it graphically.

102 CHAPTER 4: The Devil in the Detail View

That should be all the data structures you need to represent the table’s structure to start.
Fortunately, if you discover that you need additional information for each row, you can
always add data later without impacting your existing design.

Let’s begin building your detail view.

Defining the Table View via Property List
In the Navigator pane, select the Supporting Files group so that it is highlighted.
Now, create a new file. Once the new file template appears, select Resource under
the iOS heading. Choose the Property List template (Figure 4-13), and click Next.
Name the file HeroDetailConfiguration.plist, and click Create. A new file, named
HeroDetailConfiguration.plist, should appear in the Supporting Files group. The file
should be selected, and the editor should switch to the property list editor (Figure 4-14).

Figure 4-14. Xcode property list editor mode

Figure 4-13. Resource file templates

103CHAPTER 4: The Devil in the Detail View

Earlier we stated that the root node of a property list is a dictionary. That means each node
will be a key-value pair. You can treat the key as a string, and the value can be of any of the
primitive (string, number, binary data, date, or Boolean) or collection (array or dictionary)
data types.

You’ll start by creating the sections array, as we discussed earlier. To do so, you need to
add a new item to the property list. There are two ways to do this. Both methods require you
select the row with the name Root in the Key column. Using the first method, Control-click in
the blank area of the property list editor. When the pop-up menu appears, choose Add Row.
Alternately, you can use the regular menu Editor ➤ Add Item option. Either way, a new row
should appear in the property list editor (Figure 4-15). The item should have a key of New
item, which will be selected and highlighted. Type sections and press Return to change the
key name.

Figure 4-15. Adding an item to the property list

Figure 4-16. Changing the type from string to array

Figure 4-17. Click the disclosure triangle to open the array

Next, click the arrows next to string under the Type column to expose the possible data
types. Select array. The Value column should change to read (0 items). Adding items to the
sections array is a little tricky, so make sure you follow the next steps carefully.

When you changed the type from string to array, a disclosure triangle was added to the left
of the sections key (Figure 4-16). Click this triangle so it points downward (Figure 4-17). Now
click the + button to the right of the sections. This will insert a new row. Additionally, the
Value column for sections will change to read (1 item). The key of the new row will be Item 0,
the type will be string, and the Value column will be selected. Don’t type anything; select the
sections row so it is highlighted and click the + next to sections again. This will insert another
row with the key Item 1, of type string, with no value. The Value cell should be selected with
a cursor. Change the type for Item 0 and Item 1 from string to dictionary (Figure 4-18).

104 CHAPTER 4: The Devil in the Detail View

Remember that you were going to create an array where each item in the array represented
a section of your table view? You’ve created those two items. Item 0 is the first section of
HeroDetailController table view; Item 1 is the second.

Now you create the rows array under each section to hold the row information for each
section. Next to Item 0 there should be a disclosure triangle. Open it, and click the + next to
Item 0. This will create a new row with key New Item, of type string, under Item 0. Change
the key to rows, and change the type to array. Open the disclosure triangle next to rows,
and click the + button. This will create another Item 0, this time under rows. Change the type
from string to dictionary. Repeat this procedure, adding a rows item under the Item1 header.
This time, create three items under this second rows item. Your property list editor should
look like Figure 4-19.

Figure 4-18. Adding two dictionary items

Figure 4-19. HeroDetailConfiguration.plist

For each item in each rows array, you need to add two more entries. They should be of type
string, and their keys should be key and label, respectively. For section ➤ Item 0 ➤ rows,
the key value should be name and the label value should be set to Name. For section ➤
Item 1 ➤ rows, the values for key and label should be secretIdentity and Identity; birthDate
and Birthdate; sex and Sex. When completed, the property list editor pane should look like
Figure 4-20.

105CHAPTER 4: The Devil in the Detail View

Now, you’ll use this property list to set up the HeroDetailController table view.

Parsing the Property List
You need to add a property to store the information from the property list you just created
inside of HeroDetailController.swift.

var sections:[AnyObject]!

Next, you need to load the property list and read the sections key. Before the end of
viewDidLoad, add the following:

var plistURL = NSBundle.mainBundle().URLForResource("HeroDetailConfiguration",
 withExtension:"plist")
var plist = NSDictionary(contentsOfURL:plistURL!)
self.sections = plist.valueForKey("sections") as NSArray

You declare a property, sections, of type Array of AnyObject, to hold the contents of the
sections array in your HeroDetailConfiguration.plist property list. You read in the contents
of the property list using the NSDictionary class method dictionaryWithContentsOfURL:.
Since you know that this dictionary has only one key-value pair, with a key of sections,
you read that value into the sections property. You then use that property to lay out the
HeroDetailController table view.

Figure 4-20. The completed HeroDetailConfiguration.plist

106 CHAPTER 4: The Devil in the Detail View

You now have the metadata needed to populate your HeroDetailController’s table view
cells, but you don’t have the data. The data should come from the HeroListController in
one of two ways: when the user taps a cell and when the user taps the Add (+) button.

Pushing the Details
Before you can send the data down from the HeroListController, you need
something to receive it in the HeroDetailController. Add the following property to the
HeroDetailController declaration in HeroDetailController.swift:

var hero: NSManagedObject!

Now edit the addHero: function in HeroListController. Change the line that reads as
follows:

NSEntityDescription.insertNewObjectForEntityForName(entity.name!,
 inManagedObjectContext:managedObjectContext)

to

var newHero = NSEntityDescription.insertNewObjectForEntityForName(entity.name!,
 inManagedObjectContext: managedObjectContext) as NSManagedObject

Then add the following to the end:

self.performSegueWithIdentifier("HeroDetailSegue", sender: newHero)

First, you assign your new Hero instance to the variable newHero. Then you told the
HeroListController to execute the segue named HeroDetailSegue and pass newHero as the
sender. Where did that segue name, HeroDetailSegue, come from? From you.

Remember the segue you created earlier for when a user taps a cell in the
HeroListController? Well, now you’re going to get rid of it. Why? Because it doesn’t give
you the flexibility you need to transition from both a cell and the Add (+) button. You need to
create a manual segue and invoke it from code.

Select the SuperDB.storyboard and find the segue between the HeroListController and
the HeroDetailController. Delete it. Control-drag from the top of the HeroListController
(the icon in the label) to the HeroDetailController (somewhere in the view). A pop-up with
a header of Manual Segue should appear; choose the push menu item. A new segue should
appear between the two view controllers; select it. In the Attributes Inspector, give it the
identifier HeroDetailSegue (Figure 4-21).

107CHAPTER 4: The Devil in the Detail View

Now you need to connect the HeroListController cells to the HeroDetailSegue. Edit
HeroListController.swift. Find the method tableView:didSelectRowAtIndexPath: and
replace the method body with or simply create the function as follows:

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:NSIndexPath){
 var selectedHero = self.fetchedResultsController.objectAtIndexPath(indexPath)
 as NSManagedObject
 self.performSegueWithIdentifier("HeroDetailSegue", sender:selectedHero)
}

You’re essentially doing the same thing you did in addHero:, except that the Hero object
is coming from the fetched results controller rather than being created. This looks good
so far, but you still aren’t sending data to the HeroDetailController. You handle that
in the UIViewController method prepareForSegue:sender:. Add this method to the
HeroListController (uncomment it from the template code; if it is not present in the
template, you can put it anywhere, but you put it after the setEditing:animated: method):

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 // Get the new view controller using [segue destinationViewController].
 // Pass the selected object to the new view controller.
 if segue.identifier == "HeroDetailSegue"{
 if let _sender = sender as? NSManagedObject{
 var detailController:HeroDetailController = segue.destinationViewController as

HeroDetailController
 detailController.hero = sender as NSManagedObject
 } else {
 let title = NSLocalizedString("Hero Detail Error", comment: "Hero Detail Error")
 let message = NSLocalizedString("Error trying to show Hero detail",
 comment: "Error trying to show Hero detail")
 showAlertWithCompletion(title, message:"message", buttonTitle:"Aw nuts",
 completion:{_ in exit(-1)})
 }
 }
}

Figure 4-21. Setting the segue identifier

108 CHAPTER 4: The Devil in the Detail View

Note that prepareForSegue:sender: is called by performSegueWithName:sender:
internally. It’s a hook Apple gives you to set things up correctly before showing the
HeroDetailController.

Showing the Details
You’re sending the Hero object down from the HeroListController to the
HeroDetailController. Now you’re ready to show the details. Edit HeroDetailController.
swift and find the function tableView:cellForRowAtIndexPath:. Remember, you
commented it out earlier, so it won’t show up in the jump bar function menu. Uncomment it
and replace the body with this:

let cellIdentifier = "HeroDetailCell"
var cell = tableView.dequeueReusableCellWithIdentifier(cellIdentifier) as? UITableViewCell

if cell == nil {
 cell = UITableViewCell(style: .Value2, reuseIdentifier: cellIdentifier)
}

// Configure the cell...
var sectionIndex = indexPath.section
var rowIndex = indexPath.row
var _sections = self.sections as NSArray
var section = _sections.objectAtIndex(sectionIndex) as NSDictionary
var rows = section.objectForKey("rows") as NSArray
var row = rows.objectAtIndex(rowIndex) as NSDictionary

cell?.textLabel?.text = row.objectForKey("label") as String!
var dataKey = row.objectForKey("key") as String!

cell?.detailTextLabel?.text = self.hero.valueForKey(dataKey) as String!

return cell!

Build and run the app. You get your list of heroes. Tap one to see the details.

It didn’t work, did it? Why not? The problem is the birth date attribute. If you recall, the birth
date is an NSDate object. And cell.textLabel.text expects a string. You’ll handle properly
in a little bit, but for now change the assignment to read as follows:

cell?.detailTextLabel?.text = self.hero.valueForKey(dataKey)?.description

Try running it again. View an existing hero and try adding a new one. After adding a hero,
your detail view should look like Figure 4-22.

109CHAPTER 4: The Devil in the Detail View

Editing the Details
Look back at Figure 4-2 and compare it to Figure 4-22. Note that the left image in Figure 4-2
has an Edit button on the right side of the navigation bar. And Figure 4-2 specifies that you
have an Edit mode for the detail view, as shown in the right image. Let’s add the Edit button
and implement the Edit mode in the HeroDetailController.

Editing Mode in the Detail View
Compare the two images in Figure 4-2. How do they differ? First, the Edit button in the left
image has been replaced with a Save button in the right image. Also, the Save button is
highlighted. The Back button has been replaced with a Cancel button. The cells in the right
image appear to be indented. While it appears to be a lot of changes, it’s actually not that
much effort to implement.

Figure 4-22. Detail view for a new hero

110 CHAPTER 4: The Devil in the Detail View

First, add the Edit button to the navigation bar. Select HeroDetailController.swift and find
the viewDidLoad method. Uncomment the following line:

self.navigationItem.rightBarButtonItem = self.editButtonItem()

Run the application and drill down to the detail view. There’s the Edit button on the right side
of the navigation bar. If you click it, the view should change to look like Figure 4-23.

Figure 4-23. The detail view in editing mode

Note that the Edit button has automatically changed into a Done button and is highlighted.
If you click Done, it will revert into the Edit button. This is fine, but you really want the Done
button to read Save. That’s a little more work.

As you’ve seen, the editButtonItem method gives you an instance of a UIBarButton that
toggles between Edit and Done when pressed. It also toggles the editing property in your
HeroDetailController (which inherits the property from UITableViewController) between
true and false. The button also invokes the setEditing:animated: callback.

You want to replace the Done with Save. To accomplish this, you need to replace the Edit
button with a Save button. While you’re at it, add a specific method to handle the saving,
which you’ll use later. First, you need to add a property for the Save button and a callback

111CHAPTER 4: The Devil in the Detail View

method. Since you access the Save button only inside HeroDetailController, you can make
it a private property. And since the callback is used only by the Save button, you can make
that a private declaration as well. Edit HeroDetailController.swift and add this after the
class declaration.

var saveButton: UIBarButtonItem!

You need to create an instance of a Save button and assign it to the variable saveButton.
Add the following to viewDidLoad in HeroDetailController.swift, right after the Edit button
code in viewDidLoad you just uncommented.

self.saveButton = UIBarButtonItem(barButtonSystemItem: .Save, target: self, action: "save")

Now, you need to switch between the Edit and Save buttons. But where do you call this
method? Remember, when the Edit button is pressed, it invokes the setEditing:animated:
method. Override the default setEditing:animated: method and have yours switch the
buttons.

override func setEditing(editing: Bool, animated: Bool) {
 super.setEditing(editing, animated: animated)
 self.navigationItem.rightBarButtonItem = editing ? self.saveButton : self.

editButtonItem()
}

And you need to add the save method (put it at the bottom of the file, just before the last
curly bracket).

//MARK: - (Private) Instance Methods

func save() {
 self.setEditing(false, animated: true)
}

Save your work and run the application. Navigate down the detail view, and click the Edit
button. It should toggle between Edit and Save as you toggle in and out of editing mode.
Now, let’s fix it so the Back button changes into a Cancel button.

The process is almost identical to what you did for the Edit/Save buttons: declare a property
and callback method, and toggle the button in the navigation bar. However, you also need
an property to store the Back button. Add the following to the HeroDetailController.swift:

var backButton: UIBarButtonItem!
var cancelButton: UIBarButtonItem!

Save the current back button into the variable backButton from the left navigation bar button,
and create an instance of the Cancel button in viewDidLoad and assign it to the backButton
on the navigationItem.

self.backButton = self.navigationItem.leftBarButtonItem
self.cancelButton = UIBarButtonItem(barButtonSystemItem: .Cancel, target: self, action:
 "cancel")

112 CHAPTER 4: The Devil in the Detail View

Modify setEditing:animated: to toggle the Back and Cancel buttons.

self.navigationItem.leftBarButtonItem = editing ? self.cancelButton : self.backButton

Finally, add the cancel callback method. For now, it’s identical to the save method, but you’ll
be changing that soon.

func cancel() {
 self.setEditing(false, animated:true)
}

Run the application again. When you hit the Edit button in the detail view, the Back button
should switch to Cancel. If you press the Cancel button, you should exit editing mode.

Now you want to eliminate those red buttons that appear to right of each cell in editing
mode. When you click those buttons, they rotate, and a Delete button will appear in the
appropriate cell. This isn’t really relevant for the detail view; you can’t delete an attribute (you
can, however, clear it, or set its value to nil). So, you don’t want this button to appear at
all. Add this method to HeroDetailController.swift (somewhere with the other table view
delegate methods):

override func tableView(tableView: UITableView, editingStyleForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCellEditingStyle {
 return .None
}

Running application shows that the red buttons are gone. You are able to toggle the detail
view in and out of editing mode, but you still can’t edit anything. There’s still a bit of work
ahead of you to add this functionality.

Creating a Custom UITableViewCell Subclass
Let’s look at the Contacts application. When you edit a contact’s attributes, an accessory
view appears, with a keyboard (Figure 4-24), allowing for inline editing. You’re going to
emulate this functionality in your SuperDB application. This is going to require you to
develop a custom UITableViewCell subclass.

113CHAPTER 4: The Devil in the Detail View

Let’s look at the current layout of the table view cell. Currently, you set two parts of the
cell: the textLabel and the detailTextLabel (Figure 4-25). Both parts are static text; you
can assign the values programmatically, but you are unable to interact with them via the
user interface. The iOS SDK does not give you a class where you can assign the textLabel
statically but edit the detailTextLabel portion. That’s what you have to build.

Figure 4-24. Editing in the Contacts application

Figure 4-25. Current breakdown of the table view cell

114 CHAPTER 4: The Devil in the Detail View

The key component is replacing the detailTextLabel property with a UITextField. This will
give you the ability to edit within the table view cell. Since you replaced one portion of the
table view cell, you have to replace the textLabel as well. Since that text is static, you’ll use
a UILabel. In principle, your custom table view cell should look like Figure 4-26.

Figure 4-26. Breakdown of your custom table view cell

Let’s get started.

Click the SuperDB group in the Navigator pane and create a new file. Choose Cocoa Touch
Class under the Source templates. Make this class a subclass of UITableViewCell. Let’s
name the class SuperDBEditCell. Click Next and then Create.

You need a UILabel and a UITextField. Add those properties to SuperDBEditCell.swift.

class SuperDBEditCell: UITableViewCell {

 var label: UILabel!
 var textField: UITextField!

Now add the appropriate initialization code. Edit SuperDBEditCell.swift and add the
initWithStyle:reuseIdentifier:. Add the following code:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style: style, reuseIdentifier: reuseIdentifier)

 self.selectionStyle = .None

 self.label = UILabel(frame: CGRectMake(12, 15, 67, 15))
 self.label.backgroundColor = UIColor.clearColor()
 self.label.font = UIFont.boldSystemFontOfSize(UIFont.smallSystemFontSize())
 self.label.textColor = kLabelTextColor
 self.label.text = "label"
 self.contentView.addSubview(self.label)

 self.textField = UITextField(frame: CGRectMake(93, 13, 170, 19))
 self.textField.backgroundColor = UIColor.clearColor()
 self.textField.clearButtonMode = .WhileEditing
 self.textField.enabled = false

115CHAPTER 4: The Devil in the Detail View

 self.textField.font = UIFont.boldSystemFontOfSize(UIFont.systemFontSize())
 self.textField.text = "Title"
 self.contentView.addSubview(self.textField)
}

required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
}

Note that kLabelTextColor is a constant that you calculated so the label will have the same
color as before. Add this before the class declaration:

let kLabelTextColor = UIColor(red: 0.321569, green: 0.4, blue: 0.568627, alpha: 1)

Now you need to adjust the HeroDetailController to use SuperDBEditCell. But before you
do that, you need to fix the configuration in SuperDB.storyboard.

Open SuperDB.storyboard and select the first table view cell in the HeroDetailController.
Open the Identity Inspector and change the Class field to SuperDBEditCell. Switch to the
Attributes Inspector and change the style to Custom. Repeat this for the three other table
view cells.

Then in HeroDetailController.swift find tableView:cellForRowAtIndexPath: and edit it to
read as follows:

let cellIdentifier = "SuperDBEditCell" //"HeroDetailCell"
var cell = tableView.dequeueReusableCellWithIdentifier(cellIdentifier) as? SuperDBEditCell

if cell == nil {
 cell = SuperDBEditCell(style: .Value2, reuseIdentifier: cellIdentifier)
}

// Configure the cell...
var sectionIndex = indexPath.section
var rowIndex = indexPath.row
var _sections = self.sections as NSArray
var section = _sections.objectAtIndex(sectionIndex) as NSDictionary
var rows = section.objectForKey("rows") as NSArray
var row = rows.objectAtIndex(rowIndex) as NSDictionary
var dataKey = row.objectForKey("key") as String!

cell?.label.text = row.objectForKey("label") as String!
cell?.textField.text = self.hero.valueForKey(dataKey) as String!

return cell!

Save and run the app. It should behave exactly as before you created your custom table
view cell. Now you can turn on the ability to edit. Override the setEditing: method in
SuperDBEditCell.swift.

override func setEditing(editing: Bool, animated: Bool) {
 super.setEditing(editing, animated: animated)
 self.textField.enabled = editing
 }

116 CHAPTER 4: The Devil in the Detail View

Save and run the app again. Navigate to the detail view and enter editing mode. Tap over
the Unknown Hero of the Identity row. You should see the keyboard input view appear on
the bottom of the screen, and a cursor should appear at the end of Unknown Hero. Click
another row. The cursor should appear in that row.

Let’s edit the Identity row. Tap over the Unknown Hero to activate the keyboard input view.
Click the x button at the right end of the cell. This should erase Unknown Hero. Now type
Super Cat and tap Save. You should exit editing mode, and your hero’s new identity should
read Super Cat. Tap Back to return to the list view.

Wait. What happened? You renamed your hero Super Cat, but the list view still shows
Unknown Hero. If you click the Unknown Hero row, the detail view also still shows Unknown
Hero. Why weren’t your changes saved?

Remember when you added the Save button to the detail view? You also added a callback,
save, to be invoked when the Save button was pressed. Let’s look at the callback again.

func save() {
 self.setEditing(false, animated: true)
}

Note that this method doesn’t save anything! All it does is turn off editing mode. Let’s figure
out how to save your changes for real.

Saving Your Changes
Let’s review your detail view. The detail view is a table view managed by your
HeroDetailController. The HeroDetailController also has a reference to your Hero object,
which is an NSManagedObject. Each row in the table view is your custom table view cell class,
SuperDBEditCell. Depending on which row you need, you assign a different hero attribute to
display.

Now, to save the changes you make, the Save button invokes the save method. This is the
point where you need to save the changes to your NSManagedObject. You will modify your
SuperDBEditCell class to know what attribute it is displaying. In addition, you will define a
property, value, to tell you the new data in the cell.

First, add a property for holding the key to SuperDBEditCell.swift.

var key: String!

Next, define a property override methods for the value property.

117CHAPTER 4: The Devil in the Detail View

//MARK: - Property Overrides
var value: AnyObject! {
 get{
 return self.textField.text as String
 }

 set {
 self.textField.text = newValue as? String
 }
}

Finally, modify HeroDetailController.swift to assign the key name to each cell inside
tableView:cellForRowAtIndexPath just before the return cell! statement.

cell?.key = dataKey

Then iterate over each cell on save to update the hero’s attributes in the save method.

for cell in self.tableView.visibleCells() {
 let _cell = cell as SuperDBEditCell
 self.hero!.setValue(_cell.value, forKey: _cell.key)

 var error: NSError?
 self.hero!.managedObjectContext?.save(&error)
 if error != nil{
 println("Error saving : \(error?.localizedDescription)")
 }
}

self.tableView.reloadData()

Save and run the application. Navigate down to the detail view, and enter editing mode.
Change the Identity to Super Cat and click Save. Click the Back button to return to the list
view. You should see that the hero’s identity is now displaying Super Cat.

Well, not really...you will be greeted with a crash! That is because you have a string from the
textField, and what you need to save to the birthDate is a date and not a string. Let’s now
work on specialized input views for the birthdate and sex attributes and fix that.

Specialized Input Views
Note that when you click the Birthdate or Sex row in the detail view, the keyboard input view
is displayed. You could allow the user to enter the birth date or sex via the keyboard and
validate the input, but there is a better way. You can create subclasses of SuperDBEditCell
to handle those special cases.

118 CHAPTER 4: The Devil in the Detail View

DatePicker SuperDBEditCell Subclass
Click the SuperDB group in the Navigator pane and create a new file. Select Cocoa Touch
Class and make it a subclass of SuperDBEditCell. Name the class SuperDBDateCell and
create the files. Edit SuperDBDateCell.swift to read as follows:

import UIKit

let __dateFormatter = NSDateFormatter()

class SuperDBDateCell: SuperDBEditCell {

 private var datePicker: UIDatePicker!
 //lazy var __dateFormatter = NSDateFormatter()

 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style: style, reuseIdentifier: reuseIdentifier)

 __dateFormatter.dateStyle = .MediumStyle

 self.textField.clearButtonMode = .Never
 self.datePicker = UIDatePicker(frame: CGRectZero)
 self.datePicker.datePickerMode = .Date
 self.datePicker.addTarget(self, action: "datePickerChanged:", forControlEvents:

.ValueChanged)
 self.textField.inputView = self.datePicker
 }

 //MARK: - SuperDBEditCell Overrides
 override var value:AnyObject! {
 get{
 if self.textField.text == nil || countElements(self.textField.text) == 0 {
 return nil
 } else {
 return self.datePicker.date as NSDate!
 }
 }
 set{
 if let _value = newValue as? NSDate {
 self.datePicker.date = _value
 self.textField.text = __dateFormatter.stringFromDate(_value)
 } else {
 self.textField.text = nil
 }
 }
 }

119CHAPTER 4: The Devil in the Detail View

 //MARK: (Private) Instance Methods
 @IBAction func datePickerChanged(sender: AnyObject){
 var date = self.datePicker.date
 self.value = date
 self.textField.text = __dateFormatter.stringFromDate(date)
 }
}

What have you done here? You defined a variable __dateFormatter of type NSDateFormatter.
You’re doing this because creating an NSDateFormatter is an expensive operation, and you
don’t want to have to create a new instance every time you want to format an NSDate object.
You could have made it a private property of SuperDBDateCell and lazily created it, but that
would mean you would create a new one for every instance of SuperDBDateCell. By making
it so, you have to create only one instance for the lifetime of the SuperDB application.

Next, you declared a private UIDatePicker property, datePicker, and a callback for
datePicker, datePickerChanged.

You added some custom initialization code to initWithStyle:reuseIdentifier:. This is
where you instantiate the datePicker property and assign it to the textField inputView
property. Normally inputView is nil. This tells iOS to use the keyboard input view for the
textField. By assigning it an alternate view, you’re telling iOS to show the alternate view
when editing the textField.

SuperDBDateCell overrides the value property to make sure you display and return an
NSDate, rather than a String. This is where you use the __dateFormatter to convert the date
to a string and then assign it to the textField text property.

Finally, you implement the datePicker’s callback for when you change the date via the UI.
Every time you change the date in the datePicker, you update the textField to reflect that
change.

Using the DatePicker SuperDBEditCell Subclass
Let’s review how the table view cells are created. In the HeroDetailController, you created
the cells in the tableView:cellForRowAtIndexPath: method. When you first wrote this
method, you created an instance UITableViewCell. Later, you replaced this with an instance
of your custom subclass, SuperDBEditCell. Now you’ve created another subclass for a
specific IndexPath, the IndexPath displaying the birthdate attribute. How can you tell your
application which custom subclass to use? That’s right, you’ll add that information to your
property list: HeroDetailConfiguration.plist.

Click HeroDetailConfiguration.plist. Expand all the disclosure triangles so you can see
all the elements. Navigate down sections ➤ Item 0 ➤ rows ➤ Item 0 ➤ key. Click the key
row so that it is highlighted. Click the + button next to key. Rename this row from New Item
to class. In the value column, type SuperDBEditCell. Repeat this for all the key rows under
sections ➤ Item 1. They should all have the value SuperDBEditCell, except for the class row
below the birthdate key. That should have a value of SuperDBDateCell (Figure 4-27).

120 CHAPTER 4: The Devil in the Detail View

You need to modify tableView:cellForRowAtIndexPath: to make use of the information you
just placed in the property list. Open HeroDetailController.swift and edit tableView:cellF
orRowAtIndexPath: to appear like this:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 var sectionIndex = indexPath.section
 var rowIndex = indexPath.row
 var _sections = self.sections as NSArray
 var section = _sections.objectAtIndex(sectionIndex) as NSDictionary
 var rows = section.objectForKey("rows") as NSArray
 var row = rows.objectAtIndex(rowIndex) as NSDictionary
 var dataKey = row.objectForKey("key") as String!

 var cellClassName = row.valueForKey("class") as String
 var cell = tableView.dequeueReusableCellWithIdentifier(cellClassName) as?
SuperDBEditCell
 if cell == nil {
 switch cellClassName {
 case "SuperDBDateCell":
 cell = SuperDBDateCell(style: .Value2, reuseIdentifier: cellClassName)
 default:
 cell = SuperDBEditCell(style: .Value2, reuseIdentifier: cellClassName)
 }
 }

Figure 4-27. HeroDetailController.plist after adding the table view cell class key

121CHAPTER 4: The Devil in the Detail View

 cell?.key = dataKey
 cell?.value = self.hero.valueForKey(dataKey)
 cell?.label.text = row.objectForKey("label") as String!

 return cell!
}

Save and run the application. Navigate down to the detail view and enter editing mode. Click
the Birthdate cell, next to the label. The accessory input view should appear and should
be a date picker set to today’s date. When you change the date in the date picker, the date
should change in the table view cell.

Note The date is set only when the date on the picker is actually changed. So ,spin the picker by

a day, month, or year to see the date appear in the birthDate text field.

There’s one more input to take care of. This version of your application uses the string
attribute editor to solicit the sex (sorry, we couldn’t resist!) of the superhero. This means
that there is no validation on the input other than that it’s a valid string. A user could type M,
Male, MALE, or Yes, Please, and they would all be happily accepted by the application. That
means, later, if you want to let the user sort or search their heroes by gender, you could have
problems because the data won’t be structured in a consistent manner. You’ll tackle that
problem next.

Implementing a Selection Picker
As you saw earlier, you could have enforced a specific sex spelling by using a regular
expression, putting up an alert if the user typed something besides Male or Female. This
would have prevented values other than the ones you want from getting entered, but this
approach is not all that user friendly. You don’t want to annoy your user. Why make them
type anything at all? There are only two possible choices here. Why not present a selection
list and let the user just tap the one they want? Hey, that sounds like a great idea! We’re glad
you thought of it. Let’s implement it now, shall we?

Again, create a new Cocoa Touch class and make it a subclass of SuperDBEditCell. Name
the class SuperDBPickerCell because you will be using a UIPickerView. Most of what you
do will be similar to what you did for SuperDBDateCell, but there are some key differences.

Now, let’s edit the implementation of SuperDBPickerCell in SuperDBPickerCell.swift and
add a property called values that is an array, which will hold the possible selections. You
also need to add the UIPickerViewDataSource and UIPickerViewDelegate protocols to
SuperDBPickerCell.

122 CHAPTER 4: The Devil in the Detail View

import UIKit

class SuperDBPickerCell: SuperDBEditCell, UIPickerViewDataSource, UIPickerViewDelegate {

 var values:[AnyObject]! = []
 var picker: UIPickerView!

 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style: style, reuseIdentifier: reuseIdentifier)

 self.textField.clearButtonMode = .Never

 self.picker = UIPickerView(frame: CGRectZero)
 self.picker.dataSource = self
 self.picker.delegate = self
 self.picker.showsSelectionIndicator = true

 self.textField.inputView = self.picker
 }

 //MARK: - UIPickerViewDataSource Methods
 func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int {
 return 1
 }

 func pickerView(pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int
{
 return self.values.count
 }

 //MARK: - UIPickerViewDelegate Methods
 func pickerView(pickerView: UIPickerView, titleForRow row: Int,
 forComponent component: Int) -> String! {
 return self.values[row] as String
 }

 func pickerView(pickerView: UIPickerView, didSelectRow row: Int, inComponent component:
Int) {
 self.value = self.values[row]
 }

 //MARK: - SuperDBEditCell Overrides

 override var value: AnyObject! {
 get {
 return self.textField.text as String!
 }

123CHAPTER 4: The Devil in the Detail View

 set {
 if newValue != nil {
 var index = (self.values as NSArray).indexOfObject(newValue)
 if index != NSNotFound {
 self.textField.text = newValue as String!
 }
 } else {
 self.textField.text = nil
 }
 }
 }
}

SuperDBPickerCell is conceptually identical to SuperDBDateCell. Rather than using
an NSDatePicker, you use a UIPickerView. To tell the pickerView what to display, you
need to have SuperDBDateCell conform to the protocols UIPickerViewDataSource and
UIPickerViewDelegate. Rather than having a callback on the pickerView to indicate when
the picker value has changed, you use the delegate method pickerView:didSelectRow:.
Since you’re storing the value as a string, you don’t need to override the implementation of
the value accessor method. However, you do need to override the value mutator.

You need to tell the application to use this new class for the Sex attribute. Edit the class row
in the property list, HeroDetailController.plist. Change the value from SuperDBEditCell
to SuperDBPickerCell. Make sure you are changing the right row. The label row should read
Sex, and the attribute row should read sex.

If you run the application now and try to edit the Sex attribute, you should see the picker
wheel appear on the bottom of the screen. However, there are no values to choose
from. If you look back at the code you just added, the picker wheel gets its information
from the values property. But you never set this. Again, you could hard-code this in the
SuperDBPickerCell object, but that would limit the usefulness of this object. Instead, you’ll
add a new item to the property list.

Just like you did earlier with the class item, you need to add a new key, which you’ll
call values. Unlike the class key, you’ll only add it to the item with the sex key. Edit
HeroDetailController.plist and open all the nodes. For the last item, find the row with the
key label. Click the + button on that row. Name the new item values and change its type to
array. Add two string items to the values array and give them the values Male and Female.
See Figure 4-28.

124 CHAPTER 4: The Devil in the Detail View

Figure 4-28. HeroDetailController.plist with values for the sex item

Now you need to pass the contents of values to the table view cell when tableView:cellFor
RowAtIndexPath: is in the HeroDetailController. Open HeroDetailController.swift,
and add the following to tableView:cellForRowAtIndexPath: before the other cell
configuration code:

if let _values = row["values"] as? NSArray {
 (cell as SuperDBPickerCell).values = _values
}

Now if you build the app and expected it to work, it would, but it would not display
the gender picker. This is because in the cellForRowAtIndexPath method in
HeroDetailController, you have a switch statement that handles only SuperDBDateCell, and
for all other class names, it creates SuperDBEditCell by default. You need to add just these
lines, and you are good to go.

case "SuperDBPickerCell":
 cell = SuperDBPickerCell(style: .Value2, reuseIdentifier: cellClassName)

125CHAPTER 4: The Devil in the Detail View

Build and run the app. Navigate down to the detail view and tap the Edit button. Tap the Sex
cell, and the picker view should appear with the choices Male and Female. Set the value, tap
Save, and the Sex cell should be populated.

Note Though there are alternatives to using the switch by using the NSClassFromString like

we can with Objective-C, there are limitations with what you can do with it in pure Swift. So, the

code uses a switch statement instead, and for every new class you add, you will have to add the

handler in the switch cases.

Devil’s End
Well, you’re at the end of a long and conceptually difficult chapter. You should congratulate
yourself on making it all the way through with us. Table-based detail editing view controllers
are some of the hardest controller classes to write well, but now you have a handful of tools
in your toolbox to help you create them. You’ve seen how to use a property list to define
your table view’s structure, and you’ve seen how to create a custom UITableViewCell
subclasses to edit different types of data.

Ready to move on? Turn the page. Let’s get going!

127

Chapter 5
Preparing for Change:

Migrations and Versioning

By now you have mastered a great deal of the Core Data architecture and functionality by
building a fully functioning, albeit somewhat simple, Core Data application. You’ve now got
enough Core Data chops to build a solid app, send it to your testers, and then send it on to
the App Store.

But what happens if you change your data model and send a new version of your application
to testers who already have the previous version? Consider the SuperDB app. Let’s say you
decide to add a new attribute to the Hero entity; make one of the existing, currently optional
attributes required; and then add a new entity. Can you just send the program to your users,
or will this cause problems with their data?

As things stand right now, if you make changes to your data model, the existing data sitting
in the user’s persistent store on their iPhone will be unusable in the new version of your
application. Your application will crash on launch. If you launch the new version from Xcode,
you will see a big, scary error message like the following (this one is formatted with line
spaces to make it easier to read):

SuperDB[52806:1888093] Unresolved error
Optional(
 Error Domain=YOUR_ERROR_DOMAIN Code=9999
 "Failed to initialize the application's saved data"
 UserInfo=0x7fb8814310d0 {
 NSLocalizedFailureReason=There was an error creating or loading the application's

saved data.,
 NSLocalizedDescription=Failed to initialize the application's saved data,
 NSUnderlyingError=0x7fb881754530
 "The operation couldn’t be completed. (Cocoa error 134100.)"
 }),

128 CHAPTER 5: Preparing for Change: Migrations and Versioning

Optional([
 NSLocalizedFailureReason: There was an error creating or loading the application's saved data.,
 NSLocalizedDescription: Failed to initialize the application's saved data,
 NSUnderlyingError: Error Domain=NSCocoaErrorDomain Code=134100
 "The operation couldn’t be completed. (Cocoa error 134100.)"
 UserInfo=0x7fb8817544f0 {
 metadata={
 NSPersistenceFrameworkVersion = 519;
 NSStoreModelVersionHashes = {
 Hero = <2ec0477b 3074843a cf147f32 ab6cbecd e10738c6 639d552f 89428ea5 44c62a71>;
 };
 NSStoreModelVersionHashesVersion = 3;
 NSStoreModelVersionIdentifiers = (
 ""
);
 NSStoreType = SQLite;
 NSStoreUUID = "9389945C-A40E-4861-BACB-74302FA9A148";
 "_NSAutoVacuumLevel" = 2;
 },
 reason=The model used to open the store is incompatible with the one used to create
the store
 }
])

If this happens in development, it’s not usually a big deal. If nobody else has a copy of
your app and you don’t have any irreplaceable data stored in it, you can just select iPhone

Simulator ➤ Reset Content and Settings in the simulator or uninstall the application from
your iPhone using Xcode’s Organizer window, and Core Data will create a new persistent
store based on the revised data model the next time you install and run your application.

If, however, you have given the application to others, they will be stuck with an unusable
application on their iPhone unless they uninstall and re-install the application, thereby losing
all of their existing data.

As you can probably imagine, this is not something that makes for particularly happy
customers. In this chapter, we’ll show you how to version your data model. Then we’ll talk
about Apple’s mechanism for converting data between different data model versions, which
are called migrations. We’ll talk about the difference between the two types of migrations:
lightweight migrations and standard migrations. Then you will set up the SuperDB Xcode
project to use lightweight migrations so that the changes you make in the next few chapters
won’t cause problems for your (admittedly nonexistent) users.

At the end of this chapter, the SuperDB application will be all set up and ready for new
development, including changes to your data model, without having to worry about your
users losing their data when you ship a new version.

129CHAPTER 5: Preparing for Change: Migrations and Versioning

About Data Models
When you create a new Xcode project using a template that supports Core Data, you are
provided with a single data model in the form of an .xcdatamodel file in your project. In
Chapter 2, you saw how this file was loaded into an instance of NSManagedObjectModel at
runtime in the application delegate’s managedObjectModel method. To understand versioning
and migrations, it’s important to look a little deeper to see what’s going on.

Data Models Are Compiled
The .xcdatamodel class in your project does not get copied into your application’s bundle
the way other resources do. The data model file contains a lot of information that your
application doesn’t need. For example, it contains information about the layout of the
objects in the Xcode model editor’s diagram view (Figure 5-1), which is only there to make
your life easier. Your application doesn’t care about how those rounded rectangles are laid
out, so there’s no reason to include that information inside your application bundle.

Figure 5-1. Certain information, such as that the rounded rectangle representing the Hero entity is in the upper-left

corner and that the disclosure triangles next to Attributes and Relationships are expanded, is stored in the .xcdatamodel

file but not in the .mom file

Instead, your .xcdatamodel files get compiled into a new type of file with an extension of
.mom, which stands for managed object model (sorry, Mom). This is a much more compact
binary file that contains just the information that your application needs. This .mom file is what
is actually loaded to create instances of NSManagedObjectModel.

Data Models Can Have Multiple Versions
You most likely understand what versioning means in a general sense. When a company
releases a new version of a piece of software with new features, it typically has a new
number or designation. For example, you are working on a specific version of Xcode (for us,
it’s 8.1) and a specific version of Mac OS X (for us it’s 10.10, also known as Yosemite).

130 CHAPTER 5: Preparing for Change: Migrations and Versioning

These are called marketing version identifiers or numbers because they are primarily intended
to tell customers the difference between various released versions of the software. Marketing
versions are incremented when a new version of the program is released to customers.

There are other, finer-grained forms of versioning used by developers, however. If you’ve
ever used a concurrent versioning system such as CVS, SVN, or Git, you’re probably aware
of how this all works. Versioning software keeps track of the changes over time to all of the
individual source code and resource files that make up your project (among other things).

Figure 5-2. Naming the new data model version

Note We’re not going to discuss regular version control, but it’s a good thing to know about if

you’re a developer. Fortunately, there are a lot of resources on the Web for learning how to install

and use different version-control software packages. A good place to start is the Wikipedia page on

version control at http://en.wikipedia.org/wiki/Revision_control.

Xcode integrates with several version-control software packages, but it also has some
built-in version-control mechanisms, including one that’s intended for use with Core Data
data models. Creating new versions of your data models is the key to keeping your users
happy. Every time you release a version of your application to the public, you should create
a new version of your data model. This will create a new copy so that the old version can
be kept around to help the system figure out how to update the data from a persistent store
made with one version to a newer version.

Creating a New Data Model Version
Click SuperDB.xcdatamodeld in Xcode. Now select Editor ➤ Add Model Version. You will be
asked to name this new version. The default values Xcode presents to you (Figure 5-2) are
fine, so just click Finish.

http://en.wikipedia.org/wiki/Revision_control

131CHAPTER 5: Preparing for Change: Migrations and Versioning

You just added a new version of your data model. Once you click Finish, the
SuperDB.xcdatamodeld file will gain a disclosure triangle next to it. It will be open to reveal
two different versions of your data model (Figure 5-3).

Figure 5-3. A versioned data model contains the current version, marked with a green check mark on its icon, along

with every previous version

The icon for one of the versions will have a green check mark on it. This indicates the current
version (in your case, SuperDB.xcdatamodel), which is the one that your application will
use. By default, when you create a new version, you actually create a copy of the original.
However, the new version keeps the same file name as the original, whereas the name of the
copy is appended with an incrementally larger number. This file represents what your data
model looked like when you created the new version, and it should be left untouched.

The fact that the higher number is the older file might seem a little weird, but, as more
versions accumulate, the numbering will make more sense. The next time you create a new
version, the old version will be named SuperDB 3.xcdatamodel, and so on. The numbering
makes sense for all the noncurrent versions, since each version will have a number one
higher than the previous. By keeping the name of the current model the same, it’s easy to tell
which is the one you can change.

The Current Data Model Version
In Figure 5-3, SuperDB.xcdatamodel is the current version of the data model, and
SuperDB 2.xcdatamodel is the previous version. You can now safely make changes to the
current version, knowing that a copy of the previous version exists, frozen in time, which will
give you the ability to migrate your users’ data from the old version to the next version when
you release it.

You can change which version is the current version. To do this, select SuperDB.xcdatamodeld
and then open the File Inspector in the Utility pane (Figure 5-4). You should see a section
named Version Core Data Model. Find the Current drop-down box. Here you can select the
data model you want to make current. You won’t do this often, but you might do it if you
need to revert to an older version of the application for some reason. You can use migrations
to go back to an older version or move to a new version.

132 CHAPTER 5: Preparing for Change: Migrations and Versioning

Data Model Version Identifiers
Although you can assign version identifiers like 1.1 or Version A to data models by selecting
the specific data model version in the Navigation pane and bringing up the File Inspector
(Figure 5-5), this identifier is purely for your own use and is completely ignored by Core Data.

Figure 5-4. The Core Data (Directory) File Inspector

133CHAPTER 5: Preparing for Change: Migrations and Versioning

Instead, Core Data performs a mathematical calculation called a hash on each entity in your
data model file. The hash values are stored in your persistent store. When Core Data opens
your persistent store, Core Data uses these hash values to ensure that the version of your
data stored in the store is compatible with the current data model.

Since Core Data does its version validation using the stored hash values, you don’t need to
worry about incrementing version numbers for versioning to work. Core Data will just know
which version a persistent store was created for by looking at the stored hash value and
comparing it to the hash calculated on the current version of the data model.

Migrations
As you saw at the beginning of the chapter, when Core Data detects that the persistent store
in use is incompatible with the current data model, it throws an exception. The solution is
to provide a migration to tell Core Data how to move data from the old persistent store to a
new one that matches the current data model.

Lightweight vs. Standard
There are two different types of migrations supported by Core Data. The first, called a
lightweight migration, is available only in the case of relatively straightforward modifications
to your data model. If you add or remove an attribute from an entity or add or delete an
entity from the data model, for example, Core Data is perfectly capable of figuring out how

Figure 5-5. The File Identity pane for a data model will allow you to set a version identifier

134 CHAPTER 5: Preparing for Change: Migrations and Versioning

to migrate the existing data into the new model. In the case of a new attribute, it simply
creates storage for that attribute but doesn’t populate it with data for the existing managed
objects. In a lightweight migration, Core Data actually analyzes the two data models and
creates the migration for you.

If you make a change that’s not straightforward and thus can’t be resolved by the lightweight
migration mechanism, then you have to use a standard migration. A standard migration
involves creating a mapping model and possibly writing some code to tell Core Data how to
move the data from the old persistent store to the new one.

Standard Migrations
The changes you will be making to the SuperDB application in this book are all
pretty straightforward, and an in-depth discussion of standard migrations is beyond
the scope of this book. Apple has documented the process fairly thoroughly in the
developer documentation, though, so you can read more about standard migrations
at http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/
CoreDataVersioning/Articles/Introduction.html.

Setting Up Your App to Use Lightweight Migrations
On the other hand, you will be using lightweight migrations a lot through the rest of the book.
In every remaining Core Data chapter, you will create a new version of your data model and
let lightweight migrations handle moving the data. However, lightweight migrations are not
turned on by default, so you need to make some changes to your application delegate to
enable them.

Edit AppDelegate.swift and find the persistentStoreCoordinator method. Replace this line:

if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil,
 URL: url, options: nil, error: &error) == nil
{

with these lines:

var options = [NSMigratePersistentStoresAutomaticallyOption:true,
 NSInferMappingModelAutomaticallyOption:true]
if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil,
 URL: url, options: options, error: &error) == nil {

The way to turn on lightweight migrations is to pass a dictionary into the options argument
when you call the addPersistentStoreWithType:configuration:URL:options:error: method
to add your newly created persistent store to the persistent store coordinator. In that dictionary,
you use two system-defined constants, NSMigratePersistentStoresAutomaticallyOption and
NSInferMappingModelAutomaticallyOption, as keys in the dictionary and store an NSNumber
under both of those keys that holds a BOOL value of true. By passing a dictionary with these

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Articles/Introduction.html

135CHAPTER 5: Preparing for Change: Migrations and Versioning

two values when you add the persistent store to the persistent store coordinator, you indicate
to Core Data that you want it to attempt to automatically create migrations if it detects a change
in the data model version and, if it’s able to create the migrations, to automatically use those
migrations to migrate the data to a new persistent store based on the current data model.

That’s it. With these changes, you are ready to start making changes to your data model
without fear (well, maybe not completely without fear). By using lightweight migrations, you
limit the complexity of the changes you’re able to make. For example, you won’t be able to
split up an entity into two different entities or move attributes from one entity to another, but
the majority of changes you’ll need to make outside of major refactoring can be handled
by lightweight migrations. Plus, once you set up your project the way you’ve done in this
chapter, that functionality is basically free.

Time to Migrate On
After a couple of long, conceptually difficult chapters, taking a break to set up your project
to use migrations gave you a nice breather, but don’t underestimate the importance of
migrations. The people who use your applications are trusting you to take a certain amount
of care with their data. Putting some effort into making sure that your changes don’t cause
major problems for your users is important.

Any time you put out a new release of your application with a new data model version, make
sure you test the migration thoroughly. This is true regardless of whether you’re using the
lightweight migrations you set up in this chapter or the heavier-duty standard migrations.

Migrations, especially lightweight migrations, are relatively easy to use, but they hold the
potential for causing your users significant inconvenience, so don’t get lulled into a false
sense of security by how easy they are to use. Test every migration thoroughly with as much
realistic data as you can.

And with that warning out of the way, let’s continue adding functionality to the SuperDB
application. Up next? Custom managed objects for fun and profit.

137

Chapter 6
Custom Managed Objects

At the moment, the Hero entity is represented by instances of the class NSManagedObject.
Thanks to key-value coding, you have the ability to create entire data models without ever
having to create a class specifically designed just to hold your application’s data.

This approach has some drawbacks, however. For one thing, when using key-value coding
with managed objects, you use NSString constants to represent your attributes in code,
but these constants are not checked in any way by the compiler. If you mistype the name
of an attribute, the compiler won’t catch it. It can also be a little tedious having to use
valueForKey: and setValue:forKey: all over the place instead of just using properties and
dot notation.

Although you can set default values for some types of data model attributes, you can’t, for
example, set conditional defaults such as defaulting a date attribute to today’s date. For
some types of attributes, there’s no way at all to set a default in the data model. Validation
is similarly limited. Although you can control certain elements of some attributes, such as
the length of a string or max value of a number, there’s no way to do complex or conditional
validation or to do validation that depends on the values in multiple attributes.

Fortunately, NSManagedObject can be subclassed, just like other classes, and that’s the
key to doing more advanced defaulting and validation. It also opens the door to adding
functionality to your entity by adding methods. You can, for example, create a method to
return a value calculated from one or more of the entity’s attributes.

Note Given that Swift is still not 100 percent mapped to each functionality that was available in

Objective-C, there are some concepts that just don’t exist in Swift. The attempt here is to make the

code be as pure Swift as possible.

138 CHAPTER 6: Custom Managed Objects

In this chapter, you’ll create a custom subclass of NSManagedObject for your Hero entity.
Then, you’ll use that subclass to add some additional functionality. You’ll also add two
new attributes to Hero. One is the hero’s age. Instead of storing the age, you’ll calculate it
based on the hero’s birthdate. As a result, you won’t need Core Data to create space in the
persistent store for the hero’s age, so you’ll use the transient attribute type and then write
an accessor method to calculate and return the hero’s age. The transient attribute type tells
Core Data not to create storage for that attribute. In your case, you’ll calculate the hero’s age
as needed at runtime.

The second attribute you’ll add is the hero’s favorite color. Now, there is no attribute
type for colors, so you’re going to implement something called a transformable attribute.
Transformable attributes use a special object called a value transformer to convert custom
objects to instances of NSData so they can be stored in the persistent store. You’ll write a
value transformer that will let you save UIColor instances this way. In Figure 6-1, you can
see what the detail editing view will look like at the end of the chapter with the two new
attributes in place.

Figure 6-1. The Hero detail view as it will look at the end of the chapter

139CHAPTER 6: Custom Managed Objects

Of course, you don’t have an attribute editor for colors, so you’ll have to write one to let the
user select the hero’s favorite color. You’ll just create a simple, slider-based color chooser
(Figure 6-2).

Figure 6-2. The simple, slider-based color attribute editor

Because there’s no way to set a default color in the data model, you’ll write code to default
the favorite color attribute to white. If you don’t do that, then the color will be nil when the
user goes to edit it the first time, which will cause problems.

Finally, you’ll add validation to the date field to prevent the user from selecting a birthdate
that occurs in the future, and you’ll tweak your attribute editors so that they notify the user
when an entered attribute has failed validation. You’ll give the user the option to go back and
fix the attribute or to just cancel the changes they made (Figure 6-3).

140 CHAPTER 6: Custom Managed Objects

Although you’ll be adding validation only to the Birthdate field, the reporting mechanism
you’ll write will be generic and reusable if you add validation to another field. You can see an
example of the generic error alert in Figure 6-4.

Figure 6-3. When attempting to save an attribute that fails validation, the user will have the option of fixing the

problem or canceling their changes

141CHAPTER 6: Custom Managed Objects

There’s a fair amount of work to do, so let’s get started. You’ll continue working with the
same SuperDB application from the previous chapter. Make sure you created a new version
of your data model and that you turned on lightweight migrations, as shown in the previous
chapter.

Updating the Data Model
The first order of business is to add your two new attributes to the data model. Make
sure that the disclosure triangle next to SuperDB.xcdatamodeld in the SuperDB folder in the
Navigator pane is expanded, and click the current version of the data model (the one with
the green check mark on it).

Once the model editor comes up, first make sure you are in table view mode. Then, select
the Hero entity in the component pane (Figure 6-5).

Figure 6-4. Since your goal is generally to write reusable code, your validation mechanism will also enforce validations

done on the data model, such as minimum length

142 CHAPTER 6: Custom Managed Objects

Adding the Age Attribute
Click the plus icon labeled Add Attribute in the lower right of the data model. Change the
new attribute’s name to age. In the model editor, uncheck Optional and check Transient.
That will let Core Data know that you don’t need to store a value for this attribute. In your
case, since you’re using SQLite for your persistent store, this will tell Core Data not to add
a column for age to the database table used to store hero data. Change the attribute type
to Integer 16; you’ll calculate age as a whole number. That’s all you have to do for now for
the age attribute. Of course, as things stand, you can’t do anything meaningful with this
particular attribute because it can’t store anything, and you don’t yet have any way to tell
it how to calculate the age. That will change in a few minutes, when you create a custom
subclass of NSManagedObject.

Adding the Favorite Color Attribute
Add another attribute. This time, call the new attribute favoriteColor and set the attribute
type to Transformable. Once you’ve changed the Type pop-up to Transformable, you should
notice a new text field labeled Name, with a grayed-out value of Value Transformer Name
(Figure 6-6).

Figure 6-5. Back in the model editor

143CHAPTER 6: Custom Managed Objects

The value transformer name is the key to using transformable attributes. We’ll discuss
value transformers in more depth in just a few minutes, but you’ll populate this field now
to save yourself a trip back to the model editor later. This field is where you need to put
the name of the value transformer class that will be used to convert whatever object
represents this attribute into an NSData instance for saving in the persistent store and
vice versa. If you leave the field blank, CoreData will use the default value transformer,
NSKeyedUnarchiveFromDataTransformerName. The default value transformer will work with a
great many objects by using NSKeyedArchiver and NSKeyedUnarchiver to convert any object
that conforms to the NSCoding protocol into an instance of NSData.

Adding a Minimum Length to the Name Attribute
Next, let’s add some validation to ensure that your name attribute is at least one character
long. Click the name attribute to select it. In the model editor, enter 1 in the text field next to
the Validation label to specify that the value entered into this attribute must to be at least one
character long. The Min. Length check box should automatically select itself. This may seem
like a redundant validation, since you already unchecked Optional in a previous chapter
for this attribute, but the two do not do the same thing. Because the Optional check box is
unchecked, the user will be prevented from saving if name is nil. However, your application
takes pains to ensure that name is never nil. For example, you give name a default value.
If the user deletes that value, the text field will still return an empty string instead of nil.
Therefore, to ensure that an actual name is entered, you’ll add this validation.

Save the data model.

Figure 6-6. Making the favoriteColor attribute a transformable attribute

144 CHAPTER 6: Custom Managed Objects

Creating the Hero Class
It’s now time to create your custom subclass of NSManagedObject. This will give you the
flexibility to add custom validation and defaulting as well as the ability to use properties
instead of key-value coding, which will make your code easier to read and give you
additional checks at compile time.

Click the SuperDB group in the Navigator pane of Xcode. Create a new file. When the New
File Assistant appears, select Core Data from under the iOS heading in the left pane and
then look for an icon in the upper-right pane that you’ve probably never seen before: the
NSManagedObject subclass (Figure 6-7). Select it and click the Next button.

Figure 6-7. Selecting the NSManagedObject subclass template

Next, you will be prompted to select the data models with the entities you want to manage.
The current model should be checked, so just click Next. It will now display all the entities
and ask which ones you want to manage (in this case there is only one called Hero), as
shown in Figure 6-8. Ensure Hero is checked and click Next.

145CHAPTER 6: Custom Managed Objects

Finally, you will be prompted where to save the generated class files (Figure 6-9). Set the
language to Swift. Leave the “Use scalar properties for primitive data types” box unchecked.
The default location should be fine, so just click Create.

Figure 6-8. Select the Hero entity

146 CHAPTER 6: Custom Managed Objects

Tweaking the Hero Header
You should now have a file called Hero.swift in your project folder. Xcode also tweaked your
data model so that the Hero entity uses this class rather than NSManagedObject at runtime.
Click the new Hero.swift file now. It should look something look like the following, though
the exact order of your property declarations may not be exactly the same:

import UIKit
import CoreData

class Hero: NSManagedObject {

 @NSManaged var birthDate: NSTimeInterval
 @NSManaged var name: String
 @NSManaged var secretIdentity: String
 @NSManaged var sex: String
 var age: Int16
 @NSManaged var favoriteColor: AnyObject

}

Figure 6-9. Select the location to put the class files

147CHAPTER 6: Custom Managed Objects

Caution If your Hero.swift file does not include declarations of age and favoriteColor,

chances are you did not save properly somewhere along the way. If so, select Hero.swift in your

project file and press Delete, being sure the files are moved to the trash. Then go back, make sure

your attributes were properly created in your data model, make sure the data model was saved, and

then re-create Hero.swift.

You need to add a couple of constants that will be used in your validation methods. Add the
following after the imports but before the class declaration:

let kHeroValidationDomain = "com.oz-apps.SuperDB.HeroValidationDomain"
let kHeroValidationBirthdateCode = 1000
let kHeroValidationNameOrSecretIdentityCode = 1001

Then change the date, age, and favoriteColor property declarations.

@NSManaged var birthDate: NSDate
@NSManaged var favoriteColor: UIColor
var age:Int

Don’t worry too much about the constants. We’ll explain error domains and error codes in a
few moments. You’ve got a bit more work to do in the implementation code. Before you do
that, let’s talk about what you’re going to do.

Defaulting
One of the most common Core Data tasks that requires you to subclass NSManagedObject is
setting conditional default values for attributes or setting the default value for attribute types
that can’t be set in the data model, such as default values for transformable attributes.

The NSManagedObject method awakeFromInsert is designed to be overridden by subclasses
for the purpose of setting default values. It gets called immediately after a new instance of
an object is inserted into a managed object context and before any code has a chance to
make changes to or use the object.

In your case, you have a transformable attribute called favoriteColor that you want to
default to white. To accomplish that, add the following method before the closing curly
bracket, }, in Hero.swift:

override func awakeFromInsert() {
 super.awakeFromInsert()
 self.favoriteColor = UIColor(red: 1, green: 1, blue: 1, alpha: 1)
}

148 CHAPTER 6: Custom Managed Objects

Tip Notice that you didn’t use UIColor.whiteColor() for the default. The reason you used

the colorWithRed:green:blue:alpha: factory method is because it always creates an RGBA

color. UIColor supports several different color models. Later, you’ll be breaking UIColor down

into its separate components (one each for red, green, blue, and alpha) in order to save it in the

persistent store. You’ll also let the user select a new color by manipulating sliders for each of these

components. The whiteColor method, however, doesn’t create a color using the RGBA color

space. Instead, it creates a color using the grayscale color model, which represents colors with only

two components, gray and alpha.

That’s simple enough. You just create a new instance of UIColor and assign it to
favoriteColor. Another common usage of awakeFromInsert is for defaulting date attributes
to the current date. You could, for example, default the birthdate attribute to the current
date by adding the following line of code to awakeFromInsert:

self.birthDate = NSDate()

Since age is a calculated property, you create a getter with no setter, thereby making it a
read-only property. Replace the declaration of age with this:

var age:Int {
 get {
 var gregorian = NSCalendar(calendarIdentifier: NSCalendarIdentifierGregorian)
 var today = NSDate()
 var components = gregorian?.components(NSCalendarUnit.YearCalendarUnit,
 fromDate: self.birthDate, toDate: NSDate(), options: .allZeros)
 var years = components?.year
 return years!
 }
}

Validation
Core Data offers two mechanisms for doing attribute validation in code, one that’s intended
to be used for single-attribute validations and one that’s intended to be used when a
validation depends on the value of more than one attribute. Single-attribute validations are
relatively straightforward. You might want to make sure that a date is valid, a field is not nil,
or a number attribute is not negative. Multifield validations are a little more complex. Let’s
say that you have a Person entity and it has a string attribute called legalGuardian where
you keep track of the person who is legally responsible and able to make decisions for a
person if they are a minor. You might want to make sure this attribute is populated, but you
want to do that only for minors, not for adults. Multi-attribute validation will let you make the
attribute required if the person’s age attribute is less than 18 but not otherwise.

149CHAPTER 6: Custom Managed Objects

Single-Attribute Validations
NSManagedObject provides a method for validating single attributes called
validateValue:forKey:error:. This method takes a value, a key, and an NSError handle.
You could override this method and perform validation by returning true or false based on
whether the value is valid. If it doesn’t pass, you would also be able to create an NSError
instance to hold specific information about what is not valid and why. You could do that.
But don’t. As a matter of fact, Apple specifically states you shouldn’t do this. You never
actually need to override this method because the default implementation uses a cool
mechanism to dynamically dispatch error handling to special validation methods that aren’t
defined in the class.

For example, let’s say you have a field called birthdate. NSManagedObject will,
during validation, automatically look for a method on your subclass called
validateBirthdate:error:. It will do this for every attribute, so if you want to validate a
single attribute, all you have to do is declare a method that follows the naming convention of
validateXXX:error: (where XXX is the name of the attribute to be validated), returning a BOOL
that indicates whether the new value passed validation.

Let’s use this mechanism to prevent the user from entering birthdates that occur in the
future. Just before the closing curly bracket } in Hero.swift, add the following method:

func validateBirthDate(ioValue: AutoreleasingUnsafeMutablePointer<AnyObject?>,
 error:NSErrorPointer) -> Bool {
 var date = ioValue.memory as NSDate
 if date.compare(NSDate()) == .OrderedDescending {
 if error != nil {
 var errorStr = NSLocalizedString("Birthdate cannot be in the future",
 comment: "Birthdate cannot be in the future")
 var userInfo = NSDictionary(object: errorStr, forKey: NSLocalizedDescriptionKey)
 var outError = NSError(domain: kHeroValidationDomain,
 code: kHeroValidationBirthdateCode,
 userInfo: userInfo)
 error.memory = outError
 }
 return false
 }
 return true
}

As you can see, there are some new concepts here. Just when you thought that Swift
was pointer-free, you have pointers; all you need to know for now is that this is used for
backward compatibility with some of the C and Objective-C APIs that still rely on pointers for
passing variables by reference. Swift has the inout, but that is a Swift option and would not
work with Objective-C and C type functions. The pointers are structures in Swift that have
a member called memory, which is the memory address. That is how you would pass data
between the functions.

150 CHAPTER 6: Custom Managed Objects

Here’s an example:

var date = ioValue.memory as NSDate

The memory part of the pointer is used to cast the object to an NSDate. Toward the end
of the function, you create an NSError object and assign it to the memory property of the
NSErrorPointer. If you were to try assigning a value drectly to any parameter, the compiler
would complain.

As you can see from the preceding method, you return false if the date is in the future and
true if the date is in the past. If you return false, you also take some additional steps. You
create a dictionary and store an error string under the key NSLocalizedDescriptionKey,
which is a system constant that exists for this purpose. You then create a new instance of
NSError and pass that newly created dictionary as the NSError’s userInfo dictionary. This
is the standard way to pass back information in validation methods and pretty much every
other method that takes a handle to an NSError as an argument.

Notice that when you create the NSError instance, you use the two constants you defined
earlier, kHeroValidationDomain and kHeroValidationBirthdateCode.

var outError = NSError(domain: kHeroValidationDomain,
 code: kHeroValidationBirthdateCode,
 userInfo: userInfo)

Every NSError requires an error domain and an error code. Error codes are integers that
uniquely identify a specific type of error. An error domain defines the application or framework
that generated the error. For example, there’s an error domain called NSCocoaErrorDomain
that identifies errors created by code in Apple’s Cocoa frameworks. You defined your own
error domain for your application using a reverse DNS-style string and assigned that to the
constant kHeroValidationDomain. You’ll use that domain for any error created as a result of
validating the Hero object. You could also have chosen to create a single domain for the entire
SuperDB application, but by being more specific, your application will be easier to debug.

By creating your own error domains, you can be as specific as you want to be. You also avoid
the problem of searching through long lists of system-defined constants, looking for just the
right code that covers a specific error. kHeroValidationBirthdateCode is the first code you’ve
created in your domain, and the value of 1000 is arbitrary; it would have been perfectly valid to
choose 0, 1, 10000, or 34848 for this error code. It’s your domain; you can do what you want.

Multiple-Attribute Validations
When you need to validate a managed object based on the values of multiple fields, the
approach is a little different. After all the single-field validation methods have fired, another
method will be called to let you do more complex validations. There are actually two such
methods, one that is called when an object is first inserted into the context and another
when you save changes to an existing managed object.

When inserting a new managed object into a context, the multiple-attribute method you use
is called validateForInsert:. When updating an existing object, the validation method you
implement is called validateForUpdate:. In both cases, you return true if the object passes

151CHAPTER 6: Custom Managed Objects

validation and false if there’s a problem. As with single-field validation, if you return false, you
should also create an NSError instance that identifies the specifics of the problem encountered.

In many instances, the validation you want to do at insert and at update are identical. In
those cases, do not copy the code from one and paste it into the other. Instead, create a
new validation method and have both validateForInsert: and validateForUpdate: call
that new validation method.

In your application, you don’t need any multiple-attribute validations (yet!), but let’s say,
hypothetically, that instead of making both name and secretIdentity required, you wanted to
require only one of the two. You could accomplish that by making both name and secretIdentity
optional in the data model and then using the multiple-attribute validation methods to enforce it.
To do that, you would add the following three methods to your Hero class:

func validateNameOrSecretIdentity(error: NSErrorPointer) -> Bool{
 if countElements(self.name) == 0 && countElements(self.secretIdentity) == 0 {
 if error != nil {
 var errorStr = NSLocalizedString("Must provide name or secret identity.",
 comment: "Must provide name or secret identity.")
 var userInfo = NSDictionary(object: errorStr, forKey: NSLocalizedDescriptionKey)
 var outError = NSError(domain: kHeroValidationDomain,
 code: kHeroValidationNameOrSecretIdentityCode,
 userInfo: userInfo)
 error.memory = outError
 }
 return false
 }

 return true
}

override func validateForInsert(error: NSErrorPointer) -> Bool {
 return self.validateNameOrSecretIdentity(error)
}

override func validateForUpdate(error: NSErrorPointer) -> Bool {
 return self.validateNameOrSecretIdentity(error)
}

Tip There is some documentation on the Apple web site regarding using pointers from Swift

to interact with C APIs. You can find that information at https://developer.apple.com/

library/prerelease/ios/documentation/Swift/Conceptual/BuildingCocoaApps/

InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-CH8-XID_16.

However, like other Apple documentation, it is limited in information on how to use pointers

and lacking samples or code. In such cases, the header files are your friend, and you can find

information on these specific topics on the Internet.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-CH8-XID_16
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-CH8-XID_16
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-CH8-XID_16

152 CHAPTER 6: Custom Managed Objects

Adding Validation Feedback
In Chapter 4, you created a class named SuperDBEditCell that encapsulates the common
functionality shared by the various table view cells. The SuperDBEditCell class does not
include code designed to save the managed object; it just concerns itself with the display.
You did store the attribute that each SuperDBEditCell instance displays. But now you want
to add validation feedback when the edited attribute fails validation, and you don’t want to
duplicate functionality across subclasses.

What you want to do is have each instance of SuperDBEditCell (or subclass) validate
the attribute it is handling. You want to perform the validation when the table view cell
loses focus (that is, you move to another cell) and when the user attempts to save. If the
edited value does not pass validation, you should pop up an alert window telling your user
the validation error and present two buttons: Cancel, reverting the value, or Fix, letting
the user edit the cell. To handle this, you need to have SuperDBEditCell respond to the
UITextFieldDelegate protocol. Finally, if the user clicks the Cancel button on the navigation
bar, you will undo all the changes they’ve made.

First, edit SuperDBEditCell.swift and change the class declaration to read as follows:

class SuperDBEditCell: UITableViewCell, UITextFieldDelegate {

Next, you need to add a property to your NSManagedObject.

var hero: NSManagedObject!

The module does not recognize NSManagedObject because it is available in Core Data, so
add import CoreData.

Now add the validate method as follows:

//MARK: - Instance Methods

@IBAction func validate(){
 var val: AnyObject? = self.value
 var error: NSError?
 if !self.hero.validateValue(&val, forKey: self.key, error: &error) {
 var message: String!
 if error?.domain == "NSCocoaErrorDomain" {
 var userInfo:NSDictionary? = error?.userInfo
 var errorKey = userInfo?.valueForKey("NSValidationErrorKey") as String
 var reason = error?.localizedFailureReason
 message = NSLocalizedString("Validation error on \(errorKey)\rFailure Reason:

\(reason)",
 comment: "Validation error on \(errorKey)\rFailure Reason: \(reason)")
 } else {
 message = error?.localizedDescription
 }

153CHAPTER 6: Custom Managed Objects

 var title = NSLocalizedString("Validation Error",
 comment: "Validation Error")
 let alert = UIAlertController(title: title, message: message, preferredStyle: .Alert)
 let fixAction = UIAlertAction(title: "Fix", style: .Default, handler: {
 _ in
 var result = self.textField.becomeFirstResponder()
 })
 alert.addAction(fixAction)
 let cancelAction = UIAlertAction(title: "Cancel", style: UIAlertActionStyle.Cancel){
 _ in
 self.setValue(self.hero.valueForKey(self.key)!)
 }
 alert.addAction(cancelAction)

 UIApplication.sharedApplication().keyWindow?.rootViewController?.

presentViewController(
 alert, animated: true, completion: nil)
 }
 }
}

You need the textField delegate method textField:didEndEditing: to call your validate
method.

//MARK: - UITextFieldDelegate Methods

func textFieldDidEndEditing(textField: UITextField) {
 self.validate()
}

func setValue(aValue:AnyObject){
 if let _aValue = aValue as? NSString{
 self.textField.text = _aValue
 } else {
 self.textField.text = aValue.description
 }
}

Finally, you need your cell’s textField to know about its new delegate. In
SuperDBEditCell’s init(style:reuseIdentifier:) method, just before the textField is
added to the cell’s contentView, add this:

self.textField.delegate = self

What have you done here? First, you made sure the UITextField delegate was set to self
in init(style:reuseIdentifier:). Then, you added the validate method. Basically, your
validate calls validateValue:forKey:error: on your NSManagedObject. If this validation
fails, you parse the NSError object and create a UIAlertController. Next, you defined
a textFieldDidEndEditing: delegate method. This method gets invoked when the
NSTextField in your SuperDBEditCell class exits editing mode. This happens when you
click from a cell to another or when you click Save or Back on the navigation bar. Finally,

154 CHAPTER 6: Custom Managed Objects

you added alertView:clickedButtonAtIndex:. This delegate method gets called when the
user clicks a button on the UIAlertView you display on validation error. Depending on which
button was clicked, Cancel or Fix, you either revert the value or move the focus to the table
view cell.

Now you just need to pass your Hero object down from the HeroDetailController to the
SuperDBEditCell. Edit HeroDetailController.swift and find tableView:cellForRowAtIndexP
ath:. Just before all the other cell configurations, add this:

cell?.hero = self.hero

You also want to change the following line:

cell?.value = self.hero.valueForKey(dataKey)

to the following:

var theData: String! = self.hero.valueForKey(dataKey)?.description
cell?.value = theData

This is because by default when a value is returned from valueForKey, it is of type AnyObject?.
And since textField expects a string, the value cast to the string would result in nil. The
method description is a way to return the string representation of a class.

Note Swift still has a lot of dependencies on Objective-C and C APIs. You might get a warning

message in the console stating the following:

CoreData: warning: Unable to load class named 'Hero' for entity 'Hero'. Class not
found, using default NSManagedObject instead.

To avoid this, you need to add @objc(Hero) to the Hero.swift class just before the class

declaration. This is because of classes in Swift being prefixed with the namespace of the module.

In this case, it would become SuperDB.Hero and therefore unavailable as Hero. With the @objc

prefix, it is just Hero, or whatever you want to call it.

Updating the Detail View
Looking at Figure 6-2, you see that you need two more cells in the General section of the
table view. Before you go any further, let’s update the detail view.

Open SuperDB.storyboard and find HeroDetailController. Select the second table view section
by clicking in an area outside the table view cells (next to the General label is a good place).
Open the Attributes Inspector in the Utility pane and change the Rows field from 3 to 5. The
second section of the table view should now show five rows. That’s all you need to do in the
storyboard editor. Easy, right?

155CHAPTER 6: Custom Managed Objects

Now let’s take a look at Figure 6-2 again. The labels in the second section are ordered as
Identity, Birthdate, Age, Sex, and Favorite Color. When you last ran the application, the
section labels were Identity, Birthdate, and Sex. Not only do you need to add Age and
Favorite Color, you need to reorder things so that Age comes before Sex. Fortunately, since
your cells are configured from a property list, this should be (relatively) simple.

Open HeroDetailConfiguration.plist. Navigate down to Root ➤ Sections ➤ Item 1 ➤ rows
➤ Item 1. If the disclosure triangle next to the last Item 1 is open, close it. Item 1 and Item 2
should be right next to each other. If the Item 2 disclosure triangle is open, close it as well.
Now select the last Item 1 row and click the (+) button next to the Item 1 label. A new row
should have been inserted between Item 1 and Item 2. Item 2 is renamed to Item 3. The new
Item 2 has a type of string with no value.

Change the new Item 2 type to Dictionary and open its disclosure triangle. This is the
configuration for your Age cell. Click the (+) button next to the new Item 2 three times to add
three rows. Keep all three rows as type string and give them the following key/value pairs:
key/age, class/SuperDBEditCell, label/Age.

Now add a row after Item 3 and repeat the process, adding three rows with type string to
the new Item 4. The key/value pairs will be key/favoriteColor, class/SuperDBEditCell,
label/Color.

Build and run the app. Navigate down to the detail view.

The app should have crashed or not worked as expected. Why?

Well, you’re assigning the age attribute to the textField’s text property. Age will be
an instance of Int, and textField.text will expect an NSString. You could subclass
SuperDBEditCell to handle Int, but you probably won’t need it. It’s far easier to change this
method in SuperDBEditCell.swift.

func setValue(aValue:AnyObject){
 if let _aValue = aValue as? String{
 self.textField.text = _aValue
 } else {
 self.textField.text = aValue.description
 }
}

If you were showing a lot of Ints, you probably wouldn’t do this, but this works for now.

Try building and running the app again. If you add a new hero, you should see something like
Figure 6-10.

156 CHAPTER 6: Custom Managed Objects

There’s a problem with the Age cell. For one, in Edit mode, you can tap inside the Age cell,
and it will get the focus and show the keyboard input. Second, when you try to save from
Edit mode, the app will crash. Let’s fix this.

Creating SuperDBNonEditableCell
The Age cell is editable by default. There is a table view data source method,
tableView:canEditRowAtIndexPath:, that determines whether a specific table view cell
is editable. By default, this method is provided in the UITableViewController template but
commented out. As a result, the table view assumes all cells are editable. Clearly, you need
this method to return false for the Age cell index path.

The app crashes because of these lines of code in the HeroDetailController save method:

for cell in self.tableView.visibleCells() {
 let _cell = cell as SuperDBEditCell
 self.hero.setValue(_cell.value, forKey: _cell.key)

Figure 6-10. The Hero detail view

157CHAPTER 6: Custom Managed Objects

When you try to set the value in the Hero entity’s attribute of age, you’ll get an exception
crash. Remember, you declared age to be transient in your data model. That means the
value of age is calculated, and there’s no way to set it. You need a way to check whether you
should save the value in the cell.

First, you need to define an uneditable version of SuperDBEditCell. But rather than do that,
let’s make a subclass of SuperDBEditCell, called SuperDBNonEditableCell, that uses a
textField but doesn’t allow it to be enabled for editing. This could seem like a good time to
try Xcode’s refactoring capabilities. However, Swift is new and still rough around the edges,
so some things do not work, well, well. You have to do it the hard way.

Creating a Subclass
Click SuperDB and create a new Cocoa Touch Class, name it SuperDBNonEditableCell, and
make it a subclass of SuperDBEditCell. It should look like this:

class SuperDBNonEditableCell: SuperDBEditCell {

Moving Code Around
Now, Xcode created the file for SuperDBCell, and you made SuperDBEditCell a subclass of
SuperDBCell, but not much else. Remember, you wanted to make SuperDBCellNonEditableCell
the same as SuperDBEditCell, but the textField wasn’t going to ever have been enabled.

Let’s start with the SuperDBCellNonEditableCell file. Since it is a subclass of
SuperDBEditCell, it has most of the functionality already present. All you want is to have
three functions/methods. The code in SuperDBNonEditableCell should look like this:

import UIKit

class SuperDBNonEditableCell: SuperDBEditCell {

 override func isEditable() -> Bool {
 return false
 }

 override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style: style, reuseIdentifier:reuseIdentifier)
 self.textField.enabled = false
 }

 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

}

158 CHAPTER 6: Custom Managed Objects

Next, you adjust SuperDBEditCell.swift,to add the isEditable function, and return true,
indicating that it is editable.

func isEditable() -> Bool {
 return true
}

If you now run the application, you will see that the textField for age is…Editable!!?? So,
does this not work? There is just one little bit of code that is overriding this. If you look at
the setEditing method, you are setting the enabled flag based on the editing mode. So, if
Edit mode is true, the textField gets enabled. It is simple to fix it with a conditional statement.
Now it will be set editable only if the function isEditable returns true and the mode is editing.

self.textField.enabled = editing && self.isEditable()

Editable Property
The SuperDB app crashes when you try to save an edited Hero since it tries to save the
value in the Age cell. You want the HeroDetailController’s save method to skip the Age cell
when updating its Hero instance.

You could weave some Core Data wizardry and ask the Hero instance to check whether the
cell’s attribute key is transient. That seems like a lot work just to know something you can
infer pretty reliably. Remember, you created the SuperDBNonEditableCell class to handle
those fields that are uneditable (and probably don’t need to be updated). So, what you
want is for SuperDBCell to return true on some query and SuperDBEditCell to return false
(or vice versa). Recollect you created the isEditable functions in both SuperDBEditCell and
SuperDBNonEditableCell? This can be used to further save if the cell isEditable. Now you
need to use this method in HeroDetailController.swift. Update the appropriate code in
the save method.

for cell in self.tableView.visibleCells() {
 let _cell = cell as SuperDBEditCell
 if _cell.isEditable() {
 self.hero.setValue(_cell.value, forKey: _cell.key)
 }

Finally, you need to update your HeroDetailConfiguration.plist to have the Age
cell use SuperDBNonEditableCell. Open HeroDetailConfiguration.plist, navigate
to Root ➤ sections ➤ Item 1 ➤ rows ➤ Item 2 ➤ class, and change its value to
SuperDBNonEditableCell.

Build and run the app. Navigate to the detail view and enter Edit mode. Try to tap the Age
cell. You can’t because it’s not editable.

159CHAPTER 6: Custom Managed Objects

Creating a Color Table View Cell
Now that you’ve completed your color value transformer, let’s think about how you can enter
your hero’s favorite color. Look back at Figure 6-1. You have a table view cell that displays
a band of your hero’s favorite color. When the user chooses the favorite color cell in Edit
mode, you want to display a color picker (Figure 6-2). The color picker is not available via
the iOS SDK, like the date and value pickers you used in Chapter 4. You’re going to have to
build one from scratch.

Custom Color Editor
Click the SuperDB folder in the navigation pane, and create a new Cocoa Touch Class. When
prompted, name the class UIColorPicker and make it a subclass of UIControl. UIControl is
the base class for control objects such as buttons and sliders. Here you define a subclass
of UIControl that encapsulates four sliders. The only property you need UIColorPicker to
declare is its color.

var _color: UIColor!

Every other property can be declared privately in a category in the implementation file, called
UIColorPicker.swift.

private var _redSlider: UISlider!
private var _greenSlider: UISlider!
private var _blueSlider: UISlider!
private var _alphaSlider: UISlider!

Add the following initialization code:

required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
}

override init(frame: CGRect) {
 super.init(frame: frame)

 labelWithFrame(CGRectMake(20, 40, 60, 24), text: "Red")
 labelWithFrame(CGRectMake(20, 80, 60, 24), text: "Green")
 labelWithFrame(CGRectMake(20, 120, 60, 24), text: "Blue")
 labelWithFrame(CGRectMake(20, 160, 60, 24), text: "Alpha")

 let theFunc = "sliderChanged:"
 self._redSlider = createSliderWithAction(CGRectMake(100, 40, 190, 24), function: theFunc)
 self._greenSlider = createSliderWithAction(CGRectMake(100, 80, 190, 24), function: theFunc)
 self._blueSlider = createSliderWithAction(CGRectMake(100, 120, 190, 24), function: theFunc)
 self._alphaSlider = createSliderWithAction(CGRectMake(100, 160, 190, 24), function: theFunc)
}

160 CHAPTER 6: Custom Managed Objects

private func labelWithFrame(frame: CGRect, text: String){
 var label = UILabel(frame: frame)
 label.userInteractionEnabled = false
 label.backgroundColor = UIColor.clearColor()
 label.font = UIFont.boldSystemFontOfSize(UIFont.systemFontSize())
 label.textAlignment = NSTextAlignment.Right
 label.textColor = UIColor.darkTextColor()
 label.text = text
 self.addSubview(label)
}

func createSliderWithAction(frame: CGRect, function: String)->UISlider{
 var _slider = UISlider(frame: frame)
 _slider.addTarget(self, action: Selector(function), forControlEvents: .ValueChanged)
 self.addSubview(_slider)

 return _slider
}

Here you are laying out the appearance of your color picker. You place the sliders in the
view with the init(frame:) method. In the previous code, you have simply abstracted and
reduced code from nearly two pages of similar-looking code to nearly half a page worth of
initialization code. It is still kept modular enough for you to use in your projects if you want.

You need to override the color property in order to set the slider values correctly.

//MARK: - Property Overrides
var color: UIColor{
 get { return _color}
 set {
 _color = newValue
 let components = CGColorGetComponents(_color.CGColor)

 _redSlider.setValue(Float(components[0]), animated: true)
 _greenSlider.setValue(Float(components[1]), animated: true)
 _blueSlider.setValue(Float(components[2]), animated: true)
 _alphaSlider.setValue(Float(components[3]), animated: true)
 }
}

Now you can implement your (private) instance methods.

//MARK: - (Private) Instance Methods
@IBAction func sliderChanged(sender: AnyObject){
 color = UIColor(red: CGFloat(_redSlider.value),
 green: CGFloat(_greenSlider.value),
 blue: CGFloat(_blueSlider.value),
 alpha: CGFloat(_alphaSlider.value))
 self.sendActionsForControlEvents(.ValueChanged)
}

Now that you’ve created your custom color picker, you need to add a custom table view cell
class to use it.

161CHAPTER 6: Custom Managed Objects

Custom Color Table View Cell
Since you have a custom picker view, you’re going to need to subclass SuperDBEditCell
like you did for SuperDBDateCell and SuperDBPickerCell. But how are you going to display a
UIColor value in your SuperDBEditableCell class? You could create a string that displays the
four values of the color (red, green, blue, and alpha). For most end users, those numbers are
meaningless. Your users are going to expect to see the actual color when they’re viewing the
hero detail. You don’t have a mechanism to display colors in a table view cell.

If you build a complicated table view cell subclass to display the color, are you going to use
it elsewhere in the application? The likely answer is no. So, while you could spend time and
effort building this class, don’t. Here’s a simpler solution: populate the text field with a String
with special Unicode characters that display as a solid rectangle. Then add code to change
the font color of the text to make it appear in your hero’s favorite color.

Create a new Cocoa Touch Class. Make it a subclass of SuperDBEditCell and name
it SuperDBColorCell Add the colorPicker of type UIColorPicker as a property of
SuperDBColorCell.swift

import UIKit

class SuperDBColorCell: SuperDBEditCell {
 var colorPicker: UIColorPicker!
 var attributedColorString: NSAttributedString!

 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

You also add an instance method, attributedColorString, that returns an
NSAttributedString. An attributed string is a string that also has information on how to
format itself. Prior to iOS 6, attributed strings were extremely limited. Now, you’re able to use
them with UIKit objects. You’ll see why you want this method soon.

Define the init(style:reuseIdentifier:) method as follows:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style: style, reuseIdentifier: reuseIdentifier)

 self.colorPicker = UIColorPicker(frame: CGRectMake(0, 0, 320, 216))
 self.colorPicker.addTarget(self, action: "colorPickerChanged:", forControlEvents:
.ValueChanged)
 self.textField.inputView = self.colorPicker
}

This should be pretty straightforward. Like the other SuperDBEditCell subclasses, you’ve
instantiated your picker object and set it as the textField’s inputView.

162 CHAPTER 6: Custom Managed Objects

Next, override SuperDBEditCell’s value accessor and mutator.

//MARK: - SuperDBEditCell Overrides

override var value: AnyObject!{
 get{
 return self.colorPicker.color
 }
 set{
 if let _color = newValue as? UIColor {
 self.setValue(newValue)
 self.colorPicker.color = newValue as UIColor
 } else {
 self.colorPicker.color = UIColor(red: 1, green: 1, blue: 1, alpha: 1)
 }
 self.textField.attributedText = self.attributedColorString
 }
}

Make note of this line in setValue:

self.textField.attributedText = self.attributedColorString

Rather than setting the textField’s text property, you are using the new attributedText
property. This tells the textView that you’re using an attributed string and to use the
attributes you’ve defined to format the string. You also set the color picker to white if the
Hero has no color attribute defined.

Add the colorPicker callback method.

//MARK: - (Private) Instance Methods

func colorPickerChanged(sender: AnyObject){
 self.textField.attributedText = self.attributesColorString
}

Again, you’re telling the textField to update itself. But with what?

Finally, add the following code to the declaration of attributedColorString, adding this
getter method:

var attributesColorString: NSAttributedString! {
 get{
 var block = NSString(UTF8String:
 "\u{2588}\u{2588}\u{2588}\u{2588}\u{2588}\u{2588}\u{2588}\u{2588}\

u{2588}\u{2588}")
 var color:UIColor = self.colorPicker.color
 var attrs:NSDictionary = [
 NSForegroundColorAttributeName:color,
 NSFontAttributeName:UIFont.boldSystemFontOfSize(UIFont.systemFontSize())]

163CHAPTER 6: Custom Managed Objects

 var attributedString = NSAttributedString(string: block!, attributes:attrs)
 return attributedString
 }
}

First, you define a string with a bunch of Unicode characters in it. \u{2588} is the
Unicode character for a block character. All you’ve done is make a string of 10 block
characters. Next, you ask the colorPicker to tell you its color. Then you use that
color and the system bold font (14pt) to define a dictionary. The keys you use are
NSForegroundColorAttributeName and NSFontAttributeName. These keys are specifically
defined for UIKit-attributed string support. As you can infer from their names,
NSForegroundColorAttributeName sets the foreground (or text) color of the string, and
NSFontAttributeName allows you to define the font you want for the string. Finally, you
instantiate the attributed string with the Unicode string block and the attributes dictionary.

You could have use the textField’s regular text property and just set the textColor as
needed, but we thought this brief demonstration of attributed strings might pique your
curiosity. Attributed strings are extremely flexible and powerful and are worth your time to
investigate.

Note To learn more about attributed strings, check out Apple’s Attributed String Programming

Guide at https://developer.apple.com/library/mac/documentation/Cocoa/

Conceptual/AttributedStrings/AttributedStrings.html.

Cleaning Up the Picker
You have one more step before you can use your new color picker. You need to update the
configuration property list to use the SuperDBColorCell. Open HeroDetailConfiguration.
plist and drill down to Root ➤ sections ➤ Item 1 ➤ rows ➤ Item 4 ➤ class. Change
its value from SuperDBEditCell to SuperDBColorCell. And add a case statement in
HeroDetailController.swift to create this SuperDBColorCell.

case "SuperDBColorCell":
 cell = SuperDBColorCell(style: .Value2, reuseIdentifier: cellClassName)

All set? Let’s build and run. Navigate to the detail view. Tap the Edit button, and tap the
Color cell.

That’s weird. It works but doesn’t work. See Figure 6-11.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/AttributedStrings/AttributedStrings.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/AttributedStrings/AttributedStrings.html

164 CHAPTER 6: Custom Managed Objects

You see the color description as text, but when you edit and move the sliders, you see
the block of color. What is happening? It is easy to note logically that the text is displayed
correctly when the sliders are moved, but once you leave the textField, the information
is not presented correctly. You’re probably getting tired of having to build and run the app
when you know things won’t work. Think of it as an exercise in actual development. Many
times you’ll think you’ve gotten everything right, only to find things don’t work when you run
the app. That’s when you’ve got to (unit) test, debug, or think your way through to a solution.

First, open HeroDetailController.swift and in the tableView:cellForRowAtIndexPath:
method locate the following line:

if let _theDate = theData as? NSDate {
 cell?.textField.text = __dateFormatter.stringFromDate(_theDate)
} else {

Figure 6-11. Weird ColorCell appearance

165CHAPTER 6: Custom Managed Objects

Add this code:

if let _theDate = theData as? NSDate {
 cell?.textField.text = __dateFormatter.stringFromDate(_theDate)
}else if let _color = theData as? UIColor {
 if let _cell = cell as? SuperDBColorCell {
 _cell.value = _color
 _cell.textField.attributedText = _cell.attributedColorString
 }
} else {

When you run it, you should see something like Figure 6-12.

Figure 6-12. The SuperDBColorCell displaying the attribute’s text correctly

Well, it works, but it doesn’t look very pretty. You can fix that with some graphical magic.
You should still be editing UIColorPicker.swift. Add the following import:

import QuartzCore

166 CHAPTER 6: Custom Managed Objects

Now add the following constants:

let kTopBackgroundColor = UIColor(red: 0.98, green: 0.98, blue: 0.98, alpha: 1)
let kBottomBackgroundColor = UIColor(red: 0.79, green: 0.79, blue: 0.79, alpha: 1)

You need to add a function to custom draw the background, and that is in drawRect:
method; make it look like this:

override func drawRect(rect: CGRect) {
 var gradient = CAGradientLayer()
 gradient.frame = self.bounds
 gradient.colors = [kTopBackgroundColor.CGColor, kBottomBackgroundColor.CGColor]
 self.layer.insertSublayer(gradient, atIndex: 0)
}

We want to point out the drawRect: method. This method is used to set the background
color of the color picker and give it a smooth color transition. You’re able to do this thanks to
the QuartzCore framework.

One last thing: you want to turn off the Clear Text button in the Color cell. It’s
pretty simple. In SuperDBColorCell.swift, add this line to the initialization code in
init(style:reuseIdentifier:)

self.textField.clearButtonMode = .Never

Build and run the app. Navigate down and edit the Color cell. That’s much better (Figure 6-13)!

167CHAPTER 6: Custom Managed Objects

One More Thing
Run the app, and add a new hero. Enter Edit mode and clear the Name field. Now tap the
Identity field. As expected, the validation alert dialog will appear. However, it will not display
the proper failure reason (Figure 6-14).

Figure 6-13. Color picker with a gradient background

168 CHAPTER 6: Custom Managed Objects

Figure 6-14. Validation dialog without a failure reason

Looking back at the validate method in SuperDBEditCell.swift, you see the message is
populated like this:

message = NSLocalizedString("Validation error on \(errorKey)\rFailure Reason: \(reason)",
 comment: "Validation error on \(errorKey)\rFailure Reason: \(reason)")

The method call to the NSError instance is returning nil.

var reason = error?.localizedFailureReason

Prior to iOS 4, Core Data populated the localizedFailureReason. Since then, it doesn’t. You
need to provide a simple fix for this that you can customize.

NSError provides a method, code, that will return an integer error code. The value of this code
is defined depending on the origin of the error.

169CHAPTER 6: Custom Managed Objects

Note To learn more about how NSError and error codes work, read The Error Handling

Programming Guide at https://developer.apple.com/library/ios/#documentation/

Cocoa/Conceptual/ErrorHandlingCocoa/ErrorHandling/ErrorHandling.html.

Specifically, read the chapter entitled “Error Objects, Domains, and Codes.”

The error code you get here is defined in the Core Data header file.

Note CoreDataError.h is documented by Apple at https://developer.apple.com/

library/ios/#documentation/Cocoa/Reference/CoreDataFramework/Miscellaneous/

CoreData_Constants/Reference/reference.html.

You happen to know that the error code value you’re getting is 1670. This is assigned the
enumeration of NSValidationStringTooShortError. You could put some logic to handle this
specific error code, and you’d be set, but we did a little more work for you.

Find the file CoreDataErrors.plist in the Book Downloads package. This is a simple plist file
we’ve created that maps the Core Data error code to a simple error message. Add this file to
the SuperDB project, making sure to make a copy.

You could make a CoreDataError class to handle the loading of this plist, but you’ll take
an easier route for expediency’s sake. First, declare a dictionary at the top of
SuperDBEditCell.swift, right before the class declaration. You can initialize it and set it
once for access in all of your modules.

let __CoreDataErrors: NSDictionary = {
 var pList:NSURL = NSBundle.mainBundle().URLForResource("CoreDataErrors",
withExtension:"plist")!
 var dict = NSDictionary(contentsOfURL: pList)
 return dict!
 }()

Now, you need to edit the validate method to use this dictionary. Find the line that begins
with this:

if error?.domain == "NSCocoaErrorDomain" {

Edit the if block to read as follows:

if error?.domain == "NSCocoaErrorDomain" {
 var userInfo:NSDictionary? = error?.userInfo
 var errorKey = userInfo?.valueForKey("NSValidationErrorKey") as String
 var errorCode:Int = error!.code
 var reason = __CoreDataErrors.valueForKey("\(errorCode)") as String
 message = NSLocalizedString("Validation error on \(errorKey)\rFailure Reason: \(reason)",
 comment: "Validation error on \(errorKey)\rFailure Reason: \(reason) ")

https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ErrorHandlingCocoa/ErrorHandling/ErrorHandling.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ErrorHandlingCocoa/ErrorHandling/ErrorHandling.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Reference/CoreDataFramework/Miscellaneous/CoreData_Constants/Reference/reference.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Reference/CoreDataFramework/Miscellaneous/CoreData_Constants/Reference/reference.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Reference/CoreDataFramework/Miscellaneous/CoreData_Constants/Reference/reference.html

170 CHAPTER 6: Custom Managed Objects

Build and run the app. Erase the hero’s name and try to move to another field. The validation
alert dialog should look like Figure 6-4.

You can edit the string values in CoreDataErrors.plist to customize the error message
however you like. Let’s hope Apple restores this functionality soon.

Color Us Gone
By now, you should have a good grasp on just how much power you gain from subclassing
and subclassing NSManagedObject specifically. You saw how to use it to do conditional
defaulting and both single-field and multifield validation. You also saw how to use custom
managed objects to create virtual accessors. You saw how to politely inform your users
when they’ve entered an invalid attribute that causes a managed object to fail validation, and
you saw how to use transformable attributes and value transformers to store custom objects
in Core Data.

This was a dense chapter, but you should really be starting to get a feel for just how flexible
and powerful Core Data can be. You have one more chapter on Core Data before you
move on to other parts of the iOS SDK. When you’re ready, turn the page to learn about
relationships and fetched properties.

171

Chapter 7
Relationships, Fetched

Properties, and Expressions

Welcome to the final chapter on Core Data. So far, your application includes only a single
entity, Hero. In this chapter, we’ll show you how managed objects can incorporate and
reference other managed objects through the use of relationships and fetched properties.
This will give you the ability to make applications of much greater complexity than your
current SuperDB application.

That’s not the only thing you’ll do in this chapter, however. You’ll also turn your
HeroDetailController into a generic managed object controller. By making the controller
code even more generic, you’ll make the controller subclasses smaller and easier to maintain.
You’ll extend the configuration property list to allow you to define additional entity views.

You have a lot to do in this chapter, so no dallying. Let’s get started.

Expanding Your Application: Superpowers and Reports
Before we talk about the nitty-gritty, let’s quickly look at the changes you’ll make to the
SuperDB application in this chapter. On the surface, the changes look relatively simple.
You’ll add the ability to specify any number of superpowers for each hero and also add
a number of reports that show other superheroes who meet certain criteria, including
heroes who are either younger or older than this hero or who are the same sex or the
opposite sex (Figure 7-1).

172 CHAPTER 7: Relationships, Fetched Properties, and Expressions

The powers will be represented by a new entity that you’ll create and imaginatively call
Power. When users add or edit a power, they will be presented with a new view (Figure 7-2),
but in reality, under the hood, it will be a new instance of the same object used to edit and
display heroes.

Figure 7-1. At the end of this chapter, you’ll have added the ability to specify any number of superpowers for each

hero, as well as have provided a number of reports that let you find other heroes based on how they relate to this hero

173CHAPTER 7: Relationships, Fetched Properties, and Expressions

When users drill down into one of the reports, they will get a list of the other heroes that
meet the selected criteria (Figure 7-3).

Figure 7-2. The new view for editing powers is actually an instance of the same object used to edit heroes

174 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Tapping any of the rows will take you to another view where you can edit that hero, using
another instance of the same generic controller class. Your users will be able to drill down an
infinite number of times (limited only by memory), all courtesy of a single class.

Before you start implementing these changes, you need to understand a few concepts and
then make some changes to your data model.

Relationships
We introduced the concept of Core Data relationships in Chapter 2. Now we will go into
more detail and show how they can be used in applications. The relationship is one of the
most important concepts in Core Data. Without relationships, entities would be isolated.
There would be no way to have one entity contain another entity or reference another entity.
Let’s look at a hypothetical header file for a simple example of an old-fashioned data model
class to give you a familiar point of reference.

Figure 7-3. The Reports section on your hero will let you find other heroes who meet certain criteria in relation to the

hero you’re currently editing. Here, for example, you’re seeing all the heroes who were born before Spiderman

175CHAPTER 7: Relationships, Fetched Properties, and Expressions

import UIKit

class Person: NSObject {
 var firstName: String!
 var lastName: String!
 var birthdate: NSDate!
 var image: UIImage!
 var address: Address!
 var mother: Person!
 var father: Person!
 var children: [Person] = []
}

Here you have a class that represents a single person. You have instance variables to store
a variety of information about that person and properties to expose that information to
other objects. There’s nothing earth-shattering here. Now, let’s think about how you could
re-create this object in Core Data.

The first four instance variables—firstName, lastName, birthDate, and image—can all be
handled by built-in Core Data attribute types, so you could use attributes to store that
information on the entity. The two NSString instances would become String attributes, the
NSDate instance would become a Date attribute, and the UIImage instance would become a
Transformable attribute, handled in the same way as UIColor in the previous chapter.

After that, you have an instance of an Address object. This object probably stores
information such as street address, city, state or province, and postal code. That’s followed
by two Person instance variables and a mutable array designed to hold pointers to this
person’s children. Most likely, these arrays are intended to hold pointers to more Person
objects.

In object-oriented programming, including a pointer to another object as an instance variable
is called composition. Composition is an incredibly handy device because it lets you create
much smaller classes and reuse objects, rather than have data duplicated.

In Core Data, you don’t have composition per se, but you do have relationships, which
essentially serve the same purpose. Relationships allow managed objects to include
references to other managed objects of a specific entity, known as destination entities, or
sometimes just destinations. Relationships are Core Data properties, just like attributes
are. As such, they have an assigned name, which serves as the key value used to set and
retrieve the object or objects represented by the relationship. Relationships are added to
entities in Xcode’s data model editor in the same way attributes are added. You’ll see how to
do this in a few minutes. There are two basic types of relationships: to-one relationships and
to-many relationships.

To-One Relationships
When you create a to-one relationship, you are saying that one object can contain a pointer
to a single managed object of a specific entity. In your example, the Person entity has a
single to-one relationship to the Address entity.

176 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Once you’ve added a to-one relationship to an object, you can assign a managed object to
the relationship using key-value coding (KVC) For example, you might set the Address entity
of a Person managed object like so:

var address: NSManagedObject = NSEntityDescription.insertNewObjectForEntityForName("Address",
inManagedObjectContext: thePerson.managedObjectContext) as NSManagedObject
thePerson.setValue(forKey: "address")

Retrieving the object can also be accomplished using KVC, just with attributes:

address = thePerson.valueForKey("address") as NSManagedContext

When you create a custom subclass of NSManagedObject, as you did in the previous chapter,
you can use dot notation to get and set those properties. The property that represents a
to-one relationship is an instance of NSManagedObject or a subclass of NSManagedObject, so
setting the address looks just like setting attributes.

var address: NSManagedObject = NSEntityDescription.insertNewObjectForEntityForName("Address",
inManagedObjectContext: thePerson.managedObjectContext) as NSManagedObject
thePerson.address = address

And retrieving a to-one relationship becomes as follows:

var address: NSManagedObject = thePerson.address

In almost every respect, the way you deal with a to-one relationship in code is identical
to the way you’ve been dealing with Core Data attributes. You use KVC to get and set the
values using Swift objects. Instead of using Foundation classes that correspond to different
attribute types, you use NSManagedObject or a subclass of NSManagedObject that represents
the entity.

To-Many Relationships
To-many relationships allow you to use a relationship to associate multiple managed objects
to a particular managed object. This is equivalent to using composition with a collection
class such as NSMutableArray or NSMutableSet in Objective-C or arrays in Swift, as with the
children instance variable in the Person class you looked at earlier. In that example, you used
an Array of type Person, which is an editable, ordered collection of objects. That array allows
you to add and remove objects at will. If you want to indicate that the person represented by
an instance of Person has children, you just add the instance of Person that represents that
person’s children to the children array.

177CHAPTER 7: Relationships, Fetched Properties, and Expressions

In Core Data, it works a little differently. To-many relationships are unordered. They are
represented by instances of NSSet, which is an unordered, immutable collection that you
can’t change, or by NSMutableSet, an unordered collection that you can change. Here’s how
getting a to-many relationship and iterating over its contents might look with an NSSet:

var children: NSSet = thePerson.valueForKey("children")
for child in children{
 // do something
}

Note Do you spot a potential problem from the fact that to-many relationships are returned as

an unordered NSSet? When displaying them in a table view, it’s important that the objects in the

relationship are ordered consistently. If the collection is unordered, you have no guarantee that the row

you tap will bring up the object you expect. You’ll see how to deal with that a little later in the chapter.

On the other hand, if you want to add or remove managed objects from a to-many
relationship, you must ask Core Data to give you an instance of NSMutableSet by calling
mutableSetValueForKey: instead of valueForKey:, like so:

var child = NSEntityDescription.insertNewObjectForEntityForName("Person",
 inManagedObjectContext: thePerson.managedObjectContext)
var children = thePerson.mutableSetValueForKey("children")
children.addObject(child)
children.removeObject(child)

If you don’t need to change which objects a particular relationship contains, use
valueForKey:, just as with to-one arrays. Don’t call mutableSetValueForKey: if you don’t
need to change which objects make up the relationship because it incurs slightly more
overhead than just calling valueForKey:.

In addition to using valueForKey: and mutableSetValueForKey:, Core Data also provides
special methods, created dynamically at runtime, that let you add and delete managed
objects from a to-many relationship. There are four of these methods per relationship. Each
method name incorporates the name of the relationship. The first allows you to add a single
object to a relationship where XXX is the capitalized name of the relationship and value is
either an NSManagedObject or a specific subclass of NSManagedObject.

func addXXXXObject(value: NSManagedObject){
}

In the Person example you’ve been working with, the method to add a child to the children
relationship looks like this:

func addChildrenObject(value: Person){
}

178 CHAPTER 7: Relationships, Fetched Properties, and Expressions

The method for deleting a single object follows a similar form.

func removeXXXObject(value: NSManagedObject){
}

The dynamically generated method for adding multiple objects to a relationship takes the
following form:

func addXXX(values: NSSet){
}

The method takes an instance of NSSet containing the managed objects to be added. So,
the dynamically created method for adding multiple children to your Person managed object
is as follows:

func addChildren(values: NSSet){
}

Finally, here’s the method used to remove multiple managed objects from a relationship:

func removeXXX(values: NSSet){
}

Remember that these methods are generated for you when you declare a custom
NSManagedObject subclass. When Xcode encounters your NSManagedObject subclass
declaration, it creates a category on the subclass that declares the four dynamic methods
using the relationship name to construct the method names. Since the methods are
generated at runtime, you won’t find any source code in your project that implements the
methods. If you never call the methods, you’ll never see the methods. As long as you’ve
already created the to-many relationship in your model editor, you don’t need to do anything
extra to access these methods. They are created for you and ready to be called.

Note There’s one tricky point associated with the methods generated for to-many relationships.

Xcode declares the four dynamic methods when you first generate the NSManagedObject

subclass files from the template. If you have an existing data model with a to-many relationship and

a subclass of NSManagedObject, what happens if you decide to add a new to-many relationship

to that data model? If you add the to-many relationship to an existing NSManagedObject subclass,

you need to add the category containing the dynamic methods yourself, which is what you’ll do a

little later in the chapter.

There is absolutely no difference between using these four methods and using
mutableSetValueForKey:. The dynamic methods are just a little more convenient and make
your code easier to read.

179CHAPTER 7: Relationships, Fetched Properties, and Expressions

Inverse Relationships
In Core Data, every relationship can have an inverse relationship. A relationship and
its inverse are two sides of the same coin. In your Person object example, the inverse
relationship for the children relationship might be a relationship called parent. A relationship
does not need to be the same kind as its inverse. A to-one relationship, for example, can
have an inverse relationship that is to-many. In fact, this is pretty common. If you think about
it in real-world terms, a person can have many children. The inverse is that a child can have
only one biological mother and one biological father, but the child can have multiple parents
and guardians. So, depending on your needs and the way you modeled the relationship, you
might choose to use either a to-one or a to-many relationship for the inverse.

If you add an object to a relationship, Core Data will automatically take care of adding the
correct object to the inverse relationship. So, if you had a person named Steve and added a
child to Steve, Core Data would automatically make the child’s parent Steve.

Although relationships are not required to have an inverse, Apple generally recommends
that you always create and specify the inverse, even if you won’t need to use the inverse
relationship in your application. In fact, the compiler will actually warn you if you fail to
provide an inverse. There are some exceptions to this general rule, specifically when the
inverse relationship will contain an extremely large number of objects, since removing the
object from a relationship triggers its removal from the inverse relationship. Removing the
inverse will require iterating over the set that represents the inverse, and if that’s a large set,
there could be performance implications. But unless you have a specific reason not to do so,
you should model the inverse because it helps Core Data ensure data integrity. If you have
performance issues as a result, it’s relatively easy to remove the inverse relationship later.

Note You can read more about how the absence of inverse relationships can cause integrity

problems at https://developer.apple.com/library/mac/documentation/Cocoa/

Conceptual/CoreData/Articles/cdRelationships.html.

Fetched Properties
Relationships allow you to associate managed objects with specific other managed objects. In
a way, relationships are sort of like iTunes playlists where you can put specific songs into a list
and then play them later. If you’re an iTunes user, you know that there are things called Smart
Playlists, which allow you to create playlists based on criteria rather than a list of specific
songs. You can create a Smart Playlist, for example, that includes all the songs by a specific
artist. Later, when you buy new songs from that artist, they are added to that Smart Playlist
automatically because the playlist is based on criteria and the new songs meet those criteria.

Core Data has something similar. There’s another type of attribute you can add to an
entity that will associate a managed object with other managed objects based on criteria,
rather than associating specific objects. Instead of adding and removing objects, fetched
properties work by creating a predicate that defines which objects should be returned.
Predicates, as you may recall, are objects that represent selection criteria. They are primarily
used to sort collections and fetch results.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/Articles/cdRelationships.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/Articles/cdRelationships.html

180 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Tip If you’re rusty on predicates, Learn Objective-C on the Mac, Second Edition, by Scott Knaster,

Waqar Maliq, and Mark Dalrymple (Apress, 2012) devotes an entire chapter to the little beasties.

Fetched properties are always immutable. You can’t change their contents at runtime. The
criteria are usually specified in the data model (a process that you’ll look at shortly), and then
you access the objects that meet that criteria using properties or KVC.

Unlike to-many relationships, fetched properties are ordered collections and can have a
specified sort order. Oddly enough, the data model editor doesn’t allow you to specify
how fetched properties are sorted. If you care about the order of the objects in a fetched
property, you must actually write code to do that, which you’ll look at later in this chapter.

Once you’ve created a fetched property, working with it is pretty straightforward. You just
use valueForKey: to retrieve the objects that meet the fetched property’s criteria in an
instance of NSArray.

var olderPeople = person.valueForKey("olderPeople") as NSArray

If you use a custom NSManagedObject subclass and define a property for the fetched
property, you can also use dot notation to retrieve objects that meet the fetched property’s
criteria in an NSArray instance, like so:

var olderPeople = person.olderPeople as NSArray

Creating Relationships and Fetched Properties in the Data
Model Editor
The first step in using relationships or fetched properties is to add them to your data model.
Let’s add the relationship and fetched properties you’ll need in your SuperDB application
now. If you look back at Figure 7-1, you can probably guess that you’re going to need a new
entity to represent the heroes’ powers, as well as a relationship from your existing Hero entity
to the new Power entity you’re going to create. You’ll also need four fetched properties to
represent the four different reports.

Delete Rules
Every relationship, regardless of its type, has something called a delete rule, which
specifies what happens when one object in the relationship is deleted. There are four
possible delete rules.

	Nullify: This is the default delete rule. With this delete rule, when one
object is deleted, the inverse relationship is just updated so that
it doesn’t point to anything. If the inverse relationship is a to-one
relationship, it is set to nil. If the inverse relationship is a to-many
relationship, the deleted object will be removed from the inverse
relationship. This option ensures that there are no references to the
object being deleted but does nothing more.

181CHAPTER 7: Relationships, Fetched Properties, and Expressions

	No Action: If you specify a delete rule of No Action, when you delete
one object from a relationship, nothing happens to the other object.
Instances where you would use this particular rule are extremely rare
and are generally limited to one-way relationships with no inverse. This
action is rarely used because the other object’s inverse relationship
would end up pointing to an object that no longer exists.

	Cascade: If you set the delete rule to Cascade, when you delete a
managed object, all the objects in the relationship are also removed. This is
a more dangerous option than Nullify, in that deleting one object can result
in the deletion of other objects. You would typically choose Cascade when
a relationship’s inverse relationship is to-one and the related object is not
used in any other relationships. If the object or objects in the relationship
are used only for this relationship and not for any other reason, then you
probably do want a Cascade rule so that you don’t leave orphaned objects
sitting in the persistent store taking up space.

	Deny: This delete rule option will actually prevent an object from being
deleted if there are any objects in this association, making it the safest
option in terms of data integrity. The Deny option is not used frequently, but
if you have situations where an object shouldn’t be deleted as long as it has
any objects in a specific relationship, this is the one you would choose.

Expressions and Aggregates
Another use of expressions is to aggregate attributes without loading them all into memory.
If you want to get the average, median, minimum, or maximum for a specific attribute, such
as the average age of your heroes or count of female heroes, you can do that (and more)
with an expression. In fact, that’s how you should do it. To understand why, you need to
know a little about the way Core Data works under the hood.

The fetched results controller you’re using in HeroListController contains objects for all
of the heroes in your database, but it doesn’t have all of them fully loaded into memory as
managed objects. Core Data has a concept of a fault. A fault is sort of like a stand-in for a
managed object. A fault object knows a bit about the managed object it’s standing in for,
such as its unique ID and perhaps the value of one attribute being displayed, but it’s not a
fully managed object.

A fault turns into a full-fledged managed object when something triggers the fault. Triggering
a fault usually happens when you access an attribute or key that the fault doesn’t know
about. Core Data is smart enough to turn a fault into a managed object when necessary, so
your code usually doesn’t need to worry about whether it’s dealing with a fault or a managed
object. However, it’s important to know about this behavior so you don’t unintentionally
cause performance problems by triggering faults unnecessarily.

Most likely, the faults in your fetched results controller don’t know anything about the sex
attribute of Hero. So, if you were to loop through the heroes in your fetched results controller
to get a count of the female heroes, you would be triggering every fault to become a
managed object. That’s inefficient because it uses a lot more memory and processing power
than necessary. Instead, you can use expressions to retrieve aggregate values from Core
Data without triggering faults.

182 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Here’s an example of how to use an expression to retrieve the average birth date calculated
for all female heroes in your application (you can’t use age in a fetch request because it’s a
transient attribute that isn’t stored).

var ex = NSExpression(forFunction: "average:",
 arguments: [NSExpression(forKeyPath: "birthDate")])
var pred = NSPredicate(format: "sex == 'Female'")
var ed = NSExpressionDescription()
ed.name = "averageBirthDate"
ed.expression = ex
ed.expressionResultType = .DateAttributeType

var properties = [ed]

var request = NSFetchRequest() as NSFetchRequest
request.predicate = pred
request.propertiesToFetch = properties
request.resultType = .DictionaryResultType

var context = self.managedObject.managedObjectContext!
var entity = NSEntityDescription.entityForName("Hero", inManagedObjectContext: context)

request.entity = entity

var results:NSArray = context.executeFetchRequest(request, error: nil)!
var date = results[0].valueForKey(ed.name) as NSDate
println(">> Average birthdates for female heroes: \(date)")

Adding the Power Entity
Before you start making changes, create a new version of your data model by clicking the
current version in the Groups & Files pane (the one with the green check mark) and then
selecting Add Model Version from the Data Model submenu of the Design menu. This
ensures that the data you collected using the previous data models migrate properly to the
new version you’ll be creating in this chapter.

Click the current data model to bring up the model editor. Using the plus icon in the lower-
left corner of the model editor’s entity pane, add a new entity, and call it Power. You can
leave all the other fields at their default values (Figure 7-4).

183CHAPTER 7: Relationships, Fetched Properties, and Expressions

If you look back at Figure 7-2, you can see that the Power object has two fields: one for the
name of the power and another that identifies the source of this particular power. In the
interest of keeping things simple, the two attributes will just hold string values.

With Power still selected in the property pane, add two attributes using the property
pane. Call one of them name, uncheck the Optional check box, set its Type to String, and
give it a Default value of New Power. Give the second one a name of source and set
its Type to String as well. Leave Optional checked. There is no need for a default value.
Once you’re finished, you should have two rounded rectangles in the model editor’s
diagram view (Figure 7-5).

Figure 7-4. Rename the new entity Power and leave the other fields at their default values

184 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Creating the Powers Relationship
Right now, the Power entity is selected. Click the rounded rectangle that represents the Hero
entity or select Hero in the entity pane to select it. Now, in the properties pane, click and
hold the plus button that reads Add Attribute, and from the pop-up that appears, select Add
Relationship. In the model editor’s detail pane, change the name of the new relationship to
powers and Destination to Power. The Destination field specifies which entity’s managed
objects can be added to this relationship, so by selecting Power, you are indicating that this
relationship stores powers.

You can’t specify the inverse relationship yet, but you do want to select the To-Many
Relationship type to indicate that each hero can have more than one power. Also, change
the delete rule to Cascade. In your application, every hero will have his or her own set
of powers—no sharing of powers between heroes. When a hero is deleted, you want to
make sure that hero’s powers are deleted as well so you don’t leave orphaned data in the
persistent store. Once you’re finished, the detail pane should look like Figure 7-6, and the
diagram view should have a line drawn between the Hero and Power entities to represent the
new relationship (Figure 7-7).

Figure 7-5. You now have two entities, but they are not related in any way

185CHAPTER 7: Relationships, Fetched Properties, and Expressions

Figure 7-7. Relationships are represented in the diagram view by lines drawn between rounded rectangles.

A single arrowhead represents a to-one relationship, and a double arrowhead (as shown here) represents

a to-many relationship

Figure 7-6. The detail pane view of the powers relationship

Creating the Inverse Relationship
You won’t actually need the inverse relationship in your application, but you’re going to
follow Apple’s recommendation and specify one. Since the inverse relationship will be to-
one, it doesn’t present any performance implications. Select the Power entity again, and add
a relationship to it using the property pane. Name this new relationship hero, and select a
Destination entity of Hero. If you look at your diagram view now, you should see two lines
representing the two different relationships you’ve created.

Next, click the Inverse pop-up menu and select powers. This indicates that the relationship
is the inverse of the one you created earlier. Once you’ve selected it, the two relationship
lines in the diagram view will merge together into a single line with arrowheads on both sides
(Figure 7-8).

186 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Creating the olderHeroes Fetched Property
Select the Hero entity again so that you can add some fetched properties to it. In the
property pane, click and hold the plus button and choose Add Fetched Property. Call the
new fetched property olderHeroes. Notice that there is only one other field that can be set
on the detail pane: a big white box called Predicate (Figure 7-9).

Figure 7-8. Inverse relationships are represented as a single line with arrowheads on both sides, rather than two

separate lines

Figure 7-9. The detail pane showing a fetched property

Tip Both relationships and fetched properties can use their own entity as the destination.

What Is a Predicate?
A predicate is a statement that returns a Boolean value. Think of them as like a conditional
statement within an if or while. They are intended to be used against a set of objects,
whether Cocoa or Core Data. Predicates are not dependent on the specific data being
searched but rather provide an abstract way of defining a query to filter data. At its simplest,

187CHAPTER 7: Relationships, Fetched Properties, and Expressions

a predicate compares two values using an operator. An example operator would be == to
test whether two values are equal. There are more sophisticated operators that allow for
string comparison (using LIKE or CONTAINS). Predicates can be joined to format a compound
predicate. Typically, predicates are joined with an AND or OR operator.

There are two special variables you can use in the predicate of a fetched property: $FETCH_
SOURCE and $FETCHED_PROPERTY. $FETCH_SOURCE refers to the specific instance of a managed
object. $FETCHED_PROPERTY is a description of the entity property being fetched.

You can read more detail in Apple’s Predicate Programming Guide (https://developer.
apple.com/library/ios/documentation/Cocoa/Conceptual/Predicates/predicates.html).

Tip Both relationships and fetched properties can use their own entity as the destination.

So, you need to define a predicate that finds all the heroes who are older (that is, have an
earlier birthdate) than the Hero in the detail view. You need to compare your Hero’s birthdate
against all the other Hero entities. If $FETCH_SOURCE is your Hero entity, your predicate will be
as follows:

$FETCH_SOURCE.birthdate > birthdate

Enter this formula into the Predicate field in the Attributes Inspector. Remember, a date is
really just an integer; the later the date, the greater the value.

Creating the youngerHeroes Fetched Property
Add another fetched property named youngerHeroes. The destination will be Hero again, and
the predicate should be the same as the previous one, except the operator will be < instead
of >. Type the following for the youngerHeroes predicate in the Attributes Inspector:

$FETCH_SOURCE.birthdate < birthdate

One thing to be aware of is that a fetched property retrieves all matching objects, potentially
including the object on which the fetch is being performed. This means it is possible to
create a result set that, when executed on Super Cat, returns Super Cat.

Both the youngerHeroes and olderHeroes fetched properties automatically exclude the hero
being evaluated. Heroes cannot be older or younger than themselves; their birthdate will always
exactly equal their own birthdate, so no hero will ever meet the two criteria you just created.

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Predicates/predicates.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Predicates/predicates.html

188 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Let’s now add a fetched property that has slightly more complex criteria.

Creating the sameSexHeroes Fetched Property
The next fetched property you’ll create is called sameSexHeroes, and it returns all the heroes
who are the same sex as this hero. You can’t just specify to return all heroes of the same
sex, however, because you don’t want this hero to be included in the fetched property.
Super Cat is the same sex as Super Cat, but users will not expect to see Super Cat when
they look at a list of the heroes who are the same sex as Super Cat.

Create another fetched property, naming it sameSexHeroes. Open the model editor. Make
sure Destination is set to Hero. For the Predicate field, type the following:

($FETCH_SOURCE.sex == sex) AND ($FETCH_SOURCE != SELF)

It’s pretty clear what the left side of this compound predicate is doing. But what are you
doing on the right side? Remember, a fetched property predicate will return all matching
objects, including the object that owns the fetched property. In this case, you asked for all
heroes of a certain sex, and your hero in the detail view will match that criteria. You need to
exclude that specific hero.

You could just compare names and exclude heroes with the same name as yours. That
might work, except for the fact that two heroes might have the same name. Maybe using
name isn’t the best idea. But what value is there that uniquely identifies a single hero? There
isn’t one, really.

Fortunately, predicates recognize a special value called SELF, which returns the object being
compared. The $FETCH_SOURCE variable represent the object where the fetch request is
happening. Therefore, to exclude the object where the fetch request is firing, you just need
to require it to return only objects where $FETCH_SOURCE != SELF.

Creating the oppositeSexHeroes Fetched Property
Create a new fetched property called oppositeSexHeroes and enter the following predicate:

$FETCH_SOURCE.sex != sex

Make sure you save your data model before continuing.

189CHAPTER 7: Relationships, Fetched Properties, and Expressions

Adding Relationships and Fetched Properties to the
Hero Class
Since you created a custom subclass of NSManagedObject, you need to update that class
to include the new relationship and fetched properties. If you had not made any changes
to the Hero class, you could just regenerate the class definition from your data model, and
the newly generated version would include properties and methods for the relationships
and fetched properties you just added to your data model. Since you have added validation
code, you need to update it manually. Click Hero.swift and add the following code:

@NSManaged var powers:NSSet!
@NSManaged var olderHeroes:NSArray!
@NSManaged var youngerHeroes:NSArray!
@NSManaged var sameSexHeroes:NSArray!
@NSManaged var oppositeSexHeroes:NSArray!

Updating the Detail View
Looking at Figure 7-1, you have two new table view sections to add to your detail view:
Powers and Reports. Unfortunately, it won’t be as easy as adding new cells to the General
section was in Chapter 6. It turns out that you can’t use the storyboard editor to set things
up for you. The reason is that the Powers section is dynamically data driven. You don’t know
how many rows are in the Powers section until you have a Hero entity to inspect. All the
other sections have a fixed set of rows.

You start by converting HeroDetailController to be more data-driven in its current
configuration. Open SuperDB.storyboard and find HeroDetailController. Select the table
view and open the Attributes Inspector. Change the table view’s Content field from Static
Cells to Dynamic Prototypes. The detail view should change to a single table view cell with a
section header of Prototype Cells (Figure 7-10).

190 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Select the one table view cell that remains and change the Utility pane to the Attributes
Inspector. In the Identifier field, delete it so that it is empty.

Now open HeroDetailController.swift. Look for the methods
numberOfSectionsInTableView: and tableView:numberOfRowsInSection:. You can’t use the
jump bar to find them because you commented them out, but if you look for the label “Table
view data source,” it should place you near the right place. Uncomment the methods, and
change their bodies to read as follows:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // Return the number of sections.
 return self.sections.count
}

Figure 7-10. Changing the table view content to dynamic prototypes

191CHAPTER 7: Relationships, Fetched Properties, and Expressions

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // Return the number of rows in the section.
 var sectionDict = self.sections[section] as NSDictionary
 var rows = sectionDict.objectForKey("rows") as NSArray
 return rows.count
}

You’re simply using your configuration information to determine how many sections your
table view has and how many rows are in each section.

Now, your configuration information doesn’t contain the Header value. If you ran the app
now, the detail view would look like Figure 7-11.

Figure 7-11. Detail view with no general section header

Add the header information to your configuration plist. Edit HeroDetailConfiguration.plist and
navigate to Root ➤ Section ➤ Item 1. Open Item 1, select the Item 1 row, and add a new item.
Give the item a key of header and a value of General. Keep the type as String (Figure 7-12).

192 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Now head back over to HeroDetailController.swift. And add the following method (we put
it after tableView:numberOfRowsInSection:):

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
 var sectionDict = self.sections[section] as NSDictionary
 return sectionDict.objectForKey("header") as? String
}

The General label should appear as expected. Since you didn’t create a header item in the
first section (item 0), objectForKey: will return nil, which the table view interprets as no
header label.

Now you’re ready to add the new Powers and Reports sections.

Head back to the HeroDetailConfiguration.plist property list and select the Sections item.
Open the Sections item and then make sure Item 0 and Item 1 are both closed. Hover the
pointer over Item 1 until the (+) and (-) buttons appear next to Item 1. Click the (+) button. A
new Item 2 should appear. Set Item 2’s type to Dictionary and expand it. Add a new row to
Item 2. Name it header with a value of Powers.

Rethinking Configuration
Before you go further, take a step back and think about your detail configuration property
list. You just added a new section to represent the Powers section. You added a header item
to contain the Section Header string. Now you need to add the rows item, right?

Probably not.

Remember that the rows item is an array that tells you how to configure each cell in
the section plus what label, cell class, and property key to use. The number of cells is
determined by the number of array items. The situation with the Powers section is almost
the opposite. You don’t know how many rows you need; that’s coming from the Powers
relationship of the Hero entity. And the configuration of each cell should be identical.

There are a couple of approaches you can take. Let’s discuss two ideas.

Figure 7-12. Adding the general section header to the property list

193CHAPTER 7: Relationships, Fetched Properties, and Expressions

For the Powers section, you’ll make the rows item a dictionary. The dictionary will contain
three String items. The keys will be key, class, and label. These are the same keys you
are using for each item when rows is an Array. You can infer that when the rows item is
a dictionary, the section is data-driven; but when the rows item is an array, the section is
configuration-driven.

Here’s another approach. For each section, along with the header item, you define an item
titled dynamic that will be a Boolean type. If true, then the section is data-driven; if false,
the section is configuration-driven. For all cases, rows will be an array, but for dynamic
sections, it will contain only one entry. If there is no dynamic item, it is the same as dynamic
being set to false.

Either approach will work. There are probably many more ideas we could toss around,
but that’s not where we’re heading with this. Regardless of the approach you take, it’s
going to require adding a lot of code to handle this logic—code that, so far, you’ve put
inside the HeroDetailController class. Adding this parsing logic may belong inside the
HeroDetailController, but as it gets more complicated, it will only muddy your code.
You’re going to refactor your application to pull the property list–handling code out of
HeroDetailController into a new class, HeroDetailConfiguration. Then you’ll choose which
approach to take to handle the data-driven Powers section.

Create a new Cocoa Touch Class. Make it a subclass of NSObject and name it
HeroDetailConfiguration.

Looking at HeroDetailController, you see that you put the sections array inside a private
category. You’ll do the same for HeroDetailConfiguration. Open HeroDetailConfiguration.
swift and add the following code:

class HeroDetailConfiguration: NSObject {
 var sections:[AnyObject]!

 override init() {
 super.init()
 var pListURL = NSBundle.mainBundle().URLForResource("HeroDetailConfiguration",
 withExtension: "plist")!
 var pList = NSDictionary(contentsOfURL: pListURL) as NSDictionary!
 self.sections = pList.valueForKey("sections") as [AnyObject]
 }
}

Now let’s go back to HeroDetailController.swift and see where to use the sections array.
The following methods access the HeroDetailController sections array:

numberOfSectionsInTableView:
tableView:numberOfRowsInSection:
tableView:titleForHeaderInSection:
tableView:cellForRowAtIndexPath:

194 CHAPTER 7: Relationships, Fetched Properties, and Expressions

You can use this to design your methods for HeroDetailConfiguration. Right off the bat, you
can see the three methods needed.

numberOfSections
numberOfRowsInSection:
headerInSection:

Now let’s implement them in HeroDetailConfiguration.swift. It should be pretty
straightforward.

func numberOfSections() -> Int {
 return self.sections.count
}

func numberOfRowsInSection(section: Int) -> Int{
 var sectionDict = self.sections[section] as NSDictionary
 if let rows = sectionDict.objectForKey("rows") as? NSArray{
 return rows.count
 }
 return 0
}

func headerInSection(section: Int) -> String? {
 var sectionDict = self.sections[section] as NSDictionary
 return sectionDict.objectForKey("header") as? String
}

The implementations should be pretty much the same as what you implemented before in
HeroDetailController.

Now you need to look at what you’re doing in HeroDetailController tableView:cellForRow
AtIndexPath:. The heart of what’s needed is at the beginning of the method.

var sectionIndex = indexPath.section
var rowIndex = indexPath.row
var _sections = self.sections as NSArray
var section = _sections.objectAtIndex(sectionIndex) as NSDictionary
var rows = section.objectForKey("rows") as NSArray
var row = rows.objectAtIndex(rowIndex) as NSDictionary
var dataKey = row.objectForKey("key") as String!

Essentially, you get the row dictionary for a specific index path. And that’s what you need
your HeroDetailConfiguration object to do for you: give you a row dictionary for an index
path. So, the method you want would be something like the following:

func rowForIndexPath(indexPath: NSIndexPath) -> NSDictionary{

Let’s add it to HeroDetailConfiguration.swift.

195CHAPTER 7: Relationships, Fetched Properties, and Expressions

Before you worry about handling the issue of implementing the Powers section, just replicate
the functionality you already have in place. In this case, you just add that the five lines of
code from the beginning of HeroDetailController tableView:cellForRowAtIndexPath: and
put it in your new method.

func rowForIndexPath(indexPath: NSIndexPath) -> NSDictionary{
 var sectionIndex = indexPath.section
 var rowIndex = indexPath.row
 var section = self.sections[sectionIndex] as NSDictionary
 var rows = section.objectForKey("rows") as NSArray
 var row = rows.objectAtIndex(rowIndex) as NSDictionary
 return row
}

Now let’s edit HeroDetailController.swift to use your new HeroDetailConfiguration class.
Replace the section’s property declaration with one for HeroDetailConfiguration.

var sections:[AnyObject]!
var config: HeroDetailConfiguration!

Replace the section’s initialization code in viewDidLoad with a config initialization.

var pListURL = NSBundle.mainBundle().URLForResource("HeroDetailConfiguration",
withExtension: "plist")
var pList = NSDictionary(contentsOfURL: pListURL!)
self.sections = pList?.valueForKey("sections") as NSArray

self.config = HeroDetailConfiguration()

Replace the code in numberOfSectionsInTableView.

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // Return the number of sections.
 return self.sections.count
 return self.config.numberOfSections()
}

Replace the code in tableView:numberOfRowsInSection:.

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // Return the number of rows in the section.
 var sectionDict = self.sections[section] as NSDictionary
 var rows = sectionDict.objectForKey("rows") as NSArray
 return rows.count

 return self.config.numberOfRowsInSection(section)
}

196 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Replace the code in tableView:titleForHeaderInSection:.

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
 var sectionDict = self.sections[section] as NSDictionary
 return sectionDict.objectForKey("header") as? String

 return self.config.headerInSection(section)
}

Finally, replace the code in tableView:cellForRowAtIndexPath:.

var sectionIndex = indexPath.section
var rowIndex = indexPath.row
var _sections = self.sections as NSArray
var section = _sections.objectAtIndex(sectionIndex) as NSDictionary
var rows = section.objectForKey("rows") as NSArray
var row = rows.objectAtIndex(rowIndex) as NSDictionary

var row = self.config.rowForIndexPath(indexPath)
var dataKey = row.objectForKey("key") as String!

At this point, your app should behave just like it did before you started these changes. However,
it will displaying the header for Powers with no rows (as expected at this point in code).

Encapsulation and Information Hiding
Before you move on to handling the Power section (you’ll get there soon, promise!), let’s
look at HeroDetailController tableView:cellForRowAtIndexPath: once more. Your
HeroDetailConfiguration is returning a row dictionary. In turn, you are using that information
throughout the remainder of the method.

var row = self.config.rowForIndexPath(indexPath)
var dataKey = row.objectForKey("key") as String!
 ...
if let _values = row["values"] as? NSArray {
 ...
cell?.key = dataKey
cell?.label.text = row.objectForKey("label") as String!
var theData:AnyObject? = self.hero.valueForKey(dataKey)
cell?.value = theData

While it’s fine to keep things this way, you probably want to replace these calls with
a method in HeroDetailConfiguration. Why? In short, because of two concepts:
encapsulation and information hiding. Information hiding is the idea of hiding the
implementation details. Imagine that you change how you store your configuration
information. In that case, you’d have to change the way you populate your table view cell.
By putting the specific access calls inside HeroDetailConfiguration, you don’t have to
worry if your configuration storage mechanism changes. You can freely change the internal
implementation without having to worry about your table view cell code. Encapsulation
is the idea that you placed all the configuration access code into a single object,
HeroDetailConfiguration, rather peppering the access code all over your view controllers.

197CHAPTER 7: Relationships, Fetched Properties, and Expressions

Looking at the calls to objectForKey: on the row dictionary, you probably want methods
like these:

func cellClassnameForIndexPath(indexPath: NSIndexPath) -> String
func valuesForIndexPath(indexPath: NSIndexPath) -> NSArray
func attributeKeyForIndexPaths(indexPath: NSIndexPath) -> String
func labelForIndexPath(indexPath: NSIndexPath) -> String

Add them to HeroDetailConfiguration.swift.

func cellClassnameForIndexPath(indexPath: NSIndexPath) -> String {
 var row = self.rowForIndexPath(indexPath) as NSDictionary
 return row.objectForKey("class") as String
}

func valuesForIndexPath(indexPath: NSIndexPath) -> NSArray {
 var row = self.rowForIndexPath(indexPath) as NSDictionary
 return row.objectForKey("values") as NSArray
}

func attributeKeyForIndexPaths(indexPath: NSIndexPath) -> String {
 var row = self.rowForIndexPath(indexPath) as NSDictionary
 return row.objectForKey("key") as String
}

func labelForIndexPath(indexPath: NSIndexPath) -> String {
 var row = self.rowForIndexPath(indexPath) as NSDictionary
 return row.objectForKey("label") as String
}

Finally, replace the code in HeroDetailController tableView:cellForRowAtIndexPath: with
the new methods.

 //var row = self.config.rowForIndexPath(indexPath)
 var row = self.config.rowForIndexPath(indexPath)
 //var dataKey = row.objectForKey("key") as String!
 var dataKey = self.config.attributeKeyForIndexPaths(indexPath)

 //var cellClassName = row.valueForKey("class") as String
 var cellClassName = self.config.cellClassnameForIndexPath(indexPath)

 ...

 cell?.key = dataKey
 //cell?.label.text = row.objectForKey("label") as String!
 cell?.label.text = self.config.labelForIndexPath(indexPath)

 //var theData:AnyObject? = self.hero.valueForKey(dataKey)
 var theData:AnyObject? = self.hero.valueForKey(dataKey)

 cell?.value = theData

If you wanted, you could keep refactoring your code, but this is a good point to move on.

198 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Data-Driven Configuration
Now you’re ready to tackle the whole point of this refactoring. It’s time to set up the property
list to handle the data-driven Powers section. We detailed two possible approaches earlier.
You’ll take the approach that has you add a dynamic Boolean item and keeps the row item
as an array. For items where dynamic is true, the row item array will have only one element. If
there are more, you’re going to ignore them.

Open HeroDetailConfiguration.plist, and navigate to Root ➤ sections ➤ Item 2. If the
disclosure triangle is closed, open it. Select the item named header, and add an two items
after it. Name the first item dynamic, set its type to Boolean, and give it a value of YES.
Name the second item rows, and set its type to Array. Add a dictionary to the rows array
and give the dictionary three items. Give the three Dictionary items the names of key, class,
and label. Leave the type of all three items as String. Set the key value to powers and the
class to SuperDBNonEditableCell. Leave the label value blank.

Your property list editor should look something like Figure 7-13.

Figure 7-13. The Power section property list configuration

Now you need HeroDetailConfiguration to use this new dynamic item.

First, you need to define a method to check whether the section you are looking at is
dynamic. Let’s add that method to HeroDetailConfiguration.swift.

func isDynamicSection(section: Int) -> Bool{
 var dynamic = false
 var sectionDict = self.sections[section] as NSDictionary
 if let dynamicNumber = sectionDict.objectForKey("dynamic") as? NSNumber{
 dynamic = dynamicNumber.boolValue
 }
 return dynamic
}

By default, you’ll assume that a section is not dynamic if there’s no dynamic entry in the
configuration property list section.

199CHAPTER 7: Relationships, Fetched Properties, and Expressions

Now, you need to update the rowForIndexPath: method to handle dynamic sections. You
just need to change one line.

 var rowIndex = indexPath.row
 var rowIndex = self.isDynamicSection(sectionIndex) ? 0 : indexPath.row

While you’re here, add the following method:

func dynamicAttributeKeyForSection(section: Int) -> String? {
 if !self.isDynamicSection(section) {
 return nil
 }
 var indexPath = NSIndexPath(forRow: 0, inSection: section)
 return self.attributeKeyForIndexPaths(indexPath)
}

If the section is not dynamic, you’ll return nil. Otherwise, you create an index path and use
the existing functionality.

Adding Powers
Now you can move on to updating HeroDetailController to use this new configuration
setup. In HeroDetailController.swift, edit tableView:numberOfRowsInSection: like so:

var rowCount = self.config.numberOfRowsInSection(section)
if self.config.isDynamicSection(section){
 if let key = self.config.dynamicAttributeKeyForSection(section) {
 var attributedSet = self.hero.mutableSetValueForKey(key) as NSSet
 rowCount = attributedSet.count
 }
}

return rowCount

You ask HeroDetailConfiguration to tell you the number of rows in the section. If the section
is dynamic, you read the row configuration to determine what property to use from your Hero
entity. That property will be a Set, so you need to convert it to an array to get its size.

Well, you still don’t have any powers in your Hero entity. So, you need a way to add new
powers to Hero. Clearly, you should do that when you’re editing Hero’s details. If you run the
app, navigate to the detail view, and tap the Edit button, the Powers section is still blank. Go
back to the Address Book application: when you need a new address, a cell appears with a
green (+) button to add a new address (Figure 7-14). You need to mimic that behavior.

200 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Open HeroDetailController.swift and find the tableView:numberOfRowsInSection: method
you just modified. Change this line:

rowCount = attributedSet.count

to this:

rowCount = self.editing ? attributedSet.count + 1 : attributedSet.count

However, this is not enough. You need to have the table view refresh when you enter Edit
mode. In setEditing:animated:, add this line after the call to super.

self.tableView.reloadData()

If you run the app now and edit your hero’s details (Figure 7-15), there are two issues. First,
the new cell in the Powers section has a strange value. Second, if you watch closely while
entering and exiting Edit mode, the transition no longer seems smooth. The cells seem to
jump. Everything works, but it isn’t a good user experience.

Figure 7-14. Adding a new address in the Address Book app

201CHAPTER 7: Relationships, Fetched Properties, and Expressions

Figure 7-15. First step to adding new powers

Let’s take a look at the fetchedResultsControllerDelegate methods in HeroListController.
When the updates begin, you call the beginUpdates method on the table view. Then you
insert or delete rows with insertRowsAtIndexPath:withRowAnimation: and deleteRowsAtInd
exPath:withRowAnimation:. Finally, when the updates are complete, you call endUpdates on
the table view. You need to do something similar with the Powers section when entering and
leaving Edit mode.

In HeroDetailController.swift, add the new method declaration.

func updateDynamicSections(editing: Bool){
 var section: Int
 for (section=0; section < self.config.numberOfSections(); section++){
 if self.config.isDynamicSection(section){
 var indexPath:NSIndexPath
 var row = self.tableView.numberOfRowsInSection(section)
 if editing{
 indexPath = NSIndexPath(forRow: row, inSection: section)
 self.tableView.insertRowsAtIndexPaths([indexPath], withRowAnimation:
 .Automatic)
 } else {
 indexPath = NSIndexPath(forRow: row-1, inSection: section)

202 CHAPTER 7: Relationships, Fetched Properties, and Expressions

 self.tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation:
 .Automatic)
 }
 }
 }
}

Now call it from setEditing:animated:.

override func setEditing(editing: Bool, animated: Bool) {
 self.tableView.beginUpdates()
 self.updateDynamicSections(editing)
 super.setEditing(editing, animated: animated)
 self.tableView.endUpdates()

 self.navigationItem.rightBarButtonItem = editing ? self.saveButton : self.
 editButtonItem()
 self.navigationItem.leftBarButtonItem = editing ? self.cancelButton : self.backButton

 self.tableView.reloadData()
}

Now the addition and removal of a cell to the Powers section when entering and exiting Edit
mode looks much smoother.

Way back in Chapter 4 when you first wrote HeroDetailController, you implemented the
table view delegate method of tableView:editingStyleForRowAtIndexPath:.

override func tableView(tableView: UITableView, editingStyleForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCellEditingStyle {
 return .None
}

If you recall, this turns off the appearance of the Delete button next to the table view cell
when the detail view enters Edit mode. Now you want it to show the appropriate button next
to the Power section cells.

override func tableView(tableView: UITableView, editingStyleForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCellEditingStyle {
 //return .None
 var editStyle:UITableViewCellEditingStyle = .None
 var section = indexPath.section
 if self.config.isDynamicSection(section) {
 var rowCount = self.tableView.numberOfRowsInSection(section)
 if indexPath.row == rowCount - 1 {
 editStyle = .Insert
 } else {
 editStyle = .Delete
 }
 }
 return editStyle
}

203CHAPTER 7: Relationships, Fetched Properties, and Expressions

For the Insert button to work, you need to implement the table view data source method
tableView:commitEditingStyle:forRowAtIndexPath:. This method already exists in
HeroDetailController.swift but is commented out. You can find it in the table view data
source section of the jump bar. Uncomment it, and modify it so it looks like this:

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 var key = self.config.attributeKeyForIndexPaths(indexPath)
 var relationshipSet = self.hero.mutableSetValueForKey(key)
 var managedObjectContext = self.hero

Every time you get a new Powers cell, it displays some strange String, Relationship
'powers'.... That’s because it’s displaying the results of a valueForKey: call on the Hero
entity, with a key of powers. You need to update your tableView:cellForRowAtIndexPath: to
handle dynamic sections. Replace the code after the if cell == nil block, shown here:

cell?.label.text = row.objectForKey("label") as String!
cell?.key = dataKey

var theData:AnyObject? = self.hero.valueForKey(dataKey)
cell?.value = theData

if let _theDate = theData as? NSDate {
 cell?.textField.text = __dateFormatter.stringFromDate(_theDate)
}else if let _color = theData as? UIColor {
 if let _cell = cell as? SuperDBColorCell {
 _cell.value = _color
 //_cell.textField.text = nil
 _cell.textField.attributedText = _cell.attributedColorString
 }
} else {
 cell?.textField.text = theData?.description
}

cell?.hero = self.hero

if let _values = row["values"] as? NSArray {
 (cell as SuperDBPickerCell).values = _values
}

return cell!

with the following:

cell?.hero = self.managedObject
cell?.key = dataKey
cell?.label.text = self.config.labelForIndexPath(indexPath)
var theData:AnyObject? = self.managedObject.valueForKey(dataKey)

204 CHAPTER 7: Relationships, Fetched Properties, and Expressions

if let _cell = cell as? SuperDBPickerCell {
 _cell.values = self.config.valuesForIndexPath(indexPath)
}
cell?.textField.text = nil
cell?.value = theData

if self.config.isDynamicSection(indexPath.section) {
 var relationshipSet = self.managedObject.mutableSetValueForKey(dataKey)
 var relationshipArray = relationshipSet.allObjects as NSArray
 if indexPath.row != relationshipArray.count{
 var relationshipObject = relationshipArray.objectAtIndex(indexPath.row) as
 NSManagedObject
 cell?.value = relationshipObject.valueForKey("name")
 cell?.accessoryType = .DetailDisclosureButton
 cell?.editingAccessoryType = .DetailDisclosureButton
 }else {
 cell?.label.text = nil
 cell?.textField.text = "Add New Power …"
 }
}else {
 if let value = self.config.rowForIndexPath(indexPath).objectForKey("value") as?
 String {
 cell?.value = value
 cell?.accessoryType = .DetailDisclosureButton
 cell?.editingAccessoryType = .DetailDisclosureButton
 } else {
 cell?.value = theData
 }

 if let _theDate = theData as? NSDate {
 cell?.textField.text = __dateFormatter.stringFromDate(_theDate)
 }else if let _color = theData as? UIColor {
 if let _cell = cell as? SuperDBColorCell {
 _cell.value = _color
 _cell.textField.attributedText = _cell.attributedColorString
 }
 } else {
 if let res = cell?.value as? String{
 cell?.textField.text = res
 } else {
 cell?.textField.text = theData?.description
 }
 }
}

return cell!

Notice that for a dynamic cell, you set accessoryType and editingAccessoryType. This is the
blue arrow button on the cell’s right edge. Also, you handle the case for when you add an
additional cell in Edit mode.

205CHAPTER 7: Relationships, Fetched Properties, and Expressions

First you’ll rename the HeroDetailConfiguration class to ManagedObjectConfiguration.
You won’t change the name of the property list because that’s still specific for displaying
the Hero entity.

Rename the Swift file in the project navigator, and then open it in the editor by clicking it.
Next change the name at the class declaration. Press Cmd-B. Xcode will indicate that there
is an error. Click the red icon to jump to the error. Or, go to the HeroDetailController.swift
file and make the name changes for the variable declaration as var config:
ManagedObjectConfiguration! and change the line in viewDidLoad that initializes the variable
to self.config = ManagedObjectConfiguration().

Next, you will refactor HeroDetailController to ManagedObjectController.

Then, you’ll create the ManagedObjectController class. You’ll move most of the logic from
HeroDetailController to ManagedObjectController. The only HeroDetailController will be
a thin subclass that knows the name of the configuration property list to load.

Let’s get started.

Renaming the Configuration Class
There’s a code change you need to make. In the ManagedObjectConfiguration init method,
the configuration property list is loaded like this:

var pListURL = NSBundle.mainBundle().URLForResource("HeroDetailConfiguration",
withExtension: "plist")!

Tip It would be so much easier to refactor if Apple had support for Swift code to be refactored.

However, refactoring manually is hard, and the only way is to change, compile, look for errors,

change, and repeat until it has no more errors. It’s not the best practice, but it’s effective and faster

to locate changes and also undo as required (if something goes wrong).

Refactoring the Detail View Controller
You have a new managed object that you want to display and edit. You could make a new
table view controller class specifically to handle displaying a Power entity. It would a pretty
simple class, and you could implement it quickly. Sometimes when developing, you might
do that. It’s not necessarily the most elegant solution, but it might be the most expedient.
And sometimes you just need to get it working.

But since this is a book and you’re working through this example, it makes sense to
refactor your HeroDetailController into a more generic ManagedObjectController. Later
you can use this refactored controller to implement the views for the fetched properties of
the Hero entity. You laid the foundation for this work when you moved the view controller
configuration into a property list. Since then, you’ve tried to implement generic solutions in
the HeroDetailController. Ideally, that work paid off.

206 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Note Why make this change if you’re just going to refactor HeroDetailController? Well,

one of the big keys with refactoring is making small changes and checking things still work. You

wouldn’t want to make a lot of changes just to find things don’t work. Another key to successful

refactoring is writing unit tests. Then you have a repeatable set of tests that will help ensure you

haven’t make drastic changes you don’t expect. You’ll learn about unit tests in Chapter 15.

At this point your app should still be working, but you’ve made only a minor change. The big
one is coming up next. If you run your program, it should work as before.

Refactoring the Detail Controller
You could just create a new class named ManagedObjectController and move most of
the code from HeroDetailController to your new class. But this is adding a layer of
complexity (moving code) that could lead to a mistake being made. It’s easier to rename
HeroDetailController, clean up the code to be more generic, and then implement a new
HeroDetailController class.

Remember, you’re keeping the current configuration property list name as
HeroDetailConfiguration.plist. If you hard-code that name, you won’t have really done
anything useful. You need to change the initializer from a simple init method to something
like this:

init(resource: String) {
 super.init()
 var pListURL = NSBundle.mainBundle().URLForResource("HeroDetailConfiguration",
 withExtension: "plist")!
 var pListURL = NSBundle.mainBundle().URLForResource(resource, withExtension: "plist")!
 var pList = NSDictionary(contentsOfURL: pListURL) as NSDictionary!
 self.sections = pList.valueForKey("sections") as NSArray
 }

Now you need to change this line in the HeroDetailController viewDidLoad method,
shown here:

self.config = HeroDetailConfiguration()

to the following:

self.config = ManagedObjectConfiguration(resource: "HeroDetailConfiguration")

207CHAPTER 7: Relationships, Fetched Properties, and Expressions

Open HeroDetailController.swift and rename the file and the class to
ManagedObjectController. Next switch to HeroListController.swift in the method
prepareForSegue, and change the two instances.

var detailController:ManagedObjectController = segue.destinationViewController as
 ManagedObjectController

You may want to build and run the app just to check it’s still working. It will crash because
the storyboard used HeroDetailController, which does not exist anymore. So, switch to
the storyboard, go to the Hero Detail Controller, and under the Identity Inspector, change the
class from HeroDetailController to ManagedObjectController. Now if you run it, it should
work fine (if it doesn’t, check your steps).

Refactoring the Hero Instance Variable
In your ManagedObjectController class, you have an instance variable called hero. That
variable name is no longer representative of what that variable holds, so let’s refactor
it as well. Open ManagedObjectController.swift, and rename the hero property to
managedObject. Now you must make the changes in the rest of the app.

208 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Note Do not use the replace option. Make the changes yourself manually. Using the replace option

might change even self.heroTabBar, which is not what you want.

Figure 7-16. Finding all instances of variables in Xcode find

Open ManagedObjectEditor.swift and find all occurrences of the following:

self.hero

and change them to the following:

self.managedObject

209CHAPTER 7: Relationships, Fetched Properties, and Expressions

Lastly, edit HeroListContoller.swift and change this line in prepareForSegue:sender:

detailController.hero = sender;

to the following:

detailController.managedObject = sender;

Save your work, and check the app.

A Little More Abstraction
While you’re working on ManagedObjectController, take this opportunity to add some
discrete functionality. Specifically, when you add or remove powers, you put the code to do
this in tableView:commitEditingStyle:forRowAtIndexPath:. Let’s split this code into specific
methods to add and remove Relationship objects. Add the following method declarations
to ManagedObjectController.swift:

func saveManagedObjectContext(){
 var error: NSError? = nil
 self.managedObject.managedObjectContext?.save(&error)
 if error != nil{
 println("Error saving : \(error?.localizedDescription)")
 }
}

Does this look familiar? It should; it’s essentially the code in the save method. So, update the
following lines in the save method from the following:

var error: NSError? = nil
self.managedObject.managedObjectContext?.save(&error)
if error != nil{
 println("Error saving : \(error?.localizedDescription)")
}

to the following:

self.saveManagedObjectContext()

Now you can add the other method implementations.

//MARK: - Instance Methods

func addRelationshipObjectForSection(section: Int) -> NSManagedObject {
 var key = self.config.dynamicAttributeKeyForSection(section)
 var relationshipSet = self.managedObject.mutableSetValueForKey(key!) as NSMutableSet
 var entity = self.managedObject.entity
 var relationships = entity.relationshipsByName as NSDictionary
 var destRelationship = relationships.objectForKey(key!) as NSRelationshipDescription
 var destEntity = destRelationship.destinationEntity as NSEntityDescription?

210 CHAPTER 7: Relationships, Fetched Properties, and Expressions

 var relationshipObject = NSEntityDescription.insertNewObjectForEntityForName
(destEntity!.name!,

 inManagedObjectContext: self.managedObject.managedObjectContext!) as
NSManagedObject

 relationshipSet.addObject(relationshipObject)
 self.saveManagedObjectContext()

 return relationshipObject
}

func removeRelationshipObjectInIndexPath(indexPath: NSIndexPath) {
 var key = self.config.dynamicAttributeKeyForSection(indexPath.section)
 var relationshipSet = self.managedObject.mutableSetValueForKey(key!) as NSMutableSet
 var relationshipObject = relationshipSet.allObjects[indexPath.row] as NSManagedObject
 relationshipSet.removeObject(relationshipObject)
 self.saveManagedObjectContext()
}

Finally, change tableView:commitEditingStyle:forRowAtIndexPath:.

override func tableView(tableView: UITableView, commitEditingStyle
 editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .Delete {
 self.tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: .Fade)
 } else if editingStyle == .Insert {
 self.tableView.insertRowsAtIndexPaths([indexPath], withRowAnimation: .Automatic)
 }
}

You’re not adding or removing the Relationship object anymore. All you’re doing is adding
or removing table view cells. You’ll see why soon.

A New HeroDetailController
Now you want to create a new HeroDetailController to replace the one you renamed to
ManagedObjectController. Create a new Cocoa Touch class, name it HeroDetailController,
and make it a subclass of ManagedObjectController. Before you modify the
HeroDetailController, you need to make some changes to the ManagedObjectController.
Since you moved the configuration, you need to delete the declaration in
ManagedObjectController.swift.

var config: ManagedObjectConfiguration!

You also need to delete the assignment in viewDidLoad.

self.config = ManagedObjectConfiguration(resource: "HeroDetailConfiguration")

211CHAPTER 7: Relationships, Fetched Properties, and Expressions

Now you can update HeroDetailController. All you need to do is load your configuration
property list. Your HeroDetailController.swift file should look like this:

import UIKit

class HeroDetailController: ManagedObjectController {

 override func viewDidLoad() {
 super.viewDidLoad()

 self.config = ManagedObjectConfiguration(resource: "HeroDetailConfiguration")
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Now you need to tell your storyboard to use this HeroDetailController. Open SuperDB.
storyboard and select the ManagedObjectController scene. Set the zoom level so that
you see the View Controller icon in the scene’s label. Select the View Controller icon
and open the Identity Inspector. Change the class from ManagedObjectController to
HeroDetailController. If run, it should work fine.

Note You changed this earlier, and now you have set it back to HeroDetailController.

That should do it. You’re ready to create a power view.

The Power View Controller
You’ll start by creating the new power view controller in SuperDB.storyboard. Open SuperDB.
storyboard and add a new table view controller to the right of the hero detail controller. Your
storyboard should look something like Figure 7-17.

212 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Select the table view controller, and in the Identity Inspector, change the class to
PowerViewController. You will not find it in the drop-down list because you have not created
this class as yet. Next select the table view in the scene and in the Attributes Inspector
change the style from Single to Grouped.

The last thing you need to do is define the segue between HeroDetailController to your
new PowerViewController. Control-drag from the HeroDetailController icon (in the label
bar) to the PowerViewController scene. When the Manual Segue pop-up appears, select
Push. Select the segue, and give it the name PowerViewSegue in the Attributes Inspector.

Now you need to create the PowerViewController class and configuration. Create
a new Cocoa Touch class, named PowerViewController, that is a subclass of
ManagedObjectController. Edit PowerViewController.swift.

import UIKit

class PowerViewController: ManagedObjectController {

 override func viewDidLoad() {
 super.viewDidLoad()

Figure 7-17. Adding a table view controller to SuperDB.storyboard

213CHAPTER 7: Relationships, Fetched Properties, and Expressions

 self.config = ManagedObjectConfiguration(resource: "PowerViewConfiguration")
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Essentially, this is the same as HeroDetailController.swift. Instead of loading
the HeroDetailConfiguration property list, you load the PowerViewConfiguration
property list. Let’s create this property list. Create a new property list file and name it
PowerViewConfiguration.plist. You need a configuration property list with two sections.
Each section has no header label and one row each. In the end, your property list should
look like Figure 7-18.

Figure 7-18. Power view configuration

Navigating to the PowerViewController
Your PowerViewController is defined and configured. You’ve defined the segue to transition
from HeroDetailController to PowerViewController. Now you need to execute the
PowerViewSegue when the user adds a new power or selects a power in Edit mode. Open
HeroDetailController.swift and add the following table view data source method:

//MARK: - Table View DataSource

override func tableView(tableView: UITableView, commitEditingStyle
 editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .Delete {
 self.removeRelationshipObjectInIndexPath(indexPath)
 } else if editingStyle == .Insert {
 var newObject = self.addRelationshipObjectForSection(indexPath.section) as
 NSManagedObject

214 CHAPTER 7: Relationships, Fetched Properties, and Expressions

 self.performSegueWithIdentifier("PowerViewSegue", sender: newObject)
 }

 super.tableView(tableView, commitEditingStyle: editingStyle, forRowAtIndexPath:
indexPath)
}

Since you added this method, you added the logic to remove a power as well. Remember
when you changed this method in ManagedObjectController? You only added and removed
the table view cells. We said you were going to handle adding and removing powers to
the Hero entity later. Well, here it is. Pretty simple, right? Finally, you call the super method
(which is in the ManagedObjectController).

One last thing you need to do is handle when you want to view an existing power. After the
HeroDetailController tableView:commitEditingStyle:forRowAtIndexPath:, add this table
view delegate method:

//MARK: - Table view Delegate

override func tableView(tableView: UITableView, accessoryButtonTappedForRowWithIndexPath
 indexPath: NSIndexPath) {
 var key = self.config.attributeKeyForIndexPaths(indexPath) as String
 var relationshipSet = self.managedObject.mutableSetValueForKey(key) as NSMutableSet
 var relationshipObject = relationshipSet.allObjects[indexPath.row] as NSManagedObject
 self.performSegueWithIdentifier("PowerViewSegue", sender: relationshipObject)
 }

When the user taps the blue disclosure button in the Power cell, it will push the
PowerViewController onto the NavigationController stack. To pass the power managed
object to the PowerViewController, you need to implement the prepareForSegue:sender:
method in HeroDetailController.swift.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if segue.identifier == "PowerViewSegue" {
 if let _sender = sender as? NSManagedObject {
 var detailController = segue.destinationViewController as
ManagedObjectController
 detailController.managedObject = _sender
 }
 }else {
 //showAlert
 }
}

That’s it. The Power section and view are all set. Now let’s look into displaying fetched
properties.

215CHAPTER 7: Relationships, Fetched Properties, and Expressions

Fetch Properties
Look back at Figure 7-1. Below the Powers section is another section titled Reports that
shows four cells. Each cell holds a fetched property and accessory disclosure button.
Tapping the disclosure button will show the results of the fetched property (Figure 7-3). Let’s
get this working.

Looking at Figure 7-3, you can see that it’s a simple table view that displays the hero’s name
and secret identity. You need to create a new table view controller for the report display.
Create a new Cocoa Touch class named HeroReportController and make it a subclass of
UITableViewController. Select HeroReportController.swift and add new property to hold
the list of heroes you want to display.

import UIKit

class HeroReportController: UITableViewController {

 var heroes:[AnyObject]!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

Next, adjust the table view data source methods.

// MARK: - Table view data source

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // Return the number of sections.
 return 1
}

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // Return the number of rows in the section.
 return self.heroes.count
}

override func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
 let cellIdentifier = "HeroReportCell"
 let cell = tableView.dequeueReusableCellWithIdentifier(cellIdentifier,
 forIndexPath: indexPath) as
UITableViewCell

 // Configure the cell...
 var hero = self.heroes[indexPath.row] as Hero
 cell.textLabel?.text = hero.name
 cell.detailTextLabel?.text = hero.secretIdentity

 return cell
}

216 CHAPTER 7: Relationships, Fetched Properties, and Expressions

Let’s lay out your HeroReportController in your storyboard. Open SuperDB.storyboard.
Select a table view controller from the Object Library in the Utility pane and drop it below the
PowerViewController. Select this new table view controller and open the Identity Inspector.
Change the class to HeroReportController. Next, select the table view in the new table
view controller and open the Attributes Inspector. Change the Selection field from Single
Selection to No Selection. Finally, select the table view cell. In the Attributes Inspector,
change the style to Subtitle, enter HeroReportCell for the Identifier, and change the
Selection field to None.

Now Control-drag from the HeroDetailController view controller to the new table view
controller. When the Manual Segue pop-up appears, select Push. Select the new segue, and
in the Attributes Inspector, name it ReportViewSegue.

Next, you need to edit HeroDetailConfiguration property list to add the Reports section.
Navigate to Root ➤ sections ➤ Item 2. Make sure the Item 2 disclosure triangle is closed.
Select the Item 2 row and add an new item. Item 3 should appear. Change Item 3 from
String to Dictionary. Open the Item 3 disclosure triangle and add two subitems. Name the
first one header and give it a value of Reports. Name the second rows and make it an array.
You’re going to add four items to the rows array, each one representing the report you want
to view. By the time you’re done, it should look like Figure 7-19.

Figure 7-19. Adding the reports configuration

217CHAPTER 7: Relationships, Fetched Properties, and Expressions

Notice that you’ve added a new item for these row items: value. You’ll use this to use a static
value for your report section cells. Open ManagedObjectController.swift, and navigate to
tableView:cellForRowAtIndexPath:. Replace the nondynamic table view cell configuration
code.

 }else {
 cell?.value = theData
 if let value = self.config.rowForIndexPath(indexPath).objectForKey("value") as?
String {
 cell?.value = value
 cell?.accessoryType = .DetailDisclosureButton
 cell?.editingAccessoryType = .DetailDisclosureButton
 } else {
 cell?.value = theData
 }
 }

You’ve added the disclosure button for the Report section cells as well, so you need to
handle that in HeroDetailController. Edit HeroDetailController.swift and modify
tableView:accessoryButtonTappedForRowWithIndexPath:.

override func tableView(tableView: UITableView, accessoryButtonTappedForRowWithIndexPath
 indexPath: NSIndexPath) {

 var key = self.config.attributeKeyForIndexPaths(indexPath) as String
 var entity = self.managedObject.entity as NSEntityDescription
 var properties = entity.propertiesByName as NSDictionary
 var property = properties.objectForKey(key) as NSPropertyDescription

 if let _attr = property as? NSRelationshipDescription {
 var relationshipSet = self.managedObject.mutableSetValueForKey(key) as NSMutableSet
 var relationshipObject = relationshipSet.allObjects[indexPath.row] as
NSManagedObject
 self.performSegueWithIdentifier("PowerViewSegue", sender: relationshipObject)
 } else if let _attr = property as? NSFetchedPropertyDescription {
 var fetchedProperties = self.managedObject.valueForKey(key) as NSArray
 self.performSegueWithIdentifier("ReportViewSegue", sender: fetchedProperties)
 }
}

Now you need to check whether you’ve tapped a relationship cell (the Powers section) or
a fetched property cell (the Reports section). You’re calling the segue, ReportViewSegue,
when tapping a fetched property cell. You haven’t defined that segue yet, but you will in
just a second. Before you do that, let’s update prepareForSegue:sender: to handle the
ReportViewSegue. After the PowerViewSegue check, add this:

} else if segue.identifier == "ReportViewSegue" {
 if let _sender = sender as? NSArray {
 var reportController = segue.destinationViewController as HeroReportController
 reportController.heroes = _sender

218 CHAPTER 7: Relationships, Fetched Properties, and Expressions

 } else {
 //showAlert Error
 }
}

Build and run SuperDB. Add a few different heroes with different birthdays and of different
sex. Drill down the report and see the results when looking for older, younger, same sex,
and opposite sex heroes. Create a new hero, but don’t set the sex. See what happens. The
sexless hero will appear on the opposite sex report but not on the same sex report. We’ll
leave it to you to reason out why and how you might fix this.

The Finer Details
You will notice a few things such as when you make changes, the values are not reflected
onto the table view immediately. You can simply reload the tableView in the method
viewDidAppear, which is called every time the view is displayed. So, in the case of the
Hero listing, when you tap a hero and then click Back, viewDidAppear is called for the
HeroListController and would refresh the hero list displayed.

Wonderful to the Core
This chapter and the previous chapters gave you a solid foundation in the use of Core
Data. Along the way, we provided some information about how to design complex iPhone
applications so that they can be maintained and expanded without writing unnecessary
code or repeating the same logic in multiple places. We demonstrated just how much benefit
you can get from taking the time to write code generically. We showed you how to look for
opportunities to refactor your code to make it smaller, more efficient, easier to maintain, and
just generally more pleasant to be around.

We could go on for several more chapters about Core Data and not exhaust the topic. But
Core Data is not the only new framework introduced since iOS SDK 3. At this point, you
should have a solid enough understanding of Core Data to be able to, armed with Apple’s
documentation, take your explorations even further.

Now it’s time to leave our friend Core Data behind and explore some of the other aspects of
the iOS SDK.

219

Chapter 8
Behind Every iCloud

With iOS 5, Apple introduced iCloud, the latest in its line of Internet-based tools and
services. To the end user, iCloud extends Apple’s previous MobileMe offerings of e-mail,
contact management, and Find My iPhone, with iOS backup and restore, iTunes Match,
Photo Stream, and Back to My Mac. With iOS 8, iCloud got a major overhaul and has
included a new framework called CloudKit. This provides you with authentication, private
and public database structures, and asset storage services.

For all the bells and whistles that Apple has built, at its heart iCloud is a cloud-based storage
and synchronization service. Its main purpose is to allow users to access their content
across all their devices: iPhone, iPad, or Mac. In addition, Apple has given iOS developers
a set of application programming interfaces (APIs) for accessing iCloud. This lets you
build apps that can take advantage of the same iCloud features as Apple without having
to invest in building an extensive server infrastructure. Even better, you don’t have to learn
a new complicated software development kit (SDK). Rather than providing a new iCloud
framework, Apple added new classes to existing frameworks, primarily Foundation and
UIKit, and extended existing classes to enable iCloud access.

The basic idea behind iCloud is to have a single place where apps can store and access
data. Changes made by one instance of your app on one device can be instantly propagated
to another instance of the app running on another device. At the same time, iCloud provides
an authoritative copy of your application’s data. This data can be used to restore your
application’s state on a new device, providing a seamless user experience as well as backup
data. The data with CloudKit is separate and is public data that is shared between all users
of their apps. This data is stored like on a shared disk drive that can be accessed from other
devices as well.

220 CHAPTER 8: Behind Every iCloud

Data Storage with iCloud
There are a few different ways to store your data in iCloud.

	iOS Backup: This is a global device configuration that backs up your iOS
device to iCloud.

	Key-value data storage: This is used for storing small amounts of
infrequently changing data used by your application.

	Document storage: This is used for storing user documents and
application data.

	Core Data with iCloud: This puts your application’s persistent backing
store on iCloud.

	iCloud Drive: This makes your iCloud like an online drive for
synchronizing your data files.

Before we discuss these storage mechanisms in detail, let’s review how iCloud and iOS work
together.

iCloud Basics
Inside your iCloud application there is a ubiquity container. Depending on the storage type
used, you may explicitly define the URL for this container or iOS will create one for you. The
ubiquity container is where iCloud data is stored by your application. iOS will synchronize
the data between your device and iCloud. This means that any changes your application
makes to data in the ubiquity container will be sent to iCloud. Conversely, any changes in
iCloud will be sent to your application’s ubiquity container on your device.

Now, iOS doesn’t send the entire data file back and forth from iCloud for every change.
Internally, iOS and iCloud break up your application’s data into smaller chunks of data. When
changes occur, only the chunks that have changed are synchronized with iCloud. On iCloud,
your application data is versioned, keeping track of each set of changes.

In addition to breaking up your application’s data into chunks, iOS and iCloud will send the
data file’s metadata. Since the metadata is relatively small and important, the metadata is
sent all the time. In fact, iCloud will know a data file’s metadata before the actual data is
synchronized. This is especially important with iOS. Since an iOS device may be space and
bandwidth constrained, iOS won’t necessarily automatically download data from iCloud
until it needs it. But since iOS has the metadata, it knows when its copy is out of date with
iCloud.

Note Interestingly, if iOS detects another iOS device on the same WiFi network, rather than

sending data up to iCloud and down to the other device, iOS will simply transfer the data from one

device to the other.

221CHAPTER 8: Behind Every iCloud

iCloud Backup
Backup is an iOS system service offered by iCloud. It automatically backs up your iOS
device daily over WiFi. Everything in your application’s home directory is backed up. The
application bundle, caches directory, and temp directory are ignored by iOS. Since the data
is transmitted over WiFi and sent to Apple’s iCloud data center, you should try to keep your
application’s data as small as possible. The more data, the longer the backup time and the
more iCloud storage your users will consume.

Note If you’ve used up your iCloud storage capacity (at the time of this writing, 5GB by default),

iOS will ask you if you want to buy more storage. Regardless, you’ll need to figure out how your

application will handle the case if iCloud is full.

When designing your application’s data storage policy, keep the following in mind:

User-generated data, or data that cannot be re-created by your application, should be
stored in the Documents directory. From there it will be automatically backed up to iCloud.

Data that can be downloaded or re-created by your application should live in Library/Caches.

Data that is temporary should be stored in the tmp directory. Remember to delete these files
when they are no longer needed.

Data that your application needs to persist, even in low storage situations, should be
flagged with the NSURLIsExcludedFromBackupKey attribute. Regardless of where you put
these files, they will not be deleted by Backup. It’s your application’s responsibility to
manage these files.

You can set NSURLIsExcludedFromBackupKey via the setResource:forKey:error: method
in NSURL.

var url:NSURL? = NSBundle.mainBundle().URLForResource("NoBackup", withExtension: "txt")?
var error: NSError? = nil

var success = url?.setResourceValue(true, forKey: NSURLIsExcludedFromBackupKey, error: &error)

Enabling iCloud in Your Application
To use iCloud data storage within your application, you need to perform two tasks. First, you
need to enable the application’s entitlements and enable them for iCloud. Second, you need
to create an iCloud-enabled provisioning profile. In the past, this was a bit tedious; now you
can simply choose the capabilities from within Xcode and enable iCloud and the services
you need. If you have configured your Developer Account, Xcode will generate the relevant
IDs and entitlements and certificates as required. This is such a wonderful feature.

222 CHAPTER 8: Behind Every iCloud

When entitlements are enabled in your application, Xcode expects to find an .entitlements
file within your project directory. This .entitlements file is simply a property list of key-values
pairs. These key-value pairs configure additional capabilities or security features of your
application. For iCloud access, the .entitlements file specifies the keys to define ubiquity
identifiers for the iCloud key-value and document ubiquity containers.

Key-Value Data Storage
As the name suggests, iCloud key-value data storage is a simple key-value storage mechanism
integrated with iCloud. Conceptually, it’s similar to NSUserDefaults. Like NSUserDefaults, the
only allowable data types are those supported by property lists. It is best to use it for data with
values that are infrequently updated. Placing your application’s preferences or settings would
be a good use case. You shouldn’t use key-value data storage in place of NSUserDefaults.
You should keep writing configuration information to NSUserDefault and write shared data to
key-value data storage. This way, your application still has configuration information if iCloud is
unavailable.

There are a number of limitations on the key-value data storage that you need to keep in
mind. First, there is a 1MB maximum storage limit per value. Keys have a separate 1MB
per-key limit. Furthermore, each application is allowed a maximum of 1,024 separate keys.
As a result, you will need to be judicious about what you put in key-value data storage.

Key-value data is synced with iCloud at periodic intervals. The frequency of these intervals
is determined by iCloud, so you don’t have much control over this. As a result, you shouldn’t
use the key-value data storage for time-sensitive data.

Key-value data storage handles data conflicts by always choosing the latest value for each key.

To use key-value data storage, you use the default NSUbiquitousKeyValueStore. You access
values using the appropriate *ForKey: and set*ForKey: methods, similar to NSUserDefaults.
You will also need to register for notifications about changes to the store via iCloud.
To synchronize data changes, you call the synchronize method. You can also use the
synchronize method as a check to see whether iCloud is available. You might initialize your
application to use key-value data storage like this:

 var kv_store = NSUbiquitousKeyValueStore.defaultStore()
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "storeDidChange:",
 name: NSUbiquitousKeyValueStoreDidChangeExternallyNotification,
 object: self.kv_store)
 var avail = self.kv_store.synchronize()
 if avail {
 println("iCloud is available")
 } else {
 println("iCloud NOT available")
 }
}

223CHAPTER 8: Behind Every iCloud

The synchronize method does not push data to iCloud. It simply notifies iCloud that new
data is available. iCloud will determine when to retrieve the data from your device.

You can save a key onto iCloud with set*ForKey: like so:

self.kv_store.setString("Hello", forKey: "World")

To access the data from iCloud, you can use *ForKey: like so:

var result = self.kv_store.stringForKey("World") as String?

Document Storage
For iCloud document storage, a document is a custom subclass of UIDocument. UIDocument
is an abstract class that is used to store your application’s data, either as a single file or as a
file bundle. A file bundle is a directory that behaves as a single file. To manage a file bundle,
use the NSFileWrapper class.

Before we describe iCloud Document Storage, let’s look at UIDocument.

UIDocument
UIDocument eases the development of document-based applications by giving a number of
features for “free.”

	Background reading and writing of data: Keeps your application’s UI
responsive

	Conflict detection: Helps you resolve differences between document
versions

	Safe-saving: Makes sure your document is never in a corrupted state

	Automated saves: Makes life easier for your users

	Automatic iCloud integration: Handles all interchanges between your
document and iCloud

If you want to build a single file document, you would create a simple UIDocument subclass.

class myDocument: UIDocument {
 var text: String!
}

You need to implement a number of methods in your UIDocument subclass. First,
you need to be able to load the document data. To do this, you override the
loadFromContents:ofType:error: method.

224 CHAPTER 8: Behind Every iCloud

override func loadFromContents(contents: AnyObject, ofType typeName: String, error
outError: NSErrorPointer) -> Bool {
 if contents.length > 0 {
 self.text = NSString(data: contents as NSData, encoding: NSUTF8StringEncoding)
 } else {
 self.text = ""
 }

 //Update here

 return true
}

The contents parameter is defined as AnyObject. If your document is a file bundle, the
content will be of type NSFileWrapper. For your single document file case, the content is an
NSData object. This is a simple implementation; it never fails. If you implemented a failure case
and returned false, you should create an error object and give it a meaningful error message.
You also want to put code in place to update the UI once the data is successfully loaded. You
also never check the content type. Your application could support multiple data types, and
you have to use the typeName parameter to handle the different data loading scenarios.

When you close your application or when auto-save is invoked, the UIDocument method
contentForType:error: is called. You need to override this method as well.

override func contentsForType(typeName: String, error outError: NSErrorPointer) ->
AnyObject? {
 if self.text == nil {
 self.text = ""
 }

 var data = self.text.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: false)
 return data
}

If your document is stored as a file bundle, you return an instance of NSFileWrapper rather
than the NSData object for a single file. That’s all you need to do to ensure your data gets
saved; UIDocument will handle the rest.

UIDocument needs a file URL to determine where to read and write data. The URL will define
the document directory, file name, and possibly file extension. The directory can be either a
local (application sandbox) directory or a location in the iCloud ubiquity container. The file
name should be generated by your application, optionally allowing the user to override the
default value. While using a file extension might be optional, it’s probably a good idea to
define one (or more) for your application. You pass this URL to the fileURL: method of your
UIDocument subclass to create a document instance.

225CHAPTER 8: Behind Every iCloud

 var doc = myDocument(fileURL: aURL)
...
 doc.saveToURL(fileURL, forSaveOperation: UIDocumentSaveOperation.ForCreating,

completionHandler: {
 success in
 if (success){

 } else {

 }

 })

Once you have created a UIDocument instance, you create the file using the saveToURL:
forSaveOperation:completionHandler: method. You use the value UIDocumentSaveFor
Creating to indicate that you are saving the file for the first time. The completionHandler:
parameter takes a block. The block takes a Bool parameter to tell you whether the save
operation was successful.

You don’t just need to create documents; your application may need to open and close
existing documents. You still need to call initWithFileURL: to create a document instance,
but then you call openWithCompletionHandler: and closeWithCompletionHandler: to open
and close your document.

 var doc = myDocument(fileURL: aURL)
...
 doc.openWithCompletionHandler({
 success in
 if (success) {

 } else {

 }
 })
 doc.closeWithCompletionHandler(nil)

Both methods take a block to execute on completion. Like the saveToURL:forSaveOperat
ion:completionHandler: method, the block has a Bool parameter to tell you whether the
open/close succeeded or failed. You’re not required to pass a block. In the previous example
code, you pass nil to closeWithCompletionHandler: to indicate you don’t do anything after
the document is closed.

To delete a document, you could simply use NSFileManager removeItemAtURL: and pass
in the document file URL. However, you should do what UIDocument does for reading and
writing and perform the delete operation in the background.

226 CHAPTER 8: Behind Every iCloud

 var doc = myDocument(fileURL: aURL)
...
// close the document
...
 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), {
 var fileCoordinator = NSFileCoordinator(filePresenter: nil)
 fileCoordinator.coordinateWritingItemAtURL(aURL,
 options: NSFileCoordinatorWritingOptions.ForDeleting,
 error: nil,
 byAccessor: {
 writingURL in
 var fileManager = NSFileManager()
 fileManager.removeItemAtURL(writingURL, error: nil)
 })
 })

First, you dispatch the entire delete operation to a background queue via the dispatch_async
function. Inside the background queue, you create an NSFileCoordinator instance.
NSFileCoordinator coordinates file operations between processes and objects. Before any
file operation is performed, it sends messages to all the NSFilePresenter protocol objects
that have registered themselves with the file coordinator. Delete the document file by
invoking the NSFileCoordinator method coordinateWritingItemAtURL:options:error:by
Accessor:. The accessor is a block operation that defines the actual file operation you want
performed. It’s passed an NSURL parameter, representing the location of the file. Always use
the block parameter NSURL, not the NSURL passed to coordinateWritingItemAtURL:.

Before performing an operation on your UIDocument subclass, you probably want to check
the documentState property. The possible states are defined as follows:

	UIDocumentState.Normal: The document is open and has no issues.

	UIDocumentState.Closed: The document is closed. If the document is
in this state after opening, it indicates there may be a problem with the
document.

	UIDocumentState.InConflict: There are versions of this document in
conflict. You may need to write code to allow your user to resolve
these conflicts.

	UIDocumentState.SavingError: The document could not be saved
because of some error.

	UIDocumentState.EditingDisabled: The document cannot be edited;
either your application or iOS will not permit it.

You can check the document state.

var doc = myDocument(fileURL: aURL)
...
if (doc.documentState == UIDocumentState.Closed) {
 // documentState is closed
}

227CHAPTER 8: Behind Every iCloud

UIDocument also provides a notification named UIDocumentStateChangedNotification that
you can use to register an observer.

MyDocument *doc = [[MyDocument alloc] initWithFileURL:aURL]];
...
NSNotificationCenter.defaultCenter().addObserver(anObserver,
 selector: "documentStateChanged:",
 name: UIDocumentStateChangedNotification,
 object: doc)

Your observer class would implement the method documentStateChanged: to check the
document state and handle each state accordingly.

To perform automated saves, UIDocument periodically invokes the method
hasUnsavedChanges, which returns a Bool depending on whether your document has
changed since the last save. The frequency of these calls is determined by UIDocument and
cannot be adjusted. Generally, you don’t override hasUnsavedChanges. Rather, you do one of
two things: register the NSUndoManager via the UIDocument undoManager property to register
for undo/redo operations or call the updateChangeCount: method every time a trackable
change is made to your document. For your document to work with iCloud, you must enable
the automated saves feature.

UIDocument with iCloud
Using iCloud document storage requires an adjustment to the normal UIDocument process
to use a Documents subdirectory of your application’s ubiquity container. To get the
ubiquity container URL, you pass the document identifier into the NSFileManager method
URLForUbiquityContainerIdentifer:, passing nil as the argument.

let dataDir = "Documents"
var fileManager = NSFileManager.defaultManager()
var iCloudToken = fileManager.ubiquityIdentityToken
var iCloudURL: NSURL? = fileManager.URLForUbiquityContainerIdentifier(nil)
if (iCloudToken != nil && iCloudURL != nil) {
 var ubiquityDocURL = iCloudURL?.URLByAppendingPathComponent("Documents")
} else {
 // No iCloud Access
}

By using nil in URLForUbiquityContainerIdentifer:, NSFileManager will use the ubiquity
container ID defined in the application’s entitlements file. We’ll cover this in the “Entitlements”
section later in the chapter, but for now, just try to follow along. If you want to use the ubiquity
container identifier explicitly, it’s a combination of your ADC Team ID and App ID.

let ubiquityContainer = "HQ7JAY4x53.com.ozapps.iCloudAppID"
let fileManager = NSFileManager.defaultManager()
let ubiquityURL = fileManager.URLForUbiquityContainerIdentifier(ubiquityContainer)

228 CHAPTER 8: Behind Every iCloud

Notice the use of the NSFileManager method ubiquityIdentityToken to check for iCloud
availability. This method returns a unique token tied to the user’s iCloud account. Depending
on your application, if iCloud access is unavailable, you should inform the user and either
work with local storage or exit the application.

NSMetadataQuery
Earlier, we stated that iCloud and iOS don’t automatically sync documents in an application’s
ubiquity container. However, a document’s metadata is synced. For an iCloud document
storage application, you can’t simply use the file contents of the Documents directory in your
ubiquity container to know what documents are available for your application. Rather, you
have to perform a metadata query using the NSMetadataQuery class.

Early in your application life cycle you need to instantiate an NSMetadataQuery and configure
it to look for the appropriate documents in the Documents subdirectory of the ubiquity
container.

self.query:NSMetadataQuery = NSMetadataQuery()
self.query.searchScopes = [NSMetadataQueryUbiquitousDocumentsScope]
var filePattern = "*.txt"
self.query.predicate = [NSPredicate(format: "%K LIKE %@", NSMetadataItemFSNameKey,
filePattern)]

This example assumes you have a query property and it’s configured to look for all files with
the .txt extension.

After creating the NSMetadataQuery object, you need to register for its notifications.

var notificationCenter = NSNotificationCenter.defaultCenter()
notificationCenter.addObserver(self, selector: "processFiles:", name:
NSMetadataQueryDidFinishGatheringNotification, object: nil)
notificationCenter.addObserver(self, selector: "processFiles:", name:
NSMetadataQueryDidUpdateNotification, object: nil)
self.query.startQuery()

NSMetadataQueryDidFinishGatheringNotification is sent when the query object has
finished its initial information-loading query. NSMetadataQueryDidUpdateNotification is sent
when the contents of the Documents subdirectory have changed and affect the results of the
query. Finally, you start the query.

When a notification is sent, the processFiles: method is invoked. It might look something
like this:

func processFiles(aNotification:NSNotification){
 var query = NSMetadataQuery()

 var files:[AnyObject?] = []
 query.disableUpdates()

229CHAPTER 8: Behind Every iCloud

 var queryResults = query.results
 for result in queryResults {
 var fileURL = result.valueForAttribute(NSMetadataItemURLKey) as NSURL
 var aBool: AnyObject?
 fileURL.getResourceValue(&aBool, forKey: NSURLIsHiddenKey, error: nil)
 if let hidden = aBool as? Bool {
 if (!hidden) {
 files.append(fileURL)
 }
 }
 }

 query.enableUpdates()
 }

First, you disable the query updates to prevent notifications from being sent while you’re
processing. In this example, you simply get a list of files in the Documents subdirectory and
add them to an array. You make sure to exclude any hidden files in the directory. Once you
have the array of files, you use them in your application (perhaps to update a table view of
file names). Finally, you reenable the query to receive updates.

You’ve only skimmed the surface of how to use iCloud document storage. There are a lot
of document life-cycle issues that your document-based application should handle to be
effective.

Note For more information, read Apple’s documentation. Check the iCloud chapter of the iOS App

Programming Guide first (https://developer.apple.com/library/ios/documentation/

General/Conceptual/iCloudDesignGuide/Chapters/DesignForCoreDataIniCloud.

html#//apple_ref/doc/uid/TP40012094-CH3-SW1). Then read the iCloud Design

Guide (https://developer.apple.com/library/ios/documentation/General/

Conceptual/iCloudDesignGuide/Chapters/Introduction.html) and the document-

based App Programming Guide for iOS (https://developer.apple.com/library/

ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/

DesigningForDocumentsIniCloud.html#//apple_ref/doc/uid/TP40012094-CH2-SW1).

Core Data with iCloud
Using Core Data with iCloud is a fairly simple process. You place your persistent store in
your application’s ubiquity container. However, you don’t want your persistent store to
be synchronized with iCloud. That would create unnecessary overhead. Rather, you want
to synchronize the transactions between applications. When another instance of your
application receives the transaction data from iCloud, it reapplies every operation performed
on the persistent store. This helps ensure that the different instances are updated with the
same set of operations.

https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesignForCoreDataIniCloud.html#//apple_ref/doc/uid/TP40012094-CH3-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesignForCoreDataIniCloud.html#//apple_ref/doc/uid/TP40012094-CH3-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesignForCoreDataIniCloud.html#//apple_ref/doc/uid/TP40012094-CH3-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForDocumentsIniCloud.html#//apple_ref/doc/uid/TP40012094-CH2-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForDocumentsIniCloud.html#//apple_ref/doc/uid/TP40012094-CH2-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForDocumentsIniCloud.html#//apple_ref/doc/uid/TP40012094-CH2-SW1

230 CHAPTER 8: Behind Every iCloud

Even though you don’t want to synchronize the persistent store with iCloud, Apple
recommends that you place the data file in the ubiquity container within a folder with the
extension .nosync. This tells iOS not to synchronize the contents of this folder but keeps the
data associated with the correct iCloud account.

var psc = _persistentStoreCoordinator
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), {
 var newStore: NSPersistentStore? = nil
 var error: NSError? = nil

 //Assume we have an instance of NSPersitentStoreCoordinator _psesistentStoreCoordinator

 let dataFile = "SuperDB.sqlite"
 let dataDir = "Data.nosync"
 let logsDir = "Logs"

 var fileManager = NSFileManager.defaultManager()
 var ubiquityToken = fileManager.ubiquityIdentityToken
 var ubiquityURL: NSURL? = fileManager.URLForUbiquityContainerIdentifier(nil)
 if (ubiquityToken != nil && ubiquityURL != nil) {
 var dataDirPath = ubiquityURL?.path?.stringByAppendingPathComponent(dataDir)
 if fileManager.fileExistsAtPath(dataDirPath!) == false {
 var fileSystemError: NSError? = nil
 fileManager.createDirectoryAtPath(dataDirPath!,
 withIntermediateDirectories: true,
 attributes: nil,
 error: &fileSystemError)
 if fileSystemError != nil {
 println("Error creating database directory \(fileSystemError)")
 }
 }

 var thePath = ubiquityURL?.path?.stringByAppendingPathComponent(logsDir)
 var logsURL = NSURL(fileURLWithPath: thePath!)
 var options = NSMutableDictionary()
 options[NSMigratePersistentStoresAutomaticallyOption] = true
 options[NSInferMappingModelAutomaticallyOption] = true
 options[NSPersistentStoreUbiquitousContentNameKey] =

ubiquityURL?.lastPathComponent!
 options[NSPersistentStoreUbiquitousContentURLKey] = logsURL!
 psc.lock()
 thePath = dataDirPath?.stringByAppendingPathComponent(dataFile)
 var dataFileURL = NSURL.fileURLWithPath(thePath!)
 newStore = psc.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,
 URL: dataFileURL,
 options: options,
 error: &error)
 psc.unlock()

231CHAPTER 8: Behind Every iCloud

 } else {
 println("Local Store")
 }
})

Notice that you perform your persistent store operations in a background queue so that your
iCloud access does not block your application UI. Most of the example here defines your
data directory path, Data.nosync, and the log directory path, Logs. The actual persistent
store creation is similar to what you’ve done earlier. You added two key-value pairs to
the options dictionary: NSPersistentStoreUbiquitousContentNameKey with your ubiquity
container ID and NSPersistentStoreUbiquityContentURLKey with the transaction log
directory path. Core Data and iCloud will use NSPersistentStoreUbiquityContentURLKey to
synchronize the transaction logs.

Now you need to register to observe a notification when changes are received from iCloud.
Generally, you don’t want to put this when you create the persistent store coordinator; rather,
you do it when creating the managed object context.

NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "mergeChangesFromUbiquitousContent:",
 name: NSPersistentStoreDidImportUbiquitousContentChangesNotification,
 object: coordinator)

The implementation of mergeChangesFromUbiquitousContent: will have to handle the merging
of content between iCloud and the local persistent store. Fortunately, for all but the most
complicated models, Core Data makes this relatively painless.

func mergeChangesFromUbiquitousContent(notification: NSNotification) {
 var context = self.managedObjectContext
 context?.performBlock({
 context?.mergeChangesFromContextDidSaveNotification(notification)
 // Send a notification to refresh the UI, if necessary
 })
}

Enhancing SuperDB
You’ll enhance the Core Data SuperDB application and place the persistent store in iCloud.
Based on your review of the iCloud APIs, this should be a fairly straightforward process.
Remember, you can’t run iCloud apps on the simulator (yet), so you need to tether your
device to your development machine. Additionally, since you need a provisioning profile, you
need an Apple Developer Center account.

Make a copy of the SuperDB project from Chapter 6. If you haven’t completed Chapter 6,
you can copy the project from this book’s download archive and start from there.

232 CHAPTER 8: Behind Every iCloud

Entitlements
You will need an entitlements file for your applications. Earlier you had to create this file
yourself and set up the key-value entries. Figure 8-1 shows the entitlements file for the
SuperDB app. To create this file, you just have to switch on a required capability and the
entitlements file is automatically created by Xcode. You will do that in the next section.

Figure 8-2. The project’s Capabilities screen

Figure 8-1. The entitlements section of the target Summary Editor

Enabling iCloud and Creating the Relevant Files
You need to create the entitlements file, an iCloud-enabled provisioning profile, App IDs, and
so on. This is now a matter of simply selecting a box. However, the prerequisite is that you
need to be registered with Apple’s Developer Program.

Go to the project properties and click the target SuperDB. Under the Capabilities tab, look
for iCloud and switch it on (see Figure 8-2).

233CHAPTER 8: Behind Every iCloud

Xcode will select or prompt you for the relevant team account to use and create the relevant
entitlements file, certificates, and so on. Select the appropriate services that you need
to enable for this application. There are no settings for the key-value storage; for iCloud
Documents, you need to select the appropriate container. This is created by default as
iCloud.$(CFBundleIdentifier). In this case, the bundle identifier is com.ozapps.SuperDB, so
the container is identified as iCloud.com.ozapps.SuperDB (see Figure 8-3).

Figure 8-3. The project with iCloud enabled

Whew. That was easy and not a lot of work just to get iCloud activated for your application
as it was in the past.

Updating the Persistent Store
In the SuperDB Xcode project window, open AppDelegate.swift and find the
persistentStoreCoordinator method. You need to rewrite it to check and use an iCloud
persistent store if possible or fall back to a local persistent store. The beginning of the
method remains the same: you check whether you’ve already created an instance of your
persistent store coordinator; if not, you instantiate one.

var persistentStoreCoordinator: NSPersistentStoreCoordinator? {
 if _persistentStoreCoordinator != nil {

 return _persistentStoreCoordinator
 }

 _persistentStoreCoordinator = NSPersistentStoreCoordinator(
 managedObjectModel: self.managedObjectModel)

234 CHAPTER 8: Behind Every iCloud

You dispatch the following code to a background queue so as not to block the main thread.
The following code is similar to the example provided in the “Core Data with iCloud” section
earlier. Review that section for a detailed explanation.

var psc = _persistentStoreCoordinator
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), {
 var newStore: NSPersistentStore? = nil
 var error: NSError? = nil
 let dataFile = "SuperDB.sqlite"
 let dataDir = "Data.nosync"
 let logsDir = "Logs"

 var fileManager = NSFileManager.defaultManager()
 var ubiquityToken = fileManager.ubiquityIdentityToken
 var ubiquityURL: NSURL? = fileManager.URLForUbiquityContainerIdentifier(nil)
 if (ubiquityToken != nil && ubiquityURL != nil) {
 var dataDirPath = ubiquityURL?.path?.stringByAppendingPathComponent(dataDir)
 if fileManager.fileExistsAtPath(dataDirPath!) == false {
 var fileSystemError: NSError? = nil
 fileManager.createDirectoryAtPath(dataDirPath!,
 withIntermediateDirectories: true,
 attributes: nil,
 error: &fileSystemError)
 if fileSystemError != nil {
 println("Error creating database directory \(fileSystemError)")
 }
 }

 var thePath = ubiquityURL?.path?.stringByAppendingPathComponent(logsDir)
 var logsURL = NSURL(fileURLWithPath: thePath!)
 var options = NSMutableDictionary()
 options[NSMigratePersistentStoresAutomaticallyOption] = true
 options[NSInferMappingModelAutomaticallyOption] = true
 options[NSPersistentStoreUbiquitousContentNameKey] =

ubiquityURL?.lastPathComponent!
 options[NSPersistentStoreUbiquitousContentURLKey] = logsURL!
 psc.lock()
 thePath = dataDirPath?.stringByAppendingPathComponent(dataFile)
 var dataFileURL = NSURL.fileURLWithPath(thePath!)
 newStore = psc.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,

 URL: dataFileURL,
 options: options,
 error: &error)
 psc.unlock()

235CHAPTER 8: Behind Every iCloud

If for some reason you don’t have access to iCloud, you can fall back to using the local
persistent store coordinator.

} else {
 var storeURL = self.applicationDocumentsDirectory.URLByAppendingPathComponent

(dataFile)
 var options = [NSMigratePersistentStoresAutomaticallyOption : true,
 NSInferMappingModelAutomaticallyOption: true]
 psc.lock()
 newStore = psc.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil,
 URL: storeURL, options: options,

error: &error)
 psc.unlock()
}

You need to check if you actually have a new persistent store coordinator.

if newStore == nil {
 println("Unresolved error \(error)")
 abort()
}

Once that’s complete, you send a notification on the main thread that you’ve loaded the
persistent store coordinator. You use this notification to update the UI, if necessary.

 dispatch_async(dispatch_get_main_queue(), {
 NSNotificationCenter.defaultCenter().postNotificationName("DataChanged",
 object: self, userInfo: nil)
 })
 })

 return _persistentStoreCoordinator
}()

Updating the Managed Object Context
You need to register to receive notifications when the data in the ubiquity container changes.
You do that in the lazy initialization of managedObjectContext.

lazy var managedObjectContext: NSManagedObjectContext? = {
 let coordinator = self.persistentStoreCoordinator

 if coordinator == nil {
 return nil
 }

236 CHAPTER 8: Behind Every iCloud

 var managedObjectContext = NSManagedObjectContext()
 managedObjectContext.persistentStoreCoordinator = coordinator
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "mergeChangesFromUbiquitousContent:",
 name:
NSPersistentStoreDidImportUbiquitousContentChangesNotification,
 object: coordinator)
 return managedObjectContext
}()

You’ve told the Notification Center to invoke the AppDelegate method
mergeChangesFromUbiquitousContent:, so you need to implement that method.

Then add the implementation to the bottom of AppDelegate.swift, just before the last
curly brace.

//MARK: - Handle Changes from iCloud to Ubiquitous Container

func mergeChangesFromUbiquitousContent(notification: NSNotification) {
 var moc = self.managedObjectContext
 moc?.performBlock({
 moc?.mergeChangesFromContextDidSaveNotification(notification)
 var refreshNotification = NSNotification(name: "DataChanged", object: self,

userInfo: notification.userInfo)
 })
}

This method first merges the changes into your managed object context. Then it sends a
DataChanged notification. You used that notification earlier when you created the persistent
store coordinator. It’s intended to notify you when the UI should be updated. Let’s do that.

Updating the UI on DataChanged
Open HeroListController.swift in the Xcode Editor and find the viewDidLoad method. Just
before the end of the method, register for the DataChanged notification.

NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "updateReceived:",
 name: "DataChanged",
 object: nil)

While you’re at it, be a good iOS programmer and unregister in the didReceiveMemoryWarning
method.

NSNotificationCenter.defaultCenter().removeObserver(self)

237CHAPTER 8: Behind Every iCloud

When the DataChanged notification is received, the updateReceived: method will be invoked.
So, you need to implement it again before the last curly brace.

func updateReceived(notification: NSNotification) {
 var error: NSError? = nil
 if !self.fetchedResultsController.performFetch(&error){
 println("Error performing fetch: \(error?.localizedDescription)")
 }
 self.heroTableView.reloadData()
}

Essentially, it just refreshes the data and table view.

Testing the Data Store
Don’t believe anyone If they tell you that you can’t use iCloud on the simulator. Since
iOS7, Apple has made things slightly better, so now you can test your iCloud code on the
simulator. However, it is best if you to run it on your device. Since you’re starting with a new
persistent store, there should be no entries. Add a new hero, edit the details, and save. Now
quit the application (and/or stop it in Xcode). Tap and hold the SuperDB app icon from the
Launchpad until it begins to shake. Delete the app. You should receive an alert dialog to tell
you that the local data will be lost, but the iCloud data will be kept. Tap Delete.

Now run the app again. Wait a few moments, and the Hero list should update to include the
hero you added earlier. Even though you deleted the app (and its local data), iCloud was able
to synchronize and restore the persistent store.

Note To use iCloud on the simulator, you have to set up your iCloud account on the simulator by

logging in.

Keep Your Feet on the Ground
While developing an application for iCloud, there may be times when you want to view or
even delete the data in iCloud. There are a few ways you can view and/or manage the data
your application is putting in iCloud.

	Via Mac: Open System preferences, and choose iCloud. Click the
Manage button on the lower right.

	Via iOS: Use the Settings app, and navigate to iCloud ➤ Storage &
Backup ➤ Manage Storage.

	Via the Web (view only): Navigate to http://developer.icloud.com/ and
log in. Click the Documents icon.

	Via Xcode (starts the Web view): If you have set up iCloud under
Capabilities in your app, Xcode has a CloudKit Dashboard button that
essentially takes you to the Web view, as outlined earlier.

http://developer.icloud.com/

238 CHAPTER 8: Behind Every iCloud

These are just the basics of building an iCloud-enabled application for iOS. For any
application, there are many things to keep in mind, but here are some key things to
remember:

How will your app behave if iCloud is not available?	
If you allow “offline” use, how will your application synchronize with 	
iCloud?

How will your application handle conflicts? This will be highly dependent 	
on your data model.

Try to design your data/document model to minimize the data transfer 	
between your device and iCloud.

Ideally, you’ve gotten a good taste of what it means to enable iCloud in your app. Let’s head
back to Earth and have some fun building a game.

239

Chapter 9
Peer-to-Peer Using Multipeer

Connectivity

Game Kit has to be one of the coolest frameworks available for people interested in
developing games on the iOS SDK. Game Kit classes provide three different technologies:
GameCenter, Peer-to-Peer Connectivity, and In Game Voice. With iOS 7, Apple introduced
a new framework called Multipeer Connectivity. This chapter will focus on Peer-to-Peer
Connectivity using Multipeer Connectivity. We won’t be covering any of the Game Kit
functionality in this chapter. Game Kit still works, but Multipeer Connectivity is a much easier
and more relevant framework.

Peer-to-Peer Connectivity
Multipeer Connectivity makes it easy to wirelessly connect multiple iOS devices, via either
Bluetooth or WiFi. Bluetooth is a wireless networking option built into all but the first-
generation iPhone and iPod touch. Multipeer Connectivity allows any supported devices to
communicate with any other supported devices that are within range. For Bluetooth, this
is roughly 30 feet (about 10 meters) of each other. You might build a social networking app
that allows people to easily transfer contact information over Bluetooth. In fact, the amazing
application FireChat is built upon Multipeer Connectivity. Some other apps that allow
iPhones to be used like a CB radio also use Multipeer Connectivity as their core. The good
part about Multipeer Connectivity is that it does not require the presence of a network and
can connect over Bluetooth or can use a network if one is present.

Peer-to-Peer Connectivity relies on two components.

The 	 session allows iPhone OS devices running the same application
to easily send information back and forth over Bluetooth/WiFi without
writing any networking code.

The 	 browser provides an easy way to find other devices without writing
any networking or discovery (Bonjour) code.

240 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Under the hood, Multipeer Connectivity sessions leverage Bonjour, Apple’s technology for
zero-configuration networking and device discovery. As a result, devices using Multipeer
Connectivity are capable of finding each other on the network without the user needing to
enter an IP address or domain name.

This Chapter’s Application
In this chapter, you’ll explore Multipeer Connectivity by writing a simple networked
game. You’ll write a two-player version of tic-tac-toe (Figure 9-1) that will use Multipeer
Connectivity to let people on two different iOS devices play against each other over
Bluetooth. You won’t be implementing online play over the Internet or local area network in
this chapter.

Figure 9-1. You’ll use a simple game of tic-tac-toe to learn the basics of Multipeer Connectivity

241CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Figure 9-2. When the user presses the New Game button, it will launch the peer picker to look for other devices

running the tic-tac-toe game

When users launch your application, they will be presented with an empty tic-tac-toe board
and a single button labeled New Game. (For the sake of simplicity, you won’t implement a
single-device mode to let two players play on the same device.) When the user presses the
New Game button, the application will start looking for Bluetooth peers using the peer picker
(Figure 9-2).

242 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Figure 9-3. When another device within range starts a game, the two devices will show up in each other’s peer

picker dialog

If another device within range runs the TicTacToe application and the user also presses the
New Game button, the two devices will find each other, and the peer picker will present a
dialog to the users, letting them choose among the available peers (Figure 9-3).

243CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

After one player selects a peer, the iPhone will attempt to make a connection (Figure 9-4).
Once the connection is established, the other person will be asked to accept or refuse the
connection (Figure 9-5). If the connection is accepted, the two applications will negotiate to
see who goes first. Each side will randomly select a number, the numbers will be compared,
and the highest number will go first. Once that decision is made, play will commence
(Figure 9-6) until someone wins (Figure 9-7).

Figure 9-4. Establishing a connection with a selected peer. The status will change once accepted and connected or

when declined

244 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Figure 9-5. Dialog requesting the other player to accept the connection

245CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Figure 9-6. The user whose turn it is can tap any available space. That space will get an X or an O on both

users’ devices

246 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Caution Note the screenshots are showing two devices. While you can set whatever name you

want for the devices, there are some limitations for the names. The name iPhone Simulator is

16 characters long, slightly longer than the allowed 15 characters. This discrepancy is covered later

in the chapter.

Figure 9-7. We have a winner!

If the connection is lost for whatever reason, the iPhone will report the lost connection to the
user (Figure 9-8).

247CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Network Communication Models
Before you look at how Multipeer Connectivity works, we’ll talk generally about
communication models used in networked programs so that we’re all on the same page in
terms of terminology.

Client-Server Model
You’re probably familiar with the client-server model because it is the model used by the
World Wide Web. Machines called servers listen for connections from other machines,
referred to as clients. The server then takes actions based on the requests received from
the clients. In the context of the Web, the client is usually a web browser, and there can be
any number of clients attaching to a single server. The clients never communicate with each
other directly; they direct all communications through the server. Most massively multiplayer
online role-playing games (MMORPGs) like World of Warcraft also use this model. Figure 9-9
represents a client-server scenario.

Figure 9-8. Lost connection alert

248 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

In the context of an iPhone application, a client-server setup is where one phone acts as a
server and listens for other iPhones running the same program. The other phones can then
connect to that server. If you’ve ever played a game where one machine “hosts” a game and
others then join the game, that game is almost certainly using a client-server model.

A drawback with the client-server model is that everything depends on the server, which
means that the game cannot continue if anything happens to the server. If the user whose
phone is acting as the server quits, crashes, or moves out of range, the entire game ends.
Since all the other machines communicate through the central server, they lose the ability
to communicate if the server is unavailable. This is generally not an issue with client-server
games where the client is a hefty server farm connected to the Internet by redundant high-
speed lines, but it certainly can be an issue with mobile games.

Figure 9-9. The client-server model features one machine acting as a server with all communications—even

communications between clients—going through the server

249CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Peer-to-Peer Model
In the peer-to-peer model, all the individual devices (called peers) can communicate with
each other directly. A central server may be used to initiate the connection or to facilitate
certain operations, but the main distinguishing feature of the peer-to-peer model is that
peers can talk to each other directly and can continue to do so even in the absence of a
server (Figure 9-10).

Figure 9-10. In the peer-to-peer model, peers can talk to each other directly and can continue to do so even in the

absence of a server

The peer-to-peer model was popularized by file-sharing services like BitTorrent. A centralized
server is used to find other peers that have the file you are looking for, but once the connection
is made to those other peers, they can continue, even if the server goes offline.

250 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

The simplest and probably the most common implementation of the peer-to-peer model on
the iPhone is when you have two devices connected to each other. This is the model used
in head-to-head games, for example. Multipeer Connectivity makes this kind of peer-to-peer
network exceedingly simple to set up and configure, as you’ll see in this chapter.

Note You may have noticed in the screenshots that with Multipeer Connectivity there is an upper

limit of eight devices that can connect. (That’s seven other devices, with the eighth being your own.)

The browser displays how many more peers you can invite and connect to.

Hybrid Client-Server/Peer-to-Peer
The client-server and peer-to-peer models of network communication are not mutually
exclusive, and it is possible to create programs that utilize a hybrid of both. For example,
a client-server game might allow certain communications to go directly from client to
client without going through the server. In a game that has a chat window, it might allow
messages intended for only one recipient to go directly from the machine of the sender to
the machine of the intended recipient, while any other kind of chat would go to the server to
be distributed to all clients.

You should keep these different networking models in mind as we discuss the mechanics
of making connections and transferring data between application nodes. Node is a generic
term that refers to any computer connected to an application’s network. A client, server, or
peer is a node. The game you will be writing in this chapter will use a simple, two-machine,
peer-to-peer model.

The Multipeer Connectivity Peer
It does not take much to figure out that the core building block of Multipeer Connectivity is
a peer. It is used to identify the device in this connection. With earlier technology, it was two
devices that would connect, one being the server or the host and the other being the client.
Now to identify each device in this connectivity, you use the peerID. This is created using the
MCPeerID object, and it takes a display name, which is how this peer appears to other peers.
You can create a peerID and assign it a display name like so:

var deviceName = "iMac"
var peerID = MCPeerID(displayName: deviceName)

251CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Note Since the peer names follow the Bonjour API, they can’t be longer than 15 characters in

length. So, while you see the name iPhone Simulator, that is invalid and would not connect. You

cannot assign a unique name to every instance, so you could get the device name and use the first

15 characters or devise your own methodology. For the purpose of this chapter, we are running the

project between an iMac and the MacBookPro running in the iPhone simulator and therefore the

devices are named so respectively.

The Multipeer Connectivity Session
The key to Multipeer Connectivity is a session, represented by the class MCSession. The session
represents your end of a network connection with one or more other iPhones. Regardless of
whether you are acting as a client, a server, or a peer, an instance of MCSession will represent
the connections you have with other phones. You will use MCSession whether you employ
the peer picker or write your own code to find machines to connect to and let the user select
from them.

Note As you make your way through the next few pages, don’t worry too much about where

each of these elements is implemented. This will all come together in the project you create

in this chapter.

You will also use MCSession to send data to connected peers. You will implement session
delegate methods to get notified of changes to the session, such as when another node
connects or disconnects, as well as to receive data sent by other nodes.

Creating the Session
To use a session, you must first create, allocate, and initialize a MCSession object, like so:

var theSession = MCSession(peer: peerID)

You pass just the peerID when initializing a session. As easy as that, this peerID object
provides the display name. This is a name that will be displayed to the other nodes to
uniquely identify your phone. You cannot pass in nil as the peerID or have the displayname
as nil or blank. If multiple devices are connected, this will allow the other users to see which
devices are available and connect to the correct one. In Figure 9-3, you can see an example
of where the unique identifier is used. In that example, one other device is advertising itself
with the same session identifier as you, using a display name of MacBookPro.

252 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

After you create a session, it won’t actually start advertising its availability or looking for
other available nodes. You do that by creating an MCAdvertiserAssistant object, like so:

var assistant = MCAdvertiserAssistant(serviceType: "oz-appgame",
 discoveryInfo: nil,
 session: session)

You pass three parameters to the MCAdvertiserAssistant when creating and initializing it.

The first argument is a serviceType identifier, which is a String that is unique to your
application. This is used to prevent your application’s sessions from accidentally connecting
to sessions from another program. Since the session identifier is a string, it can be anything,
though there are a couple of limitations.

It cannot exceed 15 characters in length.	
It has to have valid ASCII characters that include lowercase letters, 	
numbers, and a hyphen.

As recommended by Apple, the game from 	 oz-apps is coded as
oz-appsgame. However, if there are multiple games, they should not all
have the same name.

Note For more information on serviceType, you can see the Bonjour API at

https://developer.apple.com/bonjour.

By assigning session identifiers in this manner, rather than by just randomly picking a word
or phrase, you are less likely to accidentally choose a session identifier that is used by
another application on the App Store. It would have been better if a longer reverse DNS
naming scheme could be used, but currently that’s a limitation.

The second argument is discoveryInfo; this is a dictionary object with key-value pair data
that can be sent to another peer for identification. This can be nil; however, if you want to
connect to only certain peers, you can send credentials and more in this data, and the peer
at the other end can use it for identifying and authorizing this peer.

The last argument is an MCSession object, which is the session that you created.

Finding and Connecting to Other Sessions
Even after creating the MCAdvertiserAssistant, the peer is not searchable nor does it
advertise its availability. You need to simply invoke the start method.

assistant.start()

In fact, if another peer was configured to browse and connect on this service, you would
see this peer in that browser list. If the other peer tried to connect, a dialog would pop up
requesting permission to connect (as shown in Figure 9-5), and if you give it permission to
connect, the session would be connected.

https://developer.apple.com/bonjour

253CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Listening for Other Sessions
If you set only the MCAdvertiserAssistant, then your device would be advertising its
presence but be unable to browse or search for other peers. If you want to search for other
peers, you need to use the MCBrowserViewController. This provides a standard GUI with all
the functionality required to browse and connect with other peers. There is a limit of eight
peers with Multipeer Connectivity (with this device, so only seven additional peers).

To create the MCBrowserViewController, you can do so like this:

browser = MCBrowserViewController(browser: nearbyBrowser, session: session)

The nearbyBrowser is an object that we have not spoken about yet; it is used to browse
nearby peers. You can create a nearbyBrowser object from an MCNearbyServiceBrowser
like so:

var nearbyBrowser = MCNearbyServiceBrowser(peer: peerID, serviceType: "oz-appgame")

Here you use the peerID object and the service name you specified earlier. To display the
browser ViewController, you need to present it like so:

self.presentViewController(browser, animated: true, completion: nil)

If you run your app with just this much code, you can find the browser displayed, searching
for peers, as shown in Figure 9-2.

Any peer configured to advertise the serviceType name that you specified will show up in
this browser list when they are in the vicinity of the browser. See Figure 9-3.

If you were to tap a displayed peer in the browser, it will send a connect request to that peer,
and upon approving the connection, it will connect. The connected peers show up on the
connected peers list.

Now when you press the Cancel or Done button, nothing happens. The browser is
supposed to go away. To handle the browser buttons, you need to make the class handle
the MCBrowserViewControllerDelegate. This delegate has two methods that you need to
manage, browserViewControllerDidFinish: and browserWasCancelled:. The first is called
when you press the Done button, and the second is called when Cancel is pressed. All you
need to do is call the dismissViewControllerAnimated: method in both of the methods, as
shown here:

self.dismissViewControllerAnimated(true, completion: nil)

Most important, when working with delegates created in code, do not forget to set the
delegate to self, as shown here:

browser.delegate = self

In Figure 9-11 a peer that accepted the request for connection shows Connected, and if the
invitation was rejected, it shows Declined.

254 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Connecting Peers
There are three states that a device can be in with regard to peer connectivity; these are
defined in the MCSessionState enumeration as follows:

MCSessionState.Connected
MCSessionState.NotConnected
MCSessionState.Connecting

These are self-explanatory, and all devices are in the .NotConnected state when they start the
application. The state changes to .Connecting when the user taps a peer in the browser, and
then depending on the outcome (if the request was accepted or rejected), the state changes
to .Connected or .NotConnected.

The function session:didChangeState is a method of the MCSessionDelegate protocol.

func session(session: MCSession!,
 peer peerID: MCPeerID!, didChangeState state: MCSessionState) {
 println(">> PeerID: \(peerID.displayName), state: \(state.rawValue)")
}

Figure 9-11. A peer that has accepted (left) and declined (right) the request for connection

255CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

When a node tries to connect, the MCAdvertiserAssistantDelegate is notified (if you have
also set these delegates) via the method advertiserAssistantWillPresentInvitation and
the advertiserAssistantDidDismissInvitation. Unless you are doing something custom
where you might want to also track or know more about the peers attempting to connect,
you can set this delegate and get the details.

Sending Data to a Peer
Once you have a session that is connected to another node, it’s easy to send data to that
node. All you need to do is call one of two methods. Which method you call depends on
whether you want to send the information to all connected sessions or to just specific ones.
To send data, use the method sendData:toPeers:withMode:error:. The function is the same,
and it does not matter if you want to send data to a specific peer or to all connected peers.
toPeers is an array with all the peers that you want to send data to. If you want to send
data to a specific peer, the array would contain a single peer (the peer object that you want
to send data to), whereas to send data to all connected peers, you can use the session.
connectedPeers, which returns an array of all connected peers to this session.

You also need to specify a mode for the connection. The data mode tells the session how it
should try to send the data. There are two options.

	MCSessionSendDataMode.Reliable: This option ensures that the
information will arrive at the other session. It will send the data in chunks
if it’s over a certain size and wait for an acknowledgment from the other
peer for every chunk.

	MCSessionSendDataMode.Unreliable: This mode sends the data
immediately and does not wait for acknowledgment. It’s much faster
than MCSessionSendDataMode.Reliable, but there is a small chance of
the complete message not arriving at the other node.

Usually, the MCSessionSendDataMode.Reliable data mode is the one you’ll want to use,
though if you have a program where speed of transmission matters more than accuracy,
then you should consider MCSessionSendDataMode.Unreliable.

Here is what it looks like when you send data to a single peer:

var error: NSError? = nil
if session.sendData(theData, toPeers: [aPeerID], withMode: .Reliable, error: &error) {
 // Error handling here
}

And here’s what it looks like to send data to all connected peers:

var error: NSError? = nil
if session.sendData(theData,
 toPeers: session.connectedPeers,
 withMode: .Reliable,
 error: &error) {
 // Error handling here
}

256 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Packaging Up Information to Send
Any information that you can get into an instance of NSData can be sent to other peers.
There are two basic approaches to doing this for use in Multipeer Connectivity. The first is to
use archiving and unarchiving, just as you did in the archiving section of Beginning iPhone
Development with Swift.

With the archiving/unarchiving method, you define a class to hold a single packet of data to
be sent. That class will contain instance variables to hold whatever types of data you might
need to send. When it’s time to send a packet, you create and initialize an instance of the
packet object, and then you use NSKeyedArchiver to archive the instance of that object into
an instance of NSData, which can be passed to sendData:toPeers:withDataMode:error:
or to sendDataToAllPeers:withDataMode:error:. You’ll use this approach in this chapter’s
example. However, this approach incurs a small amount of overhead since it requires the
creation of objects to be passed, along with archiving and unarchiving those objects.

Although archiving objects is the best approach in many cases, because it is easy to
implement and it fits well with the design of Cocoa Touch, there may be some cases where
applications need to constantly send a lot of data to their peers, and this overhead might be
unacceptable. In those situations, a faster option is to just use a static array (a regular old C
array, not an NSArray) as a local variable in the method that sends the data.

You can copy any data you need to send to the peer into this static array and then create an
NSData instance from that static array. There’s still some object creation involved in creating
the NSData instance, but it’s one object instead of two, and you don’t have the overhead of
archiving. Here’s a simple example of sending data using this faster technique:

var packetData:[Int] = [foo, bar]
var packet = NSData(bytes: packetData, length: packetData.count * sizeof(Int))
var error: NSError? = nil

if session.sendData(packet,
 toPeers: session.connectedPeers,
 withMode: .Reliable,
 error: &error){
 // Handle the error
}

Receiving Data from a Peer
When a session receives data from a peer, the session passes the data to a method called
receiveData:fromPeer, and this method will be called any time new data comes in from
a peer. There’s no need to acknowledge receipt of the data or worry about waiting for the
entire packet. You can just use the provided data as is appropriate for your program. All the
gnarly aspects of network data transmission are handled for you. Every call to sendData:toP
eers:withMode:error: made by other peers who specify your peer identifier will result in one
call of the data receive handler.

257CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Here’s an example of a data receive handler method that would be the counterpart to the
earlier send example:

func session(session: MCSession!, didReceiveData data: NSData!, fromPeer peerID: MCPeerID!) {
 var sender = peerID.displayName
 var textData = NSString(data: data, encoding: NSUTF8StringEncoding)
 println("\(sender) said \(textData)")
}

You’ll look at receiving archived objects when you build this chapter’s example.

Closing Connections
When you’re finished with a session, before you release the session object, it’s important
to do a little cleanup. Before releasing the session object, you must make the session
unavailable, disconnect it from all of its peers, and set the session delegate to nil. Here’s
what the code in your deinit method (or any other time you need to close the connections)
might look like:

session.disconnect()
session.delegate = nil
session = nil

Handling a Peer Connection
Earlier, the onus was on the developer to connect to the peer and manage the connection.
Now it is all encapsulated and done by the Multipeer Connectivity API. When the user has
selected a peer in the browser and the other authorizes the connection, the connection is
made. If you want to display something in the code, you can do so via the delegate methods
that will be called. You do not have to anymore store the peer identifier, which is a string that
identifies the device to which you’re connected because the MCSession object has an array
of all connected peers. However, you need to save a reference to the session so you can use
it to send data and to disconnect the session later.

Well, that’s enough discussion. Let’s start building the application.

Creating the Project
You know the drill. Fire up Xcode if it’s not already open and create a new project. Use the
Single View Application template and call the project TicTacToe. Once the project is open,
look in the project archives that accompany this book, in the folder Chapter_9-TicTacToe.
Find the image files called wood_button.png, board.png, O.png, and X.png, and copy them
into the Supporting Files group of your project. There’s also an icon file called icon.png,
which you can copy into your project if you want to use it.

258 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Turning Off the Idle Timer
The first thing you want to do is to turn off the idle timer. The idle timer is what tells your
iPhone to go to sleep if the user has not interacted with it in a while. Because the user
won’t be tapping the screen during the opponent’s turn, you need to turn this off to prevent
the phone from going to sleep if the other user takes a while to make a move. Generally
speaking, you don’t want networked applications to go to sleep because sleeping breaks the
network connection. Most of the time, with networked iPhone games, disabling the idle timer
is the best approach.

Expand the TicTacToe group in the Navigator pane in Xcode and click AppDelegate.swift.
Add the following line of code to applicationDidFinishLaunchingWithOptions:, before the
method returns, to disable the idle timer:

UIApplication.sharedApplication().idleTimerDisabled = true

Note There may be rare times when you want to leave the idle timer functioning and just close your

sessions when the app goes to sleep, but closing sessions on sleep is not quite as straightforward

as it would seem. The application delegate method applicationWillResignActive: is called

before the phone goes to sleep, but unfortunately, it’s also called at other times. In fact, it’s called

any time that your application loses the ability to respond to touch events. That makes it close to

impossible to differentiate between when the user has been presented with a system alert, such as

from a push notification or a low-battery warning (which won’t result in broken connections), and

when the phone is actually going to sleep. So, until Apple provides a way to differentiate between

these scenarios, your best bet is to simply disallow sleep while a networked program is running.

Designing the Interface
Now you’ll design your game’s user interface. Since tic-tac-toe is a relatively simple game,
you’ll design your user interface in Interface Builder, rather than by using OpenGL ES.

Each space on the board will be a button. When the user taps a button that hasn’t
already been selected (which you determine by seeing whether the button has an image
assigned), you set the image to either X.png or O.png (which you added to your project a
few minutes ago). You then send that information to the other device. You’re also going to
use the button’s tag value to differentiate the buttons and make it easier to determine when
someone has won. You assign each of the buttons that represents a space on the board with
a sequential tag, starting in the upper-left corner. You can see which space will have which
tag value by looking at Figure 9-12. This way, you can identify which button was pressed
without having a separate action method for each button.

259CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Defining Application Constants
When referring to specific buttons on the tic-tac-toe board, you could use the tag values you
defined in Figure 9-12 (and will have to in Interface Builder), but it would be better to use a
set of mnemonic constants. You’ll also define some constants for the current game state
and whether the user is an X or an O.

You could stick these constant definitions in various header and implementation files
throughout the application, but it might be easier to stick them in a single file. Let’s do that.

Select the TicTacToe group in the Navigator pane and create a new file. Select the Source
section under iOS in the template chooser dialog. Choose Swift File and click Next. Save the
file as TicTacToe.swift. Select TicTacToe.swift to open it; it should be blank.

Now, you need to define some constants of your own. First, you defined a constant to
represent the Multipeer Connectivity session ID.

let kTicTacToeSessionID = "oz-tictactoe"

Next, you defined a constant for use with encoding and decoding data packets through
Multipeer Connectivity.

let kTicTacToeArchiveKey = "TicTacToe"

When the application connects to another device, you have the application decide which
player goes first by generating a random number and having the higher number go first. You
define the number generator with the function getDieRoll, which will generate a number
between 0 and 999,999. You’re using a large number here so that the chance of both
devices rolling the same value (which would require another roll) will be extremely low.

func getDieRoll() -> Int {
 return Int(arc4random() % 1_000_000)
}

Figure 9-12. Assign each game space button a tag value

260 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

You also define a constant, kDiceNotRolled, that will identify when the die has not yet been
rolled. Remember that you’re storing both your die roll and your opponent’s die roll in Int
instance variables. You use the value Int.max to identify when those values have not yet been
determined. Int.max is the largest value that an Int can hold on the platform. Since the largest
number the getDieRoll function will generate is 999,999, you can safely use Int.max to identify
when a die hasn’t been rolled because Int.max currently equals 9,223,372,036,854,775,807 on
iOS. If Int.max ever changes, it will likely get bigger, not smaller.

let kDiceNotRolled = Int.max

You need some enumerations. GameState will be your definition to an enumerated list of the
different game states.

enum GameState:Int {
 case Beginning
 case RollingDice
 case MyTurn
 case YourTurn
 case Interrupted
 case Done
}

BoardSpace is the enumerated list that you defined in Figure 9-12. Note that you defined
the first enumeration, UpperLeft, as 1000. Each subsequent enumeration is incremented
from there.

enum BoardSpace: Int {
 case UpperLeft = 1000
 case UpperMiddle
 case UpperRight
 case MiddleLeft
 case MiddleMiddle
 case MiddleRight
 case LowerLeft
 case LowerMiddle
 case LowerRight
 case None
}

PlayerPiece is a simple enumeration to let you know what piece the player is assigned.

enum PlayerPiece: Int {
 case Undecided
 case X
 case O
}

261CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Finally, you define an enumerated list to list the different kind of packet types the application
will exchange.

enum PacketType: Int {
 case DieRoll
 case Ack
 case Move
 case Reset
}

Now that you’ve defined these constants, you can start by working on the application view.

Designing the Game Board
Select Main.Storyboard in the Navigator. Xcode will open it in Interface Builder. There will
be one View Controller in Interface Builder. Since the assets are made for an iPhone5-
sized device, first press Opt+Cmd+1, and under the Interface Builder Document, unselect
UseAutoLayout. This will pop up a dialog box with the option Disable Size Classes; ensure
that you keep the size class data for iPhone and then click Disable Size Classes.

Find the Image View in the Object Library and drag it into the view. Because it’s the first
object you’re adding to the view, it should resize to take up the full view. Place it so that it
fills the entire view, and then bring up the Attributes Inspector in the Utility pane. At the top
of the Attributes Inspector, set the Image field to board.png, which is one of the images you
added to your project earlier.

Next, drag a button from the Object Library to the top of the view. The exact placement
doesn’t matter yet. After it’s placed, use the Attributes Inspector to change the button type
from system to custom. Delete the button label text, Button, either in Interface Builder or via
the Attributes Inspector. In the Image field of the Attributes Inspector, select wood_button.png,
and then select Editor ➤ Size to Fit Content (or press ⌘=) to change the button’s size to
match the image you assigned to it. Now use the blue guidelines to center the button in the
view and place it against the top blue margin so it looks like Figure 9-13.

262 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Look again in the library for a label and drag it to the view. Center the label on top of the
gameButton. Resize the label so it runs from the left blue margin to the right blue margin
horizontally and from the top blue margin down to just above the tic-tac-toe board. It will
overlap the button you just added, and that’s OK because the label will display text only
when the button isn’t visible. Use the Attributes Inspector to center the text and to increase
the size of the font to 32. Feel free to also set the text to a nice bright color if you want. Once
you have the label the way you want it, delete the label text, Label, so that it doesn’t display
anything at application start.

Now, you need to add a button for each of the nine game spaces and assign them each a
tag value so that your code will have a way to identify which space on the board each button
represents. Drag nine buttons to the view and use the Attributes Inspector to change their
type to Custom. Use the Size Inspector to place them in the locations specified in Table 9-1,
and use the Attributes Inspector to assign them the listed tag value. Here’s one shortcut to
consider: create one, set its size and attributes, and then start making copies.

Figure 9-13. Your interface after sizing and placing the button

263CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

You’ve defined your interface; now let’s connect it to your controller. While still in Interface
Builder, change the editor from Standard to Assistant view in the toolbar. The Editor pane
should split horizontally, with Interface Builder on the left and the Source Code Editor, open
to ViewController.swift, on the right. You want to add outlets for the New Game button
and Label you placed on top of it. If you Control-drag from the middle of the New Game
button, the Outlet pop-up should automatically set the Type field to UILabel. That means
you’re adding an outlet for the Label. Name it feedbackLabel and click Connect.

You need to add an outlet for the New Game button you created as well, but it’s essentially
blocked by the feedbackLabel. Open the disclosure triangle on the bottom left of the
Interface Builder Editor pane, and expand the Object Dock on the left (Figure 9-14). In the
Objects group, underneath the View (if it’s not open, open it), find the New Game button
object named Button. Control-drag from Button to just below the feedbackLabel outlet and
create a new outlet. Name it gameButton and click Connect.

Table 9-1. Game Space Locations, Sizes, and Tags

Game Space X Y Width Height Tag

Upper Left 24 122 86 98 1000

Upper Middle 120 122 86 98 1001

Upper Right 217 122 86 98 1002

Middle Left 24 230 86 98 1003

Middle 120 230 86 98 1004

Middle Right 217 230 86 98 1005

Lower Left 24 336 86 98 1006

Lower Middle 120 336 86 98 1007

Lower Right 217 336 86 98 1008

264 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

You need to connect an action when the New Game button is pressed. Control-drag from
the Button in the Object Dock to just above the @end in ViewController.swift. Create a new
action named gameButtonPressed (Figure 9-15).

Figure 9-14. Interface Builder Object Dock, expanded

Figure 9-15. Creating the gameButtonPressed action

Now you need to connect an action to the nine game space buttons. You don’t need to
define outlets for them, though, just the actions. Control-drag from the upper-left button
to the just below the action, gameButtonPressed, you just created. Create a new action

265CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

named gameSpacePressed. Now, Control-drag from every other game space button to the
gameSpacePressed method declaration. The whole method declaration should highlight, and
a pop-up label should appear called Connect Action. Make the connections.

Close the Assistant Editor and save the storyboard.

Creating the Packet Object
You need to define how you’re going to have your game communicate with other instances
of itself. You could use something simple like an array, where you know what each element
represents, or a dictionary, where you know what keys to use. Rather than doing that, you’re
going to define a specific class, Packet, that will be used to send information back and
forth between the two nodes via Multipeer Connectivity. We alluded to this earlier when you
created the enum PacketType in TicTacToe.swift.

Select the TicTacToe group in the Navigator pane and create a new Cocoa Touch Class with
a class name of Packet as a subclass of NSObject. Ensure that the language is Swift.

You need Packet to conform to the NSCoding protocol so that you can archive it into
an NSData instance to send through the Multipeer Connectivity session. Open the file
Packet.swift and add NSCoding to the class definition.

class Packet: NSObject , NSCoding {

The Packet class will have only three properties: one to identify the type of packet and two
others to hold information that might need to be sent as part of that packet. The only other
pieces of information you ever need to send are the results of a die roll and which space on
the game board a player placed an X or O.

var type:PacketType!
var dieRoll: Int!
var space: BoardSpace!

First, you implement the init methods.

override init() {
 self.type = .Reset
 self.dieRoll = 0
 self.space = .None
}

These are required to be declared; now you will create the convenience methods that allow
you to initialize with various signatures.

convenience init(type: PacketType, dieRoll aDieRoll: Int, space aBoardSpace: BoardSpace){
 self.init()
 self.type = type
 self.dieRoll = aDieRoll
 self.space = aBoardSpace
}

266 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

This is a convenience init function. In Swift you can have multiple versions of init with
different signatures. Since this class implements the NSCoder protocol, you need to have an
init function that initializes with a coder that is declared as required and the plain init as
override since it is being overridden. The others are marked as convenience because they
would in turn call the overridden init function.

convenience init(dieRollPacketWithRoll aDieRoll: Int) {
 self.init(type: .DieRoll, dieRoll: aDieRoll, space: .None)
}

You simply call the general convenience method with all the parameters to be set.

convenience init(movePacketWithSpace aBoardSpace: BoardSpace) {
 self.init(type: .Move, dieRoll: 0, space: aBoardSpace)
}

convenience init(ackPacketWithRoll aDieRoll: Int) {
 self.init(type: .Ack, dieRoll: aDieRoll, space: .None)
}

convenience init(type: PacketType) {
 if type == .DieRoll {
 var aDieRoll = getDieRoll()
 self.init(type: .DieRoll, dieRoll: aDieRoll, space: .None)
 }else{
 self.init(type: .Reset, dieRoll: 0, space: .None)
 }
}

Every other initializer is just a wrapped call to initWithType:dieRoll:space: with the
BoardSpace being .None.

You also need to make Packet conform to the NSCoding protocol, adding the
encodeWithCoder: and initWithCoder: methods.

//MARK: - NSCoding (Archiving) Methods

required init(coder aDecoder: NSCoder) {
 self.type = PacketType(rawValue: aDecoder.decodeIntegerForKey("type")
 ?? PacketType.Reset.rawValue)
 self.dieRoll = aDecoder.decodeIntegerForKey("dieRoll")
 self.space = BoardSpace(rawValue: aDecoder.decodeIntegerForKey("space")
 ?? BoardSpace.None.rawValue)
 super.init()
}

267CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Packet is a fairly straightforward class. There shouldn’t be anything in its implementation that
you haven’t seen before. Save Packet.swift. Next, you’ll write your view controller and finish
up your application.

Setting Up the View Controller
You declared two outlets and two actions to your View Controller via Interface Builder. Now
you’ll complete your implementation of your view controller, including making it work with
Multipeer Connectivity. Open ViewController.swift in the editor.

The first thing you need to do is import Multipeer Connectivity so that the compiler knows
about the objects and methods from Multipeer Connectivity and the constants you defined
earlier. You do not have to import TicTacToe.swift because all Swift files are available
projectwide.

import MultipeerConnectivity

Your controller class needs to conform to a few protocols. Your controller will be the
delegate of the Multipeer Connectivity peer browser and session, so you conform your class
to the three protocols used to define the delegate methods for each of these jobs.

class ViewController: UIViewController, MCBrowserViewControllerDelegate, MCSessionDelegate {

You need a variable to keep track of the current game state.

var state: GameState = .Done

Because you don’t know whether you will roll the die or receive your opponent’s die roll first,
you need variables to hold them both. Once you have both, you can compare them and start
the game.

var myDieRoll: Int = 0
var opponentDieRoll: Int = 0

Once you know who goes first, you can store whether you’re O or X in this instance variable.

var playerPiece: PlayerPiece = .Undecided

Note In Swift you call the super at the end after setting all the properties for the base class.

In most other languages, you call the super first to run the code in the superclass and then set the

properties in this inherited class.

268 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Finally, you have two more Booleans to keep track of whether you’ve received the opponent’s
die roll and whether your opponent has acknowledged receipt of yours. You don’t want to
begin the game until you have both die rolls and you know your opponent has both as well.
When both of these are true, you’ll know it’s time to start the actual game play.

var dieRollRecieved = false
var dieRollAcknowledged = false

You already have two outlet properties, feedbackLabel and gameButton, that you created via
Interface Builder. You also need properties for the Multipeer Connectivity session and to hold
the peer identifier of the one connected node.

var session: MCSession!
var peerID: MCPeerID!
var browser: MCBrowserViewController!
var assistant: MCAdvertiserAssistant!
var nearbyBrowser: MCNearbyServiceBrowser!

You load both of the images representing the two game pieces when your view is loaded
and keep a reference to them.

let xPieceImage = UIImage(named: "X.png")!
let oPieceImage = UIImage(named: "O.png")!

Finally, you declare a bunch of methods that you need in your game. You add them before the
two actions, gameButtonPressed: and gameSpacePressed:, that you added via Interface Builder.

That’s all you need in this file. Save it and open ViewController.swift.

Implementing the Tic-Tac-Toe View Controller
There’s a lot of code to add to ViewController.swift, so let’s get started.

Initialize the piece images and set your current die roll to kDiceNotRolled in viewDidLoad
(after the call to super).

myDieRoll = kDiceNotRolled
opponentDieRoll = kDiceNotRolled

peerID = MCPeerID(displayName: "MyName")

session = MCSession(peer: peerID)
session.delegate = self

269CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

At the bottom of your implementation file are the two action methods. You need to
implement them. First, edit gameButtonPressed:.

//MARK - Game Specific Actions

@IBAction func gameButtonPressed(sender: AnyObject) {
 dieRollRecieved = false
 dieRollAcknowledged = false
 gameButton.hidden = true

 if nearbyBrowser == nil {
 nearbyBrowser = MCNearbyServiceBrowser(peer: peerID,
 serviceType: kTicTacToeSessionID)
 }
 if browser == nil {
 browser = MCBrowserViewController(browser: nearbyBrowser, session: session)
 }
 browser.delegate = self
 self.presentViewController(browser, animated: true, completion: nil)

}

This is the callback for when the user presses the New Game button. You set
dieRollReceived and dieRollAcknowledged to false because you know neither of these
things has happened yet for the new game. Next, you hide the button because you don’t
want your player to request a new game while you’re looking for peers or playing the game.
Then you create an instance of MCBrowserViewController, set self as the delegate, and
show the peer browser controller. That’s all you need to do to kick off the process of letting
the user select another device to play against. The peer browser will handle everything and
then call delegate methods when you need to take some action.

You need to also create the delegate methods to handle the MCBrowserViewControllerDelegate.
After the viewDidLoad function, you can type the following:

//MARK: - MCBrowserViewController Methods

func dismissController(){
 self.dismissViewControllerAnimated(true, completion: nil)
}

func browserViewControllerDidFinish(browserViewController: MCBrowserViewController!) {
 self.dismissController()

 browser.delegate = nil
 browser = nil

 assistant.stop()
 assistant = nil

270 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

 nearbyBrowser.stopBrowsingForPeers()
 nearbyBrowser = nil

 startNewGame()
}

func browserViewControllerWasCancelled(browserViewController: MCBrowserViewController!) {
 self.dismissController()
 gameButton.hidden = false
}

Now, add the callback for when the user presses one of the game space buttons.

@IBAction func gameSpacePressed(sender: AnyObject) {
 var buttonPressed = sender as UIButton

 if (state == .MyTurn && buttonPressed.imageForState(.Normal) == nil) {
 buttonPressed.setImage(playerPiece == PlayerPiece.O
 ? oPieceImage
 : xPieceImage,
 forState: UIControlState.Normal)
 feedbackLabel.text = "Opponent's Turn"
 state = .YourTurn

 var packet = Packet(movePacketWithSpace: BoardSpace(rawValue: buttonPressed.tag)!)
 sendPacket(packet)
 checkForGameEnd()
 }
}

The first thing you do is cast sender to a UIButton. You know sender will always be an
instance of UIButton, and doing this will prevent you from needing to cast sender every time
you use it. Next, you check the game state. You don’t want to let the user select a space if
it’s not that player’s turn. You also check to make sure that the button pressed has no image
already assigned. If it has an image assigned to it, then there’s already either an X or an O in
the space this button represents, and the user is not allowed to select it. If the space has no
image assigned and it is your turn, you set the image to whichever image is appropriate for
your player, based on whether you went first or second. The piece variable will get set later
when you compare die rolls. You set the feedback label to inform the users that it’s no longer
their turn, and you change the state to reflect that as well. You must inform the other device
that you’ve made your move, so you create an instance of Packet, passing the tag value
from the button that was pressed to identify which space the player selected. The values in
the tag are not the same as enum values, so you work with the raw values. In this case, you
create an enum with the tag of the current button, passing it as the rawValue. You use the
method called sendPacket:, which you’ll look at in a moment, to send the instance of Packet
to the other node. At the last step, you check to see whether the game is over. The method
checkForGameEnd determines whether either player won or whether there are no spaces on
the board, which would mean it’s a tie.

271CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

Before you implement the methods you defined in your interface file, you need think
about the protocol declarations you made. You defined ViewController to conform to the
protocols MCBrowserControllerDelegate and MCSessionDelegate. Let’s tackle them in order,
starting with MCBrowserControllerDelegate.

Multipeer Connectivity Peer-To-Peer Delegate Methods

When the Multipeer Connectivity browser displays itself, it requires a configured
peer to identify yourself, a serviceType on which to connect, and a session. The two
delegate methods that you need to configure are when the user taps Cancel or when
the user taps Done after connecting with another peer. You have already configured
the code. The two nonoptional methods are browserViewControllerDidFinish and
browserViewControllerWasCancelled.

This code is fine, but there is one thing glaringly missing from the same. You have code to
browse another peer, but you do not have code to advertise this device on the serviceType.
So, to advertise this device, you use the MCAdvertiserAssistant object and start advertising.
Add this code to the end of the gameButtonPressed code:

assistant = MCAdvertiserAssistant(serviceType: kTicTacToeSessionID,
 discoveryInfo: nil,
 session: session)
assistant.start()

This will ensure that another peer that is browsing this very serviceType would be able to
see/find this device. You set up the assistant to advertise the device with the name you used
to initialize the MCPeerID object and the serviceType as defined in the kTicTacToeSessionID
defined in TicTacToe.swift. Lastly, you also supply it with the configured session and then
start the advertising using the start method. When you have connected or do not need to
advertise anymore, you can use the stop method.

You just unhide the New Game button so that you can quickly start a new game and search
for other peers. When you connect and select Done, the delegate and the objects are removed
because they would be required either when the game ends or when the game is interrupted.

Multipeer Connectivity Session Delegate Methods

Now, you need to implement the Multipeer Connectivty session delegate methods.
These methods are mostly used for data transfer and exchange. You need to implement
some of these methods even if you are not using them. However, you will start with the
session:peer:didChangeState.

//MARK: - Multipeer Connectivity Session Delegate Methods

func session(session: MCSession!,
 peer peerID: MCPeerID!,
didChangeState state: MCSessionState) {
 if state == .NotConnected {
 }
}

272 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

For the other delegate methods, you simply need to define the methods without any code
implementation (for now).

func session(session: MCSession!, didFinishReceivingResourceWithName resourceName: String!,
 fromPeer peerID: MCPeerID!,
 atURL localURL: NSURL!,
 withError error: NSError!) {
 //
}

func session(session: MCSession!,
didReceiveStream stream: NSInputStream!,
withName streamName: String!,
 fromPeer peerID: MCPeerID!) {
 //
 }

func session(session: MCSession!, didStartReceivingResourceWithName resourceName: String!,
 fromPeer peerID: MCPeerID!,
withProgress progress: NSProgress!) {
 //
}

Multipeer Connectivity Data Receive Handler

Before you go on, there is one more method you need to implement:
didReceiveData:fromPeer. This method is invoked when data is received by the device.
One important thing to note is that the delegate method didRecieveData needs to run on the
main queue. You could use the dispatch_async or the NSOperationQueue for this. Also note
that you are not prefixing self in most of the variables in the code, but for this function you
keep the capture semantics explicit.

func session(session: MCSession!,
didReceiveData data: NSData!,
 fromPeer peerID: MCPeerID!) {

 NSOperationQueue.mainQueue().addOperationWithBlock({
 var unarchiver = NSKeyedUnarchiver(forReadingWithData: data)

 if let packet = unarchiver.decodeObjectForKey(kTicTacToeArchiveKey)
 as? Packet{
 switch packet.type!{
 case .DieRoll:
 self.opponentDieRoll = packet.dieRoll
 var ack = Packet(ackPacketWithRoll: self.opponentDieRoll)
 self.sendPacket(ack)
 self.dieRollRecieved = true

273CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

 case .Ack:
 if packet.dieRoll != self.myDieRoll {
 println(">> Ack packet does not match your die roll...(mine:

\(self.myDieRoll), send: \(packet.dieRoll))")
 }
 self.dieRollAcknowledged = true
 case .Move:
 var aButton = self.view.viewWithTag(packet.space.rawValue)
 as UIButton
 aButton.setImage(self.playerPiece == .O
 ? self.xPieceImage
 :self.oPieceImage,
 forState: UIControlState.Normal)
 self.state = GameState.MyTurn
 self.feedbackLabel.text = "Your Turn"
 self.checkForGameEnd()
 case PacketType.Reset:
 if self.state == GameState.Done {
 self.resetDieState()
 }
 default: ()
 }

 if self.dieRollRecieved == true &&
 self.dieRollAcknowledged == true {
 self.startGame()
 }
 }
 })
}

This is your data receive handler. This method is called whenever you receive a packet from
the other node. The first thing you do is unarchive the data into a copy of the original Packet
instance that was sent. Then you use a switch statement to take different actions based
on the type of packet you received. If it’s a die roll, you store your opponent’s value, send
back an acknowledgment of the value, and set dieRollReceived to true. If you’ve received
an acknowledgment, make sure the number returned is the same as the one you sent. This
is just a consistency check. It shouldn’t ever happen that the number is not the same. If it
did, it might be an indication of a problem with your code, or it could mean that someone is
cheating. Although we doubt that anyone would bother cheating at tic-tac-toe, people have
been known to cheat in some networked games, so you might want to consider validating
any information exchanged with peers. Here, you’re just logging the inconsistency and
moving on. In your real-world applications, you might want to take more serious action if you
detect a data inconsistency of this nature.

If the packet is a move packet, which denotes that the other player chose a space, you
update the appropriate space with an X or O image and change the state and label to reflect
the fact that it’s now your player’s turn. You also check to see whether the other player’s
move resulted in the game being over. When you receive a reset packet, all you do is change
the game state to GameState.Done so that if a die roll comes in before you’ve realized the
game is over, you don’t discard it. If you received a packet and both dieRollReceived and
dieRollAcknowledged are now true, you know it’s time to start the game.

274 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

One thing to note are the blocks in dispatch_async. The callbacks from Multipeer Connectivity
are called on another queue, whereas all UI updates are made on the main queue. If you do
not dispatch this on the main queue (in other words, remove the enclosing dispatch_async),
the updates to the GUI would not be visible, and it would seem like the application is not
working properly.

Finally, you add the code to manage whether the peer was disconnected. In the
session:peer:didChangeState function, update this code.

if state == .NotConnected {
 var alert = UIAlertController(title: "Error connecting",
 message: "Unable to connect to peer",
 preferredStyle: .Alert)
 var cancelAction = UIAlertAction(title: "Bummer",
 style: .Destructive,
 handler: {
 action in
 self.resetBoard()
 self.gameButton.hidden = false
 })
 alert.addAction(cancelAction)
 self.presentViewController(alert, animated: true, completion: nil)
 }

You reset the game board and unhide the New Game button.

Implementing Tic-Tac-Toe Methods

The method startNewGame is simple. It just calls a method to reset the board and then
calls another method to roll the die and send the result to the other node. Both of these
actions can happen at times other than game start. For example, you reset the board if the
connection is lost, and you send the die roll if both nodes roll the same number.

//MARK: - Game Specific Actions

func startNewGame() {
 resetBoard()
 sendDieRoll()
}

Resetting the board involves removing the images from all of the buttons that represent
spaces on the game board. Rather than declare nine outlets—one to point at each button—
you just loop through the nine tag values and retrieve the buttons from your content view
using viewWithTag:. You also blank out the feedback label. And you send a packet to the
other node telling it that you’re resetting. This is done just to make sure that if you follow
up with another die roll, the other machine knows not to overwrite it. The fact that network
communication happens asynchronously means you can’t rely on things always happening
in a specific order, as you can with a program running on only one device. It’s possible that
you’ll send the die roll before the other device has finished determining who won. By sending
a reset packet, you tell the other node that there may be another die roll coming for a new
game, so make sure it’s in the right state to accept that new roll. If you didn’t do something

275CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

like this, it might store your die roll and then overwrite the rolled value when it resets its own
board, which would cause a hang because the other device would then be waiting for a die
roll that would never arrive. You also need to reset the player’s game piece. Because the
game is over, you don’t know whether the player will be X or O for the next game.

func resetBoard() {
 var i:Int = 0
 for i = BoardSpace.UpperLeft.rawValue ; i <= BoardSpace.LowerRight.rawValue ;i++ {
 var aButton = self.view.viewWithTag(i) as UIButton
 aButton.setImage(nil, forState: .Normal)
 }
 feedbackLabel.text = ""
 sendPacket(Packet(type: .Reset))
 playerPiece = .Undecided
}

Resetting the die state is nothing more than setting dieRollReceived and dieRollAcknowledged
to false and setting both your die roll and the opponent’s die roll to kDiceNotRolled.

func resetDieState() {
 dieRollRecieved = false
 dieRollAcknowledged = false
 myDieRoll = kDiceNotRolled
 opponentDieRoll = kDiceNotRolled
}

startGame is called once you have received your opponent’s die roll and have also gotten
an acknowledgment that it has received yours. First, you make sure that you don’t have a
tie. If you do have a tie, you kick off the die-rolling process again. Otherwise, you set state,
piece, and the feedbackLabel’s text based on whether it’s your turn or the opponent’s turn to
go first. Then you reset the die state. It may seem odd to do it here, but at this point, you’re
finished with the die rolling for this game, and because you may receive your opponent’s die
roll before your code has realized the game is over, you reset now to ensure that the die rolls
are not accidentally reused in the next game.

func startGame() {
 if self.myDieRoll == self.opponentDieRoll {
 self.myDieRoll = kDiceNotRolled
 self.opponentDieRoll = kDiceNotRolled
 self.sendDieRoll()
 self.playerPiece = .Undecided
 } else if self.myDieRoll < self.opponentDieRoll {
 self.state = .YourTurn
 self.playerPiece = .X
 self.feedbackLabel.text = "Opponent's Turn"
 } else if self.myDieRoll > self.opponentDieRoll {
 self.state = .MyTurn
 self.playerPiece = .O
 self.feedbackLabel.text = "Your Turn"
 }
 self.resetDieState()
}

276 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

sendDieRoll: checks your die roll property. If you haven’t rolled yet, it initializes a Packet that
rolls the die for you and sets your die roll to the value of the packet’s die roll. If you have a
die roll, you initialize a Packer with that die roll value. Finally, you send the die roll Packet off
to your opponent.

func sendDieRoll(){
 var rollPacket: Packet
 state = .RollingDice
 if myDieRoll == kDiceNotRolled {
 rollPacket = Packet(type: .DieRoll)
 myDieRoll = rollPacket.dieRoll
 } else {
 rollPacket = Packet(dieRollPacketWithRoll: myDieRoll)
 }

 sendPacket(rollPacket)
}

sendPacket: sends a packet to the other device (duh!). It takes an instance of Packet and
archives it into an instance of NSData. It then uses the session’s sendDataToAllPeers:withDat
aMode:error: method to send it across the wire—well, across the wireless, in this case.

func sendPacket(packet: Packet) {
 var data = NSMutableData()
 var archiver = NSKeyedArchiver(forWritingWithMutableData: data)
 archiver.encodeObject(packet, forKey: kTicTacToeArchiveKey)
 archiver.finishEncoding()

 var error:NSError? = nil
 session.sendData(data, toPeers: session.connectedPeers,
 withMode: .Reliable,
 error: &error)
 if error != nil {
 println("Error sending data: \(error?.localizedDescription)")
 }
}

The checkForGameEnd method just checks all nine spaces to see whether they have X or O in
them and then looks for three in a row. It does this by first declaring a variable called moves
to keep track of how many moves have happened. This is how it will tell whether there’s a
tie. If there have been nine moves and no one has won, then there are no available spaces
left on the board, so it’s a tie. Next, you declare an array of nine UIImage pointers. You’re
going to pull the images out of the nine buttons representing spaces on the board and put
them in this array to make it easier to check whether a player won. If you find three in a row,
you’ll store one of the three images in this variable so you know which player won the game.
Next, you loop through the buttons by tag, as you did in the resetBoard method earlier,
storing the images from the buttons in the array you declared earlier. The next big chunk of
code just checks to see whether there are three of the same images in a row anywhere. If it
finds three in a row, it stores one of the three images in winningImage. When it completes the
check, it will know which player, if any, has won. If there wasn’t a winner, then you check to

277CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

see whether any spaces are left on the board by looking at moves. If no spaces remain, then
you know the game is over, and the cat won. Instead of repeated redundant code, you move
the comparing the rows for a win to a function called compareImages, which takes an array of
images, compares three indices, and returns a nil or the image of the winning piece.

Note In tic-tac-toe, a tie is also called a cat’s game. The expression “the cat won” refers to a tie.

If any of the preceding code set the state to .Done, then you use
performSelector:withObject:afterDelay: to start a new game after the user has had
time to read who won.

func compareImages(buttons:[UIImage!], index1: Int, index2: Int, index3: Int) -> UIImage! {
 var one:UIImage? = buttons[index1]
 var two:UIImage? = buttons[index2]
 var three:UIImage? = buttons[index3]
 var result: UIImage!

 if one != nil {
 if one == two && one == three {
 result = one
 }
 }
 return result
}

func checkForGameEnd() {
 var moves: Int = 0
 var i: Int = 0
 var currentButtonImages:[UIImage!] = Array(count: 9, repeatedValue: nil)
 var winningImage: UIImage?

 currentButtonImages.reserveCapacity(9)

 for i = BoardSpace.UpperLeft.rawValue; i <= BoardSpace.LowerRight.rawValue; i++ {
 var oneButton = self.view.viewWithTag(i) as UIButton
 if oneButton.imageForState(.Normal) != nil {
 moves++
 }
 currentButtonImages[i - BoardSpace.UpperLeft.rawValue] =

oneButton.imageForState(.Normal)
 }

 if let aRow = compareImages(currentButtonImages, index1: 0, index2: 1, index3: 2) {
 //Top Row
 winningImage = aRow
 } else

278 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

 if let aRow = compareImages(currentButtonImages, index1: 3, index2: 4, index3: 5) {
 //Middle Row
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 6, index2: 7, index3: 8) {
 //Bottom Row
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 0, index2: 3, index3: 6) {
 //Left Column
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 1, index2: 4, index3: 7) {
 //Middle Column
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 2, index2: 5, index3: 8) {
 //Right Column
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 0, index2: 4, index3: 8) {
 //Diagonal Left to Right
 winningImage = aRow
 } else
 if let aRow = compareImages(currentButtonImages, index1: 2, index2: 4, index3: 6) {
 //Diagonal Right to Left
 winningImage = aRow
 }

 if winningImage != nil {
 if winningImage == xPieceImage {
 if playerPiece == .X {
 feedbackLabel.text = "You Won!"
 state = .Done
 } else {
 feedbackLabel.text = "Opponent Won!"
 state = .Done
 }
 } else if winningImage == oPieceImage {
 if playerPiece == .O {
 feedbackLabel.text = "You Won"
 state = .Done
 } else {
 feedbackLabel.text = "Opponent Won!"
 state = .Done
 }
 }
 } else {
 if moves >= 9 {
 feedbackLabel.text = "Cat Wins!!"
 state = .Done
 }
 }

279CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

 if state == .Done {
 println("DONE - restarting in 3 seconds")
 NSTimer.scheduledTimerWithTimeInterval(3.0,
 target: self,
 selector: "startNewGame",
 userInfo: nil,
 repeats: false)
 }
}

Hold on. You’re not done yet. You need to back up and adjust the didReceiveMemoryWarning
method. You need to disconnect from your peers.

session.disconnect()
session.delegate = nil
peerID = nil

browser = nil
nearbyBrowser = nil
assistant = nil

Trying It
This app currently relies on Bluetooth connections or WiFi to work since you’re using
Multipeer Connectivity and the peer browser. As a result, you need to have two devices that
are running iOS7 or greater (as Multipeer Connectivity was introduced in iOS7 and Swift
works with iOS7+). Since it is a multiplayer game, you need to have two instances running;
one can be the simulator, and the other can be a simulator on another Mac or run on a
physical device. To build and run on a physical device, you need to be part of the Apple iOS
Developer Program.

Note If your personal firewall pops up and warns you about network connections on the simulator,

you will have to allow the connections to communicate.

You can also run this with two devices provisioned for development. You should be able to
connect two iOS devices to your computer at the same time. Xcode will display a drop-down
menu in the Debug area to select which device to view.

If you do experience problems running Xcode with two devices, you need to build and run
on one device, quit, unplug that device, and then plug in the other device and do the same
thing. Once you’ve done that, you will have the application on both devices. You can run it
on both devices, or you can launch it from Xcode on one device so you can debug and read
the console feedback.

280 CHAPTER 9: Peer-to-Peer Using Multipeer Connectivity

You should be aware that debugging—or even running from Xcode without debugging—will
slow down the program running on the connected iOS device, and this can have an effect on
network communications. Underneath the hood, all of the data transmissions back and forth
between the two devices check for acknowledgments and have a timeout period. If they
don’t receive a response in a certain amount of time, they will disconnect. So, if you set a
breakpoint, chances are that you will break the connection between the two devices when it
reaches the breakpoint. This can make figuring out problems in your Multipeer Connectivity
application tedious. You often will need to use alternatives to breakpoints, like println() or
breakpoint actions, so you don’t break the network connection between the devices. We’ll
talk more about debugging in Chapter 15.

Note Detailed instructions for installing applications on a device are available at

http://developer.apple.com/ios in the developer portal, which is available only to paid

iPhone SDK members.

Caution If you try to connect an instance of TicTacToe written in Objective-C and an instance of

TicTacToe written in Swift, they might crash on connection. The basic reason is that the packets that

are archived have a different structure between the two.

Game On!
This is another long chapter under your belt, and you should now have a pretty firm
understanding of Multipeer Connectivity networking. You saw how to use the peer picker to
let your user select another iPhone or iPod touch to which to connect. You saw how to send
data by archiving objects, and you got a little taste of the complexity that is introduced to
your application when you start adding in network multiuser functionality. There are plenty
of uses and wonderful things that you can do with Multipeer Connectivity since it is easy
to implement. The bulk of the complexity in this chapter is providing the communication
between the devices for the TicTacToe app.

http://developer.apple.com/ios

281

Chapter 10
Map Kit

iPhones have always had a way to determine where in the world they are. Even though the
original iPhone didn’t have GPS, it did have a Maps application and was able to represent its
approximate location on the map using cell phone triangulation or by looking up its WiFi IP
address in a database of known locations. In the beginning of iOS development, there was
no way to leverage this functionality within your own applications. It was possible to launch
the Maps application to show a specific location or route, but it wasn’t possible, using only
Apple-provided APIs, to show map data without leaving your application.

That changed with the Map Kit. Applications now have the ability to show maps, including
the user’s current location, and even drop pins and show annotations on those maps.
Map Kit’s functionality isn’t limited to just showing maps, either. It includes a feature called
reverse geocoding, which allows you to take a set of specific coordinates and turn them into
a physical address. Your application can use those coordinates to find out not just where the
person is located but, frequently, the actual address associated with that location. You can’t
always get down to the street address, but you can almost always get the city and state
or province no matter where in the world your user is. In this chapter, you’ll learn about the
basics of adding Map Kit functionality to any application.

Note The application you build in this chapter will run just fine in the iPhone simulator; however,

the simulator won’t report your actual location. Instead, it returns the address of Apple’s San

Francisco Store at Stockton Street in San Francisco, California. You can change the location the

simulator uses via the Location Simulator on the Debug pane jump bar in Xcode.

282 CHAPTER 10: Map Kit

This Chapter’s Application
This chapter’s application will start by showing a map of where you are located, and since
I am based in Australia, the screenshot shows Australia (Figure 10-1). Other than the map,
your interface will be empty except for a single button with the imaginative title of Go. When
the button is pressed, the application will determine your current location, zoom the map to
show that location, and drop a pin to mark the location (Figure 10-2).

Figure 10-1. The MapMe application will start out showing a map of the United States

283CHAPTER 10: Map Kit

You will then use Map Kit’s reverse geocoder to determine the address of your current
location, and you’ll add an annotation to the map to display the specifics of that location.

Despite its simplicity, this application leverages most of the basic Map Kit functionality.
Before you start building your project, let’s explore Map Kit and see what makes it tick.

Overview and Terminology
Although Map Kit is not particularly complex, it can be a bit confusing. Let’s start with a
high-level view and nail down the terminology; then you can dig down into the individual
components.

To display map-related data, you add a map view to one of your application’s views. Map
views can have a delegate, and that delegate is usually the controller class responsible for
the view in which the map view resides. That’s the approach you’ll use for this chapter’s
application. Your application will have a single view and a single view controller. That single
view will contain a map view, along with a few other items, and your single view controller
will be the map view’s delegate.

Figure 10-2. After determining the current location, the map will zoom in to that location and annotate it

284 CHAPTER 10: Map Kit

Map views keep track of locations of interest using a collection of annotations. Any time you
see an icon on a map, whether it’s a pin, a dot, or anything else, it’s an annotation. When an
annotation is in the part of the map that’s being shown, the map view asks its delegate to
provide a view for that annotation (called an annotation view) that the map view will draw at
the specific location on the map.

Annotations are selectable, and a selected annotation will display a callout, which is a small
view that floats above the map like the You are Here! view shown in Figure 10-2. If the user
taps an annotation view and that annotation view is selectable, the map view will display the
callout associated with that view.

The Map View
The core element of the Map Kit framework is the map view represented by the class
MKMapView. The map view takes care of drawing the maps and responding to user input.
Users can use all the gestures they’re accustomed to, including a pinch in or out to do a
controlled zoom, a double-tap to zoom in, or a two-finger double tap to zoom out. You can
add a map view to your interface and configure it using Interface Builder. Like many iOS
controls, much of the work of managing the map view is done by the map view’s delegate.

Map Types
Map views are capable of displaying maps in several different ways. They can display the
map as a series of lines and symbols that represent the roadways and other landmarks in
the area being shown. This is the default display, and it’s known as the standard map type.
You can also display the map using satellite images by specifying the satellite map type, or
you can use what’s called the hybrid map type where the lines representing roadways and
landmarks from the standard type are superimposed on top of the satellite imagery of the
satellite type. You can see an example of the default map type in Figure 10-2. Figure 10-3
shows the satellite map type, and Figure 10-4 shows the hybrid map type.

285CHAPTER 10: Map Kit

Figure 10-3. The satellite map type shows satellite imagery instead of lines and symbols

286 CHAPTER 10: Map Kit

You can set the map type in Interface Builder or set the map view’s mapType property to one
of the following:

self.mapView.mapType = MKMapType.Standard
self.mapView.mapType = MKMapType.Satellite
self.mapView.mapType = MKMapType.Hybrid

Location Authorization
Prior to iOS 8.0, Apple had a simple form of authorization for location services; either you
allowed it or you didn’t. If you did not allow the application to access the location services,
no data would be returned, and the app could throw errors. Now with iOS 8.0 onward, there
are two options; one is a blanket authorization allowing access just like in the previous
versions for background processes. The other option is to provide access only when the
application is in use. These permissions are as follows:

	requestAlwaysAuthorization

	requestWhenInUseAuthorization

Figure 10-4. The hybrid type overlays the lines and symbols of the default type on top of the imagery from the

satellite type

287CHAPTER 10: Map Kit

Earlier you could simply instantiate a CLLocationManager instance, and the system would
request the permissions if the user had not approved or denied access to the application. These
functions to request authorization would not work unless you set an entry in the Info.plist
file. Note that this is not available in the list of entries found in the drop-down of plist entries
when you add a new item. The key to set is either NSLocationWhenInUseUsageDescription or
NSLocationAlwaysUsageDescription depending on what you would use. This will set the value for
the prompt that will be displayed when the permission dialog is displayed.

var locationManager = CLLocationManager()
locationManager.requestWhenInUseAuthorization()

If you have set the Info.plist entry, you will see the authorization dialog shown in Figure 10-5.

In this case, the message was uncreatively set to Allow Access, and you can see that
displayed. If you declined access, it won’t show up again the next time you run the app. You
will have to use the Settings app to reset/change the settings under privacy.

Figure 10-5. The authorization dialog requesting authorization to access the location services

288 CHAPTER 10: Map Kit

User Location
Map views will, if configured to do so, use Core Location to keep track of the user’s location
and display it on the map using a blue dot, much like the way the Maps application does.
You won’t be using that functionality in this chapter’s application, but you can turn it on by
setting the map view’s showsUserLocation property to true, like so:

mapView.showsUserLocation = true

If the map is tracking the user’s location, you can determine whether their present location
is visible in the map view by using the read-only property userLocationVisible. If the user’s
current location is being displayed in the map view, userLocationVisible will return true.

You can get the specific coordinates of the user’s present location from the map view by
first setting showsUserLocation to true and then accessing the userLocation property.
This property returns an instance of MKUserLocation. MKUserLocation is an object and has
a property called location, which itself is a CLLocation object. A CLLocation contains a
property called coordinate that points to a set of coordinates. All this means you can get the
actual coordinates from the MKUserLocation object, like so:

var coords: CLLocationCoordinate2D! = mapView.userLocation.location.coordinate

Coordinate Regions
A map view wouldn’t be much good if you couldn’t tell it what to display or find out what
part of the world it’s currently showing. With map views, the key to being able to do those
tasks is the MKCoordinateRegion, a struct that contains two pieces of data that together
define the portion of the map to be shown in a map view.

The first member of MKCoordinateRegion is called center. This is another struct of type
CLLocationCoordinate2D, which you may remember from the chapter on Core Location
in Beginning iPhone Development. A CLLocationCoordinate2D contains two floating-point
values, a latitude and longitude, and is used to represent a single spot on the globe. In the
context of a coordinate region, that spot on the globe is the spot that represents the center
of the map view.

The second member of MKCoordinateRegion is called span, and it’s a struct of type
MKCoordinateSpan. The MKCoordinateSpan struct has two members called latitudeDelta and
longitudeDelta. These two numbers are used to set the zoom level of the map by identifying
how much of the area around center should be displayed. These values represent that
distance in degrees latitude and longitude. If latitudeDelta and longitudeDelta are small
numbers, the map will be zoomed in very close; if they are large, the map will be zoomed out
and show a much larger area.

289CHAPTER 10: Map Kit

If you look back at Figure 10-2, the point of the pin you can see is at the coordinates
that were passed in MKCoordinateRegion.center. The distance from the top of the map
to the bottom of the map was passed in, represented as degrees latitude, using the
MKCoordinateRegion.span.latitudeDelta. Similarly, the distance from the left side of the
map to the right side of the map was passed in, represented as degrees longitude, as the
MKCoordinateRegion.span.longitudeDelta.

Figure 10-6. The MKCoordinateRegion represented graphically. It contains two members, both of which are, in turn,

structs that own two members

Tip If you have trouble remembering which lines are latitude and which are longitude, here’s a tip

from our third-grade geography teacher, Mrs. Krabappel (pronounced kruh-bopple). Latitude sounds

like altitude, so latitude tells you how high on the globe you are. The equator is a line of latitude. And

the Prime Meridian is a line of longitude. Thanks, Mrs. Krabappel!

There are two challenges that this approach presents to the programmer. First, who thinks
in degrees latitude or longitude? Although degrees latitude represent roughly the same
distance everywhere in the world, degrees longitude vary greatly in the amount of distance
they represent as you move from the pole to the equator, so calculating the degrees
longitude isn’t as straightforward.

The second challenge is that a map view has a specific width-to-height ratio (called an
aspect ratio), and the latitudeDelta and longitudeDelta you specify must represent an
area with that same aspect ratio. Fortunately, Apple provides tools for dealing with both of
these issues.

Figure 10-6 shows the makeup of the MKCoordinateRegion struct.

290 CHAPTER 10: Map Kit

Converting Degrees to Distance

Each degree of latitude represents approximately 69 miles, or about 111 kilometers, no
matter where you are. This makes determining the number to pass in as the latitudeDelta
of an MKCoordinateSpan fairly easy to calculate. You can just divide the lateral distance you
want to display by 69 if you’re using miles or 111 if you’re using kilometers.

Note Since Earth isn’t a perfect sphere (technically speaking, it’s close to being an oblate

spheroid), there actually is some variation between the amount of distance that 1 degree latitude

represents, but it’s not enough variation to bother factoring into this calculation, since it’s only about

a 1 degree variation from pole to equator. At the equator, 1 degree of latitude equals 69.046767

miles or 111.12 kilometers, and the number gets a little smaller as you move toward the poles.

We chose 69 and 111 because they’re nice round numbers that are within 1 percent of the actual

distance pretty much everywhere.

The distance represented by 1 degree longitude, however, is not quite so easy to calculate.
To do the same calculation for longitude, you have to take the latitude into account because
the distance represented by 1 degree longitude depends on where you are in relation to the
equator. To calculate the distance represented by degrees longitude, you have to perform
some gnarly math. Fortunately, Apple has done the gnarly math for you and provides a
method called MKCoordinateRegionMakeWithDistance that you can use to create a region.
You provide coordinates to act as the center, along with the distance in meters for the
latitudinal and longitudinal span. The function will look at the latitude in the coordinates
provided and calculate both delta values for you in degrees. Here is how you might
create a region to show 1 kilometer on each side of a specific location represented by a
CLLocationCoordinate2D called center:

var viewRegion = MKCoordinateRegionMakeWithDistance(center, 2000, 2000)

To show a kilometer on each side of center, you must specify 2,000 meters total for each
span: 1,000 to the left plus 1,000 to the right and 1,000 to the top plus 1,000 to the bottom.
After this call, viewRegion will contain a properly formatted MKCoordinateRegion that’s almost
ready for use. All that’s left is taking care of the aspect ratio problem.

291CHAPTER 10: Map Kit

THE GNARLY MATH

The math to calculate the distance of 1 degree longitude really isn’t that gnarly, so we thought we’d show those

of you who are interested what the man behind the curtain is doing. To calculate the distance for 1 degree

longitude at a given latitude, the calculation is as follows:

p
180°

 × radius of the Earth ×฀cos(latitude˚)

If Apple didn’t provide a function for you, you could create a couple of macros that would accomplish the

same thing just by following this formula. The radius of Earth is roughly 3,963.1676 miles, or 6,378.1

kilometers. So, to calculate the distance for 1 degree of longitude at a specific latitude contained in the

variable lat, you would do this:

var longitudeMiles: Double = ((M_PI/180.0) * 3963.1676 * cos(latitude))

You can do the same calculation to determine the distance of 1 degree longitude in kilometers, like so:

var longitudeKilometers: Double = ((M_PI/180.0) * 6378.1 * cos(latitude))

Accommodating Aspect Ratio

In the previous section, we showed how to create a span that showed 1 kilometer on each
side of a given location. However, unless the map view is perfectly square, there’s no way
that the view can show exactly 1 kilometer on each of the four sides of center. If the map
view is wider than it is tall, the longitudeDelta will need to be larger than the latitudeDelta.
If the map view is taller than it is wide, the opposite is true.

The MKMapView class has an instance method that will adjust a coordinate region to match
the map view’s aspect ratio. That method is called regionThatFits. To use it, you just
pass in the coordinate region you created, and it will return a new coordinate region that is
adjusted to the map view’s aspect ratio. Here’s how to use it:

var adjustedRegion: MKCoordinateRegion = mapView.regionThatFits(viewRegion)

Setting the Region to Display
Once you’ve created a coordinate region, you can tell a map view to display that region by
calling the method setRegion:animated:. If you pass true for the second parameter, the
map view will zoom, shift, or otherwise animate the view from its current location to its new
location. Here is an example that creates a coordinate region, adjusts it to the map view’s
aspect ratio, and then tells the map view to display that region:

var viewRegion = MKCoordinateRegionMakeWithDistance(center, 2000, 2000)
var adjustedRegion = mapView.regionThatFits(viewRegion)
mapView.setRegion(adjustedRegion, animated:true)

292 CHAPTER 10: Map Kit

The Map View Delegate
As mentioned earlier, map views can have delegates. Map views, unlike table views and
pickers, can function without a delegate. On a map view delegate, there are a number of
methods you can implement if you need to be notified about certain map-related tasks.
They allow you, for example, to get notified when the user changes the part of the map
they’re looking at, either by dragging to reveal a new section of the map or by zooming to
reveal a smaller or larger area. You can also get notified when the map view loads new map
data from the server or when the map view fails to do so. The map view delegate methods
are contained in the MKMapViewDelegate protocol, and any class that is used as a map view
delegate should conform to that protocol.

Map Loading Delegate Methods

Since iOS 6, the Map Kit framework switched from Google Maps to an Apple-provided
service to do its job. It doesn’t store any map data locally except for temporary caches.
Whenever the map view needs to go to Apple’s servers to retrieve new map data, it will call
the delegate method mapViewWillStartLoadingMap:, and when it has successfully retrieved
the map data it needs, it will call the delegate method mapViewDidFinishLoadingMap:. If
you have any application-specific processing that needs to happen at either time, you can
implement the appropriate method on the map view’s delegate.

If Map Kit encounters an error loading map data from the server, it will call the method mapV
iewDidFailLoadingMap:withError: on its delegate. At the least, you should implement this
delegate method and inform your user of the problem so they aren’t sitting there waiting
for an update that will never come. Here’s a simple implementation of that method that just
shows an alert and lets the user know that something went wrong:

func mapViewDidFailLoadingMap(mapView: MKMapView!, withError error: NSError!) {
 let alert = UIAlertController(title:NSLocalizedString("Error loading map",
 comment:"Error Loading map"),
 message: error.localizedDescription,
 preferredStyle: .Alert)
 let OKAction = UIAlertAction(title:"OK", style: .Default, handler: nil)
 alert.addAction(OKAction)
 self.presentViewController(alert, animated: true, completion: nil)
}

Region Change Delegate Methods

If your map view is enabled, the user will be able to interact with it using the standard iPhone
gestures, like drag, pinch in, pinch out, and double-tap. Doing so will change the region
being displayed in the view. There are two delegate methods that will get called whenever
this happens, if the map view’s delegate implements those methods. As the gesture starts,
the delegate method mapView:regionWillChangeAnimated: gets called. When the gesture
stops, the method mapView:regionDidChangeAnimated: gets called. You would implement
these if you had functionality that needed to happen while the view region was changing or
after it had finished changing.

293CHAPTER 10: Map Kit

DETERMINING IF COORDINATES ARE VISIBLE

One task that you may need to do quite often in the region change delegate methods is to determine

whether a particular set of coordinates are currently visible onscreen. For annotations and for the user’s

current location (if it is being tracked), the map view will take care of figuring that out for you. There will

still be times, however, when you need to know whether a particular set of coordinates is currently within

the map view’s displayed region.

Here’s how you can determine that:

var leftDegrees = mapView.region.center.longitude –

 (mapView.region.span.longitudeDelta / 2.0)

var rightDegrees = mapView.region.center.longitude +

 (mapView.region.span.longitudeDelta / 2.0)

var bottomDegrees = mapView.region.center.latitude –

 (mapView.region.span.latitudeDelta / 2.0)

var topDegrees = self.region.center.latitude +

 (mapView.region.span.latitudeDelta / 2.0)

if leftDegrees > rightDegrees { // Int'l Date Line in View

 leftDegrees = -180.0 - leftDegrees

 if coords.longitude > 0 // coords to West of Date Line

 coords.longitude = -180.0 - coords.longitude

}

If leftDegrees <= coords.longitude && coords.longitude <= rightDegrees &&

 bottomDegrees <= coords.latitude && coords.latitude <= topDegrees {

 // Coordinates are being displayed

}

Before moving on to the rest of the map view delegate methods, we need to discuss the
topic of annotations.

Annotations
Map views offer the ability to tag a specific location with a set of supplementary information.
That information, along with its graphic representation on the map, is called an annotation.
The pin you drop in the application you’re going to write (see Figure 10-2) is a form of
annotation. The annotation is composed of two components, the annotation object and
an annotation view. The map view will keep track of its annotations and will call out to its
delegate when it needs to display any of its annotations.

294 CHAPTER 10: Map Kit

The Annotation Object
Every annotation must have an annotation object, which is almost always going to be a
custom class that you write and that conforms to the protocol MKAnnotation. An annotation
object is typically a fairly standard data model object whose job it is to hold whatever data
is relevant to the annotation in question. The annotation object has to respond to two
methods and implement a single property. The two methods that an annotation object
must implement are called title and subtitle, and they are the information that will be
displayed in the annotation’s callout, the little floating view that pops up when the annotation
is selected. Back in Figure 10-4, you can see the title and subtitle displayed in the callout. In
that instance, the annotation object returned a title of You are Here! and a subtitle of Bridge
Street, Sydney, NSW 2000.

An annotation object must also have a property called coordinate that returns a
CLLocationCoordinate2D specifying where in the world (geographically speaking) the
annotation should be placed. The map view will use that location to determine where to
draw the annotation.

The Annotation View
As we said before, when a map view needs to display any of its annotations, it will call out to
its delegate to retrieve an annotation view for that annotation. It does this using the method
mapView:viewForAnnotation:, which needs to return an MKAnnotationView or a subclass of
MKAnnotationView. The annotation view is the object that gets displayed on the map, not
the floating window that gets displayed when the annotation is selected. In Figure 10-4,
the annotation view is the pin in the center of the window. It’s a pin because you’re using
a provided subclass of MKAnnotationView called MKPinAnnotationView, which is designed
to draw a red, green, or purple pushpin. It includes some additional functionality that
MKAnnotationView doesn’t have, such as the pin drop animation.

You can subclass MKAnnotationView and implement your own drawRect: method if you have
advanced drawing needs for your annotation view. Subclassing MKAnnotationView is often
unnecessary, however, because you can create an instance of MKAnnotationView and set its
image property to whatever image you want. This opens up a whole world of possibilities
without having to ever subclass or add subviews to MKAnnotationView (see Figure 10-7).
The code for this is further down.

295CHAPTER 10: Map Kit

Figure 10-7. By setting the image property of an MKAnnotationView, you can display just about anything on the map.

In this example, we’ve replaced the pin with a surprised cat because that’s the way we roll

Adding and Removing Annotations
The map view keeps track of all of its annotations, so adding an annotation to the map is
simply a matter of calling the map view’s addAnnotation: method and providing an object
that conforms to the MKAnnotation protocol.

mapView.addAnnotation(annotation)

You can also add multiple annotations by providing an array of annotations, using the
method addAnnotations:.

mapView.addAnnotations([annotation1, annotation2])

You can remove annotations either by using the removeAnnotation: method and passing
in a single annotation to be removed or by calling removeAnnotations: and passing in an
array containing multiple annotations to be removed. All the map view’s annotations are
accessible using a property called annotations, so if you wanted to remove all annotations
from the view, you could to this:

mapView.removeAnnotations(mapView.annotations)

296 CHAPTER 10: Map Kit

Selecting Annotations
At any given time, one and only one annotation can be selected. The selected annotation
will usually display a callout, which is that floating bubble or other view that gives
more detailed information about the annotation. The default callout shows the title and
subtitle from the annotation. However, you can actually customize the callout, which is
just an instance of UIView. We won’t be providing custom callout views in this chapter’s
application, but the process is similar to customizing table view cells the way we did in
Beginning iPhone Development. For more information on customizing a callout, check the
documentation for MKAnnotationView.

Note Although only a single annotation can currently be selected, MKMapView actually uses an

instance of NSArray to keep track of the selected annotations. This may be an indication that at

some point in the future map views will support selecting multiple annotations at once. Currently, if

you provide a selectedAnnotations array with more than one annotation, only the first object in

that array will be selected.

If the user taps an annotation’s image (the push pin in Figure 10-4 or the shocked cat in
Figure 10-7), it selects that annotation. You can also select an annotation programmatically
using the method selectAnnotation:animated: and deselect an annotation
programmatically using deselectAnnotation:animated:, passing in the annotation you
want to select or deselect. If you pass true to the second parameter, it will animate the
appearance or disappearance of the callout.

Providing the Map View with Annotation Views
Map views ask their delegate for the annotation view that corresponds to a particular
annotation using a delegate method called mapView:viewForAnnotation:. This method is
called anytime an annotation moves into the map view’s displayed region.

Very much like the way table view cells work, annotation views are dequeued
but not deallocated when they scroll off of the screen. Implementations of
mapView:viewForAnnotation: should ask the map view if there are any dequeued annotation
views before allocating a new one. That means mapView:viewForAnnotation: is going to look
a fair amount like the many tableView:cellForRowAtIndexPath: methods you’ve written.
Here’s an example that creates an annotation view, sets its image property to display a
custom image, and returns it:

func mapView(theMapView: MKMapView!, viewForAnnotation annotation: MKAnnotation!) ->
MKAnnotationView! {
 let placemarkIdentifier = "my annotation identifier"
 if annotation.isKindOfClass(MKAnnotation) {
 var annotationView = theMapView.dequeueReusableAnnotationViewWithIdentifier(placema

rkIdentifier)

297CHAPTER 10: Map Kit

 if annotationView == nil {
 annotationView = MKAnnotationView(annotation: annotation,
 reuseIdentifier: placemarkIdentifier)
 annotationView.image = UIImage(named:"shockedCat.png")
 } else {
 annotationView.annotation = annotation
 }
 return annotationView
 }
 return nil
}

There are a few things to notice here. First, notice that you check the annotation class to
make sure it’s an annotation you know about. The Map View delegate gets notified about all
annotations, not just the custom one. Earlier, we talked about the MKUserLocation object that
encapsulated the user’s location. Well, that’s an annotation also, and when you turn on user
tracking for a map, your delegate method gets called whenever the user location needs to be
displayed. You could provide your own annotation view for that, but if you return nil, the map
view will use the default annotation view for it. Generally speaking, for any annotation you don’t
recognize, your method should return nil, and the map view will probably handle it correctly.

Notice there is an identifier value called placemarkIdentifier. This allows you to make sure
you’re dequeuing the right kind of annotation view. You’re not limited to using only one type
of annotation view for all of your map’s annotations, and the identifier is the way you tell
which ones are used for what.

If you did dequeue an annotation view, it’s important that you set its annotation property
to the annotation that was passed in (annotation in the preceding example). The dequeued
annotation view is almost certainly linked to some annotation and not necessarily the one it
should be linked to.

Geocoding and Reverse Geocoding
A big feature of Core Location is geocoding. Geocoding is the ability to convert from a
coordinate (specified as longitude and latitude) and a user-friendly representation of that
coordinate. Taking a user-friendly location description (in other words, an address) and
converting it to longitude and latitude is called forward geocoding. Reverse geocoding is
converting a longitude and latitude into a user-friendly location description.

Geocoding is handled in Core Location by the CLGeocoder class. CLGeocoder works
asynchronously in the background, querying the appropriate service. In the case of forward
geocoding, CLGeocoder uses the built-in GPS functionality of your iPhone. For reverse geocoding,
CLGeocoder queries a large database of coordinate data (in this case, it’s Apple’s database).

In almost all locations, reverse geocoding will be able to tell you the country and state or
province that you’re in. The more densely populated the area, the more information you’re
likely to get. If you’re downtown in a large city, you might very well retrieve the street address
of the building in which you are located. In most cities and towns, reverse geocoding will, at
the very least, get you the name of the street you are on. The tricky thing is that you never
know for sure what level of detail you’re going to get back.

298 CHAPTER 10: Map Kit

For this chapter’s application, you’re going to use the reverse geocoding functionality of
CLGeocoder. To perform reverse geocoding, you start by creating an instance of CLGeocoder.
You then call reverseGeocodeLocation:completionHandler: to perform the geocoding. The
completionHandler: argument is a CLGeocodeCompletionHandler type, which is a block. A
block is an anonymous inline function that encapsulates the lexical scope from where it is
executed. In Swift, blocks are called closures. For reverseGeocodeLocation:completionHand
ler:, the completionHandler: block is executed regardless of a successful or failed reverse
geocoding attempt.

let geocoder = CLGeocoder()
geocoder.reverseGeocodeLocation(location, completionHandler: {
 (placemarks, error) in
 // process the location or errors
 })

If the reverse geocoding succeeds, the completion handler will be invoked with the
placemarks array being populated. It should be an array with only one object, of type
CLPlacemark. If there was an error during the reverse geocoding or the request was
cancelled, then the placemarks array will be nil. In that case, the completion handler will
receive an NSError object, detailing the failure.

Table 10-1 maps CLPlacemark’s terminology to terms with which you might be more familiar.

Table 10-1. CLPlacement Property Definitions

CLPlacemark Property Meaning

thoroughfare Street address. First line if multiple lines.

subThoroughfare Street address, second line (e.g., apartment or unit number, box number).

locality City.

subLocality This might contain a neighborhood or landmark name, though it’s often nil.

administrativeArea State, province, territory, or other similar unit.

subAdministrativeArea County.

postalCode ZIP code.

country Country.

countryCode Two-digit ISO country code

(see http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2).

You know what? That’s enough talking about Map Kit. Let’s start actually using it.

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

299CHAPTER 10: Map Kit

Figure 10-8. The map view as it appears in the Object library (List view)

Building the MapMe Application
Let’s build an application that shows some of the basic features of Map Kit. Start by creating
a new project in Xcode using the Single View Application template. Call the new project
MapMe.

Building the Interface
Select Main.storyboard to edit the user interface. Once Interface Builder opens, drag a
button from the Object Library to the view. Use the blue guidelines to align the button to the
bottom right of the view. Double-click the newly placed button to edit its title, and type Go.

Drag a progress view from the library, and place it to the left of the button, with the top of
the progress view and the top of the button aligned. Resize using the blue guidelines so it
extends horizontally from the left margin to the right margin. It will overlap the button, and
that’s OK.

Next, drag a label from the library to the view and place it below the progress bar. Resize it
horizontally so that it takes up the entire width from the left margin guides to the right margin
guides. Now, use the Attributes Inspector to center-align the label’s text and change the font
size to 13 so that the text will fit better. Lastly, delete the text Label.

Find the map view (Figure 10-8) in the Object Library. Drag the map view to the view.
Align the top and left sides of the map view with the view. Resize the map view to the
width of the window view. Then resize the map view down toward the bottom, until the
blue guideline appears, just above the progress bar and button you placed on the bottom
earlier (Figure 10-9).

300 CHAPTER 10: Map Kit

Now, you make the outlets and action connections. Open ViewController.swift in
the Assistant editor (via the toolbar) or by pressing ⌥ + ⌘ (Opt+Shift), clicking the
ViewController.swift file, and selecting it to open on the right. The assistant should
open on the right of Interface Builder. Control-drag from the Go button to just below the
class declaration. Be sure you have selected the button, not the (invisible) label. When the
Connection pop-up appears, the Type field should be UIButton. Set Connection to Outlet,
and name it button. Next, Control-drag from the Go button again to just above the closing
brace at the end of the class declaration. This time add an action and name it findMe.

Now Control-drag from the progress bar to just below the button property you added.
Create an outlet named progressBar, making sure that the type is UIProgressView. Using the
Attributes Inspector, click in the check box that’s labeled Hidden so that the progress bar will
not be visible until you want to report progress to the user.

Figure 10-9. Laying out the map view, just above the progress bar and button

301CHAPTER 10: Map Kit

Next, Control-drag from the (invisible) label to below the progressBar property. You’ll have to
guess where the label is. Alternatively, you can drag from the label in the Object Dock, like
you did in the previous chapter. Either way, name the outlet progressLabel.

Finally, Control-drag from the map view to below the progressLabel property declaration.
Name this outlet mapView. Control-drag from the map view to the file’s Owner icon in the
Object Dock. When the Outlets pop-up appears, select delegate.

Note Most important, if you are using Auto Layout and size classes, ensure that you have the

constraints set. Otherwise, the controls might not even show up on the screen. The easiest way is

to lay them as you want, then select all of them, and finally, from the menu, select Editor ➤ Resolve

Auto Layout Issues ➤ Add Missing Constraints.

Save the storyboard. Before moving on, put the editor back into Standard mode.

Finishing the View Controller Interface
Select ViewController.swift to edit it. For starters, import both Map Kit and Core Location
because you’re using both Map Kit and Core Location in this application.

import CoreLocation
import MapKit

You need conform your class to the following delegate protocols:

	CLLocationManagerDelegate, so you can get notified by Core Location of
the user’s current location

	MKMapViewDelegate, because you’re going to be your map view’s delegate

class ViewController : UIViewController ,CLLocationManagerDelegate, MKMapViewDelegate {

Right after the class declaration, you declare three variables to store the CLLocationManager,
CLGeocoder, and CLPlacemark objects you’ll use in the application.

var manager: CLLocationManager!
var geocoder: CLGeocoder!
var placemark: CLPlacemark!

Note Although map views are capable of tracking the user’s current location, you’re going to track

the user’s location manually using Core Location in this application. By doing it manually, we can

show you more Map Kit features. If you need to track the user’s location in your own applications,

just let the map view do it for you.

302 CHAPTER 10: Map Kit

That’s it. You declared the outlets and action you need via Interface Builder. Save
ViewController.swift. Before you continue writing more code, you need to work on your
annotation class.

Writing the Annotation Object Class
You need to create a class to hold your annotation object. You’re going to build a simple
one that stores some address information, which you’ll pull from the geocoder. Select the
MapMe group in the Navigator pane. Create a new swift file named MapLocation.

Once the new file has been created, single-click MapLocation.swift. First, you need to
include the Map Kit header.

import MapKit

You need to change MapLocation to adopt the MKAnnotation and NSCoding protocols.

class MapLocation : NSObject, MKAnnotation, NSCoding {

We did say that annotations were pretty standard data model classes, didn’t we? We
conformed this to MKAnnotation and also to NSCoding. You’re not actually going to use the
archiving functionality, but it’s a good habit to conform data model classes to NSCoding.

Next, you need properties to store address data, along with a CLLocationCoordinate2D,
which will be used to track this annotation’s location on the map.

var street: String!
var city: String!
var state: String!
var zip: String!
Var _coordinate: CLLocationCoordinate2D!

Save MapLocation.swift. First, you implement the MKAnnotation protocol methods. With
Swift, the MKAnnotation protocol methods are property getters than class methods. So,
instead of declaring functions, you need to write getters. The tile and subtitle are read-only
because they are constructed from other data such as street, city, and so on, whereas the
coordinate is a read-write property, and hence you have both the getter and the setters.

//MARK: - MKAnnotation Protocol Methods

var title: String {
 get {
 return NSLocalizedString("You are Here", comment: "You are Here")
 }
}

var subtitle: String {
 get {
 var result = ""

 if self.street != nil {

303CHAPTER 10: Map Kit

 result += self.street

 if self.city != nil || self.state != nil || self.zip != nil {
 result += ", "
 }
 }
 if self.city != nil {
 result += self.city

 if self.state != nil {
 result += ", "
 }
 }
 if self.state != nil {
 result += self.state
 }
 if self.zip != nil {
 result += " " + self.zip
 }

 return result
 }
}

var coordinate: CLLocationCoordinate2d {
 get {
 return _coordinate
 }
 set {
 _coordinate = newValue
 }
}

There really shouldn’t be anything there that throws you for a loop. For the MKAnnotation protocol
method of title, you just return You are Here!. The subtitle method, however, is a little more
complex. Because you don’t know which data elements the reverse geocoder will give you, you
have to build the subtitle string based on what you have. You do that by declaring a mutable
string and then appending the values from your non-nil, nonempty properties.

And you need to implement the NSCoder protocol methods.

//MARK: - NSCoder Protocol Methods

override func encodeWithCoder(aCoder: NSCoder){
 aCoder.encodeObject(self.street, forKey:"street")
 aCoder.encodeObject(self.city, forKey:"city")
 aCoder.encodeObject(self.state, forKey:"state")
 aCoder.encodeObject(self.zip, forKey:"zip")
}

304 CHAPTER 10: Map Kit

init(coder aDecoder: NSCoder){
 super.init()
 self.street = aDecoder.decodeObjectForKey("street") as? String
 self.city = aDecoder.decodeObjectForKey("city") as? String
 self.state = aDecoder.decodeObjectForKey("state") as? String
 self.zip = aDecoder.decodeObjectForKey("zip") as? String
}

You add another init method that simply creates a blank object.

override init(){
 super.init()
}

Everything else here is standard stuff to encode and decode the MapLocation class,
so let’s move on to implementing the ViewController class. Save MapLocation.swift
before proceeding.

Implementing the MapMe ViewController
Single-click ViewController.swift. Next you define some private category methods for
handling annotations and reverse geocoding. Next, set the Map View map type in the
viewDidLoad: method. Declare all three map types, with two of them commented out. This
is just to make it easier for you to change the one you’re using and experiment a little. Add
these after the call to super.

self.mapView.mapType = MKMapType.Standard
//self.mapView.mapType = MKMapType.Satellite
//self.mapView.mapType = MKMapType.Hybrid

Now implement the action method findMe, which gets called when the user presses a button.

//MARK: - Action Method

@IBAction func findMe(sender: AnyObject) {
 if manager == nil{
 manager = CLLocationManager()
 }
 manager.delegate = self
 manager.desiredAccuracy = kCLLocationAccuracyBest
 manager.requestWhenInUseAuthorization()
 manager.startUpdatingLocation()

 self.progressBar.hidden = false
 self.progressBar.progress = 0.0
 self.progressLabel.text = NSLocalizedString("Determining Current Location",
 comment: "Determining Current Location")

 self.button.hidden = true
}

305CHAPTER 10: Map Kit

As discussed earlier, you could have used the map view’s ability to track the user’s location,
but you’re going the manual route to learn more functionality. Therefore, you allocate
and initialize an instance of CLLocationManager to determine the user’s location. You set
self as the delegate and tell the Location Manager you want the best accuracy available,
before telling it to start updating the location. Then you unhide the progress bar and set the
progress label to tell the user that you are trying to determine the current location. Lastly,
you hide the button so the user can’t press it again.

Note You need to call requestWhenInUseAuthorization or requestAlwaysAuthorization

before you can ask CLLocationManager to start updating the location information, and you also

need to set the info.plist file with the appropriate prompt for either of the authorizations. The keys

are NSLocationWhenInUseUsageDelegate and NSLocationAlwaysUsageDelegate. You need

to set the text that will be displayed when the prompt appears for the first time to

request permissions.

Now, you implement the private category methods you declared in the beginning of
ViewController.swift.

//MARK: - (Private) Instance Methods

func openCallout(annotation: MKAnnotation){
 self.progressBar.progress = 1.0
 self.progressLabel.text = NSLocalizedString("Showing Annotation",
 comment: "Showing Annotation")
 self.mapView.selectAnnotation(annotation, animated: true)

 self.button.hidden = true
 self.progressBar.hidden = true
 self.progressLabel.text = ""
}

You’ll use openCallout: a little later to select your annotation. You can’t select the
annotation when you add it to the map view. You have to wait until it’s been added before
you can select it. This method will allow you to select an annotation, which will open the
annotation’s callout by using dispatch_after, which is part of the GDC functions. All you
do in this method is update the progress bar and progress label to show that you’re at the
last step, and then you use the MKMapView’s selectAnnotation:animated: method to select
the annotation, which will cause its callout view to be shown.

306 CHAPTER 10: Map Kit

Since you will use alerts to inform the user at various points in the application, you need
to call the code to display an alert box repeatedly. So, you create a function that simply
displays the alert with a single OK button but have the title and the message customizable
via parameters you pass to it like so:

func showAlert(title: String, message: String){
 let alert = UIAlertController(title: title, message: message, preferredStyle: .Alert)
 let OKAction = UIAlertAction(title:"OK", style: .Default, handler: nil)
 alert.addAction(okAction)
 self.presentViewController(alert, animated: true, completion: nil)
}

You also declared another private method called reverseGeocode:. Again, you’ll use it a
little later. Given a CLLocation instance, it attempts to reverse geocode the location. If it
succeeds, it will create a MapLocation annotation and send it to the map view. If there’s an
error, it will pop up an alert dialog.

func reverseGeocode(location: CLLocation){
 if geocoder == nil {
 geocoder = CLGeocoder()
 }

 geocoder.reverseGeocodeLocation(location, completionHandler: {
 (placemarks, error) -> Void in
 if (nil != error) {
 let title = NSLocalizedString("Error translating coordinates into location",
 comment: "Error translating coordinates into location")
 let message = NSLocalizedString("Geocoder did not recognize coordinates",
 comment: "Geocoder did not recognize coordinates")
 self.showAlert(title, message: message)
 } else if placemarks.count > 0 {
 var placemark: CLPlacemark = placemarks[0] as CLPlacemark
 self.progressBar.progress = 0.5
 self.progressLabel.text = NSLocalizedString("Location Determined",
 comment: "Location Determined")

 var annotation = MapLocation()
 annotation.street = placemark.thoroughfare
 annotation.city = placemark.locality
 annotation.state = placemark.adminisrativeArea
 annotation.zip = placemark.postalCode
 annotation.coordinate = location.coordinate

 self.mapView.addAnnotation(annotation)
 }
 })
}

307CHAPTER 10: Map Kit

Next, add the CLLocationManagerDelegate methods. To update locations, the method
provided was locationManager:didUpdateToLocation:fromLocation:, which now has been
updated to locationManger:didUpdateLocations:, which now takes an array of locations
instead of the oldLocation and newLocation that was passed. There will always be at least
one item in the array, and the methods firstObject and lastObject can be used to get the
appropriate location.

//MARK: - CLLocationManagerDelegate Methods

func locationManager(manager: CLLocationManager!, didUpdateLocations locations:
[AnyObject]!){
 var oldLocation: CLLocation = locations.first as CLLocation
 var newLocation: CLLocation = locations.last as CLLocation
 if newLocation.timestamp.timeIntervalSince1970 <
 NSDate.timeIntervalSinceReferenceDate() – 60 {
 return
 }

 var viewRegion = MKCoordinateRegionMakeWithDistance(newLocation.coordinate, 2000, 2000)
 var adjustedRegion = self.mapView.regionThatFits(viewRegion)
 self.mapView.setRegion(adjustedRegion, animated: true)

 manager.delegate = nil
 manager.stopUpdatingLocation()

 self.progressBar.progress = 0.25
 self.progressLabel.text = NSLocalizedString("Reverse Geocoding Location",
 comment: "Reverse Geocoding Location")
 self.reverseGeocode(newLocation)
}

First, you check that you’re operating with a fresh location, taken within the last minute, and
not a cached one. You then use the MKCoordinateRegionMakeWithDistance() function to
create a region that shows 1 kilometer on each side of the user’s current location. You adjust
that region to the aspect ratio of your map view and then tell the map view to show that new
adjusted region. Now that you’ve gotten a noncache location, you’re going to stop having
the Location Manager give you updates. Location updates are a drain on the battery, so
when you don’t want any more updates, you should shut the Location Manager down. Then
you update the progress bar and label to let them know where you are in the whole process.
This is the first of four steps after the Go button is pressed, so you set progress to .25, which
will show a bar that is one-quarter blue. Finally, you call the reverseGeocoder: method to
convert the new location to an annotation and update the map view.

If the Location Manager encounters an error, you just show an alert. It’s not the most robust
error handling, but it’ll do for this chapter.

308 CHAPTER 10: Map Kit

func locationManager(manager: CLLocationManager!, didFailWithError error: NSError!){
 let errorType = error.code == CLError.Denied.rawValue
 ? NSLocalizedString("Access Denied", comment: "Access Denied")
 : NSLocalizedString("Unknown Error", comment: "Unknown Error")
 let title = NSLocalizedString("Error getting Location", comment: "Error getting
Location")
 showAlert(title, message: errorType)
}

Now, you add the MapView delegate methods.

//MARK: - MKMapViewDelegate Methods

func mapView(mapView: MKMapView!, viewForAnnotation annotation: MKAnnotation){
 let placemarkIdentifier = "Map Location Identifier"
 if let _annotation = annotation as? MapLocation {
 var annotationView: MKPinAnnotationView!

 if let _annotationView =
 mapView.dequeReusableAnnotationViewWithIdentifier(placemarkIdentifier)
 as? MKPinAnnotationView {
 annotationView = _annotationView
 } else {
 annotationView = MKPinAnnotaionView(annotation annotation,
 reuseIdentifer: placemarkIdentifier)
 }

 annotationView.enabled = true
 annotationView.animatesDrop = true
 annotationView.pinColor = MKPinAnnotationColor.Purple
 annotationView.canShowCallout = true

 dispatch_after(
 dispatch_time(DISPATCH_TIME_NOW, Int64(0.5 * Double(NSEC_PER_SEC))),
 dispatch_get_main_queue(),
 {
 self.openCallout(annotation!)
 }
)

 self.progressBar.progress = 0.75
 self.progressLabel.text = NSLocalizedString("Creating Annotation",
 comment: "Creating Annotation")
 return annotationView
 }
 return nil
}

309CHAPTER 10: Map Kit

When the map view for which you are the delegate needs an annotation view, it will call
mapView:viewForAnnotation:. The first thing you do is declare an identifier so you can
dequeue the right kind of annotation view; then you make sure the map view is asking
you about a type of annotation that you know about. If it is, you dequeue an instance of
MKPinAnnotationView with your identifier. If there are no dequeued views, you create one.
You could also have used MKAnnotationView here instead of MKPinAnnotationView. In
fact, there’s an alternate version of this project in the project archive that shows how to
use MKAnnotationView to display a custom annotation view instead of a pin. If you didn’t
create a new view, it means you got a dequeued one from the map view. In that case,
you have to make sure the dequeued view is linked to the right annotation. Then you do
some configuration.

You make sure the annotation view is enabled so it can be selected.	
You set 	 animatesDrop to true because this is a pin view, and you want it
to drop onto the map the way pins are wont to do.

You set the pin color to purple and make sure that it can show a callout.	
After that, you use the GDC function 	 dispatch_after to call that private
method openCallout you created earlier. If you were using Objective-C,
you had the advantage of using the performSelector function that is no
longer available with Swift.

You can’t select an annotation until its view is actually being displayed 	
on the map, so you wait half a second to make sure that’s happened
before selecting. This will also make sure that the pin has finished
dropping before the callout is displayed.

You need to update the progress bar and text label to let the user know that 	
you’re almost done.

Then you return the annotation view. If the annotation wasn’t one 	
you recognize, you return nil and your map view will use the default
annotation view for that kind of annotation.

You implement 	 mapViewDidFailLoadingMap:withError: and inform the
user if there was a problem loading the map. Again, your error checking
in this application is rudimentary; you just inform the user and stop
everything.

func mapViewDidFailLoadingMap(mapView: MKMapView!, withError error: NSError!) {
 let title = NSLocalizedString("Error loading map", comment: "Error loading map")
 let message = error.localizedDescription

 showAlertWithCompletion(title, message: message, completion: {
 _ in
 self.progressBar.hidden = true
 self.progressLabel.text = ""
 self.button.hidden = false
 })
}

310 CHAPTER 10: Map Kit

In this situation, you do not need the UIAlertView as just a means of displaying an alert.
You can write another function showAlertWithBlock that takes the same parameters, title,
message, and a block to run on a button press as the handler. You also have an additional
parameter buttonTitle, and you are providing it a default value, so if you omit it while calling
the function, that value will be provided to the function. So, all alerts will show OK as the
default button unless you explicitly pass the buttonTitle with a value.

func showAlertWithCompletion(title:String,
 message: String,
 buttonTitle: String = "OK",
 completion:((alertAction: UIAlertAction!)->())!) {
 let alert = UIAlertController(title: title, message: message, preferredStyle: .Alert)
 let OKAction = UIAlertAction(title: buttonTitle, style: .Default, handler: completion)
 alert.addAction(OKAction)
 self.presentViewController(alert, animated: true, completion: nil)
}

You should now be able to build and run your application, so try it!

Note When running in the simulator, you may encounter problems. Try launching the

application, but before pressing the Go button, use the Location Simulator in the Debug

pane jump bar to set a location. Most importantly, with iOS 8, you need to also set the

NSLocationWhenInUseUsageDescription key in Info.plist for allowing your app to

get location updates.

Experiment with the code. Change the map type, add more annotations, or try
experimenting with custom annotation views.

Go East, Young Programmer
That brings us to the end of the discussion of Map Kit. You saw the basics of how to use
Map Kit, annotations, and the reverse geocoder. You saw how to create coordinate regions
and coordinate spans to specify what area the map view should show to the user, and
you’ve learned how to use Map Kit’s reverse geocoder to turn a set of coordinates into a
physical address.

Now, armed with your iPhone, Map Kit, and sheer determination, navigate your way one
page to the East, err…right, so that we can talk about iOS messaging.

311

Chapter 11
Messaging: Mail, Social,

and iMessage

Since the beginnings of the iOS SDK, Apple has provided the means for developers to send
messages. It started with the MessageUI framework, which allowed developers to add
support for sending e-mail message from within their applications. Then, Apple extended
the MessageUI framework to include SMS messages. With iOS 5, Apple added support
for Twitter with a new Twitter framework, and with iOS 6, Apple migrated from the Twitter
framework to the Social framework, adding support for Facebook, Sina Weibo, and Twitter.
In this chapter, we’ll go over how each messaging system works.

This Chapter’s Application
In this chapter, you’ll build an application that lets the user take a picture using their
iPhone’s camera; if they don’t have a camera because they’re using the simulator, then
you’ll allow them to select an image from the photo library. They can take the resulting
image and send it to a friend via e-mail, SMS, Facebook, or Twitter without leaving
the application.

Note Although it is possible to send a photo via the Messages application, Apple has not exposed

this functionality to developers. This functionality is called Multimedia Messaging Service (MMS).

The iOS SDK allows you to use Short Message Service (SMS) to send text messages only. As a result,

you’ll just be sending a text message in your application.

312 CHAPTER 11: Messaging: Mail, Social, and iMessage

Your application’s interface will be quite simple (Figure 11-1). It will feature a single button to
start the whole thing going. Tapping the button will bring up the camera picker controller, in a
manner similar to the sample program in Beginning iPhone Development with Swift. Once the
user has taken or selected an image, they’ll be able to crop and scale the image (Figure 11-2).
Assuming they don’t cancel, the image picker will return an image and an activity view to ask
the user how to send the message (Figure 11-3). Depending on their choice, you’ll display the
appropriate composition view (Figure 11-4). You’ll populate the composition view with text
and the selected image (unless it’s an SMS message). Finally, once the message is sent, you’ll
provide some feedback confirming that the message was sent.

Figure 11-1. The chapter’s application has a simple user interface consisting of a button

313CHAPTER 11: Messaging: Mail, Social, and iMessage

Figure 11-2. The user can take a picture with the camera or select an image from their photo library and then crop

and scale the image

314 CHAPTER 11: Messaging: Mail, Social, and iMessage

Figure 11-3. After selecting and editing the image, you present the message selector view

315CHAPTER 11: Messaging: Mail, Social, and iMessage

Caution The application in this chapter will run in the simulator, but instead of using the camera,

it will allow you to select an image from the simulator’s photo library. If you’ve ever used the Reset

Contents and Settings menu item in the simulator, then you have probably lost the photo album’s

default contents and will have no images available. You can rectify this by launching Mobile Safari in

the simulator and navigating to an image on the Web. Make sure the image you are looking at is not

a link but a static image. This technique will not work with a linked image. Click and hold the mouse

button with your cursor over an image, and an action sheet will pop up. One of the options will be

Save Image. This will add the selected image to your iPhone’s photo library.

In addition, note that you will not be able to send e-mail from within the simulator. You’ll be able

to create the e-mail, and the simulator will say it sent it, but it’s all lies. The e-mail just ends

up in the circular file.

Figure 11-4. Mail, Twitter, and Facebook compose views

316 CHAPTER 11: Messaging: Mail, Social, and iMessage

Note As of iOS 8.1, there is a known issue where the e-mail composer crashes on the simulator;

however, it works fine on an actual device.

The MessageUI Framework
To embed e-mail and SMS services in your application, use the MessageUI framework.
It is one of the smallest frameworks in the iOS SDK. It’s composed of two classes,
MFMailComposeViewController and MFMessageComposeViewController, and their
corresponding delegate protocols. To include them, you use the import keyword and
import the MessageUI framework for use.

import MessageUI

Since these view controllers rely on delegates, you also need to specify the delegate protocol
while declaring the class. The protocol used is MFMailComposeViewControllerDelegate or
MFMessageComposeViewControllerDelegate.

Each class comes with a static method to determine whether the device supports
the service. For MFMailComposeViewController, the method is canSendMail; for
MFMessageComposeViewController, the method is canSendText. It’s a good idea to check
whether your device can send an e-mail or SMS before attempting do so.

if MFMailComposeViewController.canSendMail() {
 // code to send email
 ...
}
if MFMessageComposeViewController.canSendText() {
 // code to send SMS
 ...
}

Let’s start by reviewing the e-mail class, MFMailComposeViewController.

Creating the Mail Compose View Controller
It’s simple to use the MFMailComposeViewController class. You create an instance, set its
delegate, set any properties that you want to prepopulate, and then present it modally.
When the user is done with their e-mail and taps either the Send or Cancel button, the mail
compose view controller notifies its delegate, which is responsible for dismissing the modal
view. Here’s how you create a mail compose view controller and set its delegate:

Let mc = MFMailComposeViewController()
mc.mailComposeDelegate = self

317CHAPTER 11: Messaging: Mail, Social, and iMessage

Note While most of the API simply sets the delegate, this needs mailComposeDelegate, so be

aware of that because it’s easy to forget.

Populating the Subject Line
Before you present the mail compose view, you can preconfigure the various fields of the
mail compose view controller, such as the subject and recipients (To, Cc, and Bcc), as
well as the body and attachments. You can populate the subject by calling the method
setSubject: on the instance of MFMailComposeViewController, like this:

mc.setSubject("Hello, World!")

Populating Recpiients
E-mails can go to three types of recipients. The main recipients of the e-mail are called the
to recipients and go on the line labeled To. Recipients who are being copied on the e-mail
go on the Cc line. If you want to include somebody on the e-mail but not let the other
recipients know that person is also receiving the e-mail, you can use the Bcc line, which
stands for “blind carbon copy.” You can populate all three of these fields when using
MFMailComposeViewController.

To set the main recipients, use the method setToRecipients: and pass in an Array instance
containing the e-mail addresses of all the recipients as strings. Here’s an example:

mc.setToRecipients(["manny.sullivan@me.com"])

Set the other two types of recipients in the same manner, though you’ll use the methods
setCcRecipients: for copied recipients and setBccRecipients: for blind-copied recipients.

mc.setCcRecipients(["maru@boxes.co.jp"])
mc.setBccRecipients(["lassie@helpfuldogs.org"])

Setting the Message Body
You can also populate the message body with any text you’d like. You can either use
a regular string to create a plain text e-mail or use HTML to create a formatted e-mail.
To supply the mail compose view controller with a message body, use the method
setMessageBody:isHTML:. If the string you pass in is plain text, you should pass false as the
second parameter, but if you’re providing HTML markup in the first argument rather than
a plain string, then you should pass true in the second argument so your markup will be
parsed before it is shown to the user.

mc.setMessageBody("Ohai!!!\n\nKThxBai", isHTML:false)
mc.setMessageBody("<HTML>Ohai
I can has cheezburger?</HTML>", isHTML:true)

318 CHAPTER 11: Messaging: Mail, Social, and iMessage

Adding Attachments
You can also add attachments to outgoing e-mails. To do so, you must provide an instance
of NSData containing the data to be attached, along with the MIME type of the attachment
and the file name to be used for the attachment. MIME types are used when retrieving from
or sending files to a web server, and they’re also used when sending e-mail attachments.
To add an attachment to an outgoing e-mail, use the method addAttachmentData:mimeType:
fileName:. Here’s an example of adding an image stored in your application’s bundle as an
attachment:

let path = NSBundle.mainBundle().pathForResource("surpriseCat" ofType:"png")
let data = NSData(dataWithContentsOfFile:path)
mc.addAttachmentData(data, mimeType:"image/png", filename:"CatPicture.png")

Presenting the Mail Compose View
Once you’ve configured the controller with all the data you want populated, you present the
controller’s view, as you’ve done before.

self.presentViewController(mc, animated:true, completion:nil)

The Mail Compose View Controller Delegate Method
The mail compose view controller delegate’s method is contained in the formal protocol
MFMailComposeViewControllerDelegate. Regardless of whether the user sends or cancels
and regardless of whether the system was able to send the message, the method mailCom
poseController:didFinishWithResult:error: gets called. As with most delegate methods,
the first parameter is a pointer to the object that called the delegate method. The second
parameter is a result code that tells you the fate of the outgoing e-mail, and the third is an
NSError instance that will give you more detailed information if a problem was encountered.
Regardless of what result code you received, it is your responsibility in this method to
dismiss the mail compose view controller by calling dismissModalViewControllerAnimated:.

If the user tapped the Cancel button, your delegate will be sent the result code
MFMailComposeResultCancelled. In that situation, the user changed their mind and decided
not to send the e-mail. If the user tapped the Send button, the result code is going to depend
on whether the MessageUI framework was able to successfully send the e-mail. If it was able
to send the message, the result code will be MFMailComposeResultSent. If it tried and failed,
the result code will be MFMailComposeResultFailed, in which case you probably want to check
the provided NSError instance to see what went wrong. If the message couldn’t be sent
because there’s currently no Internet connection but the message was saved into the outbox
to be sent later, you will get a result code of MFMailComposeResultSaved. However, in Swift,
the result is a structure, and therefore you need to check the values contained in it by using
its property value.

319CHAPTER 11: Messaging: Mail, Social, and iMessage

Here is a simple implementation of the delegate method that just prints to the console what
happened:

func mailComposerController(controller: MFMailComposeViewController!, didFinishWithResult
result:MFMailComposeResult, error:NSError!){
 switch result.value {
 case MFMailComposeResultCancelled.value:
 println("Mail send cancelled...")
 case MFMailComposeResultCancelled.value:
 println("Mail send cancelled...")
 case MFMailComposeResultCancelled.value:
 println("Mail send cancelled...")
 default:
 break
 }
 controller.dismissViewControllerAnimated(true, completion:nil)
}

Message Compose View Controller
MFMessageComposeViewController is similar but simpler than its e-mail counterpart. First, you
create an instance and set its delegate.

let mc = MFMessageComposeViewController()
mc.messageComposeDelegate = self

Like the Mail Composer, it is always suggested that you check whether the device is able
to send messages prior to attempting to send one using the canSendText function, which
returns a true or false. This is related only to the ability to be able to send text messages
via MMS, iMessage, or SMS.

There are a couple of properties that you can populate: recipients, subject, body, and
attachments. Unlike with e-mail, these can be accessed via direct properties on the class, as
well as via the method accessors. recipients is an array of strings, where each string is a
contact name from your Address Book or phone number. subject is the initial subject of the
message, body is the message you want to send, and attachments is an array of dictionaries
that describe the properties of an attachment.

mc.recipients = ["Mihir"]
mc.body = "Hello, Mihir!"
mc.subject = "My WWDC Trip"

A note of caution: if you test this code in the simulator, it does not have the ability to send
messages. When a new controller is instantiated, it would return a nil if it does not support
sending messages, and passing a nil to presentViewController will result in a crash.
You must therefore first check whether the device is capable of sending text using the
canSendText method like so:

if MFMessageComposeViewController.canSendText() {
 // do all your stuff here
}

320 CHAPTER 11: Messaging: Mail, Social, and iMessage

The message compose view controller delegate method behaves identically to its e-mail
counterpart. There are only three possible results when sending an SMS: cancelled,
sent, or failed.

func messageComposeViewController (controller: MFMessageComposeViewController!,
 didFinishWithResult result: MessageComposeResult)
{
 switch result.value
 {
 case MessageComposeResultCancelled.value:
 println("SMS sending canceled")
 case MessageComposeResultSent.value:
 println("SMS sent")
 case MessageComposeResultFailed.value:
 println ("SMS sending failed")
 default:
 println ("SMS not sent")
 }
 controller.dismissViewControllerAnimated(true, completion:nil)
}

Message Attachments
With iOS 7.0, Apple introduced the functionality to add attachments to Messages. However,
before you can attach a message, you would need to confirm if you are allowed to send
attachments via MMS or iMessage. The function canSendAttachments returns a true or false
depending on if you can include attachments.

You can use addAttachmentData:typeIdentifier:filename: to add file data as the
attachment. It is similar to the same way you add an attachment to the Mail composer
earlier, where the contents of the file are passed to the function as an NSData object. The
only difference is that instead of a MIME type, you provide a uniform type identifier (UTI)
to this function. A sample UTI looks like public.jpeg or com.myapp.photo and also has
constants like kUTTypePNG and kUTTypeJPEG.

let path = NSBundle.mainBundle().pathForResource("surpriseCat", ofType:"png")
let data = NSData(dataWithContentsOfFile:path)
mc.addAttachmentData(data, typeIdentifier:"image/png" fileName:"Cat.png")

Another method of adding attachments is from a URL using addAttachmentData:withAlterna
tiveFilename: where you could pass an alternative name to display for that link’s file name.

Disabling Message Attachments
With an app linked to an older version of iOS, the camera and attachments are not available.
With iOS 7.0 and newer, you can disable the camera/attachment buttons using the
disableUserAttachments method.

321CHAPTER 11: Messaging: Mail, Social, and iMessage

The Social Framework
In iOS 5, Apple tightly integrated with Twitter (www.twitter.com). Basically, your Twitter account
was available from the system. As a result, it was easy to send messages (tweets) to Twitter
or perform Twitter API requests. In iOS 6, Apple abstracted and extended this feature into the
Social framework. Along with Twitter, Apple integrated identical functionality for Facebook and
Sina Weibo. To use this framework in your code, you need to import the Social framework.

import Social

SLComposeViewController
SLComposeViewController is similar in design and principle to the e-mail and message
view controller classes in the Message UI framework. However, there isn’t a corresponding
delegate class. Rather, SLComposeViewController has a completion handler property that can
be assigned a block.

To confirm that your application can use a service, you call the static method
isAvailableForServiceType. For example, the check to see whether you can send to
Facebook is as follows:

if SLComposeViewController.isAvailableForServiceType(SLServiceTypeFacebook) {
 // code to send message to Facebook
 ...
}

isAvailableForServiceType takes a String argument of possible service type constants.
These service types are defined in the header file SLServiceTypes.h. Currently, Apple defines
the following service type constant:

let SLServiceTypeFacebook: NSString!
let SLServiceTypeTwitter: NSString!
let SLServiceTypeTencentWeibo: NSString!
let SLServiceTypeSinaWeibo: NSString!

If you are able to send a send a message to the service, you start by creating an instance of
the view controller.

let composeVC = SLComposeViewController(forServiceType: SLServiceTypeTwitter)

This example would create a view controller for sending a tweet. You’re able to set the initial
text, add images, and add URLs before presenting the view controller.

composeVC.setInitialText("Hello, Twitter!")

let image = UIImage(named:"surprisedCat.png")
composeVC.addImage(image)

let url = NSURL(string: "http://www.google.com/doodles/end-of-the-mayan-calendar")
composeVC.addURL(url)

http://www.twitter.com/

322 CHAPTER 11: Messaging: Mail, Social, and iMessage

These methods return true on success and false on failure.

There are two convenience methods, removeAllImages and removeAllURLs, to remove any
images or URLs you’ve added.

As mentioned earlier, you don’t assign a delegate to handle message completion. Rather,
you set the completionHandler property with a block.

composeVC.completionHandler = {
 result in
 switch result {
 case .Cancelled:
 println("Message cancelled.")
 case .Done:
 println("Message sent.")
 default:
 break
 }
 self.dismissModalViewControllerAnimated(true, completion:nil)
}

The block accepts one argument, which tells the result of the message. Again, you are expected
to dismiss the view controller with a call to dismissModalViewControllerAnimated:completion:.

SLRequest
SLComposeViewController is fine if you just want to post messages. What if you want to
take advantage of the APIs these social media services offer? In that case, you want to
use SLRequest, which is basically a wrapper around an HTTP request that handles the
authentication between your application and the social media service.

To create a request, you call the class method requestForServiceType:requestMethod:
URL:parameters:.

let request = SLRequest(forServiceType: SLServiceTypeFacebook, requestMethod:
SLRequestMethod.POST, URL:url, parameters:params)

The first argument is the same service type String constant used in
SLComposeViewController. requestMethod: is a subset of HTTP actions: GET, POST, PUT,
and DELETE. Apple has defined an enumeration for this subset: SLRequestMethod.

SLRequestMethod.GET
SLRequestMethod.POST
SLRequestMethod.PUT
SLRequestMethod.DELETE

323CHAPTER 11: Messaging: Mail, Social, and iMessage

URL: is a URL defined by the service provider. This is usually not the public “www” URL
of the service. For example, Twitter’s URL begins with http://api.twitter.com/. Finally,
parameters: is a dictionary of HTTP parameters to send to the service. This dictionary object
is defined as follows:

var params: [NSObject:AnyObject]

The contents of the dictionary depend on the service being called.

Once you’ve composed your request, you send it to the service provider.

request.performRequestWithHandler({
 (responseData:NSData!, urlResponse:NSHTTPURLResponse!, error:NSError!) -> () in
 // Handle the response, process the data or error
})

It is good practice to write code with the data types and return types in the handler blocks.
In the previous example, it is easier to simply write the code as follows:

request.performRequestWithHandler({
 (responseData, urlResponse, error) in
 // Handle the response, process the data or error
})

The handler is a block that returns the HTTP response object, along with any accompanying
data. An error object is returned, which will be non-nil if an error occurred.

The Activity View Controller
In iOS 6, Apple introduced a new way to access the various services from within an application:
the activity view controller (UIActivityViewController). In addition to giving applications
access to standard iOS services, like copy and paste, the activity view controller provides a
single unified interface for applications to send e-mail, send SMS messages, or post content
to social media services. You can even define your own custom service.

Using an activity view controller is simple. Initialize the activity view controller with the items
you want to send (such as text, images, and so on) and push it onto your current view
controller.

var text = "some text"
var image = UIImage(named: "someimage.png")
var items = [text, image]
let activityVC = UIActivityViewController(activityItems:items, applicationActivities:nil)
self.presentViewController(activityVC, animated:true, completion:nil)

That’s it. Pretty simple, right?

So, all the magic happens here:

let activityVC = UIActivityViewController(activityItems:items, applicationActivities:nil)

http://api.twitter.com/

324 CHAPTER 11: Messaging: Mail, Social, and iMessage

When you instantiate an activity view controller, you pass it an array of activity items. An
activity item can be any object, and it depends on the application and activity service target.
In the previous example code, the activity items were a string and an image. If you want
to use a custom object as an activity item, have it conform to the UIActivityItemSource
protocol. Then you will have complete control over how your custom objects present their
data to the activity view controller.

applicationActivities: expects an array of UIActivity objects. If passed a value of nil,
then the activity view controller will use a default set of Activity objects. Remember we
said earlier you could define your own custom service? You accomplish that by subclassing
UIActivity to define the communication to your service. Then you pass in your subclass as
part of the array of application activities.

Similarly, you can restrict what you want to display as part of the UIActivity. This is really
simple; you can have an array of the items that you do not want to display and then assign
them to the excludeActivityTypes property of the UIActivityViewController.

var excludeItems = [UIActivityTypePostToTwitter, UIActivityTypePostToFacebook,
 UIActivityTypePostToWeibo,UIActivityTypeMessage, UIActivityTypeMail,UIActivityTypePrint,
UIActivityTypeCopyToPasteboard,UIActivityTypeAssignToContact,
UIActivityTypeSaveToCameraRoll,UIActivityTypeAddToReadingList,
UIActivityTypePostToFlickr,UIActivityTypePostToVimeo, UIActivityTypePostToTencentWeibo]
activityVC.excludeActivityTypes = excludeItems

This will therefore show only the AirDrop option and hide all the others.

For the purposes of this chapter, you’ll just use the default list of application activities.
Ready? Let’s go!

Building the MessageImage Application
Create a new project in Xcode using the Single View Application template. Call the project
MessageImage.

Building the User Interface
Look back at Figure 11-1. The interface is pretty simple: a single button labeled Go.
When you press the button, the application will activate your device’s camera and allow you
to take a picture.

Select Main.storyboard.

From the library, drag over a button and place it anywhere onto the view. Double-click the
button and give it a title of Go. Enter the Assistant editor (+z+Enter), which should split
the Editor pane and then open ViewController.swift. Control-drag from the Go button to
between the @interface and @end in ViewController.swift. Add a new action and name
it selectAndMessageImage. Add constraints to center the button horizontally and vertically
via the align button or simply Control-drag from the button downward and select Center
Horizontally in Container; similarly, Control-drag to the right and select Center Vertically
in Container.

325CHAPTER 11: Messaging: Mail, Social, and iMessage

Next, drag a label from the library to the view window. Place the label above the button
and set constraints via the align button or simply Control-drag from the label to the left and
select Center Horizontally in Container. Next Control-drag from the label to the button and
select the Vertical Spacing constraint. In the Attributes Inspector, change the text alignment
to centered. Control-drag from the label to above the selectAndMessageImage: action you just
created in ViewController.swift. Add a new outlet and name it label. Finally, double-click the
label and erase the text Label.

Save the storyboard.

Taking the Picture
Click ViewController.swift. You need your view controller to conform to two delegate protocols.

class ViewController : UIViewController ,UINavigationControllerDelegate,
 UIImagePickerControllerDelegate

This is because the image picker controller you’ll be using expects its delegate to conform to
both UINavigationControllerDelegate and UIImagePickerControllerDelegate. You’re using
the image picker controller so you can use the camera and select an image to send. Now
you need to add a property for the image you’ll select.

var image:UIImage!

That’s all you need for now. Let’s move on to the view controller implementation file.

Calling the Camera
Select ViewController.swift to open it in the editor.

You need to implement the action method when the button is pressed.

@IBAction func selectAndMessageImage(sender: AnyObject)
{
 var sourceType = UIImagePickerControllerSourceType.Camera
 if !UIImagePickerController.isSourceTypeAvailable(sourceType) {
 sourceType = UIImagePickerControllerSourceType.PhotoLibrary
 }

 var picker = UIImagePickerController()
 picker.delegate = self
 picker.allowsEditing = true
 picker.sourceType = sourceType
 self.presentViewController(picker, animated:true completion:nil)
}

326 CHAPTER 11: Messaging: Mail, Social, and iMessage

Once the Go button is pressed, you set the image source to be the device’s camera. If the
camera is not available (if you’re running on the simulator), you fall back to using the photo
library. You set the image picker delegate to be your view controller and allow the image to
be edited. Finally, you display the image picker.

Since you set your view controller to be the image picker’s delegate, you can add the
delegate methods you need. Add the following after the selectAndMessageImage: method:

//MARK: - UIImagePickerController Delegate Methods

func imagePickerController (picker: UIImagePickerController!,
 didFinishPickingMediaWithInfo info:[NSObject: AnyObject]!)
{
 picker.dismissViewControllerAnimated(true, completion:nil)
 self.image = info[UIImagePickerControllerEditedImage] as UIImage
}

func imagePickerControllerDidCancel(picker: UIImagePickerController!)
{
 picker.dismissViewControllerAnimated(true completion:nil)
}

Both methods dismiss the image picker, but imagePickerController:didFinishPickingMedi
aWithInfo: also sets your image property to the picture you took (or chose).

Let’s make sure everything is working. Run the application, take a picture, and click Use.
Nothing should happen, but that’s OK. That’s because you have assigned it to an
UIImage; if you wanted to show it on the screen, you need an UIImageView to display it.

Picking the Message Sender
Figure 11-3 shows the activity view controller that gets exposed after you select a picture.
Let’s set that up.

First, you’ll define a method to show the activity view controller. Open ViewController.swift
and add the showActivityIndicator method. We added ours after selectAndMessageImage:.

func showActivityIndicator()
{
 var message = NSLocalizedString("I took a picture on my iPhone",
 comment:"I took a picture on my iPhone")
 var activityItems = [message, self.image]
 var activityVC =
 UIActivityViewController(activityItems:activityItems
 applicationActivities:nil)
 self.presentViewController(activityVC, animated:true, completion:nil)
}

327CHAPTER 11: Messaging: Mail, Social, and iMessage

Now, you need to call the showActivityIndicator method after you’ve picked your picture.
Add the following line to the end of imagePickerController:didFinishPickingMediaWit
hInfo:. You need to delay the presentation of the activity view controller slightly to allow
UIImagePickerController time to be removed from the root view controller.

NSTimer.scheduledTimerWithTimeInterval(0.5, target: self,
 selector: "showActivityIndicator", userInfo: nil, repeats: false)

Check your work so far. Run the application and confirm the alert sheet appears. That’s it.
Wow, that was simple.

Note If you select a service and haven’t configured your account information, iOS will pop up an

alert telling you to set up an account.

Mailing It In...
In the course of this chapter, you saw how to send an e-mail, an SMS message, or a post to
social media services. You should be able to add this functionality to any of your applications.

329

Chapter 12
Media Library Access

and Playback

Every iOS device, at its core, is a first-class media player. Out of the box, people can listen
to music, podcasts, and audio books, as well as watch movies and videos.

iOS SDK applications have always been able to play sounds and music, but Apple has been
extending the functionality with each iOS release. iOS 3 gave us the MediaPlayer framework,
which, among other things, provided access to the user’s audio library; iOS 5 extended
this by giving us access to video stored in the user’s library. iOS 7 further gave us speech
synthesis and text-to-speech, which are used extensively in powering Siri.

iOS 4 extended the AVFoundation framework, which offers finer control of playing, recording,
and editing of media. This control comes at a cost because most of the MediaPlayer
framework’s functionality is not directly implemented in AVFoundation. Rather, AVFoundation
lets you implement custom controls for your specific needs.

In this chapter, you’ll develop three applications: a simple audio player, a simple video
player, and a combined audio/video player. The first two will use the MediaPlayer framework
exclusively. The final application will use the MediaPlayer framework to access the user’s
media library but then use AVFoundation for playback.

The MediaPlayer Framework
The methods and objects used to access the media library are part of the MediaPlayer
framework, which allows applications to play both audio and video. While the framework
gives you access to all types of media from the user’s library, there are some limitations that
only allow you to work with audio files.

330 CHAPTER 12: Media Library Access and Playback

The collection of media on your iOS device was once referred as the iPod library, a term that
we will use interchangeably with media library. The latter is probably more accurate because
Apple renamed the music player from iPod to Music and moved video media into an
application called Videos. More recently, Apple has gone even further, creating a Podcasts
application to handle your podcast collections.

From the perspective of the MediaPlayer framework, the entire media library is represented
by the class MPMediaLibrary. You won’t use this object often, however. It’s primarily used
only when you need to be notified of changes made to the library while your application is
running. It was rare for changes to be made to the library while your application was running,
since such changes usually happened as the result of synchronizing your device with your
computer. Nowadays, you can synchronize your music collection directly with the iTunes
Store, so you may need to monitor changes in the media library.

A media item is represented by the class MPMediaItem. If you want to play songs from
one of your user’s playlists, you will use the class MPMediaPlaylist, which represents the
playlists that were created in iTunes and synchronized to your user’s device. To search
for either media items or playlists in the iPod library, you use a media query, which is
represented by the class MPMediaQuery. Media queries will return all media items or playlists
that match whatever criteria you specify. To specify criteria for a media query, you use a
special media-centric form of predicate called a media property predicate, represented by
the class MPMediaPropertyPredicate.

Another way to let your user select media items is to use the media picker controller, which
is an instance of MPMediaPickerController. The media picker controller allows your users
to use the same basic interface they are accustomed to using from the iPod or Music
application.

You can play media items using a player controller. There are two kinds of player controllers:
MPMusicPlayerController and MPMoviePlayerController. The MPMusicPlayerController is
not a view controller. It is responsible for playing audio and managing a list of audio items
to be played. Generally speaking, you are expected to provide any necessary user interface
elements, such as buttons to play, pause, skip forward, or backward. The MediaPlayer
framework provides a view controller class, MPMoviePlayerViewController, to allow for the
simple management of a full-screen movie player within your applications.

If you want to specify a list of media items to be played by a player controller, you use a
media item collection, represented by instances of the class MPMediaItemCollection. Media
item collections are immutable collections of media items. A media item may appear in
more than one spot in the collection, meaning you could conceivably create a collection that
played “Happy Birthday to You” a thousand times, followed by a single playing of “Rock the
Casbah.” You could do that…if you really wanted.

331CHAPTER 12: Media Library Access and Playback

Media Items
The class that represents media items, MPMediaItem, works a little differently than most other
classes. You would probably expect MPMediaItem to include properties for things like title,
artist, album name, and the like. But that is not the case. Other than those inherited from
NSObject and the two NSCoding methods used to allow archiving, MPMediaItem includes only
a single instance method called valueForProperty:.

valueForProperty: works much like an instance of NSDictionary, only with a limited set of
defined keys. So, for example, if you wanted to retrieve a media item’s title, you would call
valueForProperty: and specify the key MPMediaItemPropertyTitle, and the method would
return an NSString instance with the audio track’s title. Media items are immutable on the
iOS, so all MPMediaItem properties are read-only.

Some media item properties are said to be filterable. Filterable media item properties are
those that can be searched on, a process you’ll look at a little later in the chapter.

Media Item Persistent ID

Every media item has a persistent identifier (or persistent ID), which is a number associated
with the item that won’t ever change. If you need to store a reference to a particular media
item, you should store the persistent ID because it is generated by iTunes, and you can
count on it staying the same over time.

You can retrieve the persistent ID of a media track using the property key
MPMediaItemPropertyPersistentID, like so:

var persistentID = mediaItem.valueForProperty(MPMediaEntityPropertyPersistentID) as Int

The persistent ID is a filterable property, which means you can use a media query to find an
item based on its persistent ID. Storing the media item’s persistent ID is the surest way to
guarantee you’ll get the same object each time you search. We’ll talk about media queries
a bit later in the chapter.

Media Type

All media items have a type associated with them. Currently, media items are classified using
three categories: audio, video, and generic. You can determine a particular media item’s type
by asking for the MPMediaItemPropertyMediaType property, like so:

var mediaType = mediaItem.valueForProperty(MPMediaItemPropertyMediaType) as UInt

Media items are represented as the MPMediaItem, which has a couple of constants that can
help determine the particular media type.

Here is a list of the current constants

	MPMediaType.Music: Used to check whether the media is music

	MPMediaType.Podcast: Used to check whether the media is an
audio podcast

332 CHAPTER 12: Media Library Access and Playback

	MPMediaType.AudioBook: Used to check whether the media is an
audio book

	MPMediaType.AudioAny: Used to check whether the media is any
audio type

	MPMediaType.Movie: Used to check whether the media is a movie

	MPMediaType.TVShow: Used to check whether the media is a
television show

	MPMediaType.VideoPodcast: Used to check whether the media is a
video podcast

	MPMediaType.MusicVideo: Used to check whether the media is a
music video

	MPMediaType.ITunesU: Used to check whether the media is an iTunes
University video

	MPMediaType.AnyVideo: Used to check whether the media is any
video type

	MPMediaType.Any: Used to check whether the media is any known type

To check whether a given item contains music, for example, you take the mediaType you
retrieved and do this:

if mediaType == MPMediaType.Music.rawValue {

}

The media type is a filterable property, so you can specify in your media queries (which we’ll
talk about shortly) that they should return media of only specific types.

Filterable Properties

There are several properties that you might want to retrieve from a media item,
including the track’s title, its genre, the artist, and the album name. In addition to
MPMediaItemPropertyPersistentID and MPMediaItemPropertyMediaType, here are the
filterable property constants you can use:

	MPMediaItemPropertyAlbumPersistentID: Returns the item’s album’s
persistent ID

	MPMediaItemPropertyArtistPersistentID: Returns the item’s artist’s
persistent ID

	MPMediaItemPropertyAlbumArtistPersistentID: Returns the item’s
album’s principal artist’s persistent ID

	MPMediaItemPropertyGenrePersistentID: Returns the item’s genre’s
persistent ID

333CHAPTER 12: Media Library Access and Playback

	MPMediaItemPropertyComposerPersistentID: Returns the item’s
composer’s persistent ID

	MPMediaItemPropertyPodcastPersistentID: Returns the item’s
podcast’s persistent ID

	MPMediaItemPropertyTitle: Returns the item’s title, which usually means
the name of the song

	MPMediaItemPropertyAlbumTitle: Returns the name of the item’s album

	MPMediaItemPropertyArtist: Returns the name of the artist who
recorded the item

	MPMediaItemPropertyAlbumArtist: Returns the name of the principal
artist behind the item’s album

	MPMediaItemPropertyGenre: Returns the item’s genre (for example,
classical, rock, or alternative)

	MPMediaItemPropertyComposer: Returns the name of the item’s composer

	MPMediaItemPropertyIsCompilation: If the item is part of a compilation,
returns true

	MPMediaItemPropertyPodcastTitle: If the track is a podcast, returns the
podcast’s name

Although the title and artist will almost always be known, none of these properties are
guaranteed to return a value, so it’s important to code defensively any time your program
logic includes one of these values. Although unlikely, a media track can exist without a
specified name or artist.

Here’s an example that retrieves a string property from a media item:

var title = mediaItem.valueForProperty(MPMediaItemPropertyTitle) as String

Nonfilterable Numerical Attributes

Nearly anything that you can determine about an audio or video item in iTunes can be
retrieved from a media item. The values in the following list are not filterable—in other words,
you can’t use them in your media property predicates. You can’t, for example, retrieve all the
tracks that are longer than four minutes in length. But once you have a media item, there’s a
wealth of information available about that item.

	MPMediaItemPropertyPlaybackDuration: Returns the length of the track
in seconds

	MPMediaItemPropertyAlbumTrackNumber: Returns the number of this
track on its album

	MPMediaItemPropertyAlbumTrackCount: Returns the number of tracks on
this track’s album

	MPMediaItemPropertyDiscNumber: If the track is from a multiple-album
collection, returns the track’s disc number

334 CHAPTER 12: Media Library Access and Playback

	MPMediaItemPropertyDiscCount: If the track is from a multiple-album
collection, returns the total number of discs in that collection

	MPMediaItemPropertyBeatsPerMinute: Returns the beats per minute of
the item

	MPMediaItemPropertyReleaseDate: Returns the release date of the item

	MPMediaItemPropertyComments: Returns the item’s comments entered in
the Get Info tab

Numeric attributes are always returned as instances of NSNumber. The track duration is an
NSTimeInterval, which is a Double in Swift and can be retrieved by simply casting the result
as Double. The rest are unsigned integers that can be retrieved using the Int method.

Here are a few examples of retrieving numeric properties from a media item:

var durationNum = mediaItem.valueForProperty(MPMediaItemPropertyPlaybackDuration) as Double
var trackNum = mediaItem.valueForProperty(MPMediaItemPropertyAlbumTrackNumber) as Int

Retrieving Lyrics

If a media track has lyrics associated with it, you can retrieve those using the property key
MPMediaItemPropertyLyrics. The lyrics will be returned in an instance of String, like so:

var lyrics = mediaItem.valueForProperty(MPMediaItemPropertyLyrics) as String

Retrieving Album Artwork

Some media tracks have a piece of artwork associated with them. In most instances, this
will be the track’s album’s cover picture, though it could be something else. You retrieve
the album artwork using the property key MPMediaItemPropertyArtwork, which returns an
instance of the class MPMediaItemArtwork. The MPMediaItemArtwork class has a method that
returns an instance of UIImage to match a specified size. Here’s some code to get the album
artwork for a media item that would fit into a 100-by-100 pixel view:

var art = mediaItem.valueForProperty(MPMediaItemPropertyArtwork) as MPMediaItemArtwork
var imageSize = CGSizeMake(100, 100)
var image = art.imageWithSize(imageSize)

User-Defined Properties

Another set of data that you can retrieve from a media item is termed user-defined. These
are properties set on the media item based on the user’s interaction. These include
properties such as play counts and ratings.

	MPMediaItemPropertyPlayCount: Returns the total number of times that
this track has been played

	MPMediaItemPropertySkipCount: Returns the total number of times this
track has been skipped

335CHAPTER 12: Media Library Access and Playback

	MPMediaItemPropertyRating: Returns the track’s rating, or 0 if the track
has not been rated

	MPMediaItemPropertyLastPlayedDate: Returns the date the track was
last played

	MPMediaItemPropertyUserGrouping: Returns the information from the
Grouping tab from the iTunes Get Info panel

AssetURL Property

There is one last property to discuss, which was added in iOS 4, for use in AVFoundation.
We’ll mention it here but discuss it later.

	MPMediaItemPropertyAssetURL: An NSURL pointing to a media item in the
user’s media library

Media Item Collections
Media items can be grouped into collections, creatively called media item collections. In fact,
this is how you specify a list of media items to be played by the player controllers. Media
item collections, which are represented by the class MPMediaItemCollection, are immutable
collections of media items. You can create new media item collections, but you can’t change
the contents of the collection once it has been created.

Creating a New Collection

The easiest way to create a media item collection is to put all the media items you want to
be in the collection into an instance of NSArray, in the order you want them. You can then
pass the instance of NSArray to the factory method collectionWithItems:, like so:

var items = [mediaItem1, mediaItem2]
var collection = MPMediaItemCollection(items: items)

Retrieving Media Items

To retrieve a specific media item from a media item collection, you use the instance method
items, which returns an NSArray instance containing all of the media items in the order they
exist in the collection. If you want to retrieve the specific media item at a particular index, for
example, you would do this:

var item = mediaCollection.items[5] as MPMediaItem

or

var item = (mediaCollection.items as NSArray).objectAtIndex(5) as MPMediaItem

336 CHAPTER 12: Media Library Access and Playback

Creating Derived Collections

Because media item collections are immutable, you can’t add items to a collection, nor can
you append the contents of another media item collection onto another one. Since you can
get to an array of media items contained in a collection using the instance method items,
however, you can make a mutable copy of the items array, manipulate the mutable array’s
contents, and then create a new collection based on the modified array.

Here’s some code that appends a single media item onto the end of an existing collection:

var items = originalCollection.items
items.append(mediaItem)
var newCollection = MPMediaItemCollection(items: items)

Similarly, to combine two different collections, you combine their items and create a new
collection from the combined array:

var items = firstCollection.items
items.extend(secondCollection.items)
var newCollection = MPMediaItemCollection(items: items)

To delete an item or items from an existing collection, you can use the same basic
technique. You can retrieve a mutable copy of the items contained in the collection, delete
the ones you want to remove, and then create a new collection based on the modified copy
of the items, like so:

var items = NSMutableArray(array: originalCollection.items)
items.removeObject(itemToDelete)

var newCollection = MPMediaItemCollection(items: items)

Media Queries and Media Property Predicates
To search for media items in the media library, you use media queries, which are instances
of the class MPMediaQuery. A number of factory methods can be used to retrieve media items
from the library sorted by a particular property. For example, if you want a list of all media
items sorted by artist, you can use the artistsQuery class method to create an instance of
MPMediaQuery configured, like this:

var artistQuery = MPMediaQuery.artistsQuery()

Table 12-1 lists the factory methods on MPMediaQuery.

337CHAPTER 12: Media Library Access and Playback

These factory methods are useful for displaying the entire contents of the user’s library that
meet preset conditions. That said, you will often want to restrict the query to an even smaller
subset of items. You can do that using a media predicate. Media predicates can be created
on any of the filterable properties of a media item, including the persistent ID, media type, or
any of the string properties (such as title, artist, or genre).

To create a media predicate on a filterable property, use the class MPMediaPropertyPredicate.
Create new instances using the factory method predicateWithValue:forProperty:comparisonType:.
Here, for example, is how to create a media predicate that searches for all songs with the
title “Happy Birthday”:

var titlePredicate = MPMediaPropertyPredicate(
 value: "Happy Birthday",
 forProperty: MPMediaItemPropertyTitle,
 comparisonType: MPMediaPredicateComparison.Contains)

The first value you pass—in this case, "Happy Birthday"—is the comparison value. The second
value is the filterable property you want that comparison value compared to. By specifying
MPMediaItemPropertyTitle, you’re saying you want the song titles compared to the string
"Happy Birthday". The last item specifies the type of comparison to do. You can pass
MPMediaPredicateComparison.EqualTo to look for an exact match to the specified string, or
you can pass MPMediaPredicateComparison.Contains to look for any item that contains the
passed value as a substring.

Table 12-1. MPMediaQuery Factory Methods

Factory Method Included Media Types Grouped/Sorted By

albumsQuery Music Album

artistsQuery Music Artist

audiobooksQuery Audio Books Title

compilationsQuery Any Album*

composersQuery Any Composer

genresQuery Any Genre

playlistsQuery Any Playlist

podcastsQuery Podcasts Podcast Title

songsQuery Music Title

*Includes only albums with MPMediaItemPropertyIsCompilation set to true.

Note Media queries are always case-insensitive, regardless of the comparison type used.

Therefore, the preceding example would also return songs called “HAPPY BIRTHDAY” and

“Happy BirthDAY.”

338 CHAPTER 12: Media Library Access and Playback

Because you’ve passed MPMediaPredicateComparison.Contains, this predicate would match
“Happy Birthday, the Opera” and “Slash Sings Happy Birthday,” in addition to plain old
“Happy Birthday.” Had you passed MPMediaPredicateComparison.EqualTo, then only the last
one—the exact match—would be found.

You can create and pass multiple media property predicates to a single query. If you do, the
query will use the AND logical operator and return only the media items that meet all of your
predicates.

To create a media query based on media property predicates, you use the init method
initWithFilterPredicates: and pass in an instance of NSSet containing all the predicates
you want it to use, like so:

var query = MPMediaQuery(filterPredicates: NSSet(object: titlePredicate))

Once you have a query—whether it was created manually or retrieved using one of the factory
methods—there are two ways you can execute the query and retrieve the items to be displayed.

You can use the items property of the query, which returns an instance 	
of NSArray containing all the media items that meet the criteria specified
in your media property predicates, like so:

var items = query.items as NSArray

You can use the property collections to retrieve the objects grouped by 	
one of the filterable properties. You can tell the query which property to
group the items by setting the groupingType property to the property
key for the filterable attribute you want it grouped by. If you don’t set
groupingType, it will default to grouping by title.

When you access the collections property, the query will instead return an array of
MPMediaItemCollections, with one collection for each distinct value in your grouping type.
So, if you specified a groupingType of MPMediaGroupingArtist, for example, the query would
return an array with one MPMediaItemCollection for each artist who has at least one song
that matches your criteria. Each collection would contain all the songs by that artist that
meet the specified criteria. Here’s what that might look like in code:

query.groupingType = MPMediaGrouping.Artist

 var collections = query.collections
 for oneCollection in collections {
 // oneCollection has all the songs by one artist that met the criteria
 }

You need to be careful with media queries. They are synchronous and happen in the main
thread, so if you specify a query that returns 100,000 media items, your user interface is
going to hiccup while those items are found, retrieved, and stored in collections or an array.
If you are using a media query that might return more than a dozen or so media items, you
might want to consider moving that action off the main thread.

339CHAPTER 12: Media Library Access and Playback

The Media Picker Controller
If you want to let your users select specific media items from their library, you’ll want to use
the media picker controller. The media picker controller lets your users choose audio from
their iPod library using an interface that’s nearly identical to the one in the Music application
they’re already used to using. Your users will not be able to use Cover Flow, but they will be
able to select from lists sorted by song title, artist, playlist, album, and genre, just as they
can when selecting music in the Music application (Figure 12-1).

Figure 12-1. The media picker controller by artist, song, and album

The media picker controller is extremely easy to use. It works just like many of the other
provided controller classes covered in the previous chapters, such as the image picker
controller and the mail compose view controller that you used in Chapter 11. Create an
instance of MPMediaPickerController, assign it a delegate, and then present it modally, like so:

var picker = MPMediaPickerController(mediaTypes: MPMediaType.Music)
picker.delegate = self
picker.allowsPickingMultipleItems = true
picker.prompt = NSLocalizedString("Seletct items to play",
 comment: "Seletct items to play")
self.presentViewController(picker, animated: true, completion: nil)

When you create the media picker controller instance, you need to specify a media
type. This can be one of the three audio types mentioned earlier—MPMediaType.Music,
MPMediaType.Podcast, or MPMediaType.AudioBook. You can also pass MPMediaType.AnyAudio,
which will currently return any audio item.

340 CHAPTER 12: Media Library Access and Playback

Note Passing nonaudio media types will not cause any errors in your code, but when the media

picker appears, it will only display audio items.

Also notice that you need to tell the media picker controller to allow the user to select
multiple items. The default behavior of the media picker is to let the user choose one, and
only one, item. If that’s the behavior you want, then you don’t have to do anything, but if you
want to let the user select multiple items, you must explicitly tell it so.

The media picker also has a property called prompt, which is a string that will be displayed
above the navigation bar in the picker (see the top of Figure 12-1). This is optional but
generally a good idea.

The media picker controller’s delegate needs to conform to the protocol
MPMediaPickerControllerDelegate. This defines two methods: one that is called if the user
taps the Cancel button and another that is called if the user chooses one or more songs.

Handling Media Picker Cancels

If, after you present the media picker controller, the user hits the Cancel button, the delegate
method mediaPickerDidCancel: will be called. You must implement this method on the
media picker controller’s delegate, even if you don’t have any processing that needs to be
done when the user cancels, since you must dismiss the view controller. Here is a minimal,
but fairly standard, implementation of that method:

func mediaPickerDidCancel(mediaPicker: MPMediaPickerController) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

Handling Media Picker Selections

If the user selected one or more media items using the media picker controller, then the
delegate method mediaPicker:didPickMediaItems: will be called. This method must be
implemented, not only because it’s the delegate’s responsibility to dismiss the media picker
controller but also because this method is the only way to know which tracks your user
selected. The selected items are grouped in a media item collection.

Here’s a simple example implementation of mediaPicker:didPickMediaItems: that assigns
the returned collection to one of the delegate’s properties:

 func mediaPicker(mediaPicker: MPMediaPickerController!, didPickMediaItems
mediaItemCollection: MPMediaItemCollection!) {
 self.dismissViewControllerAnimated(true, completion: nil)
 self.collection = mediaItemCollection
}

341CHAPTER 12: Media Library Access and Playback

The Music Player Controller
As we discussed earlier, there are two player controllers in the MediaPlayer framework: the
music player controller and movie player controller. We’ll get to the movie player controller
later. The music player controller allows you to play a queue of media items by specifying
either a media item collection or a media query. As we stated earlier, the music player
controller has no visual elements. It’s an object that plays the audio. It allows you to
manipulate the playback of that audio by skipping forward or backward, telling it which
specific media item to play, adjusting the volume, or skipping to a specific playback time in
the current item.

The MediaPlayer framework offers two completely different kinds of music player controllers:
the iPod music player and the application music player. The way you use them is identical,
but there’s a key difference in how they work. The iPod music player is the one that’s used
by the Music app; as is the case with those apps, when you quit your app while music is
playing, the music continues playing. In addition, when the user is listening to music and
starts up an app that uses the iPod music player, the iPod music player will keep playing that
music. In contrast, the application music player will kill the music when your app terminates.

There’s a bit of a gotcha here in that both the iPod and the application music player
controllers can be used at the same time. If you use the application music player controller
to play audio and the user is currently listening to music, both will play simultaneously. This
may or may not be what you want to happen, so you will usually want to check the iPod
music player to see whether there is music currently playing, even if you actually plan to use
the application music player controller for playback.

Creating the Music Player Controller

To get either of the music player controllers, use one of the factory methods on
MPMusicPlayerController. To retrieve the iPod music player, use the method
iPodMusicPlayer, like so:

var thePlayer = MPMusicPlayerController.iPodMusicPlayer()

Retrieving the application music player controller is done similarly, using the
applicationMusicPlayer method instead, like this:

var thePlayer = MPMusicPlayerController.applicationMusicPlayer()

Determining Whether the Music Player Controller Is Playing

Once you create an application music player, you’ll need to give it something to play. But if
you grab the iPod music player controller, it could very well already be playing something.
You can determine whether it is by looking at the playbackState property of the player. If it’s
currently playing, it will be set to MPMusicPlaybackStatePlaying.

if thePlayer.playbackState == MPMusicPlaybackState.Playing {
 //Playing
}

342 CHAPTER 12: Media Library Access and Playback

Specifying the Music Player Controller’s Queue

There are two ways to specify the music player controller’s queue of audio tracks: provide
a media query or provide a media item collection. If you provide a media query, the music
player controller’s queue will be set to the media items returned by the items property. If you
|provide a media item collection, it will use the collection you pass as its queue. In either
case, you will replace the existing queue with the items in the query or collection you pass
in. Setting the queue will also reset the current track to the first item in the queue.

To set the music player’s queue using a query, use the method setQueueWithQuery:.
For example, here’s how you would set the queue to all songs, sorted by artist:

var player = MPMusicPlayerController.iPodMusicPlayer()
var artistQuery = MPMediaQuery.artistsQuery()
player.setQueueWithQuery(artistQuery)

Setting the queue with a media item collection is accomplished with the method
setQueueWithItemCollection:, like so:

var player = MPMusicPlayerController.iPodMusicPlayer()
var items = [mediaItem1, mediaItem2]
var collection = MPMediaItemCollection(items: items)
player.setQueueWithItemCollection(collection)

Unfortunately, there’s currently no way to retrieve the music player controller’s queue using
public APIs. That means you will generally need to keep track of the queue independently of
the music player controller if you want to be able to manipulate the queue.

Getting or Setting the Currently Playing Media Item

You can get or set the current song using the nowPlayingItem property. This lets you
determine which track is already playing if you’re using the iPod music player controller and
lets you specify a new song to play. Note that the media item you specify must already be in
the music player controller’s queue. Here’s how you retrieve the currently playing item:

var currentTrack = thePlayer.nowPlayingItem
// To switch to a different track, do this:
thePlayer.nowPlayingItem = newTrackToPlay
// Must be in the queue already

Skipping Tracks

The music player controller allows you to skip forward one song using the method
skipToNextItem or skip back to the previous song using skipToPreviousItem. If there is
no next or previous song to skip to, the music player controller stops playing. The music
player controller also allows you to move back to the beginning of the current song using
skipToBeginning.

343CHAPTER 12: Media Library Access and Playback

Here is an example of all three methods:

thePlayer.skipToNextItem()
thePlayer.skipToPreviousItem()
thePlayer.skipToBeginning()

Seeking

When you’re using your iPhone, iPod touch, or iTunes to listen to music, if you press and
hold the forward or back button, the music will start seeking forward or backward, playing
the music at an ever-accelerating pace. This lets you, for example, stay in the same track
but skip over a part you don’t want to listen to or skip back to something you missed.
This same functionality is available through the music player controller using the methods
beginSeekingForward and beginSeekingBackward. With both methods, you stop the process
with a call to endSeeking.

Here is a set of calls that demonstrate seeking forward and stopping and then seeking
backward and stopping:

thePlayer.beginSeekingForward()
thePlayer.endSeeking()

thePlayer.beginSeekingBackward()
thePlayer.endSeeking()

Playback Time

Not to be confused with payback time (something we’ve dreamt of for years, ever since they
replaced the excellent Dick York with the far blander Dick Sargent in Bewitched), playback
time specifies how far into the current song you currently are. If the current song has been
playing for five seconds, then the playback time will be 5.0.

You can retrieve and set the current playback time using the property currentPlaybackTime.
You might use this, for example, when using an application music player controller, to
resume a song at exactly the point where it was stopped when the application was last quit.
Here’s an example of using this property to skip forward ten seconds in the current song:

var currentTime = thePlayer.currentPlaybackTime
var currentSong = thePlayer.nowPlayingItem
var duration = currentSong.valueForProperty(MPMediaItemPropertyPlaybackDuration) as Double
currentTime += 10
if currentTime > duration {
 currentTime = duration
}
thePlayer.currentPlaybackTime = currentTime

Notice that you check the duration of the currently playing song to make sure you don’t pass
in an invalid playback time.

344 CHAPTER 12: Media Library Access and Playback

Repeat and Shuffle Modes

Music player controllers have ordered queues of songs, and most of the time, they play
those songs in the order they exist in the queue, playing from the beginning of the queue
to the end and then stopping. Your user can change this behavior by setting the repeat and
shuffle properties in the iPod or Music application. You can also change the behavior by
setting the music player controller’s repeat and shuffle modes, represented by the properties
repeatMode and shuffleMode. There are four repeat modes:

	MPMusicRepeatMode.Default: Uses the repeat mode last used in the iPod
or Music application.

	MPMusicRepeatMode.None: Doesn’t repeat at all. When the queue is done,
stops playing.

	MPMusicRepeatMode.One: Keeps repeating the currently playing track until
your user goes insane. This is ideal for playing “It’s a Small World.”

	MPMusicRepeatMode.All: When the queue is done, starts over with the
first track.

There are also four shuffle modes.

	MPMusicShuffleMode.Default: Uses the shuffle mode last used in the
iPod or Music application

	MPMusicShuffleMode.Off: Doesn’t shuffle at all—just plays the songs in
the queue order

	MPMusicShuffleMode.Songs: Plays all the songs in the queue in random
order

	MPMusicShuffleMode.Albums: Plays all the songs from the currently
playing song’s album in random order

Here is an example of turning off both repeat and shuffle:

thePlayer.repeatMode = MPMusicRepeatMode.None
thePlayer.shuffleMode = MPMusicShuffleMode.Off

Adjusting the Music Player Controller’s Volume

As of iOS 7 the volume property of MediaPlayer was deprecated. You cannot simply use
thePlayer.volume = 0.5 or a value between 0.0 and 1.0 to set the volume. Instead, you
have to now use the MPVolumeView; this is a volume slider that allows you to adjust the
volume of the device and also provides you with the functionality to play the audio via a
connected AirPlay destination. This is a view object, so it needs to be created and added to
a view hierarchy to be displayed and interacted with.

var volume = MPVolumeView(frame: CGRectMake(0, 0, self.view.bounds.width, 40))
self.view.addSubview(volume)

You can see how the volume slider is displayed onscreen later in the chapter in Figure 12-13.

345CHAPTER 12: Media Library Access and Playback

Music Player Controller Notifications

Music player controllers are capable of sending out notifications when any of three
things happen:

When the playback state (playing, stopped, paused, seeking, 	
and so on) changes, the music player controller can send out the
MPMusicPlayerControllerPlaybackStateDidChangeNotification
notification.

When the volume changes, it can send out the 	
MPMusicPlayerControllerVolumeDidChangeNotification notification.

When a new track starts playing, it can send out the 	
MPMusicPlayerControllerNowPlayingItemDidChangeNotification
notification.

Note that music player controllers don’t send any notifications by default. You must tell an
instance of MPMusicPlayerController to start generating notifications by calling the method
beginGeneratingPlaybackNotifications. To have the controller stop generating notifications,
call the method endGeneratingPlaybackNotifications.

If you need to receive any of these notifications, you first implement a handler method that
takes one argument, an NSNotification and then register with the notification center for
the notification of interest. For example, if you want a method to fire whenever the currently
playing item changed, you could implement a method called nowPlayingItemChanged:, like so:

func nowPlayingItemChanged(notification: NSNotification) {
 println("A new track started")
}

To start listening for those notifications, you could register with the notification for the type
of notification you’re interested in and then have that music player controller start generating
the notifications.

 var notificationCenter = NSNotificationCenter.defaultCenter()
 notificationCenter.addObserver(self, selector: "nowPlayingItemChanged:", name:
MPMusicPlayerControllerNowPlayingItemDidChangeNotification, object: thePlayer)
 thePlayer.beginGeneratingPlaybackNotifications()

Once you do this, any time the track changes, your nowPlayingItemChanged: method will be
called by the notification center.

When you’re finished and no longer need the notifications, you unregister and tell the music
player controller to stop generating notifications:

var center = NSNotificationCenter.defaultCenter()
 center.removeObserver(self, name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
object: thePlayer)
thePlayer.endGeneratingPlaybackNotifications()

Now that you have all that theory out of the way, let’s build something!

346 CHAPTER 12: Media Library Access and Playback

Simple Music Player
The first application you’re going to build will implement what we’ve covered so far to build
a simple music player. The application will allow users to create a queue of songs via the
MPMediaPickerController and play them back via the MPMusicPlayerController.

Note We’ll use the term queue to describe the application’s list of songs, rather than the

term playlist. When working with the media library, the term playlist refers to actual playlists

synchronized from iTunes. Those playlists can be read, but they can’t be created using the SDK.

To avoid confusion, we’ll stick with the term queue.

When the application launches, it will check to see whether music is currently playing. If so,
it will allow that music to keep playing and will append any requested music to the end of
the list of songs to be played.

Tip If your application needs to play a certain sound or music, you may feel that it’s appropriate to

turn off the user’s currently playing music, but you should do that with caution. If you’re just providing

a soundtrack, you really should consider letting the music that’s playing continue playing, or at least

giving the users the choice about whether to turn off their chosen music in favor of your application’s

music. It is, of course, your call, but tread lightly when it comes to stomping on your user’s music.

The application you’ll build isn’t very practical because everything you’re offering to your
users (and more) is already available in the Music application on your iOS device. But writing
it will allow you to explore almost all of the tasks your own application might ever need to
perform with regard to the media library.

Caution This chapter’s application must be run on an actual iOS. The iOS simulator does not

have access to the iTunes library on your computer, and any of the calls related to the iTunes library

access APIs will result in an error on the simulator.

Building the SimplePlayer Application
Your app will retrieve the iPod music player controller and allow you to add songs to the
queue by using the media picker. You’ll provide some rudimentary playback controls to
play/pause the music, as well as to skip forward and backward in the queue.

347CHAPTER 12: Media Library Access and Playback

Note As a reminder, the simulator does not yet support the media library functionality. To get the

most out of the SimplePlayer application, you need to run it on your iOS device, which means signing

up for one of Apple’s paid iOS Developer Programs. If you have not already done that, you might want

to take a short break and head over to http://developer.apple.com/programs/register/

and check it out.

Figure 12-2. The SimplePlayer application playing a song

Let’s start by creating a new project in Xcode. Since this is a simple application, you’ll use
the Single View Application project template and name the new project SimplePlayer.

Building the User Interface
Single-click Main.storyboard to open Interface Builder. Let’s take a look at Figure 12-2.
There are three labels along the top, an image view in the middle, and a button bar on the
bottom with four buttons. Let’s start from the bottom and work our way up.

http://developer.apple.com/programs/register/

348 CHAPTER 12: Media Library Access and Playback

Drag a UIToolbar from the Object Library to the bottom of the UIView. By default, the
UIToolbar gives you a UIBarButtonItem aligned to the left side of the toolbar. Since you
need four buttons in your toolbar, you’ll keep this button. Drag a flexible space bar button
item (Figure 12-3) to the left of the UIBarButtonItem. Make sure you use the flexible space,
not the fixed space. If you placed it in the correct spot, the UIBarButtonItem should now be
aligned to the right side of the UIToolbar (Figure 12-4).

Figure 12-3. The flexible space bar button item in the Object Library

Figure 12-4. The SimplePlayer toolbar with the flexible space

349CHAPTER 12: Media Library Access and Playback

Add three UIBarButtonItems to the left of the flexible space. These will be your playback
control buttons. To center these buttons, you need to add one more flexible space bar button
Item to left side of your UIToolbar (Figure 12-5). Select the left most button and open the
Attributes Inspector. Change Identifier from Custom to Rewind (Figure 12-6). Select the button
to the right of your new Rewind button and change Identifier to Play. Change the Identifier
attribute of the button to the right of your Play button to Fast Forward. Select the rightmost
button and change its Identifier attribute to Add. When you’re done, it should look like Figure 12-7.

Figure 12-5. Toolbar with all your buttons

Figure 12-6. Changing the bar button item identifier to Rewind

Figure 12-7. The completed toolbar

Moving up the view, you need to add a UIImageView. Drag one onto your view, above the toolbar.
Interface Builder will expand the UIImageView to fill the available area. Since you don’t want that,
open the Size Inspector in the Utility pane. The UIImageView should be selected, but if it isn’t,
select it to make sure you’re adjusting the right component. The Size Inspector should show that
your UIImageView width is 375. Change the height to match the width. Your image view should
now be square. Center the image view in your view, using the guidelines to help.

350 CHAPTER 12: Media Library Access and Playback

Now you need to add the three labels across the top. Drag a label to the top of your
application’s view. Extend the area of the label to the width of your view. Open the Attributes
Inspector, and change the label text from Label to Now Playing. Change the label’s color
from black to white, and set the font to System Bold 17.0. Set the alignment to center. Finally,
change the label’s background color to black (Figure 12-8). Add another label below this label.
Give it the same attributes as the first label, but set the text from Label to Artist. Add one more
label, below the Artist label, with the same attribute settings, and set the text to Song.

Figure 12-8. Your SimplePlayer label attributes

Finally, set the background of your view to black (because black is cool).

351CHAPTER 12: Media Library Access and Playback

Declaring Outlets and Actions
In Interface Builder, switch from the Standard editor to the Assistant editor. The Editor pane
should split to show Interface Builder on the left and ViewController.swift on the right.
Control-drag from the Now Playing label to just below the @interface declaration. Create a
UILabel outlet and name it status. Repeat for the Artist and Song labels, naming the outlets
artist and song, respectively.

@IBOutlet weak var status: UILabel!
@IBOutlet weak var artist: UILabel!
@IBOutlet weak var song: UILabel!

Control-drag from the image view to below the label outlets and create a UIImageView outlet
named imageView. Do the same for the toolbar and the Play button. Now that you have your
outlets set up, you need to add your actions.

@IBOutlet weak var imageView: UIImageView!
@IBOutlet weak var toolbar: UIToolbar!

Control-drag from the rewindButton, and create an action named rewindPressed.
Repeat for each button. Name the play action playPausePressed, the fast-forward action
fastForwardPressed, and the add action addPressed.

Switch back to the Standard editor and select ViewController.swift to open it in the editor.

First, you need to have your ViewController conform to the MPMediaPickerDelegate protocol
so you can use the MPMediaPicker controller. To do that, you need to import the MediaPlayer
header file, right after the UIKit header import.

import MediaPlayer

Then you’ll add the protocol declaration to ViewController.

class ViewController: UIViewController, MPMediaPickerControllerDelegate {

You need to add another UIBarButtonItem property to hold the pause button you’ll display
while music is playing. You also need to change the Play button property from weak to
strong so you can toggle between the two.

@IBOutlet var playButton: UIBarButtonItem!
var pauseButton: UIBarButtonItem!

You need two more properties: one to hold your MPMediaPlayerController instance, and the
other to hold the MPMediaItemCollection that the player is playing.

var player: MPMusicPlayerController!
var collection: MPMediaItemCollection!

352 CHAPTER 12: Media Library Access and Playback

When the MPMusicPlayerController starts playing a new media item, it sends a notification
of type MPMusicPlayerControllerNowPlayingItemDidChangeNotification. You’ll set up an
observer for that notification to update the labels in your view.

func nowPlayingItemChanged(notification: NSNotification){

Select ViewController.swift to open it in the Editor pane. First you need to set up things
for when the view loads. Find the viewDidLoad method. After the call to super, you need to
instantiate the Pause button.

self.pauseButton = UIBarButtonItem(barButtonSystemItem: .Pause,
 target: self, action: "playPausePressed:")
self.pauseButton.style = .Bordered

Next, create your MPMusicPlayerController instance.

self.player = MPMusicPlayerController.iPodMusicPlayer()

Then register for the notification when the Now Playing item changes in the player.

var notificationCenter = NSNotificationCenter.defaultCenter()
notificationCenter.addObserver(self, selector: "nowPlayingItemChanged:",
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: self.player)
self.player.beginGeneratingPlaybackNotifications()

Note that you must tell the player to begin generating playback notifications. Since you
registered for notifications, you have to remove your observer when the view is released.

override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.

NSNotificationCenter.defaultCenter().removeObserver(self,
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: self.player)
 }

Let’s work on the button actions next. When the user presses the Rewind button, you want
the player to skip to the previous song in the queue. However, if it’s at the first song in the
queue, it’ll just skip to the beginning of that song.

@IBAction func rewindPressed(sender: AnyObject) {
 if self.player.indexOfNowPlayingItem == 0 {
 self.player.skipToBeginning()
 } else {
 self.player.endSeeking()
 self.player.skipToPreviousItem()
 }
}

353CHAPTER 12: Media Library Access and Playback

When the Play button is pressed, you want to start playing the music. You also want to the
button to change to the Pause button. Then, if the player is already playing music, you want
to player to pause (stop) and have the button change back to the Play button.

@IBAction func playPausePressed(sender: AnyObject) {
 var playbackState = self.player.playbackState as MPMusicPlaybackState
 var items = NSMutableArray(array: self.toolbar.items!)
 if playbackState == .Stopped || playbackState == .Paused {
 self.player.play()
 items[2] = self.pauseButton
 } else if playbackState == .Playing {
 self.player.pause()
 items[2] = self.playButton
 }
 self.toolbar.setItems(items, animated: false)
}

You query the player for its playback state and then use it to determine whether you should
start or stop the player. To toggle between the Play and Pause buttons, you need to get
the array of items in the toolbar and replace the third item (index of 2) with the appropriate
button. Then you replace the entire array of bar button items for the toolbar.

The Fast Forward button works similarly to the Rewind button. When it’s pressed, the player
moves forward in the queue and plays the next song. If it’s at the last song in the queue, it
stops the player and resets the Play button.

@IBAction func fastForwardPressed(sender: AnyObject) {
 var nowPlayingIndex = self.player.indexOfNowPlayingItem
 self.player.endSeeking()
 self.player.skipToNextItem()
 if self.player.nowPlayingItem? == nil {
 self.player.setQueueWithItemCollection(self.collection)
 var item = self.collection.items[nowPlayingIndex+1] as MPMediaItem
 self.player.nowPlayingItem = item
 self.player.play()
 } else {
 self.player.stop()
 var items = self.toolbar.items! as Array
 items[2] = self.playButton
 self.toolbar.items = items
 }
}

When the Add button is pressed, you need to modally display the MPMediaPickerController.
You set it to display only music media types and set its delegate to ViewController.

@IBAction func addPressed(sender: AnyObject){
 var mediaType = MPMediaType.Music
 var picker:MPMediaPickerController = MPMediaPickerController(mediaTypes: mediaType)
 picker.delegate = self
 picker.allowsPickingMultipleItems = true

354 CHAPTER 12: Media Library Access and Playback

 picker.prompt = NSLocalizedString("Select items to play",
 comment: "Select items to play")
 self.presentViewController(picker, animated: true, completion: nil)
}

This seems like a good point to add the MPMediaPickerControllerDelegate methods. There
are only two methods that are defined in the protocol: mediaPicker:didPickMediaItems:,
called when the user is done selecting, and mediaPickerDidCancel:, called when the user
has cancelled the media selection.

//MARK: - Media Picker Delegate Methods

func mediaPicker(mediaPicker: MPMediaPickerController!, didPickMediaItems
mediaItemCollection: MPMediaItemCollection!) {
 mediaPicker.dismissViewControllerAnimated(true, completion: nil)

 if let collection = self.collection {
 var oldItems:NSArray = self.collection.items
 var newItems:NSArray = oldItems.arrayByAddingObjectsFromArray(mediaItemCollection.items)
 self.collection = MPMediaItemCollection(items: newItems)
 } else {
 self.player.setQueueWithItemCollection(self.collection)
 self.collection = mediaItemCollection
 }
 // Start Playing
 var item = self.collection.items[0] as MPMediaItem
 self.player.nowPlayingItem = item
 self.playPausePressed(self)
}

func mediaPickerDidCancel(mediaPicker: MPMediaPickerController!) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

When the user is done selecting, you dismiss the media picker controller. Then you look at the
media collection property. If your ViewController collection property is nil, then you simply
assign it to the media collection sent in the delegate call. If a collection exists, then you need
to append the new media items to the existing collection. The mediaPickerDidCancel: method
simply dismissed the media picker controller.

Lastly, you need to implement the notification method for when the now playing item changes.

//MARK: - Notification Methods

func nowPlayingItemChanged(notification: NSNotification){
 if let currentItem = self.player.nowPlayingItem as MPMediaItem? {
 if let artwork = currentItem.valueForProperty(MPMediaItemPropertyArtwork)
 as? MPMediaItemArtwork {
 var artworkImage = artwork.imageWithSize(imageView.bounds.size)
 imageView.image = artworkImage
 imageView.hidden = false
 }

355CHAPTER 12: Media Library Access and Playback

 self.status.text = NSLocalizedString("Now Playing", comment: "Now Playing")
 self.artist.text = currentItem.valueForProperty(MPMediaItemPropertyArtist) as? String
 self.song.text = currentItem.valueForProperty(MPMediaItemPropertyTitle) as? String
 } else {
 self.imageView.image = nil
 self.imageView.hidden = true
 self.status.text = NSLocalizedString("Tap + to Add More Music",
 comment: "Tap + to Add More Music")
 self.artist.text = nil
 self.song.text = nil
 }
}

The nowPlayingItemChanged: method first queries the player for the media item that it is
playing. If something is playing, then it retrieves the artwork for the media item using the
MPMediaItemPropertyArtwork property. It checks to make sure the media item has artwork,
and if it does, it puts it in your image view. Then you update the labels to tell you the artist
and song name. If it is not playing anything, it resets the view and sets the status label to tell
the user to add more music.

Build and run the SimplePlayer application. You should be able to select music from your
media library and play it. This is a pretty simple player (duh) and doesn’t give you much in
terms of functionality, but you can see how to use the MediaPlayer framework to play music.
Next, you’ll use the MediaPlayer framework to playback video as well.

MPMoviePlayerController
Playing back video with the MediaPlayer framework is simple. First, you need the URL of the
media item you want to play back. The URL could point to either a video file in your media
library or to a video resource on the Internet. If you want to play a video in your media library,
you can retrieve the URL from an MPMediaItem via its MPMediaItemPropertyAssetURL.

// videoMediaItem is an instance of MPMediaItem that points to a video in our media library
var url = videoMediaItem.valueForPropert(MPMediaItemPropertyAssetURL) as NSURL

Once you have your video URL, you use it to create an instance of MPMoviePlayerController.
This view controller handles the playback of your video and the built-in playback controls. The
MPMoviePlayerController has a UIView property where the playback is presented. This UIView
can be integrated into your application’s view (controller) hierarchy. It is much easier to use the
MPMoviePlayerViewController class, which encapsulates the MPMoviePlayerController. Then
you can push the MPMoviePlayerViewController into you view (controller) hierarchy modally,
making it much easier to manage. The MPMoviePlayerViewController class gives you access
to its underlying MPMoviePlayerController as a property.

To determine the state of your video media in the MPMoviePlayerController, a series of
notifications are sent (Table 12-2).

356 CHAPTER 12: Media Library Access and Playback

Table 12-2. MPMoviePlayerController Notifications

Notification Description

MPMovieDurationAvailableNotification The movie (video) duration (length) has

been determined.

MPMovieMediaTypesAvailableNotification The movie (video) media types (formats)

have been determined.

MPMovieNaturalSizeAvailableNotification The movie (video) natural (preferred)

frame size has been determined or

changed.

MPMoviePlayerDidEnterFullscreenNotification The player has entered full-screen mode.

MPMoviePlayerDidExitFullscreenNotification The player has exited full-screen mode.

MPMoviePlayerIsAirPlayVideoActiveDidChangeNotification The player has started or finished playing

the movie (video) via AirPlay.

MPMoviePlayerLoadStateDidChangeNotification The player (network) buffering state has

changed.

MPMoviePlayerNowPlayingMovieDidChangeNotification The current playing movie (video) has

changed.

MPMoviePlayerPlaybackDidFinishNotification The player is finished playing.

The reason can be found via the

MPMoviePlayerDidFinishReasonUserInfoKey.

MPMoviePlayerPlaybackStateDidChangeNotification The player playback state has changed.

MPMoviePlayerScalingModeDidChangeNotification The player scaling mode has changed.

MPMoviePlayerThumbnailImageRequestDidFinishNotification A request to capture a thumbnail image

has completed. It may have succeeded

or failed.

MPMoviePlayerWillEnterFullscreenNotification The player is about to enter full-screen

mode.

MPMoviePlayerWillExitFullscreenNotification The player is about to exit full-screen

mode.

MPMovieSourceTypeAvailableNotification The movie (video) source type was

unknown and is now known.

Generally, you only need to worry about these notifications if you use MPMoviePlayerController.

Enough talk. Let’s build an app that plays both audio and video media from your
Media Library.

357CHAPTER 12: Media Library Access and Playback

MPMediaPlayer
You’re going to build a new app using the MediaPlayer framework that will allow you to play
both audio and video content from your media library. You’ll start with a tab bar controller
with a tab for your audio content and another tab for your video content (Figure 12-9). You
won’t be using a queue to order your media choices. You’ll keep this simple: the user picks a
media item, and the application plays it.

Figure 12-9. MPMediaPlayer with Music and Video tabs

Note Since iOS 7, Apple has made table views show under the status bar. If that bothers you,

there are ways to hack and set insetRect; the safest way is to have a navigation bar. The table

views then behave fine.

Create a new project using the Tabbed Application template and name the application
MPMediaPlayer.

358 CHAPTER 12: Media Library Access and Playback

Xcode will create two view controllers, FirstViewController and SecondViewController,
and provide the tab bar icons in images.xcassets. You’re going to replace these
controllers and images, so delete them. Select the files FirstViewController.swift and
SecondViewController.swift, delete the files. When Xcode asks, move the files to the
Trash. Select MainStoryboard.storyboard to open it in the storyboard editor. Select the first
view controller scene and delete it. Repeat for the second view controller. Now delete the
first and second file from Images.xcassets. The storyboard editor should consist of the tab
bar controller only (Figure 12-10).

Figure 12-10. Deleting the first and second view controllers

Looking at Figure 12-9, you see that each tab controller is a table view controller. Drag
a UITableViewController from the Object Library to the right of the tab bar controller in
the storyboard editor. Control-drag from the tab bar view controller to the new table view
controller. When the Segue pop-up menu appears, select the view controllers option under
the Relationship Segue heading. Add a second UITableViewController and Control-drag
from the tab bar controller to it, selecting the view controllers option again. Align the two
table view controllers and try to make your storyboard look like Figure 12-11.

359CHAPTER 12: Media Library Access and Playback

Select the table view cell from the top table view controller. Open the Attributes Inspector
and set the Style attribute to Subtitle. Give it an Identifier attribute a value of MediaCell.
Set the Selection attribute to None, and set the Accessory attribute to Disclosure Indicator.
Repeat the attribute settings for the table view cell for the bottom table view controller.

You’ll use the top table view controller for your audio media and the bottom table view controller
for your video media. Therefore, you’ll want an audio and video view controller. However, each view
controller is really just a media view controller, so you’ll begin by creating a MediaViewController
class, and then you’ll subclass it. Create a new file using the Cocoa Touch Class template. Name
the class MediaViewController, and make it subclass of UITableViewController.

You want the MediaViewController to be generic enough to handle both audio and video
media. That means you need to store an array of media items and provide a method to
load those items. Open MediaViewController.swift. You’ll need to import the MediaPlayer
header to start. Add it after the UIKit header import.

import UIKit
import MediaPlayer

Figure 12-11. Adding the new table view controllers

360 CHAPTER 12: Media Library Access and Playback

We said you needed to store an array of media items. You’ll declare that as a property of the
MediaViewController class.

var mediaItems: [AnyObject]?

Select MediaViewController.swift and adjust the implementation. First, you need to fix your
table view data source methods to define the number of sections and rows per section in the
table view.

// MARK: - Table view data source

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // Return the number of sections.
 return 1
}

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // Return the number of rows in the section.
 return self.mediaItems.count
}

Next, you want to adjust how the table view cell is populated.

override func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("reuseIdentifier",
 forIndexPath: indexPath) as UITableViewCell

 var row = indexPath.row as Int
 var item = self.mediaItems.objectAtIndex(row) as MPMediaItem
 cell.textLabel?.text = item.valueForProperty(MPMediaItemPropertyTitle) as String?
 cell.detailTextLabel?.text = item.valueForProperty(MPMediaItemPropertyArtist) as String?
 cell.tag = row

 return cell
}

Finally, you need to implement your loadMediaItemsForMediaType: method.

func loadMediaItemsForMediaType(mediaType: MPMediaType){
 var query = MPMediaQuery()
 var mediaTypeNumber = Int(mediaType.rawValue)
 var predicate = MPMediaPropertyPredicate(value: mediaTypeNumber,
 forProperty: MPMediaItemPropertyMediaType)
 query.addFilterPredicate(predicate)
 self.mediaItems = query.items
}

361CHAPTER 12: Media Library Access and Playback

You’ve got your MediaViewController class defined. Let’s create your audio and video
subclasses. Create a new file using the Cocoa Touch Class template,, and name it
AudioViewController, which will be a subclass of MediaViewController. Repeat this
process, this time naming the file VideoViewController. You only need to make two minor
adjustments to each file. First, open AudioViewController.swift, and add the following line
to the viewDidLoad method, after the call to super:

self.loadMediaItemsForMediaType(.Music)

Do the same for VideoViewController.swift, except this time you want to load videos.

self.loadMediaItemsForMediaType(.AnyVideo)

Let’s get your app to use your new view controllers. Select MainStoryboard.storyboard to
open the storyboard editor. Select the top table view controller. In the Identity Inspector,
change the Custom Class value from a UITableViewController to AudioViewController.
Change the bottom table view controller class to VideoViewController.

Before moving on, let’s update the tabs for each view controller. Select the tab bar in the audio
view controller. In the Attributes Inspector, set Title to Music and set Image to music.png. You
can find the image files, music.png and video.png, in this chapter’s download folder. Select the
tab bar in the video view controller and set its title to Video and its image to video.png.

Build and run your app. You should see all your media library’s music when selecting the
Music tab, and you should see all the media library’s videos when selecting the Video tab.
Great! Now you need to support playback. You’ll be using the MPMoviePlayerViewController
to playback video, but like the SimplePlayer, you need to make an audio playback view
controller. You’re going to make an even simpler version of your audio playback controller.
Create a new Cocoa Touch Class file named PlayerViewController, which will be a subclass
of UIViewController.

Select the MainStoryboard.storyboard so you can work on the PlayerViewController
scene. Drag a UIViewController to the right of the audio view controller. Select the new
view controller, and open the Identity Inspector. Change its class from UIViewController
to PlayerViewController. Control-drag from the table view cell in the audio view controller
to the PlayerViewController and select the Present Modally Segue. Select the segue
between AudioViewController and PlayerViewController, and name it PlayerSegue in the
Attributes Inspector.

Your audio playback view controller will look like Figure 12-12 when you’re done. Starting
at the top, add two UILabels. Stretch them to width of the view. Like you did with the
SimplePlayer, extend the labels to the width of the view and adjust their attributes (System
Bold 17.0 font, center alignment, white foreground color, black background color). Set the
top label text to Artist and the bottom label text to Song.

362 CHAPTER 12: Media Library Access and Playback

Drag a UIImageView into the scene, just below the Song label. Use the blue guide lines to
space it properly. Adjust the size of the image view to fit the width of the view, and make
it square (320px by 320px). Just below the image view, drag a UIView. Adjust the width of
this UIView, using the blue margin guidelines. Finally, drag a UIToolbar to the bottom of the
PlayerViewController view. Select the UIBarButtonItem on the left side of the toolbar. Using
the Attributes Inspector, change the Identifier from Custom to Done. Drag a flexible space
bar button item to the right of the Done button. Next, add a UIBarButtonItem to the right of
the flexible space item. Select the new bar button item and change its Identifier to Play in
the Attributes Inspector. Finally, to center your Play button, add another flexible space bar
button item to the right of the Play button.

Just as you did with SimplePlayer, you need to create some outlets and actions for your
PlayerViewController. Enter Assistant Editor mode. Control-drag from the Artist label to the
PlayerViewController implementation, and create an outlet named artist. Do the same for
the Song label and name it song. Create outlets for the image view, the slider, the toolbar,
and the Play button. The names of the outlets should be obvious (that is, imageView for the
image view), except for the UIView. You’ll name the outlet volume, since you’re going to use
the slider to control the volume level.

Figure 12-12. MPMediaPlayer audio playback view controller

363CHAPTER 12: Media Library Access and Playback

You may think there is a glaring mistake here because we have dragged an UIView and are
calling it volume while talking about dragging the slider to manage the volume. Well, you
are partially correct. You are right because we need a slider and an UIView isn’t one. Since
iOS 7, Apple has made the volume property redundant, and we instantiate an MPVolumeView,
which is a volume slider on steroids for audio playback. It is connected to the Media Player
and can even allow you to play your audio over AirPlay or Bluetooth to other devices. You
can see in Figure 12-13 that the UIView is a placeholder and the MPVolumeView sits in its
place, and when the AirPlay icon is clicked, it offers to play the audio on the Phone or the
iMac (it is running Air Server).

Figure 12-13. MPVolumeView displaying the options for AirPlay

You need to define two actions. Control-drag from the Done button to create a donePressed:
action. Control-drag from the Play button to create a playPausePressed: event. Put the
Editor back into Standard mode, and select PlayerViewController.swift.

First, you need to import the MediaPlayer. You add the import declaration after the UIKIt
header import.

import UIKit
import MediaPlayer

364 CHAPTER 12: Media Library Access and Playback

As you did with the SimplePlayer, you need to redefine the play property outlet from weak to
strong. You also declare your pause (button) property.

@IBOutlet var playButton: UIBarButtonItem!
var pauseButton: UIBarButtonItem!

You need to add a couple more properties: one to hold the MPMusicPlayerController and
one to hold the MPMediaItem that is being played and another to hold the MPVolumeView.

var player: MPMusicPlayerController!
var mediaItem: MPMediaItem!
var newVolume: MPVolumeView!

You need to know when the player state has changed and when the player media item has
changed. Remember, these are handled via notifications. You’ll declare some methods to
register with the Notification Center.

//MARK: - Notification Events

func playingItemChanged(notification: NSNotification){
}

func playbackStateChanged(notification: NSNotification) {
}

You need to create your Pause button since it’s not part of your storyboard scene. Find the
viewDidLoad method, and create it after the call to super.

self.pauseButton = UIBarButtonItem(barButtonSystemItem: .Pause,
 target: self, action: "playPausePressed:")
self.pauseButton.style = .Bordered

Then at the end of the viewDidLoad, add the following lines:

let _W: CGFloat = UIScreen.mainScreen().bounds.width
var frame = self.volume.bounds
frame.size.width = _W

newVolume = MPVolumeView(frame: frame) //CGRectMake(0, 0, _W, 40))
self.volume.addSubview(newVolume)
//self.view.addSubview(newVolume)
newVolume.userInteractionEnabled = true
newVolume.targetForAction("volumeChanged:", withSender: self.player)

You need an MPMusicPlayerController instance to play your music.

self.player = MPMusicPlayerController.applicationMusicPlayer()

365CHAPTER 12: Media Library Access and Playback

You want to observe the player notifications, so you register for those and ask the player to
start generating them.

var notificationCenter = NSNotificationCenter.defaultCenter()
notificationCenter.addObserver(self, selector: "playingItemChanged:",
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: self.player)
notificationCenter.addObserver(self, selector: "playbackStateChanged:",
 name: MPMusicPlayerControllerPlaybackStateDidChangeNotification,
 object: self.player)
 self.player.beginGeneratingPlaybackNotifications()

You need to pass your media item to the player. But the player takes MPMediaItemCollections,
not an individual MPMediaItem. You’ll do this assignment in the viewDidAppear: method
where you’ll create a collection and pass it to your player.

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)

 var collection = MPMediaItemCollection(items: [self.mediaItem])
 self.player.setQueueWithItemCollection(collection)
 self.player.play()
}

You need to stop generating notifications and unregister your observers when the
PlayerViewController is released. Find the didReceiveMemoryWarning method, and add the
following calls:

override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 self.player.endGeneratingPlaybackNotifications()
 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: MPMusicPlayerControllerPlaybackStateDidChangeNotification,
 object: self.player)
 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: self.player)
}

The volumeChanged: method simply needs to change the player volume to reflect the value
of the volume slider.

@IBAction func volumeChanged(sender: AnyObject) {
 // Do nothing for now
}

The donePressed: method stops the player and dismisses the PlayerViewController.

@IBAction func donePressed(sender: AnyObject){
 self.player.stop()
 self.dismissViewControllerAnimated(true, completion: nil)
}

366 CHAPTER 12: Media Library Access and Playback

Your playPausePressed: method is similar to the one in SimplePlayer. You don’t update the
Play/Pause button in the toolbar; you’ll handle that in the playbackStateChanged: method.

@IBAction func playPausePressed(sender: AnyObject){
 var playbackState = self.player.playbackState as MPMusicPlaybackState
 if playbackState == .Stopped || playbackState == .Paused {
 self.player.play()
 } else if playbackState == .Playing {
 self.player.pause()
 }
}

Implementing your notification observer methods is pretty straightforward. You update
the view when the player media item changes. Again, it’s similar to the same method in
SimplePlayer.

//MARK: - Notification Events

func playingItemChanged(notification: NSNotification){
 if let currentItem = self.player.nowPlayingItem? {
 if let artwork = currentItem.valueForProperty(MPMediaItemPropertyArtwork) as

MPMediaItemArtwork? {
 self.imageView.image = artwork.imageWithSize(self.imageView.bounds.size)
 self.imageView.hidden = false
 }
 self.artist.text = currentItem.valueForProperty(MPMediaItemPropertyArtist) as String?
 self.song.text = currentItem.valueForProperty(MPMediaItemPropertyTitle) as String?
 } else {
 self.imageView.image = nil
 self.imageView.hidden = true
 self.artist.text = nil
 self.song.text = nil
 }
}

The playbackStateChanged: notification observer method is new to you. You added this
notification so that when the player automatically starts playing music in viewDidAppear:, it’ll
update the Play/Pause button state.

func playbackStateChanged(notification: NSNotification) {
 var playbackState = self.player.playbackState
 var items = self.toolbar.items!
 if playbackState == .Stopped || playbackState == .Paused {
 items[2] = self.playButton
 }else if playbackState == .Playing {
 items[2] = self.pauseButton
 }
 self.toolbar.items = items
}

367CHAPTER 12: Media Library Access and Playback

You need to send the music media item from the AudioViewController when the table
view cell is selected to the PlayerViewController. To do that, you need to modify your
AudioViewController implementation. Select AudioViewController.swift and add the
following method:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 // Get the new view controller using segue.destinationViewController.
 // Pass the selected object to the new view controller.

 if segue.identifier == "PlayerSegue" {
 var cell = sender as UITableViewCell
 var index = cell.tag
 var pvc = segue.destinationViewController as PlayerViewController
 pvc.mediaItem = self.mediaItems.objectAtIndex(index) as MPMediaItem
 }

}

Build and run the app. Select a music file to play. The app should transition the
PlayerViewController and start playing automatically. Slide the volume slider and see how
you can adjust the playback volume now. Next, let’s add video playback. It’s trivially easy
with the MediaPlayer framework. Open VideoViewController and implement the table view
delegate method tableView:didSelectRowAtIndexPath:, like so:

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {
 var mediaItem = self.mediaItems.objectAtIndex(indexPath.row) as MPMediaItem
 if let mediaURL = mediaItem.valueForProperty(MPMediaItemPropertyAssetURL) as? NSURL {
 var player = MPMoviePlayerViewController(contentURL: mediaURL)
 self.presentMoviePlayerViewControllerAnimated(player)
 }
}

That’s it. Build and run your application. Select the Video tab and pick a video to play. Easy!

Note While the list shows videos, there can be issues in playing them. The various cases can be if

the videos are part of your account but not downloaded to the device, and so on.

AVFoundation
The AVFoundation framework was originally introduced in iOS 3 with limited audio playback
and recording functionality. iOS 4 expanded the framework to include video playback and
recording, as well as the audio/video asset management.

368 CHAPTER 12: Media Library Access and Playback

At the core, AVFoundation represents an audio or video file as an AVAsset. It’s important
to understand that an AVAsset may have multiple tracks. For example, an audio AVAsset
may have two tracks: one for the left channel and one for the right. A video AVAsset could
have many more tracks—some for video, some for audio. Additionally, an AVAsset may
encapsulate additional metadata about the media it represents. It’s important to note that
simply instantiating an AVAsset does not mean it will be ready for playback. It may take some
time to analyze the data the AVAsset represents.

To give you fine-grained control on how to play back an AVAsset, AVFoundation separates
the presentation state of a media item from the AVAsset. This presentation state is
represented by an AVPlayerItem. Each track within an AVPlayerItem is represented by an
AVPlayerItemTrack. By using an AVPlayerItem and its AVPlayerItemTracks, you are allowed
to determine how to present the item (that is, mix the audio tracks or crop the video) via an
AVPlayer object. If you want to play back multiple AVPlayerItems, you use the AVPlayerQueue
to schedule the playback of each AVPlayerItem.

Beyond giving finer control over media playback, AVFoundation gives you the ability to
create media. You can leverage the device hardware to create your new media assets. The
hardware is represented by an AVCaptureDevice. Where possible, you can configure the
AVCaptureDevice to enable specific device functionality or settings. For example, you can set
the flashMode of the AVCaptureDevice that represents your iPhone’s camera to be on, off, or
use auto sensing.

To use the output from the AVCaptureDevice, you need to use an AVCaptureSession.
AVCaptureSession coordinates the management data from an AVCaptureDevice to its output
form. This output is represented by an AVCaptureOutput class.

It’s a complicated process to create media data using AVFoundation. First, you need to
create an AVCaptureSession to coordinate the capture and creation of your media. You
define and configure your AVCaptureDevice, which represents the actual physical device
(such as your iPhone camera or microphone). From the AVCaptureDevice, you create an
AVCaptureInput. AVCaptureInput is an object that represents the data coming from the
AVCaptureDevice. Each AVCaptureInput instance has a number of ports, where each port
represents a data stream from the device. You can think of a port as a capture analog
of an AVAsset track. Once you’ve created your AVCaptureInputs, you assign them to the
AVCaptureSession. Each session can have multiple inputs.

You’ve got your capture session, and you’ve assigned inputs to your session. Now you have
to save the data. You use the AVCaptureOutput class and add it to your AVCaptureSession.
You can use a concrete AVCaptureOutput subclass to write your data to a file, or you can
save it to a buffer for further processing.

Your AVCaptureSession is now configured to receive data from a device and save it. All you
need to do is tell your session to startRunning. Once you’re done, you send the stopRunning
message to your session. Interestingly, it is possible to change your session’s input or output
while it is running. To ensure a smooth transition, you would wrap these changes with a set
of beginConfiguration/commitConfiguration messages.

Asset metadata is represented by the AVMetadataItem class. To add your own metadata to
an asset, you use the mutable version, AVMutableMetadataItem, and assign it to your asset.

369CHAPTER 12: Media Library Access and Playback

There are times where you may need to transform your media asset from one format to
another. Similar to capturing media, you use an AVAssetExportSession class. You add your
input asset to the export session object, and then you configure the export session to your
new output format and export the data.

Next, let’s delve into the specifics of playing media via AVFoundation.

TL;DR: AVKit
Creating apps is all about fun and enjoying it; it is not meant to be tedious. You used
MediaPlayer in the previous section. It is quite involved and long. Prior to iOS 8, playing videos
using AVFoundation was equally tedious. Note the use of the word was. Apple now has AVKit,
which sits on top of the AVFoundation and provides you with a complete encapsulated player
with controls, and other functionality, that interacts with the AVFoundation.

The AVKit framework has just one class, the AVPlayerViewController. It is available to you
even from Interface Builder, so you can build your UI using the player. It literally shaves off
pages of code to present a controller onscreen.

Note If you use AVPlayerViewController in Interface Builder, then you have to link the

framework manually; otherwise, it could crash your app.

Use the Single View Application template to create an application called AVKitMediaPlayer.
First click Main.storyboard to open it. Drag a button to the center of this form and change
the text to Play Video. If you are using Auto Layout, simply select the menu option Editor ➤
Resolve Auto Layout Issues � Add Missing Constraints. Next drag an AVPlayerViewController

onto the storyboard. Place it to the right of the existing ViewController. Now Control-drag

from the button to the AVPlayerViewController and select the Present Modally option from

the pop-up. This will present the AVPlayerViewController when you click the button. One last

thing: click the Project folder in the navigation and create a new Cocoa Touch Class file called

PlayerViewController, which is a subclass of AVPlayerViewController. This should open the

PlayerViewController.swift file in the editor, and Xcode should be displaying some errors.

Add these lines after the import UIKit statement:

import UIKit
import AVKit
import AVFoundation

Now click Main.storyboard again and select the AVPlayerViewController. In the Identity

Inspector (Cmd+Opt+3), change the class to PlayerViewController. Now run the application

and click the button. The player is presented as shown in Figure 12-14. If you press Done,

it is removed and takes you back to the screen with the Play Video button. You have hardly

written any code at all. Rotate the interface in your simulator or the device or tap the screen

to make it full-screen. You get all of this functionality for free. However, all you see is a black

screen; there is no video to play.

370 CHAPTER 12: Media Library Access and Playback

Figure 12-14. The AVPlayerViewController and the UI

Playing Video
To play a video file, you need to set the AVPlayer property of the AVPlayerViewController.
The AVPlayer requires a URL; this is a standard NSURL that can reference a remote or a local
file. The player would load/buffer the file and start playing.

Open ViewController.swift and add the method prepareForSegue; you will pass the video
link to the player when this segue is invoked.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

 let _AppleWatch_ = "http://images.apple.com/media/us/watch/2014/videos/e71af271_

d18c_4d78_918d_d008fc4d702d/tour/reveal/watch-reveal-cc-us-20140909_r848-9dwc.mov"

 if let _videoPlayer = segue.destinationViewController as? PlayerViewController {
 _videoPlayer.videoURL = NSURL(string:_AppleWatch_)
 }
}

371CHAPTER 12: Media Library Access and Playback

The _AppleWatch_ URL is taken from the Apple web site. When you click the button, it
passes the video link string to the player view controller as a URL by setting the videoURL
variable. Then on viewDidLoad, the player view controller creates and assigns an AVPlayer to
the view controller that encapsulates the videoURL. It will download the video and play it as
seen in Figure 12-15.

Figure 12-15. The player view controller with the UI and all the extras like fit to screen and subtitles

Now to load and play a local file that you might have included in the application, the method
is the same; the only difference is that the URL is created from a local path to the file.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 var filePath = NSBundle.mainBundle().pathForResource("stackofCards", ofType: "mp4")
 if let _videoPlayer = segue.destinationViewController as? PlayerViewController{
 if filePath != nil {
 _videoPlayer.videoURL = NSURL(fileURLWithPath: filePath!)
 }
 }
}

Replace the existing function with this code to load a file from the project. You can drag your
own videos into the project and pass that to the player view controller. There is only one
little snag; the reason for the line if filePath != nil is that while you might have dragged
a video onto the project, it does not mean it would be available to the application, Xcode
copies .mov files automatically but not some other formats including .mp4. You can click the
project to show the project properties. Under Build Phases, expand Copy Bundle Resources

372 CHAPTER 12: Media Library Access and Playback

to see the files that are available as resources (that is, not compiled but copied). If your video
is not in this list, it will not be available. Click the + sign, select your video, and click Add.
Now when you run, it will be available.

If you were to use this player to play an intro video that you want to control and not allow the
user to interact with its playback, you could simply disable the interface on the player view
controller by setting showsPlaybackControl to false.

self.showsPlaybackControls = false

You can also play a series or videos like a Video Juke Box with queued items; however,
instead of using an AVPlayer item, you would use the AVQueuePlayer.

This creates a new AVPlayer with the url and sets it to the player property of the
AVPlayerViewController, which in this case is self. As the name suggests, you can queue
video items to play.

If you select an AirPlay destination, the video is played onto the external source, in
Figure 12-16 you can see the iOS interface when playing on an external source.

Figure 12-16. The player playing on an external source via AirPlay

373CHAPTER 12: Media Library Access and Playback

AVMediaPlayer
Your AVMediaPlayer would look similar to the MPMediaPlayer, but there is a small difference;
instead of the tabs, you will have a single TableView that displays all the available videos and
then plays them just like what the MPMediaPlayer earlier.

You saw how easy it is to create a player view controller. You could also embed the
view from this ViewController into your own view as a subview. You can create a
AVPlayerViewController and then add it as the childViewController and add its view to the
subview of the main view. Set the frame to the location and dimensions you want.

let player = AVPlayer(URL: NSURL(fileURLWithPath: pathFor("stackofCards")!))

let playerViewController = AVPlayerViewController()
playerViewController.player = player

self.addChildViewController(playerViewController)
self.view.addSubview(playerViewController.view)
playerViewController.view.frame = self.view.frame

player.play()

The biggest issue is how to list the videos available on the device. You saw one way where
you could list the same using MediaPlayer. Apple introduced a new framework called the
Photos Framework. This provides access to the photos on the device. This is another source
of where you can find videos and generally store their videos.

You can query the Camera Roll or the Photos application for videos as simply as this:

var videoAssets = PHAsset.fetchAssetsWithMediaType(.Video, options: nil)

The fetchAssetsWithMediaType methods returns a PHFetchResults object that contains the
video assets of type PHAsset. This PHAsset can be then be used to create a player and play
the asset.

let imageManager = PHImageManager.defaultManager()

imageManager.requestPlayerItemForVideo(videoAsset, options: nil, resultHandler: {
 playerItem, info in
 self.player = AVPlayer(playerItem: playerItem)
})

Similarly, you can also request the poster frame or the image of the video in a similar fashion
using the requestImageForAsset method.

manager.requestImageForAsset(self.videos.objectAtIndex(indexPath.row) as PHAsset,
 targetSize: CGSizeMake(150, 150),
 contentMode: PHImageContentMode.AspectFill,
 options: nil,
 resultHandler: {
 assetImage, info in
})

374 CHAPTER 12: Media Library Access and Playback

AVMediaPlayer v2
Using Xcode, create a new application based on the Single View Application template and
name it AVKitMediaPlayer2. Click Main.storyboard and delete the view controller. Now
drag a TableViewController from the Object Library and select the menu option Editor
� Embed In � Navigation Controller. Change the Cell style to Basic and set Identifier to

VideoCell. Next change the selection to None. Now add a new Cocoa Touch Class file,

name it MediaListViewController, and make it a subclass of UITableViewController.

Click Main.Storyboard and change the class for the UITableViewController to

MediaListViewController; then click the MediaListViewController.swift file to open it in

the editor. First you need to import the libraries after import UIKit.

import AVFoundation
import AVKit
import Photos

After the class declaration, you need to declare two variables: one to hold the

PHImageManager and the other to hold the videos available in your Photos Library (detailed in

the next section).

let manager = PHImageManager.defaultManager()
var videos:PHFetchResult!

Apple takes access to the various functionality of the iOS quite seriously and has

authorization dialogs that prompt the user the first time for authorization. The Photos Library

is one such functionality, and the first time around it will prompt the user if they want to

allow access. If the user denies access, then the code will fail to fetch results until the user

explicitly allows access from the Settings ➤ Privacy ➤ Photos section. However, you need

to know in your application whether the user authorized this. First you query all the video

assets into the videos variable in ViewDidLoad.

override func viewDidLoad() {
 super.viewDidLoad()
 super.title = "Video Browser"
 self.videos = PHAsset.fetchAssetsWithMediaType(.Video, options: nil)
}

If the user has denied access to the Photos Library, there would be nothing in videos, and

hence the list view would populate nothing; you need to let the user know of this. You use

the viewDidAppear method to check the status and display an alert.

override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 if PHPhotoLibrary.authorizationStatus() == .Denied {
 let alert = UIAlertController(
 title: "Requires Access to Photos",
 message: "Please allow this app to access your Photos Library from the

Settings > Privacy > Photos setting",

375CHAPTER 12: Media Library Access and Playback

 preferredStyle: .Alert)
 let OKButton = UIAlertAction(title: "OK", style: .Default, handler: nil)
 alert.addAction(OKButton)
 UIApplication.sharedApplication().keyWindow?.rootViewController?.

presentViewController(alert, animated: true, completion: nil)
 }
}

Now uncomment the numberOfSectionsInTableView method and it will return 1.

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // Return the number of sections.
 return 1
}

Uncomment numberOfRowsInSection to return the video.count, and if that is nil, return 0 instead.

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 // Return the number of rows in the section.
 return self.videos?.count ?? 0
}

Finally, uncomment the cellForRowAtIndexPath method, and for the video asset at that row,
you need to query the image and the details such as the size of the video, duration, creation
date, and modification date.

First you get the asset from the video results.

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("VideoCell",
 forIndexPath: indexPath) as UITableViewCell

 // Configure the cell…
 var theAsset = self.videos.objectAtIndex(indexPath.row) as PHAsset

Next you send a request to the PHImageManager to get the Image for this asset. Then when
the handler returns the data, you can create an UIImage of a specified size and assign it to
the cell’s imageView.

self.manager.requestImageForAsset(self.videos.objectAtIndex(indexPath.row) as PHAsset,
 targetSize: CGSizeMake(150, 150),
 contentMode: PHImageContentMode.AspectFill,
 options: nil,
 resultHandler: {
 image, info in

 UIGraphicsBeginImageContextWithOptions(CGSizeMake(100, 100), false, 1)
 var context = UIGraphicsGetCurrentContext()
 (image as UIImage).drawInRect(CGRectMake(0, 0, 100, 100))
 var img = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()

376 CHAPTER 12: Media Library Access and Playback

 cell.imageView?.image = img
 var duration = String(format: "%0.1fs", theAsset.duration)
 var details = "(\(theAsset.pixelWidth) x \(theAsset.pixelHeight)) - \(duration)"
 cell.textLabel?.text = details
})

The videos can be in both landscape or portrait orientation, and the previous code renders
them in a square, which can cause the image to be squashed or stretched. You could
alternatively use the original image passed by the function by simply assigning it directly to
cell.imageview?.image = image.

You can get the duration and the dimensions from the asset itself, so it is a matter of simply
formatting it as a string and displaying it as the textLabel on the cell.

 return cell
}

If you run your app, you should be able to see the list of videos on your device listed in the
table view in Figure 12-17.

Figure 12-17. The list of videos available on the device

377CHAPTER 12: Media Library Access and Playback

Photo Library
Introduced with iOS 8, the Photos framework consists of PHImageManager and PHPhotoLibrary.
You have used portions of PHImageManager earlier. PHPhotoLibrary represents all of the
images and videos stored on the device including the iCloud (if enabled).

Like MediaPlayer, the element that actually holds metadata information about the item is a
PHAsset. It can be one of the three media types, namely, Image, Audio, or Video. It also has
other properties like pixelWidth and pixelHeight that indicate the size of the image or the
video (as you used in the earlier sample). It also has creationDate and modificationDate.
To know the location where the image was taken, it has another property called location,
which is of type CLLocation and holds the GPS coordinates of where the image or video
was taken. The duration property holds the duration or length of the video. In photos, you
can also flag images or videos as favorites, and the favorite property indicates whether this
item was flagged as favorite.

PHAsset objects are held in a PHAssetCollection. This is the collection item that represents
the albums, smart albums, and moments. It is an ordered list and has properties that are
estimates than actuals. The properties like approximateLocation and estimatedAssetCount
along with startDate and endDate define this PHAssetCollection class. The property
assetCollectionType is the type of collection, this is, an Album, Smart Album, or a Moment
collection.

The other collection is PHCollectionList, which is what forms the folders and the years in
moments. This has a similar set of properties as PHAssetCollections. These together allow
you to access the architecture model of the Photo Library.

Every time you query any of the classes, you are actually returned asset metadata in
PHFetchResults form. This is similar to an NSArray but is loaded lazily. To get the image or
the video associated with that asset, you have to then query the PHImageManager like you did
earlier to get all the videos. To get all the images, you can simply use the following:

var images = PHAsset.fetchAssetsWithMediaType(.Image, options: nil)

While iterating through each of the asset contained in the results, you could request the
image details like so:

self.manager.requestImageForAsset(self.videos.objectAtIndex(indexPath.row) as PHAsset,
 targetSize: CGSizeMake(150, 150),
 contentMode: PHImageContentMode.AspectFill,
 options: nil,
 resultHandler: {
 image, info in
}

This is the same that you used to get the video image earlier in the chapter.

378 CHAPTER 12: Media Library Access and Playback

Modifying the Photo Library
The Photos framework runs on threads to provide smoother UI and interaction. Because of
this, the objects are immutable, which make them thread-safe but also difficult to use with
the dot syntax. You cannot simply get an asset and alter the data and persist it. The way to
handle it is create a new changeRequest object using the PHAssetChangeRequest and then
perform the changes allowing the framework to apply the changes asynchronously via the
performChanges block. There are four properties that you can change, namely, favorite,
hidden, creationDate, and location.

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let request = PHAssetChangeRequest(forAsset: theAsset)
 request.favorite = !request.favorite
},
completionHandler: nil)

You can make a few modifications in the code to create an image viewer and to view it each
time you tap the image.

First modify the viewDidLoad method to change the title of the app from Video Browser to
Image Browser; next alter the query to fetch all images instead of videos.

override func viewDidLoad() {
 super.viewDidLoad()
 //self.title = "Video Browser"
 self.title = "Image Browser"

 //self.videos = PHAsset.fetchAssetsWithMediaType(.Video, options: nil)
 self.videos = PHAsset.fetchAssetsWithMediaType(.Image, options: nil)
}

You can run and see the list being populated with Images from your device/simulator. Now,
in the cellForRowAtIndexPath, you can use the AccessoryType to display whether the image
is a favorite or not. Just before the line return cell, add this code:

cell.accessoryType = theAsset.favorite ? .Checkmark : .None

This will display a check mark if the image is marked as a favorite. To test it, switch to the
Photos app on your device or simulator, select a couple of images, and set them as favorites
by tapping the heart, as shown in Figure 12-18.

379CHAPTER 12: Media Library Access and Playback

If you tap any of the images, the video player will display with nothing to play. That can be
easily fixed. Modify the didSelectRowAtIndexPath as follows:

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {
 var theAsset = self.videos.objectAtIndex(indexPath.row) as PHAsset
 if theAsset.mediaType == .Video {
 manager.requestPlayerItemForVideo(theAsset as PHAsset,
 options: nil,
 resultHandler: {
 item, info in
 var playerVC = AVPlayerViewController()
 var player:AVPlayer = AVPlayer(playerItem: item)
 playerVC.player = player

 player.play()
 self.presentViewController(playerVC, animated: true, completion: nil)
 })
 }

If you run the app and tap any of the cells, it will do nothing because it displays only images,
not videos. However, if you change the type of items in the viewDidLoad to .Video and tap
the cell, it will start playing.

Figure 12-18. Marking an image as a favorite in Photos and a check mark displaying next to it in the app

380 CHAPTER 12: Media Library Access and Playback

Are You Talking to Me?
Technology is developing fast, but not as fast as we expected. The Jetsons were far
more advanced than we are in 2015. That does not prevent our mobile devices from
talking to us. Siri started it all, and now your apps can too. With iOS 7, Apple included
text-to-speech synthesis as part of its SDK. So, you can have the alert boxes speak,
which adds value not only to your app but also makes it more accessible. It can also
work with applications for kids, where you can save on recorded .wav or .mp3 files to ask
“What is 2 + 2?” or any questions.

The AVFoundation framework is quite a powerhouse; it also houses the Speech
Synthesis APIs. The first step in text-to-speech is to create a synthesizer. The class
AVSpeechSynthesizer returns a synthesizer object.

let synthesizer = AVSpeechSynthesizer()

The next step is to create an utterance, which is the text that the synthesizer would convert
from text to speech. The class AVUtterance creates an utterance from the specified string
you pass to it.

let utterance = AVSpeechUtterance(string:thisSentence)

Then give it a voice, literally. You need to specify the language and voice that you want
the synthesizer to use. The voice is set for the utterance. These are based on the BCP47
language tag; you can find more information at http://tools.ietf.org/rfc/bcp/bcp47.txt.
Apple supports about 36 languages. Passing a nil for the language uses the default
language set on the system.

utterance.voice = AVSpeechSynthesisVoice(language: "en-US")

Finally, you need to tell the synthesizer to synthesize this text as speech.

synthesizer.speakUtterance(utterance)

That is all to converting text to speech; however, the SDK offers a lot more. You can
change the pitch and the volume. There are other methods to manipulate the speech
playback like stopSpeakingAtBoundary:, pauseSpeakingAtBoundary:, and continueSpeaking.
The boundaries for speech synthesis are either AVSpeechBoundary.Immediate and
AVSpeechBoundary.Word.

You can also set the delegate to handle notifications of important speech utterance events
like didStartSpeechUtterance, didFinishSpeechUtterance, didPauseSpeechUtterance,
didContinueSpeechUtterance, and didCancelSpeechUtterence.

The speech synthesizer has a delegate method that is called for every word spoken by the
synthesizer. The method synthesizer:willSpeakRangeOfSpeechString:utterance: gets
a range from the original string that you pass to the synthesizer to play. This can be used
for highlighting the words as the synthesizer is synthesizing them. You could even set the
volume to 0 and simply highlight the words on the screen.

http://tools.ietf.org/rfc/bcp/bcp47.txt

381CHAPTER 12: Media Library Access and Playback

Tip All the supported langauges can be found using AVSpeechSynthesisVoice.speechVoices().

Avast! Rough Waters Ahead!
In this chapter, you took a long but pleasant walk through the hills and valleys of using the
iPod music library. You saw how to find media items using media queries and how to let your
users select songs using the media picker controller. You learned how to use and manipulate
collections of media items. We showed you how to use music player controllers to play
media items and how to manipulate the currently playing item by seeking or skipping. You
also learned how to find out about the currently playing track, regardless of whether it’s one
your code played or one that the user chose using the iPod or Music application. You further
explored the AVKit, AVFoundation, and the Photos frameworks to access and display images
and videos.

But now, shore leave is over, matey. It’s time to set sail into the open waters of iOS security.
Batten down the hatches and secure the ship!

383

Chapter 13
Lights, Camera, and Action

Every mobile device has a camera; in fact, in many cases, a device has two of them and
is used more as a camera than a camera is. It is important to note that cameras are an
essential part of the iOS device family. In this chapter, you will explore the functionalities of
light, camera, and action—in that order.

Lights
When a light-emitting diode (LED) flash was added to the iPhone, the first thing a lot of
developers did was make flashlight and strobe light applications. The store was full of
them. At the time, Apple did not have APIs that provided access to the flash. However, now
AVFoundation has integrated functionality for accessing the flash. To use the LED flash, the
first thing you need to do is to find the devices that are available for capturing an image
(which could make use of the flash). You can do this via the class AVCaptureDevice; then you
can query whether the device has the capabilities to support the flashlight, focus, and so
on. The method hasTorch returns true if there is hardware that can support this functionality
otherwise it returns false.

var devices = AVCaptureDevice.devices()
for device in devices {
 let _device = device as AVCaptureDevice
 if _device.hasTorch{
 // Code to work with the Flash
 }
}

Just because the capture device has a “torch” does not mean that it is available for use, so
you must check whether the torch is available using the isAvailable property. (It could be
unavailable for a couple of reasons; one of them is if the LED overheats and needs to switch
off for a while to cool off.)

if _device.torchAvailable {
}

384 CHAPTER 13: Lights, Camera, and Action

Once you have ascertained that the capture device has the capabilities of an LED and
that it is available, you can simply change torchMode to AVTorchMode.On, AVTorchMode.Off,
or AVTorchMode.Auto. While the flash is on, you can also retrieve the flash brightness via
torchLevel (read-only), which is a value between 0 and 1.

_device.torchMode = AVCaptureTorchMode.On

Put these lines together, and you have a flashlight application. However, Apple might not
approve of this on the App Store anymore. Plus, the torch is now part of the iPhone as you
can see in Figure 13-1, and you can switch it on or off by simply swiping up from the bottom
of the screen and tapping the torch.

Figure 13-1. Torch is now part of the iOS

Camera
An important part of the iPhone is the camera. In fact, it has two—the front-facing one
and the higher-resolution back camera with a flash. Pictures captured via the Camera app
are stored in the Camera Roll (accessible via the Photos app). From the AVFoundation
perspective, there is a lot more that you can do with the camera.

First let’s explore the architecture to get an idea of how things sit in the framework. The
framework allows you to capture images or sound, and the core of it all is a capture device,
designated by the AVCaptureDevice class. In the previous section, you enumerated all of
the available capture devices to query whether it had hardware flash. The AVCaptureDevice
class can represent a camera or a microphone. The next is the AVCaptureInput class that
configures the ports from the input device. Then comes the AVCaptureOutput class that
specifies the end point of the output of where the captured data (image, sound, or video) is

385CHAPTER 13: Lights, Camera, and Action

to be stored. All of these are tied together in an AVCaptureSession class. You can configure
multiple inputs and outputs that are coordinated by the AVCaptureSession class.

var device = AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)
var input = AVCaptureDeviceInput(device: device, error: nil)
var session = AVCaptureSession()
session.addInput(input)
session.startRunning()

If you need to preview what the camera is recording, you can access that via the
AVCaptureVideoPreviewLayer class, which is a subclass of CALayer.

var previewLayer = AVCaptureVideoPreviewLayer(session: session)
previewLayer.videoGravity = AVLayerVideoGravityResizeAspectFill
previewLayer.frame = theView.frame
theView.layer.addSublayer(previewLayer)

This will add a layer that provides a live camera feed; if the view is the same size as the full
size of the screen, you have a full-screen camera preview. Since it is a CALayer, you can add
more layers, transform, scale, rotate, and even transform in 3D.

Table 13-1. Preset values

Symbol Resolution Comments

AVCaptureSessionPresetHigh High Highest recording quality

AVCaptureSessionPresetMedium Medium Suitable for WiFi sharing

AVCaptureSessionPresetLow Low Suitable for 3G sharing

AVCaptureSessionPreset640x480 VGA Suitable for VGA capture

AVCaptureSessionPreset1280x720 1280×720 720p HD

AVCaptureSessionPreset1920x1080 1920×1080 Full HD

AVCaptureSessionPresetPhoto Photo Captures using the full resolution

Not supported for video

Note Apple’s technical documents indicate that it is not possible to capture from both the

front-facing and back-facing cameras simultaneously.

The session can be configured to specify the image quality and resolution via the available
preset values. You might use a couple of settings in Table 13-1.

386 CHAPTER 13: Lights, Camera, and Action

You can also query the capture devices based on their characteristics to ensure that you are
using the correct device and it has the capabilities that you might require. If you wanted to
capture using the back camera at full HD resolution, you can use the following:

if device.hasMediaType(AVMediaTypeVideo) &&
 device.supportsAVCaptureSessionPreset(AVCaptureSessionPreset1920x1080) &&
 device.position == AVCaptureDevicePosition.Back{
 //This device has all the capabilites you require
 }

Changing Settings
In most of the cases, changing settings is as easy as simply assigning new values to the
object. However, to get exclusive access to the hardware to change the settings, you must
set a lock prior to changing the settings. Once you are done, you must unlock it again. The
methods to lock and unlock are lockForConfiguration and unlockForConfiguration.

theDevice.lockForConfiguration(nil)
// Change the settings here
theDevice.unlockForConfiguration()

The capture device offers properties to fine-tune settings such as the Exposure Mode, Focus
Mode, Flash Mode, Torch Mode, Video Stabilization, and White Balance properties. For
instance, you can lock the focus of the camera to be at a point onscreen.

if device.isFocusModeSupported(AVCaptureFocusMode.ContinuousAutoFocus) {
 var autoFocus = CGPointMake(0.5, 0.5)
 theDevice.lockForConfiguration(nil)
 device.focusPointOfInterest = autoFocus
 device.focusMode = AVCaptureFocusMode.ContinuousAutoFocus
 theDevice.unlockForConfiguration()
}

You can choose from one of these focusMode settings:

	.Locked locks the camera focus at a particular focal point; this can be
used to offer the user a facility to lock the focus.

	.AutoFocus helps to focus and maintain the focus on an item that is not
in the center of the screen by having a single pass scan the focus and
then revert to the locked focus.

	.ContinuousAutoFocus continuously performs autofocus as required.

If, after changing some of the AVCaptureSession settings such as the input or the output, you
need exclusive access, the functions are beginConfiguration and commitConfiguration.

387CHAPTER 13: Lights, Camera, and Action

Putting It All Together
Start a new Xcode single view project and name it Camera_1. Click ViewController.swift
and add the import AVFoundation; then add the variables to hold the session (theCamera,
theInputSource, and thePreview) after the class declaration.

import UIKit
import AVFoundation

class ViewController: UIViewController {

 var session: AVCaptureSession!

 var theCamera: AVCaptureDevice!
 var theInputSource: AVCaptureDeviceInput!

 var thePreview: AVCaptureVideoPreviewLayer!

In the viewDidLoad method, you can detect the available cameras and set theCamera
to the camera that is on the back of the device. The function AVCaptureDevice.
devicesWithMediaType returns the devices that can handle the particular media type.

var allCameras = AVCaptureDevice.devicesWithMediaType(AVMediaTypeVideo)

You can now iterate through each of these to identify the camera that is at the back via the
position property.

for camera in allCameras {
 if camera.position == AVCaptureDevicePosition.Back {
 theCamera = camera as AVCaptureDevice
 break
 }
}

Now that you have identified the back camera, you would need to create a session and an
input device from this device.

session = AVCaptureSession()
theInputSource = AVCaptureDeviceInput(device: theCamera, error: nil)

With the input source created, you need to add it to the session. It is best to check whether
you can add this input source to the session first using the canAddInput function.

if session.canAddInput(theInputSource){
 session.addInput(theInputSource)
}

388 CHAPTER 13: Lights, Camera, and Action

Now that all of this is in place, you can create a preview layer that shows what the camera
specified as the input source is seeing. The preview layer is a subclass of the CALayer class
and needs to be added to the sublayers of the layer collection in the view.

thePreview = AVCaptureVideoPreviewLayer(session: session)
thePreview.frame = self.view.bounds
thePreview.videoGravity = AVLayerVideoGravityResizeAspectFill
self.view.layer.addSublayer(thePreview)

session.startRunning()
}

If you run the project at this point, you would see the camera view displayed full-screen.

Figure 13-2. The camera preview with an overlaid text view

Note In Figure 13-2, a text view has been added, the background is the live camera view. So,

you can type your text while you can also see through to the screen of the phone. This is not

recommended for use in traffic or where accidents can occur. In addition, prolonged use of the

camera can drain your device’s battery.

389CHAPTER 13: Lights, Camera, and Action

Choosing a Camera
In most cases, the back camera is the default camera, which works great. But you
might have the need to use the front camera. In the previous code, if instead of the
AVCaptureDevicePosition.Back you use AVCaptureDevicePosition.Front, you can get the
front camera. You can make that change and rerun the application to see the difference.

However, in your app, you might want to have a button that allows you to switch between
the camera sources. It would be counterintuitive to change the camera source in the code,
recompile the app, and run it. So, you need to store both the cameras and a variable that
helps you determine which camera is used as the current source.

var theFrontCamera: AVCaptureDevice!
var theBackCamera: AVCaptureDevice!
var theSource = 0

The viewDidLoad method will change slightly to now detect both the cameras and save them
accordingly.

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 var allCameras = AVCaptureDevice.devicesWithMediaType(AVMediaTypeVideo)

 for camera in allCameras {
 if camera.position == AVCaptureDevicePosition.Back {
 theBackCamera = camera as AVCaptureDevice
 } else if camera.position == AVCaptureDevicePosition.Front {
 theFrontCamera = camera as AVCaptureDevice
 }
 }

 theCamera = theBackCamera
 ...

To switch between the two sources, you need a button, so add one in Main.storyboard.
Set the layout constraints so that the button is visible when you run it on the device. In the
Assistant editor, Control-drag and create an outlet called theButton. Control-drag again to
create an action called switchCamera.

@IBOutlet weak var theButton: UIButton!

If you ran the code, you would still not see the button. It is not the constraints that would be
the issue but that it is covered with the previewLayer. So, you need to bring the button layer
on the top of the view hierarchy via the command bringSubviewToFront in the viewDidLoad
function, just before the closing brace.

self.view.bringSubviewToFront(theButton)

390 CHAPTER 13: Lights, Camera, and Action

Next, in the function switchCamera, which is called every time the button is pressed, you first
toggle the cameras based on the value of theSource. Then you start the configuration to
change the session details, starting with first removing theInputSource and then creating a
new InputSource based on the camera and adding it to the session before finally committing
the configuration.

@IBAction func switchCamera(sender: AnyObject){
 theSource = 1 - theSource
 if theSource == 0 {
 theCamera = theBackCamera
 } else {
 theCamera = theFrontCamera
 }
 session.beginConfiguration()
 session.removeInput(self.theInputSource)
 theInputSource = AVCaptureDeviceInput(device: theCamera, error: nil)
 session.addInput(theInputSource)

 session.commitConfiguration()
}

Now every time you tap the button, the camera source will change.

Table 13-2. AVCaptureOutput output sources

Output Format Description

AVCaptureVideoDataOutput This is used to process the video data.

AVCaptureAudioDataOutput This is used to process the audio data captured.

AVCaptureFileOutput This starts writing the data to the file on the device.

AVCaptureMovieFileOutput This writes the movie data from the capture device to QuickTime

MOV format.

AVCaptureStillImageOutput This writes the data as a single image to the file.

AVCaptureMetadataOutput This reads the metadata such as barcodes or QR codes from the images.

Note All devices that can run iOS8 or run Swift or are supported officially by Apple have dual

cameras, one in the front and one at the back. The only devices that don’t are iPad 1st series. If

you want to ensure that your code is rock-solid, you could test whether theInputSource can be

added to the session using the session.canAddInput function.

Choosing an Output
You have an input source, but if you want to record or take a picture, you need an output
point. AVFoundation has an abstract class called AVCaptureOutput. You can choose from
some of the output sources offered in the framework, as shown In Table 13-2.

391CHAPTER 13: Lights, Camera, and Action

If you wanted to take pictures, you might use AVCaptureStillImageOutput as the
outputSource.

Then when you want to take a picture, you can trigger the captureStillImageAsynchronously
FromConnection:completionHandler: function on the outputSource. The completion handler
is passed the CMSampleBuffer that contains the image. This can be converted into an
UIImage and then saved to the Camera Roll or the app's sandbox.

Altering the code, first you create a new variable to reference the outputSource.

var theOutputSource: AVCaptureStillImageOutput!

Then in viewDidLoad you add the output source to the session.

theOutputSource = AVCaptureStillImageOutput()
 session.addOutput(theOutputSource)

Go to Main.storyboard and add a new button, change the text to Take Picture, and also
add an ImageView. Open the Assistant editor, Control-drag from the button, and create an
outlet called picButton. Control-drag from the button again, and this time create an action
called takePicture. Create another outlet from the ImageView and call it theImage. Close the
Assistant editor.

You can now write the implementation for the takePicture IBAction method as follows:

@IBAction func takePicture(sender: AnyObject){
var theConnection = theOutputSource.connectionWithMediaType(AVMediaTypeVideo)
theOutputSource.captureStillImageAsynchronouslyFromConnection(theConnection,
completionHandler: {
 theBuffer, error in
 var imageData = AVCaptureStillImageOutput.jpegStillImageNSDataRepresentation(theBuffer)
 var theImage = UIImage(data: imageData)
 self.theImage.image = theImage
})
}

The first thing the function does is to create an AVCaptureConnection object; this is a
connection link between the input and the output using the connectionWithMediaType
function. The connection that links the video source to the output is retrieved. Next the
captureStillImageAsynchronouslyFromConnection is called that calls the handler and
passes it the buffer with the image as a CMSampleBuffer object. This is converted into
an NSData representation using the jpegStillImageNSDataRepresentation function of
the AVCaptureStillImageOutput class. A UIImage is created from the NSData using the
UIImage(data:imageData) function, and this is then set to theImage.image and displayed on
the screen. Since there is a previewLayer, the button would be covered. At the end of the
viewDidLoad functon, add the following line:

self.view.bringSubviewToFront(picButton)

392 CHAPTER 13: Lights, Camera, and Action

Note You could add overlays and additional information prior to displaying this image or even

saving it to the Photos Library.

Adding an overlay to an UIImage is also quite easy; this could be used to create a watermark
or add data, a logo, or whatever you might fancy. To add a simple date and time to the
image taken, you can alter the code as follows:

@IBAction func switchCamera(){
 var theConnection = theOutputSource.connectionWithMediaType(AVMediaTypeVideo)

 theOutputSource.captureStillImageAsynchronouslyFromConnection(theConnection,

completionHandler: {
 theBuffer, error in

 var imageData = AVCaptureStillImageOutput.jpegStillImageNSDataRepresentation(theBuffer)
 var theImage = UIImage(data: imageData)

 UIGraphicsBeginImageContext(theImage!.size)
 var context = UIGraphicsGetCurrentContext()
 theImage?.drawAtPoint(CGPointMake(0, 0))

 CGContextSetFillColorWithColor(context, UIColor(white: 0.5, alpha: 0.5).CGColor)
 CGContextFillRect(context, CGRectMake(0, 0, theImage!.size.width, 20))
 //CGContextSetStrokeColorWithColor(context, UIColor.whiteColor().CGColor)

 var attr = [NSForegroundColorAttributeName:UIColor.whiteColor()]
 var message = "Taken on : \(NSDate().description)"
 message.drawAtPoint(CGPointMake(0, 0), withAttributes: attr)

 var _image = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()

 self.theImage.image = _image
 })
}

Now you will see an overlay on every picture taken that has the current date and time across
it. This image is still not saved to the Photo Album, and saving to the Photos Album is also
quite an easy task. The function UIImageWriteToSavedPhotosAlbum can save the image to the
Photos Album. The first time this app is run, it will request permissions to access the Photos
Album. The parameters passed to this function are UIImageWriteToSavedPhotosAlbum(image
:UIImage!, completionTarget: AnyObject, completionSelector: Selector, contextInfo:
UnsafeMutablePointer<Void>) in this function the first is the image itself that you want to
save, and you can pass nil for the remaining parameters. However, to know whether the
image was saved or not, you can set up the completionSelector.

UIImageWriteToSavedPhotosAlbum(_image, self, "imageSaved:didFinishSavingWithError:
contextInfo:", nil)

393CHAPTER 13: Lights, Camera, and Action

The completion handler function looks like this:

func imageSaved(image: UIImage, didFinishSavingWithError error: NSError,
 contextInfo: UnsafeMutablePointer<Void>){
 if error.code != 0 {
 println(">> Error : \(error.localizedDescription)")
 } else {
 println("Saving done!!")
 }
}

The error could indicate why the image could not be saved to the Photos Album. There you
have it—you capture an image, place a watermark like seen in Figure 13-3, and save it to the
Photos Album.

Figure 13-3. Image with the custom overlay saved to the Photos Album

394 CHAPTER 13: Lights, Camera, and Action

Scanning Barcodes
Apple introduced scanning for barcodes as part of the AVFoundation framework in iOS 7.
AVFoundation supports a variety of different barcode formats, including QR Code, Code 128, UPC,
EAN, and Interleaved. It even has support for the newer formats like Aztec and DataMatrix.

With the iOS devices becoming worthy replacements to a lot of industrial hardware
equipment, it would make sense to have the ability to scan barcodes built in. Scanning
for barcodes is just as simple as what you did in the previous topic with still images. The
only difference is the outputSource. If you recollect from the previous topic, you read about
the various types of output sources. For barcodes, the outputSource property would be
AVCaptureMetadataOutput.

Create a new single view project called Camera_2 (now you probably realize why we have the
numbers at the end). Click ViewController.swift and add the following:

import UIKit
import AVFoundation

class ViewController: UIViewController {
 var session: AVCaptureSession!
 var theCamera: AVCaptureDevice!
 var theInputSource: AVCaptureDeviceInput!
 var theOutputSource: AVCaptureMetadataOutput!
 var thePreview: AVCaptureVideoPreviewLayer!

Next, initialize the following in viewDidLoad as before:

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 var allCameras = AVCaptureDevice.devicesWithMediaType(AVMediaTypeVideo)
 for camera in allCameras {
 if camera.position == AVCaptureDevicePosition.Back {
 theCamera = camera as AVCaptureDevice
 break
 }
 }

 session = AVCaptureSession()
 if theCamera != nil {
 theInputSource = AVCaptureDeviceInput(device: theCamera, error: nil)
 if session.canAddInput(theInputSource) {
 session.addInput(theInputSource)
 }

395CHAPTER 13: Lights, Camera, and Action

 thePreview = AVCaptureVideoPreviewLayer(session: session)
 self.view.layer.addSublayer(thePreview)
 thePreview.frame = self.view.bounds
 thePreview.videoGravity = AVLayerVideoGravityResizeAspectFill
 }

 session.startRunning()
}

The only thing missing from this code block is the output source; for scanning barcodes, you
need to create an output source of type AVCaptureMetadataOutput. You can place this code
in between the InputSource and thePreview instantiation.

theOutputSource = AVCaptureMetadataOutput()
if session.canAddOutput(theOutputSource) {
 session.addOutput(theOutputSource)
}
var options = [AVMetadataObjectTypeQRCode]
theOutputSource.setMetadataObjectsDelegate(self, queue: dispatch_get_main_queue())
theOutputSource.metadataObjectTypes = options

The AVCaptureMetadataOutput is slightly different in that you can set the
metadataObjectTypes property to include the barcodes that you want recognized. If
it is not added to the metadata types, it is not recognized. In the previous example,
this will scan for and recognize only QR codes. The other thing that is different is
the delegate method. It takes two parameters; one is the target that implements the
AVCaptureMetadataOutputObjectsDelegate, and the other is the dispatch queue on which
the delegate methods are executed. You could create your own custom queue and use it
for processing; however, in this case, the default priority queue is used. You can see the
barcode detector in action in Figure 13-4.

396 CHAPTER 13: Lights, Camera, and Action

Note All UI updates are on the dispatch_main_queue, so if your code is run on any other

queue, you will have to run the UI update code on the main_queue for the updates to work.

Figure 13-4. QR barcode recognized and displayed as an alert

Add the AVCaptureMetadataOutputObjectsDelegate to the class definition so that the class
can be a delegate for metadataObjects.

class ViewController: UIViewController, AVCaptureMetadataOutputObjectsDelegate {

There is just one delegate method in the AVCaptureMetadataOutputObjectsDelegate; it is
captureOutput:didOutputMetadataObjects:fromConnection. This function is called
whenever the output captures any new objects.

397CHAPTER 13: Lights, Camera, and Action

//MARK: - AVCaptureMetadataObjectsDelegate functions

func captureOutput(captureOutput: AVCaptureOutput!, didOutputMetadataObjects
 metadataObjects: [AnyObject]!, fromConnection connection:

AVCaptureConnection!) {
 for theItem in metadataObjects {
 if let _item = theItem as? AVMetadataMachineReadableCodeObject {

println("We read \(_item.stringValue) from a barcode of type : \(_item.type)")
 }
 }
}

To display the QR codes as an AlertBox, you could add the following code:

showAlert("We got \(_item.stringValue)", theMessage: "barcode type: \(_item.type)")

Add the code for showAlert, your custom code to display an Alert Box with a message.

func showAlert(theTitle: String, theMessage: String, theButton: String = "OK",
 completion:((UIAlertAction!) -> Void)! = nil){
 let alert = UIAlertController(title: theTitle, message: theMessage,

preferredStyle: .Alert)
 let OKButton = UIAlertAction(title: theButton, style: .Default, handler: completion)
 alert.addAction(OKButton)

 self.presentViewController(alert, animated: true, completion: nil)
}

Generating Barcodes
You can use the previous code to scan and decode barcodes. Apple also has functionality
to generate barcodes. The functionality is available in the CoreImage framework. It is
perhaps one of the simplest ways to generate a barcode. Traditionally, a barcode holds the
information encoded in it, and generating a visual representation is not the easiest of tasks
(sans this API). The way to generate barcodes is to utilize CIFilter, which is so named
because it is available as part of the CoreImage framework. A filter is just like a function; there
is an input, and there is an output. The logic that processes the input to produce the output
is not available to you. To generate a barcode, you need to initialize a CIFilter with the
appropriate filter name.

var filter = CIFilter(name: "CIQRCodeGenerator")
filter.setDefaults()

var data = kText.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: false)
filter.setValue(data, forKey: "inputMessage")

398 CHAPTER 13: Lights, Camera, and Action

Abracadabra, you can now get an image via the outputImage property of the filter. Note that
this output image is in CIImage format and needs to be converted into a UIImage, which can
then be assigned to a UIImageView or saved to the Photos Album. The other thing is that this
image is generally very small and would need a bit of scaling up to make it larger. Relying on
the UIImageView to scale the image could result in blurry images.

var outputImage = filter.outputImage
 var context = CIContext(options: nil)
 var cgImage = context.createCGImage(outputImage, fromRect: outputImage.extent())
 var image = UIImage(CGImage: cgImage, scale: 1, orientation: .Up)

Figure 13-5 shows the results of this blurriness; however, surprisingly, it is still detectable
and can be read even on an iPhone 4 camera.

Figure 13-5. The generated QR code, blurry but recognizable

To display a smooth scaled-up image, most algorithms use anti-aliasing, and that is what
causes the blurriness. For line art that needs to be crisp and does not need any anti-aliasing,
the scaling options do not work well. This is because the algorithms try to interpolate (figure
out the intermediate pixels) when scaling an image. To get crisp black-and-white line art like
in Figure 13-6, you need to turn off the interpolation.

399CHAPTER 13: Lights, Camera, and Action

var scaleRef = self.view.bounds.width / image!.size.width

var width = image!.size.width * scaleRef
var height = image!.size.height * scaleRef

var quality = kCGInterpolationNone

UIGraphicsBeginImageContext(CGSizeMake(width, height))
var _context = UIGraphicsGetCurrentContext()
CGContextSetInterpolationQuality(_context, quality)
image!.drawInRect(CGRectMake(0, 0, width, height))
var _temp = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
// The new crisp scaled up image is in _temp

With interpolation set to none, the results shown in Figure 13-6 are crisp and better.

Figure 13-6. Crisper and better-looking QR barcode achieved with a little scaling

400 CHAPTER 13: Lights, Camera, and Action

Make Some Noise
You saw how to play videos in the previous chapter, and in the last few sections you
learned how to get the camera to work for taking still images or detecting barcodes. But
in your application, you might simply want to play a sound for a bullet fired or even for
congratulating the player or providing feedback. Text-to-speech can work in some cases,
but you don’t imagine hearing text-to-speech say “Bang” or “Kapow” instead of actual
sound effects in a shooting or boxing game.

To play an audio file, you need an audio file and a player. A little understanding about audio
files will help you understand the complexities involved in playing audio. All audio files are
stored as binary data and are encoded and even compressed to save space. Similar to
still image files, which could be stored in various formats like JPEG, PNG, BMP, GIF, and
so on, audio files are stored in different formats. The data is specific to each type of file.
To play an audio file, the player must identify, decode, and then convert the data into an
audio signal and play it. Luckily, you do not have to bother with all of that low-level stuff,
and you can focus on playing the audio and managing it from your UI. AVFoundation offers
audio playback via AVAudioPlayer, but unlike AVPlayerViewController (from AVKit), you
are presented with no UI to manage the playback. You have to create your own UI like you
did with MPMediaPlayer in the previous chapter. Another difference between AVAudioPlayer
and the other classes you have used like AVPlayer is that AVAudioPlayer offers a delegate
to manage the events, whereas with the others you have to set up notifications to monitor
event changes.

var file = NSBundle.mainBundle().pathForResource("megamix", ofType: "mp3")

theURL = NSURL(fileURLWithPath: file!)
thePlayer = AVAudioPlayer(contentsOfURL: theURL, error: &self.error)

Now you can simply use thePlayer.play(); however, there is a small catch (there is always
something, isn’t it?). Since the loading of the file data is on an asynchronous queue, the
player might not play any audio. If you put the play method in a button, the audio will
play fine.

You can also change the playback rate to play the audio faster or slower than the normal
playback rate. Simply setting rate = 0.5 would not set the playback rate to half-speed
because you need to set enableRate = true before you call prepareToPlay or call play.
That’s all there is to playing an audio file; AVAudioPlayer does not play streaming audio
but can play audio files located on a network. You can pause the audio playback using the
pause method and query the state of the player via the isPlaying property, which returns
true when playing and false when paused or stopped. The currentTime property provides
information in seconds regarding the position of the playback in the audio file, and duration
provides the total length of the file in seconds.

401CHAPTER 13: Lights, Camera, and Action

Recording Audio
Like AVAudioPlayer, if you want to record audio, you can make use of the AVAudioRecorder
class. This is similar to AVAudioPlayer in the sense that it comes without a UI, and you can
create your own UI elements to work with the recorder class. The methods that you would
use are as you might expect; you can start recording with the record() method, pause the
recording using pause(), and stop the recording with stop().

Starting with iOS 8, access to most hardware features requires user permissions, and only
if the user allows it, the app can access that hardware functionality. The permissions are
asked once the first time the app is run and then on those permissions are persisted (unless
explicitly changed via the Settings app).

AVAudioSession needs to be set up for use prior to using AVAudioPlayer. This prepares the
way sound is played from your application and the way the application behaves when the
app goes to the background, for example the screen locks. You have to be careful about this
because it can even disable recording and playback in certain modes. For this application,
since you want to record and then also be able to play back the recording, you would require
AVAudioSessionCategoryPlayAndRecord.

However, before you can start recording, you need to prepare the AVAudioRecorder object
with the file you want to save the recording to. The file is a URL and passed to the class
when initializing the same.

@IBAction func record(sender: AnyObject){

 let docsDir = NSFileManager.defaultManager().URLsForDirectory(
 NSSearchPathDirectory.DocumentDirectory,
 inDomains: NSSearchPathDomainMask.UserDomainMask).last as NSURL
 var theFile = NSURL(string: "recording.wav", relativeToURL: docsDir)

 self.recorder = AVAudioRecorder(URL: theFile, settings: nil, error: &self.error)
 self.recorder.recordForDuration(10)
}

The previous code first sets the docsDir variable with the URL path to the Documents
directory on the device; next the file recording.wav is added to this URL. The resulting
URL is used to initialize the AVAudioRecorder object. If the file exists, the recording
would overwrite the file. Next, to limit the recording to ten seconds, the recorder.
recordForDuration method is used, passing it a value to 10. If you want longer recordings,
you could simply call the record method and then stop or pause when you are done.

When you call the pause method, the recording is paused, and the file is still open for more
audio data via the record method. However, when you call the stop method, all of the
buffers are written to the device, and the file is closed. Any further record attempts would
result in the file being overwritten with the new data. The file where the audio data is stored
is specified when you create the AVAudioRecorder object. If you want to create another file
as the destination for the recorded data, you need to create a new AVAudioRecorder object
with the new file URL.

402 CHAPTER 13: Lights, Camera, and Action

Playing back the recorded content is the same as you used earlier; the only difference is
that this time around you are playing the file you have called recording.wav and stored
in the Documents directory. Earlier everything was stored in this directory because Apple
offered this as the writable directory in the sandboxed hierarchy of directories. Now, after
the introduction of iCloud integration, Apple recommends not storing all information in this
directory because this directory gets synced.

Note If you run the code on the simulator, AVAudioPlayer and AVAudioRecorder both work

fine; however, using a device to test is always best.

When creating an AVAudioRecorder class, you can also specify the settings for the recording.
In the previous code, the settings have been passed a nil value, thereby using the default
values. However, while creating the AVAudioRecorder, you could specify settings like the
audio format, the sample rate, the number of channels, and so on. Some of the settings that
you would use are as follows:

	AVSampleRateKey: This is the sample rate in hertz and expressed as a
floating-point value.

	AVNumberOfChannelsKey: This specifies the number of channels as an
integer value.

	AVEncoderBitRateKey: This specifies the bit rate of the audio encoder.

	AVSampleRateConverterAudioQualityKey: This specifies the quality of the
sample rate conversion.

The settings are passed as a key-value pair, and the sample settings look like the following:

var settings = [AVSampleRateKey:44100,
 AVNumberOfChannelsKey:2,
 AVEncoderBitRateKey:16,
 AVEncoderAudioQualityKey:AVAudioQuality.High.rawValue]

If you want to delete the recording, you can simply call the deleteRecording method.

self.recorder.deleteRecording()

Tip For detailed use and more information about using and working with audio and video, the

book Beginning iOS Media App Development from Apress is a good source.

403CHAPTER 13: Lights, Camera, and Action

The Show Must Go On
The functionalities offered in the iOS updates are not limited to the coverage in this chapter.
In fact, it is so huge that there are books dedicated entirely to each of those functionalities.
There are a couple of books from Apress that help you with detailed information. Just search
at Apress.com.

In the next chapter, you will read about the additions to Interface Builder and transitions
between view controllers. So, get ready to enter a different section of the Willy Wonka
Factory.

http://apress.com/

405

Chapter 14
Interface Builder and

Storyboards

As much as writing code is important in developing applications, getting a little help in
the form of visual aids is nice. It is not difficult for a seasoned developer to whip up a
user interface (UI) from code in a couple of minutes, but there could be other design
considerations that might be an impeding factor when drawing UIs via code. For visual
editing, Apple provides Interface Builder as an integral part of Xcode. It works quite well with
the code editor too, whereby you can drag and drop to create outlets and actions.

A visual overview is critical to help you understand and manage a project. Storyboards
are another tool that allow you to visually see the different View Controllers and their
connections. Developers in the past used various wireframe tools to create outlines and
workflows and then had to convert them for use in Xcode. With storyboards, you not only
can create these in Xcode but also can set up the flow between various view Controllers
and Objects and have an interactive model ready at the click of a button. Following this,
developers can take over and write the code to make your project work as expected.

You have used storyboards and connected them with segues in the preceding chapters, so
by now you have a fair idea about the way storyboards work.

Storyboard View Controllers
A storyboard is a visual representation of several scenes. You can have multiple storyboards
in your application. In the past, you had a xib file, which stored one scene per file. A single
scene in a storyboard basically is made up of at least a view controller and a view. These
views may in turn contain other objects, views, and controls that make up the UI of your
application. This collection of views and subviews in the view controller make up the content
view hierarchy. A storyboard may have more than one scene, and these scenes can be
connected by segues (pronounced as “seg-ways”). This represents the transition between

406 CHAPTER 14: Interface Builder and Storyboards

view controllers. There are a couple of view controllers you can use in your projects,
described here:

	View controller: This is the standard and most commonly used view
controller in many applications. This is generally used with a custom
class to provide the functionality.

	Navigation controller: This is a view controller that has a navigation
controller and a root view controller. This is used in applications where
you want the user to be able to easily navigate through scenes. The
back button is displayed automatically and part of the functionality
offered by this view controller.

	Table view controller: This is another one of the most commonly used
view controllers; it manages and displays a UITableView as the view.

	Tab bar controller: This view controller acts like a container that
connects to other view controllers and swaps displaying them based on
the tab that has been selected. The tabs are displayed at the bottom of
the window, allowing the user to select and switch.

	Split view controller: This view controller provides a master-detail
interface, where the (primary) master view controller drives the
information displayed in the (secondary) detail view controller. This view
controller offers a split view, which is generally seen in iPad applications
and in landscape mode of the new iPhone 6 Plus. On iPhones, it
displays the same thing using a navigation bar.

	Page view controller: This view controller, like the tab bar controller,
displays view controllers and allows the user to swipe between them
and change the view controllers like pages with a page indicator at the
bottom.

	GLKit view controller: This view controller houses a GLView that can be
used to display OpenGL animation or objects.

	Collection view controller: Like the table view controller houses the
table view, this displays and manages a collection view.

	AVKit Player view controller: This view controller is a fully featured
AVPlayer, as shown in Chapter 12.

All storyboards have a single entry point that indicates that when this storyboard is
instantiated, this is the view controller that is displayed first. Each view controller has a
property called Is Initial View Controller, and only one view controller can be set as the initial
view controller per

storyboard. The storyboard that is the initial view controller is represented with an arrow to
the left of the view controller, as shown in Figure 14-1.

407CHAPTER 14: Interface Builder and Storyboards

Note You never instantiate an UIViewController object directly; you always use a subclass of

UIViewController.

Figure 14-1. Storyboard with an initial view controller

If a view is connected via a segue, then the view controller in which that view is contained
loads and allocates all of its objects and displays the view controller on the device. You would
never allocate or deallocate this view controller. If you need to programmatically instantiate
the view controller, you can do so by calling the instantiateViewControllerWithIdentifier
method on a storyboard object.

let story = UIStoryboard(name: "Main", bundle: nil)
let tmpFrm = story.instantiateViewControllerWithIdentifier("frmCustomScene") as
frmCustomScene

You can also use a view controller from a nib/xib file, but the relationships between
the subviews and other view controllers cannot be created or visualized like with
storyboards. If you were to create a view controller from a xib file, you would use the
initWithNibName:bundle: method.

408 CHAPTER 14: Interface Builder and Storyboards

Lastly, if you cannot define your views in a storyboard or a xib file, you can create and add
them via code; for that you can override the loadView: method and then assign this view
hierarchy to the view property.

Container View Controller
While it sounds fancy, a view controller is also a container view controller. The view controller
can contain other view controllers as children. Some examples of container view controllers
are split view controllers, tab view controllers, and page view controllers.

Segues
After you place some controls on a scene, you want to grant the user the ability to interact
with them, and some of the tasks might involve displaying another scene. You can
Control-drag from the element to the new scene, and upon releasing the mouse, you will
be presented with a menu of options. You used this earlier while creating the SuperDB
application. The connection you create between the two forms is called the seque. Seques
have a couple of properties that you can alter. The first is the identifier, which is a string and
can be used to manually trigger or call a segue. The next is the type of segue, which can be
one of the following:

	Push: This segue is used with a navigation view controller. It adds the
view controller to the navigation stack and provides the user with the
ability to view and to navigate back to the previous controller using the
back buttons on the navigation bar. If you have size classes enabled,
this is called show.

	Popover: This segue works only on iPads and displays the view
controller as a pop-up window. If you have size classes enabled, this is
called popover presentation.

	Replace: This segue works with a master-detail split view controller.
If you have size classes enabled, this is called show detail.

	Modal: This segue displays the new view controller on top of the existing
view controller, and when this is dismissed, the previous view controller
is visible. There is no provision for the back button, and you have to
employ a way to dismiss the view controller. If you have size classes
enabled, this is called present modally.

Note The options listed here are if you are not using the size classes. When you use size classes,

the options are named differently.

Start a new application based on the Single View Application template and call it
Storyboarding_1. Click Main.Storyboard, and from the Object Library drag a button onto the
view controller. Double-click it and change its text to Show. Then, drag another view controller

409CHAPTER 14: Interface Builder and Storyboards

to the right of the existing view controller. Control-drag from the button on the view controller
on the left to the view controller on the right. Select the segue of type modal / present modally.
Drag a label from the Object Library and drop it on the view controller on the right; change
its text to This is a new Scene. Select the segue and change the animation from Default to
Flip Horizontally. Run the project and tap the button. The view flips horizontally and displays
the view controller with the text. The only issue is that you cannot go back to the first
view controller.

Click the view controller on the left and from the menu select Editor ➤ Embed in ➤
Navigation View Controller. You will see that a new view controller, of type Navigation view
controller, is added to the left of the first view controller. Click the segue you created between
the view controllers with the button and the label. Change the type from Modal / Present
Modally to Push / Show in the Attributes Inspector. Run the project again and click the button
this time. You see a back button on the top, and the screen slides to show you the one with
the label. If you click the back button, you are taken back to the first one with the button.

There is another type of segue that you can create, called a manual segue. The manual
seque has pretty much the same options: Push, Modal, or Custom. However, these segues
are set but not called automatically, and it is up to you to call these via code. You created
and used manual segues in the SuperDB application.

Controls
The Object Library has a large collection of controls that help you create the UI for your
application. You can drag objects onto the view controller, like you did with the label earlier,
and you can change the location, the dimensions, and even some properties like the text,
the text color, or the background color. The changes are displayed immediately. This allows
you to visually set up your interface quickly.

If you need a custom control, drag a view as a placeholder and imagine it as it would be
rendered when the project is run. To add functionality to the control, you need to subclass it,
add the properties, and set them when you run the app.

Drag a view onto the view controller with the button. Place it above the button and set the
width and the height to 150 pixels each. Click Storyboarding_01 and create a new file of
type Cocoa Touch Class as a subclass of UIView and name it BasicControl. The editor will
open the newly created file. Add the two properties as shown here:

import UIKit

class BasicControl: UIView {

 var text: String = "Unknwown"
 var secretID:Int = 1234
}

Change to the storyboard and click the UIView you added. In the Identity Inspector, change
Class to BasicControl. The control has two properties that are available to the control only
when the project is run. It does not offer you the same parity as when using a label or a
button, where you can change the property values in Interface Builder.

410 CHAPTER 14: Interface Builder and Storyboards

Inspectable
Since Xcode 6, you can mark properties as Inspectable, which means they will be available
in Interface Builder. Click the BasicControl.swift file and add the @IBInspectable attribute
to the properties.

class BasicControl: UIView {
 @IBInspectable var text: String = "Unknwown"
 @IBInspectable var secretID: Int = 1234
}

Switch back to the storyboard and click the UIView. Then go to the Attributes Inspector,
where you will see two new properties that you can modify, as shown in Figure 14-2.

Figure 14-2. Attributes Inspector displaying the custom properties

Interface Builder cannot display and support all types of variables, but some supported ones
are as follows:

	Int, Double, CGFloat

	String

	Bool

	CGPoint

	CGSize

411CHAPTER 14: Interface Builder and Storyboards

	CGRect

	UIColor

	UIImage

The additional properties added to the BasicControl show up in the Attributes Inspector,
as shown in Figure 14-3.

@IBInspectable var text: String = "Unknwown"
@IBInspectable var secretID: Float = 1234
@IBInspectable var image: UIImage!
@IBInspectable var position: CGPoint!
@IBInspectable var rect: CGRect!
@IBInspectable var isVisible: Bool = false

Figure 14-3. More custom properties displayed in the Attributes Inspector

Designable
Apple has added another attribute, @IBDesignable; this allows the control to be interactive
and drawn in Interface Builder, not just at runtime. The @IBDesignable attribute is added in
front of the class definition.

import UIKit

@IBDesignable class BasicControl: UIView {

You can simply add a drawRect function that draws your custom control. You can add the
following drawRect code to the BasicControl:

override func drawRect(rect: CGRect) {
 NSString(string: text).drawAtPoint(CGPointMake(5, 5), withAttributes: nil)
}

412 CHAPTER 14: Interface Builder and Storyboards

This will draw the string in the text property. There is just one more change you need to make.
When you change the value of the text property, the control does not know that it has to
redraw itself and display the updated text. A simple change to the property text can fix that.

@IBInspectable var text: String = "Unknown" {
 didSet {
 self.setNeedsDisplay()
 }
}

This is run after the property is set with a newer value, and the setNeedsDisplay function is
called, which in turn calls the drawRect. So, now as soon as the value for text is changed in
Interface Builder, it is updated on the BasicControl, as shown in Figure 14-4.

Figure 14-4. Basic control drawn with custom properties set in Interface Builder

When creating a custom control, you would create a custom class that subclasses an
existing view object, mostly an UIView, but you could subclass a UITextField and add
floating titles, add an UILabel, and so on. Xcode insists that you implement the init(coder
aDecorder: NSCoder) function, which is the initializer that is called when the applications
is run; however, for the Interface Builder live preview, the init(frame: CGRect) initializer is
called via Interface Builder. Then you are also required to implement the layoutSubviews
method, which is called when the view is instructed to reload its subviews. When the
control is in Interface Builder, the layoutSubviews method is called, but when the control
is running as part of the application, it is not. Lastly, if you have any custom drawing, then
you will also have to implement the drawRect method, which is called both at design time
and at runtime.

413CHAPTER 14: Interface Builder and Storyboards

A More Useful BasicControl
Let’s get back to the BasicControl. You can make it slightly more useful than just displaying
the text. The BasicControl will act as a progress bar inspired by material design. It fills
up the view with a circle based on a progress value that is in the range of 0 to 1. The
BasicControl will look like Figure 14-5.

Figure 14-5. The BasicControl to act as a fancy progress bar

You need to first delete all of the code from the class declaration to the last curly brace. This
control has a couple of properties, three of which are shown in Figure 14-5. These are value,
which holds a number between 0.0 to 1.0; another Boolean called useFlatColor, which
switches between a flat, colored fill and a gradient fill (the gradient fill is shown in Figure 14-5);
and, lastly, theColor, which holds the flat color for the control. Apart from this, the control needs
two private variables: one to reference the flat fill shape and the other for the gradient shape.

import UIKit

@IBDesignable class BasicControl: UIView {

 private var shape: CAShapeLayer!
 private var gradient: CAGradientLayer!
 @IBInspectable var value: CGFloat = 0 {
 didSet {
 layoutSubviews()
 }
 }

414 CHAPTER 14: Interface Builder and Storyboards

 @IBInspectable var useFlatColor: Bool = true {
 didSet {
 gradient.hidden = useFlatColor
 }
 }
 @IBInspectable var theColor:UIColor! = UIColor.greenColor(){
 didSet {
 shape.fillColor = theColor.CGColor
 }
 }

For the three variables that are inspectable, you can use didSet, which is an observer
function that is called after the value of the variable is changed. The changes are applied to
the custom control in those functions. If the value is changed, the control sends a message
to redraw itself. When useFlatColor is changed, the gradient is hidden or displayed
accordingly. The gradient layer simply overlays onto the flat, colored shape layer, so when
the gradient layer is visible, the flat, colored layer is not visible. When the color is changed,
it is applied directly to the shape as the fill color.

Next add the init functions for the control to be instantiated and created.

required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 // Called when project run in Simulator or on Device if Control was in IB
}

override init(frame: CGRect) {
 super.init(frame: frame)
 // Called when in Interface Builder or via Code created by passing a frame
}

The init function with the NSCoder is called when the control is placed on the view in
Interface Builder. The init function with the frame is called when the control is placed in
Interface Builder and also when you create an instance from code using this initializer.

Now you need to implement the layoutSubviews function; this repositions and resizes the
subviews. There are a number of triggers that will cause the layoutSubview to be called.
This function is called when any of the following take place:

The view hierarchy is altered, like a subview is added or removed	
The dimensions of the view are changed, like resizing the control in 	
Interface Builder or via code (setting the frame)

The device is rotated	
This is the best point to manage the control. First you can check whether the shape and
gradient are initialized; if they are still nil, then instantiate them.

415CHAPTER 14: Interface Builder and Storyboards

override func layoutSubviews() {
 super.layoutSubviews()

 if shape == nil {
 shape = CAShapeLayer()
 shape.fillColor = theColor.CGColor
 shape.cornerRadius = self.frame.height/2
 shape.masksToBounds = true

 self.layer.addSublayer(shape)
 self.clipsToBounds = true
 }
 if gradient == nil {
 gradient = CAGradientLayer()
 gradient.colors = [UIColor.redColor().CGColor, UIColor.blueColor().CGColor]
 gradient.locations = [0.0, 1.0]
 gradient.cornerRadius = self.frame.height/2
 gradient.masksToBounds = true

 gradient.hidden = useFlatColor
 self.layer.addSublayer(gradient)
 }

Now, the radius is calculated, which is basically the hypotenuse with the height and width of
the control container. This ensures that the corners are filled. The frame variable is set to the
bounding rectangle of the container.

var frame = self.bounds

let x:CGFloat = max(shape.frame.midX, frame.size.width - shape.frame.midX)
let y:CGFloat = max(shape.frame.midY, frame.size.height - shape.frame.midY)
var radius = sqrt(x*x + y*y) * value

When you change the value of the control during runtime, it will jump a bit because the
system will animate it. To make it not jumpy, you can stop the animation by first starting a
transaction and then setting animationDuration to 0. This disables animation for the changes
that follow and then calls the commit method. The code basically checks whether the value
set is 0; if it is, the circle is hidden. The shape for the flat-color, filled circle is created as a
CGPath using the radius and the frame. The cornerRadius property is set to ensure the layers
look circular. The same settings applied to the shape layer are applied to the gradient layer.
The gradient layer sits on top of the shape layer, and when it is visible, it obstructs the flat
single-colored shape layer, giving the impression that the layer is gradient filled.

CATransaction.begin()
 CATransaction.setAnimationDuration(0.0)
 CATransaction.setDisableActions(true)

 if value == 0 {
 shape.hidden = true
 gradient.hidden = true
 } else {

416 CHAPTER 14: Interface Builder and Storyboards

 shape.hidden = false
 gradient.hidden = useFlatColor

 shape.path = UIBezierPath(ovalInRect: CGRectMake(0, 0, radius*2, radius*2)).CGPath
 shape.frame = CGRectMake(frame.midX - radius, frame.midY - radius, radius * 2,

radius * 2)
 shape.position = CGPointMake(frame.midX, frame.midY)

 shape.anchorPoint = CGPointMake(0.5, 0.5)

 shape.cornerRadius = radius

 gradient.frame = shape.frame
 gradient.cornerRadius = radius
 }
 CATransaction.commit()
}

If you switch between the code and the Interface Builder/storyboard, you will see the
rendered circle in the view.

Debugging these views is easy but confusing at first. If you set breakpoints in the
BasicControl.swift file, though, you see that Interface Builder runs that code to update the
control every time you make changes to the control from the inspectors, but the breakpoints
are never reached. So, it is difficult to debug, right? The println statements do not work
either, so you cannot display to the console what’s happening. However, debugging is easy
because to enable debugging on a custom control, all you need to do is select the Editor ➤
Debug Selected Views option. The debugger breaks at the breakpoint set, and you can step
through your code.

Note When debugging an IBDesignable, you can step through code, but you cannot use the

console to display the variable information using po and other commands.

View Controllers
In the previous section, you saw that there were transitions you could choose from when
displaying a view controller. The transitions provided by Apple are good, but then with iOS
development, developers are always getting more innovative. Those transitions might be
good, but what if you wanted to have your own set of transitions? Apple has introduced a
new class that allows developers to create their own transitions and apply them to the view
controllers.

First let’s take a closer look at view controllers to understand how they work and what
makes them tick. View controllers, as the name suggests, control and manage the display
of views on the screen. You could have one big view controller that manages each and
every little view; however, by having multiple view controllers controlling different sections of
your application, you can visualize and manage the relationships between the views better.

417CHAPTER 14: Interface Builder and Storyboards

This also separates the views into smaller manageable chunks as they are instantiated,
displayed, interacted with, and disposed of.

Each view controller manages a single view; this is generally referred to as the
rootViewController, which is the root of the view hierarchy. A view controller loads and
releases its views as required and is key in managing the resources in your application.
Because it follows the Model-View-Controller (MVC) pattern, it has information of a subset
of your application’s data and knows how to access and display just that, as per what the
model provides. The view controllers must communicate with each other to provide the
seamless experience to the user because each is responsible for just a subset of the user
experience. In the previous chapters, you used view controllers and probably recall that
view controllers are commonly used to perform just one task. For example, in SuperDB,
the first view controller was responsible for displaying the list of superheros, and when you
clicked one, another view controller was loaded that displayed the details. Each of the view
controllers also allowed you to edit/delete the data.

In the earlier example of view controllers, you had two view controllers, whereby clicking
the button on the first displayed the second, and then you could navigate back using the
back button. View controllers also offer a slightly advanced feature, where you can add the
view of another view controller onto the first view controller. The view controller can also be
displayed as a popover or simply be displayed from another view controller. It might make
sense to you regarding the options that you are presented with when you try to change the
segue type as seen in Figure 14-6.

Figure 14-6. Segue options

When a segue is triggered, there are a couple of things that happen. It will load the view
controller, and then, depending on the type of segue, the view controller is presented as
discussed in the earlier paragraph. In your application, the view controller that triggers the
segue will receive a callback to prepareForSegue, and the parameters passed to it are segue
and sender. The segue object passed has three properties that you can access, namely,
identifier, sourceViewController, and destinationViewController. The identifier
property is the string that you can set to identify the segue so you can differentiate between
different segues (if you have multiple segues). sourceViewController is the view controller
from where this segue is being called, and destinationViewController is the new view
controller that is going to be displayed. This can also be used to pass data between the
two view controllers by assigning the properties to the destinationViewController from the
current view controller.

418 CHAPTER 14: Interface Builder and Storyboards

Click the storyboard, and click the segue between the view controllers with the button and
the label. Set the identifier to segueTour. Next click ViewController.swift to open it in the
editor and toward the end of the file add a function called prepareForSegue. This is the
function that is called before a segue is invoked, which provides you with an opportunity to
pass data to the destination (new) view controller.

Create a new file using the Cocoa Touch Class template and call it DetailViewController;
make it a subclass of UIViewController. The new file will open in the editor. Just after the
class definition, add these lines:

@IBOutlet weak var theLabel: UILabel!
var theText: String!

Add the following line in the viewDidLoad method. This sets the text for theLabel to the value
held in the property theText:

theLabel.text = theText

Now switch to the storyboard and tap the view controller with the label. Click the
yellow icon on the top of the form and in the Identity Inspector change the class to
DetailViewController. Next Control-drag from the yellow icon to the label and select
theLabel from the pop-up menu, as shown in Figure 14-7.

Figure 14-7. Connecting the label as an IBOutlet

Switch back to ViewController.swift and the add the code to the prepareForSegue function.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 println("\(segue.identifier)")
 let _dest = segue.destinationViewController as DetailViewController
 _dest.theText = "This is not sparta mate!"
}

419CHAPTER 14: Interface Builder and Storyboards

Now run the project, and when you click the button, the text you have passed is displayed,
not what you set via Interface Builder.

Transitions
You might have noticed that initially the scenes flipped to display the others, and then
when the Detail View Controller was changed to be part of the navigation controller, it
slides in or out. These animations used while presenting the view controllers are called
transitions. UIKit has an object called UIPresentationController that it uses to present
and manage advanced transitions for the presented view controllers. This is what
animates the transitions of flipping, sliding, and so on. Your view controller can add its own
animations on top of the already provided animation by the animator object. The method
for managing the presentation process is presentViewController:animated:completion:.
Custom animation can be used for the view controllers that have the presentation style of
UIModalPresentationCustom. You can also add decorations (chrome) to a view controller
using the presentation controller.

The way a presentation controller works is that it adds its own views (if any) to the view
hierarchy during the presentation or the dismissal phase and creates the appropriate
animations for those views. All of these animations are managed by the animator object,
which is an object that conforms to the UIViewControllerAnimatedTransitioning protocol.
There are three distinct phases with the presentation process.

	Presentation: A new view controller is displayed onscreen, moving it into
view with animation.

	Management: The animation that is required while the new view
controller is onscreen, say responding to device rotation.

	Dismissal: The view controller is moved off-screen with animation.

You need to do two things: first implement the protocol, and second implement the functions
for presentation and dismissal and return a custom animation controller.

func animationControllerForPresentedController(presented: UIViewController,
 presentingController presenting: UIViewController,
 sourceController source: UIViewController) ->
 UIViewControllerAnimatedTransitioning? {
 var animator = MyAnimator()
 animator.presenting = true
 return animator
 }

func animationControllerForDismissedController(dismissed: UIViewController) ->
 UIViewControllerAnimatedTransitioning? {
 var animator = MyAnimator()
 return animator
}

420 CHAPTER 14: Interface Builder and Storyboards

This way you can abstract the animations and have different effects that you could apply to
your transitions. Create a new file using Cocoa Touch Class, make it a subclass of NSObject,
and name it MyAnimator. Add a property called presenting of type Bool, which indicates
whether the transition is presenting or dismissing the view controller.

var presenting: Bool = false

This class needs to conform to the UIViewControllerAnimatedTransitioning protocol. This
protocol has two required functions that you will need to implement. One is transitionDuration,
which returns the length of the transition, and the other is animateTransition, which actually
performs the transition.

import UIKit

class myAnimator: NSObject, UIViewControllerAnimatedTransitioning {

 var presenting: Bool = false

 func transitionDuration(transitionContext: UIViewControllerContextTransitioning) ->

NSTimeInterval{
 return 0.5
 }

 func animateTransition(transitionContext: UIViewControllerContextTransitioning){
 var fromView = transitionContext.viewControllerForKey(UITransitionContextFromView

ControllerKey)
 var toView = transitionContext.viewControllerForKey(UITransitionContextToView

ControllerKey)
 var endFrame = UIScreen.mainScreen().bounds

 if self.presenting{
 fromView?.view.userInteractionEnabled = false

 transitionContext.containerView().addSubview(fromView!.view)
 transitionContext.containerView().addSubview(toView!.view)

 var startFrame = endFrame
 startFrame.origin.x += 320

 toView?.view.frame = startFrame

 UIView.animateWithDuration(self.transitionDuration(transitionContext),
 animations: {
 fromView?.view.tintAdjustmentMode = .Dimmed
 toView?.view.frame = endFrame
 fromView?.view.alpha = 0
 },
 completion: {
 _ in
 transitionContext.completeTransition(true)
 })

421CHAPTER 14: Interface Builder and Storyboards

 } else {
 toView?.view.userInteractionEnabled = true

 transitionContext.containerView().addSubview(toView!.view)
 transitionContext.containerView().addSubview(fromView!.view)

 endFrame.origin.x += 320

 UIView.animateWithDuration(self.transitionDuration(transitionContext),
 animations: {
 toView?.view.tintAdjustmentMode = .Automatic
 fromView?.view.frame = endFrame
 toView?.view.alpha = 1
 },
 completion: {
 _ in
 transitionContext.completeTransition(true)
 })
 }
 }
}

Now the only thing that remains is to prepare the view controller prior to displaying it. If you have
a segue or you are creating and presenting it manually, you need to set the transitionDelegate
to self (and you are conforming to the UIViewControllerTransitioningDelegate protocol)
and set the view controller’s modalPresentationStyle to Custom. Switch to Main.storyboard,
click the DetailViewController, and set its storyboard ID to sparta. Click the view controller
(the one with the buttons), add a new one, and change the text to No Segue. Add the following
code in ViewController.swift and then switch back to the storyboard. Control-drag from the
new button to the yellow icon on top of the view controller and connect to the displayAnimated
method. (This is a way to connect an existing IBAction to a control.)

@IBAction func displayAnimated(sender: AnyObject) {
 let story = UIStoryboard(name: "Main", bundle: nil)
 let newVC = story.instantiateViewControllerWithIdentifier("sparta") as

DetailViewController

 newVC.transitioningDelegate = self
 newVC.modalPresentationStyle = .Custom

 self.modalPresentationStyle = .CurrentContext
 newVC.modalPresentationStyle = .CurrentContext

 self.presentViewController(newVC, animated: true, completion: nil)
}

Switch to the storyboard, add a button to the DetailViewController and change its text
to Done. Create an IBOutlet called theButton of type UIButton and an IBAction called
dismissButton for this button you just added. Also create a variable called hideButton
and add the lines in the following files: in ViewController.swift for the prepareForSegue
function, add the line _dest.hideButton = true as the last line before the closing curly

422 CHAPTER 14: Interface Builder and Storyboards

brace. In DetailViewController.swift for the viewDidLoad function, add the line
theButton.hidden = hideButton. Lastly, add the implementation for the dismissButton
function in DetailViewController.swift as follows:

@IBAction func dismissButton(sender:AnyObject){
 dismissViewControllerAnimated(true, completion: nil)
}

The button will generally be hidden because the hideButton is set as true in the
prepareForSegue function when this DetailViewController is called via the segue. Now
when you run the program and click the No segue button, you will see the view controller
transitioning from the right and the original one fading to black. When it is dismissed (by
clicking the Done button), it appears from black, and the top view controller slides out
toward the right.

You can have a different animator class and have an entirely different animation for
displaying and viewing view controllers. Since the effects are achieved on the views using
the UIView.animateWithDuration, all types of animations and transforms that can be applied
to the UIView can be applied for this transition.

The transitioningContext object passed to the function animateTransition has a couple of
references that are useful for creating and animating.

	containerView: This is the container in which the transition takes place.
In the case of a modal view, the view that is presenting the new view
controller is the containerView. In the case of a navigation controller,
this is the wrapper view that is the size of the rootViewController.

var theView = transitionContext.containerView()

	From view controller: This is the view controller that is presenting the
new view controller. This is the view controller that is currently visible on
the stack.

var fromView = transitionContext.viewControllerForKey(UITransition
ContextFromViewControllerKey)

	To view controller: This is the view controller being presented, or in the
case of a navigation controller transition, this is the view controller being
pushed or popped.

var toView = transitionContext.viewControllerForKey(UITransition
ContextToViewControllerKey)

	Initial Frame: This is the frame where each of the view controller’s views
are when the transition animation begins.

var toStartFrame = transitionContext.initialFrameForViewController(toView!)
var fromStartFrame = transitionContext.initialFrameForViewController(fromView!)

423CHAPTER 14: Interface Builder and Storyboards

	Final Frame: This is the frame where each of the view controller’s views
should be when the transition animation ends.

var toEndFrame = transitionContext.finalFrameForViewController(toView!)
var fromEndFrame = transitionContext.finalFrameForViewController(fromView!)

The frames might be a CGRectZero if the view controller is removed, like at the end of a
dismiss transition.

Cue ’em Up
Apple has provided developers with a whole slew of functions and APIs to animate and work
with. The idea of a magical device that transforms is taken a step further with effects that
are limited only by your imagination. As we come toward the end of this book, there is still a
lot more that needs to be covered so you know what is available in the iOS SDK. There are
several resources listed in Chapter 16 that specifically deal with other topics in detail.

You have a fair idea of debugging by now; you’ve seen crashes, or maybe you missed a step
and had to figure out where the error in the code was. In a live project, things are not much
different. Put on your debugging hat and turn to the next chapter where you will learn a bit
about debugging and Instruments.

425

Chapter 15
Unit Testing, Debugging, and

Instruments

One of the fundamental truths of computer programming (and life) is that not everything
works perfectly. No matter how much you plan and no matter how long you’ve been
programming, it’s rare for an application you write to work perfectly the first time and then
forever under all circumstances and possible uses. Knowing how to properly architect your
application and write well-formed code is important. Knowing how to find out why things
aren’t working the way they’re supposed to, and fixing them, is equally important.

There are three techniques you can leverage to help identify and solve these problems:
unit testing, debugging, and profiling.

	Unit testing is the idea of isolating the smallest piece of testable code
and determining whether that code behaves as expected. Each unit
of code is tested in isolation before testing the application, which can
be seen as the integration of all the units of code. That’s it. Apple has
provided a unit-testing framework and integrated it into Xcode.

	Debugging, as you’re probably aware, is the task of eliminating errors,
or bugs, from your application. Although it may refer to any process you
use to correct bugs, generally it means using a debugger to find and
identify bugs in your code.

	Profiling is the measurement and analysis of your application while
running. You usually perform profiling with the goal of optimizing
application performance. Profiling can be used to monitor CPU or
memory usage to help determine where your application is expending
resources. With iOS, Apple has provided a GUI tool called Instruments
to make application profiling easier.

426 CHAPTER 15: Unit Testing, Debugging, and Instruments

We’ll cover each of these techniques briefly. Our goal here is not to be a comprehensive
guide for these techniques. Rather, we want to provide an introduction to these techniques.
If you want a more detailed explanation, you may want to read Pro iOS 5 Tools: Xcode
Instruments and Build Tools.

In this chapter, you’re not going to build and debug a complex application. Instead, you’ll
create a project from a template, and then we’ll show you how to implement each technique,
one at a time, by adding code to demonstrate specific problems.

Unit Tests
Let’s start by creating a simple project. Open Xcode and create a new project. Select the
Master-Detail Application template. Call it DebugTest, make sure you check the Use Core
Data box, and set the language to Swift (see Figure 15-1).

Figure 15-1. Creating the DebugTest project with unit tests

Let’s take a quick look at the project. Select the project in the Navigator pane and look
at the resulting Project Editor (Figure 15-2). Notice there are two targets: the application,
DebugTest, and a bundle, DebugTestTests. This bundle is where the unit tests you’ll be
writing will reside. The DebugTestTests target depends on the DebugTest target (application).
This means that when you build the unit testing bundle, it will build the application first.

427CHAPTER 15: Unit Testing, Debugging, and Instruments

How do you run your tests? If you look at the Xcode scheme pop-up menu in the toolbar,
there is no scheme for DebugTestTests, only one for DebugTest (Figure 15-3).

Figure 15-2. Two project targets: the application and the unit testing bundle

Figure 15-3. Where is the DebugTestTests scheme?

Xcode “automagically” manages this for you. When you select Product ➤ Test on the
DebugTest scheme, Xcode knows to execute the DebugTestTests target.

Now run the unit test bundle and see what happens. Select Product ➤ Test.

Xcode should have notified you that the test(s) passed. If they had failed, the Issue Navigator
would tell you where the error occurred. If you select the failure, the editor would go to the
failed test in DebugTestTests.swift (Figure 15-4).

428 CHAPTER 15: Unit Testing, Debugging, and Instruments

This seems like a good time to discuss the format of the unit tests. In the Project Navigator,
open the group named DebugTestTests and select DebugTestTests.swift.

Let’s look at DebugMeTests.swift.

import UIKit
import XCTest

class DebugMeTests: XCTestCase {

 override func setUp() {
 super.setUp()

 // Put setup code here. This method is called before the invocation of each test method in
the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test method
in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 XCTAssert(true, "Pass")
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measureBlock() {
 // Put the code you want to measure the time of here.
 }
 }

}

Figure 15-4. The failed test in Xcode

429CHAPTER 15: Unit Testing, Debugging, and Instruments

Each unit test follows a simple process: set up the test, execute the test, and tear down the
test. Since each test needs to run in isolation, each test method follows the set up/test/tear
down cycle.

In the case of DebugMeTests.swift, you can see the one test method, testExample. The body
of that method consists of one line, which invokes the function XCTAssert. XCTAssert is an
assertion that tests the expression. If you explicitly want a test to fail, you can use XCTFail.
Let’s modify this to fail. Replace XCTAssert with this:

func testExample() {
 // This is an example of a functional test case.
 XCTFail("Make this test fail")
}

Run the tests again (to shortcut this, hit Cmd-U). This time the tests should fail.

What have you done here? You made a test pass or fail without actually fixing or testing
anything. This is an important point: unit testing is not a silver bullet. The tests are only as
good as you write them. It’s important to make sure you write meaningful tests. A generally
accepted practice is called test first: you write your test, write your application code such
that your test fails, and then adjust the code to make the test pass. An interesting side effect
is that your code tends to be shorter, clearer, and more concise.

Let’s define an object with some simple methods that you can test. Create a new file,
choosing the Cocoa Touch class. Name the class DebugMe and make it a subclass of
NSObject. When you save the file, make sure it is assigned only to the DebugTest target
(Figure 15-5).

Figure 15-5. Save the DebugMe class to the DebugTest target only

430 CHAPTER 15: Unit Testing, Debugging, and Instruments

Figure 15-6. Select the Objective-C test case class template

Select DebugMe.swift and edit it to appear as follows (add the code as required):

import UIKit

class DebugMe: NSObject {
 func isTrue() -> Bool {
 return true
 }

 func isFalse() ->Bool {
 return false
 }

 func helloWorld() -> String {
 return "Hello, World!"
 }
}

Again, it’s simple. Your classes will probably be far more complex than this, but we’re just
doing this as an example.

To test the DebugMe class, you need to create a DebugMeTests class. Create a new file,
selecting Test Case Class (Figure 15-6). Name the class DebugMeTests (Figure 15-7). When
saving the file, make sure you are adding it to the DebugTestTests target only (Figure 15-8).
Now, let’s update your test class. Start with DebugMeTests.swift.

431CHAPTER 15: Unit Testing, Debugging, and Instruments

import UIKit
import XCTest

class DebugMeTests : XCTestCase {

var debugMe:DebugMe!

}

You add the property debugMe, which is of type DebugMe. You’ll be using this property in the
implementation. Before you write any tests, you need to implement your setUp and tearDown
methods. You’ll use setUp to instantiate your debugMe property and tearDown to release it.

Figure 15-7. Name the test class DebugMeTests

Figure 15-8. Add DebugMeTests to the DebugTestTests target only

432 CHAPTER 15: Unit Testing, Debugging, and Instruments

 override func setUp() {
 super.setUp()

 self.debugMe = DebugMe()
// Put setup code here. This method is called before the invocation of each test method in
the class.
 }

 override func tearDown() {
 self.debugMe = nil
// Put teardown code here. This method is called after the invocation of each test method in
the class.
 super.tearDown()
 }

Let’s start by thinking about what you want to test in the DebugMe class. DebugMe has a
property named string. We could argue that you don’t need to test that this property
is present. Or we could argue that you should. In the end, it’s going to depend on your
preferences and project. We’ll define a test as an exercise.

func testDebugMeHasStringProperty() {
 XCTAssert(self.debugMe.respondsToSelector("string"),
 "expected DebugMe to have a 'string' selector")
}

You’re checking to see only if you have an accessor method for the string property. You
could also check that you have a setter method (setString:) as well. This raises another
point: do you put that check in this test, or do you create another test? Again, there is no
correct answer; what you do is going to depend on your personal preferences and project.

At this point, it’s a good idea to test the project again. Generally, you add a new test only
when all your existing tests pass. So, before you proceed, run this test and make sure
it passes.

Your test should have passed, so let’s move on to testing the isTrue method.

func testDebugMeIsTrue() {
 let result = self.debugMe.isTrue()
 XCTAssertTrue(result, "expected DebugMe isTrue to be true, got \(result)")
}

Next, you write a test for the isFalse method.

func testDebugMeIsFalse() {
 let result = self.debugMe.isFalse()
 XCTAssertFalse(result, "expected DebugMe isFalse to be false, got \(result)")
}

433CHAPTER 15: Unit Testing, Debugging, and Instruments

Finally, you write a test for the helloWorld method.

func testDebugHelloWorld() {
 let result = self.debugMe.helloWorld()
 XCTAssertEqual(result, "Hello, World!", "expected DebugMe helloWorld to be 'Hello,
World!', got \(result)")
}

Success! You’ve written your first unit test cases.

As a general practice, you’ll want to write a test class for each class in your application.
There is a methodology called test-driven development (TDD) that suggests you should write
your test cases first and then write your application code. A side effect of TDD is that you
know how your application is supposed to behave before you start coding (isn’t that a
good idea?).

Note You may want to read up on test-driven development (TDD). An excellent introduction can be

found at the Agile Data web site (www.agiledata.org/essays/tdd.html). Kent Beck wrote an

excellent book called Test Driven Development (Addison-Wesley, 2003) that we highly recommend.

There is an additional concept that is useful when writing tests: mocking. When the code you are

testing is dependent on another object, you can define a mock object to emulate the dependent

object. This helps maintain the isolation of each unit test. A good mocking framework is OCMock

by Mulle Kyberkinetik (http://ocmock.org/).

Debugging
As you probably have noticed, when you create a project in Xcode, the project defaults into
what’s called the debug configuration. If you’ve ever compiled an application for the App
Store or for ad hoc distribution, then you’re aware of the fact that applications usually start
with two configurations, one called debug and another called release.

So, how is the debug configuration different than the release or distribution configuration?
There are actually a number of differences between them, but the key difference between
them is that the Debug configuration builds debug symbols into your application. These
debug symbols are like little bookmarks in your compiled application that make it possible
to match up any command that fires in your application with a specific piece of source code
in your project. Xcode includes a piece of software known as a debugger, which uses the
debug symbols to go from bytes of machine code to the specific functions and methods in
the source code that generated that machine code.

http://www.agiledata.org/essays/tdd.html
http://ocmock.org/

434 CHAPTER 15: Unit Testing, Debugging, and Instruments

One of the big changes since Xcode 4 was the integration of the debugger into the main
window (Figure 15-9). Prior versions of Xcode had their own separate debugger console.
Now Xcode changes a number of panes when debugging. We’ll discuss the contents of
each pane later.

Figure 15-9. Xcode in debugger mode

Caution If you try to use the debugger with the release or distribution configuration, you will get

odd results since those configurations don’t include debug symbols. The debugger will try its best

but ultimately will become morose and limp quietly away.

435CHAPTER 15: Unit Testing, Debugging, and Instruments

Breakpoints
Probably the most important debugging tool in your arsenal is the breakpoint. A breakpoint
is an instruction to the debugger to pause execution of your application at a specific place
in your code and wait for you. By pausing, but not stopping, the execution of your program,
your application is still running, and you can do things like look at the value of variables and
step through lines of code one at a time. A breakpoint can also be set up so that instead of
pausing the program’s execution, a command or script gets executed, and then the program
resumes execution. You’ll look at both types of breakpoints in this chapter, but you’ll
probably use the former a lot more than the latter.

The most common breakpoint type that you’ll set in Xcode is the line number breakpoint.
This type of breakpoint allows you to specify that the debugger should stop at a specific line
of code in a specific file. To set a line number breakpoint in Xcode, you just click in the space
to the left of the source code file in the editing pane. Let’s do that now so you can see how
it works.

Single-click MasterViewController.swift. Look for the method called viewDidLoad. It should
be one of the early methods in the file. On the left side of the Editing pane, you should see
a column with numbers, as in Figure 15-10. This is called the gutter, and it’s one way to set
line number breakpoints.

Figure 15-10. To the left of the editing pane is a column that usually shows line numbers. This is where you set

breakpoints

Tip If you don’t see line numbers or the gutter, open Xcode Preferences, go to the Text Editing

pane, and select the Editing tab (Figure 15-11). The first check box in that section is “Show: Line

numbers.” It’s much easier to set breakpoints if you can see the line numbers.

436 CHAPTER 15: Unit Testing, Debugging, and Instruments

Look for the first line of code in viewDidLoad, which should be a call to super. In Figure 15-10,
this line of code is at line 22, though it may be a different line number for you. Single-click
in the gutter to the left of that line, and a little arrow should appear in the gutter pointing at
the line of code. You now have a breakpoint set in the MasterViewController.swift file at a
specific line number.

You can remove breakpoints by dragging them off of the gutter, and you can move them
by dragging them to a new location on the gutter. You can temporarily disable existing
breakpoints by single-clicking them, which will cause them to change from a darker color to
a lighter color. To reenable a disabled breakpoint, you just click it again to change it back to
the darker color.

Before we talk about all the things you can do with breakpoints, let’s try the basic
functionality. Select Product ➤ Run. The program will start to launch normally, and then
before the view gets fully shown, you’ll be brought back to Xcode, and the project window
will come forward, showing the line of code about to be executed and its associated
breakpoint (Figure 15-10).

Figure 15-11. Expose the gutter by making sure “Show: Line numbers” is checked in the Text Editing pane of Xcode

Preferences

437CHAPTER 15: Unit Testing, Debugging, and Instruments

Note In the toolbar at the top of the debug and project windows is an icon labeled Breakpoints. As

its name implies, clicking that icon toggles between breakpoints on or breakpoints off. This allows

you to enable or disable all your breakpoints without losing them.

Remember we said we’d talk about the Xcode debugger layout? Let’s do that now.

The Debug Navigator
When Xcode enters debugging mode, the Navigation pane (on the left) activates the Debug
Navigator (Figure 15-12). This view shows you the stack trace of the application, the method
and function calls that got you here. In this case, it highlights the call to viewDidLoad in
the MasterViewController. The grayed-out rows indicate the classes and methods you
don’t have access to in the source code. You can see the next method is the view from
UIViewController. Since UIViewController is part of the UIKit framework, it’s not surprising
you don’t have the source code.

Figure 15-12. Debug Navigator, displaying the stack trace

438 CHAPTER 15: Unit Testing, Debugging, and Instruments

If you go further up the call stack, you see the line top_level_code. If you click that line, the
Editor pane will change to show the file AppDelegate.swift, highlighting the line that was last
called before reaching the breakpoint. This is a useful feature. It allows you to track the flow
of method and function calls that lead up to a problem.

The Debug Area
The area underneath the Editor Area is called the Debug Area (Figure 15-13). It’s composed
of three components. Along the top is the debug bar. Below the Debug Bar, to the left, is the
Variable List. To the right of the Variable List is the Console Pane. Let’s discuss each one,
starting with the Variable List.

Figure 15-13. Debug Area, located below the Editor Area

The Variable List displays all the variables that are currently in scope. A variable is in scope if
it is an argument or local variable from the current method or if it is an instance variable from
the object that contains the method.

Note The Variable List will also let you change a variable's value. If you double-click any value, it

will become editable, and when you press Return to commit your change, the underlying variable

will also change in the application.

By default, the Variable List will display local variables. You may change this by selecting the
drop-down at the upper left of the Variable List pane. There are three options available: Auto;
Local; and All Variables, Registers, Globals and Statics. Auto displays the variables Xcode
thinks you’ll be interested based on the given context. All Variables displays all variables
and processor registers. Suffice to say, if you are handling processor registers, you’re doing
some pretty advanced work, far beyond the scope of this chapter.

The Console Pane gives you direct access to the debugger command line and output.
While using the debugger console command is powerful, we’re not going to discuss it in
detail here.

It’s important to note that output (in other words, the println() statement) will direct you
to the Console Pane. So, it’s useful to look there and see what output is generated while
debugging.

439CHAPTER 15: Unit Testing, Debugging, and Instruments

Finally, the Debug Bar contains a set of controls (Figure 15-14) and a stack trace jump bar.
The jump bar displays the current location of the current thread in the application. This is just
a distillation of the Debug Navigator view.

Figure 15-14. Debug Bar controls

The Debug Bar controls provide a series of buttons to help control your debugging session.
From the left, the first button is a disclosure button to minimize the Debug Area. When
minimized, only the Debug Bar is visible. Next is the Continue button. The Continue button
resumes execution of your program. It will pick up right where it left off and continue
executing as normal unless another breakpoint or an error condition is encountered. The
Step Over and Step Into buttons allow you to execute a single line of code at a time. The
difference between the two is that Step Over will fire any method or function call as a single
line of code, skipping to the next line of code in the current method or function, while Step
Into will go to the first line of code in the method or function that’s called and stop there. The
Step Out button finishes execution of the current method and returns to the method that
called it. This effectively pops the current method off the stack trace’s stack (you didn’t think
that name was accidental, did you?), and the method that called this method becomes the
top of the stack trace.

The final button on the Debug Bar is the Location button. This allows you to simulate a
location for an application that uses Core Location.

That might be a little clearer if you try it. Stop your program. Note that even though your
program might be paused at a breakpoint, it is still executing. To stop it, click the stop sign
in Xcode or select Product ➤ Stop. You’re going to add some code that might make the use
of Step Over, Step Into, and Step Out a little clearer.

NESTED CALLS

Nested method calls like this combine two commands in the same line of code:

self.tableView.indexPathForSelectedRow()

If you nest several methods together, you will skip over several commands with a single click of the Step Over

button, making it impossible to set a breakpoint between the different nested statements. This is the primary

reason to avoid excessive nesting of message calls. Other than the standard nesting of alloc and init

methods, we generally prefer not to nest messages.

440 CHAPTER 15: Unit Testing, Debugging, and Instruments

Dot notation has changed this somewhat. Remember, dot notation is just shorthand for calling a method, so this

line of code is also two commands:

self.tableView.reloadData()

Before the call to reloadData, there is a call to the accessor method tableView. If it makes sense to use an

accessor, we will often use dot notation right in the message call rather than using two separate lines of code,

but be careful. It’s easy to forget that dot notation results in a method call, so you can inadvertently create code

that is hard to debug by nesting several method calls on one line of code.

Trying the Debug Controls
Select MasterViewController.swift. Add the following two methods, right after the class
declaration:

class MasterViewController: UITableViewController, NSFetchedResultsControllerDelegate {

 func processBar(inBar:Float) -> Float {
 var newBar = inBar * 2.0
 return newBar
 }

 func processFoo(inFoo:Int) -> Int {
 var newFoo = inFoo * 2
 return newFoo
 }

And update the existing viewDidLoad method to the following:

override func viewDidLoad() {
 super.viewDidLoad()

 var foo:Int = 25
 var bar:Float = 374.3494
 println("foo: \(foo), bar: \(bar)")

 foo = processFoo(foo)
 bar = processBar(bar)
 println("foo: \(foo), bar: \(bar)")

 // Do any additional setup after loading the view, typically from a nib.
 self.navigationItem.leftBarButtonItem = self.editButtonItem()

 let addButton = UIBarButtonItem(barButtonSystemItem: .Add,
 target: self,
 action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton

 //var test = NSArray(object: "hello")

}

441CHAPTER 15: Unit Testing, Debugging, and Instruments

Your breakpoint should still be set at the first line of the method. Xcode does a pretty good
job of moving breakpoints around when you insert or delete text from above or below it.
Even though you just added two methods above your breakpoint and the method now starts
at a new line number, the breakpoint is still set to the correct line of code, which is nice. If
the breakpoint somehow got moved, no worries; you’re going to move it anyway.

Click and drag the breakpoint down until it’s lined up with the line of code that reads as
follows:

var foo:Int = 25

Now, choose Project ➤ Run to compile the changes and launch the program again. You
should see the breakpoint at the first new line of code you added to viewDidLoad.

The first two lines of code are just declaring variables and assigning values to them. These
lines don’t call any methods or functions, so the Step Over and Step Into buttons will
function identically here. To test that, click the Step Over button to cause the next line of
code to execute and then click Step Into to cause the second new line of code to execute.

Before using any more of the debugger controls, check out the Variable List (Figure 15-15).
The two variables you just declared are in the Variable List under the Local heading with their
current values. Also, notice that the value for bar is blue. That means it was just assigned or
changed by the last command that executed.

Figure 15-15. The variables in the variable list

Note As you are probably aware, numbers are represented in memory as sums of powers of 2 or

powers of ½ for fractional parts. This means that some numbers will end up stored in memory with

values slightly different than the value specified in the source code. Though you set bar to a value

of 374.3494, the closest representation was 374.349396. Close enough, right?

There’s another way you can see the value of a variable. If you move your cursor so it’s
above the word foo anywhere it exists in the editor pane, a little box will pop up similar to
a tooltip that will tell you the variable’s current value and provide options for detailed quick
look (Figure 15-16).

442 CHAPTER 15: Unit Testing, Debugging, and Instruments

Figure 15-16. Hovering your mouse over a variable in the editing pane will tell you the variable’s current value

The next line of code is just a print statement, so click the Step Over button again to
let it fire.

The next two lines of code each call a method. You’re going to step into one and step over
the other. Click the Step Into button now.

The green arrow and highlighted line of code should just have moved to the first line of
the processFoo method. If you look at the stack trace now, you’ll see that viewDidLoad is
no longer the first row in the stack. It has been superseded by processFoo. Instead of one
black row in the stack trace, there are now two, because you wrote both processFoo and
viewDidLoad. You can step through the lines of this method if you like. When you’re ready to
move back to viewDidLoad, click the Step Out button. That will return you to viewDidLoad.
processFoo will get popped off of the stack trace’s stack, and the green indicator and
highlight will be at the line of code after the call to processFoo.

Next, for processBar, you’re going to use Step Over. You’ll never see processBar on the
stack trace when you do that. The debugger is going to run the entire method and then
stop execution after it returns. The green arrow and highlight will move forward one line
(excluding empty lines and comments). You’ll be able to see the results of processBar by
looking at the value of bar, which should now be double what it was, but the method itself
happened as if it was just a single line of code.

The Breakpoint Navigator and Symbolic Breakpoints
You’ve now seen the basics of working with breakpoints, but there’s far more to
breakpoints. In the Xcode Navigator pane, select the Breakpoints tab on the Navigation bar
(Figure 15-17). This pane shows you all the breakpoints that are currently set in your project.
You can delete breakpoints here by selecting them and pressing the Delete key. You can
also add another kind of breakpoint here, which is called a symbolic breakpoint. Instead of
breaking on a specific line in a specific source code file, you can tell the debugger to break
whenever it reaches a certain one of those debug symbols built into the application when
using the debug configuration. As a reminder, debug symbols are human-readable names
derived from method and function names.

443CHAPTER 15: Unit Testing, Debugging, and Instruments

Figure 15-17. The Breakpoint Navigator allows you to see all the breakpoints in your project

Click the existing breakpoint (select the first line in the right pane) and press the Delete key
on your keyboard to delete it. Now, click the + button on the lower left of the Breakpoint
Navigator and select Add Symbolic Breakpoint (Figure 15-18). In the pop-up dialog, enter
viewDidLoad for the symbol. In the Module field, enter DebugMe and click the Done
button. The Breakpoint Navigator will update with a line that reads viewDidLoad with a
stylized sigma icon before it (Figure 15-19). The sigma icon is to remind you this is symbolic
breakpoint.

Figure 15-18. Adding a symbolic breakpoint

Figure 15-19. Breakpoint list updated with your symbolic breakpoint

444 CHAPTER 15: Unit Testing, Debugging, and Instruments

Restart the application by clicking the Run button on the toolbar. If Xcode tells you the
application is already running, then stop it. This time, your application should stop again, at
the first line of code in viewDidLoad.

Conditional Breakpoints
Both the symbolic and line number breakpoints you’ve set so far have been unconditional
breakpoints, meaning they always stop when the debugger gets to them. If the program
reaches the breakpoint, it stops. But you can also create conditional breakpoints, which
pause execution only in certain situations.

If your program is still running, stop it, and in the breakpoint window, delete the symbolic
breakpoint you just created. In MasterViewController.swift, add the following (bold) lines of
code, right after the call to super, in viewDidLoad:

 super.viewDidLoad()

 for i in 0..<25 {
 println("i = \(i)")
 }

 var foo:Int = 25
 var bar:Float = 374.3494
...

Save the file. Now, set a line number breakpoint by clicking to the left of the line that reads
as follows:

println("i = \(i)")

Control-click the breakpoint and select Edit Breakpoint from the context menu
(Figure 15-20). A dialog should appear, pointing to the breakpoint (Figure 15-21). Enter
i > 15 in the Condition field and click Done.

Figure 15-20. The context menu of a breakpoint

445CHAPTER 15: Unit Testing, Debugging, and Instruments

Build and debug your application again. This time it should stop at the breakpoint just like it
has done in the past, but look in your debug console, and you should see this:

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
i = 11
i = 12
i = 13
i = 14
i = 15
(lldb)

If you look in the Variable List, you should see i has a value of 16. So, the first 16 times
through the loop, it didn’t pause execution; instead, it just kept going because the condition
you set wasn’t met.

This can be an incredibly useful tool when you’ve got an error that occurs in a very long
loop. Without conditional breakpoints, you’d be stuck stepping through the loop until
the error happened, which is tedious. It’s also useful in methods that are called a lot but
are exhibiting problems only in certain situations. By setting a condition, you can tell the
debugger to ignore situations that you know work properly.

Figure 15-21. Editing the condition of a breakpoint

Tip The Ignore field, just below the Condition field, is pretty cool too—it’s a value decremented

every time the breakpoint is hit. So, you might place the value 16 into the column to have your

code stop on the 16th time through the breakpoint. You can even combine these approaches, using

Ignore with a condition. Cool beans, eh?

446 CHAPTER 15: Unit Testing, Debugging, and Instruments

Breakpoint Actions
If you look at the Breakpoint Editor again (Figure 15-21), you’ll see an Action label. This
allows you to set a breakpoint action, which is useful.

Stop your application.

Edit the breakpoint and delete the condition you just added. To do that, just clear the
Condition field. Now you’ll add the breakpoint action. Next to the Action label, click over the
text that reads “Click to add an Action.” The area should expand to reveal the breakpoint
actions interface (Figure 15-22).

Figure 15-22. The breakpoint actions interface revealed

Figure 15-23. Breakpoint actions allow you to fire debugger commands, add statements to the log, play a sound,

or fire a shell script or AppleScript

There are a number of different options to choose from (Figure 15-23). You can run a
debugger command or add a statement to the console log. You can also play a sound or fire
off a shell script or AppleScript. As you can see, there’s a lot you can do while debugging
your application without having to litter your code with debug-specific functionality.

447CHAPTER 15: Unit Testing, Debugging, and Instruments

From the Debugger Command pop-up menu, select Log Message, which will allow you to
add information to the debugger console without writing another NSLog() statement. When
you compile this application for distribution, this breakpoint won’t exist, so there’s no chance
of accidentally shipping this log command in your application. In the white text area below
the pop-up menu, add the following log command:

Reached %B again. Hit this breakpoint %H times. Current value of i is @(int)i@

The %B is a special substitution variable that will be replaced at runtime with the name of the
breakpoint. The %H is a substitution variable that will be replaced with the number of times
this breakpoint has been reached. The text between the two @ characters is a debugger
expression that tells it to print the value of i, which is an integer.

Any breakpoint can have one or more actions associated with it. Click the + button at the
right side to add another action to this breakpoint.

Next, check the Options box that reads “Automatically continue after evaluating action” so
that the breakpoint doesn’t cause the program’s execution to stop.

Tip You can read more about the various debug actions and the correct syntax to use for each

one in the Xcode 4 Users Guide available at http://developer.apple.com/library/

mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/000-About_

Xcode/about.html.

Build and debug your application again. This time, you should see additional information
printed in the debug console log, between the values printed by your println() statement
(Figure 15-24). While statements logged using println() are printed in bold, those done by
breakpoint actions are printed in nonbold characters.

http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/000-About_Xcode/about.html
http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/000-About_Xcode/about.html
http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/000-About_Xcode/about.html

448 CHAPTER 15: Unit Testing, Debugging, and Instruments

That’s not all there is to breakpoints, but it’s the fundamentals and should give you a good
foundation for finding and fixing problems in your applications.

One More Thing About Debugging
You now know the basic tools of debugging. We haven’t discussed all the features of either
Xcode or LLDB, but we’ve covered the essentials. It would take far more than a single chapter
to cover this topic exhaustively, but you’ve now seen the tools that you’ll use in 95 percent or
more of your debugging efforts. Unfortunately, the best way to get better at debugging is to do
a lot of it, which can be frustrating early on. The first time you see a particular type of problem,
you often aren’t sure how to tackle it. So, to give you a bit of a kick-start, we’re going to show
you a couple of the most common problems that occur in Cocoa Touch programs and show
you how to find and fix those problems when they happen to you.

Figure 15-24. Breakpoint log actions get printed to the debugger console but, unlike the results of NSLog()

commands, are not printed in bold

449CHAPTER 15: Unit Testing, Debugging, and Instruments

Debugging can be one of the most difficult and frustrating tasks on this green Earth. It’s
also extremely important, and tracking down a problem that’s been plaguing your code
can be extremely gratifying. The reason the debugging process is so hard is that modern
applications are complex, the libraries we use to build them are complex, and modern
operating systems themselves are complex. At any given time, there’s an awful lot of code
loaded, running, and interacting.

Profiling with Instruments
We’re not going to dive deep into Instruments. That’s a topic for another book (like Pro iOS
Tools). Let’s take a look at how to start Instruments and what it offers. Select Product ➤
Profile in Xcode. Xcode will build the application (if necessary) and launch Instruments.

Figure 15-25. Launching Instruments from Xcode

Note You can read more about Instruments in Apple’s documentation as well. It’s located at

http://developer.apple.com/library/ios/documentation/DeveloperTools/

Conceptual/InstrumentsUserGuide.

Instruments operates by creating a trace document to determine what it monitors during
your application’s execution. Each trace document can be composed of many instruments.
Each instrument collects different aspects of your application’s running state.

On startup, Instruments offers a series of trace document templates to help begin your
Instruments session. It also offers a blank template, allowing you to define your own set of
instruments to use (Figure 15-25).

http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide
http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide

450 CHAPTER 15: Unit Testing, Debugging, and Instruments

Let’s review some of the templates Instruments offers:

	Blank: An empty template for you to customize

	Allocations: Template to track memory usage on an object basis

	Leaks: Another memory usage template, focused on finding memory
leaks

	Activity Monitor: Monitors system resource usage of the application

	Zombies: Another memory usage template, focused on finding
overreleased memory

	Time Profiler: Sample processes running the CPU

	System Trace: Monitors application threads moving between system
and user space

	Automation: Scripting tool to allow simulation of user interaction

	File Activity: Monitors file system usage by application

	Core Data: Monitors Core Data activity within the application

Let’s just start with the Allocations template. Double-click it, and Instruments should open
(Figure 15-26). The application should launch in the simulator, and you will note that you are
now tracking memory usage.

Figure 15-26. Main Instruments window

451CHAPTER 15: Unit Testing, Debugging, and Instruments

Add some items to your application and then delete them. You should see Instruments trace
memory usage.

While running one trace instrument is useful, the real power behind Instruments is the
ability to run many traces simultaneously and determine where your application may have
performance issues.

Play around with Instruments and see whether it helps you optimize your applications.

End of the Road
As we stated at the beginning of the chapter, there’s no teacher like experience when it
comes to unit testing, debugging, and profiling, so you just need to get out there and start
making your own mistakes and then fixing them. Don’t hesitate to use search engines or
to ask more experienced developers for help if you truly do get stuck, but don’t let those
resources become a crutch, either. Put in an effort to find and fix each bug you encounter
before you start looking for help. Yes, it will be frustrating at times, but it’s good for you.
It builds character.

And with that, we’re close to the end of our journey together. We do have one more chapter,
though, a farewell bit of guidance as you move forward in your iOS development travels. So,
when you’re ready for it, turn the page.

453

Chapter 16
The Road Goes Ever On…

You’ve survived another journey with us. Great! At this point, you know a lot more than when
you first opened this book. We would love to tell you that you now know it all, but when
it comes to technology, you never know it all. This is particularly true of iOS development
technologies. The programming language and frameworks you’ve been working with in this
book are the result of more than 25 years of evolution. Our engineering friends at Apple are
always feverishly working on that Next Cool New Thing™. Despite being much more mature
than it was when it first launched, the iOS platform has just begun to blossom. There is so
much more to come.

By making it through another book, you’ve built yourself an even sturdier foundation. You’ve
acquired a solid knowledge of Swift, Cocoa Touch, Xcode, and the tools that bring these
technologies together to create incredible new iOS applications. You understand the iOS
software architecture and the design patterns that make Cocoa Touch sing. In short, you are
even more ready to chart your own course.

Getting Unstuck
At its core, programming is about problem solving. It is both fun and rewarding. But there
will be times when you run up against a puzzle that seems insurmountable, a problem that
does not appear to have a solution.

Sometimes, the answer just appears—a result of a bit of time away from the problem.
A good night’s sleep or a few hours of doing something different can often be all that you
need to get through it. Believe us, sometimes you can stare at the same problem for hours
overanalyzing and getting yourself so worked up that you miss an obvious solution.

And then there are times when even a change of scenery doesn’t help. In those situations,
it’s good to have friends in high places. Here are some resources you can turn to when
you’re in a bind.

454 CHAPTER 16: The Road Goes Ever On…

Apple’s Documentation
Become one with Xcode’s documentation browser. The documentation browser is a front
end to a wealth of incredibly valuable sample source code, concept guides, API references,
video tutorials, and a whole lot more. The contextual help is now integrated right into Xcode;
simply press the Option key, and the cursor will turn into a crosshair. When you hover the
mouse over a keyword, the cursor will turn into a question mark. If you click a word when the
cursor is a question mark, you will see details about that word in a pop-up. This is the same
information that you can see in the Quick Help Inspector. If you need more information about
the class/delegate and want to see its declaration and other methods and properties, then
you can press Opt+Cmd and click the keyword. The Assistant editor will appear and display
the details there. This is useful when you want to know what the delegate methods are or the
parameters a callback handler block uses.

The more comfortable you get with Apple’s documentation, the easier it will be for you to
make your way through uncharted territories and new technologies as Apple rolls them
out. The Apple documents and sample code are quite comprehensive, but unfortunately
they do not cover every API; there may be a time when you want to use a particular API but
can’t find the parameters it takes or returns. For these and other moments, there are other
resources, as listed next.

Mailing Lists
The following are some useful mailing lists that are maintained by Apple:

	http://lists.apple.com/mailman/listinfo/cocoa-dev: This is a
moderately high-volume list, primarily focused on Cocoa for Mac OS X.
Because of the common heritage shared by Cocoa and Cocoa Touch,
many of the people on this list may be able to help you. Make sure to
search the list archives before asking your question, though.

	http://lists.apple.com/mailman/listinfo/xcode-users: This is a
mailing list specific to questions and problems related to Xcode.

	http://lists.apple.com/mailman/listinfo/quartz-dev: This
is a mailing list for discussing the Quartz 2D and Core Graphics
technologies.

Discussion Forums
These are some discussion forums you may like to join:

	http://devforums.apple.com/: This site hosts Apple’s new developer
community forums for Mac and iPhone software developers. These
forums require logging in, but that means you can discuss new
functionality that’s still under a nondisclosure agreement (NDA). Apple’s
engineers are known to check in periodically and answer questions.

http://lists.apple.com/mailman/listinfo/cocoa-dev
http://lists.apple.com/mailman/listinfo/xcode-users
http://lists.apple.com/mailman/listinfo/quartz-dev
http://devforums.apple.com/

455CHAPTER 16: The Road Goes Ever On…

	www.iphonedevsdk.com/: This is a web forum where iPhone
programmers, both new and experienced, help each other out with
problems and advice.

	http://forums.macrumors.com/forumdisplay.php?f=135: This is a forum
hosted by the nice folks at MacRumors for iPhone programmers.

Web Sites
Here are some web sites that you may want to visit:

	http://www.cocoadevcentral.com/: This is a portal that contains links to
many Cocoa-related web sites and tutorials.

	http://cocoaheads.org/: This is the CocoaHeads site. CocoaHeads is
a group dedicated to peer support and promotion of Cocoa. It focuses
on local groups with regular meetings where Cocoa developers can get
together and even socialize a bit. There’s nothing better than knowing a
real person who can help you out, so if there’s a CocoaHeads group in
your area, check it out. If there isn’t one, why not start one up?

	http://cocoablogs.com/: This is a portal that contains links to many
blogs related to Cocoa programming.

	http://stackoverflow.com/questions/tagged/ios: The iOS tagged
question for the free programming Q&A web site. Overall, this is a
great source for finding answers to questions. Many experienced
and knowledgeable iPhone programmers, including some who work
at Apple, contribute to this site by answering questions and posting
sample code.

	http://stackoverflow.com/questions/tagged/swift: This is the
Swift section of the free programming Q&A web site. If someone has
an answer for your issue, it must be on Stackoverflow, so it is worth
checking out when you are stuck.

	http://www.quora.com/iOS-Development: This is another excellent
Q&A web site. Though not focused on programming, this site is for iOS
development questions.

Blogs
Check out these blogs:

	https://developer.apple.com/swift/blog/: This is Apple’s official blog
for Swift. It’s not updated often as you might expect but has some good
information and will continue to have more information in the future.

	http://www.sososwift.com/: This is a collection of Swift-related articles.
The list is quite comprehensive and growing.

http://www.iphonedevsdk.com/
http://forums.macrumors.com/forumdisplay.php?f=135
http://www.cocoadevcentral.com/
http://cocoaheads.org/
http://cocoablogs.com/
http://stackoverflow.com/questions/tagged/ios
http://stackoverflow.com/questions/tagged/swift
http://www.quora.com/iOS-Development
https://developer.apple.com/swift/blog/
http://www.sososwift.com/

456 CHAPTER 16: The Road Goes Ever On…

	http://www.learnswift.tips/: This is another collection of Swift-related
resources; it’s perhaps a little less user friendly in comparison to Sososwift.

	https://swiftcast.tv/articles: This is a collection of Swift-related
screencasts. The website is easy to use and looks professional too.

	http://ios-blog.co.uk/swift-tutorials/: This is another collection of
Swift and Objective-C resources and articles. Some of these come from
Jasmeson Quave.

	http://jamesonquave.com/blog/: This is the site for Jameson Quave,
and like Ray Wenderlich, he is also trying to branch out by adding
writers to his site. This site contains quite a few tutorials and articles
on Swift.

	http://nshipster.com/: This is the site of Matt Thompson and Nate
Cook; more writers have been added recently. This has some good
in-depth articles on Objective-C and Swift and iOS features.

	http://natashatherobot.com/: This is the site of Natasha Murashev.
It was because of her quick adaptation to Swift and being at the Swift
meetups that she is synonymous with articles on Swift. Watch her blog
for the latest on new technology.

	https://www.mikeash.com/pyblog/: This is a site for those who want
more than simple how-to articles. The articles are of a technical variety
and dig deep into the internals. It’s a good resource for advanced
developers.

	http://asciiwwdc.com/: You have seen the Apple videos. This is the
transcript of each of those videos. It is sometimes more searchable than
the videos themselves.

	http://davemark.com/: This is Dave’s little spot in the sun. It’s not at all
technical, just full of whimsical ephemera that catches Dave’s interest,
and he hopes you’ll enjoy, too.

	http://nuthole.com/: This is Jack Nutting’s blog.

	http://www.cimgf.com/: This is the Cocoa Is My Girlfriend site, which
covers software development on both the Mac and the iPhone using
Objective-C and Swift.

	http://raywenderlich.com/: This is Ray Wenderlich’s blog and
tutorial site. Ray runs an excellent site for supplemental tutorials and
information.

http://www.learnswift.tips/
https://swiftcast.tv/articles
http://ios-blog.co.uk/swift-tutorials/
http://jamesonquave.com/blog/
http://nshipster.com/
http://natashatherobot.com/
https://www.mikeash.com/pyblog/
http://asciiwwdc.com/
http://davemark.com/
http://nuthole.com/
http://www.cimgf.com/
http://raywenderlich.com/

457CHAPTER 16: The Road Goes Ever On…

Books (Apress)
There are quite a few books about learning and using Swift. Apress has a large selection of
Swift books for you to choose from.

	Swift for Absolute Beginners by Gary Bennett and Brad Lees

	Swift Quick Syntax Reference by Matthew Campbell

	Learn Swift on the Mac by Waqar Malik

	Beginning Swift Games Development for iOS by James Goodwill and
Wesley Matlock

	Beginning iPhone Development with Swift by Kim Topley, David Mark,
Jack Nutting, Fredrick Olsson, and Jeff LaMarche

	Transitioning to Swift by Scott Gardner

	Pro Design Patterns in Swift by Adam Freeman

	Beginning Xcode: Swift Edition by Matthew Knott

	Migrating to Swift from Android by Sean Liao

	Migrating to Swift from Web Development by Sean Liao, Mark Punak,
and Anthony Nemec

	Beginning iOS Media App Development by Ahmed Bakir

	Learn WatchKit for iOS by Kim Topley

	Pro iOS Persistence by Michael Privat and Robert Warner

Farewell
We are glad you came along on this journey with us. We wish you the best of luck, and we
hope that you enjoy iOS programming as much as we do.

459

A ■
addHero: method, 68
Apple’s Cocoa framework, 150
Application programming

interfaces (APIs), 219
AVAudioPlayer

AVAudioRecorder class, 401–402
AVAudioRecorder object, 401
AVAudioSession, 401
AVEncoderBitRateKey, 402
AVNumberOfChannelsKey, 402
AVSampleRateConverter

AudioQualityKey, 402
AVSampleRateKey, 402
currentTime property, 400
deleteRecording method, 402
isPlaying property, 400
pause method, 401
record method, 401
stop method, 401
thePlayer.play(), 400

AVFoundation framework, 367
AVAsset, 368
AVCaptureDevice, 368
AVCaptureOutput class, 368
AVCaptureSession, 368
AVKit framework, 369
AVKitMediaPlayer, 374
AVMediaPlayer, 373
AVMetadataItem class, 368
AVPlayerItem, 368
AVPlayerItemTracks, 368
AVPlayer property, 370
AVSpeechSynthesizer class, 380
AVUtterance class, 380
speech synthesis, 380

B ■
Binary data type, 75
Boolean data type, 75

C ■
Camera

AVCaptureDevice class, 384
AVCaptureOutput, 390

AVCaptureConnection
object, 391

AVCaptureStillImageOutput, 391
takePicture IBAction

method, 391
UIImage, 392

AVCaptureSession class, 385
AVCaptureVideoPreviewLayer

class, 385
bringSubviewToFront, 389
changing settings

exposure mode, 386
flash mode, 386

focus mode, 386

torch mode, 386

generate barcodes, 397

InputSource, 390

preset values, 385

project creation

CALayer class, 388

canAddInput function, 387

overlaid text view, 388

position property, 387

viewDidLoad method, 387

scanning barcodes, 394

switchCamera, 389

viewDidLoad method, 389

Index

460 Index

Commit method, 415
Core data, 9

architecture of, 15
concepts and terminology, 15
configuration sheet, 12
creation of, 10
data model (see Data model)
history of, 10
key-value coding, 28
managed objects

definition, 28–29
delegates, 30
deletion, 40
Editor jump bar, 30
fetched results controller, 32
new managed object, creation

and insertion of, 38
persistent store and loaded data, 31

open source version control system, 12
template sheet, 11
Xcode window, 11

Core frameworks, 1
CoreImage framework, 397
Custom objects

color table view
cell, 161
initialization code, 159–160
sliderChanged, 160
slider values, 160
UIColorPicker, 159
UIControl, 159

data model attributes, 137
data model updation

age attribute, 142
component pane, 141
favoriteColor attribute, 142
Min. Length check box, 143
transormable attribute, 143

detail view updation, 154
editor, color attribute, 139
feedback, validation

delegate method, 153–154
SuperDBEditCell, 152

generic error alert, 140
Hero class creation

default, 147–148
header tweaking, 146
NSManagedObject subclass, 144

hero detail view, 138
NSManagedObject, 137–138
NSString constants, 137
options to user, attribute, 140
picker cleaning, 163

CoreDataErrors.h, 169
CoreDataErrors.plist, 170
drawRect method, 166
SuperDBColorCell

display, 165
validation dialog, 168
Weird ColorCell

appearance, 164
with gradient

background, 167
reusable code, 141
SuperDBEditCell refactor

app crash code, 156
code moving, 157–158
editable property, 158

transformable attribute, 138
validation, 148

multiple attributes, 150
single-attributes, 149
validateForInsert, 150
validatForUpdate, 151

validation mechanism, 141
value transformers, 138

D ■
Data model

configurations, 23
Editor pane, 17
entities

attributes, 20
definition, 19
fetched properties, 22
properties, 20
relationships, 22

fetch requests, 23
inspector, 15–16
model editor, 17
NSManagedObjectModel, 23
persistent store and persistent

store coordinator, 26
Top-Level Components

pane, 17–18

461Index

Date data type, 75
Debugging, 425, 433

breakpoint
editing pane, 435
gutter, 435
Text Editing pane, 436

breakpoint actions
AppleScript, 446
log command, 447
NSLog() commands, 447–448
shell script, 446

break point navigator, 442–443
conditional breakpoint, 444–445
conditional breakpoints, 444
configuration, 433
debug area

bar controls, 439
editor area, 438
stack trace, 437

debug controls, 440
variable list, 441
variables current value, 442
viewDidLoad, 441

debugger mode, 434
navigation, 437
nested calls, 439
symbolic breakpoints, 442–443

Decimal data type, 75
Double data type, 75

E ■
editButtonItem method, 110
Enterprise Objects Framework (EOF), 10
Expressions, 171

and aggregates
fault triggering, 181
HeroListController, 181
transient attribute, 182

F ■
Fetched properties, 171

detail view updation
adding powers, 199
data driven configuration, 198–199
dynamic prototypes, 190
encapsulation, 196

HeroDetailConfiguration.plist, 192
HeroDetailController, 189
information hiding, 196
no general section header, 191
rethinking configuration, 192
section header to property list, 192

olderHeroes property creation
$FETCH_SOURCE, 187
detail pane, 186
predicate, 186–187

oppositeSexHeroes property
creation, 188

powers section, 215
accesoryButtonTapped

ForRowWithIndexPath, 217
relation tapping, 217
report configuration, 216
ReportViewSegue, 216

power view controller, 211
configuration, 213
ManagedObjectController, 212
navigation, 213
PowerViewSegue, 212
SuperDB storyboard, 212

refactoring view controller
abstraction, 209
configuration class, 205–206
detail controller, 206
hero instance variable, 207–209
new HeroDetailController, 210

and relationships to Hero class, 189
sameSexHeroes property

creation, 188
youngerHeroes property creation, 187

Fetched results controller
creation of, 32
delegate methods

controllerDidChangeContent, 36
controllerWillChangeContent, 36
Did change object, 36
Did change selection, 37

retrieving managed object, 38
fetchedResultsController method, 32
Float data type, 75

G, H ■
GNARLY MATH, 291

462 Index

I, J ■
iCloud, 219

applications, 220
backup, 221
core data, 229

key-value pairs, 231
mergeChangesFrom

UbiquitousContent, 231
.nosync, 230

data storage, 220
document storage

NSMetadataQuery, 228
UIDocument, 223, 227

enabling application, 221
key value data storage

limitations, 222
sync, 222
synchronize method, 222–223

SuperDB enhancement, 231
data store testing, 237
entitlements, 232
iOS developer

center, 232–233
managed object context, 235
persistent store, 233
UI on DataChanged, 236–237

init(style:reuseIdentifier:) method, 161
Integer data types, 74
Interface Builder

animationDuration, 415
Attributes Inspector, 410–411
BasicControl, 413
controls, 409
cornerRadius property, 415
debugging, 416
designable, 411
init functions, 414
layoutSubviews function, 414
variables, 410

Inverse relationships
creation, 185
parent, 179

iOS platform, 453
Apple’s document, 454
blogs, 455
books, 457
forums, 454

mailing list, 454
web site links, 455

iOS software development kit (SDK), 1
Add, display, and delete data

 (see Superhero data)
anatomy of (see Core data)
commercial options, 5
debugging (see Debugging)
expressions, 6 (see also Expressions)
fetched properties (see Fetched

properties)
frameworks, 1
free option, 5
interface builder (see Interface builder)
iOS 6 development

requirements, 3
website, 4

iPhone Development with Swift, 2
mail, social message and iMessage

(see Messaging)
relationship, 6 (see also Relationship)
sign up options, 5
storyboards (see Storyboards)
unit testing (see Unit testing)
views (see Views)

K ■
Key-value coding (KVC), 176

L ■
Light-emitting diode (LED), 383
Lights

LED flash, 383

torchMode, 384

Lightweight migration, 133

M ■
Map kit

annotation, 293

add and remove, 295

image property, 296

map view vs. annotation view, 296

object, 294

placemarkIdentifier, 297

selecting annotations, 296

view, 294

463Index

geocoding, 297
MapMe application

configuration, 309
delegate methods, 308
initial view, 282
Interface Builder, 299
layout, progressbar and button, 300
locate and annotae, 283
MapLocation, 302
mapViewDidFailLoadingMap, 309
MKCoordinateRegionMake

WithDistance() function, 307
NSCoder protocols, 303
object library, 299
private category methods, 305
progressBar, 300
reverseGeocode, 306
robust errors, 307
view controller interface, 301
viewDidLoad: method, 304

map view
aspect ratio, 291
CLLocation, 288
coordinate regions, 288
degree to distance, conversion, 290
gnarly math, 291
hybrid map type, 284, 286
latitudeDelta, 288
load delegate methods, 292
location authorization, 286
longitudeDelta, 288
MKCoordinateRegionMake

WithDistance() method, 290
MKMapView, 284
MKUserLocation, 288
region change delegate

method, 292
region to display, 291
satellite map type, 284–285
standard map type, 284
structs, members, 288–289
user location, 288
userLocationVisible, 288

map view;regionThatFits, 291
overview and terminology, 283
reverse geocoding, 281

CLGeocoder class, 297
CLPlacements property, 298

Massively multiplayer online role-playing
games (MMORPGs), 247

MediaPlayer framework, 329
media item collections, 335

creation, 335
derived collections, 336
execute query, 338
groupingType, 338
init method, 338
media retrieval, 335
MPMediaPredicateComparison

EqualTo, 338
MPMediaQuery factory method, 337
predicateWithValue, 337
queries and property

predicates, 336
media items

album artwork, 334
AssetURL property, 335
filterable properties, 332
lyrics retrieval, 334
nonfilterable numerical

attributes, 333
persistent ID, 331
types, 331
user defined properties, 334

media library, 330
media picker controller

by artist, song ang album, 339
mediaPickerDidCancel, 340
mediaPicker:didPickMediaItems, 340
music application, 339
prompt property, 340
type specification, 339

MPMediaItem class, 330
MPMediaItemCollection class, 330
MPMediaLibrary class, 330
MPMediaPickerController class, 330
MPMediaPlayer

audio playback, 362–363
AudioViewController, 361, 367
didReceiveMemoryWarning

method, 365
didSelectRowAtIndexpath, 367
loadMediaItemsForMedia

Type, 360
manual segue, 361
MediaCell, 359

464 Index

MPMusicPlayerController
instance, 364

music and video tabs, 357
notification center, 364
observer methods, notification, 366
playbackStateChanged method, 366
PlayerSegue, 361
PlayerViewController, 361
play/pause button state, 366
playPausePressed, 363
tabbed application template, 357
table view cell, 360
table view controllers, 359
UIKit header, 359
VideoViewController, 361
view controllers, delete, 358
viewDidAppear method, 365
viewDidLoad method, 364

MPMediaPropertyPredicate class, 330
MPMoviePlayerController, 355
MPMoviePlayerViewController class, 330
music player controller

application music player, 341
creation, 341
get media item, 342
iPod music player, 341
MPMusicPlaybackStatePlaying, 341
notifications, 345
nowPlayingItemChanged

method, 345
playback time, 343
queue specification, 342
repeat modes, 344
seeking, 343
set media item, 342
setQueryWithQuery method, 342
shuffle modes, 344

skipping tracks, 342

volume adjustments, 344

SimplePlayer application

attributes labeling, 350

button reset, 353

buttons, 352

interface builder, 351

label text change, 350

mediaPickerDidCancel, 354

MPMediaItemCollection, 351

MPMediaItemPropertyAtWork, 355

MPMediaPicker controller, 351

MPMusicPlayerController, 352

notification, 352, 354

outlets and actions, 351

play button, 353

playlist, 346

rewind button, 349

song playing, 347

space bar button, 348

toolbar, 349

toolbar with space, 348

UIBarButtonItem, 351

UIToolbar, 348–349

user interface building, 347

ViewController collection, 354

Messaging

activity view controller

current view, 323

UIActivityItemSource protocol, 324

application, 311

compose views, 315

image picker, 313

message selector view, 314

user interface, 312

MessageImage application

build UI, 324

call camera, 325–326

picking sender, 326

picture, 325

multimedia messaging

service (MMS), 311

short messaging services (SMS), 311

social framework

SLComposeViewController, 321

SLRequest, 322–323

UI framework

attachments, 318

create mail, 316

disabling message attachments, 320

mail compose view, 318

message attachments, 320

message body setting, 317

message compose view

controller, 319–320

populate recipients, 317

subject line populate, 317

view controller delegate method, 318

MediaPlayer framework (cont.)

465Index

Migrations, 127–128
lightweight vs. standard, 133–134
set up, lightweight, 134
standard, 134

Multipeer Connectivity session
(MCSession), 250

N ■
NSCocoaErrorDomain, 150
NSFetchedResultsController, 32
NSLocalizedDescriptionKey, 150
NSMetadataQuery

disable query updates, 229
process, 228
query property, 228
subdirectory, 228

O ■
Object-relational mapping (ORM), 9

P, Q ■
Peer-to-Peer, Multipeer Connectivity

components
peer picker, 239
sessions, 239

future aspects, 279
MCSession

closing connections, 257
connectivity, 254
creation, 251
display name argument, 251
find and connect to, 252
handling connection, 257
listening to, 253
NSData instance, 256
receive data, 256
send data, 256
SendDataReliable, 255
SendDataUnreliable, 255
sending data to a peer, 255

network communication
client server model, 247
hybrid model, 250
MMORPGs (see Massively

multiplayer online role-playing
games (MMORPGs))

peer-to-peer model, 249

project creation, 257
AppDelegate.swift, 258
application constants, 259
assign tag value, 259
BoardSpace, 260
checkForGameEnd method, 276
data receive handler, 272
didReceiveMemoryWarning

method, 279
die rolling process, 275
dieRollReceived, 273
dispatch_async, 274
dock, interface builder, 264
enumerarted list, 261
feedbackLabel, 263
game board design, 261
gameButton, 263
gameButtonPressed action, 264
game space, 263
GameState, 260
group selection, 259
idle timer, turn off, 258
interface design, 258
interfaces, 262
kDiceNotRolled, 260
MCBrowserControllerDelegate, 271
MCBrowserViewController, 269
MCSessionDelegate, 271
NSCoding, 265
packet object, 265
PacketType, 265
PlayerPiece, 260
resetBoard method, 276
reset die state, 275
senDieRoll, 276
sendpacket, 270
set up, view controller, 267
tic-tac-toe view controller, 268
viewWithtag, 274
wrapped call, 266

tic-tac-toe game
accept connection, 244
alert, lost connection, 247
basics, 240
connection establishment, 243
peer picker, 241
picker dialog, 242
tap spaces, 245

466 Index

Photos framework
didSelectRowAtIndexPath, 379
PHAssetChangeRequest, 378
PHAsset objects, 377
PHCollectionList, 377
PHPhotoLibrary, 377
viewDidLoad method, 378

Profiling, 425
launching instruments, 449
templates, 450
window, instruments, 450

R ■
Relationships, 171

add power entity
default values, 183
design menu, 182
entities without relation, 184

adress objects, 175
composition, 175
data model class, 174
definition, 174
delete rule

cascade, 181
deny, 181
no action, 181
nullify, 180

destination entities, 175
fetched properties

data model editor, 180
NSArray, 180
smart playlists, 179

instance variables, 175
inverse relationships

creation, 185
parent, 179

NSString instances, 175
power relationship creation

hero and power entities, 184
in diagram view, 185
pane view detail, 185

superpowers and reports, 171
to-many relationships

collection class, 176
dynamic methods, 178
mutableSetValueForKey, 177

NSManagedobject, 177–178
NSSet, 177
valueForKey, 177

to-one relationships, 175–176
Reverse geocoding, 281

CLGeocoder class, 298
CLPlacement Property, 298

S ■
Segues

manual segue, 409
modal, 408
popover, 408
push, 408
replace, 408

setEditing:animated: method, 111
setEditing: method, 115
SLComposeViewController

isAvailableForServiceType, 321
removeAllImages, 322
removeAllURLs, 322
SLServiceTypes.h, 321
string constant, 322

Standard migrations, 134
Storyboards, 405

AVKit Player view controller, 406
collection view controller, 406
container view controller, 408
GLKit view controller, 406
initial view controller, 407
navigation controller, 406
page view controller, 406
split view controller, 406
tab bar controller, 406
table view controller, 406
view controller, 406

String data type, 75
SuperDB app, 127
Superhero data

application architecture, 51–52
edit and add implementation, 82
error handling, 82
fetched results controller

declaration, 78
delegate methods, 80–81
implementation, 79

467Index

HeroListController
addHero: action, 66
assistant editor, 63
bar button, 66
build and run, 67
buttons navigation bar, 64
Cocoa Touch Class template,

file assistant, 58–59
connection pop-up, 64
connections and outlets, 61
control-drag, 62–63
edit buttons, 65
identity inspector, 61
interface declaration, 60
navigator pane, 60
pop-up window, 62
tab bar and user defaults, 67–68
UITableViewController, 59

loading, fetch request, 85
model design

adding attributes, 77–78
attributes, 72
binary type, 75
Boolean type, 75
checkboxes, 73
dates and timestamps type, 75
decimal, double and float types, 75

detail pane, 76

editor, 69

entity, 70

integer type, 74

name attribute, 72

Navigator pane, 69

new entity, 70–71

secretIdentity, 77

setting name attribute, 76

string type, 75

transformable type, 75

types, attributes, 74

secret identity tab, 87

SuperDB application, 44, 86

table view data source

methods, 83–84

table view sorting, 84–85

view controller interface

attributes, 55

cell attributes, table, 58

cell, table view, 57

navigation controller, 53

segue assignments, 54

storyboard editor, 52

tab bar, 55

table view, scene, 56

Xcode project, 44

document outline, 50

entering details, 45

navigation application, 45

navigation controller, 49

new assistant, 45

outline and disclosure button, 48

scene addition, 48

segues and scenes, 49

storyboard editor, 47

summary editor, 46

SuperDB app, 51

T ■
tabBar:didSelectItem: delegate

method, 84

Test driven development (TDD), 433

Transformable data type, 75

U ■
UIActivityViewController

current view controller, 323

UIActivityItemSource

protocol, 324

UIDocument

accessor, 226

bitwise operator, 226

BOOL parameter, 225

content parameter, 224

dispatch_async function, 226

document state, 227

NSFileManager removeItemAt

URL, 225

states, 226

subclass, 223

ubiquity container, 224

UI framework

attachments, 318

create mail, 316

disabling message attachments, 320

468 Index

dismissModalViewController
Animated, 318

implement delegate method, 319
mailComposeController, 318
mail compose view, 318
message attachments, 320
message body setting, 317
message compose view

controller, 319–320
MFMailComposeResultCancelled, 318
parameter, result code, 318
populate recipients, 317
subject line populate, 317
view controller delegate method, 318

Unit testing, 425–426
DebugMe class, 429
DebugMeTests, 431
DebugMeTests.m, 429
DebugMeTests to DebugTestTests

target, 431
Debugtest, 426
DebugTestTests scheme, 427
failed test, 428
isTrue method, 432
objective C test case, 430
test driven development, 433
testing bundler, 427

Utility frameworks, 1

V, W ■
validateValue:forKey:error: attributes, 149
Version

core data, 127
data models

current version, 131
finer-grained form, 130
marketing version identifiers, 130
.mom file, 129
new version creation, 130
version control mechanisms, 130
version identifiers, 132–133
.xcdatamodel files, 129

scary error message, 127
SuperDB app, 127

View controller, 416
animateTransition, 422

animation controller, 419
creation of, 91
DetailViewController, 418, 421
displayAnimated method, 421
presentation process, 419
rootViewController, 417
storyboard editor, 91
table attributies, 93–94
table cells, 95
table view, 96
UIPresentationController, 419
UIViewControllerAnimatedTransitioning

protocol, 420
View controller interface

attributes, 55
cell attributes, table, 58
cell, table view, 57
navigation controller, 53
segue assignments, 54
storyboard editor, 52
tab bar, 55
table view, scene, 56

viewDidLoad method, 67, 110
Views, 89, 108–109

challenges, 98
controlling table structure, 100
creation of, view controller, 91
Custom UITableViewCell Subclass, 112

Cocoa Touch Class, 114
contact application editing, 113
kLabelTextColor, 115
setEditing: method, 115
table view cell, 113

editing, 109
editing mode, 109

cancel callback method, 112
detail view, 110
editButtonItem method, 110
navigation bar, 110
setEditing:animated: method, 111

editing view, 90
HeroDetailController, 98
implementation, 89
property list, 100

graphical representation of, 101
HeroDetailConfiguration, 104
modeling table structure, 101
parsing, 105

UI framework (cont.)

469Index

resource file, 102
Value cell, 103
Xcode property list editor mode, 102

segue
creation of, 97
pop up selector, 97

specialization input
SuperDBDateCell, 118

SuperDBEditCell, 119
SuperDBPickerCell, 121

updation, 116
view controller (see View controller)

X, Y, Z ■
.xcdatamodel files, 129

More iPhone

Development with Swift

Exploring the iOS SDK

David Mark

Jayant Varma

Jef LaMarche

Alex Horovitz

Kevin Kim

More iPhone Development with Swift: Exploring the iOS SDK

Copyright © 2015 by David Mark, Jayant Varma, Jef LaMarche, Alex Horovitz, Kevin Kim

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied speciically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0449-8

ISBN-13 (electronic): 978-1-4842-0448-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identiied as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. he publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Ron Natalie
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Photo: Michelle Lowman

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my loving parents and family.

—Jayant Varma

vii

Contents

About the Authors ...xix

About the Technical Reviewer ..xxi

Acknowledgments ..xxiii

Chapter 1: Here We Go Round Again ■ .. 1

What This Book Is ... 2

What You Need To Know ... 2

What You Need Before You Can Begin .. 3

What’s In This Book .. 5

Chapter 2: Core Data: What, Why, and How ■ ... 9

A Brief History of Core Data.. 10

Creating a Core Data Application .. 10

Core Data Concepts and Terminology .. 15

The Data Model .. 15

Entities .. 19

Fetch Requests ... 23

Configurations .. 23

The Data Model Class: NSManagedObjectModel .. 23

The Persistent Store and Persistent Store Coordinator .. 26

Reviewing the Data Model .. 28

viii Contents

Managed Objects ... 28

Key-Value Coding ... 28

Managed Object Context .. 29

Saves On Terminate .. 30

Load Data from the Persistent Store .. 31

The Fetched Results Controller... 32

Creating and Inserting a New Managed Object .. 38

Deleting Managed Objects .. 40

Putting Everything in Context ... 41

Chapter 3: A Super Start: Adding, Displaying, and Deleting Data ■ 43

Setting Up the Xcode Project ... 44

Adding a Scene ... 48

Scenes and Segues .. 49

Storyboard Document Outline .. 50

Application Architecture ... 51

Designing the View Controller Interface .. 52

Creating HeroListController .. 58

Making the Connections and Outlets ... 61

Navigation Bar Buttons ... 64

Tab Bar and User Defaults .. 67

Designing the Data Model ... 69

Adding an Entity .. 70

Editing the New Entity ... 70

Adding Attributes to the Hero Entity .. 72

Declaring the Fetched Results Controller .. 78

Implementing the Fetched Results Controller ... 79

Fetched Results Controller Delegate Methods ... 80

Making It All Work .. 81

Error Handling .. 82

Implementing Edit and Add .. 82

ixContents

Coding the Table View Data Source and Delegate .. 83

Sorting the Table View ... 84

Loading the Fetch Request at Launch ... 85

Let ’Er Rip .. 85

Done, but Not Done ... 87

Chapter 4: The Devil in the Detail View ■ ... 89

View Implementation Choices .. 89

Creating the Detail View Controller .. 91

Wiring Up the Segue ... 97

HeroDetailController ... 98

Detail View Challenges ... 98

Controlling the Table Structure with Property Lists .. 100

Property Lists Explained ... 100

Modeling Table Structure with a Property List .. 101

Defining the Table View via Property List ... 102

Parsing the Property List .. 105

Pushing the Details ... 106

Showing the Details ... 108

Editing the Details .. 109

Editing Mode in the Detail View .. 109

Creating a Custom UITableViewCell Subclass .. 112

Saving Your Changes .. 116

Specialized Input Views.. 117

DatePicker SuperDBEditCell Subclass .. 118

Using the DatePicker SuperDBEditCell Subclass .. 119

Implementing a Selection Picker .. 121

Devil’s End .. 125

x Contents

Chapter 5: Preparing for Change: Migrations and Versioning ■ 127

About Data Models ... 129

Data Models Are Compiled ... 129

Data Models Can Have Multiple Versions ... 129

Creating a New Data Model Version ... 130

The Current Data Model Version ... 131

Data Model Version Identifiers .. 132

Migrations .. 133

Lightweight vs. Standard .. 133

Standard Migrations ... 134

Setting Up Your App to Use Lightweight Migrations ... 134

Time to Migrate On ... 135

Chapter 6: Custom Managed Objects ■ .. 137

Updating the Data Model .. 141

Adding the Age Attribute ... 142

Adding the Favorite Color Attribute ... 142

Adding a Minimum Length to the Name Attribute .. 143

Creating the Hero Class .. 144

Tweaking the Hero Header ... 146

Defaulting ... 147

Validation .. 148

Single-Attribute Validations .. 149

Multiple-Attribute Validations ... 150

Adding Validation Feedback ... 152

Updating the Detail View .. 154

Creating SuperDBNonEditableCell .. 156

Creating a Subclass .. 157

Moving Code Around ... 157

Editable Property .. 158

xiContents

Creating a Color Table View Cell ... 159

Custom Color Editor .. 159

Custom Color Table View Cell ... 161

Cleaning Up the Picker ... 163

One More Thing .. 167

Color Us Gone ... 170

Chapter 7: Relationships, Fetched Properties, and Expressions ■ 171

Expanding Your Application: Superpowers and Reports ... 171

Relationships .. 174

To-One Relationships .. 175

To-Many Relationships ... 176

Inverse Relationships ... 179

Fetched Properties ... 179

Creating Relationships and Fetched Properties in the Data Model Editor .. 180

Delete Rules ... 180

Expressions and Aggregates .. 181

Adding the Power Entity ... 182

Creating the Powers Relationship .. 184

Creating the Inverse Relationship .. 185

Creating the olderHeroes Fetched Property ... 186

What Is a Predicate? ... 186

Creating the youngerHeroes Fetched Property .. 187

Creating the sameSexHeroes Fetched Property ... 188

Creating the oppositeSexHeroes Fetched Property .. 188

Adding Relationships and Fetched Properties to the Hero Class 189

Updating the Detail View .. 189

Rethinking Configuration .. 192

Encapsulation and Information Hiding .. 196

Data-Driven Configuration .. 198

Adding Powers .. 199

xii Contents

Refactoring the Detail View Controller ... 205

Renaming the Configuration Class ... 205

Refactoring the Detail Controller .. 206

Refactoring the Hero Instance Variable .. 207

A Little More Abstraction .. 209

A New HeroDetailController .. 210

The Power View Controller ... 211

Navigating to the PowerViewController .. 213

Fetch Properties ... 215

The Finer Details .. 218

Wonderful to the Core .. 218

Chapter 8: Behind Every iCloud ■ ... 219

Data Storage with iCloud .. 220

iCloud Basics .. 220

iCloud Backup .. 221

Enabling iCloud in Your Application .. 221

Key-Value Data Storage ... 222

Document Storage ... 223

UIDocument .. 223

UIDocument with iCloud ... 227

NSMetadataQuery... 228

Core Data with iCloud ... 229

Enhancing SuperDB .. 231

Entitlements ... 232

Enabling iCloud and Creating the Relevant Files .. 232

Updating the Persistent Store ... 233

Updating the Managed Object Context ... 235

Updating the UI on DataChanged .. 236

Testing the Data Store .. 237

Keep Your Feet on the Ground .. 237

xiiiContents

Chapter 9: Peer-to-Peer Using Multipeer Connectivity ■ 239

Peer-to-Peer Connectivity .. 239

This Chapter’s Application .. 240

Network Communication Models ... 247

Client-Server Model .. 247

Peer-to-Peer Model .. 249

Hybrid Client-Server/Peer-to-Peer .. 250

The Multipeer Connectivity Peer .. 250

The Multipeer Connectivity Session ... 251

Creating the Session ... 251

Finding and Connecting to Other Sessions .. 252

Listening for Other Sessions ... 253

Connecting Peers.. 254

Sending Data to a Peer ... 255

Packaging Up Information to Send ... 256

Receiving Data from a Peer .. 256

Closing Connections ... 257

Handling a Peer Connection ... 257

Creating the Project .. 257

Turning Off the Idle Timer ... 258

Designing the Interface .. 258

Defining Application Constants ... 259

Designing the Game Board ... 261

Creating the Packet Object ... 265

Setting Up the View Controller .. 267

Implementing the Tic-Tac-Toe View Controller ... 268

Trying It ... 279

Game On! .. 280

xiv Contents

Chapter 10: Map Kit ■ ... 281

This Chapter’s Application .. 282

Overview and Terminology ... 283

The Map View ... 284

Map Types ... 284

Location Authorization .. 286

User Location .. 288

Coordinate Regions .. 288

Setting the Region to Display ... 291

The Map View Delegate .. 292

Annotations .. 293

The Annotation Object .. 294

The Annotation View ... 294

Adding and Removing Annotations ... 295

Selecting Annotations ... 296

Providing the Map View with Annotation Views .. 296

Geocoding and Reverse Geocoding .. 297

Building the MapMe Application ... 299

Building the Interface ... 299

Finishing the View Controller Interface ... 301

Writing the Annotation Object Class ... 302

Implementing the MapMe ViewController .. 304

Go East, Young Programmer ... 310

Chapter 11: Messaging: Mail, Social, and iMessage ■ ... 311

This Chapter’s Application .. 311

The MessageUI Framework .. 316

Creating the Mail Compose View Controller ... 316

Populating the Subject Line .. 317

Populating Recpiients ... 317

Setting the Message Body .. 317

Adding Attachments ... 318

xvContents

Presenting the Mail Compose View .. 318

The Mail Compose View Controller Delegate Method ... 318

Message Compose View Controller .. 319

Message Attachments .. 320

Disabling Message Attachments .. 320

The Social Framework ... 321

SLComposeViewController ... 321

SLRequest .. 322

The Activity View Controller .. 323

Building the MessageImage Application .. 324

Building the User Interface ... 324

Taking the Picture ... 325

Calling the Camera ... 325

Picking the Message Sender .. 326

Mailing It In... 327

Chapter 12: Media Library Access and Playback ■ .. 329

The MediaPlayer Framework ... 329

Media Items .. 331

Media Item Collections ... 335

Media Queries and Media Property Predicates .. 336

The Media Picker Controller ... 339

The Music Player Controller .. 341

Simple Music Player ... 346

Building the SimplePlayer Application .. 346

Building the User Interface ... 347

Declaring Outlets and Actions .. 351

MPMoviePlayerController ... 355

MPMediaPlayer .. 357

AVFoundation ... 367

TL;DR: AVKit .. 369

Playing Video ... 370

xvi Contents

AVMediaPlayer ... 373

AVMediaPlayer v2 ... 374

Photo Library .. 377

Modifying the Photo Library ... 378

Are You Talking to Me? ... 380

Avast! Rough Waters Ahead! .. 381

Chapter 13: Lights, Camera, and Action ■ .. 383

Lights.. 383

Camera ... 384

Changing Settings .. 386

Putting It All Together.. 387

Choosing a Camera .. 389

Choosing an Output .. 390

Scanning Barcodes .. 394

Generating Barcodes .. 397

Make Some Noise .. 400

Recording Audio ... 401

The Show Must Go On .. 403

Chapter 14: Interface Builder and Storyboards ■ ... 405

Storyboard View Controllers ... 405

Container View Controller ... 408

Segues ... 408

Controls .. 409

Inspectable ... 410

Designable .. 411

A More Useful BasicControl .. 413

View Controllers ... 416

Transitions .. 419

Cue ’em Up ... 423

xviiContents

Chapter 15: Unit Testing, Debugging, and Instruments ■ 425

Unit Tests .. 426

Debugging .. 433

Breakpoints .. 435

The Debug Navigator .. 437

The Debug Area .. 438

Trying the Debug Controls .. 440

The Breakpoint Navigator and Symbolic Breakpoints .. 442

Conditional Breakpoints.. 444

Breakpoint Actions .. 446

One More Thing About Debugging .. 448

Profiling with Instruments .. 449

End of the Road .. 451

Chapter 16: The Road Goes Ever On… ■ .. 453

Getting Unstuck .. 453

Apple’s Documentation .. 454

Mailing Lists ... 454

Discussion Forums ... 454

Web Sites ... 455

Blogs .. 455

Books (Apress) ... 457

Farewell.. 457

Index ■ .. 459

xix

About the Authors

David Mark is a longtime Mac developer and author who has
written a number of books on Mac and iOS development,
including Beginning iPhone 4 Development (Apress, 2010),
More iPhone 3 Development (Apress, 2010), Learn C on the
Mac (Apress, 2008), The Macintosh Programming Primer series
(Addison-Wesley, 1992), and Ultimate Mac Programming
(Wiley, 1995). Dave loves the water and spends as much time
as possible on it, in it, or near it. He lives with his wife and three
children in Virginia.

Jayant Varma is the founder of OZ Apps (www.oz-apps.com),
a consulting and development company providing IT solutions
with specialization in mobile technology. He is an experienced
developer with more than 20 years of industry experience
spread across several countries. He is the author of a number
of books on iOS development, including Learn Lua for iOS
Game Development (Apress, 2012), Xcode 6 Essentials
(Packt, 2015), and More iPhone Development with Objective-C
(Apress, 2015). He has also been a university lecturer in
Australia where he currently resides. He loves traveling and
finds Europe to be his favorite destination.

www.oz-apps.com

xx About the Authors

Jeff LaMarche is a Mac and iOS developer with more than
20 years of programming experience. Jeff has written a number
of iOS and Mac development books, including Beginning
iPhone 3 Development (Apress, 2009), More iPhone 3
Development (Apress, 2010), and Learn Cocoa on the Mac
(Apress, 2010). Jeff is a principal at MartianCraft, an iOS and
Android development house. He has written about Cocoa
and Objective-C for MacTech Magazine, as well as for Apple’s
developer web site. Jeff also writes about iOS development for
his widely read blog at http://iphonedevelopment.blogspot.com.

Alex Horovitz was a cofounder of AppOrchard and is currently the managing partner at
Applied Intelligence Group in Acton, Massachusetts, where he develops enterprise iOS
applications and large back-end systems leveraging the Model-View-Controller design
pattern and reusable frameworks. During the 1990s he worked at both NeXT Computer
and Apple.

Kevin Kim is a founder and partner of AppOrchard LLC, a
Tipping Point Partners company focused on sustainable iOS
development. A graduate of Carnegie Mellon University, he
was first exposed to the NeXTStep computer (the ancestor

of today’s iPhone) while a programmer at the Pittsburgh

Supercomputing Center and has been hooked ever since.

His career has spanned finance, government, biotech, and

technology, including Apple where he managed the Apple

Enterprise Services team for the New York metro area. He

resides in the Alphabet City section of New York City with his

wife and a clowder of rescued cats.

http://iphonedevelopment.blogspot.com

xxi

About the Technical

Reviewer

Ron Natalie has 35 years of experience developing large-scale
applications in C, Objective-C, and C++ on Unix, OS X,
and Windows.

He has a degree in electrical engineering from Johns Hopkins
University and has taught professional courses in programming,
network design, and computer security.

He splits his time between Virginia and North Carolina with his
wife Margy.

xxiii

Acknowledgments

I would like to acknowledge and appreciate the efforts of David Mark and Jeff LeMarche,
who laid the foundation for the first More book. It was a pleasure and a lot of hard work to

build and expand on their work. I am thankful to the staff of Apress, the technical reviewer,

and my family who supported and made even the challenging stages easy to achieve.

Specifically, I would like to mention Michelle Lowman, James Markham, Kevin Walter, and

Kim Wimpsett from Apress for their generous support and professionalism through this

process. I would like to also thank Ron Natalie for his attention to detail as a technical

reviewer.

I would like to thank my family who supported me while I worked on the book. It would not

have been possible without their understanding and support.

Lastly, I’d like to thank you, the reader—the most integral part of this equation—for believing

in this book and reading it. I hope it helps you in your iOS development journey.

I would like to thank everyone else who has been part of this book in some way, and I hope

that I have been able to do that. Thank you all.

—Jayant Varma

	Contents at a Glance
	Contents
	About the Authors
	About the Technical
Reviewer
	Acknowledgments
	Index

